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Abstract

The Large Hadron Collider (LHC) will be upgraded in 2024-26 to increase its beam intensity
by a factor of up to 7 from its original design value. To cope with increased interaction
rates and radiation exposure at this new High Luminosity LHC (HL-LHC), upgrades to
multiple ATLAS detector subsystems are planned to take place alongside those to the LHC’s
accelerator chain. In this context, a re-design of the Hadronic End-Cap (HEC) calorimeter’s
electronic readout chain is required in order to maintain its energy reconstruction performance
at the HL-LHC. The HEC readout electronics was implemented in a simulation framework
capable of testing different analog filters and more complex digital signal processing algo-
rithms. The expected degradation in energy resolution in the HEC at HL-LHC was estimated
and optimization studies of different parameters of the HEC readout chain were carried
out. Results have been used to make preliminary design decisions for the upgrade of the
calorimeter readout electronics. Studies show that further improvements in the performance
of the HEC energy reconstruction will have to come from new digital filtering algorithms
that can better mitigate the effects of an increased interaction rate.





Résumé

Le Grand Collisionneur de Hadrons (appelé en anglais "Large Hadron Collider" (LHC))
subira une mise à niveau importante en 2024-26 afin d’augmenter l’intensité de ses faisceaux
de protons d’un facteur allant jusqu’à 7 par rapport à sa valeur de conception d’origine.
Plusieurs mises à niveau des sous-systèmes du détecteur ATLAS sont prévues en paral-
lèle à ceux de la chaîne d’accélération du LHC. Ceci sera nécéssaire afin de faire face à
l’augmentation du taux d’interaction des protons et de l’exposition à la radiation qui au-
ront lieu à ce nouveau LHC Haute Luminosité (HL-LHC). Dans ce contexte, une refonte
de la chaîne de lecture électronique du calorimètre hadronique, ou "Hadronic End-Cap"
(HEC), est nécessaire afin de maintenir sa performance de reconstruction énergétique au
HL-LHC. L’implémentation de l’électronique de lecture du HEC dans un cadre de simulation
capable de tester différents filtres analogiques et des algorithmes de traitement de signaux
numériques plus complexes est réalisée. La dégradation attendue de la résolution énergétique
du HEC au HL-LHC a été estimée et des études d’optimisation des différents paramètres de
la chaîne de lecture du HEC ont été réalisées. Les résultats ont été utilisés pour prendre des
décisions de conception préliminaires pour la mise à niveau de l’électronique de lecture du
calorimètre. Les études démontrent que des améliorations supplémentaires de la performance
de reconstruction énergétique du HEC devront provenir de nouveaux algorithmes de filtrage
numérique qui pouront mieux atténuer les effets d’un taux d’interaction accru.
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Chapter 1

Introduction

The goal of this thesis is the simulation and optimization of the performance of the read-
out electronics of the Hadronic End-Cap (HEC) calorimeter, a subsystem of the ATLAS
detector (ATLAS is no longer an acronym, though it originally stood for "A Toroidal LHC
ApparatuS"). The ATLAS experiment attempts to test and further our understanding of
particle physics by analyzing proton-proton collisions at the Large Hadron Collider (LHC).
The LHC is currently the world’s largest and most powerful accelerator, colliding protons
together at close to the speed of light. In 2024-26, the LHC will be upgraded to increase
its beam intensity for a new era of data-taking, giving ATLAS sensitivity to rarer physics
processes. At this new High Luminosity LHC (HL-LHC), the rate of proton-proton collisions
will increase by almost an order of magnitude. This increase in collision rate will strain the
current ATLAS detector readout while also increasing the radiation exposure to its detector
subsystems beyond their design limits. Therefore, multiple upgrades to the ATLAS detector
are planned to take place alongside those of the LHC. Among these upgrades will be the
readout electronics of the HEC.

One of the design requirements for the new HEC electronic readout is that it provide
the ability to achieve a detector performance comparable to that obtained with the current
detector system, but under the much higher collision rate expected at the HL-LHC. To achieve
this, both the analog and digital filtering algorithms of the HEC electronics readout are being
re-designed. A fast and flexible simulation of the HEC readout electronics is therefore being
developed to assess its performance and test new analog shaping circuits and more complex
digital filtering algorithms that can help provide an adequate overall detector performance.



2 Introduction

An overview of the Standard Model of particle physics and the need for a theory beyond
the Standard Model is presented in Chapter 2. The experimental setup and upgrades of the
LHC and ATLAS detector are presented in Chapter 3 with a particular focus on the HEC.
The signal processing theory and techniques relevant to the simulation and results chapters
are discussed in Chapter 4. The simulation of the HEC readout electronics is described in
Chapter 5. The performance and optimization of various analog and digital filtering schemes
of the HEC readout electronics is presented in Chapter 6. The results are summarized in
Chapter 7 with an outlook on future research and development.



Chapter 2

The Standard Model of Particle Physics

The current theoretical framework used to describe all known elementary particles and the
forces that govern their interactions, except gravity, is called the Standard Model (SM) of
particle physics. This chapter provides a brief summary of the SM, just enough to understand
the basic concepts, while also pointing to some of its crowning achievements in describing
our observations of nature as well as some its shortcomings. A much more detailed descrip-
tion of the SM and of quantum field theory can be found in references [1–4].

2.1 Introduction

The SM is a relativistic and renormalizable quantum field theory in which point-like particles
with no substructure are the excitations of quantum fields. These particles are defined by
their mass and charge (which determines their coupling to a given force), and their spin (the
quantum number associated to their angular momentum). These particles can be classified in
two broad categories: fermions and boson. Fermions are the spin 1/2 particles that make up
matter and obey Fermi-Dirac statistics, while bosons are integer spin particles that obey Bose-
Einstein statistics [2]. Bosons can be further divided into two categories, spin 1 gauge bosons
that mediate the forces and a spin 0 Higgs boson. The existence of a Higgs boson is explained
by the phenomena of electroweak symmetry breaking [5–10], which also explains the origin
of all fermion masses (except neutrinos which are assumed in the SM to be massless). There
are four gauge bosons: the massless photon and gluon that mediate the electromagnetic and
strong force respectively, and the massive W± and Z0 bosons that mediate the weak force.
Of the fermions, there are six known flavors of quarks which participate in all three forces
and six flavors of leptons that do not couple to the strong force. In addition, three of the
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leptons flavors, called neutrinos, have no electric charge and thus also do not couple to the
electromagnetic force. All these elementary particles and their properties are summarized in
Figure 2.1. All charged particles are predicted and have been observed to have antiparticle
counterparts, which have the same mass and spin but opposite charges.

Fig. 2.1 Schematic diagram illustrating all the known types of elementary particles in
nature [11]. Particles are grouped and arranged according to their properties.

The theory that describes the strong force is called Quantum Chromodynamics (QCD)
(see [12] and references therein), owing to the fact that the charge carried by particles that
interact via the strong force is called color. There are three different possible color charges
referred to as red, green and blue, along with their three corresponding anti-color charges.
Due to the non-Abelian nature of the group that describes strong interactions, gluons can
self-interact [1]. This means that they carry the color charge of the interactions that they
mediate. As a result, the strength of the force between colored particles increases with
distance, as opposed to the electromagnetic and weak forces which decrease with distance.
This leads to two very important consequences. The first is color confinement: colored
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particles, i.e. quarks or gluons, cannot be found in isolation. Indeed, the energy stored in
the gluon field between two colored particles increases as they are separated, leading to
the spontaneous formation of quark-antiquark pairs from vacuum [1]. As such, quarks are
only observed in colorless states, called color singlets. There are various ways of forming
these color singlets. Colorless bound states of quarks are called hadrons. These are further
classified into quark-antiquark bound states called mesons, and bound states of three quarks
or three antiquarks called baryons. The masses of these bound states are not related in a
straightforward way to the masses of the elementary particles that compose them because
of their strong binding energies. When quarks or gluons are produced in a high energy
environment they are observed as jets, which are streams of highly collimated particles,
mainly hadronic in nature, originating from the initial colored particle. Another consequence
of the non-Abelian nature of the strong force is asymptotic freedom. Due to the fact that the
strong force becomes weaker at smaller distances, or equivalently at higher energies, quarks
in a bound state can be considered as asymptotically free [1].

The predictions made by the SM and our knowledge of the properties and laws that
govern the interactions of elementary particles are probed through the interaction of these
particles with matter. The constituents of atomic matter are the most stable particles in the
SM, the electron and the up and down quarks, as they are the lightest in their respective
families. These particles make up all the atoms in the periodic table of elements. The atomic
nucleus, composed of protons and neutrons, are in fact baryonic bound states of up (u) and
down (d) quarks, uud and udd respectively. Neutrinos do not make up atomic matter as
they only interact weakly with matter (they have no color or electric charge) and have an
extremely small mass.

The current version of the SM was formulated in the 1970s to describe the cumulated
knowledge of particle physics at the time. While the SM has many free parameters that
have to be measured empirically, such as the masses of all the fermions, the Higgs mass and
vacuum expectation value, and the gauge couplings of the three forces to name a few, it has
made several important predictions that have since been confirmed by experiment. These
include the discovery of the τ lepton in 1975 [13], the W± and Z0 bosons in 1983 [14, 15],
the top quark in 1995 [16] and the Higgs boson in 2012 [17, 18]. The predictions of the SM
are still continuously being tested with no significant deviations observed as of yet. One of
the testable predictions of the SM is the probability that a given interaction occurs, which
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is expressed in terms the cross section1 of a particular physics process. Figure 2.2 shows
an overview of SM process cross section measurements with data collected by the ATLAS
detector at the LHC. The ratios of the measurements to theory predictions are depicted as well,
indicating that most measurements agree with calculations within one standard deviation.

∫
L dt
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Fig. 2.2 Summary of total and fiducial production cross section measurements of several
known physics processes measured by the ATLAS detector and their comparison with SM
predictions [19].

2.2 Beyond the Standard Model

Though the SM has been a reliable model for describing elementary particles and their
interactions, strong evidence suggests that it cannot be complete. For one, it does not include
a description of gravity. It also has many free parameters that have to be fine tuned to fit

1The cross section is an area and is expressed in units of barns (symbol: b, equal to 10−28m−2).
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observations. Many of our observations of nature also point to a theory beyond the SM
(BSM). Here are a few selected examples:

• In the SM, neutrinos do not couple to the Higgs field and as such are predicted to have
no mass. However, the oscillations between the three different types, or "flavors", of
neutrinos has been observed [20], indicating that neutrinos are in fact massive. Indeed,
these oscillations can be explained if neutrinos have mass eigenstates that are different
from their flavor eigenstates. Mechanisms through which the neutrino can acquire
mass are therefore required as extensions to the SM [21].

• There is now strong cosmological evidence that the energy content of the universe as
well as its rate of expansion cannot be accounted for by the SM alone. Some theories
point to a cold dark matter [22] and a repulsive dark energy [23] that would make
up a significant portion of the energy content of our universe to account for these
observations.

• Just as it was proven that the weak and electromagnetic forces are manifestations of
the same gauge invariant theory that undergoes symmetry breaking, it is natural to
think that a theory that unifies the electroweak and strong forces should exist. This is
one of many other compelling arguments to think that a Grand Unified Theory (GUT)
of the fundamental forces should encompass our SM of particle physics [24].

The ATLAS detector at the LHC attempts to probe our understanding of the SM and
search of evidence of BSM physics. In order to provide the detectors on its ring an increased
sensitivity to rare processes, the LHC will be upgraded to the HL-LHC. The ATLAS detector
and its upgrade, planned to take place alongside that of the LHC, are detailed in the next
chapter.





Chapter 3

Experimental Setup

In this chapter, an overview of the ATLAS experiment at the LHC is presented with a
particular focus on the HEC calorimeter, a subsystem of the ATLAS Liquid Argon (LAr)
Calorimeter. An overview of the upgrade schedules of the LHC and the ATLAS detector are
also given, along with a description of the upgrade of the HEC readout electronics.

3.1 The Large Hadron Collider

The LHC [25] is a proton accelerator and collider located at CERN near Geneva, Switzerland.
It is designed to accelerate and collide two counter-rotating particle beams traveling in two
rings of 27 km in circumference located 40 to 170 m underground.

The LHC is the final acceleration stage of the CERN accelerator complex composed of
several acceleration and injection stages (see Figure 3.1). Though the LHC is also designed
to collide heavy ions such as lead, its main focus and that of the ATLAS detector is on the
study of proton collisions. Before reaching the LHC, protons are first accelerated in the
LINAC2 followed by the BOOSTER, the Proton Synchrotron (PS) and finally the Super
Proton Synchrotron (SPS) where they reach an energy of 0.45 TeV. Two transfer tunnels are
used to inject protons in bunches into the LHC which are then accelerated to 7 TeV, providing
a center-of-mass energy of 14 TeV at the 4 interaction points (IPs). The LHC rings contain
two separate beam pipes kept at ultrahigh vacuum. Here, the protons are guided by 1232
superconducting dipole magnets which bend the beams and 392 superconducting quadrupole
magnets which focuses them. To achieve a beam energy of 7 TeV and keep the protons on
their circular path, a dipole field of 8.33 T is required. Each beam pipe is also equipped
with eight 400 MHz radio-frequency cavities which accelerate the protons and keep them
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tightly bunched. These bunches contain up to 1011 protons which are made to collide 40
million times per second, or every 25 ns, giving the LHC its design instantaneous luminosity
of 1034 cm−2s−1.

The instantaneous luminosity L is defined by the equation [26]:

L =
f N1N2

4πσxσy
, (3.1)

where N1 and N2 are the number of protons in the colliding bunches, f = 40 MHz is the
frequency at which proton bunches are crossing, and σx and σy are the x and y components of
the root mean square (RMS) of the spatial distribution of the particle bunches. The integrated
luminosity is defined as:

L =
∫

L dt. (3.2)

The number of interactions per bunch crossing (BC), µ , is related to the instantaneous
luminosity by:

µ = σtot ·∆tBC ·L , (3.3)

where ∆tBC = 25 ns is the time between bunch crossings and σtot is the total1 proton-proton
cross section of interaction. The instantaneous luminosity delivered by the LHC changes in
time as the protons interact and the number of protons in the bunches diminishes. After a
certain amount of time, the proton beams are "dumped", or expelled from the LHC, and the
process of injecting new protons into the LHC and accelerating them to 7 TeV is restarted.
The period of proton collisions that takes place in between the acceleration and dumping of
the proton beams is called a "fill". Over this period, µ is approximately Poisson distributed
around its average ⟨µ⟩.

