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Abstract

Currently there is no standard whole-field methodology to measure the transient out-of-
plane deformation of a surface under dynamic events. In this work, a whole-field high-
speed optical surface measurement system has been developed, which yields absolute
Cartesian coordinates (xyz) as measurement results. A high-speed digital camera coupled
with the grating projection and Fourier transform is used to measure 3D surface
deformations with the maximum sampling rate up to 1000 Hz and the exposure time of
each frame up to 50 psec. A calibration technique has been utilized to convert the direct
measurable values—phase, @, and image indices (i, j))—into 3D Cartesian coordinates
(xyz). In addition, all Cartesian coordinates are with respect to a fixed coordinate system,
which is virtually associated with the sensor head. Therefore, the rigid body movements
(rotation and translation) of the surface can be detected. The measurement accuracy +50

um is verified with several tests by using standard objects.

The dynamic surface deformation during polymer membrane inflation tests is
investigated by using the proposed optical measurement system. Effects of various
factors, such as the temperature and the airflow rate, are studied. Regarding the
characterization of material constants by using the bubble inflation technique, the
potential problems, which are caused by ignoring the nonuniformities of temperature

distribution and the thermo-warping, have been studied.

A finite-element model, which can account for the nonuniformities of temperature
distribution and the thermo-warping, has been employed to simulate the inflation
deformation. A more accurate way to characterize the material constants is accomplished
by combining the optical measurement system and a finite-element model that can

account for the nonuniformities of the temperature distribution and the thermo-warping.



Résumé

Actuellement, il n’y a pas des méthodes standards permettant de mesurer la déformation
hors plan d’une surface sous sollicitations dynamique. Dans ce travail, un syst¢me
optique rapide de mesure a été développé et qui permet de visualiser les résultats dans le
systéme de coordonnées cartésiennes absolu (xyz). Un camera digitale 2 grande vitesse,
equippée d’un systeéme de projection et utilisant la transformée de Fourrier pour mesurer
les déformations d’une surface tridimensionnelle avec une fréquence maximale allant
jusqu'd 1000Hz et un temps d’exposition de chaque image allant jusqu’a 50 psec. Une
technique de calibration a été utilisée afin de convertir les mesures directes des valeurs de
la phase, ®, et des indices de I'image (i, j) dans le systtme tridimensionnel de
coordonnées cartésiennes (xyz). En plus, tous les coordonnées cartésiennes sont par
rapport i un systéme de coordonnées fixe, qui est virtuellement lié i la téte du capteur.
Ainsi, les mouvements du corps rigide (rotation et translation) de la surface peuvent étre
détectés. La précision de mesures (+ 50 um) est vérifiée A I'aide de plusieurs tests en
utilisant des objets standards.

La déformation de la surface dynamique pendant les tests de gonflement membranaire du
polymere est entreprise en utilisant le syst2éme de mesures optique proposé. Les effets des
divers facteurs, tels que la température et | ‘écoulement d’air sont étudiés. Concernant la
détermination des parameétres du modele en utilisant la technique du gonflement, les
problémes potentiels qui se manifestent en ignorant la distribution non uniforme de la
température et de la dilatation thermique ont ét€ étudiés.

Un modele éléments finis qui prend en compte la nonuniformité de la température et de la
dilatation thermique, a été employé pour simuler la déformée. Une méthode plus précise
de déterminer les paramétres du matériau est accomplie en combinant le systéme de
mesure optique et le modele éléments finis part la prise en compte des effets de variation

de la température et de la dilatation thermique.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Thanks to Descartes, we may characterize our physical world, known as three-
dimensional (3D) Euclidean space, in algebraic terms by establishing a Cartesian
coordinate system (three mutually perpendicular number lines whose origins coincide at a
single point, known as the origin of the coordinate system). Call one of these lines the X-
axis, and then choose one of the remaining lines as the Y-axis. The last perpendicular line
through the origin is called the Z-axis by adopting the right-hand rule. Any point P in 3D
space can then be located or represented by an ordered triple of real numbers (x, y, 2),
called the Cartesian coordinates of point P. The first number in the ordered triple
indicates the location of the point in the direction of the X-axis, the second one indicates
its location in the direction of the Y-axis, and the third number indicates the location of
the point in the direction of the Z-axis. Any object in the physical world has its position,
and occupies a certain space. By using a Cartesian coordinate system all the geometric
propertiecs of an object can be described. Therefore, the goal of 3D-measuring
techniques, both optical and mechanical methods, is the determination of the Cartesian

coordinates of an object.

As shown in Fig. 1.1, Coordinate Measuring Machines (CMMs) are the conventional
tools for dimensional measurements of various mechanical components by the use of
touch probes. A touch probe is a special electronic sensor that can generate a recording
signal to a CMM to record simultaneously the x, y, and z positions when the head of the
touch probe comes into contact with the surface to be measured. So, by touching the
surface, a CMM can create x, y, and z coordinates for that point being touched. CMMs
have high accuracy in the measurements of 3D coordinates, but suffer from important
limitations such as: high cost, low measurement speed, and limitations on the
autonomous measurements of the entire part surface. In addition, CMMs have to touch

the surface, but in some applications the physical contact is not recommended, such as
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measuring membrane structures. As a solution to this problem, optical non-contact
sensors including stereo vision systems, laser scanning systems and fringe systems have
important advantages over the CMMs. Significant advantages include high speed
(~20,000 point/sec) and the ability to perform measurements on the entire surface of a
part without physical contact.

Fig 1.1 The coordiante measuring machine (CMM) and touch probe.
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However, the development of these new high speed and high precision optical non-
contact sensors solve only a portion of the problem. Sometimes, the surface to be
measured is changing its shape dynamically, as in the case of surfaces under vibration or
impact. There is no time for a laser scanning system to finish one scanning cycle before
the surface changes. Another example is the dynamic buckling of plates. The buckling
shape is changing with the increase of loading. Other examples include free surface
waves in hydrodynamics. The fluid surface shape is changing all the time due to the
surface waves, and accurate prediction or measurement of the surface wave is a necessity
in the fields of offshore and coastal engineering. The 3D measurement of the surfaces
under transient deformation are too difficult for both conventional CMMs and optical
measurement systems to deal with. In fact, there is no standard methodology to measure
the transient deformation of a surface in a dynamic event. However, dynamic 3D surface
measurements, which can provide the knowledge of the entire deformed field and its time
history, can help to gain a better understanding of these complicated phenomena.' This is

the motivation of this research work.

Prior to formulating the specific objectives of this work in Section 1.3, a review of the
literature on 3D optical measurement methods and their various applications on dynamic
deformation measurements is given in Section 1.2. There are many optical measurement
methods available today, such as photoelasticity, geometric Moiré, Moiré interferometry,
holographic interferometry, shearography, laser scanning techniques, and laser speckle
interferometry. Depending on their applications, they fall into two categories: in-plane
measurement (in-plane strains and displacements) and out-of-plane measurement (out-of-
plane displacement components, surface profile and topography). This work focuses on
the out-of-plane measurement methods, which have the potential to provide 3D surface
shape information. In addition, laser-scanning techniques are not considered in this work
because they can only provide 3D information on a line at each time, and the time
required to scan the whole surface makes them impractical for dynamic surface
measurement. In such a case, what we need is an optical measurement technique, which

can be used in dynamic 3D surface measurement to provide whole-field coordinate
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information. In the next section, a literature review will be carried out for various optical

techniques for the out-of-plane measurement.

1.2 Literature Review

1.2.1 Non-contact 3D Optical Measurement Methods

The shadow Moiré method is one of the first scientific applications of the Moiré
phenomenon, which is if two superposed sets of lines are dense enough and show some
regularities, a pattern known as Moiré fringes will be formed in addition to the individual
line sets. The work in this area goes back to early 1940’s. The principle of shadow
Moiré€ is easy to understand.

NNV YV

k:z n\ /I
k=1 2
LT 1
d
!
0 b s N
Image Plane e

Fig 1.2 Optcal layout of the shadow Moiré method.

As shown in Fig. 1.2, a point light source § casts the shadow of a grating G, which
consists of equispaced parallel black lines, onto the surface of an object. The grating
shadow is modulated by the surface so it looks as if it is somehow deformed. When the
shadow is viewed through the original grating, the two sets of lines (original grating and
its deformed shadow) interfere with each other, and Moiré fringes are generated on the

image plane due to this geometric interference. If the distance between the camera and
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the grating is equal to that between the light source and the grating, the observed Moiré
fringes will represent iso-height contours of the surface—all the points on a Moiré fringe
will have same distance to the reference grating plane (Meadows, Johnson & Allen 1970,
and Takasaki 1970). As shown in Fig. 1.2, the distance to the reference grating plane or
the height is z for all the points on the * order Moiré fringe. The order of Moiré fringe
isk(k=0,1,2,...). AMoiré fringe image is shown in Fig. 1.3, which was taken for a
3D curved object of approximately 300250150 mm in overall dimension. The black
coarse curved lines are Moiré fringes, and the original straight grating lines are very fine
in the background (running vertically).

Fig. 1.3 Moiré fringes of a 3D object.

If the straight line connecting S and O is parallel to the plane of the grating, we can
assume a simple equation to calculate the height of points on each Moiré fringe to the

grating plane. All contour lines are parallel to the G plane.

2 = Ixkxd
' b-kxd

(k=0,12,..) (1.2-1)

Here, z is the distance between the G plane and the k™ order Moiré contour line. The
distance between the lighting source and the G plane is /, and b is the distance between
the lighting source and the camera. Finally, d is the pitch of the grating and k is the order
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number of the Moiré contour lines, which is equal to 0, 1, and 2... The distance between

successive contour lines Az, called the sensitivity, is:

dxl (l+zkilp

A W lveg 1T)xd b

(k=0,12,.) (1.2-2)

From Eq. 1.2-2, we can see that the sensitivity of the shadow Moiré method is not a
constant; it increases with increasing order of the contour lines. If, as is often the case,
z/l << 1 and d/b << 1, Eq. 1.2-2 can be simplified to have a constant value.

Az=dx% (1.2-3)

The sensitivity of Moiré methods is an important factor, and it was often utilized to
evaluate the precision of a Moiré system. The sensitivity and accuracy issues will be
discussed in Chapter 3 and 5.

The projection Moiré method is a modified version of the shadow Moiré. As shown in
Fig. 1.4, instead of using a grating in front of the surface, a grating, called the master
grating, is projected onto the surface by using a lens. Therefore, the overall size of the
master grating is usually very small comparing with the grating used in the shadow
Moiré. However, a second grating, called the reference grating, is needed at the image
plane of the viewing lens to generate Moiré fringes, due to the interference between the
image of the master grating and the reference grating. Then a camera focusing at the
reference-grating plane has to be used to record the Moiré fringes created. The setup of
projection Moiré is therefore more complicated than that of the shadow Moiré. The
equations derived for the shadow Moiré are still valid for the projection Moiré except that
d must be substituted by dr, the pitch of the master grating on a virtual reference plane.
All heights calculated are then with respect to this virtual reference plane.

dr=de (1.2-9)
q
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dr3| j&

master grating .. SO, .

reference grating ﬂ %d

Fig. 1.4 Optical setup of the projection Moiré method.

As shown in Fig. 1.3, the direct measurement result of the shadow Moiré or the
projection Moiré is a 2D image containing Moiré fringes, which represent contour lines.
A number of researchers have scanned the resulting image to provide a digitized format,
which provides a two-dimensional light intensity function f{i, j), where i and j denote the
image coordinates and the value f at any point (i, j) is proportional to the brightness or
gray level of the image at that point. The origin of the image coordinate system can be
anywhere in the image, but usually is taken as the image center or one of the image
commers. In this case, the 2D image has been discretized by a digital camera both in

spatial coordinates and in brightness as shown in Fig. 1.5.

Origin >/

- -

\
L fii, )
Fig. 1.5 Digial image representation.
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If the Moiré image in Fig. 1.3 is viewed in perspective with the third axis being
brightness, the image would appear as a series of active peaks in regions with numerous
changes in brightness and smoother regions or plateaus where the brightness levels varied
little. In most cases, eight bit black and white images are used. That means the
brightness will have a value ranging from O to 255 representing dark to bright in the
image. Therefore, a digital image can be considered a matrix whose row and column
indices identify a point in the image and the comesponding matrix element value
identifies the gray level at the point. The small picture elements or pixels correspond to
each element in the digital camera imager that converts light to an electrical charge.

There are total 480x512 elements or pixels in the digital camera imager we used.

After a 2D Moiré image has been created, one has to use Eq. 1.2-1 to obtain quantitative
values, such as the height, for some pixels in the 2D image through image processing.
The fundamental objective of the Moiré image processing is to locate the center of each
Moiré fringe by defining its (i, j) image indices since the Moiré fringes are usually wider
than one pixel, and only the center lines can be treated as contour lines. When dealing
with relatively coarse Moiré fringes, errors are therefore introduced. Due to a number of
unforeseeable factors, human intervention is always needed through each step of the
image processing. Some researchers have tried to develop software tools to process
Moiré fringes automatically (Ning & Peng 1988, Moran & Lipczynski 1994, and
Bruynooghe 1996), but that objective has yet to be completely achieved.

Moiré fringes themselves do not allow a direct determination of whether a contour line
showing concentric fringes is a hill or a valley, which is another reason that data
processing of Moiré fringes can not be done automatically. When an order number is
assigned to a Moiré fringe, it is necessary to know whether the number is going up or
down. Some enhancements have been proposed (Murakami & Murakami 1978, and
Fujimoto et al 1992), however, these modifications make the setup and data analysis

more complicated.

As shown in Eq. 1.2-3, the sensitivity of the Moiré measurement Az is defined as the

minimum distance between two successive Moiré contour lines. Therefore, any surface
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change smaller than Az can not be detected. Sensitivity has always been considered from
the theoretical point of view (see Eq. 1.2-2 and Eq. 1.2-3), and in all cases it has been
seen to depend proportionally on the factors d and /b. The factor d has lower practical
limits determined by the loss in definition of the shadow of the grating with increasing
distance from the grating itself. This in turn is caused by the diffraction effect. The
factor U/ is also limited by similar causes. The highest sensitivity (smallest Az) can be
artained with very flat objects. In most practical cases, however, the sensitiviiy 1S
c.onsidered around 1/10 mm. Some special techniques used to improve the sensitivity
have been reported (Han, Ifju & Post 1993, and Liao & Voloshin 1993). Again, these
enhancements need special treatments in either the setup or the following data-processing

procedure.

In many cases, one has to interpolate the Moiré fringes since only the height information
of centerline points of each Moiré fringe is known. The height information of all other
off-fringe-points is still unknown and sometimes only few Moiré fringes are available in
some areas (Marshall er al 1993, Fang 1991, and Mckelvie 1986). The height
information is calculated from Eq. 1.2-1 by using known optical geometrical parameters:
[ d and b. However, how accurate these parameters can be determined in a practical
way is questionable. Small errors with b and / can be amplified to bring big errors to
height z. With these in mind, the accuracy of height information could be worse

depending on applications.

Finally, the Moiré methods usually have to assume a reference point in the field of view
as a zero order fringe. This point is actually the origin of all height information, and all
geometry is built on this origin. If we need to measure a surface twice, there will be two
zero order fringes or reference points being created. One can combine all the data from
these two measurements together only if the relationship of these two reference points
remains known or unchanged in height direction during the measurements. ‘Unchanged’
means the reference points must be fixed during all the measurements. When entire
surface area in the field of view is under rotation, translation and deformation, it is
impossible to find a fixed point to be the zero order point, and unfortunately this is the

case for most dynamic applications. That means Moiré methods are not applicable in
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such cases unless a device is used to provide the information on these rigid body
movements (Lin, Chawla, & Wagner 1997). Therefore, the measurement of the Moiré
methods is generally a relative measurement, which can not determine the absolute

position of the surface in 3D space.

Assuming all above-mentioned problems are solved, the final results obtained are the
height information of image pixels with respect to a reference point in a form of a set of
triple numbers (h, i, j). For clarity, the height is denoted as h instead of z. This
information (h, i, j) is still based on the 2D image plane. Fig. 1.6 shows the schematic of
a CCD (charge coupled device) camera. As the most important component inside a CCD
camera, the imager is a physical device composed of discrete silicon imaging elements,
called the pixels. Each pixel is very sensitive to light and has a voltage output
proportional to the intensity of the incident light. The 2D image plane is the plane of the

CCD imager, which is perpendicular to the optical axis.

CCD Imager

Fig 1.6 Schematic of a CCD camera.

As mentioned earlier in this chapter, our world is characterized by the Cartesian
coordinate system. Shape, position, deformation, and rotation are all described with
respect to a Cartesian coordinate system. However, what is obtained directly from the

Moiré methods are based on the image plane, whose position and orientation with respect

10
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to a Cartesian coordinate system maybe unknown. Obviously, there is a gap between
what can be obtained from the Moiré methods and what is needed to define a surface
shape in 3D space—the 3D Cartesian coordinates, as mentioned in Section l.1. For
instance, from (h, i, j) one can not determine the exact diameter of a cylindrical surface.
However, from (A, i, j) we do know qualitatively how many concave and convex areas
are in a surface, and how much is the height difference between them. Even with these
drawbacks, the Moiré methods have been used in various applications to date. Takasaki
obtained some Moiré pictures on a human face and body (Takasaki 1970), and Hung used
shadow Moiré to study vibrations (Hung et al 1977). For more application examples, see
Pirodda’s paper (1982) and Sciammarella’s paper (1982). The applications so far were,
in general, performed in the laboratory as a demonstration of the Moiré technique as a
measuring device in a particular investigation. The features of the Moiré methods are

summarized as follow:

e simple optical setup;

e difficulties in interpretation of Moiré iringes and fully automatic processing;

e ambiguity in convex and concave areas;

¢ need interpolation for off-fringe-points;

* sensitivity is a important factor for all applications:

¢ difficulties in the determination of optical parameters accurately;

e the measurement results are a set of (A, i, j), not 3D Cartesian coordinates;

e relative measurement due to the assumption of a relative reference point on

which the 3D geometry is based.

Some of the difficulties mentioned above are related with attempts at computer-based
automatic data processing. In this point of view, the shadow Moiré and projection Moiré
methods are called classic or geometric Moiré methods for fringe analysis by human

observation rather than by computer processing.

In order to resolve the difficulties associated with the geometric Moiré methods, an
alternative method called the grating projection method or the grid projection method has
been proposed by several researchers (Takeda, Ina, & Kobayashi 1982, Takeda & Mutoh

11
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1983, Toyooka & Iwaasa 1986, and Halioua & Liu 1989). Unlike the geometric Moiré
methods, no Moiré fringes are generated by the interference between a reference grating
and a deformed grating image. A deformed grating image projected on an object is
directly analyzed without the use of a reference grating. Therefore, problems
encountered in the geometric Moiré methods are minimized. The theory behind the
grating projection method is that when a grating is projected onto a surface, the form of
the grating image on the surface is determined only by the shape and position of the
surface if the grating pitch and the optical setup (projection lens and projection
orientation) are fixed. In other words, a 2D deformed grating image contains the surface
shape information. It should be possible to calculate the shape of the surface from the
deformed grating image directly. To use a reference grating to generate Moiré fringes as
used in the geometric Moiré methods is only one of the ways to obtain shape information
encoded in the deformed grating image. The grating projection method is used in this
work, and its detailed description will be given in Chapter 2. In the following section, a
brief review of the dynamic out-of-plane deformation measurement by using whole-field

optical methods is given.

1.2.2 Dynamic Deformation Measurements by Using Optical Methods

A review of the literature shows that a number of studies have been done to deal with
real-time measurement of dynamic out-of-plane deformation.  Using high-speed
photography to record the profile of transient deformation is usually the way to
accomplish the dynamic measurement goal Zhu, Goldsmith & Dharan (1992)
photographed very high-speed projectiles penetrating Kevlar laminates.  Senf,
Strassburger & Rothenhausler (1997) employed a high-speed film camera in a shadow-
optical arrangement to picture the dynamic out-of-plane deformation of composite
armour at projectile impact. In above studies, the high-speed cameras were not digital
cameras, and they record pictures on films. These pictures are limited to only one view
(usually side view). Conceming the whole-field measurements, very few studies have
been done so far, and these applications are the natural extension of the geometric Moiré
methods. Unlike using standard frame rate cameras, high-speed framing film cameras

were used in these studies. Chai (1982) conducted dynamic measurements on

12
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compressed graphite/epoxy composites subjected to low-velocity out-of-plane impact by
using the shadow Moiré method with a Hycam high-speed film camera (up to 40,000
frame/sec). More recently, Kokidko et al (1997) also employed the shadow Moiré
method combined with high-speed photography to measure the deformation of glass fiber
reinforced plastic panels at impact of projectiles. Lambros & Rosakis (1997) measured
the dynamic deformation of fiber reinforced polymeric matrix composites by using
coherent gradient sensing (CGS). Instead of (h, i, j), the CGS provides the slope or the
gradient of height dh/dx with known image indices (i, j) at some locations of the
recorded fringe image. An integration process has to be used to obtain height

information.

As mentioned previously, the Moiré methods are a relative measurement technique (the
same with the CGS). In order to find out a common reference for all the measurement
data taken at different time, they need to assume that at least one point, in the dynamic
scene, remains unchanged or fixed throughout the whole dynamic event, as shown

schematically in Fig. 1.7.

Field of view ’—1

of the camera

I

Dynamic
deformation
areawitha
impact center
in the middle.

