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ABSTRACT

A mathematical description of one-dimensional (1D) many-body systems has

been available for several decades in the form of the Tomonaga-Luttinger Liq-

uids model. The technical means to engineer these 1D systems in the labo-

ratory have, however, only become available recently. Experiments with con-

fined electrons in quantum wires and with anisotropic clouds of cold atoms

have yielded promising results, but limitations on the nature and density of

these particles have prevented some experimental conditions to be attained.

Given this, our purpose here is to develop a new experimental scheme to study

the physics of Luttinger Liquids under conditions outside the reach of other

methods.

In order to achieve this, we investigated the mass flow of helium through

solid-state nanopores. Using a highly-focused electron beam, we fabricated

these nanopores by locally ablating the surface of thin silicon nitride mem-

branes. This tailored approach gave us the ability to produce nanopores as

small as ∼0.5 nm in diameter. We induced flows of helium through these pores

by applying a pressure differential, as large as 50 bar, and we measured the

flow by mass spectroscopy.

The first results I present in this thesis were taken in the gas phase, at

a temperature between 77 and 295 K. In order to demonstrate the feasibility

of the detection of mass flow through single nanopores, we investigated the

conductance of pores in a wide range of diameters, from over 100 nm down to

∼15 nm. We showed how the fluid undergoes a transition from free-molecular

Knudsen effusion to a collective viscous flow as the mean-free-path of the
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helium decreases. Modeling of the mass flow is shown to be an accurate method

to quantitatively determine the dimensions of nanopores and thus provides an

in situ tool for subsequent experiments at lower temperatures.

In the second half of this thesis, I present our low-temperature results on

the flow of liquid helium in nanopores with diameters of 45 and 16 nm. For

all samples, we detected the onset of superfluidity as a sudden rise in the flow.

Using a two-fluid model of helium, we extracted the superfluid component of

the flow by substracting the contribution of the normal component calculated

with a short-pipe viscous flow equation. This superfluid contribution to the

flow was assumed to be moving at a critical velocity. We found this critical

velocity to be nearly linearly-dependent on temperature and with amplitudes

as large as 20 m/s. These are the largest velocities measured in channel flows

of superfluid, as well as the smallest pores used for strictly direct-current mea-

surements.

Recent quantum Monte Carlo simulations predict the emergence of Lut-

tinger Liquid behavior in solid-state nanopores only a factor of five smaller

than our smallest successful sample. Our experiments therefore represent a

significant step towards a realization of 1D systems of spinless neutral con-

densed matter particles. Our experimental scheme is also ideally positioned to

compare the behaviour of 3He and 4He and thereby investigate the disappear-

ance of bosonic and fermionic quantum statistics in 1D.
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ABRÉGÉ

Une description mathématique des systèmes à plusieurs corps unidimension-

nels (1D) a été disponible depuis plusieurs décennies sous la forme du modèle

des liquides de Tomonaga-Luttinger. Les moyens techniques pour effectuer

l’ingénierie de ces systèmes 1D en laboratoire ne sont cependant devenu disponible

que récemment. Des expériences utilisant des électrons confinés dans des fils

quantiques, ou encore des nuages anisotropes d’atomes froids, ont produit

des résultats prometteurs, mais certaines limitations sur la nature et la den-

sité de ces systèmes de particules ont empêché l’atteinte de certain régimes

expérimentaux. De ce fait, notre but ici est de développer un nouveau procédé

pour l’étude de la physique des liquides de Luttinger dans des conditions hors

d’atteinte des autres méthodes.

Pour ce faire, nous avons investigué l’écoulement massique d’hélium à

travers des nanopores fait de matière solide. En utilisant un faisceau hautement-

focalisé d’électrons, nous avons fabriqué ces nanopores en effectuant une ab-

lation locale de la surface de membranes minces de nitrure de silicium. Cette

méthode nous a donnée la capacité de produire des nanopores aussi petit que

∼0.5 nm de diamètre. Nous avons ensuite induit un écoulement d’hélium à

travers ces pores en appliquant un différentiel de pression, jusqu’à 50 bar, et

avons mesuré cet écoulement massique par spectroscopie de masse.

Les premiers résultats que je présente dans cette thèse ont été obtenus dans

la phase gazeuse, à une température entre 77 et 295 K. De manière à démontrer

la faisabilité de la détection d’un écoulement massique à travers un trou unique,

nous avons investigué la conductance de pores de diamètres très variés, de 100



vii

nm à ∼15 nm. Nous avons montré comment le fluide passe par une transi-

tion entre une effusion Knudsen de particules libres à un écoulement collec-

tif visqueux lorsque la libre-parcours-moyen d’hélium rapetisse. Nous avons

démontré que la modélisation de cet écoulement massique est une méthode

précise pour déterminer quantitativement les dimensions de nanopores et qu’elle

offre ainsi un outil in situ pour les expériences subséquentes à basses températures.

Dans la seconde moitié de cette thèse, je présente nos résultats à basse

température des écoulements d’hélium liquide dans des nanopores ayant un

diamètre de 45 et 16 nm. Dans les deux cas, nous avons détecté l’émergence

de la superfluidité sous la forme d’une augmentation soudaine de l’écoulement.

En utilisant un modèle à deux-fluides de l’hélium, nous avons extrait la com-

posante superfluide de l’écoulement en soustrayant la contribution normale cal-

culée avec une équation d’écoulement visqueux dans des tuyaux-courts. Nous

avons pris pour acquis que cette contribution superfluide de l’écoulement se

déplaçait à une vitesse critique. Nous avons trouvé que cette vitesse critique

dépendait presque linéairement sur la température et que son amplitude pou-

vait être aussi large que 20 m/s. Ce sont les vitesses les plus larges mesurée

pour des écoulements superfluides dans des canaux. Ce sont, de plus, les

nanopores les plus petits ayant été utilisés pour des mesures de courant di-

rectes.

Récemment, des simulations Monte Carlo quantiques ont prédi l’émergence

de comportements de liquide de Luttinger dans des nanopores de matière

solide à seulement un facteur cinq des dimensions de nos plus petits pores.

Nos expériences représentent donc une étape importante vers la réalisation de



viii

systèmes 1D pour des particules neutres sans moment angulaire dans la matière

condensée. Notre procédé expérimental est, de plus, positionné idéalement

pour comparer le comportement des atomes 3He and 4He et ainsi investiguer

la disparition en 1D des statistiques quantiques tels que les bosons et fermions.
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Chapter 1

Introduction

This thesis constitutes the first few chapters of a larger body of work aimed

at unraveling the physics of a one-dimensional (1D) system in the quantum

regime. The ultimate goal is to find a suitable solid state system to confine

test particles in a way for them to experience one-dimensional confinement.

Specifically, any measurement of the properties of a one-dimensional quantum

system is of great importance to determine whether the longstanding theoreti-

cal prescriptions given by Tomonaga-Luttinger liquids theory indeed constitute

a viable model.

In the search for materials where one-dimensional quantum systems could

be realized, promising results have been obtained with electrons propagating

in carefully engineered materials. These heterogeneous crystalline substrates

allow charge carriers to propagate in very thin regions and the application of

additional electric fields can further restrict the areas accessible to the carri-

ers, such that they can be confined to narrow transport channels. Transport

of electrons in sufficiently narrow channels is expected to lead to behavior
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described by the Tomonaga-Luttinger liquids theory [1].

Electrons in a semiconductor structure are however not the only test par-

ticle that can be confined to low dimensions. In fact, recent studies [2, 3]

have shown, using quantum Monte Carlo simulations, that neutral atoms con-

fined in a solid state nanopore can interact such that key parameters of the

Tomonaga-Luttinger theory can be extracted. These computations were in-

spired by the experimental work described here and have predictive power in

the limit where one-dimensional behavior is expected to occur.

The atom of choice for these experiments is helium, in large part because

its large zero-point motion prevents solidification, even at zero Kelvin, thus

allowing experiments with a strongly interacting quantum liquid. Helium is

also available as two isotopes (4He and 3He), which are respectively bosons and

fermions. Helium thus offers the promising possibility to conduct an experi-

ment with either one of the atomic species, and compare behavior of particles

with fundamentally different quantum statistics.

1.1 Outline of the Thesis

The overarching goal of the experiments presented in this thesis is to imple-

ment an experimental scheme where helium atoms would be confined in solid

state nanopores and their physical properties probed by measurement of the

mass transport. Chapter 2 presents the motivations behind this work as well

as a broad overview of the history of theoretical investigations of physical sys-

tems confined to a single dimension. The prevalent experimental attempts to

create a tangible 1D system are also described, as well as a comparison of their



1.1 Outline of the Thesis 3

strengths and weaknesses with respect to our proposed experimental scheme.

The different avenues available to manufacture a highly confined system are

also discussed, along with the rationale behind the choice of the solid state

nanopores used in this thesis. Selected results from extensive computational

studies by our collaborators are also presented in order to offer strong quanti-

tative expectations.

The subsequent chapter is designed to lay down the theoretical background

necessary to complete the analysis of the mass transport in channels. First,

I describe the dynamics of fluid in the different flow regimes as it transitions

from a rarefied effusion to a high density viscous flow. A hydrodynamic model

tailored to the particular geometry of solid-state nanopores is also developed.

Second, I give a simple description of the characteristics of helium at low

temperatures and provide the key knowledge for the interpretation of liquid

and superfluid helium transport.

In chapter 4, I describe the experimental techniques and apparatus re-

quired to implement our measurement scheme. Special attention is given to

the sample fabrication process and how it influences the nanopore geometry.

Indeed, the specific dimensions of the nanopores directly affect the interpreta-

tion of the results obtained. The principles underlying our main measurement

tool, namely a helium mass spectrometer, are then presented alongside a de-

scription of the experimental equipment developed for the sensitive detection

of helium flows. A specific section is also devoted to the cryogenic aspect of

the experiments since working at low temperatures imposes several stringent

constraints on the design of an experimental cell and on the protocol of exper-
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iments. The chapter ends with a description of the thermometry apparatus

and thermalization hardware designed for experiments at low temperatures.

The following two chapters are devoted to the presentation of selected ex-

perimental data and results we obtained throughout our investigations. The

first is composed of results from gaseous flow of helium and serves as a step-

ping stone for the understanding of the liquid flow experiments presented in

the chapter that follows. The gas flow results of chapter 5 first focus on exper-

iments with large nanopores, acting as a proof-of-concept for the experimental

scheme proposed here. Then, a series of experiments that slowly bridge the

gap towards the quasi-1D regime is shown for increasingly small nanopores.

Since the realization of a 1D quantum state requires both low temperatures

and highly confined geometries, the results of chapter 6 are presented in two

parts. First, I show results from experiments that probe the flow of liquid

helium both in the normal and superfluid phase in a 45 nm pore where a fully

3D behavior is expected. Then, in order to approach the 1D limit, I present

results from a nanopore of only ∼ 15 nm across.

The results presented in both chapters 5 and 6 are then summarized and

discussed with respect to future avenues of investigation opened up by this

work. Finally, I also present in the appendix some critical results regarding

the stability of solid-state nanopores. These preliminary findings are relevant

to our efforts to reach the 1D limit.
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Chapter 2

Motivation and Historical

Context

2.1 Fermi Liquids

The many-body interactions between particles in physical systems are often

the root of exotic phenomena that spark the interest of condensed matter

physicists. Fermi liquid theory is an example of a theory which describes

particles with non-negligible interactions and whose predictions have been rig-

orously tested experimentally. In Fermi liquid theory, the interactions between

fermions cannot be ignored, which makes a simple microscopic description with

independent particles unsuitable. Without those interactions, the many body

system of fermions is simply described by the free-fermion gas model where,

at T=0, the occupation n(k) of all available energy levels is n(k ≤ kF ) = 1 up

to the Fermi level and n(k > kF ) = 0 above. This is depicted in figure 2.1A.

In this non-interacting case, a single fermion can be taken from the Fermi sea
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(k < kF ) and excited into an unoccupied state above the Fermi level. At fi-

nite temperatures, this excitation to a higher energy state is only possible for

particles near the Fermi energy.

Fig. 2.1 (A) Occupation number of the 1D Fermi system of free
electrons at T=0. (B) Occupation number with interactions be-
tween the constituent 1D fermions. (C) Schematic representation
of the Fermi sphere in 3D where quasi-particles near the Fermi sur-
face can be excited to higher levels. Parts (A) and (B) reproduced
from [4].

The key insight behind Landau’s Fermi liquid theory is the idea that rele-

vant excitations of a physical system of interacting fermions are also restricted

to particles with an energy near the Fermi level. When this is true, the system

should be well described by a ground state, a filled Fermi sea (figure 2.1A,C)

and a low energy spectrum of excitations near kF . If the interactions are turned

on gently enough (adiabatically), the system’s excitations can be mapped one-

to-one to the original interacting fermions. Importantly, these new mean-field

quasi-particles are non-interacting and the Hamiltonian describing this rede-

fined system is thus more easily solvable. These new quasi-particles are almost

identical to the bare fermions except for a renormalization of some dynami-

cal properties such as, for example, the effective mass. The occupation of
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states n(k) of a Fermi liquid (figure 2.1B) is thus very similar to that of the

free-fermions model and the properties of the system are again defined by the

quasi-particle excitations near the Fermi level. While Fermi liquid theory is,

strictly speaking, an approximation, it “becomes an asymptotically exact so-

lution for low energies” [5] and its predictions remain very powerful for most

fermionic systems.

One dimensional (1D) quantum systems are, however, not well described

by Fermi liquid theory. In fact, the Fermi liquid model breaks down in 1D

because of a Peierls instability caused by the point-like Fermi surface. A single

wavevector (±2kF ) can connect the two points of the Fermi surface (±kF )

and this produces a divergent response under perturbations, so the mean-field

description of the system is no longer applicable. A different approach is

therefore required to describe the physics of strongly correlated 1D systems.

Fortunately, a treatment of 1D interacting fermions similar to the Fermi liquid

approach was devised decades ago and can be applied to a large class of 1D

systems.

2.2 Tomonaga-Luttinger Liquids

In 1950, a model of interacting fermions in 1D was proposed by Tomonaga

[6]. The model’s assumptions were later redefined by Luttinger [7] and some

subtle mistakes in calculations were eventually corrected by Mattis and Lieb

[8] in the 1960s. The model for spinless and massless interacting fermions

is constructed by using a bosonization of collective excitations to define a

suitable Hamiltonian. Subsequent seminal work by Haldane on spinless 1D
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fermions [9] introduced a generalized model giving insights into the dynamics

of 1D systems in terms of interaction strength between the particles forming a

1D chain. Importantly, Haldane highlighted the possibility of treating several

models of 1D interacting fermions or bosons with the same description of

low energy excitations. The Tomonaga-Luttinger “liquid” was thus named in

reference to the low-energy excitation of particles in the Tomonaga-Luttinger

(TL) model [9]. The process is akin to the emergence of the Fermi liquid model

from a modification of the free-Fermi gas model because of added interactions.

2.2.1 The Tomonaga-Luttinger Model

Fig. 2.2 (A) Dispersion relation of fermions in 1D. Particles are
excited with momentum q and energy E = �ω where the allowed
excitation spectra (B) is gapless only for q = 0,±kF . (C) The
simplified dispersion relation assumed within the Luttinger model
where the dotted lines in (A) depict the linear dispersion approx-
imation at the region of interest for low-energy excitations exclu-
sively. Two types of particles are presumed, right moving and left
moving and the dispersion relation is assumed to be linear with
E = ±�vk. Figure based on figures from [5], chapter 3.

The dispersion relation of a 1D fermionic systems is shown schematically in

figure 2.2A, where fermions (full dot) can be excited above the filled Fermi sea,

thus creating a hole (open circle). For low energy, this particle-hole excitation
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is restricted to fermions near the two Fermi points at ±kF . The excitation

spectrum is shown in fig. 2.2B where we note the important gap for 0 ≤ q ≤

2kF , where the subscript “F” denotes the Fermi level and q is the momentum

transfer during excitation. This feature emerges from the fact that the only

processes that can excite fermions out of the Fermi sea are for |q| = 0, 2kF and

leads to the nesting behavior alluded to in the previous section when discussing

the instability of Fermi liquids in 1D.

The TL model is constructed based on assumptions about the dispersion

relation of the fermions near ±kF . Specifically, the exactly solvable nature of

the TL model relies on the linearized dispersion relation Er(|k|) ' ~(rk−kF )vF

extending down to all lower energies (see figure 2.2C) and the presence of two

types of particles, namely right (r = +1) and left (r = −1) moving ones.

The dotted lines on figure 2.2A represent this linear simplification for the 1D

fermions and figure 2.2C explicitly shows the linear dispersion relation of the

TL model.

The Hamiltonian for this simplified system can be built in two parts [5]:

the first interactionless Hamiltonian H0, and the interaction specific H2 and

H4 such that

HTL = H0 +H2 +H4, (2.1)

and
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H0 = ~
∑
r,k,s

vF (rk − kF ) : c†rkscrks : (2.2)

H2 =
1

L

∑
q,s,s′

[
g2‖(q)δs,s′ + g2⊥(q)δs,−s′

]
ρ+,s(q)ρ−,s′(−q) (2.3)

H4 =
1

2L

∑
r,q,s,s′

[
g4‖(q)δs,s′ + g4⊥(q)δs,−s′

]
: ρr,s(q)ρr,s′(−q) : . (2.4)

In the previous Hamiltonian HTL, the fermions described by the operators

c†rks have two possible spin states s and propagate in one of two directions

r = +,− for right and left moving particles respectively. The system has length

L and particles have momentum k up to the Fermi level. The terms within

“: ... :” are normal ordered for fermionic operators. The interactions described

byH2 andH4 are for four-fermions events where a momentum transfer q occurs

and the coupling constants g2(g4) have the usual meaning of forward scattering

between particles of different(same) chirality1. The subscript “‖” refers to

same-spin interaction and the “⊥” one refers to opposite-spins coupling. The

Kronecker delta δ has the usual definition of δ = 1 when indices are the same.

The density fluctuation operators ρr,s =
∑

k : c†r,k+q,scr,k,s : define particle

fluctuations with momentum q restricted to 2πm/L for an integer m given a

finite length system.

The present form of the TL Hamiltonian hints at the nature of the excita-

tions in 1D system being of bosonic nature. Given the previous assumptions

about the dispersion of particle-hole pair excitations, the Hamiltonian can

in fact be rewritten as a harmonic oscillator where the eigenstates are truly

1Chirality in this case refers to whether particles are left-moving or right-moving.



2.2 Tomonaga-Luttinger Liquids 11

bosonic. This Bogoliubov transformation of the initial, fermionic states into

operators with bosonic properties is the historical root of the term “bosoniza-

tion”. The details of the latter transformation of the Hamiltonian are presented

in [5, 10].

Looking at the free-fermion case, some important insights can be obtained.

The previous form of H0 in equation 2.1, is equivalent to

H0 =
π~vF
L

∑
r,q 6=0,s

: ρr,s(q)ρr,s(−q) : + constant, (2.5)

where any new excitation in the system is added above the Fermi level and

this excitation adds a significant amount of kinetic energy to this Hamiltonian.

The free-fermion Hamiltonian can be transformed to

H0 =
π~vs
L

∑
r,q 6=0,s

: ρr,s(q)ρr,s(−q) : (2.6)

+
π~
2L

∑
s

[
vN(N+,s +N−,s)

2 + vJ(N+,s −N−,s)2
]
,

where Nr,s ≡ ρr,s measures excitations restricted to q = 0 and vs = vN = vJ =

vF are propagation velocities for these free-fermions. The velocities were la-

beled differently to highlight the physical distinction for the symmetric combi-

nation of Ns =
∑

rNr,s representing charge excitations and the antisymmetric

combination Js =
∑

r rNr,s represents currents. This form of the Hamiltonian

is especially insightful because of the introduction of different velocity-like

variables vJ , vN , and how it transforms upon addition of interaction in the

model.
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The introduction of interactions does not change much in the derivation,

except that the bosons of choice in the Bogoliubov transformation are explicitly

interpreted as combinations of charge (ρ) and spin (σ) collective fluctuations.

The velocities of equation 2.7 are now altered by the coupling constants g2 and

g4 and the full TL Hamiltonian becomes

HTL =
π~
L

∑
rνq 6=0

vν(q) : νr(q)νr(−q) : (2.7)

+
π~
2L

[
vNν (N+ν +N−ν)

2 + vJν (N+ν −N−ν)2
]
,

where ν = σ, ρ and the collective excitation velocity becomes

vν(q) =

√[
vF +

g4ν(q)

π

]2

−
[
g2ν(q)

π

]2

, (2.8)

with vNνvJν = v2
ν and vNν = vν/Kν . The conclusion of this derivation is that

interactions between the particle-hole pairs renormalize the velocity of the

collective excitations and the velocity (vρ) for charge propagation is no longer

the same as (vσ), the spin propagation velocity. This separation of two distinct

propagating modes is the well known “spin-charge separation”. The parameter

Kν is directly affected by the coupling constants and is sometimes described as

the stiffness of the 1D system because it regulates the decay of most correlation

functions. Because of its central role in describing the dynamics of excitations

within the TL model, it is often called the “Luttinger parameter”. Since we

will not work with a spin degree of freedom in the rest of this work, we will

drop the subscript and only write the Luttinger parameter as K.
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2.2.2 A Class of Luttinger Liquids

In his seminal contribution on this subject [9], Haldane recognized that the

construction of a harmonic-fluid description to solve electronic 1D systems

could be extended to a whole class of interacting particles in highly confined

configurations. In fact, the bosonization of 1D systems treats both fermions

and bosons similarly and the dynamics of the hydrodynamics of the low-energy

excitations can be described by the Hamiltonian derived above [11]. The long-

range density fluctuations emerge in all cases and their propagation is described

by the velocity v and the Luttinger parameter K. Of particular interest to us

is the case of spinless bosons interacting with realistic inter-atom potentials

[12]. Using the same derivation as the one shown in the previous section, we

can arrive at a very informative effective Hamiltonian [2]

H =
~
2π

∫ L

0

dz
[
vJ(∂zφ)2 + vN(∂zθ)

2
]
, (2.9)

or equivalently

H =
~v
2π

∫ L

0

dz

[
1

K
(∂zφ)2 +K(∂zθ)

2

]
, (2.10)

where the velocity v =
√
vJvN defines the linearly dispersed density modes with

E(k) = ~vk and the two phases φ(z) and θ(z) are defined by the particle field

operator ψ† =
√
ρ(z)e−iφ(z). The angular field θ(z) is a suitable redefinition

of the density, such that

ρ(z) ≡
[
ρ0 +

1

π
∂zθ(z)

] ∞∑
m=−∞

ei2mθ(z).
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ρ0 is defined as the T=0 number density. ∂zθ(z) is the canonically conjugate

momentum to φ(z) and they must commute as [φ(z), ∂z′θ(z
′)] = iπδ(z − z′).

