
 

 

 

 

 

 

 

Identification of novel regulatory mechanisms 

for Cdc42 GTPase-activating protein 

CdGAP/ARHGAP31, a protein involved in 

development and cancer 

 

Ali Ben Djoudi Ouadda 

 

Department of Anatomy & Cell Biology  

McGill University, Montréal, Québec, Canada 

 

 

Submitted October, 2016  

A thesis submitted to McGill University in partial fulfillment of the 

requirements of the degree of   

 

 

Doctor of Philosophy  

 

© Ali Ben Djoudi Ouadda, 2016 



ii | P a g e  

 

Acknowledgments  

I would like to express my deepest thanks and appreciation to my supervisor, Dr 

Nathalie Lamarche-Vane, who has opened the door of her laboratory and gave me the 

opportunity to pursue an excellent research training. Without her kindness, support, 

guidance and persistent help this thesis would not have been possible.  

I would like to thank my mentor Dr. Carlos Morales, who has supported, 

encouraged and guided me with valuable advice from the beginning. I would like also to 

thank my advisory committee members, Dr. Isabelle Rouiller and Dr. Peter Siegel for 

their encouragement and precious scientific inputs and feedbacks.  

I would like to acknowledge the Fonds de Recherche du Québec-Santé (FRSQ) 

which awarded me a Doctoral Training Scholarship and the McGill Faculty of 

Medicine/Department of Anatomy & Cell Biology which granted me a Doctoral Internal 

Scholarship, GREAT Travel and Merit Awards.  

In addition, a thank you to my colleagues in the Department of Anatomy & Cell 

Biology, RI-MUHC, IRCM and IRIC for their help and collaboration, either with reagents 

or scientific discussion and troubleshooting. Special thanks to Martin, Yi and Vilayphone 

for their precious help and support during my early days in the lab, and to Philippe, 

Sadig, Fereshteh, Hidetaka, Tristan, Jonathan and Judith for their help, kindness and 

availability.  

A special word of thanks goes to my mother Kaissa, and siblings Moussa, 

Djamila, Ouiza, Zohra, Saida, Djilali, Naima, Hassina and Massinissa for their 

indefectible support and encouragement. Without their love, patience and sacrifice, I 

could not have completed this work. I would specifically like to thank my late father 

Tayeb who assisted and encouraged me throughout my life, and I am sorry that he had 

not lived to see me complete my Ph.D.  

Finally, but most importantly, I wish to thank my wife Biba and children Ales and 

Aya for their love, support, assistance and faith in me.   



iii | P a g e  

 

Abstract  

The small Rho GTPase proteins act as molecular switches that regulate diverse 

cellular processes linked mostly to the actin-cytoskeleton remodeling making them 

essential regulators of cell adhesion, migration and invasion. Dysregulation of their 

activities can result in different abnormal phenotypes particularly, tumor progression and 

metastasis. Hence, regulators of Rho GTPases such as Rho guanine nucleotide 

exchange factors (RhoGEFs) and Rho GTPase-activating proteins (RhoGAPs), are 

critical for normal cellular responses and are targets for subversion during oncogenic 

transformation.  

CdGAP (Cdc42 GTPase-activating protein) is a member of a well-conserved 

subfamily of RhoGAP proteins and a negative regulator of the small Rho GTPases, 

Rac1 and Cdc42. Associated with a rare developmental disorder (AOS, Adams-Oliver 

Syndrome) and required for a normal angiogenesis, CdGAP plays important roles in the 

regulation of cell migration and proliferation during early development. In addition, 

recent findings characterize CdGAP as an essential synergistic component between 

TGFβ and HER2/Neu/ErbB-2 signaling pathways which play a positive role in cancer, 

particularly breast cancer. CdGAP is regulated by lipid binding, protein-protein 

interactions and phosphorylation, still these mechanisms are not well understood. In this 

work we first investigate the interaction between CdGAP and its negative regulator, the 

endocytic protein Intersectin. Using an in vitro approach, we identify a novel, atypical 

xKx(K/R) (SKSKK) motif in the basic rich (BR) region of CdGAP that directly interacts 

with the Intersectin-SH3D domain. Moreover, the well-conserved motif is required for 

the regulation of CdGAP activity following Intersectin binding. Next, we investigate 

CdGAP phosphorylation and identify two regulatory phospho-serines in the C-terminal 

(CT) tail, Ser-1093 and Ser-1163, that are phosphorylated by the AGC-kinase family 

member, RSK1. Finally, we show that 14-3-3 family members bind and regulate both 

the cellular localization and activity of CdGAP in a Ser-1093 and Ser-1163 

phosphorylation-dependent manner. Overall, this work provides two novel CdGAP-

regulatory mechanisms that can be applied in therapeutic approaches targeting this 

RhoGAP, particularly in breast cancers. 
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Résumé 

 Les petites protéines G de la famille Rho sont des commutateurs moléculaires 

qui contrôlent divers procédés cellulaires associés notamment, à la régulation du 

cytosquelette et jouent par conséquent, un rôle clé dans la régulation de la motilité 

cellulaire. La dérégulation de leur activité peut entrainer des aberrations se manifestant 

en particulier, par une progression du cancer et des métastases. Ainsi, les protéines 

régulatrices comme les facteurs d'échange de nucléotide (RhoGEFs) et les protéines 

activatrices des Rho GTPases (RhoGAPs) sont essentielles pour une signalisation 

cellulaire normale et sont en général, affectées lors des transformations oncogéniques. 

CdGAP (Cdc42-GTPase activating protein) est un membre d’une sous-famille de 

protéines RhoGAPs bien conservée qui régule négativement les Rho GTPases Cdc42 

et Rac1. Associé à un trouble du développement rare, le syndrome d'Adams-Oliver ou 

AOS et nécessaire pour une angiogenèse normale, CdGAP joue un rôle important dans 

la régulation de la migration et la prolifération cellulaires au cours du développement. 

Récemment, CdGAP est identifié comme une composante synergique essentielle entre 

les voies de signalisation de TGFβ et HER2/Neu/ErbB-2 et qui joue un rôle proto-

oncogénique, en particulier dans le cancer du sein. CdGAP est régulée par des 

mécanismes incluant les lipides, les interactions protéine-protéine et la phosphorylation, 

néanmoins, ces mécanismes ne sont pas bien élucidés. Dans cette étude, nous 

étudions en premier l'interaction entre CdGAP et son régulateur négatif, la protéine 

endocytique, Intersectin. En utilisant une approche in vitro, nous identifions un nouveau 

motif atypique, xKx (K/R) (SKSKK) dans la région riche en résidus basiques (BR) de 

CdGAP interagissant directement avec le domaine SH3D d’Intersectin. Le motif est en 

outre, bien conservé est requis pour la régulation de l'activité CdGAP par Intersectin. 

Par la suite, nous identifions deux sites de phosphorylation clés dans la région C-

terminale de CdGAP, Ser-1093 et Ser-1163 qui sont phosphorylés par la protéine AGC-

kinase, RSK1. Nous démontrons finalement, que les protéines adaptatrices 14-3-3 lient 

et régulent la localisation cellulaire et l’activité de CdGAP d’une manière dépendante de 

la phosphorylation des résidus, Ser-1093 et Ser-1163. La présente étude identifie deux 

nouveaux mécanismes de régulation de CdGAP qui peuvent être exploités dans des 

approches thérapeutiques ciblant cette protéine, notamment dans les cancers du sein. 
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1.0 General introduction 

The emergence of life on earth and the evolvement of complex cellular systems 

and enzymes allowing the use of ATP to generate energy, permitted cell movement for 

both prokaryotes and eukaryotes. In multicellular organisms, cell migration is a central 

and critical process during embryonic development and organogenesis, immune 

responses and wound healing, which are events required to ensure the development of 

the organism and to maintain its integrity. Likewise, aberrations affecting cell motility 

can lead to serious consequences and are at the origin of many pathological conditions 

such vascular diseases, mental disabilities and tumor progression and metastasis. It is 

therefore critical to investigate and understand the mechanisms regulating cell motility in 

the hope of developing better therapeutic strategies for the treatment of specific 

disorders.  

 

1.1 Overview of the small GTPases 

 The discovery of the Ras oncogenes more than three decades ago paved the 

way to the discovery of dozens of similar proteins grouped under the superfamily of Ras 

G proteins. The Ras superfamily members are monomeric G protein enzymes of about 

21kDa, which regulate many cellular processes including, cytoskeleton remodeling, 

cellular trafficking and cell proliferation, apoptosis, differentiation, migration and 

adhesion. More than 150 members have been so far characterized and can be divided 

into five subfamilies: Ras, Rho, Rab, Ran and Arf. They all share the guanosine 

triphosphate (GTP) ase function, an enzymatic activity consisting of the hydrolysis of γ-

phosphate of GTP to generate guanosine diphosphate (GDP) and inorganic phosphate. 

These small GTPases cycle between an active GTP-bound and inactive GDP-bound 

forms following conformational changes at their switch 1 and 2 of their GTP-binding 

regions (1-4).  

1.1.1 Ras GTPase regulation 

 Owing to their involvement in many key cellular events, the function and activity 

of Ras GTPases are tightly and spatiotemporally controlled by different mechanisms 

such as protein-protein interactions and posttranslational modifications. The GTPase 
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cycle is regulated by three group of proteins: the guanine nucleotide exchange factors 

(GEFs), which initiate the GDP to GTP exchange; the GTPase activating proteins 

(GAPs) that enhance the intrinsic GTP-hydrolysis activity of the GTPase; and the 

guanine dissociation inhibitors (GDIs) which form soluble and stable complexes with the 

GTPase in the cytoplasm masking its lipid moiety for plasma membrane (PM) 

localization (5,6).  

 The subcellular localization is also a contributing factor to the regulation of Ras 

GTPase activity and many members including Arf, Rab, Ras and Rho, are often found 

bound to the PM where they recruit their effectors and control thereby, their downstream 

signaling pathways (7,8). Most of these small GTPases, like the Rho family members, 

undergo posttranslational-lipid modifications (e.g. geranylgeranylation, palmitoylation 

and N-myristoylation) allowing the binding to negatively-charged PM phospholipids, 

where they translocate to carry-out their downstream activational effects (8). Typically, 

the addition of lipid groups is mediated via covalent bindings to a CAAX box at the C-

terminal of the GTPase proteins (8,9).  

 However, the PM targeting requires often additional polybasic regions (PBRs) on 

the GTPase to be achieved (10). In fact, a significant study conducted to decipher the 

motifs and posttranslational modifications involved in targeting small GTPses to the PM, 

reported that the presence of PBRs is a requirement in 37 out of 48 studied proteins 

(11). The PBRs bind to specific phospholipids in the inner leaflet of the PM conferring a 

precise localization site for the GTPase and hence, a site-specific conduction of the 

GTPase function (9). The PBRs of Ras, Rab, Arf, and Rho GTPases bind either 

PtdIns(4,5)P (phosphatidylinositol 4,5-bisphosphate) or PtdIns(3,4,5)P3 

(phosphatidylinositol 3,4,5-triphosphate) and the dissociation of the small GTPase from 

the PM occurs only when both these phospholipids are depleted from the PM 

simultaneously (11). Moreover, the presence of a PBR increases the specificity and the 

catalytic activity of prenylation enzymes and thus, enhances the PM localization of the 

small GTPase (12). The prominent role of PBRs in the PM localization makes them 

critical regulators of small GTPase activities as the following examples will further 

illustrate (Table 1.1). For instance, the C-terminal di-arginine motif (Arg-186 and Arg-
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187) of Cdc42 is essential for its PM targeting and activity. The PBR binds directly to 

PtdIns(4,5)P2-containing membranes allowing Cdc42 to initiate oncogenic 

transformation of fibroblasts, whereas the mutation of this site abolished the GTPase 

transforming abilities (13). Similarly, the PBRs are essential for the cellular functions of 

several Ras family members. Indeed, many K-Ras proteins contain hypervariable C-

terminal domains intended to provide various and specific PM-localization signals, whilst 

their PM localization usually requires both a CAAX motif and a palmitoylation site within 

the hypervariable region. However, in some situations such as in the absence of the 

CAAX box or lipid modification, the presence of a PBR is imperative for the PM 

localization and the GTPase activity. The PBR can achieve this role alone or in 

combination with lipid-modified sites or the CAAX box. As such, myristoylated K-Ras 

(p21K-ras) proteins require PBRs to be translocated to the PM (14). By contrast, the 

p21K-RasB isoform which is not palmitoylated, requires a PBR in combination with the 

CAAX motif for its PM localization (11,15). Interestingly, similar conserved mechanisms 

are found in yeast wherein PBRs mediate the lipid modification and PM targeting of the 

small GTPases. Actually, in an experiment looking at the Ras-dependant growth in 

yeast, it has been shown that the presence of a PBR at the C-terminal region of Ras2 is 

sufficient to drive normal growth and Ras palmitoylation (i.e., PM localization and 

function) despite the absence of the CAAX box, necessary for Ras2 prenylation and 

function (16).  

1.1.2 Roles of Ras GTPases 

 Even though the Ras subfamilies affect many cellular events and their roles 

sometimes overlap in several signaling pathways, specific functions can be assigned to 

each subfamily according to the processes they tend to regulate the most. For instance, 

the Rho subfamily with its prominent members, Rac, Cdc42 and Rho is involved in gene 

expression regulation, actin cytoskeletal regulation and organization, as well as cell 

migration, adhesion and invasion (17,18). Ras subfamily proteins including the three 

main branches, Ras (i.e., isoforms H-Ras, N-Ras and K-Ras), Ral and Rap are central 

regulators of gene expression, cell survival, growth and proliferation (19-21).   
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Table1.1  ̶ Examples of PBRs involved in membrane localization 

Protein Entrya  Cell function/ 
pathway 

PBR  Role in membrane localization Ref. 

hLgl 
 
 
 

Q15334 Cell polarity 
Tumorigenesis 

652-
SRVKSLKKSLRQS
FRRIRKSRVSSRK
Rb 

PBR phosphorylation neutralizes the 
positive charges and reduces PM 
localization. 

(22) 

LLTCCs Q13936 Muscle contraction, 
hormone secretion, 
gene expression, and 
neuronal excitability 

536-RRWNFCRRK PBR required for PM-
phosphoinositide binding and stability. 

(23) 

Nox5 Q96PH1 ROS production 186-
APAPRPRPRRPR

QLT 

PBR mediates N-ter. 
binding to PtdIns(4,5)P2 and 
translocation from internal 
membranes to PM. 

(24) 

PTEN P60484 Tumor suppressor 
Insulin signaling 
pathway 

4-IIKEIVSRNKRR PBR is an N-ter. 
PtdIns(4,5)P2 - binding site 
responsible of membrane targeting. 

(25) 

G protein 
subunit 
alpha (q) 

P29992 GPCRs signaling 19-
RRINDEIERQLRR
DKRDARR 

PBR required for PM localization and 
protein function. 

 
(26) 

G protein 
subunit 
alpha (s) 

Q5JWF2 GPCRs signaling 19-
REANKKIEKQLQK
DKQVYRA 

PBR required for PM localization and 
protein function. 

(27) 

G protein 
subunit 
alpha14 

O95837 GPCRs signaling 19-
QRISAEIERQLRR
DKKDARR 

PBR required for PM localization and 
protein function. 

(28) 
 

G protein 
subunit 
alpha16 

P30679 GPCRs signaling 19-
ARVDQEINRILLEQ
KKQDRG 

PBR required for PM localization and 
protein function. 

(28) 
 

Ras2 P01120 Ras2 dependant 
growth 

KLIKRK PBR allows palmitoylation and 
function of Ras2 in the absence of a 
CAAX box. 

(16) 

K-Ras P01116 Ras GTPase activity Hypervariable C-
ter. region 
(165-185)-KKKKK 

PBR required for PM localization and 
protein function.  

(14) 
 

http://www.uniprot.org/uniprot/Q13936
http://www.uniprot.org/uniprot/Q96PH1
http://www.uniprot.org/uniprot/P60484
http://www.uniprot.org/uniprot/P01120
http://www.uniprot.org/uniprot/P01116
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K-Ras P01116 Ras GTPase activity 175-KKKKK p21-Krasb is not palmitoylated but 
requires both the CAAX box and the 
PBR for its function and PM 
localization. 

(15) 

DOCK1 Q14185 RacGEF 1610-
KQYGVRTMPSGL
DDRRGSRPR 

PBR required for 
DOCK1 translocation to the dorsal 
ruffles through association with 
phosphatidic acid. 

(29) 

DOCK2 Q92608 RacGEF 
Neutrophil 
chemotaxis 
 

1619-
REMPDFEDRRVG
RPRSM—1695-
RSKKRT 

PBR required for DOCK2 
translocation to the leading edge via 
association to phosphatidic acid. 

(30) 

Ect2  Q9H8V3 RhoGEF 
Cell division  
 

792- 
ANTICKADAENLIY
TADPESFEVNTKD
MDSTLSRASRAIK
KT 

PBR required for targeting Ect2 to the 
equatorial membrane during 
cytokenesis. 

(31) 

Protein 
ARNO 

Q99418 ArfGEF 
In vitro system 

384-RKKRISVKKK PBR and PH domain cooperation for 
membrane lipid binding 

(32) 

Cytohesin-
1 

 
Q15438 
 

T cell adhesion 
ArfGEF 

128-
RKKKVSSTKRH 

PBR and PH domain cooperation for 
PM localization and function of 
Cytohesin-1. 

(33) 

Cdc42 P60953 Oncogenic 
transformation 

183-KKSRR PBR required for Cdc42 binding at 
enriched-PtdIns(4,5)P2 membranes. 

(13) 

DLC1 Q96QB1 Tumor suppressor 
RhoGAP 

1051-
KHGFSWAVPKFM
KRIKVPDYKDR 

PBR required for PM recruitment and 
binding to PtdIns(4,5)P2. Regulation 
of GAP activity. 

(34) 

p190 
RhoGAP-
A 

Q9NRY4 
 

RhoGAP 1214-
RRRNILRSLRRNT
KKPKPKPRPSITK 

PBR required for PM recruitment. 
Regulation of GAP activity. 

(35) 

CdGAP  Q2M1Z3 
 

RhoGAP 2-
KNKGAKQKLKRK 

PBR required for PM recruitment and. 
Regulation of GAP activity. 

(36) 

 

 aNCBI protein entry number. 
 bBasic amino acids that make up the PBR motif are bolted. 

http://www.uniprot.org/uniprot/P01116
http://www.uniprot.org/uniprot/Q14185
http://www.uniprot.org/uniprot/Q92608
http://www.uniprot.org/uniprot/Q9H8V3
http://www.uniprot.org/uniprot/Q9H8V3
http://www.uniprot.org/uniprot/Q99418
http://www.uniprot.org/uniprot/Q15438
http://www.uniprot.org/uniprot/Q15438
http://www.uniprot.org/uniprot/P60953
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Ran GTPases are key players in the nucleocytoplasmic protein transport (37), and 

finally, the Arf and Rab subfamilies are involved in vesicular transport and trafficking 

pathways (38-40).  

 Ever since Ras superfamily members are involved in many cellular events, 

mutations in their genes or expression dysregulation in their proteins often lead to tumor 

transformation. Indeed, mutations in the Ras genes occur in 30% of human tumors, 

mostly mutations in K-Ras and N-Ras are found with high frequency in various cancers 

such as pancreatic and colorectal cancers (41-44). The mutations affect generally the 

GAP-protein binding sites and thus prevent the GTP-hydrolysis, leading to constitutively 

activated GTPase and tumorigenesis (45). On the other hand, the Rho GTPase role in 

cancer is usually associated to expression abnormalities of these proteins or their 

regulators but also to the mutations in their genes, leading to increased active GTPase 

and oncogenic transformation (46,47). 

 

1 .2 The Rho GTPase subfamily 

 Ras homologous (Rho) GTPases are highly conserved members of the Ras 

superfamily of small G proteins. To date, twenty mammalian Rho GTPases have been 

characterized from which three groups, Rho, Rac and Cdc42, have been extensively 

studied for their role in actin-cytoskeleton remodeling. Namely, RhoA (isoforms A, B and 

C) controls the formation of stress fibers (assembly of actin-myosin filaments), Rac 

(isoforms 1, 2 and 3) and Cdc42 regulate the formation of actin-rich lamellipodia and 

filopodia protrusion respectively (6,48-51).  

1.2.1 Rho GTPase regulation 

 Similar to other Ras small GTPases, Rho proteins cycle between an active GTP-

bound and inactive GDP-bound state, a switch monitored by three classes of enzymes: 

RhoGEFs, RhoGAPs and RhoGDIs. These enzymes ensure a precise spatiotemporal 

modulation of Rho GTPases in different subcellular localizations and various cellular 

types and environments. Moreover, many Rho GTPases undergo numerous 

posttranslational modifications regulating their activity and subcellular localization. 

Overall, the Rho GTPase activity is tightly modulated and is subjected to a complex 
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regulatory network for an optimal regulation outcome. In the following sections the major 

factors regulating Rho GTPases will be discussed with an emphasis put on RhoGAP 

regulation and subcellular localization (to be discussed in sections 1.3 and 1.4). 

1.2.1.1 Rho Guanine nucleotide Exchange Factors (RhoGEFs)  

 RhoGEF proteins are the main activators of Rho GTPases by mediating their 

GDP to GTP substitution. So far, around 85 RhoGEF members have been identified 

and can be divided into two major and distinct families: DOCK and DH/PH-containing 

RhoGEFs (52). DOCK proteins comprise a Dock Homology Region 1 (DHR1) which 

binds to phospholipids and thus mediates the PM targeting, and a catalytic exchange 

domain, DHR1 that is in charge of the GDP to GTP exchange. DOCK proteins present a 

GEF activity restricted only to Cdc42 and Rac GTPases (53,54). The DH/PH-containing 

RhoGEF family, which is the most represented family of RhoGEFs, contains a Dbl 

homology (DH) domain next to a pleckstrin-homology (PH) domain (55). The former 

conducts the GEF activity and the latter helps the PM anchoring of the RhoGEF by 

interacting with the membrane phospholipids (56).  

 RhoGEFs, alike other GEF proteins, require generally a PM translocalization in 

order to conduct the GEF activity towards their Rho GTPase effectors. To do so, many 

RhoGEFs are endowed with lipid binding domains (LBDs) and structural motifs ensuring 

their recruitment to the PM. Additionally, as in many GEFs, the presence of PBRs helps 

the protein targeting and stability at the PM by cooperating with the LBDs. For instance, 

the RhoGEF Ect2 requires both its PH and PBRs to achieve translocation to the 

cleavage membrane during cytokinesis (Table 1.1) (31). Likewise, during neutrophil 

chemotaxis, Rac1 which induces the extension of the membrane protrusions at the 

leading edge, requires the presence of DOCK2 at the PM for its activation. DOCK2 

recruitment and accumulation is achieved by a dual lipid-binding mechanism involving 

PtdIns(3,4,5)P3 and phosphatidic acid. The binding to phosphatidic acid which is 

mediated by a C-terminal PBR, stabilizes the DOCK2-PM anchoring and results in Rac1 

activation and actin polymerization (Table 1.1) (30). 

 Because RhoGEFs are the main activators of Rho GTPases, aberrations in their 

expression or activity result in an unusual high activity of their target GTPases, which is 
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associated with malignant transformation. Indeed, abnormal overexpression levels of 

RhoGEFs including Tiam1, Ect2, Vav isoforms 1, 2 and 3, DOCK180 and ELMO have 

been reported in various cancers in which they act as oncogenes (46,57,58). As an 

example, the Rac1 GEF Tiam1 is overexpressed in various tumors such as breast, liver, 

head and neck cancers, and this is associated with a high degree of disease 

progression, invasion and metastasis, as well as a poor patient prognosis (59-62). 

Accordingly, therapeutic approaches to antagonize and lower the expression and 

activity of this RhoGEF are in development for cancer treatment (63). 

1.2.1.2 Rho Guanine nucleotide Dissociation Inhibitors (RhoGDIs) 

 RhoGDI members bind the geranylgeranylated GDP-bound Rho GTPases and 

sequester them in the cytoplasm to prevent spontaneous activation (64). They also 

monitor the delivery and extraction of Rho GTPases from and to cellular membranes, 

where they exert their action, regulating both their cellular trafficking and activity (65,66). 

It appears therefore, that these proteins are important Rho GTPase regulators and 

dysregulation of their expression (i.e., overexpression or downregulation) is usually 

associated to numerous human cancers (67-69). 

1.2.1.3 Posttranslational regulation 

 Posttranslational modifications such as ubiquitination, phosphorylation and a 

wide range of other modifications have been suggested to regulate many Rho 

GTPases, although it is unclear whether these modifications are imperative for the 

GTPase activity (70-74). Still, several examples display the implication of some of these 

modifications in human cancers. For instance, impaired ubiquitination and degradation 

of some Rho GTPases result in their accumulation in specific intracellular compartments 

and increased activity levels, which in turn promote cell migration and invasion (75,76). 

Likewise, the transforming capacities of Cdc42 are augmented following the 

phosphorylation of its Tyr-64 residue by Src-tyrosine kinase, which enhances the 

association with its RhoGDI, a prerequisite for the tumorigenic activity (77). 

1.2.2 Role of Rho GTPases in cancer 

 Rho GTPases hold critical roles in many signaling pathways with prominent 

functions in cell cycle progression, cell adhesion, migration, survival and proliferation. 
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Beyond their direct effects on the regulation of cytoskeletal dynamics, Rho GTPases are 

involved in several essential physiological processes including neurogenesis and early 

embryogenesis. Their action results mainly from their ability to bind and regulate an 

extensive range of effectors involved particularly in actin cytoskeleton and gene 

transcription regulation (6,48,51). 

 Dysregulations occurring at the level of Rho GTPase-affected pathways are 

generally associated with oncogenic transformation and several reports increasingly 

highlight the crucial role of Rho GTPases in cancer onset, progression and metastasis 

(46,47,78). In contrast to cancers initiated by point mutations in Ras GTPases, the 

majority of tumors promoted by Rho members seems to be a consequence of altered 

expression (i.e., overexpression) and increased GTPase activity of these proteins 

(47,79-81). For instance, high expression levels of Rac1 and Cdc42 are found in several 

tumors such as breast and testicular cancers (82,83). Also, Rac1 is overexpressed in 

colon and lung carcinomas, whereas Cdc42 is overexpressed in various other cancers 

including melanoma and colorectal adenocarcinoma (84,85). RhoA is overexpressed in 

a wide range of tumors including breast, liver, lung and colon cancers and, in some 

cases, the expression positively correlated with increased RhoA activity and cancer 

progression (82,83,86,87). Sustained Rho GTPase activity in cancer is often a 

consequence of abnormalities in the Rho GTPase regulators with frequently higher 

RhoGEF and reduced RhoGAP activity and/or expression (47,88). In addition to 

aberrant expression and GTPase activity misregulation, recent findings reported 

mutations in Rho GTPases associated to cancer such as the one discovered in Rac1, 

Rac (Pro29Ser), which is associated with high prevalence in melanomas, making Rac1 

the most commonly mutated Rho GTPase (89,90). Conversely, some Rho GTPases 

can stimulate tumor-suppressing activities as for example in the case of Rac1-

dependent regulation of apoptosis and the anti-tumorigenic function of RhoB in lung 

cancer (91,92).  
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1.3 Rho GTPase-Activating Proteins (RhoGAPs) 

 Given that the intrinsic GTPase activity of Rho GTPases is very slow and 

inefficient, the hydrolysis of GTP to GDP is enhanced by the RhoGAP class of enzymes 

leading to the deactivation of the Rho GTPase (93,94). To date more than 70 genes 

have been identified to encode a RhoGAP-domain containing protein, and nearly all 

these proteins share a hallmark GAP domain containing the "arginine finger" motif 

characterized by a conserved arginine residue, critical for the catalytic activity (95-97). 

