

Automatic Key Detection
of Musical Excerpts from Audio

Spencer Campbell

Music Technology Area, Department of Music Research
Schulich School of Music

McGill University
Montreal, Canada

August 2010

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Arts in Music Technology.

© 2010 Spencer Campbell

Modular and Adaptive Control of Sound
Processing

Douglas Van Nort

Music Technology Area
Department of Music Research

Schulich School of Music
McGill University
Montreal, Canada

January 2010

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

c� 2010 Douglas Van Nort

i

Abstract

The proliferation of large digital audio collections has motivated recent research on

content-based music information retrieval. One of the primary goals of this research is to

develop new systems for searching, browsing, and retrieving music. Since tonality is a

primary characteristic in Western music, the ability to detect the key of an audio source

would be a valuable asset for such systems as well as numerous other applications.

A typical audio key finding model is comprised of two main elements: feature

extraction and key classification. Feature extraction utilizes signal processing techniques

in order to obtain a set of data from the audio, usually representing information about the

pitch content. The key classifier may employ a variety of strategies, but is essentially an

algorithm that uses the extracted data in order to identify the key of the excerpt.

This thesis presents a review of previous audio key detection techniques, as well as

an implementation of an audio key detection system. Various combinations of feature

extraction algorithms and classifiers are evaluated using three different data sets of 30-

second musical excerpts. The first data set consists of excerpts from the first movement

of pieces from the classical period. The second data set is comprised of excerpts of

popular music songs. The final set is made up of excerpts of classical music songs that

have been synthesized from MIDI files. A quantitative assessment of the results leads to a

system design that maximizes key identification accuracy.

ii

Abrégé

La prolifération de grandes collections de musique numérique a récemment mené à de la

recherche qui porte sur la récupération d’information musical d’après le contenu. Un des

principaux objectifs de ce travail de recherche est de développer un nouveau system qui

permet de chercher, feuilleter et récupérer de la musique numérique. Étant donné que la

tonalité est une des principales caractéristiques de la musique occidentale, l’habilité de

détecter la tonalité d’une bande sonre serait un outil indispensable pour un tel system et

pourrait mener à maintes autres applications.

Un model de détection de tonalité typique comprend deux principaux éléments :

l’identification des structures et la classification des tonalités. L’identification des

structures comprend des techniques de traitement de signaux afin d’obtenir de

l’information à partir d’une bande sonore, cette information porte typiquement sur le

contenu du ton. Un classificateur de tonalité peut servir plusieurs fonctions, mais est

essentiellement un algorithme qui traite l’information extraite d’une bande sonore afin

d’identifier sa tonalité.

Cette thèse vise à revoir les techniques de détection de tonalité existantes, ainsi que

implantation d’un tel système. Diverses combinaisons de classificateurs et d’algorithmes

de télédétection et de reconnaissance seront évaluées en utilisant trois différentes bandes

sonores d’une durée de 30 secondes. La première bande sonore comprend des extraits de

musique classique. La deuxième bande sonore comprend des extraits de musique

populaire. La troisième bande sonore comprend des extraits de musique classique créés

avec un synthétiseur employant l’interface numérique des instruments de musique

(MIDI). Une analyse quantitative des résultats mènera à un système qui optimise la

détection de tonalité.

iii

Acknowledgements

There were a number of people who provided support, inspiration or other assistance to

help bring this thesis to fruition. First and foremost, I would like to thank my supervisor,

Ichiro Fujinaga, for providing guidance, advice, and valuable feedback on all aspects of

the work. This simply would not have been possible without his help.

Thank you to the various other people at the McGill Music Technology Area and

elsewhere that contributed. Gary Scavone and Philippe Depalle helped me refine my

proposal by suggesting improvements. Helene Papadopoulos was extremely helpful in

providing valuable feedback on my background chapter. Cory McKay provided

assistance with the jMIR software package. Helene Drouin was instrumental in helping

me prepare for the submission of my thesis. Gilles Comeau was kind enough to translate

my abstract to French and Scott Lucyk provided a great deal of assistance with

proofreading and editing the text.

iv

Contents

1 Introduction... 1

1.1 Motivation and Applications... 2

1.2 Approaching Audio Key Detection .. 4

1.3 Thesis Structure .. 6

2 Background ... 8

2.1 Introduction... 8

2.2 Tonality and Key... 8

2.3 Key Detection ... 12

2.3.1 Symbolic Key Detection ... 13

2.3.2 Audio Key Detection .. 17

2.3.2.1 Pattern-Matching and Score Transcription Methods 18

2.3.2.2 Template-Based Methods ... 20

2.3.2.3 Geometric Models... 29

2.3.2.4 Chord Progression and HMM-Based Methods....................... 32

3 Software Design... 38

3.1 Introduction... 38

3.2 Software Packages .. 39

3.3 Feature Extraction... 40

3.3.1 Frequency Analysis... 40

3.3.2 Pitch-Class Extraction... 43

3.3.2.1 Basic Mapping Algorithm .. 43

3.3.2.2 Peak Detection Extension ... 45

3.3.2.3 Spectral Flatness Measure Extension 45

3.3.2.4 Low Frequency Clarification Extension 46

3.3.3 Pitch-Class Aggregation ... 47

3.3.4 Key Classification... 49

3.3.5 Neural Networks ... 49

v

3.3.5.1 ANN Units .. 50

3.3.5.2 Network Topologies ... 51

3.3.5.3 Learning Algorithms... 52

3.3.5.4 Implementation ... 52

3.3.6 K-Nearest Neighbor Algorithm .. 53

3.3.7 Support Vector Machines ... 53

3.3.8 Naïve Bayes Classifiers .. 55

4 Description of the Data ... 56

4.1 Introduction... 56

4.2 Musical Excerpts... 56

4.2.1 Training Sets ... 57

4.2.2 Test Sets .. 58

4.3 Pitch-Class Templates... 58

5 Experimental Setup .. 62

5.1 Introduction... 62

5.2 Phase I: Cross-Validation Evaluation ... 63

5.2.1 Sub-Phase A: Frequency Analysis.. 64

5.2.2 Sub-Phase B: Pitch-Class Extraction .. 64

5.2.3 Sub-Phase C: Pitch-Class Aggregation... 64

5.2.4 Sub-Phase D: Key Classification .. 64

5.2.5 Training Models.. 65

5.3 Phase II: Pitch-Class Template Evaluation... 65

5.4 Phase III: Test Set Evaluation... 65

6 Results and Discussion.. 67

6.1 Phase I: Cross-Validation Evaluation ... 67

6.1.1 Sub-Phase A: Frequency Analysis.. 67

6.1.2 Sub-Phase B: Pitch-Class Extraction .. 68

6.1.3 Sub-Phase C: Pitch-Class Aggregation... 69

vi

6.1.4 Sub-Phase D: Key Classification .. 70

6.1.5 Summary ... 71

6.1.6 Discussion ... 73

6.2 Phase II: Pitch-Class Template Evaluation... 74

6.2.1 Results... 74

6.2.2 Summary ... 76

6.2.3 Discussion ... 78

6.3 Phase III: Test Set ... 79

6.3.1 Results... 79

6.3.2 Summary ... 83

6.3.3 Discussion ... 86

7 Conclusions .. 90

Appendix A: Previous Audio Key Detection Systems ... 93

Appendix B: Training Set Excerpts .. 99

Appendix C: Test Set Excerpts .. 107

1 Introduction

1

Chapter 1

 Introduction

The proliferation of large music collections has created a need for new technology that

allows users to interact with digital libraries in an efficient and meaningful manner. This

need has motivated a great deal of research on content-based music information retrieval

and indexing, with the aim of allowing users to more effectively locate, index, and

browse digital music libraries. In light of the fact that tonality is a primary characteristic

in Western music, the ability to automatically extract the tonal key from an audio source

would be a valuable component for such systems.

In order to approach the problem of automatically extracting the key from audio, it is

worthwhile to first define exactly what key is in Western music. According to the Oxford

Dictionary of Music, key is “the pitch relationships that establish a single pitch-class as a

tonal center or tonic (or key note), with respect to which the remaining pitches have

subordinate functions” (Kennedy and Bourne 2006). There are also two primary modes

for keys, known as major and minor. The tonic can be any one of the twelve different

pitch-classes. So, there are a total of twenty-four distinct keys, if we are considering an

equal-tempered scale and enharmonic equivalence (i.e., C# and Db have different names

but the same pitch-class).

Key detection, in its simplest terms, refers to the task of automatically identifying

which of the twenty-four possible keys a piece of music belongs to. Such identification

may use a symbolic representation of music as input, such as a score or MIDI file. Audio

key detection, on the other hand, is the more specific case of determining the key of a

piece of music from an acoustic input.

1 Introduction

2

This thesis studies the problem of audio key finding and presents a systematic

evaluation of several audio key-finding models. The goal is to implement a system that

maximizes key identification accuracy. The majority of the excerpts used to evaluate the

models are of pieces from the classical period, as this is the standard set by previous

studies on the subject (see Appendix A, which shows the data sets used for previous

studies on audio key detection). In addition to classical music, a set of excerpts of popular

music and excerpts of audio that have been synthesized from MIDI files of classical

music are also used.

1.1 Motivation and Applications

As distribution and access to music becomes easier and digital music libraries continue to

grow in size, it is becoming increasingly important to find new technologies that allow

more effective ways to search, browse, and interact with music.

Several factors have led to unprecedented levels of dissemination and access to

digital music, including ubiquity of high-capacity storage and portable media devices,

technological improvements in digital audio compression, low-latency networks, and

wide-spread availability of digitally distributed music (Cano, Koppenberger, and Wack

2005). It is not uncommon for a home user to have thousands of songs in their personal

library. Commercial distributors may have hundreds of thousands of songs in their

catalogue.

The predominant method of searching, browsing, and interacting with these

collections is based on textual metadata (e.g., artist name, song name). Although

expressive metadata can be sufficient for many scenarios, it is subject to several

drawbacks. For instance, descriptive metadata is entered by a human and therefore

represents an opinion, which makes it difficult to maintain consistency throughout large

collections without editorial supervision (Casey et al. 2008).

1 Introduction

3

Content-based music information retrieval (MIR) is an area of research that focuses

on creating tools to extract, organize, and structure musical data. One of the fundamental

goals of MIR is to provide easier ways to find music, or information about music (Casey

et al. 2008). Automatic processing extracts a set of low-level features (e.g., pitch-class

profile, spectral flux). The low-level features can then be used to create mid-level

representations that contain a higher level of abstraction (e.g., key). Mid-level

representations, such as tonal key, are useful in the context of content-based MIR because

they provide musically salient information that can be used for other purposes such as

audio matching, classification, music recommendation, or further musical analysis (Bello

and Pickens 2005). For example, key detection is commonly used as a component in

chord recognition systems.

Key finding models also play an important role in research on music perception,

specifically with regards to how humans identify the key of music. A study by Temperley

and Marvin (2008) used theoretical distributions of pitch-class profiles to generate

random melodies and tested whether participants were able to identify the key that was

used to generate the melody. They then used several types of key finding models on the

same melodies and compared the results to those of the human participants in order to

ascertain which model was most representative of how humans perceive key. If audio

key-finding systems reach an adequate level of accuracy, then it may also be possible for

them to help resolve tonal ambiguity in music.

Audio key detection can also be a practical utility for end-user applications. Mixing

is a process used by DJs to create smooth transitions between songs. By way of ‘beat

matching,’ the rhythmic elements of the songs are aligned with one another and then

mixed together (Pauws 2006). Many contemporary DJs also use a technique known as

‘harmonic mixing’ in which the songs being mixed together are either in the same key or

a closely related one (e.g., dominant, relative major/minor). In order to use this technique,

the key of each song in question must first be known. So an application that automatically

identifies the key of every song in a music library greatly facilitates this process.

1 Introduction

4

1.2 Approaching Audio Key Detection

Key detection is the task of automatically identifying which of the twenty-four possible

keys a piece of music belongs. There are two primary categories of key finding models:

symbolic and audio. The first one uses a symbolic representation of music as input (e.g.,

a MIDI file), of which the pitch data is entirely disclosed and complete. The second

category of key finding models operates on audio signal as input and uses signal

processing techniques in order to extract pitch information. As a result, audio key finding

has the added challenge of dealing with incomplete and ambiguous pitch data (Chuan and

Chew 2007).

A typical audio key detection system is depicted in Figure 1.1. Such systems are

comprised of two main elements: feature extraction and key classification. The feature

extraction component can also be further subdivided into frequency analysis and pitch-

class generation. Frequency analysis is the application of signal processing techniques in

order to extract a frequency representation of the audio signal (e.g., FFT, Constant-Q

Transform). This information is then used to generate a pitch-class distribution,

representing the relative strength of each pitch-class within the signal. Finally, the key

classification model uses the pitch-class distribution in order to estimate the key. Creating

audio key detection systems with this type of modular design facilitates the isolation and

identification of errors in each component so that they can be dealt with accordingly

(Chuan and Chew 2005).

1 Introduction

5

Fig 1.1: Example of a typical audio key finding system.

Signal processing techniques such as the fast Fourier transform provide an accurate

and reliable means for generating a frequency representation of the audio signal. As such,

most of the errors encountered during the feature extraction stage can be attributed to

problems with the pitch-class generation algorithm. The following are some of the

common errors encountered with pitch-class generation (Chuan and Chew 2005):

• Tuning Variations
Audio recordings can sometimes contain sounds that are produced by mistuned

instruments. Pitch-class generation algorithms that do not account for this

possibility and use direct frequency to pitch conversions may lead to inaccurate

pitch-class distributions.

• Low Frequency Resolution

Humans perceive pitch on an approximately logarithmic scale. So the frequency

difference between two low notes is less than the frequency difference between

two high notes. As a result, the pitch-class generation algorithm must have a finer

resolution for lower frequencies in order to discern the difference between

adjacent pitch-classes.

• Effect of Partials

In addition to the fundamental frequency, most sound waves produced by

instruments also contain partials that are closely related to the harmonic series.

These partials can affect the resulting pitch-class distribution.

Although there are many different types of models that have been used for key

classification, several types of errors are commonly encountered. These errors are often

the result of the identified key having a similar pitch-class distribution to that of the

1 Introduction

6

correct key (Chuan and Chew 2005). Several common types of errors for key

classification are as follows:

• Perfect 5th Errors
The dominant key has only one difference in the pitch-class set from that of the

tonic key, so there is a great deal of overlap in their distributions. It is often also

the strongest partial, second to the actual tone.

• Relative Major/Minor Errors
Relative keys have identical pitch-class sets but have different theoretical

distributions. This makes distinguishing the difference very difficult in certain

cases.

• Parallel Major/Minor Errors

Parallel keys have the same tonic but are in different modes. A pitch-class

distribution with strong tonic and dominant classes, but ambiguity for the rest of

the distribution may lead to this type of error.

Audio key detection is also highly affected by the type of music that is being

analyzed. The degree of tonal complexity varies greatly depending on the type of music.

It is common for the key to change within a piece, which is known as a modulation.

Before approaching audio key detection for music with modulations, the errors discussed

in this section for single keys must first be addressed and resolved. As such, this thesis

will deal exclusively with short musical excerpts in which no modulations exist.

1.3 Thesis Structure

The remainder of this thesis is organized as follows:

1 Introduction

7

• Chapter 2: Background
The scientific background and concepts relevant to the context of this thesis are

presented. This includes an introduction to tonality as well as previous research on

key detection, both from symbolic and audio sources.

• Chapter 3: Software Design
The details of the software implementation created for this thesis are given. This

includes the types of signal processing parameters, feature extraction algorithms,

and classifiers that were used.

• Chapter 4: Description of the Data
Two types of data were used to train and evaluate the software: musical excerpts

and pitch-class templates. This chapter presents the details for both of these.

• Chapter 5: Experimental Setup
The experiment used to parameterize and evaluate the software consisted of three

phases. This chapter describes the details for each of these phases.

• Chapter 6: Results and Discussion
In this chapter, the results of each phase of the experiment are reported and

comments on the findings are presented.

• Chapter 7: Conclusions
A review of the experiment, results, and findings is presented. Comments on the

outcome and future research for the field are also presented.

2 Background

8

Chapter 2

 Background

2.1 Introduction

The purpose of this chapter is to introduce some of the concepts relevant to the context of

this thesis, as well as to present previous research efforts on key detection. Section 2.2

briefly introduces some of the basic music theory for tonality and key. Section 2.3 goes

on to present a scientific background on both symbolic and audio key detection.