The position z is set along the axis of the 1D system and the particle confine-

ment would be applied perpendicular to it. We will return to these equations

in section 2.5, where the convenient quadratic structure of the TL effective

Hamiltonian will allow for computation of the density-density correlations,

leading to predictions of physically measurable quantities.

In most 1D systems, the density correlation functions show a tendency to

form density waves, and in particular those correlation functions decay accord-

ing to power laws that are proportional to the interaction strength between

particles. These strong predictions of the similarity of behavior between sys-

tems of any quantum statistics and the power-law decay of physical quantities

as a function of interaction strength are key signatures for experiments to

observe [11]. A few strategies have been explored over the last two decades

to implement and measure such 1D systems. The most prominent ones are

described in the next section.

2.3 Realizations of 1D Systems

The interest in Tomonaga-Luttinger liquids (TLL) has been largely theoreti-

cal for decades and it is only recently that several techniques have allowed for

experimental realizations of quasi-1D systems in the laboratory. At its sim-

plest, a 1D quantum system can be created experimentally if test particles can

be confined along two axis and remain free to propagate in the third dimen-

sion. The application of this confinement potential gives rise to subbands in
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the off-axis directions and if the energy of the particles is low enough, motion

perpendicular to the free axis is quenched. This remains true for different par-

ticles and for various confinement fields, as long as the energy of the particles

is lower than those transverse energy levels. There are therefore many physi-

cal systems where a realization of a 1D quantum systems could be attempted

and groups from several fields have indeed pursued it. For example, early

evidence of 1D behavior has been observed in electron gases within semicon-

ducting heterostructures [13, 14, 15, 16, 17], in optical lattices of cold vapor

gases [18, 19, 20, 21] and in the T-linear signature of the phonon heat capacity

of helium within porous materials [22]. An overview of some of the work done

in each of these avenues follows.

2.3.1 Electronic Transport in Quantum Wires

Electronic transport in condensed matter systems is a prime test bed for exotic

physical phenomena, and it is therefore no surprise that attempts to detect

signatures of TLL happened very early within this field. In particular, mea-

surements [13, 23] of the current tunneling into the edge state of the fraction

quantum Hall effect was found to be consistent with the presence of a chi-

ral Luttinger liquid. Realizations of TLL in electronic transport experiments

were also devised in systems where the conduction path was engineered to be of

very small dimensions. Technically, these are quantum wires where transport

is allowed in a limited number of conductance channels.

Using very narrow materials such as carbon nanotubes is one method of

obtaining quantum wires [24, 25] where 1D behavior could be observed. A
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second noteworthy approach uses confinement of electrons deep within semi-

conducting heterostructures. This strategy has evolved from the extensive

expertise of groups working on two-dimensional electron gases (2DEG), where

they can engineer stacks of carefully chosen semiconductors such that electrons

are free to move along two directions. Metal gates are then positioned over this

heterostructure such that applied voltages deplete the electronic density un-

derneath them, and conduction paths can thus be patterned precisely. Figure

2.3 shows an exampleof such a construction designed in our group .

Fig. 2.3 (A) Schematic of the 2DEG within a semiconducting
heterstructure (not shown here) and the metallic gates used to de-
pleted the 2DEG in chosen areas. This geometry combines two
vertically integrated quantum wires to study the drag signal be-
tween the two wires. (B) Scanning electron microscope image of a
device. Figure reproduced in part from [26].

Quantum wires made from 2DEGs have evolved into several parallel strate-

gies for the detection of signatures of the TLL. Resonant tunneling into a

quantum wire made from the cleaved-edge of a 2DEG [15, 17, 27] has been a

method of choice early on to observe TLL power-law behaviors. More recent

attempts are using a slightly different approach. By engineering two closely

spaced 2DEGs and placing gates such that a quantum wire is created in each
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2DEG, the inter-wire interactions can be probed by measuring the Coulomb

drag signal between them [26, 28].

Figure 2.3A shows a schematic based on a device where two 2DEGs sep-

arated by tens of nanometers each have a pair of metallic gates to shape a

quantum wire. These two quantum wires are aligned vertically. Figure 2.3B

is an electron microscope image of an actual device where the metallic gates

(brighter areas) are clearly visible. These vertically integrated quantum wires

(shown in figure 2.3) have been used to demonstrate that the temperature

dependence of the Coulomb drag is consistent with having two parallel TLLs

[29]. Using similar experimental techniques, other groups have reported the

observation of charge fractionalization [30] and spin-charge separation [1, 31]

in quantum wires. A more detailed account of the experimental realization of

TLL with gated 2DEG systems can be found in the thesis of D. Laroche [32].

2.3.2 Laser Traps and Ultra Cold Atoms

Laser cooling and magneto-optical traps are experimental techniques that al-

low researchers to slow down atoms and cool them to extremely low temper-

atures. The optical trapping technique uses a retro-reflected laser beam that

interferes with itself to create a standing wave. The atoms develop an induced

polarization when interacting with this electric field, and consequently feel a

force proportional to its gradient. The laser beam frequency is also tuned with

respect to a specific atomic transition such that many photons interact with

the atoms and the latter can eventually aggregate in a spacial lattice formed

by the standing light pattern. If three such counter-propagating laser beams
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are placed perpendicular to one another, then a 3D lattice is created where a

dilute gas of atoms can be trapped.

The optical trap can be used in conjunction with a magnetic trap, where

the spin of the atoms interacts with an applied magnetic field through the

Zeeman effect. Various methods [20, 33] can be used here to magnetically

confine the atoms, but the goal remains to trap the cooler atoms while letting

the warm ones escape to the vacuum surrounding the trap.

VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001

Exploring Phase Coherence in a 2D Lattice of Bose-Einstein Condensates

Markus Greiner, Immanuel Bloch, Olaf Mandel, Theodor W. Hänsch,* and Tilman Esslinger
Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany

and Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
(Received 4 May 2001; published 1 October 2001)

Bose-Einstein condensates of rubidium atoms are stored in a two-dimensional periodic dipole force
potential, formed by a pair of standing wave laser fields. The resulting potential consists of a lattice
of tightly confining tubes, each filled with a 1D quantum gas. Tunnel coupling between neighboring
tubes is controlled by the intensity of the laser fields. By observing the interference pattern of atoms
released from more than 3000 individual lattice tubes, the phase coherence of the coupled quantum gases
is studied. The lifetime of the condensate in the lattice and the dependence of the interference pattern
on the lattice configuration are investigated.

DOI: 10.1103/PhysRevLett.87.160405 PACS numbers: 03.75.Fi, 03.65.Nk, 05.30.Jp, 32.80.Pj

The physics of Bose-Einstein condensation is governed
by a hierarchy of energy scales. The lowest energy is usu-
ally the atomic oscillation frequency in the trap which is
much smaller than the chemical potential of the conden-
sate. Here we report on experiments in which we enter a
regime where this order is inverted. By overlapping two
optical standing waves with the magnetically trapped con-
densate we create a two-dimensional periodic lattice of
tightly confining potential tubes. In each of the several
thousand tubes the chemical potential is far below the trap-
ping frequencies in the radial direction. The radial motion
of the atoms is therefore confined to zero point oscillations,
and transverse excitations are completely frozen out. In
the degenerate limit, these 1D quantum gases are expected
to show a remarkable physics not encountered in 2D and
3D, for instance, a continuous crossover from bosonic to
fermionic behavior as the density is lowered [1–5].

In our two-dimensional periodic array of quantum gases
the tunnel coupling between neighboring lattice sites is
controlled with a high degree of precision by changing
the intensity of the optical lattice beams. A similar con-
trol over coupling between adjacent pancake-shaped con-
densates was achieved in recent experiment using a single
standing wave laser field [6,7]. After suddenly releasing
the atoms from the trapping potential we observe the mul-
tiple matter wave interference pattern of several thousand
expanding quantum gases. This allows us to study the
phase coherence between neighboring lattice sites, which
is remarkably long lived. Even for long storage times,
when the phase coherence between neighboring lattice
sites is lost and no interference pattern can be observed
anymore, the radial motion of the atoms remains confined
to zero point oscillations.

Similar to our previous work [8], almost pure Bose-
Einstein condensates with up to 5 3 105 87Rb atoms are
created in the jF ! 2, mF ! 2! state. The cigar-shaped
condensates are confined in the harmonic trapping poten-
tial of a QUIC trap (a type of magnetic trap that incor-
porates the quadrupole and Ioffe configuration) [9] with
an axial trapping frequency of 24 Hz and radial trapping

frequencies of 220 Hz. The lattice potential is formed by
overlapping two perpendicular optical standing waves with
the Bose-Einstein condensate as shown in Fig. 1. All lat-
tice beams are derived from the output of a laser diode
operating at a wavelength of l ! 852 nm and have spot
sizes w0 (1"e2 radius for the intensity) of approximately
75 mm at the position of the condensate. The resulting
potential for the atoms is directly proportional to the in-
tensity of the interfering laser beams [10], and for the case
of linearly polarized light fields it can be expressed by

U# y, z$ ! U0% cos2#ky$ 1 cos2#kz$
1 2e1 ? e2 cosf cos#ky$ cos#kz$& . (1)

Here U0 describes the potential maximum of a single
standing wave, k ! 2p"l is the magnitude of the wave
vector of the lattice beams, and e1,2 are the polarization
vectors of the horizontal and vertical standing wave laser
fields, respectively. The potential depth U0 is conveniently
measured in units of the recoil energy Er ! h̄2k2"2m,
with m being the mass of a single atom. The time-phase
difference between the two standing waves is given by the

FIG. 1. Schematic setup of the experiment. A 2D lattice poten-
tial is formed by overlapping two optical standing waves along
the horizontal axis ( y axis) and the vertical axis (z axis) with a
Bose-Einstein condensate in a magnetic trap. The condensate is
then confined to an array of several thousand narrow potential
tubes (see inset).

160405-1 0031-9007"01"87(16)"160405(4)$15.00 © 2001 The American Physical Society 160405-1

Fig. 2.4 Schematic representation of a 2D optical lattice. The
cloud of cold gas is formed with perpendicular lasers beams, here
shown as arrows, that create the electric fields forcing the trapping
of atoms. (BEC stands for Bose-Einstein condensate). The inset
shows how the cloud of atoms is divided in highly asymmetric, elon-
gated “cigar” shaped regions arranged in a 2D lattice. Each “cigar”
contains a few thousand atoms that are in a quasi-1D confined state.
Reproduced from [18].

Figure 2.4 shows a simplified illustration of the vapor cloud created using

magneto-optical traps. Within a vacuum chamber, the cold atoms are confined

to the volume at the intersection of the laser beams (here shown as arrows). In

this case, the intensity and frequency of the lasers was chosen to create a highly

asymmetric trap such that atoms would be confined in a 2D lattice of smaller,
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elongated “cigar shaped” traps. The few thousand atoms in each “cigar” are

highly confined radially and are assumed to be in a quasi-1D lattice system.

The possibility of using bosonic atoms and the inherent low temperatures

of such cold gas clouds offers the opportunity to investigate 1D systems of

interacting bosons [18, 19, 21] and explicitly test if the TLL description applies.

One key feature of magneto-optical traps is the ability to vary the potential

depth that the atoms experience by modulating the intensity and frequency

of the laser beams forming the lattice of potentials. It is thus possible, in

principle, to effectively tune the interaction strength between atoms sitting in

adjacent potential wells and, presumably, be able to observe the dynamics of

1D systems [34] for different Luttinger parameters and compare the results to

TLL theory [33, 35, 36].

The tunability of interaction between the constituent particles of cold va-

por gases is particularly effective when making a comparison between the

many variations of microscopic models [12], such as the hard-core bosons

of the Tonks-Girardeau gas or the generic Bose-Hubbard particles in a lat-

tice. As opposed to electronic systems, the nature of inter-atom interaction

is not Coulombic and is better described as a short-range interaction leading

to weakly coupled system. The very nature of dilute gases imposes a limit

on the density of particles accessible and the total sample size is restricted to

mesoscopic dimensions. Realizations of bosonic 1D systems with higher den-

sities, strong interactions and Galilean invariant (i.e. without the underlying

lattice structure of cold gases) are still lacking [2]. A candidate substrate for

the latter requirements is liquid helium confined in nanopores.
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2.3.3 Helium Adsorbtion in Porous Media

In the quest for experimental realizations of TLL systems, some groups have

investigated the adsorption of atoms inside and outside axi-symmetric porous

materials. Porous materials such as zeolites can be chemically tailored to form

large arrays of stacked tubes with diameters a only a few nanometers. These

nanotubes can be very long and have fixed diameters since their chemical

composition is the key factor determining their dimension. It is a favorable

characteristic of these materials to be able to confine particles over long dis-

tances and thus, presumably, preserve the long-range properties of 1D systems.

LowTe

Inner-tube 
sites

interstitial 
sites

surface 
sites

Fig. 2.5 Cartoon of zeolites used in adsporption experiments.
The curled-up sheets form bundles of nanotubes with approximate
hexagonal stacking. In this drawing, the length-to-diameter ra-
tio is not representative of actual ratios in typical samples, and
is depicted here in a very regular and ordered stack, which is an
idealization of the actual structure of dry zeolite powder.

Zeolites can be readily synthesized in bulk and transformed to a dry pre-

cipitate of fully formed nanotubes (see cartoon in figure 2.5). This powder can

then be used in experiments to adsorb atoms on the interstitial sites between

adjacent nanotubes and, as is hoped, also within the core of the nanotubes
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once all other adsorbtion sites are filled. Torsional oscillator studies of helium

atoms adsorbed on such nanotube bundles have been performed and promising

results of quasi-1D behavior have been obtained measuring the phonon dissipa-

tion in various zeolite geometries [37, 38]. Once again, it is worth mentioning

that since these experiments are done with helium atoms as a test particle and

4He is a boson, these experiments are complementary to those performed in

electronic quantum wires.

It is important to note that experiments with zeolites are performed with a

considerable volume of crushed nanotubes powder. This means that a sample

consists of a very large total number of nanotubes, since each bundle can

contain any number of them, and those nanotubes are of various dimensions,

since each bundle differs greatly in length or width. Another challenge of using

channels with a large distribution of sizes is that it is not immediately clear

what is the ratio between adsorption sites on the surface of tubes and those

sites of interest, where 1D confinement might be observed. Compounding this

difficulty is the fact that sites on the surface of nanotubes are populated first

and vastly outnumber the “potentially-1D” sites such as the groove between

two nanotubes (interstitial sites) or inside the nanotube core (inner-tube sites)

[39]. Any signal measured from a powder with zillions of tubes will always have

a strong component emanating from the two-dimensional surfaces of both the

experimental cell and the nanotube’s outer surface. It is therefore challenging

to extract results specific to the atoms in a quasi-1D state.

The intuitive solution to these challenges is to use a single nanotube. While

the ratio of relevant signal over the overall measured signal would be much
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more favorable in this case, the measurement techniques used in the torsional

oscillator experiments would need to be several orders of magnitude more

sensitive and it is therefore necessary to adopt another strategy.

2.4 Helium as a Paradigm

It is in the context of the emergence of the experiments presented in the last

section that we attempted to devise a new experimental scheme that would al-

low us to avoid measurements averaging over a large distribution of nanotubes,

but still have the sensitivity to detect signal from helium atoms propagating

inside a single nanotube. The use of strongly-interacting particles, such as

helium atoms in the liquid phase, is also an asset to complement the laser-trap

experiments that use dilute gases. Finally, the ability to repeat an experiment

with either fermions or bosons is a powerful tool to verify the predictions that

Tomonaga-Luttinger liquids behavior is independent of quantum statistics.

The two isotopes 4He and 3He are thus ideally suited for this purpose.

Indeed, helium has been a model system of choice for experiments carried

out over a very broad range of conditions and its thermodynamic properties

are available at all temperatures and pressures of interest here. Figure 2.6

shows the pressure-temperature phase diagram of 4He with semi-logarithmic

axes. The region labeled “He I” represents the liquid phase.

The large zero-point motion of the helium atoms prevents it from ever so-

lidifying at low pressure (< 25 atm), which gives it the unique potential to

transition to a quantum mechanically dominated phase at low temperatures:

the superfluid phase. This second order phase transition to superfluidity is
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Fig. 2.6 Pressure-temperature phase diagram of bulk 4He. The
liquid phase is labeled “He I” and is bounded near 2.17 K by a nearly
vertical phase transition line called the “λ-line”. The transition over
the λ-line leads to the “He II” region where superfluidity emerges.
A unique property of helium is the absence of the solid phase at
low temperature for pressures below ∼25 atm.

bounded in the P-T diagram by a line quizzically dubbed the “λ-line” due to

the similarity between the shape of the 4He specific heat curve and the Greek

letter λ. The λ-line, and λ-temperature, are especially relevant in investiga-

tions of superfluids. For example, experiments with porous materials such

as Vycor and Gelsil [40, 41, 42] found a suppression of superfluidity causing

a lowering of the λ-line as a function of pore size. Given these characteris-

tics, helium atoms are paradigm particles to study fluid transport at very low

temperatures in highly confined systems [43, 44].
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2.5 Quantum Monte Carlo Simulations

Our search for a suitable experimental system optimized to study strongly in-

teracting one-dimensional states of matter is further supported by large-scale

numerical simulations of 4He filled nanopores [45]. In this work and in an

earlier publication [46], Del Maestro and Affleck show results on large-scale

quantum Monte Carlo (QMC) simulations of 4He atoms exhibiting behav-

ior consistent with TLL theory. The simulations used the path integral Monte

Carlo method and a “Worm Algorithm” to efficiently explore the paths (world-

lines) of each quantum particle evolution during the simulation. The model is

built from a generic many-body Hamiltonian within an external potential Vext

and inter-particle interactions Vint,

H =
N∑
i=1

[ −~2

2MHe

~∇2
i + Vext(~ri)

]
+
∑
i<j

Vint(~ri − ~rj), (2.11)

where the position of each of the N atoms is ~ri and they have mass MHe. The

symbol h = 2π~ represents Planck’s constant. In the latest series of simula-

tions, great care was given to the choice of Vint and Vext, and in particular,

an Si3N4 boundary was selected to match as closely as possible the experi-

mental conditions of the work in this thesis. The results of these simulations

are considered “exact” in the sense that realistic particle-particle (Vint) and

particle-wall (Vext) interaction potentials are used and they can be computed

for experimentally accessible pressures and temperatures.

One interesting finding from the averaged particle distribution within the

nanopores is the formation of concentric shells as shown in figure 2.7. These
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cylindrical shells start forming near the nanopore wall, where a large potential

induces the formation of a layer of atoms at a distance determined by the min-

imum in the wall-particle interaction energy. The next layer forms when atoms

settle on the first layer at a distance given by the helium-helium interaction

potential. This effectively forms an inner cylindrical shell. If the radius of the

nanopore is large, many layers can fit concentrically. For multiples of ∼3 Å,

simulations show that there is sufficient space for an inner core to form in the

middle of the nanopore, as can be seen in the insets of each graph in figure

2.7. For example, with a radius of 6 Å, there is one cylindrical sheet of atoms

surrounding an inner core. The atoms located within that inner core were, in

fact, found to be the best candidates to study the 1D system.

2.5.1 Comparison to the Luttinger Liquids Model

The results of the QMC simulations are then compared with predictions of the

Tomonaga-Luttinger Liquid (TLL) model. Writing the bosonic many-body

Hamiltonian of equation 2.11 in second quantized notation can help one see

the emergence of the 1D signatures of the TLL model. We get

H =

∫ L

0

dz

[
~2

2MHe

∂zΨ
†(z)∂zΨ(z) +

1

2

∫ L

0

dz′ρ(z)V1D(z − z′)ρ(z)

]
, (2.12)

where the bosonic creation operator Ψ†(z) =
√
ρ(z)e−iφ(z) has the usual com-

mutation relation [Ψ(z),Ψ†(z′)] = δ(z − z′). We recognize the presence of

the density operator ρ(z) and the phase operator φ(z), and using the tools of

section 2.2, we can easily return to the Hamiltonian shown in equation 2.9:
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Å
"

3 R = 2.9 Å R = 4.0 Å
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Fig. 2.7 Radial density of helium atoms inside nanopores of ra-
dius between 2.9 and 12 Å. Insets shows atoms on a black back-
ground seen looking along the nanopore axis. Reproduced from
[2].

HTLL =
~
2π

∫ L

0

dz
[
vJ(∂zφ)2 + vN(∂zθ)

2
]
. (2.13)

The transformation of the interacting 1D boson Hamiltonian into a quadratic

form has the immediate benefit that many thermodynamic quantities can be

computed [2] from a very limited number of input parameters such as the

temperature T , the propagation velocity v and the Luttinger parameter K.
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For example, density correlations can be computed for the atoms within the

inner cores and compared to predictions from TLL theory as seen in figure

2.8. The results of the fit of the Luttinger liquid theory to the QMC data

show a strong tendency to form ordered density waves along the length of the

nanopore for the smallest pores. The fit yields a value for the Luttinger pa-

rameter K = 6.0(2), a value associated with a system with low interactions

and a tendency to localize and develop density wave order (figure 2.8a).

Fig. 2.8 Density correlation of helium atoms along the channel
axis for a nanopore of radius R=2.9 Å (a) and R=12 Å (b). The
decay of the long range order is characterized by an interaction that
corresponds to Luttinger parameters K= 6.0 and 1.3 respectively.
Curves are manually offset for clarity with the bottom data simu-
lated at T=0.5 K increasing up to 2.0 K for the data at the top.
Reproduced from [2].

The same analysis applied to the larger pore with radius 12 Å shows

damped oscillations possibly due to inter-layer coupling increasing the effec-

tive interactions between atoms of the core. The increased effective interac-
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tions between particles in the core channel are characterized by a fit parameter

K = 1.3(2) which describes a system incrementally dominated by superfluid

fluctuations (see figure 2.8B). The smooth crossover from a phase dominated

by fluctuations to one where density wave ordering is present is expected in

TLL theory. The possibility of tuning the interaction strength by testing differ-

ent pore sizes is thus an important asset to probe this crossover and determine

whether or not a quantum phase transition occurs.

One important conclusion drawn from the results of density wave order-

ing as the pores decrease in size is that there is a decrease of the effective

superfluid fraction within the pore correlated to the rise of density wave or-

der, which may be observed experimentally. Indeed, experiments of transport

through nanotubes are very sensitive to the emergence of superfluidity in liq-

uid helium and represent, historically, a prominent method to determine the

superfluid fraction of helium under different conditions (see for example review

of superfluid helium in porous media [40]). As an example, Del Maestro has

calculated in [2] that at 1.0 K the superfluid fraction inside the nanopore is

close to 20%, where the vast majority of superfluid is in the inner core.

