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Abstract

Software reuse is concerned with capturing software components in some form and
then applying them to the construction of another application. The ultimate goals of
software reuse are: to improve the quality of software produced; reduce the costs of
soltware development; and increase the productivity of software developers. However,
the present situation, and the concern amongst researchers, is that software reuse is
not living np to its original expectations [FBPD*91].

Although there have not been very many scientific studies that validate the claim,
it is nonetheless a strongly held helief among researchers and developers that object-
oricnted software offers great potential in terms of software reuse [Mey88]. Mnch as
ohject-oriented programming allows for the ereation of more reusable components, it
is the reuse of the design of an application that is most promising for attaining the
poals of reusability. For this reason, our work concentrates on applicalion frameworks,
an important object-oriented technique to facilitate design-level reuse.

We have spent Lhe last year developing a fairly large object-oriented application
called Macrolee, using an application framework called ET++4 [WGM89]. Through-
out this paper, we will refer to our experience, and in-experience, in working with
application frameworks. In particular, we will introduce the different levels of reuse
we have identified when developing from application frameworks. We address the
present lack of adequate design representations by introducing a new technique for
the representation of abstract designs. Also, a new approach to documenting applica-
Lion frameworks is presented, complementing the proposed representation of abstract
designs,

We strongly believe that application frameworks have the potential of drastically
improving the current rense crisis. We sincerely hope that our work will become a
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. first step in solving the current lack of knowledge in hiow (o use and reuse application
frameworks eflectively.



Abstrait

La réatilisation de logiciels se penche sur la saisi d’éléments de logiciels sous une
forme quelconque pour ensuite les appliquer a la construction de logiciels servants a
une antre application. Les buts ultimes de la réutilisation de logiciels sont: d’améliorer
la qualité du logiciel produit; de réduire les coiits de développment de logiciels; et,
Pangmenter la productivité des développeurs de logiciels. Toutefois, la situation
présente qui préoccupe les chercheurs, est que la réutilisation des logiciels ne prodnit
pas les résultats escomptés [FBPD191].

Quoiqu’il 0’y a pas cu beaucoup d’études scientifiques qui ont, pu valider cette
assertion, il n’en demeure pas moins que les chercheurs et les développeurs croient
que le logiciel orienté objet offre beaucoup de potentiel en termes de la réutilisation
de logiciels [Mey88]. Méme si la programmation orienté objet permet la création
d’éléments beanconp plus réutilisables, c’est cette réutilisation du design d’une appli-
cation qui demeure la plus prometteuse dans la course d’obtention de la réutilisation.
Ainsi, cet ouvrage porte sur les librairies & une racine, une technique orienté objet
importante, utilisée afin de faciliter la réutilisation au nivean du design.

Nons avons passé la derniére année & décelopper une application orienté objet
appelé: Macrolee, en ntilisant une librairie & une racine, appelée ET++ [WGMS9).
Nous allons done, tout au long de cet ouvrage, référer a notre expérience avee les
librairies & une racine, et par surcroit, & notre ignorance. Nous soulignons I’absence
de designs représentatifs en introduisant une nouvelle technique pour la représentation
de designs abstraits, Aussi, nons présentons une nouvelle approche pour Papplication
de librairies & une racine. Celle-ci s’ajoutera & la représentation de designs abstraits

proposée.

Nous croyons fermement que la librairie & une racine a le potentiel d’améliorer
d'une fagon draconienne la crise de L réutilisation. Nous souhaitons que ce travail
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devienne une premiere étape dans le processus de solution du comment de utilisation
et de la réutilisation efficiente de librairies & une racine.
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Chapter 1

Introduction

1.1 Frameworks and the Case for Reuse

Let’s face it, we, software engineers, have been asked to implement, manage, and
comprehend highly complex systems with unrealistic, in fact ridiculous, expectations.

‘ in the past, we did not realize how outlandish the development of such systems really
was, however the advent of software reuse has opened the eyes of many. We have
now realized, that through reuse, it is in fact possible to successfully build those
complex systems, and to build them faster and better than ever before. Brooks has
stated that software reuse is an area where the greatest productivity results can be
achieved becanse reuse addresses the “essence”, as opposed to the “accidents” of the
development. problem [Bro87]. It is however a mistake to assume that reuse does
not pose new challenges. According to Freeman, the state-of-the-practice of reuse is
cembarrassing [Fre87]. The present situation, and concern amongst the researchers, is
that software reuse is not living up to its original expectations.

Implementors of complex systems are generally reluctant to engage in reuse and
redesign'. This has mainly been attributed to an aversion to “not invented by me
code” and a lack of technical support for the reuse of design. It is very difficult to
reconstruct the design principles that underlie a given module by reading the code
for it. In fact, the comprchension of unfamiliar code is, in my experience, one of the

"T'he managerial, cultural and organizational issues involved in software reuse [PD91b)] are beyond

the scope of this work. We do, however, consider them equally important.
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most underestimated tasks in software engincering. Meyer [Mey87) and many others
claim that object-oriented design is the most promising technigue for attaining the
goals of reusability. In particular, object-oriented frameworks have the potential to
significantly facilitate design-level reuse [WBJ90, Kru92]. However, little is known
how to use and reuse them effectively.

1.2 Research Problems and Solution Approach

1

Wirfs-Brock and Johnson [WB.J90] identify three main rescarch arcas related to frame-
works. The first is designing frameworks: what are the characteristics of a pood
framework and how is one designed? The second is using, [rameworks: how does one
configure a particular application hased on a framework? The third is deseribing
frameworks: what notation is needed, other than that applicable to object-oriented
design in general?

Although the first issue mentioned is highly interesting, it is beyond our present,
knowledge in the domain. We therefore leave it to the experts, i.e. those few who have
experienced, over many years, the development of object-oriented frameworks. In this
work, we shall provide our insights and experience in the last two issues mentioned.
In particular, we will address the present lack of adequate representations to facilitate
the reuse of design. In fact, we go one step further and suggest, that there are several
levels of framework rense depending on the level of software abstraction. The higher
the level of abstraction, the greater is the potential for reuse. Also, becanse of the
sheer size (a large collection of classes) and complexity of frameworks, we will attempt,
to describe them in a much more practical manner, one encouraging their reuse,

1.3 Contributions

The major contributions of this research are:

e the introduction and description of different reuse levels at different, levels of
abstraction;




e the identification of framework micro-architectures as reusable design compo-

nents;
o o new technique for the representation of abstract designs;

o o new approach to documenting frameworks which compliments the proposed
representation of abstract designs and thus promotes framework use;

The validation of these concepts with the development of the Macrotec Toolset

[KLO193a, KLOY93b].

The ultimate goal of this research is to incite framework designers to adopt our
rense philosophy and description technigques thus providing application developers
with a more comprehensible and thus reusable framework. In turn, application devel-
opers, also adopting our suggestions, will produce highly flexible, thus easily main-
tainable and rensable systems.

1.4 Outline

This work is organized as follows: Chapter 2 begins with a discussion about the
object-oriented paradigm and its support for reuse. The same chapter then intro-
duces object-oriented frameworks as well as the different reuse levels we have iden-
tified. Chapter 3 describes the Macrotee toolset, a system we have developed using
the ET4++ object-oriented framework. The ET++ framework itself is then briefly
introduced. Chapter 4 treats design and its reuse in frameworks. It begins with a dis-
cussion of why design has long been considered a difficult task. Then, the two lowest
levels of reuse, reuse-in-the-small and reuse-in-the-medium, are described with a con-
centration on the latter, specifically the reuse of micro-architectures. In chapter 5 we
briefly introduce the highest level of reuse, i.e. the reuse of “black box” applications.
Chapter 6 identifies important framework learnability issues we deemed important for
successful reuse. We also present a known framework description technique we have
adapted to supplement the design reuse techniques of chapter 4. Finally, chapter 7
summarizes our work and lists some of the advantages of using frameworks we have
experienced in the development of Macrotec. We then mention possible improve-
ments/extensions to our presented framework description techniques. We conclude
with a few final remarks.



Chapter 2

Background

This chapter will review the object-oriented paradigm in terms of rense potential,
The object-oriented technique of frameworks and their inherent levels of rense will he
discussed.

2.1 Object-Oriented Programming and Reuse

This section will describe why the object-oriented paradigm has heen touted as the
answer to the reuse crisis. We shall hegin by deseribing the differences hetween
object-oriented and procedural solutions in an attempt to understand why the pro-
cedural paradigm has not been as successful with respeet to software rense. We will
then summarize and comment on an empirical study of software rense performed at
Virginia Tech [LHKS91].

2.1.1 The Object-Oriented Paradigm

There are several important characteristies in the object-oriented paradigm which
permit flexibility in defining and composing reusable components,  Indeed, objeet-
oriented langunages are required to support the four concepts of data abstraction,
information hiding, inheritance, and polymorphism [ES92].  All of these coneepls



facilitate reuse, yet at different levels and to various extent. Inheritance and poly-
morphism are the two coneepts which set object-oriented langnages apart from other
high-level procedural programming languages. Languages like Modula-2 [Wir85] and
Ada [Bar84] have the feature of a module (Modula-2) and a package (Ada), allowing
them to support data abstraction and information hiding. In terms of reusability,
this is definitely a step in the right direction. However, it is limited, becanse the
abstractions (types, modules, packages) are not easily extensible, and bhecanse it is
diflicult to capture common features hetween modules.

Consider for example the following definition of a type Animal. Assume for the
moment that the system must support tigers and house cats. Also assume a type
Location.

Under such circnmstances you conld have the following (in C++):

enum species{Tiger,HouseCat};

class Animal{
Location position;
species kind;

public:
Location where() { return position; }
void moved(Location here) { position = here; }
void feed();

+;

The cnumerated type, species, is used by feed() to determine which animal must
be fed. The funetion feed() could be defined as:

void Animal: :feed()
{
switch(kind){
case Tiger:
// feed the big fellow steak

)



break;
case HouseCat:
// feed the cute little thing milk

The type Animal as defined above is not flexible enough. It requires the funetion
feed() to know all the animal types. The problem is that we cannot distingnish
hetween the general properties (all animals have a location and they move) and those
specific to each animal (feeding habits). Adding new animals will typically require
several functions to be modified, risking the introduction of errors. The module is
therefore said to be representation dependent,.

There are two additional features unique to the object-oriented paradigm, which
in combination with encapsulation and data abstraction, permit the above lexibility.
They are: inheritance; and, polymorphism.

Inheritance

Inheritance permits a type (in object-oriented terms: elass) to inherit operations as
well as internal structures (internal data members and methods) from another elass,
a super class. The term inherit in the previous sentence could just as well have heen
replaced with “make use of”. A class (base class) inherits from its super elass and
hence may make use of certain functionality (methods) and/or data (data members)
defined within that super class. A super class may in turn itsell be a hase class with
respect to another (higher level) super class. A base class inherits from its parent
class, its parent’s parent class and so on. Figure | depicts a sample inheritanee
hierarchy for the class animal.

A class may add to the operations it inherits or redefine inherited operations. I,
may not restrict inheritance by choosing nol to inherit certain operations from s
parents. A base class is in fact a specialization of its parent class. All the inherited
data and operations are free i.e. they have already heen implemented and are stable
relieving the base class designer from rewriting the inherited operations. The designer
is required to code only those operations which are different, from thal of its parents
hence adopting a style of programming called programming-by-differenee. Another




obvious benefit is that modifications (specializations) are made in the base class
leaving the original inherited code intact.

Inheritance is one of the major extensions to abstract data types provided hy
the object-oriented paradigm.  In summary then, object-oriented programming, is
programming using inheritance, and data abstraction is programming using user-
defined types [S92].

Animal

Tiger House Cat Bird

Blue Jay Sparrow

Figure 11 A sample inheritance hierarchy.

Polymorphism

The second major extension to ahstract data types that comes with the object-
oriented paradigm is polymorphism. Polymorphism is the notion that a procedure
can be invoked for an object without knowing that object’s exact type. Polymorphism
is supported by the late binding of function calls. The C++ mechanism that provides
late binding is called a virtual method (“virtnal” is the Simmla and C+4 term for,
may be redefined later in a class derived from this one) [Str88]). Each instance of a
class that defines or inherits virtual functions has a pointer to a virtual function ta-
ble, catled a vlable. When a virtual method is invoked for an object, the appropriate
method is invoked by retrieving the address of the function from the vtable [Lip92].
Polymorphism allows software to be more general (applicable to more kinds of data)
and extensible (applicable to as yet unspecified data).

main(} provides a simple demonstration of how the features of inheritance and
polymorphism may be used;



' class Animal class HouseCat : public Animal
{ {

Location position;

publac: publaic:
Location where() void feed()
{ return position; } { //feed pussy cat 2% milk}
void moved(Location here) }

{ position = here; }
virtual void feed();

¥
main()
{
Location place;
HouseCat *KittyCat;
KittyCat~->moved(place); //will call moved() of class
//HouseCat which is however
//general, i.e., defined
‘ //1n its superclass Animal
feeder (KittyCat) ;

function feeder(Animal *kind)

{

kind->feed(); //will call feed() of class HouseCat due
//to polymorphism.

scope resolution allows the development of a hierarchy of classes in which a derived
class can inherit a common method from its parent, in this case methods where()
and moved(). A common message, for example, “kind->feed()”, can invoke different,
methods in a class hierarchy, depending on the type of kind. This feature is what, we

b}

.
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have deseribed as polymorphism.

The coneepts of polymorphism and inheritance thus support flexibility and exten-
sibility. They are inherent in the object-oriented paradigm and are the key concepts

for promoting software reuse.

2.1.2 An Empirical Study of Software Reuse

Now that we agree upon the object-oriented paradigm’s affinity for reuse, the next
logical step is to determine the effects of this paradigm on software reuse.

A study, recently completed at Virginia Teehh [LHKS91], measured the relative
impact of a procedural language and an object-oriented language on software reuse,

The Experiment

The experiment was condicted on a target system whose implementation involved a
variety of programming techniques. These techniques were drawn from the “employee
management” and “business management” domains and included data management,

numerical processing, and graphics.

[n the experiment, two sets of rensable code components were made available
to the subjects implementing the varget system. One set was implemented in a
procedural based language, Pascal, and the other in an object-oriented language,
C++. Equivalence between the component sets was guaranteed by ensuring that all
code met, the same fundamental functional and error-handling requirements.

The subjects were divided into four groups as depicted in figure 2.

Half of the subjects implemented the project in Pascal, the other half in C++.
Furthermore, a portion of the students from each langnage were not allowed to rense
at all, while others were encouraged to do so.

The data collected during the experiment measures the productivity of a subject
in implementing the target system.

The main variables in the measure of productivity were:

9



No Reuse Reuse
Procedural Procedural

No Reuse Retise

Object-Onented Objeet-Onented

Figure 2: Subject Group BreakDown

Runs - The number of runs made during, system development and testing;

RTE - The number of run time errors discovered during, the system development, andd
testing;

Time - The time (in minutes) to lix all ran time errors.
The secondary variables in the measure of productivity were:

Edits - The number of edits performed during the system development, and testing;
Syn - The number of syntax errors made during system development and testing.
Multiple productivity variables were used to provide a complete picture of the

development process. [t was decided that the Runs, RTE. and Time variables
would he given greater emphasis due to their significance in the development, process.

Experiment Results

The goal of the experiment was to answer questions with respeet, to the impact of the

object-oriented paradigm versus the procediral paradigm on the suecessful rense of

software components. We will now address two of these questions (those most relevant,
to the topic under discussion), separately summarizing the experimental lindings as
well as giving our own opinions and interpretations of the data.

The tables which follow have a p-value associated with each productivity vaiable.,
The p-value is the probability that the difference could have heen obtained by chanee,
rather than reflecting a true difference in productivity. Following conventional eriteria,

a difference is deemed statistically significant if its p-value is less than 0.05.
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1) Docs the object-oriented paradigm promote higher productivity than the procedural
paradigm?