2.2 Tonality and Key

Tonality has been thoroughly studied from many different perspectives, including music

theory, music history, psychoacoustics, and music psychology (Vos 2000). As a result of

this multidisciplinarity, definitions for the term vary a great deal in the literature,

depending on the context. According to Hyer (2002), “Tonality most often refers to the

orientation of melodies and harmonies towards a referential (or tonic) pitch-class. In the

broadest possible sense, however, it refers to systematic arrangements of pitch

phenomena and relations between them.” Music-theory or cognitive-based geometrical

models have been devised in order to represent these relationships (Noland and Sandler

2009). For example, the Harmonic Network or Tonnetz is a model developed by Euler

that uses two-dimensional geometry to represent the harmonic relationships between the

different pitch-classes (Harte et al. 2006). Within the planar representation, pitch-classes

2 Background

9

that have stronger harmonic relationships (e.g., perfect fifths) are located closer to one

another, as depicted in Figure 2.1.

Fig. 2.1: The Harmonic Network or Tonnetz. Horizontally adjacent pitch-
classes represent perfect fifth intervals, diagonally adjacent pitch-classes
represent major/minor third intervals, and vertically adjacent pitch-
classes represent semitone intervals (from Sapp 2006).

If octave equivalence is assumed (i.e., A1 = A2), then the plane of the Tonnetz can be

represented as a tube with fifth intervals forming a helix on its surface. If the tube is then

arranged such that the helix has the major third intervals aligned above one another, then

we arrive at Chew’s (2000) Spiral Array model (Harte et al. 2006). The model, illustrated

in Figure 2.2, maps pitches to points on the spiral, such that pitch-classes with prominent

harmonic relationships are in close proximity (e.g., chord pitches, pitch-classes for a key).

18 CHAPTER 2. SCIENTIFIC BACKGROUND

2.3 Tonality induction

There have been many efforts in the literature to model the human cognition of tonality, mainly in the
fields of cognitive science and music psychology. Most of them focus their studies on western music (e.g.
Longuet-Higgins and Steedman (1971); Temperley (1999); Krumhansl (2000); Chew (2000)), although there
have been some efforts to analyze other tonal systems (see for instance Krumhansl (2000)). We focus here
on the tonality models and their relation to tonality induction.

As mentioned in Section 2.2.1, Shepard designed a model which spaced all twelve pitches equally over
one full turn of a spiral (see Figure 2.3) (Shepard (1982)). This model emphasizes the close relationship
between pitches related by octave intervals. Further extensions to incorporate perfect fifth interval relations
resulted in double helix structures that still did not explained the major third.

One of the first studies dealing with automatic tonal analysis is the one by Winograd (1968), which pro-
poses a method for the automatic harmonic analysis of a musical piece, using ideas derived from linguistics.
Riemann (19th century music theorist), stated that the tonality derives from establishing of significant tonal
relationships through chord functions. This theory agrees that the most relevant intervals are the perfect fifth
and the major/minor third, which are present in the major and minor triads. Riemman represented these re-
lations in a harmonic network: the Tonnetz. The Tonnetz, shown in Figure 2.6, represents the set of pitch
classes, where criss crosses horizontals of perfect 5ths with diagonals of major and minor thirds. Lewin and
Cohn defined a transformational theory within the Tonnetz (Lewin (1987); Cohn (1997)).

Figure 2.6: Tonnetz or harmonic network (from Sapp (2001)), representing the set of pitch classes, where
crosses horizontals of perfect 5ths with diagonals of major and minor thirds.

2 Background

10

Fig. 2.2: Representations of the perfect 5th, major 3rd, and minor 3rd
intervals in the Spiral Array Model (from Chew 2000).

In music theory, the terms key and tonality are often used interchangeably. However,

for the context of this thesis we will primarily use the term key, which we define as one

particular tonic and a mode (Hyer 2001). The tonic is the first and most stable pitch-class

within the diatonic collection for the key. The mode governs both the melody type and

scale and there are two basic modes: major and minor.

The major and natural minor are the two primary types of diatonic scales, which

consist of seven notes with five whole tone intervals and two semitone intervals. The only

difference between the two scales is the step sizes for the various scale degrees. Table 2.1

provides a legend of the scale degrees for the major and minor modes and Figure 2.3

shows the scale degrees and step sizes for C major and A natural minor scales.

major 3rd

perfect 5th

minor 3rd

perfect 5th
major 3rd
minor 3rd

LEGEND :

2 Background

11

Major Minor
I Tonic I Tonic
II Supertonic II Supertonic
III Mediant III Mediant
IV Subdominant IV Subdominant
V Dominant V Dominant
VI Submediant VI Submediant
VII Leading Tone #VI Raised Submediant
VIII Tonic VII Subtonic
 #VII Leading Tone
 VIII Tonic

Table 2.1: The scale degrees for the major and minor modes.

Fig. 2.3: The C major scale (left) and the A minor natural scale (right).
Step sizes (in semitones) are shown above and the scale degrees are
shown below.

In addition to the natural minor scale, there are two other types of minor scales: the

harmonic minor and melodic minor. The harmonic minor scale is equivalent to the natural

minor except the 7th degree is raised by one semitone such that the interval between the 6th

and 7th degrees forms an augmented second. The ascending melodic minor scale has both

the 6th and 7th scale degrees raised by one semitone and the descending melodic minor

scale is equivalent to the natural minor scale. The harmonic minor and ascending melodic

minor scales are depicted in Figure 2.4.

2 Background

12

Fig. 2.4: The harmonic minor scale (left) and the ascending melodic
minor scale (right). The descending melodic minor scale is identical to
natural minor scale in Figure 2.3. Step sizes (in semitones) are shown
above and the scale degrees are shown below.

If we consider enharmonic equivalence (i.e., C# and Db have different names but the

same pitch-class), then we have a total of twenty-four distinct keys: one for each pitch-

class in the major and minor modes. Each key also has harmonic relationships to other

keys. Relative major/minor keys have the same pitch-class set but different modes (e.g., C

major and A minor). Parallel major/minor keys have the same tonic but different modes

(e.g., C major and C minor). Two keys separated by a perfect 5th (e.g., C major and F

major) are also closely related since they share all but one pitch-class in their diatonic

collection.

2.3 Key Detection

There have been many attempts to create key-finding models in the literature and these

can be separated into two distinct groups: symbolic key detection models and audio key

detection models (Temperley and Marvin 2007). The first group deals with symbolic data,

such as a score or MIDI file. In this case, the input is always complete and free of any

ambiguity with regards to pitch and duration of events. The second category operates

directly on an audio signal, requiring the extraction of data to a format that can be

interpreted by the key-finding algorithm. The scope of this thesis is only concerned with

the latter category of key-finding models. As such, this section presents some of the more

2 Background

13

notable research on symbolic key detection as well as a more comprehensive review of

previous research efforts on audio key detection.

2.3.1 Symbolic Key Detection

The first notable attempt to create a model that addressed the problem of key-finding was

that of Longuet-Higgins and Steedman (1971). They observed that pitch-classes

belonging to a key have relatively small Euclidian distances from one another on the

Harmonic Network (see Figure 2.1). This observation formed the basis for their model,

which used a shape-matching algorithm in order to identify the key (Chew 2000). For the

purposes of the algorithm, a shape defines the mode of the key (i.e., all major keys have

the same shape and all minor keys have the same shape) and location of the shape

determines the tonic. Figure 2.5 shows two examples of “shapes” outlined in the

Harmonic Network. The algorithm processes the notes of a melody in the order in which

they appear. With the appearance of each note, the keys corresponding to shapes that do

not contain that note are eliminated from consideration. If the end of the melody is

reached and only one key remains, then it is chosen. If, however, more than one key

remains, then a tonic-dominant rule is utilized1. In the case where no keys remain, then

the key whose tonic is the first note in the melody is chosen2. The model was evaluated on

the 48 fugue subjects of Bach’s Well-Tempered Clavier. Although it correctly identified

the key in every case, it should be noted that these pieces are relatively simplistic in their

harmonic structure. Temperley and Marvin (2008) point out that it is relatively easy to

find examples of melodies that would produce an incorrect result.

2 Background

14

Fig. 2.5: Examples of shapes outlined in the Harmonic Network for
Longuet-Higgins and Steedman’s (1971) shape-matching algorithm
(from Chew 2000). C major on the left and A minor (harmonic) on the
right.

One of the most significant advances in symbolic key detection was made with the

algorithm proposed by Krumhansl and Schmuckler, known as the Krumhansl-Schmuckler

(K-S) algorithm (Krumhansl 1990). The approach is based on the set of key profiles

derived from the experiments of Krumhansl and Kessler (1982). The key profiles, shown

in Figure 2.6, are supposed to represent the ideal distribution of pitch-classes within a

key. A key profile consists of a twelve-dimensional vector, where each value of the vector

represents the relative stability of the corresponding pitch-class within the given key.

There are 24 key profiles, one for each of the 12 major and minor keys.

The algorithm first calculates an input-vector from a MIDI file, which is a normalized

representation of the total duration of each pitch-class within the piece. A correlation is

then calculated between the input-vector and each of the 24 key profiles. The key

corresponding to the profile with maximum correlation to the input-vector is then chosen3.

The basic assumption of the K-S model is that the generated input-vector will

correspond closely to the correct key profile. This assumption may be correct in many

cases (e.g., when there is a strong presence of notes in the tonic-triad). However, there is

an abundance of examples in which this assumption will lead to an incorrect result. In an

effort to overcome these limitations, Temperley (1999) proposed several modifications to

the K-S algorithm. Firstly, he suggests that note durations be ignored altogether, such that

the values of the resulting input-vector are binary3. Secondly, he makes slight

B F C G D A E

G D A E B F C

E B F C G D A

C G D A E B F

B F C G D A E

G D A E B F C

E B F C G D A

C G D A E B F

C major

A minor

B F C G D A E

G D A E B F C

E B F C G D A

C G D A E B F

B F C G D A E

G D A E B F C

E B F C G D A

C G D A E B F

C major

A minor

2 Background

15

modifications to the key profiles in order to help distinguish between keys with very

similar pitch-class distributions.

Fig. 2.6: Krumhansl and Kessler’s (Krumhansl 1990) major and minor
key profiles (top). Temperley’s (2001) major and minor key profiles
(bottom).

Based on the Spiral Array model (see Section 2.2), Chew (2000) proposes the Center

of Effect Generator (CEG) key-finding method. In the CEG algorithm, a passage of music

is mapped to a point within the three-dimensional space, known as the Center of Effect,

by summing all of the pitches and determining a composite of their individual positions in

the model. The algorithm then performs a nearest-neighbor search in order to locate the

position of the key that is closest to the Center of Effect. The “closest key” can be

0	

2	

4	

6	

8	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Krumhansl's Major Profile	

0	

2	

4	

6	

8	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Krumhansl's Minor Profile	

0	

1	

2	

3	

4	

5	

6	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Temperley's Major Profile	

0	

1	

2	

3	

4	

5	

6	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Temperley's Minor Profile 	

2 Background

16

interpreted as the global key for the piece, although the proximity can be measured to

several keys, which allows for tonal ambiguities.

Temperley and Marvin (2007) note that the vast majority of key-finding models take

a distributional view, which postulates that listeners identify the key of a piece of music

based solely on the distribution of pitch-classes. Based on this view, Temperley (2007)

proposes a key-finding system that implements a probabilistic model. Within this model,

key profiles are generated for each key, representing the probability of each pitch-class

appearing. The profiles are constructed by performing a statistical analysis of a corpus of

music that extracts the overall “presence” of each pitch-class. For example, the major key

profile created from the opening movements of Mozart and Haydn’s string quartet, is

shown in Figure 2.7. Once the key profiles have been created, the model can estimate the

key of a melody by calculating the probability of a melody appearing if it is in a particular

key, for each of the 24 possible keys, and choosing the key with the highest value. The

system was evaluated on a corpus of 65 European folk songs and had a key recognition

rate of 86.15%.

Madsen and Widmer (2007) argue that in addition to the pitch-class distribution, the

order of notes appearing in a piece of music may also help determine the key. They

propose a key-finding system that incorporates this temporal information by also

analyzing the distribution of intervals within a piece of music. Interval Profiles are 12x12

matrices representing the transition probability between any two scale degrees. The

profiles are then learned from key annotated data for all 24 keys. Using a corpus of 8325

Finnish folk songs in MIDI format, the system was trained using 5550 songs and

evaluated with the remainder. A comparison was also performed between the use of

Interval Profiles and several types of pitch class profiles. The maximum key recognition

rate using the Interval Profiles was 80.2%, whereas the maximum recognition rate using

pitch class profiles was 71%.

2 Background

17

Fig. 2.7: The major key profile generated from string quartets by Mozart
and Haydn (Temperley and Marvin 2007).

2.3.2 Audio Key Detection

In contrast to the extensive body of literature on symbolic key detection, there exists

relatively little documented research on audio key finding. However, there appears to be

four distinct types of approaches for audio key detection methods: pattern matching and

score transcription methods, template-based methods, geometric models, and methods

based on chord progressions or Hidden Markov Models (HMMs).

The earliest attempts at audio key detection focused on using pattern matching

techniques or partial transcription of the audio signal to a score representation. The latter

would seem to be the most intuitive approach, as it theoretically would allow for the

application of exiting symbolic key-finding methods for audio.

The vast majority of audio key detection models circumvent the need for score

transcription by implementing template-based algorithms. These models are based on

correlating the global distribution of pitch-classes for a piece of music with representative

templates for each key. Temperley and Marvin (2007) call this the distributional view for

key finding. A typical system will calculate a pitch-class distribution feature4,

0	

0.05	

0.1	

0.15	

0.2	

0.25	

I II III IV V VI VII

Major	

2 Background

18

representing the relative global intensity of each pitch-class within the piece. The pitch-

class distribution feature is subsequently compared with pitch-class templates,

representing the ideal distribution of pitch-classes for each key. The key corresponding to

the template with maximum correlation to the pitch-class distribution feature is then

chosen.

More recently there have been attempts to build audio key detection systems that

implement Hidden Markov Models (HMMs). These types of systems will often also

incorporate some form of chord detection or local key estimation (i.e., detection of

modulations).

See Appendix A for a table that summarizes the audio key detection systems

reviewed in this section.

2.3.2.1 Pattern-Matching and Score Transcription Methods

Leman (1991, 1995b) proposed one of the first models for audio key detection. The

system is based heavily on a model of the human auditory system and consists of two

stages. The first step is to extract local tone centers in a bottom-up manner for the piece of

music. The second stage of the system uses a pattern-matching algorithm to compare the

extracted tone center data with predetermined templates derived from self-organizing

maps.

Izmirli and Bilgen (1994) proposed a system for audio key finding that implements

partial score transcription in combination with a pattern-matching algorithm. In the first

stage of the system, the fast Fourier transform (FFT) function is used in order to convert a

single-part, melodic audio input into a sequence of note intervals with associated onset

times. A second stage then employs a finite-state automata algorithm to compare the note

sequences with predetermined scale patterns. The model then outputs a tonal context

vector, where each element is known as a tonal component. Each tonal component

represents the extent of any given scale usage within the melody for the corresponding

location in time. In essence, the model provides a time-dependent tonal context for the

2 Background

19

input melody and not an explicit estimation of the global key. Figure 2.8 depicts an

example of the tonal context vector.

In 1996, Izmirli and Bilgen (1996) went on to extend their system to handle an

unrestricted number of simultaneous input melodies. The first stage of the model uses a

constant Q transform (CQ-transform) in order to map the input signal to the frequency

domain, as opposed to the FFT function used in their earlier version (Brown 1991)5. A

simple peak-selection algorithm is then applied in order to produce a set of notes for each

time step. The second stage of the system remains roughly the same as their previous

implementation, but is adapted to process simultaneous occurrence of multiple notes.

Fig. 2.8: The tonal context evolution of the three most prominent tonal
components for an example melody. The x-axis denotes time and the y-
axis represents the strength of the tonal components (between 0 and 1).
h0 = harmonic A minor, n0 = natural A minor, and M3 = C major (from
Izmirli and Bilgen 1994).

2 Background

20

2.3.2.2 Template-Based Methods

A template-based audio key detection system typically consists of two stages. The first

stage extracts a pitch-class distribution feature from the audio signal, representing the

relative strength of each pitch-class within the signal. The second stage uses some form of

algorithm to compare the pitch-class distribution feature with pitch-class templates in

order to estimate the key. Pitch-class templates are twelve-valued vectors that represent

the ideal distribution of pitch-classes for a given key.

