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ABSTRACT

Logical frameworks allow us to specify formal systems and prove properties

about them. One interesting logical framework is Twelf, a language that

uses higher order abstract syntax to encode object languages into the meta

language. Currently, uniform proofs have been used for describing proof

search in backwards logic programming style. However, there are certain

limitations to a backward system, for example, loop-detection mechanisms

are required for some of the simplest problems to yield a solution. As a

consequence, the search for a more effective proof search algorithm prevails

and a forward system is proposed. This thesis will discuss the theoretical

foundations for a forward uniform sequent calculus and the implementation

of an inverse method prover for Twelf.
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ABRÉGÉ

Les cadres logiques nous permettent de spécifier des systèmes formels et de

prouver des propriétés à leur sujet. Un cadre logique intéressant est Twelf,

un langage qui emploie la syntaxe abstraite d’ordre supérieur pour encoder

des langages objet dans le méta-langage. Actuellement, nous employons des

preuves uniformes pour décrire la recherche dans le style de programma-

tion logique arrière. Cependant, il y a certaines limitations à un système

arrière: des mécanismes de détection de boucle sont nécessaires pour trouver

une solution à certains des problèmes les plus simples. Par conséquent, la

recherche d’un algorithme plus efficace de recherche de preuve règne et un

système vers l’avant est proposé. Cette thèse discutera les bases théoriques

d’un calcul séquent uniforme vers l’avant et l’implantation d’un prouveur à

méthode inverse pour Twelf.
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Chapter 1

Introduction

A logical framework is a system used to specify logical systems, implement

algorithms for object level languages and prove meta-theoretic properties

about object languages. The use of logical systems is very important. With

the rapid growth of the internet and the ubiquity of computer software,

information is the key to success. However, from the myriad of websites on

the world wide web, users are still hesitant to download and install software.

One important reason for this phenomenon is the general lack of trust in the

software distributed. Be the reasons malicious or just software malpractice,

unsafe software can greatly cripple the user’s ability to perform the tasks as

intended. Using either antivirus software or safety policy verifying software,

what users want is proof that certain software is safe. Proof-carrying code

[12] or certified code[4] can be used to provide users with confidence that

certain software is safe. Each piece of software can be specified with a safety

1
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policy before it was written. Along with the software users receive, we attach

a certificate or proof term of the given safety policy encoded in some logical

system. The users now only need to check the proof term to ensure safety of

the program. Although proof checking plays an important role in providing

safe code, the specified logical systems need to be correct or safe before any

argument of safety can be made. For example, we can use methods based

on operational semantics to ensure type safety of the given code. Thus, we

can specify these logical systems in a logical framework and search over the

systems to provide the certificate.

While proof search in logical frameworks is often viewed as logic program-

ming, it is usually considered in a backward setting. We first try to unify

the query with the head of a clause then try to satisfy the subgoals in the

order they were specified. Prolog, for example, uses SLD-resolution as the

algorithm. The theoretical relation between logic programming and proof

search is characterized by a system called uniform proofs [8]. The uniform

proof system is used for many higher order logic programming systems such

as λ-Prolog[10], Twelf[14] and Isabelle[13]. The specification of these systems

is based on a backward operational semantics for proof search. We differen-

tiate between a normal phase, where we eagerly apply the invertible rules,

and a focus phase, where we pick a rule and focus on it. While this provides

a framework to specify and implement certain logics, the backward proof

search paradigm has limitations with proof search such as looping issues in

some logical systems. We use logic programming terminology such that the
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head of a clause is the goal of the clause that we can deduce if all subgoals of

the clause are satisfied. In backward search, search is generally started with

the head and try to satisfy each subgoal of the clause. Since backward search

does not usually comprise of a loop detector, it is quite possible that one of

the subgoals we are trying to solve is the same as the head. If we apply the

same rule once more we are stuck in the situation where we cannot progress.

A tabled proof search engine[15] for Twelf has been proposed to solve

problems of this type. The idea is to keep a table whose entries are previously

encountered subgoals. In memoizing subcomputations, we eliminate looping

behavior and reduce redundant computation. A critical disadvantage in using

tabling is the overhead to store and keep track of the subgoals. In addition,

computation is suspended and states of computation has to be stored. As

the number of subgoals we encounter increase, the table also increases. Thus,

to suspend the computation, check the table then resume the computation

can take a significant amount of time. Instead of starting with a goal and

satisfying its subgoals in a backward fashion, we explore logic programming

in the forward direction.

Some of the best performing theorem provers are based on the forward

search paradigm. Gandalf[19], for example, is a resolution-based theorem

prover that outperformed many others. Inverse method provers, however, are

not so prevalent. Degtyarev and Voronkov[5] provided a detailed description

of the inverse method that outlined many of the important ideas such as

the subformula property and saturation algorithms. One successful inverse
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method prover is a focused inverse method prover for linear logic by Kaustuv

Chaudhuri[2]. Later, Chaudhuri, Pfenning and Price characterized forward

and backward chaining in the inverse method[3]. Building on these ideas,

this thesis presents a theoretical description and implementation of a forward

inverse method prover for Twelf.

For this thesis,

1. We associate logic programming with proof search via uniform proofs.

We then describe the syntax of dependently typed lambda calculus

to represent LF in canonical form. Then based on the uniform proof

system, we develop the theoretical foundations for a forward uniform

proof system. In this new system, instead of starting with the head

goal and satisfying each subgoal, we turn to another approach. The

subformula property allows us to consider only subformulas of a system

for proof search. We exploit this property and construct proofs top

down starting from axioms. Also, the forward proof system is sound

and complete with respect to backward uniform proofs, this means that

we can prove a statement true in the forward system if and only if we

can prove it in the backward setting.

2. Based on backchaining methods introduced by Chaudhuri, Pfenning

and Price for linear logic[3], we implemented a focused inverse method

prover for Twelf. Subsumption checking, memoizing subgoals and freez-

ing computation are now unnecessary. For this implementation, we
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begin with subformula computation, axiom generation, rule compila-

tion and then describe two looping structures, activation of rules and

activation of facts.

3. Further, we give experimental results comparing the inverse method

with different looping structures against each other and against the

tabling engine. Also, we give an explanation of the numbers and briefly

describe further work that could be done to improve this prover.

The rest of the thesis is structured as follows: in Chapter 2, we discuss

higher order abstract syntax, contextual modal types and the syntax of LF to

give the reader familiarity with the background setting and then we give an

example in LF to illustrate the disadvantages of backward search. Chapter

3 gives the theoretical foundations of the inverse method prover including a

brief description of Horn clauses and hereditary Harrop formulas, uniform

proofs, inverse method with focusing and backchaining. Chapter 4 gives

a description of the implementation issues for the inverse method prover.

Chapter 5 will provide experimental results and explanation for the data.

Finally, we finish with future work and a conclusion. Some results of this

thesis have been published in the workshop paper for LFMTP[17].
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Chapter 2

Background

2.1 Logical Frameworks

Deductive systems are a useful tool in mathematics and computer science.

They are used to specify or prove theories about logical systems. These

systems, such as operational semantics or type systems for various logics are

usually defined by judgments and inference rules. The logical framework

LF was first introduced by Harper, Honsell and Plotkin[6] as a framework

for defining logics. LF gives not only a uniform way of encoding a logical

language but also provide the capacity of representing inference rules and

proofs about the logic.

7
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2.1.1 Higher order abstract syntax

The first step to encoding an object language is to determine the represen-

tation of its expressions. While accurate translation of the object language

is desired, we do not wish to encode in a low level language where we worry

about lexical analysis and parsing related issues. In essence, we would like to

represent the object language via abstract syntax so we can concentrate more

on the higher level properties of the system. The encoding technique of choice

is higher order abstract syntax. Higher order abstract syntax allows us to rep-

resent object level variables by variables in the meta language. Further, we

represent object level binders via λ-abstraction in the meta-language. This

way, expressions with renamed bound variables in the object language are

equivalent to α-equivalent expressions in the meta-language. Object level

substitution is mirrored by substitution in the meta-language.