The four main experiments that operate on the LHC ring at its four IPs are: ALICE,
LHCb, ATLAS and CMS. ALICE [27] focuses on the analysis of lead-lead nuclei collisions
to study the formation of quark-gluon plasmas. LHCb [28] is specialized in "b-physics"
and aims at measuring charge-parity violation in the production and interactions of bottom
quarks. ATLAS [29] and CMS [30] are both general-purpose detectors whose main objective
was the discovery of the Higgs boson, which was accomplished in 2012 [17, 18]. The focus
of these experiments is now on the measurement of the Higgs Boson’s properties and the

1Elastic and inelastic.
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study of BSM physics.

The first data-taking period, called Run 1, lasted from 2010 to 2012, starting with a
center of mass energy of 7 TeV and ramping up to 8 TeV in 2012. The peak instantaneous
luminosity achieved during Run 1 was approximately 8×1033 cm−2s−1 [31]. Run 2 began
in 2015 and is still ongoing, with the LHC delivering collisions at 13 TeV, not yet reaching
its design goal of 14 TeV, while achieving a peak instantaneous luminosity, as measured by
the ATLAS detector, of 21.4×1033 cm−2s−1 [32], more than twice the LHC design value..

Fig. 3.1 Schematic diagram of the CERN accelerator complex [33].

3.2 The ATLAS detector

A schematic diagram of the ATLAS detector is shown in Figure 3.2. It has a cylindrical
geometry around the beam pipe with the IP located at its center. It measures 44 m in length
and 25 m in diameter and weighs almost 7000 tonnes. The ATLAS detector consists of
multiple sub-detector layers arranged cylindrically around the beam pipe. Starting from
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the IP and moving radially outwards, the ATLAS subsystems are the inner detector, the
electromagnetic and hadronic calorimeters, and finally the muon spectrometer. The ATLAS
detector also has a solenoid and three toroid magnet systems that bend the tracks of charged
particles. An overview of its design is given in this section, with a particular focus on the
HEC calorimeter in Section 3.2.3. More details about the ATLAS detector and its design can
be found in reference [29].

Fig. 3.2 Schematic diagram of the ATLAS detector and its sub-detectors [29].

3.2.1 Geometry and Conventions

The ATLAS coordinate system is defined with the IP at its origin. The x-axis points to the
center of the LHC ring while the y-axis points perpendicularly upwards. The z-axis is formed
by the cross-product of the x- and y-axis and is tangential to the beam pipe. This completes
the Cartesian coordinate system.

The spherical coordinate system is more commonly used. It consists of the radial distance
from the beam axis R =

√
x2 + y2 , the azimuthal angle φ which goes from −π to π and is

measured from the x-axis in the x− y plane, and the polar angle θ which ranges from 0 to π
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and is measured from the z-axis. The polar angle is often replaced by the pseudorapidity η :

η =− ln
[

tan
(

θ

2

)]
=

1
2

ln
(
|p|+ pz

|p|− pz

)
, (3.4)

where pz is the z component of the 3-momentum vector p. Pseudorapidity thus ranges
from 0 in a direction perpendicular to the beam pipe to ±∞ in a direction along the beam
pipe. Pseudorapidity is the approximation of rapidity in the limit where the momentum of
a particle is much greater than its mass. This quantity is useful to describe the direction of
outgoing particles produced in proton-proton collisions since a difference in rapidity ∆η is
approximately invariant to a Lorentz boost in the z direction [34].

Because the particles that interact at the IP are not the actual protons but their constituents
(called "partons") which carry an unknown fraction of the proton’s momentum, the center of
mass energy of a collision in the lab frame is not known. However, since the total transverse
energy of out-coming particles must be approximately zero, transverse quantities such as
transverse momentum (pT = |p| · sin(θ)) and transverse energy (ET = E · sinθ , where E

is the energy) are often used as they are invariant under Lorentz boosts along the z-axis.
Missing ET refers to the transverse energy that was not detect by ATLAS and that would be
required for the total ET to be zero.

3.2.2 Overview of the ATLAS Structure

As mentioned in the introduction to this section, the ATLAS detector is constructed in layers
of different subsystems arranged cylindrically around the IP with a φ and ±z symmetry. An
overview of each of the main detector sub-systems is presented in this subsection.

Inner Detector

The inner detector [35, 36] shown in Figure 3.3(a) is the sub-system closest to the IP. It
covers the range in pseudorapidity of |η |< 2.5. Surrounding it is a solenoid magnet which is
part of the magnet system shown in Figure 3.3(c) that provides a uniform 2 T magnetic field.
This allows the inner detector to perform momentum measurements of charged particles in
the transverse plane. The inner detector also provides measurements of the trajectories of
charged particles, vertex reconstruction and electron identification capabilities.
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(a) (b)

(c) (d)

Fig. 3.3 Cutaway views of the different ATLAS sub-systems. Figure (a) shows the inner de-
tector, (b) the calorimeter system, (c) the magnet system and (d) the muon spectrometer [29].

Calorimeter System

A cutaway view of the calorimeter system, composed of the LAr [37] and Tile [38] calorime-
ters, is shown in Figure 3.3(b). The different calorimeter subsystems cover a total range
of |η | < 4.9 using different detection techniques. The η coverage of the electromagnetic
calorimeter is matched to that of the inner detector and is finely granulated for precision
measurements of photon and electron energies. The calorimeter must provide enough mate-
rial so that the electromagnetic and hadronic showers induced by particles produced at the
IP are contained and do not make it through to the muon spectrometer. The material, |η |
coverage and coarser granularity of the hadronic, forward and tile calorimeter subsystems are
optimized to ensure good jet and missing ET resolution. The electromagnetic, hadronic and
forward calorimeters are sampling calorimeters that use LAr as their active medium. They
form the LAr calorimeter system. The tile calorimeter is also a sampling calorimeter but uses
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scintillating tiles as its active medium.

Muon Spectrometer

A cutaway view of the muon spectrometer [39] is shown in Figure 3.3(d). It uses the
bending of charged particles in the magnetic field produced by the toroid magnets, shown in
Figure 3.3(c), for momentum and charge measurements of muons. The muon spectrometer
consists mainly of trajectory reconstruction chambers. It is the outermost sub-system of the
ATLAS calorimeter, covering the region up to |η |< 2.7.

Trigger and Data Acquisition System

The trigger system selects events with interesting physics signatures to reduce the rate of
events which are recorded or "read-out". At a collision rate of 40 MHz, the bandwidth and
memory required by the data acquisition system to record and store all events would be too
large. The trigger system is composed of three successive levels: the hardware based Level-1
(L1) trigger [40], and the software based Level-2 (L2) trigger and event filter (EF) [41]. Each
successive trigger level refines their criteria for accepting an event that passed the previous
level. The L1 trigger reduces the event rate to 75 kHz at a fixed latency of 2.5 µs using limited
information from the muon spectrometer and the calorimeter system. The data acquisition
system receives and buffers the data that passes the L1 trigger at full detector granularity.
This data is then sent to the L2 trigger and EF to further reduce the event rate to 200 Hz.
Between Run 1 and Run 2, the trigger system was upgraded to attain an acceptance rate of
100 kHz in the L1 trigger. In addition, the L2 trigger and EF were consolidated into a single
high level trigger (HLT) and upgraded to attain a final acceptance rate of up to 1 kHz [42].

An important set of trigger criteria in the context of this thesis is called the "minimum
bias" trigger. The minimum bias trigger identifies events with a minimum set of criteria to
ensure that this data has the least amount of bias. Given that a vast majority of events in the
ATLAS detector come from the elastic collision of partons inside the protons, most events
that pass this trigger come from elastic proton-proton collisions. In order to avoid saturating
the detector readout bandwidth, only a small fraction of the events that pass this trigger are
recorded.
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3.2.3 The Hadronic End-Cap

The HEC is a sampling calorimeter with copper absorbers [37] and LAr as the active material.
The HEC covers the range of 1.5 < |η | < 3.2. It is located in the end-cap cryostat of the
LAr calorimeter, as depicted in Figure 3.4, which keeps the argon in the detector liquid at
approximately 87 K [43].

Fig. 3.4 View of one end-cap cryostat that houses the HEC, electromagnetic (EM) and
forward calorimeters [37].

Working Principle

Before going into the details of its geometry and readout electronics, it is useful to understand
the basic working principle of the HEC. Highly energetic charged and hadronic particles
that interact with the copper plate absorbers induce particle showers. These particle showers
ionize the active material between the plates and in the gaps. The gaps are instrumented
with high voltage electrodes that the electrons will drift towards to be collected. Due to the
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movement of charges in the gap, an electrical current is induced on a readout electrode with
an amplitude and integral that is proportional to the amount of energy deposited in the gap.
The amplitude and shape of the signal depends of the drift time of the electrons in the gap,
which is on average 440 ns in the HEC [44]. The drift time in turn depends on the size of
the LAr gap and the voltage on the electrodes. The effect of the much slower ions can be
neglected. This can all be summarized in one compact formula for the amplitude of the
current I induced on the readout electrode:

I =
Q0

τdri f t
= N · e

τdri f t
=

Etot · fsamp

W
· e

τdri f t
, (3.5)

where Q0 is the total charge of the ionization electrons in the gap and τdri f t is the drift time
of the electrons. The charge Q0 can be expressed in terms of the number of free electrons N

and the electrical charge of the electron e. In turn, N can be expressed in terms of the energy
that the shower deposits in the absorber and in the active material Etot , the sampling fraction
fsamp of the detector and the ionization energy of the LAr, W = 23.6 eV [45]. The sampling
fraction is defined as the energy deposited in the LAr, Evis or visible energy, divided by Etot :

fsamp =
Evis

Etot
. (3.6)

In order to account for the recombination of the ions and electrons in the gap, a corrected
value for Q0 is used based on the Thomas-Imel model [46]:

Qp = Q0
ln(1+C/U)

C/U
. (3.7)

Here, C = 0.80 kV/cm is a constant while U ≈ 10 kV/cm is the electric field in the gap. This
amounts to a correction of about 3.8% to Q0.

Geometry

The geometry of the HEC is depicted in Figure 3.5. On the left, a slice of one "wedge" in
the R−φ plane is depicted. A full "wheel" in the R−φ plane is made up of 32 of these
wedges. On the right is depicted the top half of a slice in the R− z plane. The HEC presents
a φ symmetry around the beam pipe and a ±z symmetry because of the two almost identical
detectors at each end of the ATLAS detector. The HEC is composed of two cylindrical
wheels with two different sampling fractions, 5.5% in the front wheel (nearest to the IP) and
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2.8% in the rear wheel where the thickness of the copper plates is doubled.

Fig. 3.5 Schematic view of the HEC [37]. The left side shows a slice in the R−φ plane,
where 32 of these wedges make up a HEC wheel. The right shows the top half of a slice
in the R− z plane. ETA corresponds to the pseudorapidity (η) and the measurements are
expressed in millimeters.

Readout Structure

A readout cell, not to be confused with channel, is defined by the readout electrode in the
LAr gap. A view of the electronics inside the gap can be seen in Figure 3.6. The gap consists
of three parallel electrodes, the readout electrode being the central one with the other two
serving as high voltage carriers that create the electric field in the gap. The copper plates on
either side of the gap are grounded. The central electrodes are arranged in segmented pads
in the R−φ plane as can be seen on the left side of Figure 3.5. From 1.5 < |η |< 2.5, the
pad structure has a granularity in η ×φ of 0.1×0.1, while from 2.5 < |η |< 3.2 there is a
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granularity of 0.2×0.2.

Fig. 3.6 Schematic diagram of the readout structure inside one of the LAr gaps in the R− z
plane [37].

The electric signal travels from the central electrodes in the gaps through the transmission
lines to strip line connectors where the signals from two consecutive pads in the z direction
are passively summed.
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The signals then travel to the preamplifying and summing boards (PSBs) on which 12
to 15 Gallium Arsenide (GaAs) application-specific integrated circuits (ASICs) [47] are
mounted. The PSBs are located inside the cryostat in order to reduce thermal noise in the
ASICs and are mounted on the outer radius of the HEC. In the ASIC, the signal from the
strip line connectors are first individually preamplified.

Fig. 3.7 Schematic diagram showing the two different GaAs ASIC preamplifier (PA) and
driver (DR) summing schemes [48].

The outputs of the GaAs preamplifier ASICs correspond to the signals that form the HEC
readout channels. There are two different summing schemes as can be seen in Figure 3.7. In
both cases, the ASIC has 8 input signals which correspond to the signals from 16 consecutive
cells. In the first scheme shown in Figure 3.7(a), 4 preamplifier outputs from 8 consecutive
cells are summed, in which case the GaAs chip has two drivers which sum the signals forming
two readout channels. In the second scheme shown in Figure 3.7(b), the GaAs chip has one
driver which sums the signals from 8 preamplifier outputs or 16 consecutive cells forming a
single readout channel. As can be seen in Figure 3.8, in the z direction, the first 8 cells (4
GaAs preamp outputs) are summed to form a readout channel, the second channel is formed
with the next 16 cells (8 GaAs preamp outputs) and the last two channels follow the same
summing scheme as the first. The division of the channels in the z direction can be seen in
Figure 3.5, which shows which gaps are summed to form the HEC layers. Layers 1, 2, 3
and 4 correspond to the commonly used naming schemes HEC1, HEC2, HEC3 and HEC4
respectively. The cells are structured in such a way as to be approximately aligned in the η
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direction as can be seen by the dashed lines of constant pseudo rapidity in Figure 3.5.

