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Abstract 

LC-QTOF tandem mass spectrometers behave according to user controlled switching 

parameters, dut y-cycle and repetition rate, which guide the selection of peptides and the 

timing of their fragmentation. U sing a novel algorithm which analyses aH spectra 

simultaneously, it has been found that the majority of available peptides are not 

fragmented with the CUITent switching scheme. Unfortunately, it is not practical to 

experiment with the mass spectrometer to determine optimal switching parameters. In this 

study, simulation coupled with intensity surface analysis was used as a method of 

evaluating mass spectrometer performance. Algorithms that mimic the mass spectrometer 

were created in order to simulate its response to various data sets. The simulations 

resulted in operating curves displaying the trade-offbetween quality and quantity of 

fragment spectra. The optimal operating curve demonstrated that the current switching 

scheme is sub-optimal, and that new switching parameters with fewer dut y cycles and 

fewer repetitions should be selected. 
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Résumé 

Le spectromètre à fragmentation de type LC-QTOF se comporte selon les paramètres de 

changement, le cycle d'opération et le taux de répétition définis par l'usager. Ces 

paramètres contrôlent la sélection des peptides et l'instant de leur fragmentation. En 

utilisant un algorithme qui analyse tous les spectres simultanément, il a été remarqué que 

la majorité des peptides disponibles ne sont fragmentés avec la méthode actuelle. 

Malheureusement, ce n'est pas évident de déterminer expérimentalement les paramètres 

optimaux par le spectromètre. Dans cette étude, une simulation couplée avec une analyse 

de surface en deux dimensions des intensités de peptides a été utilisée comme méthode 

d'évaluation des performances du spectromètre. Des algorithmes qui imitent la 

fonctionnalité du spectromètre ont mis au point dans le but de simuler la réponse de 

différentes données. Les résultats de simulation sont présentés comme des graphes 

d'opération illustrant le compromis entre la qualité et quantité des spectres de 

fragmentation. La courbe d'opération optimale démontre que le mode d'utilisation 

présente n'est pas l'idéal, et que de nouveaux paramètres de changement avec moins des 

cycles d'opération et moins de répétitions devront être sélectionnés. 
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1 Introduction 

Proteins are macromolecules essential for cellular activity and survival. Estimates from 

the human genome indicate that 30,000 genes are encoding more than 100,000 different 

proteins.! It is also estimated that a typical mammalian cell may contain as many as 

10,000 different proteins.z Proteins have a wide variety of functions, acting as enzymes, 

structural elements, hormones, receptors and transporters, as contractile elements, 

antibodies, toxins, and blood clotting agents. Since proteins perform most of the cen's 

biological function, characterizing their function and interactions, and localizing them 

within the ceIl is essential to understanding ceIl function.3 

Proteomics focuses on the systematic simultaneous analysis of large numbers of proteins 

in biological samples.4 In the past, protein analysis was carried out by isolating and 

characterizing one protein at a time. However with the arrival of technological 

advancements, protein analysis has become automated, making high-throughput 

proteomics possible. The benefits have been shorter analysis times, consistency in the 

analysis process, and the flexibility of multiple assays. One of the most important 

technological advancements was the introduction of mass spectrometry to proteomics.5 

In a matter of seconds a tandem mass spectrometer can measure the mass of a peptide, 

fragment it, and measure the mass/charge (m/z) ratio of the fragment ions. Algorithms for 

peptide sequencing and identification use the fragment ion spectra to determine the 

sequence ofamino acids that made up the original peptide.6 Ideally the identification is 

straightforward, since the mass differences of the fragment ions correspond to the 

constituent amino acids. Unfortunately, in practice problems arise that make identification 

difficult. First, fragmentation is not an ideal process since expected ion fragments may 

not form while unexpected fragments may be created. Second, as with most signaIs, noise 

is a problem. 

The tandem mass spectrometer can only acquire one spectrum at a time, either the initial 

survey spectrum (MS) or the fragmentation spectrum (MS/MS) of one peptide in the 
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survey spectrum; either acquisition takes finite time. MS spectra are necessary to identify 

the molecular weight of peptides, but MS/MS spectra are necessary to identify the 

sequence of the peptide. Time limits the total number of spectra that can be acquired and 

so there is a trade-offbetween the number of peptides analyzed and how comprehensively 

each peptide is analyzed. 

Our objective was to investigate the effects oftwo mass spectrometer operating 

parameters, the dut y cycle and the repetition rate, on the quality and quantity of detected 

peptides. The effects of the operating parameters were examined by simulating the 

behaviour of the mass spectrometer at aU feasible parameter combinations, and evaluating 

performance with the aid of a new surface intensity analysis algorithm. The results define 

operating curves characterizing the tradeoffbetween quality and quantity. 

- 4-
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2 Background 

Proteins are polymers composed of amino acid monomers. There are 20 different amino 

acids (in humans) which share a basic structure: a carboxyl group and an amino group 

separated by a single carbon atom as illustrated in Figure 2-1; a side chain (R group) on 

the centre carbon differentiates the amino acids, and gives them their unique properties. 

r-------., 

~ Sid.Chain 

Amino 
II - N ..... C "'"Fœ C ...... OH 

1 Il Carboxyl 

H H o 

Figure 2-1: Amino acid structure 

Shaded rectangle: amino group, clear rectangle: carboxyl group, circle: side chain 

During protein synthesis, amino acids are joined together by peptide bonds creating 

polypeptide chains (see Figure 2-2)? When the process is completed the polypeptide 

chains are called proteins. 

H ..... N 

1 

R' 

1 
C ...... C8N 

1 Il 1 
H o 

R" 

1 
C ..... C8N 

1 Il 1 
H o H 

Figure 2-2: A three amÎno acid peptide, peptide bonds are encircled 
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2.1 Proteomics Pipeline 

(1) Samp!e SDS-
fractionation PAGE 

""'\? -"' "" ""', 
(3) Peptide 

ct1romatograpt1y 
and ESI 

(4) MS 

Exc!sed (2) Trypsin Peptide 
proteins digestion mixture 

(5) MS/MS 
.,.---r------, 200....-------,.----. 

LLEMft..QSTK 
516.27 (2+) 

y7 yS 
! 
1 

100 ~s Q il, A E L L 

Figure 2-3: Generic mass spectrometry (MS)-based proteomics experiment. 7 
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Figure 2-3 illustrates a typical proteomics pipeline showing the sequence of analysis used 

in high-throughput proteomics to identify proteins. In the first stage, proteins are 

extracted from the cellltissue by biochemical fractionation and separated via gel 

electrophoresis to reduce sarnple complexity. In the second stage, a protease (usually 

trypsin) is used to digest the prote in mixture into peptides of suitable size for mass 

spectrometer analysis. In the third stage, the peptides in the mixture are separated in time 

though the used of high performance liquid chromatography (HPLC), in preparation for 

entry to the mass spectrometer via electrospray ionization. In the fourth stage, the mass 

spectrum (MS) of the peptide mixture eluting at any instant is captured and peptides are 

detected. In the fifth stage, detected peptides are fragmented, and their tandem mass 
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spectra (MS/MS) are collected.7 Note that during the time MS/MS spectra are acquired 

other peptides continue to elute from the HPLC and will not be sampled. 

2.2 Protein separation and digestion 

Pro teins must be separated from each other to facilitate mass spectral identification. In 

high-throughput proteomics, proteins are commonly separated using ID or 2D gel 

electrophoresis. Polyacrylamide gel electrophoresis is the technology of choice for 

separating complex prote in mixtures. 8 Electrophoresis is based on the migration of 

charged particles in solution in response to an applied electric field. The rate of migration 

depends on a number of factors including the strength of the field, the protein size, and 

the viscosity of the gel. Proteins treated with sodium dodecyl sulphate (SDS) are 

denatured as SDS attaches to the polypeptide backbone; SDS also adds a negative charge 

to the protein in direct proportion to its length. Consequently, gel electrophoresis of 

proteins treaded with SDS separates them on the basis of their length (length is generally 

proportional to molecular weight) and not on the constituent amino acids of the protein.9 

The rightmost series of bands in Figure 2-4 illustrate a series of proteins isolated from 

human HeLa cells on a ID gel. The leftmost series ofbands are molecular markers with 

known masses. 
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" 'il" i' 

1 
1 -

Figure 2-4: ID gel of Coomassie Blue stained nucleolar proteins. 

Human HeLa cens (right) and markers with known molecular weight (left)lO 
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Even after gel separation, protein mixtures may be too complex for analysis by mass 

spectrometry. In addition, the mass of proteins vary widely which poses a problem for the 

spectrometer. In the Swiss-Prot database [11] (KNOWLEDGEBASE RELEASE 42.9 

STAT/STleS), an online database ofproteins and associated information, peptide 

sequences range from 2 amino acids (261 Da) to 8797 amino acids (1,011,034 Da). Most 

mass spectrometers are unable to operate over such a large mass range; furthermore, the 

molecular mass of a protein cannot yet be measured with enough resolution to identify it 
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unambiguously. An additional confounding factor 1S that post-translational modifications 

may change the protein mass. Consequently, it is the general practice in high-throughput 

mass spectrometry to digest the proteins into smaller amino acid sequences (peptides) that 

are more consistent in length and thus more amenable to processing by the spectrometer. 