2.1.2 Dependently typed fragment of LF

LF uses representation types to uniformly encode an object language. Our

dependently typed lambda-calculus formulation for LF differentiates three

levels of terms: objects, types or type families and kinds. Objects are used

to represent entities in the formal language; type families classify objects

by their syntactic or operational meaning and kinds classify types. Objects

provided by the logical framework LF include constants, variables, lambda

abstraction and application. Here we characterize logical frameworks only in
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canonical form so that all terms are beta-reduced. By splitting the definition

of objects into normal and neutral types, we characterize a bi-directional sys-

tem to avoid definitional equality. Along with this system, we introduce the

idea of hereditary substitutions. While applying a substitution to a canonical

form does not necessarily produce a canonical result, the use of hereditary

substitutions allows us to compute the canonical result of an ordinary substi-

tution of one canonical form into another. For a more detailed explanation,

please refer to hereditary substitutions[7] Also, we have signatures in which

we declare constants and contexts to declare variables. A formal description

is as follows:

kinds K ::= type | Πx : A.K

atomic types P ::= a | P N

normal types A ::= P | Πx : A1.A2

normal objects N ::= λx.N | R

neutral objects R ::= x | c | R N

signatures Σ ::= · | Σ, a : K | Σ, c : A

contexts Γ ::= · | Γ, x : A

In the above definition, we let a be type constants and c be object lan-

guage level constants, both declared in the signature. Variables x are declared

in contexts with their respective type. We assume that no more than one

case of each constant is declared in the signature or context. When we add

a declaration in the signature Σ, Σ, c : A we assume that the constant c
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does not appear in it. Renaming of variables and their respective binders in

Πx:A.K, Πx : A2 and λx.N is allowed. Also, we regard the non-dependent

function type A1 → A2 as Πx : A1.A2 where the variable x does not appear

in A2. If c : A appears in the signature Σ then we write: Σ(c) = A. We

write Σ(a) = type if a is a type definition that appears in the signature. For

contexts, we have Γ(x) = A if x : A is in Γ. For simplicity, we use A and B

to denote types, M and N for objects and P for atomic formulas of the form

a N1 . . . Nn. The judgments of this type theory are:

Γ �Σ K ⇐ kind K is a valid kind in context Γ

Γ �Σ A ⇐ type A is a valid type in context Γ

Γ �Σ P ⇒ K P is atomic of kind K in context Γ

Γ �Σ N ⇐ A N is a valid normal object with type A in context Γ

Γ �Σ R ⇒ A N is a valid neutral object with type A in context Γ

� Σ sig Σ is a valid signature

�Σ Γ ctx Γ is a valid context

where X ⇒ Y means that we synthesize Y given X and X ⇐ Y means we

check X has a valid Y .

The inference rules for typing are as follows:

Inference rules for kinds:

Γ �Σ type ⇐ kind
Γ �Σ A ⇐ type Γ, x:A �Σ B ⇐ kind

Γ �Σ Πx:A.B ⇐ kind
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Inference rules for types:

Γ �Σ a ⇒ Σ(a)

Γ �Σ P ⇒ Πx:A.K Γ �Σ N ⇐ A

Γ �Σ P N ⇒ [N/x : A]K

Γ �Σ P ⇒ type
Γ �Σ P ⇐ type

Γ �Σ A ⇐ type Γ, x:A �Σ B ⇐ type
Γ �Σ Πx:A.B ⇐ type

Inference rules for objects

Γ �Σ c ⇒ Σ(c) Γ �Σ x ⇒ Γ(x)

Γ �Σ R ⇒ Πx:A.B Γ �Σ N ⇐ A

Γ �Σ R N ⇒ [N/x : A]B

Γ �Σ R ⇒ P ′ P ≡ P ′

Γ �Σ R ⇐ P

Γ, x:A �Σ N ⇐ B

Γ �Σ λx.N ⇐ Πx:A.B

where A ≡ A′ represents that A and A′ are α-equivalent.

Inference rules for Signatures

� · sig

� Σ sig �Σ K ⇐ kind

� Σ, a : K sig

� Σ sig �Σ A ⇐ type
� Σ, c : A sig

Inference rules for Contexts

� · ctx
�Σ Γ ctx �Σ A ⇐ type

Γ, x:A ctx

As we see from the above rules for typing, to check whether a type definition
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or constant c is of type A, we look up the signature Σ. To see whether a

variable x has type A, we look up x in the context Γ to check for its declared

type. Assuming A is a valid type, if under the assumption that a variable

x has type A we can check that an object M had some type B, then the

lambda-abstraction λx.M has function type Πx:A.B. If an object M has

function type Πx:A.B and we apply it to an object N of type A, the result

M N is of type B. Similarly, a type constant is a valid type if it was declared

in the signature. A function type is valid if its input is a valid type and its

output is a valid type under the assumption of the input being a valid type.

Finally, valid signatures and contexts are formed by valid type declarations.

2.2 Example

Given the syntactic description of LF, we use the example of bounded poly-

morphic subtyping to illustrate the representation of an object language in

LF.

2.2.1 Bounded polymorphic subtyping

Consider a type system where we have a universal supertype top, function

types T1 ⇒ T2 and a bounded universally quantified type: ∀α ≤ T1.T2. This

example was taken from the POPLmark challenge[1]. First, we specify the

syntax for types here and wish to encode it in LF.
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type T ::= top | α | T1 ⇒ T2 | ∀α ≤ T1.T2

context Γ ::= · | Γ, w:α ≤ T

For the universal type, the binder α appears only in type T2 and never

in T1. The context is used to keep track of these bindings so that variables

always make sense in some context. The following is a variant of the specifi-

cation of the POPLmark challenge so that we have an operational semantics

for algorithmic subtyping. Now we give the judgments along with inference

rules for subtyping: Judgment:

Γ � S ≤ T S is a subtype of T in the context Γ

Inference rules

Γ � T ≤ top
sa-top

α ≤ T ∈ Γ
Γ � α ≤ T

sa-hyp

Γ � α ≤ α
sa-ref-tvar

Γ � T1 ≤ S1 Γ � S2 ≤ T2

Γ � S1 ⇒ S2 ≤ T1 ⇒ T2
sa-arr

Γ � α ≤ U Γ � U ≤ T
Γ � α ≤ T

sa-tr-tvar

Γ � T1 ≤ S1 Γ, w:α ≤ T1 � S2 ≤ T2

Γ � ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-allα,w
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Since we use type variables in the reflexivity sa-ref-tvar and transi-

tivity sa-tr-tvar rules instead of concrete types, we can use these rules

algorithmically to determine a subtyping relation. Now we need an encoding

of this formal system in LF so that we can discuss looping behavior that

arise in backward proof search. The first main concern is how we should

handle type variables. At the object language level, these variables will be

introduced in only one rule: sa-allα,w. Also, in order to take advantage of

higher order abstract syntax, we need to encode object level binders with

binders in the meta language. This suggests that we should not use different

kinds for explicit types and type variables. This poses the problem of how we

can encode the rules with type variables since we cannot explicitly express

variables in the object language in the meta-language. For example, in the

rule sa-ref-tvar

Γ � α ≤ U Γ � U ≤ T
Γ � α ≤ T

sa-tr-tvar

object level variable α is a meta-level variable and we do not have access

to it in our meta-language. We mentioned that there is only one rule that

introduces variables so we will incorporate the representation of all rules that

have type variables into that one rule.

First, we start by defining types and type constructors in our object in

our meta language.
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tp : type.

top : tp.

arr : tp -> tp -> tp.

all : tp -> (tp -> tp) -> tp.

Here type constructor all takes two arguments, the first being T1 in our

described rule and the second being an argument of function type (tp →
tp). We generally view the non-dependent function type Πx:A.B as A → B.

The second argument gives the binding structure that holds α in T2. Since α

does not appear in T1 by definition, we can safely represent T1 as an object

of type T1 in our meta language. On the other hand, T2, will be represented

by (λx.T2x) and hence a function type.

Next, we implement the subtyping relation. As mentioned earlier, type

variables cannot be represented by meta-variables. We thus add the rules

sa-ref-tvar and sa-tr-tvar to every occurrence of type variables in all

other rules. Implementation-wise, we first declare a constant sub to denote

the subtyping relation between two types tp.

sub : tp -> tp -> type.

then we proceed to the #top and functional inference rules:

sa top : sub T top.

sa arr : sub S2 T2 -> sub T1 S1

-> sub (arr S1 S2) (arr T1 T2).

finally, we encode all type variable occurrences in the last rule for all.
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sa all : (Πa:tp.