Indeed, the positively charged residue enhances the intrinsic-GTP hydrolysis by 

neutralizing the negative charges of the γ-phosphate of GTP during the transition state, 

and by stabilizing and positioning different residues such as the catalytic glutamine 

residue of the GTPase protein involved in the enzymatic reaction (98,99).  

1.3.1 RhoGAP regulation by phosphorylation 

 RhoGAP proteins are regulated by different mechanisms including protein-

protein and lipid-protein interactions, and posttranslational modifications such as 

phosphorylation. Indeed, most RhoGAPs are phosphoproteins and the regulation by 

phosphorylation could either stimulate or inhibit the RhoGAP activity. For example, 

phosphorylation of FilGAP (filamin A-associated RhoGAP) downstream of Rho/ROCK 

pathway triggers its PM translocation and increases its activity towards Rac (100,101). 

Similarly, phosphorylation of ArhGAP22 by Akt/PKB generates 14-3-3 protein-binding 

sites, and the subsequent recruitment of these proteins stimulates its RhoGAP activity 

for Rac (102). Equally, a Src kinase-mediated phosphorylation of Nadrin (neuron-

associated developmentally regulated protein) stimulates its GAP activity (103-106). 

Conversely, phosphorylation of ArhGAP33 at Tyr-406 residue by the protein-tyrosine 

kinase Fyn inhibits its GAP activity (107). Finally, a negative regulation of CdGAP 

(Cdc42 GTPase-activating protein) activity is noticed following phosphorylation of Thr-

776 residue by both Erk1/2 and GSK3 kinases (108,109).  

1.3.2 RhoGAP membrane localization 

 Membrane binding is a common characteristic of many proteins, which exert their 

function at the level of cellular membranes. The targeting to PM is achieved by different 

mechanisms including direct binding through LBDs (e.g., PH, C1, C2, BAR, FYVE, 
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FERM and ENTH) and indirect recruitment through interaction with protein partners. 

Positively charged PBRs found in many membrane-associated proteins, which are very 

well conserved throughout evolution, have been documented to directly interact with the 

negatively charged membrane phospholipids, ensuring therefore the protein targeting to 

the membrane (110-112).  

 The primary function of RhoGAPs is the stimulation of the intrinsic GTPase 

activity of their target Rho GTPases. Since most of these small GTPases in their active, 

GTP-bound form localize to cellular membranes, the RhoGAPs need to be targeted to 

the membranes in order to interact with them (113,114). Accordingly, several membrane 

targeting mechanisms evolved throughout evolution to regulate the subcellular 

localization of RhoGAPs. Among these mechanisms, some involve targeting through 

protein-protein interactions, whereas the majority involves protein-lipid regulation. Thus, 

to permit the interaction with the negatively-charged membrane phospholipids, many 

RhoGAPs harbor LBDs, such as PH, C1, PX (phox homology) and BAR (Bin-

Amphiphysin-Rvs) domains. These domains, which are abundant in various types of 

proteins, are usually enriched in basic positively-charged amino acids including 

arginines and lysines (115,116). However, besides few examples in which LBDs target 

efficiently the protein to the membrane, generally additional mechanisms are required 

for an efficient, precise and stable RhoGAP recruitment to the membranes. Recently, 

many studies report membrane-targeting roles, RhoGAP-activity and substrate-

specificity regulation by PBRs from numerous RhoGAPs including DLC1, CdGAP and 

p190RhoGAPs (Table 1.1) (34-36,112,117). These PBRs are present in most 

RhoGAPs, both N-terminal and/or C-terminal to the RhoGAP domain. Moreover, they 

are well conserved within members of the same RhoGAP subfamily, suggesting 

conserved regulatory mechanisms (Table 1.2).  

1.3.3 RhoGAP role in cancer 

 In addition to the termination of Rho GTPase signalings, several RhoGAPs are 

involved in other cellular functions and in a variety of intermolecular interactions leading 

to the regulation of a wide spectrum of cellular events (95). Accordingly, abnormalities in 

their activity and/or protein expression lead frequently to dysregulation of Rho GTPase 
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activities and diseases, such as tumorigenesis. For a long time, owing to their negative 

regulation of Rho GTPases, many RhoGAPs have been classified in the category of 

tumor suppressors. Notably, DLC (deleted in liver cancer) family members have been 

well characterized for their tumor-suppressing roles and they are found typically 

depleted in various cancers (118-120). Also, decreased expression of ArhGAP18 is 

seen as a hallmark of many human tumors such as breast and lung cancers 

(44,121,122). On the other hand, recent reports assign to some RhoGAPs proto-

oncogenic roles in various cancers and show that they can promote tumorigenesis. As 

such, p190RhoGAP-B exerts a pro-tumorigenic role during tumor progression and 

metastasis in breast cancer (123). Similarly, RacGAP1, which is overexpressed in 

cancer cell lines, displays a positive role in many cancers like in human hepatocellular 

carcinoma where it cooperates with the RhoGEF Ect2 to promote tumor growth and 

metastasis, while its depletion blocks the tumorigenic process (124-126). Furthermore, 

CdGAP exhibits elevated expression levels in various cancer cell lines and in cancer 

patients, and this is associated with poor survival prognosis, particularly in breast 

cancer (127,128). Notably, CdGAP has been shown to mediate the TGBβ-induced 

tumorigenic effects (i.e., cell migration and invasion) in a mammary breast cancer cell 

line by transcriptionally repressing the expression of E-cadherin and thereby, triggering 

epithelial-mesenchymal transition (EMT)(127,128). 

 

1.4 RhoGAP protein subfamilies  

 In the following sections, recent findings regarding the regulation and the function 

of individual RhoGAP proteins will be addressed. In addition, the molecular mechanisms 

directing their membrane recruitment will be discussed with an emphasis placed on the 

role of LBDs and PBRs. According to their LBD and general domain structure and 

function, RhoGAPs were classified into seven groups: PH-, BAR/FCH (Bin-

Amphiphysin-Rvs/ Fes/CIP4 Homology)-, C1-, SEC14-, START (StArR-related lipid 

transfer)-domain containing RhoGAPs, multiple LBDs- and PBR (LBD-lacking-

RhoGAPs)- containing RhoGAPs (Figure 1.1).  
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Figure 1.1  ̶ Domain organization of RhoGAP proteins. Many RhoGAPs are 

mutlidomain proteins and are involved through their functional domains in several 

cellular processes. They exert their role at different subcellular locations notably at the 

plasma membrane which requires for that a membrane anchoring mechanism. As such, 

the presence of polybasic regions (PBRs) is thought to contribute to the membrane 

targeting and hence, to the regulation of RhoGAPs. Amino acid sequences of 

H.Sapiens (human) RhoGAPs were analyzed for domain prediction using the following 

online software: SMART (http://smart.embl.de/)(129), Pfam 30.0 

(http://pfam.xfam.org/)(130) and InterPro (https://www.ebi.ac.uk/interpro/)(131). In 

addition, domain annotations were verified according to the literature for each individual 

RhoGAP protein. (A) PH and FCH/BAR lipid binding domain (LBD)-containing 

RhoGAPs. (B) Other LBD-containing RhoGAPs. (C) PBR (LBD-lacking-RhoGAPs)- 

containing RhoGAPs. Abbreviations for domains are as follows: B-A, Bcr-Abl 

oncoprotein oligomerisation domain; BAR, Bin/amphiphysin/Rvs; BR, basic region; C1, 

cysteine-rich phorbol ester binding; C2, calcium-dependent lipid binding; CC, coiled-coil; 

F-BAR, FCH/BAR; FF, domain with two conserved phenylalanine residues; FCH, 

Fes/CIP4 homology; In-SH2-D, phosphatidylinositol 3-kinase regulatory subunit p85 

inter-SH2 domain; IQ, calmodulin-binding motif; IPPc, Inositol polyphosphate 

phosphatase, catalytic domain homologues; MYSc, myosin complex, large ATPase; 

MyTH4, myosin tail homology 4; PDZ, Post synaptic density protein, Drosophila disc 

large tumor suppressor and Zonula occludens-1 protein domain; PH, pleckstrin 

homology; PRD, proline-rich domain; PX, Phox homology; RA, Ras association domain; 

RBD, Ral binding domain; Ras, Small GTPase binding domain; SAM, sterile α-motif; 

Sec14, Sec14-like; START, StAR (steroidogenic acute regulatory)-related lipid transfer; 

WW, domain with two conserved tryptophan residues. Yellow band, PBR; green band, 

transmembrane motif; beige band, coiled coil (CC) domain. 

https://en.wikipedia.org/wiki/DLG4
https://en.wikipedia.org/wiki/DLG1
https://en.wikipedia.org/wiki/DLG1
https://en.wikipedia.org/wiki/Tight_junction_protein_1


 

 

18 | P a g e  

 

1.4.1 PH-domain containing RhoGAPs  

 PH domains are abundant LBDs and important motifs helping to direct their host 

protein to cellular membranes by binding to the negatively-charged membrane 

phospholipids. Yet, less than 10% of PH domains display, at the same time, high 

binding affinity and specificity to membrane-enriched phosphoinositides including 

PtdIns3P- (phosphatidylinositol 3-phosphate), PtdIns5P- (phosphatidylinositol 5-

phosphate) and PtdIns(3,5)P2-enriched membranes, whereas more than 90% show 

weak interaction with these phospholipids. As a result, the majority of PH domains are 

inefficient for a stable targeting of the protein to the cellular membranes and additional 

LBD motifs, such as PBRs are required for a stable and specific recruitment (132).  

FilGAP (ArhGAP24), ArhGAP22 and ArhGAP25 

 FilGAP subfamily proteins are important regulators of the actin cytoskeleton and 

key coordinators of the Rho and Rac GTPase signaling crosstalk (101). They contain in 

their N-terminus a PH domain next to a central RhoGAP domain, and a coiled coil (CC) 

domain in the C-terminal region rich in basic residues (Figure 1.1A). All three proteins 

and their splice variants display a RhoGAP activity towards Rac, which seems to be 

regulated by their subcellular localization and PM targeting. FilGAP is sequestrated and 

inactivated in the F-actin rich structures such as focal adhesions, lamellae or membrane 

ruffles as a result of its binding to filamin A, a cytoskeleton protein through the CC 

domain. A Rho/ROCK-mediated phosphorylation of FilGAP likely releases it from the 

filamin A and induces its translocation to the PM, where it suppresses Rac activity 

(100,101). The PM recruitment is achieved through a synergic cooperation between the 

FilGAP's PH domain, which binds both PtdIns(3,4,5)P3 and activated Arf6, and the CC 

domain which harbors a PBR (133).  

 ArhGAP22, which does not bind to filamin A, localizes to endosomes from where 

it translocates to membranes ruffles to inhibit Rac activity, lamellipodia formation and 

cell spreading (134). Its RacGAP activity is promoted by an Akt/PI3K 

(phosphatidylinositol-4,5-bisphosphate 3-kinase)-dependent phosphorylation and a 

subsequent 14-3-3 protein recruitment, in a process requiring the PH domain (102). 

Moreover, the CC domain seems to regulate the RacGAP activity since its absence  
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Table1.2  ̶  PBRs from lipid binding domain-containing RhoGAPs 

RhoGAP Target Organism PBR at the N-terminus of the GAP domain Lipid binding 

domain 

Entrya 

ArhGAP22 Rac (134) H. sapiens 
M. musculus 

12-ARSKSLVMGEQSRSPGRMPCPHR 

17-TRSKSLVMGEQSRSPGRPLVPHKb 

PH 

  

Q7Z5H3 

Q8BL80 

ARhGAP25 Rac (135) H. sapiens 
M. musculus 

4-KLPRNWDFNLKVEAAKIARSR 

4-KLPRNWDFNLKAEASKIARSR 

PH P42331 

Q8BYW1 

ArhGAP09 Rac1 and 

Cdc42 (136) 

H. sapiens 
M. musculus 

497-RRSSIRGPEGTEQNRVRNKLKRLIAKR 

394-RRTSSRCAEGTDQKNRVRNKLKRLIAKR 

PH Q9BRR9 

Q1HDU4 

 

ArhGAP12 Rac1 (137) H. sapiens 
M. musculus 

624-KKTKKNLKKFLTRR 

616-KKTKKNLKKFLTRR 

PH Q8IWW6 

Q8C0D4 

ArhGAP15 Rac1 (138) H. sapiens 
M. musculus 

248-KNRVKSRLKKFITRRPSLKTLQEKGLIK 

254-KNRVKSRLKKFISRRPSLKTLQEKGLIK 

 

PH Q53QZ3 

Q811M1 

CAMGAP1 Rac1 and 

Cdc42 (139) 

H. sapiens 
M. musculus 

666-KVRHKLRKFLQRR 

646-RVRHKLRKFLQRR 

PH Q6ZUM4 

A2AB59 

RA-RhoGAP RhoA 

(140,141) 

H. sapiens 
M. musculus 

326-KTFKRRRSIINWAFWR 

326-KTFKRRRSIINWAFWR 

PH Q9P2F6 

Q6IFT4 

srGAP1 Cdc42 and 

RhoA (142) 

H. sapiens 
M. musculus 

211-RRSSVKKIEKMKEKRQAKYSENKLKSIKAR 

211-RRSSVKKIEKMKEKRQAKYSENKLKSIKAR 

 

BAR/FCH Q7Z6B7 

Q91Z69 

srGAP2 Rac1 (143) H. sapiens 
M. musculus 

226-KKIEKMKEKRQAKYTENKLKAIKAR 

226-KKIEKMKEKRQAKYTENKLKAIKAR 

BAR/FCH O75044 

Q91Z67 

srGAP3 Rac1 (144) H. sapiens 
M. musculus 

211-RRSSVKKIEKMKEKRQAKYSENKLKCTKAR 

211-RRSSVKKIEKMKEKRQAKYSENKLKCTKAR 

BAR/FCH O43295 

Q812A2 

α-Chimaerin Rac1 (145-

147) 

H. sapiens 
M. musculus 

182-KRLTSLVRRATLKENEQIPKYEK 

182-KRLTSLVRRATLKENEQIPKYEK 

C1 P15882 

Q91V57 

β-Chimaerin Rac1 (145-

147) 

H. sapiens 
M. musculus 

163-REKVSRRLSRSKNEPRK 

- 

C1 P52757 

- 

RacGAP1 Rac1, Cdc42 

and RhoA 

(126,148,149) 

H. sapiens 
M. musculus 

173-KTFKLKKREKRRSTSR 

174-KNFKMKKREKRRSNSR 

C1 Q9H0H5 

Q9WVM1 

Myosin IXa  RhoA (150) H. sapiens 
M. musculus 

1819-RKEFKENKEPSPKAKRKR 

1822-RKEFKENKEPSPKAKRKR 

C1 B2RTY4 

Q8C170 

Myosin IXb RhoA (151) H. sapiens 
M. musculus 

1480-KGKKNRNVKIGKITVSEKWR 

1438-KGKKNRNRKVGQITVSEKWR 

C1 Q13459 

Q9QY06 

DCL1 RhoA, RhoB 

and RhoC 

(117) 

H. sapiens 
M. musculus 

1051-KHGFSWAVPKFMKRIKVPDYKDR 

 615-KHGFSWAVPKFMKRIKVPDYKDR 

START Q96QB1 

Q9R0Z9 

DLC2 RhoA, RhoB 

and RhoC 

(117) 

H. sapiens 
M. musculus 

636-KHGWTWSVPKFMKRMKVPDYKDK 

636-KHGWTWSVPKFMKRIKAPDYRDK 

START Q9Y3M8 

Q923Q2 

DLC3 RhoA, RhoB 

and RhoC 

H. sapiens 
M. musculus 

545-KQGWVWSMPKFMRRNKTPDYRGQ 

541-KQAWVWSMPKFMKRNKTPDYRGH 

START Q92502 

Q8K031 
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aNCBI protein entry number. 

bBasic amino acids that make up the PBR are bolted. 

(117) 

ArhGAP32 Cdc42, Rac1 

and RhoA 

(152,153) 

H. sapiens 
M. musculus 

333-KPVSKKHGKLITFLRTFMKSRPTKQKLKQR 

333-KPVSKKHGKLITFLRTFMKSRPTKQKLKQR 

PX A7KAX9 

Q811P8 

ArhGAP33 TC10 and 

Cdc42 (154) 

H. sapiens 
M. musculus 

280-RPRGKLAGLLRTFMRSRPSRQRLRQR 

304-RPRGKLAGLLRTFMRSRPSRQRLRQR 

PX O14559 

Q80YF9 

GRAF1 Cdc42 and 

RhoA (155-

158) 

H. sapiens 
M. musculus 

251-KKMKENPLEHK 

251-KKMKENPLEHK 

 BAR/PH Q9UNA1 

Q6ZQ82 

GRAF2 RhoA and 

Cdc2 (159) 

H. sapiens 
M. musculus 

251-KIRQNPKDHKR 

251-KIRQNPKDQKR 

BAR/PH A1A4S6 

Q6Y5D8 

OPHN1 Rho (160,161) H. sapiens 
M. musculus 

250-KKRMKEAPQTCK-261 

250-KKRMKEAPQTCK-261 

BAR/PH O60890 

Q99J31 

Abr Cdc2 and Rac 

(162,163) 

H. sapiens 
M. musculus 

619-KVEFSMKFTSRDMSLKRTPSKK 

619-KVEFSMKFTSRDMSLKRTPSKK 

C2/PH Q12979 

Q5SSL4 

Bcr Cdc2 and Rac 

(162,163) 

H. sapiens 
M. musculus 

1041-KRMPSRKQTGVFGVKIAVVTKR 

1040-KRMPSRKQTGVFGVKIAVVTKR 

C2/PH P11274 

Q6PAJ1 

ArhGAP21 Cdc42 

(164,165) 

H. sapiens 
M. musculus 

1105-RKLLSKDDTSPPKDKGTWRKGIPSIMRK 

1099-RKLLSKDDTSPPKDKGTWRRGIPSIVRK 

PDZ/PH Q5T5U3 

Q6DFV3 

ArhGAP23 - H. sapiens 
M. musculus 

893-KKNKKAAPRAFGVR 

889-KKNKKAAPRAFGIR 

PDZ/PH Q9P227 

Q69ZH9 

SYD-1 - H. sapiens 
M. musculus 

7-RKTFSRLRGREKLPRKKSDAKER 

7-RKTFSRLRGREKLPRKKSEAKDR 

PDZ/C2 Q6ZW31 

Q9DBZ9 
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impairs the PM localization and the ArhGAP22-induced cell spreading suppression in 

human melanoma A7 cells (134).  

 ArhGAP25 is a newly discovered RacGAP involved in cell trafficking and a 

negative regulator of phagocytosis with expression restricted to hematopoietic cells 

such as leukocytes, where it is found both in the cytosol and the PM (135). The domain 

structure of this RhoGAP is very similar to that of FilGAP and ArhGAP22, and 

comprises PBRs in both its N- and C-termini (within the CC domain), suggesting a 

conserved and shared mechanism within this subfamily governing the PM recruitment 

and the GAP activity.  

ArhGAP09, ArhGAP12, ArhGAP15 and CAMGAP1 (CIN85-associated multi-

domain-containing Rho1, ArhGAP27)  

 Members of this group share a domain structure consisting of a C-terminal 

RhoGAP, a central PH domain and, except for ArhGAP15, an N-terminal SH3 domain, 

as well as several repeated tryptophan residue (WW) motifs in the central region (Figure 

1.1A).  

 ArhGAP09 displays a RhoGAP activity towards Cdc42 and Rac1 and to a lesser 

extent RhoA. It is expressed predominantly in peripheral blood leukocytes, spleen, and 

thymus and belongs to a family of PH domains characterized by binding to the 

phosphoinositides in a non-canonical fashion (136). Also, ArhGAP09 mediates the 

crosstalk between the Rho GTPase and MAP kinase signaling by preventing Erk1/2 and 

p38 activation through binding to and sequestrating them (166).  

 ArhGAP12, which is a RhoGAP for Rac1, is ubiquitously expressed with 

regulatory roles notably in the developing brain wherein it regulates the excitatory 

synaptic structure and function (167). In NK2R-HEK cells, this RhoGAP suppresses the 

Rac1 activity at the blebbing membranes where it translocates, though the translocation 

mechanism is unknown (137). The inhibition of Rac1 activity accounts for the tumor-

suppressing activity of ArhGAP12 which is frequently targeted for transcriptional 

repression downstream of growth factors promoting tumorigenesis such as the 

hepatocyte growth factor (HGF) (168).  
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 ArhGAP15 was first characterized for its specific Rac1 activity in vitro, whereas 

its overexpression induced cell rounding and actin stress fiber formation, and increased 

cell contraction (138). The events are achieved at the cell periphery and are mediated 

by a PH domain-dependent translocation of ArhGAP15. As such, partial deletion of the 

PH domain disturbed the PM localization of ArhGAP15 and abolished its effects (138). 

Additionally, the PH domain is required for the binding between ArhGAP15 and Rac 

effectors, Pak1 and 2 kinases, which results in a mutual inhibition of both GAP and 

kinase activities (169). 

 Finally, CAMGAP1 is a ubiquitously expressed RhoGAP displaying an in vitro 

GAP activity towards both Rac1 and Cdc42 (139). It binds and regulates the endocytic 

and adaptor protein CIN85 suggesting its involvement in endocytosis, although the 

underlying mechanism is unknown (139).  

 OCRL (Oculocerebrorenal syndrome of Lowe) and INPP5B (inositol 

polyphosphate 5-phosphatase B ) 

 OCRL (also known as INPP5F, inositol polyphosphate 5-phosphatase F, and 

OCRL1) and its homologous INPP5B (OCRL2) are members of the inositol 5-

phosphatase family of enzymes characterized by dephosphorylating selectively the 

PtdIns(4,5)P2 and/or PtdIns(3,4,5)P3 at the position 5 of the inositol ring (170). As 

distinct members, OCRL and INPP5B contain in addition to the IPPc (Inositol 

polyphosphate phosphatase catalytic) domain characteristic of the 5-phosphatases, 

additional N-terminal PH, C-terminal ASH (ASPM–SPD2– Hydin), and RhoGAP 

domains. Mutations in OCRL are associated with Lowe syndrome (X-linked human 

disease) and Dent’s disease which are developmental disorders affecting eyes, kidney 

and brain (170). The mutations generally impairs the phosphatase activity leading to the 

accumulation of PtdIns(4,5)P2 in different cell compartments affecting thereby many 

cellular processes (171). 

 OCRL is positioned primarily to the Golgi/TGN, but it is also found in most 

cellular membranes where it oversees the protein recruitment (172). The membrane 

localization of OCRL is achieved through the module ASH/RhoGAP domain, as the PH 

domains of both OCRL and INPP5B lack the basic clusters necessary for 
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phosphoinositide binding (173). The mechanism involves a formation and a cooperation 

of two complexes: the first is formed between the ASH domain and the adaptor protein 

APPL1 and Rab5; the second between the catalytically inactive RhoGAP domain and 

Rac1 and Cdc42 in a GTP-dependent manner, together the complexes coordinate the 

PM recruitment of OCRL (174). On the other hand, INPP5B contains in addition to the 

PM anchoring domains found in OCRL, a C-terminal CAAX motif that may help with its 

PM recruitment (173). 

RA-RhoGAP (Ras-associating-RhoGAP) 

 RA-RhoGAP (ArhGAP20) was initially characterized for its role in the Rap1-

dependent neurite outgrowth and for mediating the Rho and Rap crosstalk. This 

RhoGAP contains in addition to its N-terminal PH domain, a RhoGAP domain which 

selectively represses RhoA activity, and an RA domain mediating the binding to Rap1 

(140,141). The RhoGAP activity is modulated and enhanced by Rap1 binding which 

lead as a result, to RhoA inhibition and neurite extension (141). The PM recruitment of 

RA-RhoGAP is conducted via the PH domain which interacts with phosphatidic acid 

(PA) for stability. Indeed, an RA-RhoGAP mutant harboring a PH-domain lacking the 

PA-binding ability is still able to localize to the PM but in a much lower proportion than 

the wild-type protein, stressing the need for a PH/PA association to ensure a strong and 

stable PM binding (175).  

ARAP (ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain) 1, ARAP2 

and ARAP3  

 Members of this subfamily regulate both Arf and Rho GTPases through their 

ArfGAP and RhoGAP domains respectively, making them the convergence point of 

these small GTPase signaling pathways. Their multidomain structure comprises in 

addition to five PH domains, a SAM and an RA domain in the N- and C-termini, 

respectively. Through their complex structure, they are involved in a wide range of 

cellular functions including the regulation of cell shape and motility, which is carried out 

mainly through the modulation of Arf6, Rac1, Cdc42 and RhoA GTPase activities 

(176,177). As well, the presence of several functional domains implies a tight 

spatiotemporal control of their activities and effector selection, and also involves 
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intramolecular interactions and coordination between their different domains. For 

instance, ARAP1 targeted to the Golgi, has its Arf- and RhoGAP activities collaborate to 

induce cell rounding and inhibit cell spreading (177). Also, ARAP1 activated by Rap1 

binding to the RA domain, modulates Rac1 and RhoA activities and contributes thereby 

to the PDGF-induced structure formation at the leading edge of migrating NIH3T3 cells 

(178). Similarly, ARAP2 participates in cell migration and adhesion by regulating Arf6 

activity, integrin β1 trafficking and focal adhesion formation (179). Likewise, ARAP3 by 

inhibiting RhoA and mediating the cycling of Arf6, stimulates the growth factor-induced 

lamellipodia expansion, while ARAP3-deficient cells display round-cell shape, fine 

stress fibers and reduced lamellipodia (180). 

 The membrane phospholipid composition and concentration are the critical 

parameters weighing on ARAPs activity and substrate selection. ARAPs bind 

preferentially to the PtdIns(3,4,5)P3-enriched cellular membranes principally through 

their N-terminal PH-domain tandem (Figure 1.1A) (181). However, basic residue 

clusters from other PH domains and/or regions elsewhere in the protein are necessary 

for a strong binding and activity stimulation, since deletion of any PH domain (i.e., in 

ARAP3) prevented the interaction with PtdIns(3,4,5)P3 (181). Still, the recruitment to the 

PM is not always mediated by the PH domain/PtdIns(3,4,5)P3 binding. Indeed, ARAP1, 

in mediating EGFR-regulated endocytic trafficking, is recruited to the PM independently 

of the PH domain/PtdIns(3,4,5)P3 association, suggesting additional/alternative 

mechanisms to conduct the PM recruitment (182). Yet, the PH domain/PtdIns(3,4,5)P3 

binding is still required for a full GAP activity and improved endocytic function (182). 

1.4.2 BAR/FCH-domain containing RhoGAPs 

 BAR domains are highly-conserved motifs of amphiphysins which sense and 

bind to the negatively-charged membranes. They are also able to induce morphological 

changes such as membrane deformation/curvature and tubulation, making them 

essential domains for protein-membrane interactions (183,184). FCH/F-BAR domains 

are a subclass of BAR domains and are also centerpieces of membrane-deforming 

proteins, mediating the crosstalk between the actin cytoskeleton and the PM in various 

processes such as lamellipodia and filopodia formation during endocytosis, chemotaxis 
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or polarity (184-186). Furthermore, these domains engage in keys regulatory roles 

notably for Rho GTPases, by controlling the cellular localization and the GAP activity of 

many RhoGAPs [reviewed in (187)]. 