Fig. 3.8 Schematic diagram of the HEC summing and preshaping schemes [49].

The outputs from the PSBs are then sent through the feedthroughs of the cryostat (see
Figure 3.4) to the front-end boards (FEBs) [51] located on the detector outside the cryostat.
The FEB architecture common to the whole LAr calorimeter is depicted in Figure 3.9. The
HEC is particular in that its signals are initially preamplified inside the cryostat, unlike signals
from the EM and forward calorimeters, which are amplified by the "warm" preamplifiers
installed on the FEB. The HEC GaAs preamplifiers have a different signal amplification
and rise times than the warm preamplifiers. Thus, in order to match the linearity range of
the shaper, a custom mezzanine called the preshaper is installed on the FEB instead of the
warm preamplifier used to readout the electromagnetic and forward calorimeters signals.
The function of the HEC preshaper is to apply additional amplification to the signal and
invert its polarity with a negative gain (see Figure 3.8). The preshaper also compensates
for the different sampling fractions in the front and rear wheels by amplifying signals from
the rear wheel with a gain that is twice the gain in the front wheel. This ensures that the
proportionality factor between the amplitude of the electric signal and the energy deposited
in a channel is constant throughout the HEC. Finally, the HEC preshaper provides pole-zero
cancellation (discussed in Chapter 5) to compensate for the widely varying capacitances of
the LAr gaps.

After the preshaping stage, the signal is sent to the shaper (readout path) and to the
layer summing boards (LSB) (trigger path). The LSB is the first stage in summing the HEC
channels for the L1 trigger. From the LSB, the signal goes to the trigger driver boards (TDB)
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Fig. 3.9 Block diagram of the overall structure of the current LAr electronics. The electronics
located inside the cryostat is shown in the left-most box. Not shown is the PSB unique to the
HEC. The central box depicts the on-detector front-end electronics. In the case of the HEC
FEBs, a preshaper mezzanine is installed in place of the preamplifier. The right-most box
depicts the off-detector back-end electronics [50].

to finalize the summing of the first three segments of the HEC to form the so-called "trigger
towers" sent to the L1 trigger. In the readout path, which is the focus of this thesis, the signals
from the individual HEC channels are filtered in the shaper and further amplified at three
different gains in parallel. These three different gain scales, low, medium and high, are used
to extend the dynamic range of the ADC. The shaped signals at all three gain stages are then
sampled at the LHC bunch crossing frequency of 40 MHz by the switched-capacitor arrays
(SCAs). These store the analog signal samples for the duration of the L1 trigger latency. If an
event is accepted by the L1 trigger, the optimal gain scale is selected and the first 5 samples
of the signal in the SCA are digitized by a 12-bit analog to digital converter (ADC). With the
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use of three gain scales, an effective dynamic range of 17-bits is achieved [51].

The digital signal from the FEB is then formatted, multiplexed, and sent through an
optical cable at 1.6 Gbps to the readout driver (ROD) in the back-end electronics [50] as
shown in Figure 3.9. The FEBs are mounted on the rim of the detector and thus are exposed
to large doses of radiation, meaning stringent requirements have to be put on their radiation
hardness. This is also why much of the more complex computation is done in the back-end,
far from the detector, by central processing units (CPUs), digital signal processors (DSPs)
and field-programmable gate arrays (FPGAs). It is in the DSPs in the ROD where the energy
and timing information of energy deposits are extracted from the 5 digitized samples that are
sent to the back-end. This is done with digital signal processing algorithms which will be
detailed further in Chapter 5. The results are then sent to the data acquisition system.

The HEC Pulse Shape

The normalized ionization signal and resulting shaped and sampled pulses of the HEC are
shown in Figure 3.10. The ionization of the LAr in the gap induces a triangular signal with
a sharp rise time O(1 ns) and a linear decay back to baseline over a period of ≈450 ns,
corresponding to the drift time of the electrons in the gap. The ionization signal is filtered by
the front-end electronics where it is shaped by the CR− (RC)2 shaper circuit giving a bipolar
pulse shape. This pulse shape is sampled at intervals of 25 ns, which is the interval between
bunch crossings at the LHC.

Thermal Noise

Noise in the form of the thermal agitation of charge carriers (Johnson-Nyquist noise [52, 53])
in the HEC electronics distorts the pulse shape, aggravating the task of energy and timing
reconstruction in the RODs. Thermal noise in the HEC can be modeled by a series voltage
source and a parallel current source before the HEC preamplifiers (this is further detailed
in Chapter 5) as the main source of thermal noise in the HEC electronics comes from the
GaAs ASICs in the cryostat. Analog filtering with the CR− (RC)2 shaper and the choice
of the shaper time constants (τs = RC =CR) which determines the width of the HEC pulse
shape are crucial for minimizing the impact of thermal noise on the reconstruction of the
original pulse amplitude and time. The "Fourier uncertainty theorem" [54], analogous to the
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Fig. 3.10 Plot of the triangular ionization signal in the LAr calorimeter along with the shaped
and sampled pulse shapes [37].

uncertainty principle in quantum physics, states that a broad pulse shape in the time domain
has a correspondingly narrow frequency spectrum, and vice versa. Given that the thermal
noise frequency spectrum extends to high frequencies, a broader signal pulse shape in the
time domain achieved with longer shaper time constants helps reduce the effects of thermal
noise. The effect of thermal noise on the digitized pulse shape can be seen in Figure 3.11(a).

Pileup Noise

There are two types of pileup noise to be considered in the HEC readout chain. One is in-time
pileup, where secondary particles from multiple proton-proton interactions in the same bunch
crossing deposit energy in a HEC channel. If one of these energy deposits comes from a
physically interesting event, or signal of interest, the energy deposits from the other events
can be considered as noise. The impact of in-time pileup is to produce a larger amount of
ionization in the detector, which is then reconstructed as corresponding to a higher amount
of energy than the energy deposited only from the physics signal of interest. This is due
to the fact that the energy deposited in a HEC channel is proportional to the amplitude of
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(a) (b)

(c)

Fig. 3.11 Example of a digitized pulse shape in the HEC with and without (a) thermal
noise, (b) in-time pileup and (c) out-of-time pileup. The x axis represent time expressed in
units of bunch crossing number, and the y-axis represents the digitized value of the sampled
analog pulse.

i

the electronic signal and that the full signal processing chain is linear. The effect of in-time
pile-up on the HEC sampled pulse shape can be seen in Figure 3.11(b).

The other type of pileup noise is out-of-time pileup. Given that the HEC pulse shape
returns to baseline after approximately 450 ns, it extends over several bunch crossings. If
energy is deposited in a readout channel less than 450 ns before or 125 ns after a signal of
interest, the two time-shifted pulse shapes will overlap in time. This will result in a distorted
signal pulse shape as can be seen in Figure 3.11(c). In the context of this thesis, the use of
the term pileup noise refers to the combination of in-time and out-of-time pileup. The impact
of pile-up noise on the measurement of energy in a readout channel can be reduced using
a narrow pulse shape, since a narrow pulse shape reduces the overlap between a signal of
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interest and out-of-time pileup.

The time integral of a bipolar pulse shape, such as the one used in the HEC readout, is
zero. This has the advantage of ensuring that the baseline of the calorimeter signal does not
shift as a function of time with the presence of out-of-time pile-up.

The amount of pileup noise is highly dependent on the instantaneous luminosity of the
LHC and in turn the average number of interactions per bunch crossing, ⟨µ⟩. The optimiza-
tion of the pulse shape width is thus highly dependent on ⟨µ⟩. The width of the HEC pulse
shape, described by its peaking time ∆τp, is determined by the choice of shaping circuit
and time constants. While having a narrower pulse shape reduces pileup noise, it increases
thermal noise. This is depicted in Figure 3.12 for two different instantaneous luminosities,
L = 1034 cm−2s−1, which is the nominal instantaneous luminosity at the LHC, and a lower
value of L = 1033 cm−2s−1. The amount of pileup noise increases with instantaneous
luminosity and longer peaking times, while the amount of thermal noise increases with
shorter peaking times.

Fig. 3.12 Plot of the thermal noise (series and parallel components), pileup noise and
total noise versus pulse shape peaking time tp(∆) in the LAr calorimeter for two different
instantaneous luminosities, L = 1034 cm−2s−1 and L = 1033 cm−2s−1 [37].

Pileup noise in the HEC increases significantly at higher η and in the forward layers. The
large range of capacitances in the HEC cells leads to thermal noise that varies significantly
throughout the detector as well. It is therefore impractical to optimize the shaping time of the
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analog filtering, which is implemented in hardware, on a channel by channel basis and for a
given instantaneous luminosity. Therefore, digital filtering of the signal is done in the ROD
for further mitigation of different sources of noise. Digital filters, as described in Chapter 5,
can easily be calibrated to the pileup and thermal noise conditions of each channel in order
to minimize their impact on the final reconstructed energy.

Energy Resolution

The energy resolution of a sampling calorimeter can be parametrized by the following
equation [37]:

σE

E
=

a√
E
⊕ b

E
⊕ c, (3.8)

where E is the energy measured, σE is the RMS of the error on an energy measurement, the
sampling term a depends on the construction of the calorimeter, the noise term b depends
on the total noise in its readout chain and c is a constant term that relies on the precise
knowledge of its geometry and electronic pulse shape. The focus of this thesis is on the noise
term b, which includes thermal noise in the electronics, pileup noise and digitization noise
introduced when converting the analog samples of the pulse shape to digital values.

3.3 Upgrade Plans of the LHC and the ATLAS Detector

3.3.1 The High Luminosity LHC

The LHC was designed to collide protons at a center of mass energy of 14 TeV and to deliver
a total integrated luminosity of 300 fb−1 to each of its two general purpose detectors, ATLAS
and CMS. The run schedule of the LHC is depicted in Figure 3.13. To date it has reached 13
TeV and delivered around 100 fb−1 of data. Along with the discovery of the Higgs boson, the
data collected at the LHC since 2010 has lead to some of the most accurate measurements
of SM parameters and stringent limits on BSM parameters. However, the statistical gain of
running the LHC without any significant increase in instantaneous luminosity after 2020
will be marginal, requiring 10 years to halve the statistical error on measurements. In order
to extend its discovery potential and maintain the statistical gain of running over a longer
period of time, the LHC will be upgraded during the 2024-2026 Long Shutdown 3 (LS3).
This upgrade will result in an instantaneous luminosity approximately 5 to 7 times larger
than its original design value, making it possible to record a total of 3000 to 4000 fb−1 of
collision data over the following 10 to 12 years [55].
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Fig. 3.13 Upgrade schedule of the LHC [56]. Shown are the center-of-mass collision energies
in red, the instantaneous luminosity in green, the integrated luminosity in fb−1, the Long
Shutdown periods LS1, LS2 and LS3, and the Extended Year-End Technical Stop (EYETS).

3.3.2 The upgrade schedule of the ATLAS detector

The upgrades to the LHC will give ATLAS a greater sensitivity to measurements that
tackle the most relevant questions in particle physics. These include the existence of super-
symmetry, the nature of dark matter and the existence of extra dimensions as well as the
properties of the newly discovered Higgs boson. Access to 3000 fb−1 of collision data would
allow an improvement on the precision of the production cross section times branching
ratio for most Higgs boson decay modes of a factor of two or three. It would also allow for
the measurement of rarer processes, such as the Higgs decay to two muons and evidence
of Higgs self-coupling (with CMS and ATLAS results combined). With conservative es-
timates, the mass reach of searches for new particles will increase by approximately 50% [57].

In order to achieve adequate physics performance at a higher instantaneous luminosity
and cope with the effects of long term radiation exposure due to the increased integrated
luminosity, the ATLAS detector has multiple upgrades planned to take place along side those
of the LHC. These upgrades take place during the Long Shutdown periods LS1, LS2 and
LS3.

Phase-II Upgrades

The so-called Phase-II upgrades of the ATLAS detector will take place during LS3. A
significant upgrade to the trigger and data acquisition system is planned. The L1 trigger
will be split into two levels, an L0 level, which will retain the same topological algorithms
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introduced during Phase-I [58], and a new L1 trigger which will have a greater latency budget
and have access to the full granularity of information from the calorimeter system. This
will require a complete overhaul of the calorimeter front- and back-end electronics. More
information can be found in reference [59].

3.3.3 Upgrade Plans for the HEC

As discussed in the previous subsection, substantial upgrades to the electronics of the LAr
calorimeter are planned for the Phase-II upgrade of the ATLAS detector. In this subsection,
the planned upgrades to the HEC electronics are detailed and motivated.

Phase-II Upgrades

The HEC and its on-detector electronics were designed to sustain up to 10 years of operation
at the LHC, or the equivalent of 700 to 1000 fb−1 of integrated luminosity [60]. However,
the HL-LHC is expected to deliver 3000 to 4000 fb−1 over the 10 to 12 years following
LS3. This means that the on-detector electronics will be exposed to radiation doses far
beyond their design specifications. Radiation tests done on the cold electronics (PSBs)
inside the cryostat show that they should remain operational at HL-LHC for an integrated
luminosity of 4000 fb−1 [61]. The linearity range of the preamplifiers has a maximum
current of 250 µA [62]. A study was done in the context of this thesis to show that the higher
proton-proton interaction rate at the HL-LHC should not significantly affect the the linearity
of the HEC signal in the preamplifiers (see Appendix A).

New readout electronics will be designed based on a free-running architecture where
analog readout is continuously sampled and digitized in the front-end. The information
will then be sent to a digital back-end system at 40 MHz where the data will be buffered
awaiting a trigger accept signal. Figure 3.14 shows a schematic diagram of the proposed
implementation of this free-running readout architecture. New components that are being
designed for the phase-II upgrade are shown inside a blue frame boxes. The new FEBs (i.e.
FEB2) will replace the existing front-end boards mounted on-detector and will therefore be
radiation hard. The digital back-end electronics, the LAr Signal Processor (LASP), will be
located off-detector.
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Fig. 3.14 Block diagram of the upgraded Phase-II LAr electronics [63]. Systems installed
during LS3 are shown in blue wide frame boxes. The LTDB and DPS are components of the
Phase-1 upgrade [64].

