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Abstract

Currently there is no standard whole-field methodology to measure the transient out-of­

plane deformation of a swface under dynamic events. In this wor~ a whole-field high­

speed optical surface measurement system bas been deve10ped, which yields absolute

Canesian coordinates (xyz) as measurement results. A high-speed digital camera coupled

with the graling projection and Fourier uansform is used to measure 3D surface

defonnations with the maximum sampling rate up to 1000 Hz and the exposure time of

each frame up to 50 1JSeC. A calibration technique has been utilized to conven the direct

measurable values-phase, 41, and image indices (i, })-into 3D Cartesian coordinates

(xyz). ln addition, aU Canesian coordinates are with respect to a fIXed coordinate system,

which is vinually associated with the sensor head. Therefore, the rigid body movements

(rotation and translation) of the surface can he detected. The measurement accuracy ±50

Jlm is verified with several tests by using standard objects.

The dynamic surface deformation during polymer membrane inflation tests is

investigated by using the proposed optical measurement system. Effects of various

factors, 5uch as the temperature and the airtlow rate, are studied. Regarding the

characterization of material constants by using the bubble inflation technique, the

potential problems, which are caused by ignoring the nonunifonnities of temperature

distribution and the thermo-warping, have been studied.

A fmite-element Madel which can account for the nonuniformities of temperature

distribution and the thermo-warping, has been employed to simulate the inflation

deformation. A more accurate way to characterize the material constants is accomplished

by combining the optical measurement system and a fmite-element model that can

account for the nonuniformities of the temperature distribution and the thenno...warping.
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Résumé

Actuellement, il n'y a pas des méthodes standards permettant de mesurer la déformation

hors plan d'une surface sous sollicitations dynamique. Dans ce travail un système

optique rapide de mesure a été développé et qui permet de visualiser les résultats dans le

système de coordonnées cartésiennes absolu (xyz). Un camera digitale à grande vitesse,

equippée d'un système de projection et utilisant la transformée de Fourrier pour mesurer

les déformations d'une surface tridimensionnelle avec une fréquence maximale allant

jusqu'à 1000Hz et un temps d'exposition de chaque image allant jusqu'a 50 J,lsec. Une

technique de calibration a été utilisée afm de convenir les mesures directes des valeurs de

la phase, CZ-, et des indices de l'image (i, J) dans le système tridimensionnel de

coordonnées cartésiennes (xyz). En plus, tous les coordonnées cartésiennes sont par

rappon à un système de coordonnées flXe. qui est virtuellement lié à la tète du capteur.

Ainsi, les mouvements du corps rigide (rotation et translation) de la surface peuvent être

détectés. La précision de mesures (± 50 tJ m) est vérifiée à l'aide de plusieurs tests en

utilisant des objets standards.

La déformation de la surface dynamique pendant les tests de gonflement membranaire du

polymère est entreprise en utilisant le système de mesures optique proposé. Les effets des

divers facteurs, tels que la température et 1"écoulement d'air sont étudiés. Concernant la

détermination des paramètres du modèle en utilisant la technique du gonflement, les

problèmes potentiels qui se manifestent en ignorant la distribution non uniforme de la

température et de la dilatation thermique ont été étudiés.

Un modèle éléments fmis qui prend en compte la nonuniformité de la température et de la

dilatation thermique, a été employé pour simuler la déformée. Une méthode plus précise

de déterminer les paramètres du matériau est accomplie en combinant le système de

mesure optique et le modèle éléments fmis part la prise en compte des effets de variation

de la température et de la dilatation thermique.

'.
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CBAPTERI

INTRODUCTION

1.1 Motivation

Thanks to Descartes, we may characterize our physical world, known as three­

dimensional (3D) Euclidean space, in algebraic terms by establishing a Cartesian

coordinate system (three mutually perpendicular number ÜDes whose origins coincide at a

single point, known as the origin of the coordinate system). Call one of these lines the X­

axis, and then choose one of the remaining lines as the Y-axis. The last perpendicular line

through the origin is called the Z-axis by adopting the right-band role. Any point P in 3D

space can then he located or represented by an ordered triple of real numbers (x, y, z),

called the Cartesian coordinates of point P. The fll'st number in the ordered triple

indicates the location of the point in the direction of the X-axis, the second one indicates

its location in the direction of the Y-axis, and the third number indicates the location of

the point in the direction of the Z-axis. Any object in the physical world has its position,

and occupies a cenain space. By using a Cartesian coordinate system aU the geometric

propenies of an object can he described. Therefore, the goal of 3D-measuring

techniques, bath optical and mechanical methods, is the determination of the Cartesian

coordinates of an abject.

As shawn in Fig. 1.1, Coordinate Measuring Machines (CMMs) are the conventional

tools for dimensional measurements of various mechanical components by the use of

louch probes. A touch probe is a special electronic sensor that can generate a recording

signal to a CMM to record simultaneously the x, y, and z positions when the head of the

louch probe cornes into contact with the surface to he measured. So, by louching the

surface, a CMM can create x, y, and z coordinates for that point being touched. CMMs

have high accuracy in the measurements of 3D coordinates, but suffer from imponant

limitations such as: high cost, low measurement speed, and limitations on the

autonomous measurements of the eotire part surface. In addition, CMMs have to touch

the surface, but in some applications the physical contact is not recommended, such as

1
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measuring membrane structures. As a solution to this problem, optical non-contact

sensors including stereo vision systems, laser scanning systems and fringe systems have

important advantages over the CMMs. Significant advantages include high speed

(-20,000 point/sec) and the ability to perfonn measurements on the entire surface of a

part without pbysical contact

Fig. 1.1 1Œ coordêuue rœasuring machR (CMM) and touch probe.

'.
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However, the development of these new high speed and high precision optical non­

contact sensors solve oRly a ponion of the problem. Sometimes, the surface to he

measured is changing its shaPe dynamically, as in the case of surfaces under vibration or

impact. There is no tilDe for a laser scanning system to fmish one scanning cycle before

the surface changes. Another example is the dynamic buckling of plates. The buckling

shape is changing with the increase of loading. Other examples include Cree surface

waves in hydrodynamics. The fluid surface shape is changing ail the time due to the

surface waves, and accurate prediction or measurement of the surface wave is a necessity

in the fields of offshore and coastal engineering. The 3D measurement of the surfaces

under transient deformation are too difficult for both conventional CMMs and optical

measurement systems to deal with. ln fact, there is no standard methodology to measure

the transient deformation of a surface in a dynamic event. However, dynamic 3D surface

measurements, which can provide the knowledge of the entire deformed field and its time

history, can help to gain a better understanding of these complicated phenomena. This is

the motivation of tbis research work.

Prior to formulating the specifie objectives of lhis work in Section 1.3, a review of the

literature on 3D optical measurement methods and their various applications on dynamic

deformation measurements is given in Section 1.2. There are many optical measurement

methods available today, such as pholoelasticity, geometric Moiré, Moiré inlerferometry,

holographie interferometry, shearography, laser scanning techniques, and laser speckle

interferometry. Depending on their applications, they falI into two categories: in-plane

measurement (in-plane strains and displacements) and oUI-ol-plane measurement (out-of­

plane displacement components, surface profl1e and lopography). This work focuses on

the out-of-plane measurement methods, which have the potentialto provide 3D surface

shape information. In addition, laser-scanning techniques are not considered in this work

because they can only provide 3D information on a line at each time, and the time

required to scan the whole surface makes them impractical for dynamic surface

measurement. In such a case, what we need is an optical measurement technique, which

can he used in dynamic 3D surface measurement to provide whole-field coordinate
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information. In the next section, a Iiterature review will he carried out for various optical

techniques for the out-of-plane measurement.

1.2 Literature Review

1.2.1 Non-œntact 3D Optical Measurement Methods

The shadow Moiré method is one of the flfst scientific applications of the Moiré

phenomenon, which is if two superposed sets of lines are dense enough and show sorne

regularities, a panern known as Moiré fringes will he fonned in addition to the individual

line sets. The work in this area GOes baek to early 194O's. The principle of shadow

Moiré is easy to understand.

k=2

k=J Z2

G - -
~

1

Image Plaœ

Fig. 1.2 Opti:allayout of the shadow Moe rœthod.

•

As shown in Fig. 1.2, a point light source S casts the shadow of a grating 0, which

coosists of equispaced parallel black lines, ooto the surface of an abject. The grating

shadow is modulated by the surface 50 it looks as if il is somehow defonned. When the

shadow is viewed through the original grating, the two sets of lines (original grating and

its deformed shadow) interfere with each other, and Moiré fringes are generated on the

image plane due to this Geometrie interference. If the distance between the camera and
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the grating is equal to that between the light source and the grating, the observed Moiré

fringes will represent iso-height contours of the surface--all the points on a Moiré fringe

will have same distance to the reference grating plane (Meadows, Johnson & Allen 1970,

and Takasaki 1970). As shown in Fig. 1.2, the distance to the reference grating plane or

the height is 1.1 for all the points on the ktlr order Moiré fringe. The order of Moiré fringe

is k (k = 0, 1, 2, ...). A Moiré fringe image is shawn in Fig. 1.3, which was taken for a

3D curved object of approximately 300x250x150 mm in overall dimension. The black

coarse curved lines are Moiré fringes, and the original straight grating lines are very fme

in the background (running venicaUy).
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Fig. 1.3 Moiré fringes of a 3D object.

If the straighl line connecting S and 0 is parallel to the plane of the grating, we can

assume a simple equation 10 calculate the height of points on each Moiré fringe to the

grating plane. Ali contour lines are parallel to the G plane.

lxkxd
Zi' = b-kxd (k =0, 1, 2,...) ( 1.2-1)

•
Here, z.t is the distance between the G plane and the ktlr order Moiré contour lîne. The

distance between the lighting source and the G plane is 1, and b is the distance between

the lighting source and the camera. Finally, d is the pitch of the grating and k is the order
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number of the Moiré contour lines, which is equal to 0, l, and 2... The distance hetween

successive contour lines &, called the sensitivity, is:

(k =0, l, 2, ...) (1.2-2)

From Eq. 1.2-2, we can see that the sensitivity of the shadow Moiré method is not a

constant; il increases with increasing order of the contour lînes. H, as is often the case,

zJl « 1 and dJb« l, Eq. 1.2-2 can he simplified to have a constant value.

1
Al. = dx­

b
(1.2-3)

The sensitivity of Moiré methods is an imponant factor, and it was often utilized to

evaluate the precision of a Moiré system. The sensitivity and accuracy issues will he

discussed in Chapter 3 and 5.

The projection Moiré method is a modified version of the shadow Moiré. As shown in

Fig. 1.4, instead of using a grating in front of the surface, a grating, called the master

grating, is projected onto the surface by using a lens. Therefore, the overall size of the

master grating is usually very small comparing with the grating used in the shadow

Moiré. However, a second grating, called the reference grating, is needed at the image

plane of the viewing lens to generate Moiré fringes, due to the interference between the

image of the master grating and the reference grating. Theo a camera focusing at the

reference-grating plane has to be used to record the Moiré fringes created. The setup of

projection Moiré is therefore more complicated than that of the shadow Moiré. The

equations derived for the shadow Moiré are still valid for the projection Moiré except that

d must he substituted by dr, the pitch of the master grating on a virtual reference plane.

AlI heights calculated are then with respect to this virtual reference plane.

•
1

dr=dx-
q

(1.2-4)
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1

mastcrping

referalcc pling

Fig. 1.4 OptX:al setup of the projectiJn Moe method.

As shown in Fig. 1.3, the direct measurement result of the shadow Moiré or the

projection Moiré is a 2D image containing Moiré fringes, which represent contour lines.

A number of researchers have scanned the resulting image to provide a digitized format,

which provides a two-dimensional light intensity function f(;, )), where i and j denote the

image coordinates and the value f al any point (i. J1 is proportional to the brightness or

gray level of the image at that point. The origin of the image coordinate system can he

anywhere in the image, but usually is taken as the image center or one of the image

corners. In this case, the 2D image has been discretized by a digital camera both in

spatial coordinates and in brightness as shown in Fig. 1.5.

-...

~, . ft,,)

Fig. 1.5 Digilal mage representatiJn.

Origîn

•
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If the Moiré image in Fig. 1.3 is viewed in perspective with the third axis heing

brightness, the image would appear as a series of active peaks in regions with numerous

changes in brightness and smoother regions or plateaus where the brightness levels varied

little. In Most cases, eight bit black and white images are used. That means the

brightness will bave a value ranging from 0 to 255 representing dark to bright in the

image. Therefore, a digital image can he considered a matrix whose row and column

indices identify a point in the image and the corresponding matrix element value

identifies the gray level at the point. The small picture elements or pixels correspond to

each element in the digital camera imager that convens light to an electrical charge.

There are tota1480x512 elements or pixels in the digital camera imager we used.

After a 2D Moiré image has been created, one has to use Eq. 1.2-1 10 obtain quantitative

values, such as the height, for sorne pixels in the 2D image through image processing.

The fundamental objective of the Moiré image processing is 10 locate the center of each

Moiré fringe by defming its (i, J1 image indices since the Moiré fringes are usually wider

than one pixel, and only the center lines can be treated as contour lines. When dealing

with relatively coarse Moiré fringes, errors are therefore introduced. Due to a number of

unforeseeable factors, human intervention is always needed through each step of the

image processing. Sorne researchers have tried to develop software tools to process

Moiré fringes automatically (Ning & Peng 1988, Moran & Lipczynski 1994, and

Bruynooghe 1996), but that objective has yet to he completely achieved.

Moiré fringes themselves do not allow a direct determination of whether a contour line

showing concentric fringes is a hill or a valley, which is another reason that data

processing of Moiré fringes can not he done automatically. When an order number is

assigned to a Moiré fringe, it is necessary to know whether the number is going up or

down. Sorne enhancements have been proposed (Murakami & Murakami 1978, and

Fujimoto et al 1992), however, these modifications make the setup and data analysis

more complicated.

As shown in Eq. 1.2-3, the sensitivity of the Moiré measurement & is dermed as the

minimum distance between two successive Moiré contour lines. Therefore, any surface
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change smaller than & can not be detected. Sensitivity bas always been considered from

the theoretical point of view (see Eq. 1.2-2 and Eq. 1.2-3), and in all cases it has been

seen to depend proportionally on the factors d and lib. The factor d bas lower practical

limits detennined by the loss in defmition of the shadow of the grating with increasing

distance from the grating itself. This in turn is caused by the diffraction effect. The

factor Vb is aIso limited by similar causes. The highest sensitivity (smallest &) can he

attained with very flat objects. In most practical cases, however, the sensitivity is

considered around 1110 mm. Sorne special techniques used to improve the sensitivity

have been reported (Han, Ifju & Post 1993, and Liao & Voloshin 1993). Again, these

enhancements need special treatments in either the setup or the foUowing data-processing

procedure.

ln many cases, one bas to interpolate the Moiré fringes since only the height information

of centerline points of each Moiré fringe is known. The height information of ail other

off-fringe-points is still unknown and sometimes only few Moiré fringes are available in

sorne areas (Marshall et al 1993, Fang 1991, and Mckelvie 1986). The height

information is calculated from Eq. 1.2-1 by using known optical geometrical parameters:

1. d. and b. However, how accurate these parameters can he determined in a practical

way is questionable. Small eITors with b and 1can be amplified to bring big errors to

height z. With these in mind, the accuracy of height information could he worse

depending on applications.

Finally, the Moiré methods usually have to assume a reference point in the field of view

as a zero order fringe. This point is actuaUy the ongin of aU height information, and all

geometry is built on this origin. If we need to measure a surface twice, there will he two

uro order fringes or reference points being created. One can combine ail the data from

these two measurements together only if the relationship of these two reference points

remains known or unchanged in height direction during the measurements. 'Unchanged'

means the reference points must he flXed during aIl the measurements. When entire

surface area in the field of view is under rotation, translation and deformation, it is

impossible to fmd a flXed point to be the zero order point, and unfortunately this is the

case for most dynamic applications. Thal means Moiré methods are not applicable in

9
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such cases unless a device is used to provide the information on these rigid body

movements (Lin, Chawla, & Wagner 1997). Therefore, the measurement of the Moiré

methods is generally a relative measurement, which can not detennine the absolute

position of the surface in 3D space.

Assuming all above-mentioned problems are solved, the fmal results obtained are the

height information of image pixels with respect to a reference point in a fonn of a set of

triple numbers· (h, i, J). For clarity, the height is denoted as h instead of z. This

information (h, i, J1 is still based on the 2D image plane. Fig. 1.6 shows the schematic of

a CCO (charge coupled device) camera. As the most important component inside a CCO

camera, the imager is a physical device composed of discrete silicon imaging elements,

called the pixels. Each pixel is very sensitive to light and has a voltage output

proportional to the intensity of the incident light. The 20 image plane is the plane of the

CCO imager, which is perpendicular to the optical axis.

......
., ........

......
............

opti:al Axis

Fig. 1.6 Schematic ofa CCO camera.

As mentioned earlier in this chapter, our world is characterized by the Cartesian

coordinate system. Shape, position, deformation, and rotation are all described with

respect to a Cartesian coordinate system. However, what is obtained directly from the

• Moiré methods are based on the image plane, whose position and orientation with respect
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10 a Cartesian coordinate system maybe unknown. Obviously, there is a gap hetween

what can he obtained from the Moiré methods and what is needed ta derme a surface

shape in 3D space-the 3D Canesian coordinates, as mentioned in Section 1.1. For

instance, from (h, i, J) one can not detennine the exact diameter of a cylindrical surface.

However, from (h, i, J) we do know qualitatively how many concave and convex areas

are in a surface, and how much is the height difference between them. Even with these

drawbacks, the Moiré methods have been used in various applications ta date. Takasaki

obtained sorne Moiré pictures on a human face and body (Takasaki 1970), and Hung used

shadow Moiré to study vibrations (Hung et al 1977). For more application examples, see

Pirodda's paper (1982) and Sciammarella's paper (1982). The applications sa far were,

in general, performed in the laboratory as a demonstration of the Moiré technique as a

measuring device in a particular investigation. The features of the Moiré methods are

summarized as fol1ow:

• simple optical setup;

• difficulties in interpretation of Moiré îringes and Cully automatic processing;

• ambiguity in convex and concave areas;

• need interpolation for off-fringe-points;

• sensitivity is a important factor for ail applications;

• difficulties in the determinalion of optical parameters accurately;

• the measurement results are a set of (h, i, j), not 3D Cartesian coordinates;

• relative measurement due to the assumption of a relative reference point on

which the 3D geometry is based.

Some of the difficulties mentioned above are related with attempts at computer-based

automatic data processing. In ibis point of view, the shadow Moiré and projection Moiré

methods are called classic or geometric Moiré methods for fringe analysis by human

observation rather than by computer processing.

In arder to resolve the difficulties associated with the geometric Moiré methods, an

alternative method called the grating projection method or the grid projection method bas

been proposed by severa! researchers (Takeda, Ina, & Kobayasbi 1982, Takeda & Mutoh
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1983, Toyooka & Iwaasa 1986, and Halioua & Liu 1989). Unlike the geometric Moiré

methods, no Moiré fringes are generated by the interference between a reference grating

and a defonned grating image. A defonned grating image projected on an object is

directly analyzed without the use of a reference grating. Therefore, problems

encountered in the geometric Moiré methods are rninimized. The theory behind the

grating projection method is that when a grating is projected onto a surface, the form of

the grating image on the surface is detennined ooly by the shape and position of the

surface if the grating pitch and the optical setup (projection lens and projection

orientation) are flXed. In other words, a 2D deformed grating image contains the surface

shape information. It should he possible to calculate the shape of the surface from the

deformed grating image directly. To use a reference grating to generate Moiré fringes as

used in the geometric Moiré methods is only one of the ways to obtain shape information

encoded in the deformed grating image. The grating projection method is used in this

wor~ and ils detailed description will he given in Chapter 2. In the following section, a

brief review of the dynamic out-of-plane deformation measurement by using whole-field

optical methods is given.

1.2.2 Dynamic Defonnation Measurements by Using Optical Methods

A review of the literature shows that a number of studies have becn donc to deal with

real-time measurement of dynamic out-of-plane deformation. Using high-speed

photography to record the profile of transient deformation is usually the way to

accomplish the dynamic measurement goal. Zhu, Goldsmith & Dharan (1992)

photographed very high-speed projectiles penetrating Kevlar laminates. Senf,

Strassburger & Rothenhausler (1997) employed a high-speed film camera in a shadow­

optical arrangement to picture the dynamic out-of-plane defonnation of composite

armour at projectile impact. In above studies, the high-speed cameras were not digital

cameras, and they record pictures on films. These pictures are limited to only one view

(usually side view). Conceming the whole-field measurements, very few studies have

been donc so far, and these applications are the natura! extension of the geometric Moiré

metbods. Unlike using standard frame rate cameras, high-speed framing film cameras

• were used in these studies. Chai (1982) conducted dynamic measurements on
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compressed graphitelepoxy composites subjected to low-velocity out-of-plane impact by

using the shadow Moiré method with a Hycam high-speed fllm camera (up to 40,000

frame/sec). More recently, Kokidko et al (1997) also employed the shadow Moiré

method combined with high-speed photography to measure the deformation of glass fiber

reinforced plastic panels at impact of projectiles. Lambros & Rosakis (1997) measured

the dynamic deformation of fiber reinforced polymerie matrix composites by using

coherent gradient sensing (COS). Instead of (h, i, }), the COS provides the slope or the

gradient of height ah/ax with known image indices (i, }) at sorne locations of the

recorded fringe image. An integration process has to he used to obtain height

information.

As mentioned previously, the Moiré methods are a relative measurement technique (the

same with the CaS). ln arder to fmd out a common reference for all the measurement

data taken at düferent time. they need to assume that at least one point, in the dynamic

scene, remains unchanged or flXed throughout the whole dynamic event, as shown

schematically in Fig. 1.7.

FJeld of view
of the carœra

Dynanic
dl:fonœlion
area wlth a

inl'act center
in the niddIe.

At least one referenœ point
bas to he aiswœd flJed
inside the field of view.

•

Fig. 1.7 ReÊreœe poil used in opti;a1 dynarŒ rœa..ueIŒdS.