(ΠU.ΠV.sub U V -> sub a U -> sub a V) ->

sub a T1 -> sub a a ->

sub (S2 a) (T2 a))

-> sub T1 S1

-> sub (all S1 (λa.(S2 a))) (all T1 (λa.(T2 a))).

Using a higher-order logic programming interpretation based on backchain-

ing, we can read the clause sa arr as follows: To prove the goal sub (arr S1

S2) (arr T1 T2), we must prove sub T1 S1 and then sub S2 T2. Similarly

we can read the clause sa all: To prove sub (all S1 (λa.(S2 a))) (all

T1 (λa.(T2 a))), we need to prove first sub T1 S1, and then assuming

tr:ΠU.ΠV. sub U V -> sub a U -> sub a V, w:sub a T1, and ref:sub

a a, prove that sub (S2 a) (T2 a) is true where a is a new parameter of

type tp.

2.2.2 Depth first search

Depth first search is a backward proof search algorithm. It essentially starts

with the goal that we wish to prove and tries to search backward through

the inference rules. We would start with a goal, try to unify it with the head

of an inference rule. If we succeed then we will try to satisfy each of the

subgoals in the order specified. Conceptually, if the goal formula and any

of the subgoal formulas are the same up to renaming, we cannot guarantee
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termination of proof search. This is because in order for proof search to

terminate, the formula we search over has to decrease in size to reach the

top-most rules. In this case, although we see that there is only one rule

that can be applied for each of the top, functional and universal quantified

types, there remains nondeterminism. For example, the left open premise of

sa-tr-tvar is restricted to variables so we can search over only rules that

have variables in the goal. This leaves us with four rules: sa-top, sa-hyp,

sa-ref-tvar and sa-tr-tvar. However, it is possible that proof search over

this system does not terminate since it is possible to apply the sa-tr-tvar

rule again.

Tabled logic programming[16] is one solution to this problem. Still based

on the backward search, tabling memoizes previously encountered subgoals

so that we can efficiently use them later. This loop-detection mechanism

solves the problem of nondeterminism. Tabling engine incorporated many

ideas such as indexing of terms for efficient access and linearized terms so

that unification is potentially a linear time algorithm. However, tabling still

carries a substantial amount of overhead to store previously encountered

goals, suspend computation, look up and then decide to continue search.

We explore a different approach. Instead of backward search, we turn to

forward search. We exploit the consequence subformula property and gen-

erate axioms from the subformulas. From these axioms and inference rules,

we carry out proof search in a forward way. Each rule now has a different

interpretation. Previously, we satisfy each subgoal in the rule after the main
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goal unifies with a query. Now, we start with axioms and draw facts from

previously reached goals and build our proof until we reach the query. Each

inference rule now reads, if we have a proof for each of the premises, then we

have a proof for the conclusion. Next we present the theoretical foundations

for forward proof search and briefly discuss the issues of implementing such

a prover for the Horn fragment. Then we give a description of our implemen-

tation of the forward proof search engine. Finally, we provide experimental

results, insights in implementing such a prover and future improvements.



Chapter 3

Theoretical foundations

3.1 Horn clauses and Hereditary Harrop for-

mulas

The Curry-Howard Isomorphism allows us to interpret types as propositions.

Viewing types as propositions, LF types can be viewed as logical propositions.

In this thesis, we mainly focus on a special subset of logical propositions

: Horn clauses. In order for the horn clauses to be used for provability

for sequent proofs and not for resolution refutations, we give the following

definition for Horn clauses.

Horn goals G ::= true | D

Horn clauses D ::= G → D | Πx:A.G

19
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Note that from this definition, universal quantifiers are not allowed to appear

in goals or subgoals. Also, we disallow nested implications in the goals.

A natural extension of Horn clauses is to allow implications and universal

quantifiers to appear everywhere in the formula. This extension is called

Hereditary Harrop formulas.

Hereditary Harrop formulas A ::= P | A1 → A2 | Πx:A1.A2

3.2 Uniform Proofs

Uniform proofs provide an abstract logic programming language that specifies

search behavior in logical frameworks. We regard atomic type a M1 . . .Mn as

an atomic proposition and denote it as P. Similarly, non-dependant function

type A1 → A2 corresponds to an implication in the meta-logic. Finally, the

dependant function type Πx:A.B translates to a universal quantified formula.

In a uniform sequent calculus, all inference rules are considered as either

invertible or non-invertible. The proof search is thus distinguished between

the uniform phase, where we apply invertible rules eagerly, and the focusing

phase, where we pick a rule and focus on it. The principle behind uniform

proof search is that applying all invertible rules eagerly and postponing ap-

plication of all non-invertible rules lead to a uniform sequent calculus. To

characterize uniform proofs, we define the following judgments:
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Γ =⇒ A There is a uniform proof for A from the assumptions in

Γ

Γ 
 A =⇒ P There is a focused proof for the atom P focusing on the

proposition A using the assumptions in Γ

In the two judgments above, Γ is a context that keeps track of both

dynamic assumptions, which can be used for proof search, and parameter

assumptions, which cannot. Now we describe a uniform proof system.

Γ 
 A =⇒ P A ∈ Γ
Γ =⇒ P

choose
Γ 
 P =⇒ P

hyp

Γ, c:A1 =⇒ A2

Γ =⇒ A1 → A2
→ R

Γ =⇒ A1 Γ 
 A2 =⇒ P
Γ 
 A1 → A2 =⇒ P

→ L

Γ, x:A =⇒ B
Γ =⇒ Πx:A.B

ΠR

Γ 
 [M/x : A]B =⇒ P Γ � M : A

Γ 
 Πx:A.B =⇒ P
ΠL

3.2.1 Substitutions

In practice, we typically do not guess the correct instantiation for the uni-

versally quantified variables in the ΠL rule, but introduce a meta-variable

which will be instantiated with unification later. Previously, we have been

advocating the use of meta-variables as closures. Meta-variables are associ-
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ated with a postponed substitution σ which is applied as soon as we know

what the meta-variable stands for. A formal treatment for meta-variables

based on contextual modal types can be found in[16, 11]. This allows us

to formally distinguish between the ordinary bound variables introduced by

ΠR or a λ-abstraction and meta-variables u which are subject to instantia-

tion. An advantage of this approach is that we localize dependencies while

allowing in-place updates. Moreover, we can present all meta-variables that

appear in a given term in a linear order and ensure that the types and

contexts of meta-variables further to the right may mention meta-variables.

When a meta-variable is introduced it is created as u[idΓ] meaning it can

depend on all the bound variables occurring in Γ. During search Γ is con-

crete and idΓ will be unfolded. For example, if Γ = x1:A1, x2:A2, x3:A3 then

idΓ = (x1/x1, x2/x2, x3/x3). Moreover, we can easily characterize all the

meta-variables occurring in a formula or sequent. The distinction between

ordinary bound variables and meta-variables provides a clean basis for de-

scribing proof search. We will therefore enrich our lambda-calculus with

first-class meta-variables denoted by u.

Neutral Terms M ::= . . . | u[σ]

Meta-variable context Δ ::= · | Δ, u::A[Ψ]

σ denotes a postponed substitution which is applied as soon as we know

what the meta-variable u stands for. The type of a meta-variable is A[Ψ] de-

noting an object M which has type A in the context Ψ. We briefly highlight
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how contextual substitution into types and objects-level terms is defined to

give an intuition, but refer the interested reader to [11]. We write [[Ψ̂.M/u]]

for replacing a meta-variable u with an object M . Ψ̂ characterizes the or-

dinary bound variables occurring in M . This explicit listing of the bound

variables occurring in M is necessary because of α-renaming issues and can

be eliminated in an implementation. We only show contextual substitution

into objects here. We note that there are no side-conditions necessary when

substituting into λ-abstraction, since the objects M we substitute for u is

closed with respect to Ψ̂. When we encounter a meta-variable u[σ], we first

apply [[Ψ̂.M/u]] to the substitution σ yielding σ′ and then replace u with M

and apply the substitution σ′. Note because of α-renaming issues we must

possibly rename the domain of σ′.

