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abstract

Historically discrete multiplicative cascade models have been developed to

mimic sorne of the characteristics of fully-developed turbulence. Sorne of these

models have been found to be of much more general relevancy and have been

used to simulate and analyse many different kinds of simple geophysical and

other scaling fields. The desire to describe more complex processes has led ta

the invention of muitivariare multipiicative cascaàe models. ûf these the simpie

"complex cascade model" is considered in detail in this thesis. The background

theory of Lévy random variables and discrete scalar cascades is covered and a

description of the various existing analysis techniques is provided. Two

analysis techniques are described and tested on complex cascade simulations.

The new "adjacent data points" (ADP) method is found to be superior ta the

traditional analysis technique. A discussion of the difticulties \vhich may be

encountered when analysing recorded complex data is included.

résumé

Historiquement. les modèles de cascade multiplicative ont été développés pour

simuler certaines des caractéristiques de la turbulence pleinement développée.

Quelques-uns de ces modèles se sont avérés d'une pertinence dépassant les

limites de la turbulence et ont ainsi été utilisés pour simuler et analyser plusieurs

champs géophysiques simples ainsi que d'autres champs possédant une

invariance d'échelle. La volonté de décrire des processus plus complexes a

mené à l'invention des modèles de cascade multiplicative à plusieurs variables.

Parmi ceux-ci. le modèle simple de cascade complexe est étudié en détail dans ce

mémoire. Les fondements de la théorie des variables aléatoires de Lévy ainsi

qu'une description des différentes techniques d'analyse sont présentés. Deux

techniques d'analyse sont décrites et vérifiées par des simulations de cascades

complexes. La supériorité de la nouvelle méthode des points adjacents par

rapport à la méthode d'analyse standard a été démontrée. Une discussion sur les

difficultés qui peuvent se présenter lors de l'analyse de données complexes est

incluse.
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• Glossary (of commonly used terms)

eqn. equation

fig. figure

m.f. multifractal

p.d.f. probability density function

r.v. random variable

ADP adjacent data point(s)

DCUNI: discrete cascade universal m.f.

S&L Schertzer & Lovejoy (1995)

S&T Samorodnitsky & Taqqu (1994)

»

( ) average, defined for a LV. x with p.d.f p(x) as (x) = fx p(x)dr

c(y) "codimension function:' detïned in equation (1.10)

d dimension of (embedding) space• q exponent, usually real and positive; "order of moment"

Cl "codimension of the mem," § II.2A

DB "box-counùng (fractal) dimension," defined in equation (L8)

K(q) "(Laplace) second characteristic function." defined in § II.2.3

K(q) "moment scaling function," defined in equation (II.S)

L "outer scale," the size of box in which the whole process will fit

Z(q) "(Fourier) characteristic function," § 11.2.3

a a parameter in the a -model of § 1.4.2

a "L" . d " f L " § II ? 3evy ln ex 0 a evy r.v., ._.

f3 a parameter in the ,a-model of § 1.4.1

f3 "skewness parameter" of a Lévy r.v., § II.2.3

f3 slope of power spectrum, defined in equation (II.9)

E;. (the value of a) field (at a point in space and time) at resolution À.

r Harder of singularity," § II.2.1

• À. "resolution" or "seale" eorresponding to a physical size of LIÀ.

J.I. "shift parameter" of a Lévy r.v., § II.2.3
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1 1ntroduction

1.1 The Limitation of Human Prescience

The orü!ins of science itself can be found at the time c. 3500-2500 BC, known bv
~ ~

historians as the period of the hieratic city stare 1. The people of that time conceived of the

city as an imitation on earth of the cosmic order which they observed around them.

Administered by the priests and other classes the universe, society and the individual were

made to be in perfect harmony. One of the chief rôles of the priests, then. \vas to make

highly accurate observations of nature so that they could ensure that man continued to be in

consonance \Vith the cosmos. \Vell-known examples of the skill with \vhich such

observations were made are the pyramids and Stonehenge. And this was the birth not only

of science but also writing, the wheel. mathematics, the calendar. astronomy, number

systems (decimal and sexigesimal). kingship. the class system. priestcraft. taxation and

bookkeeping. The important idea underlying aIl this is that nature was believed to be

perfect and divine and science was in accord with religion. Indeed the purpose of science

itself was very much diagnostic. if not predictive.

This view persisted for approximately 5000 years until tïnally a rift began ta appear

between the two. The European Christians having int1ated Revelation beyond reason were

delivered their tirst blow by William of Ockham (c. 1300-(349) with his so-called

Ockham's razor. Then, starting with Kopernik2 (a.k.a. Copernicus) in 1507 and

culminating with Galileo, the priests (of the Roman Catholic Church. in 1630) marked the

departure of the two by condemning as heresy Galileo' s scientitic discovery that the earth

moves round the sun. Thus science was eut from the root by those who were there to tend

it. And alone but contident, like a rebellious adolescent. it was seemingly capable of

anything. 50 as the importance of the priests diminished the achievements of man· s use of

reason seems to have grown exponentially.

Among the great scientific discoveries of those times was Newtonian physics which

was an important part of the eighteenth-century Enlightenment and Industrial Revolution.

In fact (classical) mechanics became the tirst physical theory to be studied systematically. It

8
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seemed that there could be no limir to the technological and scientitic achievements

possible3. Science progressed with mechanics, fluids and then electricity and on to

particles. Finally. after about 250 years of this new found freedom a few truly astonishing

scientific discoveries made it clear that there were severe and restrictive limitations on what

man could hope to achieve. The theory of relativity (special theory in Einstein (1905)). the

uncerruinty of quantum mechanics (starting with Planck (1900)) and Godel's

incompleteness theorem (Godel 1931) are sorne of the outstanding examples of scientific

and mathematical discoveries which irrevocably proved the by then five-and-a-half­

millennium-old idea of absolute knowledge to be inadequate. This was perhaps the most

fundamental change in our w~ltanschaLlllng,a change which we are unlikely to see repeated

in our own lifetimes. From the broken hubris of our past it was up to the open-minded

scientists to construct a new way of looking at things.

Fig. 1.1: Mikolaj Kopernik (picture from O'Connor & Robertson 1999)

But the cracks had already started to appear during the [ast century. One such

example was the discovery, over a hundred years ago by Poincaré (1892). that mechanical

systems which followed Hamilton's equations could display chaotic motion. It \-vas not

until much more recently that in our particular field of interest Lorenz (1963) discovered

detenninisùc chaotic behaviour in a very simple mathematical model of convection in a fluid

layer heated from below. He found that his set of three coupled total differential equations

9
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permirted solutions in a particular pararneter range for which the model had exponential

sensitiviry ta initial conditions. \Vhat made the discovery sa important is that the observed

chaotic behaviour in rime is not due to noise, or an infinite number of de2:rees of freedom.

or quantum mechanics. It was thus shown that our ability to determine future events in a

deterministic world has its limitations.

•
Introduction

1.2 An Investigation of Vortices and Turbulence

§ LI

•

•

The detached and secular observation of nature started with the Greeks. In their

\vritings can be found descriptions of such natural phenomena as whirlwinds and dust

devils. About 1500 years later Leonardo da Vinci (1451-1519) reached a sort of

culmination in the artistic description of such natural events. His drawings contain many

examples of turbulent and vortical tlow in channels and around obstacles. The smooth

tlow of a tluid around a cylinder. for exarnple. is called laminar tlow. As the tlow speed is

increased vortices begin ta appear in the cylinder's wake. At higher tlow speeds the

vortices forrn and detach repeatedly. tlowing with the tluid behind the cylinder in the 50­

called Karmân vortex street (see tïg. L2. top). Finally at even higher tlow speeds the tluid

motion behind the cylinder becomes entirely chaotic: this is calIed (fully developed)

turbulent tlow and the mechanism which has just been described is called transition through

spectral development. This progression may be seen in figure 1.2 below (the parameter R

will be detïned in § 1.3. t) fronl top to bottom.

A different kind of transition from laminar [0 turbulent tlow was first described by

Reynolds (l883). In his experiments warer \Vas introduced into a pipe at a constant tlow

rate within which there was a thin stream of higlùy coloured wuter (tracer) ta make the tlow

pattern discemible. At low speeds the tlow remained laminar throughout the length of the

pipe as could be seen by observing a straight Hne marked by the tracer. \Vhen the flow rate

was increased beyond a critical value he found that at a cenain distance from the entrance ta

the pipe the thin line of tracer fluid suddenly broadened out to tïll the encire cross-section of

the pipe (see tïgure 1.3). The mixing of the tracer indicated a sudden transition to strongly

turbulent flow. This abrupt transition is cuused by small instabilities in the t10w which get

10
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Fig. 1.2: Sorne steps in the progression fram laminar flow ta fully developed

turbulence; the pictures show (top) the wake behind a single cylinder for R=1 OS and

behind two identical cylinders for R=240 & 1800 (middle and bottom, respectively).

Pictures from (top) Van Dyke (1982) and (bottom & middle) Frisch (199S).

§ 1.2

I~
;Ji'

•

Fig 1.3: Reynolds' pipe flow experiment showing the sudden onset of turbulence

after a period of laminar flow as seen in the tracer mixing with the water, flowing

from left ta right (fig. from Reynolds 1882).

amplified, and is exactly like the sensitive dependence on initial conditions found by Lorenz

(§ LI). In an analogous way the instabilities in the (rnuch more complex) atrnosphere

become amplified and lead to turbulence and the manifold natural phenomena which are

seen as a result4'.

Il



Leonardo da Vinci was the first to describe turbulent t1uid motion5. Today it might be

said that fully developed turbulence has the following basic properties (as adapted from

\Varn (1995): a complex space-time structure involving a broad range of scales~

irreproducibility-repeated experiments yield different outcomes, hence a lack of

predictability~ high levels of vorticity~ strong dissipation and rapid decay after energy

sources are removed: enhanced transport properties. It could also be said that turbulence is

deterministic. because the physicallaws goveming its motion are kno\vn exactly. But \Vith

the sensitive dependence on initial conditions and the very large number of degrees of

freedom it is difficult in practice [0 make this work in genera16. The limited success of

numerical weather prediction models is in large part due to this.

•
Introduction § I.2

•

•

Indeed. of the five review articles consulted in the writing of this chapter the biggest

commonality they share is their agreement that the theoretical understanding and

quantification of turbulence is a problem which is still far from being solved (eg..

Bhattacharjee 's (1998) review focuses on this aspect in particular). Thus with the chaotic

uncertainties of turbulence it seems natura! to wonder whether a probabilistic description is

justitïed; the answer is certainly yes (eg., Frisch (1995) p. Si). The paper "Statistical

Theory of Turbulence" (58 pages in four parts) by Taylor (1935) was pioneering work in

this regard. He suggested for the tïrst time that the oscillations of the atmospheric velocity

field be measured statistically and used to compute the energy spectrum. This \ljUS soon

followed by much research by others.

1.3 Reynolds, the Navier-Stokes Equation and
Kolmogorov

1.3.1 The Navier-Stokes equation

The equations of motion applied to an inviscid fluid were derived in the period 1751­

1759 by Euler. and are now known as Euler's equation. About seventy years later an

additional viscous tenn in this equation was derived for viscous tluids. For a Newtonian

t1uid of constant viscosity. and with the simplification of assuming that the tluid is also

incompressible, the result is called the Navier-Stokes equation and has been known since

Navier (1823). It is

12
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dv 1 "J

---==--yp+vV-l::+ f
dt P -

(Ll)

§ 1.3.1

•

•

where !:. p, p and v are the velocity, pressure, (constant) density and (constant)

kinematic viscosity of the fluid respectively. .[ represents body forces such as stirring or

gravity. though these are usually neglected as shaH be done below.

Some ';cry important obscr';ations must hc m:.ldc :.lbout this cquation \1. i ) cf motion

as it forros the basis of later work dealing with turbulent tluid tlow.

Firstly the Navier-Stokes equiltion (Ll) can be non-dimensionalised to reveul a

dependence on just one parameter. By choosing a characteristic length and velocity scale

(eg., in Reynolds' pipe t10w experiment these were the size of the pipe and the t10w speed)

the dimensionless position and velocity vectors can be \vritten as

, rd' vr =..=. an v =~.
- L - U

The remaining variables may be dealt with similarly by introducing arbitrary seules

(constants) which may be set to any value. ultimately thereby allowing il reduction in the

number of parameters. These are

, t d ' Pt =-an p =-.
T P

Introducing the dimensionless variables into (LI) gives

L "v' P n' V t'7,; ,--=---yy+-v V
VT dt' VZp VL-

which can be simplitïed by choosing T =LIU and P = pVz to give the dimensioniess

Reynolds equation

(1.2 )

where the single (dimensionless) parameter R is given by

13
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R= UL.
V

§ 1.3.1

•

In rhis fonn equation (1.2) has only one parameter, R. called the Reynolds number

which depends only on the characteristic scale and velocity of the tlow and inversely on the

(kinematic) viseosity of the tluid. As a consequence it was noted by Reynolds (1883) that

two different contigurations of the system may be dynamically similar if rheir Reynolds

numbers are equal. And, in particular. he noticed (§ 1.2) that the determining factor as to

wherher turbulence occurs or not is the value of R; nows with R above il critieal value

will be turbulent This critical value for pipe tlow is about 2300. This should be compared

with the Reynolds number of the atmosphere (for which the large scale phenomena have

U::: LO ms-l, L== 1000 km and v == 10-5m~ çl) which is somewhere of the order 10'~ ie ..

very much larger. In fact such a large value of Reynolds number is as yer impossible to

achieve either in experiment or numerica! simulation.