Once the sequence of a peptide(s) is known it can be used to search prote in databases to 

find the parent prote in. 

Each gel slice Ca gel is generally partitioned lnto discrete slices or blocks) will contain 

one or more proteins and so will generate many peptides. To resolve these peptides on the 

mass spectrometer, another separation step is necessary; liquid chromatography (LC) is 

used to separate peptides in time. LC separation of peptides begins by adsorbing aU 

peptides onto the organic coating ofbeads packed in a column (tube). An acetonitrile 

solution is then run through the column and its concentration is varied with time along a 

predefined gradient. Peptides go into solution when their affinity for the packed column 

becomes less than their affinity for the acetonitrile solution. 12 Hydrophobicity, a measure 

of peptide affinity for organic molecules, varies from peptide to peptide and is determined 

by their amino acid sequence. Thus by choosing the gradient it is possible to control the 

number of peptides eluting at any time. 

2.3 The Mass Spectrometer 

The mass spectrometer measures the mass of molecular scale sized charged substances 

that can be transferred to a vacuum. Typically the mass spectrometer consists ofthree 

components: 1) the ion source, 2) the mass analyzer, and 3) the detector. 

2.3.1 Ion Source 

The mass spectrometer measures the mass of charged molecules; thus molecules must be 

ionized before they enter the spectrometer. A variety of different ion sources exist, 

including electron ionization, chemical ionization, field desorption, laser desorption, 

thermospray, and electrospray. The two most common ion sources in proteomics are 

matrix-assisted laser desorption (MALDI) and electrospray. 

- 9 -
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MALDI sources use a two step process to ionize molecules. First, the molecules of 

interest are mixed with an organic solvent solution, or matrix, that has a strong absorption 

band at a particular laser wavelength. The matrix solution is dried leaving matrix crystals 

containing the molecules to be analyzed. Secondly, an intense laser pulse heats a section 

of matrix causing it to sublimate. As the gas matrix expands, the molecules of interest are 

liberated. The ionization reactions however, occur through processes that are not yet fully 

understood. 

Electrospray ionization (ESI) sources use a liquid (usuaHy an acetonitrile solution eluting 

from the front end of an HPLC column) to carry peptides through a metallic capillary, and 

eventually into the vacuum of the mass spectrometer. A high voltage applied to the 

capillary results in a very high electric field at the capillary tip that causes charge to 

accumulate at the liquid surface. When sufficient charge accumulates surface tension is 

broken forming highly charged droplets which are passed though a heated inert gas to 

evaporate the acetonitrile solution. Peptides in the solution will retain the drop let' s 

charge. 

Figure 2-5 illustrates a schematic of an ESI assembly; ions travel from the high voltage 

needle towards and through the lower voltage sampling cone. The small orifice of the 

sampling cone provides an interface between the ambient atmospheric pressure and the 

vacuum of the mass spectrometer. 

Liq 
c 

s 

Figure 2-5: Ail electrospray iOllizatioll (ESI) assembly7 
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2.3.2 Mass Analyzer 

The second component of the mass spectrometer, the mass analyzer, separates ions based 

on their m/z ratio. There are many types of mass analyzers, but they can be divided into 

two main categories: scanning analyzers (quadrupoles and ion traps) which process ions 

sequentially based on their mass-to-charge ratio, and simultaneous mass analyzers (time­

of-flight and ion cyclotron analyzers) which process all ions together. 13 Quadrupoles and 

the time-of-flight (TOF) analyzers are used most often in high-throughput proteomics. 

The quadrupole is a set of four parallel metal rods (either cylindrical or parabolic) that are 

energized by modulating frequencies and voltages. Ions entering the quadrupole oscillate 

as they travel the length ofthe rods. By suitably choosing the voltages and frequencies 

applied to the rods, ions of specifie m/z will exhibit stable oscillations and traverse the 

length of the rods uninhibited; aH other ions will have unstable oscillations, strike the 

rods, discharge, and therefore not be detected. By varying the voltages and frequencies 

with time, the quadrupole mass analyzer can scan a mass range to create a mass spectrum. 

The time-of-flight tube separates molecules based on the time required to traverse a fixed 

distance. At one end of the tube, aIl molecules are initially imparted with the same kinetic 

energy by a high voltage source. Consequently, molecules with small mass will be 

accelerated to a higher velocity than those with larger mass and so will traverse the length 

of the tube more quickly. A detector placed at the opposite end of the tube records the 

time that molecules arrive. The m/z of a molecule is directly proportional to the square of 

the time required to traverse the length of the flight tube13: 

m z= -- t / (2Vse) 2 

d 2 

where, Vs is the accelerating potential, d is the length of the flight tube, and e is the 

charge of a single electron. 

(1) 

Figure 2-6 shows a schematic of a TOF spectrometer. Ions are propelled down the tube by 

the high voltage source, and their arrivaI time 1S recorded by the detector. 

- 11 -
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High Voltage 
Source 

Il 

Flight Tube 

Figure 2-6: Time of flight mass spectrometer schematic 

2.3.3 Detectors 

Carrillo, Brian 

Detecta 

The final component of the mass spectrometer is the detector which converts the beam of 

ions from the mass analyzer into a useable signal. Two types of detectors exist: one type 

allows the direct measurement of the ions (e.g. photographie plates and Faraday cages); 

the other amplifies the signal before reeording (e.g. micro channel plates (MCP) and 

photon multiplier deteetors).13 

The MCP is the detector frequently used in TOF instruments; it consists of a plate 

containing parallel cylindrical holes coated with a semi-conducting material that releases 

secondary electrons when struck by ions, thus multiplying the initial ion. An accelerating 

voltage of ~ lkV is applied across the plate to ensure electrons traverse through the plate. 

This cascade of eleetrons ean cause gains in the order of 105
• Several plates ean be 

combined for further amplifieation. 13 

2.4 Tandem mass spectrometry 

Mass spectrometer analysis of separated peptides allows for peptide mass to be aceurately 

determined, but does not provide any structural or chemical information. Gay et al. [16] 

demonstrated that, in the SWISS-PROT protein database, there are thousands ofpeptides 

having the same mass to a resolution of 10-5 Da, a resolution mueh higher than most 

- 12-
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spectrometers can provide. The Micromass Q-TOF mass spectrometer, for example, 

provides a resolution in the order of 10-2 Da. 

Tandem mass spectrometry has the potential to resolve this redundancy. Tandem mass 

spectrometry uses two mass analyzers. The first mass analyzer selects a single peptide 

mass from the initial mass spectrum (MS) by filtering out aU other masses. The single 

peptide is then fragmented in a collision ceU and the second mass analyzer acquires the 

resulting fragmentation spectra (MSIMS). Since peptides fragment at known locations, 

the fragment spectrum can be used to determine the amino acid sequence of the peptide. 13 

The switching behaviour of the mass spectrometer is controlled via two "switching 

parameters". The tirst parameter, the duty cycle, indicates the maximum number of 

peptides that can be selected for fragmentation in a single MS spectrum. The second 

parameter, the repetition rate, controls the number of times each peptide is fragmented. 

The switching parameters are denoted A-B, where A is the dut y cycle and B is the 

repetition rate. 

2.5 LC-QTOF mass spectrometer 

The LC-Q-TOF incarnation of a mass spectrometer is commonly used in high-throughput 

proteomics for the analysis of complex samples. Liquid chromatography (Le) helps to 

reduce the complexity of samples before injection into the mass spectrometer. 

Figure 2-7 illustrates the path traveled by ions as they are processed and detected by the 

Q-TOF mass spectrometer. The ions tirst pass through the quadrupole analyzer (QI) 

where, if the spectrometer is operating in MS mode aH ions will pass through unabated, or 

if the spectrometer is operating in MSIMS mode then only the ions with the selected m/z 

ratio will be able to pass. When operating in MS/MS mode, the selected peptides will 

collide with uncharged gas molecules (usually nitrogen) in the collision ceIl (q2). The 

kinetic energy transferred in the collision causes the peptides to fragment in a process 

known as collision-induced dissociation (CID). At the entrance to the flight tube (TOF) 
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kinetic energy is imparted to the ions by the pusher, changing their trajectory. The 

reflector (or reflectron) inverts the direction of ions, through the use of an electric field, in 

order to attenuate slight inconsistencies in the velo city of ions with identical mass. Ions 

with slightly higher velocities will penetrate deeper into the reflector, and thus take longer 

trajectories and more time. Finally, when ions reach the detector they are counted and 

given a timestamp. 

1 

I~ 

Q1 

Reflector 

Figure 2-7: Schematic of a Q-TOF mass spectrometer7 

2.6 Isotopie Distribution 

TOF 

Pusher 
iii 

"" 

....... -­....... ....... ....... --

Detector 

........ -........ -........ ........ 