In Chai's Ph.O. thesis (1982), he assumed thal 50 microseconds after impact by a 00.5

inch projectile, the out-of-plane deformation at a point 0.5-inch away from the impact

center is zero. The specimen used in bis test was 0.2 inch thick. The same method to

fmd a reference plane was also used by Kokidko et al (1997). They all implied that the
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dynamic deformation was timited in the center as a localized deformation, and close to

the boundary of the field of view of the camera the defonnation was zero throughout the

impact. This is valid for thick and stiff plates onder high-speed impact, but the general

failure mode of relative thin plates under low speed impact (150 ft/sec in Chai's thesis) is

global buckling plus local delamination. Therefore, before any relative optical

measurement techniques can he used, such as the Moiré methods, we have ta make sure

that the field of view of the camera is large enough to include some 'fLXed' regions. For

example, in Lambros & Rosakis' paper (1997), the field of view was approximately 050

mm out of a 152x152x6 mm plate impacted with a 025 mm projectile. It is difficult to

claim that any point 25 mm away from the impact center will remain flXed during the

whole event, especially when the impact speed is as low as 1 m/sec.

Lin, Chawla & Wagner (1997) proposed a system ta measure the out-of-plane

deformation of two different tires of f-16 fighter jets by using a fringe projection

technique and a standard CCO camera. In this very challenging application. no flXed

point existed in the field of view and a fiber-optic sensor was employed to monitor the

out-of-plane deforrnation of a reference point. Unfonunalely, ooly statie measurement

results were presenled in his paper, although this system was originally designated for

bath static and dynamic measuremenlS.

AlI of these studies are extended applications of the geometrie Moiré techniques.

Therefore, alI the difficulties associated with the geometric Moiré methods are still

present. Despite the tedious data processing aCter the Moiré fringe images are taken, the

most detrimental shoncomings that jeopardize the whole measurement results are the

relativity of the measurement and the failure of providing 3D Canesian coordinates with

respect to a faxed coordinate system.

1.3 Objectives

Optical measurement techniques and the optical dynamic out-of-plane defonnation

measurement techniques reviewed in the previous section indicate that existing

techniques for dynamic out-of-plane deformation measurement have some detrimental

'.
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limitations. Thus, there is no standard methodology to measure the transient deformation

of a structure under dynamic events, such as impact. On the other band, a reliable

treatment of complicated structural dynamic problems should he validated by

experimental data. It is with this philosophy in mind that tbis research work is

undertaken. The objectives of this work are:

• To develop an optical 3D-measurement method that can provide 3D Cartesian

coordinate information as its measurement results. Accomplished with automatic

data processing;

• To verify the measurement accuracy;

• To develop a dynamic 3D surface measurement system by integrating the optical

measurement technique with a high-speed digital camera~

• To apply the dynamic 3D surface measurement system in practical applications.

The original contributions to knowledge are described in detail later at the end of the

thesis.

1.4 Thesis Outline

This thesis is divided into four parts:

• Chapter 2, 3, and 5 deal with the optical method used in this work. Chapter 2

covers the basic principles of the optical measurement. The calibration technique

is described in Chapter 3, and Chapter 5 includes sorne accuracy test results;

• Chapter 4 gives a detailed description of the high-speed measurement system in

terms of hardware specifications;

• Chapter 6 deals with the practical applications of the dynamic 3D surface

measurement system. The application is the polymer sheet inflation test;

• Chapter 7 presents a fmite-element simulation of polymer sheet inflation tests.

The Iast chapter concludes the thesis, and indicates sorne possible future developments.
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CHAPTER2

OPTICAL MEASUREMENT MEmOOS

2.1 Introduction

In this researcb7 the grating projection aI\d Fourier transform technique is employed as

the fundamental methodology to build·up the high·speed optical 3D measurement

system. As described in Chapter l, the grating projection method is more applicable than

the geometric Moiré methods in the foUowing aspects:

(1) automatic data processing;

(2) non-ambiguities in convex and concave areas;

(3) no need to do the data interpolation;

(4) higher measurement sensitivity.

Due to these factors, the grating projection and Fourier transfonn method is an

appropriate candidate for tbis project. The details of the grating projection method are

described in Section 2.2. As the most imponant component of this method, the Fourier

transform technique is outlined in Section 2.3. ln the fmal section of this chapter, the

phase unwrapping problem and several unwrapping algorithms are addressed.

2.2 Grating Projection Surface Shape Measurement

2.2.1 Fundamental or Gratings

As shown in Fig. 2.1, the gratings used in tbis work are evenly spaced lines ruMing

parallel to each other, and are usually printed or etched on thin glass substrate. The line

width is equal to the space width next to il. Sometimes, this tyPe of grating is called the

Ronchi grating to distinguish from other grating types, such as the diffraction grating.

The distance between the center of a black line to the center of the next black line is a

characteristic property of the grating, called the pitch or the frequency.
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Fig. 2.1 ROŒhi gratilg

When a Ronchi grating is projected ooto a surface, the form of the grating pattern on the

surface is determined by both the shape of the surface and the angle of projection. If the

grating and the optical configuration are flXed, the only factor that determines the fonn of

the grating pattern on the surface is the surface shape itself. When an equispaced line

grating is projected ooto a flat surface, it will give an image with equispaced straight

fines. The same grating projected onto a cylindrical surface can give either an image of

straight lines with varying spacing or an image of corves of varying spacing and its shape

depeoding on the relative orientation of the cylinder and the grating. Fig. 2.2 shows the

differeot grating images given by the same grating when it is projected ooto differeot

surfaces with different orientations. The original grating, which is used in the projection,

is also shown in the figure. ActuaUy, the original grating is mounted inside a projector

that is flXed with a CCD camera in a box, which is called the sensor head, which is also

shown in the figure. Fig. 2.2 (c) and (d) show the deformed grating images obtained

from these two simple cases, respectively. For Fig. 2.2 (c), the defonned grating image

looks like the original grating, but with different and varying spacing. For Fig. 2.2 (d),

the straight lines in the original grating bend into curved lines with varying spacing.
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(a) Opt&:al axis perpeooicular will
the fiat surface.

Chaprer 2

Cylinder Axis

Origjnal Graling

III
(b) Grabig Iines are perperdi;uIar

wiIh the cylinder axis.

•

(c)

(d)

Fig. 2.2 Grating images on fiat and cylindrical surfaces: (a) setup for a fiat
surface; (h) setup for a cylindrical surface; (c) deformed grating image on
the tlat surface; (d) defonned grating image on the cylindrical surface.
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Since the fonn of the projected grating image is detennined by the surface shape, it

should he possible to calculate the surface shape from the grating pattern formed on the

surface if the projection and viewing geometry are known. In other words, the defonned

grating pattern contains the surface shape information. The problem here is limited to

how to extraet or obtain the surface shape information Ô'om the deformed grating image.

It should he recalled tbat the geometric Moiré methods use an additional grating (known

as the reference grating) to 'ftlter' the defonned grating image to generate the Moiré

fringes, which are treated as contour lines of the surface, as shown in Fig. 1.3. This

method, to employ an additional grating as a reference to obtain the surface shape

information, is considered as one of the ways to achieve the goal. In tbis chapter, we will

see other ways to obtain the surface shape information out of a defonned grating image.

These ways are usually more efficient and practical than that used by the geometric

Moiré methods. First, the mathematical representation of grating images will he

analyzed.

2.2.2 Mathematical Modeling or Grating Images

ln this work, the gratings considered are one-dimensional gratings such as shown in Fig.

2.3. In addition, the coordinate system used to describe the light intensity distribution of

the grating is shown in Fig. 2.3.

y

(a) x

•
(b)

Fig. 2.3 Intensily d6tti>uti>n ofa gratmg; (a) gratilg imge,
(h) i1rensây d~tnbUlion abng the X-m.

19



•
Chapler2

We have ta make two basic assumptions in arder to develop the mathematical equations

ta represent the intensity distribution of gratings: (1) the CCD camera used to acquire the

digital image of grating patterns has adequate resolution to show the regularity of the

grating images, such as the frequencies; (2) the frequency of the grating used should he at

least twice that of the highest frequency induced by surface shape. As shawn in Fig. 2.2,

a grating image is modulated by the surface shape after heing projected onto this surface.

The frequency of this deformed grating image is no longer uniform due to the

overlapping of the original grating frequency and the frequencies induced by surface

shape. This condition assures that different frequency terms are separable in the

frequency domain. The above two conditions are mutually competing with each other.

However, both can he satisfied in most practical cases. In our case, 20 linelinch gratings

and 512x480 pixel resolution of the CCD camera are employed with the field of view of

approximately lOOxlOO mm. Under this configuration, there are approximately 9 pixels

for one cycle of the grating.

The real intensity distribution along the X-axis of the original grating is in the Carro of a

square wave. After being projected onto the surface and digitized by a CCD camera, the

square wave will lase its sharp corners and tum into a periodic curve. This is because the

light source is not a single-point source and the light rays are not exactly parallel to each

other. Another reason is that sorne pixels will have dark grating lines occupying only

haU of the pixel's area. Table 2.1 shows a portion of the reallight intensity distribution

of a grating image along the X-axis.

1(x) 164 130 75 41 47 89 139 162 149 100 52 42 65 123 158

.r (pixel) 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

Table 2.1 Light intensity distribution of a portion of a grating image.

Sïnce any function can he represented by the sum of its harmonic sine or cosine

components (known as the Fourier series), a periodic intensity distribution fonction can

• he represented as an infmite series of cosine or sine terms (Gonzalez-Velasco (995):
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1(x) =I,bIt (x) .cos(ncl»(x)+ 2nn . f .x)

,,=-0

ChfJpler 2

(2.2-1)

Here. 1(.1) is the intensity distribution along the X-axis. b,.(x) are the spatially dependent

harmonie amplitudes, fis the grating frequency, and CZ-(x) is the phase map corresponding

to the surface shape. Eq. 2.~-1 is a general fonn and can he simplified or truncat~ by

~suming ooly the ftest two terms aie considered. Therefore, Eq. 2.2-1 can he re-WTÎuen

as:

1(x) = bo(x) + bl(X)' cos(cI»(x) + 21r . f .x) (2.2-2)

•

Where, btix) represents the background intensity and bJfx)/bofx) the grating pattern

contrast. [n practice both bo(x) and bJfx) will he modified at each location by noise, by

variations in surface texture, and possibly due to non-uniform lighting. As mdicated

previously, ~(x) is the phase map that represents the surface shape. This daim is

examined more closely in the following paragraphs.

~wing

direction

Fig. 2.4 Left--gralÜlg projected onto a surface; Right--change in gratilg
spacing wih the chan~ ofslrlace position.

As shown in Fig 2.4, a grating is projecled onto a surface al an angle Al, and the grating

image on the surface is viewed through a Jens at an angle A2. If the original grating has a
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pitch of p, the pitch of the grating image on the surface is called d and it is given by the

following equation.

d =plcosAl

The Iight viewed by the camera will have an intensity variation with the pitch of t given

by

t = d . cos A2 = P . cos A21cos Al

Now if the surface moves a distance dh, as shown in the Fig. 2.4, there will he a change

in t in the viewing direction. The change is dt and it will he equivalent to the shift of the

grating due to the change in the surface position. Thal is, the phase shift <I»(x), in Eq. 2.2­

2. The phase shift can then he given by

dt
~=2tr·-

t

As shown in Fig. 2.4, we have

dt =dh . (tan Al + tan A2) .cos A2

and so

<1» =2n" dh· [tan Al + tan A2]· cos Al
p

(2.2-3)

•

This equation indicates that the height variation, dh, at a point on a surface May he

obtained by an evaluation of the change of phase. <1», of a sinusoidal grating projected

onto the surface. It verifies the previous claim that the phase mapping is related to the

surface shape directly if the optical geometry is flXed. The basic problem, therefore, is

how to recover the phase, <1», for each pixel of a defonned grating image. The next

section will introduce the different methods developed in the past to achieve this goal.
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1.2.3 Methods to Extract Phase Information

(1) Phase Shift or Phase Steppinl:

Upon translation of the projection grating by a fraction liN of its pitch p, the phase of the

defonned grating image represented by Eq. 2.2-2 is shifted by 27t1N, yielding a new

intensity function /". Using three, or more conveniently four, intensity functions

corresponding to different phase shifted values, the phase cl» can he retrieved

independently from the other parameters in Eq. 2.2-2. For example, in the four-phase

step a1gorithm, if shifting the phase by 7tl2 increments:

/1 =A+8·cos(â)

/2 = A + 8· cos(â + n / 2) = A - B· sin â

/) = A + 8· cos(â +n) = A - 8· cosL\

/4, =A + B .cos(L\ + 1.Sn) =A + B . sin L\

/ -/,
â = arctan( 4. ~ )

/1 -/)
(2.2-4)

•

where, functions A(i, j) and B(i, j) represent ho and hl functions in Eq. 2.2-2, respectively.

The symbol â represents (cJ)+21tfx) both modulated and unmodulated components. If

necessary, the unmodulated phase component 2ftfx must he subtracted to leave the

required modulated phase component cI». Since the arctangenl function is restricted to

generate a value in the range of -ft and +ft, calculated raw phase mapping cl» is wrapped

into this range, and a phase unwrapping scheme is needed to produce a continuous phase

distribution. The details of phase unwrapping schemes are given in Section 2.4.

The phase shifting technique, when compared with direct geometric measurement of the

interferogram (such as in the geometric Moiré methods), is characterized by severa)

superior features:

• High precision-permitting interpolation to 111000 of a fringe arder.

• Low sensitivity to background, contrast variations, and noise.
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• Measurement over a unifonn rettangular array of points defmed by the

imager, ready for further mathematical manipulation.

• Easy automation with readily available computers and solid state array

detectors such as eco, CID array-cameras.

However, the phase shifting method needs a precision translation mechanism to realize

the smalt, but accurate, movements of the grating. ln addition, both the object and the

optical setup are required to he fIXed and vibration-free during different shifting stages.

In order to obtain the phase information, at least three frames of the deformed grating

image are required. This means the phase shifting technique is not applicable in the

measurement of transient deformation, which is required in this work.

(2) Fourier Transform

The phase shifting and Fourier transform techniques are the two most established

methods to retrieve phase information from defonned grating images. Unlike the phase

shifting method, only one deformed grating image is necessary for the Fourier U'ansfonn

method in the calculation of the phase. This feature is very attractive to tbis work due to

the original objective of measuring surface under transient deformation. The Fourier

transform technique, therefore, is the method used in tbis work to conduet phase

calculations. The details of the Fourier transform processing are given later in Section

2.3. The main steps in the processing are listed as follows:

• Capture a deformed grating image and Fourier transform it into the frequency

domain;

• Bandpass fùter the spectrum signal in the frequeney domain to remove unwanted

signal components;

• Shift the isolated harmonie component to the origin of the power spectrum to

remove the unmodulated grating frequency;

• Inverse Fourier transfonn the modulated signal to create its real and imaginary

components;

• Calculale the phase from the real and imaginary components.
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• (3) SinusQjdal Fittina

As a simplified apprQximatiQn tQ the Fourier transfonn method, Mertz (1983) suggested a

sinusoidal fitting method to obtain similar phase information based on the pioneering

work of Bruning et al (1974). Mertz flfst developed an electronic fringe evaluation

processor, which was able to extract the phase of the fringes in video real-time analog

signais, by assuming the phase step is 21t13 from one sampling point to the next and the

Mean intensity and the modulation of the fringe are constants in the small range of three

sampüog points. Then Macy (1983) foUowed this idea by implementing the algorithm

using standard digital image processing technology. As described in Section 2.2.2, the

measured intensity at one pixel of the CCO camera could he expressed as:

l(x) =bo(x) +bl(X)· cos(cIl(x) + 21r. f .x)

With an increasing spatial coordinate x, the term (cI>+21tfx) is also increasing. Here fis

an average spatial frequency, and the grating is oriented in the Y direction. If the spacing

of the grating is adjusted so that the phase step is 21t14 from one pixel x(l) to the next

pixel x(i+1), each grating line occupies 4 pixels. In the meantùne, it is assumed that the

Mean intensity btix) and the modulation bJlx) of the grating don't change in the smaU

range from the left neighbor pixel x(i-l) to the right neighbor pixel x(i+ 1). The phase

c!»(x) at the pixel x(rl is derived from the approximation of the measured intensities [(x)

around the pixel position. 8y using trigonometric identities, the above equation can he re­

wriuen as:

I(x) = bo(x) +bl(X)· cos(cIl(x) + 2n . f .x)

= bo(x) + bl(X) . cos ~(x) . cos(2n . f .x} - bl(X) . sin cI»(x) . sin(2n . f .x)

let Cl(X) equal b1(x)·coscl»(x) and C2(X) equal -b1(x)·sinca.(x). The equation can then he

expressed as:

• l(x) = bo(x)+c1(x)· cos(2n . f ·x)+c2 (x)·sïn(2Jr· f ·x) (2.2-5)
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Again, it is assumed that CI(X) and C2(X) vary slowly in a local neighborhood, so that they

may he taken as constants in that neighborhood. These constants can therefore he found

by fitting Eq. 2.2-5 through the gray levels of four successive pixels.

Finally, wc will get the phase information for each pixel by following the equation:

(2.2-6)

•

This method to obtain phase information works weU when the grating frequency does not

vary too much across the whole image. ln situations, when it is hard to maintain the 4

pixels pcr grating line assumption everywhere, the result is that the phase steps between

adjacent pixels are not rtl4 as they should he, but have sorne smaller or greater value.

The fmal calculated phase has many errors inside, and the error is intrinsic to the method.

This may he one reason why the sinusoidal fining technique was not given much

attention in rccent years.

2.3 Fourier Transform Phase Calculation

2.3.1 Basics

The Fourier U'ansform is a commonly used tool in signal processing and digital image

processing. This is because the Fourier transform can decompose a signal (1 D) or an

image (20) iota a set of cosines and sines, each of which represents the corresponding

frequency components of the signal or the image intensity itself. Furthermore, most

features believed to he important for solving image processing lasles are often more easily

described in the frequency domain than in terms of the variation of the image itself.

Examples of such features are orientation, phase, frequency and curvature. This section

presents the basics of the continuous Fourier transforme
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Let f(X) he a continuous function of a real variable x. The Fourier transfonn of f(x)•

denoted F(u)t is defmed by the following equation.

-
F(u) =Jf(x)·exp[-2m ·ux]dt (2.3-1)

Where ;2 =-1. Given F(u)tf(x) can he obtained by using the inverse Fourier transform:

-
f(x) =JF(u)· exp[2m· uxldu (2.3-2)

Equations 2.3-1 and 2.3-2, caUed the Fourier transform pair, exist iff(x) is continuous and

integrable and F(u) is integrable. These conditions are usually satisfied in practice. The

Fourier transform of a real-valued functionJtx) is generally complex, that is,

F(u) =R(u) + i ·/(u) (2.3-3)

where R(u) and I(u) are the real and imaginary components of F(u), respectively. The

magnitude function IF(u)l, called the Fourier spectrum off{x) is defmed as:

(2.3-4)

The variable u appearing in the Fourier transfonn often is called the frequency variable.

This name arises from expression of the exponential term exp[-21ti·ux). According to

Euler's formula,

exp[-2m . ra] =cos 2ma - i .sin 2ma (2.3-5)

Interpreting the inlegral in Eq. 2.3-1 as a limit summation of discrete teons makes il

evidenl that F(u) is composed of an infmite sum of sine and cosine tenns and that each

value of u detennines the frequency of its corresponding sine-cosine pair. Fig. 2.5 shows

a simple function and its Fourier spectrum. The first component actually bas zero

frequency because it represents the mean amplitude of the signal, and it sometimes called

the OC tenn. The fust non-zero frequency component is known as the fundamental

• component.
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Fig. 2.5 A simp~ fin:tiJn mi ils Fo~r spectrwn.

The Fourier transform can he easily extended to a functionf(x, y) of two variables. Iff(x,

y) is continuous and integrable and F(u, \1) is integrable, the foUowing Fourier transform

pair exists:

F(u, \1) =Jjf(x,y).exp[-2ni(ux+\I)'»dtdy

f(x, y) = JJF(u, v)· exp[21ri(ux+ vy)]dudv

(2.3-6)

(2.3-7)

where u and v are the frequency variables. As in the one-dimensional case, the Fourier

spectrum is:

•
F(u, \1) = R(u, \1) + i· J(u, \1) (2.3-8)

(2.3-9)
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• 1.3.2 Discrete Fourier Traœfonn

In the context of image processing and machine vision, the images under consideration

are usually digitized. Such images have dimensionality two, are real-valued, and are

defmed on a rectangular discrete point grid with fmite extension in both dimensions.

Hence, to actually compute the Fourier transfonn of such an image, the discrete Fourier

transform must he used, as a sufficiently good approximation of the continuons

transforme The foUowing provides an introduction of discrete Fourier transform without

funher proofs for each of the equation. For further evidence, please see Brigham's book

(1974).

Suppose that a continuous function g(x) is discretized into a sequence

(g(xo),g(xo +At),g(xo +2At), g(xo +[N -1]At)}

by taking N samples At units apart. In other words, the sequence (g(O), g( 1), g(2), ,

g(n)} (n=N-l) denotes any N uniformly spaced samples from a corresponding continuous

function. The discrete Fourier transform pair that appües to sampled functions is given

by

1 N-l

G(u) =- Ig(n). exp[-2ninu / Nl
NIt=O

for u =0, 1, 2, .. .N-l, and

N-l

g(n) =IG(u) ·exp[2ninu/ Nl
1oI:(J

for n =0, l, 2, ...N-I.

(2.3-10)

(2.3-11)

The values u = 0, 1, 2, ... , N-I in the discrete Fourier transfonn, Eq. 2.3-10, correspond

10 samples of the continuous transform al values 0, Au, ~u, ..., {N-I)âu. The sampling

increments in the spatial and frequency domains are related by the following equation.

•
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• Au = 1
N·Ax

In the two-variable case the discrete Fourier transfonn pair is

1 M-IN-l

G(U.,v) = -I:I:g(m.,n).exp[-2ni(uml M +vnl N»)
MN lft-owsO

for u = 0, l, 2., ... , M-l, v = 0., 1., 2., ... , N-l, and

M-IN-l

g(m,n) =I:I:G(U., v)· exp[2ni(uml M +vnl N))
11=0 v=O

for m =0, 1, 2, ... , M-l, n =0, 1, 2, ... , N-l.