The third column in table I lists the means of the productivity variables calculated
from all subjects using the procedural language, including subjects who reused and
those that did vot. The fourth column shows similar means for subjects in the object-

oriented categories.

Means
Sip.? p-value Procedural -0
Runs Yes 0.0066 59.27 47 S0
RTE Yes 0.0078 65.00 50.20
TIME Yes 00104 a54.41 261.70
Edits No 0.3469 271.55 263.65
Syn No 0.8675 183.67 202.40

Table 1: Language main effect

The data evaluators at Virginia Tech concluded from the Table | data that the
subjects using the object-oriented paradigm experienced higher productivity. The
values for the three main variables in the O-O column are indeed lower, with p-
values well below the 0.05 required for significance. The two secondary variables had
surprisingly similar figures for the procedural and object-oriented paradigms.

The data evaluators attributed, due to the nature of edits and syntax errors, the
lack of significance of the secondary variables to the subjects’ lack of practice using
the object-oriented language. This may indeed be a contributing factor, however, we
believe that it is only one among many.

Firstly, the very nature of object-oriented programming suggests that it is not as
intuitive to use effectively and efficiently as procedural based languages [OBHSS6].
For instance, in order to reuse, one must find, understand, modify, and compose
reusable software parts [JS89]. Reuse in procedural-oriented languages requires less
of an effort. The procedure caller supplies a set of actual parameters to conform to the
callee protocol. Then, the callee (a server) will provide the client with a specific service
routine. However, in object-oriented languages, each service request (message) will
be sent to an object which will determine the appropriate service response (method).
Unlike procedural languages in which a service request is responded to by a specific

11



service routine, in object-oriented languages the same service request (method call)
could be responded to by different service routines (classes). A callee in a procedural
language depends only on the 1outine name wheteas a callee in an object-oriented
language depends on both the object (class type) and routine (method) name.

It therefore obviously takes more of an effort to understand an object-oriented
component as compared to a procedurai one. This effort would in onr opinion reflect
itself in the number of edits and the number of syntax crrors (for less experienced
coders) as well. Even experienced C++ programmers spend quite a bit of their time
understanding, and to understand a componeunt, one must edit. We helieve that, the
number of edits would therefore be high, independent, of object-oriented experience,
You may argue that experienced programmers would require less effort for under-
standing components. We tend to agree, however, this wonld be offset, by a preater
amount of effort devoted to efficient class (‘omposit.i('m and quality object-oriented
programming. They would expend greater effort in considering the proper develop-
ment of concrete and abstract classes, issues such as the ideal number of methods per
class, generality of applicability versus payofl and others related to reuse and general
object-oriented programming. In this experiment, the details of the object-oriented
code quality were apparently (mistakenly) not taken into consideration.

2) Does the object-oriented paradigm promote higher productivity than the procedural
paradigm when programmers reusc?

The means in table 2 are for both programming paradigms and for subjects who
did reuse.

Means
Piocedural O -0
Sig.? p-value All Reuse Al Reuse

Runs Yes 0.0001 50.07 221
RTE Yes 0.0005 55,71 34.30
TIME Yes 00153 301.%6 208,860
Edits No 0.8380 189 00 208,064
Syn. No 0.9767 137 14 164 71

Table 2: Rense (procedural versus object-oriented)

The results in table 2, for the three main productivity variables, suggest a positive
answer to the question. Here, too, we have a favorable result, for the ohject-oriented

12



paradigm. Bul here, once again, the secondary variables did not differ in the proper
direction, and the experimenters failed to rationalize this discrepancy.

Onr analysis of the data in table 1 applies here as well. It is important, however,
that we rationalize why the number of edits and syntax errors differ even greater in
this situation of procedural and object-oriented ALL rveuse, table 2.

i table | the means reflected subjects who reused as well as those which did
not. And the reasons given for the secondary variables’ low productivity results were
mainly due to software reuse issues. Therefore, one would assume that analysis of
data pertaining to reuse ONLY, would result in an even greater difference froin the
hypothesized direction for both Edits and Syntax Errvors. This is precisely what we
have observed from the data of table 2.

Final Comments

The Virginia Tech experiment has indeed shown that the object-oriented paradigm
has a particular affinity for reuse. With regards to their conclusions about productiv-
ity, we have a more skeptical view. They claim that, “the object-oriented paradigm
substantially improves productivity, although a significant part of the improvement
is due to the effect of rense.”. We claim that, “If productivity gains are achieved with
the object-oriented paradigm, these gains are directly and mainly attributable to the
cffeet of reuse.”.

Notice that our claim begins with the condition “If”. It is our contention that
productivity gains are achievable with the object-oriented paradigm, however not
in its carly stages of adoption. Productivity gains are possible, hut certainly not
guaranteed, once a set of mature reusable classes have been constructed. A mature
class hierarchy is one which has heen reused fairly extensively and has concurrently
gone through several refactoring and testing cycles.  Then, and only then, wonld
productivity gains, due o reuse, be noticeable.

During the carly stages of rense-oriented software development, possible produc-
tivity gains conld be immediately realized in system maintenance activities. This
gain would be realizable if and only if the maintainer was also the developer, i.e., the
creator/refiner of the application’s classes. This way, the effort required in finding
and understanding the affected class hierarchy would already have been expended. In
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fact, as Basili points out [Basy0], for effective reuse, it is important to comnbine the
development and maintenance models. Basili even snggests that development should
be considered as a subset of maintenance. Upon reflection, this would be especially
true in the object-oriented paradigm. The features we have deseribed as encouraging,
reuse in object-oriented languages, are also useful during maintenance, Modularity
makes it casier to understand the effect of changes to a program. Polymorphisim
reduces the number of procedures, and thus the size of the program that has to be
maintained by the maintainer/developer. And lastly, class inheritance permits a new
version of a program to be built. without affecting the old one. hence programming-
by-difference. Thus, a set of subclasses actually reflects the history of changes made
to the superclass.

Future experiments would be required in order to consider two very important,
variables, in addition to those studied by Virginia Tech. They are the number of hi-
erarchy levels in the class library and the total number of classes (components), Both
have a significant impact on a developer’s effort. to rense as deseribed by Woodficld
et al. [WES87] who report that small and shallow class libraries case finding and
understanding of classes, hence facilitate reuse and thus inerease productivity.

2.2 Object-Oriented Frameworks

An object-oriented framework is a set of classes which provide a foundation for so-
lutions to a set of problems. Frameworks may be domain specific. For example,
there are frameworks for VLSI routing algorithms [Gos89] and for drawing editors
[VL89, V1i90]. Others are more general and define much of an application’s standard
user interface, behavior, and operating environment so that, an implementor may con-
centrate on application-specific parts. These general purpose frameworks, often called
application frameworks, are the subject, of this work, For hrevity, we will heneeforth
refer to them as “frameworks”. Examples are: Inberviews from Stanford University
[LCV8T7]; ET++ from the University of Zurich [WGMSS, WGMS9]; Smalllall-80 for
Smalltalk-80 [KP88] and, MacApp on the Macintosh [Sehg6].

Frameworks are more than well written class libraries [JI'88]. A framework is the
design of a set of objects that collaborate to carry out a sel of responsibilitios, an

abstract design. According to Deutsch, the most important part of a framework is
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the part that describes how a system is divided into its components [Deu83). In fact,
frameworks can be thonght of as application templates for a family of solutions to
a seb of related problems. A framework (or abstract design) is used by modifying
existing classes and/or by extending it via the definition of new subclasses. Whereas
class library components are used individually, classes in a framework are reused as
a whole to solve a specifie instance of a certain problem.

Figure 3 illustrates the design of an application that has been developed with
the ET44 framework, an excerpt from the ET++SwapsManager application [EG92].
Bold class names are those of the underlying ET+4 framework itself while the classes
within the dotted area were added for this particular application.

Object
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IFigure 3: The overall design of an application built on top of a framework

A mature framework will have more than one concrete subclass for a majority
of its abstract classes, allowing for most applications to be developed by plugging
together existing components. If new subclasses are required, they are usually very
simple to code, because mature abstract classes tend to be complete,

The major difference hetween using object-oriented frameworks and using com-
ponent libraries is that the user of a component need understand only its external
interface, In contrast, the user of a framework must also understand the internal
structure of the classes in order to adapt and extend them by inheritance. Frame-
works require more training to use and are easier to abuse than component-based
frameworks. They do however provide enormous potential for reuse, in fact, reuse is
what frameworks are all about.

15




2.3 Levels of Reuse in Frameworks

Similar to the notion of programming-in-the-small, -in-the-middle and -in-the-larpe
[DK?G], we have identified three different levels of rense in object-oriented frameworks.
The first, reuse-in-the-small, involves low-level rense, i.e. the rense of a class, method,
and/or code fragment. For example, adding a subclass to an abstract class, called
specialization, is reusing-in-the-small. Absiract classes are incompletely specified and
designed to be subclassed rather than themselves instantiated. An abstract class is
actually a small scale design for reuse of the design of small scale components. In
contrast, a framework can be considered a large scale design.

The next level of reuse is reuse-in-the-medium. It lies in between the reuse of
code and small scale designs of abstract classes and the reuse of large seale designs in
frameworks. This is the reuse of objects and their interactions. We shall refer to this
type of reuse as “micro-architecture” reuse. As frameworks codify design knowledge
of a particular domain, micro-architectures codify design knowledge in terms of the
behavior of object collaborations. Micro-architectiures rense both the design and code
describing the kinds of objects and the interactions and control flow among them.

Reuse-in-the-medinm involves another level of reuse whieh is a little higher in ab-
straction than micro-architectures. It, involves the interaction of micro-architectures.
Therefore, at this level of reuse, the objects are no longer classes, but are themselves
micro-architectures. This is in fact the reuse of the architecture of a systenm which
has been instantiated from the object-oriented framework. At this level, for rense to
be successful, the designers must rense a system which has heen instantiated with the
same framework with which they intend to do further development and redesign. For
example, it would not be worth-while for a designer using the KT+ framework Lo
reuse the architecture from an application developed with the Interviews framework

[Ber90).

As a framework describes the architecture of a system which has heen instantiated
from it, micro-architectures can be considered just that, i.c. micro-architectures of
the larger framework architecture.

The highest level of reuse, reuse-in-the-large, is the reuse of ohjects which are
themselves independent systems, systems which are reused as they are, without being
modified or extended in any way. We call them “external systems”. It is the system
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which reuses them, the “target system”, which is responsible for adapting itself to the
protocol requirements of the external system. The external systems may or may not
have heen developed with the same framework as the target system, they may even
have been developed in a different programming langnage. The point to be stressed
here is that the target system need not bother with the internal implementation
and design details of the external systems since there is absolutely no intention of
modifying or extending them. Although reuse-in-the-large is not specific nor nnique
to frameworks, it is an important reuse level that we have had experience and success
with in the development of the Macrotee Toolset.
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Figure 4: The different levels of reuse and abstraction

Figure 4 depicts the different levels of reuse we have described. Notice the use of
shading to represent the level of abstraction. For instance, reuse-in-the-large involves
rensing a “black box” object, i.e. an application. Each level will be described in
greater detail in later chapters.
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Chapter 3

ET++4 and the Macrotec Toolset

You will now be proudly introduced to Macrotee, an object-oriented toolset we have
developed throughout the past year. The Macrotee development, using the 15144
framework, illustrates and validates many of the concepts deseribed in this work and
will be referred to in the later chapters. This chapter concludes with a brief discussion

of ET+4+.

3.1 The Macrotec Toolset

We have developed a new methodology for the architectural modelling and high-level
requirements specification of business processes and information systems, To support,
and validate our methodology, we have engineered the Macrolee toolsel. Macroler
currently allows for graphical model specification, automatic graphical layont, logical
and performance analysis, and hierarchical decomposition. To support, this function-
ality, various tools were built or integrated into Macrotee. Externally, integration is
achieved through a seamless user interface, and internally, integration is furthered hy
one single data representation scheme and a simple yet effective and extensible meeh-
anism for tool interaction. In this section, we present our methodology and focus on
the tool development effort that led to Macrotee, Specifically, we discuss Macrolee’s
requirements, design and implementation, and we evaluate our development, effort,,
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’ 3.1.1 Introduction to Macrotec

In a joint research project, we have developed, in cooperation with DMR Group
Inc., a new methodology for business modelling. Our approach combines several
concepls that have originally heen developed in separate contexts, such as entity-
relationship modelling of information, specialization and inheritance in the sense of
object-oriented languages, event analysis, and analysis of data (product) flow as well
as resonrce ulilization. We have integrated these concepts into a uniform modelling
framework with a precise semantics for the dynamic aspects, which has been defined
through the formalism of Petri nets.

The resulting modelling approach [BDI*92] supports facilities such as architec-
tural views at different levels of abstraction, and performance analysis, based on the
dynamic semantics mentioned above. In many ways, however, it goes beyond current
approaches. For instance, it explicitly supports inheritance and specialization, and
it includes an expressive set of relationships, yet small enough to make them easy
to use. Moreover, our approach lends itself to automation, e.g., semi-automatic sub-
stitution of model parts, various consistency checks, and flexible animation (forward
and backward).

‘ In order to support and validate our approach, we have developed the Macrotec!
toolset, a tool which will eventually support all facets of our methodology [KLO*93a,
KLO*93b].

In the sections which follow, we discuss the requirements for systems supporting
our methodology. Then, we detail the design considerations behind Macrotec and
provide a scenario of its usage. Next, the implementation of Macrotec is described,
together with an evaluation of our development effort. Finally, we present the current
status and future research directions of our project.

3.1.2 Toolset Requirements and Existing Tools

In this section, we describe the functional requirements of the Macrotec toolset. We
then report on our evaluation of existing tools against these requirements and detail
the tools we have integrated into Macrotec.

I'“Macrotec” is a contraction of the words Macroscope, our project’s name, and architecture.
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The toolset must include:

e A tool for the graphical editing and validation of models (i.c., their representa-

tion as annotated graphs or networks), complemented with facilities for anto-
matic graph layout;

A dynamic analysis tool supporting both timed animation and performance
analysis. The animation engine (we use the terms “engine” and “tool” inter-
changeably) must graphically and interactively simulate the exeention of the
model, thus enabling visnalization of the model components’ interactions, Fur-
thermore, it must support forward and backward execution in order to answer
questions such as: What are the actions that consume given inputs and in what,
order do they occur? What are the outputs obtained? What are the necessary
intermediate actions to be performed? What inputs are required for a specified
output?

The performance analysis engine must analytically generate quantitative results
such as action throughput, bottlenecks, resource utilization and waiting time
for actions. This way, potential problems (e.g., loops) may be revealed, and the
impact of modifications on the system design may he more easily understood;

A substitution tool supporting multi-level modelling. This tool must provide
mechanisms for the decomposition and abstraction of network parts into sub-
nets and super-nets, describing, respectively, lower and higher levels of ab-
straction. Obviously, these mechanisims should preserve visual and behavioral
consistency between different-level nets in respect to their adjacent nodes;

Facilities for data exchange and evolutionary design, namely, a state-of-the-art,
database and a standard data exchange format.

Given this extensive list of requirements, we strove for using existing tools and
conducted an evaluation. In what follows, we describe our principal findings.

Most existing modelling tools are based on one of the following models: data-flow,
entity-relationship, object-oriented or Petri net model. Our methodology does not,
exclusively support these underlying models but rather merges their main concepts
into one coherent approach.
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The dynamic analysis and substitution tools we evaluated, including DesignCPN,
Fval, GSPN, MctaDesign, RDD100, SPNP, Voltaire [KOR92] and Franck’s system [Fra92)
did not, meet, the above requirements, since they provided insufficient support for one
or many of the following criteria: timed dynamic analysis, backward animation, auto-
malic performance analysis results generation, integrated view of static and dynamie
modelling, concurrency and parallelism, data exchange and model evolution, hierar-
chical models, and multi-level validation.