[[Ψ̂.M/u]](a M1 . . . Mn) = a N1 . . . Nn

if for all i [[Ψ̂.M/u]]Mi = Ni

[[Ψ̂.M/u]](A → B) = A′ → B′

if [[Ψ̂.M/u]]A = A′ and [[Ψ̂.M/u]]B = B′

[[Ψ̂.M/u]](Πx:A.B) = Πx:A′.B′

if [[Ψ̂.M/u]]A = A′ and [[Ψ̂.M/u]]B = B′
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[[Ψ̂.M/u]](λy.N) = λy.N ′ if [[Ψ̂.M/u]]N = N ′

[[Ψ̂.M/u]](u[σ]) = M ′ if [[Ψ̂.M/u]]σ = σ′ and [σ′/Ψ]M = M ′

[[Ψ̂.M/u]](u′[σ]) = u′[σ′] if u′ �= u and [[Ψ̂.M/u]]σ = σ′

[[Ψ̂.M/u]](R N) = (R N ′) if [[Ψ̂.M/u]]R = R and [[Ψ̂.M/u]](N) = N ′

[[Ψ̂.M/u]](x) = x

[[Ψ̂.M/u]](c) = c

Simultaneous contextual substitution can be defined following similar

principles. A simultaneous contextual substitution maps the meta-variables

in its domain Δ′ to another meta-variable context Δ which describes its

range. More formally we can define simultaneous contextual substitutions as

well-typed as follows:

Δ � · : ·
Δ � θ : Δ′ Δ; Ψ � M ⇐ A

Δ � (θ, Ψ̂.M/u) : Δ′, u::A[Ψ]

Finally, we are in the position to give a uniform calculus which introduces

meta-variables in the rule ΠL, and delays their instantiation to the hyp rule

where we rely on higher-order unification to find the correct instantiation.

Since higher-order unification is undecidable in general we restrict it to the

pattern fragment.
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Δ;Γ =⇒ A/(θ,Δ′) There is a uniform proof for A from the assumptions

in Γ where θ is a contextual substitution which instan-

tiates the meta-variable in Δ and has range Δ′

Δ;Γ 
 A =⇒ P/(θ,Δ′) There is a focused proof for the atom P focusing on

the proposition A using the assumptions in Γ where

θ is a contextual substitution which instantiates the

meta-variable in Δ and has range Δ′

In the rule ΠL we introduce a new meta-variable u[idΓ] of type A[Γ]. This

means we introduce a meta-variable whose instantiation can depend on all

the parameters occurring in Γ.

Δ; Γ 
 A =⇒ P/(θ, Δ′) A ∈ Γ

Δ; Γ =⇒ P/(θ, Δ′) aR
Δ; Γ � P ′ .

= P/(θ, Δ′)
Δ; Γ 
 P ′ =⇒ P/(θ, Δ′) aL

Δ; Γ, A1 =⇒ A2/(θ, Δ′)
Δ; Γ =⇒ A1 → A2/(θ, Δ′) → R

Δ; Γ =⇒ A1/(θ1, Δ1) Δ1; [[θ1]]Γ 
 [[θ1]]A2 =⇒ [[θ1]]P/(θ2, Δ2)

Δ; Γ 
 A1 → A2 =⇒ P/([[θ2]]θ1, Δ2)
→ L

Δ; Γ, x:A =⇒ B/(θ, Δ′)
Δ; Γ =⇒ Πx:A.B (θ, Δ′) ΠR

Δ, u::A[Γ]; Γ 
 [u[idΓ]/x]B =⇒ P/((θ, Γ̂.M/u), Δ′)
Δ; Γ 
 Πx:A.B =⇒ P/(θ, Δ′)

ΠL
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3.3 Inverse method and focusing

An interesting alternative to backward proof search, is forward proof search

based on the inverse method. This has potentially many advantages. While

backward logic programming based depth first search is incomplete and re-

quires backtracking, forward search provides a complete search strategy with-

out backtracking. Similar to tabling, it also allows us to execute some spec-

ifications which were not previously executable. Next, we present a forward

uniform proof system where we guess the correct instantiation. Afterwards,

we describe a lifted version with meta-variables.

Γ
f

=⇒A There is a forward uniform proof for A from the as-

sumptions in Γ

Γ 
 A
f

=⇒P There is a forward focused proof for the atom P focusing

on the proposition A using the assumptions in Γ

The context Γ is now interpreted differently, in that sequents Γ
f

=⇒A and

Γ 
 A
f

=⇒P assert that all assumptions in Γ as well as A, if the sequent

is focused, are needed to prove the conclusion. General weakening is thus

disallowed but incorporated in the rule f→R2. Since our context Γ keeps

track of dynamic assumption and parameters, we do not require it to be

completely empty in the rule f-ax. Instead we can think of it as the strongest

context in which P is well-typed. Since we want to preserve that contexts
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Γ are well-typed, we must make sure in the rule f→L that the union of

two contexts Γ1 and Γ2 is well-typed and preserves the present dependencies

between parameter assumptions and dynamic assumptions. The rule f-drop

was called in the backward uniform calculus choose. In the forward direction

there is no choice but rather we must drop the formula out of the focus.

Γ 
 A
f

=⇒P

Γ ∪ {A} f
=⇒P

f-drop
Γ 
 P

f
=⇒P

f-ax

Γ, c:A1
f

=⇒A2

Γ
f

=⇒A1 → A2

f→R1
Γ

f
=⇒A2

Γ
f

=⇒A1 → A2

f→R2

Γ1
f

=⇒A1 Γ2 
 A2
f

=⇒P

Γ1 ∪ Γ2 
 A1 → A2
f

=⇒P
f→L

Γ, x:A
f

=⇒B

Γ
f

=⇒Πx:A.B
fΠR

Γ 
 [M/x : A]B
f

=⇒P Γ � M ⇐ A

Γ 
 ∀x.A
f

=⇒P
fΠL

Next, we prove soundness and completeness of this forward uniform cal-

culus.

3.3.1 Soundness

Theorem 3.1 (Soundness)

1. If Γ
f

=⇒A then Γ =⇒ A

2. If Γ 
 A
f

=⇒P then Γ 
 A =⇒ P .
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Proof: Straightforward structural induction.

Case: D = Γ 
 A
f

=⇒P

Γ, A
f

=⇒P

Γ 
 A =⇒ P by i.h. (2)

Γ, c:A 
 A =⇒ P by weakening Γ, c:A =⇒ P by rule

Case 2 D = Γ, A1
f

=⇒A2

Γ
f

=⇒A1 → A2

Γ, A1 =⇒ A2 by ih (1)

Γ =⇒ A1 → A2 by rule

Case 3 D = Γ
f

=⇒A2

Γ
f

=⇒A1 → A2

Γ =⇒ A2 by ih (1)

Γ, c:A1 =⇒ A2 by weakening

Γ =⇒ A1 → A2 by rule

�

3.3.2 Completeness

Theorem 3.2 (Completeness)

1. If Γ =⇒ A then Γ′ f
=⇒A where Γ′ ⊆ Γ.

2. If Γ 
 A =⇒ P then Γ′ 
 A
f

=⇒P where Γ′ ⊆ Γ

Proof: Straightforward structural induction.
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Case 1 D = Γ 
 A =⇒ P A ∈ Γ

Γ =⇒ P

Γ′ 
 A
f

=⇒P, Γ′ ⊆ Γ by i.h. (2)

Subcase 1 A ∈ Γ′

Γ′ ⊆ Γ by assumption

Γ′ ∪ {A} ⊆ Γ by set

Γ′ ∪ {A} f
=⇒P, Γ′ ∪ {A} ⊆ Γ by rule

Subcase 2 A /∈ Γ′

Γ′ ⊆ Γ and A ∈ Γ by assumption

Γ′ ∪ {A} f
=⇒P, Γ′ ∪ {A} ⊆ Γ by rule

Case 2 D = Γ =⇒ A1 Γ 
 A2 =⇒ P

Γ 
 A1 → A2 =⇒ P

Γ1
f

=⇒A1 and Γ1 ⊆ Γ by ih (1)

Γ2 
 A2
f

=⇒P and Γ2 ⊆ Γ by ih (2)

Γ1 ∪ Γ2 
 A1 → A2
f

=⇒P and Γ1 ∪ Γ2 ⊆ Γ by rule

�

3.3.3 Subformula property

The forward uniform proof system presented gives rise to a proof search

method based on the inverse method central to which is the notion of sub-

formula. We outline the notion of subformulas and present a lifted calculus.
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We adapt the standard definition of subformulas to the higher-order setting

where objects may contain meta-variables. The immediate free subformula

of the negative occurrence of the formula Πx:A.B in the context Γ is then

[u[idΓ]/x]B. The immediate ground subformula of the negative occurrence

of the formula Πx:A.B in the context Γ is [M/x:A]B.