SH3BP1 (SH3 Domain Binding Protein 1), Nadrin (RhoGAP interacting with CIP4 

homologues, RICH1) and RICH2  

The three RhoGAPs of this subfamily share a domain structure consisting of an 

N-terminal BAR domain, a central RhoGAP domain and a C-terminal proline-rich region. 

SH3BP1 (also known as 3BP1) displays a GAP activity toward Rac1 and Cdc42 and 

modulates the Rho GTPase/actin cytoskeleton-related functions such as cell migration, 

epithelial cell-cell adhesion and morphogenesis (188,189). 

 Nadrin (also called, RICH1 and ArhGAP17) is well characterized for its actin 

cytoskeleton regulation, specifically in the nervous system, and for its roles in 

exocytosis, platelet adhesion and aggregation, as well as epithelial-cell polarity. Nadrin 

and its five isoforms display a RhoGAP activity towards RhoA, Cdc42 and Rac1 in an 

isoform-specific fashion (103,190).The GAP activity is regulated at least by Src-

mediated tyrosine phosphorylation and by BAR domain-mediated subcellular 

localization (103-106). Indeed, the BAR domain is actively involved in the membrane-

curvature sensing /formation and in the recruitment to the PM, guiding and positioning 

therefore the RhoGAP activity of Nadrin next to its Rho GTPase targets (191,192). 

 Rich2 (also known as, Nadrin1 and ArhGAP44) regulates Rac1 and Cdc42 

GTPase activities and cytoskeletal dynamics mostly in epithelial-cell polarity and in the 

central nervous system during spine morphogenesis (193-195). For instance, in 

dendritic spines of cultured hippocampal neurons, Rich2 is involved in synaptic plasticity 

and in synaptic long-term potentiation (LTP) regulation. The mechanism involves 

association of the RhoGAP to postsynaptic scaffolding protein, Shank3 and its 

translocalization to Rab11-positive recycling endosomes wherein it controls the 

exocytosis and the recycling of the GluA1 AMPA-receptor subunit (193). The events are 

mediated by the BAR domain, which directs Rich2 to the endosomal recycling 

compartment and ensures its implication in the AMPA receptor/Rich2-dependent 

recycling (193).  
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srGAP1 (Slit-Robo GTPase-activating protein 1), srGAP2, srGAP3 and ArhGAP4 

 The RhoGAPs of this subfamily are key molecular integrators of the external-

guidance cues in the Slit-Robo repulsive system of axon guidance and neuronal 

development (142,196). Disruptions of these well-conserved srGAP-regulated functions 

are often associated with brain developmental disorders such as mental retardation, 

learning and memory deficiencies (144,196-198). srGAP and ArhGAP4 consist of an N-

terminal FCH/F-BAR domain, a central RhoGAP domain, and a C-terminal SH3 domain 

mediating the binding to the intracellular domain of the receptor Robo (142,197). While 

srGAP2 and srGAP3 downregulate preferentially Rac1 activity, srGAP1 in a Slit dose-

dependent manner, targets both Cdc42 and RhoA, and ArhGAP4 is active towards 

Cdc42 and Rac1 (142,143,199,200). 

 The biological functions of srGAP1, 2 and 3 are frequently mediated by their 

FCH/F-BAR domains (hereby designed as, F-BAR1, F-BAR2 and F-BAR3 respectively), 

which can interact with each other to form functional heterodimers. The domains display 

also differential binding affinities to the PM-negatively charged phospholipids, with F-

BAR2 showing the highest binding affinity (201). These features allow complementary 

and/or opposite regulatory effects of these RhoGAPs in given cellular processes such 

as, cell-morphogenesis which they regulate synergically by their differential modulation 

of the membrane deformations. For instance, srGAP2 (F-BAR2) and srGAP3 (F-BAR3) 

stimulate filopodia formation, whereas srGAP1 (F-BAR1) prevents it in both cortical 

neurons and non-neuronal cells (198,201). The targeting of srGAP2 to the contact-

protrusions by its F-BAR2 domain, permits the spatiotemporal inhibition of Rac1 and 

protrusion extension, leading to contact inhibition of locomotion (CIL) of migrating 

fibroblasts (143). Finally, the F-BAR3 domain-mediated srGAP3 translocation to the PM 

at the leading edge leads to the inhibition of lamellipodin, a key protein in actin 

dynamics and cell protrusion formation, and subsequently to the suppression of the 

Rac-WAVE signaling and lamellipodia formation (202). 

1.4.3 C1-domain containing RhoGAPs 

 C1 and C2 LBDs have been first characterized as cysteine-rich conserved 

regions among protein kinase C (PKC) isoforms (203,204). Later, structural studies 
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provided more information about the lipids they bind and the mechanisms of recognition 

(204,205). C1 domains are motifs with approximatively 50 amino acids, with a zinc 

finger cysteine-rich and compact structures well characterized for binding to lipid second 

messenger n-1,2-diacylglycerol (DAG) and phorbol esters (204,206,207). Yet, not all C1 

domains bind DAG and those which do not are classified as atypical C1 domains. The 

C1-DAG/phorbol ester binding mediates the regulation of subcellular localization of 

numerous proteins and allows their recruitment to the cellular membranes (206,207) 

 α and β-chimaerins  

 Chimaerin subfamily members better known for their RhoGAP activity towards 

Rac1, are involved in numerous cellular events, including neuritogenesis and 

development, and in diseases such as cancer progression and Alzheimer’s (145-

147,208-211). This subfamily is composed of five proteins namely, α1-, α2-, β1-, β2- 

and β3- chimaerins, all originated from alternative splicing of two genes: CHN1 

(ARHGAP2, CHN) and CHN2 (ARHGAP3, BCH)(212). They all harbor a C-terminal 

RhoGAP domain and an N-terminal SH2 domain mediating the binding to receptor 

tyrosine kinases (RTKs), as well as a central C1 domain which binds with high affinity to 

DAG and phorbol esters.  

 The RhoGAP activity and subcellular localization are regulated basically by 

phorbol esters and DAG through binding to the C1 domain (212). For instance, 

activation of growth factor receptors such as EGFR, which induces DAG production by 

phospholipase C (PLC), stimulates both activity and PM relocalization of chimaerins 

(212). Interestingly, both α2- and β2-chimaerins present an auto-inhibitory mechanism 

involving intramolecular contacts, which mask and prevent the C1 and the RhoGAP 

domains from interacting with membrane lipids and GTP-Rac1 respectively (213). 

Eventually, the binding of phorbol esters/DAG disturbs the inhibitory contacts and 

induces conformation changes allowing the exposure of both the C1 and RhoGAP 

domains leading subsequently, to PM translocation of the chimaerin and stimulation of 

its GAP activity (214).  

 Moreover, PM localization implicates other motifs on the RhoGAP which bind 

various partners in a DAG-dependent fashion. As an example, the PM translocation of 
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β2-chimaerin and the inhibition of Rac1 activity induced by PMA (phorbol 12-myristate 

13-acetate) stimulation requires a simultaneous coordination between the DAG/C1 

binding and the association to protein adaptor Nck1, which is achieved through an N-

terminal, atypical proline-rich motif within the RhoGAP domain (215). Furthermore, the 

C1 domain can mediate the subcellular compartmentalization of chimaerins through 

protein-protein interactions. As such, the perinuclear translocation of β2- chimaerin is 

mediated by an interaction with an endoplasmic reticulum/Golgi protein, p23/Tmp21 

which serves as a C1-docking site (216).  

RacGAP1 

 RacGAP1 [also referred to as Male germ cell Rac GAP (MgcRacGAP)/CYK-4)] 

consists of a C-terminal RhoGAP domain flanked N-terminally by a C1 domain, and a 

long N-terminal region with a PBR. It is active towards Rac1, Cdc42 and RhoA and is an 

important regulator of cell cycle and mitosis, although whether the GAP activity is 

relevant to this regulation is still unclear (126,148,149). During mitosis, RacGAP1 

localizes to the mitotic spindle where it forms complexes with key cytokinesis regulators, 

such as the kinesin-like protein, ZEN-4/CeMKLP1, Ect2, MKLP1, Aurora B and PRC1 

(148,217). The protein complexes are crucial for a precise spatiotemporal localization of 

the different binding partners, emphasizing the significance of the RacGAP1 role for a 

normal completion of the cytokinetic process (125,149,217). 

 In addition to its physiological function in modulating cytokinesis, dysregulation of 

RacGAP1 has been associated to tumorigenesis in many cancers. For instance, it has 

been shown to collaborate with Ect2 to promote tumor recurrence, growth and 

metastasis in human hepatocellular carcinoma through regulation of the Rho/ERK 

signaling axis (124,125). Similarly, a tumor promoting role of this protein has been 

documented in breast cancer (126). Indeed, high RacGAP1 expression levels have 

been detected in many breast-cancer cell lines, whereas its depletion resulted in 

increased RhoA activity and cell spreading, and induced cell proliferation defects 

coupled to cell growth inhibition as a result of cytokinesis failure (126). 
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GMIP(GEM Interacting Protein) and ArhGAP29 

 GMIP and ArhGAP29 are ubiquitously expressed and share a central C1 domain 

and a RhoGAP domain, that directs a GAP activity towards RhoA (218,219). ArhGAP29 

[also referred to as PTPL1-Associated RhoGAP 1 (PARG1) ] has been characterized 

first as a RhoGAP interacting with the phosphatase PTPL1 by binding to its PDZ 

domain, and the complex was proposed to collaborate to inhibit RhoA activity (219). 

Although ArhGAP 29 contains a C1 domain, the translocation to the PM seems to be 

mediated by an unconventional C-terminal motif (PQFS) that binds to PDZ domains as 

the following example will illustrate (219,220) .  

 Indeed, it has been shown recently that ArhGAP29 binds to the PDZ domain of 

Radil [ras-association (RA) and dilute domain-containing protein], an effector of the 

small GTPase Rap1, and to form a complex with target proteins at the PM to regulate 

junctional tightening and endothelial barrier functions. Upon its activation, Rap1 

translocates to the PM Radil and its close relative, adaptor protein Rasip1 (ras-

interacting protein 1) by binding their RA domains, while ArhGAP29 is translocated to 

the PM through binding to Radil. At the PM, the three proteins Radil, Rasip1 and 

ArhGAP29 form a regulatory-trimeric complex which cooperates to inhibit RhoA activity 

and stress fiber formation, leading to increased junctional tightening and improved 

endothelial barrier function (220,221). 

 GMIP has been identified in a yeast two-hybrid screen using Gem, a Ras-related 

protein (218). GMIP, which has been associated to major depressive disorder (MDD), is 

imperative in neurite growth, axonal guidance and neuronal migration, a function that it 

exerts by antagonizing the RhoA signaling pathway (222,223). GMIP is enriched at the 

PM where it inhibits RhoA activity but the mechanism of the translocation is unclear and 

may involve a recruitment via active Gem (218,224).  

Myosin IXa and b 

 The single-headed actin motors proteins, Myosin IXa (Myr7) and Myosin IXb 

(Myr5) are a class out of twenty-four classes forming the superfamily of myosins, a 

diverse group of molecular motors implicated in cellular transport of different biological 

molecules such as vesicles and organelles (225). The multidomain proteins, which are 
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the largest characterized RhoGAPs, share a domain structure including an N-terminal 

RA domain next to a large motor domain (MYSc, the head), several calmodulin-binding 

motifs (IQ, the neck), an atypical C1 domain and a C-terminal RhoGAP domain (the tail) 

that displays a specific activity toward RhoA (151,225,226).  

 The subcellular localization of these RhoGAPs is determinant for their RhoGAP 

function. They are frequently localized to regions with active F-actin polymerization, 

wherein they can modulate RhoA activity and the RhoA-related actin-cytoskeletal 

remodeling (226,227). Likewise, Myosin IXb is targeted to extending ruffles, filopodia 

and lamellipodia, and its recruitment is achieved by the Myosin IXb-motor activity, 

through a conserved polylysine cluster (KKKK) within the ATPase domain (227). Finally, 

Myosin IXa has been shown to play key roles in the complex process of collective-cell 

migration by regulating Rho activity in cell-cell contacts at the PM (226). 

1.4.4 SEC14-domain containing RhoGAPs 

 The phosphatidylinositol-transfer protein (Sec14) from yeast, which mediates the 

exchange of phosphatidylinositol and phosphatidylcholine at the cellular membranes, is 

an LBD involved in many cellular processes such as, cellular trafficking and vesicle 

budding from the Golgi complex (228). A Sec14-homology domain is found several 

mammal proteins including RhoGEF and RhoGAPs, and is involved in many signaling 

events by mediating interactions with the negatively-charged membrane phospholipids 

(229,230).  

p50RhoGAP and BPGAP1 [ (BNIP-2 and Cdc42GAP homology)-domain-

containing, proline-rich and Cdc42 GAP-like protein 1] 

 p50RhoGAP (also known as, ArhGAP1, Cdc42GAP and RhoGAP1), which is 

among the first RhoGAPs to be characterized, shares 54% sequence identity with its 

homologous BPGAP1 and are both ubiquitously expressed (147,230). They share a 

domain structure consisting of an N-terminal SEC14/BCH (BNIP-2 and Cdc42GAP 

homology) and a C-terminal RhoGAP domains. Through their functional GAP domain 

and GAP activity, they regulate a wide range of signaling pathways including the actin-

cytoskeleton remodelling and cell motility (231-233). The RhoGAP activity of 

p50RhoGAP is directed toward RhoA, Cdc42 and Rac1. BPGAP1, on the other hand, 



 

 

31 | P a g e  

 

although it interacts with all three Rho GTPases, its GAP activity is directed 

preferentially towards RhoA. Of note, many factors may affect their GAP activity 

including for instance, the prenylation of the small GTPase effector and the 

translocation to the PM (234,235). The SEC14/BCH domain of both RhoGAPs mediates 

significant regulatory functions such as, conduction of intra and intermolecular protein-

protein interactions, interaction with the membrane phospholipids and regulation of the 

GAP activity (232,236-238). 

 Notably, the p50RohGAP activity towards non-prenylated Rac is auto-inhibited by 

intramolecular interactions between residues in the C-terminal GAP domain and amino 

acids (1-48 and 169-197) from the SEC14/BCH domain. However, this effect is 

prevented and the GAP activity towards Rac restored following expression of 

prenylated-Rac or p50RohGAP-deletion mutants lacking the indicated N-terminal 

residues (236). 

 Remarkably, recent findings unveiled an exclusive and interesting regulation 

mechanism of RhoA by p50RhoGAP involving the SEC14/BCH domain. Indeed, this 

domain has been shown to bind and sequester RhoA both in its GTP- or GDP-bound 

states, preventing thus its inactivation by the adjacent RhoGAP domain (232). 

Additionally, the SEC14/BCH domain is involved in targeting p50RhoGAP to the 

endosomal membrane, wherein it colocalizes with the small GTPases, Rab11 and 

Rab5, and where it might be involved in the endocytic process by mediating the 

crosstalk between Rap and Rho GTPases (237). Finally, BPGAP1 through a versatile 

SEC14/BCH domain, has been shown to mediate the crosstalk between Ras and Rho 

signaling in cell differentiation and morphogenesis (239). 

1.4.5 START-domain containing RhoGAPs 

 The START domain is an LBD found in several signaling proteins such as StAR 

and HD-ZIP and engages in a variety of protein/lipid interactions notably with membrane 

phospholipids (240). It is found also in large-multidomain proteins where it contributes 

often to the regulation of the adjacent domains on the same protein such as the 

RhoGAP domain and the homeodomain (240,241).  
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DLC (Deleted in liver cancer) RhoGAPs 

 The RhoGAP subfamily of DLC proteins comprises three members: DLC1, DLC2 

and DLC3, and several alternative splicing isoforms. They are ubiquitously expressed 

and composed of a C-terminal START domain, a RhoGAP domain, a functional PBR 

and finally, except for DLC3, a sterile alpha motif (SAM) domain. They all display a 

RhoGAP activity towards RhoA and by extent, RhoB and C (117,119,120). The DLC 

proteins are well characterized both in vitro and in vivo for their tumor-suppressing 

activity and as such, they are involved in the inhibition of cell growth, proliferation, 

migration and invasion, as well as tumor progression and metastasis (118-120). Many 

of the above functions are carried out through the control of the actin cytoskeleton by 

spatiotemporal inhibition of Rho signaling at the membranes. DLC1, a potent tumor-

suppressor which is deleted in various cancers and the most studied member of this 

family, has been shown to be recruited to different cellular compartments, notably to 

focal adhesions and to the leading edge of migrating cells wherein it suppresses the 

Rho signaling (118,119). Interestingly, a novel PBR 

(KHGFSWAVPKFMKRIKVPDYKDR) (Tables 1.1 and 1.2), adjacent to the RhoGAP 

domain has been reported to modulate DLC1 activity in vitro and in vivo, and to regulate 

its effects on Rho signaling in vivo (34). Moreover, the PBR is sufficient to carry out the 

DLC1 recruitment and binding to PtdIns(4,5)P2-enriched membranes in vitro (34). 

However, DLC1 recruitment to the membranes in vivo seems to require the cooperation 

of the PBR with other LBD domains such as, the SAM and START domains, and/or 

other DLC1 motifs mediating interactions with proteins at the translocation site similar to 

tensin in focal adhesions (34,242-244). This is likely due to the low binding affinity of 

PBRs for phospholipids making them inadequate to ensure alone the PM recruitment in 

vivo (7,8,11). 
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1.4.6 Multiple LBD-containing RhoGAPs 

GRAF1 (GTPase regulator associated with focal adhesion kinase-1), GRAF2, 

GRAF3 and OPHN1 (Oligophrenin-1) 

 The RhoGAPs of this group present a domain organization consisting of two 

LBDs, an N-terminal BAR and a central PH domains, a central RhoGAP domain, and 

except for OPHN1, a C-terminal-SH3 domain.  

 GRAF1, the founding member of this subfamily is found as a dimer with a 

RhoGAP activity for Cdc42 and RhoA. In addition, it is a key regulator of actin dynamics 

and is involved in a variety of cellular signalings such as endocytosis, cell migration and 

adhesion, and membrane fusion (155-158). Most of this functions are dependent of the 

GRAF1 binding to and induction of membrane curvatures mediated by the PH and BAR 

domains (245). To illustrate, the GRAP1 role in the small GTPase-controlled endocytic 

pathway, the clathrin-independent carrier (CLIC), is mediated by the PH and BAR 

domains which target the RhoGAP to these tubular, PtdIns(4,5)P2-enriched membrane 

carriers (158). Consequently, GRAF1 localization to and coating of the CLICs permits 

the endocytic-membrane turnover at the leading edge and at the cell/matrix contact 

sites. In addition, the RhoGAP activity towards Cdc42 at the leading edge of the 

migrating cells facilitates the control of cell migration, adhesion and spreading 

(155,157). Besides, GRAF1 is a key element in muscle differentiation, fusion and repair 

after injury, which are driven in a BAR domain-dependent manner. As such, it has been 

shown that during myogenesis GRAF1, which is transiently upregulated in myoblasts, is 

recruited to the PM via the BAR domain wherein it downregulates the RhoA activity and 

induces muscle differentiation (246). Similarly, GRAF1 and GRAF2 are required for 

myotube formation and myoblast fusion, which they regulate by promoting the 

translocation to PM of the fusogenic ferlin proteins, in a BAR domain-mediated manner 

(247). Furthermore, GRAF1 contributes to the fusion/repair of damaged muscle PM by 

targeting to the injury site, dysferlin, a protein involved in rapid membrane repair (248). 

GRAF2 inhibits both the RhoA and Cdc2 GTPase activities and is ubiquitously 

expressed with high expression levels detected in the skeletal muscle (159). GRAF3, a 

newly characterized RhoGAP with expression restrained to smooth muscle cells 
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(SMCs), downregulates both the RhoA activity and signaling in SMCs to ensure a 

normal blood pressure homeostasis (156). OPHN1 is expressed abundantly in the brain 

and is one of the proteins associated to XLID (X-linked intellectual disability) syndrome 

(249). OPHN1 regulates the clathrin-mediated endocytosis (CME) and localizes to 

endocytic sites where its RhoGAP activity suppresses the Rho signaling pathway and 

thereby, inhibits endocytosis (160,161). The BAR domain plays a major role in the 

OPHN1 regulation, likely by directing its localization to the cellular membranes. For 

instance, genetic aberrations such as deletions or insertions affecting this domain have 

been documented in patients suffering from OPHN1-related mental retardation or XLID 

syndrome (249,250).  

Bcr (Breakpoint cluster region) and Abr (Active Bcr-related) 

 BCR was first characterized as a part of the fused BCR-ABL gene which resulted 

from a translocation between the chromosome 9 and 22. The fusion product, the Bcr-

Abl protein, is a functional oncogene that causes chronic myelogenous leukemia (251). 

The native Bcr and its homologous Abr are multidomain-protein RhoGAP regulators 

harboring a RhoGEF and a RhoGAP domains flanking a central PH and C2 LBDs, and 

only in Bcr, an extended N-terminal region with an RA domain. The RhoGAP domain of 

both proteins is active towards Cdc2 and Rac, whereas the RhoGEF domain stimulates 

the GTPase activity of Cdc42, RhoA and Rac (162,163,251). The presence of the 

RhoGEF and RhoGAP domains suggests a simultaneous and/or 

sequential/spatiotemporal regulation of several Rho GTPase activities, to ensure high 

precision in specific subcellular-exclusive GTPase activity zones, during processes such 

as cytokinesis and wound healing (252). Although, due to their domain structure 

similarity, Abr and Bcr may present similar regulatory mechanisms in some cellular 

events, in many other processes each protein has its unique mechanism of regulation 

which could be independent of Rho GTPase modulation. For instance, Abr coordinates 

the crosstalk between Rho and Cdc42-dependent cytoskeleton remodeling by activating 

RhoA in the Rho-activity zone by the GEF domain, and inhibiting Cdc42 through the 

GAP domain during single-cell wound repair (252). On the other hand, Bcr regulates the 

cell polarity of the migrating astrocytes at the leading edge by inhibiting PKCζ and Rac1 
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activities. Indeed, Bcr, through its N-terminal region which is lacking in Abr, binds to 

members of the complex Par (Par3, Par6, and PKCζ)-Tiam1, responsible of PKCζ 

activation and Rac1 recruitment and activation at the leading edge, leading 

subsequently to the suppression of both Pac-Tiam1 and Rac1 activities (253).  

ArhGAP21 and ARHGAP23 RhoGAPs 

 ArhGAP 21 (also referred to as ArhGAP10) and it homologous ArhGAP23 are 

large RhoGAP proteins with in their N-terminus, a PDZ domain, a central PH domain 

and a C-terminal RhoGAP domain (254,255). ArhGAP21 has been reported to localize 

to cell-cell junctions bound to α-catenin, wherein it suppresses the Cdc42 GTPase 

activity and regulates the Arp2/3 complex and F-actin-cytoskeletal remodeling 

(164,165). Recently, a new role of this RhoGAP in cancer as a tumor-suppressor has 

been described. Whereas overexpression of this protein in ovarian cancer-cell models 

inhibited cell adhesion, migration and proliferation through Cdc42 downregulation, low 

ArhGAP21 expression levels have been associated to ovarian cancer progression 

(256). The regulation of ArhGAP21 subcellular localization and membrane targeting is 

crucial for its function, and to date two regulation mechanisms have been described. 

The first consists of a posttranslational modification by SUMO2/3 at lys-1443 residue, 

which induces a confinement of the SUMOylated protein and its function to restricted 

subcellular locations including the PM (257). The second mechanism is well 

characterized and highlights the cooperation between the LBDs and adjacent motifs. 

The mechanism consists of the recruitment of ArhGAP21 to the cellular membranes 

(i.e., Golgi) by binding to active Arf (ADP-ribosylation factor) 1 and 6 small GTPses 

(165). The binding occurs through a novel Arf binding domain (ArfBD) comprising the 

PH domain and the adjacent C-terminal region (929–1096) of ArhGAP21. The PH 

domain alone is not sufficient to drive the interaction with the membrane phospholipids 

and needs the C-terminal motif arranged in an α helix to bind to GTP-Arf (165,258). The 

Arf/ArhGAP21 interaction ensures the PM anchorage of the RhoGAP without affecting 

the GAP activity, since the GAP domain is exposed in a conformation allowing the 

interaction with membrane Rho GTPases (258).  
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HMHA-1 (Histocompatibility Minor HA-1) RhoGAP 

 HMHA-1, which is expressed mostly in hematopoietic cells and solid tumours, is 

a cancer therapeutic target and a recently characterized RhoGAP (259-262). This 

protein consists of an N-terminal FCH/BAR domain, a central C1 domain and a C-

terminal RhoGAP domain. The full-length protein (FL) colocalizes with Rho GTPases in 

cellular sites with high actin activity such as peripheral membrane ruffles (245). 

Intriguingly, the FL HMHA-1 protein displays little or no RhoGAP activity both in vitro 

and in vivo. Notably, the RhoGAP activity seems to be blocked by intramolecular 

interactions involving the N-terminal BAR-domain in an auto-inhibitory action, similar to 

the one found in other RhoGAPs like GRAF family members (245). However, the 

expression of HMHA-1 deletion mutants lacking the N-terminal BAR domain, namely the 

GAP-tail and the C1-GAP mutants, showed strong GAP activities in vitro towards 

Cdc42, RhoA and Rac1, and in vivo towards RhoA and Rac1 (262). Furthermore, these 

mutants via their GAP activity, induced important cell-morphological changes such as 

inhibition of focal adhesion formation, cell adhesion and spreading, which are all 

hallmarks of active RhoGAPs (262). Finally, the C1 domain and the C-terminal proline-

rich region encoding a PDZ-like binding motif, which likely bind to the negatively-

charged membranes, seem to regulate both the subcellular targeting of HMHA-1 and its 

GAP activity, since expression of the GAP region alone failed to localize properly to the 

cellular membranes and is unable to inhibit Rho GTPase activities (262). 

SYD-1 (Synapse-defective-1)  

 SYD-1 is a multidomain-RhoGAP protein which is mainly expressed in the brain 

and localized prominently to the presynaptic terminals, where it is involved in several 

neuronal regulation processes such as neurite outgrowth and axon guidance (263-265). 

In addition, SYD-1 is a key regulator of synaptic-vesicle trafficking and synaptic-signal 

transmission by its association to presynaptic RTKs and to various proteins, notably 

proteins from the active zone (263). SYD-1 consists of a C-terminal RhoGAP domain, a 

central C2 domain and several SH3 domains, as well as an N-terminal PDZ domain. 

The RhoGAP domain of SYD-1 from C.elegans has been reported to be catalytically 

inactive, since it lacks the key catalytic arginine characteristic of RhoGAP activity (266). 
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However, a RhoGAP domain-truncated SYD-1 decreased both the neurite outgrowth 

and their guidance, stressing the importance of this domain (266). Meanwhile, recent 

findings show that the RhoGAP domain could be active. Indeed, it has been shown that 

SYD-1 binds to active yeast MIG-2 GTPase (homologous of Rac) and inhibits its 

GTPase activity to promote axon guidance downstream of UNC-40 (DCC) and SAX-3 

(Robo) (267).  

