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abstract

Historically discrete multiplicative cascade models have been developed to
mimic some of the characteristics of fully-developed turbulence. Some of these
models have been found to be of much more general relevancy and have been
used to simulate and analyse many different kinds of simple geophysical and
other scaling fields. The desire to describe more complex processes has led to
the invention of muitivariate muitipiicative cascade modeis. Of these the simpie
“complex cascade model” is considered in detail in this thesis. The background
theory of Lévy random variables and discrete scalar cascades is covered and a
description of the various existing analysis techniques is provided. Two
analysis techniques are described and tested on complex cascade simulations.
The new “adjacent data points™ (ADP) method is found to be superior to the
traditional analysis technique. A discussion of the difficulties which may be

encountered when analysing recorded complex data is included.

résumé

Historiquement, les modeles de cascade multiplicative ont été développés pour
simuler certaines des caractéristiques de la turbulence pleinement développée.
Quelques-uns de ces modeles se sont avérés d'une pertinence dépassant les
limites de la turbulence et ont ainsi été utilisés pour simuler et analyser plusieurs
champs géophysiques simples ainsi que d'autres champs possédant une
invariance d'échelle. La volonté de décrire des processus plus complexes a
mené A l'invention des modeles de cascade multiplicative a plusieurs variables.
Parmi ceux-ci, le modele simple de cascade complexe est étudié en détail dans ce
mémoire. Les fondements de la théorie des variables aléatoires de Lévy ainsi
qu'une description des différentes techniques d'analyse sont présentés. Deux
techniques d'analyse sont décrites et vérifiées par des simulations de cascades
complexes. La supériorité de la nouvelle méthode des points adjacents par
rapport 2 la méthode d'analyse standard a été démontrée. Une discussion sur les
difficultés qui peuvent se présenter lors de l'analyse de données complexes est

incluse.
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@ Glossary (of commonly used terms)

DCUM
S&L
S&T

c(y)
d

S ™ W™ R RN
[

T O~

equation

figure

multifractal

probability density function
random variable

adjacent data point(s)

discrete cascade universal m.f.
Schertzer & Lovejoy (1995)
Samorodnitsky & Taqqu (1994)

»a

average, defined for ar.v. x with p.d.f p(x)as (x)= j.r p(x)dx

-ca

“codimension function.” defined in equation (I.10)
dimension of (embedding) space

exponent, usually real and positive; “order of moment”
*codimension of the mean,” § [1.2.4

“box-counting (fractal) dimension,” defined in equation (L.8)
“*(Laplace) second characteristic function,” defined in § I1.2.3
“moment scaling function,” defined in equation (IL.8)

“outer scale,” the size of box in which the whole process will fit

“(Fourier) characteristic function,” § I1.2.3

a parameter in the & -model of § [.4.2

“Lévy index” of a Lévy r.v., § [1.2.3

a parameter in the -model of § L4.1

“skewness parameter” of a Lévy r.v.,, § [1.2.3

slope of power spectrum, defined in equation (I1.9)

(the value of a) field (at a point in space and time) at resolution A
“order of singularity,” § I1.2.1

“resolution” or “scale” corresponding to a physical size of L/A

“shift parameter” of a Lévy r.v., § I1.2.3



| Introduction

I.1 The Limitation of Human Prescience

The origins of science itself can be found at the time c. 3500-2500 BC, known by
historians as the period of the hieratic city state!. The people of that time conceived of the
city as an imitation on earth of the cosmic order which they observed around them.
Administered by the priests and other classes the universe, society and the individual were
made to be in pertect harmony. One of the chief roles of the priests. then. was to make
highly accurate observations of nature so that they could ensure that man continued to be in
consonance with the cosmos. Well-known examples of the skill with which such
observations were made are the pyramids and Stonehenge. And this was the birth not only
of science but also writing, the wheel. mathematics. the calendar. astronomy, number
systems (decimal and sexigesimal). kingship. the class system. priestcraft. taxation and
bookkeeping. The important idea underlying all this is that nature was believed to be
perfect and divine and science was in accord with religion. Indeed the purpose of science

ttself was very much diagnostic. if not predictive.

This view persisted for approximately 5000 years until tinally a rift began to appear
between the two. The European Christians having inflated Revelation beyond reason were
delivered their first blow by William of Ockham (c. 1300-1349) with his so-called
Ockham'’s razor. Then, starting with Kopernik? (a.k.a. Copernicus) in 1507 and
culminating with Galileo. the priests (of the Roman Catholic Church. in 1630) marked the
departure of the two by condemning as heresy Galileo’s scientific discovery that the earth
moves round the sun. Thus science was cut from the root by those who were there to tend
it. And alone but confident, like a rebellious adolescent, it was seemingly capable of
anything. So as the importance of the priests diminished the achievements of man’s use of

reason seems to have grown exponentially.

Among the great scientific discoveries of those times was Newtonian physics which
was an important part of the eighteenth-century Enlightenment and Industrial Revolution.

In fact (classical) mechanics became the first physical theory to be studied systematically. It
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‘ seemed that there could be no limit to the technological and scientific achievements
possible3. Science progressed with mechanics, fluids and then electricity and on to
particles. Finally, after about 250 years of this new found freedom a few truly astonishing
scientific discoveries made it clear that there were severe and restrictive limitations on what
man could hope to achieve. The theory of relativity (special theory in Einstein (1905)), the
uncertainty of quantum mechanics (starting with Planck (1900)) and Godel's
incompleteness theorem (Godel 1931) are some of the outstanding examples of scientific
and mathematical discoveries which irrevocably proved the by then five-and-a-half-
millennium-old idea of absolute knowledge to be inadequate. This was perhaps the most
fundamental change in our weltanschauung, a change which we are unlikely to see repeated
in our own lifetimes. From the broken hubris of our past it was up to the open-minded

scientists to construct a new way of looking at things.

Fig. 1.1: Mikolaj Kopernik (picture from O'Connor & Robertson 1999)

But the cracks had already started to appear during the last century. One such
example was the discovery, over a hundred years ago by Poincaré (1892), that mechanical
systems which followed Hamilton’s equations could display chaotic motion. It was not
until much more recently that in our particular field of interest Lorenz (1963) discovered
deterministic chaotic behaviour in a very simple mathematical model of convection in a fluid

. layer heated from below. He found that his set of three coupled total differential equations
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permitted solutions in a particular parameter range for which the model had exponential
sensitivity to initial conditions. What made the discovery so important is that the observed
chaotic behaviour in time is not due to noise, or an infinite number of degrees of freedom,
or quantum mechanics. It was thus shown that our ability to determine future events in a

deterministic world has its limitations.

1.2 An Investigation of Vortices and Turbulence

The detached and secular observation of nature started with the Greeks. In their
writings can be found descriptions of such natural phenomena as whirlwinds and dust
devils. About 1500 years later Legnardo da Vinci (1452-1519) reached a sort of
culmination in the artistic description of such natural events. His drawings contain many
examples of turbulent and vortical tlow in channels and around obstacles. The smooth
flow of a fluid around a cylinder, for example, is called laminar tlow. As the tlow speed is
increased vortices begin to appear in the cylinder’s wake. At higher flow speeds the
vortices form and detach repeatedly, tlowing with the fluid behind the cylinder in the so-
called Kdrmin vortex street (see fig. 1.2, top). Finally at even higher flow speeds the fluid
motion behind the cylinder becomes entirely chaotic: this is called (fully developed)
turbulent tlow and the mechanism which has just been described is called transition through
spectral development. This progression may be seen in figure .2 below (the parameter R

will be defined in § [.3.1) from top to bottom.

A different kind of transition from laminar to turbulent flow was first described by
Reynolds (1883). In his experiments water was introduced into a pipe at a constant flow
rate within which there was a thin stream of highly coloured water (tracer) to make the flow
pattern discernible. At low speeds the flow remained laminar throughout the length of the
pipe as could be seen by observing a straight line marked by the tracer. When the flow rate
was increased beyond a critical value he found that at a certain distance from the entrance to
the pipe the thin line of tracer fluid suddenly broadened out to fill the entire cross-section of
the pipe (see figure [.3). The mixing of the tracer indicated a sudden transition to strongly

turbulent flow. This abrupt transition is caused by small instabilities in the flow which get

10
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Fig. 1.2: Some steps in the progression from laminar flow to fully developed

turbulence; the pictures show (top) the wake behind a single cylinder for R=105 and
behind two identical cylinders for R=240 & 1800 {middle and bottom, respectively).
Pictures from (top) Van Dyke (1982) and (bottom & middle) Frisch (1995).

—

Fig 1.3: Reynolds’ pipe flow experiment showing the sudden onset of turbulence

after a period of laminar flow as seen in the tracer mixing with the water, flowing
rom left to right (fig. from Reynolds 1882).

amplified, and is exactly like the sensitive dependence on initial conditions found by Lorenz
(§ I.1). In an analogous way the instabilities in the (much more complex) atmosphere
become amplified and lead to turbulence and the manifold natural phenomena which are

seen as a result®.

11
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Leonardo da Vinci was the first to describe turbulent fluid motion3. Today it might be
said that fully developed turbulence has the following basic properties (as adapted from
Warn (1993)): a complex space-time structure involving a broad range of scales;
irreproducibility-—repeated experiments yield different outcomes, hence a lack of
predictability: high levels of vorticity; strong dissipation and rapid decay after energy
sources are removed: enhanced transport properties. [t could also be said that turbulence is
deterministic. because the physical laws governing its motion are known exactlv. But with
the sensitive dependence on initial conditions and the very large number of degrees of
freedom it is difficult in practice to make this work in general®. The limited success of

numerical weather prediction models is in large part due to this.

Indeed, of the five review articles consulted in the writing of this chapter the biggest
commonality they share is their agreement that the theoretical understanding and
quantification of turbulence is a problem which is still far from being solved (eg..
Bhattacharjee’s (1998) review focuses on this aspect in particular). Thus with the chaotic
uncertainties of turbulence it seems natural to wonder whether a probabilistic description is
justified; the answer is certainly yes (eg., Frisch (19935) p. 57). The paper “Statistical
Theory of Turbulence™ (58 pages in four parts) by Taylor (1935) was pioneering work in
this regard. He suggested for the first time that the oscillations of the atmospheric velocity
field be measured statistically and used to compute the energy spectrum. This was soon

tollowed by much research by others.

.3 Reynolds, the Navier-Stokes Equation and
Kolmogorov

.3.1 The Navier-Stokes equation

The equations of motion applied to an inviscid fluid were derived in the period 1752-
1759 by Euler, and are now known as Euler’s equation. About seventy years later an
additional viscous term in this equation was derived for viscous tluids. For a Newtonian
fluid of constant viscosity, and with the simplification of assuming that the fluid is also
incompressible, the result is called the Navier-Stokes equation and has been known since

Navier (1823). Itis

§ L
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dy | )

Lo Vp+ Wiyt f (L)
dr p -

where v. p, p and v are the velocity, pressure, (constant) density and (constant)
kinematic viscosity of the fluid respectively. f represents body forces such as stirring or

gravity, though these are usually neglected as shall be done below.

Firstly the Navier-Stokes equation (I.1) can be non-dimensionalised to reveal a
dependence on just one parameter. By choosing a characteristic length and velocity scale
(eg., in Reynolds’ pipe tlow experiment these were the size of the pipe and the tflow speed)

the dimensionless position and velocity vectors can be written as

The remaining variables may be dealt with similarly by introducing arbitrary scales
(constants) which may be set to any value, ultimately thereby allowing a reduction in the

number of parameters. These are

Introducing the dimensionless variables into (I.1) gives

L. Lyps Ly
VT ' Vip VL

which can be simplified by choosing T=L/U and P=pV* to give the dimensionless

Reynolds equation

N

Vv 1 —,»
— =_Vl ,+_V'_v' (I.z)
. TR E

where the single (dimensionless) parameter R is given by

13
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In this form equation (I.2) has only one parameter, R, called the Reynolds number
which depends only on the characteristic scale and velocity of the tlow and inversely on the
(kinematic) viscosity of the fluid. As a consequence it was noted by Reynolds (1883) that
two different configurations of the system may be dynamically similar if their Reynolds
numbers are equal. And, in particular, he noticed (§ [.2) that the determining factor as to
whether turbulence occurs or not is the value of R; flows with R above a critical value
will be turbulent. This critical value for pipe flow is about 2300. This should be compared
with the Reynolds number of the atmosphere (for which the large scale phenomena have
U=10 ms™, L=1000 km and v =107 m"s™") which is somewhere of the order 10" ie..
very much larger. In fact such a large value of Reynelds number is as yet impossible to

achieve either in experiment or numerical simulation.

Secondly the Navier-Stokes equation has several inherent symmetries which.

. ignoring boundaries. are invariance under space and time translation, rotation, parity (space
and velocity reversal) and scaling transformations. The geometric symmetries are easily

witnessed in laminar flow but as the onset of fully developed turbulence is approached. and

the smoothness of the tlow is disrupted, these symmetries begin to break (eg. the up-down

symmetry of the Kdrmidn vortex street in tig. .2 lacks a left-right symmetry). Finally when

the turbulence is fully established it is observed to be homogeneous and isotropic (already

implied in Kelvin (1887) but not tested experimentally until much later eg., isotropy by

Townend (1934)); the geometric invariances are once more established. at small scales and

away from boundaries, in a statistical sense. Of the scaling property of the Navier-Stokes

equation consider the isotropic transformations

x—Axand v = Ay, (1.3)

where h is an arbitrary scaling exponent. These already imply that ¢ — A'~"z. Substituting

these into equation (I.1) reveals that the scaling of the remaining variables must be

v— A and f= A”“'j_‘.