Clulpler 2

(2.3-12)

(2.3-13)

(2.3-14)

Sampling of a continuous function is DOW in a 20 grid, with divisions of width Ax and &y

in the X and Y directions, respectively. As in the 10 case, the discrete function g(m, n)

represents samples of the function g(xo+mAx, yo+nÂy) for m = 0, l, 2, ... , M-I and n = 0,

1, 2, ... , N-l. Similar to the ID case, the sampling increments in the spatial and

frequency domains are related by the following equations.

and

~= 1
M·âx

1
ÂV=--

N·&y

(2.3-15)

(2.3-16)

•

The Fourier spectrum of 10 and 2D discrete function also are given by Eq. 2.3-4 and Eq

2.3-9, respecùvely. The only difference is that the independent variables are discrete.

The principal purpose of this section is to present a theoretical foundation of the Fourier

transform. Within this framework., the essential points necessary for a basic

understanding of the Fourier transform are developed and illustrated. Transform theories,
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especially the Fourier transform, have played a central role in the development of image

processing as a formal discipline. In the foUowing section, we will consider how to use

the Fourier transfonn to process the deformed grating images to obtain the phase

information we wanted.

2.3.3 Phase Calculation by the Fourier Traœfonn

The defonned grating images, as shown in Fig. 2.2, are two-dimensional discrete

functions. As mentioned previously, the surface shape information is modulated in the

grating image along with other information, such as the background light intensity, noise

caused by surface irregularities and the intensity distribution of a sinusoidal grating. AIl

this information is mixed together. Moreover, il is very difficult 10 isolate and to extract

the surface shape information by manipulaling directly the pixels of a deformed grating

image. Things, which are hard to deal with in the spatial domain, are sometimes easy to

achieve in the frequency domain, and this is the case in the analysis of a deformed grating

image.

Here we consider the information contained in a deformed grating image. First, the

background light intensity over the field of view of a camera is the average of the

illumination of the grating projeclor. The average of the illumination does not change

much over the field of view if the surface is smooth. Hence, the background light

intensity is a very low frequency signal in this case, and sometimes is the same as the

direct current (OC) component of an electrical signal. The noise cased by surface

irregularities or electronic noise is a sharp change in light intensity. Usually, they are

random and relatively in small size. These kind of random noises are high-frequency

signais. ADother regularity in a deformed graling image is due to the grating itself. This

is a sinusoidal signal with a certain frequency, called the carrier frequency, which is

decided by the pitch of the original grating. Compared with the grating modulation

caused by the surface shape, the carrier frequency is defmitely higher. Therefore, the

signal of the grating modulation caused by the surface shape is a low-frequency

component. AIl the information or signais contained in a deformed grating image have
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different corresponding frequencies. This is the foundation of using the Fourier

transfonn to separate them in the frequency domaine

Takeda & Mutoh (1982) initially employed the Fourier transfonn to analyze deformed

grating images for toPOlogical investigations. The steps of processing are as foUows:

• The intensity distribution of a defonned grating image is ID Fourier transformed

inlo the frequency domain for the variable x ooly (perpendicular to the gralîng

direction), with y being flXed;

• Bandpass fùter the speetrum signal in the frequency domain to remove unwanted

signal components, such as the OC component and the high-frequency

components; After fùtering, only the fust low-frequency component is left;

• Shift the isolated harmonic component to the origin of the power spectrum to

remove the unmodulated grating frequency;

• Inverse Fourier transfonn the modulated signal to create its real and imaginary

components;

• Calculate the phase from the real and imaginary components by using the

foUowing equation.

A.. ( ) { Im[p(m,n)]}'1" m, n =arctan _..o.:...._~

Re[p(m,n»)
(2.3-17)

Here, Re[p(m, n)] and Im[p(m. n)] denole the real and imaginary parts of the inverse

Fourier transform, respectively. Due to the features of the arctangent function, the

unambiguous phase is wrapped into a range of -1t - x. In order to produce a continuous

phase distribution, phase-unwrapping schemes are required, which is the topie of the next

section. Figure 2.6 shows an example of the phase calculation by using the Fourier

transforme Fig. 2.6 (a) is the defarmed grating image. Fig. 2.6 (h) is the intensity

distribution of a line perpendicular to the gratiog. In arder to see the modulation clearly,

an unmodulated signal with the grating frequency is also shown in the graph. Fig. 2.6 (c)

• is the Fourier spectrum in the frequency domain. We can see different frequeney

".
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components are separated from each other by approximately the carrier frequency fa. The

second peak in the frequency domain is easily located by an amplitude counting

operation. Then the fùtering in the frequency domain is carried out by applying a

window in which those points lying inside the window preserve their values and the rest

of the data is set to zero. The ftltering window size can he defmed by using the middle

points between the frrstlsecond peaks and the secondlthird peaks, respectively. After the

inverse Fourier transform, Fig. 2.6 (d) shows the wrapped phase distribution along the

line with 21t discontinuities.
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Fig. 2.6 Phase calculation by the Fourier transfonn.
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2.4 Phase Unwrapping

In the previous sections, different techniques are introduced for the automatic analysis of

deformed grating images. AIl these techniques, the phase-shifting, the sinusoidal fitting,

and the Fourier transfonn method, yield a phase pattern with wrapped phase values

ranging from .1t - 1t. Therefore, they contain 27t discontinuities or jumps even for a

continuous surface. Fig. 2.7 shows a wrapped phase map in a normalized form using a

gray scale to represent phase. The intensity ranges from black at one extreme,

representing a phase value of -1t, to intense white al the other representing a phase value

of 1t.

Fig. 2.7 Wrapped phase map.

The purpose of the phase unwrapping is to remove these 27t discontinuities by shifting

phase values by 2n or -2n of cenain points to generate a continuous phase distribution

over the whole field of view for continuous surfaces. As shawn in Fig. 2.6 (d), a portion

of the cross section line with phase values out of -1t - 1t range is wrapped. By adding 21t

to its phase values for these wrapped points, it is possible to create a continuous phase

distribution, shawn in Fig. 2.8.

However, in practice wrapped phase images contain noise, small or large size, or even

sorne Iarge-scale inconsistencies, for example when there is a hole in the surface. Any

unwrapping algorithm that fails to detect noise and inconsistencies will make a faulty

unwrapping decision at any single point, and, even worse, this error will he carried on to
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other noise-Cree points. Therefore, the noise can propagate to affect the whole

unwrapping result. An appropriate phase unwrapping algorithm should he able to taclde

noisy data to isolate the effect of noise. Severa! different algorithms have been proposed

so far. They faIl into two c3tegories-the point-by-point algorithm and the region-by­

region algorithme In the foUowing sections, the phase unwrapping algorithm used in this

work is described, which is region-based. In order to compare with other unwrapping

algorithms, sorne point-by-point unwrapping techniques are outlined frrst.

6.3 ..,------------------------,

302510 15 20
Ima. Dimenllon (pixel)

5
0.0 ~--___r'---~--___r---~--___r'--~

o

•.i 3.1 +----~--------~--__i
A.

Fig. 2.8 Unwrapped phase d~trib\lli)n along a ft.

2.4.1 Point-by-point Unwrapping Aigorithm

(1) Scanning line approach for phase unwrapping

•

The procedural steps of the scanning line approach are described below:

• The digitized grating images are filtered to eliminate noise. A 3x3 spatial

averaging ftltering usuaUy performs tbis process. A wrapped phase map is then

computed by either the phase shifting or the Fourier techniques. The phase is

related to the surface shape other than at those 21t discontinuities.

• The phase map is traced horizontally on a scan line by scan line basis. The 2ft

discontinuities may he found by seeking a phase change over a specified threshold

level. A threshold level of 1t is normally used. This places a limit on the

permitted rate of change of phase to he less than 1t between two adjacent pixels.

A phase sum is kept of the discontinuities passed, up by 21t or down by 21t,
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depending on the direction of phase roll over. This is seen~ respectively, as a

rapid whiteJblack or a black/white transition (assuming phase is shown in gray

scale with -1t as black and white as 1t). This phase sum is added to the phase

values of successive pixels.

• The horizontal traces are, at this point, independent of each other. In order to

bring them into their correct relative positions a single vertical trace of unwrapped

phase is used. Various strategies May he applied to select a good candidate for

this arranging trace, usually the central column.

• At the conclusion of this unwrapping process an unwrapped phase map is

obtained.

Uowrapping
DiRction

-+

Fig. 2.9 Scannilg line approach for phase mtwrappilg.

There are several variations on this theme. The roles of the horizontal and vertical

traces might he reversed to give a better result for a given phase map, for instance.

The algorithm relies on the quality of the raw phase map. However, there can he no

guarantee that, even after filtration~ noise in the raw phase map will disappear. The

hehavior of the 21t jump detection is an imponant factor. The 21t jump must always

he distinguished by at least the threshold level of the detection procedure. Any

Cailure is carried across the phase map and May disrupt many points of any particular

scan line in the phase map. For more details, see Nakadate & Saito's paper (1985).
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(2) Noise-immune eut method of phase unwrapping

The phase unwrapping method described in this section is an enhancement of the

scanning line unwrapping algorithm. The basis of the algorithm is to place cuts, on a

scan line by scan line basis, between points of phase discontinuity in arder to

minimize the Iength of the propagated discontinuity. The sile of the discontinuity is

termed the cut length. A simple means of tlagging possibly inconsistent. points is

implemented by checking all 2x2 pixel areas in the phase map according to the

procedure shown in Fig. 2.10.

e 01 e..

o.r l02

e ~ e
03

Fig. 2. 10 1Œons~tency Fbgging

The phase is checked along the closed path indicaled. If the sum of the wrapped­

phase differences along the path, 01+02+03+0.., equals zero, then ail four points are

said to be consistenl~ otherwise, all four points are fiagged as inconsistent. This is

done for aU 2x2 regions until the entire phase map is covered. This processing

detects pixels of phase discontinuity and masks them out. ACter flagging, bad

segments have been eut from each scan line. The next step is to set up a phase

unwrapping path required to circumnavigate the bad segments aloog a scan line.

'.
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o consistent pœl

Il bad pizl

A(~j) B(~j)

•

Fig. 2.11 ~ path 10 crcumnavigate tœ incoœistent pixel segrœnL

For example, suppose the phase unwrapping has reached pixel A, which is adjacent to

a bad segment, as shown in Fig. 2. Il. The pixel, right after the bad segment along

the scan line, is B. A vaUd path has to be set up between these two pixels. The

successive link is established by rotating the search direction 90 degrees compared

with the previous linle. In this way, the bad segment is circumnavigated in a

clockwise direction. Any other path (e.g. anti-clockwise circumnavigation) is of

course also valide The number of 21t phase discontinuities between the successive

elements along the path is calculated, and the total modification, nx21t, is added to the

phase of pixel B.

Again, one-directional traces (horizontal or venical) are, at this point, independent of

each other. A single trace in the perpendicular direction is used to bring all phase

data into their correct distribution. Various strategies may be applied to select a good

path for this arranging trace.

The bad segment eut algorithm relies on the test of consistency, mainly the 2x2

checker, which is uniquely aimed ta detect spike noise. The area over which the

consistency test operates is very small. However, Iarge-scale regional inconsistencies

do not show themselves over the small test area considered. Tberefore, the segment

eut algorithm deals with discontinuities between discrete points, and there is no
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sttategy to consider Iarge-scale regional inconsistencies. For more details about this

algorithm, please see the reference papers by Goldstein, Zebker & Werner (1988) and

Huntley (1989).

(3) Flood phase unwrapping algorithm

Bone (1991) proPOsed a new phase unwrapping algorithm to overcome sorne

limitations of the noise-immune eut approach, for example, when the network of

segment cuts is not uniquely detennined. Rather than construct segment cuts, Bone's

method constructs a rnask to prevent the unwrapping process from following any path

that could lead to inconsistencies. A concept of the second difference of the wrapped

phase map is introduced, as defmed below. The second differences are calculated

from the locally unwrapped phase, as shown in Fig. 2.12

Ci.j+l) (i+l. j+l)

(i-t. j) (i. j) (i+ l.j)

(i-1. j-l ) (i. j-l) (i+l.j-l)

•

Fig.2.12 Second Differeoces CakuJaoon

For a given pixel (i, j), the second differences are

AI)' (i, j) =Ax(i, j + 1) -Ax(i, j)

A.u: (i, j) =Ax Ci + 1, j) - Ax (i - 1, j)

Ayy (i, j) =Ax (i, j + 1) - Ax (i, j -1)

where

Az (i, j) =«1»(; + 1, j) - «I»(i, j)
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These second differences are calculated for all the pixels in the wrapped phase map.

There is discontinuity if one of the three second-.differences is greater than a threshold

value9 but smaller than 27t radians. For al1 discontinuity points9 the mask is set to zero

ta exclude them from the unwrapping process.

When the mask operation is completed9 the phase unwrapping can he carried out by

using a recursive flood fûl algorithm. The phase is unwrapped at a point only if at

least one of its eight neighbors is unwrapped. For that9 27t is added or subuacted

while the phase difference hetween the point and its adjacent point is greater than 2ft.

When a point is unwrapped9 the mask for tIUs point is set. The wrapped phase map is

scanned to make sure every consistent point bas been unwrapped.

1.4.2 Region-based Unwrapping Aigorithm

The above unwrapping algorithms are typically written to make a phase unwrapping

decision on each point as an individual unit, using knowledge about only the one

preceding point or the adjacent points. They malee a large number of immediale

decisions based on ümited data. The concept of region-based unwrapping is to malee a

smal1 number of decisions based on a much larger amount of analysis.

The region-based unwrapping algorilhm groups phase data ioto regions conlaining no

phase ambiguities. Regions are decided by determining whether points lie within a

lolerance of adjacent points that are already included in a region. A point will he

considered pan of the region if a given percenlage of the adjacent points helonging to the

region are within a specified lolerance of the point. A point May have up to eight

neighbors. Typical values for percentage agreement have been from 40 to 65% and

typicallolerances from 0.5 to 1.5 radians. Once ail points have been assigned to a region 9

as shown in Fig. 2.139 the edges of the regions are compared to determine if there is a

discontinuity between them.
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Fig. 2. 13 Exaqlle of phase map diviled iuo regiollS

AlI edges between adjacent regions are traced ta determine whether a phase shift should

he made, up by 2x, down by 2x or whether no shift is required. Each edge point carries a

vote. Once the relationships between regions have been defmed, regions that have been

identified as having no phase ambiguities are combined into a single larger region. These

larger regions are then compared to determine the necessary phase shifts that need ta take

place. This algorithm recognizes the problem posed by large-scale discontinuities, and is

employed in tbis work. For more details, please see Gierloffs paper (1987). Finally,

Fig. 2.14 and Fig. 2.15 show sorne phase unwrapping examples experienced in this work.
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(a)

(h)

(c)

Chapler 2

Fig. 2.14 Phase unwrapping example-cylindrical surface: (a) original
defonned grating image (grating lines are parallel with the axis of the
cylinder); (b) wrapped phase image; (c) unwrapped phase image.
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(a)

(b)

(c)

Chapler 2

Fig. 2.15 Phase unwrapping example-cyüodrical surface: (a) original
deformed grating image (grating üoes are perPendicular with the axis 0 f
cylinder); (b) wrapped phase image; (c) unwrapped phase image.
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2.S Summary

In Section 2.2, different techniques are introduced to extraet the phase information from a

defonned grating image. It is required that the phase calculation process should he

carried out automatically without any ambiguity, unlike the concave and convex problem

in the classic geometric Moiré methods. In addition, the appücability to high-speed

measurement is also a concem. The phase-shifting technique is not suitable in this

research since it needs al least three frames to compute the phase information, which is

inclusively for statie surface measurements. Therefore, the Fourier transform technique

is chosen for this research. Section 2.3 gives a detailed description of the Fourier

transform method. FinaUy, the phase unwrapping algorithms are outlined in Section 2.4.

Fig. 2.16 summarizes the basic steps involved in calculating the phase information.

Table 2.2 summarizes the features of different optical profile measurement lecJmiques.

Considering whole-field, high-speed 3D surface measuremenl, there are only Iwo

candidates. Following the steps described in this chapter, a conlinuous phase map can he

obtained from a defonned grating image. The next chapter will describe haw ta obtain

absolute Cartesian coordinates from the continuous phase map.

Defarmed Grating Image
(On~ Fram~)

Fourier Transform

Wrapped Phase Map

Phase Unwrapping

Continuous Phase Map

Fig. 2.16 Processing summary of the grating projection and Fourier method.

4S



•

•

Chapler 2

Moiré DaIa Measuremenl Frame(s) Wbole Applicable ro

Fringes ProcessiDg ResullS Needed
Field High-spced

Meas. Measuring

Sbadow Human (h. i. J) CIl the

Moiré
Yes

interventioo
centero( One Yes Yes

Geomettic Moiré fringes
Moiré

Projection Humm (h. i. J) œ the
Yes œnterof One Yes Yes

Moiré InterVention Moiré fringes

FfT No AUlOIIlatic
(h. i. J) for ail

One Yes Yes
pixels

Grating
Phase (h. i. J) fŒ aU

Projectioo Sbiftiog No AulOIIlatic pixels ~3 Yes No
Metbods

Others No AUlomatic (h. i. J) for ail
One Yes Yes

pixels

Laser Scanning
(.l, y. z) on the

Multi
No AUlomatic center of scan No NoTechniques lines frames

Table 2.2 Features of different optical profile measurement methods.
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CHAPTER3

SYSTEM CALmRATION

3.1 Introduction

In this research, the objective is to digitize surfaces, which are involved in a dynamic

event such that their shapes and spatial positions are changing as a function of time. In

such a case, multiple measurements from the same direction are required in order to build

a complete time history of the deformation. In order to build a time history of

deformation in a dynamic event, the xyz coordinates of each individual measurement,

taken at different times, are needed to he with respect to an absolute global coordinate

system within the accuracy of the measurement system. That is what is desired for the

measurement results. Let us keep this requirement in mind and see what the results are

from the processing described in the previous chapter.

The grating projection method has been introduced in Chapter 2. A deformed grating

image aCter being processed by the Fourier transfonn can provide a continuous phase

map, which is related to the surface height with respect to a reference plane. However,

this technique has previously been limited to relative measurements. This is because

most of the measurement procedures presented so far aIlow the evaluation of the height

Hp{i. j) with respect to a reference plane. Moreover, the coordinates (i, J) of a point p are

expressed with reference to the column and row indices of the corresponding image point

on the image plane. This kind of surface shape information is useful to describe a surface

qualitatively, such as how Many concavities and convexities eml and how big the

maximum displacement in the Z direction the surface has. However, as mentioned in the

beginning, three-dimensional Cartesian coordinates are needed to defme 3D shapes

quantitatively. Therefore, to this point the measurement results, Hp(i. j). are indirect, and

can not fulfill the ultimate goal--the determination of 3D Cartesian coordinales with

respect to a flXed coordinate system.
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Sorne researchers have tried to solve this problem by transforming the column and row

indices (i, J) of an image point to (x, y) coordinates by using a constant scale ratio

(magnification ratio) while ignoring lens aberrations and distortions. Dy doing this,

errors are inlroduced to the fmal results because the scale ratio is not uniform throughout

the depth of view, and it is changing at least as a function of the z coordinate (see Section

3.2 for details). This spatial dependency of the scale ratio can't he neglected when a

surface is not fiat. In addition, even a high quality lens has sorne aberrations, which

means in practice that the scale ratio should he a non-tinear function of (i, j, z).

Obviously, for the calculation of x, y, and z coordinates, a mathematical model must he

assumed that describes the relationship between the measured values, such as phase and

image coordinates, and the ultimate 3D coordinates.

In this chapter, a calibration procedure is proposed that can create a relationship between

the indirect measured values and the ultimate 3D coordinates. This mathematical model

allows the indirect measured values to he convened ÏDto 3D Canesian coordinates.

Before introducing the details of calibration, let us outline sorne basics of imaging

geometry.

3.2 Imaging Geometry

Fig. 3.1 shows a model of the optical image formation process. AIl geometry is

expressed in a 3D Cartesian coordinate system (X, f, Z), called the global coordinate

system. in which the position of a point is defmed by 3 coordinates denoted (x, y, z). The

2D image, given by (i, J) is used to denote the position of a pixel in an image plan. Let us

assume that the image plane is parallel to the XY plane, and the optical axis is along the

Z-axis. The point 02 and 03 are the centers of the image plane and the lens, respectively.

As shown in Fig. 1.6, the image plane is physically associated with the CCD camera.

Any change in the orientation and position of the CCD camera will result in a change of

the orientation and position of the image plane with respect to the global coordinate

system. If the camera is in focus for distant objects, the distance between 02 and 03 is

the focallength of the lens denoted as À..
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x

z
Lens center

Fig. 3.1 Basic geometry model of image forming.

As shown in Fig. 3.1, let (x, y, z) he the global coordinates of any point in a 3D scene, and

we assume that all points of interest lie in front of the lens. The relationship that gives

the image coordinates (i, J) of the projection of the point (x, y, z) ooto the image plane is

ea.sily accomplished by the use of similar triangles. With reference to Fig. 3.1, if the

Cartesian coordinate system is shifted to the location of the image coordinate system (01

and 02 is the same point), we have

i x-=---
À z-Â

(3.2-1)

(3.2-2)

Where the oegaüve sigos in the equations indicate that image points are actually invened,

as the geometry of Fig. 3.1 shows. The image-plane coordinates of the projected 3D

point foUow directly Crom Eqs. 3.2-1 and 3.2-2:

•
Â-z .

X=--Xl
À.

or x =f(i,z) (3.2-3)
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y=--X}

Â.
or y = g(j,Z)
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(3.2-4)

Equations 3.2-3 and 3.2-4 show that unless sornething (for example its z coordinate) is

known about the 3D point that generated an image point, it is not possible to completely

recover the global x and y coordinates of a 3D point frorn its image coordinates (i, j).

Therefore, the global coordinate x and y are functions of (i, z) and (j, z), respectively. As

addressed in Section 3.1, sorne researchers have assumed a constant scale ratio to derive x

and y coordinales from its corresponding image coordinates (i, j). This operation,

however, requires sorne care. Only in the case of Oat surfaces, can it safely he assumed

that the transfonn between the global coordinates (x, y) and the image or pixel

coordinates (i,}) does not depend on the small surface shape variation z(x, y). For non­

flat-surfaces, neglecting the surface height variation can create errors. The calculation of

(x, y! z) has 10 he carried out together since they depend on each other.