1.4.7 PBR-containing RhoGAPs 

 About 18 RhoGAPs of this group present a domain structure without any known 

LBD, yet similar to the majority of RhoGAP proteins, they need a recruitment to the PM 

in order to conduct the GAP activity towards their active and PM-bound Rho GTPase 

targets. Interestingly, all these RhoGAPs contain at least one PBR N-terminal to the 

GAP domain (Table 1.3 and Figure 1.1C). Consistent with their role in mediating the PM 

recruitment for some RhoGAPs such as CdGAP and DLC1, the PBRs could be an 

alternative mechanism directing the PM localization of the RhoGAPs containing them. In 

this section the mechanisms governing the PM localization and the potential PBR 

contribution will be explored for these RhoGAPs. 

ArhGAP11A and ArhGAP11B  

 ArhGAP11A and ArhGAP11B are two proteins consisting of an N-terminal 

RhoGAP domain preceded by a PBR and for ArhGAP11A, a long C-terminal region  

(268,269). ArhGAP11B, a human-specific RhoGAP, emerged from a partial duplication 

of its homologous ArhGAP11A, which is expressed in the whole animal kingdom  

following the separation of human and chimpanzee lineages (268). Interestingly, 

ArhGAP11B has its highest brain-specific expression in the radial glia cells, through 

which it seemingly promotes the human neocortex expansion throughout evolution 

(268). Whereas the RhoGAP domain of ArhGAP11B seems to be catalytically inactive, 

ArhGAP11A activity preferentially targets RhoA activity both in vitro and in vivo  
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Table1.3  ̶  PBRs from RhoGAPs 

 

 

aNCBI protein entry number. 

bBasic amino acids that make up the PBR are bolted.  

RhoGAP Target Organism PBR at the N-terminus of the GAP domain Entrya 

ArhGAP11B  H. sapiens 15-RAFYGIKVKGVRGQCDRRRb Q3KRB8 

  ArhGAP11A RhoA (269) H. sapiens 
M. musculus 

5-RLVRLALLQHLRAFYGIKVKGVRGQCDRRR 
5-RLVRLALLQQLRAVYGIKVKGGRGQCDRRR 

Q6P4F7 
Q80Y19 

ArhGAP19 RhoA (270) H. sapiens 
M. musculus 

99-RSLMSLKRKEKGVIFGSPLT 
99-RSLMSLKRKEKGVVFGSPLT 

Q14CB8 
Q8BRH3 

ArhGAP36 - H. sapiens 
M. musculus 

149-RRRGNVVRRVFGRIRRFFSRRRNEPTLPREFTRRGRR 
137-RRRGNVVQRMLGRMRRFFSRRRNEPTLPREFTRRGRR 

Q6ZRI8 
B1AUC7 

ArhGAP40 - H. sapiens 
M. musculus 

103-RRLDIYARSVRRQHKTPVRDVR 
153-RRLDIYARSARRRQKAPVRDVR 

Q5TG30 
E9Q6X9 

RalBP1 Rac1 (271) H. sapiens 
M. musculus 

126-KIKEKPKEEKHKEEKHKEEKHKEKKSKDLTAADVVKQWKEKKKK 
126-KIKEKPKEEKHKEEKHKEEKHKEKKSKDLTAADVVKQWKEKKKK 

Q15311 
Q62172 

p85α - H. sapiens 
M. musculus 

79-RKKISPPTPKPRPPR 
79-RKRISPPTPKPRPPR 

P27986 
P26450 

p85β - H. sapiens 
M. musculus 

85-RPGPRPRGPRPLPAR 
85-RPGPRPRGPRPLPAR 

O00459 
O08908 

ArhGAP6 RhoA and 
Rac3 
(272,273) 

H. sapiens 
M. musculus 

253-KRKKSLRKKLDSLGKEKNKDK  
254-KRKKSLRKKLDSLGKEKNKDK 

O43182 
O54834 

ArhGAP18 RhoA and 
RhoC 
(274,275) 

H. sapiens 
M. musculus 

307- KQQKAVKIKTK 
307- KQQKAVKIKTR 

Q8N392 
Q8K0Q5 

ArhGAP28  RhoA (276) H. sapiens 
M. musculus 

363-KRNKTEKVKGRDNGIFGVPLTVLLDGDRKK 
367-KRNKTERVRGRDNGIFGVPLTVLLDNDRKK 

Q9P2N2 
Q8BN58 

Vilse Rac 
(277,278) 

H. sapiens 
M. musculus 

849- KYCYHKLQKAALTGAKKGLKKPNVEEIRHAK 
873- KYCYHKLQKAALTGAKKGLKKPNVEEIRHAK 

Q9C0H5 
P59281 

TAGAP  RhoA (279) H. sapiens 
M. musculus 

52-KKRKKVLSWPFLMRR 
52-KKRKKVLSWPSLMRK 

Q8N103 
B2RWW0 

p190 
RhoGAP-A 

Rho, Rac 
and Cdc42 
(280-286) 

H. sapiens 
M. musculus 

1214-RRRNILRSLRRNTKKPKPKPRPSITK  
1214-RRRNILRSLRRNTKKPKPKPRPSITK 

Q9NRY4 
Q91YM2 

p190 
RhoGAP-B 

Rho, Rac 
and Cdc42 
(280-286) 

H. sapiens 
M. musculus 

1225- KKIKKKTHKVKEDKKQKKKTK 
1225- KKIKKKTHKVKEDKKQKKKTK 

Q13017 
P97393 

ArhGAP30 Rac1 and 
RhoA (287) 

H. sapiens 
M. musculus 

2- KSRQKGKKKGSAKER 
2- KSRQKGKKKGSSKER 

Q7Z6I6 
Q640N3 

CdGAP Rac and 
Cdc42 (288) 

H. sapiens 
M. musculus 

2-KNKGAKQKLKRK 
2-KNKGAKQKLKRK 

Q2M1Z3 
A6X8Z5 
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(268,269). As such, ArhGAP11A regulates the cell division by controlling RhoA-

mediated cortical protrusion formation at M phase that otherwise can lead to cytokinesis 

failure (269).  

Several recent studies report both pro-tumorigenic and tumor-suppressing roles 

of ArhGAP11A in different cellular contexts. For instance, ArhGAP11A high-expression 

levels have been described in several human cancer specimens including colon and 

breast cancers, whereas positive correlations have been established between the 

expression levels and the aggressiveness of the tumors (126,289,290). Similarly, recent 

findings from a Rho GTPase-signaling transcriptome analysis by RNA-sequencing 

revealed that ArhGAP11A, among other RhoGAPs such as RacGAP1, is overexpressed 

in breast-cancer tissues suggesting a proto-oncogenic function (126,290). Defective 

ArhGAP11A-dependent cell cycle regulation is pointed out to be at the origin of the 

tumorigenic transformation noticed when this RhoGAP is overexpressed. Indeed, the 

tumorigenic role of ArhGAP11A is driven at least partly, through the RhoA activity 

suppression since ArhGAP11A knockdown resulted in high RhoA activation, cell cycle 

arrest at G1 phase and random-cell migration inhibition (126). Also, RhoA suppression, 

which inhibits stress fiber and focal adhesion formation, is coupled to Rac1 activity 

increase, conferring to the cancer cells enhanced migration and invasion abilities (289). 

By contrast, ArgGAP11A expression in mouse embryonic oligodendrocytes inhibits cell 

proliferation by promoting cell cycle arrest in response to DNA damage stress (291). 

Likewise, ArgGAP11A translocates to the nucleus, where it binds via its RhoGAP 

domain, to the tetramerization domain (TD) of the tumor suppressor p53 inducing 

conformation change and gene transcription regulation leading to cell apoptosis (291).  

ArhGAP19 

 This protein consists of an N-terminal RhoGAP domain, that targets RhoA activity 

both in vitro and in vivo, flanked by clusters of PBRs. ArhGAP19 is expressed 

predominantly in cells from hematopoietic origin and in germ cells, and the expression 

fluctuates during cell cycle progression spiking during mitosis, which suggests a 

regulatory role at this level (270).  
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ArhGAP36 

 ArhGAP36 is a recently characterized RhoGAP and an agonist of the Hedgehog 

(Hh) pathway. It contains an N-terminal transmembrane motif, a PBR and a RhoGAP 

domain likely to be catalytically inactive as it lacks the crucial arginine finger motif 

mediating the GTPase hydrolysis. Interestingly, the five alternative-splicing isoforms of 

ArhGAP36 have been reported to be overexpressed in medulloblastomas, where they 

regulate the onset and/or progress of these cancers in a non-canonical Hh pathway 

(292). 

RalBP1 (Ral binding protein 1) 

 RalBP1 is a protein mediating the Ras and Rho GTPase crosstalk and is 

therefore, involved in many cellular signaling pathways such as glutathione-conjugated 

electrophile transport, actin-cytoskeleton dynamics and endocytosis (293-297). It 

consists of a C-terminal ATP-binding region and several PBRs, a central RhoGAP 

domain active towards Cdc42 and Rac1 in vitro, and an N-terminal Ral binding domain 

(RBD) which binds Ral GTPases in a GTP-dependent manner (271,294,297). 

Interestingly, in vivo RalBP1 is required for cell adhesion-dependent Rac activation 

controlled by R-Ras in a Ral-independent manner. Indeed, the RhoGAP domain binds 

to GTP-R-Ras and activates Arf6 GTPase, which in return stimulates Rac1 resulting in 

increased cell spreading and migration (298). Additionally, RalBP1 via its interaction 

with RalA, has been reported to increase cell migration and to promote cancer cell 

metastasis (i.e., prostate and human bladder cancers)(299).  

 RalBP1 localization is crucial for its function and the binding to an active Ral is a 

key factor triggering its PM translocation, but at the same time it blocks its GAP activity 

towards Cdc42 and Rac1 (293,295,300). At the molecular level, the PBR (154-219aa, 

Table 1.3) has been identified to be required for the RalBP1 PM translocation and for its 

function as a membrane transporter of glutathione conjugates, in addition to other 

domains including, the N-terminal and C-terminal domains, which contribute to the 

differential cellular distribution of RalBP1 (301).  



 

 

41 | P a g e  

 

p85α and p85β 

 Phosphatidylinositol 3-kinase (PI3K), which catalyzes the generation of 

phosphoinositides, is a heterodimer complex between a catalytic p110 subunit and 

regulatory subunits: p85α and p85β. p85α and p85β are very similar and their domain 

structure comprises, an N-terminal SH3 and a central RhoGAP domains, as well as two 

SH2 domains, mediating the interaction with phosphorylated RTKs and flanking a p110 

binding region (302,303). The RhoGAP domain, although it has a sequence homology 

similar to functional RhoGAP domains such as that of p50RhoGAP including the 

arginine finger, and because it lacks some critical residues it is inactive towards most 

Rho GTPases (304). Nevertheless, in vitro the RhoGAP domain of p85 binds to both 

GTP- and GDP-bound Cdc42 with a preference for the GTP-form, and this binding 

stimulated the PI3K catalytic activity (305).  

ArhGAP6, ArhGAP 18 and ArhGAP28 

 The members of this subfamily share a high homology domain structure 

consisting of a central RhoGAP domain with a conserved arginine finger and PBRs 

mostly in the N-terminal region (274-276). The structure similarity allows, in some 

cases, functional compensations between these RhoGAPs such as the one in 

ArhGAP28 null mouse where both ArhGAP6 and ArhGAP28 are overexpressed, 

possibly to compensate the loss of ArhGAP28 function (276). 

 ArhGAP6 has been characterized first in the dominant X-linked MLS 

(Microphthalmia with linear skin defects syndrome) disorder as a protein with a 

functional RhoGAP domain and a GAP activity towards RhoA and Rac3 (Ras-related 

C3 botulinum toxin substrate 3)(272,273,306). Likewise, it inhibits stress fiber formation, 

while mutation of the conserved arginine residue within the RhoGAP domain prevented 

this effect (272). Also, this RhoGAP seems to play an anti-tumorigenic role since its 

expression in human cervical-cancer cell models enhanced the expression of tumor-

suppressor genes, induced apoptosis and cell cycle arrest, and suppressed cell 

adhesion, proliferation, migration and invasion (273). Similarly, expression of this gene 

in athymic nude mouse reduced tumor weight and size, making ArhGAP6 a promising 

therapeutic target to treat cervical cancers (273). On the other hand, ArhGAP6, which is 
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overexpressed in mononuclear-blood cells from patients with hypertension, has been 

shown to bind and stimulate PLCδ1 activity both in vitro and in vivo leading to increased 

inositol triphosphate and DAG generation, which might contribute to hypertension (307). 

 ArhGAP18 has been first characterized in the human epididymis and later found 

to be ubiquitously expressed. It is active in vivo and directs its RhoGAP activity towards 

RhoA and RhoC (274,275). ArhGAP18 localizes to the leading edge of the migrating 

cells, wherein it suppresses stress fiber and focal adhesion formation by the 

suppression of RhoA activity, promoting thereby the cell spreading and migration (275). 

ArhGAP18 seems to be a major regulator in many signaling pathways such as 

angiogenesis and its low expression levels are often associated with many cancers 

including breast and lung cancers, whereas its complete expression loss is associated 

with severe developmental-vascular defects and enhanced tumor growth and 

vascularisation (44,121,122,308). Actually, ArhGAP18 has been reported to act as a 

negative regulator of pro-angiogenic factors to stabilize endothelial cell-to-cell (EC) 

junctions (308). The underlying mechanism involves its translocation to the sites of 

destabilized EC junctions where it reduces RhoC activity in a ROCK-dependent way 

limiting therefore, the tip-cell formation and strengthening the cell-cell junctions (308).  

 ArhGAP28 has been listed in several DNA-microarray analyses although its 

cellular functions begin just to be characterized (309). This RhoGAP displays a GAP 

activity towards RhoA and is involved in several cell events including early 

osteogenesis, Rho-dependent assembly of the ECM and RhoA-induced stress fiber 

suppression (276). Similarly, ArhGAP28 is thought to regulate, at the transcriptional 

level RhoA and many other proteins of the ECM such as Matn3 and Col2a1 (276). It 

appears therefore, that ArhGAP28 is a crucial regulator of Rho signaling at different 

levels in various cellular sites and aberrations in its expression translate into enhanced 

RhoA activity. Of interest, recent findings reported that increased ArhGAP28-promoter 

region methylation is associated with high RhoA activity, which may contribute to the 

increased metastatic abilities in cells (310). 
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Vilse / ArhGAP39 CrGAP (CrossGAP)  

 Vilse [also known as ArhGAP39 or CrGAP (CrossGAP)] is a conserved RhoGAP 

that has been first characterized in drosophila for its role in axon guidance downstream 

of Slit-Robo signaling in the midline (277). Its domain structure consists of an N-terminal 

WW and a MyTH4 (myosin tail homology 4) domains, and a C-terminal RhoGAP 

domain. The WW domain, which binds to proline-rich motifs, is required to target Vilse 

to the PM via a direct interaction between Vilse and the intracellular domain of the 

receptor Robo. The resulting PM translocation of Vilse permits to the RhoGAP domain 

to interact with the PM-anchored Rac and hence to stimulate its GTPase activity 

(277,278). The regulatory mechanism is dose-sensitive, where more or less Vilse 

activity can lead to axon guidance defects (278). Furthermore, Vilse is involved in spine 

morphogenesis by binding to the scaffold protein CNK2 through its WW domain to 

maintain Rac activity at optimal levels for spine formation (311). 

 TAGAP (T-Cell Activation RhoGTPase Activating Protein) 

 TAGAP was characterized for its role in male parent-gene transmission ratio to 

offspring and has been associated with several disorders including rheumatoid arthritis, 

Crohn's and celiac diseases, and multiple sclerosis (279,312-317). Its domain structure 

consists of a PBR at the N-terminal region next to a RhoGAP showing a selective 

RhoGAP activity towards RhoA (279). 

p190RhoGAP-A and p190RhoGAP-B proteins 

 The multidomain p190RhoGAP-A (ArhGAP35) and its closely related 

p190RhoGAP-B (ArhGAP5) proteins form the p190RhoGAP subfamily, and are among 

the most prominent actin cytoskeleton and Rho GTPase regulators. They are involved 

in a variety of cellular processes modulating mainly the actin cytoskeleton and 

aberrations in their activities are associated often with cell adhesion and migration 

defects leading to tumorigenesis (123,318). These proteins comprise an N-terminal 

GTPase binding domain (Ras), several diphenylalanine (FF) motifs in the central 

region, which mediate protein-protein interactions such as interactions with RNA-binding 

proteins, and a C-terminal RhoGAP domain. Moreover, they contain in the central 

region many SH3 motifs which carry out protein-protein interactions. p190RhoGAPs 
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display an in vitro GAP activity towards Rho, Cdc42 and Rac, whereas in vivo, studies 

reported a RhoGAP activity for both Rho and Rac GTPases (280-286). The recruitment 

to the PM and the regulation the RhoGAP activity of p190RhoGAPs involve in general 

phosphorylation, lipid-protein and protein-protein interactions leading to protein complex 

formation with cellular partners including p120RasGAP, integrins, p120 catenin and 

many other proteins from both intracellular compartments and the extracellular matrix 

(123,318-322). 

 One important lipid-protein regulation mechanism implies a PBR N-terminal to 

the RhoGAP domain of both p190RhoGAP-A and B, a motif that is imperative for the 

PM recruitment, the GAP activity regulation and substrate selection. This positively-

charged domain facilitates the membrane anchoring by interacting directly through 

electrostatic interactions with the negatively-charged PM phospholipids (35,112). 

Indeed, p190RhoGAP-A, which regulates both Rho and Rac activities, requires an 

integral and intact PBR in order to inhibit Rac, whereas its GAP activity towards Rho is 

PBR-independent. Likewise, a p190RhoGAP-A mutant lacking the PBR fails to inhibit 

the EGF-induced membrane ruffles ( i.e., active Rac) in COS-7 cells, whereas it blocks 

the lysophosphatidic acid (LPA)-induced stress fibers by suppressing RhoA activity 

(286). In addition, the PBR of p190RhoGAP-A but not that of p190RhoGAP-B, contains 

two regulatory phospho-serines, Ser-1221 and Ser-1226, critical for the PM recruitment 

and substrate selection. As such, following their phosphorylation by PKC, 

p190RhoGAP-A dissociates from the PM phospholipids and directs its GAP activity 

towards Rho instead of Rac, which results in opposite changes in both active Rac and 

Rho levels in different cellular compartments, depending on the PBR phosphorylation 

status (35). 

CdGAP subfamily of RhoGAPs: ArhGAP30, CdGAP, ArhGAP32 and ArhGAP33 

  The members of this subfamily are well-conserved throughout eukaryotic 

evolution suggesting evolutionary-conserved cellular functions notably in the regulation 

of the actin cytoskeleton and cell motility (95,323). They share a domain structure 

consisting of an N-terminal PBR and a RhoGAP domain, as well as an extended C-

terminal region with basic and proline-and-serine residue rich regions in CdGAP, and 
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two proline-rich regions for ArhGAP30. Additionally, ArhGAP32 and ArhGAP33 harbor 

in their N-terminal region an SH3 and a PX domain.  

 ArhGAP32 [also designated as p200RhoGAP, p250GAP, RICS (RhoGAP 

involved in catenin–N-cadherin and NMDA receptor signalling) and Grit (GTPase 

regulator interacting with TrkA)], which is expressed mainly in the brain, plays key roles 

in axon growth regulation, and is associated with the autism spectrum disorder in 

Jacobsen syndrome (324). The membrane localization of ArhGAP32 (i.e., Golgi, ER 

and endosomes) is achieved through its PX domain which interacts preferentially with 

the phosphoinositides: PtdIns(3)P, PtdIns(4)P and PtdIns(5)P (325). ArhGAP32 has 

been first characterized for its regulatory role of neurite outgrowth downstream of 

activated RTKs, by binding to NGF receptor, TrkA and to N-Shc and CrkL/Crk adapter 

proteins (326). The control of the neurite growth is achieved chiefly through regulation of 

key Rho GTPases. As such, ArhGAP32 present a RhoGAP activity both in vitro and in 

vivo towards Cdc42, Rac1 and RhoA, while the conserved catalytic arginine (Arg-58) is 

required for this activity (152,153). ArhGAP32 (RICS) (-/-) neurons develop longer 

neurites and display increased Cdc42 activity, whereas expression of either the 

RhoGAP domain alone or the full-length protein prompted the neuronal differentiation 

phenotype of N1E-115 neuroblastoma cells (152,153). Likewise, both cell migration and 

axonal defects have been reported in the developing cerebellar cortex of ArhGAP32 

(p250GAP) knockdown in vivo (327). Finally, ArhGAP32 has been shown to interact 

through the C-terminal region, with the SH3 domain of RasGAP leading to activation of 

the Ras-ERK1/2 and PI3K pathways and subsequently to cell transformation and 

proliferation (328). 

 ArhGAP33 [also referred to as TCGAP (TC10/Cdc42 GAP)] has been 

characterized for its interaction with and regulation of TC10 and Cdc42 Rho GTPases, 

as well as for its regulatory role in insulin signaling pathway. For instance, following 

insulin stimulation, ArhGAP33 through its PX domain which binds to PtdIns(4,5)P2, 

translocates to the PM where it blocks the insulin-stimulated glucose uptake and the 

glucose transporter GLUT4 translocation (154). The RhoGAP activity is directed 

towards Cdc42 and is negatively regulated by phosphorylation on key residues such as 
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Tyr-406 in the GAP domain (107). ArhGAP33 is expressed prominently in the 

developing and mature brain where it regulates positively the neurite outgrowth and 

branching (107). It is therefore, associated with neuropsychiatric developmental 

disorders such as the autism spectrum disorder, characterized by severe dendrite-

arborisation defects (329). Correspondingly, ArhGAP33 is required for cortical neuron 

morphogenesis and its depletion by RNA interference results in reduced dendrite 

branches number and in the overall length of dendrite arbors (330). Likewise, the spine 

density is rescued by ArhGAP33 re-expression or by expression of a knock-down 

resistant form of ArhGAP33 (330). In addition, mice lacking ArhGAP33 show aberrant 

defects during cortical development, characterized by oversimplification of cortical-

dendritic arborisation and a decrease of the neocortical volume (331). High Cdc42 

activity and actin-cytoskeleton dysregulation may be involved in these defects since 

ArhGAP33 expression suppresses the GTPase activity and activates cofilin, an actin 

regulating protein (331). In addition to the above mechanisms, ArhGAP33 function of 

promoting spine and synapse development involves further regulatory mechanisms 

either GAP activity-dependent, such as the regulation of PSD-95 in the neocortex, or 

GAP activity-independent (329).  

ArhGAP30 present a high domain homology with its closest homolog CdGAP 

notably, in the N-terminal PBR and in the RhoGAP domain, suggesting shared 

conserved functions and regulation mechanisms. The RhoGAP of ArhGAP30 is 

catalytically active and stimulates the GTPase activity of both Rac1 and RhoA (287). 

ArhGAP30 is involved in cell adhesion regulation downstream of Wrch-1 and its 

overexpression induces focal adhesion and stress fiber dissolution in addition to 

membrane blebbing, reminiscent of the RhoA pathway suppression (287). 

 Interestingly, ArhGAP30 seems to play an anti-tumorigenic role in cancer, 

particularly in colorectal cancer (CRC) where its protein expression levels are reduced. 

Indeed, in both CRC and its precancerous lesions, ArhGAP30 is downregulated and this 

is associated to poor patient prognosis. The result suggests a potential tumor-

suppressing activity of this RhoGAP, whereas its expression level could be used as a 

potential prognosis biomarker for CRC. The mechanism underlying this role involves at 
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least a ArhGAP30-driven p53 acetylation and functional activation, achieved through an 

ArhGAP30-p300 acetyltransferase interaction in a RhoGAP-independent manner (332).  

In the next section CdGAP regulation and function will be discussed. 

 

1.5 CdGAP regulation and function 

 CdGAP/ArhGAP31 belongs to a well-conserved CdGAP subfamily comprising in 

addition to CdGAP orthologues, at least three CdGAP-related genes ARHGAP30, 

ARHGAP32 and ARHGAP33 (95,109,287,323,333-336). CdGAP has been discovered 

in 1998 in a yeast two-hybrid cDNA library screen using Cdc42 mutant Y40C as a bait. 

A short mouse CdGAP form of 820 amino acids, rich in charged and serine residues 

was initially isolated and classified among the well-conserved RhoGAP subfamily 

members (337). Afterwards, a ubiquitously expressed full-length protein has been 

characterized in both mouse and human with a characteristic enrichment in heart, 

muscle, liver, brain and lung tissues (334,336-338). CdGAP has been at once 

characterized for its role in actin reorganization by regulating the GTPase activity of Rac 

and Cdc42 making it a novel negative Rho GTPase regulator (337). Afterwards, it has 

been shown to be involved in several cellular pathways and functions such as the 

regulation of cell migration, embryogenesis, angiogenesis and cancer (Figure 1.2) 

(127,339-341).  

1.5.1 Domain organization 

 CdGAP is a large RhoGAP protein (mCdGAP, 1425aa; hCdGAP, 1444aa), rich in 

basic, proline and serine residues, and comprising numerous regulatory domains 

involved in specific CdGAP functions (Figure 1.1C). CdGAP contains namely: an N-

terminal PBR which binds to membrane phospholipids and regulates both CdGAP PM 

targeting and activity; a conserved RhoGAP domain mediating the GAP activity towards 

Rac1 and Cdc42; a central highly-phosphorylated basic region (BR) mediating several 

protein-protein interactions and involved in the regulation of cell migration and adhesion; 

a highly serine- and threonine-phosphorylated proline-rich domain (PRD) that mediates 

the transforming growth factor β (TGFβ)-induced effects on cell migration and invasion; 

and finally, an extended highly-phosphorylated C-terminus (CT), involved in the 
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regulation of the GAP activity and in the rare developmental disorder, Adams-Oliver 

Syndrome (AOS) (Figure 1.2) (128,334,340,342-344). 

1.5.2 CdGAP regulation 

 CdGAP is regulated by several mechanisms including protein-protein and lipid-

protein interactions, and phosphorylation. 

1.5.2.1 Protein-protein interactions 

 CdGAP contains several structural features such as SH3 and 14-3-3-protein 

binding motifs which are involved in a variety of protein-protein interactions with different 

partners including adaptor proteins (e.g. Intersectin), actin cytoskeleton proteins (e.g. 

Actopaxin), receptors (e.g. vascular endothelial growth factor receptor2, VEGFR2), 

transcription factors (e.g. Zeb2) and protein kinases (e.g. Erk1/2 MAP Kinases and 

GSK3) (Figure 1.2)(108,109,127,339,341,345). For instance, the endocytic and Cdc42 

GEF adaptor protein, Intersectin interacts with CdGAP and regulates both its subcellular 

localization and activity in a platelet-derived growth factor (PDGF)-dependent fashion. 

Likewise, in PDGF-stimulated Swiss 3T3 cells, Intersectin binds and colocalizes with 

CdGAP at the cell periphery and PM, wherein it suppresses its activity towards Rac1 

leading to increased lamellipodia and membrane ruffles. The association involves the 

SH3D domain of Intersectin and a novel-conserved xKx(K/R)K motif within the BR 

region of CdGAP (345,346). Similarly, CdGAP has been reported to associate with the 

actin and paxillin binding protein, Actopaxin, and the interaction targets CdGAP to focal 

adhesions in an adhesion-dependent manner whereby its activity is suppressed (341). 

The regulation of CdGAP activity at focal adhesions and the interaction between the two 

proteins, which is driven through the C-terminal region of Actopaxin and the BR domain 

of CdGAP, are required for a normal cell spreading, lamellipodia formation and 

polarization as well as cell migration of human U2OS osteosarcoma cells (341). 