These tools offer, at best, partial solutions to our requirements. Thus, we decided
to develop an integrated toolset hased on existing tools that fully satisfy one functional
regquirement, and on tools built from scratch. Figure 1 depicts the different tools
involved in the resulting Macrotee toolset. We have integrated the SPNP performance
analysis tool [TMWH92] and an automatic graphic layont package being developed
at, the University of Toronto [MEN92]. The modelling, animation and substitution
tools [JBB+92], however, were all developed by our group.

User Interface and Control

1

Modelling Peorformance Animation Substitution Automatic
Tool Anal, Tool Tool Tool Layout Tool

| Transformer1 I l Translormerzl
——}

Coro GXF+
| Reproesentation Mapper | Reprosentation

Database

Figure 1: Macrotec Architecture Qverview

3.1.3 Design of the Macrotec Toolset

The design of the Macrotee toolset was driven by three major considerations: internal
and external integration, and extensibility. We felt that these guiding principles
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would be essential to our design. if Macrotec was to support all of the functionality
mentioned in the previous section, and possibly more in the future.

Internally, the corc representation is the heart of Macrotee (see lgure 1), All
information to and from the user interface is, after manipulation by the various tools,
managed in the core representation. Internal integration in Macrotee is furthered by
the underlying storage facility, the Gemstone system?, an object-oriented database
management system allowing the storage and retrieval of the core representation, and
supporting simple versioning.

Macrotec consists of two categories of tools. In the first category are the tools
that manipulate graph layout data. Such tools store their data in the GNP repr-
sentation. GXF4 [KLS93] is our customized version of GXF, a standardized graph
exchange format [MEN92]. Supporting GXF+/GXF allows us to casily exchange
data with other, special-purpose, GXF-based systems such as the antomatic layont
tools being developed at the University of Toronto. Non-GXF4-based systems ro-
quire data transformation programs. For instance, integrating onr substitution tool
(implemented before adopting the GXF+ standard) required the development, of the
Transformer? program. Mapping of the core into the GXF4 representation and viee
versa is carried out by the Mapper component.

Tools helonging to the second category manipulate the model data thal are not,
related to the graph representation. In case these tools are part of the Macrotee
process, e.g., the animation tool, they interact with the core direetly. Otherwise, a
data transfer program to and from the core is required. For instance, the performance
analysis tool, running as a separate process, interacts with the main Macrotee process
via Transformerl.

By external integration we mean that the user’s interactions with all the tools and
facilities of Macrotec are as uniform and comfortable as possible. This is achioved hy
having the user interact with the system via one single base window, giving him or
her access to the complete functionality of the system and allowing for casy switehing
between the different tools.  User interface prototyping and software rense at the
design level were instrumental in accomplishing this type of integration.

Extensibility in Macrotee is furthered by a loosely coupled yet eflicient, architee-
ture. Since the different tools, while rmuning in parallel, do not interact with cach

2(iemstone is a registered trademark of Servio Corporation.
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other, Macrotee’s control component can be kept quite simple. It synchronizes tools,
transmits external events to the tools, and controls access to the core representation,
using the inter-process communication mechanisms provided by Unix.

3.1.4 Using Macrotec

Oune typical application domain of Macrotee is the modelling of enterprise information
systems for preseriptive usage. In this section, we provide a scenario of this kind of
modelling. We model, as an example, a delivery system with products being ordered,
transported and finally delivered to their destination.
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Figure 2: Sample model Delivery System with animation and performance analysis
attributes

Figire 2 shows the hase window through which the user has access to the full
functionality of Macrotee, The window consists of three distinet areas: the menu bar

which gives a¢eess to the animation, performance analysis, substitution and antomatic
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layout tools; the palette in which the user may seleet an icon for editing actions, places,
relations and their attribute values (our models’ building blocks); and the diawing
area 1n which the user may display and odit the network. In figiie 2, the user has
loaded a network, possibly rensing a temiplate or parts of an existing model, The user
may edit and refine the network, adopting a top-down o1 bottom-up approach by
respectively decomposing or abstracting parts of the network. ‘I'he built- in validation
component of the modelling tool makes sure that the ditferent levels of the network
are consistent.

The animation engine is triggered throngh the base window via the pull-down
menu shown in figure 2. The graphical execution of the model may he performed at
nser-specified hierarchical levels, allowing for partial model assessments and pernnt
ting the user to define a configuration that corresponds to his or her mental model of
the system.

Performance analysis gencrates quantitative resulls on model behavior, For ex
ample, a comparatively low action throughput and average number of entitios m
an action’s input place (“low” might have a ditferent significance depending on the
network architecture) may confirm a bottleneck that has already hecorme apparent
during animation. In light of these results, the user may increase the number of
over-strained resources to smoothen execution (in our example, we conld increase
the number of “Trucks”, if the action “Transport” had lTow throughpat). Similar to
methodologies and tools in related domains [SGMES2], the user may prototype the
model. He or she might run, in an iterative way, animation and pcrformance analysis,
until the appropriate atiribute values and configuration for a desired model hehaviaor
are found.

3.1.5 Implementation and Evaluation of Development Ef-
fort

Macrotee is a Unix-based system developed mostly in C44 (minor patts were written
in (), running under SunWindows, NeWS, and the X 11 window system, s nuser
interface has been implemented with the B7T++ application framework [WGMSRY)|
and as database we are using Gemstone, ‘To date, we have invested more than fou
person years in its development.
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The data transformation programs required to integrate external tools into Macrotec
are an indicator for the extensibility of the system. According to our experience, those
programs dealing with the GXF+ representation tend to be considerably longer (4:1
ratio in lines of code) and more complicated than the ones interacting with the core
representation. However, this will not be a severe limitation, since future Macrotec
extensions will most likely require a transformation of type Transformerl. We do not
see the need for further graph manipulation tools, and hence transformations of type
Transformer2 will not be required.

We have adopted an object-oriented development approach that has provided sig-
nificant, productivity and quality gains. For instance, our user interface software is
highly flexible and reusable, in part due to the use of ET+4. ET++ is a powerful,
object-oriented class library integrating user interface building blocks with high-level
application framework components. The usually steep learning curve for such appli-
cation frameworks has heen alleviated by the use of some powerful C++ development
tools, most notably, the Sniff tool[Bis92]. Another benefit of the object-oriented ap-
proach in Macrotee is the use of Gemstone together with its C++ interface which has
led o an efficient database interface.

To prototype the user interface of Macrotec, we ran several user interface develop-
ment cycles, using tools such as HyperCard and Chiron-1 [KCTT91]. The integration
of several standalone tools with their own graphical user interface was an incentive
to meet (or surpass) the nsability criteria of each.

As our system evolves, with new external tools requiring integration, we will he
in a better position to determine how easily our system can he adapted and hence
whether or not our design and guiding principles are indeed sound.

3.1.6 Current Status and Future Work

A prototype version of the Macrotec toolset has recently been completed. Prelimi-
nary experience indicates that the prototype efficiently and effectively supports our
methodology. In the current version, backward animation and model substitution are
not yet fully supported. We intend to further validate our methodology and toolset
by applying it to large examples and by using it with evolving systems. Further plans
include customizability at the presentation level, the addition of a model documen-
tation and clicitation component, and navigation aids for substitution hierarchies.
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3.2 The ET++4 Framework

We will now describe in greater detail the ET4++ framework and rvelevant design
details. We will then compare Macrotec with Draw, an application developed using,
ET++ and reused heavily in our development effort.,

3.2.1 ET++ and Relevant Design Issues

ET+4++4 was developed at the University of Zurich by Gamma, Marty and Weinand,

ET++ is a class library of (44 classes, approximately 250 of them, which aims to
)

provide facilities comparable to the ones found in the standard Smalltalk class library.

The classes are distributed amongst 9 hierarchy levels as depicted in figure 3.
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Figure 3: Distribution of Classes in the ET++ lierarchy

ET++4 is structured as a single-rooted inheritance hicrarchy with many virtual
functions available to provide flexibility and opportunities for extension. The back-
bone of the ET++ architecture is a small device-dependent layer mainly mapping an
abstract window and operating system interface to an underlying real system (Iig-
ure 4).

The Basic Building Blocks contain the most important abstract classes of the
ET++ class hierarchy. All classes in ET++ inherit from elass Objeet, which defines
the protocol for actions common to all classes. Most of the member functions in
Object do nothing, and exist purely to be over-ridden in subclasses. Every objeet,
that appears on the screen is a subclass of VObjeet (visnal object). VObjeet defines
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Figure 4: ET+4++4+ Architecture Overview

an abstract protocol for the behavior common to visual objects - managing their size
and position, drawing them, handling input, etc. As the root of the hierarchy of
visnal objects, it is analogons to Object in the wider system. Basic building blocks
are also supported, like arrays, lists, sets etc.

Application framework classes are high-level abstract classes that factor out the
common control structure of applications running in a graphic environment and thus
provide support for the overall functionality of interactive applications. The classes
Application, Document, View, and Command are responsible for the overall applica-
tion behavior. They define the abstract model of a typical ET++ application and
together form a generic ET++ application Application is in overall control, and
manages any number of Documents. Document holds the data structure or model of
the application, and is responsible for loading and storing this data in files. All mod-
ifications to a Document are implemented as Commands, and the Document permits
the user to undo the last command performed. The class View, another subclass of
VObject, represents an abstract and possibly arbitrary large drawing surface. Its main
purpose is o factor out all control flow necessary to manage rendering and printing
as well as maintaining the current selection. A Document can have any number of
Views.

The Graphic Building Blocks contain all the graphical and interactive components
found in almost every user interface toolbox, such as menus, dialogs, or scrollbars. In
addition, it defines the framework to easily build new components from existing ones.

The System Interface Layer provides its own hierarchy of abstract classes for oper-
aling system services, window management, input handling, and drawing on various
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devices. Subclasses exist for implementing the system interface layer's functionality
for various window systems and the UNIX operating system.

3.2.2 ET+4+ Run-time Information about Classes

One problem of C4+ is that its run-time system does not provide any information
about the class structure or the instance variables of an ohject. It can be very nseful
in object-oriented systems to be able to ask an object what class it is, or to know
what instance variables it possesses. ET++ therefore implements a class Class which
is itself a subclass of Object and is analogous to Smalltalk’s metaclass. The basic idea
is to call a macro in the definition and implementation part of a class. The following,
example shows a class conforming to this ET++ coding convention,

//file Example.h

class Example:public Object {
class Collection *col;

int size;

char *name;

public:

MetaDef (Example)

Example() ;

//...

};

//file Example.C

MetalImplO (Example);

Example: : Example ()
{

/....
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In the simplest form both macros, just take the name of the class as argnment.
Information about, the instance variables can be specified with the MetaImpl macro
instead of the MetaImpl0. In this macro, the instance variable’s type and name are
cenimerated:

Metalmpl(Example,(1.O(col), I_l(size), I-.CS(name)));

The symbols 1.7 are used to specify the type of an instance variable. This macro
version is needed in order to give support to the ET++ programming environment,
The only time we made use of the programming environment was to determine the
class type of a particular graphical object. The use of MetalmplO is therefore
sufficient.

Not, conforming to this macro convention results in not being able to test the
dynamic type of an Object with the ISKINDOF method. We learned this the hard
way and it cost us at least half a day of debugging before finding the problem and
finally tracing it back to this.

3.2.3 ET44 Drew application versus Macrotec

IXT+4 classes are not documented nor are there any manual pages. Therefore the
best way to learn ET4+ is to study example applications. We studied Draw (a full
fledged drawing editor) and soon realized that it supported many of our requirements
for Macrotec. We therefore decided to make use of as much of the original Draw appli-
calion’s code as possible. We modified many of Draw’s classes by modifying existing
methods, adding new methods and removing others. We also created several of our
own classes and integrated them into the existing Draw hierarchy. The original Draw

application required close to 4000 lines of code and Macrotec is now at approximately
10,100 lines.
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Chapter 4

Design and its Reuse in
Frameworks

This chapter describes a major contribution of our work, i.c., the use and reuse of
frameworks. We begin with a discussion of why design has long been considered a
difficult task. Then, the two lowest levels of rense, rense-in-the-small and rense-in-
the-medium, are described with a concentration on the latter, specifically the rense
of micro-architectures.

4.1 The Challenges of Design

Design has long been considered hard and has heen al the heart, of most diflicultios
in software systems. No matter how carcfully prepared a system specification might
be, in the end, many easily specified tasks are “easier said then done”. Software
design is difficult in part because designers, in most domains, work in the unknown,
unguided by the history and traditions of carlier designs. Only a few domains have
been worked to the point that their design principles are well understood. Those
domains which immediately come to mind are compiler and operating system design.
Designing within these domains is simplified by the tremendous amount, of design
experience from which one can confidently he guided. We cannot, unfortunately,
easily and safely map design principles from these few “design wise” domains to the
many others. We are, in other words, missing basic pivot points around which further
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design decisions may be safely and easily based. This means that currently, design is
indeed “experience limited”.

Another general problem is the effect of changing design parameters. The de-
signer of an integrated circuit can easily predict the effect of an increase in voltage
on the individual components and therefore on the overall functionality of the circuit
board. The effect of changing software design parameters are much more difficult,
if not impossible, to predict. When dealing with frameworks, for instance, design
parameters include: number of classes, class protocols, class size, inter-object proto-
cols, ete. Changes in any of these parameters could affect functionality, reliability,
generalizability, reusability, etc. of the underlying framework(s).

The design of flexible and reusable software is even harder. In the traditional
waterfall software lifecycle model, design is performed once and for all, after initial
system definition and requirements are complete. However, we are asking designers
to deal with changes in system requirements throughont the life time of the software
product. Additionally, the ultimate goal of “design for reuse” is reusable software,
which requires the design of general, extensible software components. Design for
a fixed, specific set of requirements is difficult enough, and yet we are now asking
designers to predict the future uses of software and to incorporate the requirements
for these possible future applications into the current design.

Finally, to complicate things even more, a system should be designed to support
non-functional requirements. These include reliability, robustness, performance and
many others which are difficult to control due to the many unexpected uses/input of
a system,

We find it appropriate to end this section with a quote from Brooks, “We can get
good designs by following good design practices instead of poor ones. Good design
practice can be taught. Whereas the difference between poor designs and good ones
may lie in the soundness of the design method, the difference between good designs
and great ones surely does not. Great designs come from great designers.” [Bro87).

4.1.1 Frameworks to the Rescue

Thankfully, there are frameworks, an object-oriented technique to facilitate design
level reunse.
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In order to alleviate the problem of the designer working in the unknown, we need
a means to limit the huge number of design decisions a designer must take. Most
designers have recognized that working from a set of fixed low-level components (alb-
stract classes and subframeworks) provides many advantages to the design exercise,
This is due in part to the fact that design is an iterative process in which design
decisions may be guided by these low-level reference points and by the higher level,
more abstract design, of the underlying {ramework. This approach can certainly not
be considered as “top-down” design. However, we would not immediately tag it as
“bottom-up” either. In fact, design in the presence of reusable design abstractions
will be somewhere in between.

During a panel on “Designing Reusable Designs: Experiences Designing Object-
Oriented Frameworks” at the OOPSLA 1990 conference in Ottawa [WBVCHOU,
object-oriented gurus stressed the bottom-up design approach in the development
of frameworks. Here, we are however not involved in the development of a framework
(heaven forbid), we are dealing with issues in the design of applications based on an
already developed framework. We therefore suggest that we “design with guidance”
from the framework’s design and possibly the design of subframeworks and that we
take a mixed top-down/bottom-up approach.

In practice, we have found that the framework which underlies a complex sys-
tem such as Macrotec, actually gnides the design of subframeworks for subsystems.
A major characteristic of frameworks is that they are designed to be refined into
subframeworks which can be applied to specific subsystems. These subframeworks
may themselves guide the design of other subframeworks and so forth. This step-
wise refinement of frameworks thus allows the designer to cope more casily with the
constraint of changing requirements and software extendibility. Section 4.2 will he
devoted to this idea of “framework refactorings”.