The measurement of the superfluid fraction within nanopores is particu-

larly relevant to the experiments we developed in this thesis. Recent work

by Kulchytskyy et. al [3] shows that QMC computation of helium within

nanopores has a unique superfluid signature. Figure 2.9 shows the temper-

ature dependence of the superfluid fraction inside nanopores. The absolute

fractions were renormalized by introducing an ad hoc cut-off radius to ex-

clusively count the atoms within the inner core. The inset shows the phase
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velocity vJ found in the TLL model of equation 2.13 as a function of the radius
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FIG. 4. (Color online) The temperature dependence of the local
superfluid density measured via the winding number (top) and area
(bottom) estimator for a nanopore with radius R = 13.0 Å and length
L = 75 Å. The shaded region in the background corresponds to the
particle density ρ at T = 0.75 K.

solid (K ≫ 1) order. For a real physical system, the velocities
vJ ≡ v/K and vN ≡ vK can be related to the parameters of the
underling many-body Hamiltonian. By comparing the predic-
tions of harmonic LL theory, derived from the grand partition
function Z = Tr exp[−β(H − µN )] with the measurements
from finite temperature QMC simulations, vJ and vN can be
determined. For quasi-1D helium confined inside nanopores
with R < 3 Å, this has already been accomplished,26 but for
larger radius pores, required the use of an ad hoc cutoff radius
when analyzing QMC data. The physical origin of this cutoff
is now fully understood as the radius of the superfluid core,
and we expect it to be described by LL theory:27

ρW
s

ρc

= 1 − πh̄βvJ

L

∣∣∣∣
θ ′′

3 (0,e−2πh̄βvJ /L)
θ3(0,e−2πh̄βvJ /L)

∣∣∣∣ , (14)

where θ3(z,q) is a Jacobi theta function with
θ ′′

3 (z,q) ≡ ∂2
z θ3(z,q) and ρc = (Nc/N )ρ where Nc is

the number of atoms in the core. For each radius, we
have performed a rescaling of the total superfluid response
displayed in Fig. 2 and determined the velocity vJ (R) through
a fitting procedure that yields the best collapse of all low
temperature data onto Eq. (14). The results are displayed
in Fig. 5 where the temperature scaling of the nanopore
superfluidity is consistent with Luttinger liquid theory.

Much remains to be done, including confirming the
predicted pore length scaling of ρW

s /ρc and evaluating the
R-dependent LL parameter K . In addition, it seems natural
to contemplate the effects of disorder, surely present in the
pore walls, as well as the introduction of fermionic 3He which
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FIG. 5. (Color online) The superfluid fraction of the core of
nanopores for varying radii which can be collapsed onto the universal
prediction from Luttinger liquid theory. The inset shows the extracted
value of the phase velocity h̄vJ obtained by fitting to the winding
number estimator for each radius.

may strongly alter superfluidity as bosonic exchanges will be
suppressed in one dimension.

V. CONCLUSION

We have performed large-scale quantum Monte Carlo simu-
lations for helium-4 confined inside short 75 Å pores with radii
between 1–1.5 nm. The results show a finite and anisotropic
superfluid response above T = 0.5 K, with a magnitude that
is dependent on whether longitudinal or rotational motion
of the nanopore is considered. The difference is large and
arises from the absence of any classical moment of inertia in
the truly 1D limit where flow is still possible. Experiments
probing this remarkable breakdown of the two-fluid picture
could be performed by comparing the superfluid fraction
measured by capillary flow and a nanoscale Andronikashvili
torsional oscillator. Our results also indicate that when the
radii of nanopores becomes sufficiently small, the superfluid
fraction may exhibit plateaus, increasing in steps, due to
the classical sticking of wetting layers near the pore walls.
This is in stark contrast to the usual smooth temperature
dependence of ρs/ρ observed for bulk 4He and could provide
a signature of the crossover to 1D behavior. If the fraction of
atoms adhering to the nanopores’ walls could be discerned,
possibly by comparing flow rates at high and low temperature,
an examination of the finite size and temperature scaling
of the superfluid density would confirm that confined low-
dimensional helium is a Luttinger liquid. This would open up
an exciting strongly interacting and high density regime where
the effective low energy theory can be experimentally tested
in systems with Galilean invariance.
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Fig. 2.9 Superfluid fraction inside the core (subscript “c”) of
nanopores of various radii R as a function of temperature (β ≡
1/kBT ). The nanopores in the simulation had length L and ra-
dius R. Inset shows the phase velocity extracted from a fit to TLL
theory. Reproduced from [3].

Again, the good agreement of the QMC simulations with the predictions of

TLL theory (solid grey line) for atoms confined within the nanopore speaks to

the potential of observing 1D signatures in liquid helium transport measure-

ments. In other words, for a sufficiently narrow and long transport channel

at sufficiently low temperature, the simulation results predict that 4He atoms

should behave as a strictly 1D system with the nature of the inter-particle

interactions well described by the TLL theory.

Chapter 4 will describe how we integrated some of the strengths and al-

leviated some of the drawbacks of existing experiments to develop a new ex-

perimental scheme in the search for an experimental realization of Luttinger

liquids. Prior to the exploration of the experiment design, a chapter is devoted
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to present an overview of the theoretical foundations required to interpret the

data in the thesis.
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Chapter 3

Theory of Mass Flow in Short

Pipes

The physics of fluidic systems has attracted the interest of generations of scien-

tists and engineers both for the breadth of physical phenomena it encompasses

and for the critical knowledge that modelization provides to several industries.

In fact, key insights into the physics of fluids can be obtained by making a

few assumptions, however, the Navier-Stokes equations are complex and still

famously carry a Clay Mathematics Institute prize for the generic proof of their

solvability. The experiments I present in the next chapters are conducted over

a wide range of thermodynamic conditions and span different regimes of mass

transport. Since the dynamics of fluids are strongly affected by the physical

characteristics of the fluid, several simplified models are required to explain

the fluid behavior over the whole thermodynamic range. For example, the

assumptions built in a model for low-density fluids are not necessarily valid at
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higher density and a new model must be used instead.

3.1 Knudsen Number As an Indicator of Flow Regimes

A good indicator of the appropriate model to choose to describe the flow in

a given system is the Knudsen number Kn. This dimensionless parameter is

defined as the ratio of the mean-free-path (λ) of a particle to the characteristic

length scale of the environment in which it propagates. In the case of mass

transport through circular apertures, the convention is to compare the mean-

free-path to the diameter (D) of the pore.

Fig. 3.1 The Knudsen number scale indicates the regions of ap-
plicability of different fluid dynamics models.

3.1.1 Mean-Free-Path of a Gas

The mean-free-path is the distance a particle can travel between interactions,

averaged over the entire velocity distribution of the particles in the system.

Given a gas with a Maxwellian distribution of velocities and concentration n

in units of atoms per cubic meter, the mean-free-path is:
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λ =
1√

2nπσ2
. (3.1)

Here, the factor of
√

2 comes from averaging collisions between particles

with a Maxwell distribution of velocities and σ is the collision cross section.

This latter equation assumes an homogeneous gas at equilibrium and, using

the ideal gas law1, n = P
kBT

, we obtain

λ =
kBT√
2πσ2P

. (3.2)

The symbols kB, T and P are the Boltzmann constant, the thermodynamic

temperature and pressure respectively. Finally, the cross section diameter is

well known for helium and is equal to 2.18 Å (table 1.2-2 in [47]).

3.2 A Continuum of Flow Regimes

3.2.1 Knudsen Effusion of Simple Gases

A statistical approach can be used to treat gas particles interacting only

through elastic collisions if they have a well defined distribution of velocities.

Taking an arbitrary surface A and integrating, over the whole solid angle, all

velocity vectors of particles with a Maxwell-Boltzmann distribution [48], one

finds an average flux through a given surface:

1The ideal gas law is, in principle, only accurate at low gas densities. Given that we only
use the ideal gas law to find the mean-free-path λ, which gives us the Knudsen number Kn,
any deviation of the physical mean-free-path at high-density from equation 3.2 is not prob-
lematic in our modeling. The small error in our calculated λ only modifies the position of
data on the abscissa. The flow computed from theoretical models is also displayed for Kn
computed with equation 3.2 and the fit to the data is therefore not affected by this small
offset.
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Qpinhole =
1

4
nv̄A. (3.3)

Here, the solution is expressed with the average particle velocity v̄ =
√

8kBT
πM

,

where M is the mass of the particles. If one considers an enclosure with a

single opening and defines that opening as the surface A, then the flux of

atoms out of the enclosure is given by equation 3.3. We obtain the mass flow

through an aperture of area A by substituting the average velocity v̄ and the

atom concentration n in equation 3.3 such that

Qpinhole
m = Qpinhole ·M

=

(
1

4
nv̄A

)
·M

=
1

4

(
P

kBT

)(√
8kBT

πM

)
(πR2) ·M

=

(
R2

√
πM

2kBT

)
· P ≡ Gpinhole · P (3.4)

and R is the radius of a circular aperture. Here, the subscript “m” denotes

a flow in units of kg/m3 and Gpinhole is the conductance of a pinhole in the

Knudsen effusion regime when a pressure head P is applied.

Gas Flow in Short Pipes

The assumption of a pinhole geometry is an approximation valid only when

the pore diameter is much larger than the pore length (D � L). Solid-state

nanopores have dimensions that are typically closer to D ≈ L and the walls

cannot be ignored in the calculation of the pore conductance. Intuitively, one
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can imagine how collisions with a pore wall decrease conductance compared

to the pinhole case. These collisions are diffusive and can cause particles

to bounce back towards their origin. Longer pores increase the probability

of collisions and thus reduce the conductance of the pore. Figure 3.2 shows

a cartoon representation of this situation, where a longer pore causes more

collisions with the walls and leads to a reduced total conductance.

Fig. 3.2 Side view of transport channels with particles diffusing
through. The conductance of the pinhole (A) is larger than the
short (B) and long(C) pipes because longer pores increase the odds
of back reflections due to collisions with the walls.

In fact, the mass transport through a channel of finite length at high Knud-

sen number can be modeled using a transmission probability T . Both the

length of the pore and the nature of the collisions with the wall affect T . As-

suming diffusive collisions at the walls allows one to compute the probability

that a particle passes from one side of a channel to the other, accounting for

all collisions along the way.
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The Clausing Factor

The effective conductance of the pore is then reduced by the transmission

probability to

G ≡ T Gpinhole,

where Gpinhole is the conductance of the entrance of the channel. Clausing

first introduced this concept for the effusion of gases through channels and he

defined a factor K [49], latter named the “Clausing factor”, to account for the

reduced conductance. This Clausing factor takes into account the probability

of transmission from every cross sectional “slice” along the tube and adds

them in series. For cylindrical short tubes, approximate equations have been

found [50], and simulations performed [51] such that the total transmission

probability can be computed. The solution from Berman [50] is

K = 1 + y2 − y
√
y2 + 1−

[
(2− y2)

√
y2 + 1 + y3 − 2

]2

4.5y
√
y2 + 1− 4.5ln

(
y +

√
y2 + 1

) , (3.5)

where y ≡ L/(2R) for simplicity.

The Clausing factor varies from perfect transmission of 1.0 to a value of

8R
3L

as the length-to-radius ratio goes from zero to infinity. In addition, it has

been shown [52] that the Clausing factor in pores with elliptical cross-sections

has a correction of less than 2% with respect to that of circular pores of the

same area. This indicates that small deviations of nanopore cross section

from a perfect circle should have little discernible effect on the mass transport
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modeling.
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Fig. 3.3 Clausing factor computed by Iczkowski [53] (circles) for
a series of angles of the opening of a transport channel. A perfect
cylindrical tube has an angle of 0◦ and a pinhole has an angle of
90◦. The dotted lines are guides-to-the-eye and the solid black line
is calculated from equation 3.5.

In the earliest computational studies of diffusive transport, the cross section

of the channels was kept constant along the length of the channel. This turns

out to be a very good approximation for large experimental systems. However,

it is not the case for our nanopores since there is usually a ∼10◦ opening angle

between the wall and its axis. Therefore, the constant cross section assumption

may no longer be appropriate to model the flow in the smaller pores that we

studied. Recent computational work has however been done [53, 54, 55] to

account for a non-constant cross section where diffusion in channels with a
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conical shape were simulated and the dependence of the Clausing factor on the

opening angle was extracted. Figure 3.3 shows the Clausing factor for angles

ranging from 0◦ to 50◦ as a function of the length-to-radius ratio (L/R)[53].

The angle used in the computation is measured between the pore wall and the

pore axis, as seen in the diagram inside figure 3.3. Once the Clausing factor is

determined, we can then compute the expected conductance of a pore in the

Knudsen effusion regime, which is given by

GKnudsen = K

(
R2

√
πM

2kBT

)
. (3.6)

3.2.2 Hydrodynamics of Viscous Flow

The typical mean-free-path of helium at standard pressure and temperature

(STP) is, from equation 3.2, λ ≈ 10−6 m, which is comparable to the nanopore

dimensions. This makes it experimentally possible to access different flow

regimes by a simple tuning of the mean-free-path via a change in pressure.

It is usually assumed that mass flow in systems with Kn. 10−2 are in the

continuum regime, and that small corrections accounting for slip behavior at

the wall occurs for 10−2 . Kn . 10−1. The regime that bridges the gap from

Knudsen effusive flows to viscous flows is referred to as the transitional regime.

We can model viscous fluid dynamics by making three hypotheses regarding

the fluid. The first is mass conservation, where by virtue of the continuity

equation, a fluid element is preserved in space and time from one position to

the next. The second is momentum conservation of the fluid which regulates

how forces modify the velocity field. The last one is, as expected, energy
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conservation. These three assumptions, once combined, give the Navier-Stokes

equation of fluid dynamics. This equation is, however, hard to solve in general

and further assumptions must be made to obtain an analytic equation for the

flow.

As stated in the section treating Knudsen effusion, the nanopore has a

length-to-radius ratio close to unity (L
R
≈ 1). This prevents us from using the

“infinite-length” approximation that gives rise to the well-known Poiseuille

flow in long channels,

Q∞viscous =
πR4∆P

8ηL
, (3.7)

where η is the dynamic viscosity and ∆P is the pressure measured across the

pipe. Langhaar [56] has used a linearization of the Navier-Stokes equation to

describe the pressure drop in the transition length of a straight tube. In a finite

pipe, an additional pressure drop is caused by the acceleration of the fluid at

the ends of the channel where a fully-developed flow profile is not yet reached,

i.e. in the transition length. This additional contribution is proportional to a

factor α, and so the pressure drop is given by

∆P =
32ηLv

D2
+
α

2
ρv2, (3.8)

where D is the channel diameter. Solving for the velocity v in the latter

equation gives

v =
32ηL

αρD2

(√
1 +

αρD4

512η2L2
∆P − 1

)
, (3.9)
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and the mass flow is given by Qm = ρvA, where ρ is the density and the area

A is taken as a circle of radius R ≡ D/2. The viscous flow in a pore where the

transition length is taken into account is thus given by

Qm =
8πηL

α

(√
1 +

αρR4

32η2L2
∆P − 1

)
. (3.10)

This equation will be further discussed throughout chapter 5.

Reynolds number in Nanopores

Hydrodynamic equations are often described in terms of dimensionless num-

bers that help separate systems into distinct groups. The Knudsen number

used in this chapter is an example of a dimensionless number that classifies

different flow regimes. Another useful dimensionless parameter is the Reynolds

number, which compares the effect of viscosity to typical system dimensions

and thus informs us on diffusive behavior, such as the onset of turbulence. The

Reynolds number is defined as

Re =
ρvD

η
,

for cylindrical pores. Once converted using the definition of mass flowQm = ρvA,

it readily gives

Re =
4Q

πDη
. (3.11)

Given the non-linear dependence of flow on the diameter of the pore, the

highest Reynolds number for gas flow will be obtained in pores with large
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diameters and at low temperatures where the viscosity is smallest. In partic-

ular, for the ∼100 nm sample presented in chapter 5, the Reynolds number is

estimated to be at most Re ≈ 4·3x10−11kg/s
π·100x10−9nm·8.8x10−6Pa·s = 43 at liquid nitrogen

temperature and for the highest pressures reached. At the opposite end, small

nanopores with diameters of approximately 15 nm have Re ≈ 0.14 at room

temperatures. The same calculation can be accomplished for the liquid helium

flow experiments with the D = 45 nm pore, where the mass flow was deter-

mined to be 5x10−12 kg/s and η ≈ 3.5x10−6 Pa·s, which leads to a Reynolds

number of Re = 47. The Reynolds number for the liquid helium flow exper-

iments in the smaller nanopore of 15 nm is Re = 2.8. Finally, laminar flow

is usually expected to be a good approximation for Reynolds numbers below

∼1800. Above this point, turbulence is expected to emerge and the dynamics

of the viscous fluid become fundamentally different.

3.3 Liquid Helium Flow

One of the most striking characteristic of helium at low temperature is a second

order phase transition at 2.17 K, below which the unusual properties of the

liquid prompted Kapitza [57] to name this new state of matter “superfluid”.

Above the transition, helium behaves like a normal liquid and its transport

properties are characterized by a well defined viscosity. Measurements of vis-

cosity fall into two types of experiments. Either flow is induced in a channel by

the application of a pressure head, or the moment of inertia of an oscillating

disk is measured. Classical liquids yield the same viscosity with both methods.

By contrast, the same experiments conducted with liquid below the superfluid
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transition yield strikingly different results. Channel flow measurements of He-

II indicate a sharp decrease of the dynamic viscosity as temperature is lowered

below Tλ. Meanwhile, the oscillating disks experiments demonstrate He-II

possesses a substantial viscosity causing damping of the disk motion. These

apparently contradictory results have however been explained successfully by

the development of the well-known “two-fluid model”. Interesting historical

accounts of the discovery and characterization of the properties of the super-

fluid state of matter are readily available e.g. [58, 59] and only relevant results

will be presented here.

3.3.1 Two-Fluid Model

In the two-fluid model, the behavior of helium is explained by a dual descrip-

tion of complementary components that are viewed as simultaneously mixed

together, but with independent motion. The first component, the normal

phase, has physical properties matching the liquid helium of the He-I phase.

It also carries entropy and is responsible for the measurable viscosity. The sec-

ond component, the superfluid, is assumed to be a viscousless fluid undergoing

potential flow [60], i.e. a flow that is curl free and carries no entropy. The

normal component and the superfluid component are related through a flux

equation:

~Jtotal = ρs~vs + ρn~vn, (3.12)

where ρs and ρn are, respectively, the densities of the superfluid and normal

components of He-II, and are related to the total fluid density ρ = ρs + ρn.
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The fraction of superfluid composing the He-II phase approaches unity asymp-

totically as the temperature is reduced from Tλ to T= 0 K. A typical rule of

thumb is that He-II is essentially all superfluid below ∼1 K and the normal

component has a functional dependence on temperature close to

ρn
ρ

=

(
T

Tλ

)5.6

up to Tλ. Figure 3.4 shows the calculated [61] fraction of normal density over

total density for bulk liquid helium.

Fig. 3.4 Fraction of normal density over total density of helium
in the He-II phase. The sharp decrease of the normal component is
observed at the superfluid transition and almost no normal helium
remains below 1 K. Data from Brooks [61].

3.3.2 Excitations in Superfluid Helium

While the two-fluid model was initially understood in macroscopic terms, Lan-

dau took a different approach and attempted to describe the superfluid state
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with respect to its excitations. This microscopic theory of the He II phase was

designed semi-empirically to fit experimental data and explain the seemingly

intractable characteristics of this unconventional state of matter. Specifically,

the low temperature dependence of the specific heat followed a T3 power law

for T . 0.6, and nearly doubled between T = 1 K and Tλ. Such observations,

and Landau’s strong physical intuition, led him to posit the dispersion relation

of figure 3.5.

Fig. 3.5 Dispersion relation of the excitations in He-II. The lowest
energy excitations are characterized by a linear dispersion of small
wave-number. These collective modes are similar to longitudinal
phonons in solids. Present at larger momentum p0 is the “roton”
minimum, a collective excitation mode with an energy gap ∆. The
excitations described by the convex dispersion relation at p0 are
interpreted as quantized rotational motion of small groups of He
atoms. The slope of the dashed and dotted lines give an estimate
of the propagation velocity of each dissipation mode. Figure based
on figure 1.10 of [58].

At the lowest energy, the dispersion relation E(p) = pvph = ~kvph has a

linear behavior characterized by a large propagation velocity (vph ∼ 240 m/s).
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These collective modes are extended longitudinal waves similar to the phonon

modes in solids. The local minimum centered at p0/~ describes localized ex-

citations called “rotons”. Landau envisioned them as small groups of atoms

with a rotational motion and carrying an energy

E(p) = ∆ +
(p− p0)2

2µ
,

where µ is an effective mass and a gap ∆ is a thermal barrier limiting the emer-

gence of this dissipation mode. Neutron scattering experiments have confirmed

the qualitative shape of this dispersion relation for He II and the free param-

eters p0, ∆ and µ have been measured as p0/~ = 19.1 nm−1, ∆/kB = 8.65 K

and µ = 0.16m4, with m4 the atomic mass of helium.

Landau defined a velocity vL below which superfluid could flow without

dissipation. For larger velocities, excitations would be produced and the fluid

would dissipate energy. This is known as the Landau criteria for superfluidity

and, shown by a dotted line on the dispersion relation of figure 3.5, is given by

vL =

[
E(~p)

|~p|

]
min

,

where vL ≈ 58 m/s in bulk He II. Phenomenologically, the fact that the vL is

not zero in the dispersion relation of figure 3.5 allows the superfluid to propa-

gate without friction up to a critical velocity. All superfluid flow experiments

to date however observe a much smaller critical velocity, as seen in figure 3.6.

Further refinements were needed to characterize the dissipation in superfluids.
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3.3.3 Vortices and Critical Velocity

Feynman suggested a dissipation mechanism where vortices traveling through

the superfluid could allow this potential flow to shed energy [62]. He first

assumed He II could be described by a macroscopic wavefunction Ψ = Ψ0e
iφ,

where the amplitude Ψ = Ψ(~r, t) and phase φ = φ(~r, t) are defined at all

positions ~r and over time t. The amplitude of the wavefunction is normalized

as |Ψ|2 = ρs/m4, for particles with a mass of four atomic mass units. The

macroscopic phase φ is assumed to vary slowly and is related to the superfluid

velocity as

~vs =
~
m4

~∇φ.

A consequence of the macroscopic phase of the quantum fluid being unique

at all positions is that the circulation Γ around a closed loop must be quantized,

Γ =

∮
~vsd~l = nκ4, for an integer n,

where κ4 = 2π~/m4 is the quantum of circulation. A quantized circulation

also has a secondary consequence on the formation of vortices. In the central

region, where the constant-phase lines would meet, the wavefunction must

vanish in order for the conditions of the superfluid potential flow to be met.