1.5.2.2 Phosphorylation  

 CdGAP is a phosphoprotein displaying high Ser and Thr phosphorylation levels 

in the BR, PRD and CT regions, and is therefore a potential phosphorylation target of a 

wide range of Ser/Thr protein kinases (108,109,323). Likewise, many large-scale 

phosphoproteomic studies report increasing numbers of CdGAP phosphorylation sites 
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being regulated in many signaling pathways and diseases such as insulin/Akt signaling, 

angiogenesis and many cancers (listed in www.phosphosite.org) (347-354). CdGAP in 

vivo phosphorylation is increased following growth factor stimulation including serum, 

PDGF and TGFβ, whereas the Ser/Thr kinases Erk1/2 MAPK, GSK3 and p90 ribosomal 

protein S6 kinase (RSK) 1 have been shown to both bind and phosphorylate 

CdGAP(108,109,128,323). As for the phosphorylated sites, Thr-776 residue has been 

shown to be phosphorylated by both Erk1/2 MAPK and GSK3 in serum-stimulated and 

serum-starved conditions and this phosphorylation inhibits CdGAP activity (108,109). 

Yet, little is known about the identity of the many other CdGAP phosphosites or the 

corresponding protein kinases and their role remains unclear and requires further 

investigation. Recently, two major phosphosites, Ser-1093 and Ser-1163 in the CT 

region have been described to be phosphorylated by the AGC kinase RSK1 leading to 

the recruitment of 14-3-3 adaptor proteins and to the regulation of both CdGAP 

subcellular localization and activity (to be discussed in Chapter 3).  

1.5.2.3 Lipid binding 

 CdGAP, similar to most active RhoGAPs, requires a membrane translocation in 

order to suppress the GTPase activity of its membrane-bound effectors, Cdc42 and 

Rac1. As CdGAP lacks any LBD, an alternative mechanism described recently seems 

to help its membrane targeting. As such, the N-terminal PBR cluster preceding the 

RhoGAP domain has been identified to mediate specific binding to the negatively-

charged membrane phospholipids, preferentially PtdIns(3,4,5)P3 and thereby, to ensure 

CdGAP anchoring into the PM (36). Importantly, an intact PBR is required for the in vitro 

full-CdGAP activity toward Rac1 and for the in vivo CdGAP effects on cell morphology. 

Equally, CdGAP protein mutants missing a functional PBR are unable to induce cell 

rounding in fibroblast cells following PDGF stimulation (36). Collectively, these data 

describe a PBR-mediated modulation of CdGAP activity and membrane localization 

through a mechanism common in a number of proteins including some RhoGAPs such 

as DLC1 and p190RhoGAP-A and B (Table 1.1) (34,35,112,117).  
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1.5.3 Cellular functions of CdGAP 

1.5.3.1 Regulation of actin-cytoskeleton dynamics and cell motility 

 Consistent with its RhoGAP activity towards the key regulators of the actin 

cytoskeleton, Rac and Cdc42 GTPases, CdGAP is involved in quite a lot of cytoskeleton 

-remodeling events including, filopodia and lamellipodia formation, cell spreading, 

adhesion, migration and invasion. CdGAP overexpression in diverse cell lines has been 

shown to promote cell rounding, while in a GAP activity-dependent manner, CdGAP 

inhibits most of the above-cited events as a results of the disruption of cortical actin 

network. As such, the inhibition of CdGAP activity by CdGAP association to Actopaxin 

and Intersectin in U2OS and Swiss 3T3 cells respectively, reversed the CdGAP 

overexpression-induced cell rounding and promoted lamellipodia formation and polarity 

in these cell lines (345,355). In addition, CdGAP has been shown to localize to focal 

adhesions formed in three-dimensional (3D) matrix environment and to regulate both 

random and directed cell migration, as well as adhesion assembly and disassembly 

dynamics of human U2OS osteosarcoma cells (356). Moreover, CdGAP through 

localization to cell-extracellular matrix adhesions, modulates both matrix-rigidity sensing 

and durotaxis, two critical processes in cell migration and invasion (357). The underlying 

mechanism involves the modulation of Rac1 activity at cell-matrix adhesions, 

membrane protrusions and focal adhesion dynamics (357).  

1.5.3.2 Role in Adams-Oliver Syndrome (AOS) 

 AOS is a rare developmental disorder, characterized by the presence of aplasia 

cutis congenita of the scalp vertex and terminal transverse limb-reduction defects, as 

well as cardiovascular anomalies in some patients (358,359). Recently, mutations in the 

human CdGAP/ARHGAP31 leading to autosomal-dominant AOS have been identified in 

patients suffering from this syndrome. Indeed, using genome-wide linkage analysis and 

exome sequencing, two premature truncating mutations have been identified in the 

terminal exon of the CdGAP gene from AOS-patients (340). The resulting AOS-protein 

mutants, hCdGAP(Q683X) and hCdGAP(K1087Sx4) lacking the C-terminal region, 

exhibit a constitutive GAP activity leading to a loss of available active-Cdc42 disrupting 

thus, actin cytoskeletal structures. Consequently, the gain-of-function of AOS-causing 
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proteins, enhances cell rounding and impairs cell migration and proliferation during early 

development of fibroblasts at the terminal limb buds and craniofacial processes, leading 

to impaired organogenesis that characterize this syndrome (340). Overall, these data 

emphasize the requirement for regulated Rac1/Cdc42 pathways during early human 

development.  

1.5.3.3 Role in angiogenesis 

 One characteristic of AOS patients carrying abnormal CdGAP proteins, is the 

presence of diverse and frequent vascular and cardiac defects including pulmonary 

hypertension and cutis marmorata telangiectatica — a rare developmental congenital 

vascular disorder — suggesting a role of CdGAP in angiogenesis (358,360). In support 

of this hypothesis, earlier studies have reported that CdGAP expression is elevated in 

endothelial cells notably, in the human umbilical vein endothelial cells (HUVECs), but 

also in the developing vascular system of zebrafish where CdGAP is among the 17 

most highly expressed RhoGAPs (361,362). Accordingly, a very recent study 

demonstrated a crucial role of CdGAP in embryonic-vascular development and 

vascular-endothelial-growth factor (VEGF)-induced signaling. The new findings show for 

the first time, that CdGAP interacts with the VEGF receptor-2 (VEGFR2) and is a key 

factor for a normal signaling downstream of VEGF stimulation and VEGF-driven 

angiogenesis. The CdGAP/VEGFR2 interaction seemingly controls the entire signaling 

pathway leading to Rac1 activation for a typical VEGF-dependent endothelial cell 

migration and capillary formation (339). Consistent with this role, CdGAP-deficient 

mouse embryos display impaired vascular development associated to superficial vessel 

defects and subcutaneous edema. Furthermore, CdGAP depletion both in endothelial 

cells and in mice is associated with severe VEGF-dependent angiogenesis, highlighting 

the importance of CdGAP in embryonic-vascular development and VEGF-induced 

signaling (339).  

1.5.3.4 Role in cancer 

 CdGAP, through the inhibition of Cdc42 and Rac1 activities, controls the actin 

cytoskeleton-related processes including, cell adhesion, migration and invasion, which 

are all key aspects associated to cancer progression, suggesting a role of CdGAP in 
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tumorigenesis and possibly, a negative one. The hypothesis is supported by some 

recent findings reporting that, in an in vitro system, CdGAP-depleted human U2OS 

osteosarcoma cancer cells displayed both increased migration and invasion through a 

three-dimensional matrices conferring to CdGAP anti-tumorigenic functions in this 

context (356). However, early studies have documented steadily elevated CdGAP 

expression levels following growth factor stimulation (i.e., serum and TGFβ) in 

immortalized cellular models and cancer cell lines, suggesting a pro-survival role of 

CdGAP (108,128). The idea of a possible positive CdGAP role in cancer was further 

supported by the observation that endogenous CdGAP levels were readily upregulated 

in the ErbB2-induced breast cancer cell model, NMuMG-NT (mouse mammary cancer 

cell explants expressing the activated Neu/ErbB-2 receptor) comparing to control cells 

(128). More recently, CdGAP has been found to be highly expressed in basal-type 

breast cancer cells including, MDA231, MDA468, BT549 and HS578T, and its strong 

expression correlated with poor prognosis in breast cancer patients (363). By the same 

token, a study using quantitative-deep RNA sequencing found that CdGAP is the major 

RhoGAP expressed in HER2/ErbB2-induced mouse breast tumors (364). Collectively 

the data suggest a positive role of CdGAP in cancer, notably in breast cancer, likely 

downstream of the HER2/Neu/ErbB-2 and TGFβ signaling pathways. Of note, a 

cooperation between the two pathways has been observed aiming to amplify the 

tumorigenic abilities of NMuMG-NT cells, which show high invasive and metastatic 

activities following TGFβ treatment (365-367). In agreement with this, CdGAP has been 

reported to mediate TGFβ- and ErbB2-induced cell migration and invasion of breast 

cancer cells, and does so in a GAP-independent manner. Accordingly, targeting CdGAP 

by siRNA abolished proliferative abilities of Neu/ErbB2-expressing breast cancer cells 

and their TGFβ-induced cell motility, and induced the expression of E-cadherin, a tumor 

suppressor and a cell-cell junction protein (128). Surprisingly, the PRD of CdGAP has 

been revealed to be sufficient to rescue the TGFβ phenotype which highlights the 

importance of this region in this process (128). In a follow-up study, a mechanism of E-

cadherin-expression regulation by CdGAP downstream of TGFβ/ErbB2 signaling has 

been shown (363). As such, following TGFβ stimulation, CdGAP via its PRD region,  
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Figure 1.2  ̶ Summary of CdGAP functions and cellular partners. CdGAP activity 

and cellular functions are regulated by different mechanisms including protein-protein 

and lipid-protein interactions, and phosphorylation (A). CdGAP is involved in various 

cellular pathways both in a GAP-dependent or – independent manner. Likewise, it 

suppresses the GTPase activity of Rac and Cdc42 and thereby controls the actin 

cytoskeleton remodeling and cell motility (B). CdGAP is also involved in early 

development and is required for embryonic vascular development (C)(339), whereas 

gain-of-function mutations of CdGAP proteins were associated with the developmental 

disorder Adams-Oliver Syndrome (D)(340). Finally, a proto-oncogenic role of CdGAP 

has been recently characterized notably in breast cancer, wherein CdGAP by 

suppressing E-cadherin expression promotes cancer progression and metastasis 

(E)(128,363). Abbreviations: E-cadherin, epithelial cadherin; EMT, epithelial to 

mesenchymal transition; TGFβ, transforming growth factor beta; VEGF, vascular 

endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; Zeb2, 

Zinc Finger E-Box Binding Homeobox 2.  
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interacts and forms a complex at the nucleus with the transcriptional repressor Zeb2 to 

inhibit E-cadherin expression in a GAP-independent fashion (363,368). Consequently, 

CdGAP regulates cell junctions and is required for ErbB2 to promote breast tumors and 

metastasis (363). It appears finally, that CdGAP as a proto-oncogene, is a valuable 

biomarker and an interesting therapeutic target of human cancers, particularly several 

breast cancer subtypes. 

 

1.6 14-3-3 adaptor proteins 

 14-3-3 family members are adaptor/scaffold proteins ubiquitously expressed and 

highly conserved among eukaryotic organisms. They have been first characterized in a 

brain protein analysis for their particular elution and migration patterns from which the 

name 14-3-3 originated, and later the Greek letters were added to describe the early 

isoforms (369,370). So far seven isoforms have been characterized in mammals: 14-3-

3β (also known as α when phosphorylated) γ, ε, σ, ζ (similar to δ when phosphorylated), 

τ and η (371,372). They interact with their effectors by binding to the phosphorylated 

Ser/Thr motifs on target proteins thereby regulating their conformation, activity, complex 

formation and stability, and subcellular localization (371-374). Up to now, more than 200 

protein targets have been identified for 14-3-3 proteins including, protein kinases, 

phosphatases, receptors and transcription factors. Consequently, they exert a 

widespread influence in various cell processes such as cell cycle regulation, gene 

transcription regulation, cell adhesion, motility, proliferation and apoptosis (371).  

1.6.1 Regulation and substrate binding 

 The seven 14-3-3 isoforms are found as homo or heterodimer structures, 

wherein the monomers contain at their N- and C-termini several antiparallel α helices. 

This conformation allows 14-3-3 dimers to expose a negatively-charged surface that is 

important in recognising the features of the protein target. 14-3-3 isoforms display also, 

high variability in their N-terminal regions which contributes to dimer formation and 

diversity as well as to substrate selectivity and specificity (375,376). Dimeric 14-3-3 

isoforms can bind motifs on the same or different protein targets and the binding of two 
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sites ensures by far, greater stability and more functional interaction than the binding of 

just one site (106,371-374,377).  

14-3-3 proteins and dimer formation are regulated by many posttranslational 

modifications including Serine and Tyrosine phosphorylation, polyglycylation and 

acetylation (378-384). Indeed, 14-3-3 proteins are found to be phosphorylated in many 

signaling pathways and are targeted by various protein kinases, such as cAMP-

dependent kinase (PKA), sphingosine-dependent kinase (SDK1), protein kinase B 

(PKB)/Akt and c-Jun N-terminal kinase (JNK)(385-388). Following their phosphorylation, 

14-3-3 dimers are destabilized and the interaction with their effector disturbed releasing 

thereby, the target protein. For instance, the subcellular localization of apoptosis 

regulating protein, Bax is controlled by the binding to 14-3-3 proteins which 

sequestrates it and prevents its mitochondrial translocation. Following their 

phosphorylation, 14-3-3s dissociate from and release Bax which in return, translocates 

into the mitochondria where it accumulates and induces cell apoptosis (389). Protein 

kinases phosphorylate mostly 14-3-3 monomers and rarely 14-3-3 dimers which usually 

maintain close conformations inaccessible for the catalytic kinase activity (390). 

However, direct binding to the 14-3-3 dimer of cellular regulators may induce 

conformational changes rendering them phosphorylable but also, may promote their 

conversion to monomeric form to promote their phosphorylation (389). As such, the 

direct binding of the lipid sphingosine to 14-3-3ζ isoform promotes its conversion to a 

monomer and its subsequent phosphorylation by PKA at Ser-58 (391).  

1.6.2 14-3-3 binding motifs 

 14-3-3 proteins recognize and bind phosphoserine/phosphothreonine motifs on 

hundreds of substrates with the following sequences: Arg-Ser-Xaa-pSer/Thr-Xaa-Pro 

(mode I) and Arg-Xaa-Xaa-Xaa-pSer-Xaa-Pro (mode II) (373,374,392). In addition, 14-

3-3 proteins recognize and bind some C-terminally phosphorylated proteins bearing a 

rare motif pSer/pThr (X1-2)-COOH, referred to as the mode III-14-3-3 binding motif 

(393). While mode II binding motifs are frequent in plant 14-3-3 proteins, mode I motifs 

seemingly dominate in most 14-3-3 binding effectors (394).The phosphorylated motifs 

are generated by different Ser/Thr kinases including Ca2+/calmodulin-dependent protein 



 

 

57 | P a g e  

 

kinases (CaMK), protein kinase D (PKD), checkpoint kinase 1(Chk1), Chk2 and AMP-

activated protein kinase (AMPK) (394). Nonetheless, the majority of mode I binding 

motifs are generated by AGC kinases such as ribosomal S6 kinases (RSKs), PKB/Akt 

and PIM kinases. These kinases require usually arginine residues at positions -5 and -3 

of the phosphosite, although the phosphorylation of the motif is not always guaranteed 

and sometimes additional determinant-selection criteria are necessary for each kinase 

(394,395). Moreover, 14-3-3 proteins can bind unphosphorylated proteins and several 

studies reported phosphorylation-independent 14-3-3 binding sites. As such, the ExoS 

protein from the pathogenic bacterium Pseudomonas aeruginosa harbors a 14-3-3 

binding motif (LLDALDLAS), necessary for the interaction with 14-3-3 proteins and 

pathogenesis (396). Similarly, an atypical motif RSX(1-3)E/D-like motif has been 

documented to bind 14-3-3 proteins with a comparable efficiency as that of the mode I 

RSXpSXP motif binding, wherein the negatively charged Asp and Glu are suggested to 

imitate the phosphoserine/threonine role in the binding (397). 

1.6.3 Role in cancer 

 Given that 14-3-3 proteins are key regulators in many cellular functions (e.g., 

programmed cell death, cell cycle regulation and DNA-damage repair) and major 

molecular integrators and crosslinks in different signaling networks, it is logical to find 

that abnormalities in their abundance and/or regulation are often associated with 

tumorigenesis. In general, it is the overexpression rather than the depletion of selected 

14-3-3 isoforms that is associated to malignancy progression. For instance, elevated 

expression levels of the 14-3-3 isoforms β, γ, ε, σ and ζ have been associated to 

hepatocellular carcinoma (HCC), whereas overexpression of the isoforms 14-3-3β and γ 

is linked to increased metastatic risk and poor patient prognosis (398-400). Similarly, 

14-3-3 upregulation in various breast cancer patient tissues has been reported for 

several isoforms including 14-3-3 ζ, η, δ and γ (401). Additional examples documenting 

the association of increased 14-3-3 expression levels to specific cancers such as the 

14-3-3 ζ in stomach and lung cancers, and 14-3-3γ in melanomas suggest a 14-3-3 

isoform-expression signature in numerous tumors (398,402,403). Intriguingly, the 

isoform 14-3-3σ seems to play opposite roles in different cancers (404). Actually, high 
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expression levels of this isoform are associated with tumorigenesis and cancer 

progression in various tumors including prostate, colorectal, pancreatic, ovarian and 

cervical cancers (404-406). Conversely, for many years 14-3-3σ has been considered 

as a tumor suppressor and low expression levels are found in many cancers particularly 

those from epithelial origin such as lung and breast cancers (404,407-409). Overall, the 

14-3-3 proteins are involved actively in tumorigenesis and their roles are complex and 

may vary between tissues and signaling pathways. While overexpression of many 

isoforms was shown to be proto-oncogenic in a wide range of human cancers, some 

other isoforms, such as 14-3-3σ seem to be either proto-oncogene or tumor suppressor 

depending on tumor localization and environment. Therefore, further studies are 

required for a better understanding and definition of the 14-3-3 proteins’ roles in cancer.  

 

1.7 Rationale and objectives 

 CdGAP is a large-multidomain phosphoprotein required in early development 

which modulates, in a GAP activity-dependent and -independent manner, many 

essential cellular events including actin-cytoskeleton remodelling and cell motility. 

Additionally, both CdGAP protein expression and phosphorylation are modulated 

downstream of pro-survival signaling pathways including TGFβ, Ras-ERK1/2 MAPK and 

Akt/GSK3 signaling. Importantly, recent findings assign a proto-oncogenic role for 

CdGAP, whilst its high expression levels have been associated to tumor progression 

and metastasis in many human cancers, making it a promising therapeutic target for 

cancer. However, the molecular mechanisms underlying CdGAP roles remain elusive 

and need further investigation for a better understanding. Therefore, the goal of the 

present thesis was to investigate new CdGAP regulatory mechanisms by protein-protein 

interaction and phosphorylation, in two main objectives: 

1) To identify novel CdGAP binding motifs which may be involved in the interaction 

between CdGAP and the endocytic protein, Intersectin 

 

2) To characterize novel CdGAP phosphorylation sites and investigate their role in 

CdGAP subcellular localization and activity 
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Preface to Chapter 2 

 CdGAP contains an N-terminal GAP domain, a BR central region, and a PRD with an 

extended C-terminal region. Our previous work identified the endocytic protein Intersectin as a 

binding partner and a negative regulator of CdGAP. The interaction is mediated by the SH3D 

domain of Intersectin and the central domain of CdGAP, which does not contain any typical 

proline-rich domain or known SH3-binding motif. In this study, we investigate the residues in the 

BR region mediating the interaction with Intersectin-SH3D domain. Using an in vitro system, we 

identify an atypical SH3-binding motif in the BR region that is required for the CdGAP-Intersectin 

interaction. Moreover, we go on to demonstrate that the identified conserved motif is required 

for a full CdGAP activity. 
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Abstract 

The small GTPases Rac1 and Cdc42 are key regulators of the cytoskeleton. We 

have previously identified the endocytic protein Intersectin as a binding partner and 

regulator of Cdc42 GTPase-activating protein (CdGAP) with activity towards Rac1 and 

Cdc42. This interaction is mediated through the SH3D domain of Intersectin and the 

central domain of CdGAP, which does not contain any typical proline-rich domain or 

known SH3-binding motif. Here, we have characterized the Intersectin-SH3D/CdGAP 

interaction. We show that Intersectin-SH3D interacts directly with a small region of 

CdGAP highly enriched in basic residues and comprising a novel conserved xKx(K/R)K 

motif.  
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Introduction  

The Rho family of small GTPases, including Cdc42, Rac1, and RhoA, controls a 

wide variety of cellular processes ranging from cell proliferation, polarization, motility, 

and adhesion to intracellular membrane trafficking (410). These proteins function as 

molecular switches that cycle between an active GTP-bound and an inactive GDP-

bound form. Three families of regulators tightly regulate this cycle. Guanine nucleotide 

exchange factors (GEFs) activate GTPases by inducing the exchange of GDP for GTP, 

whereas guanine nucleotide dissociation inhibitors sequester and maintain inactive Rho 

GTPases in the cytoplasm (5). GTPase-activating proteins (GAPs) increase the intrinsic 

GTPase activity, leading to inactivation of Rho GTPases (5,95).  

CdGAP (Cdc42 GTPase-activating protein) promotes the inactivation of Rac1 

and Cdc42 but not RhoA (288). It comprises a N-terminal GAP domain, a basic-rich 

(BR) central region, and a proline-rich domain (PRD) with an extended C-terminal 

domain [20]. We have previously identified CdGAP as a binding partner of the endocytic 

scaffolding protein Intersectin involved in clathrin-mediated endocytosis and cell 

signalling (345). Intersectin is composed of two N-terminal Eps-homology (EH) 

domains, a putative coil-coiled domain and five C-terminal SH3 domains (SH3 A-E) 

(411). Its neuronal splice-variant, Intersectin-1L, contains an additional GEF domain 

active towards Cdc42, followed by a C2 domain (412). Intersectin is targeted to clathrin-

coated pits through the interaction of its EH domains with epsin (413). Additionally, it 

can bind to various endocytic and signalling proteins, including dynamin, synaptojanin, 

Sos1, Numb, Wiskott-Aldrich syndrome protein (WASP), and CdGAP through a subset 

of its SH3 domains (412-417).  Interestingly, we have previously found that the SH3D of 

Intersectin negatively regulates the GAP activity of CdGAP in vitro (345). Although 

CdGAP-PRD is required for the regulation of its GAP activity by Intersectin, this domain 

does not mediate CdGAP-Intersectin-SH3D interaction. In fact, Intersectin-SH3D 

interacts with the central region, lacking the conventional class I ([R/K]xXPxXP) or class 

II (XPxXPx[R/K]) SH3 binding motifs or other known SH3 binding motifs (418-423). 
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Therefore, we sought to determine which residues of CdGAP are responsible for the 

interaction with Intersectin-SH3D.  

In this study, we demonstrate that Intersectin-SH3D directly associates with the 

BR region of CdGAP through a novel conserved SKSKK motif. This BR region is 

evolutionary conserved within CdGAP closest homologs and we show that the CdGAP-

related protein ARHGAP30 is also able to interact with Intersectin-SH3D. Furthermore, 

the SKSKK motif is essential to CdGAP activity in vitro.  
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Materials and Methods 

Plasmids  

 CdGAP constructs and pGEX4T1-actopaxin were described elsewhere 

(109,341,345). CdGAP deletion mutants were introduced into BamHI/XbaI of pRK5myc. 

For S35-methionine in vitro translation, CdGAP-(1-515) was subcloned into BamHI/XbaI 

of pCDNA3.1. The SH3D domain of mouse Intersectin (aa 1070-1131) was subcloned 

into  BamHI/NotI of pGEX-4T3. ARHGAP30 and ARHGAP30 deletion mutants were 

amplified by polymerase chain reaction (PCR) using mouse ARHGAP30 cDNA 

(MGC:99989, Mammalian Gene Collection, NIH) and subcloned into BamHI/XbaI of 

pRK5myc. CdGAP point mutants were generated by a two-step overlap extension PCR 

strategy using pRK5myc-CdGAP-(1-515) as a template and according to standard 

protocols. The PCR fragments were subcloned into BamHI/XbaI of pRK5myc or into 

Cla1 of pEGFPC1-CdGAP (1-820). All plasmids were verified by sequencing. 

Cell Culture and transfection 

 HEK293 cells were cultured in Dulbecco’s Modified Eagle Medium supplemented 

with 10% fetal bovine serum and antibiotics and maintained in a 5% CO2 humidified 

environment at 37°C. Cells were transfected with linear polyethylenimine (PEI) MW 

25,000 (Polysciences) using a 1:5 ratio (DNA : PEI) or by calcium phosphate  (424). 

GST pull-down assay 

 GST, GST-SH3D, and GST-actopaxin proteins were purified as previously 

described (341,345). HEK293 cells transfected with the various plasmids were lysed in 

20 mM HEPES pH 7.4 and 1% Triton X-100 supplemented with 5 mM Na3VO4, 5 mM 

NaF, 1 mM phenylmethylsulfonyl fluoride (PMSF) and Complete™ protease inhibitors. 

After a 10-minutes centrifugation, supernatants were incubated with 0.6 nmol of GST or 

GST-SH3D and glutathione-agarose beads for 2 hours at 4°C. Samples were washed 

three times in lysis buffer and bound proteins were submitted to SDS-PAGE and 

Western blot analysis using anti-myc antibodies. 
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In vitro 35S-methionine translation 

In vitro transcription and translation were performed using TNT® Quick Coupled 

Transcription/Translation Systems (Promega). Briefly, TNT Quick Master mix was 

incubated with 1 μg of pCDNA-CdGAP(1-515) and 63 μCi of [35S]-methionine in a total 

volume of 50 μL at 30°C for 90 minutes. Fractions of the reaction mix (15 μL) were 

incubated with 20 μg of GST, GST-SH3D or GST-actopaxin coupled to glutathione-

agarose beads, and GST pull-down assays were performed as described above. Bound 

proteins were submitted to SDS-PAGE, transferred to nitrocellulose membrane, and 

stained with Coomassie Blue. 35S-methionine labelled proteins were detected by 

PhosphoImager analysis (PerkinElmer). 

Peptide overlay assay 

 A total of 20 overlapping 15-mer peptides corresponding to CdGAP (249-358) 

were synthesized directly on a cellulose membrane from their C-terminus (JPT Peptide 

Technologies GmbH, Berlin, Germany). The membrane was washed once in 100% 

ethanol and three times in TBS buffer (50 mM TrisHCl pH 8.0, 137 mM NaCl and 2.7 

mM KCl) before incubation in blocking buffer (BSA 2% w/v in TBS buffer). The 

membrane was incubated overnight at 4°C with GST or GST-SH3D (1.4 μmol/mL) in 

blocking buffer, washed in T-TBS buffer (TBS buffer supplemented with 0.05% Tween-

20), and incubated with anti-GST-HRP antibody (GE Healthcare). After several washes, 

the membrane was subjected to chemiluminescent reaction using Western Lightning 

Plus-ECL detection kit (Perkin Elmer). 