The average number of interactions per bunch crossings ⟨µ⟩ at the HL-LHC is expected
to reach 140 to 200 [59]. For comparison, Figure 3.15 shows the distribution of ⟨µ⟩ measured
during previous data taking years at the LHC, ranging from ⟨µ⟩= 9.1 to ⟨µ⟩= 37.8. There-
fore, during HL-LHC running, the increase in pileup noise in the HEC electronic readout
chain will be significant. It is thus imperative that the energy reconstruction performance of
the HEC’s signal processing chain at the HL-LHC be evaluated.
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(a) (b)

Fig. 3.15 Average number of interactions per bunch crossing in previous data taking years
during (a) Run 1 [31] and (b) Run 2 [32] at the ATLAS detector.

The topic of this dissertation is the optimization of the HEC readout parameters for
HL-LHC running. The impact of several different readout parameters are explored. At the
HL-LHC, the use of a bipolar pulse shape is expected to still be optimal due to its zero
integral which keeps the baseline shift in the readout at zero. However, the number of
integration stages in the CR− (RC)2 shaper and their time constants need to be optimized
for the pileup environment of the HL-LHC. Sampling the signal at 80 MHz, or twice the
current sampling rate, would allow more information to be extracted from the pulse shape
and is expected to improve the performance of digital filtering algorithms. Though extra
bandwidth would be required to send more samples to the back-end electronics, in case of a
significant improvement in performance this choice might be justified. The use of different
digital filtering algorithms capable of mitigating the increased effects of out-of-time pileup at
the HL-LHC must be tested along with the current digital filter already in use.





Chapter 4

Signal Processing

In this chapter, the basics of analog and digital signal processing are introduced. These
concepts will be important in the simulation and interpretation of results presented in Chap-
ters 5 and 6 respectively. A comprehensive summary of these subjects can be found in
references [65–67].

The work presented in this thesis focuses on the electric signals coming from the HEC
channels, such as voltage or current, as a function of time. As such, continuous-time signals
will be referred to as analog signals in this chapter. In the HEC, the ionization signal goes
through some analog filtering in order to cut out undesirable frequencies coming from sources
of noise, such as thermal noise in the electronic circuits and pileup noise. The signal is then
sampled in the time domain by an ADC at a given sampling rate, giving a discrete-time
signal. Ideally, the signal is sampled in equally spaced time intervals. The clock jitter of
the ADC introduces some uncertainty on the time at which the signal was sampled, though
this effect shall be neglected in what follows. The quantization of the amplitude of this
discrete time signal according to the ADC’s number of bits and least significant bit (lsb)
is treated separately. This will introduce some quantization noise depending on the way
in which the ADC approximates the amplitude of the signal, which is by rounding in the
HEC’s ADC. The ADC’s effective number of bits (ENOB) accounts for the thermal noise
introduced by the ADC itself. Once a discrete-time signal is quantized, it becomes a digital
signal and can be digitally filtered. Often, the digital signal processing of the signal is treated
in the discrete-time domain as it greatly simplifies the calculations. The quantization of the
signal can be treated separately. The digital filtering of the signal can be implemented in
hardware in a number of different ways, such as through the use of DSPs in the HEC’s signal
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processing chain. The internal and output precisions of the signal in the hardware in which
the filter is implemented shall be neglected in what follows.

4.1 Analog Signals and Filters

An analog filter F in its broadest sense is simply a system that takes an analog signal xa(t)

as input, manipulates it in some way, and outputs an analog signal ya(t):

xa(t)
F−→ ya(t). (4.1)

Analog signals can also be expressed in the frequency domain with its Fourier transform.
The Fourier transform decomposes the signal into the frequencies that make it up:

Xa(ω) =
∫

∞

−∞

xa(t)e−iωtdt. (4.2)

Here, Xa(ω) denotes the Fourier transform of xa(t) and ω denotes the angular frequency,
which is related to frequency by ω = 2π f . The original signal as a function of time xa(t)

can be recovered from its Fourier transform Xa(ω) by taking its inverse Fourier transform:

xa(t) =
∫

∞

−∞

Xa(ω)eiωtdω. (4.3)

In most cases, and in fact for the rest of this thesis, only Linear and Time Invariant (LTI)
filters will be considered, as their mathematical properties make them significantly easier to
manipulate. Any circuit composed of linear components, such as resistors, capacitors and
inductors, forms an LTI system.

A linear system will have an output that is linearly related to the input. If input xa1(t) to
a linear filter F has output ya1(t), input xa2(t) has output ya2(t), and a1 and a2 are constants,
the system obeys the following relation:

a1xa1(t)+a2xa2(t)
F−→ a1ya1(t)+a2ya2(t). (4.4)

A time invariant filter that outputs ya(t) for input xa(t) will output ya(t +∆t) if its input
xa(t +∆t) is shifted in time by ∆t.
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An LTI system has the property that it can be described by a single function called its
impulse response, denoted ha(t). As the name implies, ha(t) is the output of the system for
an input impulse δ (t), were δ (t) is the Dirac delta function. The output ya(t) of an LTI
system in response to any input xa(t) can be computed by the convolution of its impulse
response with the input:

ya(t) = (xa ∗ha)(t) =
∫

∞

−∞

xa(t)ha(t − τ)dτ. (4.5)

In the frequency domain, this operation is greatly simplified due to the convolution theo-
rem [67], which states that a convolution in time-domain of two signals corresponds to the
pointwise product of their Fourier transforms:

Ya(ω) = Ha(ω)Xa(ω). (4.6)

Analog LTI systems are typically described by linear constant-coefficient differential equa-
tions with zero initial conditions (y(0) = 0 and t ≥ 0) relating input to output, in which case
the Laplace transform is used to study the system’s properties. Instead of in the frequency
domain, the Laplace transform represents a signal in the s-plane, where s = σ + iω , σ is a
real number and ω is the angular frequency. The Laplace transform of xa(t) is defined as:

Xa(s) =
∫

∞

−∞

xa(t)e−stdt (4.7)

and, similarly to the Fourier transform, xa(t) can be recovered from Xa(s) via the inverse
Laplace transform. Its formal definition will not be discussed here as it can usually be
computed through the use of the partial fraction expansion method, which will be discussed
later in this section, and the use of tables with common time domain functions and their
Laplace transform. If a signal’s Fourier transform exists, it can be found from its Laplace
transform by the relation:

Xa(ω) = Xa(s = iω). (4.8)

It has an analogous version of the convolution theorem, allowing for the description of the
input/output relations of LTI systems in the s-plane with the pointwise product of the Laplace
transforms of the input and impulse response of the system:

Ya(s) = Ha(s)Xa(s). (4.9)
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Common examples of analog filters are high-pass RC and low-pass CR circuits. For a CR
circuit, as depicted in Figure 4.1(a), the following input/output relation for voltage are found
based on Kirchhoff’s circuit laws [68]:

vin(t) = RC
dvout(t)

dt
+ vout(t). (4.10)

Taking the Laplace transform and noting that L {dvout
dt }= sVout(s)− vin(t = 0), where L is

(a) (b)

Fig. 4.1 Circuit diagrams of a (a) CR and (b) RC circuit.

the Laplace transform operator, the transfer function of the circuit in the s-plane is simply:

H(s) =
Vout(s)
Vin(s)

=
1

1+RC · s
, (4.11)

where it is assumed that vin(0) = 0. Similarly, the transfer function of the RC circuit as
depicted in Figure 4.1(b) is given by:

H(s) =
Vout(s)
Vin(s)

=
RC · s

1+RC · s
. (4.12)

Figure 4.2 shows the Bode plots for these two circuits, indicating their magnitude response as
a function of frequency. In both cases, the frequency f = 1

2πRC corresponds to the "cut-off"
frequency where the circuit attenuates the input by -3 dB. The "time constant" of the circuits
is τ = RC. It corresponds to the time it takes to charge the capacitor through the resistor
from 0 to (1− e−1)V0 with an applied DC voltage V0, or discharge from V0 to e−1V0 from an
initial voltage across the capacitor V0.
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(a) (b)

Fig. 4.2 Bode plots of a (a) CR and (b) RC circuit.

An LTI system that is described by linear constant-coefficient differential equations can
be written as a rational function in terms of poles and zeros in the s-plane in the form:

H(s) =C ·

M

∏
k=1

(1+ τzk · s)

N

∏
l=1

(1+ τ pl · s)
, (4.13)

where the N poles appear at s =− 1
τ pl

and the M zeros appear at s =− 1
τzk

. Here, τ pl are the
time constants that lead to poles, τzk are the time constants that lead to zeros and C is some
unitless constant. If a system’s transfer function can be written in the form of equation 4.13,
the method of partial fraction expansion can be used to recover its time domain response. If
M < N, i.e. the number of poles is greater than the number of zeros, the transfer function
from equation 4.13 can be written in this form:

H(s) =
N

∑
k=1

Ak

1+ τ pk · s
, (4.14)

where the coefficients Ak can be found analytically. In order to do so, the right side of equa-
tion 4.14 is first set to a common denominator. Then, the numerators of the right hand sides
of equations 4.13 and 4.14 are expressed as a power series of s. Lastly, these two numerators
are equated, with each polynomial coefficient, i.e. the coefficients multiplying every power
of s, being equal. The result is a set of N equations, the unknowns being the N coefficients Ak.
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Once the function is expressed in the form of equation 4.14, finding the inverse Laplace
transform is simply done by using the relation:

L

{
1

1+ τ pk · s

}
=

1
τ pk

e−
t

τ pk . (4.15)

Note that this method of recovering the time domain response of a filter does not work if one
of the poles is repeated. This can be avoided by changing the value of any repeated pole by
an arbitrarily small value since, in practice (or in a non ideal system), the time constants of a
physical system are not identical.

4.2 Discrete-Time Signals

Discrete-time signals are represented mathematically by a sequence of equally-spaced num-
bers or "samples". The amplitude of discrete-time signals is continuous, i.e. it can take on
any value, as opposed to a digital signal which most often refers to an analog signal that has
been sampled by an ADC.

The nth number in a sequence x is denoted x[n], where n ∈Z is an integer. A discrete-time
system or filter T is defined mathematically as a transformation that maps an input sequence
with values x[n] to an output sequence with values y[n]:

x[n] T−→ y[n]. (4.16)

As with analog signals, a discrete-time sequence can be represented in the frequency domain
through the use of a Fourier transform. The discrete-time Fourier transform (DTFT) of a
discrete-time signal corresponds to its frequency domain representation. The DTFT X(ω) is
related to its discrete-time signal x[n] by:

X(ω) =
1

2π

∞

∑
n=−∞

x[n]e−iωn. (4.17)

The time domain signal can be recovered with the inverse DTFT (IDTFT):

x[n] =
∫

π

−π

X(ω)eiωn. (4.18)
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Again, only the class of discrete-time systems which are LTI will be considered. These
systems obey the superposition principle:

a1x1[n]+a2x2[n]
T−→ a1y1[n]+b2y2[n], (4.19)

if y1[n] and y2[n] are the responses of a system T to inputs x1[n] and x2[n] respectively and
a1 and a2 are arbitrary constants. A time-invariant system, who’s response to an input x[n] is
y[n], will output y[n−n0] with input x[n−n0] for any time shift n0.

As for analog systems, discrete-time LTI systems are completely characterized by their
impulse responses, the response of the system to an impulse δ [n], where δ [n] is the delta
Kronecker. The output y[n] of this system can be computed by the discrete-time convolution
of an input x[n] with its impulse response:

y[n] = (x∗h)[n] =
∞

∑
m=−∞

x[m]h[n−m]. (4.20)

In the frequency domain, the convolution becomes a pointwise product:

Y (ω) = H(ω)X(ω) (4.21)

analogously to the convolution theorem for analog systems [65].

Discrete-time LTI systems can be further classified into two important categories: infinite
impulse response (IIR) and finite impulse response (FIR) systems.

Typically, discrete-time filters are realized through the implementation of linear constant-
coefficient difference equations of the form:

M−1

∑
k=0

aky[n− k] =
N−1

∑
k=0

bkx[n− k]. (4.22)

Rearranging the terms gives:

y[n] =
N−1

∑
k=0

bkx[n− k]− 1
a0

M−1

∑
k=1

aky[n− k]. (4.23)
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This is the general form of an IIR filter. It depends on previous outputs of the filter and thus
has to store the M previous filter outputs in addition to the N samples stored from the input.
The impulse response of the filter, as the name implies, is infinite and does not go to zero,
though can asymptotically. This can make its implementation tricky as this feedback loop
can lead to instability in the sense that a bounded input:

|x[n]| ≤ Bx < ∞ for all n (4.24)

does not necessarily lead to a bounded output:

|y[n]| ≤ By < ∞ for all n. (4.25)

Here, Bx and By are positive finite values. When referring to the stability of a filter, it is in
the bounded-input, bounded-output sense.

A FIR filter has the simpler form:

y[n] =
N−1

∑
k=0

bkx[n− k]. (4.26)

It continuously applies a set of N coefficients bk to the input and can thus be considered
as a continuous weighted average of the N previous samples of the input. FIR filters are
intrinsically stable and have a memory of duration N. The filter is entirely determined by
its set of coefficients which define its transfer function. The distinction between different
FIR filters lies in the filter depth (i.e. the length of its transfer function) and the way their
coefficients are calculated.