14
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. 1.3.2 The seeds of Kolmogorov's 1941 papers

Assuming homogeneity and isotropy, for sufficiently large Reynolds number and at
small scales away from boundaries and singularities, Kolmogorov? (194 1a) made his two
hypotheses of similarity. His second hypothesis of similarity essentially states that the
statistical properties of (fully-developed) turbulence at scales larger than the dissipation
scale, the finest scale at which most energy is lost to viscosity, are dependent only on the
mean dissipation rate € (and not on v). So consider the statistics of the (longitudinal)
velocity differences Av(l) =v(x+[)—v(x) and the corresponding velocity structure

function
B,(1) = ((av())") (L4)
(where ( ) indicates taking the mean of the quantity inside the brackets). Since & has

dimensions of [L}I*{T]” further dimensional analysis shows that Kolmogorov's second

hypothesis implies
. B, (1) = Co&"1*" (L5)

where C, is a universal dimensionless constantS. This result was derived for ¢=2 (the
second order velocity structure tunction, tor which the exponent on / is two thirds) in
Kolmogorov (1941a) and is known as the “two-thirds law.” Considering once again the
scaiing transformations (I.3) it can be seen that the LHS of (I.5) changes by a factor of A"
when transformed whereas the RHS changes by a factor A**; therefore # =1/3. Equation

(L4) may be rewritten in a more general form tor the magnitude of the velocity differences
S, (0= (Jav(D]") o= 159 (1.6)
where Kolmogorov's second hypothesis of similarity implies that

£(q) :%. (L7

The prediction that the velocity structure function of order g will exhibit scaling in the

. inertial range with scaling exponent {(q)=+q (a linear behaviour in g) is amenable to

15
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;

v,
; ot %
M. oy de s

Fig. 1.4: Andrei N. Kolmogorov (picture from Kendall 1990)

experimental testing of different order moments. But it should be noted that in his [941
papers Kolmogorov only gave explicit predictions for the second and third order moments.
and that measurements of higher order moments is difficult. This may be why no tests
were performed with ¢24 until Van Atta & Chen (1970). Since then improved
investigations have been made eg., Anselmet et al. (1984), Ameodo et al. (1996). Benzj et
al. (1993) and Schertzer et al. (1995)%. Notably it has been found that the structure
function exponent deviates significantly from this scaling relationship (I.7) at higher order

”

moments: an effect known as “anomalous scaling.” This will be the subject of more

discussion in § [.3.

Another implication of Kolmogorov's second hypothesis may be seen by considering
that energy has dimensions of [L’][T7*]. Thus the energy spectrum will be given by
E(k)= C,&"* k™. This result was first seen explicitly in an independent derivation by
Oboukhov (1941) and consequently is known as the “Kolmogorov-Oboukhov five-thirds
law”. The landmark experiment in verifying the five-thirds power law behaviour was due
to Grant et al. (1962) who analysed tidal channel data to convincingly show the predicted
power law over a scale ratio of approximately 10°. This has been. and continues to be, the
subject of much investigation (for good reviews see Lilly (1983) and Schertzer and Lovejoy

(1983) and controversy over such points as the putative meso-scale gap (since Van der

16
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Hoven 1957) which is associated with the separation of the regimes of two and three-
dimensional turbulence in the atmosphere. Despite the controversies it would seem that
with ever increasing computing power and improvements in measuring devices the range
and quality of unbroken scaling seen in turbulent fluids only increases. (Indeed. as an
aside, the scaling behaviour observed in energy spectra has become rather ubiquitous in
measurements of natural phenomena of all kinds.) However the power spectrum is itself a
second-order moment (the Fourier transform of the autocovariance) and does not paint the

entire picture of the nature of turbulence.

One important aspect of the character of tully developed turbulence which had been
almost totally ignored is the intermittency of turbulent fields. In particular the rate of energy
dissipation is not constant throughout space and time. Twenty one years after his 1941
turbulence papers Kolmogorov (1962) made a third hypothesis that the rate of dissipation is
lognormally distributed in space and time. This followed Oboukhov (1962) who had
assumed the same (but only) tor pragmatic reasons. and a criticism by Landau (of
Kolmogorov's 1941 work) that theoretically there is an increase without limit of the
dissipation as the ratio of scales increases. Thus the notion of intermittency. or “spatial
inhomogeneity™ as Batchelor & Tonwnsend (1949) called it. was tormally taken up in the
mathematics and the question of what statistics may best describe these tluctuations was
raised!V. Indeed the first to propose a type of intermittency model already markedly

different to the ideas in Kolmogorov (1962) were Novikov & Stewart ([964).

|.4 Scaling, Cascades and Phenomenological Models

.4.1 Cascades and intermittency; early models

Kolmogorov (1962) states that “the hypotheses concerning the local structure of
turbulence at high Reynolds number, developed in the years 1939-41 by myself and
Oboukhov were based physically on Richardson’s idea of the existence in the turbulent
flow of vortices on all possible scales... and of a certain uniform mechanism of energy
transfer from the coarser-scaled vortices to the finer.” It would now do well to recall that
Richardson!! was himself the pioneer of numerical weather prediction and in Richardson

(1922) there appeared the now famous poem

17
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V- g T 3

Fig. 1.5: Lewis F. Richardson (picture from O'Connor & Robertson 1999)

Big whorls have little whorls.

That feed on their velocity;

And little whorls have smaller whorls.
and so on to viscosity.

This poem. it turns out, makes a good model for fully developed turbulence when
taken quite literally. The energy of the largest eddies, at the so-called outer scale or
sometimes injection scale, is successively passed down to smaller eddies of a similar size
(localness of interactions) until finally, having traversed the entire range of scales. the
dissipation scale is approached where most of the energy is lost through dissipation. The
important features of this model! are that i) it is a selt-similar cascade process, which means
that the operation taking piace at the large scales is the same as the one taking place at the
small scales. and 11) the fundamental quantity of interest, which is itself conserved in the
cascade process. is the energy flux €. (Indeed it is probable that thinking along such lines

is what led Kolmogorov (194 1a) to make his two hypotheses of similarity.)

It is the energy flux, then, which became the subject of much attention in the torm of

self-similar cascade models. Of course such models were considered for probabilistic

18



Introduction § L4.1

rather than deterministic purposes. The first explicit self-similar cascade models were by
Novikov & Stewart (1964) and Yaglom (1966). Whereas the latter was manifestly
interested in the lognormality of the distribution of intermittency, by making use of
Kolmogorov's third hypothesis (the “log-normal model™), the former were concerned with
the patchiness in a literal sense as their model contained patches which either contained
energy or were entirely devoid of it (the “black-and-white model™). As such this was quite
an extreme departure from being realistic in the sense of being able to generate fields which

had the appearance of an actual turbulent field.

It should be noted that intermittency can occur as the result of simple repeated scaling
operations applied to geometrical shapes in two dimensions eg., Von Koch curves (Von
Koch 1906). or one dimension as in the Cantor set (Cantor 1883). The latter, long known
by mathematicians as a sort of pathological construction thanks to its harsh intermittency.
forms what is known as a Cantor dust when carried through to infinitely small scales.
Hence. as intermittency is observed in nature, it would seem that there is reason to pursue
models of turbulence based on this sort of construction. Mandelbrot’s (1967) historic
paper introduced the usefulness of the concept of fractals!, (loosely) complicated
geometrical objects of fractional dimension, as pertaining to the question “How long is the
coast of Britain?" Although there are various different ways of defining what a fractal is,
here it is sufficient to adopt the (still rather woolly) definition that a fractal is a complicated
shape (set of geometric objects) whose effective dimension is greater than the topological
dimension of the basic material it is constructed from eg., dots. lines etc. Note that this
definition is consistent with the idea that a fractal is not space filling ie.. that it has a

tractional dimension less than that of the embedding space.

As an example of a fractal consider the triadic Cantor set shown in tigure .6 which is
shown in various stages of construction (going down the page). It is made trom a one-
dimensional bar which is repeatedly split into two smaller parts. then two into tour etc.. it
is self-similar. In the limit of an infinite number of such operations it is a set of points
which (individually) have a topological dimension of zero separated by gaps of all (only at

discrete intervals) length scales. Notice that this particular set is not space filling: the
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intermittency which is seen in the Cantor set is a characteristic of fractals which are not

space-filling.

The effective dimension of this construction may be given. tor example, by the simple
“box-counting method” (eg.. Meakin 1998). The box-counting dimension for a fractal
lying in « -dimensional space is defined as
NI
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where N(/) is the number of non-empty, « -dimensional hypercubes filling the space. each
of side /. Though in practice the limit / — O is not taken: the ratio (L.8) is evaluated at a
number of different scales for which N(/) is very large. For the triadic Cantor bar. at the
nth level down, /=(1/3)" and N(/)=2" which gives a box-counting dimension
(independent of n) of D, =log2/log3=0.631. This exceeds the topological dimension
and. by the loose definition adopted above. is the fractal dimension of the triadic Cantor

bar.

Fig. 1.6: Triadic Cantor bar constructed by successively removing the middle third
from each black bar (going down the page). Here the height of each bar,
representing intensity, is such that the sum total area of the bars across any
horizontal level is a constant; the area is conserved. Note that there is aiso an
increase in intensity, accompanied by a decrease in the width of the bars,
demaonstrating the increasing intermittency of the system going towards smaller

scales (fig. from Feder 1988).
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Equation (I.8) may be rewritten by defining the quantity A = 1// (commonly called the
“scale” or “resolution™) to give N(I/1)=A". So the probability that a hypercube of scale

A is not empty is

N/ A)

— — 3Dp=d
P, = — = A
P =1 (1.0}
A \ /

where the quantity ¢ =d — D, is called the “codimension.” If a fractal energy cascade is
considered to be a model for turbulence then the effect of a non-zero codimension is to
make the scaling exponent for fully-developed turbulence 4 =4 (1 -c¢). (This result may be
demonstrated by dimensional analysis considerations eg.. Frisch (1995) pp. 138-139. the
details of which are not of importance here.) Furthermore this can be shown to imply that
the structure function exponent {(g)=4g+c(l-4q). This result is an example of
anomalous scaling with a linear term in g which results from the non-space-filling

properties of a fractal field.

The black-and-white model, rather like a random version of the Cantor bar. produced
an intermittency which was not space-filling; it is fractal. Mandelbrot (1974) made a
detailed study of the log-normai and black-and-white models arriving at a very general
multiplicative cascade scheme which he calls “curdling™ and which can be either space-
filling or not!3, see figure [.7. (When space filling he called this the “weighted-curdling
model. " otherwise the “absolute-curdling model.”) Related to the black-and-white model
Frisch. Sulem & Nelkin (1978) produced a very similar model. intended as a “toy model.’
called the * f-model™ (see figure 1.8). This model in particular has a codimension of
¢ =1-log, B which is dependent on the choice of the pameter B (!*): it too is fractal. But
during the period 1982-1983 it became increasingly more obvious that experimental data
were not showing the linear dependency (anomalous scaling) of fractal models of
turbulence. This prompted the search for other models that could account for this

behaviour!3.
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Fig. 1.7: Schematic diagram to illustrate the prototypical random multiplicative
cascade model in two dimensions. The cascade proceeds from the largest scale L,
where the ‘eddy’ fills the entire space, to the smallest scale L/ig in n steps; the
scale ratio between successive steps is A, . At each step the quantity € is

- multiplied by an independent random quantity which may have zero values. This
model may be space-filling or not and is the basis for all the discrete cascade
models discussed in this section; the only fundamental difference between them
being the choice of random multipiicative factor. (Fig. reproduced from Schertzer
& Lovejoy (1997) with minor modifications.)

[0
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Fig. 1.8: A simulation from the [B-model in 2-D where the black squares represent
“alive" energetic turbulent eddies. At each cascade step every square is divided
into four smaller ones and in this case the fraction of squares which are kept alive is
3 =277<0.871; here there are nine such cascade steps. It can be shown that for
the f-model D, =2 +log, B which gives D, =1.8. (Fig. from Schertzer & Lovejoy
1996)

1.4.2 Multiscaling and multifractal modeils

By considering the characterization of strange attractors by their (fractal) dimension.
something which up until that point had been limited to only three truly different
dimensions!6. Hentschel & Procaccia (1983) showed that strange attractors are in fact
characterized by an infinite number of generalized (fractal) dimensions. At about the same
time the idea that intermittency in fully developed turbulence may be characterised by many
(or a hierarchy of) fractal dimensions can be tound in Schertzer & Lovejoy (1984) and
Parisi & Frisch (1985). In the latter Parisi & Frisch coined the term « multifractal » (m.f.
for short) with its obvious meaning. They state the fact that the Navier-Stokes equation is
invariant under scaling transformations for any value of the scaling exponent /1: /1 need
not remain fixed. This “multiscaling™ implies that the codimension is no longer a constant.
What this means in practice tor a (1-D) field viewed at a resolution A can be seen in figure
[.9. In this figure two exceedence levels are shown which define the set of boxes where
the field &, (x) (rote that the field is no longer black or white but can take any real positive

value) is greater than a certain threshold. These sets of boxes can have fractal dimensions
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. different from each other thereby allowing the codimension for a field of this type to be

many-valued. Thus equation (I.9) may be generalised to

Pr(g, 2 A7) = A" (1.10)

(Pr means ‘the probability that...") where 7y is the “order of singularity” and the

codimenston is now a function of 7.

This idea expressed by Parisi & Frisch (1985) permits anomalous scaling with non-
linear terms in ¢. but as an idea it was without any suggestion as to how to generate such a
field. They express the desirability of finding by experiment the departure of {(q) from
linearity and also the importance of showing universality in its form ie., that it should be
independent of initial conditions and all other parameters which should be irrelevant in fully
developed turbulence. It may be added to these points that there is also the unspoken hope
that the tunction {tq) will itself not depend on an infinite number of parameters to specity

it.

E_Ll

- e X
L/A

Fig. 1.9: A 1-D field seen at a resolution A with two sets (of line sections) defined by

the exceedence levels A and A”*; in general the sets may have different fractal
dimensions making it a multifractal field. (Fig. reproduced from Schertzer &

Lovejoy (1996) with minor modifications.)

Schertzer & Lovejoy (1984) describe the practical, though still pedagogical.
“a-model” (actually more clearly elucidated in Schertzer & Lovejoy (1985)) which is a
. simple enhancement of the f-model. In this weighted curdling, or space-tilling, model the
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eddies are either increased or decreased (are multiplied by - >1 or A”- <1, respectively,
as determined by the choice of the two parameters) at each cascade step by a random choice

thus

Pr(increase, A’-)=f

Pr(decrease, A" )=1-

where conservation of the overall mean of the field implies that A +(1- A" =1. In
this way the field generated after many cascade steps may have many different possible
values resulting from the random combination of increases and decreases ie., of “mixed
orders of singularity,” allowing for the possibility of a hierarchy of codimensions. But the
universal form tor the codimension function (or equivalently the structure function

exponent) was not known then.