This region, where the Ψ (and thus ρs) drops to zero, is labeled the vortex

core, and has a size a0. Feynman finally argued that the creation of such a

vortex within the superfluid would be energetically favorable when the velocity

reaches



3.3 Liquid Helium Flow 47

vF ≡
κ4

2πD
ln

(
D

a0

)
, (3.13)

where D is the channel diameter. The core a0 is approximately 2 Å and grows

with temperature up to the superfluid transition temperature. In this picture,

the vortex can continuously funnel energy away from the superfluid and keep

the flow at a fixed velocity[63]. Interestingly, the critical velocities predicted

with this new mechanism are quite close to the experimentally measured ones.

Indeed, most experimental critical velocities in larger capillaries (> O(10−6)

m) were indeed found to follow roughly the “1/D” size-dependence of equation

3.13 (see figure 3.6).

The agreement between experimental critical velocities and the Feynman

dissipation model contributed to the rapid acceptance of quantized vortices as

an alternative to Landau’s roton modes. Some experiments eventually found,

however, that in smaller pores, the critical velocities could be much larger,

independent of channel size and have a marked temperature dependence [65,

66, 67, 68]. Some of these results are shown in figure 3.6 with the ◦ symbol.

Importantly, those experiments found a linear temperature-dependence given

by

vc(T ) = vc0

(
1− T

T0

)
. (3.14)

In this equation, vc0 is the critical velocity extrapolated to T = 0 K and T0 is

a fit parameter typically between 2.2 K and 2.8 K.

To further understand the dissipation mechanism behind these new results,
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Fig. 3.6 Critical velocity measured in several experiments over
the last few decades. Circles (◦) are experiments where a tempera-
ture dependence was observed. Other symbols represent results of
experiments where the critical velocity is temperature-independent
but still varies with channel size. The solid line is the Feynman
critical velocity of equation 3.13. Points in the nanometer region
are from experiments in helium film flow and the smallest systems
previously accessible. Reproduced from [64].

very sensitive experiments were designed to measure superfluid flow in micro-

capillaries [69, 70, 71]. The results of these experiments are that vortices

are nucleated near the channel and the flow effectively experiences “phase-

slips”. This spontaneously reduces the superfluid velocity and leads to a critical

velocity. The nucleation of such vortices was found to be thermally activated

following an Ahrhenius-like form,
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Γ =
ω

2π
e
− Ea
kBT , (3.15)

where ω is the attempt frequency of the nucleation and Ea is the activation

energy, i.e. the energy that must be surpassed by the thermal fluctuations.

The specifics of this stochastic nucleation process have been quantified by

several authors and thorough reviews of the subject are available [64, 72]. For

the purpose of this thesis, the temperature and size dependence of the critical

velocity are of particular interest, since they offer important clues about the

nature of dissipation in superfluids.



50



51

Chapter 4

Sample Preparation and Flow

Measurement Technical Details

The development of controlled fabrication of very small pores [73, 74] has been

largely driven by research on bio-molecule separation [75, 76, 77], where dis-

crimination of single molecules can be achieved in channel diameters having

roughly the same size as the molecules studied. Many techniques have since

been developed for fabrication of tailored nanopores with virtually any diam-

eter [78, 79, 80].

In addition to fabrication techniques involving chemical etching [81] or

biological structures [82], one strategy has been to use a focused beam of en-

ergetic charged particles to gradually remove material in a thin membrane to

effectively drill a single aperture. This controlled ablation can be achieved

with various ionic species, but the best precision is obtained using the elec-

tron beams of field-effect transmission electron microscopes (TEM). This re-
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cent development has allowed, for the first time, the controlled production

of nanostructures down to less than one nanometer. These approaches for

tailored fabrication of nanopores can be compared to the intuitive option of

simply using pre-formed nanochannels, such as carbon nanotubes. While these

nanotubes have the desired small cross-sectional opening, they are typically

produced in large quantity and are thus available as membranes composed of

large aggregates of aligned nanotubes[83]. These are therefore not suited for

our experiments.

4.1 Sample Preparation

4.1.1 Solid-State Silicon Nitride Membranes

Recent advances in the electronic imaging industry have made it possible to

manipulate electron beams with exquisite control. Such precise control allows

one to focus the beam on a surface and expose only a few square nanometers.

This is the chief method that we have chosen in order to fabricate nano-

channels with the required length scale.

As mentioned above, our nanopores were made by electron-beam drilling

in a very thin membrane. These free-standing membranes are commercially

available, and many companies manufacture them. Unless otherwise noted,

all samples used in this thesis were produced using wafers from Silson Inc. R©.

They were manufactured by low-pressure chemical vapor deposition such that

a uniform layer of amorphous Si3N4 was grown over the whole silicon surface.

These membranes were then formed by chemically etching the silicon within

a small area of the 200 µm thick wafer pre-coated with the silicon nitride
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Fig. 4.1 Photograph of a typical wafer used to fabricate nanopore
samples. In the center of the wafer, a pyramidal pit can be seen
and is the result of the etching of an area of silicon. This selective
etching leaves only the free-standing silicon nitride membrane (on
the bottom face here).

layers. This etching only removes the silicon and thus leaves a bare, free-

standing Si3N4 film, covering an empty pyramidal pit, as shown in figure 4.1.

The silicon wafers are typically square shaped (2x2 mm) and the free-standing

Si3N4 membrane are squares 30 to 50 µm wide.

The experiments presented in this work were conducted using membranes

with a thickness of 30, 50, 75 or 100 nm. Since nanopores are drilled through

the membranes, their thickness de facto defines the length of the nanopores.

When the length of nanopores is not critical to a given experiment, thinner

membranes are usually preferred because they allow much faster nanopore

drilling, which reduces the risk of producing irregular-shaped nanopores. The

trade-off of using thin membranes is that their low fracture strength limits

the maximum differential pressure they can withstand. We have empirically

determined that the limiting pressures (i.e. membrane-breaking pressure) were

∼45 bar for 50 nm thick membranes, and 6.7 bar for 30 nm thick ones. If larger

pressure differentials are required in future experiments, stronger membranes
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could easily be produced by etching a smaller area of the wafer, effectively

decreasing the surface area of free-standing silicon nitride.

The thickness of the membrane has a large impact on the time scale re-

quired to ablate and pierce through the SiN. In particular, if the sample stage

inside the microscope has no drift and the electron beam stays in one area, a

30 nm membrane will typically be pierced in a few seconds, whereas it would

take 60 seconds for a 50 nm one and up to several minutes for membranes

100 nm thick.

4.1.2 Sample Fabrication

We fabricated the nanopores using the field-effect transmission electron micro-

scope JEM-2100F located at the École polytechnique de Montréal. Inside the

TEM, the electrons are accelerated by voltages up to 200 kV and are controlled

with magnetic lenses. A careful optimization of the beam intensity and focus

allows us to achieve a beam spot size of barely a few nanometers wide. If this

electron bombardment is maintained on the same area for several seconds or

minutes, enough material is removed to form a nanopore in the membrane.

Once this initial pore is opened, it is possible to move the sample stage a

few nanometers away so that the beam becomes aligned with the edges of the

nanopore. This forces the atoms from the pore wall to be removed gradually

in a controllable manner. With this technique, the nanopore can be carved out

into a cylindrical shape and up to any diameter, from 0 to more than 100 nm.

We have fabricated hundreds of such pores during the process of preparing

samples for the experiments presented in this thesis and in figure 4.2, I show
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a few typical samples.

Finally, I also point out that this technique has a big advantage in that

it allows one to “see” the nanopore while it is being drilled. A picture can

therefore be taken immediately after fabrication. This direct imaging thus

makes it possible to readily determine the dimensions of the nanopore and

discriminate samples based on the requirements of each experiment.

Nanopore Geometry

In principle, the precision of the electron beam gives great control over the

effective hole size and allows a very careful fabrication of nanopores [84]. While

true, there are however practical difficulties in using magnetic lenses to control

a beam of charged particles to carve out a hole in an amorphous material like

silicon nitride. In particular, slight distortions in the beam’s cross sectional

profile may affect the resulting nanopore and produce a non-circular cross

section; in other words non-gaussian beams can produce irregular drilling.

This is especially relevant since the drilling is conducted at high magnification,

whereas the pore is imaged at lower magnification. This means that the pore

seen during the drilling can appear perfectly circular at high magnification, but

upon further imaging at low magnification, the actual shape is usually found to

differ slightly. Because of this risk of distortion of the nanopore shape during

the drilling procedure, careful images of each nanopores were taken after each

fabrication, at a magnification low enough to avoid distortions. Finally, the

calibration of these images allowed us to determine the nanopore sizes directly

after fabrication.
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Fig. 4.2 Transmission electron pictures of different nanopores
ranging in size from 300 nm to less than 2 nm in diameter. The
nanopores were fabricated by electron ablation of a silicon nitride
membrane suspended on a silicon wafer. The white bars are respec-
tively 50 nm for pictures A-D and 10 nm for pictures E-H.
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Regarding the nanopore profile, it is generally assumed that the ablation

of material is initiated simultaneously from both sides of the membrane and

continues until the two aligned cavities connect halfway to form a fully opened

channel. If one considers the beam cross sectional intensity to be decreasing

radially, then the outer edges of the electron beam are less dense and so will

not drill as fast as in the center of the beam. This means that the ablation

is more efficient along the axis of the electron beam, but also that the area

around the nanopores has potentially been bombarded as well, albeit at much

smaller intensity. Indeed, 3D tomography analysis of the nanopores [85] shows

that the ablation of material with highly energetic electrons does not produce

a perfectly cylindrical pore, but rather an “hourglass” shaped one. Despite

this, it is possible to alter this initial pore shape with a secondary treatment

that straightens the pore walls. This treatment consists of an exposure of

the area surrounding the nanopore to a low-intensity beam for a short time

[86]. It effectively gives the atoms near the nanopore edge enough energy to

redistribute themselves and “flow-back” in the pore. In fact, we have observed

repeatedly that this technique has helped stabilize the SiN surface and reduces

nanopore deformation over time.

Interestingly, this same method can also be used to shrink the nanopores.

In fact, a longer exposure time under low intensity can maintain the fluidization

of nearby atoms and keep filling the nanopore until it eventually closes [87, 88].

We have used this method to produce nanopores smaller than 3 nanometers,

as can be seen in figure 4.2G,H. The parameters for this procedure are however

not always reliable and more work is required to fully capture the subtleties



58 Sample Preparation and Flow Measurement Technical Details

of the physics at play during the shaping down of solid-state nanopores.

Nanopore Opening Angle

The mass transport experiments described in this thesis are very sensitive to

the diameter and opening angle of the nanopore. In essence, the conductance of

a pore is intrinsically determined by its geometry and it is therefore important

to determine, as much as possible, the three-dimensional shape and profile of

pores.

The intensity of the TEM picture can be used to provide an estimate of

the shape of the nanopores. To first order, the intensity of the transmitted

electrons is proportional to the thickness of SiN. Thus, making use of the

average saturation of a group of pixels, a “thickness” can be estimated. We

took the average of pixels in the center of the pore as an intensity background

to define a thickness of zero. We can do the same for the complete thickness

using the pixels away from the pore. This way, a calibration is obtained as a

function of the saturation in each point of the picture. If we further assume

a symmetric material ablation with respect to the middle plane of the wafer

[85], we can reconstruct a 2D profile from the images. In order for the profile

to be clear, the high amount of fluctuation in intensity in the TEM picture

must be averaged over adjacent pixels. Grey points in figure 4.3B show the

equivalent thickness of all pixels without averaging, whereas the black dots

show the thickness computed from a local average of pixel intensities.

The power of this relatively simple procedure is to gain information on

the shape of the nanopores that ultimately will be used in the mass transport
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Fig. 4.3 TEM images (A) can be used to infer the thickness of
material (B) the electrons go through. The intensity away from the
pore is set as the thickness of membrane chosen at manufacturing,
(in this case 50 nm), and the intensity in the center of the pore to
zero. The intensities in between are normalized to this thickness
and we can infer the profile of the nanopore. This profile shows
the slight opening angle of ∼10◦ with respect the a perfect vertical
channel wall.

experiments. Since the true nanopore shape is not perfectly cylindrical, a

modified Clausing factor will have to be used to improve the modeling of the

data. Judging from nanopore profiles similar to that shown in figure 4.3,

it is reasonable to estimate the opening angle with respect to the vertical

axis at ∼10◦. For that sample, a quantitative comparison with the Knudsen

conductance of small pores will be shown in the next chapter.
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Nanopore Diagnostics with Electron Microscope

The difference between a partially obstructed nanopore and a fully drilled one

can easily be observed in the TEM images. Specifically, the spatial fluctuation

in the intensity measured by the CCD camera of the TEM are qualitatively

different when the electrons go through either vacuum or the membrane. This

means that a visual inspection of the TEM image is sufficient to determine

whether the pores remain open or close during storage or post-experiment.

Another feature of clean nanopores is the brighter boundary at the perime-

ter of the nanopore caused by electron diffraction off of the solid pore wall.

Figure 4.2A shows this clearly where the low-intensity noise in the center of

the nanopore contrasts greatly with the larger intensity fluctuations caused

by electron interference in the amorphous SiN. These characteristics in the

nanopore images show the focus of the electron beam is optimized and that

the surface is free of contaminants. When pores are blocked by contaminants,

the electron diffraction and transmission intensity are both affected in a way

that the user can readily identify.

Nanopores are at risk of becoming partially or fully blocked by contami-

nants at any time and the TEM can be used as a diagnostic tool to identify the

nature of this contamination. For example, we have used the energy dispersive

X-ray spectroscopy (EDX) capabilities of the TEM to determine the nature of

the material covering blocked pores. A strong carbon signature was a typical

result of this procedure and indicated external contaminants. In these cases,

the nanopores could not be redrilled and the whole wafer was assumed to be

contaminated, and was therefore discarded.
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4.2 Flow Measurements Via Mass Spectrometry

The fabrication technique described in the previous section is very advanta-

geous to create a single nanometric channel inside a solid-state membrane.

Historically, the simplest way to measure mass transport was to detect the

change in a thermodynamic variable of the fluid within the reservoirs on either

side of the transport channel [89]. For example, this could be the pressure

change in a fixed volume as some of the fluid inside flows out. This tech-

nique is, however, only effective for macroscopic apertures since, in very small

ones, the change in pressure becomes smaller than the precision of pressure

gauges, due to the large relative size of the source and drain reservoirs. In

other words, enough particles must flow out for the pressure change to be

discernible. A quick estimate shows that in a typical experimental enclosure

of volume O(10−5) m3 contains approximately 3·1020 gas particles at stan-

dard temperature and pressure. Typical mass flows in small apertures of size

100 nm or less are, at most, of the order of O(1014) atoms/s and, consequently,

a 1 % drop would take O(106) seconds, which is experimentally prohibitive.

A more efficient method to measure mass transport is to literally count the

atoms going through the nanochannel. One way this can be accomplished is

by pumping continuously on the drain reservoir below the pore and use a mass

spectrometer to analyze the gas flow. In particular, the mass spectrometer

inside a helium leak detector is optimized for accurate measurement of helium

flows. A similar method that has been shown to work in microchannels is to

use a residual gas analyzer [90].

In essence, the underlying measurements of the results I present over the
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next few chapters can be described as an accurate determination of a carefully-

tailored single leak. The leak detector I used to make all flow measurements

was a Pfeiffer Smart Test HLT560, with twelve orders of magnitude range

of sensitivity to flow rates. The Smart Test device also has the option to

discriminate for the mass of atoms sent to the detectors from 2 to 4 atomic

mass units. This means the lighter helium isotope 3He could be substituted

in the experiments and be measured in exactly the same way, although it has

not yet been attempted.

Mass spectrometers are designed to discriminate charged particles by their

mass. For neutral gas atoms, the first step is to pass them through an ioniza-

tion chamber where filaments emit a stream of electrons that ionize the atoms

so they can be accelerated by an electric field. This acceleration voltage V in-

creases the kinetic energy of each atom proportionally to its charge q, so that

qV = m|~v|2/2. The atoms are then passed through a homogeneous magnetic

field where they are deflected by the Lorentz force FB = q~v × ~B, which is

proportional to the speed |~v| of the atoms and the applied magnetic field B.

This perpendicular force induces a curved trajectory, with FB = mv2/r, such

that the radius r of each atom’s path is

r =
mv2

qB
=

1

B

√
2mV

q
,

where the speed v was rewritten with the voltage acceleration equation from

above.

Figure 4.4 shows a schematic drawing of a mass spectrometer. The three

curved paths represent the paths atoms or molecules of different mass would
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Fig. 4.4 Schematic diagram of a mass spectrometer. The gas is
sent through an ionization chamber where it becomes ionized and
is accelerated by an electric field towards a region where a magnetic
field deflects each ionized atom. The curvature of the path these
atoms take is dependent on their mass and a discrimination of the
atomic species is achieved by blocking the paths of unwanted atoms,
letting only the proper ones through to the detector.

follow when traveling through the magnetic field. The position of a slit can

discriminate which ions reach the detector. The ion detector then returns a

voltage proportional to the number of atoms with the chosen mass. A cal-

ibration of this signal was done regularly over the course of experiments to

ensure that the measured flow rate was quantitatively accurate. To do so, we

used a calibrated leak certified by the US National Institute of Standards and

Technology with a value of 2.79·10−8± 10% mbar·l/s. The flow rate of helium

gas through a pore can thus be accurately measured if the drain reservoir of

the experimental cell is pumped on by the leak detector.
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4.3 Measurement Scheme

In the previous two sections I have described the techniques necessary to fab-

ricate nanopores, as well as to measure the mass flows of gas particles in them.

I will now describe how to use these two elements to inform the design of an

experimental scheme suited for measuring the mass transport inside a single

nanopore. The strategy that we have used has great similarities with the mea-

surement of charge transport in simple electric circuits. This is because the

physics of electric current propagating in materials is very often described by

simple concepts of resistance to flow of an ensemble of electric charges. The

description of mass transport of electrically neutral particles can also be de-

scribed with very similar concepts if we make a direct analogy between charges

and mass, as well as electric potentials and pressure differentials. The charge

transport in a material with linear resistance R and under a voltage V is de-

scribed in its simplest form by Ohm’s law I = (1/R)V = G·V , where G ≡ R−1

is the electric conductance of the material. In the case of mass transport in

the linear regime, a similar equation holds,

Qm = G∆P,

where the mass flow Qm (in kg/s) is proportional to the pressure difference ∆P

between the ends of the conduction channel. The constant of proportionality is

the conductance G, defined analogously to the electrical conductance (inverse

resistance) in Ohm’s Law. The conductance of a nanopore is thus the main

characteristic that we will study in our exploration of the physics of flow within
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confined nanochannels.

4.3.1 Experimental Cell

The simplest strategy to detect mass flow in a single channel can be inspired by

the electrical circuit analogy. A pressure differential must be applied between

a source and a drain reservoirs positioned on either side of the conduction

channel. This pressure differential induces a flow through the channel. In this

design, it is critical that the particles in the upper reservoir, the source, can

only go to the lower reservoir, the drain, via the nanosized channel, otherwise

a secondary transport path would potentially dominate the signal. This is

because the conductances of parallel transport paths are summed in transport

measurements. In other words, the wafer holding the nanopore of interest

must be perfectly sealed between the source and drain reservoirs.

Many versions of an experimental cell were designed and built throughout

the course of this work, but only two are presented here. One key constraint

limiting the design is that many samples should be easily substituted in the

same cell without requiring too many repairs. This rules out, for example,

using epoxy to seal a membrane directly inside an experimental cell. The

whole cell should also remain leak-tight at all temperatures below that of

the laboratory, and hold for internal pressures from approximately a hundred

atmospheres down to vacuum. Other than permanent solutions like welding

or viton R© o-rings that lose elasticity at low temperatures, the best strategy to

adopt here is to use a compressible wire made of soft metal, such as indium,

as a non-permanent sealant. Indium wires with diameters smaller than ∼700



66 Sample Preparation and Flow Measurement Technical Details

µm can be compressed between two flat surfaces and make a joint that will

withstand multiple temperature cycles from room temperatures to cryogenic

temperatures and remain leak-tight.

First Generation Experimental Cell

The first generation of experimental cells that we built were similar to the

one shown in figure 4.5 and the photograph in figure 4.9B. The experimental

cell is composed of three main parts: a top flange, a membrane support in the

middle (piece T on figure 4.5), and the main cell body. The membrane support

piece is easily removable and many copies were fabricated to allow for multiple

samples to be prepared in parallel and thus allow faster turnaround between

experiments. The body of the cell is made from high thermal conductivity coin

silver (10%Cu,90%Ag) to ensure the best possible thermal equilibrium between

the cell and the helium fluid inside it. The membrane support piece is made of

Invar 42 R©(42%Ni) because of its very low thermal contraction coefficient that

closely matches that of the Si wafer. Stainless steel capillaries are soldered

to the top flange and to the body of the cell to bring helium in and out,

respectively. These capillaries are then connected to a gas handling system

that will be described in section 4.3.2.

A ∼1 mm diameter indium o-ring compressed between the top flange and

the cell body ensures that the inside of the cell is completely sealed from the

outside. A similar seal, albeit smaller, is also made between the membrane

support and the cell body to prevent helium above the sample from reaching

the bottom volume. Otherwise, this would generate an unwanted secondary
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Fig. 4.5 Three-dimensional model of an experimental cell de-
signed for mass transport measurements on a nanopore (purple
wafer in the middle of the model). A top flange (brass colored)
and a silver body are sealed together enclosing the wafer with the
nanopore of interest. The upper reservoir, source (S), is separated
from the lower reservoir, drain (D), by the leak-tight membrane (M)
such that transfer of gas can only happen through the nanopore.
The wafer is mounted on a support piece (T) that is screwed and
sealed to the body of the cell (silver colored). Pressure in the source
(inlet) reservoir can be increased while the drain (outlet) reservoir
is kept under vacuum. The capillaries leading in and out of the
experimental cell are connected to a gas handling system. The flat
bottom of the cell can be securely fastened to a metallic surface to
ensure a strong thermal link.

flow channel. The space between the Si wafer and the Invar support is the last

location to seal in order for the top and bottom reservoirs to be unconnected.

This seal is prepared in advance and is achieved using either one of two epoxies:

Stycast 2850 or Armstrong A-12 epoxy.