4.3 Sampling of Analog Signals

Discrete-time signals are most often a representation of a sampled analog signal. A discrete-
time signal x[n] is then obtained by uniformly sampling an analog signal x(t) according to
the relation:

x[n] = xa(nTs − t0), (4.27)

where Ts is the sampling period, or the time between samples. The sampling frequency is
denoted fs =

1
Ts

. A time offset t0 can be introduced while sampling an analog signal. When
sampling with an ADC, this is referred to as the phase shift of the ADC, φADC, which is
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expressed in seconds. The operation of sampling an analog signal is not usually invertible.
However, in the case of a band-limited analog signal xa(t) with:

Xa(ω) = 0 for |ω| ≥ 2π · fN , (4.28)

the Nyquist-Shannon sampling theorem [69, 70] states that x(t) is uniquely determined by
its samples x[n] = xa(nTs − t0) if:

fs =
1
Ts

≥ 2 · fN . (4.29)

The frequency fN is referred to as the "Nyquist frequency" and 2 fN as the "Nyquist rate".
Thus, if a signal’s frequency is band-limited and is sampled at the Nyquist rate, which is
twice the Nyquist frequency of the signal, the original analog signal can be recovered from
the resulting discrete-time signal.

When a band-limited signal is sampled under the Nyquist rate, aliasing of the signal
occurs. This is mathematically described in frequency domain by the relationship between
the sampled signal X(ω) and the analog signal Xa(ω):

X(ω) =
1
Ts

∞

∑
k=−∞

Xa(ω −2πk). (4.30)

The frequency spectrum of the sampled sequence is an infinite sum of shifted copies, called
aliases, of the frequency spectrum of the analog signal. The copies are shifted by integer
values k of the sampling frequency. An example of aliasing occurring when sampling below
the Nyquist rate of an analog signal is shown in Figure 4.3. If fs ≤ 2 fN , the shifted copies of
the original signal frequency spectrum will overlap and distort the frequency spectrum of the
sampled sequence.

4.4 Random Signals

Before introducing the quantization of a discrete-time signal, the basic properties of both
analog and discrete-time random signals are described. These concepts also apply to the
analysis of thermal and pileup noise in the HEC.
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Fig. 4.3 Example of aliasing occurring when the sampling rate Fs of a band-limited analog
signal is below the Nyquist rate 2FN .

4.4.1 Analog Signals

Let xa(t) be an analog random process, specifically a random variable measured at time
t. These random variables are characterized by a set of probability distribution functions
(PDFs) that may also be a function of time:

P(xa(t), t) = Probability[xa(t)≤ xa(t)], (4.31)

where xa(t) denotes a particular value of xa(t). The mean or expectation value of the process
xa(t), denoted ηxa(t), is:

E{xa(t)}= ηxa(t). (4.32)
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The autocorrelation function of this process, denoted by Rxa(t1, t2), is the expectation value
of the product xa(t1)x∗a(t2):

E{xa(t1)x∗a(t2)}= Rxa(t1, t2), (4.33)

where the symbol ∗ denotes the complex conjugate. A stochastic process is in a wide-sense
stationary, hereby referred to simply as stationary, if the random variable’s mean does not
depend on time and if its autocorrelation function depends only on the time difference
τ = t1 − t2. The random processes that contribute to the noise in the HEC signal chain, such
as thermal, quantization and pileup noise, are or can be approximated as stationary. As a
consequence, for a stationary process:

E{xa(t)}= ηxa(t) = ηxa,

Rxa(t1, t2) = E{xa(t + τ)x∗a(t)}= Rxa(τ). (4.34)

The mean square of a stationary process is thus also constant:

E{|xa(t)|2}= Rxa(0) = σ
2
xa
. (4.35)

The power spectral density (PSD) of a stationary process is the Fourier transform of its
autocorrelation function:

Sxa(ω) =
∫

∞

−∞

Rxa(τ)e
−iωτdτ. (4.36)

In the case where a random process is considered as noise, the PSD gives the noise power as
a function of frequency.

The output of an LTI system with a stationary random process xa(t) as input is itself a
stationary random process:

ya(t) =
∫

∞

−∞

xa(t − τ)h(τ)dτ. (4.37)

The mean of the output is thus also constant:

ηya(t) =
∫

∞

−∞

E{xa(t − τ)}h(τ)dτ = ηxa

∫
∞

−∞

h(τ)dτ = ηxa. (4.38)

The mean value of a stationary noise process filtered by a system with an impulse response
that integrates to zero in the time domain is thus zero, as is the case of pileup noise filtered
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by the HEC electronics. The autocorrelation of the output is related to Rxa by:

Rya(τ) = Rxa(τ)∗h∗(−τ)h(τ). (4.39)

The PSD of the output can thus be expressed as:

Sya(ω) = Sxa(ω)|H(ω)|2. (4.40)

4.4.2 Discrete-time Random Signals

Random discrete-time signals behave in an analogous way to random analog signals. Let x[n]
be a discrete-time process, specifically a random variable measured at index n. As station-
ary processes have been discussed in the previous section, only random processes that are
stationary in nature will be discussed. Many of the results from the previous section still apply.

The mean or expectation value of the process x[n], denoted ηx[n], is constant:

E{x[n]}= ηx[n] = ηx. (4.41)

The autocorrelation of this process, denoted Rx[n1,n2], only depends on the sample distance
m = n1 −n2, and is the expectation values of the product x[n1]x∗[n2]:

E{x[n1]x∗[n2]}= Rx[n1,n2] = Rx[m]. (4.42)

The mean square of this process is:

E{|x[n]|2}= Rx[0] = σ
2
x , (4.43)

which is constant in time. The PSD of this process is the DTFT of its autocorrelation function:

Sx(ω) =
∞

∑
k=−∞

Rx[m]e−iωm. (4.44)

The output y[n] of an LTI discrete-time system with a discrete-time random stationary process
x[n] as input is itself a stationary random process. Its mean ηy and mean square σ2

y are thus
also constant, with its autocorrelation function being related to Rx[m] by:

Ry[m] = Rx[m]∗h∗[−m]∗h[m]. (4.45)
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The PSD of the output can thus be expressed as:

Sy(ω) = Sx(ω)|H(ω)|2. (4.46)

The stationary discrete-time random processes that will be studied are in a wide-sense
ergodic, meaning that the mean and autocorrelation of the process can be computed from the
time averages of a single sample sequence x[n]:

E{x[n]}= ⟨x[n]⟩= lim
L→∞

1
2L

L

∑
n=−L

x[n], (4.47)

E{x[n+m]x∗[n]}= ⟨x[n+m]x∗[n]⟩= lim
L→∞

1
2L

L

∑
n=−L

x[n+m]x∗[n]. (4.48)

This is true for stationary processes with a finite mean and an autocorrelation sequence that
is finite in length [66], such as the thermal and pileup noise in the HEC (see Chapter 5).

4.5 Quantization of Continuous Amplitude Signals

ADCs convert analog signals to digital sequences of binary numbers with finite precision
according to the number of bits b with which it represents them. The quantization of a
discrete-time signal x[n] can be mathematically described by a non-linear system Q which
rounds an input value to the nearest quantization value and limits it to the dynamic range
d = xmax − xmin of the ADC. This is shown in the following relation, where xd ∈ [xmin,xmax]

is the digitized sample:
xd[n] = Q{x[n]}= Q{xa(nT )}. (4.49)

In the case of a rounding ADC with equally spaced quantization values, the lsb which
determines the step size ∆ between successive quantization levels is:

∆ =
d
2b . (4.50)

The operation of quantizing a discrete-time signal introduces an error called the "quantization
error" e[n] [67]:

e[n] = xd[n]− x[n] = Q{x[n]}− x[n]. (4.51)

In our case, if xmin− ∆

2 < x[n]≤ xmax+
∆

2 , i.e. the discrete-time signal’s amplitude lies within
the dynamic range of the ADC, then −∆

2 ≤ e[n]< ∆

2 . If x[n] is outside this range, the ADC is
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saturated and the absolute error can be larger than ∆

2 .

The quantization system can be thought of as the operation of adding noise to an input
signal. Here, the error can be represented by the uniformly distributed PDF:

p(e) =

 1
∆

if − ∆

2 ≤ e[n]< ∆

2

0 if − ∆

2 > e[n]≥ ∆

2

. (4.52)

This gives an error with mean ηe = 0 and mean square σ2
e = ∆2

12 . In the case where the ADC
is not ideal, it introduces some thermal noise when quantizing a signal. The amount of
thermal noise coming from the ADC is quantified by the ENOB parameter be f f . With this,
the mean square of the total noise introduced in the procedure of quantizing a signal with a
realistic ADC, σ2

tot , becomes:

σ
2
tot =

d2

12 ·22be f f
. (4.53)

The mean square of the thermal noise introduced by the ADC is therefore:

σ
2
ENOB =

(
22(b−be f f )−1

)
∆2

12
. (4.54)

The digitized sequence after the quantization procedure of a realistic ADC can be mathemati-
cally described as:

xd[n] = Q{x[n]}+Nn(0,σENOB), (4.55)

where Nn(η ,σ) represents a random number drawn from a normal distribution with mean η

and standard deviation σ .



Chapter 5

ATLAS Readout Electronics Upgrade
Simulation

In this chapter, the ATLAS Readout Electronics Upgrade Simulation (AREUS) [71] software
framework used to test and optimize the performance of the HEC readout electronics at
HL-LHC is described. The implementation in this framework of the HEC geometry, readout
electronics, thermal noise and pileup noise is described along with the energy reconstruction
algorithms used to extract energy from the sampled pulse shape. Finally, Section 5.6.3 details
the measurement of a digital filter’s energy resolution. Details of the software implementation
of AREUS can be found in [72, 73, 71].

5.1 Introduction

AREUS was developed and validated to provide a highly flexible and precise simulation of
the LAr calorimeter system’s trigger electronics. Its flexibility allowed for the implemen-
tation of the HEC electronic readout chain currently in use, while providing the means to
test new and more complex filtering algorithms for the Phase-II upgrade. In addition, the
ability to integrate ATLAS simulated collision data within the software framework makes it
possible to simulate the readout electronics response to both the physics signals and pileup
noise expected at HL-LHC.

AREUS is designed in a modular way. Each module is strictly independent and is
responsible for the simulation of one part of the calorimeter’s electronics chain, from the
ionization of the LAr in the calorimeter cells to the digital filtering algorithms responsible
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for energy reconstruction. Two different modules are responsible for reading data in the form
of energy deposits in sequential bunch crossings and providing them to subsequent modules
for processing. One module uses official ATLAS simulated data as input for a simulation
of the entire LAr calorimeter; the other module can instead be fed a sequence of energies
deposited in a single channel. The latter is ideal for studying the performance of filters in
detail without the need to simulate the full calorimeter. The main modules of interest in
this section are those that had to be adapted to the response of the HEC readout electronics.
These are the modules responsible for simulating the channel mapping as well as the analog
processing and thermal noise in the front-end electronics. Finally, a digital filtering module
simulates the energy reconstruction algorithms. Modules for the monitoring and analysis of
the different stages are also provided.

5.2 HEC Implementation

The mapping of the HEC readout channels and their properties is crucial for the accurate
simulation of the HEC’s expected pulse shape and thermal noise. Since the HEC has a φ and
±z symmetry, its 5632 readout channels can be accurately described by the parameters of the
of 51 channels shown in Figure 5.1. The channel numbering goes up to 56 in a non-sequential
way as some of the layers do not cover the full range of 1.5 < |η | < 3.2, meaning some
channel numbers are skipped. The most important properties of the HEC channels are their re-
spective capacitances, the drift time of the electrons in the channel’s LAr gaps and the lengths
of the cables that carry the electrical signal from the LAr gaps to the PSBs. The capacitance
determines the rise time of the signal in the preamplifiers and affects the amount of thermal
noise in the electronics. The drift time of the electrons defines the shape of the ionization
signal. The cable lengths affect the signal shape due to reflections inside the transmission line.

The values of these parameters and the analytical models for the HEC’s pulse shape
and thermal noise presented in the next two sections were obtained from reference [44].
These parameters were validated with data from the HEC’s test beam setup [74] prior to its
installation in ATLAS.
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Fig. 5.1 Schematic diagram of the HEC in the R− z plane and numbering of the readout
channels [44].

5.3 Analog Shaping

First in the readout chain is the ionization signal in the HEC’s LAr gap. The triangular
ionization pulse can be described by:

I(t) = I0

(
1− t

τdri f t

)
for 0 < t < τdri f t , (5.1)

where I0 is the initial ionization current from Equation 3.5 and τdri f t is the drift time of the
electrons in the gap.
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Fig. 5.2 Schematic diagram of the HEC readout electronics currently in use [44]. The objects
highlighted in yellow are specific to the HEC’s test beam setup and are replace by a single
pole in the ATLAS detector (see Equation 5.9).

A schematic diagram of the HEC electronics chain is shown in Figure 5.2, with the
top half showing the cold electronics inside the cryostat and the bottom half showing the
electronics installed on the FEBs. The values of the different parameters of the HEC’s analog
readout chain referred to in Figure 5.2 are summarized in Table 5.1. A HEC readout channel
is modeled as an ideal source of current with capacitance Cd . Each of the 51 different types of
HEC channels have a different detector capacitance. The ionization signal first goes through
the signal cables HSig, as shown in Figure 5.2, to the PSB, which is described by its transfer
function:

HPSB(s) =
Rp

(1+ s · τa)(1+ s · τd)
where τa = Ra(Cd +Ca). (5.2)

The transfer function describing the decoupling capacitors Cdi and Cdo which differentiate
the signal is:

HCap(s) =
s2 · τd1τd2

(1+ s · τd1)(1+ s · τd2)
, (5.3)

where
τd1 = 150Ω ·Cdi and τd2 = 50Ω ·Cdo. (5.4)

The distortion in the cables following the PSB is modeled as:

HCab(s) =
as · (1+ τzs)

(1+ s · τos)(1+ s · τps)
. (5.5)
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Transfer function Parameter Value

HPSB(s)

τd 4 ns

Rp 750 Ω

Ra 50 Ω

Ca 50 pF

Cd Channel specific

HCap(s)
Cdi 0.3 pF

Cdo 0.3 pF

HCab(s)

as 0.963

τzs 24.7 ns

τos 1.3 ns

τps 28.9 ns

HPR(s)

Gp( f ront) 5.5

Gp(rear) 11

Cp 1 µF

τi 14.0 ns

τo 1.0 ns
HSH(s) Gs 10.0
HDR(s) τd f 1.0 ns

Table 5.1 Values of the HEC electronic readout chain parameters.