Later. in Schertzer & Lovejoy (1987). they derive a universal form!7 for the
codimension function which is dependent on just two parameters. ¢« and C, (the

*codimension of the mean™),

c(y)= C‘(a:/q +El‘-) (for a=1)
where %+ 24 =1 (and this ¢ bears no relationship to the & of the «-model). Their model.
the “continuous cascade model.” is based on the use of exponentiated Lévy!3 random
variables (r.v. for short) which have the property of stability under multiplication (to be
described in detail in chapter II). As applied to turbulence the codimension may be
converted using a Legendre transform (Parisi & Frisch 1985) to a structure tunction

exponent and in this case the universal form becomes
P Cl a \
{@=4q-—=(39 -4q) (L1D)

A number of other cascade models have also been proposed by various researchers which
have different properties: a few of the major models still competing for attention in the
current literature are the “random fB-model” (Benzi et al. 1984), the * p-model” (Meneveau

& Sreenivasan 1987) and the “She-Leveque model™!? (She & Leveque 1994). For a
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comparison of the predicted {(q) functions for various models with data see Anselmet
(1984), Leveque & She (1997) and Schertzer et al. (1997).

Fig. 1.10: Paut P. Lévy (picture from Q'Connor & Robertson 1999)

But these cascade models were designed more with statistics in mind than the
production of life-like representations of naturally occurring events; a visualization of the
generated field to be compared with a recording of the natural one is not usually provided.
Apart from arguments based on fundamental points of the theorv their testing ground is
simply the form of {(q). But that does not mean that simulation is not possible, especially
since these models do produce an actual field as opposed to just some statistical quantities.
The continuous cascade model is a good example of a model that has been used to simulate
a wide variety of geophysical fields. Nevertheless it should be noted that the applicability
of these models to any ‘random’ data or field has been restricted to the simplest possible
case, namely to fields of positive valued quantities only, such as the energy flux or absolute
value of velocity increments for which they were originally developed. This puts these
models at a strong disadvantage when compared with direct numerical simulation (DNS) of

the Navier-Stokes equation for a (two or) three dimensional velocity field.
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[.5 A More Realistic Model

An interesting innovation can be found in Ott et al. (1992) when they apply the idea of
signed measures to multifractals. The result is the so-called “cancellation exponent” which,
if greater than zero, indicates an oscillation in sign at arbitrarily small scales. This notion is
later taken up by Vainshtein & Sreenivasan (1994) in a theory of the oscillation in sign of
the velocity field in fully developed turbulence. Yet despite this work there is not yet a
model (1n the sense that 1t may simulate an "observable’ tield) of turbulence based on this

idea. Furthermore it is still limited to scalar quantities.

Another ‘extension’ which is similar, in that it deals with a mathematical idea of
multifractals rather than create an explicit model. is tound in Riedi & Scheuring (1997).
They note that in nature there are usually related components (variables) of a system whose
interaction with each other is of great interest. Their “conditional multifractal spectrum”
provides information about the relation between two distributions and goes bevond a simple
correlation in that it involves moments of all orders. But this may find its usefulness in

analysis rather than simulation.

Of a more dynamic nature, yet quite different to the models discussed so tar, are the
so-called shell models. Almost as if governed by the Navier-Stokes equation these model
the time evolution of the *generalized velocity™ at discrete, geometrically spaced intervals
(cells) in scale. As such they ultimately can only provide a statistical result for the energy
and enstrophy of the turbulence they model. One of the first shell models. by Gledzer
(1973). in two dimensions has been extended to three dimensions by Yamada & Ohkitani
(1987) by introducing a complex quantity for the generalized velocity (called the *"GOY
shell model”). They tound that their model exhibits good power law scaling which follows
the Kolmogorov-Oboukhov five-thirds law. But as a model with only a single cell at each
resolution. hence named one-path, it clearly departs significantly from being totally

realistic.

Unlike the traditional shell models there is the “scaling gyroscopes cascade™ (SGC)
model of Chigirinskaya & Schertzer (1996). This deterministic shell model simulates the

time evolution of the velocity vector and vorticity field in a ‘tree structure’ where the
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number of model cells increases with the inverse of the scale. It has been run to simulate
very large Reynolds number (= 6x10") turbulence in both two and three dimensional
configurations and was found to produce power spectrum scaling in close agreement with
the Kolmogorov-Obukhouv result (see Schertzer et al. (1997) tor these results) suggesting
that it provides a reasonable model of the Navier-Stokes equation. The significant
advantage of this model is that it contains an appropriate number of cells at the highest
resolution and a velocity vector in each of these. This already provides a great deal more
information about the system than the much more limited one-path shell models of
generalized velocity. However the connection between cells in “scale space” and real space

has not vet been specified.

Motivated to go beyond scalar cascade modeling, Schertzer & Lovejoy (1993) have
developed a general framework called “Lie cascades™ which describes a multiplicative
process for vectorial (and tensorial) fields??. The components of the vector represent the
various variables of the system (also called “state variables™) and are a natural way of
providing a mathematical basis for multiplicative cascades which permit non-trivial
interactions between these variables. The applicability of such an idea is not just limited to
a turbulent velocity (vector) field. which is the most obvious example; any coupled
processes may possibly be described by such a framework. As a concrete example they
define an explicit cascade model for a field of two real variables which is called the
“complex cascade model.” By treating the azimuthai and radial components of the vector
state as two independent universal multifractals they achieve a non-trivial mixing of the
Cartesian components which represent the system. Note that now the state variables may
take any real value, positive or negative. Hence this model is the most advanced in terms of

providing a general model applicable to actual data.

1.6 Scope of the Thesis

Although the discussion so far has deliberately been kept narrowly focused on
turbulence it is a fact that the ideas of scaling, or self-similarity. crop up in seemingly every
field of science: the literature on this subject is already vast. Furthermore the applicability

of the universal multifractal form (Schertzer & Lovejoy 1987) has been veritied in many
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different geophysical and other scaling fields (see Lovejoy & Schertzer (1995) for a
review). It has been the aim in chapter [ to provide a solid historical background for this
model and some of the work by various researchers which point to its broad applicability.
Having already done this the main subject of the thesis will not be to show the analysis of
recorded data and comparison with the model. Rather the objective of this work is to
clearly explain the model itself. to investigate how this knowledge may be used to simulate
and analvse data, and how to overcome some of the difficulties in the latter. [n § .5 there
1s a brief review of extensions to the ancestor scalar models which leads to the more general

Lie cascades.

Chapter II concerns itself with the details of the discrete universal multitractal
cascade. The building material from which both the scalar and complex cascades are made
is the Lévy r.v. whose properties are described in § I1.2.3. Some examples of simulation
are produced (§ [1.4.1) and there is a brief discussion on the various analysis techniques
available to the researcher (§ I1.3). Of these just two are chosen for investigation in the
subsequent § [1.4.2. The attention to detail and care taken in producing the theory and
results is necessary so that the work on complex cascades in chapter III may progress
without any concern over elementary problems which would otherwise have arisen. This is
the prerequisite to developing and testing the complex cascade analysis and simulation

techniques of the following chapter.

Chapter III is very similar in structure to chapter II except that it deals with the
complex cascade model (as already mentioned in § I.5). The rationale for choosing this
model is that it is the most simple generalization of the well-understood scalar cascade
which produces multivariate processes. The theoretical work of this chapter (§ [1I.2)
closely follows the work of Schertzer & Lovejoy (1995). It shows in detail how the results
have been derived, and in doing so some minor difficulties in the original work are
eliminated. Following the explanation of the theory some simulations are produced in
§ III.3 and possible analysis techniques are described (§ IIL4). including a new method
called the “adjacent data points” (ADP) method (§ [I1.4.3). Having done so it is desirable
to test these analysis methods on the simulations, and this is done in § I11.5-6. It is found

that the less trivial nature of the model leads to some complications (which are demonstrated
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both theoretically and empirically) but the new analysis method is found to be an
improvement over the conventional one. Some comments on the remaining difficulties of

analysing recorded data are made in § III.7 (no analyses of recorded data are presented).

[t was found to be well beyond the scope of this work to venture beyond complex
cascades despite the lure of thrilling new discoveries. Indeed very little progress has been
made towards establishing useful multivariate. universal multifractal models. Since (m.f)
universality is dependent on (r.v.) stability it is relevant to point out that in his foreword,
written in 1981, Zolotarev (1983) states I hope that the systematic exposition of the
analytic properties of one-dimensional stable laws will stimulate analogous investigations
for multidimensional stable laws, of whose properties very little is known to us.” Still very

little is known to us today.
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® Chapter | Notes

I (The numbered footnotes in this chapter reference superfluous material which may be
found here.) For more information on the hieratic city state the interested reader may
consult eg., Campbell (1960), pp. 144-150.

Mikolaj Kopernik (a.k.a. Nicolaus Copernicus): b. Torun. Poland 19 February 1473;
d. Frombork, Poland 24 May 1543

3 Ina lecture delivered before the International Congress of Mathematicians in Paris in

(9]

1900 Hilbert spoke of his belief that there was no limit to the discoveries which could
be achieved in mathematics: “This conviction of the solvability of every mathematical
problem is a powerful incentive to the worker. We hear within us the perpetual call:
There is the problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus. ” Hilbert (1900)

4 For a review on the nature of atmospheric turbulence and measurements thereof see
Wyngaard (1991). or for a broad review of oceanic turbulence see Gargett (1989).

5 See eg.. Lugt (1983) § 1.3 for some reproductions from Leonardo's work and

. discussion.

6  On the importance of Euler’s findings in fluid dynamics Lagrange wrote “By this
discovery, the entire mechanics of fluids was reduced to a single point of analysis, and
if the equations which include it were integrable, one could determine completely the
circumstances of motion and of action of a fluid moved by any forces. Unfortunately,
they are so rebellious that up to the present time only a few very limited cases have
been worked out.” quoted in Truesdell (1968) p. 123

7  Andrei Nikolaevich Kolmogorov (walking in the Caucasus mountains): b. Tambov,
Russia 25 April 1903; d. Moscow, Russia 20 October 1987

8 The exact third order longitudinal velocity structure function has been derived in
Kolmogorov (194 1b) giving C,; =4/5 and is consequently known as the “four-fifths
law.” For a full mathematical account and an appraisal of Kolmogorov's 1941
turbulence theories see eg., Frisch (1993) ch. 6.

9 A fuller review may be found in Sreenivasan & Antonia (1997) § 3.3.1.

10 For a review covering the basic issues mentioned in this section the reader is directed

. to the excellent review by Sreenivasan & Antonia (1997).
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Il Lewis Fry Richardson: b. Newcastle-upon-Tyne, England 11 October 1881; d.
Kilmun, Scotland 30 September 1953

12 For a review on the application of fractals to turbulent phenomena see Sreenivasan
(1991).

13 An interesting hybrid consisting of a multifractal on a fractal support may be found in
Desaulniers-Soucy & [uoras (1999).

14 NB that this f3 is not the same as the f used for rthe <pectral slope (§ 11.4.2) ar rhe
skewness parameter (§ I1.2.3); these are three very different §°s.

[5 It should be noted that of the models existing up to this point in time the log-normal
model was the only one which produced a non-linear behaviour in the structure
function exponent. However this model has various theoretical shortcomings and is
not a serious contender in the literature, see eg., Frisch (1995) pp. 171-173.

16 namely the “similarity dimension.” the "information dimension™ and the “correlation
dimension™

17 For areview on universality classes and issues see Schertzer et al. (1997).

[8 Paul Pierre Lévy: b. Paris, France 15 September 1886: d. Paris. France 15 December
1971

19 although also called the “log-Poisson™ model

20 A more refined mathematical result (on the statistics of the process) is being written in
Schertzer & Lovejoy (1999) which makes the rather abstract. general theory more

pragmatic.
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[l Scalar Universal Multifractals
[1.1 Introduction

In § L.4.1 it was described how a phenomenological model which can concentrate the
activity into successively smaller scales is required to provide a degree of realism in models
of turbulence. The (conserved) quantity being modeled is the energy flux passing from
larger to smaiier scales. The muitipiicative cascade modeil was discussed and a universal
form for the statistical properties. due to Schertzer & Lovejoy (1987), was introduced.
Here the physical quantity being modeled is not a concern as the applicability of such
models to many geophysical and other scaling processes has been demonstrated by others
(see eg.. Lovejoy & Schertzer 1995). The fundamental structure of the model itself is the

subject of this chapter.

[n § [1.2.1 the second characteristic function. which is the basic mathematical
quantity used to deal with r.v.s, is related to the (more physical) codimension tunction.
The critical order moment above which the characteristic function exhibits “‘divergence of
moments” is also determined in §§ [1.2.1-2 This is an important effect which limits the
usefulness of data analysis techniques. In §§ I1.2.3-4 the theoretical properties of Lévy
random variables are described as well as the basic discrete universal m.f. (DCUM)
simulation method. It is important to know the properties, both mathematically and
empirically (on a plot), of Lévy r.v.s to gain a feeling for the problems which are
encountered later on in chapter [II. In § II.3 some results are presented on the universal
m.f. forms for the codimension and second characteristic functions and the more common
analysis techniques which are available for analysing (m.f.) data fields. The focus in

chapter HI will be on only two of these techniques.

Finally in § II.4 the Lévy r.v.s themselves are displayed and analysed (as a test of the
integrity of the software as well as for edification) as well as the DCUM simulations. The
discrete nature of the cascade process used to simulate the m.f. tield will become evident,
as well as some of the finer limitations of the software. Thus having covered in some detail
the basic r.v.s used as the generator and the method used to generate a DCUM field, as well

as for its analysis, it will (later) be possible to go confidently into a discussion on complex
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. cascades in chapter III. (It should be noted that the material on Lévy r.v.s and
multifractals, all the material in this chapter, is well described in such books as Feller
(1966), Zolotarev (1983), Samorodnitsky & Taqqu (1994), Janicki & Weron (1994) on the

former and Schertzer & Lovejoy (1996) on the latter.)

[I.2 Basic Theory

i1.2.1 ¢(y), K(q) and gs

The most simple form of cascade model has discrete cascade steps as in Mandelbrot's
(1974) weighted curdling model (§ [.4.1). [t may be considered in general such that at
each step there is a change in scale by a factor of A,. Consider a field of energy flux
occupying a volume of size L' in d-dimensional space. Then at a scale [, = L/A} the
corresponding energyv flux & may be constructed by taking the product
€,(x,)=UE,(x,).€,_,(x,). This process. starting from the lowest resolution. is repeated as
many times as is necessary to reach the desired resolution. (See eg.. tigure .7 in 2

. dimensions where A,=2.)