Secondly the Navier-Stokes equation has several inherent symmetries which.

ignoring boundaries. are invariance under space and rime translation. rolation. panty (space

and velocity reversaI) and scaling transformations. The geometric symmetries are easily

witnessed in laminar tlow but as the onset of fully developed turbulence is approached. and

the smoothness of the tlow is disrupted. these symmetries begin to break (eg. the up-down

symmetry of the Kârmân vortex street in tige 1.2 lacks il left-right symmetry). Finally when

the turbulence is fully established it is observed to be homogeneous and isotropie (already

implied in Kelvin (1887) but not tested experimentally until much later eg.• isotropy by

Townend (1934)); the geometrie invariances are once more established. at small seales and

away from boundaries, in a statistical sense. Of the sealing property of the Navier-Stokes

equation consider the isotropie transformations

(1.3 )

•
where h is an arbitrary scaling exponent. These already imply that t ~ À,I-I't. Substiruting

these into equation (LI) reveals chat the sealing of the remaining variables must be

u ~ À,I+/,V and l.~ À!It-11. •

14
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1.3.2 The seeds of KolmogorovJs 1941 papers

§ 1.3.2

Assuming homogeneity and isotropy, for sufficiently large Reynolds number and at

small scales away from boundaries and singularities, Kolmogorov7 (194Ia) made his two

hypotheses of similarity. His second hypothesis of similarity essentially states that the

statistical properties of (fully-developed) turbulence at seules larger than the dissipation

scale, the finest scale at which most energy is lost to viscosity, are dependent only on the

mean dissipation rate ~ (anù not on U J. So l:onsiàer the statistics of the tiongitudinail

velocity differences .dv(l) =v(x + l) - v(x) and the corresponding velocity structure

function

(lA)

•
(where ( ) indicates taking the mean of the quantity inside the brackets). Since ë has

dimensions of [Lf[Tr j
further dimensional analysis shows that Kolmogorov's second

hypothesis implies

([,5)

where Cs is a universal dimensionless constants. This result was derived for q=2 (the

second order velocity structure function, for which the exponent on 1 is two thirds) in

Kolmogorov (1941a) and is known as the "two-thirds law." Considering once again the

scaiing transformations (1.3) it can be seen that the LHS of (1.5) changes by a factor of ,{Ih

when transfonned whereas the RHS changes by a factor À,l{/} ~ therefore h = 1/3. Equation

(1.4) may be rewritten in a more general fonn for the magnitude of the velocity differences

\vhere Kolmogoroy's second hypothesis of similarity implies that

C(q) =9...
- 3

(1.6)

(1. 7)

•
The prediction that the velocity structure function of order q will exhibit scaling in the

inertial range with scaling exponent Ç(q)=tq (a linear behaviour in q) is amenable to

15
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Fig. 1.4: Andrei N. Kolmogorov (picture from Kendall 1990)

§ 1.3.2

•

•

experimental testing of different arder moments. But it should be noted that in his 1941

papers Kolmogorov only gave explicit predictions for the second and third order moments.

and that measurements of higher order moments is difticult. This may be why no tests

were performed with q~4 until Van Atta & Chen (1970). Since then improved

investigations have been made eg.• Anselmet et aI. (1984), Ameodo et al. ( 1996). Benzi et

al. (1993) and Schertzer et al. (1995)9. Notably it has been found thut the structure

function exponent deviates signifieantly from this scaling relationship (1.7) at higher arder

moments: an effect known as "anomalous scaling." This will be the subject of more

discussion in § I.5.

Another implication of Kolmogorov's second hypothesis may be seen by considering

that energy has dimensions of [L3][r2
]. Thus the energy spectrum will be given by

E(k) =CEE1I3k-5f3 • This result was first seen explicitly in an independent derivation by

Oboukhov (1941) and consequently is known as the "Kolmogorov-Oboukhov five-thirds

law·'. The landmark experiment in verifying the five-thirds power law behaviour was due

(0 Grant et al. (1962) who analysed tidal channel data to convincingly show the predicred

power law over a seale ratio of approximately 103
• This has been. and continues to be, the

subject of much investigation (for good reviews see Lilly (1983) and Schertzer and Lovejoy

( 1983) and controversy over such points as the putative meso-scale gap (since Van der

16



Hoven 1957) which is associated with the separation of the regimes of twc and three­

dimensional turbulence in the atmosphere. Despite the controversies it would seem that

with ever increasing computing power and improvements in measuring devices the range

and quality of unbroken scaling seen in turbulent tluids only increases. (Indeed. as an

aside, the scaling behaviour observed in energy spectra has become rather ubiquitous in

measurements of natural phenomena of all kinds.) However the power spectrum is itself a

second-arder moment (the Fourier transfonn of the autocovariance) and does not paint the

entire picture of the nature of turbulence.

•

•

•

Introduction

One important aspect of the character of fully developed turbulence which had been

almost totally ignored is the intermittency of turbulent tields. In particular the rate of energy

dissipation is not constant throughout space and time. Twenty one years after his 1941

turbulence papers Kolmogorov (1962) made a third hypothesis that the rate of dissipation is

lognormally distributed in space and time. This followed Oboukhov (1962) who had

assumed the same (but only) for pragmatic reasons. and a criticism by Landau (of

Kolmogorov' s 1941 work) that theoretically there is an increase wÎ[hout limir of the

dissipation as the ratio of scales increases. Thus the notion of intermittency. or "spmial

inhomogeneity" as Batchelor & Tonwnsend (1949) called it. was forrnally taken up in the

mathematics and the question of what statistics may best describe these tluctuations was

raised l o. Indeed the tïrst to propose a type of intermittency model already markedly

different to the ideas in Kolmogorov ( 1962) were Novikov & Stewart ( 1964).

1.4 Scaling, Cascades and Phenomenological Models
1.4.1 Cascades and intermittency; early models

Kolmogorov (1962) states that "the hypotheses concerning the local structure of

turbulence at high Reynolds number, developed in the years 1939-41 by myself and

Oboukhov were based physically on Richardson' s idea of the existence in the turbulent

tlow of vortices on aIl possible scales... and of a certain unifonn mechanism of energy

transfer from the coarser-scaled vortices to the finer." It wouId now do weIl ta recaIl that

Richardson 11 was himself the pioneer of numerical weather prediction and in Richardson

( 1922) there appeared the now famous poem

§ 1.3.2
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Fig. 1.5: Lewis F. Richardson (picture from O'Connor & Robertson 1999)

Big whorls have linle whorls.

That feed on their velocity:

And litde whorls have smaller whorIs.

and so on to viscosity.

This poem~ it tums out, makes a good model for fully developed turbulence when

taken quite literally. The energy of the largest eddies. at the so-called outer scale or

sometimes injection scale, is successively passed down ta smaller eddies of a similar size

(localness of interactions) until tinally, having traversed the entire range of scilles. the

dissipation scale is approached where most of the energy is lost through dissipation. The

important features of tbis model are that i) it is a self-similar cascade process. which means

that the operation taking place at the large scales is the same as the one taking place at the

small scales. and ii) the fundamental quantity of interest, which is itself conserved in the

cascade process. is the energy tlux E. (Indeed it is probable chat thinking along such lines

is what led Kolmogorov (1941 a) to make bis two hypotheses of sinùlarity.)

It is the energy nux. then, which became the subject of much attention in the fonn of

self-similar cascade models. Of course such models were considered for probabilistic

§ 1.4.1
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rather than detenninistic purposes. The first explicit self-similar cascade models were by

Novikov & Stewart (1964) and Yaglom (1966). Whereas the latter was manifestly

interested in the lognormality of the distribution of intermittency, by making use of

Kolmogorov's third hypothesis (the "log-normal model"), the former were concemed with

the patchiness in a literaI sense as their model contained patches which either contained

energy or were entirely devoid of it (the "black-and-white moder·). As such this \vas quite

an extreme departure l'rom being realistic in the sense of being able ta generate tïelds which
. '- --

•
Introduction

had the appearance of an actual turbulent tield.

§ 1.4.1

•

•

It should be noted that intermittency can occur as the result of simple repeated scaling

operations applied to geometrical shapes in t\Vo dimensions eg., Von Koch curves (Von

Koch (906). or one dimension as in the Cantor set (Cantor 1883). The latter, long known

by mathematicians as a sort of pathological construction thanks ta its harsh intermittency.

forms what i5 known as a Cantor dust when carried through ta intïnitely small scales.

Hence. as intermittency is observed in nature. it would seem that there is reason to pursue

models of turbulence based on this sort of construction. Mandelbrot' s (1967) historie

paper introduced the usefulness of the concept of fractals l :!. lloosely) complicated

geometrical objects of fractional dimension, as pertaining to the question "How long is the

coast of Britain?" Although there are various different ways of detining what a fractal 1S,

here it is sufficient ta adopt the (still rather woolly) detinition that a fractal i5 a complicated

shape (set of geometric abjects) whose effective dimension is greater than the topological

dimension of the basic material it is constructed from eg., dots. lines etc. Note that this

detïnition is consistent with the idea that a fractal is not space tïlling ie .. that it has a

fractional dimension less than that of the embedding space.

As an example of a fractal consider the triadic Cantor set shawn in ligure 1.6 \vhich is

shown in various stages of construction (going down the page). lt is made l'rom a ane­

dimensional bar which is repeatedly split into two smaller parts. then twa into four etc.: it

is self-similar. In the limit of an intïnite number of such operations it is a set of points

which (individually) have a topological dimension of zero separated by gaps of all (only at

discrete intervals) length scules. Notice that this particular set is not space tïlling: the
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intermittency which is seen in the Cantor set is a characteristic of fractals which are not

space-filling.•
Introduction § 1.4.1

The effective dimension of this construction may be given. for example. by the simple

"box-counting method" (eg.. NIeakin 1998). The box-counting dimension for a fractal

Iying in li -dimensional space is defined as

D 1
· log lV(n

B = lm ----::;'-:.-...-
[-0 loge 1/1)

(1.8 )

•

where ,yU) is the number of non-empty, cl -dimensional hypercubes tïlling the space. each

of side 1. Though in practice the limit l ~ 0 is not taken~ the ratio (I.8) is evaluated at a

number of different scilles for which N(l) is very large. For the trindic Cantor bar. at the

n th level down. l = (1/3r and ,YU) = 2n which gives a box-counting dimension

(independent of n) of DB == log 2/log 3=0.631. This exceeds the topological dimension

and. by the loose definition adopted above. is the fractal dimension of the triadic Cantor

bar.

- ..
Il Il
1111 1111

- ­Il Il
1111 1111

•

Fig. 1.6: Triadic Cantor bar constructed by successively removing the middle third

from each black bar (going down the page). Here the height of each bar.

representing intensity, is such that the sum total area of the bars across any

horizontal level is a constant; the area is conserved. Note that there is also an

increase in intensity, accompanied by a decrease in the width of the bars.

demonstrating the increasing intermittency of the system going towards smaller

scales (fig. from Feder 1988).
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Equation (1.8) may be rewritten by defining the quantity À =1/i (commonly called the

"scale" or "resolution") to give lV(l/À) = ADn. 50 the probability that a hypercube of scale

À. is not empty is

n.9)

•

•

where the quantity c =li - DB is called the ··codimension." If a fractal energy cascade is

considered to he a model for turbulence then the effect of a non-zero codimension is ta

make the scaling exponenr for fully-developed turbulence Iz =1- (L - c:). (This result may be

demonstrated by dimensional analysis considerations eg.. Frisch ( 1995) pp. 138-139. the

details of which are not of importance here.) Furthermore this can be shown ta imply chat

the structure function exponent ç(q) =tq + c(l- +q). This result is an example of

anomalous scaling with a linear term in q which results from the non-space-filling

properties of a fractal field .

The black-and-white model, rather like a random version of the Cantor bar. produced

an intermittency which was nat space-filling; it is fractal. wlandelbrot (1974) made a

detailed study of the log-normal and black-and-white models arriving at a very general

multiplicative cascade scheme which he caUs "curdling" and which cao be either space­

tïlling or nat 13, sec tïgure 1.7. (When space tilling he called this the "weighted-curdling

modeL .. othenvise the ··absolute-curdling model.·') Related to the black-and-whiEe mode!

Frisch. Sulem & Nelkin (1978) produced a very similar model. intended as a "toy model:

called the .• ,B-model" (see figure I.8). This model in particular has a codimension of

c =1- log ~ {3 which is dependent on the choice of the pameter f3 (1 4): it too is fractal. But

during the period 1982-1983 it became increasingly more obvious that experimental data

\Vere not showing the linear dependency (anomalous scalingl of fractal models of

turbulence. This prompted the search for other models that couId account for this

behaviour l5 .
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§ 104.1
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Fig. 1. 7: Schematic diagram ta iIIustrate the prototypical random multiplicative

cascade model in two dimensions. The cascade proceeds from the largest scale L.

where the 'eddy' fills the entire space, to the smallest scale LIA.:; in n steps: the

scale ratio between successive steps is Àa. At each step the quantity E is

" multiplied by an independent random quantity which may have zero values. This

mode! may be space-filling or not and is the basis for ail the discrete cascade

models discussed in this section; the only fundamental difference between them

being the choice of random multiplicative factor. (Fig. reproduced from Schertzer

& Lovejoy (1997) with minor modifications.)
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-:
Fig. 1.8: A simulation trom the {3-model in 2-D where the black squares represent

"alive" energetic turbulent eddies. At each cascade step every square is divided

into four smaller ones and in this case the fraction of squares which are kept alive is

f3
~~ .

=.2 '-:::0.871; here there are nme such cascade steps. It can be shown that for

the ,a-model DB =.2 + log2 f3 which gives DB = L.8. (Fig. from Schertzer & Lovejoy

1996)

1.4.2 Multiscaling and multifractal models

§ L4.1

•

By considering the characterization of strange attractors by their (fractal) dimension.

something which up until that point had been limited to only three truly different

dimensions 16. Hentschel & Procaccia (1983) showed that strange atrractors are in fact

characterized bv an intinite number of generalized (fractal) dimensions. At about the same. ~

time the idea that intermittency in fully developed turbulence may be characterised by many

(or a hierarchy ot) fractal dimensions can be found in Schertzer & Lovejoy (1984) and

Parisi & Frisch (1985). In the latter Parisi & Frisch coined the term « multifractal )) (m.f.

for short) with its obvious meaning. They state the fact that the Navier-Stokes equation is

invariant under scaling transformations for any value of the scaling exponent Iz: Iz need

not remain tïxed. This ··multiscaling" implies that the codimension is no longer a constant.

What (his means in practice for a (I-D) tield viewed at a resolution À cao be seen in tigure

1.9. In this tïgure t\VO exceedence levels are shown which define the set of boxes where

the field ê A(x) (note that the field is no longer black or white but can take any real positive

value) is greater than a certain threshold. These sets of boxes can have fractal dimensions
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different from each other thereby allowing the codimension for a field of this type to he

many-valued. Thus equation (1.9) may be generalised to

(LLO)

x

•

•

(Pr means 'the probability that. .. ·) where y is the "order of singularity" and the

codimension is now a function of y .

This idea expressed by Parisi & Frisch (1985) pennies anomalous scaIing with non­

linear rerms in q. but as an idea il was without uny suggestion as ta how ta generare such a

tield. They express the desirabiIity of tïnding by experiment the departure of ç(q) from

linearity and aiso the importance of showing universalüy in its forro ie.. that it shouid be

independenr of initial conditions and ail other pararncters which should be irrelevant in l'ully

developed turbulence. It may be added to these painEs that there is also the unspoken hope

that the funcrion SI q) \vill itself not depend on an intinite number of parameters ta specify

iL

.-.j ~

LIA
Fig. 1.9: A 1-0 field seen at a resolution À. with two sets (of fine sections) defined by

the exceedence levels À71 and )":':; in general the sets may have different fractal

dimensions making it a multifractal field. (Fig. reproduced tram Schertzer &

Lovejoy (1996) with miner modifications.)

Schertzer & Lovejoy (1984) describe the practical, though still pedagogical.

.. a -model" (acrually more clearly elucidated in Schertzer & Lovejoy (1985)) which is a

simple enhancement of the ,B-mode!. In this weighted curdling, or space-tïlling, model the
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eddies are either increased or decreased (are multiplied by À,i'. > 1 or À,ï- < 1, respectively,

as deterrnined by the choice of the two parameters) at each cascade step by a random choice

thus
•

•

Introduction

Pr(increase, À,7. ) = f3
Predecrease, X'-) =1- f3

\vhere conservation of the overall mean of the tield implies that {3X1• + (1- (3)À'I- =1. In

this way the tield generated after many cascade steps may have many different possible

values resulting from the random combination of increases and decreases ie., of "mixed

orders of singulariry:' allowing for the possibility of a hierarchy of codimensions. But the

universal form for the codimension function (or equivalently the structure function

expanent) was not known then.