The resolution of the many mass spectrometers allows a single peptide to be resolved into 

many isotopie peaks whose spacing 1S dependant on the peptide charge. The first peak, 

the peak with the smallest m/z, called the mono-isotopic peak, is composed of atoms with 

only the base isotope (CI2, N 14, 0 16, S32). The remaining peaks are composed of atoms 

containing one or more of the larger naturally occurring isotopes (C13, N15, 0 18, S34). The 

relative intensity of these remaining peaks is determined by the atomic composition of the 

peptide, and the ratio of isotopes that these atoms contain. Natural carbon, for example, 
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consists of 98.89% Cl2 and only 1.11 % Cl3. Although the percentage oflarge isotopes is 

small, they have a dramatic impact on the peak distribution of larger moleeules. 

In a hypothetical moleeule containing 100 Carbons, probability theory predicts that in 

roughly two thirds of the cases, at least one carbon atom would be a heavier isotope. In a 

large population of these 100 carbon moleeules the relative abundances of the different 

isotopes would behave aeeording to Table 1. 14 

Isotope Number m/z Percent Total Intensity 

0 Il 1200.00000 Il 
32.85 

1 Il 1201.00335 Il 36.77 

2 1202.00671 Il 20.38 

3 1203.01006 
1 

7.45 

4 1204.01342 2.02 

5 
Il 

1205.01677 0.43 

Table 1: The isotopie distribution for a theoretical moleeuie eontaining onRy 100 Carbons 

As the mass ofa peptide inereases, so does the relative intensity of the non-mono-isotopie 

peaks. These peaks eventually dominate the speetrum (as does the second isotope in 

Table 1), and eventually the mono-isotopie peak will have negligible intensity. 

If the atomic composition of a peptide is known, a simple binomial expansion of the 

number of atoms and the proportions of large isotopes can prediet the relative abundanee 

of the various isotopes. Molecules are present only in integer amounts so the counting 

statistics can be modeled in terms of Poisson distributions. Therefore, given a mono­

isotopie peak and its chemical formula, the relative intensity of other isotopie peaks can 

be predieted. 

However, in high-throughput proteomics, the chemical composition of the peak under 

consideration is not known so the isotopie peak distributions cannot be determined. One 
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way to estimate composition is to define an average amino acid. Breen et al. [15] 

computed the average amino acid from large protein databases and found it to have the 

chemical formula of CIOHI6N303. By eoneatenating this average amino aeid with itself, 

various mass peptides ean be eonstrueted to map most mass ranges. Gay et al. [16] 

attempted a brute foree method where the isotopie distribution was eomputed for every 

peptide in a large prote in database and polynomials were fitted through the data to map 

the mass range. Figure 2-8 shows the weighted mean heights of isotopie peaks for 

peptides between 800 and 3000Da extraeted from the SWISS-PROT database. The 

seeond isotopie peak (lM) rises over the mono-isotopie peak (OM) near 1800 Da, weIl 

within the deteetion range of the LC-QTOF mass speetrometer, espeeially if the 

moleeules are multiply eharged. The inset shows the intensity of the mono-isotopie peak 

relative to the other isotopie peaks. 

0.7 1"-....... _.~""_._..,.......---,--~.."...--..........,.~~~--~"'9=.=_.---. .. _ .... ~_._~----.,......-~-----. 

10° _ ~:..:~~~.:==.,,;;.:.~_ .. ~.:.:... 
aoo I~ 1200 1_ 1600 1Il00 ,,000 :u«t :Moo :W:w :MOO 3'600 

Figure 2-8: Isotopie peak. intensities for 800-3000.oa peptides from SWISS-PROT [16] 

- 16 -



Background Carrillo, Brian 

2.1 Spectral Processing 

Peptides are not always easily identified within the raw spectra provided by the mass 

spectrometer. There are a number of reasons for this: 

1) each peptide is represented by several isotopic peaks with heights varying 

according to its composition 

2) each isotopic peak is in itself a distribution, which is Gaussian-like, that spreads 

the peak across the m/z axis and is dependant on the instruments resolving power 

3) several peptides may appear close to each other, causing both their isotopic 

distributions and their peak distributions to overlap 

4) finally noise signaIs can corrupt the spectra. 

Processing the spectra using signal processing techniques can help to alleviate these 

problems. Figure 2-9 shows a section of a typical raw spectrum which illustrates three of 

these points. The peak labeled 'a' is the mono-isotopic peak ofthe peptide cluster 'abcd'. 

Peak 'a', is not localized to a single m/z but has a finite width. The arrow indicates a 

section of considerable noise, although noise can be seen throughout the spectrum, 

including within peaks. 

60 

50 -

r~ b 40 

1 

1 
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Figure 2-9: A section of a typical raw spectrum obtained from an LC-QTOF. 
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2.7.1 Filtering 

The spectra recorded by the mass spectrometer are, like most experimental signaIs, 

corrupted by noise. In mass spectrometry, the main sources of noise are the chemicals 

used in sample preparation and electrorncs. While it may be difficult to separate and 

identify the various signaIs, it is possible to model the properties of the ideal signal and 

use these parameters to aid in filtering. Lekpor et al. [17] processed calibration spectra 

and determined that the ideal peptide signal contains information only in a low-frequency 

range whose bandwidth varies with m/z. Figure 2-10 shows the frequency content of 

peaks, computed from the flight time (~1 Os of ilS) of ions in a TOF tube, at various m/z 

locations. Peaks at low m/z have higher frequency content then those at a high m/z. A 

piecewise linear filtering of the spectrum using cut off frequencies tuned to each peak can 

reduce high-frequency noise without modifying the information of the peptide ion peaks. 

Frequency contents of simulated peaks (Iinear) 

0.8 

Q) 
""0 0.6 :ê 
Ci. 
E 0.4 « 

0.2 

0 
0 2 3 4 5 6 7 

Frequency (Hz) 

Figure 2-10: Frequency content of peaks at various m./z 17 

2.7.2 Peak Picking 

- m/z = 100 
...... m/z = 400 
- -- m/z = 800 
- m/z = 1200 
-_ .. _. m/z = 1500 

8 9 

Peak picking is the process that tries to resolve the problem of each peak existing as an 

m/z distribution. Peal\: picking converts the peak distribution to a single, "correct" m/z 

value. The algorithms used for peak picking in mass spectra vary considerably between 

laboratories. Each laboratory selects its own method of identifying and localizing peaks. 

Hastings et al. [18] used a local maxima method in conjunction with a peak in 

chromatogram to identify "true" peaks. Breen et al.[15] used a watershed technique to 
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isolate peaks and then computed the centroid of isolated peaks to localize them. Finally, 

Zhang et al. [19] used simple global maxima to isolate the most intense peak, processed 

it, then iteratively searched the rest of the spectra. Each method has its own strengths and 

weaknesses, and each peak picking method willlikely need to be tweaked to suit a 

particular instrument and proto col. 

2.7.3 Deisotoping 

Deisotoping is the process whereby aIl the peaks in an isotopie distribution are folded 

back to the mono-isotopic peak and aH peak intensities summed. This proeess also 

identifies the eharge on the peptide so that its uneharged mass ean be determined. This is 

a data reduetion step that eharaeterizes peptides by two parameters, mass and charge, 

Ïnstead of the location and intensity of a set of peaks. Deisotoping methods faH into two 

general categories, probabilistie methods, and heuristic methods. Probabilistic methods 

attempt ta find peptide models whose behaviour best fit the available data. Maximum 

entropy, a probabilistic method, iteratively tries to optimize the match between a 

calculated spectrum and the observed spectrum. Maximum entropy is computationally 

complex and thus has not been used extensively.2o Heuristic methods, on the other hand, 

attempt ta exploit known patterns or parameters within the data to simplify deisotoping. 

Heuristic methods use stepwise decision making and are, in general, computationally 

simple. However, they are based on "rule-of-thumb" observations and may not generalize 

well. 

Deisotoping 1S also occasionally referred to as deconvolution. Deconvolution is the 

unraveling of overlapping signaIs Ïnto their constituent signaIs. Overlapping spectra are 

usually automatically resolved by deisotoping algorithms. 

2.8 Problem Formulation 

During tandem mass spectrometry experiments, there is only a finite time when a peptide 

elutes from an HPLC to determine its overall mass (to select for fragmentation) and its 

fragmentation pattern (to determine its amino acid sequence). This time limitation limits 
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the acquisition of enough information required to unambiguously identify the peptides in 

a sample. Exacerbating the situation, several peptides may elute simultaneously, or have 

overlapping elution profiles. Multi-peptide elution causes the mass spectrometer to 

sacrifice fragmentation spectra quality to capture information on more of the available 

peptides. 

Figure 2-11 depicts a set of several spectra from a typical experiment run with a 4-5 dut y 

cycle. Each pixel row represents one spectrum, while pixel greyscale intensity is 

proportional to the intensity of the originating spectra. The figure illustrates the elution of 

several peptides over a two minute period, in just a 50 mJz mass range. In the figure, dark 

spots indicate peaks, sets of dark spots indicate peak clusters (peptides), and the two sets 

of white circles show the peptides selected for fragmentation. It is obvious that most of 

the peptides are ignored. 
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Figure 2-11: Section ofa 30 min gradient, with locations of MS/MS (from an LC-QTOF) 
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Too many peptides and not enough time leads to a classic tradeoffproblem: what is the 

optimal balance of quality and quantity to maximize the amount of information collected? 