\A Al least one reference point
has to be assumed fixed
inside the field of view.

Fig. 1.7 Reference pomnt used in optical dynamic measurements.

In Chai’s Ph.D. thesis (1982), he assumed that 50 microseconds after impact by a J0.5
inch projectile, the out-of-plane deformation at a point 0.5-inch away from the impact
center is zero. The specimen used in his test was 0.2 inch thick. The same method to
find a reference plane was also used by Kokidko et al (1997). They all implied that the

13
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dynamic deformation was limited in the center as a localized deformation, and close to
the boundary of the field of view of the camera the deformation was zero throughout the
impact. This is valid for thick and stiff plates under high-speed impact, but the general
failure mode of relative thin plates under low speed impact (150 ft/sec in Chai’s thesis) is
global buckling plus local delamination. Therefore, before any relative optical
measurement techniques can be used, such as the Moiré methods, we have to make sure
that the field of view of the camera is large enough to include some ‘fixed’ regions. For
example, in Lambros & Rosakis’ paper (1997), the field of view was approximately @50
mm out of a 152x152x6 mm plate impacted with a @25 mm projectile. It is difficult to
claim that any point 25 mm away from the impact center will remain fixed during the

whole event, especially when the impact speed is as low as | m/sec.

Lin, Chawla & Wagner (1997) proposed a system to measure the out-of-plane
deformation of two different tires of F-16 fighter jets by using a fringe projection
technique and a standard CCD camera. In this very challenging application, no fixed
point existed in the field of view and a fiber-optic sensor was employed to monitor the
out-of-plane deformation of a reference point. Unfortunately, only static measurement
results were presented in his paper, although this system was originally designated for

both static and dynamic measurements.

All of these studies are extended applications of the geometric Moiré techniques.
Therefore, all the difficulties associated with the geometric Moiré methods are still
present. Despite the tedious data processing after the Moiré fringe images are taken, the
most detrimental shortcomings that jeopardize the whole measurement results are the
relativity of the measurement and the failure of providing 3D Cartesian coordinates with

respect to a fixed coordinate system.

1.3 Objectives

Optical measurement techniques and the optical dynamic out-of-plane deformation
measurement techniques reviewed in the previous section indicate that existing

techniques for dynamic out-of-plane deformation measurement have some detrimental

14
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limitations. Thus, there is no standard methodology to measure the transient deformation
of a structure under dynamic events, such as impact. On the other hand, a reliable
treatment of complicated structural dynamic problems should be validated by
experimental data. It is with this philosophy in mind that this research work is
undertaken. The objectives of this work are:

¢ To develop an optical 3D-measurement method that can provide 3D Cartesian
coordinate information as its measurement results. Accomplished with automatic
data processing;

e To verify the measurement accuracy;

e To develop a dynamic 3D surface measurement system by integrating the optical
measurement technique with a high-speed digital camera;

¢ To apply the dynamic 3D surface measurement system in practical applications.

The original contributions to knowledge are described in detail later at the end of the

thesis.

1.4 Thesis Outline

This thesis is divided into four parts:

8 Chapter 2, 3, and 5 deal with the optical method used in this work. Chapter 2
covers the basic principles of the optical measurement. The calibration technique
is described in Chapter 3, and Chapter 5 includes some accuracy test results;

B Chapter 4 gives a detailed description of the high-speed measurement system in
terms of hardware specifications;

B Chapter 6 deals with the practical applications of the dynamic 3D surface
measurement system. The application is the polymer sheet inflation test;

8 Chapter 7 presents a finite-element simulation of polymer sheet inflation tests.

The last chapter concludes the thesis, and indicates some possible future developments.
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CHAPTER 2
OPTICAL MEASUREMENT METHODS

2.1 Introduction

In this research, the grating projection and Fourier transform technique is employed as
the fundamental methodology to build-up the high-speed optical 3D measurement
system. As described in Chapter 1, the grating projection method is more applicable than
the geometric Moiré methods in the following aspects:

(1) automatic data processing;
(2) non-ambiguities in convex and concave areas;
(3) no need to do the data interpolation;

(4) higher measurement sensitivity.

Due to these factors, the grating projection and Fourier transform method is an
appropriate candidate for this project. The details of the grating projection method are
described in Section 2.2. As the most important component of this method, the Fourier
transform technique is outlined in Section 2.3. In the final section of this chapter, the

phase unwrapping problem and several unwrapping algorithms are addressed.

2.2 Grating Projection Surface Shape Measurement
2.2.1 Fundamental of Gratings

As shown in Fig. 2.1, the gratings used in this work are evenly spaced lines running
parallel to each other, and are usually printed or etched on thin glass substrate. The line
width is equal to the space width next to it. Sometimes, this type of grating is called the
Ronchi grating to distinguish from other grating types, such as the diffraction grating.
The distance between the center of a black line to the center of the next black line is a
characteristic property of the grating, called the pitch or the frequency.

16



Chapter 2

Fig 2.1 Ronchi grating

When a Ronchi grating is projected onto a surface, the form of the grating pattern on the
surface is determined by both the shape of the surface and the angle of projection. If the
grating and the optical configuration are fixed, the only factor that determines the form of
the grating pattern on the surface is the surface shape itself. When an equispaced line
grating is projected onto a flat surface, it will give an image with equispaced straight
lines. The same grating projected onto a cylindrical surface can give either an image of
straight lines with varying spacing or an image of curves of varying spacing and its shape
depending on the relative orientation of the cylinder and the grating. Fig. 2.2 shows the
different grating images given by the same grating when it is projected onto different
surfaces with different orientations. The original grating, which is used in the projection,
is also shown in the figure. Actually, the original grating is mounted inside a projector
that is fixed with a CCD camera in a box, which is called the sensor head, which is also
shown in the figure. Fig. 2.2 (c) and (d) show the deformed grating images obtained
from these two simple cases, respectively. For Fig. 2.2 (c), the deformed grating image
looks like the original grating, but with different and varying spacing. For Fig. 2.2 (d),
the straight lines in the original grating bend into curved lines with varying spacing.

17
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Grating Images on the Surface

Optical Axis

(a) Optical axis perpendicular with (b) Grating lines are perpendicular
the flat surface. with the cylinder axis.
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Fig. 2.2 Grating images on flat and cylindrical surfaces: (a) setup for a flat
surface; (b) setup for a cylindrical surface; (c) deformed grating image on
the flat surface; (d) deformed grating image on the cylindrical surface.
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Since the form of the projected grating image is determined by the surface shape, it
should be possible to calculate the surface shape from the grating pattern formed on the
surface if the projection and viewing geometry are known. In other words, the deformed
grating pattern contains the surface shape information. The problem here is limited to
how to extract or obtain the surface shape information from the deformed grating image.
It should be recalled that the geometric Moiré methods use an additional grating (known
as the reference grating) to ‘filter’ the deformed grating image to generate the Moiré
fringes, which are treated as contour lines of the surface, as shown in Fig. 1.3. This
method, to employ an additional grating as a reference to obtain the surface shape
information, is considered as one of the ways to achieve the goal. In this chapter, we will
see other ways to obtain the surface shape information out of a deformed grating image.
These ways are usually more efficient and practical than that used by the geometric
Moiré methods. First, the mathematical representation of grating images will be

analyzed.

2.2.2 Mathematical Modeling of Grating Images

In this work, the gratings considered are one-dimensional gratings such as shown in Fig.
2.3. In addition, the coordinate system used to describe the light intensity distribution of

the grating is shown in Fig. 2.3.

(a)

(b)

X

Fig. 2.3 Intensity distribution of a grating; (a) grating image,
(b) intensity distribution along the X-axis.
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We have to make two basic assumptions in order to develop the mathematical equations
to represent the intensity distribution of gratings: (1) the CCD camera used to acquire the
digital image of grating patterns has adequate resolution to show the regularity of the
grating images, such as the frequencies; (2) the frequency of the grating used should be at
least twice that of the highest frequency induced by surface shape. As shown in Fig. 2.2,
a grating image is modulated by the surface shape after being projected onto this surface.
The frequency of this deformed grating image is no longer uniform due to the
overlapping of the original grating frequency and the frequencies induced by surface
shape. This condition assures that different frequency terms are separable in the
frequency domain. The above two conditions are mutually competing with each other.
However, both can be satisfied in most practical cases. In our case, 20 line/inch gratings
and 512x480 pixel resolution of the CCD camera are employed with the field of view of
approximately 100x100 mm. Under this configuration, there are approximately 9 pixels

for one cycle of the grating.

The real intensity distribution along the X-axis of the original grating is in the form of a
square wave. After being projected onto the surface and digitized by a CCD camera, the
square wave will lose its sharp comers and turn into a periodic curve. This is because the
light source is not a single-point source and the light rays are not exactly parallel to each
other. Another reason is that some pixels will have dark grating lines occupying only
half of the pixel’s area. Table 2.1 shows a portion of the real light intensity distribution

of a grating image along the X-axis.

[(x) 164 | 130 |75 |41 | 47 |89 139 | 162 | 149 | 100 | 52 |42 | 65 123 { 158

X (pixel) | 1 2 3 4 5 6 7 8 9 10 (11 112 113 |14 |15

Table 2.1 Light intensity distribution of a portion of a grating image.
Since any function can be represented by the sum of its harmonic sine or cosine

components (known as the Fourier series), a periodic intensity distribution function can

be represented as an infinite series of cosine or sine terms (Gonzalez-Velasco 1995):
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I(x)= 2b, (x)-cos(n®(x)+2nx- f - x) 2.2-1)
a0

Here, I(x) is the intensity distribution along the X-axis, ba(x) are the spatially dependent
harmonic amplitudes, fis the grating frequency, and ®(x) is the phase map corresponding
to the surface shape. Eq. 2.2-1 is a general form and can be simplified or truncated by
assuming only the first two terms are considered. Therefore, Eq. 2.2-1 can be re-written

as:
I(x) =bo(x)+bi(x) -cos(P(x)+2x- f - x) (2.2-2)

Where, bo(x) represents the background intensity and b,(x)/bo(x) the grating pattern
contrast. In practice both bo(x) and b,(x) will be modified at each location by noise, by
variations in surface texture, and possibly due to non-uniform lighting. As indicated
previously, ®(x) is the phase map that represents the surface shape. This claim is

examined more closely in the following paragraphs.

direction dh

dt

graing
projecton
direction

Fig 2.4 Left-- grating projected onto a surface; Right--change in grating
spacing with the change of surface position.

As shown in Fig 2.4, a grating is projected onto a surface at an angle A/, and the grating

image on the surface is viewed through a lens at an angle A2. If the original grating has a
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pitch of p, the pitch of the grating image on the surface is called 4 and it is given by the

following equation.
d = pl/cosAl

The light viewed by the camera will have an intensity variation with the pitch of ¢ given
by

t=d-cosA2= p-cosA2/cos Al

Now if the surface moves a distance dh, as shown in the Fig. 2.4, there will be a change
in ¢ in the viewing direction. The change is df and it will be equivalent to the shift of the
grating due to the change in the surface position. That is, the phase shift ®(x), in Eq. 2.2-
2. The phase shift can then be given by

¢=27r-%

As shown in Fig. 2.4, we have

dt =dh - (1an Al + tan A2)-cos A2

and so

_ 2r-dh-[tan Al + tan A2} - cos Al
P

o

(2.2-3)

This equation indicates that the height variation, dh, at a point on a surface may be
obtained by an evaluation of the change of phase. ®, of a sinusoidal grating projected
onto the surface. It verifies the previous claim that the phase mapping is related to the
surface shape directly if the optical geometry is fixed. The basic problem, therefore, is
how to recover the phase, ®, for each pixel of a deformed grating image. The next

section will introduce the different methods developed in the past to achieve this goal.
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2.2.3 Methods to Extract Phase Information

(1) Phase Shift or Phase Stepping

Upon translation of the projection grating by a fraction I/N of its pitch p, the phase of the
deformed grating image represented by Eq. 2.2-2 is shifted by 2n/N, yielding a new
intensity function /,. Using three, or more conveniently four, intensity functions
corresponding to different phase shifted values, the phase & can be retrieved
independently from the other parameters in Eq. 2.2-2. For example, in the four-phase

step algorithm, if shifting the phase by /2 increments:

I, =A+ B-cos(A)
I,=A+B-cos(A+n/2)=A-B-sinA
I,=A+B-cos(A+n)=A-B-cosA
I,=A+B-cos(A+1.5t)=A+B-sinA

A= arcmn(%—:;-:—) (2.2-4)
where, functions A(i, j) and B(i, j) represent by and b, functions in Eq. 2.2-2, respectively.
The symbol A represents (®+2x:fx) both modulated and unmodulated components. If
necessary, the unmodulated phase component 2xfx must be subtracted to leave the
required modulated phase component ®. Since the arctangent function is restricted to
generate a value in the range of -t and +n, calculated raw phase mapping & is wrapped
into this range, and a phase unwrapping scheme is needed 1o produce a continuous phase

distribution. The details of phase unwrapping schemes are given in Section 2.4.

The phase shifting technique, when compared with direct geometric measurement of the
interferogram (such as in the geometric Moiré methods), is characterized by several

superior features:

e High precision-permitting interpolation to 1/1000 of a fringe order.

e Low sensitivity to background, contrast variations, and noise.
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e Measurement over a uniform rectangular array of points defined by the
imager, ready for further mathematical manipulation.
e Easy automation with readily available computers and solid state array

detectors such as CCD, CID array-cameras.

However, the phase shifting method needs a precision translation mechanism to realize
the small, but accurate, movements of the grating. In addition, both the object and the
optical setup are required to be fixed and vibration-free during different shifting stages.
In order to obtain the phase information, at least three frames of the deformed grating
image are required. This means the phase shifting technique is not applicable in the

measurement of transient deformation, which is required in this work.

(2) Fourier Transform

The phase shifting and Fourier transform techniques are the two most established
methods to retrieve phase information from deformed grating images. Unlike the phase
shifting method, only one deformed grating image is necessary for the Fourier transform
method in the calculation of the phase. This feature is very attractive to this work due to
the original objective of measuring surface under transient deformation. The Fourier
transform technique, therefore, is the method used in this work to conduct phase
calculations. The details of the Fourier transform processing are given later in Section

2.3. The main steps in the processing are listed as follows:

e Capture a deformed grating image and Fourier transform it into the frequency
domain;

e Bandpass filter the spectrum signal in the frequency domain to remove unwanted
signal components;

e Shift the isolated harmonic component to the origin of the power spectrum to
remove the unmodulated grating frequency;

¢ Inverse Fourier transform the modulated signal to create its real and imaginary
components;

e (Calculate the phase from the real and imaginary components.
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(3) Sinusoidal Fitti

As a simplified approximation to the Fourier transform method, Mertz (1983) suggested a
sinusoidal fitting method to obtain similar phase information based on the pioneering
work of Bruning et al (1974). Mertz first developed an electronic fringe evaluation
processor, which was able to extract the phase of the fringes in video real-time analog
signals, by assuming the phase step is 2r/3 from one sampling point to the next and the
mean intensity and the modulation of the fringe are constants in the small range of three
sampling points. Then Macy (1983) followed this idea by implementing the algorithm
using standard digital image processing technology. As described in Section 2.2.2, the

measured intensity at one pixel of the CCD camera could be expressed as:
I1(x) =bo(x) +b(x)-cos(D(x)+ 27 f - x)

With an increasing spatial coordinate x, the term (®+2%-fx) is also increasing. Here f is
an average spatial frequency, and the grating is oriented in the Y direction. If the spacing
of the grating is adjusted so that the phase step is 21t/4 from one pixel x(i{) to the next
pixel x(i+1), each grating line occupies 4 pixels. In the meantime, it is assumed that the
mean intensity bg(x) and the modulation b,(x) of the grating don’t change in the small
range from the left neighbor pixel x(i-1) to the right neighbor pixel x(i+1). The phase
®(x) at the pixel x(i) is derived from the approximation of the measured intensities /(x)

around the pixel position. By using trigonometric identities, the above equation can be re-

written as:

1{(x) = bo(x) + bi(x)- cos(DP(x)+ 27 - f - x)

=bo(x) + bi(x)- cosD(x)-cos(2x - f - x) = bi(x) - sin P(x) -sin(2r - f - x)

Let ¢\(x) equal bi(x)-cos®(x) and c2(x) equal -bi(x)-sin®(x). The equation can then be

expressed as:

I(x) =bo(x) +c,(x)-cos2x - f - x)+c,(x)-sin(2% - f - x) (2.2-5)
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Again, it is assumed that ¢,(x) and c;(x) vary slowly in a local neighborhood, so that they
may be taken as constants in that neighborhood. These constants can therefore be found

by fitting Eq. 2.2-5 through the gray levels of four successive pixels.

¢, (x;) =1I(x;_, Ycos(Qafx,_ ) + I(x;)cosnafx,) + I (x,,, ) cos(2nfx,,, ) + I (x,,,) cos(2nfx;,,)

c, (x;) = I(x,)sin(2nafx,_) + [ (x;)sin(2nfx,) + I (x,,, )sin(2mfx,,, ) + I (x,,,) sin(2nfx,,,)

Finally, we will get the phase information for each pixel by following the equation:

¢ (x;)

®(x,) = mmn[ L(”) (2.2-6)

This method to obtain phase information works well when the grating frequency does not
vary too much across the whole image. In situations, when it is hard to maintain the 4
pixels per grating line assumption everywhere, the result is that the phase steps between
adjacent pixels are not n/4 as they should be, but have some smaller or greater value.
The final calculated phase has many errors inside, and the error is intrinsic to the method.
This may be one reason why the sinusoidal fitting technique was not given much

attention in recent years.

2.3 Fourier Transform Phase Calculation
2.3.1 Basics

The Fourier transform is a commonly used tool in signal processing and digital image
processing. This is because the Fourier transform can decompose a signal (1D) or an
image (2D) into a set of cosines and sines, each of which represents the corresponding
frequency components of the signal or the image intensity itself. Furthermore, most
features believed to be important for solving image processing tasks are often more easily
described in the frequency domain than in terms of the variation of the image itself.
Examples of such features are orientation, phase, frequency and curvature. This section

presents the basics of the continuous Fourier transform.
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Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x),
denoted F(u), is defined by the following equation.

F) = [ f(x)-expl-2m - ux}dx 2.3-1)

—n

Where i2 = -1. Given F(u), f{x) can be obtained by using the inverse Fourier transform:
fx)= j F(u)- exp[2mi - ux)du (2.3-2)

Equations 2.3-1 and 2.3-2, called the Fourier transform pair, exist if f(x) is continuous and
integrable and F(u) is integrable. These conditions are usually satisfied in practice. The

Fourier transform of a real-valued function f{x) is generally complex, that is,

F(u)=R@w)+i-1(u) (2.3-3)

where R(u) and /(u) are the real and imaginary components of F(u), respectively. The

magnitude function |F(u)|, called the Fourier spectrum of f(x) is defined as:

|Fu)| = R @)+ 1 () (2.3-9)

The variable « appearing in the Fourier transform often is called the frequency variable.
This name arises from expression of the exponential term exp[-2xi-ux]. According to

Euler’s formula,
exp[—2m - ux} = cos 2mux —i - sin 2mux (2.3-5)

Interpreting the integral in Eq. 2.3-1 as a limit summation of discrete terms makes it
evident that F(u) is composed of an infinite sum of sine and cosine terms and that each
value of u determines the frequency of its corresponding sine-cosine pair. Fig. 2.5 shows
a simple function and its Fourier spectrum. The first component actually has zero
frequency because it represents the mean amplitude of the signal, and it sometimes called
the DC term. The first non-zero frequency component is known as the fundamental

component.
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Fig 2.5 A simpk function and its Fourier spectrum.

The Fourier transform can be easily extended to a function f(x, y) of two variables. If fix,
y) is continuous and integrable and F(u, v) is integrable, the following Fourier transform

pair exists:

Fuv) = [ [ £(x,y)-expl-2mi(ux +vy)ldxdy (2.3-6)

flx,y)= I j F(u,v)- exp(27i(ux + vy)]dudv (2.3-7)

-——

where u and v are the frequency variables. As in the one-dimensional case, the Fourier

spectrum is:

F(u,v)=Ru,v)+i-1(u,v) (2.3-8)

|F(u,v)| = YR @,v) +1* (u,v) (2.3-9)
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2.3.2 Discrete Fourier Transform

In the context of image processing and machine vision, the images under consideration
are usually digitized. Such images have dimensionality two, are real-valued, and are
defined on a rectangular discrete point grid with finite extension in both dimensions.
Hence, to actually compute the Fourier transform of such an image, the discrete Fourier
transform must be used, as a sufficiently good approximation of the continuous
transform. The following provides an introduction of discrete Fourier transform without
further proofs for each of the equation. For further evidence, please see Brigham’s book
(1974).

Suppose that a continuous function g(x) is discretized into a sequence
{g(x,).8(x, + Ax), g{x, + 2A%),......2(x, +(N -1]Ax)}

by taking N samples Ax units apart. In other words, the sequence {g(0), g(1), g(2),...... ,
g(n)} (n=N-1) denotes any N uniformly spaced samples from a corresponding continuous

function. The discrete Fourier transform pair that applies to sampled functions is given

by

N-1
Gu) = —I—Zg(n) -exp{=2rinu/ N (2.3-10)
N=

foru=0,1,2, ...N-1, and

N-1

g(n) =Y G(u)-exp[2ntinu/ N} (2.3-11)

forn=0,1,2,...N-1.