(a) (b) (c)

•

Fig. 3.2 Examples of lens distonion: (a) Original Grid,
(h) Pincushion Distonion, (c) Barrel Distonion;

ln optical 3D measurement systems, lenses or lens systems (consisting of several thin

tenses) play an important role in grating projection and image fanning. Two leos

systems are used in our system, one is the projection lens system and another is the

camera lens system. As shawn in Fig. 3.2, one of the basic problems of Jenses and Jens

systems is the imperfect quality of the images, usually called the lens aberrations. Such

imperfect images are Iargely the result of defects in the shape and form of the !enses. The

'.
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lens aberrations are very detrimental to optical measurement systems since the

measurement values (such as 3D coordinales in our case) are calculated on the basis of

precise analysis of image fonning. We always assume simply theory of lens systems in

optical3D measuremenl systems, which ignores the distortion of the lenses. Clearly, this

is not the case in practice. For example, there is no single focal length for a lens due to

the spherical aberrations. Therefore, we have to assume tbat there are sorne distortions in

every image, and due to these distortions the magnification of off-optical-axis points

differs from the magnification of those points near the lens optical axis. With lens

distortions in mind, Eqs. 3.2-3 and 3.2-4 will he rewritten in a more general forme

x =F(i, j,z)

y = GU, j,z)

(3.2-5)

(3.2-6)

•

The x and y coordinates are functions of i, j and z coordinates. In addition, different

Ienses have unique transformation functions. Therefore, in practice we have to fmd out

the form and ail the coefficients of these two equations for each lens. A procedure for

detennining the model parameters from a set of points with known global Cartesian

coordinates and their corresponding image coordinates is called uthe camera calibration."

Once the calibration is done, the 3D information can be inferred from corresponding 2D

image information and vice versa. This is the purpose of the next section.

3.3 Calibration Techniques

Equations 3.2-5 and 3.2-6 are the general form of the relationship between 2D and 3D

world. In tbis section, we will further forrnulate these two equations, and moreover to

detennine the fonn of the functions involved. The image acquisition, which is used to

capture the defonned grating patterns in a11 the image processing techniques described in

Chapter 2, results in a series of transformations before a grating image is fmally stored in

a computer's memory as a 2D digital image. These transformations must he inverted

before the results processed from the 2D digital image cao he related to the information

used in 3D space. As described in Section 3.2, the information processed from a
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deformed grating image (a 2D image) is (i, j, hl, and the results we need in 3D space are

xyz coordinates. The most common types of transformations from the 3D world

coordinates to 2D image plane coordinates are coordinate translation and rotation, Jens

distonion and perspective transformation. In the foDowing section, a camera model will

he developed for the transformation from 3D global coordinates to camera coordinates.

3.3.1 The Camera Model

Consider a pinhole camera model with lens distonion, as shown in Fig. 3.3. Let P he an

object point in the 3D space, and (xg, Y"~ Zg) he its coordinates with respect to a flXed

global coordinate system (GCS). Let the camera coordinate system (CeS) have its XY

plane parallel to the image plane, such that the X-axis is paraDel with the horizontal

direction of the image, and the Y-axis is paraDel with the vertical one. The origin of ces
is located at the lens center and the Z-axis is aligned with the optical axis of the lens.

which is perpendicular to the image plane.

GCst4.

Fig.3.3 Pinho~ carrera model with ens distortion

Let (xc, Ye, Zc) he the coordinates of the 3D point P with respect to the ces. If there is no

Jens distortion, the corresponding image point of P on the image plane would he Q (sec

Fig. 3.3). However, due to the effect of lens distortion, the actual image point is Q'. Let

• (i,}) denote the 20 image coordinates (in pixels) of the actual image point Q' with respect
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ta the computer image coordinate system (leS). The origin of the les is the intersection

point of the image plane and the optical axis. The distance between the image plane and

the lens center is denoted as fi The overaU transformation from (xg, y" Zg> to (i, j) can he

divided into the following four steps, as shown in the flow chart of Fig. 3.5.

(1) Translation and rotation from the GCS to ces
The transformation from the global coordinate system to the camera coordinate system

can he expressed as:

Xc '1 '2 ') 'l X,

Ye '. 's '6
'

2 Y. (3.3-1)=
Ze '7 '1 '9 I J

'7....
0 0 0 1

This equation can he also wriuen in the foUowing matrix fonn.

- _ T' - _ [R: t:]_'c - c'. - 0 l' " (3.3-2)

Here, ,sc =(1/, 12, IJ)C is a translation vector, and RIe is a 3x3 rotation matrix determined

by the three Euler angles, t/J, 8, and qJ, rotating about the X, f, and Z axes sequentially, as

shown in Fig. 3.4.

x

•
Fig. 3.4 Detiüln ofEtœr anFs.
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(2) Perspective projection from a 3D object point in the ces to a 2D image point on the

image plane

As shown in Fig. 3.3, the distance between ces and lCS planes is f, also referred to as

the effective focal length. Let (i,., i ..) he the 2D image coordinates of the undistorted

image point Q lying on the image plane. Then, we have

and . f Ye:lu = .-
Ze:

(3.3-3}

Since the origin of the CCS is at the lens center, Eq. 3.3-3 bas a different form than Eq.

3.2-1 and Eq. 3.2-2.

(3) Radiallens distortion from Q to ex
Let Ud,jd) he the 2D image coordinates of the distorted image point Q'. Then we have

and (3.3-4)

•

Here, ? =id X id + id x id. Based on the experience of sorne researchers, Eq. 3.3-4 is

adequate enough 10 model lens distortion for industrial vision applications (Tsai 1987).

More elaborate modeling not only would not help but also would cause numerical

instability.

(4) Scaling of 2D image coordinates

The horizontal and venical pixel spacing, au and Ôv (millimeter/pixel), are used to scale

from pixels to millimeters.

Combining these four steps together, we have
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(3.3-5)

Instead of (id, jd), we use (i, J) as the true or distoned image coordinates. The parameters

used in the transformation from the 3D world to the 2D image plane can he categorized

ioto the fo 110wing two classes.

• Extrinsic Parameters: the parameters used for the rigid body transformation from the

3D global coordinate system (GCS) to the 3D camera coordinate system (CeS) with

the origin at the lens center are called the extrinsic parameters. There are six extrinsic

parameters: the Euler angles pitch tfJ, yaw 9, and tilt cp for rotation and the three

components for the translation vector ~(. The rotation matrix Il'c can he expressed as

a function of tP. 8, and cp. These Euler angles are defmed in Fig. 3.4.

[

coscpcosB

R: = - sin fi' costP +cos fi' sin (boctfJ

sin cp sin tP +cos cp sin 8soct/>

sin cpcos9 -sinB ]
cos cp cost/> +sin cp sin Bsin tP cosB sin tP (3.3-6)

- cos fi' sin tP + sin cp sin (boctP cos9 cos tP

•

• Intrinsic Parameters: the parameters used for the transformation from 3D coordinates

in the CCS to the image coordinate system (ICS) are called the intrinsic parameters.

There are usually Cive parameters: effective focal length f, lens distonion coefficient

k, pixel scaling factors au & av, and the origin coordinates of the computer image

coordinate in the image plane (io,jo). Sînce we have the origin of the computer image

the same as the intersection point of the optical axis and the image plane, (io, jo) =(0,

0). For a solid state camera (CCO or CID cameras), the pixel spacing factors are

known. Therefore, the parameters that need to he calibrated aref and /c•
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To surnmarize these uansformations, we creale a flow chan as shown in Fig. 3.5. AIl the

parameters used al different steps, which need to he calibrated Ialer, are Iisted.

3D Global Coordinates (xg , Y"~ Z,)

r-1
-<..>

Step t Rigid Body Transformatioo
From (xg, Yg, Z,) to (.le, Ye, Zc)
Parameters to he calibrated:

R and t matrix-
~>

Step 1 Perspective Projection
From (xc, Ye, Zc) to (i,.,j,.)

Parameters to he calibrated: f-
"Ill>

Step J Radial Lens Distortion Correctioo
From 0,., j,.) to (id, jd) or (i, J)

Parameters to he calibrated: k-
~ >

Step 4 Pixel Scaling
Parameters lO be calibrat.ed: (io. jo). ~ and 6.-

n
2D Image Coordinates <i. J)

Fig. 3.5 TramformatiJn from 3D gklbal coordinate to 2D mage coordinate.

'.
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• 3.3.2 Pbase-to-Z Conversion

In this section, a formula for converting the measured phase distribution into z

coordinates will he derived. In Section 2.2, il bas been shown that the phase is correlated

with the surface height for parallel incident light rays. Now we will set up lhis

relationship for an ordinary point lighting source.

oüght ~ource

,
Grating "

1

Fig. 3.6 Crossed-opti:al-axes geometry

As shawn in Fig. 3.6, a grating pattern is projected onto the surface ta he measured by a

point lighting source. The optical axis of the projector crosses the optical axis of the

camera at point 0 on a :=0 plane, which has been set up during the calibration. Ep and Ec

denote, respectively, the front centers of the lenses for the projector and the camera. The

distance between these two lens centers is b, and the distance between the lens center to

the z=O plane is denoted as I. A light ray passes through the z=O plane at point B and

reaches the surface at point A. Theo the reflected ray passes through the z=O plane again

al point D. Eventually, an image point is formed on the image plane at (i, J). Note the

triangle ABD is similar ta the triangle AE~Ep. Therefore, we can write

•
BD b--=---

z(i, j) 1+ lei, J)
(3.3-7)
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Letfo he the frequency of the defonned grating on the z=O plane. We then have

(3.3-8)

Substituting Eq. 3.3-8 into Eq. 3.3-7 and solving for z(i~ j), we obtain the foUowing

conversion formula.

(3.3-9)

•

Dy using Eq. 3.3-9, the phase information of cach pixel on the image plane ean he

eorrelated 10 the z coordinates if aIl the parameters in the above equation are known.

ActuaUy, fo is not uniform over the entice field of view since a point light source is used.

The deformation of the grating, including the rotation of the grating lines and slight

change offa, becomes the source to calculate the surface shape. What bas to he calibrated

is fa as a fonction of (i, J) on the z=O plane.

3.3.3 Calibration Procedure

Up 10 now, the relationship hetween the direct measured information eIl(;, j) and the

ultimate 3D coordinates (x, y, z) has been accomplished through the foUowing three

equations. If all the constants involved in the equations are known, the cIt(i, J1 at any

pixel on the image plane can he convened into 3D coordinates (x, y, z). The problem of

camera calibration is to compute the constants involved in these equations. The constants

include the camera intrinsic and extrinsic parameters, the grating frequency on the z=O

plane, and the distance between the two leos eenters. The calibration is carried out based

on a number of points whose global coordinates (x, y, z) are known and whose

corresponding image eoordinates (i, J) and phase cIt are measured. The details of

calibration are described in the foUowing paragraphs.
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( 2) . X, li + Y,'2 + Z,'3 + t1
1-k·, ·,·8" =f·~-~-~--

X,'7 + Y,'a + Z,'g +13

(
2 ) • X,'4 + Y,'s + Z,'6 + ' 2l-k·, ·)·8v =f·~-......;...-......;....--

X, '7 + Y,'8 + Z,'9 +'3

(..) 1· ~(i, j)
Z l,) = 2tr/o .b-~(i,j)

(1) Camera Parameter Calibration

Fig. 3.7 illustrates the setup for calibrating a camera using a set of moooview oon­

coplanar points. The camera is mounted on a translation stage, and an accurate surface of

a Metal block, called the calibration target, is in front of the camera. Two Ronchi

gratings are mounted on the surface with its grating lines perpendicular to each other.

The spacing of the grating lines is known, and the central points of the grating lines are

treated as the calibration points. The venical grating is used for the x-calibration and the

horizontal gratîng for the y-calibration.

x

CalibratiJn Target

y

•

Fig. 3.7 Schematic of the experiJœnral setup for carrera cahbratiJn.

Several images are taken at different z values, one of which is established as z=O. From

these images, the phase is calculated, and then the (~, i,]) and its corresponding (x, y, z)

are known for each selected point. Assuming that we have N pairs of 2D-3D calibration

points, Eq. 3.3-5 can he also written in a matrix form (see Appendix A).
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[A]· [pl +[B]- [q] +k ·[C]· [q] =[0]

x y z 1 0 000
[A] = o 0 0 0 x y z 1

ZN'4

[B] = -j·x -;. y -; ·z -;

- j·x - j. y - j·z -j

2Nx4

Chapter j

(3.3-10)

[C]=
;.,2 .X ; .,2 .Y ; . ,2 .Z ;. ,2
• 2 • 2 • 2 ."

J" 'X J" .y J" 'Z J".

2Nx4

'If 1Dw 'lof 1av "
[~] = 'zf 16"

[Pz] = 'sf 1Dv
[P3] = '8

,]f1D" '6f 1Dv
,

'9
tIf1a" t z! 1av t]

1
[q]=[~l'-

t)

•
Substituting N pairs of 20-3D point coordinates into Eq. 3.3-10, the composite

parameters dermed in [pl and [q] can he solved for by using the pseudo-inverse method.

Theo the composite parameters can be further decomposed into individual parameters.
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(2) Sensor Head Geometry Calibration

Very similar to the camera parameter calibration, a monoview non-coplanar calibration

method is used for the sensor head geometry calibration. H we use N pairs of known 2D­

3D points, Eq. 3.3-9 cao he re-wrinen in a matrix forme

where

[Dl =

z(i, j) - 4>(i, j)

[El=

(3.3-11 )

za, j). ~(i, j)

N'Xl

•

Substituting N pairs of 20-3D point coordinates into Eq. (3.3-11), the composite

parameters defmed in [hl can he solved by using the pseudo-inverse Methode

3.4Summary

As mentioned in the beginning of this chapter, the goal of optical 3D measurement is the

determination of the Cartesian coordinates of surfaces. AlI known optical methods based

on grating projection are creating relative and indirect results, such as the height

information. Based on the works of photogrammetry, a camera calibration technique bas

been developed for the grating projection method to calculate Canesian coordinates from

the directIy measured values (phase and image coordinates). The calibration is carried

out before the measurement in arder to obtain ail the constants involved in the system,

including the parameters of the camera (intrinsic and extrinsic) and the relative geometry

between the camera and the projector. ACter the calibration is canied out in the lab, the

whole optical measurement system can he taken to any site to perfonn in-situ

measurements. As long as the camera and the geometry between the camera and the

projector remain unchanged, there is no need to re-calibrate. In each measurement, the

direct calculated results (i, j, 4» can then he convened into 3D coordinates (x, y, z) by

using the mathematical model previously described.
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To have 3D Cartesian coordinates as the measurement results is very imponant for the

dynamic measurement. It provides a very detailed 3D raw information source-a set of

point clouds in 3D space. From the point clouds, il is possible to analyze the information

funher, such as the curvature, cross-sectional lines, and even to reconstruct the surface.

In addition, due to the large amount of points obtained. any detailed fealure at any

location inside the field of view can he analyzed. Funhermore, it provides a practical

tool for verifying the measurement accuracy, which will he the topic of Chapter 5. The

following chapter will describe the dynamic measurement system from the point of view

of hardware.
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CBAPTER4

DYNAMIC MEASUREMENT SYSTEM

4.1 Introduction

Iri previous chapters, the details of the grating projection and Fourier transform technique

are presented. In addition, the data processing algorithms are depicted systematically.

These are the theoretical basis of the optical measurement system proposed for this

research. In this chapter, the emphasis will he shifted to the hardware' s point of view. In

the fust section, a system overview will he given, which covers the main components of

the optical measurement system. As the most imponant components, the high-speed

camera SR-lOOO and the multi-channel data link (MCDL) will he introduced in the last

two sections.

4.2 System Overview

Control Unit

6 digital inputs

2 analog inputs

Fig. 4.1 Schemali; of the high-speed opti:aI measuremne.. system.
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As shown in Fig. 4.1, the proposed optical measurement system consists of a high-speed

digital camera and its control unit, a light source, a grating projector, a multi-channel data

link (MCDL), and a persona! computer. Actually, the high-speed camera and the grating

projector are mounted inside a box, which is called the sensor head. The light source

illuminates a RODchi grating inside the projector, and the grating is projected onto the

surface ta he measured by a l6-mm lens. Ronchi gratings are evenly spaced liries

running parallel ta each other. After being projected onto a surface, its image will

defonn according to the surface shape. The deformed grating images on the specimen

surface are digitized and saved into the control unit of the high-speed camera system at a

certain framing rate. In the Mean time, the MCDL acquires extemal analog and digital

signais simultaneously to correlate them with each frame. The images stored in the

mcmory of the camera control unit are replayed ta view the recording ta select interesting

frames to represent a dynarnic event. The selected image frames are then transferred into

the computer and saved as standard image files via a SCSI-fi connection. After each

deformed grating image heing processed by the computer, an array of points (as manyas

200.000 points) with known xyz coordinates is generated, which represents the surface

shape inside the field of view of the camera. Since a high-speed camera is used, a

sequence of deformed grating images of a dynamic event is saved successively at a

cenain frame rate. By processing each individual image, it is possible 10 obtain the

surface shape al that panicular lime when this frame is recorded. By processing these

deformed grating images, the surface deformation history is known as a function of lime

since the time interval between image frames is known. In conclusion, the system has the

ability to digitize the whole surface inside the field of view inlo an array of points wilh

known xyz coordinates, al a cenain sampling rate (30 - 1000 Hz).

For the current system configuration, the field of view is approximately 100 x 100 mm,

and the depth of view (outside this range the grating image will he blurred) is

approximately 50 mm. The distance from the sensor head to the surface to he measured,

called the working distance, is approximately 200 - 250 mm. The dimension of the

sensor head is approximately 335(L) x 200(W) x 80(H) mm. The image acquisition lime
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is dependent on the electronic shutter speed (as low as 50 1JSeC) and the framing rate of

the camera (30 - 1000 fps). The time needed to process one image frame saved on the

bard drive is approximately 15 seconds for the current computer (Pentium 200 MHz).

Sînce the rmal measurement results are xyz coordinates, we set up a goal for the

measurement accuracy-iess than ± 50 J.lm for the overa1l measurement. This is the

precision for xyz coordinates calculation, and details of the accuracy will he descrihed in

the next chapter. By changing the lens specifications and the geometry of the sensor

head, the field of view and the working distance can he modified to fit a particular

application.

Until now, the general information regarding the proposed optical measurement system

bas been introduced in this section. As the most important component, the details of the

high-speed camera will he described in the foUowing section.

4.3 High-speed Camera Specifications

As the recording device in the proposed system, a high-speed monochrome digital

camera is used in trus work-Kodak Motion Corder SR-l000 (Motion Analysis Systems

Division, Eastman Kodak Company). A picture of the high-speed camera is shown in

Fig. 4.2. The specifications of the high-speed camera are Iisted in Table 4.1 .

Fig. 4.2 Kodak MolÎJn Corder Higb-speed Camera SR-lOOO.
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Imager CCO, 7.4)(J.4 tJ.ID pixel size, progressive scanning, 658x496 sensor array

Electtonic
As fast as 50 "a.sec. depending on the frame rateShuttel'

Display 256 gray levels, RS·170 video outputResolution

Recording 30,60, 125,250,500, and 1000 frames per second (fps)
Rate

Trigger start. center, end and random (activation: control panel & 1TL external input)
Modes

Frame
DRAM memory for 546 frames @ 512><480 resolution.Storage

18.2 @ 30 fps ( 546 frames @ 512x480 resolution)

Recording
9.1 @ 60 fps ( 546 frames @ 512x480resolution)

Tune
4.4@ 125 fps ( 546 frames @512x480 resolution)

(sec)
2.2@ 250 fps ( 546 frames @ 512x480 resolution)
2.2 @ 500 fps (1092 frames @ 512x24O resolution)
2.2 @ 1000 fps (2184 frames @ 2S6x240resolution)

Digital Image 8 bit monochrome TIFF or BMP file export via SCSI-2 connected PC.Output

External Accepts 2 analog and 6 digital data inputs via Kodak MeDL
Data Input

Lens Standard C-mountMounting

Table 4.1 Specifications of the Kodak SR-lOOO High-speed camera.

The deformed grating images, which are changing their fonns quickly during a dynamic

event, are captured by the high-speed camera and stored temporarily in the camera's

DRAM memory. Four triggering modes (start, center, end and random) can he selected

to fit a panicular application. ln addition, the triggering signal can be a TIL compatible

signal (SNe type connection) or a signal generated by a switch closure. In addition,

there is a TIL compatible synchronizing signal provided al the beginning of each image

frame for synchronizing other external electronic devices. After images are stored

temporarily in the memory of the camera, they can he played back to select useful frames

for transfer to a personal computer to store on a hard disk as permanent image flles.

There is no filin or magnetic tape nor moving mechanical pans involved in the whole

recording process. This is a major advantage of digital cameras over conventional high-
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speed filin cameras since ail the problems associated with film developing are eliminated.

However, the digital high-speed cameras are operating at relatively low frame raies (250

- 1000 fps) compared to the high-speed fdm cameras (up ta 100,000 fps). Sorne digital

high-speed cameras can achieve higher frame rate, but this is accomplished on the

reducùon of the image size. However, it is expected that the performance of digital high­

speed cameras will he enhanced in the near future.

The xyz coordinate calculation requires a high-quality grating image. For recording a

static object, a lower framing rate and longer exposure tilDe can he used. Therefore,

lighting is not a problem for statie or relative slow-moving abjects. However, lighting is

a well-known problem in high-speed photography applications. Extra care bas to he

taken to make sure the grating images are not blurred and have adequate contrast. In

order to avoid noise caused by irregular reflection on the surface, a very thin coating is

made on the object to create a matte reflective surface. However, the matte reflective

surface of the specimen allows for only a fraction of the incident light heam to he

coUected by the camera lens. This, along with the need 10 record a rapidly propagating

phenomenon at an exposure lime on the order of milliseconds (SR-lOOO), requires a very

intense light source which is not readily available. To meet this condition, a Ciber optic

illuminator with a 175-Watt quartz halogen lamp is used, which is capable of generating

3200 K light intensity. In addition, two plano-convex lenses are mounted in front of the

light-pipe to condense the light rays before lhey reach the projection grating. Even with

aIl these measures, the light intensity barely reaches the minimum requirement at the

framing rate of 1000 fps. For lower frame rates, such as 250 fps, the current lighting is

sufficient to provide an adequate illumination.