Gómez (2006a) points out that the nomenclature for pitch-class distribution features

varies a great deal in the literature: pitch pattern (Leman 2000), pitch-class profile

(Fujishima 1999), Harmonic Pitch Class Profile (Gómez 2005), constant-Q profile

(Purwins et al. 2000), pitch profile (Zhu et al. 2005), and chromagram (Pauws 2004)).

Although the name and implementation details of the pitch-class distribution features may

vary in the approaches described in this section, we will from here on refer to these with

the general term of pitch-class distributions, for the sake of simplicity and clarity. The

process of creating the pitch-class distributions from a frequency domain representation

of the signal will be called pitch-class generation (Chuan and Chew 2007).

Similarly, there is a lack of consistency in the literature for the term used to describe

pitch-class templates (e.g., key profiles, pitch-class profiles), so we will from here on

refer to these only as pitch-class templates. There are three basic categories of pitch-class

templates used for key detection: music theory-based templates, cognitive-based

templates, and statistics-based templates (Noland and Sandler 2009). Music theory-based

templates are constructed using some form of musical knowledge (e.g., a template with all

diatonic pitch-classes having a value of one and all chromatic pitch-classes having a value

of zero). Cognitive-based templates are obtained through studies on music perception and

cognition (Krumhansl and Shepard 1979; Krumhansl 1990) and represent the perceptual

importance of pitch-classes within a key. Statistics-based templates are derived from an

empirical analysis of a corpus of music, and represent the average pitch-class distributions

for that particular corpus (Gómez 2006; Noland and Sandler 2007). Pitch-class templates

2 Background

21

can also be hybrids of these three categories (e.g., templates constructed from the

cognitive experiments but weighted with statistical data).

Purwins, Blankertz, and Obermayer (2000) proposed a model based on the probe tone

experiments conducted by Krumhansl and Shepard (1979)6. The system employs the CQ-

transform to extract a pitch-class distribution from the audio signal. A fuzzy distance

algorithm is then used to compare the pitch-class distribution with the cognitive-based

templates. The system is able to track the key over time and thus is capable of identifying

modulations in the music. An evaluation was performed using Chopin’s C minor prelude,

Op. 28, No. 20 and was fairly successful at tracking the key, although no quantitative

results were explicitly reported.

Pauws (2004) implemented an audio key detection system that adopted the cognitive-

based templates directly from Krumhansl (1990). The system incorporates signal

processing techniques designed to improve the salience of the extracted pitch-class

distribution. The pitch-class distribution is then used as input to the maximum-key profile

algorithm in order to identify the key. The model was tested on a corpus of 237 classical

piano sonatas, with a maximum key identification rate of 66.2%.

Van de Par et al. (2006) present an extension to the work of Pauws (2004) in which

they utilize three different temporal weighting functions in the calculation of the pitch-

class templates. This results in three different templates for each key. Similarly, during

the actual key detection, three different pitch-class profiles are extracted, one for each

temporal weighting function. Each of the three pitch-class profiles is then correlated with

the corresponding templates and a final correlation value is calculated from the combined

values. The system was evaluated using the same corpus of 237 classical piano sonatas as

Pauws (2004) and received a maximum key recognition rate of 98.1%.

While most template-based audio key-finding systems utilize some form of Euclidian

distance to compare pitch-class distributions with templates, Martens et al. (2004)

implemented a model using a classification-tree for key recognition. The classification-

tree was trained using 264 pitch-class templates that were constructed from Shepard

sequences and chord sequences of various synthesized instruments7. They conducted an

2 Background

22

experiment that compared the performance of the tree-based system with a classical

distance-based model using two pieces: “Eternally” by Quadran and “Inventions No. 1 in

C major” by J. S. Bach. The results led them to favor the classification-tree system due to

its ability to stabilize key estimations over longer time periods. They also noted the

advantage of being able to tune the system for specific types of music by using a

corresponding category of music to train the model.

Gómez and Herrera (2004a) noted that the majority of audio key detection models

developed up until 2004 were based on perceptual studies of tonality, which they called

cognition-inspired models. They performed an experiment in which they directly

compared an implementation of a cognition-inspired model with several machine-learning

algorithms for audio key determination. The cognition-inspired model was based on the

K-S algorithm but extended to handle polyphonic audio input. Numerous machine-

learning techniques were implemented, including binary trees, Bayesian estimation,

neural networks, and support vector machines. The various algorithms were evaluated on

three criteria: estimating the “key note” (i.e., tonic), the mode, and the “tonality” (i.e.,

tonic and mode). A corpus of 878 excerpts of classical music from various composers was

used for training and testing. The excerpts were split into two sets: 661 excerpts for

training and 217 excerpts for evaluation. The results, summarized in Figure 2.9, show that

for the case of estimating the “tonality,” the best machine learning algorithm (a multilayer

perceptron, neural network) outperforms the cognition-inspired model, but a combination

of the two approaches produces the best results.

2 Background

23

Fig. 2.9: A summary of the results of Gómez and Herrera’s experiment
comparing the performance of cognition-inspired models versus machine
learning algorithms for audio key finding (from Gómez and Herrera
2004).

Chuan and Chew (2005c) point out the importance of segregating the sources of

errors in audio key detection systems between the pitch-class generation and the key

identification stages. They formulate hypotheses for sources of errors during the pitch-

class generation stage and propose a modified algorithm that uses fuzzy analysis in order

to eliminate some of the errors. The fuzzy analysis method consists of three main

components: clarifying low frequencies, adaptive level weighting, and flattening high and

low values8. They performed a direct comparison of the fuzzy analysis key-finding system

with two other models: a peak detection model and a MIDI key-finding model. The

evaluation utilized excerpts from a corpus of 410 classical music MIDI files, where only

the first 15 seconds of the first movement was considered. The fuzzy analysis and peak

detection algorithms operated on audio files that were synthesized using Winamp, and the

! !
!
"#$%&$'()*#! "$&+,-#-! .&/0! 1#)#$(/#! -,%%#$#)/! #$$&$!
"(//#$)23! 45$! #6"#$,'#)/2! 52,)1! /0#! &5/"5/! &%! /0#!
"#$*#"/5(78*&1),/,+#!'&-#7!(2!()!(--,/,&)(7!,)"5/!%&$!/0#!
.#2/! '(*0,)#! 7#($),)1! (71&$,/0'! 0(2! 9,#7-#-!)&!
,'"$&+#'#)/! /&! /0#! "$#2#)/#-! $#257/2! #6*#"/! ,)! /0#! *(2#!
&%! :#9! #2/,'(/,&);! <0#$#! /0#! =(9#2,()! 7#($)#$! 9,#7-#-!
>>?! <0#)! <#! ,)*75-#-! /0#! "$#-,*/#-! :#9;! '&-#! ()-!
2/$#)1/0! %$&'! /0#! "#$*#"/5(78*&1),/,+#! '&-#73! @0,2!
(--,/,&)! ('&5)/2! /&! ()! ,'"$&+#'#)/! &%! A?! BCC?!
&'"($#-!/&!/0#!"#$%&$'()#!&%!/0#!"#$*#"/5(78*&1),/,+#!
'&-#7!(7&)#D3!!!!!!!

@&)(7,/9!#2/,'(/,&)!#+(75(/,&)

AE;F GH GF

IJ;A IF IH

GA
>J >>

K

JK

FK

GK

IK

CKK

L&1),/,+# =#2/!MN L&'.,)#-

?
!

L&$$#*/!/&)(7,/9!#2/,'(/,&) L&$$#*/!'&-#!#2/,'(/,&)

L&$$#*/!:#9!)&/#!#2/,'(/,&)

!"#$%&'(3!O+(75(/,&)!$#257/23!?!&%!*&$$#*/!#2/,'(/,&)3!

)*! +,-./--,01''

L&'"($,)1! /0#! /&)(7! *&1),/,&)P,)2",$#-! (""$&(*0! /&! /0#!
'(*0,)#! 7#($),)1! /#*0),Q5#2! /0(/! <#! *()! *&)2,-#$! (2!
R/&&72! &%! /0#! /$(-#S;! '&-#2/! ,'"$&+#'#)/2! ,)!
"#$%&$'()*#! *()! .#! (*0,#+#-! .9! /0#! 7(//#$! B>?! <0#)!
*&'"5/,)1! /0#! :#9!)&/#D! &$! .9! #'.#--,)1! /0#! %&$'#$!
,)/&!/0#!7(//#$!BCJ?!%&$!:#9!)&/#!*&'"5/(/,&)D3!!

T2! ,/! ,2! "&,)/#-! &5/! .9! U$5'0()27;! /0#! /&)(7!
-#2*$,"/&$2!<#!0(+#!*&)2,-#$#-!($#!2#+#$#79!$#2/$,*/#-;!,)!
/0#!2#)2#!/0(/!/0#9!-&!)&/!*("/5$#!()9!'52,*(7!2/$5*/5$#3!
@0#2#! %#(/5$#2! /(:#! ,)/&! (**&5)/!)#,/0#$! &$-#$!
,)%&$'(/,&)!)&$! /0#! *0&$-2V! "&2,/,&)! ,)! /0#! #+#)/!
0,#$($*09;! (2! %&$! ,)2/()*#;! ,/2! "7(*#! ,)! /0#! $09/0',*! &$!
0($'&),*! 2/$5*/5$#! WH;! ""3! GGX3! Y)! %(*/;! 2&'#! &%! /0#!
#2/,'(/,&)!#$$&$2!'(9!.#!*(52#-!.9!/&)(7,/9!*0()1#2!/0(/!
(%%#*/! /0#! &+#$(77! :#9! '#(25$#2! ()-! 7(.#77,)13! Z#! <,77!
<&$:! &)! /0#2#! 2/$5*/5$(7! ()-! $09/0',*! (2"#*/2! (7&)1!
%5/5$#!$#2#($*03!

2*! .01.3/-,01-'

Z#!0(+#!"$#2#)/#-! (! *&'"($,2&)!.#/<##)! /<&!-,%%#$#)/!
(""$&(*0#2! %&$! /&)(7,/9! #2/,'(/,&)! %$&'! "&79"0&),*!
(5-,&3!@0#!%,$2/!&)#!,2!,)2",$#-!,)!/0#!!"#$%&'#(%&)%'*#+!
()-! *&)2,-#$2! 2&'#! (2"#*/2! &%! /&)(7,/9! *&1),/,&)3! @0#!
2#*&)-!&)#!52#2!R.7,)-S!'(*0,)#! 7#($),)1! /#*0),Q5#2! /&!
'&-#7! :#9! .9! ()(79[,)1! (! /$(,),)1! ())&/(/#-! *&77#*/,&)3!
Z#! 0(+#! #+(75(/#-! .&/0! '#/0&-&7&1,#2! &+#$! (! 7($1#!
(5-,&! -(/(.(2#;! (*0,#+,)1! (! GF?! &%! *&$$#*/! &+#$(77!
/&)(7,/9!#2/,'(/,&)3!\#$9!2'(77!,'"$&+#'#)/2!<#$#!%&5)-!
.9! &)79! 52,)1! '(*0,)#! 7#($),)1! (71&$,/0'2;! <0,*0! ,2!

2&'#0&<! (! "5[[7,)1! &.2#$+(/,&)! /0(/! $#Q5,$#2! %5$/0#$!
#6"#$,'#)/2!<,/0!-,%%#$#)/!-(/(!$#"$#2#)/(/,&)2!()-!'&$#!
,)/#)2,+#!"($('#/#$!/<#(:,)1!&%!/0#!(71&$,/0'23!Z#!0(+#!
2/,77! $&&'! %&$! ,'"$&+#'#)/! ,)! &$-#$! /&! *&'#! 5"!<,/0! (!
$&.52/! /#*0),Q5#! /0(/! (77&<! 52! /&! #6"7&,/! /&)(7,/9!
,)%&$'(/,&)! %&$! $#/$,#+(7! ,)! (! 1#)#$(7P"5$"&2#! "&"57($!
'52,*! -(/(.(2#! ()-! (72&! %&$! (,-,)1! /0#! -,2*&+#$9! &%!
'52,*!,)%&$'(/,&)!,)!(!2,',7($!<(9!/&!<0(/!]5$<,)2!#/!(73!
WFX!0(+#!$#*#)/79!"$#2#)/#-3!!!

4*! 5.610738+9:81;-'

@0#! (5/0&$2!<&57-! 7,:#! /&! /0():!@(:59(! ^5_,20,'(! ()-!
`&$-,!=&)(-(! %&$! /0#,$! (-+,*#2! &)! /0#! %#(/5$#! #6/$(*/,&)!
"$&*#-5$#3!@0,2!$#2#($*0!0(2!.##)!"($/,(779!%5)-#-!.9!/0#!
OaP^]GPYb@PAK>CFJ! "$&_#*/! bYMTL! Bb#'()/,*!
Y)/#$(*/,&)! <,/0! M52,*! T5-,&! L&)/#)/2DC! ()-! .9! /0#!
b"(),20! c&+#$)'#)/! "$&_#*/! @YLJKKHPK>>>GPLKJPKJ!
]$&'52,*3!!

<=*! >8!8>81.8-'

WCX! ^5_,20,'(;! @3! Rd#(7/,'#! *0&$-! $#*&1),/,&)! &%!
'52,*(7! 2&5)-e! (! 292/#'! 52,)1! L&''&)! N,2"!
M52,*S;!,-.-;!=#,_,)1;!L0,)(;!CEEE;!""3!FGFfFG>3!

WJX! cg'#[;! O3! R@&)(7! -#2*$,"/,&)! &%! "&79"0&),*! (5-,&!
%&$! '52,*! *&)/#)/! "$&*#22,)1S3! ,/012.3& 4#5"(67&
#(& -#)!5'8(9:& 3!%;867& -75<'%"& #(& .5<8;&
-#)!5'8(9:!L0#<;!O3;!c5#2/!O-,/&$=!JKKF3!

WHX! U$5'0()27;!L3!N3!-#9(8'8>%& ?#5(+6'8#(<&#?&)5<8;67&
!8';*3! 46%&$-! a),+#$2,/9!]$#22;! h#<! i&$:;! CEEE;!
""3!CGPFE3!!

WFX!]5$<,)2;! j3;! =7():#$/[;! =3;! k&$)0#1#;! c3;! ()-!
4.#$'(9#$;! U3! Rb*(7#! -#1$##! "$&%,7#2! %$&'! (5-,&!
,)+#2/,1(/#-! <,/0! '(*0,)#! 7#($),)1S;! @@A'*& BC3&
-#(>%('8#(;!=#$7,);!c#$'()9;!JKKF3!

WAX! Z,//#);! Y3!j3! ()-!^$():;!O3!D6'6&)8(8(9E&!"6;'8;67&
)6;*8(%& 7%6"(8(9& '##7<& 6(+& '%;*(8F5%<& G8'*& 46>6&
8)!7%)%('6'8#(<3!M&$1()!U(5%'());!b()!^$()*,2*&;!
JKKK3!!

!!!
C!0//"e88<<<32#'()/,*(5-,&3&$1!

2 Background

24

MIDI key-finding model operated directly on the MIDI files. The maximum key

identification rates for the peak detection, fuzzy analysis, and MIDI key-finding models

were 70.17%, 75.25%, and 80.34%, respectively. It is not surprising that the MIDI key-

finding model had the best overall performance, considering that it operates on

unambiguous and complete pitch data. However, the results do indicate that fuzzy

analysis provides an effective means of improving pitch-class generation for audio key

detection systems.

Signifying a recently increased interest in audio key detection, the 2005 Music

Information Retrieval Evaluation eXchange (MIREX ’05) featured an audio key-finding

competition. Six groups participated in the event (Chuan and Chew 2005b; Gómez 2005;

Izmirli 2005b; Pauws 2005; Purwins and Blankertz 2005; Zhu 2005), submitting state-of-

art key-finding systems that were evaluated using a formalized scoring procedure. All of

the systems were template-based and used some form of pitch-class distribution feature in

combination with a key-finding model. However, the type of pitch-class templates (e.g.,

cognitive-based, music theory-based, statistics-based), feature extraction algorithms, and

key models were varied amongst the participants. Table 2.2 summarizes the

implementation details of the algorithms entered, Table 2.3 show the results of the

evaluation, and Table 2.4 describes the scoring procedure that was used.