The values u = 0, 1, 2, ..., N-1 in the discrete Fourier transform, Eq. 2.3-10, correspond
to samples of the continuous transform at values 0, Au, 2Au, ..., (N-1)Au. The sampling

increments in the spatial and frequency domains are related by the following equation.
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In the two-variable case the discrete Fourier transform pair is

M-IN-1

Gu,v) = LN ZZ g(m,n)-expl—-2mi(um/M +vn/ N)} (2.3-13)

M m=0 =0

foru=0,1,2,...M-1,v=0,1, 2, ..., N-1, and

M-IN-1

g(mn) =YY Gu,v)-exp[2mi(um/ M +vn/ N)) (2.3-14)

u=Q v=0

form=0,1,2,....M-1,n=0,1,2, ..., N-1.

Sampling of a continuous function is now in a 2D grid, with divisions of width Ax and Ay
in the X and Y directions, respectively. As in the 1D case, the discrete function g(m, n)
represents samples of the function g(xg+mAx, yg+nAy) form=0, 1,2, ...,M-1 and n =0,
1, 2, ..., N-1. Similar to the ID case, the sampling increments in the spatial and

frequency domains are related by the following equations.

Au = (2.3-15)
M - Ax

and

Av = (2.3-16)

The Fourier spectrum of 1D and 2D discrete function also are given by Eq. 2.3-4 and Eq
2.3-9, respectively. The only difference is that the independent variables are discrete.

The principal purpose of this section is to present a theoretical foundation of the Fourier
transform.  Within this framework, the essential points necessary for a basic

understanding of the Fourier transform are developed and illustrated. Transform theories,
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especially the Fourier transform, have played a central role in the development of image
processing as a formal discipline. In the following section, we will consider how to use
the Fourier transform to process the deformed grating images to obtain the phase

information we wanted.

2.3.3 Phase Calculation by the Fourier Transform

The deformed grating images, as shown in Fig. 2.2, are two-dimensional discrete
functions. As mentioned previously, the surface shape information is modulated in the
grating image along with other information, such as the background light intensity, noise
caused by surface irregularities and the intensity distribution of a sinusoidal grating. All
this information is mixed together. Moreover, it is very difficult to isolate and to extract
the surface shape information by manipulating directly the pixels of a deformed grating
image. Things, which are hard to deal with in the spatial domain, are sometimes easy to
achieve in the frequency domain, and this is the case in the analysis of a deformed grating

image.

Here we consider the information contained in a deformed grating image. First, the
background light intensity over the field of view of a camera is the average of the
illumination of the grating projector. The average of the illumination does not change
much over the field of view if the surface is smooth. Hence, the background light
intensity is a very low frequency signal in this case, and sometimes is the same as the
direct current (DC) component of an electrical signal. The noise cased by surface
uregularities or electronic noise is a sharp change in light intensity. Usually, they are
random and relatively in small size. These kind of random noises are high-frequency
signals. Another regularity in a deformed grating image is due to the grating itself. This
is a sinusoidal signal with a certain frequency, called the carrier frequency, which is
decided by the pitch of the original grating. Compared with the grating modulation
caused by the surface shape, the carrier frequency is definitely higher. Therefore, the
signal of the grating modulation caused by the surface shape is a low-frequency
component. All the information or signals contained in a deformed grating image have
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different corresponding frequencies. This is the foundation of using the Fourier

transform to separate them in the frequency domain.

Takeda & Mutoh (1982) initially employed the Fourier transform to analyze deformed

grating images for topological investigations. The steps of processing are as follows:

¢ The intensity distribution of a deformed grating image is 1D Fourier transformed
into the frequency domain for the variable x only (perpendicular to the grating
direction), with y being fixed;

¢ Bandpass filter the spectrum signal in the frequency domain to remove unwanted
signal components, such as the DC component and the high-frequency
components; After filtering, only the first low-frequency component is left;

¢ Shift the isolated harmonic component to the origin of the power spectrum to
remove the unmodulated grating frequency;

¢ Inverse Fourier transform the modulated signal to create its real and imaginary
components;

e Calculate the phase from the real and imaginary components by using the

following equation.

(2.3-17)

&d(m,n) = arctan{-——lm[p (m, n)] }

Re[ p(m,n))

Here, Re[p(m, n)] and Im(p(m. n)] denote the real and imaginary parts of the inverse
Fourier transform, respectively. Due to the features of the arctangent function, the
unambiguous phase is wrapped into a range of - ~ x. In order to produce a continuous
phase distribution, phase-unwrapping schemes are required, which is the topic of the next
section. Figure 2.6 shows an example of the phase calculation by using the Fourier
transform. Fig. 2.6 (a) is the deformed grating image. Fig. 2.6 (b) is the intensity
distribution of a line perpendicular to the grating. In order to see the modulation clearly,
an unmodulated signal with the grating frequency is also shown in the graph. Fig. 2.6 (c)

is the Fourier spectrum in the frequency domain. We can see different frequency
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components are separated from each other by approximately the carrier frequency fo. The
second peak in the frequency domain is easily located by an amplitude counting
operation. Then the filtering in the frequency domain is carried out by applying a
window in which those points lying inside the window preserve their values and the rest
of the data is set to zero. The filtering window size can be defined by using the middle
points between the first/second peaks and the second/third peaks, respectively. After the
inverse Fourier transform, Fig. 2.6 (d) shows the wrapped phase distribution along the

line with 2r discontinuities.
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Fig. 2.6 Phase calculation by the Fourier transform.
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2.4 Phase Unwrapping

In the previous sections, different techniques are introduced for the automatic analysis of
deformed grating images. All these techniques, the phase-shifting, the sinusoidal fitting,
and the Fourier transform method, yield a phase pattern with wrapped phase values
ranging from -x —~ n. Therefore, they contain 2% discontinuities or jumps even for a
continuous surface. Fig. 2.7 shows a wrapped phase map in a normalized form using a
gray scale to represent phase. The intensity ranges from black at one extreme,
representing a phase value of -, to intense white at the other representing a phase value

of .

Fig. 2.7 Wrapped phase map.

The purpose of the phase unwrapping is to remove these 2x discontinuities by shifting
phase values by 2% or -2x of certain points to generate a continuous phase distribution
over the whole field of view for continuous surfaces. As shown in Fig. 2.6 (d), a portion
of the cross section line with phase values out of -%t ~ & range is wrapped. By adding 2

to its phase values for these wrapped points, it is possible to create a continuous phase

distribution, shown in Fig. 2.8.

However, in practice wrapped phase images contain noise, small or large size, or even
some large-scale inconsistencies, for example when there is a hole in the surface. Any
unwrapping algorithm that fails to detect noise and inconsistencies will make a faulty

unwrapping decision at any single point, and, even worse, this error will be carried on to
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other noise-free points. Therefore, the noise can propagate to affect the whole
unwrapping result. An appropriate phase unwrapping algorithm should be able to tackle
noisy data to isolate the effect of noise. Several different algorithms have been proposed
so far. They fall into two categories—the point-by-point algorithm and the region-by-
region algorithm. In the following sections, the phase unwrapping algorithm used in this
work is described, which is region-based. In order to compare with other unwrapping

algorithms, some point-by-point unwrapping techniques are outlined first.

6.3

. /‘\\
0.0 T T T T

0 5 10 15 20 25 30
image Dimension (pixel)

Phase

Fig 2.8 Unwrapped phase distribution along a line.

2.4.1 Point-by-point Unwrapping Algorithm
(1) Scanning line approach for phase unwrapping

The procedural steps of the scanning line approach are described below:

¢ The digitized grating images are filtered to eliminate noise. A 3x3 spatial
averaging filtering usually performs this process. A wrapped phase map is then
computed by either the phase shifting or the Fourier techniques. The phase is
related to the surface shape other than at those 2% discontinuities.

o The phase map is traced horizontally on a scan line by scan line basis. The 2n
discontinuities may be found by seeking a phase change over a specified threshold
level. A threshold level of & is normally used. This places a limit on the
permitted rate of change of phase to be less than 1t between two adjacent pixels.
A phase sum is kept of the discontinuities passed, up by 2x or down by 2=,
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depending on the direction of phase roll over. This is seen, respectively, as a
rapid white/black or a black/white transition (assuming phase is shown in gray
scale with -x as black and white as x). This phase sum is added to the phase
values of successive pixels.

o The horizontal traces are, at this point, independent of each other. In order to
bring them into their correct relative positions a single vertical trace of unwrapped
phase is used. Various strategies may be applied to select a good candidate for
this arranging trace, usually the central column.

e At the conclusion of this unwrapping process an unwrapped phase map is
obtained.

Uowrapping
Direction

—

Fig 2.9 Scanning line approach for phase unwrappmng.

There are several variations on this theme. The roles of the horizontal and vertical
traces might be reversed to give a better result for a given phase map, for instance.
The algorithm relies on the quality of the raw phase map. However, there can be no
guarantee that, even after filtration, noise in the raw phase map will disappear. The
behavior of the 21t jump detection is an important factor. The 2x jump must always
be distinguished by at least the threshold level of the detection procedure. Any
failure is carried across the phase map and may disrupt many points of any particular

scan line in the phase map. For more details, see Nakadate & Saito’s paper (1985).
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(2) Noise-immune cut method of phase unwrapping

The phase unwrapping method described in this section is an enhancement of the
scanning line unwrapping algorithm. The basis of the algorithm is to place cuts, on a
scan line by scan line basis, between points of phase discontinuity in order to
minimize the length of the propagated discontinuity. The size of the discontinuity is
termed the cut length. A simple means of flagging possibly inconsistent .points is
implemented by checking all 2x2 pixel areas in the phase map according to the
procedure shown in Fig. 2.10.

D1
e — 0

g ]

@@ —— 0
Ds

Fig 2.10 Inconsistency Flagging

The phase is checked along the closed path indicated. If the sum of the wrapped-
phase differences along the path, D,+D,+D3+D;, equals zero, then all four points are
said to be consistent; otherwise, all four points are flagged as inconsistent. This is
done for all 2x2 regions until the entire phase map is covered. This processing
detects pixels of phase discontinuity and masks them out. After flagging, bad
segments have been cut from each scan line. The next step is to set up a phase

unwrapping path required to circumnavigate the bad segments along a scan line.
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D consistent pixel

bad pixel

AG j) BG, j)

Fig 2.11 The path to circumnavigate the inconsistent pixel segment.

For example, suppose the phase unwrapping has reached pixel A, which is adjacent to
a bad segment, as shown in Fig. 2.11.  The pixel, right after the bad segment along
the scan line, is B. A valid path has to be set up between these two pixels. The
successive link is established by rotating the search direction 90 degrees compared
with the previous link. In this way, the bad segment is circumnavigated in a
clockwise direction. Any other path (e.g. anti-clockwise circumnavigation) is of
course also valid. The number of 2n phase discontinuities between the successive
elements along the path is calculated, and the total modification, nx2r, is added to the

phase of pixel B.

Again, one-directional traces (horizontal or vertical) are, at this point, independent of
each other. A single trace in the perpendicular direction is used to bring all phase
data into their correct distribution. Various strategies may be applied to select a good

path for this arranging trace.

The bad segment cut algorithm relies on the test of consistency, mainly the 2x2
checker, which is uniquely aimed to detect spike noise. The area over which the
consistency test operates is very small. However, large-scale regional inconsistencies
do not show themselves over the small test area considered. Therefore, the segment

cut algorithm deals with discontinuities between discrete points, and there is no
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strategy to consider large-scale regional inconsistencies. For more details about this
algorithm, please see the reference papers by Goldstein, Zebker & Wemer (1988) and
Huntley (1989).

(3) Flood phase unwrapping algorithm

Bone (1991) proposed a new phase unwrapping algorithm to overcome some
limitations of the noise-immune cut approach, for example, when the network of
segment cuts is not uniquely determined. Rather than construct segment cuts, Bone’s
method constructs a mask to prevent the unwrapping process from following any path
that could lead to inconsistencies. A concept of the second difference of the wrapped
phase map is introduced, as defined below. The second differences are calculated

from the locally unwrapped phase, as shown in Fig. 2.12

(i j+l) (i+1, j+1)

GLp | G | Gl

(LD G [+ j1)

v

Fig.2.12 Second Differences Cakulation

For a given pixel (i, j), the second differences are

A, )=AGj+D)=A,G )
A G )=A G+ )-AG-1))
A G )=AGj+D)=AGj-1)

where

Ax('o.’) =¢(i+lv j)-d,(iv.’)
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These second differences are calculated for all the pixels in the wrapped phase map.
There is discontinuity if one of the three second-differences is greater than a threshold
value, but smaller than 2x radians. For all discontinuity points, the mask is set to zero

to exclude them from the unwrapping process.

When the mask operation is completed, the phase unwrapping can be carried out by
using a recursive flood fill algorithm. The phase is unwrapped at a point only if at
least one of its eight neighbors is unwrapped. For that, 2xt is added or subtracted
while the phase difference between the point and its adjacent point is greater than 21%.
When a point is unwrapped, the mask for this point is set. The wrapped phase map is

scanned to make sure every consistent point has been unwrapped.

2.4.2 Region-based Unwrapping Algorithm

The above unwrapping algorithms are typically written to make a phase unwrapping
decision on each point as an individual unit, using knowledge about only the one
preceding point or the adjacent points. They make a large number of immediate
decisions based on limited data. The concept of region-based unwrapping is to make a

small number of decisions based on a much larger amount of analysis.

The region-based unwrapping algorithm groups phase data into regions containing no
phase ambiguities. Regions are decided by determining whether points lie within a
tolerance of adjacent points that are already included in a region. A point will be
considered part of the region if a given percentage of the adjacent points belonging to the
region are within a specified tolerance of the point. A point may have up to eight
neighbors. Typical values for percentage agreement have been from 40 to 65% and
typical tolerances from 0.5 to 1.5 radians. Once all points have been assigned to a region,
as shown in Fig. 2.13, the edges of the regions are compared to determine if there is a

discontinuity between them.
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Fig 2.13 Example of phase map divided nto regions

All edges between adjacent regions are traced to determine whether a phase shift should
be made, up by 2%, down by 2% or whether no shift is required. Each edge point carries a
vote. Once the relationships between regions have been defined, regions that have been
identified as having no phase ambiguities are combined into a single larger region. These
larger regions are then compared to determine the necessary phase shifts that need to take
place. This algorithm recognizes the problem posed by large-scale discontinuities, and is
employed in this work. For more details, please see Gierloff’s paper (1987). Finally,
Fig. 2.14 and Fig. 2.15 show some phase unwrapping examples experienced in this work.
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Fig. 2.14 Phase unwrapping example—cylindrical surface: (a) original
deformed grating image (grating lines are parallel with the axis of the
cylinder); (b) wrapped phase image; (c) unwrapped phase image.
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Fig. 2.15 Phase unwrapping example—cylindrical surface: (a) original
deformed grating image (grating lines are perpendicular with the axis of
cylinder); (b) wrapped phase image; (c) unwrapped phase image.
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2.5 Summary

In Section 2.2, different techniques are introduced to extract the phase information from a
deformed grating image. It is required that the phase calculation process should be
carried out automatically without any ambiguity, unlike the concave and convex problem
in the classic geometric Moiré methods. In addition, the applicability to high-speed
measurement is also a concern. The phase-shifting technique is not suitable in this
research since it needs at least three frames to compute the phase information, which is
inclusively for static surface measurements. Therefore, the Fourier transform technique
is chosen for this research. Section 2.3 gives a detailed description of the Fourier
transform method. Finally, the phase unwrapping algorithms are outlined in Section 2.4.
Fig. 2.16 summarizes the basic steps involved in calculating the phase information.
Table 2.2 summarizes the features of different optical profile measurement techniques.
Considering whole-field, high-speed 3D surface measurement, there are only two
candidates. Following the steps described in this chapter, a continuous phase map can be
obtained from a deformed grating image. The next chapter will describe how to obtain

absolute Cartesian coordinates from the continuous phase map.

Deformed Grating Image
{(One Frame)

Il

Fourier Transform

s

Wrapped Phase Map

"

Phase Unwrapping

I

Continuous Phase Map

Fig. 2.16 Processing summary of the grating projection and Fourier method.
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Moiré | Data Measurement | Frame(s) g:xlzle ﬁf:hlf:::’:,m
Fringes | Processing Results Needed Meas. | Mcasuring
(h. i, ) on the
lswh:;gw Yes gu‘:va:nﬁ on | CEMET of One Yes Yes
Geometric Moiré fringes
Moiré " H (h, i, j) on the
;’m‘)’.e ;‘ tion Yes Intervention center of One Yes Yes
Moiré fringes
FFT No |Automaic |HEDforall | o 1 yes Yes
pixels
Grating .
Projection s! hase. No |Auomaic |@EDTrall |54 Yes No
Methods g P
Others No Automatic ('." i. ) for all One Yes Yes
pixels
. (x, y, Z) on the .
Laser Scanning . Multi
Techniques No Automatic cl:;l:":er of scan frames No No

Table 2.2 Features of different optical profile measurement methods.
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CHAPTER 3
SYSTEM CALIBRATION

3.1 Introduction

In this research, the objective is to digitize surfaces, which are involved in a dynamic
event such that their shapes and spatial positions are changing as a function of time. In
such a case, multiple measurements from the same direction are required in order to build
a complete time history of the deformation. In order to build a time history of
deformation in a dynamic event, the xyz coordinates of each individual measurement,
taken at different times, are needed to be with respect to an absolute global coordinate
system within the accuracy of the measurement system. That is what is desired for the
measurement results. Let us keep this requirement in mind and see what the results are

from the processing described in the previous chapter.

The grating projection method has been introduced in Chapter 2. A deformed grating
image after being processed by the Fourier transform can provide a continuous phase
map, which is related to the surface height with respect to a reference plane. However,
this technique has previously been limited to relative measurements. This is because
most of the measurement procedures presented so far allow the evaluation of the height
Hy. j with respect to a reference plane. Moreover, the coordinates (i, ) of a point p are
expressed with reference to the column and row indices of the corresponding image point
on the image plane. This kind of surface shape information is useful to describe a surface
qualitatively, such as how many concavities and convexities exist and how big the
maximum displacement in the Z direction the surface has. However, as mentioned in the
beginning, three-dimensional Cartesian coordinates are needed to define 3D shapes
quantitatively. Therefore, to this point the measurement results, Fpy; j, are indirect, and
can not fulfill the ultimate goal—the determination of 3D Cartesian coordinates with

respect to a fixed coordinate system.
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Some researchers have tried to solve this problem by transforming the column and row
indices (i, j) of an image point to (x, y) coordinates by using a constant scale ratio
(magnification ratio) while ignoring lens aberrations and distortions. By doing this,
errors are introduced to the final results because the scale ratio is not uniform throughout
the depth of view, and it is changing at least as a function of the z coordinate (see Section
3.2 for details). This spatial dependency of the scale ratio can’t be neglected when a
surface is not flat. In addition, even a high quality lens has some aberrations, which
means in practice that the scale ratio should be a non-linear function of (i, j, 2).
Obviously, for the calculation of x, y, and z coordinates, a mathematical model must be
assumed that describes the relationship between the measured values, such as phase and

image coordinates, and the ultimate 3D coordinates.

In this chapter, a calibration procedure is proposed that can create a relationship between
the indirect measured values and the ultimate 3D coordinates. This mathematical model
allows the indirect measured values to be converted into 3D Cartesian coordinates.
Before introducing the details of calibration, let us outline some basics of imaging

geometry.

3.2 Imaging Geometry

Fig. 3.1 shows a model of the optical image formation process. All geometry is
expressed in a 3D Cartesian coordinate system (X, Y, Z), called the global coordinate
system, in which the position of a point is defined by 3 coordinates denoted (x, y, z). The
2D image, given by (i, j) is used to denote the position of a pixel in an image plan. Let us
assume that the image plane is parallel to the XY plane, and the optical axis is along the
Z-axis. The point Oz and O3 are the centers of the image plane and the lens, respectively.
As shown in Fig. 1.6, the image plane is physically associated with the CCD camera.
Any change in the orientation and position of the CCD camera will result in a change of
the orientation and position of the image plane with respect to the global coordinate
system. If the camera is in focus for distant objects, the distance between Oz and Os is
the focal length of the lens denoted as A.
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Fig. 3.1 Basic geometry model of image forming.

As shown in Fig. 3.1, let (x, y, z) be the global coordinates of any point in a 3D scene, and
we assume that all points of interest lie in front of the lens. The relationship that gives
the image coordinates (i, j) of the projection of the point (x, y, z) onto the image plane is
easily accomplished by the use of similar triangles. With reference to Fig. 3.1, if the
Cartesian coordinate system is shifted to the location of the image coordinate system (O1

and Oz is the same point), we have

3.2-1)

- 3.2-2
z-A ( )

Where the negative signs in the equations indicate that image points are actually inverted,
as the geometry of Fig. 3.1 shows. The image-plane coordinates of the projected 3D
point follow directly from Egs. 3.2-1 and 3.2-2:

Xx=—X] or x=f(i,2) (3.2-3)
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y==2Exj ot y=3(.2) (3.2-4)
Equations 3.2-3 and 3.2-4 show that unless something (for example its z coordinate) is
known about the 3D point that generated an image point, it is not possible to completely
recover the global x and y coordinates of a 3D point from its image coordinates (i, j).
Therefore, the global coordinate x and y are functions of (i, z) and (j, 2), respectively. As
addressed in Section 3.1, some researchers have assumed a constant scale ratio to derive x
and y coordinates from its corresponding image coordinates (i, j). This operation,
however, requires some care. Only in the case of flat surfaces, can it safely be assumed
that the transform between the global coordinates (x, y) and the image or pixel
coordinates (i, j) does not depend on the small surface shape variation z(x, y). For non-
flat-surfaces, neglecting the surface height variation can create errors. The calculation of

(x, y. 2) has to be carried out together since they depend on each other.