Signed subformulas

Definition 3.3 (Signed subformulas) Free signed subformulas and its

immediate signed subformulas are defined inductively as follows.

signed subformula free signed subformula immediate signed subformula

(A → B)− A+, B− A+, B−

(A → B)+ A−, B+ A−, B+

(Πx:A.B)− ([u[idΓ]/x]B)− ([M/x]B)−

(Πx:A.B)+ ([a/x]B)+ ([a/x]B))+

While it is possible to give an algorithm for computing subformulas for

LF we keep this development slightly less formal. However, it is possible to

formalize the subsequent development using the algorithm presented later.

Definition 3.4 (Subformula property)

1. Every derivation of a uniform sequent Γ =⇒ A consists of signed

ground subformulas of signed formulas in Γ− and A+.

2. Every derivation of a focused Γ 
 A =⇒ P consists of signed ground

subformulas of signed formulas in Γ− and A+.
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Theorem 3.5 (Ground subformula property of uniform proofs)

1. Let D be a derivation of a signed uniform sequent Γ− =⇒ A+ then

every signed uniform sequent Γ−
0 =⇒ A+

0 or signed focused sequent

Γ−
1 
 A−

1 =⇒ P1 occurring in D fulfills the subformula property, i.e.

[Γ−
0 , A+

0 ] < [Γ−, A+] or [Γ−
1 , A−

1 , P+
1 ] < [Γ−, A+] .

2. Let D be a derivation of a signed focused sequent Γ− 
 A− =⇒ P+

then every signed uniform sequent Γ−
0 =⇒ A+

0 or signed focused sequent

Γ−
1 
 A−

1 =⇒ P1 occurring in D fulfills the subformula property, i.e.

[Γ−
0 , A+

0 ] < [Γ−, A−, P+] or [Γ−
1 , A−

1 , P+
1 ] < [Γ−, A−, P+].

Thus when we search for a proof of a particular signed sequent Γ =⇒ A

or Γ 
 A =⇒ P resp. we can restrict our search to sequents consisting of

signed subformulas of [Γ−, A+]. When [Γ−, A+] contains quantifiers, it may

have an infinite number of signed subformulas, so the subformula property

does not restrict the search space good enough. However any signed formula

has only a finite number of free signed subformulas.

Next, we consider free signed subformula property. We will often repre-

sent signed subformulas of a given uniform sequent Γ− =⇒ A+ in the form

[[θ]]Γ−
0 =⇒ [[θ]]A+

0 , where θ is a substitution from the meta-variables Δ to

some ground instance, i.e. · � θ : Δ and Δ; Γ−
0 =⇒ A−

0 . We call this repre-

sentation the representation via free signed subformula. Similarly we often

represent signed subformulas of a given focused sequent Γ− 
 A− =⇒ P+ in

the form [[θ]]Γ−
0 
 [[θ]]A− =⇒ [[θ]]P+. Moreover, we often write S = [Γ−, A+]
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as an abbreviation for the sequent Γ =⇒ A, and Δ � S as an abbreviation

for Δ; Γ =⇒ A.

Lemma 3.6 Let S0 = [Γ−
0 , A+

0 ], and S1 = [Γ−
1 , A+

1 ] be free signed subformu-

las s.t. Δ0 � S0 and Δ1 � S1. Then [Γ−
1 , A+

1 ] < [Γ−
0 , A+

0 ] i.e. S1 is a signed

subformula of S0, iff S1 = [[θ]]S for some signed sequent S s.t. S is a free

signed subformula of S0, where Δ1 � θ : Δ and Δ � S and Δ ∩ Δ0 = ∅.

Every signed subformula of a closed signed formula can be obtained from a

free signed subformula by applying a contextual substitution.

Free subformula property

We now reformulate the subformula property.

Corollary 3.7 (Free subformula property) Let D be a derivation of a

closed signed uniform sequent S = Γ− =⇒ A+ or closed signed focused se-

quent Γ− 
 A− =⇒ P+. Every signed sequent occurring in D has the form

[[θ]]S0 for a free signed sequent S0 of S and a substitution θ s.t. Δ � S0 and

· � θ : Δ.

Suppose we want to check the provability of a closed signed sequent S.

By the previous corollary, we can restrict signed formulas occurring in the

derivation to signed sequents of the form [[θ]]S0 where S0 is a free signed

sequent of S s.t. Δ � S0 and · � θ : Δ. Since this applies to axioms as

well, every axiom has the form Γ 
 [[θ]]([[ρ]]P )
f

=⇒[[θ]]P ′ where P and P ′
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are atomic free signed subformulas of the sequent S and [[θ]]([[ρ]]P ) = [[θ]]P ′,

and ρ is a renaming of meta-variables occurring in P , and Γ characterizes

the parameters occurring in [[θ]]P ′ and [[θ]]([[ρ]]P ) respectively. For any given

P , P ′ there may be an infinite number of such axioms because of different

choices for substitutions θ, but there is only a finite number of pairs of free

signed sequents. We can choose a most general axiom that represents all

axioms.

We will now introduce a forward calculus FA for the inverse method with

meta-variables. The calculus is based on the idea of representing sequents

through free subformulas and using most general unifiers. Since higher-order

unification is only decidable for patterns, we restrict our attention for now

to this fragment.

A sequent S in the original forward calculus for closed sequents, is an

instance of a sequent [[θ]]S0 in the calculus FA if there exists a grounding

substitution ρ s.t. [[ρ]][[θ]]S0 = S.

Given a closed signed sequent S = [Γ−, A+], for every sequent S0 prov-

able in F (the original forward system for closed sequents) where S0 < S,

there exists a sequent S ′ provable in FA (the forward system with meta-

variables) such that S0 is an instance of S ′. Next, we give a forward calculus

with meta-variables. Unlike more standard presentation where we associate

a substitution θ with each of the formulas in Γ and the conclusion A, we will

associate a substitution θ with a sequent. The judgment (Γ → A) · θ denotes

a sequent where [[θ]]Γ → [[θ]]A. This will be easier to implement, and models
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more closely our prototype. In the hypothesis rule where we unify the as-

sumption [[ρ]]P ′ with P we keep a context Γ which describes the parameters

occurring in P ′ and P . As mentioned earlier, typical formulations of forward

calculi require the context to be empty, since they do not keep track explic-

itly of the parameters introduced during proof search. Due to the dependent

nature of our calculus, and the fact that we would like to preserve that all

propositions are well-typed, we keep track of parameters explicitly and allow

the context Γ in this hypothesis rule to be non-empty. Our intention is that

Γ describes all the parameters occurring in P and P ′.

(Δ; Γ 
 A
f

=⇒P ) · θ
(Δ; Γ

f
=⇒P ) · θ

Δ; Γ � [[ρ]]P ′ .
= P/θ

(Δ; Γ 
 [[ρ]]P ′ f
=⇒P ) · θ

(Δ; Γ
f

=⇒B) · θ
(Δ; Γ

f
=⇒(A → B)) · θ

(Δ; Γ, c:A1
f

=⇒A2) · θ
(Δ; Γ

f
=⇒(A1 → A2)) · θ

(Δ1; Γ1
f

=⇒A1) · θ1 (Δ2; Γ2 
 A2
f

=⇒P ) · θ2

(((Δ1 ∪ Δ2); Γ1 ∪ Γ2) 
 (A1 → A2)
f

=⇒P ) · [[θ]]θ′1
where ext(Δ1 ∪ Δ2, θ1) = θ′1

ext(Δ1 ∪ Δ2, θ2) = θ′2
mgu(θ′1, θ

′
2) = θ

(Δ; Γ, x:A
f

=⇒B) · θ
(Δ; Γ

f
=⇒(Πx:A.B) · θ

(Δ, u::A[Γ]; Γ 
 [u[idΓ]/x]B
f

=⇒P ) · (θ, Γ̂.M/u) u is new

(Δ; Γ 
 (Πx:A.B)
f

=⇒P ) · θ
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In the implication left rule, we must union not only the assumptions in