The mass spectrometer's switching parameters control this tradeoff. Finding these optimal 

settings will allow high-throughput proteomics to take full advantage of mass 

spectrometry resources. 
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3 Experimental Overview 

This thesis investigates the effects that switching parameters have on the quality and 

quantity of peptides identified in the LC-Q-TOF mass spectrometer. The experiments 

used data from a sample containing ~ 1000 proteins. The sample was run in MS only 

mode at four different gradient lengths and repeated four times at each gradient. Data 

were collected in this manner to avoid the time gaps created by acquiring MS/MS spectra, 

thus ensuring that aIl of the peptide peak profiles were observed. 

Surface intensity analysis was used to analyze each dataset to determine where and when 

(time & m/z) each peptide eluted. The surface intensity algorithrn is more robust than 

traditional peptide detection algorithrns as it processes multiple spectra simultaneously. 

Surface intensity analysis leads to better peptide localization and fewer errors. 

The same data was then processed via traditional single-spectrum algorithrns to simulate 

the operation of the mass spectrometer. The simulations were run with an array of 

switching protocols, dut y cycles from 1-20 and repetitions from 1-10, to determine the 

number of peptides that would be fragmented, and to estimate the spectrum quality based 

on the intensity of the peptide in the MS spectrum. 

Finally, the simulations were compared to the results of surface intensity analysis to 

determine how many of the available peptides the simulations fragmente d, and how close 

those fragmentations were to the maximum intensity of the peptide profile. This 

comparison provides a measure of performance for the mass spectrometer, and will 

determine the optimal switching parameters. 

Figure 3-1 depicts an overview ofthese processing steps as information flows from raw 

data through the various processing stages. 
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Figure 3-1: Information processing flowchart 

Rectangle: simuiation of mass spectrometer (Chapter 4) 

Ellipse: data transformation to aHow surface analysis (Chapter 5) 

Rounded Rectangle: surface analysis (Chapter 5) 

Square: comparison and performance measurement (Chapter 6 & 7) 
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3.1 Data 

The mass spectrometry data used in this thesis was acquired using the method described 

by Lavoie et al. [21]: 

Total microsomes were obtained by differential centrifugation of rat liver 
homogenates (Paiement and Bergeron, 1983)1. They were resuspended in 
sucrose to give a final concentration of 1.38 M, placed under a step­
gradient of 1.0, 0.86, and 0.25 M sucrose, and centrifuged using a 
Beckman SW 60 rotor at 300,000 gay for 60 min. A subfraction 
containing smooth microsomes and low density rough microsomes (1.17 
g/cm3) was obtained from the upper haif of the 1.38 M sucrose step above 
the residual pellet after centrifugation. This fraction, characterized as 
LDMs, was washed once by centrifugation and resuspension in 0.25 M 
sucrose at 100,000gav (Lavoie et al., 1996f High density rough 
mlcrosomes were prepared as previously described (Paiement and 
Bergeron, 1983). 

The extracted fractions were then separated using the method described by Wasiak et al. 

[22] with the exception that the SDS-PAGE was a 7-15% gradient with 4 molar urea: 

... proteins were separated by SDS-PAGE and stained with Coomassie 
blue. The gellane was then cut horizontally into 62 even sized gel slices. 
The sUces were dehydrated in acetonitrile and washed by two cycles of 10 
min in 100 mM (NH4)2C03 before the addition of an equal volume of 
acetonitrile. The completely destained gel slices were then treated for 30 
min with 10 mM dithiothreitol to reduce cystinyl residues and for 20 min 
with 55 mM iodoacetamide to effect alkylation. After an additional round 
of (NH4)2C03 and acetonitrile washes, the sUces were extracted with 
acetonitrile at 37°C. They were then incubated with trypsin (6 ng/~I in 50 
mM [NH4hC03) for 5 h at 37°C and the peptides were first extracted in 
1 % formic acid/2% acetonitrile followed by two further extractions with 
additions of acetonitrile. AlI treatments were performed robotically using 
a MassPrep W orkstation (MicroMass). 

Figure 3-2 illustrates the gel containing the peptides analyzed. 

1 Paiement, J., and J.J.M. Bergeron. 1983. Localization ofGTP-stimulated core 

glycosylation to fused microsomes. J. Cel! Biol. 96:1791-1796. 

2 Lavoie, C., J. Lanoix, F.W.K. Kan, and J. Paiement. 1996. Cell-free assembly ofrough 

and smooth endoplasmic reticulum. J. Cel! Sei. 109:1415-1425. 
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Figure 3-2: ID gel of stained rough membrane proteins with extracted bands 

Numbers on the Jeft show the molecular weight of standards. 

Peptides from bands 47 through 52 were pooled and analyzed by mass spectrometry using 

the protocol described in Wasiak et al. [22]: 

Extracted peptides were applied to a reverse phase guard column and then 
eluted in-line to a 10 cm by 75J.Lm PicoFrit column filled with BioBasic 
C18. The column was eluted at 200 nl/min with a linear gradient of 5-
70% acetonitrile/O.l % formic acid. Four gradients, 30min, 60min, 
120min, and 240min in quadruplicate were used. A 2,000-V charge was 
applied to the PicoFrit column such that the eluted peptides are 
electrosprayed into a Cap liquid chromatography quadrupole tÏme-of­
flight MS (MicroMass). The mass spectrometer collected MS scans only. 
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4 Simulation 

The behaviour of the mass spectrometer was simulated to avoid the time consuming and 

resource taxing alternative of running thousands of nearly identical experiments. 

Simulation allows for the modification of aH parameters and the calculation of aU 

possible outcomes in the order of minutes, whereas experimentation wouid require weeks 

or months. Simulating the exact behaviour of the mass spectrometer is not possible since 

the algorithms contained within the software are proprietary and not available for use 

outside the mass spectrometer. However, the rules that govern the software are known 

and are: 

Only doubly and triply charged peptides are considered for fragmentation. 

If multiple peptides are detected within a single scan, the most intense peptides are 

considered for fragmentation first. 

A peptide will not be considered for fragmentation if a peptide with the same mass 

and charge has been fragmented within a user specified time frame. 

Algorithms that adhere to these rules were created to mimic the ion selection behaviour of 

the mass spectrometer. The data for these algorithms were 16 sets of real MS only spectra 

from a sample believed to contain ~ 10,000 peptides. 

Figure 4-1 displays a small section of a typicai MS spectrum containing two peptides with 

different charge states. This sample spectrum will be used to illustrate the effects of the 

various processing stages. In simulating the mass spectrometer, our approach was to 

analyze each spectrum using optimal methods so that any differences can be attributed to 

switching parameter issues. Actual implementations, however, are likely to be suboptimal 

due to time constraÏnts. 
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Figure 4-1: Section of a typical unprocessed spectrum 
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A doubly charged peptide at ~781.9 mlz, and a triply charged peptide at -785.8 mlz are visible. 

4.1 Spectrum filtering 

Filtering was based on the Lekpor [17] method of piecewise linear filtering. The 

algorithm slices the spectrum into pieces 50 m/z wide. Each piece is then filtered using a 

Butterworth low pass filter with an order and cutoff frequency dependant on the m/z of 

the piece. These values were pre-computed by Lekpor based on the modeled peak shape 

of calibration data. A rectifying function is then used to remove any negative intensities 

(meaningless in mass spectrometry) introduced by the impulse response of the filter as 

they may cause problems in later processing stages. Figure 4-2 shows the result of 

filtering on the sample spectrum shawn in Figure 4-1. The peaks are evidently, more 

consistent in shape and are smoother. 
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Figure 4-2: Spectrum in Figure 4-1 after filtering 

4.2 Peak Picking 

784 
m/z 

785 786 787 788 

Peak picking was simulated using a custom heuristic algorithm that used experimentally 

determined peak properties as general rules for peak finding. They include: 

1) the width of a peptide peak varies linearly with m/z, 

2) small peaks within close proximity to a larger peak are hidden and cannot be 

resolved, 

3) the most intense data point within the peak de fines the m/z location. 

The peak picking algorithm combines these "rules", and uses a divide and conquer 

approach to improve speed. 
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The algorithm (Appendix 9.1) begins by finding the most intense data point in the 

spectrum, and computes its expected peak width based on its m/z. The peak intensity and 

location is recorded; the peak and aU data points within the calculated peak width are 

removed from the spectrum. The two pieces of the remaining spectra are processed in the 

same manner as if they were complete spectra. The algorithm concludes when aH data 

points have been processed. AH of the recorded peaks are combined to form a complete 

peak lis1. Figure 4-3 shows the result of applying the peak picking algorithm to the 

filtered spectra of Figure 4-2. 
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Figure 4-3: Spectrum in Figure 4-2 arter applying the peaking algorithm 

4.3 Deisotoping 

Deisotoping was achieved using an extension of the Wehofsky [23] algorithm that was 

designed to deal with singly charged peptides from a MALDI source. Our algorithm 

(Appendix 9.2) isolates and merges isotopie peaks spread by multiple charges from an 
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ESI source. The algorithm makes the assumption that the data has been perfeetly peak 

pieked, and thus no peaks are erroneous. The application of an intensity threshold, or any 

other means of peptide filtering, ean be used to clean the data before or after deisotoping. 