(a) (b) ()

Fig. 3.2 Examples of lens distortion: (a) Original Grid,
(b) Pincushion Distortion, (c) Barrel Distortion;

In optical 3D measurement systems, lenses or lens systems (consisting of several thin
lenses) play an important role in grating projection and image forming. Two lens
systems are used in our system, one is the projection lens system and another is the
camera lens system. As shown in Fig. 3.2, one of the basic problems of lenses and lens
systems is the imperfect quality of the images, usually called the lens aberrations. Such
imperfect images are largely the result of defects in the shape and form of the lenses. The
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lens aberrations are very detrimental to optical measurement systems since the
measurement values (such as 3D coordinates in our case) are calculated on the basis of
precise analysis of image forming. We always assume simply theory of lens systems in
optical 3D measurement systems, which ignores the distortion of the lenses. Clearly, this
is not the case in practice. For example, there is no single focal length for a lens due to
the spherical aberrations. Therefore, we have to assume that there are some distortions in
every image, and due to these distortions the magnification of off-optical-axis points
differs from the magnification of those points near the lens optical axis. With lens

distortions in mind, Egs. 3.2-3 and 3.2-4 will be rewritten in a more general form.

x=F(,}.2) (3.2-5)

y=G(.j,2) (3.2-6)

The x and y coordinates are functions of i, j and z coordinates. In addition, different
lenses have unique transformation functions. Therefore, in practice we have to find out
the form and all the coefficients of these two equations for each lens. A procedure for
determining the mode! parameters from a set of points with known global Cartesian
coordinates and their corresponding image coordinates is called “the camera calibration.”
Once the calibration is done, the 3D information can be inferred from corresponding 2D

image information and vice versa. This is the purpose of the next section.

3.3 Calibration Techniques

Equations 3.2-5 and 3.2-6 are the general form of the relationship between 2D and 3D
world. In this section, we will further formulate these two equations, and moreover to
determine the form of the functions involved. The image acquisition, which is used to
capture the deformed grating patterns in all the image processing techniques described in
Chapter 2, results in a series of transformations before a grating image is finally stored in
a computer’s memory as a 2D digital image. These transformations must be inverted
before the results processed from the 2D digital image can be related to the information
used in 3D space. As described in Section 3.2, the information processed from a
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deformed grating image (a 2D image) is (i, j, h), and the results we need in 3D space are
xyz coordinates. The most common types of transformations from the 3D world
coordinates to 2D image plane coordinates are coordinate translation and rotation, lens
distortion and perspective transformation. In the following section, a camera model will

be developed for the transformation from 3D global coordinates to camera coordinates.

3.3.1 The Camera Model

Consider a pinhole camera model with lens distortion, as shown in Fig. 3.3. Let P be an
object point in the 3D space, and (xg, yg, Z) be its coordinates with respect to a fixed
global coordinate system (GCS). Let the camera coordinate system (CCS) have its XY
plane parallel to the image plane, such that the X-axis is parallel with the horizontal
direction of the image, and the Y-axis is parallel with the vertical one. The origin of CCS
is located at the lens center and the Z-axis is aligned with the optical axis of the lens,

which is perpendicular to the image plane.

Fig.3.3 Pinhoke camera model with kens distortion

Let (x., yc, zc) be the coordinates of the 3D point P with respect to the CCS. If there is no
lens distortion, the corresponding image point of P on the image plane would be Q (see
Fig. 3.3). However, due to the effect of lens distortion, the actual image point is Q. Let

(i, j) denote the 2D image coordinates (in pixels) of the actual image point Q" with respect
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to the computer image coordinate system (ICS). The origin of the ICS is the intersection
point of the image plane and the optical axis. The distance between the image plane and
the lens center is denoted as f. The overall transformation from (x,, y,. 2;) to (i, j) can be

divided into the following four steps, as shown in the flow chart of Fig. 3.5.

(1) Translation and rotation from the GCS to CCS

The transformation from the global coordinate system to the camera coordinate system
can be expressed as:

X, nonon X
YC = r‘ r! rﬁ tz . y‘ (3.3_1)
ZC r-, rs rg '3 Z.
1 0 0 0 1
This equation can be also written in the following matrix form.
- N L
- =T!F, =[O l}.,' (3.3-2)

Here, 5. = (1}, 12, 13)" is a translation vector, and R%, is a 3x3 rotation matrix determined

by the three Euler angles, ¢, 6, and ¢, rotating about the X, Y, and Z axes sequentially, as
shown in Fig. 3.4.

Fig 3.4 Definition of Euler angles.
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(2) Perspective projection from a 3D object point in the CCS to a 2D image point on the
image plane

As shown in Fig. 3.3, the distance between CCS and ICS planes is f, also referred to as

the effective focal length. Let (iy, ju) be the 2D image coordinates of the undistorted

image point Q lying on the image plane. Then, we have

i,=f=< and j,=f-2 (3.3-3)
z. z.

Since the origin of the CCS is at the lens center, Eq. 3.3-3 has a different form than Eq.
3.2-1 and Eq. 3.2-2.

(3) Radial lens distortion from Q to

Let (i4, j4) be the 2D image coordinates of the distorted image point Q'. Then we have
i, =i, (+k-r*)  and  j,=j, (+k-r?) (3.3-4)

Here, ¥ = iz X is + jaX j Based on the experience of some researchers, Eq. 3.3-4 is
adequate enough to model lens distortion for industrial vision applications (Tsai 1987).
More elaborate modeling not only would not help but also would cause numerical

instability.
(4) Scaling of 2D image coordinates
The horizontal and vertical pixel spacing, 8, and 8, (millimeter/pixel), are used to scale

from pixels to millimeters.

Combining these four steps together, we have
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X n+y,n+z,n+t

(-k-r*)is, =f-

X I+ Y 42,0+,
(3.3-5)

X r,+y re+z,r,+t
oker?) 8, = g SOLID

X, 5 +y,n +Z,f9 +¢,

Instead of (i4, ja), we use (i, j) as the true or distorted image coordinates. The parameters

used in the transformation from the 3D world to the 2D image plane can be categorized

into the following two classes.

Extrinsic Parameters: the parameters used for the rigid body transformation from the
3D global coordinate system (GCS) to the 3D camera coordinate system (CCS) with
the origin at the lens center are called the extrinsic parameters. There are six extrinsic
parameters: the Euler angles pitch ¢, yaw 6, and tilt ¢ for rotation and the three
components for the translation vector f.. The rotation matrix R®. can be expressed as

a function of @, 8, and @. These Euler angles are defined in Fig. 3.4.

cos@cosb sin @ cos@ ~sin@

R} ={-sin@cos@+cos@sinBsocy cos@cosd+sin@sinBsing cos@sing | (3.3-6)

sin@sing +cos@sin@socd —cos@sing +sin @sinbsocd cosBcos

Intrinsic Parameters: the parameters used for the transformation from 3D coordinates
in the CCS to the image coordinate system (ICS) are called the intrinsic parameters.
There are usually five parameters: effective focal length £, lens distortion coefficient
k, pixel scaling factors 8, & &,, and the origin coordinates of the computer image
coordinate in the image plane (iq, jo). Since we have the origin of the computer image
the same as the intersection point of the optical axis and the image plane, (io, jo) = (0,
0). For a solid state camera (CCD or CID cameras), the pixel spacing factors are
known. Therefore, the parameters that need to be calibrated are fand k.
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3D Global Coordinates (x,, yz, Z;)

I

Step 1 Rigid Body Transformation

From (xgv Ys» Zg) to (xtr Yo )

Parameters to be calibrated:
R and ¢ matrix

Il

Step 2 Perspective Projection
From (Xc, Ye, Z) 10 (iu, ju)
Parameters to be calibrated: f

!

Step 3 Radial Lens Distortion Correction
From (i4, Ju) to (ia, ja) or (i, )
Parameters to be calibrated: &

Iy

Step 4 Pixel Scaling
Parameters to be calibrated: (ig, jo), &, and 3.

T

2D Image Coordinates (i, /)
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To summarize these transformations, we create a flow chart as shown in Fig. 3.5. All the
parameters used at different steps, which need to be calibrated later, are listed.

Fig 3.5 Transformaton from 3D global coordinate to 2D image coordinate.
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3.3.2 Phase-to-Z Conversion

In this section, a formula for converting the measured phase distribution into 2z
coordinates will be derived. In Section 2.2, it has been shown that the phase is correlated
with the surface height for parallel incident light rays. Now we will set up this
relationship for an ordinary point lighting source.

QL Source (.]) 1rage plane

Grating i b
Er E
!
+B\ /pD\| o 0

21, J) I
A Z

Fig 3.6 Crossed-optcalaxes geometry

As shown in Fig. 3.6, a grating pattern is projected onto the surface to be measured by a
point lighting source. The optical axis of the projector crosses the optical axis of the
camera at point O on a z=() plane, which has been set up during the calibration. E, and E.
denote, respectively, the front centers of the lenses for the projector and the camera. The
distance between these two lens centers is b, and the distance between the lens center to
the z=0 plane is denoted as /. A light ray passes through the z=0 plane at point B and
reaches the surface at point A. Then the reflected ray passes through the z=0 plane again
at point D. Eventually, an image point is formed on the image plane at (i, /). Note the

triangle ABD is similar to the triangle AE .E,. Therefore, we can write

§5= b
2, j)  1+2(, j)

3.3-7
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Let f, be the frequency of the deformed grating on the z=0 plane. We then have

&, j) = 2f, BD (3.3-8)

Substituting Eq. 3.3-8 into Eq. 3.3-7 and solving for z(i, j), we obtain the following

conversion formula.

[- D3, j)
2nf, - b-®G, j)

20, j) = (3.3-9)
By using Eq. 3.3-9, the phase information of each pixel on the image plane can be
correlated to the z coordinates if all the parameters in the above equation are known.
Actually, f5 is not uniform over the entire field of view since a point light source is used.
The deformation of the grating, including the rotation of the grating lines and slight

change of fo, becomes the source to calculate the surface shape. What has to be calibrated
is fo as a function of (i, j) on the z=0 plane.

3.3.3 Calibration Procedure

Up to now, the relationship between the direct measured information ®(i, j) and the
ultimate 3D coordinates (x, y, z) has been accomplished through the following three
equations. If all the constants involved in the equations are known, the ®(i, ;) at any
pixel on the image plane can be converted into 3D coordinates (x, y, z). The problem of
camera calibration is to compute the constants involved in these equations. The constants
include the camera intrinsic and extrinsic parameters, the grating frequency on the z=0
plane, and the distance between the two lens centers. The calibration is carried out based
on a number of points whose global coordinates (x, y, z) are known and whose
corresponding image coordinates (i, j) and phase ® are measured. The details of

calibration are described in the following paragraphs.
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,

x.h + Y. +Z'f3 +1,

(-k-r*)i-s,=f
x,r, +y,i;, +z,r, +I3

X r,+y r+zr+t
Yi-k-rt)jg,=f 222575075

x,r, +y‘r, +z‘r9 +f3
2ﬂfu b"'d’(‘v.])

2@, j)=

\

(1) Camera Parameter Calibration

Fig. 3.7 illustrates the setup for calibrating a camera using a set of monoview non-
coplanar points. The camera is mounted on a translation stage, and an accurate surface of
a metal block, called the calibration target, is in front of the camera. Two Ronchi
gratings are mounted on the surface with its grating lines perpendicular to each other.
The spacing of the grating lines is known, and the central points of the grating lines are
treated as the calibration points. The vertical grating is used for the x-calibration and the

horizontal grating for the y-calibration.

Calibration Target

Fig 3.7 Schematic of the experimental setup for camera calibration.

Several images are taken at different z values, one of which is established as z=0. From
these images, the phase is calculated, and then the (®, i, j) and its corresponding (x, y, z)
are known for each selected point. Assuming that we have N pairs of 2D-3D calibration
points, Eq. 3.3-5 can be also written in a matrix form (see Appendix A).
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[Al-(p1+(B)-[q] +k-[C]-Iq] =[0] (3.3-10)

where

|xy z
0 000 xy z 1

“danas

—ix —iry =iz =i
(B]=| . . : :
—jx =jy =jz -]

INx4

.2 .2 .2 .2
i-r--x i-ro-y i-r"-z i-r
[C1= . s . . s
].r .x j‘r .y J.r -z J.r

2Nx4

rlflsu rlflav r
_{nflé, _| s f1d, |7
= prs, | 1= rf18, | B
119, t,f196, t,
(AL =P+
[p]-[[ﬂ]] : [q1=(R] ;

3

Substituting N pairs of 2D-3D point coordinates into Eq. 3.3-10, the composite
parameters defined in [p] and [q] can be solved for by using the pseudo-inverse method.

Then the composite parameters can be further decomposed into individual parameters.
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(2) Sensor Head Geometry Calibration
Very similar to the camera parameter calibration, a monoview non-coplanar calibration
method is used for the sensor head geometry calibration. If we use N pairs of known 2D-

3D points, Eq. 3.3-9 can be re-written in a matrix form.

[D)-[r]=[E] (3.3-11)
where
z(, ) ~da, ) z(i, j)- 9, j)
: : 2, - d
pl=| - G-
>
' ' N2 ) Nxl

Substituting N pairs of 2D-3D point coordinates into Eq. (3.3-11), the composite

parameters defined in [#] can be solved by using the pseudo-inverse method.

3.4 Summary

As mentioned in the beginning of this chapter, the goal of optical 3D measurement is the
determination of the Cartesian coordinates of surfaces. All known optical methods based
on grating projection are creating relative and indirect results, such as the height
information. Based on the works of photogrammetry, a camera calibration technique has
been developed for the grating projection method to calculate Cartesian coordinates from
the directly measured values (phase and image coordinates). The calibration is carried
out before the measurement in order to obtain all the constants involved in the system,
including the parameters of the camera (intrinsic and extrinsic) and the relative geometry
between the camera and the projector. After the calibration is carried out in the lab, the
whole optical measurement system can be taken to any site to perform in-situ
measurements. As long as the camera and the geometry between the camera and the
projector remain unchanged, there is no need to re-calibrate. In each measurement, the
direct calculated results (i, j, ) can then be converted into 3D coordinates (x, y, z) by

using the mathematical model previously described.
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To have 3D Cartesian coordinates as the measurement results is very important for the
dynamic measurement. It provides a very detailed 3D raw information source—a set of
point clouds in 3D space. From the point clouds, it is possible to analyze the information
further, such as the curvature, cross-sectional lines, and even to reconstruct the surface.
In addition, due to the large amount of points obtained, any detailed feature at any
location inside the field of view can be analyzed. Furthermore, it provides a practical
tool for verifying the measurement accuracy, which will be the topic of Chapter 5. The

following chapter will describe the dynamic measurement system from the point of view
of hardware.
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CHAPTER 4
DYNAMIC MEASUREMENT SYSTEM

4.1 Introduction

In previous chapters, the details of the grating projection and Fourier transform technique
are presented. In addition, the data processing algorithms are depicted systematically.
These are the theoretical basis of the optical measurement system proposed for this
research. In this chapter, the emphasis will be shifted to the hardware’s point of view. In
the first section, a system overview will be given, which covers the main components of
the optical measurement system. As the most important components, the high-speed
camera SR-1000 and the multi-channel data link (MCDL) will be introduced in the last

two sections.

4.2 System Overview

Control Unit

6 digital inputs

2 analog inputs

FOV

———»

Fig 4.1 Schematic of the high-speed optical measuremnent system.
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As shown in Fig. 4.1, the proposed optical measurement system consists of a high-speed
digital camera and its control unit, a light source, a grating projector, a multi-channel data
link (MCDL), and a personal computer. Actually, the high-speed camera and the grating
projector are mounted inside a box, which is called the sensor head. The light source
illuminates a Ronchi grating inside the projector, and the grating is projected onto the
surface to be measured by a 16-mm lens. Ronchi gratings are evenly spaced lines
running parallel to each other. After being projected onto a surface, its image will
deform according to the surface shape. The deformed grating images on the specimen
surface are digitized and saved into the control unit of the high-speed camera system at a
certain framing rate. In the mean time, the MCDL acquires external analog and digital
signals simultaneously to correlate them with each frame. The images stored in the
memory of the camera control unit are replayed to view the recording to select interesting
frames to represent a dynamic event. The selected image frames are then transferred into
the computer and saved as standard image fiies via a SCSI-II connection. After each
deformed grating image being processed by the computer, an array of points (as many as
200,000 points) with known xyz coordinates is generated, which represents the surface
shape inside the field of view of the camera. Since a high-speed camera is used, a
sequence of deformed grating images of a dynamic event is saved successively at a
certain frame rate. By processing each individual image, it is possible to obtain the
surface shape at that particular time when this frame is recorded. By processing these
deformed grating images, the surface deformation history is known as a function of time
since the time interval between image frames is known. In conclusion, the system has the
ability to digitize the whole surface inside the field of view into an array of points with

known xyz coordinates, at a certain sampling rate (30 ~ 1000 Hz).

For the current system configuration, the field of view is approximately 100 x 100 mm,
and the depth of view (outside this range the grating image will be blurred) is
approximately 50 mm. The distance from the sensor head to the surface to be measured,
called the working distance, is approximately 200 ~ 250 mm. The dimension of the
sensor head is approximately 335(L) x 200(W) x 80(H) mm. The image acquisition time
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is dependent on the electronic shutter speed (as low as 50 psec) and the framing rate of
the camera (30 ~ 1000 fps). The time needed to process one image frame saved on the
hard drive is approximately 15 seconds for the current computer (Pentium 200 MHz).
Since the final measurement results are xyz coordinates, we set up a goal for the
measurement accuracy—Iess than + 50 um for the overall measurement. This is the
precision for xyz coordinates calculation, and details of the accuracy will be described in
the next chapter. By changing the lens specifications and the geometry of the sensor
head, the field of view and the working distance can be modified to fit a particular
application.

Until now, the general information regarding the proposed optical measurement system
has been introduced in this section. As the most important component, the details of the

high-speed camera will be described in the following section.

4.3 High-speed Camera Specifications

As the recording device in the proposed system, a high-speed monochrome digital
camera is used in this work—Kodak Motion Corder SR-1000 (Motion Analysis Systems
Division, Eastman Kodak Company). A picture of the high-speed camera is shown in
Fig. 4.2. The specifications of the high-speed camera are listed in Table 4.1.

Fig 4.2 Kodak Motion Corder High-speed Camera SR-1000.
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Imager CCD, 7.4x7.4 um pixel size, progressive scanning, 658x496 sensor array
Electronic .
Shutter As fast as 50 psec. depending on the frame rate
Display ) .
Resolution 256 gray levels, RS-170 video output
Reclg:: € | 30, 60, 125, 250, 500, and 1000 frames per second (fps)
};’ggg start, center, end and random (activation: control panel & TTL external input)
Stora gc e DRAM memory for 546 frames @ 512x480 resolution.
18.2@ 30 fps ( 546 frames @ 512x480 resolution)
Recordin 9.1@ 60 fps ( 546 frames @ 512x480 resolution)
Time B | 44 @ 1251ps( 546 frames @ 512x480 resolution)
(sec) 2.2 @ 250 fps ( 546 frames @ 512x480 resolution)
2.2 @ 500 fps (1092 frames @ 512x240 resolution)
2.2 @ 1000 fps (2184 frames @ 256x240 resolution)
D‘g’;'t;l'::“ge 8 bit monochrome TIFF or BMP file export via SCSI-2 connected PC.
Data Input Accepts 2 analog and 6 digital data inputs via Kodak MCDL
Lens
Mounting Standard C-mount

Table 4.1 Specifications of the Kodak SR-1000 High-speed camera.

The deformed grating images, which are changing their forms quickly during a dynamic
event, are captured by the high-speed camera and stored temporarily in the camera’s
DRAM memory. Four triggering modes (start, center, end and random) can be selected
to fit a particular application. [n addition, the triggering signal can be a TTL compatible
signal (BNC type connection) or a signal generated by a switch closure. In addition,
there is a TTL compatible synchronizing signal provided at the beginning of each image
frame for synchronizing other external electronic devices. After images are stored
temporarily in the memory of the camera, they can be played back to select useful frames
for transfer to a personal computer to store on a hard disk as permanent image files.
There is no film or magnetic tape nor moving mechanical parts involved in the whole

recording process. This is a major advantage of digital cameras over conventional high-
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speed film cameras since all the problems associated with film developing are eliminated.
However, the digital high-speed cameras are operating at relatively low frame rates (250
~ 1000 fps) compared to the high-speed film cameras (up to 100,000 fps). Some digital
high-speed cameras can achieve higher frame rate, but this is accomplished on the
reduction of the image size. However, it is expected that the performance of digital high-
speed cameras will be enhanced in the near future.