Using frameworks thus allows designers to concentrate on the application-specific
design issues. The designer is provided with both top-down and bottom-up suppaort
in the design decision process. Thus, in designing applications based on frameworks,
design decisions unavoidably result in the modification or introduction of subsystem
frameworks or even in changes to the underlying, supposedly stable framework. These
design decisions will result in eventual changes to the configuration of framework
components and, possibly, to the creation of new components, i.c. new subclasses of
existing classes).
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As systems grow in complexity, the architectural dependencies between its compo-
nent, parts may become dangerously dense. There are different techniques which can
he applied to maintain or even improve the quality of the original framework-based
design, even after having applied architectural transformations. These techniques
will also apply to coping with the changes made directly to a framework’s design
parameters (as mentioned in the previous section). Section 4.2.1 will be devoted to
describing these techniques.

The framework-hased design reuse technique mentioned above is only now begin-
ning to receive greater attention for its potential for reuse pay off [WBJ90]. Sec-
tions 4.3 and 4.4 are dedicated to this topic.

The remaining issues, such as safety and reliability, are, to a large extent, auto-
matically dealt with by the very nature of frameworks. Components in a framework
are, or at least have the potential to be, more reliable, since they should have been
thoroughly tested and proven in previous applications.

4.1.2 ET++4 Design Reuse in Macrotec

A framework, such as ET++, hides the parts of the design that are common to all
of its possible instances. In what follows, we mention two design reuse examples we
experienced when working with ET++4-.

ET++ represents the design (architecture) of an application in the same way an
abstract class represents the design for subclasses. Therefore, using the framework will
facilitate design considerably, freeing the application designer from common, low-level
and often mundane design issues. Also, the ET4++ framework is valuable hecause it
allows the reuse of design parts which are often difficult to understand.

For instance, in developing Macrotec we did not have to consider low-level sys-
tem issues. ET++ has, as system interface components, a hierarchy of abstract
classes. These classes encapsulate operating system services, window management,
input handling, and drawing on various devices. The two abstract classes SYSTEM
and WINDOWSYSTEM define the entry point into the system interface hierarchy (cf.
Chapter 3 figure 4).

Another example of reusable design in ET++ is the mechanism called change
propagation. This mechanism allows graphical objects to synchronize their states,
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e.g., change their presentation, according to changes in observed objects. The class
OBJECT defines the subframework to synchronize the state of different objects. There
is a method to register an object as dependent on another, AddObserver(). Modifica-
tions to the state of an object are announced with a Changed() method, triggering a
call of the DoObserve() method for all dependent objects. To react to a change noti-
fication, this DoObserve() method has to be overridden in the participating graphical
objects. In Macrotec, we use change propagation to maintain connections between
graphical elements and to ensure that, when their positions are changed via “click
and drag” operations, all their dependent graphical objects are updated.

In conclusion, ask yourself the following question: Have 1 ever worked with power
designers? If so, they probably told yon that many designs ocenr again and again and
made comments such as, “Oh, that structure is very similar to a widget and, ty pically,
you handle widgets this way [BR87]”. Rarely will they begin from scrateh. Although
in this context, the reuse potential is directly related to the designers experience, the
fact remains, according to Biggerstaff [BR87], that design reuse is the only way we
can even come close to an order of magnitude increase in productivity or quality.

4.2 Reuse-in-the-small

For reuse-in-the-small in object-oriented frameworks, we distingnish two approaches,
extension-by-addition and extension-by-modification. Extension-by-addition involves
framework restructuring techniques. Extension-by-modification ocenrs when an ohject-
oriented system is built by rensing an existing system. In this section, we will deseribe
these approaches and illustrate them with examples from the Macrotee development,,

4.2.1 Extension-by-Addition - Framework Refactoring

The main reason that framework design iterates is hecause frameworks are supposed
to be reusable. According to Garlan [Gar83), it is not possible to rense software until
it is written and working, and therefore, iteration is a must.

Iteratively refining the framework, subframeworks and abstract classes (recall an
abstract class is a small scale design, i.e. a template for conerete classes) is the normal
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procedure of “maturing” an application’s framework!. These iterative refinements
usnally require a lot of hard work involving structural changes to the framework
hierarchy, a process we call refactoring. To motivate the practical importance of
refactoring in designing framework-hased applications, we will present examples we
came across during the development of Macrotec.

Refactoring To Generalize: Creating an Abstract Superclass

Refactoring to generalize can he seen as an example of iterative bottom-up design as
mentioned in the previous sections. As the design of an application’s framework ma-
bures, general coneepts can usually be derived from specific examples. The specific
examples are implemented in concrete classes. As common abstractions are deter-
mined, it is often necessary to separate this common behavior and to move it to a
new abstract superclass for the set of concrete classes [SD91].

Steps 1 & 2 >
Relation CrRelation CoRelation
(a) Before (b) During

Steps3 & 4
TextShape

RelationShape

CrRelation CoRelation
(c) After
Figure 1: Macrotec class hierarchy - Creating an Abstract Superclass

During the carly stages of the Macrotec development, the class hierarchy, with
respect to the relations between actions and places, was as depicted in figure 1(a).

Yapplication’s framework (the architecture (class hierarchy) of an application, e.g. Draw, devel-
oped from an underlying application framework e.g. ET+4+) should not be confused with application
Jramework (the underlying framework, e.g. ET+-+, with which one develops applications).
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TEXTSHAPE is responsible for drawing text onto the drawing area (setting display
properties, making the drawn text dependent on other objects, ete.). RELATION
includes methods to maintain which shapes (OvalShape, for places and BoxShape,
for actions) it is connecting as well as database save methods. An carly stage of
development had Macrotee supporting only one relation, the “create” relation. After
having fully implemented and tested the create relation, we began introducing, the
other relations. We soon realized, however, that most of the methods and data
members were the same for all the relations. A series of changes, shown in figure |,
were made to generalize the Relation class in order to support. both CrRelation and
CoRelation relations:

1. the Relation class was renamed CrRelation,

2. The CoRelation class was added as a subelass of TextShape; data members and
methods were copied from the CrRelation class, and modified,

3. the Relation class was added as a subclass of TextShape and as an abstract
superclass of CrRelation and CoRelation,

4. the data members and methods common to CrRelation and CoRelation were
migrated up to Relation, their common superclass.

This was a fairly straight-forward procedure sinee all the methods which were
migrated to the superclass had exactly the same implementation, in cither relation,
If this had not been the case, we would have had to introduce new methods, In
general, if class A and B have a slight difference in their implementations for method
Y, the differences have to be separated out. This requires that new methods be defined
in each subelass, A and B, in order to take care of the differences. The differing, code
in Y must then be replaced by calls to the new methods in cach of the subelasses,
Then and only then can the method Y be moved up to the abstract superelass,

Refactoring To Specialize: Subclassing

Generalizing using abstract classes is usually accompanied by specializing using sub-
classes. Common abstractions are captured in abstract superclasses, whereas case-
specific behavior is handled in the subclasses. During the development of Maerotee,
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we specialized several abstract superclasses. Here we show the specialization of the
class SHAPESKETCHER with the class BOXSKETCHER.

The ShapeSketeher class is respousible for displaying to the user a graphical
shape’s bounding hox as it is being dragged and stretched on the drawing surface. It
also saves the resnlting shape in a list of shapes list. We, however, wanted the shapes
for our actions (and places) to be of a fixed size, i.e. we wanted the user to select
the Action shape from the palette and have the system place the shape at the first
location clicked in the viewing area. To do so, the following steps were taken:

I. an empty class, BoxSketcher, was created as a subclass of ShapeSketcher;

2. ShapeSketcher was studied and it was determined that BoxSketcher needed to
override the methods TrackFeedback() and SaveDoit();

3. the constructor of BoxShape was determined to have to initialize the base class
(ShapeSketcher) through a member initialization list.

Quite often class methods have conditional statements that each test for the same
set of conditions. When observations of this type are made, this may suggest that sub-
classes should be defined corresponding to those conditions. In developing Macrotec,
we did make such observations. For instance, a method in the RelationShape class,
called DBSAVEConnect (), had the following conditional code:

if (this=->IsKindOf(CoRelation)) re_name=strsave('Consume");
if (this->IsKindOf(ChRelation)) re_name=strsave("Change");
if (this->IsKindOf (Ch2Relation)) re_name=strsave('Change");
if (this->IsKindOf (CrRelation)) re_name=strsave('Create");
if (this~->IsKindOf (UsRelation)) re_name=strsave("Use");

if (this->IsKindOf(XuRelation)) re_name=strsave('XUse");

if (this->IsKindOf(ChRelation))
{
DEBUGP(printf ("It’s the Ch relation!!\n"));
anRelation = new MA_RelationAPP(a,p,p);

}
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else
if (this->IsKind0Of (Ch2Relation))

...etc,..

Since there were already separate conerete classes for the relations ereate, con-
sume, change, use and Xuse, we simply added a virtnal method in the RelationShape
class with each relation implementing its own DBSAVEConneet methaod.

Summary

The previous examples were quite straight-forward. In general, however, structural
changes to a class hicrarchy may be fairly complex. In particular, changes made lower
into the hierarchy, i.e. closer to the root, will require a lot of attention in order Lo
ensure that the restructuring is behavioral preserving [GTCHO0].

Inadequate inheritance structure, missing abstractions in the hierarchy, overly spe-
cialized classes, may seriously reduce the reusability of a framework. It is important,
for a framework to evolve in order to eliminate such problems and henee improve
its reusability. Successful refactoring will result in cleaner and more comprehensible
design, in less code and therefore possibly in faster execution speed,

4.2.2 Extension-by-Modification - Editing Existing Classes

The second facet of rense-in-the-small, extension-hy-modification, typically occurs
in a reuse in the medium context. We recall that reuse-in-the-medinm involves the
reuse of micro-architectures and interactions thereol, 'This is in fact the rease of the
architecture of an application which has been instantiated from the framework. 'I'he
reuse of this application implies reuse-in-the-small, hoth as, extension-hy-addition
and as extension-by-modification.

We agree with Licherman [Coo87] that one wants a small extension in hehavior
to require just a small extension to code. He further contends that adding new code
is good, whereas modifying existing code is bad, We share this opinion as long as the
code is the code of the underlying framework itself. However, we elaim that modifying,
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existing code, extension-by-modification, is good and desirable, if the extensions are
to the application having heen developed with the underlying framework (and not to

the framework itself).

In other words, extension-by-modification should only be exercised on the ar-
chitectnure components of an application developed from the underlying framework.
Although extension-by-modification reuse runs a higher risk of causing reuse upset?,
its payoff potential, as we have experienced in reusing DRAW, is worth the risk.

One of our experiences with this level of reuse was the implementation of the
shape with which an Action in Macrotec is represented on the screen. An Action
shape is a rectangle of a defanlt size that is positioned at the first location clicked in

the drawing area.

Our starting point was the original class hierarchy of Shape graphical objects as
provided by the DRAW application (see figure 2).

TextShapie

PictnreShape

DynShape =————— IynChapel
Linelhape

Imay~Shape

Groupy

BoxShape —— RoBoxXGhape

OvalShape ArcShape

RegionShape
PolyShape <
BezierShape

Figure 2: DRAW class hierarchy - Shape graphical objects, Object and Shape
abstract classes of the underlying framework and application’s framework respectively.

We considered and discarded the following reuse options for the implementation

of onr Action shape class:

e Subclassing BoxShape. We did not, however, because concluded that BoxShape

“Reuse Upset: A terin we have introduced, meaning the advantages claimed by reuse are lost
and actually worse than if there had been no reuse at all.
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was not a valid generalization. It was in fact a concrete class with instantia-
tions in the original DRAW application. However, we had originally agreed to
subclass only abstract classes, since abstract classes do not have to provide data
representations and future subclasses can use any representation without fear
of conflicting with the ones that they inherited [JF88];

e Creating a new class, subclassing class Shape. We did not, however,
because the functionality of BoxShape, a subclass of Shape, was close to what
we required for the Action shape class. The only difference was in the drawing
style used and the size of the resulting shape.

Our solution was to remove remove the class ReBoxShape and to reuse the class
BoxShape by directly modifying its code, extension-by-madification. This type of
reuse involves principles very similar to those of reuse-by-addition. We are in faet
introducing a new subclass, however, some of its implementation is not our own,
i.e. we are reusing already coded data members and methods. Unlike the reuse of
abstract classes by subclassing, in which one may assume? correet code, conerete
classes have not necessarily been thoroughly tested. The reused conerete elass will
therefore require testing in the same way a class added via subclassing would require
testing. There is however a difference. A class (abhstract or conerete) from the appli-
cation’s framework has code “not invented here”. Thercfore, if ever testing detected a
problem, we would have to debug another programmer’s code. Obviously, this could
result in time consuming debugging sessions and, possibly, in reuse upset. One should
therefore carefully consider the following factors when reusing an application’s code:

Reliability - the code to be reused should be fairly reliable. A good indication of
reliability is the successful use of the application in the past;

Code Changes - the code to be reused should require the least amount, of changes,
due to system enhancements and/or maintenance. This is however diffienlt to
control and predict. Therefore one should consider the following additional
factors which directly affect the ease with which code may be enhanced and/or
maintained:

3This assumption is based on the current practice of developing application frameworks in which
a substantial amount of time is invested in creating and testing abstractions,
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‘ Code Complexity - you should not take the chance of reusing complicated
code. If ever it required changes, the initial gains experienced due to reuse
would quickly be lost and reversed, i.e. reuse upset;

Code Size - one should keep in mind that the greater the number of code lines
in a method, the greater the probability of an error within that method.

Extension-by-modification of an application’s abstract classes, e.g. class Shape,
aises Lhe same coneerns as those mentioned above when directly reusing code. How-
ever, when extending abstract classes, we should be even more careful since the po-
tential for expensive errors is increased.

We, for example, removed some data members and introduced new ones to the
abstract class Shape. Such changes, to be behavior preserving, must satisfy certain
preconditions. Two simple examples are the following:

A. Remove Dala Members, i.e. delete variables at the class level.
Precondition: = the variables being deleted must be unreferenced.

B. Add New Data Members, i.e. add an unreferenced locally defined member variable
' to a class,

Precondition: = the new data member name must not clash with an existing data
member or global variable.

Opdyke [0J90] has identified 26 preconditions for such low-level refactorings.
They support the high-level refactorings of section 4.2.1 and are naturally applicable
to all other changes to a framework class hierarchy as well. After having studied
them, we found ourselves verifying the associated preconditions each time a change,
any change at all, was required in either an abstract or concrete class.

Summary

The reuse of BoxShape and Shape was « big payoff for us in terms of implementa-
tion time and code quality (those who originally developed DRAW were seasoned
programmers). In fact, in reusing an application, many unknowns, in terms of im-
plementation, may be resolved by studying the functionality of the existing code.

4]




For instance, after having performed the above mentioned refactorings, we had the
class hierarchy properly reflecting the class BoxShape as a subelass of class Shape
and without subclasses. We were however at a loss as to how we could change the
behavior in order to draw a rectangle with default size at the first location clicked in
the drawing area, i.e. elitninate the rectangle sketching. When running the original
DRAW, we realized that the shapes PolyShape, RegionShape, and BezierShape did
not have the same drawing functionality as the others. We therefore decided that,
in order to properly change the behavior of BoxShape, (i.e. make the changes in the
correct methods and/or classes) we would have to determine how these three shapes
had implemented their unique behavior. The first logical step was to compare their
class definitions. We immediately realized that each of these three shapes had their
respective sketcher classes defined in their Jh files. We inspected the class hieravehy
and indeed we found shape sketcher classes (see figure 3).

ReglionSsketcher

TextsShapesSketcher

ShapceSketcher

BezlerSketcherx

PolysSketcher

HoxeiKestrolieny

Figure 3: DRAW class hierarchy - Shape Sketeher elasses

We now realized that, to change the drawing behavior of BoxShape, we had to
introduce a new class, BoxSketcher. We did, and using RegionSketcher as a template
(with few changes required to the code) we succeeded in the implementation of the
required behavior.