Later. in Schertzer & Lovejoy (1987), they derive a universal form 1ï for the

codimension function \vhich is dependent on just t\Va parameters. a and CI (the

"codimension of the mean"),

cCr) =c
1
(-.L +J..)a. (for a;tl)
a'e a1

\vhere t + 7 =1 (and this a bears no relaùonship ta the a of the a -mode!). Their modeL

the "continuous cascade mode!." is based on the use of exponentiated Lévy 18 random

variables (cv. for short) which have the property of stability under multiplication (to be

described in detail in chapter II). As applied to turbulence the codimension may be

converted using a Legendre transform (Parisi & Frisch 1985) to a structure function

exponent and in this case the universal form becomes

§ 1.4.2

(1.11)

•
A number of other cascade models have aIso been proposed by various researchers which

have different properties: a few of the major models still competing for attention in the

CUITent literurure are the '"random f3 -moder' (Benzi et al. 1984), the" p -mode!" (Nleneveau

& Sreenivasan 1987) and the ··She-Leveque modelH19 (She & Leveque 1994). For a
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comparison of the predicted Ç(q) functions for various models with data see Anselmet

( 1984), Leveque & She (1997) and Schertzer et al. (1997).•
Introduction § 1.4.2

•

•

Fig. 1.10: Paul P. Lévy (picture trom O'Connor & Robertson 1999)

But these cascade models were designed more with statistics in mind than the

production of life-like representations of naturally occurring events: a visualization of the

generated tield to be compared with a recording of the natura! one is not usually provided.

Apart from arguments based on fundamental points of the theory their testing ground is

simply the form of Ç(q). But that does not mean that simulation is not possible, especially

since these models do produce an actuai field as opposed to just sorne statistical quantities.

The continuous cascade model is a good example of a model that has been used to simulate

a wide variecy of geophysical fields. Nevertheless it should he noted that the applicability

of these models to any "random' data or field has been restricted ta the simplest possible

case, namely to fields of positive valued quantities only, such as the energy flux or absolute

value of velocity increments for which they were originally developed. This puts these

models at a strong disadvantage when compared with direct numerical simulation (DNS) of

the Navier-Stokes equation for a (two or) three dimensional velociry tield.
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1.5 A More Realistic Model

§ 1.5

•

•

An interesting innovation can be found in Ott et al. (1992) when they apply the idea of

signed measures to multifractals. The result is the so-ealled "cancellarion exponent" which,

if greater than zero, indieares an oscillation in sign at arbitrarily small scales. This notion is

later taken up by Vainshtein & Sreenivasan (1994) in a theory of the oscillation in sign of

the velocity tïeld in fully developed turbulence. Yet despite this work there is not yet a

model (ln the sense that lt may slmulate an 'observable' tïeld) of turbulence based on this

idea. Furthermore it is stiHlimited ta scalar quantities.

Another 'extension' which is similar. in that it deals with a mathematical idea of

multifractals rather than create an explicit model. is found in Riedi & Scheuring ( 1997).

They note that in nature there are usua1ly related components (variables) of a system whose

interaction with each other is of great interesr. Their '''conditional multifractal spectrum"

provides information about the relation between two distributions and goes beyond a simple

correlation in that it involves moments of aIl orders. But this may tïnd its usefulness in

analysis rarher than simulation.

Of a more dynamic nature, yet quite different to the models discussed 50 far, are the

so-ealled shell models. Almost as if govemed by the Navier-Stokes equation these model

the rime evolution of the 'generalized velocity' at diserete, geometrically spaeed intervals

(eelIs) in scale. As such they ultimately can only provide a statistieal result for the energy

and enstrophy of the turbulence they model. One of the tïrst shell models. by Gledzer

( 1973), in two dimensions has been extended to three dimensions by Yamada & Ohkitani

(1987) by introducing a complex quantity for the generalized veloeity (ealled the "GOY

shell moder'). They found that their model exhibits good power law scaling which follows

the Kolmogorov-Oboukhov tÏve-thirds law. But as a model with only a single eeH at each

resolution, hence named one-path, it clearly departs signitïcantly l'rom being totally

realistic.

Unlike the traditional shell models there is the ··scaling gyroscopes cascade" (SOC)

model of Chigirinskaya & Schertzer (1996). This deterrninistic shell model simulates the

rime evolution of the velocity vector and vorticity field in a 'tree structure' where the

27



number of model ceUs increases with the inverse of the scale. It has been run to siffiulate

very large Reynolds number ( ::: 6 xl 0 7
) turbulence in both two and three dimensional

contïgurations and was found to produce power spectrum scaling in close agret:ment \Vith

the KoImo~orov-Obukhouv result (see Schertzer et al. (1997) for these results) suggestin~
....... ....... --

that it provides a reasonable model of the Navier-Stokes equation. The significant

advantage of this model is that it contains an appropriate number of ceUs at the highest

resolution and a velocity vector in each of these. This already provides a great deal more

information about the system than the much more limited one-path shell models of

generalized velocity. However the connection between ceUs in 'scale space' and real spaee

has not yet been specitïed.

•
Introduction § 1.5
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Nlotivated ta go beyond scalar cascade modeling. Schertzer & Lovejoy ( (995) have

developed a generai framework ealled "Lie cascades" which describes a multiplicative

process for veetorial (and tensorial) tïelds10. The components of the vector represent the

various variables of the system (aiso ealled "state variables") and are a natural way of

providing a mathematical basis for multiplicative cascades \vhich permit non-trivial

interactions between these variables. The applieability of sueh an idea is not just limited to

a turbulent velocity (veetor) field. which is the most abvious example: any eoupled

processes may possibly be described by such a framework. As a eoncrete example they

define an explicit cascade model for a tïeld of twa real variables which is ealled the

··complex cascade mode!." By treating the azimuthal and radial componeots of the vector

state as two iodependent universal multifraetals they achieve a non-trivial mixing of the

Cartesian components which represent the system. Note that now the state variables may

take any real value. positive or negative. Hence this model is the most advanced in tenus of

providing a general model applicable to actual data.

1.6 Scape of the Thesis

Although the discussion 50 far has deliberately been kept narrowly focused 00

turbulence it is a faet that the ideas of scaling. or self-similariry. crop up in seemingly every

tÏeld of science: the literature on chis subject is aiready vast. Furthermore the applicability

of the universal multifractal form (Schertzer & Lovejoy 1987) has been veritied in many
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different geophysical and other scaling fields (see Lovejoy & Schertzer (1995) for a

review). It has been the mm in chapter l to provide a solid historical background for this

mode1 and sorne of the work by various researchers which point to its broad applicability.

Having already done this the main subject of the thesis will not be to show the analysis of

recorded data and comparison with the mode!. Rather the objective of this work is to

clearly explain the model itself. ta investigate how this knowledge may be used ta simulate

and analyse data. and how ta overcome sorne of the difficulties in the latter. In § L5 there

is a brief review of extensions ta the ancestor scalar models which leads ta the more general

Lie cascades.

•
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Chapter II concerns itself with the details of the discrete universal multifractal

cascade. The building material l'rom which both the scalar and complex cascades are made

is the Lévy r.v. whose properties are described in § 11.2.3. Sorne examples of simulation

are produced (* lIA. 1) and there is a brief discussion on the various analysis techniques

available to the researcher (§ II.3). or these just twa are chosen for investigation in the

subsequent § lIA.2. The attention to detail and Care taken in producing the theory and

results is necessary sa that the work on complex cascades in chapter III may progress

without any concern over elementary problems which would otherwise have ansen. This is

the prerequisite to developing and testing the complex cascade analysis and simulation

techniques of the following chapter.

Chapter III is very sirnilar in structure ta chapter II except that ie deals with the

complex cascade model (as already mentioned in § 1.5). The rationule for choosing this

model is that it is the most simple generalization of the well-understood scalar cascade

which produces multivariate processes. The theoretical work of this chapter (§ IIL2)

closely follows the work of Schertzer & Lovejoy (1995). Il shows in deeail how the results

have been derived, and in doing sa sorne minor difficulties in the original work are

eliminated. Following the explanation of the theory sorne simulations are produced in

§ IIL3 and possible analysis techniques are described (§ ill.4). including a new method

called the ""adjacent data points" (AD?) method (§ IIIA.3). Having done sa it is desirable

to test these analysis methods on the simulations, and this is done in § 1lI.5-6. It is found

that the less trivial nature of the modelleads to sorne complications (which are demonstrated
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both theoretically and empirically) but the new analysis method is found to be an

improvernent over the conventional one. Sorne comments on the remaining difficulties of

analysing recorded data are made in § III.7 (no analyses of recorded data are presented).
•

Introduction § 1.6
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lt \Vas found to be weil beyond the scope of this work to venture beyond complex

cascades despite the lure of thrilling new discoveries. Indeed very liule progress has been

made towards establishing useful multivariate. universal multifractal models. Since (m.f.)

universality is dependent on (r.v.) stability it is relevant to point out that in his foreword.

written in 1981, Zolotarev (1983) states "r hope that the systematic exposition of the

analytic properties of one-dirnensional stable laws will stimulate analogous investigations

for multidimensional stable laws. of whose properties very liule is known ta us." Still very

liule is kno\vn to us today.

30



•
Introduction

Chapter 1Notes

ch. l notes

•

•

(The nurnbered footnotes in this chapter reference superfluous material which may be

found here.) For more infonnation on the hieratic city state the interested reader may

consult eg., Campbell (1960), pp. l44-l50.

) lVlikolaj Kopernik (a.k.a. Nicolaus Copemicus): b. Torun. Poland 19 February l473;

d. Frombork, Poland 24 l\tIay 1543

3 In a lecture delivered before the International Congress of lVlathematicians in Paris in

1900 Hilbert spoke of his belief that there was no limit to the discoveries which could

be achieved in mathemmics: "'This conviction of the solvability of every mathematical

problem i5 a powerful incentive ta the worker. \Ve hear within us the perpetuaI caIl:

There i5 the problem. Seek its solution. You can find it by pure reason. for in

mathematics there is no ignorabimus.·' Hilbert (1900)

of For a review on the nature of atmospheric turbulence and measurernents thereof see

Wyngaard (1991). or for a broad review of oceanic turbulence see Gargett (1989).

5 See eg.. Lugt (1983) § l.3 for sorne reproductions l'rom Leonardo' s work and

discussion.

6 On the importance of Euler's findings in tluid dynamics Lagrange wrote "By this

discovery, the entire rnechanics of tluids was reduced to a single point of analysis. and

if the equarions which include it were integrable, one could determine completely the

circumstances of motion and of action of a tluid moved by any forces. Unfortunately,

they are so rebellious that up to the present time only a few very limited cases have

been worked out." quoted in Truesdell (l968) p. l23

7 Andrei Nikolaevich Kolmogorov (walking in the Caucasus mountains): b. Tambov,

Russia 25 April 1903; d. Moscow, Russia 20 Detober 1987

8 The exact third arder longitudinal velocity structure function has been derived in

Kolmogorov (1941 b) giving CB =4/5 and is consequently known as the "four-tifths

law." For a full mathematical aecount and an appraisal of Kolmogorov' s 1941

turbulence theories see eg., Frisch (1995) ch. 6.

9 A fuller review may be found in Sreenivasan & Antonia (1997) § 3.3.1.

10 For a review covering the basic issues mentioned in this section the reader is direeted

to the excellent review by Sreenivasan & Antonia (1997).
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Il Lewis Fry Richardson: b. Newcastle-upon-Tyne, England Il October 1881; d.

Kilmun, Scotland 30 September 1953

12 For a review on the application of fractals to turbulent phenornena see Sreenivasan

(L99L).

•
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13 An interesting hybrid consisting of a multifractal on a fractal support may be found in

Desaulniers-Soucy & Iuoras (L 999).

14 NB that thi, B j, not the ,ame as the fi used for the ,nectrnl ,Ione tS n.4~) or the; '1 a.. ~ U' '

skewness parameter (§ II.2.3); these are three very different /3' s.

15 lt should be noted that of the models existing up to this point in time the log-normal

model was the only one which produced a non-linear behaviour in the structure

function exponent. However this model has various theoretical shortcomings and is

not a serious contender in the literature. see eg., Frisch ( 1995) pp. 171-173.

16 namely the "similarity dimension:' the "information dimension" and the "correlation

dimension"

17 For a review on universality classes and issues see Schertzer et al. ( 1997).

18 Paul Pierre Lévy: b. Paris. France 15 September 1886; d. Paris. France 15 December

1971

19 although aIso called the "log-Poisson" model

10 A more retïned mathematical result (on the statistics of the process) is being written in

Schertzer & Lovejoy (1999) which makes the rather abstract. general theory more

pragmatic.
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§ II.l

Il Scalar Universal Multifractals
Il.1 1ntroduction

In § 104.1 it was described how a phenomenological model which can concentrate the

activity into successively srnaller scales is required ta provide a degree of realisrn in models

of turbulence. The (conserved) quantity being modeled is the energy flux passing l'rom

iarger to smalier scaies. The muitipiicative cascade modei was discussed and a universal

forro for the sratistical properties~ due to Schertzer & Lovejoy (1987), was introduced.

Here the physical quantity being modeled is not a concern as the applicability of such

models to many geophysical and other scaling processes has been demonstrated by others

(see eg.. Lovejoy & Schertzer 1995). The fundamental structure of the model itself is the

subject of this chapter.

[n § IL2.l the second characteristic function. which is the basic mathemaEical

quantity used ta deal with r. v.s. is related to the (more physical) codimension function.

The critical arder moment above which the characteristic function exhibits "divergence of

moments" is also determined in §§ II.2.l-2 This is an important effect which limits the

usefulness of data analysis techniques. In §§ II.2.3-4 the theoretical properties of Lévy

random variables are described as weIl as the basic discrete universal m.f. (DCU~1)

simulation method. [t is important to know the properties, both mathematically and

empirically (on a plot), of Lévy r. v.s ta gain a feeling for the problems which are

encountered later on in chapter III. In § II.3 sorne results are presented on the universal

m.f. fonns for the codimension and second characteristic functions and the more common

analysis techniques which are available for analysing (m.f.) data tïelds. The focus in

chapter III will be on only two of these techniques.

Fina1Iy in § nA the Lévy r.v.s themselves are displayed and analysed (as a test of the

integrity of the software as well as for edification) as weIl as the DCUNI simulations. The

discrete nature of the cascade process used ta simulate the rn.f. tield will become evident.

as weIl as sorne of the finer linùraùons of the software. Thus having covered in sorne detail

the basic r.v.s used as the generator and the method used to generate a DeUM field, as weil

as for its analysis~ it will (later) he possible to go confidently into a discussion on complex
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cascades in chapter III. (It should be noted that the material on Lévy r. v.s and

multifractaIs, aIl the material in this chapter, is well described in such books as Feller

(L 966), Zolotarev (1983), Samorodnitsky & Taqqu (1994), Janicki & Weron (1994) on the

former and Schertzer & Lovejoy (1996) on the latter.)