The random multiplier ug, is an independent realisation of a random variable, one
realisation tor each individual step in the cascade. Its probability distribution is dependent
on the details of the particular model. and may be described by its second characteristic
function K(q) (described later in § I[.2.3) as in the expression (,us*) = Ay, Since each
step in the cascade is independent of the others then. at the resolution A =47,

(ei) = (ys" )” . The important result is that for a selt-similar multiplicative cascade
<£z> = Athlr'

For 4 normalised cascade K(1) =0 at all resolutions.

The field at a given point in the cascade, and at a given resolution. may be

characterised by the order of singularity 7, given by

— A7
g =A.
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A useful characterisation of the field is the codimension. c(y). which comes from the
probability of exceedence Pr(g; > A)=N/A =1 (eqn. 1.9). If the codimension
function for a given field is known then it is possible to estimate the largest observed
singularity. ¥, given N; samples of the field. It may be expected that N A‘A™" ~ | and

hence ¢(y;) = d + D,, where the “sampling dimension” is defined as D; = log, N,/log, A.

In fact the codimension and the second characteristic function can be related by use of

the Legendre transform (eg., Schertzer & Lovejoy (1995) pp. 53-57) giving

K(g) = max{qy —c(r)}- (IL1)

Thus the singularity y, corresponds to the moment

g =39 (IL.2)
dy Y,

A limitation which exists when evaluating the statistics of a field is that the largest
singularity present will dorninate the characteristic function for the large order moments.
The result is a linear K(q) function for g-order moments greater than a critical value q,.
(A similar limitation exists at the negative end of the distribution tunction as well.) This
sort of effect, where the evaluated function diverges trom the ideal, has been called a
“phase transition.” because of its similarity to the change in behaviour seen in

thermodynamic quantities, or “divergence of moments.”

[1.2.2 Universality and stability

In general for a multifractal field the codimension function, or second characteristic
function, can itselt only be characterised by an infinity of parameters. However the idea
that only several parameters will be relevant in a given process is usually very reasonable.
Hence the notion that repeated iterations of a process with itself will converge towards a
limit, and that by starting with somewhat ditferent processes the same limit will also be
reached (a stable attractor). For example, for a long time there has been the tacit
assumption that multiplicative processes tend towards a lognormal distribution as an

attractor. This convergence to a stable attractor is called universality.
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. It is more natural to work with the generators (a term taken from group theory) of the
multiplicative process where universality implies that there will be stability of these
exponents under addition (since multiplication results in the addition of exponents). The

generator is written

I'=log,¢g,.

Stability under addition has long been known in the form of the central limit theorem
(giving rise to a normal distribution) and more generally in the form of the Lévy stable
distribution. Therefore the use of a Lévy random variable as the generator will be

investigated.

11.2.3 Lévy random variables

The random variable x is said to be “stable™ (under addition) if it satisfies the

condition

n J
. Z.r‘ =a,x, +b, where in fact ¢, =n*® and 0 < < 2.

=]

d
(= indicates equality in distribution.} Such a stable r.v.. or "Lévy random variable.” is

characterized by just four parameters and (in the notation of Samorodnitsky & Taqqu

(1994) or just S&T for short) is written

x~S, (c.8.u)

where ¢ is called the “Lévy index.” ¢ the “scale parameter,” B the “skewness parameter™
(-1<B<1) and u is the “shift parameter.” (When a =2 the resulting distribution is
always symmetric about its mean and the skewness parameter loses its relevance: it is the
Gaussian or “normal” distribution.) When [ < ¢ <2 the shift parameter is also the mean.
In the discussion below the mathematically special case when ¢ =1 is omitted because it

turns out that those distributions will not be used in this thesis.

' * NB that this f is not the same as the 3 of the S-model (§ [.4.1) or the spectral slope
(§ I1.4.2)
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The (Fourier) characteristic function of the random variable x is defined as

(e“"‘) = je"‘“p(x)d.r, for any real q,
where p(x) is the probability density function (p.d.f.) of x and the angle brackets, ( ),
denote an integral over probability space. The second characteristic function is the
logarithm of the characteristic function and for a Lévy r.v. is complex in general. It is

given by

log, <e"’"> =-0“ |q|a(1 —ifi(signg)tan ]:—a) +ilg (11.3)

where signq = *1 depending on the sign of ¢. This expression is only valid for ¢ # 1.
But this is not the most practical quantity to work with: there is also the Laplace

characteristic function forreal ¢ 2 0,
z(q) = <ed.r> ,

and its logarithm which is the Laplace second characteristic function. This integral only
converges if f=-1. Since a multifractal field with a converging K(q) is required the
Lévy r.v. to use in a cascade model must have 8 =-1. The distributions with this value of

skewness parameter are called “totally skewed left™ or “extremal.”

The corresponding Laplace second characteristic function when f =-1 is given by

K(q) = log.Z(q) = ——~I— + g for g20and @ #1. (IL4)

cos(E)

The normalisation that would be required for a “conservative™ (the mean value of the field is
the same at all scales) cascade can be achieved simply by setting u such that K(1)=0.
The Laplace second characteristic function will often be called the “'second characteristic
function” or just K(q) for short. The second characteristic function corresponds to the

moment scaling function (as will be defined in § II.3) evaluated at a particular resolution.
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The parameterisation which was used in equation (IL.4) is an arbitrary choice; it may
be changed to give the two forms of K(g) (for B =-1, £ =0 and a = 1) which are used
in this thesis:

C «
K(g)=——¢

oa-1" .

a

=cq

In some places it will be more convenient to work with the second of these two torms as
the basic building block of the theory. The relationship between the two parameterisations

is simply C, =c(a-1).

il.2.4 The discrete cascade universal m.f. (DCUM)

The universal multifractal result (Schertzer & Lovejoy 1987). based on the
consideration of a continuous cascade model utilising Lévy r.v.s. is that tor an universal

multifractal field
c(y):Cl(f-:';,—.-i--J;)a' when a # 1. (IL.5)

and by Legendre transform this gives
K(q) = 25(q" —q) for a #1. (I1.6)

where l/a’=1-1/a. The physical significance of the parameter C, is that for a
multifractal field it is the codimension of the mean. This may be seen by considering
equation (IL.1) for the mean K(1)=0; the singularity corresponding to the mean of the
process 7, is obtained by solving ¥, = ¢(y,) to give 7, = C,. The importance of C| is that
for a multifractal with C, > d (the dimension of the embedding space) the mean will not

converge and the multifractal will be very sparse.

Using eqn. (I1.2) equation (II.5) for the codimension function implies that for an
universal multifractal g, is expected to be

1

~ (d+D )=
q.i C-l *
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An universal multifractal field may be simulated by a discrete cascade using Lévy
random variables. Starting with the Lévy r.v. x. such that (e""> =¢“", the generator
¢ =uy' 'x - c may be formed as a building block. The cascade is then produced by
raising 4, =¢" to { powers, an independent realisation each time, and using these
numbers as the multiplicative factors for each cascade step. For simplicity, when
generating the cascade by computer, each cascade step is chosen to be over a factor of two
ie.. A, =2. Hence after n cascade steps the field has reached a resolution of A =2". The

resulting characteristic function of the field is given by

gty Aty =)
<er1 1">=e ]

—g—tq"-q)
= }Jl-l
which is the same as the universal multitractal result (as in equation [1.6). Note that the
mean value of the tield is equal to one at all scales: it is a normalised conservative process.
Therefore this model produces a normalised. conservative. universal m.f. field with

parameters o & C,.

The cascade model which has just been described actually works with a rather
artificial discrete, branching structure in the cascade. It may be expected that this will
introduce some artificiality into the resulting simulations. (In fact the evidence of this will
be seen in § [1.4.2.) Despite this evaluating the statistics at the same discrete resolutions
from which the cascade was constructed. which is the usual practice. will still yield the
exact result just derived. Hence such a field will be called a discrete universal m.f.

(DCUM) field and may be used without serious concern tor this theoretical impertection.

[1.3 Data Analysis Techniques

Before embarking on simulation and analysis some important results are collected
together in this section to provide a more complete picture of scalar cascades from the point

of view of data analysis.

So far the discussion on multipiicative cascades has been kept to conservative

processes for simplicity, that is processes for which the mean value of the field does not
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change in value with scale. In general a cascade process will be non-conservative and this
may simply be expressed by introducing an additional scaling parameter H, the “degree of

non-conservation,” such that
\_ 2l
(“:A) =i

The corresponding spectral slope (defined in equation I1.9) tor a non-conservative tield (in
1-D) is given by 8 =1+2H - K(2). Hence a field for which H >0 contains relatively little
"'power’ at the small scales (compared with the large scales) and this makes it more difficult
to analyse. Lavallée (1991) has found empirically that fractional ditferentiation of the field
(power law filtering) to compensate for the degree of non-conservation can correct tor this

effect such that the multifractal parameters of the process may still be accurately recovered.

Furthermore the special case =1 has been neglected. The complete and general

universal torms for the codimension and second charucteristic functions are:
azl =1

. . 1 « / 7 \
c(’/"H)=C|(E%;+EJ C(‘/—H)=C[eXPLF—IJ
t !

K(q)=qH +C qlog (q) (IL.7)

. C L,
K(q) = qgH +——(¢° - q)
a-1

The data is usually recorded at a single resolution. The second characteristic function,
much used by mathematicians. may be evaluated on the normalised data directly as a simple
way of characterising the statistics. A curve fit on the graph ot K(q) gives the parameters
a & C,. The one drawback is that it does not provide any information about the structure

(the relationship between points in space) of a field.

The moment scaling function K'(q) is a general form of the second characteristic

function. as defined in the expression
Zig) =(el) = A, (IL83)

which is evaluated on data whose resolution has artificially been reduced (degraded) in

some way. The most simple way to reduce the resolution is by “dressing™ (averaging by

40



Scalar Universal Multifractals . §I1.3

. spatial integration) the data which takes advantage of its self-similar properties. The
resulting data is denoted “dressed” in contrast to the actual data which is called “bare.”
When dressed data is analysed this is called the “trace moments”™ analysis method (Schertzer
& Lovejoy 1987). It has been shown that the resulting moment scaling function for the
dressed data is identical to that for the bare data except that there is a statistical divergence,
or phase transition, for moments exceeding a critical order ¢,. The value of g, may be

estimated by solving the transcendental equation

— K(qp)

qp—1

d

where d is the dimension of embedding space. Since the trace moments method uses
averaging it cannot recover the value of A from the field. The spectral slope must be used

for that purpose.

The trace moments analysis method has been improved upon in the “double trace

moments” (DTM) analysis method (Lavallée 1991). Like trace moments the analysis is

‘ performed on dressed data except here the data at the highest resolution is raised to an n
power first, then normalised. and then dressed to the desired resolution prior to analysing

the gth power. The resulting moment scaling tfunction is a function of both powers (on the

LHS) and is given by the simple expression
K(q.m=n"K(q).

As with trace moments this analysis does not recover H because it relies on averaging to
change the analysis scale. Its advantage over trace moments is that the field may be raised

to an arbitrary power without affecting the recovery of «.

Perhaps the most simple and the closest to the original ideas of multifractality is the
“probability distribution/multiple scaling”™ (PDMS) technique (eg.. Seed 1989). This
method involves simply evaluating the codimension function for the dressed data as a
function of ¥ at various resolutions according to equation (I.10). A curve fit may be
performed on the resulting graph of ¢(y) to find the universal m.f. parameters as per

. equations (IL.7). The difficulty with implementing this analysis is that the values of the
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. codimension obtained for different values of A are quite sensitive to the normalisation of

the data set. For this reason this technique is not used if it can be avoided.

Another method which originates from the work motivated by turbulence is to use
structure functions (§ [.3.2). Note that this method is not limited just to velocity
increments; the structure function exponent {(g) may be defined in general for a field g,

by the equation

<

The general expression for the universal form in terms of the structure function exponent

g (x+L/A)- 5;(-\’)|"> o XY,

was given in equation (L. 11), but more generally it may be written
S(q)y=qH - K(q)

where the dependence on A has been made explicit (the K(q) here has no H term like
eqn. I1.6). Using structure functions has the advantage that the differences of data points
. are used thereby removing the arbitrary *d.c. component’, or offset. in the data. Also the
H parameter is recovered by this technique as dressing is not used. The disadvantage ot
this technique is that the theoretical connection between {(¢) and K(q) is not trivial and

still requires some clarification.

The structure functions method, PDMS and the DTM methods will not be used tor
analysis in this thesis because of their less trivial mathematical connection with the discrete
cascade when compared with the simple second characteristic function and trace moments

methods.

1.4 Lévy r.v.s and DCUM simulation and analysis

1.4.1 Lévy r.v. simulation and analysis

In this section some of the numerical and practical considerations of generating Lévy
r.v.s are discussed. Only totally skewed left r.v.s with u=0 are considered. The
‘ parameter values o = 1.5 and C,=0.05 are chosen as being typical of the values recovered

from the analysis of geophysical data. For this choice g,>100 for a l-dimensional
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multifractal field which indicates that no inherent limitation is expected in the recovered
statistics from the dressed data (for the more modest order moments of g<10 which are

used in this section).

Computer simulation of Lévy r.v.’s is easy to perform by taking a combination of
two uniform distributions on (0,1) according to the equation developed in Chambers.
Mallows & Stuck (1976). S&T conveniently provide a FORTRAN routine (pp. 46-49) for
doing this. The routine was rewritten in C and the two mistakes in the coefficients were
corrected before use. The random number generator which was chosen is the popular
"'RAN3’ pseudorandom number generator of Press et al.’s (1988) ‘Numerical Recipes.” It
was used with a slight modification to give numbers distributed on (0, 1) (rather than [0,1]).
(Note that all the computer programs used in this thesis were written in C at double-
precision for simulation and analysis with the one exception of the power spectrum
calculations which were performed in single-precision downgraded from double-precision.
The fundamental simulation routines for Lévy r.v.s, scalar and complex DCUM fields can

be found in the appendix.)

The result of a sample simulation of a Lévy r.v. with o = 1.5 and C;=0.05 is shown
in figure IL.1, on the left, (the first 512 values) with a plot of the second characteristic
function as tound from the data on the right (statistics points, theory line). The simulation
was 2'°=65536 data points long. The curve fit for all ¢ gives a=1.504 and C,=0.0509.
There is excellent agreement with the theory for the second characteristic function up to
g=4. with marked deviation above ¢=8. For this single realisation the calculated value ot

q,=7.4.