The use of epoxy has a major disadvantage compared to an all-metal joint:

helium can diffuse through it. This diffusion is however not detectable at liquid

nitrogen temperatures, yet it can be as high as 10−16 kg/s at room tempera-
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ture. Importantly, it is not possible to reliably correct for this diffusion signal

because it is not reproducible and fluctuates in time. All data presented in

the thesis is therefore either taken at 77 K, or for mass flows several orders of

magnitude larger than the diffusion in the case of room temperature measure-

ments. A second disadvantage of epoxies is that they are at risk of producing

volatile compounds that can contaminate the surface of the sample and possi-

bly cover the nanopore. Finally, epoxies need to be cured for extended periods,

typically hours, which limits the rapidity of sample preparation. These issues

with epoxies have influenced the design of an all-metal experimental cell.

Second Generation Experimental Cell

The second generation of experimental cell was developed with the goal of re-

moving all non-metallic content from the experimental cell. Figure 4.6 shows

a cross section of the central region of the second generation experimental cells

used to take measurements of mass flow in nanopores. This design is charac-

terized by the removal of the support piece and the use of an indium ring seal

located directly under the silicon wafer. A thin Invar disk is used to apply even

compression on the wafer, which then compresses the indium underneath it.

Once compressed, the indium wire can remain leak-tight over any temperature

range attained in our experiments and has the added advantage of requiring

only a few minutes of preparation. Additionally, the removal of a compressed

indium wire is much simpler than for glues or epoxy sealants since it can be

pealed off the surface by applying a gentle upward force.

Both the silver and Invar surfaces touching the wafer are milled flat to
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avoid damaging the fragile silicon; rough surfaces can easily lead to cleavage of

the whole wafer when some compression is applied. Care must be taken when

aligning the free-standing window with the hole in the silver bottom part since

the SiN membrane can withstand virtually no physical contact.

Brass

Invar

Ag

In

Si

Fig. 4.6 Schematics of a cross section of the central region of the
second generation of experimental cells. The top flange and body
are made of coin silver (Ag90%Cu10%), the silicon wafer is compress-
ing an indium o-ring to provide the seal between top and bottom
reservoirs and an INVAR 42 disk is used to clamp the wafer. All di-
mensions are to scale except for the pit of etched silicon. The screws
are made of a brass alloy that will contract slightly at lower tem-
peratures to ensure the indium seal remains tight during thermal
cycles. A second indium seal (outside of visible area), compressed
between the coin silver top and bottom flanges, is used to seal the
inside helium from a leak to the outside environment.

The volume above the membrane is designed to be large in order for the

helium fluid to thermalize properly with the silver surfaces. A thermometer

and a heating coil can be secured directly to the silver parts on the outside of

the cell. The helium inlet and oulet capillaries are connected to the cell using

adapters screwed on either side of the cell with indium o-rings joints. For low

temperature experiments, the inlet capillaries go through multiple stages of

heat thermalization as will be explained in section 4.4.
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4.3.2 Gas Handling System

The flow of helium through the nanopore is created by the difference in pres-

sure between the top (source reservoir) and bottom (drain reservoir) of the

cell. A precise control of the pressure applied above the sample is therefore

very important, and this is achieved using a gas handling system (GHS). Fig-

ure 4.7 shows a photograph of the GHS. As can be seen from the photograph,

multiple pressure gauges are required at specific points in the GHS to monitor

processes such as filtration, storage or pressure increase/decrease. All valves

and capillaries in the GHS are made of stainless steel with all-metal joints, and

all are designed to withstand internal pressure up to 15000 psi (∼1000 atm).

The capillaries have an internal diameter of 0.000761 m, which is small enough

to ensure that the total volume in the capillaries does not dwarf the experi-

mental cell volume during experiments, but still large enough to have a low

impedance to flow compared to the nanopore.

Using helium as the test gas for mass transport experiments has the great

advantage that it can be passed through filters at liquid nitrogen tempera-

tures and fine-meshed molecular sieves. Five such filters were used to prevent

contamination from air introduced in the cell during sample preparation as

well as filter the gas during transfers between components of the GHS. Two of

the filters are canisters filled with activated charcoal granules that have a very

large surface area because of their natural porosity. The adsorption potential

of the surfaces is highly dependent on temperature and keeping this filter im-

mersed in a bath at 77 K can help trap contaminants while letting helium gas

through. As long as the filter is kept cold, the molecules will remain trapped.
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While helium is conveniently not stopped by the filters, it will be adsorbed

by activated charcoal if the temperature is reduced further. This is the prin-

ciple used in the operation of a helium gas dipstick. A small vessel filled with

charcoal is designed such that it can be transferred between a liquid helium

bath and a liquid nitrogen one. In the colder environment, the charcoal sur-

faces adsorb much more helium gas and the pressure in the vessel decreases.

Two such dipsticks are part of the GHS and if the valve leading to them is

opened, the decrease in pressure can also be used to pump sections of the GHS.

The second important use of the dipsticks is to access large pressures. This

pressurization can be achieved once a large quantity of helium gas has been

accumulated in the charcoal and the dipstick vessel is returned to the liquid

nitrogen bath. The higher temperature induces an instantaneous desorption

that creates a pressure build-up. A large gas tank of approximately 0.003 m3,

seen at the bottom of figure 4.7, is filled to an internal pressure of several

atmospheres and contains sufficient gas to pressurize the experimental cell

well above 100 atm using the thermal cycling of the charcoal dipsticks. This

pressurized helium can then be directed towards the experimental cell in order

to change the applied pressure on the nanopore. The cycle can be repeated by

returning the dipstick to the liquid helium bath and the pressure in the cell

can thus be decreased. The whole operation remains in a closed loop cycle.

4.3.3 Electrical Circuit Analogy

As already mentioned, a pressure differential can create a mass current through

nanopores. Figure 4.8 shows a simplified representation of the experimental
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Fig. 4.7 Photograph of a portion of the gas handling system used
to control the helium gas. Visible near the top are several pressure
gauge displays, high pressure valves connected by stainless steel
capillaries and the icons showing the location of other filters, gauges
and the experimental cell. A storage tank of ∼3 liters sits at the
bottom of the panel. Not shown are the digital pressure gauge, the
liquid nitrogen dewar and pressurization dipsticks.

setup to measure a mass current through a linear system like the one proposed

here, as well as its electrical circuit equivalent. Figure 4.8A shows an exploded

view of the experimental cell with the conductance of the capillaries explicitly
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indicated. This finite conductance is in practice positioned in series with the

conductance of the nanopore and it should therefore be estimated.

Fig. 4.8 (A) Exploded view of the experimental cell with capil-
laries leading in and out having respective conductances GS and
GD. (B) Cartoon diagram (not to scale) of the whole experimen-
tal circuit where a reservoir on the left contains pressurized helium
traveling in a capillary with a very high conductance estimated us-
ing hydrodynamics laminar flow theory. In the middle is a smaller
tube representing the nanopore and finally the tubes to the right
lead to the mass spectrometer (AI) that counts atoms. This latter
section of the circuit has a high conductance given by the theory of
diffusion in tubes under vacuum. (C) An electric circuit equivalent
where resistances are shown with proper value relative to one an-
other. Electric current is measured in a similar way to the proposed
mass current measurement.

From figure 4.8C, it is clear that the equivalent electrical circuit has many

resistances effectively in series and the total resistance of the system is thus the

sum of all resistances. The capillaries leading in and out of the experimental

cell must have sufficiently small resistances Rcap for the nanopore resistance

Rnp to be approximated by the total resistance Rtot. In other words,

Rtot =
∑

Ri = Rn and Rnp 	 Rcap.
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Conversely, the conductance of the nanopore must be significantly smaller than

the conductance of the other components in the GHS if the measured mass

flow is to be attributed only to the nanopore.

The mass flow measured at the mass spectrometer is determined by the

total conductance G−1
tot = G−1

S +G−1
D +G−1

np of the circuit, where GS,D are the

source and drain conductances. A calculation of the conductance of the cap-

illaries can be done using the infinite length approximation for Poiseuille flow

(equation 3.7) (GS ≈ 10−11 m·s at ∼1 bar) and Knudsen free-molecular diffu-

sion (GD ≈ 10−13 m·s at 10−3 mbar) respectively for the inlet and outlet cap-

illaries. In comparison, the typical nanopore conductance is Gnp ≈ 10−18 m·s.

A more intuitive perspective emerges by completing the analogy with the elec-

trical circuit. As shown in figure 4.8C, setting the nanopore resistance to 1 MΩ

and scaling the other elements properly, the resistance of the GHS capillaries

are found to be negligible. This comparison makes it clear that the total flow

rate measured by the mass spectrometer is attributed only to the nanopore

and the effects of the macroscopic capillaries can be neglected.

4.4 Cryogenics and Thermometry

Conducting gas flow experiments at low temperature has a few advantages

compared to experiments at room temperature. The first difference is in the

proclivity of cold surfaces to adsorb contaminants. In the same way that

the cold traps and filters operate, cold surfaces along the path of the helium

have an increased potential to capture some of the contaminants that might

be present within the gas. In fact, a corollary to this is that desorption off
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surfaces is reduced at lower temperatures. Keeping the experimental cell cold

can thus help reduce the risk that organic compounds become volatile and

block the nanopore. Contamination of the wafer surface has also been observed

several times and the nanopores have indeed been blocked on several occasions,

especially for smaller diameter nanopores. Most measurements presented in

this thesis were taken at temperatures equal to, or below the liquid nitrogen

boiling point. The second advantage of working at lower temperatures is the

larger signal, which is approximately a factor of two larger because of the
√
T

dependence of Knudsen effusion (equation 3.6) and the density dependence in

the viscous flow (equation 3.10). In fact, the next chapter will discuss this

temperature dependence in more detail.

The most important advantage of having access to low temperatures is the

ability to make clean transport measurements in the liquid state, and more

interestingly in the superfluid phase of 4He. To achieve liquefaction of helium

and observe the transition to superfluidity, temperatures below 2.17 K are

necessary, and this is conveniently well within the reach of a 3He cryostat.

Results from experiment using the 3He cryostat will be presented in chapter 6.

4.4.1 The 3He Cryostat

A cryostat consists of a multi-stage cooling apparatus that is inserted into a

large dewar designed to minimize transport of heat from the outside environ-

ment to the internal components. This dewar consists of several volumes kept

either under vacuum or filled with cryogenic liquids. These act as barriers to

heat conduction and help reduce the unavoidable heat leaks in the cryostat.
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Figure 4.9 presents a simple diagram of the different stages of the “insert”

of the 3He cryostat. The main cooling components of the cryostat are the

charcoal sorption pump, the 1K-pot, the 3He-pot and the sample stage. All

these are kept in a vacuum chamber, which is immersed in the liquid helium

bath. The core components of the cryostat were purchased from a commercial

supplier (Janis), whereas all experiment specific parts were manufactured and

designed by our group. The details of operation of the cryostat follow.

The 3He Cryostat Operation

The 3He cryostat uses a simple evaporative cooling technique to reduce the

temperature sequentially from the temperature of a helium bath at saturated

vapor pressure, to the temperature of a helium bath at low pressure, and then

to the final base temperature of a 3He bath at low pressure. The sample stage is

in thermal contact with the 3He bath in order to take advantage of the coldest

location. The base temperature is between 260 mK and 340 mK depending on

the thermal leaks caused by capillaries and conducting wires anchored above

at higher temperatures.

The first stage of the cooling procedure is to thermalize all the insert com-

ponents with the helium bath. This is achieved by introducing helium gas

inside the vacuum chamber such that heat from the insert is conducted to the

vacuum chamber walls that are in direct contact with the helium bath. Once

the temperature of all elements on the insert reaches 4.2 K, the exchange gas is

removed such that the vacuum chamber acts as insulation between the cham-

ber wall and the insert components. This is a necessary step in order to reach
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colder temperatures.

The next step is to let some liquid helium from the helium bath enter

the chamber called the “1 K pot”, through the needle valve seen on figure

4.9. If the vapor pressure of the liquid helium inside the 1 K stage is reduced

by pumping on it, the thermodynamic equilibrium shifts and the temperature

decreases as more helium evaporates to replace the atoms removed by pumping.

This situation can be stabilized by supplying warm liquid helium at ∼4 K to

balance the evaporated gas being pumped away. In this manner, a temperature

of ∼1 K can be maintained under optimal conditions. If the balance is slightly

shifted, for example by increasing the pumping rate of the gas or reducing

the influx of liquid, the overall temperature will decrease, albeit for a limited

period. This unbalanced situation would slowly reduce the ratio of liquid to

gas and once all the liquid is evaporated, the cooling would stop and the ever

present heat leaks would cause the temperature to increase sharply. A more

desirable solution for sustained operation is to keep a balanced pumping rate

versus liquid injection. This balance can be achieved in practice for extended

periods and temperature remains stable within a few millikelvins.

Cooling to base temperature is achieved in the 3He chamber with the same

evaporative cooling technique described above. The scarcity of 3He gas makes

it impractical to have a continuous supply of atoms and the design is therefore

made for closed-cycle operation. It would be too costly1 to pump away the 3He

gas. Only a few liters of gaseous 3He is therefore kept in a storage container

at room temperature. This storage container is welded to a tube that passes

1Current prices can be as high as ∼$8000 per liter of gaseous 3He at STP.
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Fig. 4.9 Diagram of the principal 3He cryostat components. (In
black) The vacuum chamber immersed in the helium bath of the
external dewar. (In teal) Charcoal sorption pump parts. The cen-
tral tube leads to a storage vessel above (not visible) and, below,
connects to the 3He pot (in green). (In red) The liquid helium inlet
letting liquid into the 1 K pot, passing through the needle valve. On
the opposite side is a pumping line. (In grey) The coldest point of
the insert and the volume dedicated for samples. On the right side
is a photograph of the insert matching the schematics on the left.
The diagram is modified from CAD drawings by the manufacturers,
Janis Research Company, LLC.



4.4 Cryogenics and Thermometry 79

through the center of the cryostat insert and ends in the 3He chamber where

the evaporative cooling can occur. As shown in figure 4.9, a charcoal-filled

chamber is also present in the middle of this closed system such that 3He

atoms are always free to move between the room temperature storage vessel,

the charcoal filled canister, and the 3He pot.

At this point in the cooldown procedure of the cryostat, all components

are at 4 K except the 1 K pot where evaporative cooling of 4He is taking place.

As explained in the case of the pressure building dipsticks, activated charcoal

becomes very efficient at adsorbing atoms when cooled down to liquid helium

temperatures. Having a chamber filled with charcoal directly connected to the

stored 3He from the storage container, which remains at room temperature at

all times, most of the 3He gas will get adsorbed by the charcoal. This means

that the charcoal chamber acts as a temperature-controlled pump and is the

reason why this component is also called a charcoal sorption pump.

A section of the tube leading from the charcoal sorption pump to the

3He pot passes through the 1 K pot such that some 3He gas can condense

on the inner walls of the tube if the 1 K pot temperature is reduced below

approximately 1.8 K. By raising the temperature of the charcoal chamber

above ∼37 K, it is possible to reduce the adsorption potential in a way that

3He gas will desorb and fill the whole closed system volume. The resulting

increased pressure induces liquefaction of some 3He atoms when coming in

contact with the tube region cooled by the 1 K pot. The gas will continue

to condense and fill the bottom reservoir with liquid 3He. It should be clear

that no mixing of the two isotopes occurs throughout this procedure, unlike
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in the case of the dilution refrigerator cryostats. Heat transfer is exclusively

by diffusion through the metallic structure.

Once all available atoms are condensed, the temperature of the charcoal

can be lowered by pumping on the liquid 3He. This will lower the temperature

of the 3He bath and the samples in thermal contact with it. The colder the

charcoal is, the more 3He can be adsorbed and the more pumping power is

available to increase evaporation of 3He atoms and reduce the temperature

of the remaining liquid in the 3He pot. In practice, this pumping-dependent

temperature control only offers a coarse modulation of the sample temperature,

and usually has to be supplemented with one or several heating elements that

can be fine-tuned to balance the power input (heating) to the cooling power

of the cryostat and regulate temperature with millikelvin temperatures. This

fine-tuning is achieved through a feedback loop between a thermometer and a

heating element.

Temperature Control

A Lakeshore temperature controller model 340 was used to control a PID loop

between a 25 Ω heater and a ruthenium oxide thermometer, both affixed to

the experimental cell. The P, I and D coefficients where adjusted manually in

each temperature range for efficient temperature modulation compared to the

set-points chosen.

Given that the cooling power of the cryostat at base temperature is on

the order of milliwatts, the 25 Ω resistor used for heating the sample can

easily raise the temperature sharply and the proportional (P) coefficient was
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therefore kept low (<5) to avoid uncontrolled warming that could potentially

induce boiling of the liquid helium inside the cell. This is especially relevant

in the superfluid transport experiments where temperature changes of a few

milli-Kelvin where often desired. The “I” coefficient was simply chosen to

avoid underdamped/overdamped oscillations of the temperature with respect

to the temperature set-point. The experiments I performed with the cryostat

never required the setpoints to depend on time (∂Tset/∂t = 0) so D = 0 was

the de facto value for the derivative component in all PID loop operation.

It is worth noting that the temperature control loop is only effective if the

temperature is measured accurately. This means a thermometer with high

precision must be used and the thermometer must be securely fastened to the

component of interest so that a possible temperature gradient does not affect

the accuracy of the reading. These two requirements are covered in the next

subsection.

4.4.2 Thermometry and Thermal Anchoring

The helium used in the experiments is stored in the GHS at room temperature,

so efficient cooling of the gas is necessary in order for transport measurements

to be realized at low temperatures and in the liquid phase. Reducing the

temperature of the gas can be achieved by letting it go through a volume

with cold surfaces, as was explained in section 4.3.2. The simplest option for

this cooling is to have the experimental cell submerged in a cryo-liquid, along

with a section of the capillary, such that gas from the inlet capillary is cooled

and thermalizes within the cell. This is the method that was used for most
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measurements in chapter 5 and was shown to be effective for temperatures at

and above the liquid nitrogen boiling point.

Fig. 4.10 (A) Thermometer inside an OFHC copper piece milled
in a bobbin shape so that the electrical leads can be wound around
the post to ensure that the whole unit is well thermalized. The
ruthenium oxide resistive element is (hidden from view) inside the
bobbin within a protective canister. (B) Exploded view of a heat
exchanger where the bottom part is filled with pressure-sintered
silver powder and capillaries are soldered to the two posts. These
posts are brazed to the top of the small container. Superfluid helium
entering from one capillary into the heat exchanger will rapidly fill
the silver powder’s crevices and be in thermal contact with the
whole unit.

The second option is to use multiple cooling stages called thermal anchors

(figure 4.10B). This method of cooling is required for experiments in the cryo-

stat where the energy from the warm gas could easily overwhelm the cooling

power of the 3He pot and prevent proper operation. The strategy is therefore

to force the gas from room temperature through increasingly cold thermal an-

chors to remove as much energy as possible before letting the gas thermalize

with the cell. Specifically, I used a thermal anchor on the vacuum can at 4.2
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K, another on the 1 K pot and a last one on the 3He pot. It should be noted

that the capillary from the outlet of the experimental cell was kept insulated

all the way to the vacuum can’s thermal anchor. This capillary was made

of an alloy of copper and nickel with a thermal conductivity on the order of

O(10)−4 W/cmK, on par with Teflon and manganin, and an order of magni-

tude lower than standard metals. Since this tube is ∼60 cm long, it does not

represent a serious heat leak to the bottom of the cell. As mentioned in section

4.3.1, we chose coin-silver as the material for the experimental cell because of

its large thermal conductivity, which allows the helium to quickly thermalize.

The cell’s thermal conductivity is also necessary to measure the temperature

with thermometers affixed to the body of the cell. It is a good practice to

securely fasten thermometers and heaters directly on the experimental cell to

minimize the risk of temperature gradients.

Several thermometers (figure 4.10A) are monitored continuously during op-

eration of the cryostat and all of them use a 4-point measurement technique

to avoid the effects of the change in lead resistance as a function of tempera-

ture. Both the sorption pump and the 1 K pot where monitored with silicon

diode thermometers and both the 3He pot and the cell had ruthenium-oxide

ones. The latter thermometers where calibrated at NIST and all tempera-

tures quoted in the thesis where converted from Ohms to Kelvin using this

calibration.

Finally, I built heaters using a design similar to that seen for the thermome-

ter in figure 4.10A. Specifically, I wound a length of highly resistive 0.1 mm

manganin wire tightly around a post, such that driving a current through the
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wire would warm it up via Joule heating, P = Rheater ·I2. The voltage used to

produce heat in these bobbins can be precisely controlled with the PID loop,

as long as a thermometer is positioned nearby.
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Chapter 5

Flow Conductance of a Single

Nanopore

5.1 Mass Flow in a Single Nanopore

The first mass transport experiments I present in this chapter were performed

to test our experimental scheme and determine whether a quantitative mea-

surement could be achieved with a mass spectrometer. This proof-of-concept

[91] set the foundation for the analysis of all subsequent mass transport mea-

surements. The first sample for which the mass flow was investigated (shown

in figure 4.2B) had a diameter of 101±2 nm as measured from the TEM image,

and a membrane thickness of 50 nm. These measurements were conducted in

a first-generation experimental cell similar to the one shown in figure 4.5. As

explained in detail in chapter 4, the conductance G of a channel can be deter-

mined from the mass flow Q measured as a function of the pressure applied

across both sides of that channel, ∆P = P top − P bottom. Keeping the bottom
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reservoir of the experimental cell at zero pressure, P bottom ≈ 0 ensures that the

pressure differential is in practice equal to the pressure of the inlet (source)

reservoir above the membrane, ∆P ≡ P top−P bottom ≈ P top. Varying P top then

induces a change in the mass flow, i.e. P top
1 → P top

2 ⇒ Q1 → Q2 that we can

detect with the Smart Test leak detector.

5.1.1 Measurement of Helium Gas Flow

Using the measurement scheme described in the previous chapter, I measured

the mass flow through the 101 nm nanopore for a series of pressure differential

applied across the sample at temperatures between liquid nitrogen and room

temperature. When changing the pressure in discrete steps from one set-point

to another, the signal measured changes asymptotically towards the next stable

value. In other words, the mass flow signal has a transient time of equilibration

before the system stabilizes, leading to an inverse exponential (equation 5.1)

behavior after the pressure is increased in a single finite step.

Q(t, P ) = Qi(Pi) + Ai · e−t/τ (5.1)

The equilibrium time constant τ varies between a few seconds to almost 2000

s depending on the experimental configuration used. For example, the equili-

bration time constant of the results in figure 5.1 was 17.5±0.8 s. The addition

of cold filters and longer capillaries in recent modifications to our apparatus

increased the impedance to the flow of gas going towards the leak detector.

This resulted in much longer equilibration times for each flow measurements,

and thus reduced the total number of data points that could be obtained.
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Typically, after a duration equivalent to ∼2τ , the mass flow Qi corresponding

to the applied pressure Pi can be determined by applying a non-linear fit to

the time-dependent signal. An example of this is shown in figure 5.1, where

the red line is a portion of the exponential decay curve fitted to the mass flow

data (dots). In this example, the data show stepwise decreases in pressure

leading to descending stair-like mass flow signal as a function of time. This

procedure can be repeated multiple times, either in ascending or descending

pressure steps.