The xyz coordinate calculation requires a high-quality grating image. For recording a
static object, a lower framing rate and longer exposure time can be used. Therefore,
lighting is not a problem for static or relative slow-moving objects. However, lighting is
a well-known problem in high-speed photography applications. Extra care has to be
taken to make sure the grating images are not blurred and have adequate contrast. In
order to avoid noise caused by irregular reflection on the surface, a very thin coating is
made on the object to create a matte reflective surface. However, the matte reflective
surface of the specimen allows for only a fraction of the incident light beam to be
collected by the camera lens. This, along with the need to record a rapidly propagating
phenomenon at an exposure time on the order of milliseconds (SR-1000), requires a very
intense light source which is not readily available. To meet this condition, a fiber optic
illuminator with a 175-Watt quartz halogen lamp is used, which is capable of generating
3200 K light intensity. In addition, two plano-convex lenses are mounted in front of the
light-pipe to condense the light rays before they reach the projection grating. Even with
all these measures, the light intensity barely reaches the minimum requirement at the
framing rate of 1000 fps. For lower frame rates, such as 250 fps, the current lighting is

sufficient to provide an adequate illumination.

4.4 Multi-channel Data Link

As shown in Fig. 4.3, the Kodak Multi-channel Data Link (MCDL) expands the
capability of the Kodak Motion Corder High-speed Cameras by correlating external
signals with each video image. The MCDL can measure two analog voltage levels of
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transducers, such as pressure and force sensors, and simultaneously record this data along
with the video image. In addition, the MCDL has six digital channels (switch closure).
These digital signals can be used to monitor the status of various switches in a complex
operation. In our case, the analog pressure and force signals are monitored along with the
high-speed images. The MCDL is a very powerful tool that can provide information on
the history of force or pressure, which is correlated with the surface shape. Therefore, the

MCDL is helpful in many practical measurements.

Fig 4.3 Kodak Multi-channel Data Link (MCDL).

4.5 Summary

In conclusion, the system proposed in this research is an optical measurement system that
can digitize a portion of a 3D curved surface into an array of points with known xyz
coordinates at a certain sampling rate (30 ~ 1000 Hz). Since a high-framing-rate digital
camera is used, the shape of a surface under dynamic events can be measured as a
function of time. In addition, several external signals can be simultaneously recorded
with each image frame by using the MCDL. By carrying out further data-analysis on the
point sets with known xyz coordinates, the detailed surface information, such as the
displacement and curvature, can be obtained. The objective of the accuracy of xyz
coordinates calculation is approximately * 50 jum, and the details on the accuracy issue

will be discussed in the next chapter.
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CHAPTER S
ACCURACY AND SENSITIVITY TESTS

5.1 Introduction

In Chapter 3, the fundamentals of the grating projection and Fourier transform technique
have been introduced. All processing procedures have been described regarding how to
obtain the phase information, which is related to the surface shape. Later, the calibration
techniques have been depicted in order to convert the direct measured value (@, i, j) into
Cartesian coordinates (x, y, z), which is necessary to define surface shapes in 3D space.
So far, with all these steps we can digitize a surface into an array of points with known
coordinates. Before we rush into the applications of the proposed system, there is still a
question left in our mind, and actually an important question from the users’ point of

view—how accurately can these 3D measurements be carried out?

Every system used for 3D coordinate measurement has to define its accuracy of
measurement. For a coordinate measurement machine, the manufacturers usually use the
linear displacement accuracy for three axes and the volumetric performance to specify
how accurate their CMMs are. Usually, the accuracy for a CMM is less than 5.0 yum per
1000 mm. That means there is an error of approximately 5.0 um in the coordinate
measurements for an object of 1.0 meter in length. Therefore, CMMs are treated as high-
accurate dimension measurement tools. This is the concept of measurement
accuracy—the possible errors in the measurement results. The sensitivity of
measurement means the smallest quantities or changes that can be detected by the
measurement system. Can we also find a way to define the accuracy and sensitivity of
the optical 3D measurement systems? Due to variations of the optical 3D measurement
systems, the definitions of accuracy and sensitivity are not that clear in some cases. Here

we review the accuracy issue for some of the optical 3D measurement methods.
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5.1.1 Geometric Moiré Methods

As described in Chapter 1, the measured results from the geometric Moiré methods are
discrete points with known (h, i, j). Here, h denotes the height of a point from a reference
plane, and (i, j) are the location of that point on the image plane. In addition, the points
are the central points of the Moiré fringes as shown in Fig. 1.3. There is no height
information available for the points located between the Moiré fringes. An interpolation
procedure has to be employed by assuming smooth changes between Moiré fringes to
obtain the height information for any point not located on a Moiré fringe. If there is a
shape change between two adjacent Moiré fringes, this shape change will not show up in
the final result. As exhibited in Fig. 5.1, the interpolation procedures just round off small
surface change. In other words, the system is not sensitive enough to detect such a

detailed surface change.

True Surface Shape Surface Shape By Interpolation

a2

dh

More Fringe Locations

Fig 5.1 Sensitivity concept in the geometric Moiré methods.

Therefore, a concept of sensitivity or resolution has been introduced to define how
sensitive a geometric Moiré system is for detecting surface changes (Sciammarella 1982).
The sensitivity, denoted as dh, is equal to the distance between two successive Moiré
contour lines. In past years, researchers treated the maximum error in the surface shape
measurement as the same as the sensitivity dh. There are many techniques published on
ways to increase the number of Moir€ fringes in a field of view. The more Moiré fringes
you have, the more sensitive the measurement is, due to the smaller distance between

consecutive Moiré fringes. However, for each Moiré fringe how accurate the height

70



Chapter 5

information can be obtained is different from the concept of sensitivity, although it could
be smaller in value compared with dh. Regarding how accurate each Moiré fringe
represents in the height information, few works have been done. One way to determine
the accuracy is to carry out an error analysis from Eq. 1.2-1 by assuming errors have been
introduced into each of the parameters involved to simulate how the outcome height will
be affected. The ideal optical system represented by Eq. 1.2-1 is different from a
practical optical system due to a number of imperfect factors or layout. In addition, some
noise sources are not included in this kind of error analysis, such as electronic noise.
Therefore, how accurate the height information can be is still to be verified. Another
reason why there is a lack of accuracy analysis is due to the measured result (h, i, )),
itself. They are neither absolute nor expressed in a form of Cartesian coordinates. For
such data, we really have few things to verify its accuracy. In addition, the geometric

Moiré methods have a more serious problem to deal with, which is the sensitivity.

5.1.2 Phase-computing-based Optical 3D Measurement Techniques

For the phase shifting or the Fourier transform methods, the situation is different from
that of the geometric Moiré methods. First, the sensitivity is no longer a serious problem
since the phase calculation is carried out for each pixel, instead of only for discrete
pixels. There is no need to interpolate the data. Therefore, the sensitivity of phase-
computing-based methods is defined as the smallest change in the surface shape or
position that can cause the grating image to shift one pixel in the image plane. Usually,
the angle between the projector and the CCD camera plays an important role. Later, an

experiment will be carried out to find out how sensitive the current system is.

The direct measured value of these phase-computing-based methods is phase plus its
corresponding position on the 2D image plane—®(i, j). Therefore, the accuracy of the
phase computation is an important topic, and there are a number of papers dealing with
it—Halious & Liu 1986, Creath 1992, and Joenathan 1994. From these papers, the phase
computation accuracy is seen to be approximately 2n/100. Various error sources are
briefly listed below.
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Error due to imperfect sinusoidal grating profile: The line width and the spacing
between two consecutive lines may have some error.

Error due to digitization: The digitization noise is caused by the finite number of
digitized levels present in the detected intensities. Here 8 bits or 256 gray levels are
used in the A/D transformation.

Error due to electronic noise: The background noise in the camera and the frame
grabber gives rise to random errors. Each pixel of the solid imager converts light to
an electrical charge. If the illumination is not strong enough or the lighting does not
fit with the spectral response character of the camera in wavelength, a great deal of
electronic noise will be added into the image.

Error due to imperfect phase shifting: This error is relevant in the phase-shifting
systems since the grating has to be shifted a very small distance. Due to mechanical
reasons, there are always some errors for the real distance the grating travels.

Error due to surface quality: The noise level varies with the surface finish of the
object under measurement. If a large amount of detailed surface irregularities exist,

there will be noise in the final phase map.

The error sources listed above are for the phase computation only. As indicated in the

previous chapters, the phase information and its corresponding image coordinates (®, i, ;)

arc

not the final measurement results for our system. The (&, i, j) have to be converted

into Cartesian coordinates (x, y, z) by using a special calibration technique. Therefore,

there are some additional errors related to this transformation.

Error due to drifting: All the parameters calibrated are sct for the geometry of the
sensor head at the time of calibration. The geometry may vary with temperature,
and some errors will be introduced by still using the old calibration data.

Error due to imperfect calibration: As described in the previous chapter, a standard
object, called the calibration target, is necessary in the calibration. Moreover, the
calibration target will be translated at different z positions. The imperfection of
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surface flatness and the error of linear movement will bring some errors into the

calibration parameters.

Considering all these error sources for both the phase calculation and the Cartesian
coordinate calculation, the final accuracy for the Cartesian coordinates (x, y, z) is a very
important issue. Standard error analysis, as carried out in Joenathan’s paper (1994), is
not fully suitable here since some error sources are implicit and are not easy to simulate,
especially for those error sources related to the calibration. Fortunately, we have 3D
Cartesian coordinates as the final results. They are used also as a tool to check the
measurement accuracy. Accuracy will be checked by measuring standard objects with
known geometry, such as a flat surface and a cylindrical surface. By comparing the
measured values with the standard values, the overall measurement accuracy can be
defined. Please note that this way of defining the measurement accuracy is unlike that
used in the geometric Moiré methods or any other phase-measuring methods since they
can not provide 3D Cartesian coordinates as the final measurement results. This method
to define the measurement accuracy is more similar to methods employed by industries
for CMMs. The following sections will include the accuracy test results by using a flat

surface and a cylindrical surface for the current system configuration.

5.2 Flat Surface Test

The first accuracy test is carried out with a flat surface. A metal surface is carefully
machined to have a surface flatness less than 20 um. Then a uniform thin powder coating
is put on the surface to give an optical diffusive feature. The thickness of the powder
coating is approximately 30 um, and care is taken to make sure there is a uniform
distribution over the whole surface. Therefore, after the coating the surface flatness is
still less than 20 pm. The surface is placed in front of the sensor head at different z

values (-22~22 mm) in the depth of view, as shown in Fig. 5.2.
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Fig 5.2 Surface fltness test.

For each position, the flat surface (approximately 80x80 mm) is measured by using the
proposed high-speed 3D measurement system. Each measurement generates a point
cloud with known xyz coordinates, usually over 100,000 points. A point cloud of a flat
surface is shown in Fig. 5.3 with reduced number of points. Since the original surface is
flat, all the points measured should be very close to a plane. In order to evaluate the
‘flatness’ of the data, a least square plane fitting is carried out for all the points, and the
deviation of each point is calculated. The results for the total number of points involved

in the calculation are given in Table S.1.

Fig. 5.3 Measurement result of a flat surface—point cloud.
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Surface Location | Number SD Surface Location | Number SD
Z (mm) of Points (um) Z (mm) of Points (ptm)
-22.000 154,775 11.02 2.000 154,811 10.82
-18.000 154,784 11.06 6.000 154,811 11.05
-14.000 154,806 {  10.59 10.000 154812 | 11.28
-10.000 154,809 10.88 14.000 154,841 11.95
-6.000 154,812 10.54 18.000 154,812 12.99
-2.000 154,812 10.40 22.000 154,810 14.02

Table 5.1 Flat surface test results.

The standard deviation (SD) is calculated by the following equation:

(5.2-1)

where, d; is the distance from point i to the plane just fitted, and N is the total number of
points. Consequently, approximately 68% of the points are within one standard deviation
from the fitted plane, and about 97% of the points are within two standard deviations.
The maximum deviation is caused by isolated noise, which could be bigger in value than
the standard deviation. However since those noisy points are relatively small in number,

their effects can be limited by any surface filtering process.

The average standard deviation for all 12 tests is approximately 11.38 pum, and the
deviation is relatively small around the center of the depth of view. Therefore, it is
recommended to carry out measurements around the center of the depth of view

whenever possible. The flat surface tests show very good results, and it is better than the
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overall accuracy target we set for the system—z= SO um. In the next section, we will test

accuracy on curved surfaces.

5.3 Cylindrical Surface Test

A cylindrical surface is machined on an aluminum rod with a diameter of 75.810 + 0.004
mm. The aluminum surface is very shiny after machining, and an appropriate coating is

needed to reduce noise in the images. After coating, the cylindrical surface is placed

z ‘gy
wﬂv‘

Fig 5.4 Cylindrical surface test.

approximately in the center of the depth of view, as shown in Fig. 5.4. Then a portion of
the cylindrical surface (approximately 50x50 mm) is measured by using the proposed
optical system to generate 1,100 points as the results. These points are displayed in Fig.
5.5. Since the original surface is cylindrical, all the measured points are very close to a
cylindrical surface with a diameter of 75.81 mm. The data deviation from the standard
cylindrical surface is evaluated at different y locations (-25~25 mm). The best fit results
at y=0.0 are displayed in Fig. 5.6, and Table 5.2 summarizes the best-fit results for all

other y locations.
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Fig. 5.5 Point cloud display of the measured data on a cylindrical surface.

Cylindrical Surface Bast-fit Resulits
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Fig. 5.6 The best-fit results at y=0.0.
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Y (mm) -25.0

-200 | -150 | -10.0

0.0

5.0

10.0

15.0

20.0

250

SD (um) | 305

25.7 | 31.5 | 36.8

323

28.7

33.0

345

339

358

304

Table 5.2 The best-fit results of the cylindrical surface.

The accuracy test done on a cylindrical surface is slightly different from those carried out

on a flat surface since for curved surfaces the laterai coordinates, x and y, will play a role.

Any error with x and y coordinate calculation will affect the final data deviation. The

results shown in Table 5.2 are still better than the accuracy target we set for the overall

measurement.

5.4 Sine Vise Test

A sine vise is an industrial tool to create accurate angles by changing the height of gauge

blocks underneath. As shown in Fig. 5.7, a sine vise is placed in front of the sensor head.

By changing the height of the gauge blocks, surfaces at different angles are created.

Sensor Head

=

Fig 5.7 Accuracy tests with a since vise set at different angles.
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Since the accuracy of the gauge blocks is less than 0.5 um, the angles created by this
method have an accuracy of approximately $0.0036°. A portion of the top surface of the
sine vise is measured for each different angle, and the deviation of each point to the ideal
flat plane at that angle is evaluated to verify the measurement accuracy. Table 5.3

summaries the results.

Test 1 2 3 4 5 6 7 8 9 10

Gauge Block Height

(mm) 381 |508 |762 |[10.16 |12.7 |1651 |17.78 | 20.32 | 22.86 | 254

Angle (°) 1719 | 2292 | 3.44 |4.589 | 5.739 | 7.47 | 8.048 1 9.207 | 10.37 | 11.54

Number of Points | 350 350 1350 |350 {350 350 |349 349 349 [ 349

SD (um) 31.94 | 33.15 | 37.96 | 43.55 | 44.77 | 47.57 | 52.67 | 50.77 | 51.89 | 50.18

Table 5.3 Accuracy test results on the sine vise.

From Test 1 to Test 10, the surface traveled about 30mm in the Z direction. Compared to
the depth of view (S0mm), we found that the accuracy gets worse when a surface is
located close to the two ends of the depth of view. From Table 5.3, we can see that the

overall accuracy objective is barely maintained in this case.

5.5 Sensitivity Test

In the previous section, the measurement accuracy on flat surfaces and curved surfaces
has been evaluated. The objective of the accuracy tests is to assess how much error is in
the measured data. In this section, we will decide how small a surface change can be
detected by the system, ie. how sensitive the system is. Note here, the sensitivity we are

considering is the out-of-plane sensitivity, in other word the sensitivity in the Z direction
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since the system is primarily designated for out-of-plane measurement. We will not

assess how sensitive the system is for the measurement in the X and Y directions.

The sensitivity is mainly decided by the angle between the projector and the CCD
camera. The bigger the angle is, the more sensitive the system will be. However, bigger
angles will reduce the depth of view. In our current configuration, the angle is about 30
degrees. Instead of assessing the sensitivity theoretically, a test will be carried out to
evaluate the practical sensitivity. Again, the flat surface used for flat surface accuracy
test is used here. As shown in Fig. 5.2, the flat surface is placed at different positions in
the depth of view. At each location, the flat surface is moved by a small distance, usually
in microns. The surface is measured twice (before and after the movement) to sec
whether or not the small movement is included in the measured results. Since the
smallest read-out of our translation stage is 10 microns, the smallest movement we can

have is 10 microns.

° Z
o

e
o
o

22.0

Fig.5.8 Sensttivity test location in the depth of view (step size=10 microns).

As shown in Fig. 5.8, three locations inside the depth of view (z = -22.0, 0.0, and 22.0
mm) are selected to carry out the sensitivity test. The flat surface is placed at these
locations, then five small movements (step size = 10 microns) are introduced in the Z
direction. The surface is measured at each step to create a point cloud, and then the raw
point cloud is plane-fitted. Finally, the distances between these computed planes are

compared with the known step size (10 microns). The results are shown in Table 5.4.

The results in Table 5.4 show that under the current configuration the system can detect

as small as 10 microns displacement in the Z direction. The step size of 10 microns is
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also close to the accuracy of the translation stage, therefore an error of 1 or 2 microns is
very reasonable. As mention previously, the sensitivity can be increased by changing the
angle between the CCD camera and the projector. However, at this moment it is not

necessary to do so.

. Standard . Measured
l;o(c;?n())n Movement lel:gcr Mzgsul:i d Movement I(E:“(:)r
(um) (um)

| 154,807 10.0 0.0

2 154,808 8.0 20

-22.0 10.0 3 154,812 9.0 1.0

4 154,811 9.0 1.0

5 154,807 8.0 2.0

1 154,808 10.0 0.0

2 154,811 10.0 0.0

0.0 10.0 3 154,808 10.0 0.0

4 154,809 10.0 0.0

5 154,811 8.0 2.0

1 154,812 10.0 0.0

2 154,810 10.0 0.0

22.0 10.0 3 154,811 10.0 0.0

4 154,810 9.0 1.0

5 154,810 12.0 -2.0

Table 5.4 Sensitivity test results.
5.6 Summary

In this section, various error sources have been pointed out. Instead of assessing the
overall measurement accuracy theoretically, several experiments have been carried out to
evaluate the accuracy from a practical point of view. The xyz coordinates as the

measured results make it possible to evaluate accuracy this way. Three tests on flat or
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curved surfaces show that the overall accuracy objective, £50 pum, has been obtained.
Regarding the sensitivity of the measurement, the experiment shows that an out-of-plane
displacement as small as 10 um is detectable. In addition, the experiments show that near

the middle of the depth of view the error is relatively small.

Finally, the data quality varies with the surface finish of the object under test. Very
rough surfaces will create more random errors in the xyz coordinates. A number of ways
can be employed to reduce this kind of error. One of the ways is to filter the original

grating image to remove random noise.
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CHAPTER 6

BIAXIAL EXTENSION TESTS OF POLYMERIC
MATERIAL

6.1 Introduction

6.1.1 Background

Plastics are modern, synthetic materials that have superior properties, such as hygienic
barrier properties, lightweight, and durability, which contribute significantly to our health
and quality of life. In automotive applications they offer light-weight performance which
in turn improves gas mileage; in packaging applications, they protect our food from
contamination and many products from damage; in medical applications they are used to
improve our quality of life and save lives through IV and blood bags, artificial hips and
limbs and disposable syringes. In construction, plastics help insulate and decorate our
homes and are used extensively in plumbing and electrical applications. Plastics are also
very energy efficient. Studies show that it takes less energy to make a product from
plastics than just about any other material. For example, it takes less energy to make a
plastic bottle than a glass bottle; vinyl siding than aluminum siding; plastic pipe than steel
pipe; and so on.

Blow molding and injection molding are two common techniques to fabricate different
shape plastic products. As shown in Fig. 6.1, thermoforming technologies require a pre-
manufactured thermoplastic sheet, which is clamped, heated, and shaped into or over a
mold. Despite the fact that thermoforming has been used extensively in recent decades,
the techniques used were mostly based on experience, and therefore were rather
empirical. How to test the thermoformability of plastic sheets was always a challenging
task for engineers. For example, in the past if one wanted to know whether a certain
plastic sheet material could be formed into a particular shape, the only solution before
was to build a mold and try it out. Now, with the powerful computers, engineers can
simulate the whole thermoforming procedure using different constitutive material models
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to represent the behavior of the polymeric material. By doing so, it is possible to know
whether or not a particular product can be made and in addition how to make it, including
what temperature and airflow rate should be applied, and what thickness the final product
will be. However, as the input parameters of these simulation models, the material
constants of polymeric material under elevated temperatures are often lacking. There is
an increasing need for the polymeric material to be adequately characterized since the
performance of these simulation models depends on how accurate the material models
and parameters can be determined. Therefore, this recent progress in computer-aided
plastic processing demonstrates a strong need for accurate description of the material

behavior relating stress, strain, and temperature.

Compressed Ar

Vent

Fig 6.1 Thermoforming process: (1) preheated thermoplastic sheet;
(2) mold base plate; (3) mold body; (4) pressure plate; (5) rapped ar.