The HEC signal then travels outside the cryostat through the feedthroughs to the FEBs.
There, the signal first goes through the preshaper (PR in Figure 5.2), which has the following
transfer function:

HPR(s) =
s · τd3 ·Gp(1+ s · τpz)

(1+ s · τi)(1+ s · τo)(1+ s · τd3)
, where τd3 = 50Ω ·Cp. (5.6)

Here, Gp is the preshaper’s gain, which is twice as high in the two rear layers of the HEC to
compensate for the smaller sampling fraction. The zero with time constant τpz is

τpz = 50Ω · (Cd +Ca), (5.7)
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thereby canceling the pole in the PSB with time constant τa (see Equation 5.2). The preshaper
thus corrects for the preamplifier rise time through pole-zero cancellation, making the HEC
pulse shape, after the preshaping stage, independent of the channel’s capacitance.

The shaper currently in use (SH in Figure 5.2) is a CR− (RC)2 circuit with transfer
function (see Section 4.1):

HSH = 3.69 ·Gs ·
s · τs

(1+ s · τs)3 , (5.8)

where 3.69 ·Gs is the shaper’s gain and τs = RC =CR are the shaper’s time constants. The
shaper in the current readout electronics uses τs = 13 ns.

The line driver that carries the shaped signal to the ADC is described by 1 pole:

HDR(s) =
1

(1+ s · τd f )
. (5.9)

The complete transfer function of the current analog electronics is thus:

H(s) = HPSB(s) ·HCap(s) ·HCab(s) ·HPR(s) ·HSH(s) ·HDR(s). (5.10)

To derive an analytical expression for the HEC’s pulse shape, the method of partial fraction
expansion is used (see Section 4.1). As the readout chain’s transfer function has 13 pole,
the partial fraction expansion method requires solving a 13×13 matrix. Mathematica [75]
is used for solving this problem. After obtaining the transfer function in the time domain,
convolving it with the ionization signal (see Equation 5.1) is done using the relations:

(
δ (t)− 1

τdri f t

)
∗ e−

t
τ =


(

1+ 1
τdri f t

)
· e− t

τ − τ

τdri f t
for t < τdri f t

(
1+(1− e

τdri f t
τ ) τ

τdri f t

)
· e− t

τ for t > τdri f t .

(5.11)

This is done for each pole with time constant τ in the HEC’s transfer function.

The shaper and its shaping time need to be re-optimized for the pileup conditions at the
HL-LHC. Changing the time constants or adding/removing integration stages (RC filters)
can be done without changing the bipolar nature of the HEC’s pulse shape. A monopolar
pulse shape could reduce power consumption in the front-end and increase the dynamic
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range of the ADCs as it would not need to sample the pulse’s undershoot which accounts for
approximately 1/4

th of the dynamic range. However, the fact that the bipolar pulse shape
integrates to zero is important to maintain a zero pedestal shift in the readout.

Figure 5.3 shows the pulse shape obtained normalized to an amplitude of 1 for different
parameters of the shaper. In Figure 5.3(a), the HEC pulse shape for three different shaper
time constants is shown. Reducing the shaper’s time constants leads to a narrower pulse
shape. In Figure 5.3(b), the HEC pulse shape for three different shaper circuits is shown.
The shapers are formed by adding/removing an integration stage to the current CR− (RC)2

shaper. Similarly to reducing the shaper’s time constants, removing integration stages leads
to a narrower pulse shape. In the next section, the thermal noise and the effect of the different
shaper configurations on its PSD are described.

(a) (b)

Fig. 5.3 Normalized pulse shapes for (a) different shaper time constants with a CR− (RC)2

shaper and (b) different shaper circuits with time constants of RC =CR = 13 ns in the HEC
channel located in layer HEC1 at η = 2.35.

5.4 Thermal Noise

The digital energy reconstruction algorithms rely heavily on an accurate knowledge of the
noise’s autocorrelation function, and thus its PSD (see Section 5.6). An accurate model of
the HEC’s thermal noise PSD is thus crucial to the simulation and optimization of the HEC’s
readout chain.

A schematic diagram of the sources of thermal noise (or Johnson-Nyquist noise [52, 53])
coming from the HEC preamplifiers is shown in Figure 5.4. It consists of two independent
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noise sources at the preamplifier input, a series voltage noise (es) and a parallel current noise
(ip). Their PSDs are described by [44]:

d
d f

i2p(ω) =
4kT
Rpn

(1+
ωs

ω
) (5.12)

and
d

d f
e2

s (ω) =
4kT
Rsn

, (5.13)

where Rsn = 400 Ω and Rpn = 45 Ω are the equivalent series and parallel noise resistances,
respectively. The parameter ωs = 0.6 Mrad/s is the corner frequency of the GaAs preamplifier
chips which accounts for its flicker noise contribution, often called pink noise or 1

f noise.
Finally, k is Boltzmann’s constant and T = 87 K is the temperature inside the cryostat.

Fig. 5.4 Schematic diagram of the sources of thermal noise in the HEC’s electronic readout
chain [44]. The symbol H(s) is the HEC’s transfer function (see Equation 5.10) without the
factor Rp and pole with time constant τa from H(s)PSB (see Equation 5.2).

Reflections of the signal in HSig are described by an ideal transmission line loaded by
the capacitance Cd of the HEC channel. The impedance of the transmission line is:

ZHSig(ω) = ρ · 1+κ(ω) · e−2iωTc

1+κ(ω) · e−2iωTc
, (5.14)

where the voltage reflection factor is:

κ(ω) =
1− iωρCd

1− iωρCd
. (5.15)
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Here, ρ = 50 Ω is the characteristic impedance of the transmission line and:

Tc = Length ·Delay = LHSig ·5.68 ns/m (5.16)

is the propagation time of the signal in the transmission line. Each of the 51 different types
of HEC channels have different signal cable lengths LHSig .

Using Ohm’s law and Equations 5.12, 5.13 and 5.14, the PSD of the total noise current at
the preamplifier input is obtained:

d
d f

i2(ω) =

∣∣∣∣ 1+ iω(Ca +Cd)Ra

1+ iω(Ca +CHSig(ω))Ra

∣∣∣∣2×(
4kT
Rpn

(
1+

ωs

ω

)
+

4kT
Rsn

·ω2 ∣∣Ca +CHSig(ω)
∣∣2) . (5.17)

Here, CHSig(ω) is the capacitance of the transmission line:

CHSig(ω) =
1

iωZHSig(ω)
. (5.18)

The PSD of the thermal noise in the HEC electronics readout chain is thus given by:

S(ω) =
d

d f
i2(ω) · |H(s = iω)|2 . (5.19)

(a) (b)

Fig. 5.5 Thermal noise PSD for (a) different shaper time constants with a CR− (RC)2 shaper
and (b) different shaper circuits with time constants CR = RC = 13 ns in the HEC channel
located in layer HEC1 at η = 2.35.
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The PSD of the thermal noise in the HEC analog readout electronics is plotted in
Figure 5.5 for the different configurations of the HEC’s shaper discussed in the previous
section. By increasing the shaper’s time constants or adding an integration stage, higher
frequencies of noise are attenuated. The autocorrelation functions of the noise for the different
shaper configurations are shown in Figure 5.6. Adding an integration stage significantly
decreases the mean square of the thermal noise (first sample of the autocorrelation function)
when compared to increasing its shaping time. Conversely, while removing an integration
stage to reduce the width of the pulse shape (see Figure 5.3) may be desirable for readout
channels where pileup noise is dominant, it also greatly increases the mean square of the
noise when compared to the impact of reducing the shaping time constants.

(a) (b)

Fig. 5.6 Thermal noise autocorrelation function for (a) different shaper time constants with a
CR− (RC)2 shaper and (b) different shaper circuits with time constants CR = RC = 13 ns in
the HEC channel located in layer HEC1 at η = 2.35.

5.5 Pileup Noise

The modeling of proton-proton collisions at the ATLAS IP, the electronic and hadronic show-
ers that they produce when interacting with the detector as well as the detector’s response
requires the use of complex simulation packages. Official ATLAS simulated data is used to
determine the probability distribution functions (PDFs) of the expected pileup noise in the
HEC at HL-LHC.

For the work presented in this thesis, minimum bias events generated with Pythia8 [76]
are used in order to simulate the pile-up conditions expected at the HL-LHC. Minimum
bias events in the context of this thesis are simply events that would be accepted by the
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minimum bias trigger, which mainly consists of elastic proton-proton interactions. The final
state particles of these interactions and their decay products are then run through a detailed
simulation of the ATLAS detector in GEANT4 [77, 78], which simulates the interaction of
the collision products with the material in the detector as well as the detector’s response.
The output consists of the energies deposited in the LAr gaps of the HEC, which are then
converted to current by AREUS.

The simulation used for the pileup noise in this thesis is based on the expected ATLAS
geometry and pileup conditions at the HL-LHC after the Phase-II upgrade. The proton-proton
collisions are thus simulated at a center of mass energy of 14 TeV and an average number of
interactions per bunch crossing ⟨µ⟩= 200. This corresponds to an instantaneous luminosity
of L = 7.5 ·1034cm−2s−1, the "worst case" scenario in terms of the level of pileup noise the
electronics need to be able to cope with.

From this dataset, the PDFs for the energy of a single minimum bias event is calculated
for each HEC channel. These PDFs are based on the model described in reference [79]. The
PDFs as a function of energy are described by the formula:

Ptot(E) = q ·δ (E)+(1−q) ·PE(E), (5.20)

where q is the probability that a minimum bias event will deposit no energy in a readout
channel and PE is the energy distribution. The energy distribution of a minimum bias event
in a HEC channel is shown in Figure 5.7(a). Energy deposits in sequential bunch crossings
are approximated to be uncorrelated (the minimum bias event PDFs do not change as a
function of time). However, as the energy from a minimum bias event ionizes the LAr in
a HEC cell, it is shaped and sampled in the HEC’s readout chain. This gives pileup noise
a complex frequency dependence. Its autocorrelation function Rpu[n] in terms of the total
energy deposited in a HEC channel by pileup is given by:

Rpu[n] = σ
2
E ·

Rsps[n]
Rsps[0]

, (5.21)

where σ2
E is the mean square of the total energy deposited by pileup (which depends on

in a HEC channel ⟨µ⟩) and Rsps[n] is the autocorrelation function of the HEC’s sampled
pulse shape. The pileup noise autocorrelation function for the different shaper configurations
described in Section 5.3 is shown in Figure 5.8. Reducing the shaping time constants to 8 ns
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reduces the mean square of the pileup noise (first sample of the autocorrelation function).
Removing an integration stage also reduces the mean square, though to a lesser extent. Pileup
noise remains autocorrelated over a much longer period of time when compared to the
autocorrelation function of thermal noise (see Figure 5.6).

(a)
(b)

Fig. 5.7 Figure (a) shows the energy distribution of a single minimum bias event in the HEC1
at η = 2.35 with q = 0.805. Figure (b) shows a sequence of digitized samples as function of
time (expressed in units of number of bunch crossings). This sequence of digitized samples
was simulated assuming three large energy deposits at intervals of 30 bunch crossings on top
of a pileup contribution obtained assuming ⟨µ⟩= 200.

The minimum bias PDFs are not expected to change as a function of the instantaneous
luminosity of the LHC. As such, they can be used to generate sequences of energy deposits in
a HEC channel at different pileup conditions, given that the number of interactions per bunch
crossing is entirely determined by how many times the PDF is sampled. In AREUS, at every
bunch crossing, the number of minimum bias interactions that occur is either determined by
a random number Poisson distributed around ⟨µ⟩ or fixed to µ . Then, a number uniformly
distributed from 0 to 1 is generated. If it is bigger than q, the probability that a single
minimum bias event will deposit exactly no energy in the channel, the energy distribution is
sampled. This is done µ times to obtain the total energy deposited by minimum bias events
in the channel at that bunch crossing.

In addition to this pileup noise, signals with energies uniformly distributed between 0
and 50 GeV are artificially added in order to study the energy resolution of different digital
filters. This is done at intervals of 30 bunch crossings to avoid overlap between signals. A
sequence of energy deposits generated with ⟨µ⟩= 200 is shown in Figure 5.7(b). Sequences
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(a) (b)

Fig. 5.8 Pileup autocorrelation function for (a) different shaper time constants with a CR−
(RC)2 shaper and (b) different shaper circuits with time constants CR = RC = 13 ns in the
HEC channel located in layer HEC1 at η = 2.35. Autocorrelation functions are normalized
to the mean square of the pileup noise in the current HEC shaper (CR− (RC)2 with τs =
RC = 13 ns).

of 1 million bunch crossings are generated for select channels that span the range of thermal
and pileup noise conditions in the HEC. No signals are artificially added in the first 3000
bunch crossings which are reserved for the calibration of the digital filters on only thermal
and pileup noise, which is discussed in the next section.

5.6 Sampling, Digitization and Filtering

In AREUS, the sequence of energy deposits in a channel is converted to current, shaped
and then sampled at 40 MHz. Thermal noise is then added to every individual sample in
order to save on computing time. An example of thermal noise in the simulation of a HEC
channel is given in Figure 5.9(a). In order to accurately describe this process, aliasing was
added to the AREUS simulation. As you can see from Figure 5.5, the thermal noise in
the HEC is not band-limited to 20 MHz, so sampling it at 40 MHz introduces significant
aliasing of its PSD. In addition to improving the performance of the energy reconstruction
algorithms, sampling at 80 MHz would thus significantly reduce aliasing of the thermal noise.

The process of digitizing the signal is done by rounding the samples of the pulse shape to
the nearest ADC digit. In the HEC, the current ADC has 12 bits with an lsb of 112 MeV (or
1 mV). The thermal noise in the ADC is modeled by the ENOB parameter, which is 11.3 on
the current FEBs, according to the description in Section 4.5. An example of the quantization
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(a) (b)

Fig. 5.9 Example of (a) thermal noise and (a) quantization noise that is simulated for every
sample of a sequence of digitized samples simulated in the HEC 1 at η = 2.35.

noise (rounding error + thermal noise of the ADC) in the simulation of a HEC channel is
shown in Figure 5.9(b). From Equation 4.53, the standard deviation of the noise should be
52.5 MeV or equivalently 0.469 lsb. In the context of this thesis, electronic noise refers to
the thermal noise in the analog electronics and the quantization noise in the ADC.