Γ1 and in Γ2, but we also must union the meta-variables occurring in both

branches. Since meta-variables occurring in both branches of the proof, may

have been instantiated differently, we must reconcile their different instan-

tiations in θ1 and θ2 by unifying them. Before we can unify them we first

extend them with identity substitution s.t. they share the same domain. This

extension is denoted with ext(Δ1 ∪ Δ2, θ1) = θ′1 and ext(Δ1 ∪ Δ2, θ2) = θ′2

respectively. Proofs for the free subformula property can be found in the

LFMTP workshop paper[17].
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Chapter 4

Implementation

Forward uniform proofs discussed in the previous chapter is a calculus de-

signed for forward proof search. This chapter discusses an implementation

of the forward inverse method with focusing for the Horn fragment. To il-

lustrate the issues arising in an implementation, we introduce the example

of computing the nth Fibonacci number. Fibonacci number calculation is a

good example because it requires intensive computation and use of previously

derived facts or goals. Also, by defining addition ourselves, we need to calcu-

late each Fibonacci number by adding one to the previous Fibonacci number

and try to satisfy the rules. Further, the näıve algorithm for calculating

Fibonacci numbers is exponential while an algorithm that uses previously

calculated results is only linear. This will lead to generation of many rules

and will allow us to better understand and compare the two loops, activation

of facts and activation of rules.

37
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4.1 Example : Fibonacci

We first define natural numbers and addition:

nat : type.

z : nat.

s : nat -> nat.

add : nat -> nat -> nat -> type.

add z : add z N N.

add s : add (s N1) N2 (s N) <- add N1 N2 N.

Here, we represent each inference rule in the object-language as a Horn clause.

Natural numbers are used via a unary representation and addition is defined

by incrementing both one summand and the result by 1.

Next we define computation of Fibonacci numbers recursively.

fib : nat -> nat -> type.

fib 0 : fib z z.

fib 1 : fib (s z) (s z).

fib rec : fib (s (s X)) N

<- fib X Y

<- fib (s X) Y’

<- add Y Y’ N.

The two base cases for recursion simply define our Fibonacci sequence to

start from 0 and 1. The recursive step fib rec computes fib(X+2) if we add

fib(X) and fib(X+1).
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4.2 Computation of subformulas

By the subformula property, in a cut-free sequent calculus discussed above,

we only need to consider subformulas of the goal sequent relevant to proof

search. Therefore, the first step in implementing the inverse method is the

computation of subformulas from the signature of an LF program. This is

done via the following two judgments:

Δ; Γ �n A/(N ,P) A occurs negative and N and P are the negative

and positive subformulas of A, respectively

Δ; Γ �p A/(N ,P) A occurs positive and N and P are the negative

and positive subformulas of A, respectively

Positive subformula generation

Δ; Γ �p a M1 . . .Mn/(· , {Δ; Γ � a M1 . . .Mn})

Δ; Γ, x:A �p B/(N ,P)

Δ; Γ �p Πx:A.B/(N ,P)

Δ; Γ �n A/(N1,P1) Δ; Γ �p B/(N2,P2)

Δ; Γ �p A → B/(N1 ∪N2,P1 ∪ P2)



40 CHAPTER 4. IMPLEMENTATION

Negative subformula generation

Δ; Γ �n a M1 . . .Mn/({Δ; Γ � a M1 . . .Mn} , ·)

Δ, u::A[Γ]; Γ �n [[u[idΓ]/x]]B/(N ,P)

Δ; Γ �n Πx:A.B/(N ,P)

Δ; Γ �p A/(N1,P1) Δ; Γ �n B/(N2,P2)

Δ; Γ �n A → B/(N1 ∪ N2,P1 ∪ P2)

We see that the subformulas generated are in fact closed atomic subfor-

mulas that are described by Δ; Γ � a M1 . . .Mn. In the above procedure, Δ

is the context of meta-variables. Since we are in a dependently typed setting,

context Γ describes the parameters in a M1 . . .Mn. We omit the parameter

context since there are no parameters, we generate the following subformulas:

add z add s

Neg Δ1 � add z N [·] N [·] Δ2 � add (s N1[·]) N2[·] (s N3[·])
Pos · Δ2 � add N1[·] N2[·] N3[·]

where Δ1 = N :: nat[·] and Δ2 = N1 :: nat[·], N2 :: nat[·], N3 :: nat[·]

fib 0 fib 1 fib rec

Neg · � fib z z · � fib (s z) (s z) Δ � fib (s (s X)) N

Pos · · Δ � fib X Y

Δ � fib (s X) Y ′

Δ � add Y Y ′ N
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where Δ = N :: nat[·], X :: nat[·], Y :: nat[·], Y ′ :: nat[·]
Since the query is atomic, we simply generate the subformula:

·, N :: nat[·] �Σ fib(s (s (s (s z))))N . Using the inverse method, usually, we

generate labels for subformulas so that we do not need to store and utilize

subformulas of large size.

4.3 Axiom generation

Given a set of negative subformulas N and a set of positive subformulas P,

we generate a focused axiom if a negative formula unifies with a positive

formula. We can describe the algorithm more formally as follow:

Let Δn; Γn � N be a negative subformula in N and Δp; Γp � P be a positive

subformula in P. To generate an axiom, we must unify negative and positive

subformulas via the following procedure:

Given a negative subformula Δn; Γn � N and a positive subformula

Δp; Γp � P we generate axioms:

1 Γn = Γp

a if Δn, Δp; Γn � N
.
= P/(θ, Δ) s.t. [[θ]]N = [[θ]]P then we gen-

erate an axiom of the form: Δ′; Γn 
 [[θ]]N
f

=⇒[[θ]]N where Δ �
θ(Δn, Δp)

b if Δn, Δp; Γn, Γp � N
.
= P/(θ, Δ) s.t. [[θ]]N = [[θ]]P then we gen-

erate an axiom of the form: Δ′; Γn, Γp 
 [[θ]]N
f

=⇒[[θ]]N where

Δ � θ(Δn, Δp)
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2 Γn �= Γp if Δn, Δp; Γn, Γp � N
.
= P/(θ, Δ) s.t. [[θ]]N = [[θ]]P then

we generate an axiom of the form: Δ′; Γn, Γp 
 [[θ]]N
f

=⇒[[θ]]N where

Δ � θ(Δn, Δp)

Given a query, we regard it as a negative subformula and try to unify

it with all positive formulas to generate axioms need for proof search. We

then compute the minimal set of axioms by checking forward and backward

subsumption.

For the Fibonacci example, from the signed subformulas generated in the

previous step, we unify a negative and a positive subformula to generate a

focused axiom.

Axioms generated from subformulas in the signature for type family add:

Δa1 �Σ add z N N where Δ1 = N :: nat[·]
Δa2 �Σ add(s N1) N2 (s N) where Δ2 = N :: nat[·], N1 :: nat[·], N2 :: nat[·]

Axioms generated from subformulas in the signature for type family fib:

· �Σ fib z z

· �Σ fib (s z) (s z)

Δf1 �Σ fib(s (s X)) N where Δf1 = X :: nat[·], N :: nat[·]

Axiom generated from the query: ·, N :: nat[·] �Σ fib(s (s (s (s z))))N .
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4.4 Rule compilation

Following Chaudhuri et al, our implementation creates big-step derived rules

by chaining all the focused rules together to form a focused thread and chain-

ing all the uniform rules together to form a uniform thread. A focused thread

of a derivation in FA is a segment of the derivation that begins with a rule

application of the rule f-drop, has as leafs uniform sequents Δi; Γi
f

=⇒Ai to-

gether with one focused atomic sequent S = Δk; Γk 
 P
f

=⇒C, and consists

only of focused sequents. A uniform thread of a derivation in FA is a segment

of the derivation that begins with a uniform sequent, and consists only of

uniform derivations, until it is a uniform atomic sequent.

4.4.1 Rule generation

Formally, we describe rule generation for Horn clauses as follows:

Disregarding type and kind definitions, let γ be a clause in the signature Σ
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of a given program.