4.4 Moiti-channel Data Link

As shown in Fig. 4.3, the Kodak Multi-channel Data Link (MCDL) expands the

capability of the Kodak Motion Corder High-speed Cameras by correlating external

• signais with each video image. The MCDL can measure two analog voltage levels of
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transducers, such as pressure and force sensors, and simultaneously record this data along

with the video image. In addition, the MCOL bas six digital channels (switch c1osure).

These digital signais can he used to monitor the status of various switches in a complex

operation. In our case, the analog pressure and force signais are monitored along with the

high-speed images. The MCOL is a very powerful tool that can provide information on

the history of force or pressure, which is correlated with the surface shape. Therefore. the

MCOL is helpful in Many practical measurements.

Fig. 4.3 Kodak Multi-channel Data Lilk (MeDL).

4.5 Summary

In conclusion, the system proposed in this research is an optical measurement system tbat

can digitize a ponion of a 3D curved surface into an array of points with known xyz

coordinates at a certain sarnpling rate (30 - 1000 Hz). Sïnce a high-framing-rate digital

camera is used, the shape of a surface under dynamic events can be measured as a

function of time. In addition, several extemal signais can he simultaneously recorded

with each image frame by using the MeDL. Dy carrying out funher data-analysis on the

point sets with known xyz coordinates, the detailed surface information, such as the

displacement and curvature, can he obtained. The objective of the accuracy of xyz

coordinates calculation is approximately ± 50 J1m, and the details on the accuracy issue

will he discussed in the next chapter.

68



•
Chapler 5

CHAPTER5

ACCURACY AND SENSITIVITY TESTS

S.l Introduction

In Chapter 3, the fundamentals of the grating projection and Fourier transform technique

have been introduced. AIl processing procedures have been described regarding how to

obtain the phase information, which is related to the surface shape. Later, the calibration

techniques have been depicted in order to conven the direct measured value (lb, i, J1 into

Canesian coordinates (x, y, z), which is necessary to derme surface shapes in 3D space.

Sa far, with aU these steps we can digiLize a surface into an array of points with known

coordinales. Before we rush into the applications of the proposed system, there is still a

question left in our mind, and actually an irnponanl question from the users' point of

view-how aecurately can these 3D measurements be carried out?

Every system used for 3D coardinale measurement has 10 derme its accuracy of

measurement. For a coordinate measurement machine, the manufaeturers usuaUy use the

tinear displaeement accuracy for three axes and lhe volumetrie performance ta specify

how accurate their CMMs are. UsuaUy, the accuracy for a CMM is less than 5.0 J.1m per

1000 mm. That means there is an error of approximately 5.0 J.1rn in the coordinate

measurements for an abject of 1.0 Meler in lenglh. Therefore, CMMs are trealed as high­

accurate dimension measuremenl lools. This is the concept of measuremenl

accuracy-the possible errors in lhe measurement results. The sensitivity of

measurement means the smallest quantities or changes that can be detected by the

measurement system. Can we also fmd a way to derme the accuraey and sensitivity of

the optical 3D measurement systems? Due to variations of the optical 3D measurement

systems, the dermitions of accuracy and sensitivity are not that clear in some cases. Here

• we review the accuracy issue for sorne of the optical 3D measurement methods.
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5.1.1 Geometrie Moiré Methods

As described in Chapter l, the measured results from the geometric Moiré methods are

discrete points with known (h, i,)). Here, h denotes the height of a point from a reference

plane, and (i,)) are the location of that point on the image plane. In addition, the points

are the central points of the Moiré fringes as shown in Fig. 1.3. There is no height

information available for the points located between the Moiré fringes. An interpolation

procedure has to he employed by assuming smooth changes between Moiré fringes to

obtain the height information for any point not located on a Moiré fringe. If there is a

shape change between two adjacent Moiré fringes, tbis shape change will not show up in

the fmal result. As exhibited in Fig. 5. l, the interpolation procedures just round off small

surface change. In other words, the system is not sensitive enough to detect such a

detailed surface change.

True Surface Shape

--L-
dh

Moire Fringe Locatilns

SW'fuce Shape By Interpolation

Fig. 5. 1 Sensitivily concept in the georœiŒ Moiré rœthods.

Therefore, a concept of sensitivity or resolution has been introduced to defme how

sensitive a geometric Moiré system is for detecting surface changes (SciammareUa 1982).

The sensitivity, denoted as dh, is equal to the distance between two successive Moiré

contour lines. In past years, researchers treated the maximum error in the surface shape

measurement as the same as the sensitivity dh. There are many techniques published on

ways to increase the number of Moiré fringes in a field of view. The more Moiré fringes

you have, the more sensitive the measurement is, due to the smaller distance between

• consecutive Moiré fringes. However, for each Moiré fringe how accurate the height
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information can he obtained is different from the concept of sensitivity, a1though it could

he smaller in value compared with dh. Regarding how accurate each Moiré fringe

represents in the height information, few works have been done. One way to determine

the accuracy is to carry out an error analysis from Eq. 1.2-1 by assuming errors have been

introduced ioto each of the parameters involved to simulate how the outcome height will

he affected. The ideal optical system represented by Eq. 1.2-1 is different from a

practical optical system due to a numher of irnperfect factors or layout. In addition, sorne

noise sources are not included in this kind of error analysis, such as electronic noise.

Therefore, how accurate the height information can he is still to he verified. Another

reason why there is a lack of accuracy analysis is due to the measured result (h, i, )),

itself. They are neither absolute nor expressed in a form of Canesian coordinates. For

such data, we really have few things to verify its accuracy. In addition, the geometric

Moiré methods have a more serious problem to deal with, which is the sensitivity.

5.1.2 Phase-computing.based Optical 3D Measurement Techniques

For the phase shifting or the Fourier transform methods, the situation is different from

that of the geomctric Moiré methods. First, the sensitivity is no longer a serious problem

since the phase calculation is carried out for each pixel, instead of only for discrete

pixels. There is no need to interpolate the data. Therefore, the sensitivity of phase­

computing-based methods is defmed as the smallest change in the surface shape or

position that can cause the grating image to shift one pixel in the image plane. Usually,

the angle between the projector and the CCO camera plays an imponant role. Later, an

experiment will he carried out to fmd out how sensitive the current system is.

The direct measured value of these phase-computing-based methods is phase plus its

corresponding position on the 20 image plan~(i, )). Therefore, the accuracy of the

phase computation is an important topic, and there are a number of papers dealing with

it-Halious & Liu 1986, Creath 1992, and Joenathan 1994. From these papers, the phase

computation accuracy is seen to he approximately 21t1100. Various error sources are

briefly listed below.
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• Error due to imperfect sinusoidal grating profile: The line width and the spacing

between two consecutive lines may have sorne error.

• Error due to digitization: The digitization noise is caused by the fmite number of

digitized levels present in the detected intensities. Here 8 bits or 256 gray levels are

used in the AID transformation.

• Error due to electronic noise: The background noise in the camera and the frame

grabber gives rise to random errors. Each pixel of the solid imager convens light to

an electrical charge. If the illumination is not strong enough or the lighting does not

fit with the spectral response character of the camera in wavelength, a great deal of

electronic noise will he added into the image.

• Error due to imperfect phase shifting: This error is relevant in the phase-shifting

systems since the grating has to he shifted a very small distance. Due to mechanical

reasons, there are always sorne errors for the real distance the grating travels.

• Error due to surface quality: The noise level varies with the surface fmish of the

abject under measurement. If a large amount of detailed surface irregularities exist,

there will he noise in the fmal phase map.

The error sources üsted above are for the phase computation only. As indicated in the

previous chapters, the phase information and its corresponding image coordinates (cJ), i.})

are not the fmal measurement results for our system. The (cr-, ;,}) have to he convened

into Canesian coordinates (x, y, z) by using a special calibration technique. Therefore,

there are sorne additional errors related to this transformation.

• Error due to drifting: AlI the parameters calibrated are set for the geometry of the

sensor head at the time of calibration. The geometry May vary with temperature,

and some errors will he introduced by still using the old calibration data

• Error due to imperfect calibration: As described in the previous chapter, a standard

object, called the calibraùon target, is necessary in the calibration. Moreover, the

calibration target will he translated al different z positions. The imperfection of

72



•

•

Chapltr 5

surface flalness and the error of linear movement will bring some errors into the

calibration parameters.

Considering all these error sources for both the phase calculalion and the Canesian

coordinate calculation, the fmal accuracy for the Cartesian coordinates (x, y, z) is a very

important issue. Standard error analysis, as carried out in Joenathan's paper (1994), is

not Cully suitable here since some error sources are implicit and are not easy to simulate,

especially for those error sources related to the calibration. Fonunately, we have 3D

Canesian coordinates as the fmal results. They are used also as a tool ta check the

measurement accuracy. Accuracy will he checked by measuring standard objects with

known geometry, such as a flat surface and a cylindrical surface. By comparing the

measured values with the standard values, the overall measurement accuracy can he

defmed. Please note that this way of defming the measurement accuracy is unlike that

used in the geometric Moiré methods or any other phase-measuring methods since they

can not provide 3D Cartesian coordinates as the fmal measurement results. This method

to defme the measurement accuracy is more similar to methods employed by industries

for CMMs. The foUowing sections will include the accuracy test results by using a flat

surface and a cylindrical surface for the current system configuration.

S.2 Flat Surface Test

The flfst accuracy test is carried out with a flat surface. A metal surface is carefully

machined to have a surface flatness less than 20 tlm. Then a uniform thin powder coating

is put on the surface to give an optical diffusive fealure. The thickness of the powder

coating is approximalely 30 J.lm, and care is taken to make sure there is a unifonn

distribution aver the whole surface. Therefore, after the coating the surface flatness is

still less than 20 J.lm. The surface is placed in front of the sensor head al differenl z

values (-22-22 mm) in the depth of view, as shown in Fig. 5.2.
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Fig. 5.2 Surface flatness test

For each position, the fiat surface (approximately SOx80 mm) is measured by using the

proposed high-speed 3D measurement system. Each measurement generates a point

cloud with known xyz coordinates, usually over 100,000 points. A point cloud of a flat

surface is shawn in Fig. 5.3 with reduced number of points. Sïnce the original surface is

flat, aIl the points measured should be very close to a plane. In order to evaJuate the

'fiatness' of the data, a least square plane fitting is carried out for all the points, and the

deviation of each point is calculated. The results for the total number of points involved

in the calculation are given in Table 5.1.

Fig. 5.3 Measurement result of a tlat surface-point cloud.
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Surface Location Number SD Surface Location Number SD

Z(mm) of Points Cu.ro) Z(mm) ofPaints (um)

-22.000 154,775 11.02 2.000 154,811 10.82

-18.000 154,784 11.06 6.000 154,811 Il.05

. -14.000 154,806 10.59 10.000 154,812 11.28

-10.000 154,809 10.88 14.000 154,841 11.95

-6.000 154,812 10.54 18.000 154,812 12.99

-2.000 154,812 10.40 22.000 154,810 14.02

Table 5.1 Rat surface test results.

The standard deviation (SD) is calculated by the following equation:

SD = _'=__1 __

N-l
(5.2-1)

where, di is the distance from point" to the plane just fiued, and N is the total number of

points. Consequently, approximately 68% of the points are within one standard deviation

from the fitted plane, and about 97% of the points are within two standard deviations.

The maximum deviation is caused by isolated noise, which could he bigger in value than

the standard deviation. However since thase noisy points are relatively small in number,

their effects can he limited by any surface filtering process.

The average standard deviation for aIl 12 tests is approximately 11.38 Ilm, and the

deviation is relatively small around the center of the depth of view. Therefore, il is

recommended to carry out measurements around the center of the depth of view

• whenever possible. The flat surface tests show very good results, and il is better than the

7S



•
Chapter 5

overall accuracy target we set for the system-± SO J.lrn. In the next section, we will test

accuracy on curved surfaces.

5.3 Cylindrical Surface Test

A cylindrical surface is machined on an aluminurn rod with a diameter of 75.810 ± 0.004

mm. The aluminum surface is very sbiny after machining, and an appropriate coating is

needed to reduce noise in the images. After coating, the cylindrical surface is placed

•

Fig. 5.4 CyliOOri:al surface test

approximately in the center of the depth of view, as shown in Fig. 5.4. Then a ponion of

the cylindrical surface (approximately 5OxSO mm) is measured by using the proposed

optical system to generate 1, 100 points as the results. These points are displayed in Fig.

5.5. Sïnce the original surface is cylindrical, ail the measured points are very close to a

cylindrical surface with a diameter of 75.81 mm. The data devialion from the standard

cylindrical surface is evalualed al different y locations (-25-25 mm). The oost fit results

al y=O.O are displayed in Fig. 5.6, and Table S.2 summarizes the oost-fit results for ail

other y locations.
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Fig. 5.5 Point cloud display of the measured data on a cylindrical surface.

Cyllndrlca' Surfac. 8••t·ftt Reeult.

Z (mm)

-.-Measured 1
1-------------J-..~~---~iJ_+---~~=------___i;...-. ~~~......~~._.=-==~-=--------~-- Slandard

-25 ·20 -15 -10 -5 o

X (mm)

5 10 15 20 25

•
Fig. 5.6 The best-fil resub aty=O.O.
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y (mm) -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0

sn (J,lm) 30.5 25.7 31.5 36.8 32.3 28.7 33.0 34.5 33.9 35.8 30.4

Table 5.2 The best-fit results of the cylindrical surface.

The accuracy test done on a cylindrical surface is slightly different from those carried out

on a fiat surface since for curved surfaces the lateral coordinates, x and y, will play a role.

Any error with x and y coordinate calculation will affect the rmal data deviation. The

results shawn in Table 5.2 are still better than the accuracy larget we set for the overall

measurement.

5.4 Sine Vise Test

A sine vise is an industrial tool to create accurate angles by changing the height of gauge

blacks undemeath. As shown in Fig. 5.7, a sine vise is placed in front of the sensor head.

By changing the height of the gauge blocks, surfaces al differenl angles are created.

uge Bk>ck

Fig. 5.7 Accuracy tests will a since \'fie set al ditlèrent anga.
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Sïnce the accuracy of the gauge blocks is less than 0.5 ~m, the angles created by tbis

method have an accuracy of approximately ±O.OO36°. A ponion of the top surface of the

sine vise is measured for each different angle, and the deviation of each point to the ideal

flat plane al that angle is evaluated to verify the measurement aceuraey. Table 5.3

summaries the results.

Test 1 2 3 4 5 6 7 8 9 10

Gauge Black Height
3.81 5.08 7.62 10.16 12.7 16.51 17.78 20.32 22.86 25.4(mm)

Angle (0) 1.719 2.292 3.44 4.589 5.739 7.47 8.048 9.207 10.37 Il.54

Number of Points 350 350 350 350 350 350 349 349 349 349

SD(~) 31.94 33.15 37.96 43.55 44.77 47.57 52.67 50.77 51.89 50.18

Table 5.3 Accuracy test results on the sine vise.

From Test 1 to Test 10, the surface traveled about3Omm in the Z direction. Compared to

the depth of view (50mm), we round that the accuracy gets worse when a surface is

located close to the two ends of the depth of view. From Table 5.3, we can see that the

overall accuracy objective is barely maintained in this case.

s.s Sensitivity Test

In the previous section, the measurement accuracy on flat surfaces and curved surfaces

bas heen evaluated. The objective of the accuracy tests is to assess how much error is in

the measured data. In this section, we will decide how small a surface change can he

detected by the system, Le. how sensitive the system is. Note here, the sensitivity we are

considering is the out-of-plane sensitivity, in other word the sensitivity in the Z direction

79



•

•

Chapler 5

since the system is primarily designated for out-of-plane measurement. We will not

assess how sensitive the system is for the measurement in the X and Ydirections.

The sensitivity is mainly decided by the angle hetween the projector and the CCD

camera. The bigger the angle is, the more sensitive the system will he. However, bigger

angles will reduce the depth of view. In our corrent configuration, the angle is about 30

degrees. Instead of assessing the sensitivity theoretically, a test will he canied out ta

evaluate the practical sensitivity. Again, the fiat surface used for flat surface accuracy

test is used here. As shawn in Fig. 5.2, the flat surface is placed at different positions in

the depth of view. At each location, the flat surface is moved by a small distance, usually

in microns. The surface is measured twice (hefore and after the movement) to sec

whether or not the small movement is included in the measured results. Since the

smallest read-out of our translation stage is 10 microns, the smallest movement we can

have is 10 microns.

-f+-t++-+- ----- -f+-t++-+-----~
o 0 Z. . 0
~ 0 N
• N

Fig.5.8 Sensitivity test locatiln in the depth of~w (step size=IO nœrons).

As shawn in Fig. 5.8, three locations inside the depth of view (z = -22.0, 0.0, and 22.0

mm) are selected to carry out the sensitivity test. The flat surface is placed at these

locations, then five small movements (step size = 10 microns) are introduced in the Z

direction. The surface is measured at each step ta create a point cloud, and then the raw

point cloud is plane-fitted. Finally, the distances between these computed planes are

compared with the known step size (10 microns). The results are shown in Table 5.4.

The results in Table 5.4 show that under the current configuration the system can detect

as small as LO microns displacement in the Z direction. The step size of 10 microns is
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also close to the accuracy of the translation stage, therefore an error of 1 or 2 microns is

very reasonable. As mention previously, the sensitivity can he increased by changing the

angle between the CCD camera and the projector. However, at this moment it is not

necessary to do so.

Location
Standard

Step Points
Measured Error

Movement Movement
z(mm)

(um)
Number Measured

(um)
(J,lm)

1 154,807 10.0 0.0

2 154,808 8.0 2.0

-22.0 10.0 3 154,812 9.0 1.0

4 154,811 9.0 1.0

5 154,807 8.0 2.0

1 154,808 10.0 0.0

2 154,811 10.0 0.0

0.0 10.0 3 154,808 10.0 0.0

4 154,809 10.0 0.0

5 154,811 8.0 2.0

1 154,812 10.0 0.0

2 154,810 10.0 0.0

22.0 10.0 3 154,811 10.0 0.0

4 154,810 9.0 1.0

5 154,810 12.0 -2.0

Table 5.4 Sensitivity test results.

S.6Summary

ln this section, various error sources have been pointed out. Instead of assessing the

overall measurement accuracy theoretically, severa! experiments have been carried out to

evaluate the accuracy from a practical point of view. The xyz coordinates as the

• measured results make it possible to evaluate accuracy this way. Three tests on flat or
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curved surfaces show that the overall accuracy objective, ±SO IJ.rn, bas been obtained.

Regarding the sensitivity of the measurement, the experiment shows that an out-oC-plane

displacement as small as 10 IJ.m is detectable. In addition, the experiments show that near

the middle of the depth of view the error is relatively small.

Finally, the data quality varies with the surface fmish of the object under test. Very

rough surfaces will creale more random errors in the xyz coordinales. A number of ways

can he employed to reduce tbis kind of error. One of the ways is to ftlter the original

grating image to remove random noise.
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CHAPTER6

BIAXIAL EXTENSION TESTS OF POLYMERIC
MATERIAL

6.1 Introduction

6..1.1 Background

Plastics are modem, synthetic materials that have superior properties, such as hygienic

barrier propenies, üghtweight, and durability, which contribute significantly to our health

and quality of üfe. In automotive applications they offer iight-weight performance which

in tum improves gas mileage; in packaging applications, they proteet our food from

contamination and Many products from damage; in Medical applications they are used to

improve our quality of life and save lives through IV and blood bags, anificial hips and

limbs and disposable syringes. In construction, plastics help insulate and decorate our

homes and are used extensively in plumbing and electrical applications. Plastics are also

very energy efficient. Studies show that it takes less energy to malte a product from

plastics than just about any other material For example, it takes less energy to make a

plastic boule than a glass bottle; vinyl siding than aluminum siding; plastic pipe than steel

pipe; and 50 on.

Blow molding and injection molding are two common techniques to fahricate different

shape plastic products. As shawn in Fig. 6.1, thermoforming technologies require a pre­

manufactured thermoplastic sheet, which is clamped, heated, and shaped into or over a

mold. Despite the fact that thermoforming bas been used extensively in recent decades,

the techniques used were mostly based on experience, and therefore were rather

empiricaL How to test the thermoformability of plastic sheets was always a challenging

task for engineers. For example, in the past if one wanted to know whether a certain

plastic sheet material could he formed into a panicular shape, the ooly solution before

was to build a mokl and try il oul Now, with the powerful computers, engineers can

simulate the whole thermoforming procedure using different constitutive material models
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ta represent the behavior of the polymerie material. By doing SO, il is possible to know

whether or not a particular product can he made and in addition how 10 make it, including

what temperature and airtlow rate should he applied, and what thickness the fmal product

will he. However, as the input parameters of these simulation models, the material

eonstants of polymerie material under elevated temperatures are often lacking. There is

an increasing need for the polymerie material to he adequalely characterized since the

performance of these simulation models depends on how accurate the material models

and parameters can he detennined. Therefore, this recerat progress in computer-aided

plastic processing demonstrates a strong need for accurale description of the material

hehavior relating stress, suain, and temperature.

Compressed Ar

4 !l
~~

1 --- k<>-.. ---

n
Vent

Fig. 6.1 Thennoforming process: (1) preœated lhennoplasti: sheet;
(2) rmkl base plate; (3) mokl bod~ (4) pressure plare; (5) ttapped ai".

6.1.1 Inflation of Plane Circular Membrane and Basic Equations

As mentioned in the previous section, accurate material propenies are needed in order to

obtain correct results from simulation models. However, the properties of plastics are

directly dependent on temperature, strain rate, and deformation conditions (uniaxially or

biaxially). In thermofonning, the deformation of a polymer membrane from a 20 flat

• sheet 10 a 3D shape is essentially biaxial and oecors above the material's glass transition
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temperature (usually >HlO°C). In addition, the deformations oecur very rapidly, usually

less than a second for the whole event, resulting in high strain rates. A number of deviees

are available commereially for uniaxial extension tests, such as stretch rheometers.

However, predicting the defonnation of a viscoelastic membrane under biaxial stretching

based solely on the behavior exhibited in uniaxial extension often results in large errors,

especially for large deformations. Therefore, it is generally more desirable to use a

biaxial stretching test at rates approximating those for the application being considered to

charaeterize the material properties under biaxial extension.