2 Background

25

Feature Extraction
Participant Frequency

Analysis
Pitch-Class
Generation

Key-finding
Algorithm Pitch-Class Template

Chuan &
Chew FFT

Peak detection
with fuzzy

analysis

Pitch spelling
(maps to Spiral

Array) combined
with Center of

Effect Generator
algorithm

Music theory-based: geometric
representation in the Spiral Array

Gómez FFT

Harmonic Pitch
Class Profiles

with 36 bins for
tuning correction

Maximal
correlation with

templates

Cognitive-based: modified tone
profiles TM and Tm, proposed by

Temperley (1999)

Izmirli FFT

Multiple
summary chroma
vectors of varying
window lengths

K-S correlation
with confidence
values for each

summary chroma
vector

Cognitive/Statistical/Music
theory-based: composite of

Temperley’s (2001) tone profiles
(cognitive-based) and diatonic
profiles (music-theory based),

combined with extracted
frequency data from real

instrument sounds (statistics-
based)

Pauws FFT

Subharmonic
summation used
to create chroma

spectrum

Unknown Statistics-based: derived from
training data

Purwins &
Blankertz CQ-transform

Pitch class
distributions with
36 bins for tuning

correction

Maximal
correlation with

templates

Statistics-based: derived from
training data

Zhu CQ-transform

Pitch content
classified as

mono, chord or
other

Rules based on
training data

Music theory/Statistics-based:
Music knowledge is used to create
a set of rules and the parameters

are derived from the training data

Table 2.2: Summary of the implementation details for the systems
entered in the MIREX ’05 audio key-finding competition (Chuan and
Chew 2005b).

2 Background

26

Relation to correct key Points
Exact match 1
Perfect fifth 0.5

Relative major/minor 0.3
Parallel major/minor 0.2

Table 2.3: Summary of the metrics system used for the MIREX ’05
audio key finding evaluation. Summing the total number of points and
dividing by the total number of instances in the test set gives the
percentage score.

Percentage Score Participant Composite
Percentage Score Winamp Timidity

Izmirli 89.55% 89.4% 89.7%
Purwins &
Blankertz 89.00% 89.6% 88.4%

Gómez (start) 86.05% 86.4% 85.7%
Gómez (global) 85.90% 86.0% 85.8%

Pauws 85.00% 84.3% 85.7%
Zhu 83.25% 85.2% 81.3%

Chuan & Chew 79.10% 80.1% 78.1%

Table 2.4: Summary of the results for the MIREX ’05 audio key-finding
competition. Two data sets were used for evaluation: Winamp
synthesized audio and Timidity with Fusion soundfonts synthesized
audio. The percentage scores are calculated using the system of metrics
that was created for the competition.

Izmirli (2005a) conducted further experiments using the model that he submitted to

the MIREX ’05 audio key-finding competition. He evaluates the effectiveness of different

types of pitch-class templates in combination with varying durations of analysis for the

input signal. Two different methods are used to implement the template calculation

model: the first is based purely on the spectral content of the signal and the second is a

chroma-based representation that extrapolates on the spectral content. A corpus of 85

2 Background

27

pieces from various composers, primarily from the common practice period is used to

evaluate the system. The results of the experiment showed that the maximum key

recognition rate of 86% was achieved using a chroma-based representation that combined

the Temperley and Diatonic profiles.

Izmirli (2006) conducts an additional experiment in which he compares the model

submitted to MIREX ’05 with another model that utilizes dimensionality reduction. The

goal is to determine the optimal number of dimensions to be used for the key-finding

problem, as opposed to reducing the computational cost. An evaluation is performed

using the two models on a corpus of 152 pieces from the classical period. It is shown that

the performance of the key-finding system was not significantly hindered when using 6

dimensions instead of 12. The model using 6 dimensions received a composite score of

88.7%, whereas the reference model received an 88.9% composite score.

Izmirli (2007) points out that the majority of key-finding models focus on identifying

the main key of a piece, as opposed to segmenting the audio based on modulations in

order to perform local key-finding. A new system is proposed that uses non-negative

matrix factorization in order to segment an audio signal based on modulations. A series of

windowed pitch-class distributions are calculated and segments are identified based on

this technique. The same correlational model as was used in (Izmirli 2005a) is employed

to identify the key of any given segment. Three different data sets were used to evaluate

the model: 17 pop songs with at least one modulation each, 152 excerpts from the initial

portion of classical music pieces, and 17 short excerpts of classical music containing at

least one modulation each. The maximum accuracy of the segmentation-based approach

was 82.4%, for the pop data set.

Gómez (2006b) presents an exhaustive investigation on tonal descriptors of audio

signals in her Ph.D. dissertation. She presents a thorough analysis of many of the

pertinent aspects of audio key detection, including audio feature computation, evaluation

strategies, and various template-based models for tonality. An evaluation of different

audio key detection methods was performed for various genres of music. The study led to

the conclusion that in most cases models that use cognitive-based templates outperform

2 Background

28

those that utilize statistics-based templates. Furthermore, the results of the experiment

indicated that the performance of any particular audio key detection model is heavily

dependent on the genre of music that is being analyzed.

Zhu et al. (2005) propose an audio key-finding system that utilizes the CQ-transform

and detects the key in two distinct steps: diatonic scale root estimation and mode

determination. The system is evaluated on a corpus of 60 pop songs and 12 classical

music recordings, using only the first 2 minutes of each piece. The correct scale root was

detected for 91% of the pop songs but only 50% of the classical music pieces. The rate of

successful mode determination for the pop songs was 90% and 83.3% for the classical

pieces.

Zhu and Kankanhalli (2006) went on to further investigate the effects of mistuned

recordings9 and the effect of noisy, percussive sounds on pitch-class generation. They

conducted an analysis of 185 classical and 64 popular music excerpts and determined that

many of the recordings contained tuning errors. They also point out that percussive

sounds should be disregarded within an audio key detection system, because they are not

pitched and therefore do not contribute to tonality. However, these percussive elements

still have an effect on the frequency domain representation of the signal, contributing

energy to the bins used to generate the pitch-class distributions. As such, they affect the

salience of the pitch-class distributions, and in turn the accuracy of key identification.

They propose a system to improve on these limitations. A tuning pitch determination

algorithm is used to detect a mistuned recording and adjust the pitch-class distribution

accordingly. They also use consonance filtering in order to discard some of the frequency

contributions from noisy, percussive elements in the signal. Figure 2.10 shows the output

of the extracted note partials, with and without the consonance filtering. They perform an

experiment in which they compare the proposed system with an earlier model that does

not account for mistuned recordings or percussive instrumentation. They claim that the

results of the experiment indicate that the use of tuning correction and consonance

filtering improve the key identification accuracy.

2 Background

29

Fig. 2.10: Comparison of note partials with consonance filtering (right)
and without consonance filtering (left) (from Zhu and Kankanhalli 2006).

2.3.2.3 Geometric Models

Chuan and Chew (2005a) present an audio key detection system that utilizes the Spiral

Array Center of Effect Generator (CEG) algorithm (Chew 2000; Chew 2001). The system

uses the standard FFT to extract pitch-class and pitch strength information from the audio

signal, which is then mapped to a 3-D point in the Spiral Array. A nearest-neighbor

search is then used in the Spiral Array in order to estimate the key. A comparison of this

model is then made with two other template-based audio key-finding approaches: the K-S

method and Temperley’s modified K-S method (templates shown in Figure 2.6). All three

systems were evaluated on a corpus of 61 excerpts of Mozart symphonies synthesized

from MIDI. Their Spiral Array CEG model received a maximum key recognition rate of

96%, while the K-S and Temperley’s modified K-S models had a maximum recognition

rate of 80% and 87%, respectively.

Chuan and Chew (2007) go on to use their model in order to perform a systematic

analysis of the various components of audio key detection systems, with the goal of

identifying elements critical to system design. They observe that most previous

evaluations of audio key-finding systems only report the overall key detection accuracy,

580 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 3, JUNE 2006

Fig. 8. (a) Consonance filtering output; (b), (c) comparison of note partials with
consonance filtering output in local details.

the bins of the original spectrogram. Fig. 7(a) is for CQT with
, Fig. 7(b) is for CQT with and Fig. 7(c) is

for the extracted note partials. It can be seen that the prominent
peak at bin 52 in Fig. 7(c) is almost missing in Fig. 7(a).

Precise note partial extraction is important for further analysis
of the signal such as key detection, since large errors are much
more likely to interfere with the scale structure.

IV. PITCH PROFILE FEATURE EXTRACTION

A. Consonance Filtering

If all the note partials in the extracted note partials tracks are
used in constructing pitch profile features like in [27]–[33], in-
terference can be introduced from noisy percussive sounds and
heavy bass notes that raise the energy of nearby pitches several
semitones (or even octaves) away. To construct the pitch profile
feature with high quality in the sense that it has minimal interfer-
ence, we would like to extract only those prominent note partials
that are relevant to the music scale. We propose a consonance
filtering method to extract the relevant note partials.

The basic idea behind the filtering method is that the simul-
taneous notes played are in consonance with each other in the
sense that they are from a same diatonic scale (or a same key).
This assumption is mostly true for many styles of music com-
position, such as those based on chords or counterpoint (several
independent melodies on top of each other). The filtering is done
for note partials at each time index. In our implementation, there
are 84 note partials. The filtering is described by the following

algorithm, where we denote the note partials by , where
and .

1. Set and for , set for

2. Set if for
3. Find the such that , if

then return .
4. Set , and
5. Check whether is compliant with the diatonic scale model, if yes set

and go to step 3, else set and return .

This algorithm extracts the component with highest and local
maximal energy one by one and stops until a new component
cannot fit to the diatonic model or no component is left. The
output of the algorithm specifies the filtered consonant
note partials. when pitch is selected.

In the algorithm, step 1 is for variable initialization. Step 2
gets the local maximal partials and stores them in , which
aims to eliminate the interference of any strong note. Steps 3 and
4 finds the global maximal component in and indicates it
in both and . is the scale model for . Step
5 check whether can fit to the diatonic scale model, and
if not removes the last component added from and returns

.
Compliance checking of with the diatonic scale model

is done by rotationally aligning the 12 components of with
the diatonic model [19]. If an alignment exists in which any
components of with value 1 corresponds to a scale tone in
the diatonic scale model, then is assumed to be compliant
with the diatonic model. If such an alignment does not exist, it
is assumed to be noncompliant. The components after filtering
are mainly high energy low harmonics of the music notes.

The consonance filtering output for the music signal dis-
cussed earlier is shown in Fig. 8(a). The result is compared in
local details with note partials side by side in Fig. 8(b) and (c).
Note that the filtering output is binary.

B. Pitch Profile Generation

Pitch profile is a feature that characterizes the distribution of
the filtered pitch components in the music signal over a window
of time. Although a long window can lead to a more represen-
tative pitch profile feature, it is not appropriate to use the whole
piece for a single pitch profile feature. This is because the key
can modulate (change) in the middle of the piece and thus the
feature would fail to capture the structure of the local scale or
keys. Based on our experiments, a time window of 15 s is usu-
ally adequate to exhibit the scale and key structure in the pitch
profile feature.

The pitch profile feature is computed based on the output of
consonance filtering using the following algorithm.

1. for , where , and is the
time window length.

2. , where .
3. .

In step 1, contains total time counts for pitch in the
time window. In step 2, time counts of the same pitch class are
accumulated over all octaves. In step 3, the pitch classes are
sorted according to the “circle of the fifths,” such that any two

Authorized licensed use limited to: McGill University. Downloaded on May 12,2010 at 17:00:29 UTC from IEEE Xplore. Restrictions apply.

2 Background

30

as opposed to a more detailed analysis of the performance of the individual system

components or the effect of the type of music that is used for evaluation. They first

propose a basic system using the fuzzy analysis and spiral array center of effect (FACEG)

algorithm (Chuan and Chew 2005c), and evaluate it using three different key

determination policies: the nearest-neighbor (NN), the relative distance (RD), and the

average distance (AD). The basic system is then evaluated using excerpts of the initial

fifteen seconds of 410 classical music pieces, ranging in styles from Baroque to

Contemporary. The results show the average accuracy for each of the three key

determination policies, revealing that the AD policy performs the best. However, analysis

of the results also reveals some of the strengths and weaknesses of each policy, as well as

the effect of the musical genre on key identification accuracy. They go on to propose

three extensions to the basic system: the modified spiral array (mSA), fundamental

frequency identification (F0), and post-weight balancing (PWB). Five different

permutations using the three extensions are evaluated in a second case study using

Chopin’s 24 Preludes. An in-depth, qualitative, and quantitative analysis of the results

also provides insight on how and why each of the extensions can be used to improve

audio key identification accuracy for specific situations. The basic audio key-finding

system and its three extensions are depicted in Figure 2.11.

Fig. 2.11: A typical audio key finding system (top). The basic audio key-
finding system (grey) and extensions (bottom) (from Chuan and Chew
2007).

2 EURASIP Journal on Advances in Signal Processing

Audio wave

FFT
Pitch-class
generation

Representation
model

Key-finding
algorithm

Key determination

Processing the signal
in all frequencies

Processing low/high
frequency separately

Peak detection

Fuzzy analysis +
peak detection

Fundamental frequency
identification +
peak detection

Spiral array
(SA)

Modified
spiral array

(mSA)

CEG

CEG with periodic
cleanup

CEG with post-
weight balancing

Nearest-neighbor search
(NN)

Relative distance policy
(RD)

Average distance policy
(AD)

Figure 1: Audio key-finding system (fundamental + extensions).

simply reported one overall statistic for key-finding perfor-
mance [3, 7–9], which fails to fully address the importance
of the various components in the system, or the actual musi-
cal content, to system performance. We represent a solution
to audio key finding as a system consisting of several alter-
native parts in various stages. By careful analysis of system
performance with respect to choice of components in each
stage, we attempt to give a clearer picture of the importance
of each component, as well as the choice of music data for
testing, to key finding. Our approach draws inspiration from
multiple domains: from music theory to audio signal pro-
cessing. The system components we introduce aim to solve
the problem from different viewpoints. The modular design
allows us explore the strengths and weaknesses of each alter-
native option, so that the change in system performance due
to each choice can be made clear.

The rest of the paper is organized as follows. Section 1.1
provides a literature review of related work in audio key find-
ing. Section 2 describes the overall system diagram, with new
alternatives and extensions. The basic system, the FACEG
system, and the three key determination policies, the nearest-
neighbor (NN), relative distance (RD), and average distance
(AD) policies, are introduced in Section 3. The evaluation of
the FACEG system with the three key determination policies
follows in Section 4. Two case studies based on the musical
score are examined to illustrate situations in which audio key
finding performs better than symbolic key finding. Section 5
describes three extensions of the system: the modified spi-
ral array (mSA) approach, fundamental frequency identifica-
tion (F0), and post-weight balancing (PWB). Qualitative and
quantitative analyses and evaluations of the three extensions
are presented in Section 6. Section 7 concludes the paper.

1.1. Related work

Various state-of-the-art Audio key-finding systems were pre-
sented in the audio key-finding contest for MIREX [10].
Six groups participated in the contest, including Chuan and
Chew [11], Gómez [12], İzmirli [13], Pauws [14], Purwins
and Blankertz [15], and Zhu (listed alphabetically) [16].
Analysis of the six systems reveals that they share a similar
structure, consisting of some signal processing method, au-
dio characteristic analysis, key template construction, query
formation, key-finding method, and key determination cri-

teria. The major differences between the systems occur in
the audio characteristic analysis, key template construction,
and key determination criteria. In Gómez’s system, the key
templates are precomputed, and are generated from the
Krumhansl-Schmuckler pitch-class profiles [5], with alter-
ations to incorporate harmonics characteristic of audio sig-
nals. Two systems employing different key determination
strategies are submitted by Gómez: one using only the start
of a piece, and the other taking the entire piece into ac-
count. In İzmirli’s system, he constructs key templates from
monophonic instruments samples, weighted by a combina-
tion of the K-S and Temperley’s modified pitch-class profiles.
İzmirli’s system tracks the confidence value for each key an-
swer, and the global key is then selected as the one having the
highest sum of confidence values over the length of the piece.
The key templates in Pauws’ and Purwins-Blankertz systems
are completely data-driven. The parameters are learned from
training data. In their systems, the key is determined based
on some statistical measure, or maximum correlation. In
contrast, Zhu builds a rule-based key-finding system; the
rules are learned from the MIDI training data. Further de-
tails of our comparative analysis of the systems can be found
in [11].