It is better to view the second characteristic function on a log-log plot. as in figure [1.2
(statistics points, theory line). The plot below has been evaluated on 2'® data points. The
straight line fit (over the range ¢=0.1 to 10) in the log-log plot gives o=1.487

and C,=0.0502. The agreement with theory looks good over the range ¢=0.5 to 0.

It can be seen in figure 1.2 that the statistics determined from the computer simulation

deviate from tollowing the straight line expected value. This is most noticeable at the
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Figure 1l.1: 65536 independent realisations of a Lévy r.v. with ¢ =1.5 and (;=0.05
(left, part shown only) and its second characteristic function (right) as points with the

theory line.
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Figure 11.2: Log-log plot of the second characteristic function in figure 11.1.

small-g end of the graph, although this is seen at both large and small ¢q. A deviation
leading down and away from the straight line is mainly due to the finite sample size being
used, any other deviation, especially a positive one above the line, can be attributed to an

imperfect random number generator and/or small numerical errors in computation.
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The Lévy r.v. itself has a certain probability density function (which has been chosen
centred about zero). Once again with a@=1.5 and C,=0.05 a histogram of the data (2"
points) can be seen in figure II.3. The maximum and minimum values are -140.4 and
0.9717, respectively. The outliers at each end of the distribution (omitting end points) are
-42.86, -31.85, -31.30, -22.26, -18.27 and 0.8261, 0.7963, 0.7715. There are only 41
data points with values less than -5, | with a value less than -50. There are 17 data points

with values greater than 0.7. The mean of the data points is 0.0047 (cf. theory which gives

zero).
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Figure 11.3: Histogram of 2" independent realisations of a Lévy rv. with o =1.5
and (;=0.05.

The probability densities of Lévy r.v.’s are continuous but are not known in a simple
form (except for some special cases). The torm for the rapid decay of the long and short
tails at each end of the density function are (most clearly) given in S&T. Note that it is
these low probability large positive/negative excursions (the positive ones forming
singularities in the cascade) which are very important to the statistics at large/small order
moments. (For a theoretical discussion on the probability density tunctions it is possible to

consult Zolotarev (1983) §§2.4-2.7 for an exhaustive treatment.)

Exponentiating the r.v. (the generator, 1024 data points) gives the field on the left in

figure [1.4 (only first 512 points shown). The data values are uncorrelated with each other
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and hence this field will exhibit a flat power spectrum. The actual power spectrum is
shown on the right; it exhibits the noise (circles) which is typically seen in the statistics of a
single realisation. An average over 1024 realisations (squares) shows a much less noisy

result.

Iog‘ Jav. power)

0 128 256 384 512 0 05 1 15 2 25 3
log, 4(k)

Figure I1.4: Exponentiated Lévy r.v. (left}, 512 data points, and its power spectrum
(right) calculated on 1024 data points—one realisation (circles) and 1024

realisations (squares).

I.4.2 DCUM simulation and analysis

Scaling behaviour in a power spectrum takes the form
S(k) o< k¥ (IL.9)

where [ (*) is the “spectral slope.” In a cascade simulation the spectral slope reflects the
correlations between data points at a given resolution which exist because of the common
ancestry which close data points will have due to the branching structure of the cascade.
For a conservative cascade the spectral slope is given by B =1-K(2) (see eg.. Schertzer &

Lovejoy (1996)) ie., the power spectrum is related to the second order moment statistics of

* NB that this f is not the same as the f of the S-model (§ L4.1) or the skewness

parameter (§ 11.2.3)
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the field. Hence for an universal multitractal field, where K(2) = a—ci-,-(?_" —2), the spectral
slope will be given by

G
a-1

f=1- (2% -2).
[t is worth noting that when C is small 8 will be close to, and slightly smaller than. 1 (for

a conservative cascade).

A DCUM simulation was constructed from scalar Lévy r.v.’s with a=1.5, C;=0.05
with 16 levels giving a tinal resolution of 2'° data points. In figure IL.5 the average power
spectrum calculated for 2" realisations may be seen. Note that the power spectrum data is
averaged in logarithmic bins meaning that random fluctuations in the plot for higher values
of k will be diminished. Clearly defined bumps can be seen in the spectrum (for large &)
corresponding to the binary branching structure of the cascade. The theoretical slope is
superimposed as a straight line over the statistics shown as points. The straight line tit for
values with log,, k22.5 gives a spectral slope of §=0.991 compared to the predicted value
of #=0.917 (B =1-K(2) where K(2)=0.083). The reason for this small discrepancy is

not known.

log, fav. power)

log, (k)
Figure 11.5: Power spectrum of 2' realisations of a DCUM simulation with A=2'"
and =15, (;=0.05.
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The scaling behaviour is also evident in the plots of log,, Z,(g) (as defined in eqn.
(I1.8)) versus log, A evaluated on the dressed data (trace moments technique) for different
values of ¢ (=1, 2, 3, 4, 5 & 6) in figure II.6 (left), and the K(q) curve resulting from a
straight line fit to these plots (shown on the right). (Statistics shown as points and the
theory as lines in both cases.) The fit to the second characteristic function up to a value of
g=6 gives a=1.469 and C,=0.0502. These results are for 1024 realisations of 2'° data
points. The slopes ot the plots of Z;(q) do not look so different to the theoretical slopes.

though the statistics lie much closer to the theoretical line for smaller values of ¢.

log, OZ
K{(q)
(@]
H
T
i

log, ak q
Figure 11.6: Plots of log,, Z;(q) for ¢=1, 2. 3. 4, § & 6 evaluated by trace moments
(left), and K(q) (right) from the straight line fits, evaluated on the same data as fig.
i.5.

The scaling (fig. I1.6) for higher values of g is a little suspect so the same graphs
have been repiotted up to ¢=2 in figure II.7 (scaling graph for ¢=0.5. 1.0. 1.5 & 2.0).
The K(gq) plot now gives the much more convincing fit with values of a=1.496 and
C,=0.0491. The statistics in this plot agree well with the theory over the approximate
range ¢=0.5to 1.5. This demonstrates that for the simulations being used the higher order

moments should be used with some reservation.
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Figure 11.7. Same as fig. 11.6 but with different axes. for ¢=0.5, 1.0, 1.5 & 2.0 (left)

as evaluated by trace moments.

The data at the highest resolution which has been created now looks quite different to
the exponentiated Lévy r.v.. as can be seen in figure IL.8 (first 256 of 1024 data points).

Note that the binary branching nature of the construction process can be seen in the tield.
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Figure 11.8: Simulated field from a DCUM simulation with 1024 data points, 256
shown. The binary branching structure of the cascade can be seen in the data.
A=2" and =15, C,=0.05.
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. I1.4.3 Concluding remarks on the simulations and analyses

The empirical characteristics of a Lévy random variable have been shown in § I1.4.1
In particular the behaviour of the ‘tails’ in the p.d.f. have been described. For simplicity
the simulations considered in § II.4.2 are only for conservative quantities. The discrete
simulation method used produces fields which exhibit distinctive patterns from the binary
branching structure of the cascade. This has not affected the statistics adversely as they
have heen evaluated at the same discrete resnlutions present in the cascade itself. There are
also some small and insignificant discrepancies between the statistics and the theoretical
predictions which are due to the limitations of the software. The analysis of the DCUM
field has shown that what can look like an apparently good line fit to the K(g) function can
be misleading as the parameters recovered in this way may be in error if the higher order
moments are used. Thus it is best to utilise the lower order moments exclusively. All this

knowledge will be of some use in chapter III.
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lll Discrete Complex Cascades

[I1.1 Introduction

Two variables in a field, which interact in some way, may be expected to display a
form of correlated behavicur. The simple scalar, positive-valued models (of only a single
field) in § [.4 are completely unable to describe such a system. Motivated with the desire
to produce non-trivial fields some models were briefly described in § 1.5 which could
simulate the behaviour of natural physical fields more realistically, some of them even being
multivariate. Apart from being capable of producing a field of signed numbers (with both
positive and negative values) a rather general model which may produce a random vector
field was among them ie., the Lie cascades model. (To describe the precise details of this
model would be beyond the scope of this thesis. but the curious reader is directed to
Schertzer & Lovejoy (1995) (to be denoted S&L for short) and Schertzer & Lovejoy (1999)

tor details.)

As a simple and practical example of the Lie cascades model S&L developed the
theory for the “complex cascade™ model (in § 3.2 of their paper) as well as showing the
results of a simulation and some analysis of recorded data. The aim of this chapter is to
make clear the theory behind this model. to show simulations and discuss in some detail the
practical points of data analysis. This work (§ II1.2) will closely follow the theoretical

work in their paper but the simulation and analysis here (§§ [I1.3-6) is original.

S&L make the natural decision to represent two variabies (at a point) as the real and
imaginary parts of (a single) complex number. This conveniently ties the variables together
and potentially allows various mathematical functions, which admit complex operands. to
act in such a way as to mix the components together or keep them independent. as the case
may be. In particular they consider the extension of the scalar random multiplicative
cascade to the complex case by introducing independent r.v.s as the real and imaginary
generators of the process. This is an arbitrary choice which imposes certain restrictions on
the possible ways in which the two variables may be statistically related to each other. The

reason for such a choice is the resulting relative simplicity in the mathematics. The complex
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second characteristic function of the these complex random variables is the subject of
§ IIL.2.1.

Furthermore they give, as an example, the universal model which is derived by
introducing Lévy r.v.s as the independent real and imaginary parts of the complex
generator. Once again it should be stressed that there is no physical justification for this
particular form, it is an arbitrary choice which may or may not be found representative of
reality by subsequent testing on actual recorded data. (This latter aspect will not be a
consideration here because of the difficulties encountered when doing so, as discussed in
§ III.7.) The universal complex result. as derived in § II.2.2, makes sense because
scalar fields (almost always part of a multivariate process) are very often found to exhibit
universality. Although derived from basics the universal result (in § [I1.2.2) has been
obtained by closely following S&L. (It should be noted that some typographic errors are
present in S&L’s paper and that care has been taken not to allow these to contaminate the

present work.)

Following the exposition of the basic theory some simulations of the resulting fields
and variables are produced in § [II.3. The usefulness of these simuiations goes beyond
testing the integrity of the software: the simulations are then analysed (in §§ III.5-6) with
the aim of investigating the limitations of the analysis techniques themselves. Moreover it
is found that the limitations of the analysis which are discovered may be understood by a
study of the basic properties of the simulations in the first place. In fact the fundamental
difficulty which will be encountered in the analysis arises because some functions of
complex numbers do not give single valued results. Of these functions the logarithm and
the fractional power are of concern (eg.. there are three cube roots of eight, one real and
two complex). This, coupled with the limitations imposed by the limited sample size and
number of realisations, is found to curtail the usefulness of the analysis techniques being

used. The analysis techniques themselves are described in § 1.4
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[11.2 Complex Cascade Theory
ll.2.1 Compiex K(q)

A mathematical way of dealing with two variables simultaneously is to treat them as
the real and imaginary parts of a single complex number. When this is done a multiplicative
complex cascade may easily be generated by choosing complex random variables as
multipliers. Hence there is a corresponding complex order of singularity. or generator.

defined by the equation

2, = A" where 7, & ¥, are real.

The moment scaling function for the complex cascade is. in general, a complex

quantity (ie.. a complex function of a real variable). The moment scaling equation is

()= A% forreal ¢.

~A

Note that the above integral over probability space may not converge tor some values of ¢
depending on the characteristics of z;. Normalisation of the (conservative) cascade

requires that K(1) =0 at all resolutions.

The moment scaling function may be evaluated separately on the real and imaginary
singularities making up the complex field. These are found by evaluating (the RHS's of)
L)

;LKutqv = ZR(q) = (l:;‘rl) and /ll\'l(w = Z[(‘I) = :_’- . (IIL.1)

“i I

Note that K;(q) is real whereas in general K (¢q) is complex. The significance of these
two exponents is that they represent the characteristics of the random variables responsible
for i) modifying the magnitude or radial component of the complex quantity (without
mixing the real and imaginary parts) and ii) modifying the rotational or azimuthal
component of the complex quantity or, in other words. transferring ‘intensity’ from one

component to the other.

If the real and imaginary parts of the generator are independent then
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K(g)=Ky(q)+K,(q). (I11.2)

Coupled with the condition of normalisation this implies that for a normalised conservative

field
Keh+ReK (1)=0 & ImK,(1)=0 ie..

K, (1)=-ReK,(1) and K,(1) is real. (II1.3)

11.2.2 Complex universality

As in the scalar case stability under addition in the generator of the process may be
sought. Consider the outcome of choosing independent Lévy r.v.s tor the real and
imaginary parts of the complex generator. It may be recalled from equations (I1.2-3) that
the second characteristic functions for two independent Lévy r.v.s with equal scale

parameters. expressed here in the codimension parameterisation C, ; & C,,, are

C
Kelg)= log,(e"“) = ﬁq"’ + Ueq and
o -

. C b1 o
—laa (o971 = 1l | s Ty T . ! . A
Kiq)= [om(e > a, _llql (COb—_Z iB(signg)sin 3 )«f—zy,q, (IIL4)
both for a#1. (Note that cos <0 for l<a<2.) These combine. as in eqn. (II1.2), to

create the total complex second characteristic function of the complex r.v. y, +i7,.

If both 7, and ¥, are totally skewed left ( f=-1) then the interchange of variables
¥Ye T17, = 7, +iyg in eqn.s (II1.4) results only in a corresponding interchange of indices
[ & R in the second characteristic tunctions. This kind of symmetry between the real and
imaginary generators would seem natural because mixing between the radial and azimuthal
components of the complex field is a desirable feature of the complex model. This marks a
departure from the mismatched codimensions of the mean in S&L which differ by a factor
of [[(3-a,)}/a,. This is simply a feature of using different parameterisations. (It should
also be noted that K,(q) (eqn. II1.4) does not permit a real linear term in g. This is
consistent with the result in equations (20) of S&L when considered in conjunction with

their equations (19).) Of the Lévy r.v.s themselves ¥, is still required to be totally skewed
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left ( f=-1) to assure convergence of the integral whereas this restriction is now lifted from
7:- Thanks to this convergence condition on K(q) it is convenient to only consider the

case ¢>0.