In vitro GAP assays 

 HEK293 cells were transfected with either pRK5-myc, pRK5-mycCdGAP (1-515), 

pRK5-mycCdGAP(1-515)(SaSaa), pEGFPC1, pEGFPC1-CdGAP(1-820), or pEGFPC1-

CdGAP(1-820)(SaSaa) using Lipofectamine 2000 as per manufacturer. 36h post-

transfection, myc-tagged or GFP-tagged proteins were immunoprecipitated using anti-

myc or –CdGAP antibodies [20] as described previously [5]. The amount of 

immunoprecipitated myc-tagged CdGAP was estimated on Coomassie Blue-stained 

SDS-PAGE by comparison with different amount of purified bovine serum albumin. 
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Immunoprecipitated GFP-tagged CdGAP was quantified using a Victor X3 2030 

Multilabel Reader spectrofluorimeter (PerkinElmer). According to this estimation, 500ng 

of immunoprecipitated CdGAP was used for the in vitro GAP assays, as described 

previously [5].  

Results 

 To investigate the interaction between CdGAP and Intersectin-SH3D, we first 

determined whether the association is direct using an in vitro translation assay. A 

fragment corresponding to the N-terminal 515 amino acids of CdGAP was expressed as 

a 35S-methionine-labeled protein and incubated in a GST pull-down assay using GST-

Intersectin-SH3D or GST-actopaxin as a positive control. The focal adhesion protein 

actopaxin has previously been shown to interact with a region of CdGAP corresponding 

to the first 515 amino acids (341). As shown in Fig.2.1A, we found that CdGAP(1-515) 

binds to both Intersectin-SH3D and actopaxin but not GST, suggesting that the 

interaction between CdGAP and Intersectin-SH3D is direct. To further define the region 

of CdGAP binding to Intersectin-SH3D, protein lysates of HEK293 cells expressing 

various myc–tagged CdGAP deletion mutant proteins were incubated with GST-

Intersectin-SH3D immobilized on glutathione-agarose beads (Fig. 2.1B and C). We 

found that Intersectin-SH3D was able to interact with CdGAP-(1-515), -(1-358), -(254-

515), and -(181-358), all encompassing the BR region of CdGAP. On the contrary, 

CdGAP-(1-312) and CdGAP-(313-515) did not bind to Intersectin-SH3D. Therefore, 

these results show that an intact BR region is required to mediate the Intersectin-SH3D-

CdGAP interaction.  

 To further define the amino acid motif within the BR region that mediates 

Intersectin-SH3D/CdGAP interaction, we used a peptide overlay assay comprising 20 

overlapping peptides (15-mers), corresponding to the amino acid sequence of the BR 

region (249-358), immobilized on a cellulose membrane and incubated with purified 

GST-Intersectin-SH3D or GST proteins as a negative control (Fig.2.2). Interestingly, we 

found that 8 consecutive peptides corresponding to residues 284 to 333 were able to 

specifically bind to Intersectin-SH3D with different affinities (Fig.2.2). The interaction 
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between peptide 10 (residues 294-308) and 14 (residues 314-328) with Intersectin-

SH3D showed the strongest affinity. Interestingly, amino acid sequence analysis of the 

peptides revealed a common SKSK motif, suggesting that these residues are important 

for the interaction between Intersectin-SH3D and CdGAP. 

Furthermore, a close analysis of the amino acid sequences of CdGAP and its 

protein homologs ARHGAP30, ARHGAP32/GRIT, and ARHGAP33/Noma-GAP 

revealed that the BR region is highly conserved amongst the CdGAP-related proteins 

(Fig. 2.3A). In particular, the positively charged residues of the SKSK motif are present 

in all CdGAP-related proteins (Fig. 2.3A). To determine whether the BR domain of other 

CdGAP-related proteins is able to interact with Intersectin-SH3D, we examined the 

interaction between Intersectin-SH3D and ARHGAP30. Indeed, myc-tagged 

ARHGAP30 expressed in HEK293 cells was able to interact with Intersectin-SH3D (Fig. 

2.3B). Moreover, ARHGAP30 (1-334) containing the N-terminus GAP domain followed 

by the BR region bound to Intersectin-SH3D whereas ARHGAP30 (335-1092) lacking 

the BR domain was not able to interact with Intersectin-SH3D (Fig.2.3B and C). Thus, 

these results suggest that the conserved BR domain within CdGAP-related proteins 

mediates the interaction CdGAP/Intersectin-SH3D.  

We then performed alanine-scanning mutagenesis to identify which residues in 

the BR region of CdGAP mediate the interaction with SH3D. Based on the amino acid 

sequence similarity between ARHGAP30 and CdGAP, CdGAP point mutants were 

generated by amino acid substitution of conserved residues (Fig. 2.4A). We found that 

the interaction between Intersectin-SH3D and CdGAP point mutant 2 was significantly 

impaired compared with the binding of intersectin-SH3D to  other CdGAP point mutants 

(Fig. 2.4B and C). Interestingly, this CdGAP point mutant 2 has its positively charged 

lysines replaced by alanines in the first SKSKK motif, previously identified using the 

peptide overlay assay (Fig. 2.2).  However, replacement of the lysines by alanines in the 

second SKSK motif (CdGAP point mutant 7) did not alter the interaction with Intersectin-

SH3D. Altogether, these results show that the SKSKK motif corresponding to residues 



 

 

68 | P a g e  

 

296-300 in the BR region of CdGAP is a novel SH3-binding sequence that mediates the 

interaction of CdGAP with the SH3D of Intersectin.  

We then examined if the SKSKK motif is important for the regulation of CdGAP 

activity. In an in vitro GAP assay, [g32P]-GTP-loaded Rac1 was incubated with myc-

tagged CdGAP(1-515) or CdGAP(1-515) (SaSaa) immunoprecipitated from HEK293 

cell lysates. We observed a reduction in the GAP activity of CdGAP(1-515) (SaSaa) 

compared with the wild-type protein (Fig.2.5A). However, when point mutations of the 

SKSKK motif were introduced into the full length CdGAP protein (1-820), the GAP 

activity of the mutant protein was inhibited (Fig.2.5B). In the presence of GST-SH3D, 

the GAP activity of CdGAP(1-820) was reduced as previously shown [5] but it has no 

major effect on the mutant protein (Fig.2.5C). Therefore, these results show that the 

SKSKK motif is important for the regulation of CdGAP activity in vitro.   

 

Discussion 

 In this study, we have identified key amino acid residues involved in the direct binding of 

the SH3D domain of Intersectin with CdGAP. These findings suggest that evolutionary 

conserved lysine residues located within the BR region of CdGAP and its related protein 

homologs are central to a novel atypical SH3 binding motif xKx(K/R)K. It is well established that 

most of the SH3 domains characterized to date bind to conventional class I ([R/K]xXPxXP) or 

class II (XPxXPx[R/K]) peptide motifs (418,419). However, a growing number of atypical motifs 

containing or not a proline residue have been discovered over the past years. These include the 

PxxxPR motif recognized by CIN85 in a number of proteins (420), the PxxDY motif that 

associates with Eps8 SH3 domain (421), the RKxxY motif in SKAP55 that mediates its 

interaction with the C-SH3 domain of SLAP (422), and the RxxK motif in SLP-76 bound by the 

C-SH3 domain of Gads (423). Most of these motifs share with the novel identified xKx(K/R)K 

motif the presence of key basic residues. In contrast to other SH3 domains (A, B, C, and E) of 

Intersectin that interact with a large number of proteins though the consensus PXXP sequence 

(412-414), only CdGAP and the adaptor protein Numb have been shown to interact with the 

SH3D domain of Intersectin. It is noteworthy that the C-terminus of mouse Numb involved in the 

interaction with Intersectin-SH3D (416) also contains the residues SKSKQ, adding support to 
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the findings that the novel xKx(K/R)K motif mediates the interaction with Intersectin-SH3D. 

Although the peptide overlay assay suggests that the second SKSK motif may be involved in 

the CdGAP/Intersectin-SH3D interaction (Fig.2.2), the alanine scanning mutagenesis 

experiment shows that only the first SKSKK motif is essential to mediate the interaction with 

SH3D (Fig.2.4). In this experiment, CdGAP proteins expressed in HEK293 cells may have post-

translational modifications, absent in the synthesized peptides, that could alter the interaction 

with SH3D and account for the discrepancy between the two results. In support of these 

findings, we demonstrate that the critical SKSKK motif regulates the GAP activity of CdGAP in 

vitro. Indeed, the replacement of the lysine residues by alanines in the full-length protein 

CdGAP (1-820) is sufficient to inhibit the GAP activity. Interestingly, point mutations of the 

SKSKK motif in the shorter protein CdGAP(1-515) lacking the PRD slightly affect the GAP 

activity, suggesting that the PRD is required for this regulation. These data are in good 

agreement with our previous study showing that the PRD of CdGAP is required for Intersectin-

mediated regulation of CdGAP activity [5].  

 In addition, it has been reported that the SH3 domains of Intersectin-1L regulate 

the GEF activity of Intersectin towards Cdc42 through intramolecular interactions with 

the adjacent DH-PH-C2 domains that do not involve proline peptide binding (416,425). 

The interaction of Numb with Intersectin-SH3D relieves this autoinhibitory mechanism, 

resulting in a net activation of Cdc42 activity (416).  It will be of interest to determine 

whether CdGAP binding to the SH3D domain of Intersectin can also act as a positive 

regulator of the GEF activity of Intersectin-1L towards Cdc42. Combined with the 

negative regulation of CdGAP activity by Intersectin SH3 domains (345), these SH3 

interactions would result in a net activation of Cdc42 activity. Future studies will 

determine how these molecular interactions are orchestrated in a spatial and temporal 

manner to affect Cdc42 activity in a physiological context.  
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Figure 2.1  ̶  An intact BR domain of CdGAP is required to bind to Intersectin-

SH3D.  

(A) In vitro [35S]-methionine translated CdGAP (1-515) was incubated with GST, GST-SH3D or 

GST-actopaxin coupled to glutathione-agarose beads in a GST pull down assay. 5% of the 

starting material (S.M.) was loaded in the first lane. (B) Myc-tagged deletion mutants of CdGAP 

expressed in HEK293 cells were incubated with GST or GST-SH3D proteins coupled to 

glutathione-agarose beads in a GST pull down assay. CdGAP was revealed by western blotting 

using anti-myc antibodies. 2% of starting material (S.M.) was loaded in the first lane. (B) 

Schematic representation of mouse full-length CdGAP (a.a. 1-1425) and CdGAP deletion 

mutants. +: polybasic residue cluster, GAP: GTPase-activating Protein, BR: basic-rich, PRD: 

proline-rich domain.
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Figure 2.2  ̶  Peptide overlay assay with GST-SH3D.  

The C-terminus of twenty 15-mer overlapping peptides corresponding to amino acids 249-358 of 

CdGAP were covalently bound to a cellulose membrane as per manufacturer. The membrane 

was incubated with GST or GST-SH3D proteins and bound proteins were revealed using an 

anti-GST-HRP antibody. Protein sequence alignment of peptides 8 to 15 is shown. Two distinct 

SKSK motifs are highlighted in bold.
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Figure 2.3   ̶ Intersectin-SH3D interacts with the CdGAP-related protein 

ARHGAP30.  

(A) Amino acid alignment of the BR region of mouse and human CdGAP with protein homologs. 

Conserved amino acids are highlighted in bold. (B) Myc-tagged CdGAP, ARHGAP30, and 

ARHGAP30 deletion mutants were transiently expressed in HEK293 cells and protein lysates 

were incubated with GST or GST-SH3D proteins coupled with glutathione-agarose beads. GST 

pull down proteins were revealed by western blotting using anti-myc antibodies. 2% of starting 

material (s.m.) was loaded as a control. (C) Schematic representation of mouse full-length 

CdGAP (a.a. 1-1425) and ARHGAP30. +: polybasic residue cluster, GAP: GTPase-activating 

Protein, BR: basic-rich, PRD: proline-rich domain. 
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Figure 2.4  ̶ The basic residues in the first SKSK motif are required for the 

interaction between CdGAP and Intersectin-SH3D.  

(A) Amino acid sequence alignment of the BR domains of CdGAP and ARHGAP30.  

CdGAP point mutants have been generated by alanine scanning mutagenesis based on 

the conserved residues between CdGAP and ARHGAP30. (B) Myc-tagged wild-type 

(WT) CdGAP (1-515) and CdGAP point mutants 1-9 expressed in HEK293 cells were 

incubated with GST or GST-SH3D proteins coupled to glutathione-agarose beads. 

Proteins specifically bound to the beads were revealed by western blotting using an 

anti-myc antibody. 2% of starting material (S.M.) was loaded as a control. (C) 

Quantitative analysis of blots as in (B), showing the relative ratio of CdGAP point 

mutants bound to GST-SH3D. A ratio of bound to total proteins was calculated for each 

myc-tagged protein and is represented relative to wild-type (WT) CdGAP (1-515). Error 

bars represent standard errors of the mean for at least five independent experiments. P 

value was determined by unpaired student’s t test. 
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Figure 2.5  ̶  The SKSKK motif is critical for the GAP activity of CdGAP in vitro.  

[γ-32P]-GTP loaded Rac1 was incubated with myc-tagged immunoprecipitated CdGAP 

proteins  (A) or with GFP-tagged  immunoprecipitated CdGAP proteins (B and C) and a 

GAP assay was performed. (C) The in vitro GAP assay was performed in the presence 

of 10um GST or GST-SH3D. Error bars represent standard errors of the mean for at 

least  three independent experiments. 
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Preface to Chapter 3 

 CdGAP is highly phosphorylated in its BR region, PBR and CT regions in 

response to growth factor stimulation, and is predicted to be a phosphorylation target of 

many protein kinases. In addition, numerous phosphoproteomic studies identified 

several potential phosphorylation sites on CdGAP in different cellular environments, 

suggesting regulatory roles of the phosphorylation. Despite these data, the function of 

CdGAP phosphorylation remains unknown and this led us to investigate CdGAP 

phosphorylation in the context of growth factor stimulation. To do so, we used cellular 

models and different biochemical and imaging techniques to map, identify and 

characterize the role of potential CdGAP phospho-residues. Using site-directed 

mutagenesis we were able to identify two conserved phospho-serines in the CT tail, 

Ser-1093 and Ser-1163, that are RSK1 (AGC kinase)-phosphorylated residues. 

Furthermore, we go on to identify a novel function of CdGAP phosphorylation involving 

the recruitment of adaptor 14-3-3 family members leading to the regulation of CdGAP 

activity and subcellular localization. 
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ABSTRACT 

 Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a 

negative regulator of the small GTPases Rac1 and Cdc42. Associated with the rare 

developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for 

embryonic vascular development and for VEGF-mediated angiogenesis. Moreover, 

CdGAP is an essential component in the synergistic interaction between the TGFβ and 

Neu/ErbB-2 signaling pathways during breast cancer cell migration and invasion. 

CdGAP is highly phosphorylated on serine and threonine residues in response to 

growth factors and is a substrate of ERK and GSK-3. Here, we identified two residues, 

Ser1093 and Ser1163, in the C-terminal region of CdGAP, which are phosphorylated by 

RSK (p90 ribosomal protein S6 kinase) in response to phorbol ester (PMA). These 

phospho-residues create docking sites for binding to 14-3-3 adaptor proteins. The 

interaction between CdGAP and 14-3-3 proteins impairs the GAP activity of CdGAP and 

sequesters CdGAP into the cytoplasm. Consequently, the nucleocytoplasmic shuttling 

of CdGAP is inhibited and CdGAP-induced cell rounding is abolished. Furthermore, we 

show that 14-3-3  is unable to regulate the activity and subcellular localization of the 

AOS-related mutant proteins lacking these phospho-residues. Altogether, we provide a 

novel mechanism of regulation of CdGAP activity and subcellular localization, which 

impacts directly on a better understanding of the role of CdGAP in the molecular causes 

of AOS. 
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INTRODUCTION 

 The Rho family of small GTPases holds central functions in cell proliferation, 

migration, and adhesion (426,427). Alterations in Rho genes are linked to many human 

cancers and indicate a role in tumor invasion and metastasis (46,428,429). Rho proteins 

act as molecular switches by cycling between an active GTP- and an inactive GDP-

bound state. This GDP/GTP exchange is regulated by guanine nucleotide exchange 

factors (GEFs), which induce the replacement of GDP by GTP, guanine nucleotide 

dissociation inhibitors (GDIs) binding and sequestering the GDP-bound form of the 

GTPase in the cytoplasm, and finally GTPase-activating proteins (GAPs) that stimulate 

the intrinsic GTPase activity, leading to deactivation of the GTPase (6,48,95). 

 Cdc42 GTPase-activating protein (CdGAP, also known as ARHGAP31), a 

member of the large family of RhoGAPs, negatively regulates the activity of Rac1 and 

Cdc42, but not RhoA (323,337). Recently, the loss of CdGAP in mice unveiled the 

importance of CdGAP in embryonic vascular development (339). CdGAP has also been 

shown to control directional membrane protrusions of migrating osteosarcoma cells 

(341,356,357). In addition, CdGAP mediates transforming growth factor (TGFβ)- and 

ErbB2-induced cell motility and invasion of breast cancer cells in a GAP-independent 

manner (128). Of interest, a quantitative RNA profile analysis of Rho GTPases and their 

regulators in ErbB2-induced mouse breast tumors revealed Rac1 and CdGAP as the 

major GTPase and RhoGAP expressed in these tumors, respectively (364). CdGAP is a 

large protein, comprising several regulatory domains, each of them being associated 

with a specific function. Notably, CdGAP consists of an N-terminal GAP domain 

preceded by a stretch of polybasic residues (PBR) binding to phosphatidylinositol 3,4,5-

trisphosphate (PI (3,4,5) P3) that regulates its GAP activity by targeting the protein at 

the plasma membrane (36). The N-terminal GAP domain is followed by a basic-rich 

(BR) central region, a proline-rich domain (PRD) with an extended C-terminal region. 

The BR region interacts through an atypical basic-rich motif with the SH3D domain of 
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the endocytic scaffolding protein intersectin leading to inhibition of CdGAP activity 

(342,343) while the PRD is responsible for the ability of CdGAP to facilitate TGFβ-

mediated cell motility and invasion of breast cancer cells (128). Furthermore, truncating 

mutations in the terminal exon of the CdGAP gene have been identified in patients with 

a rare developmental disorder, the Adams-Oliver Syndrome (AOS), characterized by 

the combination of aplasia cutis congenita (ACC) and limb defects (340,360,430). 

These mutations result in the removal of the C-terminal region and part of the PRD of 

CdGAP, which increase the GAP activity of the truncated proteins through a gain-of-

function mechanism (340). CdGAP is highly phosphorylated on serine and threonine 

residues in response to growth factors and is a substrate of extracellular signal-

regulated kinase (ERK)/GSK-3. Indeed, phosphorylation of T776 in the PRD by ERK1/2 

and GSK-3 negatively regulates the GAP activity of CdGAP (108,109). CdGAP was also 

found to interact with members of the mitogen-activated protein kinase (MAPK) 

signaling pathway, ERK1/2 and p90 ribosomal protein S6 kinase (RSK) (109). Mutations 

of key residues in the ERK docking site impair ERK binding and phosphorylation of 

CdGAP (109). Here we report the identification of two important serine residues S1093 

and S1163 phosphorylated by RSK, which creates 14-3-3 docking sites in the C-

terminal region of CdGAP. We show that 14-3-3β interacts with CdGAP through these 

phosphoserines and sequesters the protein into the cytoplasm, which inhibits the 

nucleocytoplasmic shuttling of CdGAP, cell rounding, and its GAP activity towards 

Rac1. In this way, we highlight a novel mechanism of regulation of CdGAP and we 

provide mechanistic insights into understanding the function of the C-terminal region of 

CdGAP, lacking in the truncated mutants expressed in AOS patients.   
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RESULTS 

CdGAP is a substrate of the AGC family kinases in response to growth factors 

and mitogens 

 To determine if AGC family kinases, such as Akt and RSK (431,432), 

phosphorylate CdGAP in response to agonists of the Ras/MAPK pathway, we used the 

phosphorylation site-specific antibody recognizing the consensus motif Arg/Lys-X-

Arg/Lys-X-X-pSer/Thr (RXRXXpS/T) found in substrates of the AGC family kinases 

(431,432). COS-7 fibroblast cells transfected with GFP-tagged CdGAP were serum-

starved overnight before stimulation with TGFβ, serum, or phorbol ester (phorbol-12-

myristate-13-acetate, PMA) for 5 to 30 minutes before harvesting. Immunoprecipitated 

CdGAP was then examined for phosphorylation by immunoblotting using the anti-

RXRXXpS/T antibodies. CdGAP phosphorylation at the basic consensus motif was 

increased in response to the agonists and peaked at 30 minutes after stimulation (Fig. 

3.1 A-F).  

   We next investigated whether endogenous CdGAP is phosphorylated by AGC 

kinases in response to TGFβ stimulation of mammary epithelial cells. We found that 

CdGAP phosphorylation at the basic consensus motif was significantly increased after 

30 minutes of TGFβ stimulation (Fig. 3.1G and H). CdGAP phosphorylation was 

concomitant with the phosphorylation of RSK (T359/S363) and Smad2/3 (Fig. 3.1I and 

J), suggesting that activation of RSK by the canonical TGFβ pathway may be 

responsible of CdGAP phosphorylation on basic consensus motifs. Altogether, these 

data demonstrate that CdGAP is a substrate of the AGC family kinases, which likely 

implicate RSK activation in response to growth factor and mitogen stimulation.     

Identification of S1093 and S1163 as RSK-dependent phosphorylation sites 

 Because we have previously shown that RSK interacts and directly 

phosphorylates CdGAP in vitro (109), we next sought to determine whether RSK 

phosphorylates CdGAP at the basic consensus sites. COS-7 cells were co-transfected 

with GFP-CdGAP and wild-type (WT) RSK1, kinase-deficient (KD) RSK1, or 



 

 

86 | P a g e  

 

constitutively active (CA) RSK1. RSK1-CA induced a robust CdGAP phosphorylation at 

the basic consensus motif compared to RSK1-WT (Fig. 3.2A and B). RSK1-KD, which 

retains some ability to autophosphorylate (433), did not significantly increase CdGAP 

phosphorylation, relative to the amount of total immunoprecipitated CdGAP (Fig. 3.2A 

and B). Additionally, we used an RSK inhibitor (BI-D1870) that selectively blocks RSK 

activity (434). Treatment of cells with BI-D1870 prior to PMA stimulation significantly 

reduced CdGAP phosphorylation at the basic consensus site (Fig. 3.2C and D). Taken 

together, these results demonstrate that RSK induces CdGAP phosphorylation at basic 

consensus sites in response to PMA. 

 To identify CdGAP residues phosphorylated by RSK, we analyzed the basic 

consensus residues surrounding all Ser/Thr amino acids in the CdGAP protein 

sequence, with at least one Arg residue in the -3 position. According to the RSK 

consensus phosphorylation sequence determined using an oriented peptide library 

(435), we identified 8 potential phosphorylation sites (Table 1). Based on the number of 

phosphoproteomic studies reporting these potential CdGAP phosphorylation sites 

(http://www.phosphosite.org/), we chose to replace each of these 4 residues Ser272, 

Ser765, Ser1093, and Ser1163 to an alanine residue. We found that the mutation of 

Ser272 and Ser765 located in the BR and PRD, respectively, did not significantly affect 

CdGAP phosphorylation compared to wild-type CdGAP in response to PMA treatment 

of COS-7 cells using anti-RXRXXpSer/Thr antibodies (Fig. 3.2E). However, the 

phosphorylation of CdGAP-S1093A and –S1163A was significantly reduced compared 

to wild-type CdGAP in response to PMA treatment whereas the phosphorylation of the 

double mutant CdGAP-S1093A/S1163A was almost completely absent (Fig. 3.2C and 

D). Furthermore, phosphorylation of the double mutant CdGAP-S1093A/S1163A on the 

basic consensus motif was completely inhibited in the presence of wild-type or 

constitutively active RSK1 compared to wild-type CdGAP (Fig. 3.2A and B).   Treatment 

of the cells with the RSK inhibitor BI-D1870 prior to PMA completely inhibited the 

phosphorylation of the single mutants and the double mutant CdGAP-S1093A/S1163A 

(Fig. 3.2C and D). Collectively, these data demonstrate that Ser1093 and Ser1163 

http://www.phosphosite.org/
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located in the C-terminal region of CdGAP are major phosphorylation sites targeted by 

RSK in response to PMA stimulation.    

14-3-3 adaptor proteins isoforms β and σ interact with CdGAP  

 Because the minimum RSK consensus motif RXXpSer/Thr overlaps with the 14-

3-3 mode 1 binding site RXXpSer/ThrXP (373,374,392), we next investigated whether 

CdGAP interacts with 14-3-3 proteins. Myc-tagged CdGAP was expressed in HEK293 

cells and subjected to a GST-14-3-3 pull-down. Consistent with a phospho-dependent 

interaction, CdGAP interacted with wild-type 14-3-3ε but not with the mutant 14-3-

3εK49E, which shows reduced binding to phosphorylated substrates (374) (Fig. 3.3A). 

Then, we examined which 14-3-3 isoforms interact with CdGAP in co-

immunoprecipitation assays. Myc-tagged CdGAP was immunoprecipitated from 

HEK293 cells expressing Myc-CdGAP together with the HA-tagged 14-3-3 isoforms. 

CdGAP interacted specifically with 14-3-3β and σ isoforms (Fig. 3.3B). Similarly, 

immunoprecipitated HA-tagged 14-3-3 isoforms showed an interaction between 14-3-3β 

or σ with CdGAP (Fig. 3.3C). To delineate the regions of CdGAP permitting the 

association between CdGAP and 14-3-3, GFP-CdGAP deletion mutants (Fig. 3.4A) 

were expressed in COS-7 cells and the interaction with 14-3-3β was assessed by 

immunoprecipitation in unstimulated or PMA-treated cells (Fig. 3.4B). In this assay, the 

N-terminal PBR-GAP fragment (1-221), the BR (181-515) and C-terminal domains 

(1083-1425) but not the PRD (516-820) interacted with 14-3-3β (Fig. 3.4B). However, 

we did not observe an increased interaction in PMA-stimulated cells (Fig. 3.4B). We 

next examined the interaction between 14-3-3β and CdGAP phospho-mutants co-

expressed in COS-7 cells unstimulated or treated with PMA. CdGAP-S272A was still 

able to interact with 14-3-3β (Fig. 3.4C), suggesting that this basic consensus motif was 

not responsible for the binding of CdGAP-BR to 14-3-3β. Conversely, the interaction 

between CdGAP double mutant S1093A/S1163A and 14-3-3β was greatly reduced 

compared to wild-type CdGAP or to each single CdGAP mutant in unstimulated and 

PMA-treated cells (Fig. 3.4D and E). Therefore, these results show that the RSK-



 

 

88 | P a g e  

 

dependent phosphorylation residues S1093 and S1163 in the C-terminal region of 

CdGAP create 14-3-3 binding sites. 

 14-3-3β regulates CdGAP subcellular localization and inhibits CdGAP-mediated 

cell rounding  

 We have previously demonstrated that the expression of CdGAP in various cell 

types induces cell rounding in a GAP-dependent manner (36,288,340,341). Thus, we 

assessed whether 14-3-3β regulates the ability of CdGAP to induce cell rounding and its 

subcellular localization by microscopy. Wild-type CdGAP was expressed alone or with 

14-3-3β into fibroblast cells and the percentage of cells showing a rounded phenotype 

was determined (Fig. 3.5). As previously reported, CdGAP-WT induced cell rounding in 

45% of transfected cells compared to 20% of control GFP-transfected cells (Fig. 3.5A 

and B). Co-expression of 14-3-3β and CdGAP-WT abolished the ability of CdGAP to 

induce cell rounding, showing a flat and elongated phenotype (Fig. 3.5A and B). In 

addition, we determined that CdGAP showed a nuclear localization in 35% of 

transfected cells (Fig. 3.5A and C) whereas the expression of 14-3-3β with CdGAP 

significantly reduced the nuclear localization of CdGAP to 15% of transfected cells (Fig. 