One of the techniques, which bas been used with suceess to study the behavior of

polymerie materials in biaxial extension, is the bubble inflation test. A sheet of the

polymerie material to be studied is clamped between two plates, bath of whieh have

eireular coneentric holes eut in the middle. An inflation medium, a gas or liquid, is

introdueed under pressure to a chamber mounted on one side of the plate. The pressure

differenee, t1P, between the two sides of the sheet will cause the sheet deform into a

bubble, as shown in Fig. 6.2. Usually L!P and the deformation of the sheet are monitored

as functions of time to provide data from whieh material constants ean be determined.

h

•

Fig. 6.2 Georœtry ofa bubb~.

1be use of the bubble inflation test to characterize the material properties of polymerie

materials in biaxial extensions is not a new technique. Treloar used a bubble inflation

device in 1944 to test rubber sheets (Treloar 1944). Later in 1951, Rivlin & Saunders
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used a similar device to test a rubber elasticity theory (Rivlin & Saunders 1951). Joye~

Poeh1ein and Denson found the technique usefui in detennining extensional tlow

properties in 1972 (loye, Poehlein & Denson (972). The inflation is often monitored by

a camera fllming either a pattern painted on the sheet or the height of the bubble (Schmidt

& Carley 1975, and Derdolllt Connolly & Khayat (998).

These researchers all considered an idealized sheet inflation in which the deformation is

assumed to he uniform over the entire sheet so that a spherical shell of uniform thickness

is formed as shown in Fig. 6.2. For the idealized equibiaxial extension, the polymer sheet

is suetched by equal amounts in two orthogonal directions, and the through thickness

suess CJ] is taken as approximately zero, Le. plane stress. At any instant~ the bubble is

assumed to he part of a thin spherical sheU under internai pressure as shown in Fig. 6.2.

The relationship between the radius and height of a spherically symmetric bubble is:

(6.1-1)

And from classical shell analysis, the foUowing relationship for the stress is obtained:

P·R
(11 =(1., =--

• 2t

where R is the radius of curvature of the spherical shell and 1 is the thickness. The

surface area of a spherical segment is (2nRh), so that if the material is assumed to he

incompressible, the thickness is given by:

(6.1-3)

•
where 10 is the original thickness. By substituting Eq 6. 1-3 into Eq. 6.1-2, the relationship

between the suess and the height is given by:

".
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(6.1-4)

The stretch ratio, Â, is associated with the change in surface distance (arc length) from the

pole ta the clamped edge of the sheet sa tbat:

a·R
À.=-

a

where angle a is shawn in Fig. 6.2, and can he obtained from:

(6.1-5)

h=R·(I-cosa) or ~=sina (6.1-6)

The stretching strain ~ which is uniform over the entire surface, is then given by:

(6.1-7)

•

The pictures of the bubble inflation from a side view are 2D images, but after a simple

calibration of the scale factor, some ID quantities can he obtained, such as the height al

the pole or the diameter of a ring. Thus, the knowledge of pressure P together with the

height of bubble h as functions of time is sufficient for the deterrnination of the stress and

strain.

The following assumptions have been used in this development: (1) the biaxial

deformation is uniform over the whole bubble surface; (2) the bubble geometry is

spherical; and (3) the material is incompressible. In fact, unifonn stretching over the

entire sheet is not possible by considering the foUowing: (1) the clamping plates restrain

the displacement of polymer sheet adjacent to them and different degrees of slippage
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accur al different locations; and (2) for the tests conducted al elevated temperatures the

temperature distribution is not unifonn over the entire circular sheet. If the assumption of

unifonn stretching is not valid, the bubble shape will not he sphericaL Therefore, aU the

equations derived above will he jeopardized. Sa, what is the real shape for a bubble

during its different evolution stages?

From 2D side-view pictures, il is .bard to check the sphericity of a bubble sînce the

surface curvature at different locations is unavailable. Sometirnes, the 2D bubble images

can he projected onto a big screen to get more details on the bubble proftle. However,

sorne errors are introduced in locating the bubble edges since all the processing is

subjective on an operator's decision. Another shortcoming of the side-view pictures is

the difficulty of measuring the initial deformation around the staning point of applying

compressed air. The polymer sheets undergo thermal deformation due to the heating

process. Therefore, the polymer sheets are no longer fiat even though no compressed air

has been applied. As shown in Fig. 6.3, a pressure plate has to he used in the bubble

inflation tests. Small membrane deformations, Le. less than the thickness of the upper

plate, will nol he seen in the pictures. In order to overcome these detailed disadvantages,

a more robust measurement system is needed to monitor the evolution of a polymer

bubble more accurately.

Unobservable defonmoon

Deformation due to heating

Fig. 6.3 Cross-section~w of the bubble infIatiln test
(l) upper pate; (2) mwer plate; (3) polymer sœeL
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6.1.3 Application 01 High-speed Optical Measurement System to Bubble Inflation
Tests.

The optical high-speed measuring system described in previous chapters is a very suitable

tool for the bubble inflation tests, especially for the early deformation stage. The

significance of this measurement cao he stated as foUows: First, successful use of the

optical, high-speed, whole-field measuring system can provide whole-field out-of-plane

deformation information with high accuracy. Dy utilizing detailed 3D information

instead of ooly 2D images, it becomes possible to calculate surface curvature at any

location. Therefore, the uniformity of deformation and the spherieity of a bubble can he

studied accurateIy. In addition, the measurement during the early inflation stage is

possible. AlI defonnations are observable, even during the carly stage. Second, the

results obtained from these bubble inflation tests will provide thermoforming engineers a

chance to check the thermoformability of different materials. Funhermore, the tests

themselves will aIso provide a tool to verify and improve different analytical models to

offer more precise control over the entire thermoforming process.

With this in mind, a joint research project was Iaunched with the Industrial Material

Institute (IMn of the National Research Council of Canada (NRC) in Boucherville,

Quebec. The high-speed optical measurement system developed at McGill University

was integrated with the bubble inflation testing facility of IMVNRC, and aU the inflation

tests were carried out at IMVNRC. In the foUowing sections, the details of the inflation

tests and the measurement results will be presented.

6.2 Experimental Setup

Fig. 6.4 shows an overa1l view of the experimental setup. A thin square sheet of

thermoplastic material is clamped hetween two plates that leave a 2.5-inch circle at ilS

center exposed to two infrared heating lamps on bath sides. After heing heated to a

cenain temperature, the specimen is blown upward into a bubble of an approximately

hemispheric shape by inflating with compressed air at room temperature ioto the lower

chamber. The optical sensor head is mounted over the specimen looking downward to

89



•
Chapler6

measure the whole defonnation history of the polymer sheet. In the meantime, a pressure

transducer is used to record the pressure inside the chamber. By using the MCDL, the

pressure signal is correlated with each image frame. Elapsed time for these tests was

usually less than 1.0 second.

Sensor Head ~-----.-.Image Data

Compressed Ai' q

Fig. 6.4 The bubble ilOation experimental selUp:
(1) polyrœr sheet; (2) pressure chamber.

Three materials were used in our tests: high impact polystyrene (HIPS), acrylonitrile

butadiene styrene (ABS). and high-density polyethylene (HOPE). The raw materials

were eut into I1Oxll0 mm square sheets. The thickness of HlPS and HOPE is 1.0 mm

and is 1.5 mm for ABS. A total of 27 tests were carried out al temperatures which ranged

from 130°C - 180°C and at different airtlow rates-3.0, 5.0, and 8.0 liter/second. The

high-speed optical measurement system is capable of measuring the deformalion up to

1000 times per second, but was usuaUy operated al 250 frames per second with a shutter

speed of 11250 second. Thal means the bubble shape is measured every four milliseconds

for a total period of 2.2 seconds. An infrared camera is mounted beside the optical sensor

head to measure the lemperature distribution of the specimen. In the future, two infrared

• thermometers will he installed to monitor the temperatures on both sides of the specimen,
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and their readouts are used to control the temperature automatically. The heating

procedure usually took approximately 5 minutes in order to create a uniformly

temperature distribution through the thickness of the specimen. During the heating, the

specimen experienced sorne warping due to the tise of temperature, even though there

was no pressure difference on bath sides of the polymer sheet. This thermo warping is

clearly shown in our measurement results.

The complete step-by-step operating sequence May he summarized as follows: (1) stan

with initial conditions at room temperature; (2) the original specimen surface shape is

measured; (3) the infrared camera is tumed on to monitor the temperature; (4) the heaters

are tumed on to heat the sample for approximately 5 minutes to ensure the unifonnity of

temperature; (5) the optical sensor head is turned on to start recording; (6) a valve is

opened for compressed air to flow into the chamber to generate a bubble; (7) the valve is

closed when the bubble hursts; and (8) 30 minutes of cooling process. During the

cooling, the digital images saved in the high-speed camera's memory can he replayed in

order to select an 'action' sequence. Then. the selected sequence is transferred to the

computer for further xyz coordinate calculation. From the image data transferred from

the high-speed digital camera, the surface shape of a portion of bubble surface is

calculated in a forro of an array of points with known xyz coordinales. Due to the

limitation of the depth of view of the optical measuring system, ooly the early ponion of

the bubble evolution is measured.

6.3 Experimental Results and Data Analysis

6.3.1 Overview of Measurement Results

The measurement result of a bubble inflation test is an anay of points with known xyz

coordinates, as displayed in Fig. 6.5. Each white dot in the figure represents a point in

3D space. Please note that the white dots shown in the figure ace a subset of the actual

points measured. Sînce the xyz coordinate calculation is canied out for each pixel in the

image and the total number of pixels (over 200t OOO) is too many for most appücations, a

• reduction factor is used to select a subset from the original point cloud. For examplet to
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save one point in every five points in a row and to use one row in every Cive rows. The

circle in Fig. 6.S represents the circular opening in the upper plate, which is shown by

rectangular edges. The coordinate system, which is virtually associated with the optical

sensor head, is also shown in the figure with the Z·axis approximately heing aligned with

the inflation direction.

Fig. 6.5 Tœ rœasurerœnt result of bubble inftati>n: ABS @ ISO Ce~ius & 3.0
Vs airfklw rare. The rœaslD"ement was taken at 160 lm after inftati>n.

As shown in Fig. 6.5, only a ponion of the surface of a bubble is measured and digitized

ioto 3D points. The reason is that for coordinale calculation a rectangular window, as

shawn in Fig. 6.6, bas to be defmed in order ta carry out all image-processing works.

Therefore, oRly the points inside Ibis rectangular window are processed to obtain

coordinate information. The white dots in Fig. 6.5 can be connected by straight lines to

provide a wireframe display of the bubble shape. and this is shown in Fig. 6.7.
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Circular opening

Fig. 6.6 Rectangular xyz coordinare cakulation wiŒlow.

Fig. 6.7 Wire-&arœ display ofFig. 6.5.

Sînce the xyz coordinates of aU the points in Fig. 6.5 are known, and these coordinates are

given with respect to a single fued Cartesian coordinate system, these raw measurement

results, which are also called the point cloud, become a source for further analysis of the

".
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bubble surface cbaracteristics, such as the surface curvature. In addition, the point cloud

shown in Fig. 6.5 i.s just one measurement taken at a cenain time. Similar measurements

on the bubble shape are canied out 250 times per second in our tests, generating a huge

point cloud set for each bubble. AIl our succeeding analyses about the shape of a bubble

are based on this set of point cloud data.

Burstilg POill

Measured Range

,/

Max. Pressure

o Heighl (mm)

Fig. 6.8 Pressure vs. œighl in a lypi:al bubbe infIaoon test

Fig. 6.8 shows a schematic curve of pressure vs. height in a bubble inflation test. Il is

observed that the pressure will increase along with the bubble height at the beginning of

inflation. After the pressure reaches a maximum, the pressure will decrease, although the

height continues to grow. At a cenain point, the bubble begins to grow rapidly and bursts

or fails at the pole region.

•

The temperature, materiaL airflow rate, and thickness play very imponant roles in a

bubble inflation test. To change any of these factors can alter the test results, such as the

height and the maximum pressure, dramatically. ln our tests, the bubble height can go up

to approximately three times of the radius of the circular opening (h/a =3.0). However,

due to the limitation posed by the sensor head rlXture, our measurement can only cover

the rust one third of the blowing process (h/a = 0.0-0.8). The measuring range is shown

in Fig. 6.8 and the measurement stops just beCore the pressure reaches its peak. Fig. 6.9
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shows a graph of the pressure vs. height of ABS at 150°C and 3.0 liter/sec airflow rate.

Using Eqs. 6.1-5 & 6.1-7 and the height vs time measurement, the resulting strain rates

are on the order of 1.0 S·I.

0.05 -r-------------------------,
_ 0.04 +-------------------:::l~..;...;.....----t
t.
1. 0.03 +------------~=_fIIf~----------t
;10.02

0.01 +------_~---------------t

O..~~!..--..........---------po----..........---~
0.0 5.0 10.0 15.0 20.0 25.0

Hllghl(mm)

Fig. 6.9 Pressure vs. Height for ABS @ ISO Celsius and 3liter/s airtlow
rate.

ln the literature, severa! researchers have indicated that beyond h/a=1.2, the bubble

deformation becomes noticeably more pointed at the pole (Joye, Poehlein & Denson

1972). Thus, the bubble is no longer a simple spherical segment. Later, Pan and Watt set

a more strict number, h/a=1.0 instead of 1.2 (Pan & Watt 1996). They ail claimed that

before h/a=1.0 the bubble is reasonably sphericaL and the analysis should he based on

this range. Our measurement covers h/a=O.Q-O.8, and it will provide an accurate

verification of these claims.

In this section, some irnponant aspects of the measurement result of the bubble inflation

test have been described, especially the measurable range. In the next section, the real

shape of a bubble will be analyzed.

6.3.1 Real Shape of A Bubble

A test is carried out on the ABS material at 150°C and 3.0 liter/sec airflow rate. A total

of approximately 100 frames have been saved, and a subset of these images are fully

processed to generate xyz coordinates. The raw point cloud data calculated from frame
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#150, which is taken at 160 ms after inflation, bas been shown in Fig. 6.5 and 6.7. The

bubble height al that moment is approximately 12.0 mm (h/a = 0.378). As shown in

these two figures, not ail the polymerie rnaterial inside the circular opening deforms inlo

a spherical shape. There is a relatively rigid ring a10ng the fIXed circumference with linle

defonnation. At lhis moment, 160 ms have elapsed since applying the compressed air.

The width of this rigid ring is about 8.45 mm. Dy observing other images, we fmd this

rigid ring is existing through ail bubble inflation stages. even after hla ~ 1.0.

The measured shape is compared 10 the assumed spherical shape in Fig. 6.10. The flat

base line is the original polymer sheet before heating. On the top, an arc is crealed by

using the information of the pole and the flXed circumference. The real bubble shape at

this moment is the curve between the base tine and the idealized arc. The maximum

devialion, which occurred al the rigid ring area, is approximately 2.8 mm. Compared 10

the bubble height al this instant (12.0 mm), this is an error of about 23%.

Fig. 6.10 Cross-sectioœl shape ofa bubble at 160 ms ailer iltlation.

ln their 1972 paper, loye, PoehJein, and Denson claimed that at room temperature (23°C)

the deviation from true sphericily is perhaps 5% for the defonnations where h1a<1.2. The

measured result showing here is at an elevated temperature-150°C and the deviation is

much worse. Evidently, the temperature gradient in the radial direction and boundary

condition play a central role in preventing the bubble from deforming ioto a real spherical

• shape in elevated temperalure cases. If we cao achieve a uniform temperature
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distribution in the experiments, with no doubt the final shape will he closer to a sphere.

However, the height of the dome will not he as same as that with the temperature non­

uniformityexisting. Most likely, the bubble height will increase. Therefore, it is difficult

to know how much the error bas been introduced ioto the calculation of material

propenies, and whether or not the fmal error is negligible.

The bubble profùe in Fig. 6.10 is further analyzed ta see what the curvature distribution

is. Two principal curvatures are usually used in case of a curved surface. In bubble

inflation, the curvature distribution at a cenain height in the circumferential direction

doesn't change much. The curvature distribution in the meridian direction on a cross­

section line through the pole is studied frrst. The curvature k of a curve is defmed as the

absolute value of the rate of change of the tangent angle with respect to the arc length,

and the radius of curvature is defmed as lIk. A large curvature, Le., small radius of

curvature, means the curve is tuming rapidly, whiJe a small curvature, i.e., large radius of

curvature, means the curve is nearly straight. In the extreme cases, the curvature is zero

and the radius of curvature is infmite for a straight line. The discrete points with known

xyz coordinates, which represent the bubble proflle, are fitted iota a 3D corve. Then the

curvatures at different locations aJong the corve are calcuJated and plotted.

Fig. 6.11 Curvature distribution at 160 ms after inflation and h1a=o.3~8.

As shown in Fig. 6.11, the curvature plot consists of a number of circles centered on the

curve, so !hat the radius of each circle is proportional to the curvature al that location. A

large circle means the bubble shape is tuming rapidly at this location, while a small circle
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means the bubble shape is fiat. Due to our viewing direction, these curvature circles are

shown as small line segments. From the curvature plot, we can see that at this moment

the curvature is almost uniform in the region near the pole. With the increase of the

distance ta the pole, the curvature decreases. There is a point on each side of the pole

where the curvature is zero since at this point the second derivative of the profue corve is

zero. Staning from this zero-curvature point, the corve changes its shape from concave

upward ioto concave downward. It is very c1ear that the problem occurs near and beyond

these zero-curvature points (inflection points), even though at 160 ms after inflation and

the h/a ratio is only 0.378. Another observation is that on bath sides of the pole the

curvature distribution is very symmetric as expected.

The curvature distribution shown in Fig. 6.11 is for a cross sectional curve passing

through the pole. Regarding surface curvature, sorne analyses have aIso been performed

as shawn in Fig. 6.12. The principal curvatures, k} and kl , at any location on the bubble

surface have been calculated. The Gaussian curvature, k/ x k1, at different locations on

the bubble surface is displayed in colors in the figure. Again, the figure shows that the

surface curvature distribution is not unifonn on the entire bubble surface.

Fig. 6.12 Gaussian surface curvature distribution at 160 ms alter inflation (h1a=O.378).
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We have identified that the surface curvature distribution is not uniform on the entire

surface of a bubble. Funhermore, there is a region near the pole where the curvature is

relatively uniform. In the following, we will explore how this region changes during

different inflation stages. Fig. 6. 13 shows the inflation of a bubble at different times.

X(mm)

·35 ·30 -25 -20 ·15 ·10 S 10 lS 20 25 30 35

Fig. 6. 13 The bubble inflation at different times: from bottom up at
time 20, 40, 80, 120, and 160 msec. The zero deformation is defmed
as the polymer sheet position before heating.

The region of uniform curvature distribution is defined as the area between the two flfst

inflection points on each side of the pole. As shown in Fig. 6.14, the curvature

distribution a10ng a cross-sectional curve of the bubble is calculated at different times.

At time zero, the polymer sheet is no longer fiat, and it has a concave upward shape due

to the heating. The bubble inflation stans from this non-flat shape. At time 20 ms shown

in Fig. 6.14 (b), the central portion of the bubble deforms ioto a concave downward

shape, but in the region close to the flXed circumference the specimen has not fully

recovered from the deformation caused by heating. There is one extra inflection point on

each side of the pole. The horizontal distance between the flfst inflection point and the

flXed circumference is about 16.4 mm. As shown in Fig. 6.14 (c), at time 40 ms the

distance hetween the flI'st intlection point and the circumference is decreased to 13.5 mm.

The deformation due to heating and the inflation are still co-existing. The bubble is a bit

flatten in the pole area than it should he. At lime 160 ms :;hown in Fig. 6.14 (d), there is

• only one intlection point on each side of the pole. It means that the bubble has fully
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recovered from the warping defonnation due to heating, and the distance between the

• fast inflection point and the fIXed circumference is further decreased 10 8.45 mm. The

bubble is still a Iittle bit flatten in the pole area, but the situation is better than 120 ms

earlier. Therefore, the unifonn region is increasing with the lime for h/a=O.O - 0.378.

•

(a)

(h)

(c)

(d)

Fig. 6.14 Cumllure dBlribl!i>n at diffeœnt tines: (a) t=O.O lm defonnatÎln
due ta œating; (b) t=20 ms; (c) t=40 ms; (d) t=l60 ms. Imtaœe
from tœ edge to the i1fIectiJn pan 5 D1i:ated.
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As seen in the previous figures, the heating process itself generates sorne thermal

deformation, caUed warping or warpage, even though there is no pressure difference on

the two sides of the polymer sheet. When the temperature of the polymer is elevated to

ils glass transition temperature, the polymer will change from a solid, brittle glassy state

to a rubbery state (capable of flow). Under the combination of forces caused by residual

stress, thermal expansion stress, and the material's own weight, the polymer sample will

deform into a fonn no longer flat..The thermal warpage is dependent on the matërial's

own thermal expansion propenies and initial residual stress conditions. For the ABS

male~ the heating warpage is relatively small and uniform. As shawn in Fig. 6.15, the

measured heating warpage is approximately 1.69 mm for the maximum. This warpage

plays a role in the foUowing inflation deformation. As shown in Fig. 6.14, the heating

warpage and the inflation deformat ion co-exist for a short period. For the HIPS and

HOPE materials, the heating warpage is more serious, and plays a dominant rol~ for the

foUowing inflation deformation, as we will see later.

Fig. 6.15 Warpage due to the heating of the ABS material.

6.3.3 Temperature EfI'ect

In this section, the effeet of temperature on the bubble inflation test is studied. Three

ABS polymer sheets are heated to three different temperatures-130 oC, 150 oC, and 180

oC, respectively. Then the sheets are blown up by inflating the compressed air al a rate of

3.0 liter/s. The bubble profiles before and 60 ms after the inflation are displayed in Fig.

6. 16 for different temperatures.
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(a)

(h)

(c)

•

Fig. 6.16 Temperature effect on the bubble inflation tests for ABS material:
(a) 130 Celsius; (h) 150 Celsius; (c) 180 Celsius. AIl at 3.0 liter/s
airflow rate.