2. SYSTEM DESCRIPTION

Consider a typical audio key-finding system as shown schem-
atically in the top part of Figure 1. The audio key-finding sys-
tem consists of four main stages: processing of the audio sig-
nal to determine the frequencies present, determination of
the pitch-class description, application of a key-finding algo-
rithm, and key answer determination. Results from the key-
finding algorithm can give feedback to the pitch-class genera-
tion stage to help to constrain the pitch-class description to a
reasonable set. In this paper, we will consider several possible
alternative methods at each stage.

For example, as the basis for comparison, we construct a
basic system that first processes the audio signal using the fast
Fourier transform (FFT) on the all-frequency signal, then
generates pitch-class information using a fuzzy analysis (FA)
technique, calculates key results using the CEG algorithm
with a periodic cleanup procedure, and applies key determi-
nation policy to output the final answer. This basic system,
shown in the gray area in Figure 1, is described in detail in

2 Background

31

Harte et al. (2006) point out that if enharmonic and octave equivalence are

considered, this has the effect of joining the two ends of the Spiral Array tube to form a

hypertorus. The circle of fifths is then represented as a helix that wraps around the

hypertorus three times, illustrated in Figure 2.12. They then propose an audio key-finding

model that is based on projecting collections of pitches onto the interior space contained

by the hypertorus. This is essentially mapping to three distinct feature spaces: the circle of

fifths, the circle of major thirds, and the circle of minor thirds. This 6-dimensional space

is called the tonal centroid. The algorithm first applies the CQ-transform in order to

extract the pitch-class distribution. The 12-D pitch-class distribution is then mapped to the

6-D tonal centroid with a mapping matrix. The algorithm was applied in a chord

recognition system, however, the authors point out that it could be adapted for other

classification tasks such as key detection.

Fig. 2.12: If enharmonic and octave equivalence are considered, then the
Spiral Array model can be represented as a hypertorus (from Harte et al.
2006).

Gatzsche et al. (2008) propose a novel approach to audio key finding, making use of a

model based on circular pitch spaces (CPS). They introduce the music theory-based

concept of a CPS and go on to present a geometric tonality model that describes the

relationship between keys. Furthermore, they implement an audio key-finding system that

Figure 2: The Harmonic Network or Tonnetz. Ar-
rows show the three circularities inherent in the net-
work if enharmonic and octave equivalence are as-
sumed.

0
5 7

94116
1

8
3 10 2

Figure 3: A projection showing how the Tonnetz
wraps around the surface of a Hypertorus with the
pitch classes following the spiral of fifths when en-
harmonic and octave equivalence are assumed.

cent years by Neo-Riemanninan Music Theorists [10, 7, 12].
Close harmonic relations are modelled by small distances on
the plane. Lines of fifths travel from left to right, lines of
major thirds travel from bottom left to top right and lines
of minor thirds travel from top left to bottom right.

In Just Intonation, the Tonnetz is an infinite plane [13].
If it is assumed that a particular note spelling on one row is
equivalent to the same note spelling on the next row (i.e. F!1
≡ F!2 etc. in fig. 2), the plane wraps up and forms a tube
with the line of fifths becoming a helix on its surface. In the
case where the helix is wrapped so that major third intervals
are directly above each other on the surface of the tube this
is Chew’s Spiral Array [5]. Chew’s model allows chords and
keys to be projected as objects in a 3-D space on the interior
of the tube and has been applied successfully to problems
such as key finding and pitch spelling from symbolic data
[6].

In the case of data derived from audio, it is very difficult to
directly extract the correct spelling of pitches. This is partly
due to the fact that high resolution frequency analysis would
be needed to resolve the small differences between them.
Equally, on a more practical level, it is because the majority
of keyboard instruments are now tuned to twelve-tone equal

temperament so the differences would not be present.
If enharmonic equivalence is assumed then instead of deal-

ing with a theoretically infinite number of pitch names, there
are now just the twelve different pitch classes (here we ref-
erence C as pitch class 0). In the Spiral Array model, this
has the effect of joining the two ends of the tube together
and the result is a hypertorus with the circle of fifths wrap-
ping around its surface three times (see Figure 3). A form
of this Hypertorus appears in many different areas of music
research [10, 7, 11, 14].

We now propose a 6-dimensional interior space contained
by the surface of the Hypertorus. This allows us to apply
the same technique that Chew uses to develop the Centre of
Effect in the Spiral Array to this equal tempered model for
pitch space.

Since it is not possible to directly visualise 6-D space, it is
helpful to imagine it as a projection onto the three circular-
ities in the equal tempered Tonnetz: the circle of fifths, the
circle of minor thirds and the circle of major thirds (figure 4).
Here, the six dimensions are viewed as three co-ordinate
pairs x1, y1, x2, y2 and x3, y3. A collection of pitches (i.e.
a chord) can be described as a single centroid point in the
space. Chords with a tonal centre (such as the A major
shown as point A in figure 4) can be clearly assigned to
a point in the circle of fifths. However, there are chords
without defined tonal centres (e.g. diminished 7th and aug-
mented chords). The centroid of each of these chords lies
in the centre of the circle of fifths. On the circle of minor
thirds, however, augmented chords can be unambiguously
identified, while the circle of major thirds can uniquely de-
pict diminished 7th chords.

3. ALGORITHM
The first stage of the system is the Constant-Q spectral

analysis. This is a logarithmic frequency analysis based
on the efficient algorithm described in [3]. We calculate
a 36 bins-per-octave transform across five octaves between
fmin = 110Hz (A2) and fmax = 3520Hz (A7) from a 11025Hz
mono audio signal. To obtain this resolution at the lowest
analysed frequencies requires a 743ms window length. This
is a long analysis window in terms of musical signals so to
improve time resolution we overlap analysis frames by 1

8 th
of a window length giving an effective frame length of 93ms.
A 12-bin tuned Chromagram is then calculated from the
Constant-Q spectra using the method described in [9] giv-
ing a 12-dimensional chroma vector c for every frame.

3.1 Tonal Centroid Calculation
The six dimensional tonal centroid vector, ζ, for time

frame n is given by the multiplication of the chroma vector,
c, and a transformation matrix Φ. Dividing by the L1 norm
of c prevents numerical instability and ensures that the tonal
centroid always lies within the 6-D polytope (equation 1).

ζn(d) =
1

||cn||1

11X

l=0

Φ(d, l)cn(l)
0 ≤ d ≤ 5
0 ≤ l ≤ 11

(1)

where l is the chroma vector pitch class index and d de-
notes which of the six dimensions of ζn is being evaluated.
The transformation matrix Φ represents the basis of the 6-D
space described in section 2 and is given as:

Φ = [φ0, φ1 . . . φ11] (2)

2 Background

32

makes use of the model. The CQ-transform is employed in order to extract a pitch-class

distribution, which is in turn input to the CPS model. The model then maps the vector to 7

different circular pitch spaces, which essentially gives 7 different predictions for the key.

2.3.2.4 Chord Progression and HMM-Based Methods

The ability to automatically identify the key and label the chords from audio would be

extremely useful for the purpose of harmonic analysis. Identifying the presence of certain

chords in a piece of music can lead to an improved estimate of the key. Similarly,

knowing the key of a piece of music can improve the accuracy of chord identification. As

such, chord recognition and key detection are two closely related problems and have been

approached simultaneously by various researchers.

One of the most prominent tools for approaching this problem is the Hidden Markov

Model (HMM). A HMM is a type of statistical model which is commonly used for

temporal pattern recognition. It consists of a sequence of states that are hidden to the

observer, which model a stochastic process. The states are observable only through

another set of stochastic processes, which produce a set of time-based observations (Lee

and Slaney 2007). The model is parameterized with a discrete number of states, a state

transition probability distribution (i.e., the probability of each state transitioning to

another one), and an observation probability distribution (i.e., the probability that each

state leads to a particular observation) (Noland and Sandler 2006).

Chai and Vercoe (2005) present an HMM-based audio key detection system that

segments the signal based on modulations and identifying the key of each segment. A 24-

dimensional pitch-class distribution (i.e., half semitone resolution) is used, as opposed to

the standard 12-dimensional vector. The proposed approach is to first detect the scale root

note (the tonic) in one step and then to detect the mode of the key. Thus, two different

HMMs are used, one for each step. The first HMM has 12 states (i.e., one for each key)

and the second HMM has just 2 states (i.e., one for each mode: major and minor). State

2 Background

33

transition probability distributions are represented as a 12x12 matrix for the first HMM

and a 2x2 matrix for the second. The initial parameters of the HMMs were set empirically

with values based on music theory. Ten classical piano pieces, manually annotated with

key based on segmentation were used to evaluate the system. Three different criteria were

used for the evaluation: recall (i.e., proportion of detected segmentations that are

relevant), precision (i.e., proportion of relevant transitions detected), and label accuracy

(i.e., proportion of correctly labeled segments). The maximum label accuracy achieved

was approximately 83%.

Peeters (2006a, 2006b) proposes an audio key detection system that implements one

HMM for each of the 24 possible keys. A front-end algorithm is used to extract a

sequence of time-based chroma-vectors (i.e., pitch-class distributions) for each of the

songs in a training set of key annotated music. All of the chroma-vectors for songs in the

major mode are then mapped to C major and all of the chroma-vectors for songs in the

minor mode are mapped to C minor. This data is then used to train two HMMs: one for

the major mode and one for the minor mode. One HMM is then created for each of the 24

keys by applying circular permutation of the mean vectors and covariance matrices of the

state observation probability. Peeters goes on to compare the HMM-based model with a

template-based system that is a combination of the models proposed by Gómez (2006b)

and Izmirli (2005a). A flowchart depicting both of the implemented methods is shown in

Figure 2.13. In an evaluation using 302 classical music pieces, the template-based system

had a maximum key recognition rate of 85.1%, whereas the HMM-based model had a

maximum key recognition rate of 81%. Peeters claims that part of the reason for the lower

recognition rate of the HMM-based system is due to the fact the training set included

music with modulations to neighboring keys. These modulations led to perfect 5th, parallel

major/minor, and relative major/minor errors.

Noland and Sandler (2007) undertook an experiment in which they analyze the effect

of low-level signal processing parameters on two audio key identification algorithms: one

template-based algorithm and one HMM-based algorithm. The template-based algorithm

uses the CQ-transform in order to extract pitch-class distributions from the signal, which

2 Background

34

are correlated with templates derived from recordings of J. S. Bach’s The Well Tempered

Clavier. The HMM model is based on a previous implementation (Noland and Sandler

2006) and a simplified version is shown in Figure 2.14. The results of Krumhansl’s probe-

tone experiments (Krumhansl 1990) are used to initialize the transition and state

observation probabilities. Both algorithms were evaluated using a corpus of 110 Beatles

songs, testing different values for several low-level parameters: downsampling factor,

window length, hop size, and highest constant-Q frequency. The results showed that the

choice of parameters had different effects on the two algorithms, leading to the conclusion

that an optimal choice of signal processing parameters is highly dependent on the

particular algorithm that is implemented.

Fig. 2.13: Flowchart of the audio key estimation system (from Peeters
2006a).

Sound

Spectrum (DFT)

Chroma

Harmonic Peak
Subtraction

Cognitive
Key-chroma

profiles

HMM
decoding

Key
(key-note/ mode)

Krumhansl
Temperley

Diatonic

Harmo.
contrib.

Main triads

Pre-processing
Silence detection, Tuning

Scale (lin, ener, sone)

HMM for CM
HMM for DbM

HMM for Cm
...

Decision
method HMM for C#m

...

Figure 1. Global flowchart of the key estimation system.

The paper is organized as follows. In section 2.2, we
propose our Harmonic Peak Subtraction function for spec-
tral observation of periodicities. In section 2.3, we propose
the mapping of it to the chroma domain. We show the im-
portance of the scale used for the mapping and propose the
use of a sone scale. In section 2.4, we present the various
key decision methods and propose a method based on hid-
den Markov modeling of the keys. In section 3, we evaluate
the performances of our system in comparison with various
other systems. The evaluation is performed using a database
of 302 baroque, classical and romantic music tracks.

2. Key estimation system

The global flowchart of the key estimation system is indi-
cated in Figure 1. We detail it in the following.

2.1. Pre-processing stages

A set of pre-processing algorithms are first applied to the
signal. The signal is first down-sampled to 11025Hz and
converted to mono by mixing both channels. The exact
starting time of the music piece in the sound file is estimated
by a method based on loudness and spectral flatness mea-
sure. The tuning of the track is then found using the method
we have proposed in [12]. In short, we test a set of candidate
tunings between 427Hz and 452Hz (the quarter-tones below
and above A4). For each candidate tuning, we estimate the
amount of energy of the spectrum explained by the frequen-
cies corresponding to the semitones based on this candidate
tuning. For the database we will use in section 3, we have
found tunings ranging from 438 to 447Hz with concentra-
tion at 440Hz and 443Hz. Using this estimation, the signal
is re-sampled (using a polyphase filter implementation) in
order to bring its tuning back to 440Hz. The rest of the sys-
tem is based on a tuning of 440Hz.

2.2. Spectral observation: Harmonic Peak Subtraction

The front-end of most key estimation systems extracts a
spectral representation from the signal. Since this represen-
tation will be mapped to the chroma domain, it is important
that it represents only information about the pitches and not

all their harmonics. Indeed, the presence of the harmon-
ics of the pitches will distort the chroma representation (for
example the harmonics h = 3, 6 will strengthen the pres-
ence of the fifth note and h = 5 the presence of the third)
and induce error in the key estimation (especially the fifth
up/down confusion). In this paper we propose the use of a
Harmonic Peak Subtraction function, which allows reducing
the influence of the higher harmonics of each pitch.

In the case of mono-pitch signals, we have proposed in
[11] a function which combines a frequency representation
S(fk) (the DFT or the Auto-Correlation of the DFT) with
a temporal representation r(τl) (the Auto-Correlation of the
signal or the Real-Cepstrum function) mapped to the fre-
quency domain. The mapping consists in considering that
the value of r(τl) is a measure of the periodicity at lag τl
or at the frequency 1/τl. We interpolate the values of r(τl)
in order to obtain the values of r(τ) at the same frequency
as the DFT τ = 1/fk. Only the positive values of r(1/fk)
are considered (Half Wave Rectification). We now have two
measures of the periodicity at the same frequencies fk and
the final function is obtained by computing the product of
both: h(fk) = S(fk) · r(1/fk). This function has been
tested in [11] for a task of pitch estimation. For this, we sim-
ply take the frequency corresponding to the maximum peak
of h(fk) as the pitch estimation. This process has achieved
97% correct recognition over a large database.

The underlying process of this method is that the ACF
(or Real-Cepstrum) r(τ) can be considered as the decom-
position of the power spectrum (log-amplitude spectrum),
A(fk), on a cosine function gτ (fk) = cos(2πfkτ) and there-
fore measures the periodicity of the peaks of A(fk). This is
illustrated in Figure 2 where we superimposed gτ (fk) on
A(fk) for various lags: τ = T0/5, τ = T0 and τ = 2T0.
We decompose gτ (fk) into its positive and negative part:
gτ (fk) = g+

τ (fk) − g−τ (fk). Positive values of r(τ) occur
only when the contribution of the projection of A(fk) on
g+

τ (fk) is greater than the one on g−τ (fk) (this is the case
for the sub-harmonics of f0, τ = k/f0, k ∈ N+). Non-
positive values occur when the contribution of g−τ (fk) is
larger than or equal to the one of g+

τ (fk) (this is the case for
the higher harmonics of f0, τ = 1/(kf0), k > 1, k ∈ N+).
On the other side, energy in the spectrum S(fk) only exist
for f = f0, 2f0, ... so that when multiplying S(fk) and
r(1/fk) only the peak at f = f0 remains.

This function is not a pitch detection algorithm but a rep-
resentation that strengthens the energy at the pitch frequency
and reduces the energy at the other harmonics. Because of
that we would like to use this method as a front-end for key
estimation which would therefore avoid the effect we have
mentioned above about the presence of higher harmonics.

However in the case of multi-pitch signals, the above-
mentioned function cannot be applied directly. For multi-
pitch signal, the relationship between r(τ) and the period-
icity of the various pitches becomes intricate. We therefore
use the same underlying process but without the use of the
projection on cosine functions. This process can be summa-
rized as testing the hypothesis that fk is a pitch (value given
by the projection of A(fk) on g+

τ (fk)) against the hypothe-
sis that fk is a higher harmonic (projection on g−τ (fk)) or a
lower harmonic of another pitch (multiplication by S(fk)) 1 .