4.3 Reuse-in-the-medium - Framework Applica-
tions

Before describing the lowest level of reuse-in-the-medinm, i.e. the reuse of micro-
architectures, we will discuss in this section the highest-level of reuse-in-the-medinm,
i.e. the reuse of an application developed from an underlying framework. We feel
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that this order of presentation will facilitate the readers effort to properly understand
our detailed explanations of micro-architecture reuse.

We experienced this higher-level reuse-in-the-medinm when developing Macrotec
from Draw, a preexisting application developed with the ET++ framework. Draw
is a general-purpose graphical editor similar to MacDraw, allowing the editing of
lines, graphical shapes, text, spline curves, ete. When studying Draw, we realized
it matched very closely the functionality required in Macrotec’s graphiral modelling
component.,

In order to successfully accomplish framework application rense, it is essential to
be able to differentiate the underlying framework classes from the application-specifie
classes. This is important for many reasons, including,

e Much can be learned from application class implementation in terms of the
interaction with the underlying framework, for instance,

— the classes of the underlying framework which were subelassed
— the methods which were overridden when subclassing

— the general programming style adopted by the application developers, i.e.
naming standards, approximate number of code lines per method, ete.

o If the chosen application closely matches the functionality required in the new
application, then, most extensions, be it additions or modifications, will he con-
fined to the application classes. This has the direct benefit of reusing the effort
originally required to understand the abstract classes’ protocol* and specializa-
tion requirements.

o After reusing an application’s application specific classes, it will be necessary
to remove those classes which are not used.

Current programming environments a la Sniff [Bis92], display class hierarchy
boundaries transparently, i.e. without a clear separation between application and
underlying framework classes. In ET++, although we were tempted to assume that
the application source code was within separate directories of the underlying frame-
work source, we had no guarantee of this. The same is true independent of the

'Protocol: the set of messages that can be sent to class instances.
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underlying framework bheing nused and therefore one should avoid making such naive
assumptions. We were looking for a safe, general way to identify Drausspocitie classes,

Our first, simple unstudied approach, was to locate all abstract classes. To do
s0, we proceeded with the knowledge that an abstract class is a class with at least
one operation left unimplemented. Because some operations are unimplemented,
an abstract class has no instances and is used only as a superelass [MeGU2). Onr
hypothesis being that abstract classes are members of the wnderlying framework's set
of classes only, whereas concrete classes belong to the application’s set of classes, We
soon, with experience, obviously realized that we could not be guaranteed that an
abstract class was not part of the application’s set of classes,

Our second approached resulted in the general, elean solution we had initially
set out to find. We assumed that by comparing the accompanying application’s class
hierarchies and determining the class intersection set, this set would include only those
classes belonging to the underlying framework. There is however the possibility that
different applications have classes with the same name at the same rvelative hierarchy
position. We therefore had to ensure that the number of applications was sufliciently
large, reducing the probability that all applications had a class with the exact same
name and at the same position in their respective hierarchies.

More formally then, we define a class hierarchy, H, as a triple (N, D, S), where N
is a set of class names,

D:N — class-deseriptions
is the class description function specifying the deseription of cach class, and
S:N — seq(N)

is the superclass function specifying the sequence of immediate superelasses of

each class [OH92).
The underlying classes of a framework are obtained by the repeated application of
a hierarchy combination operator, “®”, o the set of classes in each application class

hierarchy.

ny X ng requires 1y N ng and that is exactly what we are looking, for.
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Ossher and Harrison [OH92] have proposed tools for the combination of class hier-
archies. We claim that such tools could be extended to include underlying framework
class extraction, as we have proposed here.

Without reusing the Draw application, we would have lacked a guided design for
the required shape classes and would not have heen able to implement the behavior,
detailed in the previous section, with the ease in which we did. We agree with those
who argue that understanding someone else’s code can be a considerable intellectual
challenge. However, if the code is well written and consistent, this effort will soon be
absorbed, and reading the “not invented here code” might eventnally require little
more effort than reading one’s own. ET++ (and its applications such as Draw) were
well written with a consistent style throughout. We soon found ourselves comfortable
in reading the underlying framework and applications’ code.

Our experience agrees with that reported in the Genesis project [RGPS8] in that
it is generally a good idea to reuse an application, hence its code, even if time and
changes are required in its understanding, reuse and/or maintenance. The poten-
tial offered through such controlled code reuse, i.e. through the use of a reliable
application, is exciting, to say the least.

4.4 Reuse-in-the-medium - Micro-Architectures

We should now be in agreement that applications’ frameworks reuse both design and
code, Some aspects of a design, such as the kind of objects, are easily described hy
code, Other aspects, however, such as the interaction among groups of objects, are
not expressed well as code. This makes frameworks harder to understand than for
instance abstract, classes.

We therefore need a level of abstraction between that of code and frameworks
themselves. Henee we introduce micro-architectures, the lower level of reuse-in-the-
medinm, abstracting objects and their interactions. As frameworks codify design
knowledge of a particular domain, objects and their interactions codify design knowl-
cdge in terms of the behavior of object collaborations. We refer to this type of reuse
as “micro-architecture” rense. A framework describes the architecture of a system
instantiated from it, hence micro-architectures can be considered just that, i.e. micro-
architectures of the larger framework architecture. Micro-architectures reuse both the
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design and code describing the kinds of objects and the interactions and control How
among them.

Micro-architectures are a way to abstract and to reuse design experience, Ae-
cording to Coad [Coa92], there are object-oriented design structures that emerge
repeatedly in the development of frameworks. These structures, micro-architectures,
are of comrse known by the designer(s), but unfortunately by very fow others,

The situation depicted in figure 4 is that of a framework user unaware of the
collaborating objects and their responsibilities.  We experienced this same void of
the underlying micro-architectures in using ET4+4. We did eventually discover and
understand some of them but only after a great deal (and 1 mean GREAT) of hard
work and perseverance.

Providing designers and application developers with a set, of micro-arvehitectures
would:
e provide a common vocabulary for design;

o reduce system complexity by naming and defining ahstractions consequently
reducing a framework’s learning time;

e provide building blocks from which more complex designs can be hailt, for

example, ET++ itself;
o provide a target for the refactoring of class hierarchies (ef. 4.2.1).
We shall introduce new techniques, design patterns [GILIV93a, Coa92] and con-
tracts [HHG90, Hol92], for describing high-level design. Unlike frameworks expressed
in a programming language, these techniques depend on a special purpose nota-

tion. We shall now describe these techniques and provide examples extracted from
Macrotec.

4.4.1 Design Patterns

In football, a pattern is a series of sprints, turns, crossings and twists applicd in
an overall strategy for improving field position. In architecture, a pattern is an
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Framework Dexigner Framework User

“*— micro-architectures

Figure 4: Framework Conceptual View - Designer versus User

architectural design or style. An architect, Christopher Alexander, was one of the
carly pioneers in design pattern theory [Ale79], “Indeed each building and each town
is ultimately made out of patterns in the space, and out of nothing else; they [patterns
in the space] are the atoms and molecules from which a building or town is made.”

Similarly, cach framework and its derived applications are ultimately implemented
out of micro-architectures, they are the atoms and molecules from which a system is
designed and built. Design patterns, as presented by (iamma in [Gam91], are a new
way to identify and name object-oriented micro-architectures. They are a mechanism
for expressing how components interrelate, a high-level representation technique for
properly capturing and expressing design experience and intent to ultimately facilitate
design reuse.,

A design paltern consists of three parts:
I. An abstract description of a class or object collaboration and its structure.

The description is abstract because it concerns abstract design, not a particular
design;

2. The issue of system design addressed by the abstract structure. This determines
whether the design pattern is applicable;
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3. The consequences of applying the abstract structure to a system’s architecture,
These determine if the pattern should be applied with respect to other design
constraints.

A designer familiar with a large set of design patterns (imicro-architectures) can
apply them immediately to design problems without rediscovering them. We instead,
in developing Macrotec, rensed many design patterns, without initially understanding
the internal protocol and funetionality. It was not until receiving a catalog of design
patterns [GHJIV93b] that we realized we were indeed dealing with pre-designed miero-
architectures. This consequently helped us improve our design and, more importantly,
lead to the understanding and hence resolution of some run time errors we had pre-
viously been unable to deal with. For example, we were unable to understand why,
when the position of a graphical shape, c.g. an Action shape, was changed, its iden-
tifying label would update its position to that of the shape in question, namely to
a default position at the upper left hand corner of the Action shape. Sure it was
working the way we would have wanted to implement it ourselves, yet, we felt nn-
comfortable not knowing the internals, i.e. the collaborating objects and underlying,
protocols. Almost unavoidably, an eventual change in requirements requested that we
update the label’s position such that it remained in the same relative position with
respect to that of the graphical shape, i.e. no longer adjust the label o the default
upper left corner. At first, we had no idea how to proceed, but then the Observer
design pattern became available to us. The Observer pattern clarified how change
propagation was designed in ET++ and thankfully helped us identify the necessary
classes and methods for implementing the new requirement.

Other cataloged design patterns we found ourselves referring to during implemen-
tation included Factory Method, Command, and Cookic. We refer the reader to the
catalog [GHJV93b] for a description of these patterns.

In developing Macrotec’s graphical editor component, we had to design and im-
plement the object collaborations necessary for graphical shape conneetions.  We
proceeded in an iterative way and decided to generalize our solution, describing it via
a design pattern, the Connection pattern. The behavior deseribed by the pattern is
that which is required in connecting two graphical shapes (see figure 5). The patlern
is meant to support maintainers of Macrotee as well as designers of olbher systems
that have a graphical editor component. It is powerful enough to encompass editors
with many different shape types that can he connected via various connection shapes,
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Shapel

connection shape

Fignre 5: A connection between two graphical shapes

For describing the Connection pattern, we slightly modified the design pattern
template suggested in [GHJIVI3b]. The modified template is depicted in figure 6.
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DESIGN PATTERN NAME

The name of the design pattern is very important. it should clearly convey its intent.
As this name will become part of the design vocabulary, it must be chosen carefully.

Rationale/Intent

What does the design pattern do? What is its rational and intent? What particular
design issue or problems does it address?

Category

What is the classification of the pattern?

Motivating Example

A scenario in which the design is applicable, the particular design problem or issue

the pattern addresses, and the class and object structures that address this issue. This
example will help the reader understand the more abstract description of the pattern
that follows.

Applicability

What are the situations in which the design pattern can be applied? What are examples
of poor designs that the pattern can address? How can you recognize these situations?
Description

Describe the objects participating in the design pattern, their resposibilities, and
collaborations.

Diagram

The graphical notation based on the Object Modeling Technique (OMT) is used. The
notation gives a compact and language independent view of a design pattern.
Additions to this method include explicit object references and method pseudo-code.
Discussion

What are the tradeoffs and results of using the pattern? What does the design pattern
objectify? What aspect of the system structure does it allow to be varied independently?
Implementation

What traps, pitfalls, hints, or techniques should one be aware of when implemeriting the
pattern?

Contract Examples

This section lists example contracts from real systems.
See Also

What design patterns have closely related intent?
What motifs (cf. Chapter 6) describe issues involved in the patiern?

Figure 6: Design pattern template



In onr deseription of the Connection pattern, we refer to the Command pattern
which is itself described in greater detail in [(iHJV93b]. In short, the Command
pattern relates how commands decouple the creation of a request from the execntion
of the request. A command objectifies the request for a service.

Using the above template (based on [GHJV93b]), we came up with the following
description of the Connection pattern.

CONNECTION Design Pattern

Intent This pattern allows lines, i.e. connections to be created between graphical
shapes. It extends the Clommand design pattern. It lets graphical shapes treat
a connection request in their own way decoupling the creator of the connection
request from the executor.

Motivation Used whenever connections are required hetween graphical shapes. A
data structure is required to maintain connection rules which are used to deter-
mine if and what type of a connection between two shapes is legal (ShapesMatrix
Slale in the diagram below). The key to the Command pattern is the abstract
Command class. Subclasses of Command store the target of the request, i.c.
Connection, and invoke one or more specific requests on the target.

. * * . .
Applicability See Command pattern. When independence on the particular con-
nection request is required. When dealing with a graphical editor encompassing
many different shape types that can be conuected via various connection shapes.

Participants :

Command declares a generic request protocol for executing the command.
Subelasses define and implement, this protocol and maintain a reference to
a command target, Connection. Subclasses request the specific service
from the command target and add state they need to carry out the request.

ConnectionCommand abstracts the verification of whether or not a connec-
tion between the two shapes is legal. The state information, ShapesMatriz,
will have to include specific information for each graphical shape pair which
may be connected.
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ConnectionTypeX responsible for instantiating the connection type and call
ing the proper method in the target connection.

Connection (target) the target is a connection shape and is likely a subelass
of a graphical shape for drawing a line. A method for cach different type
of counection is recommended.

Shape Each shape involved in the conneetion is polled with relevant informa-
tion regarding the proposed connection. Each shape will determine if the
connection requested is permitted, The state should maintain information,
Connections State relevant to cach specifie connection type the shape per-
mits as well as information as to those connections it is already involved
in.

Collaborations The subelasses of ConneetCommand will cach represent, a dif-
ferent type of connection i.e. arrow head, dashed, ete. The graphical shapes
involved in the connection are cach polled with the relevant connection informa.-
tion. Each shape will then determine if the requested conneetion is permitted,

Discussion The state information to be maintained hy the ConnectionCommaned,

should contain data such as the nnmber of inputs/outputs for connections, the




connection begin and end positions, etc. The state maintained by each graphical
shape should be used by TestConnect() to determine whether connections are
permitted. This information is specific to each graphical shape.

Implementation The target, connection, could he parameterized in order to
avoid creating multiple Connection subclasses.

Contract Examples Conncetion contract from an ET-++ application.

See Also

Design Paltern: Command (here we are simply extending the Command design
pattern)

Molif: DRAW Conunections between Graphical Shapes (cf. section 6.2)

Note that, to be included in their catalog, Gamma et al. require that a design
pattern be representative of good object-oriented design and have a real practical
application history in at least two different domains. We feel that the Connection
pattern introduced here is of good object-oriented design and is useful for our own
purposes. However, since it has not been rensed yet in other domains, it does not
qualify yet for inclusion in the catalog,.

Our first experience with a design pattern was for the purpose of clarifying an
implemented design in the DRAW application, specifically, that of Factory Method
design pattern. In analyzing the code we realized that there were collaborating ob-
jects, however we did not fully understand the reason why such a design had bheen
used, i.e.its intent. 1t was guite obvious that the design in question was non trivial
and had to have been carefully thought out. We therefore suspected it to have a
deseribing design pattern, yet which one? We had absolutely no idea which pattern
specifically applied, if any at all for that matter. Upon studying the above meuntioned
catalog, we realized that the design under consideration matched with the factory
method.

The above example illustrates two major prerequisites for the successful use of
design patterns, namely, a framework and/or applications whose design is based on
design patterns and a catalog describing those design patterns. Once these prerequi-
sites are satisfied, we see three major ways to make use of design patterns:
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Blueprint - as a guiding blueprint to introduce a new design;

Reference - as a reference to ensure that hierarchy restructurings and/or class re-
designs do not affect. behavioral collaborations;

Understanding - as a means to understand the underlying framework and/or ap-
plication(s) developed from it.

Pattern identification remains as one of the fundamental problems in using design
patterns for the purpose of Understanding and Reference. We therefore sugpest
that new design implementations include an identification of the guiding pattern in
the component classes. This would allow one to ecasily identify the correct pattern.
This is unfortunately not the end of the story, for after having identified the pattern,
it is likely that one realize that there are more components involved in the collabora-
tions than originally identified. This wonld therefore require performing the opposite
identification assignment i.e. identify the rest of the implementation components
involved in the behavioral composition. To this end, when introducing new designs
guided by a pattern, Blueprint use, the application class and method names involved
in the pattern should incorporate the class/method name as given in the design pat-
tern. This has the advantage of making the design pattern and henee the involved
classes and methods easily identifiable. Comming back to the Factory Method, we
are convinced that, if this had been the case in the cited example, we wonld have
much faster identified the design as an instance of the Factory Method pattern,

These simple suggestions would allow one to quickly reference the relevant, pal-
tern(s) and subsequently all involved components, resulting in a much better under-
standing of the design implementation as well as an overall reduction in the time
required to do so.