As shown in Fig. 6.16, the higher the temperature is, the softer the specimen will he. Due

to the thermal expansion and specimen's own weight, the heating warpage gets worse

with the increase of temperature. At 130 oC, the maximum warpage is approximately

0.75 mm. This number is increased to 1.67 mm for ISOaC and 5.41 mm for 180aC. On

the other hand, the bubble height at 60 ms after inflation is also increasing with the

promotion of the temperature-2.7 mm for 130aC, 6.77 mm for ISOaC, and 11.6 mm for

180°C. The pressure difference al 60 ms after inflation is also recorded for three tests­

8.27xIO·3 MPa for 130°C test7 8.48xIO·3 MPa for ISOaC test7 and 8.27xIO·3 MPa for
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180aC test. At this moment (60 ms after inflation), the pressure difference is aImost the

same for these three tests al different temperatures, though the bubble height is quite

different. Clearly, the temperature is a very important factor in bubble inflation tests.

6.3.4 Airftow Rate Efrect

As the inflation medium, the compressed air is also imponant in the bubble inflation

tests. Different sttain rates of the bubble deformation are generated by different airflow

rates. Three airflow rates are employed in our tests-3.0, 5.0, and 8.0 liter/s. In this

section, the airflow rate effect on the ABS material at ISOaC will he studied.

(a)

(h)

(c)

Fig. 6.17 Airflow rate effeet on the ABS material al 150 Celsius:
(a) 3.0 liter/s; (b) 5.0 liter/s; (c) 8.0 liter/s.

As shown in Fig. 6.17 (a), the airtlow rate is 3.0 liter/s. At the moment 80 ms after

• inuoducing the compressed air into the pressure chamber, the bubble height is
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approximately 8.02 mm and the pressure difference is close to 11.58xlO·3 MPa. If the

airflow rate is changed to 5.0 liter/s and repeat the same test, the bubble height goes to

8.78 mm when the pressure difference is 11.79xlO·3 MPa, as shown in Fig. 6.17 (b). The

pressure difference spent less time (76 ms) to reach approximately the same level as the

previous test. Finally the airtlow rate is increased to 8.0 liter/s and the same test is

repeated. The bubble height is approximately 7.99 mm with the pressure difference at

12.2xlO·3 MPa. This time the pressure difference reached tbis level in 60 ms after

inflation. Therefore, the higher the airflow rate is, the faster the bubble grows, and the

faster the pressure difference încreases. If the rate dependency of the material were

significant, it would be expected to observe a difference in the bubble height at the same

nominal pressure for different airtlow rates. However, the difference in the bubble height

does not vary consistently with the airflow rates tested. From 3.0 liter/s to 8.0 liter/s, the

airflow rate is changed by a factor of 2.7 ooly. It is expected that rate dependency will

become non-negligible only when the airtlow rate is changed by a factor of over 10. On

the other hand, when eonsidering a small hcight diffcrenee, a number of other factors

play a role, such as the thermal warping variation, the temperature variation, and the

airflow rate variation in different tests, which may he more significant than the rate

dependeney over this small range of flow rates.

6.3.5 Thermoformability

In the research, three different polymerie materials have been tested-HIPS, ABS, and

HDPE. The measured data shows that these three materials have different behaviors

during the heating and the suceeeding biaxial deformation. In this section the

thermoformability of these three materials is studied.

The proftles of the bubble at time zero and 120 ms are shown in Fig. 6.18 for three

materials respectively. AlI three tests are carried out at 130 oC and with the airflow rate

at 3.0 liter/s. For the ABS, the maximum warping due to heating is approximately 0.747

mm, and the bubble height al time 120 ms is around 4.93 mm. At this moment the

measured pressure difference is approximately 16.96xlO·3 MPa. The HOPE specimen

• goes through a relatively violent warping defonnation when the temperature is elevated
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from room temperature ta 130 oC. As shawn in Fig. 6.18 (b). the central pan of the

circular specimen moves upward ta fonn a convex area with the height of approximately

4.24 mm for the maximum. In the meantime. other portion moves downward as the usual

warping of the other two materials. At this instant. there is no pressure difference on both

sides ta suppon the polymer sheet. In the succeeding inflation, the polymer sheet bas 10

recover from the warping fust. Sa. some areas of the sheet defonn a lot comparing 10 the

central portion, during the same period of lime. At lime 120 IDS. the bubble shape bas

Cully recovered from the warping and the pole reaches approximately 6.27 mm high,

however the shape is not as spherical as whose with relatively uniform warping. The

pressure difference is around 17.99xIO·3 MPa at lime 120 ms. FinaUy, the HIPS sheet

bas a usual warping recorded al 1.75 mm downward for the maximum. At time 120 ms.

the relatively bigger bubble bas been formed with the pole al 10.1 mm high and the

pressure difference of 16.96x10-3 MPa, which is as same as the ABS specimen.

•

(a)

(h)

(c)

\ '" ~: ;, 1:' l ~ 1 1: 1 ,

~ '1 ,

l' • l'

Fig. 6.18 Bubble profl1es at t=O and t=120 ms: (a) ABS; (b) HOPE; (c) H1PS.
Temperature al 130 Celsius and airtlow rate al 3.0 liter/s.
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Since the thickness of the ABS specimen is 1.5 mm and ooly 1.0 mm for the HIPS and

HOPE materials, it is difficult to draw any conclusion for the ABS material directly.

However, the HIPS is easier to fonn a bubble than the HDPE. Moreover, the HOPE is

most likely to have some violent warping deformation during the heating process.

6.3.6 Defonnation in Heating Process

Due to the use of compressed air as inflation medium in our tests, there is no support for

the sample during the heating and prior to the inflation proeess. It is reasonable for the

specimen ta defonn due to the combined effeet of thermal expansion and the materiafs

own weight. As shown in the measured data, different polymeric materials have different

warping defonnations during the heating process. For the ABS and HIPS, the warping is

relatively uniform. and increases with the temperature. The warping of the HOPE

specimen is more profound and toms into a more complex shape. In addition, the

warping plays a role in the succeeding inflation deformation. In the cases of the ABS and

HIPS, much of the deformation in the early inflation stage will turn out to correct the

warping. For the HOPE, the complex warping shape will play a dominant role in the

succeeding inflation deformation, and usually ends up causing a non-spherical bubble.

Fig. 6.19 Warping of the HOPE specimen at 140 Celsius beCOle inflation.

'0
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As shown in Fig. 6.19, some areas on the HOPE specimen have a positive warping and

others have negative one compared to the original shape before the healing. The

profound warping shape is shown more clearly in Fig. 6.20 in a cross·sectional fonn with

the deformation varying from -1.05 mm to +1.67 mm.

Fig. 6.20 Bubble profiles of HOPE al t=O ms and t=220 ms.
With 3.0 liter/s airflow rate and 140 Celsius.

The bubble shape al t=220 ms is displayed in Fig. 6.21 with the pole at 13.7 mm high. A

cross-sectional view is also available in Fig. 6.20. The bubble shape al this moment is

more like a cone instead of a sphere. The curvalure distribution of a cross-sectional line

at t=O ms and t=220 ms is displayed in Fig. 6.22. The results obtained are clearly more

complex than those obtained for ABS t which is shown in Fig. 6.14.

Fig. 6.21 Wireframe display of the bubble shape of a HDPE sheet al

t=220 ms with 3.0 liter/s airflow raie and 140 Celsius.
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(a)

(b)

•

Fig. 6.22 Curvature d~tnbutiln of cross-sectionalliles ofa HOPE bubb~ at
(a) t=O & (b) t=220 ms wih 3.0 littrls airtlJw rate mi 140 Ce~ius.

By looking at Fig. 6.22, it is clear that the shape is not spherical even though the hla ratio

is only 0.43. Therefore, the warping during the heating process plays a very imponant

role in the succeeding inflation for sorne materials such as the HDPE. This fact should he

addressed when using the bubble inflation technique in the characterization of material

propenies.

6.4 Summary

The bubble inflation technique is a very useful method for polymer characterization,

especially under biaxial stretching. Sorne basic assumptions are set initially for the

analysis, such as uniform deformation and spherical shape. Due to a Iack of precise

bubble shape data, it has previously been impossible to assess how accurate this method

ÎS.

The experimentally measured data presented in this chapter shows that the deformation is

not uniform, and the bubble shape is not spherical. The spherical shape assumption used
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by the related work will create errors in their results. The effects of different factors,

such as the temperature and the airflow rate, are aJso studied. In order to obtain material

propenies, a proposed method utilizing a FEM model to account for the imperfections in

the testing, such as the temperature gradient, is considered in the foUowing section.

Digitization of a bubble inflation surface of a circular polymer sheet into an array of

points with known xyz coordinates bas not becn done previously. Thus, the experimental

results presented in this chapter are very useful as a source of verification and comparison

for the related work.
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CllAPTER7

FINITE·ELEMENT ANALYSIS ON CIRCULAR
MEMBRANE INFLATION

7.1 Introduction

Many polymeric materials exhibit rubber-like hehavior, i.e., the defonnation remains

elastic up to large strain values, panicularly when the temperature is over its glass

transition temperature. Although, the stress-strain behavior of these polymeric materials

is elastic, it is usually highly nonlinear. This type of material behavior can he described

using hyperelasticity theories. The constitutive equation for hyperelastic material is

described in terms of a strain energy potential function rather than by assuming a ÜDear

relation, a priori, as is done for Most engineering materials. The suain energy potential

function dermes the strain energy stored in the material per unit of reference volume as a

function of the strain at that point in the material There are several forros of strain

energy potentials available in the literature, including the polynomial fonn, the Mooney­

Rivlin forro, and the Ogden form. If the material is incompressible, the polynomial forro

of the strain energy potential function, which is most commonly used, has a forro:

u = I,C;jVl -3J ·Vz -3r
i+j=l

(7.1-1 )

•

where U is the strain energy potential; /1 & 1z are the fust and second invariants of the

left Green-Cauchy deformation tensor, Cij are material parameters, which are functions of

temperature, and N is the arder of the polynomial utilized. The Cij parameters describe

the shear behavior of the material If the number of tenns, N, is one and since the

material is assumed incompressible, Eq. 7.1-1 bas a simple fonn, which is commonly

referred to as the Mooney-Rivlin material model.
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(7.1-2)

The invariants /. and /2 can he written in terms of the principal stretch ratios by:

1; =,1,2+À/+Â./

/2 =,1,2Â./+Â./)../ +Â./Â,2
(7.1-3)

where Â.I, Â.2and Â.J are the stretch ratios in the meridian, circumferential and normal

directions, respectively. If the bubble is assumed in spherical shape and the deformation

is uniform and incompressible, the stretch ratios can he defmed as:

a·R
,1,=-

a

r
Â..z=­

q

As shown in Fig. 6.2, the angle a and R are dermed by Eq. 6.1-1 and Eq. 6.1-6,

respectively. The distance rand q are shown in Fig. 6.2. Therefore, the stretch ratios can

he calculated from the bubble height when the spherical assumption remams.

Based on the membrane theory (Yang & Feng 1970), the equilibrium equations in the

meridian-circumferential and the normal directions of the deformed membrane are:

(7.1-5)

where TI and T2 are the stress resultants with dimension of force per unit edge length of

• the membrane; KI and K1 are the principal curvatures; P is the inflating pressure in the
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normal direction of the defonned membrane; q is the distance from the point on the

membrane to the axis which is passing through the center of the circular membrane and

perpendicular to the original membrane plane. In the context of membrane theory, the

stress resultants TI and Tl cao he expressed in terms of the strain energy potentia1:

au
T· =Â..'-

1 1 aÂ..
1

(7.1-6)

•

where U is the strain energy potential and i= l ,2. The non-linear problem defmed by

equations (7.1-2) through (7.1-6) can he solved subject to the boundary conditions by

using numerical methods. such as the Runge-Kutta method. This is the closed-fonn

solution for the circular membrane inflation-given any pressure P, the bubble height h

can he calculated for different material models. However, to do so it is necessary to

assume that the buhble shape is spherical.

By reviewing the experimental data presented in the previous chapter, it is ohserved that

the bubble shape is non-spherical due to the non-uniform defonnation. In addition, the

thermo warping during the heating plays a role in the succeeding inflation and it is not

negligible at least for HOPE material Therefore, applying the above closed-form

solution for the bubble inflation problems willlead to errors.

In order to account for the non-uniform defonnation observed in our experimental data,

the fmite-element method is used here to model the circular membrane inflation including

sorne imperfections. In the flfst section, a fmite-element model will he outlined, which

covers the mesh generation, element type and material model In the second section, the

fmite-clement analysis results under idealized conditions will he presented. The purpose

is to demonstrate how significant the error is by ignoring the non-unifonnity of the

temperature distribution. Finally, in order to better simulate the actual test conditions, a

non-uniform temperature distribution and the prestress condition generated in the heating

process are included in the [mite-element analysis.
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The commercially available fmite-element analysis software package-ABAQUS v.5.S

by Hibbit, Karlsson, and Sorensen Inc.-is used in this analysis.

7.2 Finite-element Mode'

7.2.1 Geometry and Mesh Generation

The succeeding rmite-element analysis is focosed on the ABS material Since the

specimen is circular in shape, axisymmetric conditions are assumed here. The coordinate

system and the mesh used for the circular membrane are shown in Fig. 7. 1. Due ta

symmetry, ooly the material from the center to one clamped edge is considered in the

FEM simulation. The radius of the circular membrane is 31.75 mm, and its thickness is

1.57 mm. Twenty axisymmetric continuum elements are used, and the elements have an

aspect ratio of approximately 1.

2
31.75 mm

1
1.57..

Distributed wading

Fig. 7.1 Finie-elerœJU mesh for circubr ABS rœmbranes.

7.2.2 Element Model

As shown in Fig. 7.1, twenty continuum elements are used. These elements are 8-node,

second-order, mixed formulation, hybrid elements since the polymerie material is treated

as incompressible. The element formulation is described in the ABAQUS Theory

Manual (Hibbit, Karlsson, and Sorensen Inc. 1998). The origin of the global coordinate

system is placed at Dode 1 located in the center of the specimen. The global l-axis lies

along the length of the circular membrane starting from Dode 1 toward the rIXed edge,

and the global 2-axis lies in the thickness direction from Dode 1 upward.
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Fig. 7.2 Eèrœnt type (CAX8H) mJ bouOOary cordwn.

As shown in Fig. 7.2, element 1 is close to the center of the circular specimen and

element 20 is close to the flXed circumference. Regarding the boundary condition, node

41 and node 241 are flXed in both directions. Node 141 is free to move in the l-axis

direction, but constrained in the 2-axis direction. The displacements in the l-axis

direction for the nodes on the central line (node L 101, and 201) are zero since the

deformation is symmetric. The boundary condition at Node 141 allows the material to he

drawn inward during the inflation even though it could he small since the central region

matenal is very soft and the material close to the clamped edge is very stiff due to the

temperature gradient. The loading consists of a uniform pressure applied to the bottom

surface of the specimen in the 2-axîs direction. The modified Riks method is used in the

FEM simulation since the loading is proponional and because the solution may exhibit

instability. For more about the modified Riks method, please see Crisfie Id' s paper

(1981). A pressure magnitude of 0.09 MPa is specified: this magnitude is somewhat

arbitrary since the Riks method is chosen. The actual pressure magnitude beyond the end

of the fifst increment will he decided by Riks method.

In the analysis, the Mooney-Rivlin material model is used. Different values for the

material constants, CIO and COI, are selected for different temperatures. The objective is

to match the inflation shapes obtained from fmite-element analysis to those measured

experimentally.

The following assumptions have been made for modeling the inflation of ABS maleria!:
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• The material behavior is byperelastie (Mooney-Rivlin);

• The material behavior is isotropie;

• The material is incompressible.

7.3 Finite-element Analysis-Idealized Conditions

In order to perform this initial analysis, two additional idealized conditions have been

added:

• The initial temperature distribution is uniform;

• Thermo-warping plays no role in the inflation.

Most of the research papers published have considered that the inflation oOOys these two

assumptions since they can easily lead to a uniform deformation and a pure spherical

bubble shape.

7.3.1 Finite-element Simulation for ARS Inftation Test TI-lS03

The foUowing analysis is for the ABS material with a nominal temperature of 150°C and

the airflow rate of 3.0 liter/sec. The bubble inflation was measured by the proposed

optical measurement system. Therefore, the bubble shape as a function of time and

pressure is known from the measurement. Different values for CIO and COf are input Ïnto

the ABAQUS software to match the simulation result with what was measured

experimentally. Under the cucrent conditions, the oost agreement is found when CIO =0.4

MPa and COf =0.008 MPa, after severa! iterations. The input fde for the ABAQUS is

listed in Appendix B.

The simulated bubble shape at various inflation stages is shown in Fig. 7.3. The bubble

shape in this figure is more spherical than what was measured experimentally. The

simulated shape is compared with the shape measured experimentally in Fig. 7.4 and

Fig.7.5 for two different pressure values.
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laI pressure ~ 0.0028SJ MPa

L
lb) pressure i 0.010000 MPa

Fig. 7.3 The ABAQUS simulation results: (a) pressure=O.2852xHt Pa;
(b) pressure=1.0000x10" Pa.
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L
(cl pressur~ a O.o~642a MPa

Idl pressure ~ 0.06344 HP.

Fig. 7.3 (Cont) The ABAQUS simulation results: (c) pressure=2.6428xUt Pa;
(d) pressure=6.344x1(1' Pa.
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Fig. 7.4 Bubble shape corq>amon @ 0.011 MPa.
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Fig. 7.5 Bubble shape compamon @ 0.023 MPa.

As shown in Fig. 7.5, the FEM simulation predicts a larger bubble shape at the beginning

of the inflation. With the increase of pressure, the difference between the bubble height

predicted by the FEM and what was measured experimentally is decreasing. At one

point, the bubble height predicted by the FEM and what was measured experimentally are

almost the sarne. Meanwhile, the difference in the bubble shape is more pronounced

close to the circumference. From this point on, the bubble height predicted by the FEM

will he smaller than what was measured experimentally. This can he shawn more clearly

Ùl the height vs. pressure curve in Fig. 7.6.

'.
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Fig. 7.6 Bubble height vs. pressure curve of ABS material
considering unifonn temperature distribution.

Fig. 7.6 shows tbat the pressure simulated by the FEM will continue to grow e~en after

the experiment shows the pressure to level off, a1though in much of the range the two

curves are 4close' to each other. If the material constants are charaeterized by this

method, the obtained material constants eould represent a stiffer polymerie materia!,

which has a sirnilar response in the measured pressure range. Therefore, it is difficult to

say thus that the FEM simulation agrees with experiments very weil This May have

something to do with the assumptions we made.

It should he noted that the experiments stan Crom room temperature, and the specimen's

rmal temperature May he as high as 150aC for certain tests. The polymer membrane is

clamped hetween two aluminum plates and the lower plate is connected to the high­

pressure chamber tbat has aIso aluminum plates as its walls. Since the thermal

conductivity of the aluminurn malerial is approximately 100 times of that of the ABS

material, and the infrared heaters are foeused on the specimen only, a temperature

gradient exists in the experirnents. Therefore, considering the temperature to he unifonn

is a very significant assumption in this kind of test.

On the other band, the polymerie material constants are very sensitive to the temperature,

• and any temperature change will cause a significant change in the materia! constants,
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particularly near the glass transition temperature. The assumption of uniform

temperature means that incorrect material constants are used for sorne regions of the

specimen by ignoring the temperature gradient. In addition, the temperature gradient can

œnainly lead to a bubble shape, which is not sphericaL Although there is a region close

10 the pole, in which the defonnation is almost uniform and the shape is very close to a

sphere, the bubble height is very much decided by the constraints experienced in the

region close to the circumference. Less constraint in these areas will permit more

material to participate in the inflation, and result in a much Jarger bubble under the same

pressure. Therefore, one should he very careful in the bubble inflation test if only the

bubble height will he measured and an existing temperature gradient in the specimen is

ignored.

Another idealization made concerned the thermo·warping during the heating process. In

this frrst analysis, it was assumed that the thenno·warping plays no role in the succeedÙlg

inflation, even though we observed it existed in ail inflalion tests carried oul Il is known

mat a change in temperature will cause stress in a structure if it is not free to expand, and

the circular ABS sheet is clamped a10ng its circumference. On the other hand, the ABS

matenal becomes very soft in our tests since the temperature was above its glass

transition temperature, which is around 140°C. Therefore, under the combined action of

thermal expansion and the malerial's own weight, it is not reasonable to assume there is

no stretching and stress existing in the specimen before the inflation takes off.

Due to these assumptions, this section is called 'under idealized conditions'. In the next

section, the FEM analysis will include temperature nonuniformities and thermal warping

ta improve the accuracy of characlerization of polymer constants.

7.4 Finite-element Analysis--General Conditions

The analysis results in the previous section show thal the nonuniformities of the

temperalure distribution and the thenno-warping during the healing are very imponant in

the bubble inflation tests of polymer membranes. In order to determine the malerial
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constants correctly, the FEM model has to include these two factors. To measure the

temperature gradient, an infrared camera-ThennoVision 900 made by the AGEMA

Infrared Systems AB, Sweden-is used. The measured result is shown in Fig. 7.7. The

temperature is relatively unifonn in the central region of the membrane, but c1early the

temperature is dropping rapidly starting from approximately 2/3 of the radius. This trend

is inereasing to where there is a temperature jump in between the polymer and aluminum

materials at the c1amped edge. The maximum temperature differenee from the center to

the c1amped edge is approximately 40°C, according to the reading from the infrared

camera. Fig. 7.8 shows the temperature profile along a line passing through the center of

the circular sample. There is a temperature gap of approximately 70°C between the

aluminum plate and the polymerie sample at the clamped edge. The first and last points

shawn in Fig. 7.8 are located on the aluminum plate.

Fig. 7.7 Temperature distribution measured by an infrared camera.

Another observation is about the temperature change during the inflation. . Since the

inflation usually takes only 1.0 second or less, it is assumed that the temperature

distribution is not changing during this period of time. The infrared camera·s recording

supported this assumption, partieularly in the early stage when the measurements were

carried out.
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Fig. 7.8 Typical temperature distribution along a line passing through the center.

As shown in Fig. 6.15, the maximum thermo-warping is approximately 1.69 mm in the

center of the membrane. This defonnation actually creates a small uniform tensile

prestress condition in both radial and circumferential directions all over the membrane.

In order to approximate the effect of the thermo-warpingt a smaU value (0.06 MPa) is

used to represent the prestress as the initial condition in the FEM simulation.