Imposing the conditions for normalisation (egn. IIL3) it is found that the shift

parameters must be

u C.e C. T,
=- - 0s —
R
=1 o ~1 2
C, . rnx
u, = i = sin —
¢, =1 2

hence the expected universal result for a normalised complex cascade is that for ¢>0

[24

C C o
K.(q)=—L (g - g) - —L gcos=—=L and
v aR—l(l 2 -1

(q“’ - q)sinzf—’

C
K[(q) - 1./ qa, cos
o, —1 L -, (I11.5)

—_

o, ., C
i —lﬁ LI
! - o, -

both for ar=1. (Similar results for a@=1 can easily be derived but these have been omitted
here as they will not be used later on.) In particular it is found that under these conditions

(normalised, ¢>0 & a=l)

Ke(l)=-

G C
L cos 2L and K, (1) = ——cos Z2L (ie.. ImK,(1)=0).
o, -1 2 o, -1 2

A word must be said about the interpretation of these new second characteristic
functions. Whereas the quantity C, , is known to be the codimension of the mean of the
real part of the process there is no theory (at present) to say that the qLiantity C,, in the
second characteristic function is the codimension of the mean of the imaginary part. Thus if
any interpretation of C,, as being the codimension of the mean of the imaginary part of the
process were to be made it would be purely speculative at this time. However, for the
purpose of discussion, it will be assumed that the symmetry between real and imaginary

generators implies that there is an effective codimension of the meun of the imaginary part.
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[11.3 Complex DCUM Simulation

The complex universal cascade simulation is performed in the same way as for the
scalar simulations in chapter II. The difference here is that two independent realisations of
the Lévy random variable are generated for each cascade step, these corresponding to the
real and imaginary parts. The parameters for each r.v. are chosen independently and such
that a normalised result is produced. The Lévy r.v for the imaginary generator is chosen to

be totally skewed lett.

Three sets of simulations are analysed in this chapter and they are characterised as in
table IIT.1. The reason why (), for simulation B is not the same for simulation C is an
arbitrary choice based on the fact that for these values of C|, the values of K (1) are equal

(note that Re K (¢) = K (D|gf™).

simulation| Ciz | &, C, a,
A 0.03 {1L.6 0.04206 | 1.8
B 0.03 1.6 0.4206 1.8
C 0.03 | 1.6 0.3336 l.

Table I11.1: Simulation parameters for chapter Il

W

In each case the cascade is produced over ten steps of a factor of two down to a resolution
of 1024, and the cascade starts from the large scale complex state £=-5(1+1). (One

realisation is being considered unless indicated otherwise.)

Figure III.1 shows plots of the real (left) and imaginary (right) components of
complex simulation A. The imaginary component displays values of both positive and
negative sign. This is a feature which cannot be observed in the discrete scalar cascades of

chapter [L

Figure III.2 shows the scatter plots for simulation A (left) and B (right). The
difference between the two is that the value of C, is ten times larger in simulation B

(right). (The values are C,,=0.04206 in simulation A and C,,=0.4206 in simulation B.)

§ III.3
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Figure IIl.1: plot of real (left) and imaginary (right) parts of complex simulation A.
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Figure II.2: scatter plots of complex simulation A (left) and B (right). Simulation B

has a larger value of C, than simulation A.

§ II1.3

For the plot on the left most of the points can be seen to cluster around the mean. but

the more frequent negative outliers in the Lévy r.v.s produce two distinct tails; one rotating

anti-clockwise and petering out as it does so (for outliers in the imaginary generator, 7,),

and the other producing a stem of points reaching down to the origin (for outliers in the real

generator, 7,). (The simultaneous occurrence of an outlier in 7, and in 7, is extremely
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rare.) The plot on the right has an exaggerated rotational spread of the points due to the
larger value of C,,. The values of C,, in these simulations were picked so that simulation
A would not contain many points with a large imaginary generator and so that, in contrast,

simulations B & C would do.

The exponential of an imaginary quantity is a periodic function. hence for the complex
state €, there is a loss of information for those data points which have an imaginary
exponent (argument of £;) greater than 7 : That is to say the inferred value of the
imaginary exponent will only be its principal value. This loss of information occurs for the
largest (imaginary) singularities, and for simulation A it will be a rare event whereas for

simulations B & C (with larger values of C,) it will occur more frequently.

The loss of information which occurs may have an adverse effect on the analysis of
the data. An idea of what this does to the data may be seen by directly viewing the plot of
the probability density of the argument, both actual (the generator in the simulation) and
inferred (as inferred from the principal value of the argument of the complex data). Figure
[II.3 shows plots of the probability densities of the arguments of eight realisations of
simulation A, the actual value (left) and the principal value (right). The plot of the actual
value of the argument (left) shows the long negative tail and short positive one characteristic
of a totally skewed left Lévy r.v.; the plot is asymmetrical. The positive singularities do not
exceed a value of about 2.3. The difference in the plot on the right is that there are some
extra data points with a value greater than 2.3. These are points from the negative tail
which have been shifted to their principal value (and which happen to fall at around a value

of +x).

Another related quantity whose statistics are of interest is the difference between two
adjacent imaginary exponents. (This will be fully explained in the next section.) The plot
in figure II.4 shows the probability density of the difference between two arguments as
evaluated from the generator (line) and from the inferred argument values (points). Note
that the plot is symmetrical and that the points calculated from the data values are

necessarily restricted to the range £7r. As with the right hand plot in figure 1.3 the less
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Figure I11.3: Plot of probability density of the (true) argument of the bare data, left,
and of the principal value of the argument, right, evaluated on 8 realisations of

simulation A.
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Figure lll.4: Plots of probability density of the difference in arguments of adjacent

data points for simulation B (8 realisations) as calculated from the imaginary

generators (line) and the arguments inferred from the data (points).

frequent points near £7 are more frequent than they should be due to the loss of

information.

§ 1.3
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The effect. on the analysis, of the shifted data points in the probability density seen in
both figures ITI.3 (right) and III.4 will become apparent in the analysis section of this

chapter.

l1l.4 Complex Analysis Techniques

llI.4.1 Knowledge of the characteristic parameters

Analysis may be performed in a straightforward fashion by evaluating the quantities
in equations (III.1) and comparing the real and imaginary parts of the moment scaling

functions with the universal forms given by equations (IIL.5). In particular the quantities

4
:1|.,> and AN = Zy (@)= <[ﬁJ >

(on the RHS's) are evaluated. The moment scaling functions for normalised z; may then

/‘{‘Kuwl = ZR((I) -_-<

be expressed explicitly in the convenient forms (II1.6-8) below.

G a

Ke(q) — qKp(D) = —2-(g™ ~q) (I11.6)
o, -1

when the contribution from the ‘mean’ (g Ky (1)) has been subtracted. Quantitative

knowledge of this mean quantity enables K (1) = —K,(1) (eqn. [II.3) to be determined and

hence the quantity

G
K,(1) = —4 cos 22 (IIL.7)
o, =1 2

can be found from Z,(q). In fact this equation (III.7) is a special case of

C
ReK, () = —-L-g" cos 2L (LL8)

All the statistical properties of the complex field z; are contained in equations (IIL.1).
But it should be noted that the argument of the quantity Z,(q) has been kept out of equation

(II1.8). This is because the ambiguity in evaluating it, as discussed in § [II.3 and later in
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this chapter, makes it a very erratic quantity. A practical way of extracting useful data from
this quantity has not been found. Therefore the characterisation which results from using
only equations (III.6 & II.8) is not complete for any general complex field, although if the
field is a universal complex m.f. all the statistical parameters required to define it may still

be recovered (as is evident by all four parameters being present in those equations).

In summary the parameters which mayv be recovered trom data analysis if onlv the
function Z,(q) can be determined accurately are K (1). C , & a,: knowledge of K,(I)
does not give any information about C;, independently of ;. (The quantity K,(1) in itself
quantifies the effect the imaginary generator has on K;(gq); it may have some greater
physical significance but this is not known at this time.) Only if Z,(¢) isknowncan C,, &
a, be recovered from the data. If both Z.(q) and Z,(¢) are known then there is a

redundancy of the information of C;, & ¢, which may be used as a test for consistency.

11.4.2 The trace moments method

The trace moments method (§ I1.3) for evaluating the statistics of a stochastic process
is used to evalvate the moment scaling function of the data at different resolutions. Since
the data is available only at a single resolution it is necessary to (repeatedly) dress the data
to bring down the resolution for analysis. However, the bare and the dressed data are not
the same thing: dressing the data alters its statistics (§ [1.3). For a scalar process the
statistics are the same up to the moment of order ¢, (beyond which point they diverge)
which means that provided ¢, is large enough the trace moments analysis is very useful tor
recovering the true statistics of the data. Unfortunately at present there is no theory to

determine what the critical moment for complex multifractals is.

For the complex case there may be an additional difference in behaviour between the
statistics of the dressed and the bare data because of the loss of exponent information.
Empirical observations. and comparison with theory. of the statistics evaluated by the

complex trace moments method from dressed data will be made in the following sections.
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1.4.3 The adjacent data points (ADP) method

The relationship between the complex field and the complex order of singularity may

be defined by the equation

log, Al yg+iy) Faaimil
£. =eogt YrRTY: = ML

A

It was already mentioned in the previous section that the imaginary exponent [, ; cannot be

known unambiguously from the complex data hecause there will be a loss of information if

its value does not fall within the range + 7 only the principal value of I, can be known
from the data. This will be a problem because taking a non-integer g-power of &, will not
give the same result as exponentiating ¢ times the true exponent (unless the true value of
I, . is the same as its principal value). There will be an error due to the difference between
the two. and this error may be expected to deteriorate the quality of the calculated statistics
in some way. To reduce this error it is possible to try reducing the size of the [ ;s being

dealt with.

When C, is large, and the effective size of the singularity is amplified by the log, A
term at a high resolution, then I, will be large. Hence by reducing the effective
resolution it may be possible to reduce the size of [, ;. This may be achieved by
considering the ratio of complex states adjacent in position (in the cascade) at the same
resolution ie.. consider a sub-cascade whose final resolution is two—it consists of just two

data points (adjacent data points or ADPs) with the same common ‘parent.’

Consider the characteristic function for the complex generator of one cascade step.
{ =7, +iy,, in a sub-cascade of resolution 2 defined as (2‘”) = 2N = pReKlgIrimKip),
Then the characteristic function of the ratio of the two independent steps (in the sub-

cascade) is simply
Z.(q)= (2‘4‘§|‘§:'> = 93ReK(g)
as follows from equations (III.4). Note that the imaginary part of this characteristic

function is zero. the statistics are symmetrical, and in terms of Lévy r.v.s §=0. (This

implies that any attempt to evaluate the Laplace characteristic function would result in
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divergence.) Hence this method is rather different to the other analysis methods (in this
thesis) as it changes the statistics of the imaginary generator. Also the effective resolution
of the new quantity whose statistics are being evaluated is 4 (and hence the subscript which

is used ). In a self-similar cascade this quantity is simply given by the ratio of ADPs

- el-l
~3A) T 8,
where the indices { & i+ 1 indicate contiguity in space/time position. Here A indicates the
resolution at which the characteristic function is evaluated. [t would be expected that the
evaluated characteristic function will be independent of resolution only if dressing

conserves the statistics.

(As an aside it is interesting to note that the ADP method may equally well be applied
to a dressed or bare scalar field if pure imaginary powers of the ratios z, ;, are taken. The
usefulness of doing this would have to be tested empirically. In some cases the advantages

of this method may be found to outweigh the disadvantages of using it.)

The big advantage of analysing the statistics of ADPs (the ADP method) is that an
analysis may be performed on data with an effective resolution of just 4 without the need to
degrade its resolution. In this way the effective size of the imaginary singularities can be
reduced without resorting to dressing complex data (with its unknown side effects).
Another bonus of using this method is that since ratios of data values are used the field does
not need to be normalised first. (This is advantageous if the correct normalisation of the
field is not known eg., when it is difficuit to recover the mean trom the data.) Hence this
method appears to be a viable alternative analysis method which should be tested alongside
the conventional evaluation of the second characteristic function ot the bare and dressed

data. This is done in §§ I11.5-6.

63



Discrete Complex Cascades § 5.1

l11.5 Conventional (Trace Moments) Analysis

The analyses in this section are on 1024 realisations of simulation A. Here the value
of C,, is small enough such that imaginary exponents outside the range =7 will be rare (in
the bare data). These analyses will reveal how well the statistics may be recovered given

the various limitations of numerical accuracy and the finite number of samples.

iii.5.1 Smali Cq

Figure IIL.5 shows the plots of Z, (left) and Z; (right) evaluated from the data for
q=0.5, 1, 1.5 & 2. In both plots the statistics (points) of the bare data (at the highest
resolution) agree well with the theory (lines). Likewise the scaling in both plots (from the
statistics of the dressed data) is good. as evidenced by the straight slope of the points.
However these slopes do not correspond exactly with the theoretical ones, the discrepancy
for Z; (right) being greater. This indicates that the dressing operation does not conserve

the statistical properties of the bare data exactly (even for these relatively small values of

q).
simulation A, Z A simulation A, Z,
0‘5!. i
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Figure 111.5: Characteristic functions Z. (left) and Z; (right) evaluated from 1024
realisations of simulation A for ¢=0.5, 1, 1.5 & 2. Theory lines, statistics points.
Only the points at the highest resolution have been evaluated on bare data; the

other points come from dressed data.
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Next are the plots of the moment scaling function and second characteristic function in
figure IT1.6. The plots of K, left, show that the statistics (circles) of the bare data agree
very well with the theory (line) for ¢ at least up to 6. The statistics (squares) from the
dressed data give a reasonable agreement with the theory up to g=2. The plots of - Re(K,)
(circles bare, squares dressed), right, show a reasonable agreement with the theory (line) in
the approximate range ¢=0.5 to 4. Limitations due to the number of realisations begin to
appear at the highest values of ¢ in this plot. In both cases the statistics of the bare data
agree well with the theoretical values, in the case of the dressed data the agreement gets

worse as the order of moment of the statistics increases.
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Figure 1I1.6: Plots of moment scaling functions from K, (left) and of Re(K,) (right).
Statistics from the bare data (highest resoclution) are squares and from the dressed
data (from the slopes of trace moments) are circles. Lines represent theory.