•
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11.2 Basic Theory

11.2.1 c(y), K(q) and qs

The most simple fonn of cascade model has discrete cascade steps as in ~Iandelbrot' s

(1974) weighted curdling model (§ 104.1). It may be considered in general such that at

each step there is a change in scale by a factor of À.o, Consider a field of energy nux

occupying a volume of size LJ in d -dimensional space. Then at a scale (1 = LIÀ~ the

corresponding energy flux En may be constructed by taking the product

E" (X'I) = ,UE,. (X
It

). En _1(X'I ). This process. starting from the lowest resolution. is repeated as

many times as is necessary to reach the desired resolution. (See eg.. figure I.7 in 1

dimensions where Ào=2.)

The random multiplier .UEn is an independent realisation of a random variable. one

realisation for each individual step in the cascade. lts probability distribution is dependent

on the details of the panicular model. and may be described by its second characteristic

funcùon K(q) (described later in § 11.2.3) as in the expression (,UE") = ~(q!. Since each

step in the cascade is independent of the others then. at the resolution À = ;..;;.

(EX) = (pE") TI. The important result is that for a self-similar multiplicative cascade

For a normalised cascade K( 1) = 0 at all resolutions.

The field at a given point in the cascade, and at a given resolution. may be

characterised by the arder of singularity r, given by
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A useful characterisation of the field is the codimension. cCr). which cornes from the

probability of exceedence Pr(ê,t > XI) =NIÀJ =À-ctYJ (eqn. 1.9). If the codimension

function for a given field is known then it is possible ta estimate the largest observed

singularity. Ys' given lVs samples of the field. It may be expected that iVsÀJ
À-ctYî) - 1 and

hence c(rs) :::: d + Ds , where the "sampling dimension" is detined as Ds =log", lYs/log", À.

[n faet the codimension and the second eharacteristic function can be related by use of

the Legendre transfonn (eg., Schertzer & Lovejoy ( 1995) pp. 55-57) giving

A limitation which exists when evaluating the stntistics of a tïeld is that the Iargest

singularity present will dominate the charaeteristic function for the large order moments.

The result is a linear K(q) function for q-order moments greater [han a critical vaIue qf'

(A similar limitation exists at the negative end of the distribution function as weIl.) This

sort of effect, where the evaluated function diverges from the ideal, has been called a

··phase transition:' because of its similarity to the change in behaviour seen in

thermodynamic quantities, or ·'divergence of moments."

•

K(q):: max{qy-cCY)}.
r

Thus the singularity Ys corresponds to the moment

dc(y)
q. ::--

1 dy Yr

(II. 1)

(IL2 )

•

Il.2.2 Universality and stability

In general for a multifractal field the codimension function, or second characteristic

function, can itself only be characterised by an intïnity of parameters. However the idea

that only severa! parameters will be relevant in a given process is usually very reasonable.

Hence the notion that repeated iterations of a process with itself will converge towards a

limit~ and chat by starting with somewh3t different processes the same limit will also be

reached (a stable attractor). For example. for a long time there has been the tacit

assumption chat multiplicative processes tend towards a lognormal distribution as an

attractor. This convergence ta a stable attractor is called universality.
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It is more natura! to work with the generators (a term taken from group theory) of the

multiplicative process where universality implies that there will be stability of these

exponents under addition (since multiplication results in the addition of exponents). The

generator is written

•
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•

•

Stability under addition has long been known in the form of the eentrallimit theorem

(giving rise to a nonnaI distribution) and more generally in the form of the Lévy stable

distribution. Therefore the use of a Lévy random variable as the generator will be

investigated.

Il.2.3 Lévy random variables

The random variable x is said to be "stable" (under addition) if it satisfies the

condition

Il J

LXI =Cl/IXl + bn where in faet cl" =,{'e:: and 0 < Ct S 1.
/:1

J

(= indieates equality in distribution.) Such a stable r.v.. or "Lévy random variable:' is

characterized by just four parameters and (in the notation of Samorodnitsky & Taqqu

( 1994) or just S&T for short) is written

where Ct is ealled the "Lévy index:' (] the "scale parameter:' f3 the "skewness pararneter"·

(-1 ~ f3 ~ 1) and f.J. is the '''shift paramerer:' (\Vhen a =2 the resulting distribution is

always symmetric about its menn and the skewness paramerer loses its relevance: ir is the

Gaussian or "normal" distribution.) \Vhen 1< Ct ~ 2 the shift parameter is aiso the mean.

In the discussion below the mathematically special case when Ct = 1 is omitted because it

tums out that those distributions will not be used in this thesis.

• NB that this f3 is not the same as the {3 of the {3-model (§ 1.4.1) or the spectral slope

(§ 11.4.2)
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The (Fourier) characteristic function of the random variable x is defined as

-
(e iQ

:
C

) =fe1q.tp(x)dx, for any real q,

§ II.2.3

where p(x) is the probability density function (p.d.f.) of x and the angle brackets, ( ),

denote an integral over probability space. The second characteristic function is the

logarithm of the characteristic function and for a Lévy r.v. is complex in generaL It is

given by

(IL3 )

•

where sign q =±l depending on the sign of Cl. This expression is only valid for a:;: 1.

But this is not the most practical quantity ta work with: there is aiso the Laplace

characteristic function for real q ~ 0,

and its logarithm which is the Laplace second characteristic function. This integral anly

converges if f3 = -1. Since a multifractal tield with a converging K(q) is required the

Lévy r.v. to use in a cascade model must have f3 =-1. The distributions with this value of

skewness parameter are called "totilly skewed left" or "extrema!.·'

The corresponding Laplace second characteristic function when f3 = -1 is given by

(J'a a

K(q) =log,Z(q) =- t) + J1q for q ~ 0 and a;c l.
cos 3f

(II.4 )

•

The nannalisation that would be required for a "conservative" (the mean value of the tield is

the same at all scales) cascade can he achieved simply by setting ,u such that K(l) =O.

The Laplace second characteristic function will often he called the "second characteristic

function" or just K(q) for short. The second characteristic function corresponds to the

moment scaling function (as will be defined in § II.3) evaluated at a particular resolution.
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The parameterisation which was used in equation (lIA) is an arbitrary choice; it may

he changed to give the two forms of K(q) (for f3 =-l, f1 =0 and a;é 1) which are used

in this thesis:
•

Scalar Universal Multifractals

K(q) =--.S-qa
a-1

= cqa

§ II.2.3

•

In sorne places it will be more convenient ta work with the second of these two forms as

the basic building black of the theory. The relationship between the two parameterisations

is simply CI =L'(a -l).

Il.2.4 The discrete cascade universal m.f. (DeUM)

The universal multifractal result (Schertzer & Lovejoy 1987). based on the

consideration of a continuous cascade mode! utilising Lévy f. v.s. is that for an universal

multifractal field

(11.5)

and by Legendre transfonn this gives

(II.6)

•

where LIa' =1- lia. The physical significance of the parameter Cl is that for a

multifractal field it is the codimension of the mean. This may be seen by considering

equation (ILL) for the mean K(l) =0; the singularity corresponding ta the mean of the

process YI is obtained by solving YI =C(YI) to give YI =Cl. The importance of CI is that

for a multifractal with CI > cl (the dimension of the embedding space) the mean will not

converge and the multifractal will be very sparse.

Using eqn. (II.2) equation (IL5) for the codimension function implies that for an

universal multifractal qs is expected to be
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An universal multifractal tield may be simulated by a discrete cascade using Lévy

random variables. Starting with the Lévy r. v. x. such that (e,,"f) =ecq<J. the generator

ç=U~I / a H X - C may be formed as a building block. The cascade is then produced by

raising À.o =e'~l ta ç powers. an independent realisation each time, and using these

numbers as the multiplicative factors for each cascade step. For simplicity. when

generating the cascade by computer. each cascade step is chosen ta be over a factor of two

ie .. Àn =2. Hence after n cascade steps the tield has reached a resolution of À =2/1
• The

resulting characteristic function of the tield is given by

•
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•

•

-S.-. cl" -q 1=Àa-I

which is the same as the universal multifractal result (as in equatian II.6). Note that the

mean value of the field is equal to one at all scales: it is a narmalised conservative process.

Therefore this madel produces a normalised. conservative. universal m.f. tïeld \vith

parameters a & CI.

The cascade model which has just been described actually works with a rather

artiticial discrete. branching structure in the cascade. It may be expected (hat this will

inrroduce sorne artificiality into the resulting simulations. (ln fact the evidence of this will

be seen in § II.4.2.) Despite this eva!uating the statistics at the same discrete resolutions

from which the cascade was constructed. which is the usua! practice. will still yield the

exact result just derived. Hence such a tield will be called a discrete universal m.f.

(DCUN1) tield and may be used without serious concern for this thearetical imperfection.

Il.3 Data Analysis Techniques

Before embarking on simulation and analysis sorne important results are coUected

together in this section ta provide a more complete picture of scalar cascades from the point

of view of data analysis.

50 far the discussion on multipiicative cascades has been kept [0 conservative

processes for simplicity, that is pracesses for which the mean value of the field does not
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change in value with scale. In general a cascade process will he non-conservatïve and this

may simply be expressed by introducing an additionaJ scaling parameter H, the "degree of

non-conservation." such that
•

Scalar Universal ~Iultifractals § 113

The corresponding spectral slope (defined in equation II.9) for a non-conservative tield (in

1-0) is given by f3 = 1+ 2H - K('l). Hence a tield for which H >0 contains relatively linle

'power' at the small scales (compared with the large scales) and this makes it more difficuIt

to analyse. Lavallée ( 1991) has found empirically that fractional differentiation of the tield

(power law tïltering) to compensate for the degree of non-conservation can correct for this

effect such that the multifractal parameters of the pracess may still be accurately recovered.

Furthermore the special case a =1 has been neglected. The complete and general

universal forms for the codimension and second chaructenstic funerions are:

•
a;t 1

, JI1'y 1
c(y- H)= cl-+­

1 Ca' a
1

K(q)=qH+~(qa -q)
a-[

a=1

(IL7)

•

The data is usually recorded ut a single resolution. The second ch~lfacteristic function.

mueh used by mathematicians. may be evaluated on the nonnalised data directly as a simple

\Vay of characterising the statistics. A curve tit on the graph of K(q) gives the parameters

a & Cl' The one drawback is that it does nat provide any information about the structure

(the relationship between points in space) of a tield.

The moment scaling function K(q) is a general forro of the second characteristic

function. as detined in the expression

(ILS)

which is evaluated on data whose resolution has artificially been reduced (degraded) in

sorne way. The rnost simple way to reduce the resolution is by "dressing" taveraging by
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spatial integration) the data which takes advantage of its self-similar properties. The

resulting data is denoted "dressed" in contrast [0 the actual data which is called "bare."

\Vhen dressed data is analysed this is called the "trace momenrs" analysis method (Schertzer

& Lovejoy 1987). Ir has been shown that the resulting moment scaling funcrion for the

dressed data is idenrical to that for the bare data except that there is a statistical divergence,

or phase transirion. for moments exceeding a critical arder 'lD' The value of qD may he

estimated by solving the transcendental equation

•
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cl= K(lfD)

'ID -1

§ II.3

•

•

where d is the dimension of embedding space. Since the trace moments method uses

averaging it cannat recover the value of H l'rom the tïeld. The spectral slope must be used

for that purpose.

The trace moments analysis method has been improved upon in the "double trace

moments" (DTNn analysis method (Lavallée 1991). Like trace moments the analysis is

performed on dressed data excepr here rhe data ar the highest resolution is raised to an T]

power tirst. then normalised. and then dressed to the desired resolution prior ta analysing

the qth power. The resulting moment scaling function is a function of both powers (on the

LHS) and is given by the simple expression

K(q, 1]) =T]a K(q).

As with trace moments this analysis does not recover H because it relies on averaging to

change the analysis scale. Its advantage over trace moments is that the field may be raised

to an arbitrary power without affecting the recovery of a .

Perhaps the most simple and the closest ta the original ideas of multifractality is the

"probability distribution/multiple scaling" (PD~IS) technique (eg., Seed 1989). This

method involves simply evaluating the codimension function for the dressed data as a

function of r at various resolutions according ra equation (1.10). A curve fit may be

performed on the resulting graph of c(r) to find the universal m.f. parameters as per

equations (II.7). The difficulty with implementing this anaJysis is that the values of the
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codimension obtained for different values of À are quite sensitive to the normalisation of

the data set. For this reason this technique is not used if it can be avoided.•
Scalar Universal Multifractals § II.3

•

•

Another method which originates from the work motivated bv turbulence is ta use- .
structure functions (§ 1.3.2). Note that this method is not limited just to velocity

increments~ the structure function exponent ç(q) may be detined in general for a tield el

by the equation

(lE). (x + LIÀ) - E). (xf) oc )?,/I.

The general expression for the universal form in terms of the structure function exponent

was given in equation (1.11), but more generally it may be written

ç(q) =qH - K(q)

where the dependence on H has been made explicit (the K( q) here has no H term Iike

eqn. II.6). Using structure funetions has the advantage that the differences of data points

are used thereby removing the arbitrary 'd.c. camponenc'. or offset. in the data. Also the

H parameter is recovered by this technique as dressing is not used. The disadvantage of

this technique is that the theoretical connection between ç(q) and K(q) is not trivial and

still requires sorne clarification.

The structure functions method. PDw-IS and the DThI methods will not be used for

analysis in this thesis because of their less trivial mathematical connection with the discrete

cascade when compared \Vith the simple second characteristic function and trace moments

methods.

11.4 Lévy r.v.s and DeUM simulation and analysis

Il.4.1 Lévy r.v. simulation and analysis

In this section sorne of the numerical and practical considerations of generating Lévy

r.v.s are discussed. Gnly totally skewed left r.v.s with P. =a are considered. The

parameter values a = 1.5 and Cl =0.05 are chosen as being typical of the values recovered

from the analysis of geophysical data. For this choice qD> 100 for a 1-dimensional
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multifractal field which indicates that no inherent limitation is expected in the recovered

statistics from the dressed data (for the more modest order moments of q< la which are

used in tbis section).
•
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Computer simulation of Lévy r. v.' s is eusy to perform by taking a combination of

two uniform distributions on (0.1) according to the equation developed in Chambers.

~Iallows & Stuck (1976). S&T conveniently provide a FORTRAl'l routine (pp. 46-49) for

doing this. The routine was rewritten in C and the two mistakes in the coefficients were

corrected before use. The random number generator which \Vus chosen is the popular

'RA1'l3' pseudorandom number generator of Press et al.' s ( (988) 'Numerical Recipes.· It

was used with a slight modification to give numbers distributed on (O. L) (rather than [0.1 D.
(Note that aIl the computer programs used in this thesis were written in C at double­

precision for simulation and analysis \Vith the one exception of the power spectrum

calculations which were perfonned in single-precision downgraded from double-precision.

The fundamental simulation routines for Lévy r.v.s. scalar and complex DCUNf tïelds can

be found in the appendix.)

The result of a sample simulation of a Lévy r. v. with a = 1.5 and CI =0.05 is shown

in figure 11.1, on the left. (the tirst 5 L2 values) with a plot of the second characteristic

function as found from the data on the right (statistics points. theory line). The simulation

was 216 =65536 data points long. The curve tit for aIl q gives a = 1.504 and CI =0.0509.