3.5A and C). We assessed the degree of co-association of 14-3-3β and CdGAP in the 

cytoplasm by calculation of the mean Pearson’s correlation coefficient between 14-3-3β 

and CdGAP. By this mean, we observed a significant colocalization of CdGAP with 14-

3-3β in the cytoplasm (r=0.55+/-0.06) (Fig. 3.5D). We next examine the effect of 14-3-

3β on the localization of the double mutant CdGAP-S1093A/S1163A and its ability to 

induce cell rounding. Similar to wild-type CdGAP, the mutant CdGAP-S1093A/S1163A 

induced cell rounding in 45% of transfected cells (Fig. 3.5A and B). However, the 

expression of 14-3-3β with the double mutant did not affect its ability to induce cell 

rounding (Fig. 3.5A and B). Furthermore, 14-3-3β did not affect the percentage of 

transfected cells with CdGAP-S1093A/S1163A nuclear localization (Fig. 3.5A and C) 

and consequently, 14-3-3β did not colocalize with CdGAP-S1093A/S1163A (r=0.10+/-

0.02) (Fig. 3.5D). Together, these data show that 14-3-3β sequesters CdGAP into the 
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cytoplasm and inhibits its ability to induce cell rounding, which is dependent on the 

RSK-dependent phosphorylation sites Ser1093 and Ser1163.  

14-3-3β docking sites negatively regulate the GAP activity of CdGAP towards 

Rac1  

 We next sought to determine whether 14-3-3β directly modulates CdGAP activity 

towards Rac1. To this end, we performed pull-down assays with the Cdc42/Rac1 

interactive binding (CRIB) domain of PAK fused to GST to assess the levels of active 

GTP-Rac1 in HEK293 cell extracts. As expected, overexpression of CdGAP led to a 

significant reduction in GTP-Rac1 levels (p< 0.05), whereas 14-3-3β had no significant 

effect on GTP-Rac1 levels alone (P= 0.45) (Fig. 3.6A and B). However, the expression 

of 14-3-3β with CdGAP resulted in the inhibition of CdGAP activity with higher levels of 

GTP-Rac1 (P< 0.05) (Fig. 3.6A and B). To examine whether the 14-3-3β docking sites 

in the C-terminal region of CdGAP regulate CdGAP activity, we determined the GAP 

activity of the double mutant CdGAP-S1093A/S1163A alone or with 14-3-3β. The 

expression of CdGAP-S1093A/S1163A resulted in a significant higher GAP activity with 

lower levels of GTP-Rac1 (P <0.01), whereas co-expression with 14-3-3β did not 

significantly modulate its GAP activity (Fig. 3.6A and B). Together with the previous 

findings that 14-3-3β abolished CdGAP-mediated cell rounding (Fig. 3.5A and B), these 

results support the hypothesis that 14-3-3β inhibits the GAP activity of CdGAP towards 

Rac1 through interaction with the RSK-dependent phosphorylation sites Ser1093 and 

Ser1163.  

The AOS-related CdGAP mutant proteins show a reduced interaction with 14-3-3β  

 Because the AOS-related CdGAP-Q683X and –K1087Sx4 mutants are lacking 

the C-terminal region and show an increased GAP activity (340), we next determined 

the interaction between 14-3-3β and the AOS-related CdGAP mutant proteins in co-

immunoprecipitation assays (Fig. 3.7A). Myc-tagged human CdGAP (hCdGAP) wild-

type, CdGAP-Q683X or –K1087Sx4 were immunoprecipitated from COS-7 cells 

expressing HA-tagged 14-3-3β. Both AOS-related CdGAP mutants showed a reduced, 

but not completely abolished, interaction with 14-3-3β compared to the wild-type 



 

 

90 | P a g e  

 

hCdGAP (Fig. 3.7A). Consistent with the previous findings that 14-3-3β can also interact 

with the N-terminal GAP and BR of mouse CdGAP (Fig. 3.4B), these data suggest that 

14-3-3β association with human CdGAP may be in part mediated by the N-terminus and 

BR, though the C-terminal region of human CdGAP is important to mediate an efficient 

interaction with 14-3-3β, which is lacking in the AOS-related mutants. 

14-3-3β is unable to modulate AOS-related CdGAP mutant localization and 

activity  

 We next explored the role of 14-3-3β on the subcellular localization and the 

ability of the AOS-related mutants to induce cell rounding. As previously reported (340), 

human CdGAP induced cell rounding in 40% of transfected cells, whereas the AOS-

related mutants showed a significant increased rounded phenotype with 55% and 60% 

of transfected cells for CdGAP-Q683X and –K1087Sx4 expression, respectively (Fig. 

3.7B and C). In addition, human CdGAP-WT and AOS-related mutants showed a similar 

nuclear localization in 38% to 42% of transfected cells (Fig. 3.7B and D). Co-expression 

of 14-3-3β inhibited the ability of hCdGAP-WT to induce cell rounding, whereas it has a 

small but significant capability of reducing the ability of AOS-related mutant proteins to 

induce cell rounding (Fig. 3.7B and C).  Furthermore, 14-3-3β decreased the 

percentage of cells with nuclear hCdGAP-WT localization to 15%, whereas it has no 

effect on the localization of the AOS-related mutants (Fig. 3.7B and D). Consequently, 

we did not find a significant co-localization between the AOS-related mutants and 14-3-

3β by assessing the degree of co-association with the Pearson’s correlation coefficient, 

whereas hCdGAP-WT co-localized with 14-3-3β with an r=0.43+/-0.03 (Fig. 3.7E). 

Collectively, these results demonstrate that the negative regulation of CdGAP activity by 

14-3-3β is impaired for the AOS-related protein mutants, which correlates with its 

increased GAP activity (340) and ability to induce cell rounding.   
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DISCUSSION 

 In this report, we provide evidence for a novel mechanism of regulation of 

CdGAP activity and subcellular localization by RSK-dependent phosphorylation and 14-

3-3 interaction. We demonstrate that CdGAP is phosphorylated at the C-terminal region 

on Ser1093 and Ser1163 residues by RSK, which creates docking sites for 14-3-3 

binding. We show that 14-3-3 binding to these phosphosites sequesters CdGAP in the 

cytoplasm to inhibit the GAP activity of CdGAP towards Rac1 (Fig. 3.8). Previous 

studies have identified CdGAP as a molecular target of the Ras/MAPK pathway in 

response to serum and PDGF (108,109,345). Indeed, we identified Thr776 in the 

proline-rich domain of CdGAP as a major phosphorylation site of ERK1/2, which 

negatively regulates the GAP activity of CdGAP towards Rac1 (109). In addition, this 

consensus ERK1 regulatory site is phosphorylated by GSK-3β in serum-starved cellular 

conditions (108). Here, we report that CdGAP is also connected to the Ras/MAPK 

pathway via its phosphorylation by RSK, which is a downstream ERK effector involved 

in the control of cell proliferation, survival, and motility (431,435,436). The Ser1093 and 

Ser1163 residues located in the C-terminal region of CdGAP appear to be the major 

phosphorylation sites of RSK, although we cannot rule out the possibility that other 

residues may be RSK targets as well. According to phosphosite.org, phospho-Ser1163 

has been reported in 23 large-scale proteomic studies, including the phosphoproteomic 

analysis of breast cancer, lung cancer, and the liver (350-353). Moreover, phospho-

Ser1093 was reported in 3 large-scale proteomic studies, including the 

phosphoproteome of the liver (347,348), and more recently, this phosphosite was 

identified in a comparative phosphoproteomic analysis of VEGF and angiopoietin-1 

signaling in endothelial cells (349). Of interest, we have recently shown that CdGAP is a 

critical regulator of VEGF-mediated signaling in angiogenesis (339). Therefore, 

phospho-Ser1093 and Ser1163 at the C-terminal tail of CdGAP appear to be regulated 

by various agonists in different cellular contexts.   
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 We show that the RSK-dependent phospho-Ser1093 and –Ser1163 residues 

create docking sites for binding to 14-3-3β and σ adaptor proteins. The 14-3-3 family 

consists of 7 isoforms (β, γ, ε, σ, ζ, τ, η) sharing a high degree of homology amongst 

vertebrates (398,401,437). They are crucial regulators of several intracellular signaling 

pathways. They form homo- and heterodimers that interact with a variety of target 

proteins containing the consensus motif, RSXpS/pTXP, thereby affecting their activity, 

subcellular localization, and protein stability (371-374,438). Consequently, dysregulation 

of 14-3-3 proteins is often associated with tumorigenesis with a 14-3-3 isoform 

expression signature emerging in many types of cancer (398,402). Because of the 

requirement of an Arg residue at the -3 position, 14-3-3 binding sites are often regulated 

by Ser/Thr basophilic protein kinases of the AGC family (435). A recent 

phosphoproteomic analysis of the 14-3-3 interactome in melanoma cells has indeed 

identified a large number of potential RSK substrates, including CdGAP (435). Here we 

show that the RSK-dependent phospho-Ser1093 and –Ser1163 are the major binding 

sites of 14-3-3β, which is supported by a phosphoproteomic study reporting these 

phospho-residues as 14-3-3 binding sites with excellent scores (439). However, the 

residual interaction between the CdGAP-S1093A/S1163A mutant and 14-3-3β suggests 

that other residues may be involved in the interaction. In fact, we found that the N-

terminus PBR-GAP domain and the basic region (BR) of CdGAP are also able to bind to 

14-3-3β. Although Ser272 in CdGAP-BR does not mediate the interaction with 14-3-3β, 

we cannot exclude the possibility that additional AGC family kinase-dependent 

consensus sites within CdGAP-BR as indicated in Table 1 could be involved in the 

interaction between 14-3-3β and CdGAP. However, no phospho-dependent basic motif 

can be identified in the PBR-GAP domain, suggesting an interaction through an 

unphosphorylated residue. Interestingly, a basic motif RSKKIE similar to the 

unphosphorylated basic RSx1-3E-like motif previously reported to interact with 14-3-3 

(397) could mediate the interaction between the PBR-GAP domain and 14-3-3 proteins. 

Altogether, the association between 14-3-3 dimers and CdGAP may be mediated in part 

by the N- and C-terminus of CdGAP, though both regions may differently cooperate in 

the context of the full-length protein.  
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 Furthermore, our study demonstrates that the recruitment of 14-3-3 proteins to 

CdGAP through the phospho-Ser1093 and S1163 residues sequesters CdGAP in the 

cytoplasm and inhibits CdGAP–induced cell rounding and consequently, its GAP activity 

towards Rac1. This regulatory mechanism of CdGAP is similar to the regulation of a 

number of GEFs and GAPs previously identified in global 14-3-3 interaction screens 

(440-442), including Deleted in liver cancer 1 (DLC1), ARHGAP22, and the RhoGEF 

AKAP-Lbc. Notably, the RhoGAP DLC1, a tumor suppressor protein inactivating RhoA 

in many types of cancer (443), is phosphorylated by PKC/PKD protein kinases on Ser 

residues, which create binding sites for 14-3-3 proteins. This phosphorylation results in 

the inhibition of the RhoGAP activity and nucleocytoplasmic shuttling of DLC1 (440).  

Therefore, these studies support a general role for 14-3-3 adaptor proteins in the control 

of small GTPase regulators, and consequently, cytoskeletal regulation and organization.  

We have previously shown that PI-3 kinase activation causes the recruitment of CdGAP 

to the plasma membrane, likely via the binding of PI-3,4,5 to the PBR preceding the 

GAP domain (36). This lipid interaction is essential for CdGAP activity to induce cell 

rounding. Therefore, the interaction of 14-3-3 with CdGAP may impede the recruitment 

of CdGAP to the plasma membrane by inhibiting the interaction between PI-3,4,5 and 

the N-terminus PBR-GAP domain.  We also report here that CdGAP localizes to the 

nucleus in a proportion (35%) of transfected cells and that co-expression with 14-3-3β 

significantly reduces CdGAP nuclear localization. In a separate study, we have 

uncovered a previously unknown nuclear function for CdGAP where it functions in a 

GAP-independent manner as a critical E-cadherin transcriptional co-repressor with 

Zeb2 to promote breast tumorigenesis and metastasis to the lungs (127). Thus, 14-3-3 

binding to CdGAP may behave as an important negative regulator of CdGAP 

transcriptional activity by cytosolic sequestration, leading to the inhibition of epithelial-to-

mesenchymal transition (EMT), cell motility and invasion of breast cancer cells.     

 The AOS-related CdGAP-Q683X and –K1087Sx4 mutants have been first 

identified in autosomal-dominant AOS patients and displayed an increased GAP activity 

towards Cdc42, highlighting the importance of Rac1/Cdc42 regulation in the 

developmental processes of scalp and limb formation (340). Moreover, we have showed 
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that the C-terminus of CdGAP was able to interact with the N-terminal PBR-GAP 

domain, suggesting a mechanism of regulation of CdGAP activity by the C-terminus 

(340). The results presented in this study show that the AOS-related CdGAP-Q683X 

and –K1087Sx4 mutants lacking the C-terminal tail displayed a higher proportion of cell 

rounding and lost the nucleocytoplasmic regulation by 14-3-3 proteins, which correlate 

with the reduction of interaction between the mutants and 14-3-3β. Therefore, these 

novel findings strongly support a mechanism, whereby the binding of 14-3-3 proteins to 

the C-terminus of CdGAP is necessary to regulate the subcellular localization and GAP 

activity of CdGAP. We propose that impaired 14-3-3 regulation of CdGAP in AOS 

patients may cause profound effects during early human development. In addition, we 

have recently reported that vascular development is impaired in CdGAP-deficient 

mouse embryos, associated with superficial vessel defects and subcutaneous edema, 

resulting in 44% perinatal lethality (339). Altogether, these findings unveil the 

importance of a tight regulation of CdGAP activity in cells and tissues, which otherwise 

may lead to developmental disorders and cancer.    
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EXPERIMENTAL PROCEDURES  

DNA constructs 

pEGFPC1-mCdGAP and deletion mutants, pRK5myc-hCdGAP and AOS-related 

mutant, pKH3-avRSK1 wild-type (WT), pKH3-avRSK1-K112/464R kinase-deficient 

(KD), pRK7-Myr-avRSK1 constitutively active (CA), pcDNA-HA-14-3-3 isoforms (β, γ, σ 

and ζ), GST-14-3-3ε wild-type (WT) and GST-14-3-3ε K49E, pRK5myc- Rac1 

constructs have been previously described (36,108,109,323,340,374,433,444,445). 

CdGAP point mutants were derived from the wild-type form of CdGAP in pEGFPC1 

using the QuikChange® Site-Directed Mutagenesis Kit (Stratagene), according to the 

manufacturer’s instructions. The following primers were used: 

S272A (forward-5' GAAAGACGAGAGAACGCCCTGCCCGAGATCGTC 3' 

and reverse-5' GACGATCTCGGGCAGGGCGTTCTCTCGTCTTTC3’),  

S765A (forward-5' GGCCCAAGGAATCTCGCTCCCCCTCTTACTCC 3'and reverse-5' 

GGAGTAAGAGGGGGAGCGAGATTCCTTGGGCC 3'),  

S1093A (forward-5' GAAACACAGGCCGTCTGCCCTCAACCTGGACTCTG 3' and 

reverse-5' CAGAGTCCAGGTTGAGGGCAGACGGCCTGTGTTC 3') 

S1163A (forward-5' GACAGGCCGCAGGAATGCGGCTCCTGTAAGTGTG 3' and 

reverse-5' 

CACACTTACAGGAGCCGCATTCCTGCGGCCTGTC 3'). All plasmids were verified by 

sequencing.  

Antibodies 

The following antibodies were used: Anti-rabbit IgG (whole molecule), anti-CdGAP 

(Sigma); anti-myc (clone 9E10), anti-phospho-RSK1 (Thr359/Ser363)  (Millipore); rabbit 

and mouse anti-GFP, anti-rabbit-conjugated Alexa-488, anti-mouse-Cy3 (Molecular 

Probes); anti-rabbit and anti-mouse-HRP (GE Healthcare); anti-HA, anti-RSK1(Santa 

Cruz Biotechnology); anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), anti-p44/42 

MAPK (Erk1/2), anti-phospho-Smad2/3 (Ser465/467), anti-Smad2/3 and anti-

RXRXXpS/T [Phospho-(Ser/Thr) Akt Substrate] (Cell Signaling).  

 

http://www.jbc.org/cgi/redirect-inline?ad=Molecular%20Probes
http://www.jbc.org/cgi/redirect-inline?ad=Molecular%20Probes
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Cell culture, transfection, and treatment 

NMuMG mammary epithelial cells were grown in DMEM supplemented with 10% Fetal 

Bovine serum (FBS) (Wisent), 10 mM HEPES, 1 mM sodium pyruvate, 1 mM L-

glutamine, 10 µg/ml insulin and antibiotics as previously described (128). HEK293 and 

COS-7 cells were cultured in DMEM supplemented with 10% FBS and antibiotics in a 

humidified incubator at 37 °C with 5% CO2.  HEK293 and COS-7 cells were transfected 

with the indicated constructs using linear polyethylenimine (PEI)  (Polysciences) at a 1:8 

ratio (cDNA:PEI) following the manufacturer's instructions. Thirty hours post-

transfection, cells were serum-starved for 18h and stimulated for 30 min with either 20% 

FBS, 200 nM PMA (phorbol-12-myristate-13-acetate, Cell Signaling) or 5 ng/ml 

recombinant Human TGF-β1 (Invitrogen). For PMA and BI-D1870 (Stemgent) 

treatments, cells were treated for 30min with PMA (200nM) and BI-D1870 (20nM) 

following a pre-treatment with BI-D1870 (20nM) for 1h.  

Immunoprecipitation, western blotting, and quantitative densitometry  

NMuMG cells were lysed in lysis buffer containing  20 mM Tris-HCl, pH 7.4, 100 mM 

NaCl, 1mM phenylmethylsulfonyl fluoride (PMSF), 1% Triton X-100, 1 mM EDTA, 1 mM 

sodium orthovanadate (Na₃VO₄) , 1 µg/ml aprotinin and leupeptin, and  50 mM sodium 

fluoride (NaF) (BioShop). COS-7 and HEK293 cells were lysed in lysis buffer containing  

25 mM Hepes pH 7.5, 1% Nonidet P-40 (NP-40), 10 mM MgCl2, 100 mM NaCl, 5% 

glycerol, 1 mM Na₃VO₄, 50 mM NaF, 1 mM PMSF and 1 µg/ml aprotinin and leupeptin. 

Protein lysates were centrifuged at 10,000 × g for 10 min at 4°C to remove insoluble 

materials. For immunoprecipitation, 2-3mg of protein lysates were incubated with the 

indicated antibodies for 1h followed by Protein-G-Sepharose beads (GE Healthcare). 

Beads were washed twice with lysis buffer and heated to  95 ͦ C in SDS sample buffer. 

Protein samples were resolved by SDS-PAGE, transferred to nitrocellulose membranes 

for Western blotting with the indicated antibodies, and visualized by enhanced 

chemiluminescence (ECL) (Millipore). Quantitative densitometry was assessed using 

Image J software (446). 
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GST-protein purification and pull down assays 

GST-fusion proteins (GST, GST-14-3-3ε wild-type and K49E) were produced in BL21 E. 

coli as described previously (435). For pull-down experiments, HEK293 cells transfected 

or not with Myc-tagged wild-type CdGAP were lysed as described above. Cellular debris 

were removed by centrifugation for 10 min at 13,000 × g, and the supernatant was 

divided equally and incubated with 10 µg of GST, GST-14-3-3ε wild-type, or GST-14-3-

3ε K49E bound to glutathione beads for 2 hours. The beads were then washed 4 times 

with lysis buffer prior to elution with reducing sample buffer, SDS-PAGE and 

immunoblotting. 

 

Rac1 activation assay 

Transfected HEK293 cells were lysed in buffer containing 25mM Hepes pH 7.5, 1% NP-

40, 10 mM MgCl2, 100 mM NaCl, 5% glycerol, 1mM Na₃VO₄, 50 mM NaF, 1mM PMSF, 

1 µg/ml aprotinin and leupeptin. Protein lysates were centrifuged at 10,000 × g for 10 

minutes to remove insoluble materials. Myc-tagged Rac1-GTP was pulled down by 

incubating 2-3mg of protein lysates for 60 min at 4 °C with 30 μg of purified GST-CRIB 

(amino acids 73-146 of mouse PAK3 fused to GST) (447) coupled to glutathione-

sepharose beads (Sigma). The beads were washed three times with the lysis buffer and 

then boiled in SDS sample buffer. Protein samples were resolved by SDS-PAGE and 

transferred to nitrocellulose for immunoblotting with anti-myc antibodies. The levels of 

GTP-bound Rac1 were assessed by densitometry using Image J software and 

normalized to total Rac1 detected in total cell lysates. 

 

Immunofluorescence microscopy  

Immunofluorescence microscopy was performed as previously described (36,128). 

Briefly, transfected COS-7 cells grown on glass coverslips were fixed in 3.7% 

formaldehyde (BioShop) for 10 min before permeabilization in 0.25% Triton X-100 for 5 
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min. Cells were then blocked for 30 min with 0.1% BSA and incubated in blocking buffer 

containing the indicated primary antibodies at 4 °C overnight. After washing twice with 

PBS, cells were incubated with Alexa Fluor 488 or Cy3-conjugated secondary 

antibodies (Molecular Probes) with 4’, 6’-diamidino-2-phenylindole (DAPI) for nucleus 

staining. Coverslips were mounted on glass slides using Prolong Gold antifade reagent 

(Invitrogen). Cells were examined using a laser-scanning Zeiss LSM780 confocal 

microscope with a Plan-Neofluar 40x/0.60 oil or a Plan-Apochromat. 63x/1.40 oil 

immersion objective lenses and analyzed with Zen2010 software (Carl Zeiss). 

Colocalization analysis and Pearson’s correlation coefficient (r) were performed using 

Zen2010 software, analyzing > 30 cells per condition in at least three independent 

experiments. For quantification of cell rounding and nuclear localization, cells were 

imaged with a motorized inverted Olympus microscope IX81 using a 60X U PLAN S-

APO oil objective lens. Images were recorded with a CoolSnap 4K camera 

(Photometrics) and analyzed with MetaMorph software (Molecular Devices). At least 

100 cells per condition were analyzed in at least three independent experiments.  

Statistical analysis 

Statistical analysis was performed using a two-sample unequal-variance Student’s t 

test. Data 

are presented as the mean +/- SEM and the p value of less than 0.05 was considered to 

be statistically significant. Data are representative of at least three independent 

experiments.  
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Figure 3.1   ̶  CdGAP is phosphorylated by the AGC family kinases in response to 

growth factors and mitogens. 

COS-7 cells transfected with empty vector (EV) or GFP-CdGAP were stimulated with 

TGFβ (5 ng/ml) (A, B), FBS 20% (C, D), or PMA (200 nM) (E, F). GFP-CdGAP proteins 

were immunoprecipitated (IP) from cell lysates and the phosphorylation of CdGAP (P-

CdGAP) on the consensus motif RXRXXpS/T was detected by immunoblotting with the 

indicated antibodies. TCL, total cell lysates. (B, D, F) Densitometric analysis of P-

CdGAP/CdGAP ratio is represented as the fold change relative to 0 min of stimulation 

from A, C, and E.  (*p<0.05, unpaired Student’s t test). (G) Endogenous CdGAP was IP 

from lysates of mouse mammary epithelial (NMuMG) cells, stimulated with TGFβ (5 

ng/ml) for 30 min with anti-CdGAP antibodies or rabbit IgG as control. IP proteins and 

total cell lysates (TCL) were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. (H) Densitometric analysis of P-CdGAP/CdGAP ratio from G. 

(*p<0.05, unpaired Student’s t test). (I) Total cell lysates (TCL) from NMuMG cells 

stimulated with TGFβ (5ng/ml) for 30min were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. (J) Densitometric analysis of (P)-RSK/RSK 

from I. (**p<0.01, unpaired student’s t test). 
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Figure 3.2   ̶ S1093 and S1163 are RSK-dependent phosphorylation sites. 

(A) COS-7 cells were transfected with empty vector (EV), CdGAP, and RSK1 constructs 

as indicated. GFP-CdGAP proteins were IP from total cell lysates (TCL) and the 

phosphorylation of CdGAP (P-CdGAP) on the consensus motif RXRXXpS/T was 

detected by immunoblotting with the indicated antibodies. (B) Densitometric analysis of 

(P)-CdGAP/CdGAP from A. (*p<0.05, unpaired student’s t test). (C) COS-7 cells 

transfected with empty vector (EV), CdGAP and RSK1-WT constructs were treated with 

PMA in the presence or absence of the RSK inhibitor BI-D1870 as indicated. GFP-

CdGAP proteins were IP from TCL. IP proteins and TCL were resolved by SDS-PAGE 

and immunoblotted with the indicated antibodies. (D) Densitometric analysis of (P)-

CdGAP/CdGAP from C. (*p<0.05, **p<0.01, unpaired student’s t test). (E) COS-7 cells 

were transfected with the indicated CdGAP constructs and analyzed as in C.  
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Figure 3.3   ̶ 14-3-3 adaptor proteins isoforms β and σ interact with CdGAP  

(A) HEK293 cells were transfected with empty vector (EV) or myc-CdGAP constructs. 

Proteins from total cell lysates (TCL) were pulled down with GST, GST-14-3-3e wild 

type (WT) or mutant 14-3-3eK49E proteins. Associated proteins and TCL were resolved 

by SDS-PAGE and analyzed by immunoblotting using the indicated antibodies. (B and 

C) HEK293 cells were transfected with myc-CdGAP and HA-14-3-3 isoform constructs 

as indicated. Myc-CdGAP proteins (B) or HA-14-3-3 (C) proteins were IP from total cell 

lysates (TCL), resolved by SDS-PAGE and immunoblotted using anti-Myc and anti-HA 

antibodies. 
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Figure 3.4   ̶  The RSK-dependent phosphorylation residues S1093 and S1163 are 

required for the interaction between CdGAP and 14-3-3β. 

(A) Schematic representation of mouse CdGAP (mCdGAP) deletion mutants, including 

the major RSK target residues. +, stretch of polybasic residues; rhoGAP, GTPase-

activating protein; BR, basic region; PRD, proline-rich domain. (B) COS-7 cells were 

transfected with empty vector (EV) or GFP-CdGAP deletion mutant constructs with HA-

14-3-3β and treated with PMA as indicated. GFP-CdGAP proteins were 

immunoprecipitated (IP) from total cell lysates (TCL). IP proteins and TCL were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. (C and D) 

COS-7 cells were transfected with the indicated CdGAP constructs with HA-14-3-3β and 

analyzed as in B. (E) Densitometric analysis of bound 14-3-3β to CdGAP/total 14-3-3β 

from D. (*p<0.05, unpaired student’s t test).   
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Figure 3.5   ̶ 14-3-3β regulates CdGAP subcellular localization and inhibits CdGAP-

mediated cell rounding  

(A) GFP-CdGAP constructs with or without 14-3-3β were transfected into COS-7 cells 

before fixation. CdGAP and 14-3-3β localization was assessed by indirect 

immunofluorescence and confocal microscopy. CdGAP (green), 14-3-3β (red), nucleus 

(blue) were visualized using anti-GFP, anti-HA antibodies, and DAPI staining, 

respectively. Bar, 50µm. star, round cells, arrowheads, cytoplasmic localization of 

CdGAP. (B and C) The percentage of GFP-expressing cells showing cell rounding (B) 

or CdGAP nuclear localization (C) was calculated manually using Metamorph software. 