In this case, the spectral filtering algorithm was used to remove erroneous peaks. The 

algorithm seans the m/z axis sequentially, taking the first peak it eneounters, and 

determines if there are any peaks in the vieinity which might indieate the presence of 

peptides. The presence of peptides would be attributed to a set of correetly spaeed peaks. 

The inter-set spacing would define the charge state of the peptide. 

For a given charge state, a theoretical average isotopie distribution exists whieh dictates 

the relative intensity and spacing of the peaks within a peak set. The average isotopie 

distribution is generated using the Breen method and data. 15 For a given mass, the 

theoretieal distribution of atoms defines the relative intensities of the spectral peaks. 

Small deviations (-20%) of peak height from theoretical distributions can be attributed to 

molecules containing atomic compositions that vary from the average. 16 Larger deviations 

from this theoretical distribution indicate that the identified mass/charge state does not 

adequately describe the peptide, or that more than one peptide is present in the considered 

set. If the peak set adheres to the theoretical average then a peptide is detected and 

recorded, the peak set is removed from the spectrum, and the processing of the spectrum 

continues. 

Figure 4-4 displays the result of deisotoping the sample spectrum. Two large peptides are 

detected, one doubly charged and one triply charged. Several smaller singly charged 

peptides are associated with peaks that could not be attributed to isotopic clusters. A 

small triply charged peptide is aiso located directly ahead of the large peptide, which the 

algorithm predicts is an overlapping peptide since its spacing is consistent with a triply 

charged peptide. It will be shown in using surface intensity analysis that this 1S the not the 

case, but that the peak is associated with a singly charged cluster that has just begun to 

elute. 
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Figure 4-4: The spectrum in Figure 4-3 after applying the deisotoping algorithm. 

The deisotoping process generates a list of possible peptides containing their location in 

m/z and their charge state. However, the mass spectrometer only considers doubly or 

triply charged peptides for fragmentation because: 

1) these peptides generally have longer amino acid sequences which aids in 

protein identification, 

2) doubly charged peptides require less energy to fragment in the mass 

spectrometer, and 

3) aH of the fragments ofmultiply charged peptides retain a charge, and thus 

contribute more information to the fragmentation spectrum. 

Consequently, the list of possible peptides was pruned to contain peaks associated with 

doubly or triply charged clusters. 
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4.4 Validation 

To gauge the quality of the algorithms presented, they were tested to determine their 

response to extreme noise conditions. To verify the accuracy of the algorithms, an 'ideal' 

spectrum was created containing a peak cluster defined by the virtual peptide 

'ACDEFGHIKLMNPQR'. The peaks of the ideal spectrum were then convolved with a 

Gaussian curve to simulate the spreading of peaks within the mass spectrometer. By 

design, the SUffi of the intensity of aU peaks in the cluster was 100. When the algorithm 

processed the noise-free spectrum, 89% of the peptide intensity was accounted for. The 

missing Il % can be attributed to the several peaks falling below threshold. 

35 

m/z 

Figure 4-5: The ideal spectrum used to validaie peptide detectioll algorithms 
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Figure 4-6: The spectrum of Figure 4-5 with a signal-to-noise ratio of ~4.6 

The addition of noise to the spectrum was simulated 2000 times with the signal-to-noise 

ratio varying randomly from 1.4 to Il. The signal-to-noise ratio in mass spectrometry is 

defined as the height of the large st peak in the cluster relative to the maximum intensity 

of the noise. The minimum signal-to-noise ratio in mass spectrometry is 2, but minimum 

limits of 5 to 10 are more generally applicable. It is not uncommon to see ratios as high as 

several hundreds, and even thousands. The algorithms processed the noisy spectra in an 

attempt to find the correct peak location, charge and intensity. The histogram of Figure 

4-7 shows the percentage of intensity accounted for in the 2000 simulations. The majority 

of the simulations show intensity detections close to 90% similar to the noise free 

spectrum. 
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While a large percentage of the simulations were able to account for most of the signal 

intensity, a small minority of outliers appear to be problematic. However, when searching 

prote in databases for sequence matches, the mass and charge of a peptide are more 

important criteria than its intensity [24]. The same simulations show (Figure 4-8) that the 

peptide was always located within 0.04 mJz of its target, an error comparable to the 

calibration error of the mass spectrometer. In an cases the peptide's charge state was 

determined correctly. 
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Figure 4-8: The m/z error of 2000 simulations 

4.5 Fragmentation Simulation 
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Fragmentation simulation mimics the mass spectrometer processing of deisotoped data 

for a set of switching-parameters. The switching-parameters are varied such that each 

feasible parameter combination is generated. Each parameter combination is then 

simulated. 

The peak list is searched, one MS spectrum at a time, for peaks whose deisotoped 

intensity is above the mass spectrometer minimum threshold. If no peptides are found, 

the process continues ta the next scan. If peptides are present, they are sorted by intensity 

and individually added to the list of fragmented peptides if: 1) the same peptide does not 

appear on the list within the user specified time, and 2) the number of peptides on the list 

is less than that allowed by the dut y cycle. 
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The repetition rate dictates the replication ofnewly added peptides on the list. Finally, the 

number of peptides added to the list in a single scan regulates how many scans need to be 

skipped, since skipping represents the time necessary to acquire the fragment scans. The 

list of fragmented peptides contains the scan number and the m/z of the peptides. 

Figure 4-9 illustrates the selection and fragmentation of peptides following a 4-5 dut y 

cycle. First, a MS scan is taken (circle), from which four peptides are selected for 

fragmentation (MS/MS 1-4). The fragmentation spectrum for each peptide is then taken 

once. The signal strength allows for the peptides to be repeatedly fragmented (27.9 to 

28.15 min). If the fragmentation spectrum signal becomes too weak, the mass 

spectrometer stops acquiring spectra for the weak peptides (MSIMS 1,3 &4). When the 

limit of 5 repetitions is reached (MS/MS 2), the cycle is over, and the mass spectrometer 

captures another MS spectrum to find new peptides. Note: The intensities in the graph 

are meaningless. 
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5 Surface Intensity Analysis 

The mass spectrometer evaluates spectra one at a time, in less than one second, to 

estimate the presence and location of peptides. However, during offline processing, the 

complete data set can be used to yield improved results by using aH available spectra. 

Current peptide detection algorithms generally use two dimensional (m/z and intensity) 

techniques for identifying peptides either in a single scan, or in the average of several 

scans. The liquid chromatographie stage of the LC-Q-TOF introduces a third dimension, 

retention time. The set of acquired MS scans can therefore be regarded as a three 

dimensional dataset where intensity is a function of m/z and time. This dataset can be 

processed using image processing methods similar to those used to identify "spots" in 

images of 2D gels. 

5.1 Uniform Resampling 

For the MS data to be interpreted as an image, it must be uniformly resampled to give 

equally spaced samples. The time data is uniform to start with since seans are taken every 

second. However, the m/z domain is not uniform since TOF mass speetrometers acquire 

data in the time domain and apply a non-linear transformation to determine m/z. 

Moreover, points that do not contain information are omitted from the spectrum (to save 

space) resulting in very non-uniform samples. To have uniformly sampled data, the m/z 

domain ean be transformed back to the native time domain, or resampled into a uniform 

m/z domain. The latter option was ehosen sinee most of the processing will be done in the 

mlz domain. Consequently, a linear interpolation algorithm was used to resample the m/z 

domain of the raw data at constant 0.01 m/z inerements. Linear interpolation was ehosen 

for both its speed and hs predictability. Higher order interpolation is not useful since the 

derivatives that are preserved with these schemes are not needed. Furthermore, the 

derivatives cannot be computed aecurately because the data is too noisy. 
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5.2 Spectral Stacking 

The uniformly resarnpled scans were stacked, to form a 2D matrix with m/z and time as 

its axes. This two dimensional matrix was then manipulated as an image where the 

spectral intensity is represented by greyscale intensity. Figure 5-1 illustrates the results of 

stacking 80 consecutive scans. Four unique peptides (isotopie peak clusters) are clearly 

visible, while a fifth (at ~782, 1500) is visible close to background intensity. 
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Figure 5-1: Subset of staclœd spectra, scan number 1500 defines Figure 4-1 

5.3 Surface smoothing 

786 787 

A surface smoothing filter was used to improve the signal-to-noise ratio of the matrix 

prior to peak picking. High frequency noise poses the major problem for peak picking 

since it may introduce new local maxima. Consequently, the image was filtered with a 

4x4 square averaging filter, which is a low-pass filter with a cutoff frequency of 0.116 
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cycles/S (cycles per sample). The frequency content of peptide peaks vary with m/z. 