There is excellent agreement with the theory for the second characteristic function up to

q=4. with marked deviation ubove q =8. For this single realisation the calculated value of

q~=7 .4.

It is better to view the second characteristic function on a log-log plot~ as in tigure n.2

(statistics points, theory line). The plot below has been evaluated on 2[1) data points. The

straight line fit (over the range q=O. L to 10) in the log-log plot gives a= 1.487

and C[ =0.0502. The agreement \Vith theory looks good over the range q=O.5 to La.

It can be seen in figure II.2 that the statistics determined from the computer simulation

deviate from following the straight line expected value. This is most noticeabLe ut the
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Figure Il.1: 65536 independent realisations of a Lévy r.v. with a = 1.5 and CI =0.05

(Iefi. part shown only) and its second characteristic function (right) as points with the

theory line.

10" ,---------------,

[...............................................(..:i

100f ••....•. :••..•·••••• :........:. ..:.z~'···l
• . /' . l

~ 1 [:···· •.··.:·;;;z<:...:: ....1

o.:~::!~?~Ê·::::~·::·:::::··::·:::.::·:::..::1
0.001 0.01 0.1 1 10 100 1000

q

Figure 11.2: Log-log plot of the second characteristic function in figure 11.1.

small- q end of the graph, although this is seen at both large and small q. A deviation

leading down and away from the straight line is mainly due ta the finire sample size being

used, any other deviation, especially a positive one above the line, can be attributed ta an

imperfect random number generator and/or small numerical errors in computation.
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The Lévy r.v. itself has a certain probability density function (which has been chosen

centred about zero). Once again with a=1.5 and C1=0.05 a histogram of the data (21~

points) can be seen in figure 11.3. The ma.ximum and minimum values are -140.4 and

0.9717, respectively. The outliers at each end of the distribution (omitting end points) are

-42.86. -3 1.85, -31.30, -22.26, -18.27 and 0.8261, 0.7963, 0.7715. There are only 41

data points with values less than -5, 1 with a value less than -50. There are 17 data points

with values greater than 0.7. The mean of the data points is 0.0047 (cf. themY' which gives

zero).
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Figure 11.3: Histogram of :2J~ independent realisations of a Lévy LV. with a = 1.5

and Cl =0.05.

The probabiliry densities of Lévy r.v.' s are continuous but are not known in a simple

fonn (except for sorne special cases). The form for the rapid decay of the long and short

tails at each end of the density function are (most clearly) given in S&T. Note that it is

these low probability large positive/negative excursions (the positive ones forming

singularities in the cascade) which are very important to the statistics at large/small arder

moments. (For a theoretical discussion on the probability density functions it is possible to

consuit Zolotarev (1983) §§2.4-2.7 for an exhaustive treatment.)

Exponentiating the r.v. (the generator, 1024 data points) gives the field on the left in

figure rrA (only tïrst 512 points shown). The data values are uncorrelated with each other
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and hence this field will exhibit a flat power spectrum. The actual power spectrum is

shown on the right~ it exhibits the noise (circles) which is typically seen in the statistics of a

single realisation. An average over 1024 realisations (squares) shows a much Iess noisy

result.

•
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Figure Il.4: Exponentiated Lévy r.v. (Ieft), 512 data points, and its power spectrum

(right) calculated on 1024 data points-one realisation (circles) and 1024

realisations (squares).
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Il.4.2 DeUM simulation and analysis

Scaling behaviour in a power spectrum cakes the form

(II.9)

where f3 (*) is the "spectral slope.n In a cascade simulation the spectral slope ret1ects the

correlations between data points at a given resolution which exist because of the common

ancestry which close data points will have due to the branching structure of the cascade.

For a conservative cascade the spectral slope is given by f3 =L- K(2) (see eg.. Schertzer &

Lovejoy (1996)) ie.. the power spectrum is relared to the second arder moment sratistics of

• • NB that this f3 is not the same as the f3 of the f3-model (§ 1.4.1) or the skewness

parameter (§ II.2.3)
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the field. Hence for an universal multifractal field, where K(2) =A(2l% - 2), the spectral

slope will be given by

f3 =1- --S..-(2a
- 2).

a-I

It is worth noting that when Ct is small f3 will be close to, and slightly smaller than, 1 (for

a conservative cascade).

A DCUN[ simulation \Vas constructed from scalar Lévy r.v.'s with a= lo5, Ct =0.05

with 16 levels giving a tinaI resolution of i 6 data points. In figure 11.5 the average power

spectnlm calculated for 2 10 reaIisations may be seen. Note that the power spectrum data is

averaged in logarithmic bins meaning that random t1uctuations in the plot for higher values

of k will be diminished. Clearly defined bumps can be seen in the spectnlm (for large k)

corresponding to the binary branching structure of the cascade. The theoretical slope is

superimposed as a straight Hne over the statistics shawn as points. The straight line fit for

values \Vith log,o k ~2.5 gives a spectral slope of /3=0.99 Lcompared to the predicted value

of {3=O.917 ({3 =1- K(2) where K(2)=O.083). The reason for this small discrepancy is

not known.
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Figure 11.5: Power spectrum of 210 realisations of a DeUM simulation with ,1.= 2\6

and a=1.S, C1=O.OS .

47



The scaIing behaviour is aIso evident in the plots of loglo Z.l. (q) (as defined in eqn.

(IL8) versus loge' À. evaluated on the dressed data (trace moments technique) for different

values of q (=1. 2, 3, 4. S & 6) in figure 11.6 (left), and the K(q) curve resulting from a

straight line fit ta these plots (shawn on the right). (Statistics shawn as points and the

theory as lines in both cases.) The fit ta the second characteristic function up to a value of

q=6 gives a=1.469 and CI =0.OS02. These results are for 1024 realisations of 216 data

points. The slopes of the plots of ZÀ. (q) do not look 50 different to the theoretical slopes.

though the statistics lie much doser ta the theoreticalline for smaller values of q.

•
ScaIar UniversaI Multifractals § II.4.2
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Figure 11.6: Plots of loglo Z). (q) for q=1. 2. 3. 4, 5 & 6 evaluated by trace moments

(Ieft), and K(q) (right) from the straight line fits, evaluated on the same data as fig.

11.5.

•

The scaling (fig. 11.6) for higher values of q is a littl~ suspect sa the same graphs

have been replotted up to q=2 in tigure 11.7 (scaling graph for q=O.5. 1.0. 1.5 & 2.0).

The K(q) plot now gives the much more convincing tït with values of a= 1.496 and

Ct =0.049 L. The statistics in this plot agree weIl with the theory over the approximate

range q=O.5 to 1.5. This demonstrates that for the simulations being used the higher arder

moments should be used with sorne reservation.
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Figure 11.7: Same as fig. 11.6 but with different axes. for q=O.5. 1.0, 1.5 & 2.0 (Ieft)

as evaluated by trace moments.

•
The data at the highest resolution which has been created now looks quite different to

the exponentiated Lévy r.v.. as can be seen in tïgure IL8 (tirst 256 of 1024 data points) .

Note that the binary branching nature of the construction process can be seen in the tield.
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•
Figure 11.8: Simulated field fram a DeUM simulation with 1024 data points, 256

shawn. The binary branching structure of the cascade can be seen in the data.

).,=2 l0 and a=1.S. C1=0.OS.
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Il.4.3 Concluding remarks on the simulations and analyses

§ lIA.3

•

•

The empirical characteristIcs of a Lévy random variable have been shown in § IIA.l

In particular the behaviour of the "tails' in the p.dJ. have been described. For simplicity

the simulations considered in § I1.4.2 are only for conservative quantities. The discrete

simulation method used produces fields which exhibit distinctive patterns l'rom the binary

branching structure of the cascade. This has not affected the statistics adversely as they

have heen evalllared ar the o;;ame di,crete re,,()ltltinn~ pre~ent in the cascade itself. There 1re

also sorne small and insignitlcant discrepancies between the statistics and the theorerical

predictions which are due to the limitations of the software. The analysis of the DCU~l

tield has shown that what can look like an apparentJy good line tit ta the K(q) function can

he misleading as the parameters recovered in this way may be in error if the higher arder

moments are used. Thus it is best ta utilise the lower order mOlnents exclusively. AlI this

knowledge will he of sorne use in chapter III.
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§ m.l

III Discrete Complex Cascades
111.1 1ntroduction

Twa variables in a field, which interaet in sorne way, may be expected to display a

form of correlated behaviour. The simple scalar, positive-valued models (of only a single

field) in § L4 are completely unable to describe such a system. Nlotivated with the desire

to produce non-trivial fields sorne models were brietly described in § 1.5 which couId

simulate the behaviaur of natural physical fields more realistically, sorne of them even being

multivariate. Apart from being capable of producing a field of signed numbers (with both

positive and negative values) a rather general model which may produce a random vector

tïeld was among them ie., the Lie cascades mode!. (To describe the precise details af this

model wauld be beyond the scope of this thesis. but the curious reader is directed to

Schertzer & Lovejoy t 1995) (ta be denoted S&L for short) and Schertzer & Lovejoy ( 1999)

for details.)

As a simple and practical example of the Lie cascades model S&L developed the

theory for the "complex cascade" model (in § 3.2 of their paper) as weil as showing the

results of a simulation and sorne analysis of recorded data. The aim of this chapcer is to

rnake clear the theory behind this mode!. to show simulations and discuss in sorne detail the

practical points of data analysis. This work (§ III.2) will closely follow the theoretical

work in their paper but the simulation and analysis here (§§ III.3-6) is original.

S&L make the nutural decision to represent two variables (at a point) as the real and

imaginary parts of (a single) complex number. This conveniently ties the variables together

and potentially allows various rnathematical tùnetions. which admit eomplex operands. to

aet in such a way as ta mix the components together or keep them independent as the case

may be. In particular chey consider the extension of the scalar random multiplicative

cascade [0 the complex case by introducing independent r.v.S as the real and imaginary

generators of the proeess. This is an arbitrary choice which imposes certain restrictions on

the possible ways in which the (WO variables may he statistica1ly relared to each other. The

reason for such a ehoice is the resulting relative simplicity in the mathematics. The complex
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second charaeteristic function of the these cornplex random variables is the subject of

§ III.2.1.•
Discrete Complex Cascades § III.I

•

•

Furthennore they give, as an example, the universal model which is derived by

introducing Lévy r. v.s as the independent reul and irnaginary parts of the complex

generator. Once again it should be stressed that there is no physical justification for this

particular form, it is an arbitrary choice which may or may not be found representative of

reality by subsequent testing on actual recorded data. (This latter aspect will not be a

consideration here because of the difficulties encountered when doing 50, as discussed in

§ III.7.) The universal cornplex result. as derived in § III.2.2, makes sense because

scaiar tields (almost always part of a multivariate process) are very often found to exhibit

universality. Although derived from basics the universal result (in § III.2.2) has been

obtained by closely following S&L. (ft should be noted that sorne typographic errors are

present in S&L' s paper and that care has been taken not to allow these to contaminate the

present work.)

Following the exposition of the basic theory sorne simulations of the resulting tields

and variables are produced in § II!.3. The usefulness of these simulations goes beyond

testing the integrity of the software: the simulations are then analysed (in §§ III.5-6) with

the aim of investigating the limitations of the analysis techniques themselves. tv'Ioreover it

is found that the limitations of the analysis which are discovered may be understood by a

study of the basic properties of the simulations in the tïrst place. In faet the fundamental

difficulty which will be encountered in the analysis arises because sorne functions of

complex numbers do not give single valued results. Of these functions the logarithm and

the fractional power are of concem (eg., there are three cube roots of eight, one real and

two eomplex). This, coupled with the limitations imposed by the limited sample size and

number of realisations, is found to curtail the usefulness of the analysis techniques being

used. The analysis techniques themselves are described in § llI.4.
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111.2 Complex Cascade Theory
111.2.1 Complex K(q)

§ III.2.1

•

A mathematical way of dealing with two variables simultaneously is ta treat them as

the real and imaginary parts of a single complex number. When trus is done a multiplicative

complex cascade may easily be generated by choasing complex randam variables as

multipliers. Hence there is a correspanding complex arder of singularity. or generator.

defined by the equation

:,i =À.y.~ ..tYl where YR & Y, arerea1.

The moment scaling funcrion for the complex cascade is. in general, a complex

quantity (ie.. a complex function of a real variable). The moment scaling equation is

Note that the above integral over probability space may not converge for sorne values of q

depending on the characteristics of :,i." Normalisation of the (conservative) cascade

requires thar K( 1) =0 at aH resolutions.

The moment scaling function may be evaluated separately on the real and imaginary

singularüies making up the camplex tield. These are found by evaluating (the RHS' s of)

(IlL! )

•

Note that KR (q) is real whereas in general K,(q) is complex. The significance of these

two exponents is that they represent the characteristics of the random variables responsible

for i) modifying the magnitude or radial component of the complex quantity (without

mixing the real and imaginary parts) and ii) modifying the rotatianal or azimuthal

camponent of the complex quantity or, in other words. transferring 'intensity' from one

camponent ta the other.

If the real and imaginary parts of the generator are independent then
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K(q) =KR (q) + KI (q). (III.2)

§ III.2.1

Coupled with the condition of normalisation this implies that for a normalised conservative

tield

(I1L3 )

•

111.2.2 Complex universality

As in the scalar case stability under addition in the generator of the process may be

sought. Consider the ourcome of choosing independent Lévy r. V.s for the real and

imaginary parts of the complex generator. Ir may be recalled l'rom equarions 01.2-3) that

the second characteristic functions for two independent Lévy r. V.s with equal seale

parameters. expressed here in the codimension parameterisation CI.R & Cu' are

KR (q) =log, (e'''' )= aCI~ 1q"' + ~Rq and
R

(IlIA·)

•

both for a;:l. (Note that cos~<O for l<a<2.) These combine. as in eqn. (lII.2), to

create the tata! complex second characteristic function of the complex r.v. yR + iYI'

If bath y R and YI are totally skewed left (/3=-1) then the interchange of variables

yR + iYI ~ YI + iyR in eqn.s (IliA) results only in a corresponding interchange of indices

1 H R in the second characteristic functions. This kind of symmetry between the real and

imaginary generarors would seem natura! because mixing between the radial and azimuthal

components of the complex tield is a desirable fenture of the complex mode!. This marks a

departure from the mismatched codimensions of the mean in S&L which differ by a factor

of [TC3 - al)liai' This is simply a [eature of using different parameterisations. (It should

also be noted that K[(q) (eqn. Ill.4) does not pennit a rea! linear term in q. This is

consistent wirh the result in equations (20) of S&L when considered in conjunction with

theirequations (L9).) Of the Lévy r.v.s themselves YR is still required to be totally skewed
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left ( {3=-I) to assure convergence of the integral whereas this restriction is now lifted from

Y,· Thanks to this convergence condition on KR (q) it is convenient to only consider the

case q>O.
•

Discrete Complex Cascades § III.2.2

Imposing the conditions for normalisation (eqn. IIL3) it is found that the shift

parameters must be

c. 0 c. , ira.
PR =--'-"'---'-"-cos--' and

aR-l a,-1 :2

C ,rra
u =f3-'-"-Sln--'· , -1 ..,a, _

hence the expected universal result for a normalised complex cascade is thut for q>O

•
C (ll ) C !caKR(q)=_I_.R- q .~ -q __I_"_qcos-_I and

aR - 1 a, -1 2

C !ca. C ( ) , !caK[Cq) =_I_"_qa, cos--' -lf3--L1- qat - q sm--'
a, - 1 2. a, - 1 :2 • (IILS)

•

both for a:;:: 1. (Similar results for a= 1 can easily be derived but these have been omitted

here as they will not be used later on.) In particular it is found that under these condirions

(norma1ised, q>O & a:;::l)

C.!ca C rra.
KR (1) =-_I_"-cos-_1 and K[(1) =-'-"-cos-' (le .. ImK[(l) =0).

a, -1 2 a, -1 2

A word must be said about the interpretation of these new second characteristic

functions. Whereas the quantity CI.R is known to be the codimension of the menn of the

rea1 part of the process there is no theory (at present) ta say that the quantity Cu in the

second characteristic function is the codimension of the mean of the imaginary part. Thus if

any interpretation of Cu as being the codimension of the mean of the imaginary part of the

process were to be made it would be pure1y speculative at this rime. However, for the

purpose of discussion, it will be assumed that the symmetry bet\veen real and imaginary

generators implies that there is an effective codimension of the mem of the imaginary part.
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111.3 Complex DeUM Simulation

§ III.3

•

•

The complex universal cascade simulation is performed in the same way as for the

scalar simulations in chapter II. The difference here is thar two independenr realisations of

the Lévy random variable are generated for each cascade srep. these corresponding to the

real and imaginary parts. The parameters for each r.v. are chosen independenrly and such

that a nonnalised resulr is produced. The Lévy r.v for the imaginary generaror is chosen ta

be rotally skewed left.