We agree with Gamma that true design patterns are suppose to he generally appli-
cable. However, we strongly suggest that design patterns be developed for framework-
specific designs as well. Framework specific designs patterns will possibly support, the
design of numerous applications built on top of the particular framework and thus
yield a big payoff.

We are currently elaborating ET++-specific hehavioral compositions into such
framework-specific design patterns. For instance, ET++4 has its own unique start-up
requirements for each application. The main program creates an Application object,
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and calls the Run method for that object in order to hand over control to ET++.
This general start-up hehavior is depicted in figure 7, which is a excerpt from our
ET++ starl-up design pattern. the figure also shows the internal behavior of the
Application class, depicting the internal message passing path until the DoMakeDoc-
nments message is eventually sent. This pattern has already proven nseful. It helped
two people who recently joined our group, with no prior knowledge of ET++, to
quickly understand ET+4"s start-up workings.

main(int arge, char **argv)
{
target App(arge, argv) Run()

)

g
MakelnitManager() momiaiuietdbadedady?
I
3 H Application
vserfmmnilocomentTyvpe) fercecsnavaoca ]
New Manager{imamiocomentType) i se-- 5 Ren0)
o~ feooem- [O MakelmtManager()
DoMakeManager(type) iainbete S O NewManager()
aiutaieieiain it (O DoMakeManager()
\ !
DoMakel)ocuments(type) c-——- DoMake Documentsg)
target App(int arge, char **argv)* :
Apphcation(argec.argv) targetApp
{1 e e cmmmecmaa targetApp()
oS ﬁ DoMakeDocuments(
] !
return new targetDocument

Figure 7: KT4+4 start-up hehavior for an application, targetApp

Design patterns tend to be diffienlt to understand in isolation, mainly because of
their high level of abstraction. This high-level of abstraction is however intentional
and indecd reguired in order to ensure wide applicability. A more detailed form of
expression would not he optimal for reuse, since it wonld be difficult to separate the
individual design factors, i.e. the involved components: classes, methods, instance
variables.  Consequently, it would be difficult to understand and adapt a pattern
to future design considerations.  Abstract design patterns allow designers to edit,
combine, remove, ete. the involved components and to come up with new design
implementations.

Design patterns become much clearer, when they are accompanied by example
implementation code. We believe that examples, as deseribed by Contracts (see next
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section), help designers understand some of the intended details behind the design.
For this reason we have modified the design pattern template originally proposed
by Gamma et al. to include the section Contract Examples. This section is
intended to make reference to different Contracts developed from the design pattern
in question. Below, we will introduce Contracts and describe a Contract developed
from the Connection design pattern.

4.4.2 Contracts

Design Patterns deseribe framework design at a very high level. To case the derivation
of conerete design from them, an intermediate representation is required. Often these
intermediate representations are called Contracts [ITHG90, Holy2].

A Contract is simply a construct for explicitly specifying interactions among
groups of objects. Recent literature recognizes the importance of objeet hehavio
collaborations [WBJ90] and respounsibilitiecs [WBWW90]; contracts formahze these
collaborations and hehavior relationships.

There is a definite lack of consensus amongst the involved researchers as to contract,
formalisms as well as to their level of abstraction. There have heen many attempts
to describe contracts. Attempts Lo use special-purpose programming languages have
not been successful to date [Hol92]. Most. other approaches, including our own, are
based on informal notation, mostly some form of psewdo code. The Contract template
presented in figure 8 illustrates our contract, deseription technique. Fach contract he-
gins with cross-references to the pertinent design pattern and/or molif(s). Then, a
set of participants (classes) with each participant having its own sel, of contractual
obligations is given. These obligations can be both type obligations, where the par-
ticipant must support certain variables and external interface, and cansal obligations,
where the participant must perform an ordered sequence of actions. Also, contracts
may define invariants that participants must maintain when cooperating.  Finally,
contracts may specify preconditions on participants to establish the contract and the
methods required for the instantiation of the contract,

We have maintained the original theory behind contracts, however we have not.
strictly adhered to their (varying) formalisms. Ours is more of a pseudo-code style
with adaptations for the support of our framework deseription techniques, namely
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CONTRACT NAME
The name of the contract is very important. It should clearly convey its intent.
As this name will become part of the design vocabulary, it must be chosen carefully.

Pertinent Design Pattern and Motif(s)

ldentify the design pattern abstracting the contract's design i.e. if of course one exists.
Identify the motif(s) within which this contract is involved i.e. if any at all.
Participants

A participant may seither be Active or Non-Active.

Non-Active participants support type obligations only.

Active participants support both type and causal abligations thus maintaining
Non-Active participants.

Participant(s) Pseudo Code Details

Each participant details all type and/or causal obligations i.e. the class data members
and methods (in pseudo code) involved in the contract.

Invariants

Definition of the invariants that participants cooperate to maintain.

Instantiation

Indentification of the preconditions necessary to establish the contract as well as the
methods for its instantiation.

Figure 8: Contract template

those of design patterns and motifs (cf. chapter 6). Understanding how the par-
ticipants interact via message passing (method calls) is the intent and importance
of our contract descriptions. In reading a contract one should therefore not expend
too much effort in understanding included implementation details. This being said,
we are now ready to introduce a contract extracted from Macrotee. For the sake of
brevity, we present the contract without its participant’s method implementations.
We refer the reader to appendix A for the complete representation.



. CONNECTION Contract

Pertinent Design Pattern and Motif(s)

Design Pattern: Connection

Motif(s): none

Participants
Active:
Command : ConnectionCommandRequest;
Shape : Shapes;
Shape : ConnectionShape;

Non-Active:

MatrixConnect in ConnectionCommandRequest
Connection in MatrixConnect

ShapeConnect in Shapes

. Participants Pseudo Code Details

ConnectionCommandRequest supports [
matrix : 2DArray(MatrixConnect)

Legal(begin:Shapes,end:Shapes) :MatrixConnect{}

TrackMouseConnectRequest(begin:Shapes,end:Shapes,
connectType:int) :boolean {}

BeginExecute(begin:Shapes,end:Shapes,connectType:integer){}

]
Shapes supports [
value : Value
Coll : Array(ShapeConnect)

GetValue():Value { return value }

TestConnect (connTypeInfo:Connection,other:Shapes) :boolean {}
Search(conntype : integer,ShapeValue : integer):ShapeConnect {}
Create(conntype : integer, ShapeValue : integer): void {}
GetConnPos(Origin:Point ,Extent:Point,conntype:integer,
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ShapeValue:integer) :Point {}
UpdateIO(conntype : integer, ShapeValue : integer):void {}
]

ConnectionShape supports [
NewConnection(start :Shapes,end:Shapes,matentry:MatrixConnect){}
Draw(BeginPoint : Point, EndPoint : Point){}

]

MatrixConnect in ConnectionCommandRequest supports [
connect : Array(Connection)
begin-origin : Point
begin-extent : Point
end-origin : Point
end-extent : Point

]

Connection in MatrixConnect supports [
conntype : integer
max-begin : integer
max-end : integer
relShape : GraphicalShapes

]

ShapeConnect in Shapes supports [
ShapeVal : integer
conntype : integer
count : integer

]
Instantiation

ConnectionCommandRequest -> BeginExecute{(begin:Shapes, end:Shapes,
connectiontype : integer)

An Overview of the (‘onncction contract

Notice how we identify the design pattern abstracting the contract’s design, if one
exists,  There are three active participants in the contract: ConnectionComman-
dRequest, Shapes, and ConnectionShape. The three non-active participants Matrix-
Conneet, Connection, ShapeConnect are data structures, i.e. participants with type
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obligations only, maintaincd by other participants. We have introduced the idea
of Active and Non-Active participants in order to allow Active participant’s type
obligations, i.e. Non-Active participants, to be expressed. We realize this adds im-
plementation details however as long as such sfafe descriptions are restricted to those
identified in the design pattern, the understanding of both the desipn pattern and
contract, and the relation between the two, should he improved.

ConnectionCommandRequest supports an important type obligation, malrer, a
two-dimensional array structure of type MatrizConneel. 'The matrix is static and the
information it maintains, MatrixConnect, is used throughont the contract, passed as
argnments to other participants. The MatrixConneet stracture is deseribed at the
end of the contract.

The contract is instantiated once the message Beginlorceule is reccived by the
ConnectionCommandRequest participant. This will lead to the sending of a message,
TestConnect, to both graphical shapes involved in the connection. Depending on the
result of the TestConnect call, NewConnection, could be sent to ConnectionShape for
the purpose of creating the connection.

The Shapes participant, also supports an important type obligation, Coll, a single
dimensional array structure of type ShapeConnecl. The array is dynamic and the
information it maintains, ShapeConnect, is used only within the Shapes participant.
An array entry will be created for each different connection type and a counter for
each will be maintained in order to keep track of the number of connections of cach
particular type. The ShapeConnect structure is described at the end of the contract.,
The method TestConnect is respousible for determining if the connection is possible
at that time, for that particular “other” shape and connection type requested,

The NewConnection participant is fairly straight forward. It sends a message
to each graphical shape, GetConnPos, requesting that, they caleulate the conneetion
points for the drawing of the connection.

An important feature left to mention is that of contract conformaner. Confor-
mance declarations are specifications of how classes are eventually mapped to partici-
pants in a contract. Conformance declarations allow the typing and causal obligations
of contracts, to be satisfied by the participants, to be distributed among the imple-
mentation of an abstract class and its subelasses. A conformance declaration must
therefore declare explicitly which obligations are fulfilled by the abstract class and

60




which by the subelasses. This aspect of conformance declarations, understanding the
implementation dependencies between abstract classes and their subclasses, is a fea-
ture that we believe could improve the understandability and hence use of abstract

classes. The conformance declarations belonging to the Connection contract follow.

Conformance of ConnectCommandRequest participant

class ConnectCommand conforms to ConnectCommandRequest in Connection
ConnectCommand supports
Matrix of MatrixConnect
TrackMouseConnectRequest (Shapes,Shapes)
requires ALL subclasses to support
BeginExecute(Shapes,Shapes)
end conformance

Conformance of Shapes participant

class Shape conforms to Shapes in Connection
Shape supports
Array of ShapeConnect
GetValue()
Search(conntype : integer,ShapeValue : integer)
Create(conntype : integer, ShapeValue : integer)
UpdateIO(conntype : integer, ShapeValue : integer)
requires ALL subclasses to support
TestConnect (connTypeInfo:Connect,integer:id,Shape:other)
GetConnPos(Position : Point,conntype : integer,
ShapeValue : integer)
end conformance

Conformance of ConncetionShape participant

class LineShape conforms to ConnectionShape in Connection
LineShape supports
Draw(Point,Point)




requires subclass to support
NewConnection()
end conformance

class Connection conforms to ConnectionShape in Connection
inherits from LineShape;
Connection supports
NewConnection(Shape,Shape,MatrixConnect);
end conformance

Contracts are an intermediate representation between a micro-architectnre and
its corresponding design pattern. A contract can therefore, but not necessarily (refer
to path C figure 9a)), be an intermediate development requirement when applying,
a design pattern to the creation of a new micro-architecture. It is, however, abso-
lutely necessary to develop a contract as an intermediate stage in the development of
a design pattern from a micro-architecture (path C of figure 9a) is unidirectional).
The fact that we allow micro-architectures to be developed diveetly from a guid-
ing design pattern, contradicts the usage proposed by Helm et al. where contracts
are first-class objects in a new design paradigm, interaction-oriented design, Design
then becomes a two-step process, where behavioral compositions are first, delined via
contracts which are in turn factored into class definitions and hierarchies via the con-
tract’s conformance declarations. Originally, as mentioned in the introduction of this
section, a programming language was envisaged, for the definition and instantiation
of contracts. Such a language would shift programming from the class level up to the
interactions among the more abstract objects of contracts.

However, as Holland [Hol92] has noted, establishing a formal correctness eriterion
to verify conformance declarations at compile time is a difficult, problem. Carrent,
support for the automatic generation of contract implementations may solve this
verification problem, yet at the cost of shifting the burden of detailed control logie 1o
the specification and hence to the designer instead of to the implementation.

Specifying a contract for the purpose of automatic implementation generation con-
sequently requires that contracts be very detailed. In our opinion, these spee’s wonld
he too detailed and would resemble the actual code implementation in the framework.,
Thus the ultimate purpose of improving understandabhility, would be defeated, We
seriously doubt that contracts will eventually he the basis of a programming lan-
guage. We do however envisage contracts as a useful formalism to express high-lovel
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specifications of object behavior, with emphasis on the minimum detail required to
express objects’ (participants’) interactions.

Contracts used to deseribe frameworks in this way provide the application designer
with:

e a vocabulary with which to describe the application;

o through conformance declarations, the identification of the application-specific
classes, variables, methods, and hooks for customization, all necessary for iden-
tifying, maintaining and implementing a behavioral composition;

o knowledge of, and a better understanding of, individual micro-architectures
present in the underlying framework, thus improving the understanding of the
overall framework;

o guidance when refactorings affect participants in a contract, as for instance,
during micro-architecture design iterations.

Contracts should not be taken as a means to understand the functionality of classes
and methods. A class may participate in many contracts, its total finctionality being
separated into different contexts thus making it difficult to assimilate and understand.
Also, methods deseribed in contracts specify the minimum actions required, i.e. they
may actnally implement more than that described in a contract. Indeed, the same
method may conform to more than one action body of a contract participant. This
typically occurs when the class to which the method belongs to participates in more
than one contract. If one wants to thoronghly understand a class and/or method,
code inspection still remains the most precise and sure way.

4.4.3 “Design Patterns and Contracts in concert”

The previous sections described the techniques of design patterns and contracts, both
used for the high-level description of hehavioral compositions, micro-architectures.
They are however diflerent in terms of their level of abstraction in their descriptions.
Design patterns are of course higher in abstraction. We do see both as describing
interactions among groups of objects, however, a contract represents but one imple-
mentation/interpretation of a behavior composition. As depicted in figure 9 h), a
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design pattern may be applied to many different contract/micro-architecture imple-
mentations, and we have a one to many (1:M) relationship. As an analogy, if | asked
a group of people to write a code segment to reverse a single-linked list, the code
segments would undoubtedly all be different yet their general structures would all
be similar. Design patterns represent the experience and intent behind the design of
a “broad” micro-architecture specifying only the major structures. This broad view
may then be interpreted and refined to eventually form a design contract. A contract,
on the other hand, describes one and only one micro-architecture, and conversely, a
micro-architecture is the implementation of one and only one contract (1:1). 1t is
therefore possible to have several contracts expressing the intended behavior of a
single design pattern, thus underlining the expressive power of design patterns.

Figure 9 a) depicts possible development paths for contracts and design patterns.

osigr Pattern Design Pattern

T L

Contract
Participants

Contract
Participants

.e X3

nfcro-nictuteftures

Implementation Implementaetion

«w) b)

Figure 9: Description of micro-architectures: development paths a) and relationships

b)

In developing a micro-architecture from a design pattern, there are two ways to
proceed:

Directly, path C - To do so, fully understanding the intended behavior behind the
pattern is essential. Therefore one will no doubt need Lo refer to previously de-
scribed contract/micro-architecture pairs mentioned in the Contract Eramples
part of the design pattern template, refer to (figure 6);
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‘ Through an intermediate contract, path BA - The first step here is to try to
understand the pattern with the help of previously described hehavioral compo-
sitions i.e. other contract/micro-architecture pairs. The next step is to develop
the pattern as a contract and factor it into the class hierarchy via conformance
declarations. Then, as the implemented micro-architecture design iterates, the
deseribing contract should be updated to reflect the design. This update during
design iteration is depicted by the dashed arrow A in the diagram.