At this point in the simulation chain, digital filters are used to reconstruct the energy
deposited in a bunch crossing by a physically interesting event. A description of the two filters
tested for the Phase-II upgrade of the HEC is given in the next two subsections. AREUS uses
the first 3000 bunch crossings (in the case of this study) in a sequence of ADC samples to
calculate the filter coefficients. These are then applied to the rest of the sequence to test the
energy resolution of the filter.

5.6.1 Optimal Filter

The optimal filter (OF) [80] is the energy reconstruction algorithm currently implemented in
the LAr calorimeter back-end electronics. It is a FIR filter designed to minimize the mean
square of the total noise (pileup and electronic noise). The OF does this by optimizing the
shaping time of its output on a channel by channel basis. This can be seen in Figure 5.10.
When the OF is calibrated on a sequence with no pileup noise, its output has a broader peak
than the input pulse shape (see Figure 5.10(a)). Conversely, when the OF is calibrated on
a sequence with high pileup, its output has a narrower peak than its input (see Figure 5.10(b)).
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(a) (b)

Fig. 5.10 Example outputs of the ADC and OF for three consecutive significant energy
deposits with pileup conditions (a) µ = 0 and (b) ⟨µ⟩ = 200 in the HEC 1 at η = 2.35.
Sequences are shown as a function of time (in units of bunch crossings).

Filter Coefficients

A sampled pulse shape in the HEC x[n] can be described as:

x[i] = Ag(iTs +φADC − t0), (5.22)

where g(t) is the normalized analog pulse shape sampled at intervals of Ts = 25 ns, φADC is
the ADC phase, A is the amplitude of the pulse shape and t0 is the timing of the ionization
signal with respect to i = 0. The optimal filter attempts to extract the amplitude A of the
pulse shape which is proportional to the energy deposited in the channel. In doing so, the
pulse shape g(t) and ADC phase φADC must be known precisely. In other words, the samples
g[i] of the normalized and sampled pulse shape must be known. A signal s[i] deposited at a
time t0 after sample i = 0 in a sequence with pileup and electronic noise n[i] is described to
first order by:

s[i]≈ Ag[i]−At0g′[i]+n[i]. (5.23)

Here, g′[i] is the time derivative of g[n]. This is a valid approximation in the limit where the
time between a bunch crossing and an energy deposit in a HEC channel t0 is small. The
output of the optimal filter is described by [80]:

u[i] =
N−1

∑
i=0

ais[i], (5.24)
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where u[i] is the filter output, ai the filter coefficients (or transfer function, h[i] = ai) and N

the filter depth (number of coefficients). The coefficients are calculated in such a way that,
on average, the OF outputs the amplitude of the signal:

⟨u[i]⟩= A =
N

∑
i=0

ai
(
Ag[i]−At0g′[i]+ ⟨n[i]⟩

)
. (5.25)

Given the bipolar pulse shape of the HEC, ⟨n[i]⟩= 0, giving constraints on the filter coeffi-
cients:

N

∑
i=0

aig[i] = 1 and
N

∑
i=0

aig′[i] = 0. (5.26)

The mean square of u is given by:

⟨|u[i]|2⟩=
N

∑
i=0

N

∑
j=0

aia j⟨n[i]n[ j]⟩=
N

∑
i=0

N

∑
j=0

aia jRn[i, j], (5.27)

where Rn[i, j] is the autocorrelation matrix of the noise n[i]. To calculate the OF coeffi-
cients, the mean square of u[i] is minimized using Lagrange multipliers. The function to be
minimized, according to the constraints in Equation 5.26, is:

Iu =
N

∑
i=0

N

∑
j=0

Rn[i, j]aia j −λ

(
N

∑
i=0

aig[i]−1

)
−κ

N

∑
i=0

aig′[i], (5.28)

where λ and κ are the Lagrange multipliers. Setting ∂

∂ai
Iu = 0 gives the following set of

linear equations:

ai = λ

N

∑
j=0

R−1
n [i− j]g[i]+κ

N

∑
j=0

R−1
n [i− j]g′[ j], (5.29)

where Rn[i, j] is expressed as Rn[i− j] since the electronic and pileup noise in the HEC
are both stationary random processes. Combining Equations 5.26 and 5.29 gives N + 2
independent equations from which the Lagrange multipliers and the OF coefficients that
minimize the mean square of the total noise are calculated.

In order to calibrate the filter and calculate its coefficients, AREUS must determine g[i]

and Rn[i]. The ADC phase and analytical pulse shape are a priori known, which takes care of
g[i]. The autocorrelation matrix of the noise is calculated on the first samples in a sequence
of ADC samples where no signal is artificially injected, as described in the previous section,
using time averages as described in Section 4.4.2.
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5.6.2 Wiener Filter

The Weiner filter (WF) [81] is an alternative to the OF. It has previously been studied in the
context of its possible use in the LAr calorimeter trigger readout, along with its extension,
the Weiner filter with forward correction (WFFC) (see references [72, 73]). The Weiner
filter attempts to reconstruct the sequence of energies deposited in a channel E[n] without
distinguishing between signal or pileup. It’s ideal output to a normalized and sampled pulse
shape g[n] is thus δ [n−dWF ], where dWF is the delay on the output of the WF. However, the
WF is a FIR filter, which can be thought of as a moving weighted average of its input. This
means that if the input pulse shape integrates to zero, so does the filter’s output; i.e., the WF
cannot output an ideal delta Kronecker. It was determined that a variant of the WF for which
the ideal response to the normalized and sampled pulse shape, g[n], is a delta Kronecker
followed by a sample at half value, δ [n− dWF ]+

1
2δ [n− 1− dWF ], performed best in the

HEC simulation at HL-LHC. This is called the WF with half-value post-peak. Its output in
response to a sequence of ADC samples can be seen in Figure 5.11(a).

(a) (b)

Fig. 5.11 Example outputs of the ADC, (a) WF and (b) WFFC for three consecutive
significant energy deposits with pileup condition ⟨µ⟩ = 200 in the HEC 1 at η = 2.35.
Sequences are shown as a function of time (in units of bunch crossings).

Filter Coefficients

The WF coefficients ai are calculated in such a way that [81]:

Ê[n] =
N−1

∑
i=0

aix[n− i]. (5.30)
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Here, x[n] is the input sequence to the filter, the output of the ADC on the FEB, and Ê[n]

is an estimation of the desired sequence E[n]. The error on the output energy of the WF is
calculated with respect to the actual energy deposited at sample n, E[n]:

e[n] = E[n]− Ê[n] = E[n]−
N−1

∑
i=0

aix[n− i]. (5.31)

The mean square of this error is given by:

⟨e2[n]⟩= ⟨(E[n]− Ê[n])2⟩

= ⟨(E[n]−
N−1

∑
m=0

amx[n−m])2⟩

= ⟨E2[n]⟩−2
N−1

∑
m=0

am⟨E[n]x[n−m]⟩+
N−1

∑
m=0

N−1

∑
l=0

amal⟨x[n−m]x[n− l]⟩

= REE(0)−2
N−1

∑
m=0

amREx[m]+
N−1

∑
m=0

N−1

∑
l=0

amalRxx[l −m]. (5.32)

Here, REE [n] is the autocorrelation function of the desired signal E[n], REx[m] is the correla-
tion function between the input samples x[n] and the desired output E[n], and Rxx[n] is the
autocorrelation function of the input samples x[n]. The WF attempts to minimizing the mean
square of the error, giving:

∂

∂am
⟨e2[n]⟩= 0 =

N−1

∑
l=0

alRxx[l −m]−REx[m]. (5.33)

The filter coefficients are thus derived from equation:

N−1

∑
l=0

alRxx[l −m] = REx[m]. (5.34)

To calculate the coefficients, one must thus have knowledge of the autocorrelation function
of the input samples and the correlation function between the input samples and desired
output. Therefore, the WF requires calibration on signal as well as noise. This would require
knowledge of the frequency and amplitude of energy deposits from physically interesting
events. The dependency of the energy reconstruction algorithm on these predictions is
undesired. Therefore, an approximation is done by neglecting electronic and pileup noise,
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giving [72]:

Rxx(n) =
1
N

N−1

∑
n=0

g[n]g[n+m] (5.35)

and

REx[n] =
1
N

N−1

∑
n=0

δ [n−dWF ]g[n+m] = g[m+dWF ]. (5.36)

In this approximation, the WF coefficients does not depend on electronic or pileup noise
but only on the normalized and sampled pulse shape of the HEC electronics. While this
makes the WF incapable of minimizing noise on a channel by channel basis like the OF, its
well defined output independent of noise conditions makes it easy to correct with an IIR
extension.

Forward Correction

The WFFC adds an energy identification algorithm and a forward correcting filter (see Fig-
ure 5.12). The energy identification algorithm only outputs a value if it detects a signal and if
it does, the initial estimation of the energy from the WF is used to calculate a correction to
its output. In so doing, the WFFC outputs only a single sample that approximates the energy
deposition of a signal. The filter thus attempts to eliminate out-of-time pileup, making it
less sensitive to signal in consecutive bunch crossings (see Figure 5.11(b)). It is therefore
expected that this filter will perform best in channels where pileup noise dominates, as its
extremely narrow output makes it very sensitive to thermal noise.

Fig. 5.12 Schematic diagram of the WFFC [72].
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The feedback from the forward correction makes the WFFC an IIR filter. The stability
of the filter in response to irregular (saturated or otherwise distorted) pulse shapes was
previously studied. A set of criteria was developed to determine when the stability of the
WFFC is compromised (see reference [72] and references therein), though this has yet to be
tested on the HEC’s readout chain. If an irregular output is detected, the forward correction
filter is reset to prevent it from affecting following outputs.

5.6.3 Methodology for Calculating the Total Noise

From the filter analysis module in AREUS, correlation plots between the energy of a signal
and the energy reconstructed by the filtering algorithms (Es,in and Es,out respectively) are
used to determine the total noise at the output of the filter. Examples for the OF and the
WFFC are shown in Figures 5.13(a) and 5.14(a) respectively.

An example of the result of projecting Es,in in different ranges onto the y-axis is shown in
Figures 5.13(b) and 5.14(b). This gives the standard deviation of Es,out −Es,in for a given
signal energy range. The results of doing this for different pileup conditions and energy
ranges are shown in Figures 5.13(c) and 5.14(c). The root mean square (RMS) of the noise
is approximately constant as a function of signal energy, though it significantly worsens as
pileup increases.

The energy reconstruction performance of the HEC electronic readout chain is evaluated
by plotting the total noise (σ(Es,out −Es,in)) versus ⟨µ⟩. The total noise is that for the full
signal energy range that is simulated (0 < Es,in ≤ 50 GeV). This gives a measure of the noise
term b of the energy resolution of the HEC (see Equation 3.8).
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(a) (b)

(c)

Fig. 5.13 Plots of the total noise at the output of the OF for the HEC channel located at
η = 2.35 in layer HEC1. Figure (a) shows the correlation between Eout −Ein and Ein and (b)
the projection of 40 ≤ Ein < 45 GeV onto Eout −Ein. Both are for ⟨µ⟩ = 200. Figure (c)
shows the RMS of the noise as a function of pileup and input energy.
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(a) (b)

(c)

Fig. 5.14 Plots of the total noise at the output of the WFFC for the HEC channel located at
η = 2.35 in layer HEC1. Figure (a) shows the correlation between Eout −Ein and Ein and (b)
the projection of 40 ≤ Ein < 45 GeV onto Eout −Ein. Both are for ⟨µ⟩ = 200. Figure (c)
shows the RMS of the noise as a function of pileup and input energy.



Chapter 6

Performance and optimization of the
HEC readout electronics at the HL-LHC

In this chapter, the AREUS simulation is used to test and optimize the performance of the
HEC at HL-LHC. The main results obtained in this section were published in the ATLAS
Liquid Argon Calorimeter Phase-II Upgrade Technical Design Report [63]. First, the current
configuration of the HEC’s readout chain is tested under different pileup conditions. Using
the tools developed in the previous section, the different shapers and filtering algorithms will
be tested along with the possibility of increasing the sampling rate of the ADC from 40 to
80 MHz.

6.1 Overview

In this subsection, the performance of the HEC is simulated without any changes to its
electronics readout chain. This includes the current CR− (RC)2 shaper with shaper constants
τs =CR = RC = 13 ns, a 12-bit ADC with an ENOB of 11.3, a sampling rate of 40 MHz
and the OF with a filter depth of 5 samples. All results are shown for the medium gain signal
path.

The response of the entire HEC calorimeter is simulated using ATLAS simulated di-
jet events 1. These simulated events also have a transverse momentum cut on the jets of
pT > 2000 GeV. Results for the simulation of the entire HEC calorimeter with ⟨µ⟩= 200
are shown in Figure 6.1. Generally, the total noise increases from the front to the back layers,

1Final states of the proton-proton interactions resulting in at least two energetic jets of particles.
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and also increases as a function of η , as expected.

Fig. 6.1 Total noise in the HEC expected at the HL-LHC at an instantaneous luminosity of
L = 7.5 ·1034 cm−2s−1 with the current electronic readout.

This can be seen more clearly in Figure 6.2, where the total noise in a few representative
channels in the HEC is shown for different pileup scenarios. Bins along the x-axis corresponds
to simulations of the HEC readout under different pileup conditions, from no pileup (µ=0)
up to µ=200. The total noise for each value of pileup considered is calculated using the
reconstructed energy from an Optimal Filter who’s coefficients (OFCs) were optimized for
that specific pileup condition. Error bars on the total noise are included but appear smaller
than the markers. The readout channels at pseudorapidities of 1.75, 2.35 and 2.8 in HEC
layers 1, 2, 3 and 4 span the range of pileup versus electronic noise conditions in the HEC.
At µ = 0, only electronic noise is present. There is an approximate factor of two difference
between the electronic noise in the front and back wheels due to the sampling fractions being
twice as large in the front wheel. The readout channel in the HEC1 at η = 2.8 sees the most
increase in total noise, by a factor of approximately 21 from µ = 0 to µ = 200, while the
channel in the HEC4 at η = 1.75 sees virtually no change.
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Fig. 6.2 Total noise as a function of pileup in 12 representative HEC readout channels.