Three sets of simulations are analysed in rhis chapter and rhey are characterised as in

table IILI. The reason why Cu for simulation B is not the same for simulation C is an

arbitnuy choice based on the fact that for these values of Cu the values of KI (l) are equal

(note that Re KI (q) =KI (l)lqja/).

simulation CI.R a R CI.1 a,

A 0.03 1.6 0.04206 1.8

8 0.03 1.6 0.4206 1.8

C 0.03 1.6 0.3536 1.5

Table 111.1: Simulation parameters for chapter III

[n each case the cascade is produced over ten steps of a factor of rwo down to a resolution

of 1024. and the cascade starts l'rom the large seale complex stare ê l =~ (1 + i). (One

realisation is being considered unless indicated otherwise.)

Figure III.I shows plots of the real (lert) and imaginary lright) components of

complex simulation A. The imaginary component displays values of bath positive and

negative sign. This is a feature which cannot be observed in the discrete scal:tr cascades of

chapter II.

Figure III.:! shows the scatter plots for simulation A (left) and B (right). The

difference between the t\va is that the value of Cu is ten times larger in simulation B

(right). (The values are Cl.l=O.04206 in simulation A and Cl./=O.4206 in simulation B.)
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simulation A

imaginary value,
simulation A

§ III.3
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Figure 111.1: plot of real (Ieft) and imaginary (right) parts of complex simulation A.
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Figure 111.2: scatter plots of complex simulation A (Ieft) and B (right). Simulation B

has a larger value of Cu than simulation A.

•
For the plot on the Left most of the points can be seen to cluster around the mean. but

the more frequent negative outHers in the Lévy r.v.s produce two distinct tails~ one rotating

anti-clockwise and petering out as it does so (for outliers in the imaginary generator, YI)'

and the other producing a stem of points reaching down to the origin (for outliers in the real

generator, yR)' (The simultaneous occurrence of an outlier in fI and in YR is extremely
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•
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rare.) The plot on the right has an exaggerated rotational spread of the points due ta the

larger value of Cu. The values of Cu in these simulations were picked sa that simulation

A would not contain many points with a large imaginary generalor and sa that, in eontrast,

simulations B & C would do.

The exponential of an imaginary quantity is a periodic funetion. hence for the eomplex

state ê.l. there is a 10ss of information for those data points which have an imaginary

exponent (argument of ê.l.) greater than ±Jl': That is ta say the inferred value of the

imaginary exponent will only he its principal value. This 10ss of information occurs for the

largest (imaginary) singularities, and for simulation A it will he a rare event whereas for

simulations B & C (with larger values of Cu) it will oceur more frequently.

The los5 of information which occurs may have an adverse effeet on the analysis of

the data. An idea of what this does to the data may be seen by directly viewing the plot of

the probability density of the argument, both aetual (the generator in the simulation) and

inferred (as inferred from the principal value of the argument of the cOITlplex data). Figure

III.3 shows plots of the probability densities of the arguments of eight realisations of

simulation A, the actual value Oeft) and the principal value (right). The plot of the actual

value of the argument (left) shows the long negative tail and short positive one characteristic

of a totally skewed left Lévy r.v.; the plot is asymmetrieal. The positive singularities do nat

exceed a value of about 2.3. The difference in the plot on the right is that there are sorne

extra data points with a value greater than 2.3. These are points from the negative tail

which have been shifted ta their principal value (and which happen ta full at around a value

of +1r).

Another related quantity whose statistics are of interest is the difference bet\veen two

adjacent imaginary exponents. (This will he fully explained in the next section.) The plot

in figure Ill.4 shows the probability density of the difference between two arguments as

evaluared from the generator (Une) and from the inferred argument values (points). Note

that the plot is symmetrical and that the points calculated from the data values are

necessarily restricted to the range ±Jr. As with the right hand plot in ligure III.3 the less
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Figure 111.3: Plot of probability density of the (true) argument of the bare data, left.

and of the principal value of the argument. right, evaluated on 8 realisations of

simulation A.
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Figure 111.4: Plots of probability density of the difference in arguments of adjacent

data points for simulation B (8 realisations) as calculated from the imaginary

generators (Iine) and the arguments inferred from the data (points).

frequent points near ±1t' are more frequent than they should be due [0 the 10ss of

information.
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The effecc on the analysis, of the shifted data points in the probability density seen in

both figures III.3 (right) and IlIA will become apparent in the analysis section of this

ehapter.

•
Discrete Complex Cascades

111.4 Complex Analysis Techniques
111.4.1 Knowledge of the characteristic parameters

§ m.3

•

Analysis may be performed in a straightforward fashion by evaluaring the quantities

in equations (I1l.l) and comparing the real and imaginary parts of the moment scaling

funetions with the universal forms given by equations (Ill.S). In panicular the quantities

(on the RHS' s) are evaluated. The moment scaling functions for normalised :,1, may then

be expressed explicitly in the convenient fOnTIS (III.6-8) be[ow.

(lII.6)

when the contribution from the 'mean' (q KR (1») has been subtracted. Quantitative

knowledge of this mean quantity enables Kl(l) =- KR (1) (eqn. IIL3) to be determined and

hence the quantity

C TraK (1) = _'_.I_eos_1
( al -1 2

can be found from ZR(q). In fact chis equation (ill.7) is a special case of

CIl a ;raiReK (q) =--"-q 1 cos-.
1 al -l 2

(III.7)

(IIl.8 )

•
AlI the sratistical properties of the complex field z). are contained in equations (ill.l).

But it should be noted chat the argument of the quantity Z(q) has been kept out of equation

cIll.S). This is because the ambiguity in evaluating it, as discussed in § III.3 and later in
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this chapter, makes it a very erratic quantity. A practical way of extracting useful data fram

this quantity has nat been round. Therefore the characterisation which results from using

anly equations (ill.6 & m.8) is not complete for any general complex field, althaugh if the

field is a universal complex m.f. aIl the statistical paramerers required to define it may still

be recovered (as is evident by all four parameters being present in those equations).

In summary the parameters which may be recovered fram data analysis if only the

function ZR(q) can be determined accurately are KI(l). C1.R & aR: knawledge of KIel)

does nat give any infannation about Cu independently of a,. (The quantity KI (1) in itself

quantities the effect the imaginary generator has on KR (q); it may have sorne greater

physical signiticance but this is not knawn ut this time.) Only if Z,(q) is known can Cu &

al be recovered from the data. If bath ZR(q) and Z/(q) are known then there is a

redundancy of the information of Cu & Ct, which may be used as a test for consistency.

111.4.2 The trace moments method

The trace moments method (§ IT.3) for evaluating the statistics of a stochastÎC process

is used to evaluate the moment scaling function of the data at different resolutians. Since

the data is available only at a single resolution it is necessary ta (repeatedly) dress the data

ta bring down the resolution for analysis. However, the bare and the dressed data are not

the same thing: dressing the data alters its statistics (§ II.3). For a scalar process the

statistics are the same up to the moment of order qJ (beyond which point they diverge)

which rneans that provided qJ is large enough the trace moments analysis is very usefuI for

recovering the true statistics of the data. Unfortunately at present there is no theory to

determine what the critical moment for complex multifractals is.

For the complex case there may be an additional difference in behaviour between the

statistics of the dressed and the bure data because of the loss of exponent information.

Empirical observations. and comparison with theory. of the statistics evaluated by the

complex trace moments method from dressed data will be made in the following sections.
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111.4.3 The adjacent data points (ADP) method

§ m.4.3

•

•

The relationship between the complex field and the complex order of singularity may

be defined by the equation

Ir was already mentioned in the previous section that the imaginary exponent rt.,t cannot he

kno'.vn un:.l.'11biguously from the complex data becauo;;e there will he a loss of infonnarion if

its value does not l'aIl within the range ±Jr~ only the principal value of ~.). can be known

from the data. This will he a problem because taking a non-integer q -power of E.l" will not

give the same result as exponentiating q times the true exponent (unless the true value of

~.À is the same as its principal value). There will be an error due to the difference between

the two. and this error may be expected to deteriorate the quality of the calculated statisrics

in sorne way. Ta reduce this error it is possible to try reducing the size of the ~.,t' S being

dealt \vith.

\Vhen Cu is large, and the effective size of the singularity is amplitied by the log" À.

tenn at a high resolution. then Tt..t will be large. Hence by reducing the effective

resolution it may be possible to reduee the size of ~.,t. This may be achieved by

considering the ratio of complex states adjacent in position (in the cascade) at the same

resolution ie .. eonsider a sub-cascade whose tinal resolution is two-it consists of just two

data points (adjacent data points or ADPs) with the sarne common ·parent. '

Consider the eharacteristic funetion for the complex generator of one cascade step.

ç=r R + ir!' in a sub-caseade of resolution :2 defined as (2"') =i"q· = 2Ret\(</I ... ,rmK'ql •

Then the characteristic function of the ratio of the two independent steps (in the sub­

cascade) is simply

as fo11ows from equations (IlIA). Note that the imaginary part of this characteristic

funetion is zero. the statistics are symmetrical. and in terms of Lévy r.v.s {3=O. (This

implies that any attempt ta evaluate the Laplace characteristic function would result in
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divergence.) Hence this rnethod is rather different to the other analysis methods (in this

thesis) as it changes the statistics of the imaginary generator. AIso the effective resolution

of the new quantity whose statistics are being evaluated is 4 (and hence the subscript which

is used). In a self-similar cascade this quantity is simply given by the ratio of ADPs

•
Discrete Cornplex Cascades § mA.3

•

•

where the indices i & i + 1 indicate contiguity in space/time position. Here À indicates the

resolution at which the characteristic function is evaluated. It \vould be expected that the

evaluated characteristic function will be independent of resolution only if dressing

conserves the statistics.

(As an aside it is interesting to note that the ADP method may equally weil he applied

to a dressed or bare scalar tïeld if pure imaginary powers of the ratios ::~.( À 1 are taken. The

usefulness of doing this would have to be tested empirically. In sorne cases the advantages

of this method may be found to outweigh the disadvantages of using iL)

The big advantage of analysing the statistics of ADPs (the ADP method) is that an

analysis may he performed on data with an effective resolution of just -+ without the need co

degrade its resolution. In this way the effective size of the imaginary singularities can be

reduced without resorting to dressing complex data (with its unknown side effects).

Another bonus of using chis method is that since ratios of data values are used the tïeld does

not need to be normalised tïrst. (This is advantageous if the correct nonnalisacion of the

field is noC known eg.~ when ic is difficult to recover the mean from the data.) Hence this

method appears to he a viable alternative analysis method which should he tested alongside

the conventional evaluation of the second characteristic function of the bare and dressed

data. This is done in §§ III.5-6.
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111.5 Conventional (Trace Moments) Analysis

The analyses in this section are on 1024 realisations of simulation A. Here the value

of Cu is small enough such that imaginary exponents outside the range ±lt' will be rare (in

the bare data). These analyses will reveul how well the statistics may be recovered given

the various limitations of numerical accuracy and the finite number of samples.

li1.5.1 Smaii C1,1

Figure IILS shows the plots of ZR (1eft) and ZIR (right) evaluated from the data for

q=O.5, 1. 1.5 & 2. In both plots the statistics (points) of the bare data (at the highest

resolution) agree weIl \Vith the theory (lines). Likewise the scaling in both plots (from the

statistics of the dressed data) is good. as evidenced by the straight slope of the points.

However these slopes do not correspond exactly with the theoretical ones. the discrepancy

for ZIR (right) being greater. This indicates that the dressing operation does nat conserve

the statistical praperties of the bare data exactly (even for these relatively small values of

li ).

0.5
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1091 cÀ
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•
Figure 111.5: Characteristic functions ZR (Ieft) and ZIR (right) evaluated from 1024

realisations of simulation A for q=O.5, 1, 1.5 & 2. Theory Iines, statistics points.

Only the points at the highest resolution have been evaJuated on bare data; the

other points come from dressed data.
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Next are the plots of the moment scaling function and second characteristic function in

figure ill.6. The plots of KR' left, show that the statistics (circles) of the bare data agree

very weIl with the theory (line) for q at least up to 6. The statistics (squares) from the

dressed data give a reasonable agreement with the theory up to q =2. The plots of - Re(K( )

(circles bare, squares dressed), right, show a reasonable agreement with the theory (line) in

the approximare range q=O.5 ta 4. Limitations due to the number of realisations begin to

appear at the highest values of q in this plot. In bath cases the statistics of the bare data

agree weIl with the theoretical values, in the case of the dressed data the agreement gets

\Vorse as the arder of moment of the statistics increases.

•

•
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Figure 111.6: Plots of moment scaling functions from KR (Ieft) and of Re(K,) (right)

Statistics from the bare data (highest resolution) are squares and from the dressed

data (from the slopes of trace moments) are circles. Unes represent theory.

In conclusion, it has been seen that the dressing operation does not exactly conserve

the statistics of the process. This is especially true for the higher arder moments where the

effect is most pronounced. The evaluation of the statistics for KR (when compared with

the theoretical value) from bare data is excellent; for Re(K() it is good for bath bare and

dressed data. These results represent the conclusion from analyses of simulations with a

relatively small value of CI •l •
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111.5.2 Large Cl ,/

§ III.5.2

•

•

The problem of having a relatively large imaginary exponent, that is when there is a

large Cu' is now considered. Here 1024 realisations of simulations B & C (al =1.8 & 1.5

respectively) are analysed. These two simulations have a much larger value of Cu than

simulation A (in fact ten times larger).