In developing a design pattern from a micro-architecture, there is only one way
to proceed. There are however two distinet steps in the process. The first step is
to deseribe the micro-architecture hehavioral composition by a contract. In doing
s0, a designer may realize that the micro-architecture design could be improved.
In fact, describing the contract will motivate the developer to go beyond concrete
objects, i.e. it forces one to thoroughly understand object interactions and hence
objectify concepts which are not immediately apparent as objects in the problem
domain.  Improving the micro-architecture design and subsequently updating the
contract results in iteration as depicted by the dashed arrow A in the diagram. This
iteration process should continue until a stable design is reached. If the designer
then realizes that the behavioral composition in question has potential for broader

‘ applicability, the next step of deseribing a design pattern should he taken (arrow
B). Il not, however, there is absolutely nothing lost, i.e the process of describing the
contract had obvious benefits. Also, a contract, in a contract/micro-architecture pair,
with or withont a corresponding design pattern, will have the same potential for use
as Lthat stated for design patterns, i.e. Blueprint, Reference and Understanding
(see section 4.4.1),

It is important to note that not all contract/micro-architecture pairs will have a
deseribing design pattern, in fact very few. A true design pattern will be non-trivial
and will be applicable to several applications [GHJV93a]. This agrees with the claim
made by Biggerstaflf [BR87] that the broad structures (partial micro-architectures) are
highly reusable and that the details typically are not. The broad structures must be,
at a high-level, precisely deseribed, while the details must be left incomplete and par-
tially ambignous. This is indeed supported by the one to many relationship hetween
a pattern and the contract/micro-architecture pairs, indicating the high reusability
of patterns.

We consider design patterns and contracts as valuable means to simplify and
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guide existing object-oricnted design methods [RBPH91] [WBWWO0] [Boo9l]. In
fact, micro-architectures are fragments of a framework architecture and according to
Waters [WT91], by reusing fragments of high-level designs, a software engineer can
describe a program quickly and concisely. Therefore, it makes sense to deseribe and
reuse design knowledge [ASP93] when,

e working on systems that are inherently difficult to understand such as very larpe
systems and highly complicated applications, e.g. as those involving highly
interactive graphical systems with intricate display requirements,

e working on systems with a high probability of design information being, reused.
These include the development of systems with a stable technology base as
for instance object-oriented frameworks.,  All applications developed from an
underlying framework have the potential of reusing mueh of the same design
knowledge used in the development of other applications from the same nnder-
lying framework.

e working on systems with short product development life-cyeles and/or those
systems with long lives and/or those, known in advance, o require eventoal
future extensions i.e. evolving applications.

Lets conclude with a quote from Johnson, elearly supporting the design teehnignes
mentioned throughout this section, “I don’t helieve drawing, lots of pictures or dia-
grams is either design or analysis, I am perfectly happy understanding the design as
abstract classes and interactions between objects. That’s a model 1 can hold in my
head, and when [ look at code and interface files, I see that model realized. 1 don™
really know how to draw pictures about it.”, [WBVCHY0].
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Chapter 5

Reuse of “Black Box”
Applications

Although reuse-in-the-large is not the main topic of this work, for completeness, we
will briefly introduce some basic considerations and discuss our experiences as well as
our experiences with this important level of reuse. We feel that the reuse of black box
applications has considerably simplified the Macrotec development (cf. chapter 3).

5.1 Reuse-in-the-large

The highest level of reuse, reuse-in-the-large, is the reuse of objects which are them-
selves independent systems, systems which are reused as they are, without being
modified or extended in any way. We call them “external systems”. It is the system
which reuses them, the “target system”, which is responsible for adapting itself to
the protocol requirements of the external system. The external systems may or may
not have been developed with the same framework as the target system, they may
cven have been developed in a different programming Janguage. The point to be
stressed here is that the target system need not bother with the internal implementa-
tion and design details of the external systems since tiu se is absolutely no intention
of modilying or extending them.
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Reuse-in-the-large involves problems typically encountered when integrating, svs-
tems. To integrate an external system into a target system, first, interfacing ve-
quirements of the external system must be understood. In general transformation
programs will then be required to transform information from the target system into
the appropriate format of the external interface and, conversely, for extracting the
needed information and transforming it back into the target system’s format.

Reuse-in-the-large and system integration plays an important role in Macrotee.
The approach we have taken is, according to Meyer’s categorization [Mey91] of inte-
gration and extensibility, a blend of the simple database and, to a limited degree, the
canonical representation approaches.

In Macrotee, we are using Gemstone', an object-oriented database management,
system allowing for the storage and retrieval of the core representation, see figure 1.
The core representation is the heart of Macrolee with all information to and from the
vatious tools, both internal and external, managed within, A weakness often eited
with the database integration technique [Mey91] has been that the data structures
supported by the database are in general not sophisticated enough to be used directly
by the tools. Consequently, tools often retrieve the needed information from the
database and build their own internal representation. At later poinis, they write out,
all the modified data all at once back into the database. This is, however, not. the case
in Macrotec. All Macrotec tools were written using the object-oriented paradigm, the
C++ programming language, and may therefore direetly use the class hierarchy, core
representation, as defined by the Gemstone C++ interface, just as they wonld any
other object-oriented class hierarchy.

According to Meyers, a canonical form is a single data representation, shared hy
all tools in an environment. Although this is not the case in Macrolee, we do have o
single data representation for external tools which manipulate graphs. And, although
not fully shared, in the sense of being directly supported by all the tools, onr canon-
ical form has indeed facilitated the integration of external tools. Typical canonical
representations have some fundamental data structure for the core data and then
let tool-specific data bhe added. Our canonical form, the GXEF+ representation, is
no exception. GXF+ is based on GXF [MEN92]. GXF allows graph manipulation
programs to operate on data encoded in a common format which includes cortain

I(iemstone is a registered trademnark of Servio Corporation
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essential features of graphs. In addition, GXF allows programs to add any arbi-
trary information to a GXF representation in a consistent, portable manner that is
transparent, Lo other programs which do not expect the extra information.

5.2 Application reuse in Macrotec

Figure | depicts the different tools involved in the Maerotee toolset. As “black-box”
applications, we have integrated the SPNP performance analysis tool [TMWH92],
an automatic graphic layout package being developed at the University of Toronto
[MEN92], and a substitution tool developed at Laval University [JBB192].

User Interface and Control

:

Modelling Porformance Animation Substitution Automatic
Tool Anal. Tool Taool Tool Layout Tool

] ]
cnm ------------- GXF’
Representation : Mapper i—» Reprosentation

Database

Figure I: Macrotee Architecture Overview

The performance analysis tool manipulates non-graphical data and therefore does
not deal with the GXF+ representation, but it requires a data transfer program
to and from the core representation. We first had to study the SPNP system in
otder to determine its input file (perfres.e) and output file (perfres.out) formats. We
then wrote a data transformation program, Transformerl, creating an input file to
SPNP with the following three most relevant sections: parameters section storing the
performance analysis parameters, net section describing the modelled network, and
an ac_final section storing the results to be computed during analysis. The same
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transformation program is responsible for extracting the relevant information from
the output file (perfres.out) and transforming it back into the core representation,

The Substitution and Automatic Layou! tools, manipulate graphical data. Such
tools store their data in the GXF+ representation, As mentioned in chapter 3, sup-
porting GXF+/GXF allows us to easily exchange data with other, special-purpose,
GXF-based systems such as the automatic layout tools being developed at the Uni-
versity of Toronto. Non-GXF+-based systems require data transformation prograis,
For instance, integrating our substitution tool (implemented before adopting, the
GXF+ standard) required the development of the Transformer? program. With-
out the intermediate representation of GXF+, cach graph manipulating external tool
would require a transformation program between itsell and the core representation.
Consequently, a change in the database core representation may require a change to
each of these transformation programs, obviously not. the best of situations. Adopt-
ing the GXF+ representation rvesults in Mapper being the only program requiring
maintenance due to database core representation changes (significantly, the GXF4-
representation is very stable as compared to the database representation). We hope
that future graph manipulation tools will adopt the GXF tepresentation allowing our
system to be easily extended if ever the requirement. arose.

There is not yet a consensus about the meaning of integrated system. We elaim
that ours is integrated, both externally, and at the user interface level, and internally.
Although, as we have just described, transformations of all types are performed, at
the user level, the Macrotee tools are seamlessly integrated i.e. the user interacts
with the system through one single base window allowing for casy switching between
the different tools. Internally Macrotee’s loosely coupled architeeture facilitates the
addition of new tools. Adding new tools will not require that existing tools change
their functionality or even be made aware of the addition.
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Chapter 6

Prerequisites for Successful Reuse

Object-Oriented frameworks tend to be large in terms of the total number of classes.
For example, ET4++ contains more than 230 classes, the Interviews framework [LCGVET],
more than 150 classes. In addition to frameworks being huge monsters of classes,
methods, and code, they typically come with little or no documentation. ET++
comes with virtually no documentation, whereas Interviews has comprehensive doe-
umentation about each class in the library but provides little information on how to
nse them. To fully exploit these vast amount of existing code for reuse, one must
nnderstand the underlying framework classes. Consequently, developing systems us-
ing object-oriented frameworks requires developers to spend much more time reading
existing code (mostly other developer’s code) rather than writing, often reinventing,
new code,

We will now briefly discuss programming, design, and documentation issues we
have found to directly impact the learnability, and hence usability of frameworks.

6.1 Learnability

Most. developers would agree that reading another programmers code is a major
intellectual challenge and one we practically all try to desperately avoid. Modern
programming cnvironments successfully support this process by providing facilities
for browsing, cross-referencing, design visualization, editing, ete. However, they do
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not, and will probably never, ecliminate the need for code reading.  Nevertheless,
there are design and programming techniques that can considerably facilitate this
underestimated task of understanding “not invented here™ code.

Prior to understanding, we must find the desired reusable components. Many
factors affect the ease with which developers can find, and subscquently understand
components in a large framework. We believe that the most important ones are
common vocabulary, number of levels in a class hierarchy, and component size (classes
and methods). Each will be discussed in the following seetions.

6.1.1 Common Vocabulary

An unfortunately common object-oriented programming practice is to nuse the same
name for two unrelated purposes [ROL90]. This naturally leads to confusion when
trying to understand as well as locate a component. The use of different names for
similar objects, has resulted primarily from requirements of procedural programming,
languages that subprogram names be unique within a given program. Polymorphism
provided by object-oriented programming languages eliminates the need to use difler-
ent names for similar operations.What we want is a common vocabulary for similar
entitics, and different names for different, entities.

The best known successes with component reuse have been in applications using,
standard data structures. Data structures have bad certain names occur in implemen-
tations over and over again, for example, a lirst-in, first-out quene has two operations,
usually called enquene and dequeue, to add clements to and remove elements from
the queue, respectively.

Abstract classes, especially the topmost levels, establish, by the very nature of
inheritance and class hierarchies, a standard interface. The specification of standard
methods, with standard method names, ensures that, all subelasses will conform. T'he
goal being to minimize the number of different names and mmaximize the number of
names shared by a set of classes, i.e. standard protocols. For instance, the Collection
class of ET+4 provides a standard interface which includes operations Add, Remove,
Find and many others. All subclasses of Collection (SeqCollection, OrdCollection,
Set, ete.) use these names standardizing the entive range of coliection elasses,
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The purpose of a method is to operate on an instance of a class or to provide
information regarding the state of an instance. Methods constitute the interface of
the class on which they are defined and should therefore reflect this orientation. For
example, Point, is a typical class in many frameworks and provides methods to access
the x and y coordinates. The name readX could be used, however, it wonld imply
reading from a device. Naming the method getX would be much more descriptive.
The suggested meaning of getX is more descriptive in itself but even more so due to
its standard use and hence familiarization.

In naming components, one should keep in mind that names should give a rea-
sonable indication of the point of view of the underlying design. Also, they should
conform to the standard language of the domain. For example, getA instead of getX,
is definitely not as clear due to “x” and “y” being so common in geometry and com-
puter graphics domains.

Ultimately, a common vocabulary would be broadly applicable to multiple frame-
works in multiple domains. Those components common to several different frame-
works in multiple domains should share common names. The abstract class, Collec-
tion, should be named the same in all frameworks (ET++, Interviews, Smalltalk-80,
cte.) thal implement a set of container classes. A first step towards this ideal is
the reuse of micro-architectures as described by design patterns (cf. section 4.4).
Although the names that appear in a design pattern are typically too abstract to
appear directly in an application, we suggest they be incorporated in the implemen-
tation names. For example, in using the Obscrver pattern for the design of change
propagation, we wonld name methods DoObserve, RemoveQbserve, ete.

The present lack of a common vocabulary has caused serious communication prob-
lems and has hampered the identification of components and thus the reusability of
them.

A component which cannot be found, cannot be reused!

6.1.2 Number of Levels in the Class Hierarchy

A class deseription in an inheritance hierarchy, together with the class descriptions of
its superclasses and their ancestors, define a class [OH92]. Defining a class hierarchy
(refer Lo section 4.3 for details), H, as a triple (N, D, S), we have a formal definition
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of a class. The repeated application of a class combination operator, *(h”, to the class
descriptions in an ancestor sequence, defines a class,

dy D do=dy U{(s— m)edy|s¢domain(d)}

The definition of the class combination operator, “#”, is such that methods sup-
pliec by the left operand override identically named methods supplicd by the right
operand. Accordingly, the greater the number of levels in the hicrarchy, the harder
it is to determine the complete class definition. Shallow hierarchios make it casior o
see which class implements what member function.

A
J—

Effort of
Learning

=

4 8
Number of Levels in the Class Hierarchy

Figure I: Number of hierarchy levels effect on Ease of learning,

Figure 1 is an informal depiction of the effect of the number of hicrarchy levels
on the effort to learn the class hierarchy. The diagram refleets onr experiences and
contradicts Rule 5 in Rules for Finding Absiract Classes proposed by Johnson and
Foote [JF88] which states that class hierarchies should he deep and narrow. 1t does,
however, agree with the developers of the Interviews library, The elass library of
Interviews was kept intentionally shallow (most classes are at level 2 or 3) hased on
their experience that many levels overwhelm programmers.
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6.1.3 Component Size

As the number of classes in a framework increases, a greater investment is required
in the effort to properly identify components. The identification of components in
a framework has however been notably facilitated by the use of powerful ohject-
oriented programming tools [Bis92] and other highly specialized techniques [PD91a).
Properly identifying a component does not necessarily require an exact match. It
may simply require the location of similar components because for reuse, often only
parts of an existing component are needed. This aspect of partial reuse reduces effort
and improves reliability, as deseribed in section 4.2 with the reuse of class BoxShape.
The “close” matching of components is thus more directly affected by component size,
and is a characteristic lacking satisfactory support in existing programming tools.

Experiments have shown that size is a significant factor affecting successful reuse
[WIES87]. As a class and /or method grows, it becomes increasingly difficult to reuse.
The growth of a component causes it to become more and more specific and conse-
quently narrows its applicability. A class with small methods is easier to subclass,
since the behavior can be changed by modifying a few smaller (and hence easier to
understand) methods instead of larger (and hence more difficult to understand) meth-
ods. We have found that a class with greater than 40 methods is in most cases too
large and hence too difficult to reuse because of its specificity. Such classes should be
redesigned and refactored into the class hierarchy.

As Biggerstaff has pointed out [FBPD*91], the importance of finding a component
is closely related to the tension between size and reuse potential. Size is a metric that
closely correlates with specificity, and specificity is the factor that veritably affects
reusability.

During our early stages of development we found ourselves creating highly spe-
cialized classes therefore requiring that we have many of them, (all of them being
very similar). Such a circumstance places even greater importance and difficulty in
the finding (matching) process [WMH93]. An application will typically go through
several maturity stages as depicted in figure 2. As design iterates, the class hierarchy
is restrnetured. The restructuring process results in the maturing of a framework.
As the classes and methods become fewer and smaller in size, it becomes relatively
casy to understand each small components code, easier to find an appropriate match
and consequently facilitates reuse. This therefore suggests that to practice software
reuse, it is important to understand the stage of an applications maturity.
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Figure 2: Application Life Cycle

6.2 Describing Frameworks

Documenting frameworks for reuse requires their deseription at different levels of
abstraction, most importantly, at the design level, Furthermore, such documentation
should address the needs of developers with varying levels of experience with the
framework.