Gaussian models ofthese peaks with a minimum width of 12 samples (from peaks at 175 

m/z) contain frequency content up to 0.0581 cycles/S; wider peaks have lower frequency 

content. In the time domain, peaks generally last for a minimum of 12s, thus leading to 

frequency content up to 0.0581 cycles/S. The filter cut-offfrequency is sufficiently 

higher than the highest frequency in the signal, ensuring that only noise is attenuated 

white the signal remains unchanged. To increase the order of the filter, and hence 

improve atienuation of noise signaIs, the filter was applied three times. This procedure 

also has the effect of decreasing the cut-offfrequency to 0.0686 cycles/S, which is still 

high enough to avoid signal attenuation. Figure 5-2 demonstrates the results of smoothing 

the sample spectra. The background intensity is decreased, while the peptide 'spots' are 

better resolved and therefore are identified with less ambiguity. 
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Figure 5-2: Smoothed spectra of Figure 5-1 
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5.4 Surface maxima 

A peak picking algorithm is required to localize peptide peaks within the two 

dimensional matrix. Since surface smoothing removes most noise, the peptide peak is 

expected to be the highest point on the peptide profile, which can be easily identified as 

any local maximum. Our algorithm used an 8-connected local maxima algorithm to 

ensure that the point chosen is larger than aH adjacent matrix entries, including the 

diagonals. This two dimensional peak picking retums a list of peaks with m/z, time and 

intensity co-ordinates. Figure 5-3 illustrates the peaks selected from the sample spectra, 

The white circles indicate the location of the peptide 'spot' maximum intensity. 
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Figure 5-3: Peak picked spectra of Figure 5-2 
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5.5 Deisotoping 

Deisotoping a surface is mueh simpler than traditional single speetrurn deisotoping as 

isotopie distributions need not be modeled, and overlapping peptides are resolved by their 

time profiles. Peaks are grouped into sets, eomposed of peaks which appear within a one 

second interval (i.e. collinear on the x-axis), with an m/z spaeing consistent with a 

specific charge state. Each set defines a peptide and its isotopie distribution. The sets can 

be eollapsed to the mono-isotopie peak's parameters: charge state, m/z, and elution time. 

Figure 5-4 displays the result of deisotoping the identified peaks of Figure 5-3. The 

algorithrn eorreetly identified aU five peptides that were identified manually, as weIl as a 

sixth that is only partially displayed. 
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Figure 5-4: Deisotoped peaks of Figure 5-3 
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The surface intensity analysis algorithms easily localize peptides and their mono-isotopie 

peaks. The results are less prone to error as filtering attenuates noise in two dimensions 

in ste ad of just one. The spectrum of Figure 4-1 is the 1500th scan of Figure 5-4. Of the six 

peptides identified by traditional algorithms, two were in error. These peptides were low 

in their elution profile, causing their peak intensities to be small. Using surface intensity 

analysis, the identification of peptides is made at the top of the elution profile, thus 

making best use of the available information. The result of the analysis is the set of "all" 

identified peptides whose peak locations and profiles were used as a reference to grade 

traditional algorithms. 
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6 Performance Evaluation 

ldeally, the mass spectrometer would fragment every available peptide at the apex ofits 

peak profile. Thus, the evaluation of the switching parameter simulations was based on 

two criteria: 1) The number of peptides fragmented, and 2) the magnitude of the 

fragmentation location relative to the apex. 

The mass spectrometer simulations pro duce lists of peptide fragments containing 

coordinates in terms of scan number (time) and m/z that are used to find the intensity of 

the peptide on the intensity surface array. Fragmentations are considered valid if the 

surface intensity is above the spectrometer's fragmentation threshold; otherwise it is 

considered an error for the simulation algorithms. Ifvalid, the peptide intensity is used as 

the intensity score for that fragmentation. 
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Figure 6-1: A 1-1 dut y cycle simulation. (White dots show fragmentation location) 
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The white dots in Figure 6-1 indicate where fragmentation would have occurred had the 

mass spectrometer followed a 1-1 dut y cycle. Fragmentations are close to the center of 

the peak profile in both axes indicating a quality fragmentation location. Unfortunately, 

only two of the six peptides detected using intensity surface analysis were fragmented 

(see Figure 5-4), as there are likely peptides with higher intensities outside the area 

depicted in the graph. 

Nearly aH of the simulation experiments allow a peptide to be multiply fragmented. In 

tandem mass spectrometry, it is customary to average these repeated spectra to improve 

the signal-to-noise ratio before further processing. To mimic this signal improvement in 

our simulations, intensity scores were summed and divided by the square root of the 

number of repetitions. This incorporates the improvement of signal quality caused by 

spectral averaging without creating a bias towards large numbers of repeated fragment 

scans. Figure 6-2 illustrates the simulation of a switching parameter set that allows up to 

three repetitions (1 second each), contrasting the one repetition of Figure 6-1. Here, only 

the most intense peptide was fragmented. The fragmentation location is further from the 

apex of the peak, doser to the end of the peak profile. This willlead to poorer quality 

fragmentation spectra, 
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Figure 6-2: A 1-3 dut Y cycle simulation. (White dots show fragmentation location) 
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7 Results 

The peptide intensity scores were analyzed in two ways. First they were compared to the 

maximum possible peptide intensity, as determined by intensity surface analysis, to 

gauge absolute quality. And second, the intensity scores were averaged for each 

switching parameter and aH sets compared against one another to determine which 

performed best. 

7.1 Quality versus maximum 

The intensities where fragmentation occurred were first compared to the maximum 

intensity of the peptide to examine the strengths and weaknesses of various parameter 

sets. Ideally, an peptides would be fragmented near their peak intensity. Approximately 

3300 peptides were detected via surface intensity analysis, however, no matter which 

switching parameter sets were used, the simulations only fragmented a small fraction of 

the available peptides. 
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Figure 7-1: Peptide fragment and maxima intensity for a 1-1 switching parameter. 

(465 peptides fragmented) 

As an example, Figure 7-1 and Figure 7-2 display the maximal peptide intensity and the 

intensity where fragmentation occurred for the 1-1 and 5-4 switching parameters. In the 

1-1 parameter set, more than twice as many peptides were fragmented than for the 5-4 

parameters. This increase comes at a cost of intensity since the repetition rate trades off a 

number of peptides for higher intensity scores. For the 5-4 parameter, seven peptides had 

intensities of fragmented peptides higher than 250 whereas the 1-1 dut y cycle had none. 

The repetition during the 5-4 parameter simulations allows for intensities higher than the 

maximum, which is not possible for a 1-1 parameter. Along the x-axis are the peptides 

that were not fragmented (~2800-3000). 
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Figure 7-2: Peptide fragment and maximum intensity for a 5-4 switching parameter. 

(231 peptides fragmented) 

To compare the multiple operating parameter sets, the fragmentation intensities were 

normalized by the maximal peak intensity. Figure 7-3 compares various switching 

parameters with only one repetition. As expected, the number of peptides fragmented 

increases as the dut y cycle increases, since less time is taken by MS scans, until a plateau 

of ~600 peptides is reached. The plateau suggests that, 1) there are only ~600 peptides 

available, or 2) that the gain from increasing the duty cycle is diminishing. The former is 

not possible since surface analysis has already determined that over 3000 peptides are 

available. High dut y cycles are also prone to overlooking peptides, as illustrated by the 

string of zero intensity points along the x-axis for the 20-1 condition. This suggests that 

during the 10-20 seconds spent fragmenting peptides, the weaker intensity peptides have 

dropped below threshold. 
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Figure 7-3: Normalized intensity scores for various dut Y cycle rates, ai a repetition rate of 1. 

A similar comparison of the various repetitions rates is illustrated in Figure 7-4. It is 

evident that raising the number of repetitions increases the intensity score of the peptides. 

However, the trade-off for increased intensity is decreased numbers of peptides 

fragmented. The increase in quality caused by higher repetitions is governed by the law 

of diminishing returns. The maximal intensity score achieved with two repetitions is 

approximately 1.5, whi1e with five repetitions a maximum of 2.25 is reached. It is 

interesting to note that the percent gain in quality is similar to the percent 10ss in quantity. 
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Figure 7-4: Normalized Îlltellsity scores for various repetitiolls rates, with a duty cycle of L 

Figure 7-5 shows the data from Figure 7-3 reformatted as a histogram ofnormalized 

intensity. This histogram demonstrates that higher dut y cycles (l0-20 MSIMS per MS) 

result in fewer high scores and considerably more poor scores. The increased number of 

peptides fragmented in the simulations with high dut y cycles is attributed to poorer 

quality spectra. However, the lowest dut y cycle does not perform the best. From the 

selection of simulations shown, the 1-5 switching parameter performs best in the high 

quality range, is comparable to other parameters in the medium quality range, and has 

few poor quality spectra. 
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Figure 7-5: Fragment quality histogram for varions dut Y cycles. 

7.2 Comparative Quality 

The foregoing comparisons were made relative to the intensity of the ideal peak. The 

peaks chosen in the various simulations are not necessarily the same so the comparison 

may be skewed. To better assess the quality of various switching parameters, we 

examined how quality varied from simulation to simulation to provide a better indication 

of optimal parameters. 