1==iollrp TIT 7 I;:ho"'o;;: thp nlntl: fnl" 7 <'In th.=o '.=off '1n~ fnr 7 An th.., ,.; (Tht fn .. n-O':::; 1... "0- 4 -... .... ~ _ .... , - .... - t"'._ ..- .. _. -1{ ........ ~.-- ...... ~ -... ....... ...,. ......... IR va ..... J.""" ... ·e··... ...,&. "1 - .-', .. ,

1.5 & 2 evaluated on simulation B. The plot for ZR shows good scaling though once again

the slopes of the (dressed) statistics do not agree with the slopes of the theory tines. The

disparity between the dressed statistics and the theory is more pronounced here than it was

for the smaller value of Cu in simulation A. The statistics of the bare data continue to

agree weIl with the theory.

The plot for ZIR (right) shows two important defects i) the scaling is no longer good

(and there is sorne 'randomness' associated with the statistics) and ii) the statistics for

different values of q (=1 & 1.5) cross each other (which is incompatible with the theory).

Here the bare statistics do not agree with the theory either.

The deterioration in quality of the dressed statistics (compared to the theory) which

accompanies the increase in Cu indicates that the dressing operation is not conserving the

statistics due to the large size of the imaginary exponent and the corresponding 105s of

information in the data. The overall deterioration of the statistics of ZrR' even when

evaluated from tlle bare data, shows a complete failure of this particular analysis to reveal

the true statistical character of the simulation. The corresponding Re(K[) plot may be

expected to have sorne serious problems (fig. lli.9 below).

The plot for KR in figure lli.8 shows that the bare statistics (circles) agree weil with

the theory (line) for all values of q shawn. The statistics from the dressed data do not

agree, even for small values of q. It may be concluded that the larger value of Cu has

affected the degraded data 50 much that the statistics for KR no longer confonn ta the

theoretical prediction. Hence to evaluate K[(1), Cl.R & aR only the bare data must be

used, and then the analysis may still be expected to be fully accurate.
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Figure 111.7: Plots of ZR and Z'R for simulation B, 1024 realisations. In bath plots

q=O.5. 1, 1.5 & 2. theory Iines. statistics points. The symbols for q=O.5. 1, 1.5 & 2

are circle, plus sign, diamond & triangle respectively.
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§ III.5.2

•

Figure 111.8: Plots of KR with different scales for the axes. Sare statistics

represented by circles and dressed statistics by diamonds. theory line & statistics

points.

Figure III.9 shows the plot for Re(K,) where the circles represent the bare statistics.

diamonds the dressed statistics. Neither set of statistics agrees wirh the theory (line),
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except for the single point Re{K[(l)} evaluated on the bare data only. These results are

not surprising given the defects seen in the plots of Z[R (fig. III.7 above). There is aIso a

periodicity in q, of one. which can he seen in the statistics. (This will he explained in the

next section where this effect will he seen again.) Clearly this analysis is only of limited

•

•

•
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use.

simulation B, Re(K!)
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Figure 111.9: Plot for Re(K,) 1 circles represent bare statistics. diamonds the dressed.

Theory line, statistics points.

It may be concluded that the evaluated staùstics of KR remain very good for the bare

dara (only), which allows the accurate recovery of the values for K[O)' C1•R & al?' Also

that the value of K((l) can still be recovered from the Re(K[) statistics. but this only from

the hare data. Hence for large values of Cu the values of Cu & ai cannot be recovered

using this method alone. This is a serious shortcoming.

111.6 Adjacent Data Points (ADP) Analysis
111.6.1 Small C1,1

The statistics of :~.().) are now computed. Of the three statistical quantities which

were calculated using the trace moments method (in § m.5) it is meaningful to evaluate just

one using the AD? method, namely that of Z~JR' Here 1024 realisations of simulation A

will be analysed.

§ ll1.5.2
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The plot for Z~.IR' tigure III. ID, shows that the statistics (points) of the degraded data

differ significantly from those of the high resolution (not degraded) data. The theory (Hnes)

are in close agreement with the highest resolution statistics only: As it bas aIready been

demonstrated (in § III.5) that degrading the simulated data changes the statistics in sucb a

wayas to adversely affect the complex analyses. degraded data will not be used for analysis

in this section.

•
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Figure 111.10: Plot for Z~.(R for q=0.5, 1, 1.5 & 2, simulation A.

The plot for Re{ K~.I} at the highest resolution, figure III. 11, shows that the

agreement between theory (1ine) and the statistics (points) is very good for values of

q ~O.7. For smaller values of q the slope becomes equal to 2.

The behaviour at small q may be thougbt of in tenus of the series expansion of the

integral for the characteristic function,

....

Z(q) =Jp(x)e,q.T dx

•
(III.9)
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Figure 111.11: Plot of Re{ K.u } From the highest resolution data of simulation A.

Theory line. statistics points.

It should be noted thar using the ADP method results in a symmetrical p.à.f. Thus the odd

moments in eqn. (III.9) aIl equate to zero giving

, ou ~ .",

Z q. J :d q J' ~ d(Cf) = 1- - p(x) x x + - Ptx) x x +...
2! _ 4!_

The analysis is performed on a simulation of tioire size with a limited number of realisations

and it will be affected by numerical accuracy. Hence it is not unreasonable to assume that

the coefficients in this power series do not increase strongly in size for higher order

powers: as calculated numerically they are tïnite. If this is the case then for small enough

values of q (necessarily <1) the logarithm of the series may be approximated as

., cou

q- !
10g('Z(q) =:: - 2! Jp(x)x dx.

In other words Re K,(q) oc: -q!. Hence this rather simple argument gives a plausible

explanation for how the slope a, may appear to be 2 for small enough values of q.

§ III.6.1
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111.6.2 Large C l ,/

§ m.6.2

The statistics of simulations Band C (bath with 1024 realisations) are nowevaluated.

The plot for Re{K.u } is in tïgure III. 12. with a[=L8 on the left and a[=1.5 on the

right (simulations B & C respectively). For simulation B Oeft) the theory (line) is in

agreement with the evaluated statistics (points) between q= 1.0 & 2.0. For simulation C

(right) there is ~ close ~greement only at the single point where q= 1.0. The ~tati~tic~ dn

not follow the theory line for both small and large values of q; the behaviour for large q is

characterised by an oscillation in the computed value with a period of 1; for small q the

slope is. once again. 2. (The place at which the slope changes slope appears to be at a

slightly higher value of q than it did for the corresponding plot of simulation A in figure

1II.6.)
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Figure 1/1.12: Plot of Re{ K-l.l} for simulation B (Ieft) and for simulation C (right)

from the bare data in each case. Theory lines. statistics points.

•
The behaviour for small q has already been described in the previous section. The

oscillating effect seen at large values of q can be explained by considering the effect of

information loss in the data, or more specitïcally, by considering the behaviour of the

characteristic function of the resulting modified probability density (that is modified due to

the IOS5 of information).
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In faet a Gaussian distribution will be considered below for mathematical simplicity

ie., al =2. The variance cr= 1.2 is chosen because, for ADPs with ).=4 and using•
Discrete Complex Cascades

this gives the effective Cu = K[ (1)=0.5194.

§ III.6.2

•

•

The probability density function of a Gaussian r.v., x, may be seen plotted in tï.gure

III. 13 and is detined by the equation

p (:<)

Figure 111.13: Plot of p(x) versus x; the p.dJ. of a Gaussian r.v. with variance

a=1.2.

The Fourier transform (F.T.) of pCx) ie.~ the charaeteristic function. is Z(q) = e-~,,:t!.

The moditïed p.d.r. can be constructed by taking the sum p(x) + p'(x) ie., where

p'(x) is a perturbation to the original p.d.f. Both of these functions can be seen plotted in

tïgure III.l4. Note that p'(x) is made up from 2 shifted (by ±1 Jr) and 2 ret1ected (about

the y-a"<is) "tail' portions of the original p.d.f. such that the resulting modified p.rl.f. is

truncated at ±Ir .

The F.T. of p'(x), Z'(q), has been evaluated mathematicalLy using the software

package nzathematica and can be seen plotted in figure m.I5 on the lert. Note the

periodicity of 1, and that after an initial increase in amplitude for Law values of q the
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§ III.6.2

•

function decays slowly as q increases further still. The lunction has a value of zero for aIl

integer values of q. (AIso, since the width of the Gaussian p.d.f. is a function of cr it

follows that the amplitude of Z'(q) will increase with increasing cr.)

The resulting characteristic function is simply Z(q) + Z'(q). In practice the logarithm

of the absolute value of this quantity is evaluated (to give the second characteristic function)

which can be seen in ligure IIL!5 on the righr. Note that taking the absolute value doubles

the periodicity seen for large q. The perturbation Z'(q) has no effect (on Z(q») at smaller

values of q ie.. Z'(q)« Z(q) for small q.
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Figure 111.15: Plot of the F.T. of p'(x), Z'(q). left. and the second characteristic

function of the resulting modified p.dJ.. right.
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Note that since the amplitude of Z'(q) increases with increasing cr (or Cu) the point

at which the perturbation. from the loss of information in the data. will start to be felt Cie.•

the value of q at which this happens) will he a decreasing function of cr (or Cu),
•

Discrete Complex Cascades § m.6.2

•

•

The final plot which is obtained for the modified second characteristic function can be

cornpared with the plot obtained in figure III. 12 (left) for Re{ K.u } for simulation B.

(Recall that the parameters in each case are Cu = KI (1)=0.5194. a,=2 for the theory above

and CI.I=0.4206. KI (1)=0.5, al = 1.8 for simulation B ie.. they differ slightly). The two

plots are visibly quite similar.

Hence. with this explanation and the one in § III.6.1. the cause of the limitations in

this analysis technique have been demonstrated both for high and low regions of q.

However. the point of transition between the affected and unaffected regions (as a function

of q) rernains a non-trivial function of the underlying statistical parameters. the resolution

and the sarnpling dimension of the data. Ir is beyond the scope of this thesis to investigate

what this relationship may be. What is clear is that as Cu increases the analysis becomes

increasingly affected such that for large enough values of Cu it will no longer be possible

to recover the values of Cu & al' Though. of course. the value of KI (1) may still be

determined by this method.

In conclusion it has been seen that for srnall values of Cu the analysis. for the bure

data. of :-4 gives good statistical results. For larger values of Cu the region (in q-space)

over which the analysis continues to work is reduced significantly. The exact dependence

of the size of this region on the underlying statistical parameters is not known. But

provided Cu is small enough an accurate estimate of Cu & al may be recovered from the

plot of Re{ K... l }. Notably this analysis method allows the value of a, to be recovered for

larger values of Cu than does the trace moments method. In addition the consistency of

the results may be checked by comparing the values of KI (1) recovered by this and the

trace moments methods.
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111.7 Concluding Remarks

§ III.7

•

•

The final conclusion from the testing in §§ III.5-6 is that when Cu is large it

becomes very difficult ta recover the statistical parameters of the data. This is because of

information loss in the complex generator part of the field. The result is that the usual

analysis technique (of trace moments) becomes restricted, especially since the process of

degrading the data no longer conserves the statistics of the process. The ADP method,

deve!oped in this chapter. is capable of extending the useful analysis range ta higher values

of CI,/" but this still has its limitations. Tests have not been performed for empirical

estimates of the usefui parameter ranges over which the analyses will continue to function.

To sum up. the parameters which may be recovered by the analysis of complex data

are:

i) For KR at the highest resolution (bare data) K[ (1). CI.R and a R can be recovered (even

for large values of Cu), and

ü) the analysis of :-l at the highest resolution (bure data) for the statistics of Re{ K~.[}

recovers KI(I) and will recover CI.! & al if Cu i5 small enough.

However the full physical significance of the quantity KI(I) is not known. Neither is it

certain whether there may be a physical interpretation of Cu as the codimension of the

imaginary part of the process.

The analyses that have been perfonned were done so on computer simulations with

well-detined statistical propertie5 conforming with the theory. They have demonstrated the

limitations that occur when analysing this kind of 'perfect' data. The analysis of recorded

data is another matter altogether because there are many additional processes going on

which can disturb the analysis significantly. Of the well-established kind there is non­

conservation which may be expected to occur in general. Non-conservative complex

cascades have not been considered in this thesis but it may be that introducing non··

conservation into the theory is a relatively simple exercise. Likewise empirical tests could

be performed to determine if fractional complex differentiation preserves the statistical

characteristics of a non-eonservative complex cascade process.
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Of a more serious nature is the question of the arbitrary offset in the recorded data

which can totally spoil the evaluated statisties. For example a temperature measurement

may be made in degrees Celsius or Kelvin, the difference between the two being a shift in

scale of 273.15 units. At this time it is not obvious how to remove such a shift when

analysing the data (except by taking differenees eg.. in structure funetions). A similar

problem may exist with an arbitrary power to which each tield (vaIue) has been raised. and

even the question of normalisation is not tri vial in the complex plane (because no point is

speciallike the point at unit distance from the origin on the real positive half-line). Sorne of

these problems are removed by using the ADP method (ie .. normalisation). but not the

serious problems.

•
Diserete Complex Cascades § III.?

•

•

Finally it is quite possible that the arbitrary choice of representing a t\VO variable tield

as the real and imaginary parts of a complex number. in a complex cascade. may tum out ta

be quite inappropriate for real-life situations. This choice is quite restrictive and probably

an over-simplitication (and yet see what difticulties it still presents) of reality. The more

general Lie cascade representarion brings with it even more (roublesome 'Iosses of

information' \vhich have so far proved impossible to mitigate. \Vhether the complex

cascade is appropriate or not may tinally be determined when the analysis difticulties

mentioned above have been removed or circumvented. Apart from this question it should

be kept in ITÙnd that the very general Lie cascade model is slowly being worked on and that

eventually ie may be developed to the point where it can be used conclusively.

So tinaIly it may be understood that. due to these difficulties. the anempts which were

made at analysing recorded data have 50 far proved of liule use. Ho\vever it may be

expected that in the fuulre a more thorough exposition of the properties of Lie cascades will

be made. and with it the complex cascade being a special case thereof. It is the author' s

hope that this thesis will go sorne way towards making it easier for anyone choosing to

work on this problem to see what has been done. what could not be done. and what still

needs to be done.
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§IV

IV Conclusion
The objective of this thesis has been to elucidate the details of cascade models

producing universal multifractal fields and subsequently to investigate the simulation and

analysis of these tields in the scalar and complex cases. This has been achieved as follows:

In chapter 1 the historical development of cascade models has been presented using

the specifie example of turbulence, showing the progress that has been made in producing

modeIs capable of giving ever more realistic characterisations of narurally occurring scaling

and multiscaling tields (§§ 1.4-5). This progression is punctuated by the development of

multifractal models. the discovery of an universai multifractal fonn. and tinally the general

multivariate Lie cascade modeI. The universal m.f. mode! has been chosen for the work in

chapters II-III as being the most realistic and the most amenable to the treatment of

multivariate tields.