6.1.2 Inflation of Plane Circular Membrane and Basic Equations

As mentioned in the previous section, accurate material properties are needed in order to
obtain correct results from simulation models. However, the properties of plastics are
directly dependent on temperature, strain rate, and deformation conditions (uniaxially or
biaxially). In thermoforming, the deformation of a polymer membrane from a 2D flat

sheet to a 3D shape is essentially biaxial and occurs above the material’s glass transition
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temperature (usually >100°C). In addition, the deformations occur very rapidly, usually
. less than a second for the whole event, resulting in high strain rates. A number of devices
are available commercially for uniaxial extension tests, such as stretch rheometers.
However, predicting the deformation of a viscoelastic membrane under biaxial stretching
based solely on the behavior exhibited in uniaxial extension often results in large errors,
especially for large deformations. Therefore, it is generally more desirable to use a
biaxial stretching test at rates approximating those for the application being considered to

characterize the material properties under biaxial extension.

One of the techniques, which has been used with success to study the behavior of
polymeric materials in biaxial extension, is the bubble inflation test. A sheet of the
polymeric material to be studied is clamped between two plates, both of which have
circular concentric holes cut in the middle. An inflation medium, a gas or liquid, is
introduced under pressure to a chamber mounted on one side of the plate. The pressure

difference, AP, between the two sides of the sheet will cause the sheet deform into a
bubble, as shown in Fig. 6.2. Usually AP and the deformation of the sheet are monitored

as functions of time to provide data from which material constants can be determined.

Fig. 6.2 Geometry of a bubble.

The use of the bubble inflation test to characterize the material properties of polymeric
materials in biaxial extensions is not a new technique. Treloar used a bubble inflation
device in 1944 to test rubber sheets (Treloar 1944). Later in 1951, Rivlin & Saunders
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used a similar device to test a rubber elasticity theory (Rivlin & Saunders 1951). Joye,
Poehlein and Denson found the technique useful in determining extensional flow
properties in 1972 (Joye, Poehlein & Denson 1972). The inflation is often monitored by
a camera filming either a pattern painted on the sheet or the height of the bubble (Schmidt
& Carley 1975, and Derdouri, Connolly & Khayat 1998).

These researchers all considered an idealized sheet inflation in which the deformation is
assumed to be uniform over the entire sheet so that a spherical shell of uniform thickness
is formed as shown in Fig. 6.2. For the idealized equibiaxial extension, the polymer sheet
is stretched by equal amounts in two orthogonal directions, and the through thickness
stress O3 is taken as approximately zero, i.e. plane stress. At any instant, the bubble is
assumed to be part of a thin spherical shell under internal pressure as shown in Fig. 6.2.

The relationship between the radius and height of a spherically symmetric bubble is:

_a‘+h’

>h 6.1-1)

And from classical shell analysis, the following relationship for the stress is obtained:
6, =0, = — (6.1-2)

where R is the radius of curvature of the spherical shell and ¢ is the thickness. The
surface area of a spherical segment is (27Rh), so that if the material is assumed to be

incompressible, the thickness is given by:

az
t=¢ — 61’3
ox[m) (6.1-3)

where # is the original thickness. By substituting Eq 6.1-3 into Eq. 6.1-2, the relationship
between the stress and the height is given by:
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\a? +h?
a=F - (6.1-4)
at

The stretch ratio, 4, is associated with the change in surface distance (arc length) from the
pole to the clamped edge of the sheet so that:

1=2R (6.1-5)
a
where angle « is shown in Fig. 6.2, and can be obtained from:
h=R-(1-cosa) or %:sina (6.1-6)
The stretching strain &, which is uniform over the entire surface, is then given by:
€ =ln/1=ln(£] (6.1-7)
a

The pictures of the bubble inflation from a side view are 2D images, but after a simple
calibration of the scale factor, some 1D quantities can be obtained, such as the height at
the pole or the diameter of a ring. Thus, the knowledge of pressure P together with the
height of bubble A as functions of time is sufficient for the determination of the stress and

strain.

The following assumptions have been used in this development: (1) the biaxial
deformation is uniform over the whole bubble surface; (2) the bubble geometry is
spherical; and (3) the material is incompressible. In fact, uniform stretching over the
entire sheet is not possible by considering the following: (1) the clamping plates restrain
the displacement of polymer sheet adjacent to them and different degrees of slippage
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occur at different locations; and (2) for the tests conducted at elevated temperatures the
temperature distribution is not uniform over the entire circular sheet. If the assumption of
uniform stretching is not valid, the bubble shape will not be spherical. Therefore, all the
equations derived above will be jeopardized. So, what is the real shape for a bubble
during its different evolution stages?

From 2D side-view pictures, it is hard to check the sphericity of a bubble since the
surface curvature at different locations is unavailable. Sometimes, the 2D bubble images
can be projected onto a big screen to get more details on the bubble profile. However,
some errors are introduced in locating the bubble edges since all the processing is
subjective on an operator’s decision. Another shortcoming of the side-view pictures is
the difficulty of measuring the initial deformation around the starting point of applying
compressed air. The polymer sheets undergo thermal deformation due to the heating
process. Therefore, the polymer sheets are no longer flat even though no compréssed air
has been applied. As shown in Fig. 6.3, a pressure plate has to be used in the bubble
inflation tests. Small membrane deformations, i.e. less than the thickness of the upper
plate, will not be seen in the pictures. In order to overcome these detailed disadvantages,
a more robust measurement system is needed to monitor the evolution of a polymer

bubble more accurately.

Unobservable deformation

Deformation due to heating

Fig 6.3 Cross-section view of the bubble mnflation test:
(1) upper phate; (2) ower plate; (3) polymer sheet.
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6.1.3 Application of High-speed Optical Measurement System to Bubble Inflation
Tests.
The optical high-speed measuring system described in previous chapters is a very suitable
tool for the bubble inflation tests, especially for the early deformation stage. The
significance of this measurement can be stated as follows: First, successful use of the
optical, high-speed, whole-field measuring system can provide whole-field out-of-plane
deformation information with high accuracy. By utilizing detailed 3D information
instead of only 2D images, it becomes possible to calculate surface curvature at any
location. Therefore, the uniformity of deformation and the sphericity of a bubble can be
studied accurately. In addition, the measurement during the early inflation stage is
possible. All deformations are observable, even during the early stage. Second, the
results obtained from these bubble inflation tests will provide thermoforming engineers a
chance to check the thermoformability of different materials. Furthermore, the tests
themselves will also provide a tool to verify and improve different analytical models to

offer more precise control over the entire thermoforming process.

With this in mind, a joint research project was launched with the Industrial Material
Institute (IMI) of the National Research Council of Canada (NRC) in Boucherville,
Quebec. The high-speed optical measurement system developed at McGill University
was integrated with the bubble inflation testing facility of IMI/NRC, and all the inflation
tests were carried out at IMI/NRC. In the following sections, the details of the inflation

tests and the measurement results will be presented.

6.2 Experimental Setup

Fig. 6.4 shows an overall view of the experimental setup. A thin square sheet of
thermoplastic material is clamped between two plates that leave a 2.5-inch circle at its
center exposed to two infrared heating lamps on both sides. After being heated to a
certain temperature, the specimen is blown upward into a bubble of an approximately
hemispheric shape by inflating with compressed air at room temperature into the lower

chamber. The optical sensor head is mounted over the specimen looking downward to
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measure the whole deformation history of the polymer sheet. In the meantime, a pressure
transducer is used to record the pressure inside the chamber. By using the MCDL, the
pressure signal is correlated with each image frame. Elapsed time for these tests was
usually less than 1.0 second.

Sensor Head

Infrared Heatew

- Image Data

Pressure Transducer

Compressed Air l:> i

Fig 6.4 The bubble mflation experimental setup:
(1) polymer sheet; (2) pressure chamber.

Three materials were used in our tests: high impact polystyrene (HIPS), acrylonitrile
butadiene styrene (ABS). and high-density polyethylene (HDPE). The raw materials
were cut into 110x110 mm square sheets. The thickness of HIPS and HDPE is 1.0 mm
and is 1.5 mm for ABS. A total of 27 tests were carried out at temperatures which ranged
from 130°C - 180°C and at different airflow rates—3.0, 5.0, and 8.0 liter/second. The
high-speed optical measurement system is capable of measuring the deformation up to
1000 times per second, but was usually operated at 250 frames per second with a shutter
speed of 1/250 second. That means the bubble shape is measured every four milliseconds
for a total period of 2.2 seconds. An infrared camera is mounted beside the optical sensor
head to measure the temperature distribution of the specimen. In the future, two infrared
thermometers will be installed to monitor the temperatures on both sides of the specimen,
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and their readouts are used to control the temperature automatically. The heating
procedure usually took approximately 5 minutes in order to create a uniformly
temperature distribution through the thickness of the specimen. During the heating, the
specimen experienced some warping due to the rise of temperature, even though there
was no pressure difference on both sides of the polymer sheet. This thermo warping is

clearly shown in our measurement results.

The complete step-by-step operating sequence may be summarized as follows: (1) start
with initial conditions at room temperature; (2) the original specimen surface shape is
measured; (3) the infrared camera is turned on to monitor the temperature; (4) the heaters
are turned on to heat the sample for approximately 5 minutes to ensure the uniformity of
temperature; (5) the optical sensor head is turned on to start recording; (6) a valve is
opened for compressed air to flow into the chamber to generate a bubble; (7) the valve is
closed when the bubble bursts; and (8) 30 minutes of cooling process. During the
cooling, the digital images saved in the high-speed camera’s memory can be replayed in
order to select an ‘action’ sequence. Then, the selected sequence is transferred to the
computer for further xyz coordinate calculation. From the image data transferred from
the high-speed digital camera, the surface shape of a portion of bubble surface is
calculated in a form of an array of points with known xyz coordinates. Due to the
limitation of the depth of view of the optical measuring system, only the early portion of

the bubble evolution is measured.

6.3 Experimental Results and Data Analysis
6.3.1 Overview of Measurement Results

The measurement result of a bubble inflation test is an array of points with known xyz
coordinates, as displayed in Fig. 6.5. Each white dot in the figure represents a point in
3D space. Please note that the white dots shown in the figure are a subset of the actual
points measured. Since the xyz coordinate calculation is carried out for each pixel in the
image and the total number of pixels (over 200,000) is too many for most applications, a

reduction factor is used to select a subset from the original point cloud. For example, to
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save one point in every five points in a row and to use one row in every five rows. The
circle in Fig. 6.5 represents the circular opening in the upper plate, which is shown by
rectangular edges. The coordinate system, which is virtually associated with the optical
sensor head, is also shown in the figure with the Z-axis approximately being aligned with

the inflation direction.

Fig 6.5 The measurement result of bubble imflation: ABS @ 150 Celsius & 3.0
Us airflow rate. The measurement was taken at 160 ms after mflation.

As shown in Fig. 6.5, only a portion of the surface of a bubble is measured and digitized
into 3D points. The reason is that for coordinate calculation a rectangular window, as
shown in Fig. 6.6, has to be defined in order to carry out all image-processing works.
Therefore, only the points inside this rectangular window are processed to obtain
coordinate information. The white dots in Fig. 6.5 can be connected by straight lines to
provide a wireframe display of the bubble shape, and this is shown in Fig. 6.7.
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Circular opening

Fig. 6.6 Rectangular xyz coordmate calkculation window.

Fig. 6.7 Wire-frame disphy of Fig 6.5.

Since the xyz coordinates of all the points in Fig. 6.5 are known, and these coordinates are
given with respect to a single fixed Cartesian coordinate system, these raw measurement
. results, which are also called the point cloud, become a source for further analysis of the
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bubble surface characteristics, such as the surface curvature. In addition, the point cloud
shown in Fig. 6.5 is just one measurement taken at a certain time. Similar measurements
on the bubble shape are carried out 250 times per second in our tests, generating a huge
point cloud set for each bubble. All our succeeding analyses about the shape of a bubble
are based on this set of point cloud data.

— Max. Pressure

Measured Range

Burstng Pont /'

Pressure (MPa)

Height (mm)

Fig. 6.8 Pressure vs. height in a typical bubbk inflation test.

Fig. 6.8 shows a schematic curve of pressure vs. height in a bubble inflation test. It is
observed that the pressure will increase along with the bubble height at the beginning of
inflation. After the pressure reaches a maximum, the pressure will decrease, although the
height continues to grow. At a certain point, the bubble begins to grow rapidly and bursts

or fails at the pole region.

The temperature, material, airflow rate, and thickness play very important roles in a
bubble inflation test. To change any of these factors can alter the test results, such as the
height and the maximum pressure, dramatically. In our tests, the bubble height can go up
to approximately three times of the radius of the circular opening (#/a = 3.0). However,
due to the limitation posed by the sensor head fixture, our measurement can only cover
the first one third of the blowing process (h/a = 0.0~0.8). The measuring range is shown

in Fig. 6.8 and the measurement stops just before the pressure reaches its peak. Fig. 6.9
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. shows a graph of the pressure vs. height of ABS at 150°C and 3.0 liter/sec airflow rate.
Using Egs. 6.1-5 & 6.1-7 and the height vs time measurement, the resulting strain rates

are on the order of 1.0s™.
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Fig. 6.9 Pressure vs. Height for ABS @ 150 Celsius and 3 liter/s airflow
rate.

In the literature, several researchers have indicated that beyond A/a=1.2, the bubble
deformation becomes noticeably more pointed at the pole (Joye, Poehlein & Denson
1972). Thus, the bubble is no longer a simple spherical segment. Later, Pan and Watt set
a more strict number, A/a=1.0 instead of 1.2 (Pan & Watt 1996). They all claimed that
before A/a=1.0 the bubble is reasonably spherical, and the analysis should be based on
this range. Our measurement covers h/a=0.0-0.8, and it will provide an accurate

verification of these claims.

In this section, some important aspects of the measurement result of the bubble inflation
test have been described, especially the measurable range. In the next section, the real
shape of a bubble will be analyzed.

6.3.2 Real Shape of A Bubble

A test is carried out on the ABS material at 150°C and 3.0 liter/sec airflow rate. A total
of approximately 100 frames have been saved, and a subset of these images are fully
. processed to generate xyz coordinates. The raw point cloud data calkculated from frame
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#150, which is taken at 160 ms after inflation, has been shown in Fig. 6.5 and 6.7. The
bubble height at that moment is approximately 12.0 mm (W/a = 0.378). As shown in
these two figures, not all the polymeric material inside the circular opening deforms into
a spherical shape. There is a relatively rigid ring along the fixed circumference with little
deformation. At this moment, 160 ms have elapsed since applying the compressed air.
The width of this rigid ring is about 8.45 mm. By observing other images, we find this
rigid ring is existing through all bubble inflation stages, even after h/a 2 1.0.

The measured shape is compared to the assumed spherical shape in Fig. 6.10. The flat
base line is the original polymer sheet before heating. On the top, an arc is created by
using the information of the pole and the fixed circumference. The real bubble shape at
this moment is the curve between the base line and the idealized arc. The maximum
deviation, which occurred at the rigid ring area, is approximately 2.8 mm. Compared to
the bubble height at this instant (12.0 mm), this is an error of about 23%.

ABS TT-13503, Tolms

Tdealized spherieal shape

/
VMeasured shape

Original shape

Fig 6.10 Cross-sectional shape of a bubble at 160 ms after nflation.

In their 1972 paper, Joye, Poehlein, and Denson claimed that at room temperature (23°C)
the deviation from true sphericity is perhaps 5% for the deformations where h/a<1.2. The
measured result showing here is at an elevated temperature—150°C and the deviation is
much worse. Evidently, the temperature gradient in the radial direction and boundary
condition play a central role in preventing the bubble from deforming into a real spherical

shape in elevated temperature cases. Hf we can achieve a uniform temperature
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distribution in the experiments, with no doubt the final shape will be closer to a sphere.
. However, the height of the dome will not be as same as that with the temperature non-
uniformity existing. Most likely, the bubble height will increase. Therefore, it is difficult
to know how much the error has been introduced into the calculation of material

properties, and whether or not the final error is negligible.

The bubble profile in Fig. 6.10 is further analyzed to see what the curvature distribution
is. Two principal curvatures are usually used in case of a curved surface. In bubbie
inflation, the curvature distribution at a certain height in the circumferential direction
doesn’t change much. The curvature distribution in the meridian direction on a cross-
section line through the pole is studied first. The curvature k of a curve is defined as the
absolute value of the rate of change of the tangent angle with respect to the arc length,
and the radius of curvature is defined as 1/k. A large curvature, ie., small radius of
curvature, means the curve is turning rapidly, while a small curvature, i.e., large radius of
curvature, means the curve is nearly straight. In the extreme cases, the curvature is zero
and the radius of curvature is infinite for a straight line. The discrete points with known
xyz coordinates, which represent the bubble profile, are fitted into a 3D curve. Then the

curvatures at different locations along the curve are calculated and plotted.

Fig. 6.11 Curvature distribution at 160 ms after inflation and A/a=0.378.

As shown in Fig. 6.11, the curvature plot consists of a number of circles centered on the
curve, so that the radius of each circle is proportional to the curvature at that location. A

large circle means the bubble shape is turning rapidly at this location, while a small circle
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means the bubble shape is flat. Due to our viewing direction, these curvature circles are
shown as small line segments. From the curvature plot, we can see that at this moment
the curvature is almost uniform in the region near the pole. With the increase of the
distance to the pole, the curvature decreases. There is a point on each side of the pole
where the curvature is zero since at this point the second derivative of the profile curve is
zero. Starting from this zero-curvature point, the curve changes its shape from concave
upward into concave downward. It is very clear that the problem occurs near and beyond
these zero-curvature points (inflection points), even though at 160 ms after inflation and
the h/a ratio is only 0.378. Another observation is that on both sides of the pole the

curvature distribution is very symmetric as expected.

The curvature distribution shown in Fig. 6.11 is for a cross sectional curve passing
through the pole. Regarding surface curvature, some analyses have also been performed
as shown in Fig. 6.12. The principal curvatures, k; and k3, at any location on the bubble
surface have been calculated. The Gaussian curvature, k; x k3, at different locations on
the bubble surface is displayed in colors in the figure. Again, the figure shows that the

surface curvature distribution is not uniform on the entire bubble surface.

Fig. 6.12 Gaussian surface curvature distribution at 160 ms after inflation (h/a=0.378).
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We have identified that the surface curvature distribution is not uniform on the entire
surface of a bubble. Furthermore, there is a region near the pole where the curvature is
relatively uniform. In the following, we will explore how this region changes during

different inflation stages. Fig. 6.13 shows the inflation of a bubble at different times.

Mﬁ (mm)

X (mm)

v v -

3% 30 -2 -2 -5 -10 5,10 5 10 15 20 25 30 35

Fig. 6.13 The bubble inflation at different times: from bottom up at
time 20, 40, 80, 120, and 160 msec. The zero deformation is defined
as the polymer sheet position before heating.

The region of uniform curvature distribution is defined as the area between the two first
inflection points on each side of the pole. As shown in Fig. 6.14, the curvature
distribution along a cross-sectional curve of the bubble is calculated at different times.
At time zero, the polymer sheet is no longer flat, and it has a concave upward shape due
to the heating. The bubble inflation starts from this non-flat shape. At time 20 ms shown
in Fig. 6.14 (b), the central portion of the bubble deforms into a concave downward
shape, but in the region close to the fixed circumference the specimen has not fully
recovered from the deformation caused by heating. There is one extra inflection point on
each side of the pole. The horizontal distance between the first inflection point and the
fixed circumference is about 16.4 mm. As shown in Fig. 6.14 (c), at time 40 ms the
distance between the first inflection point and the circumference is decreased to 13.5 mm.
The deformation due to heating and the inflation are still co-existing. The bubble is a bit
flatten in the pole area than it should be. At time 160 ms shown in Fig. 6.14 (d), there is
only one inflection point on each side of the pole. It means that the bubble has fully
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recovered from the warping deformation due to heating, and the distance between the
first inflection point and the fixed circumference is further decreased to 8.45 mm. The
bubble is still a little bit flatten in the pole area, but the situation is better than 120 ms

earlier. Therefore, the uniform region is increasing with the time for #/a=0.0 ~ 0.378.

(a)

(b)

(c)

(d)

Fig 6.14 Curvature distribution at different times: (a) t=0.0 ms deformation
due to heating; (b) t=20 ms; (c) t=40 ms; (d) t=160 ms. Distance
from the edge to the inflection point is indicated.
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As seen in the previous figures, the heating process itself generates some thermal
deformation, called warping or warpage, even though there is no pressure difference on
the two sides of the polymer sheet. When the temperature of the polymer is elevated to
its glass transition temperature, the polymer will change from a solid, brittle glassy state
to a rubbery state (capable of flow). Under the combination of forces caused by residual
stress, thermal expansion stress, and the material’s own weight, the polymer sample will
deform into a form no longer flat. .The thermal warpage is dependent on the material’s
own thermal expansion properties and initial residual stress conditions. For the ABS
material, the heating warpage is relatively small and uniform. As shown in Fig. 6.15, the
measured heating warpage is approximately 1.69 mm for the maximum. This warpage
plays a role in the following inflation deformation. As shown in Fig. 6.14, the heating
warpage and the inflation deformation co-exist for a short period. For the HIPS and
HDPE materials, the heating warpage is more serious, and plays a dominant role for the

following inflation deformation, as we will see later.

Fig. 6.15 Warpage due to the heating of the ABS material.

6.3.3 Temperature Effect

In this section, the effect of temperature on the bubble inflation test is studied. Three
ABS polymer sheets are heated to three different temperatures—130 °C, 150 °C, and 180
°C, respectively. Then the sheets are blown up by inflating the compressed air at a rate of
3.0 liter/s. The bubble profiles before and 60 ms after the inflation are displayed in Fig.