1 It should be noted that this method does not allow to solve the missing

2 Background

35

Fig. 2.14: Simplified version of the HMM, showing only three of the
possible keys (from Noland and Sandler 2007).

Burgoyne and Saul (2005) present a system for tracking chords and key

simultaneously, that implements a Dirichlet-based HMM. A Dirichlet distribution is a

type of probability distribution that can be used in place of the more common Gaussian

distribution for the implementation of an HMM. Dirichlet distributions place more

emphasis on the relations of the outputs as opposed to their magnitudes. This is preferable

for the case of chord detection from pitch-class distributions, because the important aspect

is the presence of certain notes and not their magnitude. Burgoyne and Saul’s system uses

Dirichlet distributions to parameterize the observation distributions of the HMM in their

system. The HMM was trained using a corpus of 5 Mozart symphonies in 15 movements,

accompanied with ground truth harmonic analysis. Evaluation was then performed using a

recording of Minuet from Mozart’s Symphony No. 40. The correct chords were detected

83% of the time, however, the system was unable to identify the correct key.

Lee and Slaney (2007) also approach the audio key-finding problem by implementing

an HMM-based system that performs chord recognition and key detection simultaneously.

The system uses the Tonal Centroid vector that was proposed by Harte et al. (2006) (see

Section 2.3.2.3). A separate 24-state HMM is built for each of the 24 possible keys, and

Noland AND Sandler Signal Processing Parameters for Tonality Estimation

lations away from the home key are short and largely

restricted to closely related keys; there is an equal

number of tracks in each key; and the key of each

track is given in the title so it is not necessary to

rely on human judgement.

The hpcp is summed over each track, then rotated

such that the key note is represented by the first bin.

The rotated hpcp vectors are then weighted by the

duration of the track and summed over the major

then minor keys, to give a 36-bin profile for a major

and minor key. The profiles are then normalised to

sum to 1. The derived profiles are shown in figure 1.

C Db D Eb E F F# G Ab A Bb B0

0.02

0.04

0.06

Pitch Class (Relative to C)

Pr
of

ile
 V

al
ue

Major and Minor Pitch Class Profiles

major profile
minor profile

Fig. 1: 36-bin major and minor hpcp pro-
files derived from recordings of The Well-
Tempered Clavier by J.S. Bach. Profiles are
shown relative to C.

The song under test is passed through the hpcp cal-

culation, and the hpcps for each frame are summed.

The correlations between the major and minor pro-

files and all 36 rotations of the hpcp for the song

are then found, and the rotation and profile giving

the highest correlation is taken to be the key of the

song.

3. ALGORITHM 2: HIDDEN MARKOV
MODEL OF HARMONY
A more complex algorithm based on HMMs as de-

scribed by Noland and Sandler [10] was also tested.

It uses the results of Krumhansl’s probe tone exper-

iments [3] to initialise the transition and observa-

tion probabilities of an HMM where the states repre-

sent keys and the observations represent chord tran-

sitions. The observation probabilities are derived

from the chord transition ratings ([3], p.193), which

give a measure of the importance of chord transitions

within a given key; and the key transition probabili-

ties are taken from the correlations between key pro-

files ([3], p. 38), which give a measure of how closely

related each pair of keys is. A simplefied diagram of

the model is shown in figure 2.

Standard HMM decoding techniques give the prob-

ability of each key at each time step, and these are

summed over the whole track. This results in a 24-

element vector, where each element represents the

importance of a particular key within the track. The

element with the highest value is taken to represent

the key of the song.

Fig. 2: Simplefied diagram of the HMM. Only
3 of the 24 keys are shown.

The original approach works from chord symbol an-

notations, but here we work from audio using the

chord recognition algorithm described by Harte [11].

It uses a 12-bin tuned chromagram as its first sig-

nal processing stage, which requires similar process-

ing to the hpcp of algorithm 1. The chromagram

frames are multiplied by binary vectors representing

major, minor, augmented and diminished triads in

all 12 rotations, and the triad and rotation giving

the highest value is taken to be the chord for that

frame. These chords are used as the observations for

the HMM.

4. PARAMETERS UNDER TEST
Both algorithms begin with the same frame-based

frequency analysis. It was decided to investigate

those parameters that are common to both algo-

rithms, so the downsampling factor, window length,

AES 122nd Convention, Vienna, Austria, 2007 May 5–8

Page 3 of 6

2 Background

36

each state represents a single type of chord10. A corpus of 1046 audio files synthesized

from MIDI was used to train the HMMs. The system was subsequently evaluated using

recordings of 28 Beatles songs and the overall key detection rate was 84.62%.

Several instances have been reported in the literature of using HMMs for local key

finding from audio, such that the system is able to track key modulations. Catteau et al.

(2007) proposed a system of this type that performs simultaneous key and chord

recognition from audio. Using music theory derived from Lerdahl (2001), the system

implements a probabilistic framework, incorporating models for observation likelihood

and chord/key transition. Chord and key labels are inserted on a frame-by-frame basis

over the course of the audio file. An evaluation was performed using 10 polyphonic audio

fragments of popular music and the correct key was labeled for 82% of the frames.

Papadopoulos and Peeters (2009) approach the local audio key estimation problem by

considering combinations and extensions of previous methods for global audio key

finding. The system consists of three stages: feature extraction, harmonic and metric

structure estimation, and local key estimation. The feature extraction algorithm extracts a

chromagram from the audio signal, consisting of a sequence of time-based pitch-class

distributions (Papadopoulos and Peeters 2008). Metric structure estimation is then

achieved by simultaneously detecting chord progressions and downbeats using a

previously proposed method (Papadopoulos and Peeters 2008). The final stage of the

system performs local key estimation using an HMM with observation probabilities that

are derived from pitch-class templates. They create five different versions of the system

using different types of pitch-class templates: Krumhansl (1990), Temperley (2001),

diatonic, Temperley-diatonic (Peeters 2006b), and an original template where all pitch-

classes have an equal value except for the tonic, which has triple the value. The system is

then evaluated using five movements of Mozart piano sonatas, with manually annotated

ground truth data corresponding to chords and local key. A maximum local key

recognition rate of 80.22% was achieved by using the newly proposed pitch-class

template.

2 Background

37

Shenoy et al. (2004) present a novel, rule-based approach for estimating the key of an

audio signal. The system utilizes a combination of pitch-class distribution information,

rhythmic information, and chord progression patterns in order to estimate the key. The

audio signal is first segmented into quarter note frames using onset detection and dynamic

programming techniques. Once segmented, an algorithm is employed to extract the pitch-

class distribution for each frame. Using this information, the system is then able to make

inferences about the presence of chords over the duration of the audio signal. Finally, the

chord progression patterns are used to make an estimate for the key of the piece. The

system was evaluated with 20 popular English songs and had a key recognition rate of

90%.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 If the first note appearing in the melody is the tonic for a key candidate, then that candidate is chosen as
the key. If the first note is not the tonic for any of the candidates, then the same process is applied using the
dominant instead of the tonic.
2 This algorithm is an example of what Temperley (1999) calls a flat input/flat-key approach.
3 The original K-S algorithm is an example of what Temperley (1999) calls a weighted-input/weighted-key
approach. The modified algorithm proposed by Temperley (1999) is an example of what he calls a flat-
input/weighted-key approach.
4 There are many different terms used in the literature for pitch-class distribution features. Perhaps the first
reported instance of a pitch-class distribution feature was that of Fujishima (1999), who implemented the
pitch-class profile as part of his chord recognition system. See section 2.3.2.2 for more examples of
nomenclature used for pitch-class distribution features.
5 The primary advantage provided by the CQ-transform lies in the fact that the mapping to the logarithmic
frequency domain has a resolution that is geometrically proportional to the frequency. Conversely, FFT
maps to the frequency domain with a constant frequency resolution (Purwins et al. 2000).
6 The probe tone experiments were a cognitive study that derived ratings for each pitch-class within an
established tonal context. Hence Purwins, Blankertz, and Obermayer’s (2000) model is an example of a
template-based audio key detection system that uses cognitive-based pitch-class templates.
7 These templates are a combination of cognitive and statistics-based templates.
8 Clarifying low frequencies is designed to overcome some of the errors attributed to the reduced resolution
for lower frequencies. Fuzzy logic is used to determine the likelihood that a detected frequency component
is actually attributable to a pitch-class. The adaptive level weighting scheme scales the FFT results in the
various frequency ranges to improve the salience of the detected pitch content. The flattening of high and
low values is a final step that sets the pitch class membership to 1 if the detected value is greater than 0.8
and sets the value to 0 if the detected value is less than 0.2.
9 The ISO standard tuning pitch states that A = 440Hz, which is know as the concert pitch. However, there
exists other historical standards for tuning, such as the diapason normal, which has A=435Hz. Furthermore,
many acoustic recordings have inaccuracies in their tuning pitch. For instance, an orchestra will typically be
tuned using the oboe as the reference pitch, which itself may be tuned incorrectly (Zhu and Kankanhalli
2006).
10 In this model there are two types of chords, major and minor, for each of the 12 chromatic pitch-classes.
For example, an F minor triad is considered the same type of chord as an F minor seventh. This leads to 24
different possible chord types.

3 Software Design

38

Chapter 3

 Software Design

3.1 Introduction

The software application implemented for this thesis is designed to automatically identify

the key of musical excerpts from an audio signal. It employs signal processing techniques

in order to extract salient pitch information from the signal, which is then used as input to

the classifier in order to identify the key. There are four main components in the

application, all of which were developed modularly (see Figure 3.1): frequency analysis,

pitch-class extraction, pitch-class aggregation, and key classification. Several versions of

each component were created, using a variety of parameters, techniques and algorithms.

The modular approach then allowed the various component versions to be paired with

one another and evaluated in order to identify the configuration with maximum accuracy.

The remainder of this chapter will describe the details of each of these components as

well as any other pertinent information relating to the design and implementation of the

application.

3 Software Design

39

Fig. 3.1: The four primary components of the audio key detection
software application.

3.2 Software Packages

jMIR is an open-source, java-based framework intended for prototyping and developing

automatic music classification applications (McKay and Fujinaga 2009). Two

components of the jMIR software package were used to implement the audio key

detection application for this thesis: jAudio and ACE.

jAudio is an application framework for feature extraction from audio files (McEnnis

et al. 2005). It is designed to reduce the duplication of effort required for developing new

feature extraction algorithms. For example, the system handles the loading of files using

Java’s audio interface, which might otherwise be a laborious task for the researcher to

implement. It also comes bundled with a number of commonly used audio features,

which can either be extracted directly or used for the calculation of other features. The

application has the ability to extract features for each window of an audio signal, as well

as to use aggregators in order to collapse a sequence of windowed values into a single

vector (e.g., mean, standard deviation). The capabilities of jAudio made it an optimal

choice for the feature extraction algorithms used for this thesis.

ACE (Autonomous Classification Engine) is a meta-learning software package

designed for performing and optimizing music classification tasks (McKay et al. 2005).

Built on the Weka machine learning framework, ACE provides the ability to experiment

with a variety of classifier algorithms, parameters, and dimensionality reduction

techniques in order to determine an optimal arrangement for the particular task. The

3 Software Design

40

flexibility and ease of use of ACE make it an ideal choice for experimenting with various

classifier configurations for the audio key detection problem. As such, it was used for the

classification portion of the software application built for this thesis.

3.3 Feature Extraction

The feature extraction component of the software involves the application of signal

processing techniques in order to extract meaningful information from the audio signal

that can be used to identify the key. The feature extraction algorithm implemented for

this thesis can be further subdivided into three components: frequency analysis, pitch-

class extraction, and pitch-class aggregation. This section will describe the

implementation details for these components.

3.3.1 Frequency Analysis

The frequency analysis component consists of the application of a transform function in

order to convert an audio signal from the time domain to a frequency domain

representation. For the purposes of audio key detection, the FFT (Fast Fourier Transform)

is the most commonly employed technique for obtaining a frequency domain

representation from the audio signal. Figure 3.2 shows the time domain representation of

an example audio excerpt as well as the frequency domain representation, calculated

using the FFT function within Matlab.

3 Software Design

41

Fig 3.2: First 100 samples of an audio signal with a 100 Hz sine wave, a
440 Hz sine wave, and random noise (left). Frequency domain
representation using from an FFT (right).

jAudio comes bundled with the ability to extract both magnitude an power spectrums

from an audio file using a complex to complex FFT function with or without a Hanning

window. It also provides the ability to easily configure several of the low-level signal

processing parameters, such as the sampling rate, window size, and window overlap.

In order to compute the FFT, the audio signal must be divided into windows (also

known as frames) and so it is necessary to make a choice for the window size and the

amount of overlap between consecutive windows. The window size is directly

proportional to the frequency resolution of the resulting frequency domain representation.

However, the window size is inversely proportional to the temporal resolution. In other

words, the frequency resolution increases with the window size, whereas the temporal

resolution decreases. Since humans perceive pitch on a logarithmic scale, lower pitches

are closer in frequency, and therefore a higher frequency resolution is required to

differentiate between them. In the context of key detection it is necessary to have a high

frequency resolution, so larger window sizes are often used. Although this leads to a

reduced temporal resolution, increasing the window overlap amount can be used to

compensate for this effect. A finer temporal resolution improves the ability of the system

3 Software Design

42

to detect pitch content in the presence of dramatic temporal variations. However, larger

window overlaps also lead to increased amounts of data and processing times.

The choice of sampling rate, window size, and window overlap can have a dramatic

effect on the salience of pitch-class distribution that is extracted from the signal (Noland

and Sandler 2009). We experiment with various values for these parameters in order to

investigate how they affect key detection accuracy when paired with different classifiers.

Table 3.1 summarizes the combinations of frequency analysis parameters that were

tested.

Sampling Rate Window Size Window Overlap

11,025 1024 0
22,050 1024 0
44,100 1024 0
11,025 4096 0
22,050 4096 0
44,100 4096 0
11,025 8192 0
11,025 8192 0.5
22,050 8192 0
22,050 8192 0.5
22,050 8192 0.8
44,100 8192 0
44,100 8192 0.5
11,025 16,384 0
11,025 16,384 0.5
22,050 16,384 0
22,050 16,384 0.5
44,100 16,384 0
44,100 16,384 0.5
44,100 16,384 0.8

Table 3.1: Summary of the combinations of parameters that were used
when calculating the magnitude spectrum using the FFT.

3 Software Design

43

3.3.2 Pitch-Class Extraction

Once we have obtained a frequency domain representation for each window of the audio

signal, it is necessary to apply an algorithm in order to extract the pitch-class distribution.

We present a basic algorithm for mapping from the analysis frequency spectrum to the

pitch-class distribution vector. We also present several extensions that can be used in

conjunction with the basic algorithm, as well as with one another. Table 3.2 summarizes

the combinations of extensions that were tested.

Extension 1 Extension 2 Extension 3

- - -
PD - -

SFM - -
LFC - -
PD SFM -
PD LFC -

SFM LFC -
PD SFM LFC

Table 3.2: Summary of the combinations of extensions that were tested
in combination with the Basic Algorithm. The first row indicates a
permutation in which no extensions were used. PD = Peak Detection
Extension, SFM = Spectral Flatness Measure Extension, LFC = Low
Frequency Clarification Extension.

3.3.2.1 Basic Mapping Algorithm

The basic algorithm uses a mapping matrix in order to translate the windowed

frequency spectra into pitch-class distribution vectors. Using the standard value of 440

Hz to set the fundamental reference frequency of A4 (i.e., A1 = 55 Hz), we first utilize the

function n(f) to map the analysis frequency bins fj to a semitone note scale:

3 Software Design

44

 (3.1)

 An intermediate 12xN matrix D is then created with projected values of n(f) for each

pitch-class in the range of -6 to +6:

 (3.2)

A Gaussian distribution function is then employed in order to produce the mapping

matrix M. The use of the distribution function helps to counteract the effects of any

possible spectral leakage or tuning errors in the audio signal:

 (3.3)

Finally, the pitch-class distribution vector p is obtained by multiplying the FFT

spectrum values xj by the corresponding mapping matrix entry.

 (3.4)

The minimum analysis frequency to be used in the mapping is set to 55 Hz (A1), a

value based on our own preliminary experimentation as well as previous research

(Noland and Sandler 2007). The maximum analysis frequency considered is set to 1760

Hz (A6). This results in a total of five octaves to be included in the analysis, which covers

the majority of fundamental note frequencies for our corpus of music (Chuan and Chew

2005b).

3 Software Design

45

The final step in the algorithm is to normalize the pitch-class distribution vector such

that the values of all of the elements sum to one.