6.2 Analog Shaping

The performance of the different configurations of the shaper discussed in Section 5.3 is
presented here. The results for different shaper time constants are shown Figure 6.3. Fig-
ure 6.3(a) shows that in channels with high pileup, reducing the shaper’s time constants from
13 to 8 ns can reduce the total noise by up to 5.5%; however, in readout channels where the
electronics noise dominates (HEC3 and HEC4 at eta=1.75), a decrease in shaping time is
shown to increase the total noise by up to 1.2% (see Figure 6.3(b)). This is expected as a
shorter shaping time reduces pileup noise but increases the contribution of thermal noise to the
total noise. In channels where thermal noise dominates, increasing the shaping time constants
to 18 ns has no significant impact on the total noise when compared to a shaping time of 13 ns.

The results for different shapers are shown Figure 6.4. While removing an integration
stage produces a narrower pulse shape (see Figure 5.3(b)), it only marginally improves total
noise in channels where high pileup is expected (see Figure 6.4(a) at µ = 200). This is due
to the fact that removing an integration stage not only increases the bandwidth of the thermal
noise’s PSD, but also its RMS (see Figures 5.5 and 5.6). Conversely, Figure 6.4(b) shows
that adding an integration stage leads to a reduction of the total noise by up to 28% in readout
channels where the contribution from thermal noise is dominant.
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(a) (b)

Fig. 6.3 Comparison of the total noise as a function of pileup for different shaping time
constants in a channel (a) dominated by pileup noise and (b) dominated by thermal noise at
high pileup.

(a) (b)

Fig. 6.4 Comparison of the total noise as a function of pileup for different shaper circuits in a
channel (a) dominated by pileup noise and (b) dominated by thermal noise at high pileup.

Reducing total noise in channels where thermal noise dominates is not as crucial to
maintaining the current performance of the HEC at the expected instantaneous luminosity at
the HL-LHC. The increase in luminosity has less effect on the total noise in these channels
than those in the front layers and at higher η . The current plan for the Phase-II upgrade is
to keep using the CR− (RC)2 shaper with programmable shaping time to account for the
large range of pileup versus thermal noise conditions not only in the HEC, but in the LAr
calorimeter [63].
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6.3 Sampling Rate

A higher sampling rate provides additional information about the pulse shape and the auto-
correlation functions of the noise to the OF. It is thus expected to improve its performance
when highly correlated noise, such as out-of-time pileup, is present. It also reduces aliasing
of the thermal noise. To cover the entire width of the HEC’s pulse shape, a filter depth of 10
samples is required instead of 5. A comparison of the total noise expected when sampling at
40 and 80 MHz is shown in Figure 6.5(a). An improvement of approximately 11% can be
seen at µ = 200 when increasing the sampling rate to 80 MHz. The benefits of increasing
the sampling rate become more important at higher pileup.

Because of the aliasing of the thermal noise’s PSD at a sampling rate of 40 MHz, high
frequencies are added to the noise distribution at lower frequencies (see Figures 4.3 and 5.5).
This further complicates the task of reducing the high frequency contribution of thermal
noise by digital filters such as the OF. However, the PSD of the HEC’s thermal noise is
approximately band-limited to 40 MHz (see Figure 5.5), meaning that only negligible aliasing
of the thermal noise is seen at a sampling rate of 80 MHz. Optimizing the shaping time
of the HEC before the sampling is done is thus not as crucial. This is shown in Figure 6.5
when comparing the red points from (a) and (b), where (b) shows the result of doubling the
sampling rate and reducing the shaping time to 8 ns in the same readout channel. While it
was shown that reducing the shaping time to 8 ns decreased the total noise by 5.5% in this
channel at a sampling rate of 40 MHz (see Section 6.2), a decrease of approximately 3%
is seen here. In other words, the benefits of doubling the sampling rate and reducing the
shaping time do not add linearly.

For the design of the new LAr electronics readout, it was decided that the relatively small
improvement in total noise achieved with a higher sampling rate of 80 MHz did not justify
the cost associated with a doubling of the bandwidth that would be necessary to implement
this scenario.

6.4 Optimal Filter

In this section, the performance of the OF is tested. Figure 6.6(a) shows the performance of
the OF when increasing its filter depth from 5 to 13 samples. It is expected that providing
additional information on the pulse shape and autocorrelation functions of the noise will help
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(a) (b)

Fig. 6.5 Comparison of total noise as function of pileup for (a) two different sampling rates
using a shaping time of 13 ns and (b) two different sampling rates and shaper time constants.

the OF reduce the effects of out-of-time pileup. Indeed, increasing the filter depth from 5 to
9 provides increasing benefits as pileup increases, up to an improvement of 5% at µ = 200,
while increasing the filter depth from 9 to 13 provides no significant benefits in all cases.

The OF coefficients (OFCs) and its transfer function are highly dependent on the pulse
shape and noise autocorrelation function. As such, as mentioned in the previous chapter,
its coefficients are calculated based on the electronic and pileup noise conditions of each
specific channel. However, the number of interactions per bunch crossing over the course
of an LHC (or HL-LHC) fill is approximately Poisson distributed around ⟨µ⟩ while the
transfer function of the OF remains constant. The performance of the OF must thus be
tested at high pileup with "fixed" coefficients to see if any significant degradation of its
performance should be expected over the course of an HL-LHC fill. Figure 6.6(b) compares
the performance of the OF as a function of µ in the case where its coefficients are fixed to
those calculated on a sequence with µ = 140 to the performance of the OF with coefficients
specifically optimized for the pileup condition of each sequence. No significant increases
in the total noise is observed when using the OF with fixed coefficients on sequences with
µ = 80 and µ = 200 compared to the OF with "tuned" coefficients. For µ Poisson distributed
around ⟨µ⟩= 140, the probability that an interaction will have less than µ = 80 or more than
µ = 200 is negligible.
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(a) (b)

Fig. 6.6 Comparison of total noise as a function of pileup for (a) various OF filter depths
and (b) fixed versus tuned OFCs.

6.5 Weiner Filter with Forward Correction

The WFFC is designed to suppress out-of-time pileup by only outputting a sample when
a signal is detected by its energy identification algorithm. If a signal is detected, it takes
advantage of the well defined pulse shape of the WF by applying a forward correction which
is fed back to the input and corrects for the negative undershoot of the pulse shape. As
such, the WFFC is expected to performs best in channels dominated by pileup, as its narrow
output makes it extremely sensitive to thermal noise. Figure 6.7(a) shows a comparison of
the performance of the WFFC and the OF in a channel dominated by pileup at high µ . At
µ = 200, the WFFC is shown to outperform the OF by 5%. Figure 6.7(b) shows the same
comparison in a channel in the same layer but at slightly lower pseudorapidity where less
pileup noise is expected. In this case, the WFFC achieves a comparable performance to the
OF. Again, in the same layer but at even lower η , Figure 6.7(c) shows that the WFFC output
has almost 17% more total noise than the OF.

The overall performance of the WFFC does not make it a viable option to be used for
the energy reconstruction in the HEC calorimeter readout. However, it provides a proof of
concept and valuable insights for the further development of potentially better performing
digital filtering algorithms.



76 Performance and optimization of the HEC readout electronics at the HL-LHC

(a) (b)

(c)

Fig. 6.7 Comparison of total noise as a function of pileup for the OF and WFFC in different
readout channels in the HEC1 layer at (a) η = 2.8, (b) η = 2.35, and (c) η = 1.75.



Chapter 7

Summary

The performance of the HEC readout electronics at the HL-LHC was simulated. In the analog
electronics, a reduction of the total noise of up to 5.5% can be achieved in some readout
channels where pileup noise dominates by reducing the shaper’s time constants to 8 ns.
Removing an integration stage in the shaper was shown to provide no significant benefits in
channels where pileup noise dominates. The LAr calorimeter electronics readout at HL-LHC
is therefore being designed using a CR− (RC)2 shaper with programmable time constants.
Doubling the sampling rate of the ADC provides an overall reduction in total noise of up to
11%, while shortening the shaping time in this scenario provides an additional reduction of
up to 3% in readout channels with larger pileup noise contributions. While increasing the
sampling rate improves the overall energy reconstruction performance of the HEC, it doubles
the bandwidth needed to send the samples to the back-end electronics, increasing the total
cost as well as technical complexity of the project. It is therefore expected that a sampling
rate of 40 MHz will be kept for the phase-II upgrade of the LAr calorimeter electronics. On
the digital filtering side, increasing the filter depth of the OF from 5 to 9 reduces total noise
by up to 5%, while increasing it from 9 to 13 provides only marginal benefits. In addition, it
was shown that the performance of the OF should be stable over the course of an HL-LHC fill.
The WFFC was tested in the HEC’s readout chain, showing a 5% reduction of the total noise
when compared to the OF in channels where pileup noise dominates; however, it performs
significantly worse in other channels.

Simulation studies presented in this thesis indicate that the energy reconstruction in the
HEC at HL-LHC will worsen compared to the performance currently achieved at lower
level of pileup. While the development and validation of the simulation is still ongoing, it
is clear that any additional reduction of the total noise in the HEC readout electronics will
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come from the digital filtering algorithms that can better suppress out-of-time pileup. The
development of filters other than the ones discussed, such as the extended OF (described
in references [82–84]), is already underway. The simulation of the HEC readout chain in
AREUS provides a fast and flexible tool to develop and test the performance of these filters
at the HL-LHC.



Appendix A

Maximum current expected in HEC
preamplifiers at HL-LHC

As mentioned in Section 3.3.3, the maximum current at which the HEC cold preamplifiers
are expected to behave linearly is 250 µA. However, information of the energy deposited
at the cell level in the HEC is not readily available due to the summing of signals in the
strip line connectors and the GaAs ASICs (see Section 3.2.3). In the GaAs ASIC drivers,
four preamplified signals from layers HEC1, 3 and 4 or eight preamplified signals from
layer HEC2 are summed to form a readout channel. If it is assumed that the ionization from
an energy deposit in a channel is evenly distributed in the cells that make up a channel, a
linearity range of 250 µA in the preamplifiers corresponds to a linearity range of 1 mA in the
drivers of the HEC1, 3 and 4, and 2 mA in the drivers of the HEC2. This short study attempts
to estimate the amount of nonlinear signals expected in the HEC at the HL-LHC by esti-
mating the fraction of energy deposit that lead to ionization currents above 1 mA in a channel.

Official ATLAS simulated data consisting of di-jet events was chosen for this study as
jets in the range of 1.5 < |η |< 3.2 deposit most of their energy in the HEC. In addition, the
di-jet production cross section is the second largest contributor to the total proton-proton
interaction cross section (see Figure 2.2). While the single jet production cross section is
higher, the transverse energy of jets coming from di-jet events is expected to be larger in
the pseudorapidity range of the HEC as shown in Figure A.1. The di-jet simulation uses
Pythia8 [76] as the event generator and Geant4 [77, 78] for the detector simulation. A cut
of pT < 1400 GeV is applied on the transverse momentum of the interacting partons and
pT < 2000 GeV on the jets. The dataset contains ≈ 400,000 events giving ≈ 292 fb−1 of data,
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(a) (b)

Fig. A.1 Cross section measurements of proton-proton interactions with (a) one jet and (b)
two jets in the final state as a function of transverse momentum pT and rapidity |y| [85].

or approximately 1/10
th of the total dataset expected after 10 years of running at the HL-LHC.

The detector simulation gives the energy deposited by the di-jet events in a HEC channel,
called detector "hits", which is then converted to current using Equation 3.5. The distribution
of the ionization current is shown in Figure A.2 as a function of η and φ in terms of the
fraction of hits in the di-jet sample. As expected, Figure A.2(a) shows that the distribution is
approximately flat as a function of φ while Figure A.2(b) shows that higher energies are de-
posited at lower η . The sharp rise in number of hits at |η |= 2.5 that is seen in Figure A.2(c)
comes from the doubled ∆η size of the HEC readout pads at |η |> 2.5 (see Section 3.2.3).

In order to estimate the fraction of hits that are expected to lead to currents above 1 mA,
fits are done to the current distributions in bins of |η | where the fraction of hits is integrated
in φ and z. The function used for the fit is:

f (x) = ep0+p1·x + ep2+p3·x, (A.1)

where the fitting parameters are p0, p1, p2 and p3. The results for three |η | bins are shown
in Figure A.3 along with the parameters obtained, their uncertainties and the χ2 of the fit
in terms of the number of degrees of freedom (ndf). Using the obtained fit parameters, the
fitting function is integrated above 1 mA. The results are show in Figure A.4, giving the
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(a) (b)

(c)

Fig. A.2 Fraction of di-jet event detector hits as a function of: (a) ionization current deposited
in a HEC channel and φ , (b) ionization current deposited in a HEC channel and η , and (c) φ

and η .

fraction of di-jet event detector hits that lead to a current above 1 mA as a function of |η |.

Results show that overall, a fraction of less than 10−6 of di-jet detector hits should lead
to currents that are high enough to cause non-linearity in the HEC’s preamplifiers. This,
along with the radiation hardness study discussed in Section 3.3.3, shows that the HEC
preamplifiers should remain linear and operational over the course of the full data-taking
period of the ATLAS detector at the the HL-LHC.
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(a) (b)

(c)

Fig. A.3 Fits to the distribution of ionization current deposited by di-jet event detector hits in
three different |η | bins.
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Fig. A.4 Fraction of di-jet event detector hits that lead to ionization currents above 1 mA in
the HEC GaAs drivers as a function of |η | regions.
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