Judgment (currently for Horn fragment)

γ
r

=⇒Δ � Ω, F

A focused rule is generated from a clause γ in Σ where

Ω = [· f
=⇒P1, . . . , · f

=⇒Pn] and

F = Σ 
 C ⇒ C are defined in the meta-variable context Δ.

Rule generation

P = a M1 . . .Mn

P
r

=⇒Δ � ·, Σ 
 P ⇒ P )

B
r

=⇒Δ′ � Ω, F Δ′ = Δ, u :: A[·]
Πx:A.B

r
=⇒Δ′ � Ω, F

B
r

=⇒Δ′ � Ω, F

A → B
r

=⇒Δ′ � [· f
=⇒A, Ω], F

Assuming atoms are negative, rules generated from the above algorithm are

big-step focused rules. Since focused axioms are only generated prior to proof

search, we can construct derived rules to simplify the search procedure. An

interesting observation is that if the bias of predicates change, we generate a

different set of rules. While the rules generated now are used for proof search

using the inverse method, we will have SLD resolution if we completely switch

the polarities.
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4.4.2 Compiling derived rules

With a set of focused axioms A and a set of focused rules R, we satisfy the

focused premise of each rule R ∈ R with an axiom A ∈ A. This results in

derived rules that model closely the inference rules given in the signature.

If there is only one premises (which is focused), a uniform fact is generated

instead of a derived rule. Uniform facts generated in this matter should be

either constants in the signature or rules that describe facts in the signature.

4.5 Inverse Method with Fact Activation

This loop essentially follows the ideas used by K.Chaudhuri in his imple-

mentation of the inverse method for linear logic. Given an ordered set of

facts F , and an ordered set of derived rules R, each fact is picked and used

to construct all possible pre-instantiated rules by looping over the existing

rules. If all premises are met, a new fact is created. Finally, each new fact

is checked for subsumption and added to the set of facts, each new rule is

added to the set of rules and we continue with the succeeding facts. When all

new facts are subsumed our search saturates and terminates with the facts.

This method causes the set of rules and facts to grow, in each iteration of

fact activation, the number of rules created is potentially the total number

of open premises from all the rules in the previous iteration.
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4.5.1 Fact activation

To activate a fact f , with a set of rules R = {R1, . . . , Rk} the following

procedure is performed:

Take the first rule Δ � Ω ⇒ P , we unify f with all its premises Ω =

{P1, . . . , Pn}

n = 1 If f unifies with the only premise P of rule Rk, and θ = mgu(f, P ), a

new fact Δ′ � [[θ]]f is created from the conclusion of the rule. and we

continue to the rest of the rules.

n > 1 If the premise Pi unifies with f where θ = mgu(f, Pi), a new pre-

instantiated rule Δ′ � [[θ]]Ω ⇒ [[θ]]P (s.t. Δ′ � θ : Δ and [[θ]]Ω =

f
=⇒[[θ]]P1, . . . ,

f
=⇒[[θ]]Pi−1 . . . [[θ]]Pn)is created and added to R and new

rules are created by applying the remaining premises to f . In brief, we

compute all possible permutations of the premises to satisfy f .

3 If the premise does not unify, the rest of the premises are applied to

fact f .

4.5.2 Proof Search

After each activation of a fact f ∈ F , possibly some new facts F ′ and some

new rules R′ are created. Every facts f ′ ∈ F ′ is checked for subsumption to

see whether there exists a fact f ∈ F such that f ′ is an instance of f and R′

is added to the end of the previous facts. Once a fact is used, it will never
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be used again. By activating each fact and applying it to every premise of

every present rule, completeness is guaranteed.

4.6 Inverse method with Rule Activation

Similar to the search procedure that activates facts to pre-instantiate rules

and produce new facts, another approach which activates rules can be taken.

Both procedures construct all possible permutations of facts to satisfy premises

of rules to preserve completeness.

Given a fact database D, a new fact f ∈ F (thus f /∈ D) and a rule

R ∈ R where R is the set of derived rules generated from the signature and

F is the ordered set of new facts, we generate a set of intermediate rules R′.

Next, we search over this set R′ with facts from F . Each fact f ′ ∈ D will be

used to instantiate premises from rule R′ ∈ R′. When all premised of a rule

in instantiated, a new fact has been deduced.

Searching over all pre-instantiated rules generated by the new fact f and

R will result in a list of facts F ′. F is moved to D and we check if any

f ′ ∈ F ′ is subsumed by a fact fd ∈ D. If f ′ is subsumed by some fd, then it

is discarded, otherwise, it is kept for further search.

All of the rules generated by the above process are discarded and we

continue the search with the next fact in F with the fixed number of derived

rules generated from the signature R. Proof search terminates when new

facts are subsumed by previous facts.
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4.6.1 Activation of a rule

Given rule R that has premises P = {P1, P2, . . ., Pn} and a conclusion P , a

new fact f ∈ F , where F is a list of new facts and a database of facts D the

following procedure is performed:

1 We loop through the premises of R and P to instantiate each Pi with

f to generate either a new fact or pre-instantiated rules to search over.

The number of pre-instantiated rules is at most the number of premises

of each rule. Let n be the number of premises of R.

n = 1 If rule R has only one premise P1, a new fact is created from the

conclusion of the rule P [θ], where θ = mgu(P1, f). We then move

this fact to the a new set of new facts F ′.

n > 1 If rule R has more than two premises and there exists a θ =

mgu(pi, f) such that pi[θ] = f [θ], then a new rule R′ with premises

{P1[θ],P2[θ],. . ., Pi−1[θ], Pi+1[θ], . . ., Pn[θ]} and a conclusion P [θ]

is created.

2 For R and f , we have generated a list of pre-instantiated rules R′ and

a set of new facts F ′. Now, we satisfy each premise Pi of each rule R′

with some fact fd ∈ D by finding θi = mgu(fd, Pi). If all premises of

R′ are satisfied, a new fact c[θ1][θ2] . . . [θn] is created and added to F .
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4.6.2 Proof Search

We loop over a dynamically growing list of new facts. In each stage of

the loop, we activate all derived rules generated from the signature. After

activation of each rule R, all new rules are discarded and the fact f used for

the application is moved to the database of facts D. New facts will be created

for further activation of rules. In this loop, the number of rules stored and

searched over in each iteration will not change. A growing set of facts are

used to satisfy premises of these rules. Proof search terminates when all new

facts are subsumed.
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Chapter 5

Comparison and Experimental

results

Currently, a prototype of the forward inverse method for the Horn fragment

has been implemented. In this section we compare our inverse method to

the tabled engine. The two examples used are computation of the kth Fi-

bonacci number and parsing a string with n tokens. These examples allow

us to realize and understand our limitations and suggest improvements. The

specifications of the machine that ran these examples are: Intel Pentium 4

3.4GHz CPU, 4GB of RAM. We are running SML New Jersey 110.55 un-

der Linux version 2.6.14-gentoo-r3. Time is measured in second(s) and ∞
represents that the run time is over 30 min and we have terminated the

process.

51
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5.1 Fibonacci example

Theoretically, to calculate each Fibonacci number, we need to calculate the

previous two Fibonacci numbers. Using depth first search to find a Fibonacci

number, we will have an exponential algorithm due to the recomputation

of previously encountered goals. However, using the inverse method, we

begin with the base cases (Fibonacci of 0 and 1) and deduce more Fibonacci

numbers as we search. By constructing each Fibonacci number, starting from

fib(0), fib(1), fib(2), . . ., we do not repeat subcomputations and in theory, we

have a linear time algorithm. The tabled engine in Twelf provides us a loop

detection mechanism. In suspending search and using memoization, we are

able to reuse previously computed goals. In the table below, the first column

is input of Fibonacci, the second column is the result of the calculation,

column Facts is sum of facts generated from type family add and type family

fib. The columns IR time and IF time are the run times via inverse method

using activation of rules and activation of facts, respectively. IF rules show

the number of rules generated for activation of rules. For the tabling engine,

which is denoted by Tab, not all type families have to be stored in the table.