3.3.2.2 Peak Detection Extension

The peak detection extension algorithm is based on the Local Maximum Selection

method proposed by Chuan and Chew (2005a). Using this method, a peak is defined as

any FFT bin value that is greater than the average value to both the left and right within

any given semitone region in the analysis frequency range. Furthermore, only one peak

may exist within any given semitone region. When used in conjunction with the basic

algorithm, the only difference is in how the actual pitch-class distribution vector is

created. Instead of summing every frequency component multiplied by the mapping

matrix, as shown in Equation 3.4, only the peak frequencies are added to the bins of the

pitch-class distribution. Here, the function f(x) represents the peak selection function:

 (3.5)

3.3.2.3 Spectral Flatness Measure Extension

The Spectral Flatness Measure (SFM) Extension employs the technique proposed by

Izmirli (2005a). The SFM is defined as the ratio between the geometric mean and the

arithmetic mean of any given range of values in the analysis frequency range (xi to xj):

 (3.6)

3 Software Design

46

 (3.7)

 (3.8)

A SFM value that is closer to 1 indicates a flatter spectrum, whereas values closer to 0 are

indicative of peaks in the signal. We calculate the SFM for half octave regions within the

analysis frequency range (55 Hz to 1760 Hz). Regions that have an SFM greater than 0.6

have the values set to 0.

3.3.2.4 Low Frequency Clarification Extension

The Low Frequency Clarification Extension is based on one component of the fuzzy

analysis techniques proposed by Chuan and Chew (2005c). The method is meant to

counteract some of the errors produced as a result of the reduced frequency resolution in

the low end of the analysis frequency spectrum. In our version, the low frequencies are

considered to be those in the first two octaves of our analysis frequency range (i.e., 55 Hz

to 220 Hz). First, the peak detection algorithm described in Section 3.2.2.2 is used to find

the peaks in the first two octaves of the frequency spectrum. Each of these peaks is then

compared to any peaks that may exist in the region one semitone above and one semitone

below. If the value of any given peak is smaller than either of those found in the two

neighboring semitone regions, then it is excluded from the mapping to the pitch-class

distribution vector. The logic behind this step is that if a neighboring semitone region has

a peak value that is greater than it’s own, then it is likely that the given peak is a result of

spectral leakage.

3 Software Design

47

3.3.3 Pitch-Class Aggregation

After extracting the pitch-class distribution for each window of the audio signal, the data

must be collapsed into a single array representing the global pitch-class distribution for

the entire signal. In a typical audio key detection system, the arithmetic mean of the

windowed values is used to accomplish this. However, Chuan and Chew (2005c) note

that during the calculation of pitch-class distributions, errors tend to accumulate over

time. In order to counteract this problem, they propose a periodic cleanup procedure. The

pitch-class aggregator implemented for this thesis uses an adapted version of this

technique. The procedure first consists of separating the windowed pitch-class

distribution values into subsets of equal size. The arithmetic mean is calculated for each

subset of windowed pitch-class distributions and the smallest two pitch-class values are

then set to zero. Finally, the arithmetic mean is calculated for all of the subsets and then

normalized (i.e., values of all indices sum to one) to give the global pitch-class

distribution. Figure 3.3 illustrates this process.

We experiment with several different sizes for the subsets of windowed values,

corresponding to varying period times for the cleanup procedure. We compare the results

with an arithmetic mean aggregator that does not implement the periodic cleanup

technique. Table 3.3 summarizes the various pitch-class aggregators that were tested.

3 Software Design

48

Fig. 3.3: The periodic cleanup process used when collapsing the
windowed pitch-class distribution vectors into a single, global pitch-class
distribution vector.

Pitch-Class Aggregator Algorithm Period for Cleanup
Procedure

Arithmetic mean -
Periodic cleanup ~ 1 second
Periodic cleanup ~ 2 seconds
Periodic cleanup ~ 4 seconds

Table 3.3: Summary of the different pitch-class aggregator algorithms
that were tested. The period for the cleanup procedure is measured in
number of windows, which is dependent on the window size. As such,
the approximate time value (in seconds) is given.

3 Software Design

49

3.3.4 Key Classification

In order to classify a particular instance of a musical excerpt, the pitch-class distribution

is first extracted using the previously described techniques. The pitch-class distribution is

then used as input to a trained classifier, which identifies the instance as belonging to one

of the 24 possible keys.

The classifiers are trained using two different types of data: pitch-class distributions

extracted from training sets (see Section 4.2) and pitch-class templates derived from

previous research (see Section 4.3).

Four different classifiers from the ACE framework are used: a neural network, a k-

nearest neighbor algorithm, a support vector machine, and a naïve Bayes classifier. The

remainder of this section will introduce these classifiers and provide the details of their

implementation.

3.3.5 Neural Networks

The brain is composed of billions of elementary processing units, known as neurons. A

single neuron is in and of itself, a relatively simple structure that acts to collect, process

and propagate electrical signals throughout the brain. The immense processing power of

the brain is believed to emerge only as a result of the vast interconnected network of

these basic units. Early research into artificial intelligence sought to mimic these

structures by creating artificial neural networks (ANNs) and has since lead to the modern

field of computational neuroscience. Today, neural networks remain one of the most

popular and effective forms of machine learning systems (Russel 2003).

3 Software Design

50

3.3.5.1 ANN Units

In 1943 MucCulloch and Pitts devised a simple mathematical model of a neuron,

illustrated in Figure 3.4. This over-simplified version of a neuron serves as the basic

processing unit in an ANN. Each unit consists of three primary components: weighted

input links, an activation function and output links.

Fig. 3.4: Simple model of a neuron (Russel and Norvig 2003)

A unit receives a signal from it’s weighted input links and sums the the input:

 (3.9)

The output of the unit is then calculated from its activation function:

 (3.10)

3 Software Design

51

3.3.5.2 Network Topologies

The computational power of artificial neural networks is derived from the complex

interconnections amongst the units and not the individual units themselves (Kostek

2005). There are two primary types of ANN topologies: feedforward and recurrent

(cyclic). Recurrent topologies are not typically used for classification problems so we

will restrict our attention to feedforward networks. Feedforward networks essentially

represent a function of their current inputs, where the connection weights act as the

function parameters (Russel 2003). Figure 3.6 shows a simple example topology for a

feedforward ANN with two input units, two hidden units and one output unit. Equation

3.11 shows the function represented by the same network.

Fig. 3.6: A simple feedforward network topology with two input nodes,
one hidden layer with two nodes, and one output node.

 (3.11)

The simplest type of feedforward ANN consists of a single input layer and a single

output layer and is known as a perceptron. Perceptrons are limited by the fact that they

can only represent linearly separable functions. In order to overcome this limitation,

additional hidden layers must be added, which is known as a multilayer perceptron.

3 Software Design

52

Mulitlayer perceptrons allow for the representation of a linear combination of perceptron

threshold functions. With only one hidden layer, a multilayer perceptron is able to

represent any continuous function of it’s inputs. By adding additional hidden layers, any

discontinuous function can be represented.

3.3.5.3 Learning Algorithms

In order to train a neural network to represent a function appropriately, a learning

algorithm must be applied. The goal is to adjust the connection weights in order to reduce

the error and improve performance with the training set. This essentially amounts to an

optimization search in the weight space. For a single layer perceptron, the gradient

descent algorithm is typically used. For a multilayer perceptron, the most common

learning algorithm employed is backpropagation.

3.3.5.4 Implementation

The neural network used for this thesis consists of a feedforward multilayer perceptron

with a backpropagation learning algorithm. A number of different topologies and

parameter values were experimented with in preliminary testing in order to identify

optimal values. Table 3.4 summarizes the final makeup that was used.

3 Software Design

53

Parameter Description Value

Input nodes Number of nodes in the input layer. We use one
node for each pitch-class. 12

Output nodes Number of nodes in the output layer. We use
one for each possible key. 24

Hidden layers Number of hidden layers in the network. 1
Nodes in hidden layers Number of nodes in the hidden layer. 18

Learning rate The amount the connection weights are updates
after each epoch. 0.13

Momentum
The amount of momentum applied when

updating weights. Momentum allows
adjustments to persist over several epochs.

0.19

Training epochs The number of epochs (cycles) that are used to
train the network. 1000

Table 3.4: A summary of the topology and parameter values used for the
neural network classifier.

3.3.6 K-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm consists of classifying an instance by searching the

feature space for the closest training examples. The instance is assigned to the class that

the majority of its k nearest neighbors belongs to. If k=1, then the instance is simply

assigned to the class of its nearest neighbor. The implementation used for this thesis uses

a 12-dimensional feature space, one dimension for each pitch-class, and a Euclidean

distance metric for evaluating the distance between instances. Preliminary tests indicated

that a value of 1 for k significantly outperformed any other value and so it was the only

value used.

3.3.7 Support Vector Machines

A support vector machines is a type of supervised learning classifier that belongs to the

more general category of kernel machines (Russel and Norvig 2003). The fundamental

idea is that if input data is mapped to a sufficiently high number of dimensions, then it

3 Software Design

54

will always be linearly separable. Except in special cases, N data points will be linearly

separable in an N-1 dimension space. As such, support vector machines search for ways

to re-express the input data using computed features. This amounts to a quadratic

programming optimization problem, searching for an optimal linear separator that

maximizes the functional margin between the positive examples on the one side and the

negative examples on the other side.

Supposing there are xi input examples that can be classified as yi = ±1, then the

problem of identifying the optimal linear separator can be expressed as finding the values

of αI that maximize the value of the following expression:

(3.12)

 (3.12)

Once the optimal values for αi have been derived, the equation that defines the linear

separator is:

 (3.13)

All of the values of αI are zero, except for those that are closest to the actual linear

separator, which are known as the support vectors.

3 Software Design

55

3.3.8 Naïve Bayes Classifiers

The naïve Bayes classifier utilizes the calculation of probabilities based on the observed

sample data. This is based on the equation known as Bayes rule (Russel and Norvig

2003):

 (3.14)

The classifier works under the assumption that a single cause influences several

effects, all of which are conditionally independent. In the case of key finding, this would

mean that the key (i.e., the cause) influences the twelve values in the pitch-class

distribution (i.e., the effects), all of which are conditionally independent of one another.

Given this, it is possible to use parameter estimation techniques (e.g., method of

maximum likelihood) in a supervised learning setting in order to train the model to

classify future instances.

4 Description of the Data

56

Chapter 4

 Description of the Data

4.1 Introduction

This chapter describes the data that was used for training and evaluating the audio key

detection application. Two types of data are presented: musical excerpts and pitch-class

templates. The pitch-class templates are used strictly as training data for a set of

classifiers for Phase II of the experiment (see Section 5.3). The musical excerpts are used

to parameterize the system using cross-validation in Phase I of the experiment (see

Section 5.2), as well as to evaluate the trained classifiers in Phase II and III of the

experiment (see Section 5.3 and 5.4). The bulk of the excerpts consist of music from the

classical period, which follows the trend set by the majority of the previous studies on

audio key detection (see Appendix A, which shows the data sets used for previous studies

on audio key detection).

4.2 Musical Excerpts

Three different corpora of key-annotated musical excerpts are used as ground truth data

for training and evaluating the classifiers: classical, popular, and MIDI. The first corpus

is comprised of excerpts from the classical period, containing a variety of styles and

instrumentation, including symphonies, sonatas, concertos, preludes, and fugues. Only

the first movements are used and the key is derived from the title of the piece. The second

4 Description of the Data

57

corpus consists of excerpts of popular music songs, primarily in the pop-rock style. The

keys labels for this data set use the annotations from Mauch et al. (2009) as well as

manual annotations identified by ear. The final corpus is made up of excerpts of audio

that have been synthesized from MIDI files of classical music using Quicktime. All MIDI

files are from the classicalarchives.com website and the instrumentation that came in the

file is used. The key labels for this corpus are also derived from the titles of the pieces.

The excerpts from all of the data sets consists of only the first 30 seconds of the piece, so

as to encompass the portion that is most likely to establish the global key as well as to

avoid modulations. Furthermore, every excerpt has been manually verified by ear to be in

the key that it is annotated with.

Section 4.2.1 presents the training data sets from each of the three corpora that are

used to parameterize the system in Phase I of the experiment (see Section 5.2) as well as

to evaluate the system in Phase II of the experiment (see Section 5.3). Section 4.2.2

describes the data sets that are used to evaluate the trained classifiers in Phase III of the

experiment (see Section 5.4).

4.2.1 Training Sets

Four different data sets are used to parameterize and evaluate the system for Phase I and

II of the experiment. The first data set (“Classical”) is comprised of 248 excerpts of

pieces from the classical corpus, including excerpts of pieces by J. S. Bach (48), C. P. E.

Bach (6), Beethoven (17), Boccherini (8), Clementi (17), Haydn (106), Mozart (18),

Salieri (3), and Schubert (25). The second data set (“Popular”) is made up of 150 excerpts

of songs from the popular corpus, Including songs by The Beatles (126), Carole King (7),

and Queen (17). The third data set (MIDI) consists of 209 excerpts from the MIDI

corpus, with pieces by Bach (48), Beethoven (65), Haydn (57), Mozart (18), and Schubert

(21). The final data set (“Combined”) is the composite of the first three data sets (i.e., 248

excerpts from the classical corpus, 150 excerpts from the popular corpus, and 209

4 Description of the Data

58

excerpts from the MIDI corpus). For detailed information on the excerpts used for the

training sets, see Appendix A.

4.2.2 Test Sets

Four different data sets are used to evaluate the trained classifiers in Phase III of the

experiment (see Section 5.4). The first data set is from the classical corpus and consists of

excerpts of the first 30 seconds of each of Chopin’s 24 preludes Op. 28. The second data

set also consists of excerpts of the first 30 seconds of Chopin’s 24 preludes Op. 28, but

synthesized from MIDI files obtained from the classicalarchives.com website. The third

data set is made up of 59 excerpts from a variety of artists in the popular corpus,

primarily in the pop-rock style. The final data set consists of a random selection of 10

excerpts from each of the three aforementioned data sets (i.e., 10 excerpts from the

classical test data set, 10 excerpts from the MIDI test data set, and 10 excerpts from the

popular test data set). For detailed information on the excerpts used for the test sets, see

Appendix B.

4.3 Pitch-Class Templates

Six different pitch-class templates are used to train a set of classifiers (see Section 5.3).

The data used for these templates is compiled from the research of Krumhansl (1990),

Temperley (2001), Izmirli (2005a), and Papadopoulos (2009). All of the templates have

their values normalized so that they sum to one. Table 4.1 gives a summary of all of the

templates. Table 4.2 presents the data that was used for each pitch-class value in the

various templates and the remainder of the section shows graphical representations of the

data.

4 Description of the Data

59

Template Description

Diatonic (D) Diatonic pitch-classes have a value of one (before normalization) and
all others are zero

Krumhansl (K) Derived from the probe tone experiments of Krumhansl and Kessler
(Krumhansl 1990)

Temperley (T) Temperley modified the Krumhansl templates with improved results
(Temperley 2001)

Krumhansl-Diatonic (KD) The product of the diatonic and Krumhansl templates

Temperley-Diatonic (TD) The product of the diatonic and Temperley templates (Izmirli 2005a)

Papadopoulos (P) Diatonic pitch-classes have an equal value, except the tonic, which has
triple the value

Table 4.1: A summary of all of the pitch-class templates.

Pitch-
Class DM Dm KM Km TM Tm KDM KDm TDM TDm PM Pm

0 0.14 0.14 0.15 0.14 0.13 0.13 0.21 0.21 0.17 0.17 0.33 0.33
1 0 0 0.05 0.06 0.05 0.05 0 0 0 0 0 0
2 0.14 0.14 0.08 0.08 0.09 0.09 0.12 0.11 0.12 0.12 0.11 0.11
3 0 0.14 0.06 0.12 0.05 0.12 0 0.18 0 0.16 0 0.11
4 0.14 0 0.10 0.06 0.12 0.05 0.15 0 0.16 0 0.11 0
5 0.14 0.14 0.10 0.08 0.10 0.10 0.14 0.12 0.14 0.14 0.11 0.11
6 0 0 0.06 0.06 0.05 0.05 0 0 0 0 0 0
7 0.14 0.14 0.12 0.10 0.12 0.12 0.17 0.15 0.16 0.16 0.11 0.11
8 0 0.14 0.06 0.09 0.05 0.09 0 0.13 0 0.12 0 0.11
9 0.14 0 0.09 0.06 0.09 0.05 0.12 0 0.12 0 0.11 0

10 0 0 0.05 0.08 0.04 0.04 0 0 0 0 0 0
11 0.14 0.14 0.07 0.07 0.10 0.10 0.10 0.10 0.14 0.14 0.11 0.11

Table 4.2: The data used for each of the pitch-class templates. D:
diatonic, K: Krumhansl, T: Temperley, KD: Krumhansl-diatonic, TD:
Temperley-diatonic, P: Papadopoulos, M: major, m: minor.