Fig. 5.1 Volumetric flow through a single 101 nm nanopore dur-
ing an experiment as the pressure differential is decreased in step-
wise fashion. When the pressure is decreased and left at a stable
value, the response of the flow signal exponentially approaches a
new equilibrium value. In red is the non-linear fit of equation 5.1
used to extract the equilibrium value at a given pressure.

Once all data points Q(Pi) are extracted from the time-dependent signal,
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the mass flow as a function of applied pressure is explicitly obtained (see figure

5.2). These measurements are, however, subject to a systematic uncertainty

caused by a residual “background signal” in the mass spectrometer. This signal

offset is corrected by subtracting a constant to all flow signal and, in effect, en-

forces the condition Q(P = 0) ≡ 0. In general, the absolute value of the offset

depends on the state of the leak detector, but is normally <5·10−10 mbar·l/s

(using the same units as in figures 5.2 and 5.3A). This systematic error is al-

ways corrected, even if it is typically, at most, a few percent of the smallest

flow measured. Indeed, the majority of flow measurements are several orders

of magnitude larger than this correction. The final error in the conductance

is usually dominated by the propagated uncertainty from the leak detector

signal, the error in the pressure, and the temperature reading.

One clear observation that can be made regarding the data in figure 5.2

is that they deviate from the linear relationship shown by the red line. This

indicates that the nanopore conductance changes throughout the experiment

as the internal pressure of the gas above the nanopore increases.

5.1.2 Conductance of a Single 101 nm Nanopore

Using the definition of conductance G ≡ Q/∆P , we can plot the nanopore

conductance as a function of the pressure applied, or equivalently as a func-

tion of the Knudsen number Kn= λ/D. Figure 5.3 shows the conductance of

the nanopore at 77 K for pressures up to 38 bar. The variation in mean-free-

path λ of nearly four orders of magnitude induces a clear change in the flow

regime through the sample. The three smaller graphs of figure 5.3A contain
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Fig. 5.2 Mass flow as a function of the pressure applied on a
101 nm diameter pore. The red straight line is a guide to the eye
to accentuate the non-linearity of the data.

the same mass flow data as in figure 5.2, but segmented to better illustrate

the flow behavior. The first distinct pressure range P ≈ 0 − 55 mbar (green

background) shows very good linearity whereas the range P ≈ 0.69 − 5 bar

(beige background) and P > 6.2 bar (blue background) show strong and weak

departure from linearity, respectively. Easy comparison to the conductance

data of figure 5.3B can be done using the background color corresponding to

each flow regime. The first observation one can make regarding the conduc-

tance data in figure 5.3B is that it is indeed non-constant as the properties of

the gas change. A constant conductance leads to a linear relationship between

pressure and flow as can be seen, for example, in the low pressure points on

the bottom left graph of Fig. 5.3A. This linearity is then broken for flows at
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larger pressure differentials. The detailed dependence of flow on the pressure

is easier to visualize if we further analyze the conductance of the pore.

Fig. 5.3 (A) Volumetric mass flow of helium gas for three differ-
ent ranges of pressure. The color of the background corresponds
between figure A and B to distinguish between flow regimes. In
green is the Knudsen effusion region, in blue is the continuum hy-
drodynamics viscous flow region and in between (beige) is the tran-
sition region. (B) Conductance as a function of Knudsen number
applied on a 101 nm diameter pore. The dotted red line is the
Knudsen effusion contribution, the green dash-dotted line is the
viscous short-pipe laminar flow contribution and the dashed blue
line is the total flow fitted to the data.
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Extracting an Effective Radius

The constant conductance observed at high Knudsen number is consistent

with the Knudsen effusion for finite-length channels. As noted in chapter 3,

the short pipe conductance in the Knudsen regime is given by equation 3.6

and fitting it to the data above Kn = 10 with L = 50 nm gives a radius

of 50.0±0.2 nm. This is within 1% of the radius extracted from the TEM

image of the nanopore and is within its uncertainty. The high precision of

the radius one can extract by modeling the conductance of a single nanopore

in the free-molecular regime thus gives an in situ tool to confirm the status

of nanopores during experiments. Indeed, as I will show in subsequent sec-

tions, this same fitting procedure can be used to quantitatively determine the

nanopore dimension and could alleviate the need for TEM imaging.

Modeling of the Transition Flow

Given the accuracy of the Knudsen effusion fit to determine the radius of the

nanopore, we attempted to model the conductance over the whole transitional

region. In order to do this, we used a method similar to the one presented

in references [92] and [93]. The authors of these works developed a model for

channel flows when the Knudsen number is in the transitional region. When

this is the case, the continuum assumptions begin to break down close to the

walls, in the so-called Knudsen layer. Within this layer, interactions at the

walls are affected by rarefaction effects and the “no-slip” assumption on the

walls can no longer apply. The emergence of a Knudsen layer as the fluid

approaches Kn ≈ 10−2 has an effect equivalent to allowing a finite slip at the



92 Flow Conductance of a Single Nanopore

wall-fluid interface and a correction must be applied to the continuum equa-

tion. This correction is expected to scale with the Knudsen number throughout

the transitional region until the flow is completely dominated by the rarefac-

tion effects.

The authors in [92] have derived the channel flow rate expected in pipes

and ducts,

Q =
πR4P̄

8η0kBT

∆P

L
(1 + aKn)

(
1 +

4

1− bKn

)
, (5.2)

where P̄ is the average pressure in the channel and η0 is the dynamic viscosity

of the fluid in the bulk. The first term outside the parenthesis is essentially

the continuum pipe flow found in equation 3.7. The second parenthesis is a

correction to the diffusion (i.e. acting on the viscosity η) for the generalized

slip model. In theory, the breakdown of the continuum hypothesis, i.e. the

rise of a slip boundary condition, acts as a reduction of the effective viscosity

µ and an increase in the flow rate predicted with respect to the non-corrected

viscous flow model. The parameter b has been found to best fit molecular

dynamics simulations for a value of b = −1. The remaining term, within the

first parenthesis, is a rarefaction correction Cr = (1 + aKn), where a must

transition “from zero in the slip flow regime to its asymptotic constant value

in the free molecular flow regime”[92]. Equation 5.2 can thus be re-written in

terms of a viscous flow rate in the slip regime Qslip,

Qtotal = Qslip · Cr(Kn). (5.3)
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Beskok et al. [92] have chosen a definition of the correction Cr such that Qtotal

remains valid throughout the transitional region. Specifically, the parameter

a acts as a smoothly increasing function of Kn of the form

a = a0
2

π
atan(a1Knβ),

such that the total flow remains equal to Qslip at Kn � 1 and reaches the

molecular free flow asymptotically with Kn increasing. The two free parame-

ters, a1 and β are fit parameters defining the curvature of the transition be-

tween the two regimes and a0 can be chosen as the value of the free-molecular

flow rate.

While we can use the same arguments to model the flow in our nanopores,

as explained above, the aspect ratio of our nanopores is too close to unity to

warrant the use of the long pipe approximation (Eq. 3.7). A better model in

the continuum regime, for short-pipes, is given by equation 3.10. Equivalently,

at the other limit of large Kn, we know the total flow must be equal to the

Knudsen effusion of equation 3.6. The smooth cross-over between the two

limiting flows can be accomplished with a correction similar to Cr. We define

Gtotal = Gshort−pipe
continuum +

2

π
atan(σKn) ·Gshort−pipe

Knudsen , (5.4)

as the nanopore conductance over the whole transitional region (0.01<Kn<10).

Here, the normalization of the arc-tangent ensures an asymptotic conductance

of the nanopore at large Kn and the fit parameter σ smoothly modulates

the emergence of rarefaction effects in the nanopores. The first term on the
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right-hand side is the conductance of a pore described by equation 3.10. The

term Gshort−pipe
continuum also contains the parameter α, which can thus be treated as

a phenomenological constant specific to the solid-state nanoholes used in our

experiments.

Using equation 5.4 to fit the whole dataset shown in figure 5.3, we found

parameters α = 4.69 ± 0.06 and σ = 5.3 ± 0.1. In this case, α is larger

than what was predicted in macroscopic apertures [56], which may indicate

that more important corrections from the end effects are required. The second

parameter (σ) defines a smooth cut-off point where rarefaction effects dissipate.

A larger value in σ translates into a larger contribution from effusion in the

transition region. The dotted red line in figure 5.3 is the Knudsen component

(Gshort−pipe
Knudsen ) of the total conductance. For completeness, the green dashed line

shows the viscous hydrodynamics-type component Gshort−pipe
continuum .

Our data are limited by the maximum pressure that can be applied before

inelastic deformations of the membrane occur. With this sample, the lowest

Knudsen number we could attain was Kn = 0.013. Strictly speaking, this is not

yet within the purely viscous laminar flow region and this limits the accuracy of

α. In principle, to reach the laminar viscous flow regime with no-slip boundary

condition, we need Kn ≤ 0.001, which means a pressure approximately 13

times higher than that which was used in the present experiment. This is

currently not possible with the solid-state membranes, it however represents

an alternative avenue for investigation if sufficiently sturdy membranes were

fabricated. Strickly speaking, the other option to reach Kn ≤ 0.001 is to

increase the diameter of the pores, but this is contrary to our stated goal of
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investigating nanofluidics.

5.1.3 Temperature Dependence of Conductance

In order to deepen our understanding of the crossover between the hydrody-

namics of viscous flow and the free-molecular Knudsen effusion, we conducted

a thorough investigation of the temperature dependence of the gas flow be-

tween 77 K and 295 K. To achieve this, we slowly varied the temperature of

the experimental cell by exposing it to cold nitrogen gas above a liquid nitrogen

bath. The decrease in temperature of the gas within the cell induced a drop

in pressure that could be monitored with a 0.001psi precision. Since the gas

handling panel supplying the gas remains at room temperature, one can view

this system as two volumes VGHS and Vcell that are at different temperatures

but connected by a negligibly small capillary allowing particles through such

that at equilibrium, pressure is the same in each volume. This is in fact the

very basis of a gas thermometer [94, 95].

Fixing the initial pressure applied on the nanopore, the flow was measured

continuously as the cell was cooled down and warmed back up. The conduc-

tance was calculated for the whole temperature range such that the tempera-

ture dependence could be characterized. Two examples of these datasets are

shown in the inset to figure 5.4. Seen with log-log axes, one can visualize the

linear relationship characteristic of a power-law dependence on temperature

G ∝ T−n. A single exponent “n” was extracted from each similar dataset.

As noted above, the equilibrated pressure of the whole system decreases

monotonically with the temperature of the cell. Taking the specific example of
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Fig. 5.4 The power law exponent of the temperature dependence
of conductance in a single 101 nm nanopore. The mean Knudsen
number Kn is used to position the points on the Knudsen scale.
The inset shows a log-log plot of the conductance for temperatures
between the liquid nitrogen boiling point and room temperature.
The slope of these points gives the power law exponent shown in
the main figure. A dashed line is shown at 0.5 as a guide to the eye
for the 1/

√
T relationship expected for Knudsen effusion.

the data with green diamonds (Fig. 5.4 inset), the initial pressure, in the case

where the whole system was at room temperature, was 6.60 bar decreasing

to 6.08 bar after cooling the cell to 77 K. These two pressures each have an

associated Knudsen number, Kn = 0.286 at T = 295 K and Kn = 0.083 at

T = 77 K. We chose to take the mean value Kn to plot the exponent n as

a function of Knudsen number. In effect, this means the dataset with green
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diamonds in the inset of figure 5.4 gives a point at Kn = 0.18 and the one

with blue circles has Kn = 12.2. A series of similar curves was measured

for initial conditions spanning the whole transition region. The exponent in

the power-law dependence on temperature of conductance for all available gas

pressures are shown in figure 5.4. In the Knudsen effusion regime, a G ∝ 1/
√
T

is explicitly present and the corresponding exponent n = 0.5 is shown with a

dashed line on the graph.

The exponent extracted from the dependence on temperature shows clear

departure from a purely inverse square root behavior at Kn . 10. The ex-

ponent increases slowly until it peaks to n ' 0.67 at Kn ' 0.2 and then

starts falling off to n ∼ 0.58 for the highest pressure attainable in the exper-

iment. The fall-off behavior observed below Kn ' 0.2 can be interpreted as

the crossover towards a conductance dominated by finite-sized viscous flow.

Indeed, taking the large pressure limit of the conductance in the short-pipe

viscous flow (equation 3.10) and expanding the density of helium gas into its

dependence on pressure and temperature, we obtain a short-pipe conductance

limit at high pressure of G∆P→∞
viscous = πR2

√
m

αkBT
. This asymptotic limit of the

conductance in short pipe has the inverse square root dependence on temper-

ature that figure 5.4 hints at. The lack of a pressure dependence in the latter

equation is expected to lead to a plateau for the conductance, unfortunately

our data did not quite reach this regime, as can be seen in the low Knudsen

number data points of figure 5.3.
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5.2 Knudsen Effusion in Smaller Pores

The positive results obtained with the ∼100 nm pore constitute a foundation

for measurements in smaller pores. We have subsequently measured the mass

flow in dozens of nanopores with progressively smaller diameters and selected

a few to demonstrate the applicability of our method as we move towards the

1D limit. The conductance of each of these samples was obtained and then

fitted with the model of section 5.1.2. Several of these results are presented in

the remainder of chapter 5. The selected fit and conductances are shown in a

way such that each graph illustrates a different aspect of the model, as well

as demonstrates the repeatability of our measurements. Whenever possible,

measurements were performed at both room and liquid nitrogen temperature,

and a fit with equation 5.4 was computed when the diffusion through the

epoxy was negligible. Whether measurements were achieved with increasing

or decreasing steps in pressure across the nanopores did not yield different

results and the direction of the pressure change is therefore not distinguished

in the following sections.

5.2.1 Applicability of the Method in Smaller Nanopores

Figure 5.5 shows the conductance of two nanopore samples with diameters of

77± 1 nm and 46.5± 1 nm, as measured from TEM images. Each sample has

its associated picture inset in the graph of the conductance. Both wafers used

to produce these nanopores had a thickness of 50 nm.

For the sample shown in A, the mass flow was measured at pressures be-

tween 4.7 mbar and 17.7 bar. The conductance inferred from that flow mea-
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Fig. 5.5 (A) Normalized conductance of a 77 nm diameter
nanopore for 297 and 77 K. The conductance data are normalized
with the experimental conductance in the Knudsen regime in each
data set. The dashed line is computed with equation 5.4 fitted to
the 77 K conductance data. (B) Conductance at room temperature
for the sample seen in the inset. The diameter from TEM is mea-
sured to be 46.5± 1 nm. Overlaid on the data are the phenomeno-
logical model equations with radii equal to the TEM dimension
(blue) and ±1 nm for green and magenta curves, respectively. The
white bar on the TEM image is 50 nm for A and 10 nm for B.

surement was then normalized with the experimental conductance in the Knud-

sen effusion regime GKn
exp. =3.78·10−18 m·s (1.91·10−18 m·s) for 77 K (295 K).

The two curves are qualitatively very similar and this demonstrates that our

modeling of the flow is not dependent on the temperature at which the gas

flow measurements were performed.

The fit to the conductance in 5.5A is shown with a dashed line. Here, the

blue circles are data at low temperature (77 K) and red diamonds at ambient

temperature (295 K). The Knudsen effusion predicted by equation 3.6 for a

cylindrical channel with a diameter of 77 nm is lower than the experimental
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conductance (for Kn > 10). We attribute this discrepancy to the fact that our

samples are not perfect cylinders and, as explained in section 3.2.1, the opening

angle of nanopores affects the Clausing factor, thus changing the conductance.

Using the opening angle as a fit parameter, we find an 11◦ angle for the sample

in figure 5.5A. Once this correction to the Knudsen effusion model is applied,

the conductance over the whole transition region can be fit with equation 5.4.

The parameters α = 3.1± 0.1 and σ = 13± 2 were found for the two datasets

of figure 5.5A. For technical reasons,related to the protection of the sample,

the dataset at low temperature spans a much broader region of the Knudsen

scale and only the fit to this data is shown.

The same procedure was applied on the sample shown in figure 5.5B where

only the room temperature data are available (because of the type of sealant

that was used to prepare the SiN wafer). The fit to the high Knudsen number

conductance had to be corrected again for the pore geometry and an angle

of 11.5◦ was required to fit the experimental flow. The green and magenta

curves in figure 5.5B are produced using equation 5.4 with a radius modified

by±1 nm, which corresponds to the uncertainty from the dimensions measured

on the TEM image. This comparison of slightly different radii demonstrates

the sensitivity of our measurement scheme. Specifically, a reduction in the

diameter of a nanopore by either contaminants or structural deformation of

the SiN membrane can have easily detectable changes in the conductance.
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5.2.2 Evidence of Nanopore Deformation

In order to further investigate the sensitivity of the mass flow on the dimensions

of the pore, we have repeatedly measured the flow through samples of various

length-to-radius (L/R) ratio and over extended periods of time. Specifically,

we have extracted the conductance of a given sample for a series of time in-

tervals following initial drilling, and correlated these measurements with TEM

imaging. A summary of the results of this series of experiments is available in

appendix A and a selection of two samples is shown here to demonstrate the

main findings.

Figure 5.6A shows the conductance of a 41± 2 nm nanopore, while figure

5.6B shows a 25±1 nm diameter pore, as measured from TEM imaging directly

after fabrication. The thicknesses of these samples are 50 nm and 75 nm,

corresponding to L/R ratios of 2.4 and 3.0, respectively. As has been observed

elsewhere [96], the larger this ratio, the more likely it is that a deformation

of the nanopore will occur over extended periods of time. For the sample

shown in the inset of 5.6A, the conductance was measured at 77 K for two

consecutive days. The measurement shows a slight offset between the first day

(teal circles) and the second day (blue diamonds). This illustrates that the

typical amplitude shift of the conductance can be observed in the first few

days after fabrication for nanopores with comparable geometries.

The fitting of data at high Knudsen number yields a radius of 20.43 nm and

20.36 nm for the teal and blue data, respectively. This radius is within the un-

certainty from the TEM imaging and the small shift is within our expectations

for a local deformation of the nanopore walls. Monitoring the Knudsen effusion
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Fig. 5.6 Conductance of 41 nm (A) and 25 nm (B) diameter
nanopores as a function of the Knudsen number. Dotted lines are
Knudsen effusion contribution to total conductance in A and a con-
stant function fit the data at high Knudsen number. In both cases,
a slight shift in the conductance is detected between measurements
made several hours apart. The white bar on the TEM image is
20 nm long in A and 10 nm in B.

in nanopores over time can thus be used to determine when the pore dimen-

sions become stable. When this is the case, subsequent experiments can be

performed reliably. This is important, since I have once observed a nanopore

gradually being blocked by contaminants and become fully obstructed during

a continuous measurement of mass flow in the Knudsen regime.

A more dramatic change was observed in the sample shown in the inset

of figure 5.6B (also shown in figure 4.2E) and whose room temperature con-

ductance in the Knudsen regime was found to drop by ∼21% over 48 hours.

These conductance data are shown in figure 5.6B, where the dotted lines are

fit for Kn >10 of 1.15 · 10−19 m·s and 0.94 · 10−19 m·s. This corresponds to a

decrease in fitted radius from 12.7 to 11.7 nm with a constant opening angle
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of 5◦. The observation of such a sharp decrease in conductance for samples

with similar L/R led us to investigate the correlation between the nanopore

dimensions at the initial drilling and the structural stability of nanopores over

time (see appendix A). The most relevant conclusion to the current line of

experiments is that, in order to obtain stable nanopores with much smaller

diameters, we needed to use thinner membranes to keep the L/R ratio as low

as possible.

5.2.3 Conductance of the Smallest Single Nanopores

Once these new constraints in our fabrication protocol were better defined, we

were able to achieve gas flow measurements in much smaller nanopores. To

our knowledge, these are the smallest single nanopores characterized to date

using direct gas transport measurement. Figure 5.7 shows the conductance of

the sample shown earlier in figure 4.2F with a diameter ∼21 nm. An explicit

demonstration of the stability of this pore is visible in the inset, and these

measurements were taken at three and twelve days interval. The data was

taken at 77 K using the same procedure as was described earlier. The first

two datasets (red and blue dots of figure 5.7B) were obtained quickly as initial

verification of the pore dimensions. These datasets were also limited to high

Knudsen numbers in order to restrain the duration of the experimental runs.

The last series of points (black dots) were taken more carefully and for applied

pressures up to 56.8 bar. The data from this last set were measured over two

consecutive days and a slight vertical shift is observed around Kn = 0.12; this

is between the left-most points from the second day and the first day’s data
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extending to high Knudsen numbers.

Fig. 5.7 Conductance, at 77 K, of a nanopore with a 21 nm
diameter. The inset shows the TEM image of the pore. (B) Similar
measurements were taken 12 days (red) and 9 days (blue) prior
the conductance shown with black dots. The black dots are the
same data for A and B. The stability over time is evident from the
repeatability of the measurement. The white bar is 10 nm long and
the TEM image is also shown in 4.2F.

The middle curve (green) in figure 5.7A is the total conductance function fit

to the data and it is also reproduced with a radius 5 Å larger (teal curve) and

smaller (crimson curve). Comparing to the effect predicted from a shift of a few

Angström, the slight offset observed during the second day of measurements

is not considered to be caused by a significant deformation of the nanopore.

Figure 5.7B shows the measurements are repeatable.

The parameters of the fits shown in figure 5.7A are σ = 18 and α = 9.0 for

a radius of R = 10.6 nm and an opening angle of 7◦. Comparing samples of

different sizes, we find a general trend that these parameters increase as the

nanopore samples decrease in size. However, a direct physical interpretation

cannot be easily attributed to this observation because of the limiting phe-



5.2 Knudsen Effusion in Smaller Pores 105

nomenological nature of the model. Figures 5.7 and 5.8 both show deviations

from the conductance equation over the transition region, however more sam-

ples need to be measured, over the full range of available pressures, before the

applicability of the short-pipe flow model can be assessed in greater detail.

The smallest sample I was able to measure is shown in the inset of figure

5.8. The TEM image shows that the nanopore is slightly elongated and the

length measured along the longest axis is 15.6 nm and 14.2 nm along the

shortest. The wafer for this sample was 30 nm thick.

Fig. 5.8 Conductance of a nanopore 15 nm in diameter. The solid
blue line is the total conductance equation fit to the data and the
dotted lines on either side are computed from the same equation
with angles ±1◦. The inset shows the TEM image with a 10 nm
long white bar for calibration.