6.16 for different temperatures.
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(a)

VOS TT-1305 00 mis
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Fig. 6.16 Temperature effect on the bubble inflation tests for ABS material:

(a) 130 Celsius; (b) 150 Celsius; (c) 180 Celsius. All at 3.0 liter/s
airflow rate.

As shown in Fig. 6.16, the higher the temperature is, the softer the specimen will be. Due
to the thermal expansion and specimen’s own weight, the heating warpage gets worse
with the increase of temperature. At 130 °C, the maximum warpage is approximately
0.75 mm. This number is increased to 1.67 mm for 150°C and 5.41 mm for 180°C. On
the other hand, the bubble height at 60 ms after inflation is also increasing with the
promotion of the temperature—2.7 mm for 130°C, 6.77 mm for 150°C, and 11.6 mm for
180°C. The pressure difference at 60 ms after inflation is also recorded for three tests—
8.27x10° MPa for 130°C test, 8.48x10” MPa for 150°C test, and 8.27x10~ MPa for
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180°C test. At this moment (60 ms after inflation), the pressure difference is almost the
same for these three tests at different temperatures, though the bubble height is quite
different. Clearly, the temperature is a very important factor in bubble inflation tests.

6.3.4 Airflow Rate Effect

As the inflation medium, the compressed air is also important in the bubble inflation
tests. Different strain rates of the bubble deformation are generated by different airflow
rates. Three airflow rates are employed in our tests—3.0, 5.0, and 8.0 liter/s. In this
section, the airflow rate effect on the ABS material at 150°C will be studied.

GOSN ML sg o mes ) 3D

VHS. T s

(a)
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(©)

Fig. 6.17 Airflow rate effect on the ABS material at 150 Celsius:
(a) 3.0 liter/s; (b) 5.0 liter/s; (c) 8.0 liter/s.

As shown in Fig. 6.17 (a), the airflow rate is 3.0 liter/s. At the moment 80 ms after
introducing the compressed air into the pressure chamber, the bubble height is
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approximately 8.02 mm and the pressure difference is close to 11.58x10”° MPa. If the
airflow rate is changed to 5.0 liter/s and repeat the same test, the bubble height goes to
8.78 mm when the pressure difference is 11.79x10° MPa, as shown in Fig. 6.17 (b). The
pressure difference spent less time (76 ms) to reach approximately the same level as the
previous test. Finally the airflow rate is increased to 8.0 lirer/s and the same test is
repeated. The bubble height is approximately 7.99 mm with the pressure difference at
12.2x10? MPa. This time the pressure difference reached this level in 60 ms after
inflation. Therefore, the higher the airflow rate is, the faster the bubble grows, and the
faster the pressure difference increases. If the rate dependency of the material were
significant, it would be expected to observe a difference in the bubble height at the same
nominal pressure for different airflow rates. However, the difference in the bubble height
does not vary consistently with the airflow rates tested. From 3.0 liter/s to 8.0 liter/s, the
airflow rate is changed by a factor of 2.7 only. It is expected that rate dependency will
become non-negligible only when the airflow rate is changed by a factor of over 10. On
the other hand, when considering a small height difference, a number of other factors
play a role, such as the thermal warping variation, the temperature variation, and the
airflow rate variation in different tests, which may be more significant than the rate

dependency over this smali range of flow rates.

6.3.5 Thermoformability

In the research, three different polymeric materials have been tested—HIPS, ABS, and
HDPE. The measured data shows that these three materials have different behaviors
during the heating and the succeeding biaxial deformation. In this section the
thermoformability of these three materials is studied.

The profiles of the bubble at time zero and 120 ms are shown in Fig. 6.18 for three
materials respectively. All three tests are carried out at 130 °C and with the airflow rate
at 3.0 liter/s. For the ABS, the maximum warping due to heating is approximately 0.747
mm, and the bubble height at time 120 ms is around 4.93 mm. At this moment the
measured pressure difference is approximately 16.96x10° MPa. The HDPE specimen

goes through a relatively violent warping deformation when the temperature is elevated
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from room temperature to 130 °C. As shown in Fig. 6.18 (b), the central part of the
circular specimen moves upward to form a convex area with the height of approximately
4.24 mm for the maximum. In the meantime, other portion moves downward as the usual
warping of the other two materials. At this instant, there is no pressure difference on both
sides to support the polymer sheet. In the succeeding inflation, the polymer sheet has to
recover from the warping first. So, some areas of the sheet deform a lot comparing to the
central portion, during the same period of time. At time 120 ms, the bubble shape has
fully recovered from the warping and the pole reaches approximately 6.27 mm high,
however the shape is not as spherical as whose with relatively uniform warping. The
pressure difference is around 17.99x10° MPa at time 120 ms. Finally, the HIPS sheet
has a usual warping recorded at 1.75 mm downward for the maximum. At time 120 ms,
the relatively bigger bubble has been formed with the pole at 10.1 mm high and the
pressure difference of 16.96x10” MPa, which is as same as the ABS specimen.

(a)

(b

©)

Fig. 6.18 Bubble profiles at t=0 and t=120 ms: (a) ABS; (b) HDPE; (c) HIPS.
Temperature at 130 Celsius and airflow rate at 3.0 liter/s.
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Since the thickness of the ABS specimen is 1.5 mm and only 1.0 mm for the HIPS and
HDPE materials, it is difficult to draw any conclusion for the ABS material directly.
However, the HIPS is easier to form a bubble than the HDPE. Moreover, the HDPE is

most likely to have some violent warping deformation during the heating process.

6.3.6 Deformation in Heating Process

Due to the use of compressed air as inflation medium in our tests, there is no support for
the sample during the heating and prior to the inflation process. It is reasonable for the
specimen to deform due to the combined effect of thermal expansion and the material’s
own weight. As shown in the measured data, different polymeric materials have different
warping deformations during the heating process. For the ABS and HIPS, the warping is
relatively uniform, and increases with the temperature. The warping of the HDPE
specimen is more profound and turns into a more complex shape. In addition, the
warping plays a role in the succeeding inflation deformation. In the cases of the ABS and
HIPS, much of the deformation in the early inflation stage will turn out to correct the
warping. For the HDPE, the complex warping shape will play a dominant role in the

succeeding inflation deformation, and usually ends up causing a non-spherical bubble.

HOPE H s o

Fig. 6.19 Warping of the HDPE specimen at 140 Celsius before inflation.
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As shown in Fig. 6.19, some areas on the HDPE specimen have a positive warping and
others have negative one compared to the original shape before the heating. The
profound warping shape is shown more clearly in Fig. 6.20 in a cross-sectional form with
the deformation varying from —1.05 mm to +1.67 mm.

B0 T S O I BTN BRI

Fig. 6.20 Bubble profiles of HDPE at t=0 ms and t=220 ms.
With 3.0 liter/s airflow rate and 140 Celsius.

The bubble shape at t=220 ms is displayed in Fig. 6.21 with the pole at 13.7 mm high. A
cross-sectional view is also available in Fig. 6.20. The bubble shape at this moment is
more like a cone instead of a sphere. The curvature distribution of a cross-sectional line
at t=0 ms and t=220 ms is displayed in Fig. 6.22. The resuits obtained are clearly more
complex than those obtained for ABS, which is shown in Fig. 6.14.

Fig. 6.21 Wireframe display of the bubble shape of a HDPE sheet at
1=220 ms with 3.0 liter/s airflow rate and 140 Celsius.
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(a)

(b)

Fig 6.22 Curvatre distribution of cross-sectional lines of a HDPE bubble at
(@) t=0 & (b) t=220 ms with 3.0 liter/s airflow rate and 140 Celsius.

By looking at Fig. 6.22, it is clear that the shape is not spherical even though the A/a ratio
is only 0.43. Therefore, the warping during the heating process plays a very important
role in the succeeding inflation for some materials such as the HDPE. This fact should be
addressed when using the bubble inflation technique in the characterization of material

properties.

6.4 Summary

The bubble inflation technique is a very useful method for polymer characterization,
especially under biaxial stretching. Some basic assumptions are set initially for the
analysis, such as uniform deformation and spherical shape. Due to a lack of precise
bubble shape data, it has previously been impossible to assess how accurate this method

is.

The experimentally measured data presented in this chapter shows that the deformation is
not uniform, and the bubble shape is not spherical. The spherical shape assumption used

108



Chapter 6

by the related work will create errors in their results. The effects of different factors,
such as the temperature and the airflow rate, are also studied. In order to obtain material
properties, a proposed method utilizing a FEM model to account for the imperfections in
the testing, such as the temperature gradient, is considered in the following section.

Digitization of a bubble inflation surface of a circular polymer sheet into an array of
points with known xyz coordinates has not been done previously. Thus, the experimental
results presented in this chapter are very useful as a source of verification and comparison
for the related work.
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CHAPTER 7

FINITE-ELEMENT ANALYSIS ON CIRCULAR
MEMBRANE INFLATION

7.1 Introduction

Many polymeric materials exhibit rubber-like behavior, i.e., the deformation remains
elastic up to large strain values, particularly when the temperature is over its glass
transition temperature. Although, the stress-strain behavior of these polymeric materials
is elastic, it is usually highly nonlinear. This type of material behavior can be described
using hyperelasticity theories. The constitutive equation for hyperelastic material is
described in terms of a strain energy potential function rather than by assuming a linear
relation, a priori, as is done for most engineering materials. The strain energy potential
function defines the strain energy stored in the material per unit of reference volume as a
function of the strain at that point in the material. There are several forms of strain
energy potentials available in the literature, including the polynomial form, the Mooney-
Rivlin form, and the Ogden form. If the material is incompressible, the polynomial form

of the strain energy potential function, which is most commonly used, has a form:

U= icij(i.-a)-(iz-3)’ (7.1-1)

i+ j=1

where U is the strain energy potential; I\ & 1 are the first and second invariants of the
left Green-Cauchy deformation tensor, C;; are material parameters, which are functions of
temperature, and N is the order of the polynomial utilized. The C;; parameters describe
the shear behavior of the material. If the number of terms, N, is one and since the
material is assumed incompressible, Eq. 7.1-1 has a simple form, which is commonly
referred to as the Mooney-Rivlin material model.
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U=Co(i-3)}+Co i -3) (7.1-2)
The invariants 7, and 72 can be written in terms of the principal stretch ratios by:

L=kl e+ (7.1-3)
,-2. 2112.*"12)—’2*.312}12

where A;, A; and A; are the stretch ratios in the meridian, circumferential and normal
directions, respectively. If the bubble is assumed in spherical shape and the deformation

is uniform and incompressible, the stretch ratios can be defined as:

:u
a
,
Jn=; (7.1-4)
A‘I 'A'z"ls =1

As shown in Fig. 6.2, the angle @ and R are defined by Eq. 6.1-1 and Eq. 6.1-6,
respectively. The distance r and g are shown in Fig. 6.2. Therefore, the stretch ratios can

be calculated from the bubble height when the spherical assumption remains.

Based on the membrane theory (Yang & Feng 1970), the equilibrium equations in the

meridian-circumferential and the normal directions of the deformed membrane are:

ﬁ""l'(Tl -T,)=0
dqg ¢ (7.1-5)
KT +K,T,=P

where T; and T: are the stress resultants with dimension of force per unit edge length of

the membrane; K; and X are the principal curvatures; P is the inflating pressure in the
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normal direction of the deformed membrane; g is the distance from the point on the
membrane to the axis which is passing through the center of the circular membrane and
perpendicular to the original membrane plane. In the context of membrane theory, the

stress resultants T; and T> can be expressed in terms of the strain energy potential:

U
T, =A — 7.1-6
t 1 ali ( )

where U is the strain energy potential and i=1,2. The non-linear problem defined by
equations (7.1-2) through (7.1-6) can be solved subject to the boundary conditions by
using numerical methods, such as the Runge-Kutta method. This is the closed-form
solution for the circular membrane inflation—given any pressure P, the bubble height 4
can be calculated for different material models. However, to do so it is necessary to

assume that the bubble shape is spherical.

By reviewing the experimental data presented in the previous chapter, it is observed that
the bubble shape is non-spherical due to the non-uniform deformation. In addition, the
thermo warping during the heating plays a role in the succeeding inflation and it is not
negligible at least for HDPE material. Therefore, applying the above closed-form

solution for the bubble inflation problems will lead to errors.

In order to account for the non-uniform deformation observed in our experimental data,
the finite-element method is used here to model the circular membrane inflation including
some imperfections. In the first section, a finite-element model will be outlined, which
covers the mesh generation, element type and material model. In the second section, the
finite-element analysis results under idealized conditions will be presented. The purpose
is to demonstrate how significant the error is by ignoring the non-uniformity of the
temperature distribution. Finally, in order to better simulate the actual test conditions, a
non-uniform temperature distribution and the prestress condition generated in the heating

process are included in the finite-element analysis.
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The coramercially available finite-element analysis software package—ABAQUS v.5.8
by Hibbit, Karlsson, and Sorensen Inc.—is used in this analysis.

7.2 Finite-element Model
7.2.1 Geometry and Mesh Generation

The succeeding finite-element analysis is focused on the ABS material. Since the
specimen is circular in shape, axisyfnmetﬁc conditions are assumed here. The coordinate
system and the mesh used for the circular membrane are shown in Fig. 7.1. Due to
symmetry, only the material from the center to one clamped edge is considered in the
FEM simulation. The radius of the circular membrane is 31.75 mm, and its thickness is
1.57 mm. Twenty axisymmetric continuum elements are used, and the elements have an

aspect ratio of approximately 1.

2
1 31.75 mm
v & f 1
1.57 '
¥ " r@rﬁ |
Distributed Loading
Fig. 7.1 Finte-element mesh for circutar ABS membranes.
7.2.2 Element Model

As shown in Fig. 7.1, twenty continuum elements are used. These elements are 8-node,
second-order, mixed formulation, hybrid elements since the polymeric material is treated
as incompressible. The element formulation is described in the ABAQUS Theory
Manual (Hibbit, Karlsson, and Sorensen Inc. 1998). The origin of the global coordinate
system is placed at node 1 located in the center of the specimen. The global 1-axis lies
along the length of the circular membrane starting from node 1 toward the fixed edge,

and the global 2-axis lies in the thickness direction from node 1 upward.
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Fig 7.2 Eement type (CAX8H) and boundary condition.

As shown in Fig. 7.2, element | is close to the center of the circular specimen and
element 20 is close to the fixed circumference. Regarding the boundary condition, node
41 and node 241 are fixed in both directions. Node 141 is free to move in the l-axis
direction, but constrained in the 2-axis dircction. The displacements in the l-axis
direction for the nodes on the central line (node i, 101, and 201) are zero since the
deformation is symmetric. The boundary condition at Node 141 allows the material to be
drawn inward during the inflation even though it could be small since the central region
material is very soft and the material close to the clamped edge is very stiff due to the
temperature gradient. The loading consists of a uniform pressure applied to the bottom
surface of the specimen in the 2-axis direction. The modified Riks method is used in the
FEM simulation since the loading is proportional and because the solution may exhibit
instability. For more about the modified Riks method, please see Crisfield’s paper
(1981). A pressure magnitude of 0.09 MPa is specified: this magnitude is somewhat
arbitrary since the Riks method is chosen. The actual pressure magnitude beyond the end
of the first increment will be decided by Riks method.

In the analysis, the Mooney-Rivlin material model is used. Different values for the
material constants, C; and Cy,, are sclected for different temperatures. The objective is
to match the inflation shapes obtained from finite-element analysis to those measured

experimentally.

The following assumptions have been made for modeling the inflation of ABS material:
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e The material behavior is hyperelastic (Mooney-Rivlin);
o The material behavior is isotropic;

¢ The material is incompressible.

7.3 Finite-element Analysis—Idealized Conditions

In order to perform this initial analysis, two additional idealized conditions have been
added:
¢ The initial temperature distribution is uniform;

¢ Thermo-warping plays no role in the inflation.

Most of the research papers published have considered that the inflation obeys these two
assumptions since they can easily lead to a uniform deformation and a pure spherical

bubble shape.

7.3.1 Finite-element Simulation for ABS Inflation Test T1-1503

The following analysis is for the ABS material with a nominal temperature of 150°C and
the airflow rate of 3.0 liter/sec. The bubble inflation was measured by the proposed
optical measurement system. Therefore, the bubble shape as a function of time and
pressure is known from the measurement. Different values for Cjo and Cy; are input into
the ABAQUS software to match the simulation result with what was measured
experimentally. Under the current conditions, the best agreement is found when C;o= 0.4
MPa and Cy; = 0.008 MPa, after several iterations. The input file for the ABAQUS is
listed in Appendix B.

The simulated bubble shape at various inflation stages is shown in Fig. 7.3. The bubble
shape in this figure is more spherical than what was measured experimentally. The
simulated shape is compared with the shape measured experimentally in Fig. 7.4 and

Fig.7.5 for two different pressure values.
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(a) pressure ¢ 0.002853 MPa

HEEEEEEEEERERENE u

L.

{b) pressure @ 0.010000 MPa

Fig. 7.3 The ABAQUS simulation results: (a) pressure=0.2852x10* Pa;
(b) pressure=1.0000x10" Pa.
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(c) pressure @ 0.026423 MPa
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(d) pressure @ 0.06344 MPa

Fig. 7.3 (Cont.) The ABAQUS simulation results: (c) pressure=2.6428x10* Pa;
d) pressure=6.344x10" Pa.
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Fig. 7.4 Bubble shape comparison @ 0.011 MPa.
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Fig. 7.5 Bubble shape comparison @ 0.023 MPa.

As shown in Fig. 7.5, the FEM simulation predicts a larger bubble shape at the beginning
of the inflation. With the increase of pressure, the difference between the bubble height
predicted by the FEM and what was measured experimentally is decreasing. At one
point, the bubble height predicted by the FEM and what was measured experimentally are
almost the same. Meanwhile, the difference in the bubble shape is more pronounced
close to the circumference. From this point on, the bubble height predicted by the FEM
will be smaller than what was measured experimentally. This can be shown more clearly

in the height vs. pressure curve in Fig. 7.6.
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Fig. 7.6 Bubble height vs. pressure curve of ABS material
considering uniform temperature distribution.

Fig. 7.6 shows that the pressure simulated by the FEM will continue to grow even after
the experiment shows the pressure to level off, although in much of the range the two
curves are ‘close’ to each other. If the material constants are characterized by this
method, the obtained material constants could represent a stiffer polymeric material,
which has a similar response in the measured pressure range. Therefore, it is difficult to
say thus that the FEM simulation agrees with experiments very well. This may have

something to do with the assumptions we made.

It should be noted that the experiments start from room temperature, and the specimen’s
final temperature may be as high as 150°C for centain tests. The polymer membrane is
clamped between two aluminum plates and the lower plate is connected to the high-
pressure chamber that has also aluminum plates as its walls. Since the thermal
conductivity of the aluminum material is approximately 100 times of that of the ABS
material, and the infrared heaters are focused on the specimen only, a temperature
gradient exists in the experiments. Therefore, considering the temperature to be uniform

is a very significant assumption in this kind of test.

On the other hand, the polymeric material constants are very sensitive to the temperature,

and any temperature change will cause a significant change in the material constants,

119



Chapter 7

particularly near the glass transition temperature. The assumption of uniform
temperature means that incorrect material constants are used for some regions of the
specimen by ignoring the temperature gradient. In addition, the temperature gradient can
certainly lead to a bubble shape, which is not spherical. Although there is a region close
to the pole, in which the deformation is almost uniform and the shape is very close to a
sphere, the bubble height is very much decided by the constraints experienced in the
region close to the circumference. Less constraint in these areas will permit more
material to participate in the inflation, and result in a much larger bubble under the same
pressure. Therefore, one should be very careful in the bubble inflation test if oniy the
bubble height will be measured and an existing temperature gradient in the specimen is
ignored.

Another idealization made concerned the thermo-warping during the heating process. In
this first analysis, it was assumed that the thermo-warping plays no role in the succeeding
inflation, even though we observed it existed in all inflation tests carried out. It is known
that a change in temperature will cause stress in a structure if it is not free to expand, and
the circular ABS sheet is clamped along its circumference. On the other hand, the ABS
material becomes very soft in our tests since the temperature was above its glass
transition temperature, which is around 140°C. Therefore, under the combined action of
thermal expansion and the material’s own weight, it is not reasonable to assume there is

no stretching and stress existing in the specimen before the inflation takes off.

Due to these assumptions, this section is called ‘under idealized conditions’. [n the next
section, the FEM analysis will include temperature nonuniformities and thermal warping

to improve the accuracy of characterization of polymer constants.

7.4 Finite-element Analysis—General Conditions

The analysis results in the previous section show that the nonuniformities of the
temperature distribution and the thermo-warping during the heating are very important in
the bubble inflation tests of polymer membranes. In order to determine the material
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constants correctly, the FEM model has to include these two factors. To measure the
temperature gradient, an infrared camera—ThermoVision 900 made by the AGEMA
Infrared Systems AB, Sweden—is used. The measured result is shown in Fig. 7.7. The
temperature is relatively uniform in the central region of the membrane, but clearly the
temperature is dropping rapidly starting from approximately 2/3 of the radius. This trend
is increasing to where there is a temperature jump in between the polymer and aluminum
materials at the clamped edge. The maximum temperature difference from the center to
the clamped edge is approximately 40°C, according to the reading from the infrared
camera. Fig. 7.8 shows the temperature profile along a line passing through the center of
the circular sample. There is a temperature gap of approximately 70°C between the
aluminum plate and the polymeric sample at the clamped edge. The first and last points

shown in Fig. 7.8 are located on the aluminum plate.