Novice users are interested in general, high-level aspects of the framework hefore
dealing with the design details of micro-architectures. In other words, they require to
know how to use the framework before knowing how it specilically works. We propose
the use of a set of Motifs to show how to nse a framework. The concept, of motif was
introduced by Johnson [Joh92] under the term pattern. We have slightly modified
his ideas and adapted them to the abstraction levels of framework design deseriptions
propused in section 4.4 (cf. Figure 9 a)). We have introduced the term Motif! in
order to avoid confusion with Design Patterns.

The documentation of a framework should encompass:

e the purpose of the underlying framework;

TMotif (Merriatn-Webster): [. a dominant idea or central theme 2. a single or repeated design
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how to use the underlying framework;

the purpose of application examples;

e how to reuse application examples;

the design of the framework;

Molifs are responsible for describing the first four of the above list items whereas
Design Pallerns and Contracts address the last item, the design of the framework.
Design Patlerns deal with abstract designs, and Contracts cope with the detailed
design of conerete examples.

Bach Molif deseribes a situation which must be replicated in wrider to use the
framework, whether it be the underlying framework or the framework of an applica-
tion. All motifs have the same format (sce figure 3). They begin with a title of the
format, Motif:applicalion name. The application is the framework in question, i.e.
the underlying framework such as ET++ or the framework of a developed application,
g DRAW. The name is simply the name most relevant to the sitnation described.
‘Then, they briefly deseribe the situation (Situation), followed by a detailed discussion
of how the sitnation may be adapted and/or utilized (Sitnation Discussion). A motif
ends with references to other related motifs as well as to relevant design patterns
and for contracts,

A set of motils conld describe,

e the underlying framework, e.g. ET++. A first motif would describe the ap-
plication domain of ET+4 and list example applications developed from it. It
would also list all other motifs which describe ET44 as well as a suggested
order of reading,.

e an example application, e.g. DRAW. A first motif would describe the appli-
cation and its general functionality. It would also list all other motifs which
deseribe the application as well as a suggested order of reading. This set of mo-
tifs should be written with a reuse theme. The motifs should focus on describing
how the application in question can and should be reused. For example, the
motif below describes how to introduce new graphical shapes into the DRAW
application,



Motif:Application Identifier

The name of the motif is very important. It should clearly convey its usage.

As this name will become part of the design vocabulary, it must be chosen carefully.
Application - is the name of the framework in question.

ldentifier - the name most relevant to the situation described.

Situation
A brief description of the situation is given.
Situation Discussion

A detailed discussion of the situation, clearly highlighting how developers should
proceed in order to benefit from its understanding and reuse.

References
A list of related motifs as well as involved design patterns and/or contracts.

Figure 3: Motif template

Motif:DRAW New Graphical Shape
Situation

There are a variety of graphical shapes thal can be incorporaled i a graphic ed-
ttor. Here we deseribe those shapes and how one goes aboul inlegratmg them in an
application.

Situation Discussion

Each graphical shape is a subelass of Shape. There are alveady subelasses of shape
for the simple objects (LineShape, BoxShape, OvalShape, PolyShape, ImageShape,
DynShape, PictureShape, TextShape), and these may in turn be subelassed to ereate
more complicated shapes (RegionShape, BezierShape, AreShape, ReBoxShape, Con-
nection, DynShape2). The minimum required to define a subelass of Shape includes
the definition of the methods Draw, Outline and Gethnage.

Each application developed from DRAW will have a elass draw whose constinetor
is responsible for setting up a palette of shapes. When adding a new shape, you are
required to update the palette correspondingly. 'To do so, an image item (bitmap), to
be displayed as the selection button, must be created and included in the new elass’s
implementation, for example,
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static short BoxImage{}={

# include ‘‘images/BoxShape.im’’
}

The new shape elass must then be added to the list of shapes in the palette, i.e.
added to a collection called, prolotypes. This is performed in the constructor of the

class draw,
prototypes-+Add(new BoxShape);

Most shapes will additionally define stretching funetionality, input/output capa-

hilities, seleetion handles, ete.

References

Graphical shapes may depend on each other - see design pattern: Obscrver.

Stretehing capabilities - see motif: Graphical Shapes Stretehing Capabilitics.

Graphical shapes may be connected - see design pattern: Connection and/or
Contract: Conncclion.

Complicated graphical shapes - see motif: Subelassing Simple Shapes

END — Motif:DRAW Graphical Shape

Unlike Johnson, we suggest that developers be requiired to know how a framework
works. A developer aware of the underlying design, e.g. the micro-architectures as
deseribed by contracts and/or design patterns, will try to maintain the design intent
during modifications ensuring that hehavioral compositions are properly maintained.
Mutifs compliment design documentation. They do so informally without detail-
ing algorithms or objeet collaborations. Instead, they often refer to design patterns
and/or contracts, familiarizing the reader with important design details they should
ultimately be aware of in order to preserve the design of the application and/or un-
derlying framework. In general, a motif should be developed for any and all aspects
of a framework, that potentially require adaptation or need clarification.
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[t appears that we have now covered all aspeets in terms ol framework documen
tation, Well, not quite. We need documentation support from the lower levels of o
framework, the framework classes as well, Fach class should have references to nmolifs,
design patterns, and for contractsit is involved in. In addition, whenever possible, the
individual methods of a class should cach identily the pattern/contract /motil wit hin
which they participate (recall that a class and/or method may participate in mote
than one micro-architecture). The class format should he similar to that given for
the BosShape class below,

#ifndef BoxShape_First
#define BoxShape_First
#include ''Shape.h"

//---- Box Shape Participation =======—ccmmm oo
// motifs ==> 1) motif:DRAW Graphical Shape
// 2) motif:DRAW Database Save/Load

// design patterns ==> 1) Connection
// contracts ==> 1) Connection

class BoxShape : public Shape {

SeqCollection *ExistingConnections; // Contract Connection
public:

MetaDef (BoxShape) ;

BoxShape ();

short *GetImage();

void Draw(Rectangle);

void Outline(Point pl, Point p2);

bool ContainsPoint(Point p);

boolean TestConnect(Connection*, Shapex*) // Contract Connection

virtual void DBLOADConnect (GPTR); // Motif :DRAW Database Save/Load
virtual void DBSAVEConnect (GPTR); // Motif :DRAW Database Save/Load
¥
#endif
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Having classes reference then corresponding documents prevents implementors
from inadvertently changing the responsibilities of a class that others may he gravely
depending on. For instance, deleting a method thonght to he no longer needed can be
disastrous. e.g. an implementor would certainly he wise to look-up the Connedtion
contract before deleting the TestConneet method (we now all know the unportant

role it plays in the objeet collaborations for creating connections {(ef section 1))

Alihough motifs ave primarily aimed at describing how one should proceed i
rentsing a framework, their presence greatly adds to the descriptive power of design
patterns and con'racts They clarily many details as to how the design is applied to

an application as a whole
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Chapter 7

Summary

O expenence with ET++ has confirmed that developing an application based on
an object-oriented framework requires a substantial initial investment i learning,
We requited a full two and a hall months of intense code inspection and hacking in
order to feel comfortable enongh with ET+4 to begin the Macrolee development.
The predominant 1eason for such steep learning curves is becanse design information

is being lost and buried in the implementation code.

As Horowitz pointed out [HM84], one of the main inhibiting factors for the reuse of
design is the lack of design 1epresentat jons that promote reuse. We have proposed De-
sign Patlcrns and Clontracts as design representations of micro-architectures. We have
concentrated on micro-architectures (hehavioral compositions. collabo, ating ciasses)
and then underlying design rather than on classes. Although classes have been pro-
poscd as units of code reuse, a class often depends on others henee it is not single
classes but groups of classes which are reused. In addition, we suggest the underlying
frtamework as well as cach example application derived from it, have their own set of
motifs. Molifs, hesides deseribing how one uses a system, may include references to

all design-level deseriptions involved. i.c. to all design patterns and contracts.

To successtul reduce the learning curve, the firamework deseription techniques
proposed, design patterns, contracts, and motifs, along with the corresponding code
components, dasses and methods, must eross reference cach other whenever appro-
priate. There are many advantages to deseribing and organizing frameworks this way,
inchading:
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o the retrieval of rensable components (micto-architectures andjor chisses and
methods). is facilitated

o tne effort required to understand i redneed. For example, whon toving, to
understand an implemented behavioral collaboration, having tefetences to ab
stract design deseriptions siuch as contracts and/or design patterns is o delimite
blessing.

However, in order to avoid creating an overwhelming web ol Gross-telerences, the
developers of frameworks and applications have to follow two hasic guidelmes (which
express nothing more than good object-oriented design) The fitst s to minnnize the
number of collaborations a class has with other classes, and the second is to mumaze

the number of different contraets supported hy a class

In short, our deseription techniques decrease a framework’s learning curve and
consequently inercase a frameworks teasability. Phev will however require that the
design be oriented towards intermediate abstraction levels and that this kind of desien
become an integral part of the software process. The initial, additional cost imposed
by this approach «an be amortized over the moduets developed from the descrihed
reusable design. This added investment Caring Lhe software process, is a worthy one
indecd.

7.1 Advantages of using Frameworks

During the development of Macrotee we have expetienced several advantages of using,
frameworks.

o Through polymorphism and inheritance (with frameworks, inheritance is an
important feature for code reuse), we experienced significant code 1cuse, Fan

example, the use of vittual funetions in C++ allows many methods ta bhe rensed,

o The reuse of design patterns permits dosign rouse not only within a framework
but among different frameworks as well. For example, the Observer design
pattern, used in ET++ for the implementation of change propagation, is also
used in Interview’s Unidraw [V 191.89].
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e Frameworks further system and machine portability by nding dependencies
within classes. For imstance, the two abstract, classes System and Window Sys-
fean are 1respons’ble for instantiating new objects representing window system
tesources. The system-dependent parts are specified by pure vittual functions.
Presently, E'T44+ runs under SinWindow, NeWS ot the X111 window svstem.

e Code and design rense reduce coding and design time, 1espectively. This en-
cotrages developers to try ont new ideas. In other words., frameworks encourage

rapud protolyping.

o IFrameworks facilitate the cootdination of people working ou the same project.
Work can be divided into different. parts of the framework hierarchy where

changes to classes are independent.

7.2 Future Research

Ideally, the above mentioned cross references would be supported by a hypertext
system providing a mental model of the links hetween compounents. Hypertext systems
such as Planc Tert [Gea86] allow for webs of sucly eross referenee information that,
smoothly integrate text, graphics diagrams, and code. Thankfully, the PlanceText
system allows existing code files to be annotated without being altered.

Figure | depicts a typical web of eross references between code, design descriptions
and motifs. A framework complemented by sueh a system would improve retrieval
and nnderstandability by providing instant access to supporting information.

As mentioned, contracts help in the nnderstanding of micro-architectures. To
understand how micro-architectures themselves interact, we have motifs, providing a
textnal explanation. Textual explanations are fine but, often too verbose and ambigu-
ons. We would need to supplement motifs pictorially. Buht and Casselman [BC92)
have proposed the use of timethreads as a visual notation to communicate the inter-
action among, contracts. Pictnres, as shown in higure 2. would no doubt be useful to
anchor the concepts presented in motifs,
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7.3 Concluding Remarks

We are not clamming, with the contents of this thesis, to have created a panacea. 1t is
clear that considerable work temains to be done in order for eventual catalogued spe-
cifiec frameworks with wide spread practical applicability. We have however provided
4 st step, a step we believe to be in the right ditection. To successfully use and
rense frameworks. it is now np to ns to become a new breed of developers, developers
with a new attitude towards using “not invented by me code”, developers, to quote
from Beek [OBHSS6), “with an obsession for simplicity. who are willing to rewrite

code several times to produce casv-to-understand and easy-to-subelass classes”.

Just as the Eskimo has many different words for snow, we have many
words for reusability. A plausible conclusion is that reusability of frame-
work components is (or should be) as important in our lives as snow is in
the life of the Eskimo.
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Appendix A

CONTRACT - Macrotec
Constraints

The Connection Contract

contract Connection
DESIGN PATTERN : Connection

participants
Active:
Command ¢ ConnectionCommandRequest;
Shape : Shapes;
Shape : ConnectionShape;

Non-Active:
MatrixConnect in ConnectionCommandRequest
Connection in MatrixConuect
ShapeConnect in Shapes
ConnectionCommandRequest supports [
matrix : 2DArray(MatrixConnect)

Legal (begin:Shapes,end:Shapes) :MatrixConnect{
return m at location (begin->GetValue(),end->GetValue()) in matrix

}

TrackMouseConnectRequest (begin:Shapes,end:Shapes,

connectType:int):boolean {
MatrixConnect : entry
entry = Legal (begin,end)
if (entry)
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1f ((begin->TestConnect(entry.connect[connectType],end)) and
(end->TestConnect(entry.connect [connectType] ,begin)))
return true 1.e connection permitted
else
return false 1.e connection NOT permitted
else
return false
}
BeginExecute(begin:Shapes,end:Shapes, connectType:integer){
if(TrackMouseConnectRequest(begin:Shapes,end:Shapes,
connectType:int))
return ConnectionShape.NewConnection(begin,end,entry)
else
Refuse the connection!

}
]
Shapes supports [
value : Value
Coll : Array(ShapeConnect)

GetValue() :Value { return value }

TestConnect (connTypelnfo:Connection,other:Shapes) :boolean {
ShapeConnect : ShapeConnlnfo;

1f ((ShapeConnInfo = Search(connTypelnfo.conntype,other->GetValue())))

if (other is END shape)
if (connTypeInfo.max-begin == (ShapeConnInfo.count)
return false
else
UpdatelIO(connTypeInfo.conntype,other->GetValue())
return true

else
if (connTypeInfo.max-end == (ShapeConnlnfo.count)
return false
else
UpdatelO(connTypeInfo.conntype,other->GetValue())
return true
else

Create(connTypelInfo.conntype,other->GetValue)
return true
endif

¥
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Search(conntype : integer,ShapeValue : integer):ShapeConnect {
forall ¢ in Coll{

if (c.conntype == conntype AND c.ShapeVal == ShapeValue)
return c
}

return 0

¥

Create(conntype : 1integer, ShapeValue . integer): void {
Coll->Add(conntype,ShapeValue,0)
+

GetConnPos (Origin:Point,Extent:Point,conntype:integer,
ShapeValue: integer) :Point
{
return position according to Coll.conntype,Coll.ShapeVal

¥

UpdateIO(conntype : integer, ShapeValue : integer) voaid
{
At entry in Coll with same conntype,Shapevalue --
Coll.count = Coll.count + 1;

]
ConnectionShape supports [

NewConnection(start:Shapes,end:Shapes,matentry:MatrixConnect)
{

Draw(start->GetConnPos(matentry.begin-origin,
matentry.begin-entent,
matentry.conntype,end->GetValue()),

end->GetConnPos(matentry.end-origin,
matentry.end-extent,
matentry.conntype,start->GetValue()))

}

Draw(BeginPoint : Point, EndPoint : Point)
{ draw line shape }

]

MatrixConnect in ConnectionCommandRequest supports [
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connect  Array(Connection)
begin-origin - Point
begin-extent : Point
end-origin : Point
end-extent : Point

Connection in MatrixConnect supports [

conntype : integer
max-begin : integer
max-end : 1nteger

relShape : GraphicalShapes

ShapeConnect in Shapes supports [

ShapeVal : integer
conntype : integer
count : integer

instantiation
ConnectionCommandRequest -> BeginExecute(begin:Shapes, end:Shapes,
connectiontype : integer)
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