In conclusion, it has been seen that the dressing operation does not exactly conserve
the statistics of the process. This is especially true for the higher order moments where the
effect is most pronounced. The evaluation of the statistics for K, (when compared with
the theoretical value) from bare data is excellent; for Re(K;) it is good for both bare and
dressed data. These results represent the conclusion from analyses of simulations with a

relatively small value of C, ,.
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I1.5.2 Large Cy

The problem of having a relatively large imaginary exponent, that is when there is a
large C,,, is now considered. Here 1024 realisations of simulations B & C (a,=1.8 & 1.5
respectively) are analysed. These two simulations have a much larger value of C,, than
simulation A (in fact ten times larger).

Figure IT1.7 shows th on the right for g=0.5

4 tia amae

IR

1.5 & 2 evaluated on simulation B. The plot for Z; shows good scaling though once again
the slopes of the (dressed) statistics do not agree with the slopes of the theory lines. The
disparity between the dressed statistics and the theory is more pronounced here than it was
for the smaller value of C, in simulation A. The statistics of the bare data continue to

agree well with the theory.

The plot for Z; (right) shows two important defects i) the scaling is no longer good
(and there is some ‘randomness’ associated with the statistics) and ii) the statistics for
. different values of g (=1 & 1.5) cross each other (which is incompatible with the theory).

Here the bare statistics do not agree with the theory either.

The deterioration in quality of the dressed statistics (compared to the theory) which
accompanies the increase in C;, indicates that the dressing operation is not conserving the
statistics due to the large size of the imaginary exponent and the corresponding loss of
information in the data. The overall deterioration of the statistics of Z, even when
evaluated from the bare data, shows a complete failure of this particular analysis to reveal
the true statistical character of the simulation. The corresponding Re(K,) plot may be

expected to have some serious problems (fig. II1.9 below).

The plot for K, in figure ITI.8 shows that the bare statistics (circles) agree well with
the theory (line) for all values of g shown. The statistics from the dressed data do not
agree, even for small values of ¢. It may be concluded that the larger value of C, has
affected the degraded data so much that the statistics for K; no longer conform to the
theoretical prediction. Hence to evaluate K(1), C , & o, only the bare data must be

. used, and then the analysis may still be expected to be fully accurate.
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Figure IIl.7: Plots of Z; and Z; for simulation B, 1024 realisations. In both piots
g=0.5, 1, 1.5 & 2, theory lines, statistics points. The symbols for ¢=0.5, 1. 1.5 & 2

are circle. plus sign, diamond & triangle respactively.
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Figure 111.8: Plots of K, with different scales for the axes. Bare statistics
represented by circles and dressed statistics by diamonds, theory line & statistics

points.

Figure II1.9 shows the plot for Re(K,) where the circles represent the bare statistics,

diamonds the dressed statistics. Neither set of statistics agrees with the theory (line),
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except for the single point Re{K (1)} evaluated on the bare data only. These results are
not surprising given the defects seen in the plots of Z; (fig. III.7 above). There is also a
periadicity in g, of one. which can be seen in the statistics. (This will be explained in the
next section where this effect will be seen again.) Clearly this analysis is only of limited

use.

simulation B, Re(K,)

100 4

Figure I1L.9: Plot for Re(K,), circles represent bare statistics, diamonds the dressed.
Theory line, statistics points.

It may be concluded that the evaluated statistics of K remain very good for the bare
darta (only), which allows the accurate recovery of the values for K (1), C, . & ot;. Also
that the value of K () can still be recovered from the Re(K,) statistics. but this only from
the bare data. Hence for large values of C;, the values of C;;, & @; cannot be recovered

using this method alone. This is a serious shortcoming.

111.6 Adjacent Data Points (ADP) Analysis
I1.6.1 Small Cy,

The statistics of z, ;, are now computed. Of the three statistical quantities which
were calculated using the trace moments method (in § [II.5) it is meaningful to evaluate just
one using the ADP method, namely that of Z, . Here 1024 realisations of simulation A
will be analysed.
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The plot for Z, o, figure II1.10, shows that the statistics (points) of the degraded data
differ significantly from those of the high resolution (not degraded) data. The theory (lines)
are in close agreement with the highest resolution statistics only: As it has already been
demonstrated (in § II1.5) that degrading the simulated data changes the statistics in such a

way as to adversely affect the complex analyses, degraded data will not be used for analysis

in this section.

simulation A, Z‘v "

0.5 1 186 2 25 3 3.5
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Figure 111.10: Plot for Z, o for g=0.5, 1, 1.5 & 2, simulation A.

The plot for Re{K”} at the highest resolution, figure III.11, shows that the
agreement between theory (line) and the statistics (points) is very good for values of

g=20.7. For smaller values of g the slope becomes equal to 2.

The behaviour at small ¢ may be thought of in terms of the series expansion of the

integral for the characteristic function,

Z(q) = J‘p(x)e"" dx
- (I11.9)

= Jp(,r){l + igx — q;;c +...}dx
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simulation A, Re{K " }

10
q e et eae -
~ 041
x
&
Lo %
|13 3
, '
i ]
0.0001 !
0.1 1 10

q

Figure 1lIl.11: Plot of Re{K“} from the highest resolution data of simulation A.

Theory line, statistics points.

[t should be noted that using the ADP method results in a symmetrical p.d.f. Thus the odd

moments in eqn. (II1.9) all equate to zero giving

hi

o 4
=L ot da+ L proy
Z(q)=1 5 J.p(.r)x dx+ 1 Jp(_r)x dx+...

The analysis is performed on a simulation of finite size with a limited number of realisations
and it will be affected by numerical accuracy. Hence it is not unreasonable to assume that
the coefficients in this power series do not increase strongly in size for higher order
powers: as calculated numerically they are finite. If this is the case then for small enough

values of g (necessarily <1) the logarithm of the series may be approximated as

log, Z(q) ==L fpodx.

—cn

In other words ReK,(q) =< —q°. Hence this rather simple argument gives a plausible

explanation for how the slope &, may appear to be 2 for small enough values of q.
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1.6.2 Large Cq

The statistics of simulations B and C (both with 1024 realisations) are now evaluated.

The plot for Re{K“} is in figure [I.12, with ¢,=1.8 on the left and «,=1.5 on the
right (simulations B & C respectively). For simulation B (left) the theory (line) is in
agreement with the evaluated statistics (points) between ¢=1.0 & 2.0. For simulation C
{right) there is a close agreement only at the single point where g=1.0. The statistics do
not tollow the theory line for both small and large values of ¢: the behaviour for large g is
characterised by an oscillation in the computed value with a period of 1: for small g the
sfope is, once again, 2. (The place at which the slope changes slope appears to be at a
slightly higher value of ¢ than it did for the corresponding plot of simulation A in figure

[1L.6.)
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Figure 111.12: Plot of Re{[(“} for simulation B (left) and for simulation C (right)

from the bare data in each case. Theory lines. statistics points.

The behaviour for small g has already been described in the previous section. The
oscillating effect seen at large values of ¢ can be explained by considering the effect of
information loss in the data, or more specifically, by considering the behaviour of the
characteristic function of the resulting modified probability density (that is modified due to

the loss of information).
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In fact a Gaussian distribution will be considered below for mathematical simplicity

ie., o, =2. The variance o=1.2 is chosen because, for ADPs with A=4 and using

C = o (a -1
L 2log, A \ cos & )’

this gives the effective C ,=K,(1)=0.5194.

The probability density function of a Gaussian r.v., x, may be seen plotted in figure

[II.13 and is defined by the equation

l tiag?
(X)= —==e""""7
P o221
(X}
/y.z \
/7
+ X
-4 -2 2 B3
Figure II1.13: Plot of p(x) versus x; the p.d.f. of a Gaussian r.v. with variance
o=1.2.

The Fourier transtorm (F.T.) of p(x) ie.. the characteristic function, is Z(q) = PR EES
The modified p.d.f. can be constructed by taking the sum p(x)+ p’(x) ie., where
p’(x) is a perturbation to the original p.d.f. Both of these functions can be seen plotted in
figure III. I4. Note that p’(x) is made up from 2 shifted (by 2 ) and 2 reflected (about
the v-axis) ‘tail’ portions of the original p.d.f. such that the resulting modified p.d.f. is

truncated at £ 7.

The F.T. of p’(x), Z’(q), has been evaluated mathematically using the software
package mathematica and can be seen plotted in figure III.15 on the left. Note the

periodicity of 2, and that after an initial increase in amplitude for low values of g the
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D’ {x) D(x)+D’ (X)
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Figure 11.14: Plot of p'L.x), ieft, ana of the resuiting moaified p.d.f., p(.r)-f-p'(.r').
right. (Note that in the plot on the left the v-axis is slightly offset to accommodate

the negative excursions.)

function decays slowly as g increases turther still. The function has a value of zero for all
integer values of g. (Also, since the width of the Gaussian p.d.f. is a function of o it

follows that the amplitude of Z’(q) will increase with increasing )

The resulting characteristic function is simply Z(¢)+ Z’(qg). In practice the logarithm
of the absolute value of this quantity is evaluated (to give the second characteristic function)
which can be seen in figure III.15 on the right. Note that taking the absolute value doubles
the periodicity seen for large ¢. The perturbation Z’(q) has no effect (on Z(g)) at smaller

values of q ie.. Z'(q) << Z(q) for small ¢.
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Figure lll.15: Plot of the F.T. of p’(x), Z°(q). left, and the second characteristic
function of the resulting modified p.d.f., right.
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Note that since the amplitude of Z’(q) increases with increasing ¢ (or C,,) the point
at which the perturbation, from the loss of information in the data. will start to be felt (ie.,

the value of ¢ at which this happens) will be a decreasing function of o (or C,,).

The final plot which is obtained for the modified second characteristic function can be
compared with the plot obtained in figure IL12 (left) for Re{K,,} for simulation B.
(Recall that the parameters in each case are C,,=K,(1)=0.5194, ¢, =2 for the theory above
and C,,=0.4206, K,(1)=0.5, a,=1.8 for simulation B ie., they differ slightly). The two

plots are visibly quite similar.

Hence, with this explanation and the one in § [I1.6.1, the cause of the limitations in
this analysis technique have been demonstrated both for high and low regions of ¢.
However. the point of transition between the affected and unatfected regions (as a function
of ¢) remains a non-trivial function of the underlying statistical parameters, the resolution
and the sampling dimension of the data. It is beyond the scope of this thesis to investigate
what this relationship may be. What is clear is that as €|, increases the analysis becomes
increasingly affected such that for large enough values of C,, it will no longer be possible
to recover the values of Cj;, & ¢,. Though. of course. the value of K (1) may still be

determined by this method.

In conclusion it has been seen that for small values of C, the analysis. for the bare
data, of z, gives good statistical results. For larger values of C,, the region (in g-space)
over which the analysis continues to work is reduced significantly. The exact dependence
of the size of this region on the underlying statistical parameters is not known. But
provided C,, is small enough an accurate estimate of C,, & ¢, may be recovered from the
plot of Re{K “}. Notably this analysis method allows the value of ¢, to be recovered for
larger values of C,, than does the trace moments method. In addition the consistency of
the resuits may be checked by comparing the values ot K, (1) recovered by this and the

trace moments methods.
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[1l.7 Concluding Remarks

The final conclusion from the testing in §§ II1.5-6 is that when C,, is large it
becomes very difficult to recover the statistical parameters of the data. This is because of
information loss in the complex generator part of the field. The result is that the usual
analysis technique (of trace moments) becomes restricted, especially since the process of
degrading the data no longer conserves the statistics of the process. The ADP method,

developed in th

..... D 1 this chapter, is capable of extending the useful analysis range to higher values

of C,,. but this still has its limitations. Tests have not been performed for empirical

estimates of the useful parameter ranges over which the analyses will continue to function.

To sum up, the parameters which may be recovered by the analysis of complex data

i) For K; at the highest resolution (bare data) K,(1), C, ; and «, can be recovered (even
for large values of C, ;). and
ii) the analysis of Z, at the highest resolution (bare data) for the statistics of Re{K“}

recovers K, (1) and will recover C, & ¢, if C, is small enough.

However the full physical significance of the quantity K, (1) is not known. Neither is it
certain whether there may be a physical interpretation of C, as the codimension of the

irmaginary part of the process.

The analyses that have been performed were done so on computer simulations with
well-defined statistical properties conforming with the theory. They have demonstrated the
limitations that occur when analysing this kind of ‘perfect’ data. The analysis of recorded
data is another matter altogether because there are many additional processes going on
which can disturb the analysis significantly. Of the well-established kind there is non-
conservation which may be expected to occur in general. Non-conservative complex
cascades have not been considered in this thesis but it may be that introducing non-
conservation into the theory is a relatively simple exercise. Likewise empirical tests could
be performed to determine if fractional complex differentiation preserves the statistical

characteristics of a non-conservative complex cascade process.

§ III.7
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Of a more serious nature is the question of the arbitrary offset in the recorded data
which can totally spoil the evaluated statistics. For example a temperature measurement
may be made in degrees Celsius or Kelvin, the difference between the two being a shift in
scale of 273.15 units. At this time it is not obvious how to remove such a shift when
analysing the data (except by taking differences eg.. in structure functions). A similar
problem may exist with an arbitrary power to which each tield (value) has been raised. and
even the question of normalisation is not trivial in the complex plane (because no point is
special like the point at unit distance trom the origin on the real positive half-line). Some of
these problems are removed by using the ADP method (ie.. normalisation). but not the

serious problems.

Finally it is quite possible that the arbitrary choice of representing a two variable field
as the real and imaginary parts of a complex number. in a complex cascade. may turn out to
be quite inappropriate for real-life situations. This choice is quite restrictive and probably
an over-simplification (and yet see what difticulties it still presents) of reality. The more
general Lie cascade representation brings with it even more troublesome “losses of
information” which have so far proved impossible to mitigate. Whether the complex
cascade is appropriate or not may finally be determined when the analysis difticulties
mentioned above have been removed or circumvented. Apart from this question it should
be kept in mind that the very general Lie cascade model is slowly being worked on and that

eventually it may be developed to the point where it can be used conclusively.