In chapter II the basic properties of Lévy r.v.s, the building blacks of the universal

m. f. cascade. have been described (§ II.2.3) along with sorne simulations of these r. v.s.

The theory for the discrete cascade universal m.f. (DCU~[) mode! has been developed

(§ 11.2.4) and simulations and analysis of DCUrvI fields have been presented (§ 11.4).

There is some discussion on the limitations of the software and analysis (§ IIA.3). though

no serious problems are encountered which would make their use untenable later on.

In chapter III the chosen subject is the complex cascade mode!. being the most simple

generalisation of the scalar cascade mode!. The theory developed in this chapter (§ III.2)

closely follows Schertzer & Lovejoy (1995) (though it differs in sorne minor details for

various reasons.) Examples of simulations of complex DeUM fields have been presented

(§ III.5-6). Two analysis techniques which can be applied to complex data have been

described (§ III.4), one of these being the new ··adjacent data points" (ADP) method

(§ m.4.3). These analysis techniques have been applied to the complex simulations and it

\Vas found that the ADP method is an improvement over the traditional anaIysis method. A

theoretical explanation for the limitations in the analysis of the complex data has aIso been
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demonstrated (§ m.6). Finally the difficulties of analysing recorded data, rather than the

'perfect' data of a simulation, have been discussed (§ III.?).•
Conclusion §IV

•

•

The unique contributions to knowledge which have arisen from this work are: A

considerable understanding of the basic properties of cornplex cascades has been reached;

sorne of the fundamentallimitations of the analysis of complex data have been understood;

a new analysis technique, the ADP method, has been developed which is an improvement

over the traditional analysis technique (for the analysis of complex data).
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§ A.l.I

A Appendix
The main software routines which have been used to generate the various random

variables and fields appearing in this thesis can be found in this appendix for reference.

A.1 Lévy r.v. simulation routines

be used to generate totally skewed left ({3=-l) Lévy r. v.s, x, with parameters a =alpha)

ICI ICa - l)1 =c and shift parameter f1 =0 ie.,

The r. v. is stored at memory location i num: this function is called by the software in tile

dse_03.h (§ A.2) which generates a scalar DeUM field. The function c Ivns (long

*inurn,dcuble alpha,double c) is identical, except that the r.v. produced has a different

scale parameter such that

and it is called by the software in file c~"'<_03.h (§ A.3.l) which generates a complex

DeUM field.

Note that the function rs t_O 4 . ç and its associated functions of § A.1.2 are modified

versions of the functions appearing in Samorodnitsky and Taqqu (1994) on pp. 46-49

rewritten in e.

A.1.1 file "Ivnst.h"

/*lvnst.h */

#defi.Tle SErA -1.0

#include <nath.È1>

#include <stdlib.h>
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#incluèe "L.1'1clude/RAN3 .C"

#iZlclude linclude/rst_04.c"

dcuble l'ims (long *inurn, double alçll.a, dcuble c)

double offset,a,b;

if(alpha!=l.O)

{

offset=BETA*tan(M_PI_2*alpha);
c=c*cos(M_PI_2*alpha);
if(c<O)

c=-c;

c=pcw(c,l.O/alpha);

else

c=c*M_PI_2 ;
offsec=O.O;

(numerical recipes routine)

§ A.l.i

•

a= (double) ranJ (inurn) ;

if (a==O. 01 1a==l. 0)

a=(double)ran3(inum); 1* assurre it does noc re~€at */

b= (double) ran3 (inum);

if(b==O.OIIb==l.O)

b= (double) ran3 (inum); /* ditto * /
b=-lcg(b) ;

recurn c*(rstable(alpha,BEL~,a,b)+offset);

}

/* for use as exp (i*lvns) (ie., iIœ.g~.I) * /
double clvns (long *intnn,double alp}1.a"double c)
{

double offset,a,b;
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if(alpba!=l.O)
{

offsec=BEL~*ta~(M_PI_2*alpb~);

if(c<O)

c=-c;
c=t:cw(c, 1. O/alpha) ;

else

a=rar.J (inum) ;

b=-lcg (raf13 (inum) ) ;

recurn c*(rstable(alçb~,EETA,a,b)+offsec);

#undef BEIA

A.1.2 file "rst_04.c" and associated functions

,'* rsc_04.c adapted. fran S&T çp. 46-48 * i

:finclude <:rrar.r... h>

=firlClude <stdlib.h.>

#irlclude Il Lr"lclude/tJ:Uth.h"

double rstable(àouble alpb.a,double tpriIne,double u,dcuble ~,./)

{

double phiby2,a,eps,b;
double bb,tau,a2,a2p,b2,b2p,alcgz,z,d,st,rstabl;
double tan2d(double xarg) ;
double d2d(double z);

eps=l.O-alpba;
phiby2=M_PI_2*(u-O.5);
a=phiby2*tan2d (phiLy2) ;
bb=tan2d (eps*phiby2) ;
b=eps*phiby2*bbi
if(eps>-O.99)

§ A.l.I
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tau=1:prime/ (tan2d (eps*M_PI_2 )*M_PI_2) ;
if(eps<=-O.99)

tau=bpriITe*M_PI_2*eps*(1.O-eps)*tan2d((1.O-eps)*M_PI_2);

a2=a*a;
a2p=l. O+a2 ;
a2=l.O-a2i
b2=b*b;
b2p=1.O+b2;
b2=1.O-b2i

z=a2p* (b2+2. O*phiby2*bb*tau) / (r.v*a2*b2p) i

alcgz=lcg(z) ;
d=d2d(eps*a.lcgz/ (l.O-eps)) * (alcgz/ (I.O-eps));

rstabl=(1.O+eps~d)*2.0*((a-b)*(l.O+a*b)­

phiby2*tau*bb*(b*a2-2.0*a))/(a2*b2p)+tau*à;

rettu:n rst.abl;

#define Pl O.840066852536483239e3
#define P2 O.200011141589964569e2
#define QI O.16801337ü507296648e4
#define Q2 O.18001337Ü407390023e3
#define Q3 1.0

double d2d(double z)
{

double pv, zz, d2 ;

if(fabs(z»O.l)
d2=(a~(z)-1.0)/z;

else
{

ZZ=Z*Zi

pv=P1+zz*P2;
à2=2.0*pv/(Ql+zz*(Q2+zz*Q3)-z*pv);

§ A.1.2
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}

return 02;
}

#undef Pl
;rùndef F2

#ur.èef QI

:n'~nQr l'Y)
• ----- lIC:;.-

:h.1r.def Q3

~define FO O.129221035031569917e3
~defi~e ~l -O.8876623770211723el
#defir~e F2 0.528644455522248e-1
;defir~ ÇO O.1645293318101686û5e3
#def1~e QI -Q.45132ü56100598961e2

double l'!1'i'ocar:d(dcuble xarg) /* âdaÇted frcm S&T p. 42 ~ .

dcuble my"tar1i

:.nt neg, ir~v;

dcuble x,x..:;

rleg=F.~LSEi

iIl'V=F.:;L$E i

x=xarg;
if(x<O.O)

neg=TRUE;

x=fabs (x) ;

if (X>i-I_?I_4) {

x=frrcd(x,M_PI) ;
if (;oH_PI_2) {

neç('=TRtJE;

x=M_PI-x;
}

if (:oN_PI_4) {

inv=W.UE;

§ A.1.2
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}

xl =~!_PI_4 ;

x<.=x*x;

m.lt:arl=x* (PO+:<:<.* (?1+x:<*P2) ) / (QO~:<x* (Ql+:-o:) ) ;

if (neg)

..; .: 1 .; Y"'"r"r p'
-- \-.~ 1

mytan=1.0/ITo/Can;

reCtL"rTI mytan;

double car12d(ècuble ;·:a.rg) /* aè-apted frem S&T pp. 48-49 */

double x, :0:, tan2 ;

:<=iabs (xarg) ;

if (:<>H_PI_4)

tan2=mytand (xarg) / :<arg;

else

{

:OC=X"x;

tan2= (FO+:<=<* (Pl+x<*P2 ) ) / (N_PI_4* (QO+:<x* (QI+:<:<.) ) ) ;

}

recum tan2;

#undef PO

!hlr.def Pl

:funàef P2

#unàef QO

#undef QI

§ A.1.2
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A.1.3 file "truth.h"

#ifndef _tIUL.'r"l_h_
#define _trù.th_h_

#define TRUE 1
#define FALSE a

A.2 Scalar DeUM simulation routine

The function dsc (double *deg, long *Ll'1urn, long size, double alpb.a, double

ç) belo\v produces a scalar DeUM field. E,t. of resolution À.. where log! À..=size at

memory location deg (the memory ut inurn is used internally). It has the parameters

a=alpba and Ct/Ca -l)=c such thut

/* dsc_03.h discrete scalar cascade simJ.lat.ion */

#define EO 1.0 /* epsilon naught */

#incluàe <stdio.h>

#ü1cluèe <Un.istd. h>

#include <fcntl.h>

#Ü1clude <sys/stat.h>

#include <sys / t:;çes .h>

#include <stdlib.h>

#include <rrath.h>

#include "include/lvnst.h"

void dsc (double *deg, long *inurn, long size,double alpha,double c)
{

long countO,countl,last;

§ A.1.3
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double data_array[23];
long ratio=sizeof(*data_array);
double *dp;

long total;
double u, un;
double leV'.!;

double factor,offset;

if(c<=O.O)
{

princf ("invo.lid c\n") ;
exit(l);

}

~.=pow(U, (l.O/{double)alpha-l.O));

total= (l«size) ;

if(alpha!=l.O)
offset=c;

else
offset=O.O;

if{alpha!=l.O)
offset:=c;

else
offset=O.O;

for (countO=l;countO<=size;countO++)
{

levy=u*((lvns(inum,alpha,c)*un)-offset);
data_array [countO] =data_array [countO-l] *e..~ (levy) ;

}

àp=deg;

*dp++=data_array[size];

§ A.2
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last=O;
for(countl=l;countl<total;countl++)
{

for(councO=l;c~~~tO<=size;countO++)

if((countlA last)&(1L«(size-countO)))
{

levy=u* ( (lv11.5 (inum,alpha, c) *00) -offset) ;
data_array LcountUJ::daca_array [count0-

1] *exp (levy) ;

*àp++=datâ_a-rray[size];
lasc=ccuncl;

retunl;

#undef EO

A.3 Complex DeUM simulation routine

The function cpx(double *d€g[2], long *inum, long size, flcat alpha[2],

flcat c [2] ) in § A.3.1 produces a complex DCU~l field, EÀ. • of resolution À. where

log! À. =5 ize with the rea! part at memory location deg [0] and the imaginaI)' part at

deg[l] (the memory at inumis used intemally). It has the parameters aR=alpha[O] &

a 1=alpha [1] and ICI.R lea R - 1)1=c [0] & I{CU I(al - l)} cos(Jratl2 )1= c [0] such that for

q>O

§A.2

•

() [{
C C Jra . C . ;ra} ]ei =exp I.R (qa ll _q)+_I_.I_(qa/ -q)cos-I +l_I_.I_(qU/ -q)sm-I log.. ).

a R - l al - 1 2 a, - 1 2
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A.3.1 file "cpx_03.h"

1* q»:_03.h direct ccmple.x cascade sirnulation * /

#defiI1e '10 M_SQRTl_2

;defirle V1 M_SQRTl_2

~include <stdio.r~

~~ __ 1 •• ...J_ _ ._~ _4-~ 1- .....
':'i.i-lr.J.'- ..... Io...4.\w4.C .......~ ....;)'-~••~

#L~clude <fcntl.h>
#i~clude <~Js/stat.b~

#include <sys/t}1:es.h>
#include <stdlib.h>
;:incluàe ~th.h.>

~Lr"lclu.de "iI1cluàe/rnv_Ol. CH

#include Il LT"lclude/lvnst .h"

iloid cpx(double *deg[2], long *inurn, long size, flcat alpha [2] , flcat c[2]}

{

long ccuntO,countl,last;

long ratio=8;
double data_array[23] [21;

double *dpO, *dpl;
long total;
double H[2] [2] ;
double U, un[2] ;
double levy[2];
double factor[2],offset[2j;

for(countO=O;COQ~tO<2;countO++)

{

if(c[countO]<=O.O)
{

printf (" invalid c\n") ;

exit (1) ;

}

un[countO]=pow(u, (1.0/(double)alpha[countO])-1.0);

§ A.3.1
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total={l«size);

if(alp~~[OJ !=l.O)
offsec[O]=-c[O]+c[l];

else
.......;:-Fcc.~rnl-n n.------L.-4 --._,

if {alpha [1] !=l.O)
offset[1]=c[1]*tan(M_PI_2*alp~~[1]);

else
ofrset.[l]=O.O;

data_array [0] [0 j =\10 ;

data_d-rray[Q] [lJ=Vl;

for(councO=l;ccuntO<=size;ccur~O++)

{

l~,y·[O]=(lv~~(L~um,alpb~[O]/c[O])*un[O])·offset[OJ;

le~/y [1] =(CIVIlS (inum, alpb.a [1] , c [1] ) *un[l] )+offset [1] ;

mrot(u*levy·[l],M);
msm(e:<p (u*levy[O] ) ,M) ;

mv(M,data_array[countO-l],data_array[countO]);
}

dpO=&de.g[O] [0];
dpl=&deg[l] [0] ;

*àpO++=data_array[size] [0];
*àpl++~ta_array[size][1];

last=O;
for (countl=l; countl<total;countl++)
{

for (ccuntO=l;countO<=size;countO++)

§ A.3.1
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if((countlAlast)&(lL«(size-countO)))
{

leJy[O]=(l~~(inum,alpb~[O],c[O])*un[O])+offset[O];

le~~·(l]=(clvTs{inum,alpha[l],c[l])*un[l])+offset[l];

mrcL(u*lE\~rll ,M} ~

wsm(~xp(u*levy'[O]),M);

*àçO++=data_array[size] [0];
*dp1++=àaca_array[size] [1];

lasc=ccunc1;

.,....=.~11~·- ----..... .. ,

#undef \iD

#undef V1.

A.3.2 file "mv_01.c"

/ * ~.r_O1. c contains rratri.'< funccicns */

#include <rrath.h>

,1 * c.Q (scalar and rratri...x prcduct a::q*a) * /

void rnsm(double q, double a[2] [2] )
{

a[O] [O]*=q;

a[l] [1] *:q;

a [0] [1] *=q;

a[l] [Ol*=q;

§ A.3.1
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/ * rnac.ri.x tirnes colurnn vector- .1'1=â.~., * /
void rmr(double a[2J [2J 1 double v[2] 1 double w[2J)

{

w [0] = (a [ 0J [0] *v [ 0] ) + (a [ 01[1 ] *v [1] ) ;

~.oJ [ 1 ] =(a [ l J [0] *v [ 0] ) + (a [1] [1] *"'l [1] ) ;

* rotarien rratrix a(theca) "':
-jcii ITlrct (ècuble theta,d.cuble a[21 ~:})

a. [1] [1 J=3. [0 J [0 J=CGS ( c.hec.a) ;

a[l} [O]=sin(cheta);
a [0] [1] =-a [1] [0] i

returI1;

§ A.3.2
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