The mass flow through this sample was measured from 9.0 mbar to 7.2 bar

and in a liquid nitrogen bath at 77 K. The solid line overlaid on the data points

is the total flow equation with α = 8.5 and σ = 7.0 for radius of R = 7.8 nm
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with an angle of 2.7◦. The two dotted lines show the effect of varying the

opening angle by 1◦. These results confirm that a short-pipe Knudsen effusion

model can quantitatively predict the conductance in single nanopores as small

as ∼15 nm in diameter.

However, the feature seen around Kn = 1.5 could not be explained by a

specific experimental event and its origin remains unexplained. I attempted

to repeat the mass flow measurements using the same experimental conditions

and the plateau feature was observed again at the same pressure, returning to

the smooth curve towards higher Knudsen numbers. Unfortunately, this is not

sufficient evidence to attribute a physical origin to this irregularity, since such

a deviation was not observed in the course of measurements of other samples.

5.3 Conclusions from Gas Flow Measurements

We have measured the mass transport of helium gas through single nanopores

fabricated in free-standing SiN membranes. The conductance of the nanopores

was calculated from the observed flow for a wide range of pressures and tem-

peratures. A clear transition was observed as the system transitioned from

free-molecular effusion at low pressure to viscous laminar flow described by

the hydrodynamics of continuous media. This transition was characterized in

nanopores with diameters as small as 15 nm. The conductance in the Knud-

sen regime was found to be highly sensitive to changes in the dimensions of

the nanopores as well as structural deformations of its walls. Prolonged mon-

itoring of the conductance of a nanopore has been used to detect when the

nanopore becomes structurally stable. Using our mass spectrometry measure-
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ment scheme has also allowed us to successfully detect the mass transport in a

single 15 nm diameter nanopore, which is the smallest nanopore to date where

such a measurement has been achieved. Furthermore, the characterization of

the flow in single nanopores establishes a foundation for the quantum fluid

flow experiments presented in the next chapter.
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Chapter 6

Hydrodynamics of Superfluid

Helium in a Single Nanohole

This chapter presents the results we obtained by extending our measurement

scheme to temperatures near the absolute zero. The measurement of mass

flow was achieved in an experimental cell mounted inside a cryostat, as de-

scribed in section 4.4. All mass flow measurements were performed with a

Pfeiffer Smart Test mass spectrometer and the flow rate was calibrated before

every experiment with an external calibrated leak with a constant leak rate of

4.5·10−3 ± 10% ng/s.

The first sample in which superfluid flow was observed is shown in figure

4.2D. It had a nearly circular cross-section with dimensions of 42.7 and 45.6 nm

along the shortest and longest axis, respectively. As with previous samples,

the wafer was etched to leave a square free-standing silicon nitride window

of ∼30 µm wide and has a thickness of 50 nm. This sample is very similar
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to the one presented in figure 5.5B, albeit with a slightly smaller diameter.

Using the Knudsen effusion in the gas phase, we verified that the sample

dimensions remained the same throughout the experiments with superfluid.

This first sample was measured in an experimental cell of the first generation

(see section 4.3.1) and our results with this sample were published in Physical

Review Letters [97].

The clean helium gas coming from the gas handling system was delivered

into the cryostat where it passed through several thermal anchors with decre-

mental temperature stages. Under normal operation, the temperature of these

stages was set below the liquefaction point such that the liquid-gas boundary

remains outside the experimental cell. The source side of the cell could there-

fore be kept full of liquid helium during the experiments. The sintered silver

powder inside the thermal anchors offered the large surface area required for

good thermal contact between the superfluid and the metallic surfaces of the

enclosures. Details on the thermometry and temperature control have been

given in chapter 4. The equilibrium time constant for the stabilization of each

flow measurement in the cryostat increased to approximately 600 to 1200 sec-

onds. This limited the number of points that could be obtained during each

experimental run, but was sufficiently short for a careful measurement to be

achieved.

6.1 Knudsen Effusion Below 20 Kelvin

The first gas flow measurement made on this sample were completed at room

temperature on two separate days for low and high pressure ranges respec-
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tively. The first day of measurement was performed over the range 30 to

790 mbar pressure, and the second day covered pressures up to 22.8 bar. Fig-

ure 6.1A shows the conductance of the sample at 295 K with the usual fit

of the phenomenological model for the conductance in the transition region.

Sister curves were also added for radii of ±1 nm. The parameters of this fit

are α = 4.7 and σ = 11 for a radius of 22.1 nm with an opening angle of 9◦.

The inset shows the TEM image taken during fabrication.

1000

C
on

du
ct

an
ce

  G
  [

10
-1

8  m
 s

]

Knudsen number  Kn

±0.5 nm
R=21.4 nm

1001010.1
0.45

0.50

0.55

0.60

0.65

0.70

0.75

.

1

100101

2

3

0

R=22.4 nm
10 K

±0.5 nm

20 K

Knudsen number  Kn

C
on

du
ct

an
ce

  G
  [

10
-1

8  m
 s

]
.

A B

Fig. 6.1 (A) Conductance at room temperature of a single
nanopore with a 45 nm diameter. The solid line is a fit of the
total conductance equation with radius R = 22.1 nm. The two
dotted lines represent the same function, but with radius larger
and smaller by 1 nanometer. The white bar is 50 nm. (B) Similar
conductance data taken at 20 K (teal dots) and 10 K (magenta
diamonds). The lines over these datasets are from the Knudsen
effusion conductance with R = 21.4 nm and R = 22.4 nm for 20 K
and 10 K. In this case, the dotted lines are for a radius ± 0.5 nm.

Figure 6.1B shows conductance measurements at much lower temperatures,

specifically at 10 K and 20 K. This data was obtained after all of the super-

fluid experiments were performed and demonstrates that the nanopore re-
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mained structurally stable throughout the several months of operation. The

fit of Knudsen effusion conductance to the data at low temperature give radii

of R = 22.4±0.3 nm and R = 21.4±0.4 nm for the 10 K and 20 K data re-

spectively. Additional dotted lines are shown for expected conductance using

radii ±0.5 nm.

6.2 Liquid Helium Mass Transport

The typical procedure to determine the superfluid mass flow is as follows.

First, both sides of the experimental cell are emptied at a temperature higher

than the helium boiling point. Then, the apparatus is cooled below the super-

fluid transition such that the introduction of helium gas, via the gas handling

system, forces condensation within the heat exchangers. This liquefaction is

a slow process and only once all of the volume is filled with liquid helium

does the data collection really begin. The helium atoms that pass through the

nanopore are pumped out of the cryostat by the mass spectrometer, where they

are detected. Keeping the applied pressure constant, the mass flow through

the nanopore was monitored as the temperature was increased incrementally

from 1.6 K to 2.5 K or more. Several such data sweeps are shown in figure 6.2.

6.2.1 Viscous Fluid Flow

In figure 6.2, the dotted line labeled Tλ is the bulk superfluid transition tem-

perature. On the right-hand side of this line, there is no superfluidity expected

to occur and only “normal” liquid helium should be present in the cell. In this

portion of the graph, the data from each set show a clear increase in mass flow
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Fig. 6.2 Mass flow of liquid helium through a single 45 nm
nanopore. Each symbol corresponds to a distinct temperature
sweep at a fixed pressure of 0.069, 0.145, 0.241, 0.345 and 1.45 bar
going from bottom to top. The dashed line shows the superfluid
transition temperature for bulk helium (Tλ).

in response to an applied pressure gradient. This pressure-dependent mass

transport demonstrates that the viscous fluid flow of liquid helium is not neg-

ligible, and it indicates the normal component of helium, below the superfluid

transition, should also be taken into account. This is counter-intuitive and

we initially had made the naive assumption that this would not be the case.

Well known experiments showed decades ago that the normal component can

be filtered-out in channels with dimensions of the order of 10−7 m, and the

signals from the superfluid component could be measured exclusively. The

conductance of the nanopore used in this experiment is however large enough
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that the normal component remains a significant portion of the total flow. We

believe the normal component was able to flow because of the relatively small

length of the pore (L = 50 nm, D = 45 nm).

The theoretical framework used to treat the viscous component of the mass

transport was developed in chapter 3. This model made use of the short-

pipe viscous equation (Eq. 3.10) to determine the liquid helium flow through

a nanopore. This equation was used to fit the data at temperatures above

Tλ. The average of the radii found from fitting each dataset of figure 6.2 was

R = 20±2 nm, and an example of this fit is shown in figure 6.3 for clarity. This

average radius is in excellent agreement with the gas flow measurements and

the TEM imaging. The viscosity and density of liquid helium were taken from

the literature [61, 98, 99], and the length of the pore taken as the membrane

thickness of 50 nm. The α parameter for the end effects in the nanopore was

set to α = 4.7 as found in our earlier experiments with gas flows (see figure 6.1).

The modeling of the viscous flow was then used to determine the superfluid

component, as will be described below.

6.2.2 Superfluid Flow Through the 45 nm Nanopore

The data of figure 6.2 shows a clear increase of the mass flow when the tem-

perature decreases below the superfluid transition, and this is observed for all

pressures investigated. To better illustrate this increase, we focus our atten-

tion on a single temperature sweep shown in figure 6.2. Taking the curve for

483 mbar and reproducing it in figure 6.3, we easily notice the different flow

regimes on either side of Tλ. Here, the temperature axis was offset for clar-
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ity in an attempt to alleviate the small shift in the superflow onset observed

in some of the data sets. We suspect that the temperature recorded by the

thermometer during the lower pressure experimental runs could have suffered

from a small gradient in the temperature across the experimental cell, which in

turn could have offsetted the temperature scale. The largest offset we recorded

was 84 mK for the 241 mbar series and, for the other datasets, an average of

32 mK shift. This correction to absolute temperature was applied before any

subsequent modeling and determination of the superfluid component.
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Fig. 6.3 Mass flow measured at a constant pressure of 483 mbar.
The connecting line is a guide to the eye. The green dotted line
is the flow computed by the short-pipe equation of viscous flow,
using the total helium density ρ over the whole temperature range.
This assumption effectively treats both He I and He II as classical
fluids. The red solid line is built from the same equation, but using
the density of the normal component only. The temperature axis is
defined with respect to the superfluid transition temperature (Tλ).
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Total Flow

The equation for the two-fluid flux (equation 3.12) can be used to understand

the flow in the single nanopore. Assuming an average velocity in the pore,

we consider the total mass flow given by Qtotal
m = JtotalπR

2 and the normal

component of He II described by a viscous short-pipe flow, as discussed before

(Eq. 3.10). The total mass flow is therefore given by

Qtotal
m = πR2ρsvs +

8πηL

α

(√
1 +

αρnR4

32η2L2
∆P − 1

)
, (6.1)

and it can be compared to the mass flow measured experimentally. The only

unknown remaining in this equation is the superfluid velocity vs, which is

expected to be limited only by an upper-bound critical velocity.

In an effort to describe the observed mass flow through the 45 nm nanopore,

the right-hand side term of equation 6.1 was fit to each data series shown in

figure 6.2. Again focusing on the data in figure 6.3, we produced two curves

using the viscous short-pipe flow model (Eq. 3.10). The dotted green line

was computed using the total helium density for the whole temperature range,

thus working under a “no superfluid” assumption. Above Tλ this model agrees

well with the data, as expected for a purely “classical” viscous fluid. Below

Tλ, the observed flow is approximately twice as much as that which a simple

fluid would produce. We attribute this excess to a superfluid contribution

to the total flow. In contrast, the solid red line was computed using the

tabulated density from the normal component of the two-fluid model. This

normal density is similar to the values shown in figure 3.4 for bulk helium

at saturated vapor pressure. In effect, this red curve is the second term of
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equation 6.1.

The superfluid flow was then extracted by subtracting the normal compo-

nent from the total flow. As mentioned in chapter 3, superfluid flow takes

place at a critical velocity beyond which it cannot cross because of the on-

set of energy dissipation. The critical velocity in other flow experiments is

usually reached at pressure heads of ∼O(1) Pa and so we therefore assumed

that the large pressure differential used in our experiments were sufficient for

the superfluid to reach the critical velocity. From the superfluid mass flow,

we can isolate the effective velocity of the superfluid at each point since the

cross sectional area and density are known. This velocity is interpreted as the

superfluid critical velocity and is discussed further in the following section.

6.2.3 Critical Velocity in a Nanopore

The critical velocity data inferred from the total mass flow is shown in figure

6.4. We note a clear dependence on the temperature and a nearly linear

regime for the points at lowest temperature. In figure 6.4, the critical velocities

were normalized with vc0, the extrapolated critical velocity at T = 0 K. This

extrapolation is accomplished using a linear fit of the critical velocity data.

The normalization makes it easier to compare to data from Zimmermann et

al. [100, 101]. In their work, they found that the dependence on temperature

of the critical velocity of superfluid in small channels follows a linear function

of the form vc(T ) = vc0(1−T/T0) (see also the discussion of equation 3.14). In

their experiments, vc0 was found to be of the order of 1 to 25 m/s [70, 100]. For

the single nanopore flows shown in figure 6.2, this extrapolation to T= 0 K
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gives values of vc0 between 8 and 45 m/s. It is worth mentioning that our

experiments are for continuous flow, whereas most results from other groups

are obtained with an oscillating membrane inducing an “AC” flow of very small

amplitude. This qualitative difference is especially important with respect to

the temporal resolution of the measurements; we observe long time averages

of the signal, whereas they can detect milliseconds dynamics of the flow.
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Fig. 6.4 Critical velocity of the 45 nm nanopore as a function
of temperature. Each different symbol corresponds to the data
of figure 6.2 and the connecting lines are guides-to-the-eye. Each
dataset is normalized with vc0, the critical velocity extrapolated to
T= 0 K (see text). This was done in order to compare to data
from [100, 101] (open triangles). The error bars are defined by
the propagated uncertainty of the density, viscosity, flow and cross
sectional area of the pore.

The error in the critical velocity is largest near Tλ because of the uncer-
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tainty of the superfluid density. This large error prevents us from resolving

the behavior of the critical velocity in the vicinity of the superfluid transition.

We however clearly observe that the temperature dependence of the superfluid

critical velocity shows similar behavior to what was found in larger channels

by other experimental techniques. To our knowledge, the absolute value of the

critical velocity inferred from our mass flow measurements is the largest ever

measured in channel flow experiments.

6.3 Liquid Helium Mass Transport in 16 nm Nanopore

Based on the results obtained in the 45 nm sample of the previous section,

we attempted to reproduce these measurements in smaller nanopores in order

to map out the behavior of liquid helium as it approaches the 1D limit. The

smallest sample that yielded a superfluid signal at low temperature is shown

in figure 6.5. The picture in the left panel (A) was taken after the sample

fabrication, which took place six months before the superfluid measurements

were conducted. The picture on the right panel of figure 6.5 (B) was taken

four months after the measurements, in order to demonstrate the long term

structural stability of the sample. The TEM images show a decrease of the

diameter from 17.3± 0.8 nm to 15.6±0.7 nm; this nearly identical dimension

is characteristic of a nanopore that has reached a fully stable configuration.

The membrane in which this sample was drilled was 30 nm thick and with the

usual free-standing surface of ∼30 µm by ∼30 µm.

The low temperature measurements with this sample were achieved in an

experimental cell of the second generation, and additional precautions were
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Fig. 6.5 (A)Image taken six months before the measurements of
superfluid flow in this nanopore and (B) the TEM image of the same
sample taken four months after the measurements. The white bar
is 10 nm long.

taken to ensure ideal thermal anchoring and temperature monitoring. The

experimental procedures for the superfluid measurements of this sample were

replicated as closely as possible to what was described previously. The empty

cell was kept below liquefaction temperature and filled slowly with helium gas

until the condensation within all cold volumes was completed and an equilib-

rium was reached. At that point, the pressure applied above the membrane

can easily be kept constant. Setting this pressure at a desired value, the tem-

perature was then increased in a stepwise fashion in order to provide sufficient

time for the mass flow signal to equilibrate at each step. While the experimen-

tal protocol was similar, the modifications to the apparatus caused a drastic

increase in the typical time required for the signal to equilibrate. A single

measurement of the flow was now on the order of 6000 seconds. As was the

case with the larger 45 nm sample, a Knudsen effusion measurement was also
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performed in order to confirm the nanopore dimensions in situ.

6.3.1 Knudsen Effusion Measurement to Confirm Nanopore Radius

Gas effusion measurements were taken with the experimental cell at a con-

stant temperature of 20 K. Because of several changes to the apparatus imple-

mented prior to our measurements with this sample, it was necessary to test

whether the warm, low-density gas from the gas handling system was prop-

erly thermalizing in the newly installed thermal anchors. In effect, helium

at room temperature was cooled to ∼4 K while passing through the anchors,

then warmed back to 20 K immediately before entering the experimental cell.

Specifically, the thermal anchor on the 1 K pot were first kept at T < Tboiling

(3.8 K) while the gas pressure was varied to take the Knudsen effusion data.

In a second run, the thermal anchor was then kept at T > Tboiling (∼5 K), thus

preventing condensation of the helium gas. Two datasets of effusion at 20 K

were thus taken, at a two-days interval, to test whether the gas was properly

cooled before reaching the experimental cell.

The results of the two runs are shown in figure 6.6. These results are effec-

tively identical and, qualitatively, the flow exhibits no difference between the

two attempts. This indicates that the gas is indeed thermalized appropriately

by the last thermal anchor and the temperature of previous components of the

cryostat does not affect the measurement further down. The flow detected was

also quantitatively consistent with the Knudsen effusion theory for flow in a

single 16 nm nanopore, as is evident from the lines in figure 6.6. Because of

operational constraints in the laboratory, these gas flow measurements could
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not be achieved at 77 K, as was usually done with other samples. Nonetheless,

a useful comparison can be done with the effusion data of the other 16 nm

sample in the previous chapter (figure 5.8). By scaling-down the 20 K flow

with the square-root dependence on temperature of Knudsen effusion, we con-

firm the two samples yield comparable conductances. This simple comparison

quickly confirms our measurements are consistent between the two nanopores

with a radius ∼16 nm.
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Fig. 6.6 Gas conductance at 20 K of a 16 nm diameter nanopore.
The two data series are for identical experiments realized two days
apart. The solid line is a fit to the data for the total conductance
with a radius of 8.2(1) nm, α = 4.7(1) and an opening angle of
8◦. The dashed lines are from the same equation computed with a
radius set at 7.7 nm and 8.7 nm.

The solid line overlaid on the conductance data at 20 K is the equation 5.4

with radius of R = 8.2± 0.5 nm and an 8◦ opening angle was included in the

determination of the Clausing factor. The two dashed lines on either side of
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the fit are computed using the same equation with radius larger or smaller by

0.5 nm. The confirmation of the radius from the conductance in the Knudsen

effusion regime gives us confidence the experiments in the superfluid phase can

be carried out, and that the sample dimensions can remain stable over time.

6.3.2 Superfluid Mass Flow in a 16 nm Nanopore

Measurements of liquid helium flow through the 16 nm sample are shown in

figure 6.7, where each set of colored symbols represents a constant-pressure

series of measurements. The solid lines between similar symbols are guides-

to-the-eye. Starting near T ' 1.55 K, the cell was warmed incrementally with

a given pressure head of 68.9, 145, 276, 345, 483 or 689 mbar. Sufficient time

was allowed for the mass flow signal to reach its asymptotic equilibrium, as

explained earlier in section 5.1.1. The signal from the mass spectrometer was

calibrated with the same external calibrated leak of 4.5 · 10−3 ng/s and the

sample was kept below T = 5 K during all liquid helium experiments.

In figure 6.7 the error bars show the uncertainty associated with the pre-

cision of the mass flow signal, and are typically smaller than the symbol size.

This is however not the largest source of uncertainty, as can be seen from the

689 mbar dataset. The few green triangles symbols not connected by the solid

line were taken on a separate day and show a slight offset that we attribute

to the uncertainty on the accuracy of the measurement set up. While this

systematic error remains small relative to the overall flow, it is larger than

other errors in several of the datasets. In order to keep the figure clear and be

able to observe the trend of mass flow across Tλ, the error bars used did not
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include this hard-to-estimate systematic uncertainty.
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Fig. 6.7 Superfluid mass flow through a 16 nm sample. The
dashed line is the superfluid transition temperature Tλ. The solid
lines are guides-to-the-eyes.

A sharp change in flow regime is observed in the mass transport data at

the Tλ line (dashed line). The flow transitions from a nearly constant value to

a steadily increasing one when the temperature is lowered across Tλ. At the

lowest temperatures we reached, the flow is nearly three times larger than at

T = Tλ.

An important observation to make regarding these data series is that the

small discrepancy between the expected superfluid transition temperature and

the observed one is absent. This suggests that the small shifts observed with

the previous sample (section 6.2) were likely thermometry artifacts and the
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improvements to the apparatus, between the first and second generation of

experimental cells, provided the required thermal contact between the liquid

and the thermometry equipment.

The fitting procedure described earlier for the 45 nm sample has been

duplicated on these datasets. The viscous helium contribution to the total

flow was computed using the mass flow predicted from this equation, with

the density and viscosity interpolated from isobaric curves [61, 98, 99]. As an

example, the 483 mbar dataset was selected to show the result of the fit, as

seen in figure 6.8. The radius found from this fit was 8.3 nm, which is within

the 16± 1 nm diameter measured from TEM imaging. The α parameter used

was 4.7, which was obtained from the gas conductance measurements shown in

the previous section; this is also the value used for the larger 45 nm nanopore.

The fit of the short-pipe viscous flow model (Eq. 3.10) to the T > Tλ

data of the other datasets was also achieved. The radius found this way had a

larger variance than expected, compared to the similar fits done with the 45 nm

sample in the previous section. To be specific, for smaller pressures datasets,

the fitted radius was too large, and in the worst case, for the 69 mbar dataset,

the fit yielded a radius of 12 nm. This is well over the confidence interval

of our TEM diameter measurement. Given that the equation used in the

fit yielded worst results at low pressures, we examined the flow behavior as

P→ 0. In order to directly investigate this discrepancy, we measured the flow

as a function of the applied pressure for a fixed temperature of 2.25 K, well

within the He II region. The data we obtained is shown with black dots in

figure 6.9.



126 Hydrodynamics of Superfluid Helium in a Single Nanohole

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.0

0.1

0.2

0.3

0.4

M
as

s 
F

lo
w

  [
ng

/s
]

Temperature  [K]

Fig. 6.8 Superfluid mass flow at 483 mbar in the 16 nm sam-
ple. Shown as a dashed line is the contribution from the normal
component of liquid helium computed from the viscous short-pipe
equation. The difference between the measured flow and the pre-
dicted flow is assigned to the superfluid component.