7.4.1 Finite-element Simulation for ABS Inn.tion Test TI-1503

The same test as that of Section 7.3.1 is simulated. This time the temperature gradient

measured by the infrared camera and 0.06 MPa prestress in both radial and

circumferential directions are included as the initial conditions in the fmite-element

analysis. The temperature proftle used in the FEM simulation is shown in Fig. 7.9t which

is based on Fig. 7.8 after removing the point on the a1uminum plate. The material

constants CIO and COI as fonctions of temperature are selected in order to let the

simulation results match what is measured experimenlally. Fig. 7.10 shows the material
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constants CIO and COI as functions of temperature. The input ftIe for the ABAQUS is

included in Appendix C.
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Fig. 7.9 Temperature profile used for FEM simulation.
(from the center to the clamped edge)
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Fig. 7.10 Material constants CIO and COI as fonctions of temperature.
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The relationships between the material constants and the temperature, which are shown in

Fig. 7.10, can also he written in tenus of a set of linear equations:

(

194.525 -1.375T (1 =139-14rC)

CiO = 23.21-0.16T (T=141-142°C)

7.184-0.047T (T = 142-149°C)

(7.4-1)

C _ {1.02667 -0.00667T (1 = 139-142°C)
01 - 1.6623-0.01 1142T (T =142-149°C)

where T is the temperature in Celsius, and the unit of C/0 and Co/ are MPa.

As shown in Fig. 7.9, the temperature drops below the materiat's glass transition

temperature (Tg=141 OC) al the location approximately 26.0 mm from the center. That

means the ABS material inside a radius of 26.0 mm is in the rubbery state and capable of

flow. While from r=26.0 to 31.75 mm, the materia! is still in the glassy state-solid and

brittle. That is the reason why iittle deforrnation bas been found in this region. At

temperatures weU above Tg, the polymer chains are relatively free to move in cooperative

thermal motion to provide conformational rearrangement of the backbone. Therefore, the

material behaves in an increasingly rubber-like manner when the temperature increases,

but no sudden change in material propenies is expected in the rubbery state. When the

temperature is below Tg, the motion of these individual polymer chain segments become

frozen with only small scale molecular motion remaining, involving individual or smail

groups of aloOlS. Therefore, there is a sharp change in matenal propenies at the glass

transition. At temperalures weU below Tg, the material behaves in an increasingly brittle­

like manner, but with no dramatic change. The temperature dependence of the malerial

constants used is consistent with the malerial behavior.

From Eq. 7.4-1, the values of CIO and Co/ al 149°C are 0.16 MPa and O.()02 MPa,

respectively. Compared with the results in the previous section when the temperalure
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was considered unifonn (Clo=O.4 MPa and COl=O.OO8 MPa), il is clear that the difference

is significanl

The bubble shapes al various inflation stages, which is simulated by ABAQUS, are

shown in Fig. 7.11. Obviously, the bubble shapes in this figure are not spherical The

inflation appears uniform in the region close to the center of the membrane. However,

the material close to the clamped edge experiences constraint and less inflation occurs

there. Consequently, the bubble height is affected significantly by these regions close to

the clamped edge. In addition, the simulation results show that the thickness of the

membrane is no longer uniform after the inflation stans. There is üttle change in the

thickness in the regions close to the clamped edge, and the membrane becomes very thin

in the central regions. That is why the rmal buest always happens near the pole. Both the

shape and the thickness distribution after the burst match the experimental observation of

the membrane.

".
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L
(a) pressure @ 0.002159 MPa

L
(b) pressure @ 0.021603 MPa

Fig. 7.11 ABAQUS simulation results considering temperature nonunifonnity and
thermo-warping: (a) pressure=O.3982xl04 Pa; (b) pressure=2.3675xlO" Pa.
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L
(c) pressure @ 0.047103 MPa

L

•

(d) pressure @ 0.045941 MPa

Fig. 7.11 (Conl) ABAQUS simulation results considering temperalure nonuniformity
and thermo-warping: (c) pressure=4.6618xUt Pa; (d) pressure=4.5495xUyt Pa.
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• The simulated shape is compared with the shape measured experimentally in Fig. 7.12 for

two different pressure values. Comparing with the results in Section 7.3.1, the agreement

between the fmite-element simulation and what was measured experimentally is very

much improved. This agreement can also he seen in the height vs. pressure curve of Fig.

7.13.

(a)

Êt-------------=:::JI---~~ ....II;;Z"'"--------------i
il
N ....1 ----------:::.,e----~J_+_----....:11111~-------__1

1

-35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
X(mm)

1

--Fe.. 0 0.œ2459 w:a
--"asured 0 0.022547

(b)

1
NI-------:.--------.t.9-f--------~~----~

-35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

X(mm)

Fig, 7.12 Bubble shape comparison: (a) pressure=O.011 MPa; (b) pressure=O.022 MPa.
(Considering the thermal warpage and temperature gradient).

•
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Fig. 7.13 Bubble height vs. pressure curve of ABS material considering
nonuniform temperature distribution and thermo-warping.
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So far y it has been shown that tbis method of characterizing temperature-dependent

material constants works weil reasonably. Howevery it is worth knowing that this method

is not that efficient to fmd values for the material constants that do not influence shape

changes when the matena! constants themselves are modified. For exampley the change

of the COI in the Mooney-Rivlin model does not cause significant change in the bubble

shape in early inflation stages, so the method is significantly less accurate for

delermination of this parameler. In additiony this method is not very efficient in fmding

the values of CIO for temperatures significanlly below the glass transition temperature.

The reason for this is that the deformation of the malenal below T, is small. The change

in the malerial properties of the material with its temperature below 130°C does not

change the bubble shape considerably. Thus the accuracy would not he expected to he

very good. However, In this test, the majority of the malerial is over 140°C. So the

method seems appropriate. Another fact that should he mentioned is that the

temperature-dependent material propenies characterized in this way can compensate for

the discrepancy caused by the material model to a certain extent. For instance, even if the
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simple Mooney-Rivlin model May not he very good in representing the material, the

overall performance of the material model can he maximized by using the material

constants characterized in the manner shown here.

7.S Summary

A finite-element model is developed to simulate the membrane inflation of polymerie

materials. The analysis is performed using a commercially available fmite-element

software package-ABAQUS version 5.8. The elements are 8-node, sec0 nd-order,

hybrid continuum elements (CAX8H). The material model is the incompressible

Mooney-Rivlin model

First, the nonuniformities of temperature distribution and thermo-warping are ignored. In

addition, it is assumed that the temperature remains uniform and unchanged during the

inflation. Different values of the material constants are input into the Mooney-Rivlin

model in order to match the simulated results with what was measured experimentally.

ACter several iterations, the simulation which bas ~the best' agreement with the

experirnental data is when CIO =0.4 MPa and Co/=O.OO8 MPa. However, the simulation

results also showed sorne disagreement, especially in the bubble height vs. pressure

curve. In this case, it is quite possible that the material constants have been over­

estimated to give a similar response in the tested pressure range. In fact, the polymer

represented by these over-estimated materïal constants shows pressure increasing far

beyond the pressure values recorded in the experiments. Therefore, the polymer

represented by these over-estimated material constants would not accurately represent

what is tested, although it has a similar response in much of the pressure range recorded

in the experiments. This gives a waming about the potential errors in the maleria!

constants characterized by the bubble inflation technique if the existing temperature

nonuniformities and thermo-warping are ignored.

When the temperature gradient and thenno-warping are included in the fmite-element

analysis, the simulation results give a very close match with what was measured
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experimentally. The agreement shows in bath the bubble shape as weU as the bubble

beight vs. pressure hîslory. Compared with the material constants detennined under the

idealized conditions. it is clear there is a significant difference. Therefore, the

combination of the optical measurement system and the fmite-element method in the

membrane inflation tests can provide a new way 10 characterize the polymeric Malenal

constants. Using this method, the material constants can he characterized not as a single

value corresponding to a given temperature, but as a function of temperature over the

temperature range measured in the experiment.
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CHAPTER8

CONCLUSIONS AND FUTURE DEVELOPMENTS

8.1 Conclusions

In this work. a high-speed optical surface measurement system bas been developed. The

system is based on the grating projection and Fourier transform method. In addition, a

high-speed digital camera is employed to allow measurements of transient surface

deformation. The foUowing features make this system distinguishable from other optical

measurement technologies:

(1) Whole-fieId measurement;

(2) Setting up a flXed Cartesian coordinate system associated virtually with the

sensor head by a developed calibration technique;

(3) Generating Cartesian coordinates as direct measurement resuIts, which are

with respect to the flXed coordinate system in 3D space;

(4) High-speed measurement-a digital high-speed camera is employed with the

maximum frame raie up to 1000 Hz and the shonest exposure time for each

frame as low as 50 J,lSec;

(5) ExperimentaUy verified the measurement accuracy;

(6) fuUy automatic data processing.

This is the flfst time that such an optical measurement system has been developed.

Also for the flfst time, the inflation of polymer membranes has been measured using

whole-field optieal methods. The effects of various factors, such as temperalure and

airflow rate, have been studied. The accurate measurement data also provides a source

for funher material constant characlerizalion. A potential error caused by the assumption

• of uniform temperature distribution in the characterization of polymerie material
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constants by the bubble inflation technique bas been pointed out. As a result. a

hyperelastic finite-element model has been used ta simulate the bubble inflation of

polymer membranes. Finally. for the fU'st lime a method of material constant

characterization, which is based on a combined fmite-element and experimental approach

with the ability of incorporating temperature gradients, bas been proposed.

8.2 Future Developments

8.2.1 Optical Dynamic Measurement System

AlI core software that is necessary to calculate xyz coordinates from a deformed grating

image bas been developed. However, a user-friendly interface is still very desirable.

It is also very necessary to improve the Iight source. So far, the Iight intensity can easily

support a frame rate of 250 fps, but at frame rates higher than 250 fps and shoner shutter

speed, higher light intensity is required.

8.2.2 Membrane Inflation Experiments

The measured results have indicated thal nonuniformilies in lemperature distribution and

thermo-warping are very imponant in detennining the inflation response of polymer

membranes. Accurate measurement of the lemperature distribution is therefore important

in bubble inflation tests when using compressed air as the inflation medium. More work

needs to he done in order to malee accurate temperature measurements. The deformation

due to thermo-warping can he measured by the optical system, and the measured results

cao he used as the initial shape of the polymer membrane, instead of using ilS original flat

shape. Ry doing so, more accurate fmite-element simulation can he expected.

8.2.3 Finite-element ModeUng and Material Constant Characterization

The combination of the optical measurement system and the fmite-element method that

• cao take account of the nonuniformity of temperature distribution and the thermo-
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warping can provide a useful tool in the material constant characterization. H the

temperature measurement can he carried out very accurateIy, the material constants at

different temperatures can he determined in one test

Sa far, the bubble shape as a function of internai pressure is used ta compare with the

simulation results provided by the fmite-element method to delennine the possible

material constants. Il is a time-consuming process and a more efficient way to do the

iteration bas to he found. For example, a program can he written to cany out this

iteration to fmd the correct material constants quickly.

The Mooney-Rivlin hyperelastic model has been used in the fmite-element simulation. Il

should he notOO that the material constants derived in this way would include the

discrepancy caused by the malerial model. It should he interesting to try other material

models, such as the Ogden and higher order polynomial models to study the difference

between different material models.

8.2.4 Other Applications

The application of the newly developed optical measuremenl system has focused on the

inflation tests of polymer membranes, particularly for the material constant

characte. iLaliun. A~tua11y, such an optical measurement system is also useful in the

inflation tests of other materials including proposed experiments on chopped tiber

reinforced polymer membranes. The optical system should he also useful in the bulge

experiments of various membrane tissues.

The optical measurement syslem should he also useful regarding dynamic behavior of

structures including the buckling or impact tests of structural components. A preliminary

study bas been made to measure the elastic buckling of a stiffened box beam during

forced vibrations, with good results. A study on a composite plate with bending and

twisting coupling bas also been carried out (Li & Nemes 1998). Numerous other

applications of this system in the field of structural dynamics cao he envisioned.
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ORIGINALITY AND CONTRIBUTION TO KNOWLEDGE

The original contributions of the present work are two-fold. First, a high-speed optical

surface measurement system has been developed. This system bas the following features

to distinguish itself from other technologies: (1) whole-field measurement which yields

Canesian coordinates as the fmal data, which are with respect to an absolute coordinate

frame; (2) Il has the ability to measure rigid body translation and rotation; (3) high-speed

measurement--dle sampling rate can go up to 1000 Hz, and the shortest exposure time of

each frame can he as small as 50 Jlsec; (4) fully automatic data processing.

The calibration technique developed in this work makes it possible for the whole-field

optical 3D shape measurement system to provide Cartesian coordinates in an absolute

way. The whole-field shape measurement of a 3D surface in a dynamic event hecomes

feasihle by using a high-speed digital camera. Furthermore, the evaluation of the

measurement accuracy can share the common concepts with what are used in industries.

Ali these factors have made the proposed optical measurement system distinguishable

and opened a door for wide-range industrial applications in the near future.

The second contribution is the use of the proposed optical system in the polymer

membrane inflation tests. The principal contribution regarding the polymer membrane

inflation experiments is that the measured results and the corresponding fmite-element

analysis reveal the importance of the temperature uniformity and the thermo-warping in

the inflation deformation. Serious error could he embedded into the material constants

determined from the bubble inflation technique for polYmeric materials if there is a

temperature gradient existing in the inflation experiments and this temperature

nonuniformity is ignored in analysis. As a solution, the optical measurement system

combined with the fmite-element analysis can he used in the bubble inflation tests to
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include the temperature gradient and thermo-warping. The material constants obtained in

this way will he more accurate, and multiple values corresponding to different

temperatures can he obtained in a single experiment. ln addition, the experimental data

represents a much-needed contribution to the modeling of the thermoforming process

since the reported experimental measurements on the inflation of polymer membranes are

few, incomplete and Most importantly inaccurate. Whole-field measurements on

inflation of circular polymer membrane resulting in xyz coordinates are practically

nonexistent. Therefore, the experimental data obtained from these measurements will he

useful as a source of comparison and verification for related work.
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SYSTEM CALmRATION

Eq. 3.3-5 cao he transformed into vector forros:

" f' ,./Bv

(1-k.,2).j·[Xt Yt Zt 1)"· =[Xt Yt Z, 1)' f,'s//B v

'9 f"6 ~tI

1) f·t2/~tI

From Eq. A-l, we have

(A-l)

(A-2)

•

f·~/6" ~ ~

[Xt Yt z,l). f"2 //~" + [- ix,-iY,-iz,-;]· r. + k . ~2ix, r 2iy, r 2iz. r 2i). r. =0 (A-3)
f .,) 0.. '9 '9
f' t l /6.. ') t]

From Eq.A-2 t we have

f' ,./6v '7 '7
[x. y, z,lJ. ;: ~ ~:: + [- xj.-yj.-~.-j J. ~: +k· [;xr

2
,jyr

2
• ju

2
, jr

2
]. ~: =0 (A-4)
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• We derme [P/], [P2] and [P.Jl as foUowing:

/. 'l/6U /. '4/6V "
[~]=

/. '2/6u [pz]= /. 's/Dy

[~]= '.
f"J/Du ' f· '6/6 y , '9
/"1/6u f· t2 /6 y tJ

Ifwe apply all2D-3D pairs and combine Eq. A-3 and Eq. A-4 together, we then have:

ox,. y,. Z,. 1 0

o 0 0 0 x"
o 0 [[~n -ix,.

y,. Z" l' [p,]J + - jx,.

-iy,.

- jy"

-iz,.
- jz"

(A-S)

+k·
;y",2

jy",Z
. .,

JZ,.'-

Here, n =1, 2, 3,..., N. N is the total number of 20-3D pairs used in the calibration. For

convenience, Eq. A-S can also he written in the following matrix fonn:

• If we derme [Pl and [q] as following:

(A-6)
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Eq. A-6 will bave the following format:

•

[A]. [p]+[B]. [q]+ k.[C].[q]= [0] (A-7)
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APPENDIXB

INPUT FILE OF ABAQUS FOR IDEALIZED CONDITIONS

*HEADING
PRESSURIZING OF A FLAT POLYMER PLATE (CAX8H)
*NODE
1,0.,0.,0.
41,0.03175,0.0,0.0
101,0.0,0.000785,0.0
141,0.03175,.000785,0.0
20 l ,0.0,.00157,0.0
241,.03175,0.00157,0.0
*NGEN
1,41, 1
101,141,2
201,241,1
*NSET,NSET=CENTER
1,101,201
*ELEMENT,TYPE=CAX8H,ELSET=ONE
l, 1,3,203,201,2,103,202,101
*ELGEN,ELSET=ALL
1,20,2,1
*BOUNDARY
41,1,2
141,2
241,1,2
1,1
101,1
201,1
*ELSET,ELSET=ONE
1
*SOLID SECTION,MATERIAL=Al,ELSET=ALL
*MATERIAL,NAME=Al
*HYPERELASTIC,N=1
.4E+6,.OO8E+6
•RESTART,WRITE,FREQUENCY=2
·STEP,NLGEOM,INC=36, UNSYMM=YES
•STATIC,RIKS
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.001,1.0,.000001,0.1,1.0,1,1,10000.
*DLOAD
ALL,Pl,3.0E+S
*MONITOR,NODE=201,DOf=2
*EL PRINT,fREQUENCY=50,ELSET=ALL
COORO, E
00
LOADS
S,MISES
ENER
*EL PRINT,FREQUENCY=l,ELSET=ONE,SUMMARY=NO
COORD, E
00
LOADS
S,MISES
ENER
*NODE FlLE,NSET=CENTER
U,RF
*EL FILE,FREQUENCY=2,ELSET=ONE
COORD,E
DG
LOAOS
S
*NODE PRINT,FREQUENCY=1,NSET=CENTER
U,RF
*END STEP
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INPUT FILE OF ABAQUS FOR GENERAL CONDITIONS

·HEADING
PRESSURIZING OF A POLYMER SHEET WITH TEMPERATURE
GRADIENCE (CAX8H)
*NODE
1,0.,0.,0.
41,0.03175,0.0,0.0
101,0.0,0.000785,0.0
141,0.03175,.000785,0.0
201,0.0,.00157,0.0
241..03175,0.00157,0.0
*NGEN
1,41,1
101, 141,2
*NGEN,NSET=UPPER
201,241, 1
*NSET,NSET=CENTER
1,101,201
*NSET,NSET=N 1
1,101,201
*NSET,NSET=N2
2,202
*NSET,NSET=N3
3,103,203
*NSET,NSET=N4
4,204
*NSET,NSET=N5
5,105,205
*NSET,NSET=N6
6,206
*NSET,NSET=N7
7,107,207
*NSET,NSET=NS
8,20S
*NSET,NSET=N9
9,109,209
*NSET,NSET=N10
10,210
*NSET,NSET=Nll
Il,111,211
*NSET,NSET=N12
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12,212
*NSET,NSET=NI3
13,113,213
*NSET,NSET=NI4
14,214
*NSET,NSET=NI5
15,115,215
*NSET,NSET=NI6
16,216
*NSET,NSET=NI7
17,117,217
*NSET,NSET=NI8
18,218
*NSET,NSET=NI9
19,119,219
*NSET,NSET=N20
20,220
*NSET,NSET=N21
21,121,221
*NSET,NSET=N22
22,222
*NSET,NSET=N23
23,123,223
*NSET,NSET=N24
24,224
*NSET,NSET=N25
25,125,225
*NSET,NSET=N26
26,226
*NSET,NSET=N27
27,127,227
*NSET,NSET=N28
28,228
*NSET,NSET=N29
29,129,229
*NSET,NSET=N30
30,230
*NSET,NSET=N31
31,131,231
*NSET,NSET=N32
32,232
*NSET,NSET=N33
33,133,233
*NSET,NSET=N34
34,234
*NSET,NSET=N35
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35,135,235
*NSET,NSET=N36
36,236
*NSET,NSET=N37
37,137,237
*NSET,NSET=N38
38,238
*NSET,NSET=N39
39,139,239
*NSET,NSET=N40
40,240
*NSET,NSET=N41
41,141,241
*ELEMENT,TYPE=CAX8H.ELSET=ONE
1,1,3,203,20l ,2,103,202,101
*ELGEN,ELSET=ALL
1,20,2,1
*BOUNDARY
41, l ,2
141,2
241,1,2
1,1
101,1
201,1
*ELSET,ELSET=ONE
1
*SOlID SECIlON,MATERIAL=A1,ELSET=ALL
*MATERIAL,NAME=A1
*HYPERELASTlC~N=1
3OE+6,0.2E+6,.0, 110.0
3.4E+6,0.IE+6,.0,139.0
0.65E+6,0.08E+6,.0,141.0
.49E+6,O.08E+6,.O,142.0
0.4E+6,0.OO4E+6,.0,143.0
.16E+6,.OO2E+6,.O,149.0
*RESTART,WRITE,FREQUENCY=2
·STEP,NLGEOM,INC=36, UNSYMM=YES
·STATIC,RIKS
.01,1.0,.0001,.05,1.0,1.1,10000.
*DLOAO
ALL,Pl,6.E+4
·INITIAL CONDmONS,TYPE=STRESS
ALL,O.06E+6,O.,O.06E+6
*INITIALCONDmONS,TYPE=TE~ERATURE

Nl,149.0
N2,148.9
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N3,148.9
N4,148.9
N5,148.9
N6,148.9
N7,148.9
N8,148.9
N9,148.9
NIO,148.9
Nll,148.9
N12,148.9
NI3,,148.8
N14,148.7
Nl5,148.7
N16,148.6
N17,148.5
N18,148.4
N19,148.3
N20,148.2
N21,148.1
N22,147.8
N23, 141.5
N24,147.3
N25,141.2
N26,147.1
N27,146.5
N28,,146.0
N29,145.5
N30, 144.5
N31,143.2
N32,142.1
N33,140.5
N34,139.2
N35,137.4
N36,135.2
N37,l31.9
N38,129.0
N39, 124.0
N40,ll5.1
N41,110.0
·MONITOR,NODE=201,DOF=2
·EL PRINT,FREQUENCY=25,ELSET=ALL
COORO ,E
DG
LOADS
S"MISES
ENER
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·EL PRINT,FREQUENCY=l,ELSET=ONE,SUMMARY=NO
COORD,E
DG
LOADS
S,MISES
ENER
·NODE FlLE,NSET=CENTER
U,RF
·EL FlLE,FREQUENCY=2,ELSET=ONE
COORD, E
00
LOADS
S
·NODE PRINT,NSET=CENTER
U
·NODE PRINT,FREQUENCY=l,NSET=UPPER
CaORO
·END STEP
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