Figure 7-6 shows the simulation result ofparameter pairs for a 30 minute gradient. As 

expected, the number of fragmented peptides increases with an increasing dut y cycle and 

decreases with repetitions. Also as expected, the fragmentation quality increases as 

repetitions increase and dut y cycles decrease. 
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Figure 7-6: Quantity and quality of a 30 minute gradient 

The mass spectrometer has a feature that stops repeating the fragmentation of peptides if 

any of the previous repetitions generate po or data. The simulations do not mimic this 

behaviour and thus there may be a bias against the score of high repetition switching 

parameters. Figure 7-7 illustrates the result of removing these poor quality spectra, i.e. 

fragmentations with intensities below the mass spectrometer's fragmentation threshold. 

This new graph shows the same plateau of approximately 600 peptides seen in Figure 

7-3, and depicts a reduction in peptides fragmented at higher dut y cycles. 
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Figure 7-7: Quantity and quality of a 30 minute gradient (missed fragmentations removed) 

Figure 7-8 illustrates the residuals from the subtraction of Figure 7-7 from Figure 7-6 and 

therefore represents the distribution of the fragmented peptides with poor quality spectra. 

The number of peptides removed by this process is rather drastic, but only in the high 

duty/low repetition area of the graph. This is contrary to expectations as the feature to 

stop repetitions is meant to assist the high repetition parameter sets. The average change 

in quality, however, is relatively minor and again only significant in the high duty/low 

repetition area of the graph. In the low repetition area of the graph, the non-repetition of 

poor spectra feature will have little to no effect on the simulation, therefore this area 

cannot benefit from this feature. The analysis of longer gradients (not shown) displayed 

similar trends. Thus, the simulations will not be biased and should provide vaUd results. 
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Figure 7-8: Residuals caused by subtracting Figure 7-7 from Figure 7-6 

To find the optimal trade-offbetween the quality and quantity of peptides fragmented, a 

measure combining both criteria is required. To achieve this, the two data sets were 

multiplied together to generate a quaHty-quantity surface which is a measure of the total 

amount of information acquired during the various simulations. 
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Figure 7-9: A 30 minute gradient with a cirde indicating optimal operating point ai 2-2. 

The quality-quantity surface for a 30 minute gradient is illustrated in Figure 7-9. The 

graph displays the combined peptide quality-quantity index for the various dut y cycles 

for a 30 minute gradient. The optimal switching parameter is at 2-2. AU parameters near 

the low dut y cycle - low repetition rate perform almost equally well; however the quality 

decreases rapidly when either dut y cycle or repetition rate exceeds a value ofthree. For 

the 120 minute gradient of Figure 7-10, the optimal operating point is closer to 2-7, and 

the "sweet spot" corresponds to the high repetition -low dut y cycle area. The shift of the 

optimal operating point towards more repetitions is expected; the longer gradient allows 

peptides to be available for a longer period of time; therefore, using more repetitions will 

not decrease the number of peptide fragmentations. 
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Figure 7-10: A 120 minute gradient with a circle indicating optimal operating point ai 2-7. 

The optimal operating point defines the best parameter set based on the quality-quantity 

scale. However, there are many ways to combine the two data sets; the quality-quantity 

scale is but one example. With this function cornes an impHcit assumption that one 

spectrum with quality N, is equal in value to N spectra of quality 1. 

Therefore, it may be better to consider the optimal operating curves which define the best 

parameter set for a given operating point. For example, given a particular choice for 

average quality, the optimal operating curve will define the maximum number of peptides 

that can be fragmented, and give the switching parameter required to achieve it. Figures 

Figure 7-11 through Figure 7-14 illustrate the quality versus quantity curves for four 

different gradients. Each curve is associated with a single dut y cycle. Points along the 

curve represent scores for different values of the repetition parameter. The optimal 

operating curve (heavy dashed line) was constructed by maximizing quality for aU 

possible peptide counts. 

- 56-



Results Carrillo, Brian 

200 

180 

160 

........ 
~ 140 
.~ 
c 
<J) 

:s 120 
c 
.2 
ë 100 
<J) .... 
<Il e:- 80 
~ 
ro 60 :::l 
0 

40 

20 

\ 
\ 

1-3 

-+- 1-* 
-- 2-* 
--e- 3-* 
-><- 4-* 
--B-- 5-* 
~ 7-* 
-v- 10-* 
---'R- 20-* 

Increasing Repetitions 
~~========~ 

....... -... 
n 

~ ~ 
20-3 20-2 20-1 

0 
0 100 200 300 400 500 600 700 

Number of Peptides 

Figure 7-11: 30 minute gradient, induding optimal operating curve (dashes) 

The number of repetitions for each dut y cycle curve increase from right to Ren. 

Severa) data points are labeled to show trends. 

800 900 

For the 30 minute gradient illustrated in Figure 7-11, the optimal operating curve is 

shown by the thick dashed line (shifted up slightly to avoid obscuring the data). Again, 

the low dut y cycles dominate the optimal operating curve. The set of switching 

parameters with only one target selected dominates the high quality region of the curve, 

while the set of switching parameters with only one repetition dominates the high 

quantity region of the curve. 
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The 60 and 120 minute gradients of Figure 7-12 and Figure 7-13 respectively, show 

trends similar to that of the 30 minute gradient. There is, however, a decrease in the 

maximum quality and increase in the maximum quantity that accompanies the longer 

gradients. Also, as the gradients get longer the single target switching parameter set 

dominates less and less of the graph. 

The 240 minute gradient of Figure 7-14 shows a considerable decrease in peptide quality 

accompanied by very little gain in quantity. This could indicate that the 240 minute 

gradient is too long, since peptides must be eluting over long periods causing a drop in 

intensity. 

~ 
.!!? 
c: 
al 
ë 
c: 
.2 
ë 
al ..... 
co e:-
.~ 
ëii 
:J 
0 

50 

45 \ 
40 \ 

35 

30 

25 

20 

15 

10 

5 

\ 
\ 

\ 
Increasing Repetitions 
-=::::::::::=================:1 

1 -+- 1-* 
-- 2-* 
--e- 3-* 
-- 4-* 
-B- 5-* 
~ 7-* 
-v- 10-* 
~ 20-* 

o~--~--~----~--~~--~--~~--~--~~--~--~ 
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 

Number of Peptides 

Figure 7-14: 240 minute gradient (repetitions increase from 1-10 right to left) 

Figure 7-15 illustrates the optimal operating curves extracted from the four gradients 

superimposed on the same axes (the optimal operating curves are the heavy dashed lines 

in figures Figure 7-11 through Figure 7-14). These optimal operating curves overlap one 
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another significantly, with the different gradients (with the exception of the 240 minute) 

tracing various sections of a "total" optimal curve. The 240 minute gradient is sub­

optimal in aH cases except where a very high number of poorer quality spectra are 

required. 

È 
rJ) 
c 
2 c 
c 
.2 

200~----------~----------~----------,-----------,------------

180 

160 

140 

120 

60 

40 

20 

--+- 30 min 
--9- 60 min 

<) 120 min 
240 min 

OL-------____ L-__________ L-__________ L-__________ ~ ________ ~ 

o 500 1000 1500 2000 2500 

Quantity (Peptide cou nt) 

Figure 7-15: Optimal operating curves for various HPLC gradients 

These combined optimal operating curves illustrate the best possible switching parameter 

sets for each gradient. The graph allows for the selection of the most efficient gradient for 

specifie peptide quality-quantity operating points. The graph suggests that the longer 

gradients do not provide any gain in quality; the longer gradients do however provide 
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gains in quantity, but at the expense of quality and obviously time. This curve defines the 

relationship between peptide quality and quantity in tandem mass spectrometry. It can be 

used to direct parameter choices for experiments. For example, if the minimum 

acceptable peptide quality is 60, then the graph indicates that 500 peptides will be 

fragmented and that this can be achieved with a 30,60, or 120 minute gradient. The 

operating curves for the chosen gradient will then dictate which switching pararneters 

should be selected. 
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8 Summary and Future Work 

This thesis has described the design, implementation and evaluation of algorithms for 

peak picking and deisotoping of mass spectra. These algorithms were used to mimic the 

operation of the mass spectrometer, by making the decision on when and where to 

perform tandem scans. A new type of analysis, surface intensity analysis, which uses the 

information contained in an the scans, is introduced. The surface intensity approach 

better localizes the mass of a peptide by taking advantage of its elution profile. Surface 

intensity analysis is used to verify that peptide locations selected for fragmentation in the 

simulation of the mass spectrometer are valid targets and not simply misidentified 

peptides. 

In order to evaluate the efficiency of the operating parameters, two criteria, peptide 

quantity and peptide fragmentation spectra quantity, were examined. Two expected 

trends were verified: 1) peptide quantity increased and peptide quality decreased with 

increasing dut y cycles and 2) peptide quality increased and peptide quantity decreased 

with increasing repetitions. 

The simulations were compared to the 'ideal' results obtained via intensity surface 

analysis ta determine the relative quality of the operating parameters. Unfortunately, 

results show that for an parameters the large majority of the peptides were missed 

completely. They also showed that the parameter sets with smaller dut y cycles were more 

likely to fragment peptides doser to their maximum. 