Fig. 7.7 Temperature distribution measured by an infrared camera.

Another observation is about the temperature change during the inflation. ~Since the
inflation usually takes only 1.0 second or less, it is assumed that the temperature
distribution is not changing during this period of time. The infrared camera’s recording
supported this assumption, particularly in the early stage when the measurements were

carried out.
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Fig. 7.8 Typical temperature distribution along a line passing through the center.

As shown in Fig. 6.15, the maximum thermo-warping is approximately 1.69 mm in the
center of the membrane. This deformation actually creates a small uniform tensile
prestress condition in both radial and circumferential directions all over the membrane.
In order to approximate the effect of the thermo-warping, a small vaiue (0.06 MPa) is

used to represent the prestress as the initial condition in the FEM simulation.

7.4.1 Finite-element Simulation for ABS Inflation Test T1-1503

The same test as that of Section 7.3.1 is simulated. This time the temperature gradient
measured by the infrared camera and 0.06 MPa prestress in both radial and
circumferential directions are included as the initial conditions in the finite-element
analysis. The temperature profile used in the FEM simulation is shown in Fig. 7.9, which
is based on Fig. 7.8 after removing the point on the aluminum plate. The material
constants C;o and Cyp; as functions of temperature are selected in order to let the

simulation results match what is measured experimentally. Fig. 7.10 shows the material
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constants C;o and Cy; as functions of temperature. The input file for the ABAQUS is

included in Appendix C.
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Fig. 7.9 Temperature profile used for FEM simulation.
(from the center to the clamped edge)
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Fig. 7.10 Material constants C;o and Cy; as functions of temperature.
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The relationships between the material constants and the temperature, which are shown in
. Fig. 7.10, can also be written in terms of a set of linear equations:

194.525 -1.375T (T =139-141°C)

Cp, =9 2321-0.16T (T =141-142°C)
7.184-0.047T (T =142-149°C)
(7.4-1)
C, = {1 02667 —0.00667T (T =139-142°C)
1.6623-0.011142T (T =142~-149°C)

where T is the temperature in Celsius, and the unit of Cjo and Co; are MPa.

As shown in Fig. 7.9, the temperature drops below the material’s glass transition
temperature (7,=141°C) at the location approximately 26.0 mm from the center. That
means the ABS material inside a radius of 26.0 mm is in the rubbery state and capable of
flow. While from r=26.0 to 31.75 mm, the material is still in the glassy state—solid and
brittle. That is the reason why little deformation has been found in this region. At
temperatures well above T, the polymer chains are relatively free to move in cooperative
thermal motion to provide conformational rearrangement of the backbone. Therefore, the
material behaves in an increasingly rubber-like manner when the temperature increases,
but no sudden change in material properties is expected in the rubbery state. When the
temperature is below T, the motion of these individual polymer chain segments become
frozen with only small scale molecular motion remaining, involving individual or small
groups of atoms. Therefore, there is a sharp change in material properties at the glass
transition. At temperatures well below T, the material behaves in an increasingly brittle-
like manner, but with no dramatic change. The temperature dependence of the matenal

constants used is consistent with the material behavior.

From Eq. 7.4-1, the values of Cjo and Cp, at 149°C are 0.16 MPa and 0.002 MPa,
respectively. Compared with the results in the previous section when the temperature
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was considered uniform (C;s=0.4 MPa and C;;=0.008 MPa), it is clear that the difference
is significant.

The bubble shapes at various inflation stages, which is simulated by ABAQUS, are
shown in Fig. 7.11. Obviously, the bubble shapes in this figure are not spherical. The
inflation appears uniform in the region close to the center of the membrane. However,
the material close to the clamped edge experiences constraint and less inflation occurs
there. Consequently, the bubble height is affected significantly by these regions close to
the clamped edge. In addition, the simulation results show that the thickness of the
membrane is no longer uniform after the inflation starts. There is little change in the
thickness in the regions close to the clamped edge, and the membrane becomes very thin
in the central regions. That is why the final burst always happens near the pole. Both the
shape and the thickness distribution after the burst match the experimental observation of

the membrane.
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(a) pressure @ 0.002159 MPa
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(b) pressure @ 0.021603 MPa

Fig. 7.11 ABAQUS simulation results considering temperature nonuniformity and
thermo-warping: (a) pressure=0.3982x10* Pa; (b) pressure=2.3675x10* Pa.
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L.

(c) pressure @ 0.047103 MPa

L.

(d) pressure @ 0.045941 MPa

Fig. 7.11 (Cont.) ABAQUS simulation results considering temperature nonuniformity
and thermo-warping: (c) pressure=4.6618x10* Pa; (d) pressure=4.5495x10* Pa.
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The simulated shape is compared with the shape measured experimentally in Fig. 7.12 for
two different pressure values. Comparing with the results in Section 7.3.1, the agreement
between the finite-clement simulation and what was measured experimentally is very

much improved. This agreement can also be seen in the height vs. pressure curve of Fig.

7.13.
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Fig, 7.12 Bubble shape comparison: (a) pressure=0.011 MPa; (b) pressure=0.022 MPa.
(Considering the thermal warpage and temperature gradient).
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Fig. 7.13 Bubble height vs. pressure curve of ABS material considering
nonuniform temperature distribution and thermo-warping.

So far, it has been shown that this method of characterizing temperature-dependent
material constants works well reasonably. However, it is worth knowing that this method
is not that efficient to find values for the material constants that do not influence shape
changes when the material constants themselves are modified. For example, the change
of the Cy; in the Mooney-Rivlin model does not cause significant change in the bubble
shape in early inflation stages, so the method is significantly less accurate for
determination of this parameter. In addition, this method is not very efficient in finding
the values of Cjo for temperatures significantly below the glass transition temperature.
The reason for this is that the deformation of the material below Ty is small. The change
in the material properties of the material with its temperature below 130°C does not
change the bubble shape considerably. Thus the accuracy would not be expected to be
very good. However, In this test, the majority of the material is over 140°C. So the
method seems appropriate. Another fact that should be mentioned is that the
temperature-dependent material properties characterized in this way can compensate for
the discrepancy caused by the material model to a certain extent. For instance, even if the
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simple Mooney-Rivlin model may not be very good in representing the material, the
overall performance of the material model can be maximized by using the material
constants characterized in the manner shown here.

7.5 Summary

A finite-element model is developed to simulate the membrane inflation of polymeric
materials. The analysis is performed using a commercially available finite-element
software package—ABAQUS version 5.8. The eclements are 8-node, second-order,
hybrid continuum elements (CAX8H). The material model is the incompressible
Mooney-Rivlin model.

First, the nonuniformities of temperature distribution and thermo-warping are ignored. In
addition, it is assumed that the temperature remains uniform and unchanged during the
inflation. Different values of the material constants are input into the Mooney-Rivlin
model in order to match the simulated results with what was measured experimentally.
After several iterations, the simulation which has ‘the best’ agreement with the
experimental data is when C;o = 0.4 MPa and Co;=0.008 MPa. However, the simulation
results also showed some disagreement, especially in the bubble height vs. pressure
curve. In this case, it is quite possible that the material constants have been over-
estimated to give a similar response in the tested pressure range. In fact, the polymer
represented by these over-estimated material constants shows pressure increasing far
beyond the pressure values recorded in the experiments. Therefore, the polymer
represented by these over-estimated material constants would not accurately represent
what is tested, although it has a similar response in much of the pressure range recorded
in the experiments. This gives a warning about the potential errors in the material
constants characterized by the bubble inflation technique if the existing temperature

nonuniformities and thermo-warping are ignored.

When the temperature gradient and thermo-warping are included in the finite-element

analysis, the simulation results give a very close match with what was measured
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experimentally. The agreement shows in both the bubble shape as well as the bubble
height vs. pressure history. Compared with the material constants determined under the
idealized conditions, it is clear there is a significant difference. Therefore, the
combination of the optical measurement system and the finite-element method in the
membrane inflation tests can provide a new way to characterize the polymeric material
constants. Using this method, the material constants can be characterized not as a single
value corresponding to a given temperature, but as a function of temperature over the

temperature range measured in the experiment.
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CHAPTER 8

CONCLUSIONS AND FUTURE DEVELOPMENTS

8.1 Conclusions

In this work, a high-speed optical surface measurement system has been developed. The
system is based on the grating projection and Fourier transform method. In addition, a
high-speed digital camera is employed to allow measurements of transient surface
deformation. The following features make this system distinguishable from other optical

measurement technologies:

(1) Whole-field measurement;

(2) Setting up a fixed Cartesian coordinate system associated virtually with the
sensor head by a developed calibration technique;

(3) Generating Cartesian coordinates as direct measurement results, which are
with respect to the fixed coordinate system in 3D space;

(4) High-speed measurement—a digital high-speed camera is employed with the
maximum frame rate up to 1000 Hz and the shortest exposure time for each
frame as low as 50 psec:

(5) Experimentally verified the measurement accuracy;

(6) Fully automatic data processing.
This is the first time that such an optical measurement system has been developed.

Also for the first time, the inflation of polymer membranes has been measured using
whole-field optical methods. The effects of various factors, such as temperature and
airflow rate, have been studied. The accurate measurement data also provides a source
for further material constant characterization. A potential error caused by the assumption

of uniform temperature distribution in the characterization of polymeric material
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constants by the bubble inflation technique has been pointed out. As a result, a
hyperelastic finite-element model has been used to simulate the bubble inflation of
polymer membranes. Finally, for the first time a method of material constant
characterization, which is based on a combined finite-element and experimental approach
with the ability of incorporating temperature gradients, has been proposed.

8.2 Future Developments

8.2.1 Optical Dynamic Measurement System

All core software that is necessary to calculate xyz coordinates from a deformed grating

image has been deveioped. However, a user-friendly interface is still very desirable.

It is also very necessary to improve the light source. So far, the light intensity can easily
support a frame rate of 250 fps, but at frame rates higher than 250 fps and shorter shutter
speed, higher light intensity is required.

8.2.2 Membrane Inflation Experiments

The measured results have indicated that nonuniformities in temperature distribution and
thermo-warping are very important in determining the inflation response of polymer
membranes. Accurate measurement of the temperature distribution is therefore important
in bubble inflation tests when using compressed air as the inflation medium. More work
needs to be done in order to make accurate temperature measurements. The deformation
due to thermo-warping can be measured by the optical system, and the measured results
can be used as the initial shape of the polymer membrane, instead of using its original flat

shape. By doing so, more accurate finite-element simulation can be expected.

8.2.3 Finite-element Modeling and Material Constant Characterization

The combination of the optical measurement system and the finite-element method that

can take account of the nonuniformity of temperature distribution and the thermo-
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warping can provide a useful tool in the material constant characterization. If the
temperature measurement can be carried out very accurately, the material constants at

different temperatures can be determined in one test.

So far, the bubble shape as a function of internal pressure is used to compare with the
simulation results provided by the finite-element method to determine the possible
material constants. It is a time-consuming process and a more efficient way to do the
iteration has to be found. For example, a program can be written to carry out this
iteration to find the correct material constants quickly.

The Mooney-Rivlin hyperelastic model has been used in the finite-element simulation. It
should be noted that the material constants derived in this way would include the
discrepancy caused by the material model. It should be interesting to try other material
models, such as the Ogden and higher order polynomial models to study the difference
between different material models.

8.2.4 Other Applications

The application of the newly developed optical measurement system has focused on the
inflation tests of polymer membranes, particularly for the material constant
characteiwaiiun.  Actually, such an optical measurement system is also useful in the
inflation tests of other materials including proposed experiments on chopped fiber
reinforced polymer membranes. The optical system should be also useful in the bulge

experiments of various membrane tissues.

The optical measurement system should be also useful regarding dynamic behavior of
structures including the buckling or impact tests of structural components. A preliminary
study has been made to measure the elastic buckling of a stiffened box beam during
forced vibrations, with good results. A study on a composite plate with bending and
twisting coupling has also been carried out (Li & Nemes 1998). Numerous other
applications of this system in the field of structural dynamics can be envisioned.
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ORIGINALITY AND CONTRIBUTION TO KNOWLEDGE

The original contributions of the present work are two-fold. First, a high-speed optical
surface measurement system has been developed. This system has the following features
to distinguish itself from other technologies: (1) whole-field measurement which yields
Cartesian coordinates as the final data, which are with respect to an absolute coordinate
frame; (2) It has the ability to measure rigid body translation and rotation; (3) high-speed
measurement—the sampling rate can go up to 1000 Hz, and the shortest exposure time of

each frame can be as small as 50 psec; (4) fully automatic data processing.

The calibration technique developed in this work makes it possible for the whole-field
optical 3D shape measurement system to provide Cartesian coordinates in an absolute
way. The whole-field shape measurement of a 3D surface in a dynamic event becomes
feasible by using a high-speed digital camera. Furthermore, the evaluation of the
measurement accuracy can share the common concepts with what are used in industries.
All these factors have made the proposed optical measurement system distinguishable

and opened a door for wide-range industrial applications in the near future.

The second contribution is the use of the proposed optical system in the polymer
membrane inflation tests. The principal contribution regarding the polymer membrane
inflation experiments is that the measured results and the corresponding finite-element
analysis reveal the importance of the temperature uniformity and the thermo-warping in
the inflation deformation. Serious error could be embedded into the material constants
determined from the bubble inflation technique for polymeric materials if there is a
temperature gradient existing in the inflation experiments and this temperature
nonuniformity is ignored in analysis. As a solution, the optical measurement system

combined with the finite-element analysis can be used in the bubble inflation tests to
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include the temperature gradient and thermo-warping. The material constants obtained in
this way will be more accurate, and multiple values corresponding to different
temperatures can be obtained in a single experiment. In addition, the experimental data
represents a much-needed contribution to the modeling of the thermoforming process
since the reported experimental measurements on the inflation of polymer membranes are
few, incomplete and most importantly inaccurate. Whole-field measurements on
inflation of circular polymer membrane resulting in xyz coordinates are practically
nonexistent. Therefore, the experimental data obtained from these measurements will be

useful as a source of comparison and verification for related work.
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APPENDIX A

SYSTEM CALIBRATION

Eq. 3.3-5 can be transformed into vector forms:
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We define [P,], [P2] and [P;] as following:

frllsu f'rl/sv r
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If we apply all 2D-3D pairs and combine Eq. A-3 and Eq. A-4 together, we then have:
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Here,n=1, 2, 3,..., N. Nis the total number of 2D-3D pairs used in the calibration. For

convenience, Eq. A-5 can also be written in the following matrix form:

[P

Al EOIRECTARS 9
If we define [p] and [q] as following:
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[p1=[["{] e

] 1,

Eq. A-6 will have the following format:

[a]-[p)+[B])-[g)+ & -[c]-[g)= 0] (A7)
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APPENDIX B

INPUT FILE OF ABAQUS FOR IDEALIZED CONDITIONS

*HEADING

PRESSURIZING OF A FLAT POLYMER PLATE (CAX8H)
*NODE

1,0.,0.,0.

41,0.03175,0.0,0.0

101,0.0,0.000785,0.0
141,0.03175,.000785,0.0
201,0.0,.00157,0.0

241,.03175,0.00157,0.0

*NGEN

1,41,1

101,141,2

201,241,1

*NSET ,NSET=CENTER

1,101,201

*ELEMENT, TYPE=CAX8H,ELSET=ONE
1,1,3,203,201,2,103,202,101
*ELGEN,ELSET=ALL

1,20,2,1

*BOUNDARY

41,1,2

141,2

241,12

1,1

101,1

201,1

*ELSET,ELSET=ONE

1

*SOLID SECTION,MATERIAL=AI,ELSET=ALL
*MATERIAL NAME=Al
*HYPERELASTIC,N=1

4E+6,.008E+6
*RESTART,WRITE,FREQUENCY=2
*STEP,NLGEOM,INC=36, UNSYMM=YES
*STATIC,RIKS
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.001,1.0,.000001,0.1,1.0,1,1,10000.
*DLOAD

ALL,P1,3.0E+5
*MONITOR,NODE=201,DOF=2

*EL PRINT,FREQUENCY=50,ELSET=ALL
COORD , E

DG

LOADS

S,MISES

ENER

*EL PRINT,FREQUENCY=1,ELSET=ONE,SUMMARY=NO
COORD, E

DG

LOADS

S,MISES

ENER

*NODE FILE,NSET=CENTER

U.RF

*EL FILE,FREQUENCY=2 ELSET=ONE
COORD ,E

DG

LOADS

S

*NODE PRINT,FREQUENCY=1,NSET=CENTER
U,RF

*END STEP
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APPENDIX C

INPUT FILE OF ABAQUS FOR GENERAL CONDITIONS

*HEADING
PRESSURIZING OF A POLYMER SHEET WITH TEMPERATURE
GRADIENCE (CAX8H)
*NODE

1,0.,0.,0.
41,0.03175,0.0,0.0
101,0.0,0.000785,0.0
141,0.03175,.000785,0.0
201,0.0,.00157,0.0
241,.03175,0.00157,0.0
*NGEN

1,41,1

101,141,2
*NGEN,NSET=UPPER
201,241,1
*NSET,.NSET=CENTER
1,101,201
*NSET,NSET=NI
1,101,201
*NSET,NSET=N2
2,202

*NSET,NSET=N3
3,103,203
*NSET,NSET=N4
4,204

*NSET,NSET=NS5
5,105,205
*NSET,NSET=N6
6,206

*NSET,NSET=N7
7,107,207
*NSET,NSET=N8

8,208

*NSET,NSET=N9
9,109,209
*NSET,NSET=N10
10,210
*NSET,NSET=N11
11,111,211
*NSET,NSET=N12
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12,212
*NSET,NSET=N13
13,113,213
*NSET,NSET=N14
14,214
*NSET,NSET=N15
15,115,215
*NSET,NSET=N16
16,216
*NSET,NSET=N17
17,117,217

*NSET ,NSET=NI8
18,218
*NSET,NSET=N19
19,119,219
*NSET,NSET=N20
20,220
*NSET,NSET=N21
21,121,221
*NSET,NSET=N22
22,222

*NSET NSET=N23
23,123,223
*NSET,NSET=N24
24,224

*NSET NSET=N25
25,125,225
*NSET,NSET=N26
26,226
*NSET,NSET=N27
27,127,227
*NSET,NSET=N28
28,228
*NSET,NSET=N29
29,129,229
*NSET,NSET=N30
30,230
*NSET,NSET=N31
31,131,231
*NSET,NSET=N32
32,232
*NSET,NSET=N33
33,133,233
*NSET,NSET=N34
34,234
*NSET,NSET=N35
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35,135,235

*NSET,NSET=N36

36,236

*NSET,NSET=N37

37,137,237

*NSET,NSET=N38

38,238

*NSET,NSET=N39

39,139,239 |

*NSET,NSET=N40

40,240

*NSET,NSET=N41

41,141,241

*ELEMENT, TYPE=CAX8H ELSET=ONE
1,1,3,203,201,2,103,202,101
*ELGEN,ELSET=ALL

1,202,1

*BOUNDARY

41,12

141,2

241,1,2

Ll

101,1

201,1

*ELSET.ELSET=ONE

1

*SOLID SECTION,MATERIAL=A1 ELSET=ALL
*MATERIAL NAME=Al
*HYPERELASTIC N=1
30E+6,0.2E+6,.0,110.0
3.4E+6.0.1E+6,.0,139.0
0.65E+6,0.08E+6,.0,141.0
A9E+6,0.08E+6,.0,142.0
0.4E+6,0.004E+6,.0,143.0
16E+6,.002E+6,.0,149.0
*RESTART,WRITE,FREQUENCY=2
*STEP,NLGEOM,INC=36, UNSYMM=YES
*STATIC,RIKS
01,1.0,.0001,.05,1.0,1,1,10000.

*DLOAD

ALL,P1,6.E+4

*INITIAL CONDITIONS, TYPE=STRESS
ALL,0.06E+6,0.,0.06E+6

*INITIAL CONDITIONS, TYPE=TEMPERATURE
N1,149.0

N2,148.9
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N3,148.9
N4,148.9
N5,148.9
N6,148.9
N7,148.9
N8,148.9
N9,148.9
N10,148.9
N11,148.9
N12,148.9
N13,148.8
N14,148.7
N15,148.7
N16,148.6
N17,148.5
Ni8,148.4
N19,148.3
N20,148.2
N21,148.1
N22,147.8
N23,147.5
N24,147.3
N25,147.2
N26,147.1
N27,146.5
N28,146.0
N29,145.5
N30,144.5
N31,143.2
N32,142.1
N33,140.5
N34,139.2
N35,137.4
N36,135.2
N37,131.9
N38,129.0
N39,124.0
N40,115.7
N41,110.0
*MONITOR,NODE=201,DOF=2
*EL PRINT,FREQUENCY=25 ELSET=ALL
COORD ,E
DG
LOADS
S,MISES
ENER
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*EL PRINT,FREQUENCY=1, ELSET=ONE,SUMMARY=NO
COORD , E

DG

LOADS

S,MISES

ENER

*NODE FILE ,NSET=CENTER

U ,RF

*EL FILE,FREQUENCY=2,ELSET=ONE
COORD ,E

DG

LOADS

S

*NODE PRINT,NSET=CENTER

u

*NODE PRINT,FREQUENCY=1,NSET=UPPER
COORD

*END STEP
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