The first observation one can make looking at these data is that the flow

appears to have a finite value as the pressure approaches zero. This is not

the behavior our model predicts and explains why the fit yielded much larger

radii for the lowest pressures. The red curve shows the viscous flow model of

equation 3.10 with a radius of 8.1 nm. The distribution of the data over this

curve is imbalanced, which indicates the equation might not describe the data

as accurately as possible. The simplest hypothesis one can make to explain this

discrepancy is to add a constant offset to the equation, which could account for

the “supplemental” flow observed. This offset would imply that a secondary,

parallel transport mechanism might be contributing to viscous flow. We fit

this modified model to the data, and the black curves in figure 6.9 show the
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Fig. 6.9 Liquid mass flow through a 16 nm sample as a function
of the applied pressure. The dots are the measured flow and the
open circles show the former values with a constant subtracted to
respect Q(P=0)=0. The solid line is a fit to the data with a radius
of 7.7±0.4 nm.

result. The fitted radius was 7.7±0.4 nm, and the solid line shows the curve

with R = 7.7 nm, whereas the dashed lines on either side were computed with

R±0.4 nm. While it is interesting to note that a small offset can improve the

fit to the data, we do not have sufficient information to conclude on the validity

of this correction. This new radius fitted to the data remains consistent with

the dimensions measured by microscopy.

In summary, the viscous helium flow Qviscous
short−pipe can be modeled with the

short-pipe viscous equation. Here again, we attribute the difference between

the observed flow and the flow predicted by this equation to a superfluid con-
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tribution. As was done for the 45 nm nanopore, earlier in this chapter, the

effective superfluid velocity was inferred from this superfluid mass flow. The

superfluid contribution was extracted from the data in figure 6.7, and the ve-

locities inferred from them are shown in figure 6.10. The first panel (A) shows

the absolute velocities and the panel on the right (B) shows the results of the

483 mbar dataset normalized to the extrapolated T = 0 value vc0. This nor-

malization was performed to facilitate the comparison to data of [100] shown

as open triangles. In the determination of a critical velocity, we again make

the implicit assumption that the superfluid motion is limited by the emergence

of energy dissipation mechanisms.

Fig. 6.10 Critical velocity of the superfluid component in the
liquid helium transport through the 16 nm pore. The symbols are
the same as in figure 6.7 and each corresponds to a given pressure
head. The vertical dotted line is positioned at T = 2.17 K to show
the superfluid transition temperature. (B) Critical velocity of the
data at 483 mbar and normalized to the extrapolated velocity at
T = 0 K. Open triangles are data reproduced from Zimmermann
et al.[100].
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These results are qualitatively similar to those found for the 45 nm sam-

ple. Qualitatively, the superfluid contribution continues to exhibit a linear

dependence on temperature down to the lowest temperatures accessible with

the modified apparatus. Specifically, the critical velocity of the superfluid in

the 16 nm nanopore reaches this nearly linear regime below approximately

1.9 K. The behavior of vc is is easily compared to the data of [100], (see fig-

ure 6.10B), where both datasets demonstrates a behavior consistent with each

other. Quantitatively, the extrapolated critical velocity at zero temperature

were found to extend from 27±1 to 39.5±1.6 m/s for the 68.9 to 689 mbar

datasets respectively. Once again, in absolute values, these are larger than the

ones measured in micropores.

6.4 Critical Velocities of Superfluids in Single

Nanopores

The critical velocity inferred from the total flow of liquid helium in the two

samples shown in this chapter can easily be compared to other experiments

of superfluid flow. Figure 6.11 contains a compilation [64] of critical velocities

found over several decades and in a multitude of experiments (open symbols).

The red bars show the range of superfluid critical velocities found in our study

(values at T = 1.7 K for each data set). Our results are positioned in channel

sizes never before accessible and are the highest superfluid critical velocity ob-

served yet in channel transport experiments. In other words, our experimental

method has allowed us to determine the critical velocity of superfluid helium

in the smallest channels yet.
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Fig. 6.11 Consolidated graph of critical velocities found by sev-
eral groups over many years. The open circles are identified as in-
trinsic critical velocities, whereas the other symbols have the chan-
nel size dependent critical velocity closer in behavior to the Feyn-
man model of quantized vortices (solid line). The red bars show the
span of critical velocities obtained with the two samples presented
in this chapter.

The open circle symbols are results of experiments where the superfluid

critical velocity was found to be size-independent and linearly dependent on

temperature. This class of critical velocities is quantitatively much larger than

the second type observed, diamonds (for older data) and triangles, those being

for critical velocities dependent on the dimensions of the flow channel. The two

types of critical velocities are referenced to as internal or external, in reference

to their dependence on the internal temperature or external pore geometry.
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The physical phenomena driving the dissipation of energy is qualitatively dif-

ferent in both cases. For example, internal critical velocities have only been

observed in smaller pores where the temperature dependence suggested a ther-

mally activated process. This has been described as a stochastic nucleation of

phase slip events removing quantized circulation units [64]. In larger channels,

it is more frequent to encounter systems exhibiting external superfluid critical

velocities that have an inverse dependence on the channel dimension. These

follow, albeit loosely, the prediction of the Feynman model (solid line in fig-

ure 6.11) where a continuous shedding of energy is possible through vortices

positioned across the (micro)pores.

The linear dependence on temperature and the large critical velocities

found in our work are both consistent with a critical velocity of the inter-

nal type. Its qualitative behavior is also very similar to the extensive data

of Zimmermann et al. [100]. The functional dependence of the critical ve-

locity closer to zero temperature was not accessible in this work; the values

reported on figure 6.11 would be even higher if the extrapolated critical veloc-

ities at lower temperatures were taken as an estimate. Access to data closer

to T = 0 would have also allowed us to characterize the plateauing of vc below

T ' 150 mK, indicating perhaps the transition from a thermally activated

process to a quantum tunneling activation of the phase slip events [102, 103].

6.5 Summary

In summary, we have shown that measurements of liquid helium mass transport

in single nanopores can be interpreted with a two-fluid model containing a
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short-pipe viscous flow formalism. The extensive characterization of mass flow

in our nanopores can account for the non-negligible contribution of the normal

component of He-II. This has allowed us to infer the superfluid contribution

to the total flow, as well as its critical velocity. The latter was found to be the

largest ever observed in experiments of superfluid transport in channels.
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Chapter 7

Conclusion

7.1 Summary

In this work, I have developed a novel measurement scheme for the charac-

terization of mass flow in single nanopores. The sensitive detection of the

mass flow was made possible by employing a mass spectrometer to count the

atoms passing through a very thin silicon nitride membrane in which a single

nanopore was drilled. The choice of a solid-state membrane was made to lever-

age technical innovations in the use of transmission electron microscopes that

allow for the controlled ablation of material with their high-intensity electron

beam. This technique makes it possible to fabricate nanopores of any desired

dimension through thin solid-state membranes.

By designing a transport experiment where two reservoirs are separated by

the wafer containing the thin membrane, very accurate measurements of mass

transport between the two reservoirs were made possible. Several experimental

cell designs were implemented in order to optimize the yield of the measure-
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ment scheme and ensure that the wafer could remain completely sealed over

a broad range of temperatures and pressure. I have found that the most ef-

ficient technique of sealing the wafers to the metal body of the experimental

cell was to use small indium o-rings. This method was proven effective even

after several thermal cycles between room temperature and typical cryostat

temperatures.

The controlled introduction of helium in the source reservoir of the exper-

imental cell allowed us to control the pressure gradient across the nanopore.

The drain side of the experimental cell was continuously pumped such that any

helium passing through a nanopore could be detected by the mass spectrome-

ter. The combination of vacuum below and positive pressure above the mem-

brane induced mass transport determined by the conductance of the nanopore.

By measuring the mass flow and calculating that conductance under different

thermodynamic conditions, the physics of confined fluids was studied.

The first experiments performed were designed to test whether the mass

flow could be quantitatively understood. A large pore of ∼100 nm in diameter

was exposed to a large range of pressure differentials and the conductance of the

pore was monitored under these conditions. The conductance at low pressures

was found to be very accurately modeled by Knudsen effusion in a short-pipe.

A fit to the conductance data in this flow regime yielded an effective flow

area with radius within 1% of the dimensions found using a TEM image. The

agreement between the electronic imaging and the mass flow determination of

the radius was sufficiently accurate to confirm the validity of the measurement

scheme.
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We further investigated the conductance of this sample at higher densities

where the flow characteristics were expected to be understood with the theory

of viscous transport in continuous media. From the conductance data over the

whole transition region, we were able to develop a phenomenological model

tailored for short-pipe channels where the effects of the geometry of solid-state

nanopores could not be neglected. We then extended our investigation to pores

well within the nanoscopic range. We presented results of direct measurement

of the gas transport in the nanopores as small as 15 nm. This is to our

knowledge the smallest dimension where such measurements were performed.

These experiments demonstrated the need to correct the Clausing factor to

account for the larger transmission probability caused by the tapered opening

of the nanopores. The very accurate monitoring of the nanopore dimensions

also allowed us to discover a slow structural deformation of the nanopores.

Some of the results from this tangential line of investigation are presented in

the appendix of this thesis.

Building on the results obtained with gas flow in single nanopores, we de-

signed a second experimental cell such that measurements could be realized

inside a 3He cryostat, at low temperature. Our results indicate that the liquid

helium flow through a nanopore is detectable with this technique. Further-

more, and as expected, we observed the mass transport below Tλ ≈ 2.17 K to

be much larger than in the viscous, normal flow of helium fluid. Using a two

fluid model of He II, we interpreted the additional mass flow as originating

from a superfluid component flowing with negligible viscosity. The effective

flow of superfluid through the nanopore provided an average velocity that we
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collected at several temperatures between ∼1.55 K and Tλ, for both a 45 nm

and 15 nm diameter samples. These velocities were assumed to correspond to

the critical velocity, i.e. the velocity defined by the onset of dissipation mech-

anisms inside the superfluid. Our results do show a clear linear dependence on

temperature, and no significant difference between the two samples was con-

sistently observed. These inferred critical velocities are the largest recorded

to date in channel experiments. Our experiments of superflow in single chan-

nels have also extended the range of pore sizes available by nearly an order of

magnitude.

7.2 Future Work: Towards the Luttinger Regime

The experimental scheme developed in this work has been shown to be very

accurate for the determination of mass flow in nanopores as small as ∼15 nm.

In fact, a scaling of the signal-to-noise ratio with current flow level indicates

the technique can be extended to nanopores with a diameter as small as 1

nm. A quantitative determination of mass flow in the nanoscopic range offers

opportunities for other fields of study. For example, experiments with bio-

molecules such as DNA translocated through nanopores [104] are very sensitive

to the dimensions of the pores. In the transition from the microscopic world to

the nanoscopic one, some groups have observed anomalous transport [105, 106,

107, 108] and surprising effects [109] suggesting that the physical hypothesis

at the pore boundary conditions might need to be carefully considered.

Our ability to detect the signal from a single nanopore and the high pre-

cision offered by TEM drilling, are features of great interest for experiments
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aimed at investigating corrections to hydrodynamics models. Currently, such

experiments are realized in carbon nanotubes and recent, surprising results

[110] will benefit from the availability of tailored channels like those presented

in this thesis.

Apart from the impact to classical fluid transport studies, pushing the

limit towards even smaller nanopores is greatly relevant for the ultimate goal

of implementing the long sought-after Tomonaga-Luttinger liquid with neutral

particles. With this in mind, future work will aim at mapping the character-

istics of helium mass flow in nanopores of various sizes, all the way down to 1

nm. Preliminary results from our group with nanopores as small as 6 nm show

how this work helps to bridge the gap towards the 1D limit; these pores are

within a factor of ∼2 of the dimensions required to observe Luttinger liquid

behavior, according to the quantum Monte Carlo simulations. In parallel to

this objective, the low temperature experiments can in principle be reproduced

using 3He, either as a pure fermionic fluid or as a diluted medium (a 4He-3He

mixture). These mixture offer interesting opportunities [111] that could be

directly supplemented by our ability to work with nanometric apertures and

could, in principle, demonstrate the quenching of quantum statistics in one-

dimension.
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Appendix A

Appendix: Nanopore Shrinking

A.1 Blockages of Nanopores

As we endeavored to reproduce our experiments within smaller nanopores, we

regularly suffered blockage issues. Fabrication with the transmission electron

microscope (TEM) allows for an image to be taken within a few minutes of

the nanopore drilling. This helps to validate the dimensions of samples before

making mass transport experiments with them. On several occasions however,

the measurement of the mass flow through some samples would produce no

signal, except for an unwanted diffusion through epoxy with the earlier designs

of the experimental cell. Several attempts at thermal cycling theses blocked

samples or applying very large pressure gradients across the pores have never

been successful at re-opening those blocked pores. New images of these samples

with the TEM would subsequently confirm their blocked state.
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A.1.1 Two Types of Nanopore Blockages

It is interesting to note that blocked pores can be easily detected with the

TEM imaging. This is in part because the silicon nitride membranes are

manufactured very flat and small variations of thickness produce a different

intensity of the electrons transmitted, which we observe as a varying saturation

of the pixels in the image. Indeed, the ablation of material from the membrane

in the area right around the nanopore makes the image appear lighter, and

the area further away from the pore becomes darker because of an unavoidable

accumulation of trapped charges on the surface of the membrane following the

exposure to high fluxes of electrons. When we observe a blocked nanopore

under the microscope, the position of the nanopores remains easily detectable

because of these specific patterns in pixel saturation. This variation in the

intensity of the image is easily observable by a trained eye and allows rapid

localization of the nanopore, even when the whole surface of the wafer is coated

with contaminants. Figure A.1 shows an example of a membrane coated with

a film of contaminants and in panel B, a close-up of the blocked nanopore.

As can be easily seen on this picture, contaminants cause a reduction of the

intensity of transmitted electrons. The dark spots on this picture are droplets

of a foreign substance.

Two distinct cases occurred when we imaged blocked nanopores. The

first case was typically observed in conjunction with the presence of hundreds

of droplets on the membrane surface (figure A.1A), usually several hundred

nanometers wide, and easily noticeable because of their peculiar reaction un-

der irradiation with the intense electron beam. Indeed, these droplets were
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visibly affected by the exposure to the energetic electrons, in contrast to the

immutability of solid substrates like the SiN and Si. A strong carbon signal

was observed when we performed an EDX analysis centered on nanopores with

this type of blockage, which led us to suspect a contamination from organic

molecules. These membranes could not be re-drilled because the contaminants

would typically flow back into the freshly drilled aperture, thus blocking the

nanopore instantaneously.

Fig. A.1 (A) Transmission electron microscope image of a free-
standing membrane with droplets of contaminants. (B) Close-up of
the nanopore coated with a thin film of contaminants. The irregular
diffraction pattern over the whole surface of the image indicates the
nanopore is not open.

The second type of blockage was characterized by a very different appear-

ance of the SiN membrane. The TEM image would be almost identical to a

freshly drilled nanopore except that, instead of a uniform pixel saturation, the

area where the nanopore used to be would now display the typical diffraction

pattern of amorphous materials. This led us to conclude that a thin layer

of amorphous material blocked the aperture while the rest of the surface re-
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mained unchanged. In order to compare to the first type of blockage, we again

performed analysis of the element composition in and around the nanopore,

and no organic compounds were detected, whereas large silicon and nitrogen

signatures dominated the signal as expected.

Contamination Prevention

The presence of organic material on the surface of the membrane was an issue

that we tackled by first designing filters and traps such that any gas sent to the

experimental cell from the gas handling system (GHS) would be filtered. These

filters were described earlier in chapter 4, and one such filter was positioned at

every entry point of the GHS. The GHS was then flushed1 several times, until a

final filling was done with ultra-high-purity (99.999%) helium gas. This clean

gas was then kept in the GHS and all operations were subsequently completed

in a closed-cycle manner by using the pumping capacity of the dipstick.

The discovery of the contamination of samples also led to a new experi-

mental cell design where no epoxies were needed and all joints were exclusively

made with compressed metal rings. I found the most effective design for the

experimental cell had all joints made with a compressed indium wire. These

additional precautions and experimental features led to the resolution of the

contamination issues.

1A process where a volume is emptied and partially refilled in order to remove foreign
particles. This process is usually repeated several times.
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A.2 Partial Nanopore Shrinking

As was noted earlier in chapter 5, we noticed that on occasions, the conduc-

tance of the nanopores studied would decrease between two similar measure-

ments taken on two different days. In fact, the modeling of the conductance in

the Knudsen regime allowed us to detect a significant decrease in the size of the

nanopore over time. This decrease in diameter was, however not necessarily

leading to full blockage of the apertures. As was demonstrated by the multiple

samples with which we managed to observe mass flows, some nanopores could

be sufficiently stable to remain open for several months without any detectable

changes to their dimensions.

These results prompted us to further investigate the parameters leading to

stable nanopores. We used TEM imaging of nanopores as a means to measure

the evolution of the dimensions for samples of different thickness, from various

manufacturers and in different storage conditions. Specifically, we imaged

nanopores ranging in diameter from 5 to 50 nm over several days and weeks.

Figure A.2 shows a typical time-dependent structural relaxation in nanopores

with initial diameters of (A) 25 nm and (B) 12 nm. The observed decrease in

diameter was of 35% in (A), and in (B), I show a case where the blockage was

effectively complete. Both of these samples were fabricated in a 50 nm thick

SiN membrane under similar conditions. The TEM imaging shows a clear

decrease in the nanopore diameter over a time scale of the order of O(102)

hours.

As explained in the section on sample fabrication, it is a common practice to

expose nanopores to a mid-range intensity of electron bombardment to induce
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Fig. A.2 TEM images of a nanopore as a function of time. The
nanopore diameter at fabrication was 25 nm in (A) and 12 nm in
(B). The nanopores were drilled in 50 nm thick amorphous silicon
nitride membranes and stored at 77 K between each imaging ses-
sions. All scale bars are 10 nm long. (C):Diameter of several such
nanopores as a function of time after fabrication. Open symbols
are for samples stored at liquid nitrogen temperature and the filled
symbols are for samples kept at room temperature. The symbols
at zero diameter indicate nanopores that are completely blocked.
The lines connecting the symbols are guides to the eye.

fluidization of the material around the pore and reshape them in the process.

This is part of a normal drilling procedure. There is a legitimate question

regarding the risk of affecting nanopores during imaging with the TEM. The

decrease in diameter observed in figure A.2A,B could however not have been
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caused by the exposure during imaging because the intensity of the electron

beam required to image the pores was kept approximately 10 times lower than

that required to reshape the surface. We specifically tested this hypothesis by

exposing a 9 nm nanopore, for a total period of 40 minutes, to a beam intensity

equivalent to that used during regular imaging of nanopores. No noticeable

change in the dimensions of the pore were observed. The decrease in diameter

observed in figure A.2 was thus caused by a slow structural relaxation of the

amorphous silicon nitride independent of our measurements.

Figure A.2C shows the diameter of nanopores as a function of the time

elapsed since their fabrication, for two distinct storage conditions. Specifically,

we stored some wafers under vacuum at liquid nitrogen temperatures (open

symbols) and others remained at room temperature (filled symbols). The

samples at low temperature were only warmed up for the imaging sessions.

All the nanopores shown in figure A.2C were fabricated in a 50 nm membrane,

and the storage temperature is found to have a negative correlation with the

rate of pore size decrease.

Two types of behavior are identifiable in the structural relaxation of the

nanopores. The relaxation can either lead to a stable nanopore or a blocked

one. The two distinct behaviors are easily distinguished in figure A.2C where

the four higher datasets correspond to stable nanopores and the bottom ones

show blocked pores. In order to characterize these two types of behavior, we

fabricated several nanopores in membranes of different thickness between 10-

100 nm. Figure A.3 shows the diameter of nanopores drilled originally with

diameters between 25 and 50 nm and their time-dependence. These nanopores
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were all opened, even after several hundred hours. The relaxation of these

nanopores approaches an equilibrium point, and the dashed lines are fit to the

data for a phenomenological equation with a simple exponential decay

d(t) = df + (d0 − df )
(τ
t

)(
1− e−

t
τ

)
,

where df is the final diameter, d0 the initial diameter and τ a characteristic

time. This equation can be used in the instances where the initial diameter

is large enough that the nanopores approache a near steady-state equilibrium

shape.

Fig. A.3 Diameter of nanopores as a function of the duration
since fabrication. These nanopores asymptotically approach a near
steady-state through a structural relaxation. The dashed lines are
fit with an equation with a single exponential decay. The inset
shows the final diameter as a function of the initial diameter im-
mediately after drilling and linear fit through the data.

The characteristic time of relaxation was found to vary between ∼40-160



A.2 Partial Nanopore Shrinking 147

hours and this range was observed for pores of the same size drilled in mem-

branes from different manufacturers, which suggests the process of amorphous

silicon nitride deposition affects the structural stability of the nanopores. This

also indicates the relaxation is closely linked to the microstructure of the ma-

terial and how the electron beam exposure affected it during fabrication.

In practical terms, the final diameter of stable pores was found to depend

nearly linearly on the initial pore size. The inset of figure A.3 shows the final

diameter as a function of the initial one for several pores that reached an

equilibrium shape.
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Fig. A.4 Diameter of nanopores as a function of the elapsed time
from fabrication. The open symbols represent samples stored at low
temperature, whereas the filled ones are for sample kept at room
temperature.

As seen above in figure A.2C, the three smallest nanopores relaxed to a

fully occluded state within the first 100 to 200 hours after fabrication. In

these cases, the diameter has a distinctly different functional dependence on

time. Figure A.4 shows the size of several nanopores <25 nm as a function of
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time, exclusively for samples that eventually closed. Again the open symbols

are for samples stored at 77 K and the filled symbols are for storage at room

temperature. The length of the error bar through the dots shows the uncer-

tainty on diameters measured from TEM images. The gradual and steady

decrease in diameter for these samples was proportionally faster than in the

case of larger pores.

A.3 Conditions for Stable Nanopore Fabrication
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Fig. A.5 Phase diagram of the structural stability of nanopores
as a function of the membrane thickness. The open symbols corre-
spond to nanopores that remained open and the filled symbols cor-
respond to nanopores that eventually became completely blocked.

From these results it became evident that the thickness of the membrane

and the diameter of the nanopore could be used to determine a “boundary”

across which the type of relaxation changed from a slow approach to an equi-

librium, to a relatively fast shrinking of the aperture. We mapped the state
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of several samples after hundreds of hours, and for several membrane thick-

nesses. Figure A.5 shows this phase diagram, where the open circles correspond

to nanopores that remained open, and the filled ones to blocked nanopores.

This diagram shows the difficulty of keeping small nanopores open for ex-

tended periods of time. While we did not have many samples with thicknesses

below 30 nm, we note that nanopores with initial dimensions between 15-20

nm are hard to keep open for extended periods of time. A corollary of this is

that in order to make experiments with nanopores barely a few nanometers

across, it is recommended that thinner membranes be used as substrates.
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