By comparing simulations it was evident that sorne parameters were clearly superior to 

others. However, sorne simulations were exceptional in only one of the criteria indicating 

that there was a negative correlation between quality and quantity. Plots of the 

simulations on axes of quality and quantity illustrated this correlation and defined the 

optimal operating curves for the mass spectrometer. 
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The analysis of the optimal operating curves for various length gradients led to another 

expected trend, a decrease in peptide intensity with increased gradient lengths; however, 

the longer time period allowed more peptides to be fragmented. When the optimal 

operating curves were superimposed on the same graph, the curves overlapped 

considerably. This overlapping trend suggests that there is no gain achieved by operating 

the mass spectrometer with a longer gradient unless large numbers of low quality peptide 

spectra are desired. 

The most striking result ofthis research is that in aU data sets, the majority of available 

peptides (~80%) were not fragmented. Thus, it is important to note that no matter which 

switching protocol is implemented, only a small subset of the peptides will be 

fragmented. This suggests that peptide mixtures of this complexity are not good 

candidates for this type of tandem mass spectrometry. Complex peptide mixtures should 

be separated even further to allow for better coverage. However, the separation should 

not be performed in the time domain, as longer HPLC gradients have been shown to lead 

to lower intensities. 

8. 1 Future work 

Looking ahead to more advanced investigations, there are several improvements to the 

outlined process that may be considered to aid in both speed and accuracy. 

The first and simplest improvement is to manipulate data in the time domain rather than 

the m/z domain. Doing so resolves many of the problems associated with resampling the 

data, and leads to fewer data points to process. Conversion back to the time domain 

creates regularly sampled data which allows for increased processing speed, and results 

in less data to manipulate. The drawback is that the time domain is less intuitive. 

Surface intensity analysis can be improved by taking into consideration the peptide 

profile distribution rather thanjust the location of maximum intensity. For example, 

peptide spots that are not symmetric might indicate that more than one peptide is co-
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eluting. Algorithms can be created with the goal of unraveling these overlapping 

peptides. 

Before performing surface intensity analysis, the constructed 2D images are filtered. The 

filter, however, has fixed parameters. Lekpor et al. [17] has shown that the peak 

frequency content varies along m/z. A varying filter, such as that developed by Lekpor et 

al., can be expanded for use in this 2D case in order to improve noise removal. 

In this analysis, aH data sets were generated for identical samples. In order to better 

characterize the switching behaviour of the mass spectrometer, samples of different 

composition should be analyzed to determine if the optimal operating curves change from 

sample to sample. Samples ofvarious complexities can also be analyzed to identify 

trends in operating curve shape and position caused by sample richness. 

This analysis focused on dut y cycle and repetition rate parameters. However, the peptide 

detection threshold parameter may play an important role in the mass spectrometer 

switching behaviour. The entire analyses should be re-run varying the detection threshold 

to discover its role in the quality-quantity curves. More important, however, is the need to 

determine the minimum acceptable threshold that can still provide adequate quality 

spectra for sequence identification. 

The comparison of the simulations to surface intensity analysis showed that peptides 

were not always fragmented when their intensities were maximized. This is inefficient, as 

stronger signaIs will be obtained when intensity is maximized. This suggests that the 

current method of data-directed acquisition is far from optimal. Methods that can follow 

the contour of peaks and fragment them at maximum intensity would give better results. 

This thesis shows that peptide peak localized is improved considerably with off hne 

analysis. If the LC separation of peptides can be made to be reproducible, then this 

suggests that a map of peptide locations can be made with an initial LC-MS run. Then 
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additional LC-MSIMS mns on identical samples can be improved by targeting the 

peptides localized by surface intensity analysis. 

Finally, the results of the se simulations need to be tested and verified experimentally. 

Following the completion of the experimental verification process, the implementation of 

these optimizations within the proteomics pipeline can substantially increase information 

output. 
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9 Appendices 

9. 1 Peak picking Matlab® Code 

function peaks = peak_picking(in, mz); 

minpeak 2; 

if isempty (mz) 
in [0; 0]; 
mz = [0; 0]; 

end; 

in [0; 0; in; 0; 0]; 
mz [Oi 0.1; mZi (mz(end)+l); (mz(end)+2)]; 

recursive_part (in, mz, minpeak); 

[peak_m, I] = sort(peak_m)i 
peak_i = peak_i(I); 

%% RESULTS 
peaks = [peak_i, peak_ml; 

function [pi, pm] recursive_part (in, mz, minPeak) 

pi [] i 

pm []; 

if (length(in) > 2) 

[big, I] = max (in) ; 

if (big <= minPeak) 
return; 

end; 

idx = find(in big) i 
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if (length(idx) > 5) 
l = idx(round(length(idx)/2)); 

end; 

half_peak_width 0.00017656 * mz(I) + 0.022296; 

Carrillo, Brian 

[temp, 10] 
[temp, hi] 

min(abs(mz(mz < mz(I)) - (mz(I) - half_peak_width))); 
min(abs(mz(mz > mz(I)) - (mz(I) + half_peak_width))); 

/,' i::, '. ,~ , 

hi = hi + I; 

if ((hi-lo) > 3) 

in t 
mz t 

[Y, I] 

~' , ; i.' 

in(lo:hi); 
mz(lo:hi); 

l = l (end) ; 

pm [mz t (I) ] ; 
end; 

ihi = []; 
ilow = []; 

mhi = [J; 
mlow = [li 

if (10 == 0) 
[ihi, mhi] recursive_part ( in(hi:end), mz(hi:end), minPeak); 

elseif (hi == length(mz)) 
[i10w, mlow] = recursive_part ( in(l:lo), mz(1:10), minPeak); 

elseif (hi == 10) 
a = li 

el se 
[ilow, mlow] 
[ihi, mhi] 

end; 

recursive part( in(l:lo), mz(1:10), minpeak); 
recursive_part ( in(hi:end), mz(hi:end), minPeak); 

pi [ilow, pi, ihi]; 
pm [mlow, pm, mhi]; 

end; 
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9.2 Deisotopireg Matlab® Code 

function [deisol = deisotope(in, mZ)i 

1 ~: '." 

cell out { } ; 

Err 0.05; 

IntErr 0.75; 

IntExtra 1.25; 

thresh 1. 0; 

Hydrogen 1.007825; 

"/ ., 

sext spc = 1/6; 
quint_spc = 0.20; 
quad_spc 0.25; 
trip_spc 1/3; 
doub_spc 0.5; 
sing_spc 1.0; 

clear mz 0 in 0; 

mz _ 0 { 6} [l ; 
in_o{6} = [li 

for i = 1:1ength(mz) 

if(in(i) < thresh) 
continue; 

el se 
/' .. 
~ . ,; ; 

" 

sext = find( abs( 
quint= find( abs( 
quad find( abs( 
trip find( abs( 
doub find( abs ( 
sing find( abs( 

for 1 = 6:-1:1 

mz -
mz -
mz 
mz -
mz -
mz -

(. i' , 

(mz (i) 
(mz (i) 
(mz (i) 
(mz (i) 
(mz(i) 
(mz (i) 

+ sext spc)) < Err); 
+ quint_spc)) < Err); 
+ quad_spc)) < Err); 
+ trip_spc)) < Err); 
+ doub_spc)) < Err); 
+ sing_spc)) < Err); 
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switch(l) 
case 1 

charge sing; 
spc = sing_spc; 

case 2 
charge = doub; 
spc = doub_sPCi 

case 3 
charge = trip; 
spc = trip_spci 

case 4 
charge = quad; 
spc = quad_spci 

case 5 
charge = quint; 
spc = quint SpCi 

case 6 

end; 

charge = sexti 
spc sext spc; 

if ( length(charge) > 1) 
[temp, idx] = min(abs(mz(charge) - (mz(i) + spc))); 
charge = charge(idx); 

end; 

if ((isempty(charge) 0) & in(i) > 0) 

fi;",'"~ 

dist iso_dist2(1 * mz(i),in(i),0.5)i 

if (length(dist) < 2) 
continue; 

end; 

if (in(charge) >= dist(2) * IntErr) 

[mz _ 0 {l}; mz (i) ] ; 
[in_o{l}; in(i) + dist(2)]i 

::> 

in(charge) in(charge) - dist(2) * IntExtrai 

if (in (charge) < 0) 
in (charge) 0; 

end; 
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'. J 

j = 2; 
while j <= (length(dist) - 1) 

charge = find( abs( mz - (mz(i) + spc * j)) < Err); 

if (isempty(charge)) 
break; 

end; 

if (in(charge) >= dist(j+l) * IntErr) 

in(charge) in(charge) - dist(j+l) * IntExtra; 

if (in (charge) < 0) 
in (charge) 0; 

end; 

in ° {l} (end) 
end; 

in o{l} (end) + dist(j+l); 

j = j+li 
end; 

in(i) = Oi 
continue; 

end; 

end 
, /:" 

end 

end 

end 

for i 1:6 

;} 

[mz o{i}, 1] = sort(mz_o{i}); 
in_o{i} = in_o{i} (1); 

end; 
deiso = [in_o, mz_o]; 
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