Cells with nuclei occupying ≥ 50% of the total cell area were counted as being round 

and cells with ≥70% of their GFP staining in the nucleus were counted as nuclear 

localization. More than 100 GFP-positive cells were counted in at least three 

independent experiments. (**p<0.01, ***p<0.001, unpaired student’s t test). (D) The 

correlation between CdGAP and 14-3-3β fluorescence intensities in A was measured 

with ZEN2010 software using Pearson’s correlation coefficient (r). At least 30 cells from 

three independent experiments were analyzed (***p<0.001, unpaired student’s t test).  
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Figure 3.6   ̶ 14-3-3β negatively regulate the GAP activity of CdGAP towards Rac1  

(A) HEK293 cells were transfected with pRK5-mycRac1 with empty vector (EV), the 

indicated GFP-CdGAP constructs, and HA-14-3-3  as indicated. GTP-loaded Rac1 was 

pulled down from total protein lysates (TCL) by GST-CRIB. GTP-bound Rac1, total 

Rac1, and the indicated proteins were detected by immunoblotting . (B) Densitometric 

ratio of GTP-bound Rac1/total Rac1 from A. (*p<0.05, NS, non significant, unpaired 

student’s t test). 
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Figure 3.7   ̶  Reduced interaction and modulation of AOS-related CdGAP mutant 

proteins by 14-3-3β. 

(A) COS-7 cells were transfected with HA-14-3-3β together with empty vector (EV) or 

myc-human CdGAP (hCdGAP) constructs as indicated. Myc-hCdGAP proteins were IP 

from total cell lysates (TCL), resolved by SDS-PAGE and immunoblotted using anti-Myc 

and anti-HA antibodies. Schematic representation of hCdGAP-WT and AOS-associated 

mutants. (B) myc-hCdGAP constructs with or without 14-3-3β were transfected into 

COS-7 cells before fixation. CdGAP and 14-3-3β localization was assessed by indirect 

immunofluorescence and confocal microscopy. hCdGAP (green),14-3-3β (red), nucleus 

(blue) were visualized using anti-GFP, anti-HA antibodies, and DAPI staining, 

respectively. Bar, 50µm. star, round cells, arrowheads, cytoplasmic localization of 

CdGAP. (C and D) The percentage of GFP-expressing cells showing cell rounding (C) 

or hCdGAP nuclear localization (D) was calculated manually using Metamorph software 

as in Fig. 3.5 (*p<0.05, **p<0.01, ***p<0.001, unpaired student’s t test). (E) The 

correlation between hCdGAP and 14-3-3β fluorescence intensities in B was measured 

with ZEN2010 software using Pearson’s correlation coefficient (r). At least 30 cells from 

three independent experiments were analyzed (*p<0.05, ****p<0.0001, unpaired 

student’s t test).  
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Figure 3.8   ̶ Model of CdGAP regulation by 14-3-3 adaptor proteins.   

(a) In response to agonist stimulation, CdGAP is phosphorylated by RSK on Ser1093 

and Ser1163, which permits the recruitment and binding of 14-3-3 proteins. (b) 14-3-3 

interaction with CdGAP inhibits the nucleocytoplasmic shuttling of CdGAP and leads to 

CdGAP sequestration in the cytoplasm and inhibition of the GAP activity. (c) 

Consequently, Rac1-GTP levels are increased, inducing cell spreading. 
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Chapter 4: General Discussion and Conclusions 
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4.1  Major Findings 

4.1.1 Identification of a novel conserved SH3-binding motif 

The central region of CdGAP, which is highly phosphorylated and enriched in 

basic residues, drives the interactions with Intersectin and actopaxin but the motifs 

mediating the interactions were not known. In the study presented in chapter 2 we 

identified and characterized for the first time a novel atypical-SH3 binding motif, 

xKx(K/R)K (SKSKK) in the CdGAP central region, which is highly conserved within 

CdGAP subfamily members. We then characterized the Intersectin-SH3D/CdGAP 

interaction and provided evidence that Intersectin-SH3D interacts directly with the 

xKx(K/R)K motif. Furthermore, we demonstrated that the identified motif is required for 

CdGAP activity in vitro and substitution of the lysine residues by alanine (SaSaa) 

impaired CdGAP activity, mimicking the Intersectin-binding effect. Together, our data 

support the previous results investigating the Intersectin-SH3D/CdGAP interaction and 

the regulation of CdGAP activity by Intersectin-SH3D binding.  

4.1.2 Phosphorylation of CdGAP 

CdGAP is a phosphoprotein that is highly phosphorylated particularly in the BR, 

PRD and C-terminal region and this study is the first to characterize the CdGAP-

phosphorylated residues targeted by AGC kinase family members. We first 

demonstrated that the endogenous CdGAP is a phosphorylation target of AGC kinases 

in different cell models and that its phosphorylation levels augmented following 

stimulation by growth factors. We then mutated to phospho-null alanine residue the 

potential phosphorylation sites and identified two conserved phospho-serines in the C-

terminal tail, Ser-1093 and Ser-1163 as AGC-kinase phosphorylated residues. 

Furthermore, we provided evidence that AGC-kinase RSK1 is the major protein kinase 

phosphorylating the identified residues.  
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4.1.3 Regulation of CdGAP function and subcellular localization by 14-3-3 adaptor 

proteins  

Next, we demonstrated for the first time that 14-3-3 adaptor proteins interact with 

CdGAP and regulate both its GAP activity and subcellular localization. We first showed 

that the 14-3-3 isoforms β and σ interact with CdGAP. We then identified three 14-3-3-

binding regions on CdGAP namely: the GAP domain, the BR and the C-terminal 

regions. We next provided evidence that the binding to the C-terminus is mediated by 

RSK1-phosphorylated residues, the Ser-1093 and Ser-1163, and further the binding 

therein is required for a stable and strong 14-3-3/CdGAP interaction. Additionally, we 

showed that 14-3-3β binding to CdGAP impairs its GAP activity and induces its 

sequestration in the cytoplasm. Furthermore, 14-3-3β induced cell spreading and 

abolished CdGAP-induced-cell rounding.  

Altogether, our results illustrate a novel regulatory mechanism of CdGAP 

involving phosphorylation by RSK1 and 14-3-3 binding. As such, following CdGAP 

phosphorylation, 14-3-3 proteins bind and sequestrate it in the cytoplasm preventing 

both its GAP activity and its nuclear function. Consequently, the GTPase activities of 

Rac1 and Cdc42 are augmented resulting in increased cell spreading.  

4.2 Regulation of CdGAP by Intersectin  

In this work we identified a key SH3-binding motif in CdGAP BR region mediating 

the interaction with Intersectin-SH3D domain and involved in the GAP activity 

regulation. Importantly, the BR region bearing the novel xKx(K/R)K motif is well 

conserved and retained the binding specificity to Intersectin-SH3D domain across 

CdGAP subfamily members. As such, we demonstrated that the BR region of CdGAP-

related protein, ArhGAP30 containing an xKx(K/R)K (LKVRK) motif  is required for the 

interaction Intersectin-SH3D/ArhGAP30 (Figure 2.3). Interestingly, this motif is present 

in adaptor protein Numb, also known to interact with Intersectin-SH3D, adding support 

to the findings that the novel xKx(K/R)K motif mediates the interaction with Intersectin-

SH3D. 
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In this study and in the previous findings (345), we used a short form of CdGAP 

(1-820aa) lacking the C-terminal tail (820-1425) to investigate the interaction with 

Intersectin. However, recent results from our laboratory attribute interesting regulatory 

functions to the extended C-terminal region, particularly an autoinhibitory role of the 

GAP activity (340). In addition, we noticed that the PRD, although it does not bind to 

Intersectin-SH3D domain (345), is still required for inhibition of the GAP activity 

stressing the importance of the protein structure in the SH3D domain-mediated activity 

regulation. Therefore, it may be of interest to investigate the Intersectin-SH3D/CdGAP 

interaction in CdGAP and Intersectin full-length protein contexts.  

Intersectin is a large-multidomain adaptor protein known as a general endocytic 

scaffold but also as an integrator in many signalling pathways, such as actin 

cytoskeleton wherein for instance, it regulates and coordinates the function of Cdc42, 

Nck and N-WASP as well as Arp2/3 complex to promote actin polymerisation (448). It is 

therefore not surprising to find interactions between Intersectin and CdGAP which is a 

well-characterized regulator of Cdc42 and Rac1 activities and actin cytoskeleton.  

Although the biological function of this interaction is unclear, it appears that a 

priori, Intersectin antagonizes the action of CdGAP by abolishing its GAP activity in 

specific-subcellular sites (i.e., exclusive zones) which may as a result, enhance the 

GTPase activities of CdGAP effectors, Rac1 and Cdc42 in these exclusive zones. 

Likewise, Intersectin by binding and sequestrating CdGAP in the PM, will prevent 

CdGAP from exerting its effects in other cellular locations such as the nucleus. Also, 

since both Intersectin and CdGAP are multidomain proteins interacting with many other 

protein partners, the interaction between them in the physiological context, may involve 

the formation of regulatory complexes including exclusive zone proteins for a selective 

and precise spatiotemporal regulation of designated Rho GTPase activities. 

In support for this model, we find that the same CdGAP BR region is involved in 

the binding to Actopaxin and in the subsequent regulation of CdGAP activity at focal 

adhesions suggesting a subcellular site-dependent competitive or synergic protein 

binding to this region (341).  
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Interestingly, both Intersectin and CdGAP are involved in cancer notably in 

TGFβ-mediated tumorigenesis where they play opposite roles. Indeed, CdGAP which 

mediates TGFβ- induced effects on cell migration and invasion, exerts its role at the 

nucleus level wherein it represses transcription of E-cadherin, a key protein in cell-cell 

junctions inducing therefore EMT (127,128). Conversely, Intersectin seems to inhibit 

tumorigenesis and its deficiency has been found to activate the non-canonical TGFβ-

dependent Ras/Erk1/2 MAPK pathway, particularly in endothelial cells leading to 

increased cell proliferation and survival (449). Therefore, it would be of interest to 

investigate whether the Intersectin-mediated PM sequestration of CdGAP would prevent 

its nuclear translocation and the subsequent E-cadherin transcription repression and 

EMT onset.  

Finally, the mechanism identified in this work involving the CdGAP-SKSKK motif 

could be used to design therapeutic tools to inhibit CdGAP function. As such, the 

strategy may imply a development of CdGAP-binding small molecules to inhibit CdGAP 

function in diseases such as breast cancer, in an Intersectin-like fashion similar to a 

compound developed to inhibit Cdc42 activity (450).  

4.3 Regulation of CdGAP by phosphorylation 

In this study we shed light on a novel mechanism of CdGAP phosphorylation-

dependent regulation involving the Ras-Erk1/2 MAPK-cascade effector RSK1 and 14-3-

3 adaptor proteins. The mechanism involves RSK1-dependent phosphorylation of 

CdGAP and 14-3-3-protein recruitment on the phosphorylated residues regulating 

thereby CdGAP subcellular localization and function as well as the whole cell 

morphology (Figure 3.8).  

We have previously shown using in vivo [ 32P] orthophosphate labeling that 

CdGAP is highly phosphorylated in different cellular models in response to growth factor 

stimulation including FBS, PDGF and TGFβ (95,109,128), with high phosphorylation 

levels detected in the BR, PRD and CT regions (Figure 4.1) (108,109,323). We also 

identified the Thr-776 residue as being targeted by both ERK1/2 and GSK3, and its 

phosphorylation inhibited CdGAP activity in vitro (108,109). With the exception of this 
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Figure 4.1  ̶  CdGAP deletion mutant phosphorylation  

(A) Schematic representation of mouse CdGAP (mCdGAP) deletion mutants. +, stretch 

of polybasic residues; RhoGAP domain, Rho GTPase-activating protein domain; BR, 

basic region; PRD, proline-rich domain. (B) COS-7 cells were transfected with empty 

vector (EV) or GFP-CdGAP deletion mutant constructs and treated with PMA for 30 

min. GFP-CdGAP proteins were immunoprecipitated (IP) from total cell lysates (TCL). 

IP proteins and TCL were resolved by SDS-PAGE and immunoblotted with the AGC 

kinase phosphorylation site-specific, RXRXXpS/T and GFP antibodies.  

Arrows, (P)-CdGAP; arrowheads, nonspecific bands.  



 

 

124 | P a g e  

 

Table 4.1   ̶ Predicted CdGAP phosphorylation targets of RSK family members 

Mouse CdGAP (NCBI Entry number: A6X8Z5) amino acid sequence was 

analyzed by GPS 3.0 software for phosphorylation by selected RSK kinases. Predicted 

phosphosites with highest scores are shown.  

Site Phosphopeptide Region kinase Score Cutoff 

S272 RKERRENpSLPEIVPP BR 

RSK3 

RSK 

RSK1 

13.206 

5.702 

3.104 

10.513 

5.671 

2.462 

S295 PDNKRKLpSSKSKKWK BR 

RSK3 

RSK 

RSK1 

12.441 

7.957 

2.938 

10.513 

5.671 

2.462 

S296 DNKRKLSpSKSKKWKS BR 
RSK2 

RSK1 

8.333 

2.688 

6.617 

2.462 

S312 FNLGRSGpSDSKSKLS BR 
RSK3 

RSK 

10.794 

6.479 

10.513 

5.671 

S323 SKLSRNGpSVFVRGQR BR 
RSK3 

RSK 

11.441 

6.723 

10.513 

5.671 

S765 IGGPRNLpSPPLTPAP PRD RSK 6.33 5.671 

S941 PSLRQSHpSLDSKTTG CT RSK1 2.688 2.462 

S1066 SPRAQDpSTLPGEHPL CT RSK1 2.688 2.462 

S1093 KGKHRPSpSLNLDSAT CT RSK1 3.049 2.876 

S1163 TLTGRRNpSAPVSVSA CT 

RSK3 

RSK 

RSK1 

12.941 

7.489 

2.812 

10.513 

5.671 

2.462 

S1223 RSQEEPGpSTPEIPQK CT RSK1 2.938 2.462 

S1255 PKQETGApSASRRQAS CT RSK1 2.542 2.462 

S1262 SASRRQApSITSCMYE CT 
RSK3 

RSK 

12.971 

6.521 

10.513 

5.671 

S1284 PSASTLApSTQDAVVQ CT RSK1 3.292 2.462 

 

GAP domain, GTPase-activating protein domain; BR, basic region; PRD, proline-rich domain; CT, C-terminus. 
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phosphosite, little is known about neither the identity of the phosphorylated residues nor 

the role of the CdGAP abundant phosphorylation.   

In this study we used a phosphorylation site-specific antibody recognizing a 

consensus motif (RXRXXpS/T) found in substrates of AGC family kinases (431,432), 

and reported that CdGAP is a phosphorylation target of this class of kinases. We next 

mapped the potential phosphosites and identified two major regulatory phospho-

residues namely: Ser-1093 and Ser-1163 in the CT region. We further provided 

evidence that the Ras-Erk1/2 MAPK pathway effector, RSK1 is the major kinase 

phosphorylating the identified residues. 

Despite the increase of the phosphorylation signal in CdGAP segments 

expressed separately (Figure 4.1), the predicted phosphosites (Table 4.1) turned out to 

be not major phosphorylation targets of AGC kinases since the phosphorylation signal 

remains unchanged when mutated to alanine residue (Figure 3.2). This suggests that in 

the context of three-dimensional structure of the full-length protein these sites are 

inaccessible to the kinase action. 

Interestingly, the Ser-1093 and Ser-1163 residues have been listed in many 

phosphoproteomic studies according to phosphosites.org. For instance, Ser-1163 has 

been reported in large-scale phosphoproteomic analyses of liver, lung and breast 

cancers, whereas Ser-1093 surfaced in the phosphoproteome of the liver (347,348,350-

353). Moreover, Ser-1093 has been recently identified as being regulated by VEGF and 

angiopoietin-1 signaling in endothelial cells (349). Intriguingly, in each process 

displaying a regulation of these phosphosites, such as breast cancer or angiogenesis, 

CdGAP has been shown to play a role, emphasising a possible involvement of its 

phosphorylation in the above cellular events (127,339).  

4.4 CdGAP/14-3-3 protein interaction  

14-3-3 family members of adaptor/scaffold proteins are found as homo or 

heterodimers and seven isoforms have been so far characterized in mammals (i.e., β, γ,  
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Table 4.2   ̶ 14-3-3-predicted binding sites of CdGAP 

Mouse CdGAP (NCBI Entry number: A6X8Z5) amino acid sequence was 

analyzed by 14-3-3-Pred software. Predicted 14-3-3 binding sites with highest scores by 

two and three methods are indicated (439).  

  
 

 
Method 

  

  
 ANN PSSM SVM Consensus 

Site 14-3-3-binding motif Region Score Score Score Score 

pS272 KERRENpSLPEI BR 0.974 1.723 1.831 1.51 

pS343 TIRPAKpSMDSL BR 0.52 0.487 0.071 0.359 

pT666 PPAAQKpTSPIP PRD 0.458 0.354 -0.139 0.224 

pS685 FPEAPGpSLPSS PRD 0.366 0.313 -0.236 0.148 

pS690 GSLPSSpSAPRE PRD 0.621 0.464 -0.049 0.346 

pS765 GGPRNLpSPPLT PRD 0.622 0.934 0.443 0.666 

pS1092 KGKHRPpSSLNL CT 0.21 0.028 -0.8 -0.187 

pS1093 GKHRPSpSLNLD CT 0.817 0.943 0.921 0.894 

pS1163 LTGRRNpSAPVS CT 0.905 1.537 1.042 1.161 

 

ANN - Artificial Neural Network (cut-off = 0.55) 

PSSM - Position-Specific Scoring Matrix (cut-off = 0.80) 

SVM - Support Vector Machine (cut-off = 0.25) 

Consensus - Average of the scores provided by the three methods (cut-off = 0.50) 

BR, basic region; PRD, proline-rich domain; CT, C-terminus
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ε, σ, ζ, τ and η)(106,371,372). They can bind motifs on the same or different protein 

targets which they regulate in diverse ways including conformational change, 

sequestration/retention and inducing/preventing protein-protein interaction (106,371-

374). Phosphorylation of substrates by AGC kinases generates binding sites for 14-3-3 

proteins including a crucial phosphoserine comprised in their mode I consensus binding 

motif (Arg-Ser-Xaa-pSer-Xaa-Pro) (373,374,392). In addition, 14-3-3 proteins can also 

bind directly unphosphorylated motifs with similar affinity as that of phosphoserine sites 

(106).  

Here we report for the first time that 14-3-3 proteins (i.e., isoforms β and σ) bind 

and regulate CdGAP in a phosphorylation-dependent manner, and we identified three 

binding sites of 14-3-3β namely: the GAP domain, the BR and CT regions. In addition, 

we demonstrated that the CT identified residues, Ser-1093 and Ser-1063 are required 

for the 14-3-3β/CdGAP interaction. We further validated this requirement using the 

AOS-associated hCdGAP(Q683X) and hCdGAP(K1087Sx4) mutants lacking the 

phosphosites (Figure 3.7 A and E). 

14-3-3 proteins function exclusively as dimers and the presence of two binding 

sites on the same protein target instead of one increases the binding affinity for their 

ligand by up to 30-fold (374,451). In this work we show that the expression of CdGAP 

(Ser-1093A/Ser-1163A) double mutant altered severely the interaction with 14-3-3β. We 

propose therefore, a binding model in which 14-3-3 dimers interact simultaneously with 

at least Ser-1093 or Ser-1063 residues at the CT, and with another binding site at the 

GAP domain or the BR region. The BR region which contains several predicted AGC-

phosphorylated and 14-3-3 binding sites (Table 4.1 and Table 4.2), could mediate the 

binding in a phosphorylation-dependent manner but it is also the interacting site for 

other partners such as Actopaxin and Intersectin suggesting a competitive binding to 

this region (341,346). Alternatively, the binding to 14-3-3 proteins could be mediated in 

a phosphorylation-independent manner, through an unphosphorylated-14-3-3 binding 

site, 179-RSKKIE (RSx1-3E-like motif), an atypical 14-3-3-docking site in the GAP 
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domain (397). As such, it would be of interest to replace the residues of this binding site 

and investigate whether the interaction CdGAP/14-3-3 is affected. 

4.5 Regulation of CdGAP activity and subcellular localization 

We next characterized the role and cellular function of both CdGAP 

phosphorylation and the subsequent 14-3-3 binding. As such,14-3-3β binding to CdGAP 

resulted in inhibition of the RhoGAP activity in a (Ser-1093 and Ser-1163) 

phosphorylation-dependent manner, concomitant with increased cell spreading and 

reduced cell rounding, both hallmarks of suppressed GAP activity (36,340,341). 14-3-3 

proteins could neutralize CdGAP activity by at least two mechanisms: the first by 

directly interacting with the GAP domain residues and disturbing its catalytic activity; the 

second by binding CdGAP and sequestering it in the cytoplasm preventing it therefore, 

from reaching its effectors at the membrane. 

We have previously reported a CdGAP-autoinhibitory mechanism by 

intramolecular interactions involving the CT and the GAP domains leading, seemingly to 

reduced GAP activity (340). Accordingly, AOS-associated mutants, hCdGAP(Q683X) 

and hCdGAP(K1087Sx4) lacking the CT portion, displayed constitutive CdGAP activity 

resulting in a loss of active Cdc42 in AOS patients (340). Given that 14-3-3β binds to 

both the GAP domain (179-RSKKIE) and the CT region (Ser-1093/Ser-S1163), we can 

hypothesize that 14-3-3 proteins bridge the autoinhibitory interaction between the two 

domains, which results in the loss of GAP activity.  

On the other hand, and consistent with CdGAP cellular functions, the subcellular 

localization data show CdGAP-WT protein in several cellular compartments including 

the PM and the nucleus. CdGAP localizes to cellular membranes to regulate mainly Rac 

and Cdc42 activities, while it translocates to the nucleus to drive its transcriptional 

regulation function (36,127,341). As such, we identified several nuclear 

localization sequences (NLSs), particularly in 14-3-3β binding regions, the GAP and BR 

domains as well as in the CT (Table 4.3). Collectively, the actual data suggest a model 

wherein, 14-3-3β dimers upon binding CdGAP in the cytoplasm, will disguise the NLSs 

and will consequently prevent its nucleocytoplasmic shuttling.  



 

 

129 | P a g e  

 

 

Table 4.3   ̶ Identification of NLS motifs of CdGAP  

            Mouse CdGAP (NCBI Entry number: A6X8Z5) amino acid sequence was analyzed 

by cNLS Mapper software (452). Putative NLSs with highest scores are indicated. 

Monopartite NLS 

Position Region Sequence  Score 

288 BR PDNKRKLSSK 

 

 

7 

 

Bipartite NLS 

7 

265 

1053 

1293 

 

 

 

 

PBR 

BR 

CT 

CT 

KQKLKRKGAASAFGCDLTEYLESSGQDVPYV 

RKERRENSLPEIVPPPFHTVLELPDNKRKLSS 

DSSKESSPRAQDSTLPGEHPLQLQLKNTEC 

RKRTSETEPSGDNLLSSKLERAS 

 

 

 

 

4.2 

4.3 

4.3 

4.2 

 
PBR, polybasic region ; BR, basic region; CT, C-terminus 
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This retention mechanism is very common among 14-3-3 proteins which bind and 

sequestrate their effectors in a subcellular compartment frequently the cytoplasm 

(371,372). For instance, 14-3-3 proteins regulate the cellular localization of Notch4 by 

retention in the cytoplasm through binding to phosphosites generated by the AGC 

kinase, Akt on the Notch4-intracellular domain (453).  

The findings and the model presented here are supported further by a similar 

regulatory mechanism reported for DLC1, which involves both 14-3-3 proteins and AGC 

kinases, PKC and PKD (440). The mechanism documents a PKC and PKD-dependent 

phosphorylation of two 14-3-3 binding sites: Ser-327 and Ser-431. Later on, the 

recruitment of 14-3-3 proteins to these sites and the ensuing masking of key NLSs will 

induce a retention of DLC1 in the cytoplasm and a suppression of its GAP activity (440). 

4.6 Potential applications of the 14-3-3/CdGAP regulation model in cancer 

research therapy 

High expression levels of CdGAP in clinical patients have been recently 

associated to tumorigenesis in a wide range of cancers and many breast cancer 

subtypes such as basal-like subtype, making it a newly discovered biomarker and 

cancer therapeutic target (127). This proto-oncogenic role is driven chiefly through a 

novel nuclear function, wherein, in association with the transcription factor Zeb2, 

CdGAP co-represses E-Cadherin, a key protein in cell-cell junctions, promoting thereby 

EMT and tumorigenesis (127).  

On the other hand, many 14-3-3 isoforms have been documented to play crucial 

roles in many cancers. For instance, the 14-3-3σ isoform, which has been considered 

as a tumor suppressor affects negatively several key survival pathways such as the Akt 

signaling, cell cycle regulation and apoptosis (454-456). As such, 14-3-3σ low protein 

expression has been recorded in many cancers notably breast cancer where it is 

associated to poor prognosis, making it a potential biomarker and treatment target for 

breast cancer (408,457,458).   
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Given the opposite effects of CdGAP and 14-3-3σ in cancer, specifically breast 

cancer, we assume that similar to 14-3-3β (Figure 3.3),14-3-3σ binds and sequestrates 

CdGAP in the cytoplasm preventing thus its nuclear translocation, E-Cadherin 

repression, EMT and tumorigenesis. 

This model will allow at least two applications in the breast cancer research field: 

first, the CdGAP/14-3-3σ ratio can be used as a signature and a biomarker; second, the 

CdGAP/14-3-3σ interaction can be targeted for breast cancer treatment. For the first 

application, and since both CdGAP and 14-3-3σ expression profiles are associated with 

poor patient prognosis, it would be of interest to investigate whether the CdGAP to 14-3-

3σ expression ratio is associated to a specific breast cancer-subtype aggressiveness 

and malignancy. For the second application, CdGAP/14-3-3σ interaction could be 

investigated in order to generate molecules that mimic the binding to prevent CdGAP 

nuclear translocalization. The treatment could be used for instance, in basal-like breast 

cancer patients to prevent progression/recurrence and metastasis.  

4.7 Conclusion and perspectives 

Recent findings provided useful insights into the role of CdGAP in cancer as well 

as the mechanism involved in this function. This thesis has provided insights into two 

important mechanisms of CdGAP regulation involving protein-protein interaction and 

phosphorylation. Combining various techniques, we identified an atypical SH3-binding 

motif that is important for the regulation of CdGAP activity by Intersectin, a mechanism 

that could be further used to elaborate CdGAP inhibitors. We next deciphered a key role 

of CdGAP phosphorylation and discovered a critical CdGAP nucleocytoplasmic-

shuttling regulatory mechanism involving both RSK-induced phosphorylation and 14-3-

3-protein binding. Further investigation is needed to better characterize the two 

mechanisms in different in vitro and in vivo systems. Finally, this thesis has provided 

valuable tools to pursue the research on CdGAP role in cancer, tools that we hope 

ultimately, will contribute to breast cancer treatment. 
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