So finally it may be understood that, due to these ditficulties, the attempts which were
made at analysing recorded data have so far proved of little use. However it may be
expected that in the future a more thorough exposition of the properties of Lie cascades will
be made, and with it the complex cascade being a special case thereof. It is the author’s
hope that this thesis will go some way towards making it easier for anyone choosing to
work on this problem to see what has been done. what could not be done. and what still

needs to be done.
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IV Conclusion

The objective of this thesis has been to elucidate the details of cascade models
producing universal multifractal fields and subsequently to investigate the simulation and

analysis of these tields in the scalar and complex cases. This has been achieved as follows:

In chapter I the historical development of cascade models has been presented using
the specific example ot turbulence, showing the progress that has been made in producing
models capable of giving ever more realistic characterisations ot naturally occurring scaling
and muitiscaling fields (§§ I.4-5). This progression is punctuated by the development of
multifractal models. the discovery of an universal multifractal form. and finally the general
multivariate Lie cascade model. The universal m.f. model has been chosen for the work in
chapters [I-III as being the most realistic and the most amenable to the treatment of

multivariate fields.

In chapter II the basic properties of Lévy r.v.s, the building blocks of the universal
m.{. cascade, have been described (§ I1.2.3) along with some simulations of these r.v.s.
The theory for the discrete cascade universal m.tf. (DCUM) model has been developed
(§ [1.2.4) and simulations and analysis of DCUM fields have been presented (§ I1.4).
There is some discussion on the limitations of the software and analysis (§ [1.4.3). though

no serious problems are encountered which would make their use untenable later on.

In chapter III the chosen subject is the complex cascade model. being the most simple
generalisation of the scalar cascade model. The theory developed in this chapter (§ III.2)
closely follows Schertzer & Lovejoy (1995) (though it differs in some minor details for
various reasons.) Examples of simulations of complex DCUM fields have been presented
(§ II1.5-6). Two analysis techniques which can be applied to complex data have been
described (§ II1.4), one of these being the new “adjacent data points” (ADP) method
(§ II1.4.3). These analysis techniques have been applied to the complex simulations and it
was found that the ADP method is an improvement over the traditional analysis method. A

theoretical explanation for the limitations in the analysis of the complex data has also been
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demonstrated (§ I1.6). Finally the difficulties of analysing recorded data, rather than the
‘perfect’ data of a simulation, have been discussed (§ I11.7).

The unique contributions to knowledge which have arisen from this work are: A
considerable understanding of the basic properties of complex cascades has been reached;
some of the fundamental limitations of the analysis of complex data have been understood;
a new analysis technique, the ADP method, has been developed which is an improvement

over the traditional analysis technique (for the analysis of complex data).
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A Appendix

The main software routines which have been used to generate the various random

variables and fields appearing in this thesis can be found in this appendix for reference.

A.1 Lévy r.v. simulation routines

The function 1vms(long *inum, doubhle alpha, double <) in § AL 1 below can
be used to generate totally skewed left ( =-1) Lévy r.v.s, x, with parameters a=alphz,

|C, /(e — 1)]=c and shift parameter 1=0 ie.,
(eq.(> - eC,q"/(a-l).

The r.v. is stored at memory location inum this function is calied by the software in tile
dsc_03.h (§ A.2) which generates a scalar DCUM field. The function ¢lwvns(long '
*inum, deuble alpha,double c¢) is identical, except that the r.v. produced has a different

scale parameter such that

<eq.r> = f.’qd/cm(m/:],

and it is called by the software in file cpx_03.h (§ A.3.1) which generates a complex
DCUM field.

Note that the function rst_04 . c and its associated functions of § A.1.2 are modified
versions of the functions appearing in Samorodnitsky and Tagqu (1994) on pp. 46-49

rewritten in C.

A.1.1 file “lvnst.h”

/*lvnst.h */

#define BETA -1.0

#include <math.h>
#include <stdlib.h>
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. #include "include/RAN3.C" {numerical recipes routine)
#include "include/rst_04.c"

doauble I'ms(long *inum,deuble alrhs,double ¢)
{

deuble offset,a,b;

if(alpha!=1.0)
{
offset=BETA*tan(M_PI_2*alpha);
c=c*cos(M_PI_2*alpha);
if(c<0)
C=-C;
c=pew(c, 1.0/alpha) ;

. c=Cc*M_PI_2;

offser=0.0;

fo——

a=(ceuble) ran3 (inum) ;
if(a==0.Clla==1.0)

a=(double)ran3 (inum); /* assure it dces not rsgeat */
b= (double) ran3 (inum) ;
if(b==0.011b==1.0)

b= (double)ran3 (irum) ; /* ditto */
b=-lcg(b);

retuyn c* (rstable(alpha, BETA, &, b) +offset) ;

/* for use as exp(i*lvns) (ie., imaginary) */
double clvns(leng *inum, double alpha,double <)

{
. double offset,a,b;
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if(alpha!=1.0)
{
offsec=BETA*tan (M _PI_2*alpha);
1f (c<Q)
c=-C;

c=xcwic,1l.0/alpha);

}
else
ntfeer=0.0;

g=ran3{inum);

b=-lcg(ran3(inum));

reowrm c*(rstable(alpha, BETA, 3,0) +cffset) ;

A.1.2 file “rst_04.c” and associated functions

- N P, f —~ &= o ~ ;
c* rzg_04.¢ adepred fxram S&T op. 46-48 *

#inciude <math.h>
#include <stdlib.h>

ginclucde "include/truth.h"

double rstable(double alrha,doukle bprime,double u,dcurls w)
{
double philkwv?2,a,eps, b;
double kb, tau,a2,al2p, k2, 2p,alcgz, z,d, st, rstacl;
double tan2d(double xarq);
double d2d(double z);

eps=1.0-alpha;

phitv2=M PI_2*(u-0.3);

a=phibv2*tan2d(chikv2?) ;
tan2d(eps*phikv2) ;

b=eps*philv2*kb;

if(eps>-0.99)
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tau=kbprime/ (tan2d{eps*M PI_2)*M _PI_2);
if (eps<=-0.99)
tau=kprime*M PT_2*eps*(1.0-eps) *tan2d((1.0-eps) *M_PI_2);

az2=ax*a;
aZp=1.0+a2;
az=1.0-az2;
b2=b*b;
b2p=1.0+b2;
b2=1.0-b2;

z=a2p* (D2+2.0*phiby2*kb*tau) / (wka2*b2p) ;

alogz=log(z);
d=d2d(eps*alcgz/ (1.0-gps) ) *(alcgz/(1.0-eps) ) ;

rstabl=(1.0+eps*d) *2.0* ((a-b})* (1.0+a*b) -
phiby2*tau*bb* (c*a2-2.0%a) )/ (a2*b2p) +tau*d;

retuwrn rscabl;

——

#define PL 0.840066852536483239e3
#define P2 0.20001114158996456%9¢2
#define Q1 0.168013370507296648e4
#define Q2 0.180013370407390023e3
#define Q3 1.0

double d2d(dcuble z)

{
double pv, zz,d2;

if(fabs(z)>0.1)
={exp(z)-1.0}/z;
else
{
zZz=Z2*Z;
pv=Pl+zz*P2;
d2=2.0*pv/ (Ql+zz* (Q2+2z*Q3} -z*pV) ;
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s2defire FO 0.1292210350
2

#defin
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#define F2 0.
#define CC 0.16452833181016860%e3
#defire Q1 -0.4513205610C558%561e2

doukle mytand(dcuble xarg) /* adaptad fram S&T p. 48 *
L

cdcubkle mvtan;

int neg,inv;

deuble X, xx;

K=Xarg:;

1f(x<0.0)
neg=TRUE;

x=fabs(x);

if(xoM PT_4) {

x=fmed (x,M_PI) ;

IE(eM PI_2) {
neg”=TRUE;
X=M_PI-x;

)

1M PI_4) (
inv=TRUE;
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x=M_PI 2-X;

}
x/=M_PI 4;

=KX
mvTan=x* (FO+c<* (PLl+xc<*P2) ) /(Q0+a<* (QLl+xx) ) ;

double tanZd(deuble xarg) /* adartsd fram S&T po. 48-49 *7
double x,:¢¢,can?;
x=rfaps (xarg);
1E (oM _PI_4)
canZ=mytand (xXarg) /<arg;
else
{
%/=M_PI_4;
K<=X"X;
can2= (FQ+c<* (PL+ce*B2) )/ (M_PT_ 4% (CO+cc* (QL+xk) ) )

return tang;

#undef PO
sundef P1
fundef P2
fundef Q0
sundef Q1
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A.1.3 file “truth.h”

#¢ifndef _ truth h
#define __truth h

#¢define TRUE 1
#define FALSE O

#endif /* _truth_h  */
A.2 Scalar DCUM simulation routine

The function dsc (double *deg, long *inum, loeng size,dcuble alpha,double
c) below produces a scalar DCUM field, ¢,. of resolution A where log, A=sizeat
memory location deg (the memory at inumis used internally). [t has the parameters

a=alphaand C /(- 1)=c such that

(e1) =exp{ < l(q" -q)logfi}-

/* dsc_03.h discrete scalar cascade simulaticn */
#define EO0 1.0 /* epsilon naught */

#include <stdio.h>
#include <unistd.h>
#include <fentl.h>
#include <sys/stat.h>
#¢include <sys/tvpes.h>
#inciude <stdlib.h>
#include <math.h>

#include "include/lvnst.h"

void dsc(double *deg, long *imum, long size,double alpha,double <)

{
long count0,countl, last;



Appendix § A2

double data_arrav([23];

long ratic=sizeof(*data_array);
double *dp;

long total;

double u,un;

double levy;

double factor,offset;

u=M_LNZ;

if(c<=0.0)
{
princf{"irmvalid c\n");
exit(l);
}
un=pcw(u, (1.0/ (double)alpha-1.0));

total=(l<<size);

if(alpha!=1.0)
offset=c;
else
offset=0.0;
if(alpha!=1.0)
offset=c;
else
offset=0.0;

data_array(0]=E0Q;

for (count0=1; countO<=size; count0++)

{
levy=u*( (lvns (inum, alpha, c) *un) -offset) ;
data_array (count0]=data_array [count(0-1]*exp(levy) ;
}
dp=deg;

*dp++=data_array(size];
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lasc=0;
for (countl=1;countl<total;countl++)
{

for (count0=1; count0<=size;count0++)
{
if((countl™last)&(ll<(size-countl)))
{
levy=u*( (lvns {inum, alpha, c) *un) -offset) ;
data_array |countl]=data_ array|{countl-
ll*exp(levy);

}
*dp++=data_array{sizel;
last=ccuncl;

#urndef EO

A.3 Complex DCUM simulation routine

The function cpx (double *deg(2],long *inum, long size, flcat alrha(2],
fleat c¢(2]) in § A.3.1 produces a complex DCUM field, &,. of resolution A where
log, A=size with the real part at memory location deg (0] and the imaginary part at
deg(1] (the memory at inumis used internally). It has the parameters ¢¢,=alpha{0] &
a,=alpha(l} and |G, /e, — Dj=c (0] & [{C,, /@, - D}cos(mez, /2)}= c [0} such that for
q>0

C G o G . T
g!) =ex LR (g% —g)+ —2L_(¢™ - g)cos—L + i —— (g™ - g)sin—Llog, A
(e2) pHaR_l(q q) al_l(q q > a,_l(q @sin—=log

87



Appendix § A3l

. A.3.1 file “cpx_03.h”

/* cex_03.h direct camplex casczade simulaticn */

#define VO M_SQORT1_2
#define V1 M_SCRT1_2

#include <stdio.h>

s mmmT e T o msema mima] e
T M e LA N LS b e b

#include <fcntl.h>
#include <svs/stat.h>
#include <sys/tyres.h>
ginclude <stdlib.h>
zinclude <math.h>

zinclude "include/mv_01.c"
zinclude "include/lvnst.h"

. void cpx(double *deg(2], long *inum, leng size, flcat alpha(2], flcar c[2])
{
long ccuncO,councl, lasc;
long ratio=8;
double data_arrayv{23]1(2i;
deuble *dp0Q, *dpl;
long tetal;
deuble M[2][2];
double u,un(2];
dcuble lewvy([2}];
double factor(2],offset(2];

u=M_IN2;

for (count0=0; count0<2 ; counc0++)

{
if(c[counc0]<=0.0)

{

@ }

un[count0]=pow(u, (1.0/ (couble)alpha[count0])-1.0) ;

printf ("imvalid c\n"});
exit(1);
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total=(l<<size);

if(alphal0j!=1.0)
offsec(0]=-c[0]+c([1];
else
2ffcen (0120 0,
if(alpha(l]!=1.0)
offset(l]l=c(l]*tan(M_PI_2*alpha(l]);
else

cffser[1]=0.0;

data_arrav(0] (0]1=V0;
data_array{0] [L]=V1;

for (counc0=1; countO<=size; countd++)

{
levy{O}=(lvns(ingm,alpha[0],c[O])*un[O])*offsecfoz;
levv(ll=(clms (inum, alpha(l],c(1}) *un{l])+offsec(1];
mrot (u*levy [1],M);
msm(ex (urlevy [0]), M) ;

mv (M, data_array(count(-1],data_array [countQ]) ;

}

dp0=&deg (0] (0] ;
dpl=s&degi{l] [0];

*doQ++=data_array[size] [0];
*dpl++=data_arrayisize] [1];

last=0;
for(countl=1;countl<total ;countl++)
{

for (count0=1;countO<=size;count++)
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{
if((countl™last) & (ll<< (size~-count0)))
{
lavy[0]=(lvns (inum,alphal[0],c{0]) *un(0])+offset [0];
lenv(l]=(clvns(inum,alpha{1],c[1])*un{l])+offsec(l];
mret (u*levv {11, M) ;
msm (e (u*levy [0]),M);
ms (M, data_array [counc0-1],data_arravicountl]);
}
*rO++=data_array[size] [0];
*dpl++=data_array[sizel [1];
lasc=ccuntl;
}
raTiem;
}
#undef VO
#undef V1

A.3.2 file “mv_01.c”

/* mv_0l.c contains matrix functicns */

#include <math.h>

/* o (scalar and matrix product a=g*a) */
void msm{double q, double al[2](2])
{
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[

/* matrix times column vectcor w=a*7s */

void mvidoubls a{2] (2], doubls v([2], double w([2})

{

NLO al01 (0] *v (0]} + (&[0} (L] =/(1]);
all] (0] 11{1

{0
[Cl*v{0])+(all] {1]*vi1]);

e

2[{1]1[11=a{0] [0]=cos(theata);
2[1}[Qi=sin(theta);
(Qifl]=-all](01;
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