The first column shows the run time for tabling, Time in Tab are the run

times with all type families stored and the value in parentheses are run times

with only the type family fib tabled. The last column shows the number of

entries in the table for all type families tabled.
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k Facts (add + fib) IR Time IF Time Tab Time

14 377 + 14 1.48 2.75 0.46 (0.08)

15 610 + 15 4.41 102.37 1.210 (0.07)

16 987 + 16 11.19 ∞ 3.135 (0.10)

17 1597 + 17 34.10 ∞ 6.861 (0.10)

18 2584 + 18 193.79 ∞ 139.826 (0.16)

k Facts (add + fib) IR rules IF rules Tab � Entries

14 377 + 14 5 2071 403

15 610 + 15 5 3554 638

16 987 + 16 5 n/a 1017

17 1597 + 17 5 n/a 1629

18 2584 + 18 5 n/a 2618

The run times for k < 14 are not interesting because they are much less

than a second, taking into account the skew of data, we choose not to discuss

them. The number of rules generated for IR is not listed because it is always

constant for the same signature, in this case it is five. The number of rules

generated in the IF loop reaches thousands for k = 14. Since the number of

rules does not decrease, there is a considerable amount of overhead keeping

track of these rules and searching over them. Tabling outperforms both loops

even if we table all type families. Also, tabling only the type family fib yield

a significant advantage compared to tabling all type families.
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5.2 Parsing

Parsing examples allow us to mix left and right recursive programs together

to model associativity of connectives such as conjunction, disjunction, and

implication. Clauses for conjunction and disjunction are left associative while

implications are right associative. This program is not executable via depth

first search if we do not keep track of previous subcomputations. For parsing,

we compare the two looping structures for the inverse method to tabling. IR

and IF still represent activation of rules and facts in the inverse method and

Tab stands for tabling. The time column shows the run time required for

each engine, the � facts columns in IR and IF give us the number of facts

generated. Number of entries in the table for the tabled engine is displayed

next to its run time.

IR IF Tab

tokens time �facts time �fact time �entries

3 0.094 42 0.110 198 0.031 5

5 0.860 138 0.109 2214 0.016 6

7 1.359 138 29.828 3702 0.015 10

9 1.016 138 33.391 3846 0.032 10

11 ∞ ∞ 0.171 18

While the number of rules generated in this example for IR is not as sub-

stantial as Fibonacci, it is still quite large compared to the fixed number of

rules in IF. The examples to execute were chosen randomly. However, by
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construction of the inverse method, it generates all possible facts until a so-

lution is found. Since there are many type families, we produce facts of each

type family in the order the rules are structured. After inspecting the facts

generated, we see that all possible combinations of literal tokens and con-

nective tokens for each type family are generated in the corresponding order.

Hence it is possible that we generate facts with n connectives for one type

family A1 and facts with only n-1 connectives for another type family A2. If

a fact in A2 is a solution to the query, then we have generated redundant

facts from type A1. Still, IF performs better than IR but does not perform

as well as tabling.

5.3 Unification failures

To understand better the inverse method, we look at the heart of proof search:

unification. In the implementation chapter, we see that unification is used

extensively in axiom generation, satisfying premises and instance of solution

checks. In the tabled engine, occurs checks are factored out by linearized

terms[18]. This way, all unification calls are on linearized terms and an

efficient assignment algorithm can be used. On the other hand, the inverse

method does not perform any optimizations to higher order unification. Since

unification lies at the heart of proof search, we decided to measure the number

of unification failures for each of the implementations and compare them to

the numbers from tabling.
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IR IF Tab

example Sub IoS solve Sub IoS solve solve

fib 14 10983 166 27989 21380 322 164129 416

fib 15 28086 256 51169 55230 502 443397 1068

fib 16 72526 401 93343 ∞ ∞ ∞ 2100

parse 3 95 42 3351 78586 630 2496 9

parse 5 6363 138 21984 1982182 2910 9873 24

parse 7 458783 906 238087 ∞ ∞ ∞ 43

We show the number of unification failures for the Fibonacci examples and

parsing examples. IR and IF are still the inverse method with activation of

rules and facts respectively. Columns Sub illustrate the number of checks for

subsumption. IoS columns illustrate the number to check whether a fact is an

instance of the solution to the query. Solve give us the number of unification

failures used in proof search solving the query. The symbol ∞ still represents

that we have run the search for more than 30 min and have terminated

the process. The results show that unification plays an important role in

proof search, it is required in axiom generation, satisfying premises of rules,

subsumption checking etc. There are two kinds of subsumption checking, one

is where we check that a derived fact is an instance of a previously derived

fact; the other is where we check whether a derived fact unifies with the

query. It is not enough to just check whether a fact is an instance of the

query, it is possible we derive a fact that is more general than the query. Nor

it is enough to check whether the derived fact and the query are instances of
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each other, it is possible that we derive a fact that is partially ground and

the query is partially ground but they do not share the ground variables.

In this case, we still have a solution but need to check via unification. In

comparison, we see that the IR loop has less unification failures than the IF

loop. However, compared to tabling, both loops have a substantially more

unification failures. For tabling, unification is handled by an assignment

algorithm where for the inverse method, we use higher order unification.

These numbers reflect the importance of unification in the inverse method.

The great number of unification failures is partially due to the fact that we

do not solve subgoals in a particular order. For each use of unification, if we

ordered the subgoals, it is possible that the terms are partially instantiated

and we do not have more general terms. These more general terms require

the further use of unification to be ground. Ordering of subgoals is briefly

discussed in the future works section.
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Chapter 6

Conclusions

6.1 Future works

Currently, our implementation for the inverse method prover is for the Horn

fragment only. Also, the performance of both loops does not compare to

tabling. Further, the inverse method does not yet give a decision procedure,

for example, given a string of tokens, if it can be parsed, then the prover will

produce the parsed expression, but if this string of tokens cannot be parsed,

the inverse prover will search produce possible token strings with larger size.

This chapter will explain some of the future works that can be done.

6.1.1 Extension to HHF

As explained in the theoretical foundations chapter, hereditary Harrop for-

mulas is an extension to Horn clauses. The depth first search engine in Twelf
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is implemented for hereditary Harrop formulas. The current implementation

of the inverse method lacks expressive power and dynamic clauses. Here we

only give a brief overview of possible extensions. The subformula generation

algorithm already works for hereditary Harrop formulas, currently we have

thought about axiom generation and dynamic clauses.

For axiom generation, the use of contextual modal types will facilitate

both theory and practice for an inverse method prover. However, subformulas

will not only have a context that keeps track of meta-variables, they will also

have a context that keeps track of parameters. In the dependently typed

system, the dependency of types and type variables require that the context

that declares these types be an ordered context. Since the order of the

dependency of types cannot be changed, this ordering of variables in the

context cannot be violated. We use the notion of block contexts to eliminate

the factoring contexts.

6.1.2 Impose ordering on subgoals

From trial and error, we find that for the inverse method, the order of the

subgoals does not matter. Since only atomic subformulas are generated and

used to create axioms, the order of the subgoals does not matter with respect

to axiom generation. Also, when creating and using the rules generated from

the signature, we satisfy the premises without discretion to order. While

backward search allows us to proceed searching if we have satisfied all previ-

ous subgoals, the inverse method does not have these requirements. One of
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the problems with inverse method with activation of facts is the generation

of dead rules. These dead rules have premises that can never be satisfied. In

backward search, when the subgoals are executed in order, some terms are

partially instantiated. However, in forward search, these terms are not nec-

essarily instantiated and when we unify these terms with some facts, the new

terms might not contradict possible instantiations of previous subgoals. Now

for the sequence of subgoals, we can impose an ordering such that certain

subgoals should only be solved after other ones. To incorporate an ordering

for subgoals, we turn to mode information. Modes information give rise to

the flow of information through the subgoals. In differentiating input and

output arguments for a term, we allow the information to flow in a single

direction toward the goal. We use this flow of information to define our

ordering of subgoals.

6.2 Conclusions

In this thesis we presented theoretical foundations along with implementa-

tion details of an inverse method prover. We described a forward uniform

proof calculus with hereditary substitutions then lifted it to higher order.

This forward system eliminates the necessity of loop detection in a backward

setting. While the inverse method prover is specific to LF, which is the un-

derlying framework for Twelf, it seems possible to apply a similar reasoning

to systems such as λProlog[9] or Isabelle[13]. Also, we provided soundness
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and completeness proofs for the forward uniform proof calculus. After a

detailed description of implementation of the inverse method prover, we pro-

vided comparative data to show that our prover requires optimization and

extension to compare to the results from tabling.
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