4 Description of the Data

60

Fig. 4.1: Graphical representation of diatonic, Krumhansl, and
Temperley pitch-class templates.

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Diatonic Major	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Diatonic Minor	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Krumhansl Major	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Krumhansl Minor	

0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Temperley Major	

0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Temperley Minor	

4 Description of the Data

61

Fig. 4.2: Graphical representation of the Krumhansl-diatonic,
Temperley-diatonic, and Papadopoulos pitch-class templates.

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

0.18	

0.21	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Krumhansl-Diatonic Major	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

0.18	

0.21	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Krumhansl-Diatonic Minor	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

0.18	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Temperley-Diatonic Major	

0.00	

0.03	

0.06	

0.09	

0.12	

0.15	

0.18	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Temperley-Diatonic Minor	

0.00	

0.05	

0.10	

0.15	

0.20	

0.25	

0.30	

0.35	

I	

 II	

 III	

 IV	

 V	

 VI	

 VII	

Papadopoulos Major	

0.00	

0.05	

0.10	

0.15	

0.20	

0.25	

0.30	

0.35	

I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	

Papadopoulos Minor	

5 Experimental Setup

62

Chapter 5

 Experimental Setup

5.1 Introduction

As described in Chapter 3, the software consists of four different components: frequency

analysis, pitch-class extraction, pitch-class aggregation, and key classification. Several

versions of each of these components were created, using a variety of parameter values

and algorithms. We will refer to these various permutations as prototypes.

The experiment is comprised of three phases. Phase I is essentially a

parameterization of the system. Four sub-phases are run, in which various combinations

of frequency analysis parameters, pitch-class extraction algorithms, pitch-class

aggregators, and classifiers are tested. The evaluation uses 10-fold cross-validation with

each of the four training data sets (see Section 4.2.1). The results of Phase I are then used

to select the prototype (i.e., the combination of frequency analysis parameters, pitch-class

extraction algorithm, and pitch-class aggregator) to be used for the subsequent phases of

the experiment. Furthermore, a set of models is trained using the data extracted with the

selected prototype. One model is trained for each type of classifier (see Section 3.4) and

each of the 4 training data sets.

Phase II of the experiment trains and evaluates another set of models. One model is

trained for each type of classifier and each type of pitch-class template (see Section 4.3)

and is subsequently evaluated using each of the 4 training data sets. This phase provides a

5 Experimental Setup

63

means of comparison between the models trained with the pitch-class templates and those

that are evaluated using cross-validation in Phase I.

The final phase of the experiment uses the 4 test data sets (see Section 4.2.2) to

evaluate all of the trained models from the previous two phases. There are 16 models

trained from Phase I (i.e., one model of each type of classifier trained with each of the 4

training data sets) and 24 models trained from Phase II (i.e., one of each type of classifier

trained with each of the 6 types of pitch-class templates).

Five different types of results are given for each phase of the experiment. One result

is given for each of the four types of data sets: classical, popular, MIDI, and the

combined data set. The final type of result given is the average of the results from the

four different data sets.

5.2 Phase I: Cross-Validation Evaluation

Phase I entails testing the different prototype feature extraction algorithms using the k-

nearest neighbor algorithm with k=1 and 10-fold cross-validation. The prototype

implementations include 20 different sets of frequency analysis parameters (see Table

3.1), 8 combinations of pitch-class extraction algorithms (see Table 3.2), and 4 types of

pitch-class aggregators (see Table 3.3). A final evaluation is performed using the 4

different types of classifiers: a neural network, a k-nearest neighbor algorithm, a support

vector machine, and a naïve Bayes classifier. All of the evaluations for Phase I of the

experiment are run with the training data sets described in Section 4.2.1.

It is clear that testing every permutation of these components would lead to a

prohibitively large set of results. As such, the different versions of each component are

only evaluated with a selected portion of permutations of the other components. This is

accomplished by performing 4 different sub-phases of the experiment: A: frequency

analysis, B: pitch-class extraction, C: pitch-class aggregation, and D: key classification.

5 Experimental Setup

64

Using the results from each sub-phase, only one set of parameters or algorithms are used

for the subsequent sub-phases.

5.2.1 Sub-Phase A: Frequency Analysis

The 20 different permutations of frequency analysis parameters (see Table 3.1) are tested

in combination with the basic mapping algorithm for pitch-class extraction (i.e., no

extensions are used), the arithmetic mean pitch-class aggregator, and the k-nearest

neighbor classifier with k=1 and 10-fold cross-validation.

5.2.2 Sub-Phase B: Pitch-Class Extraction

Each of the 8 different permutations of pitch-class extraction extensions (see Table 3.2) is

evaluated with the best performing average frequency analysis parameters from Sub-

phase A. The k-nearest neighbor classifier with k=1 is used with 10-fold cross-validation.

5.2.3 Sub-Phase C: Pitch-Class Aggregation

The best performing average prototype from Sub-phase B is tested in combination with

the 4 different types of pitch-class aggregators (see Table 3.3). Once again, the k-nearest

neighbor algorithm with k=1 is used with 10-fold cross-validation for evaluation.

5.2.4 Sub-Phase D: Key Classification

The 4 different classifiers (neural network, k-nearest neighbor, support vector machine,

and naïve Bayes) are evaluated using the best performing average prototype from Sub-

5 Experimental Setup

65

phase C. This essentially provides a summary of the best performing prototype for Phase

I.

5.2.5 Training Models

The data extracted (i.e., pitch-class distributions) using the best performing prototype is

used to train a set of models that will be evaluated as part of Phase III of the experiment.

One model is trained for each of the 4 types of classifiers and each of the 4 different

training data sets, leading to a total of 16 models.

5.3 Phase II: Pitch-Class Template Evaluation

Phase II of the experiment trains each of the 4 different classifiers with each of the 6

different types of pitch-class templates described in Section 4.3. This leads to a total of

24 different models (i.e., 4 classifiers x 6 pitch-class templates for training). Each of these

models is then evaluated using the each of the four training data sets described in Section

4.2.1. The purpose of this phase is to provide a means of comparison between the models

trained with the pitch-class templates and those that were evaluated using cross-

validation in Phase I of the experiment.

5.4 Phase III: Test Set Evaluation

Both Phase I and II of the experiment utilize the training data sets for evaluation. Since

the training data sets were used to parameterize the system in Phase I, the results of these

evaluations have possibly overfit the data. As such, Phase III of the experiment is

designed to give a more reliable evaluation using the test data sets described in Section

4.2.2. Each of the 16 trained models from Phase I, and the 24 trained models from Phase

5 Experimental Setup

66

II, are evaluated using each of the 4 test data sets, which were not used during the

training sessions.

6 Results and Discussion

67

Chapter 6

 Results and Discussion

6.1 Phase I: Cross-Validation Evaluation

The first phase of the experiment is designed to parameterize the feature extraction

parameters and algorithms. Sub-phase A evaluates the frequency analysis parameters,

Sub-phase B evaluates the pitch-class extraction algorithms, Sub-phase C evaluates the

pitch-class aggregators, and Sub-phase D shows the performance with the four different

classifiers. The first three sub-phases (i.e., A, B, and C) all use the k-nearest neighbor

algorithm with k=1 as the classifier. All of the sub-phases use 10-fold cross-validation on

each of the four training data sets (see Section 4.2.1) for evaluation. In addition to results

for each of the four data sets, the average result of the four data sets is also given.

6.1.1 Sub-Phase A: Frequency Analysis

For Sub-Phase A, three frequency analysis parameters, namely sampling rate, window

size, and window overlap were varied. Table 6.1 shows the results of the evaluation using

the four different training data sets (see Section 4.2.1) as well as the average of the four

results.

The results show that the following frequency analysis parameters had the best

performance for the average of the four training data sets: a sampling rate of 22,050 Hz, a

6 Results and Discussion

68

window size of 8192 samples, and a window overlap of 0.8. Therefore, these parameter

values were selected for all subsequent phases of the experiment.

Results (%) Sampling

Rate (Hz)
Window

Size
Window
Overlap Classical Popular MIDI Combined Average

11,025 1024 0 63.89 52.39 72.34 69.04 64.42
22,050 1024 0 55.58 42.91 61.91 55.41 53.95
44,100 1024 0 37.98 25.19 37.27 35.45 33.97
11,025 4096 0 73.36 61.96 74.68 76.01 71.50
22,050 4096 0 74.20 61.60 77.65 75.84 72.32
44,100 4096 0 66.51 53.01 73.44 67.41 65.09
11,025 8192 0 74.83 59.24 71.14 76.16 70.34
11,025 8192 0.5 75.28 60.85 75.26 77.41 72.20
22,050 8192 0 73.40 61.28 73.41 75.60 70.92
22,050 8192 0.5 75.32 64.27 75.47 77.04 73.03
22,050 8192 0.8 76.86 65.07 77.67 79.23 74.71
44,100 8192 0 70.79 64.75 76.60 76.12 72.07
44,100 8192 0.5 72.31 62.54 76.60 77.56 72.25
11,025 16,384 0 70.11 61.27 73.72 76.60 70.43
11,025 16,384 0.5 72.09 61.24 76.40 78.20 71.98
22,050 16,384 0 71.07 62.42 77.04 75.22 71.44
22,050 16,384 0.5 74.48 62.75 73.68 76.96 71.97
44,100 16,384 0 74.50 62.00 73.83 76.50 71.71
44,100 16,384 0.5 75.69 63.25 75.59 77.93 73.12
44,100 16,384 0.8 76.10 64.58 76.48 77.73 73.72

Table 6.1: The results of the frequency analysis parameter evaluation,
varying the sampling rate, window size, and window overlap. Results are
shown for each of the four training data sets (see Section 4.2.1) as well
as the average for the four data sets. The row with the best average value
is highlighted.

6.1.2 Sub-Phase B: Pitch-Class Extraction

The best average performing frequency analysis parameters identified in Sub-Phase A

were used for Sub-Phase B. Table 6.2 shows the results of evaluating eight different

combinations of pitch-class extraction extensions for each of the four training data sets,

as well as the average of the four data sets.

6 Results and Discussion

69

The results of the evaluation indicate that the best average performance is achieved

with the basic mapping algorithm in combination with the peak detection and low-

frequency clarification extensions. As such, this combination of pitch-class extraction

extensions was used for all subsequent phases of the experiment.

Results Pitch-Class Algorithm Classical Popular MIDI Combined Average

BA 76.86 65.07 77.67 79.23 74.71
BA + PD 77.13 67.38 79.16 77.31 75.25

BA + SFM 74.34 57.40 75.29 72.66 69.92
BA + LFC 75.56 66.23 79.84 79.14 75.19

BA + PD + SFM 71.84 59.56 74.99 75.28 70.42
BA + PD + LFC 78.34 67.35 79.45 80.42 76.39

BA + SFM + LFC 75.73 62.11 78.92 77.53 73.57
BA + PD + SFM + LFC 75.19 60.80 77.87 76.96 72.71

Table 6.2: The results of evaluating various combinations of pitch-class
extraction extensions on each of the four training data sets. The average
of the results from the four data sets is also given. The row with the
highest average result is highlighted. BA: basic mapping algorithm, PD:
peak detection, SFM: spectral flatness measure, LFC: low-frequency
clarification. See Chapter 3 for details.

6.1.3 Sub-Phase C: Pitch-Class Aggregation

For Sub-Phase C, the best performing average parameters from Sub-phase A are used

(i.e., a sampling rate of 22,050 Hz, a window size of 8192 samples, and a window

overlap of 0.8) in combination with the best average performing pitch-class extraction

algorithm from Sub-Phase B (i.e., the basic algorithm with the peak detection and low

frequency clarification extensions). Each of the four variations of pitch-class aggregators

is evaluated with the four training data sets. Table 6.3 presents the results for each of the

four data sets, as well as the average of the four.

6 Results and Discussion

70

The results of the sub-phase show that the periodic cleanup aggregator with a period

of 4.01 seconds had the best average performance. Therefore it was used for all

subsequent phases of the experiment.

Results (%) Pitch-Class Aggregator Classical Popular MIDI Combined Average

AM 78.34 67.35 79.45 80.42 76.39
PC, period = 1.04 seconds 78.31 66.17 79.92 78.37 75.69
PC, period = 2.01 seconds 79.53 68.58 78.74 79.77 76.66
PC, period = 4.01 seconds 79.89 70.13 80.32 78.98 77.33

Table 6.3: The results of the pitch-class aggregator evaluation on each of
the four training data sets, as well as the average result. The row with the
highest average result is highlighted. AM: arithmetic mean, PC: periodic
cleanup.

6.1.4 Sub-Phase D: Key Classification

For Sub-Phase D, the best performing average parameters from Sub-phase A are used

(i.e., a sampling rate of 22,050 Hz, a window size of 8192 samples, and a window

overlap of 0.8) in combination with the best average performing pitch-class extraction

algorithm from Sub-Phase B (i.e., the basic algorithm with the peak detection and low

frequency clarification extensions), and the best average performing pitch-class

aggregator from Sub-Phase C (i.e., periodic cleanup with a 4.01 second period). Each of

the four classifiers is evaluated using each of the four training data sets with cross-

validation. Table 6.4 shows the results of the evaluation for each of the four training data

sets, as well as the average result of the four data sets.

6 Results and Discussion

71

Results (%) Classifier Classical Popular MIDI Combined Average

K-nearest Neighbor, K=1 79.89 70.13 80.32 78.98 77.33

Neural Network 76.38 63.21 77.55 79.30 74.11

Naïve Bayes 76.81 63.08 73.13 79.32 73.09

Support Vector Machine 67.01 61.37 67.61 72.06 67.01

Table 6.4: The results of the key classification using the four different
classifiers with each of the four training data sets. The average result of
the four data sets is also given. The best result in each column is
highlighted.

6.1.5 Summary

Table 6.5 summarizes the frequency analysis parameters, pitch-class extraction

algorithm, and pitch-class aggregator that were selected based on the results of Sub-phase

A, B, and C of Phase I. The data (i.e., pitch-class distributions) extracted using this

configuration are used to train a set of models that will be evaluated in Phase III. One of

each of the four classifiers is trained with each of the four training data sets, leading to a

total of sixteen trained models.

6 Results and Discussion

72

Sampling
Rate (Hz) Window Size Window

Overlap
Pitch-Class Extraction

Algorithm Pitch-Class Aggregator

22,050 8192 0.8

Basic mapping
algorithm with peak
detection and low-

frequency clarification
extensions

Periodic cleanup aggregator
with a period of 4.01 seconds

Table 6.5: Summary of the frequency analysis parameters, pitch-class
extraction algorithm, and pitch-class aggregator selected based on the
results of Sub-phase A, B, and C of Phase I.

Table 6.6 shows the results of the best performing classifiers from Sub-phase D, for

each of the four data sets as well as the average of the four data sets. In order to provide

more detailed results for the best performing classifiers, the types of errors are also listed.

A perfect 5th error refers to when a key is detected that is a perfect 5th (i.e., seven

semitones) away from the correct key (e.g., detected key: C, correct key: G). A relative

major/minor error refers to when a key is detected that is the relative major/minor of the

correct key (e.g., detected key: C, correct key: Am). A parallel major/minor error refers

to when a key is detected that is the parallel major/minor of the correct key (e.g., detected

key: A, correct key: Am). Furthermore, the metric from the MIREX ’05 audio key

finding task is also given (MIREX score). This metric gives 1 point for the correct key,

0.5 points for perfect 5th errors, 0.3 points for relative major/minor errors, and 0.2 points

for parallel major/minor errors. The MIREX score is then calculated by dividing the

number of points by the total number of instances.

6 Results and Discussion

73

Data Set Classifier
Perfect

5th
Errors

Relative
Major /
Minor
Errors

Parallel
Major /
Minor
Errors

Other
Errors

Raw
Score
(%)

MIREX
Score
(%)

Classical K-NN 20 11 9 10 79.89 83.87
Popular K-NN 15 8 8 15 70.13 77.67
MIDI K-NN 20 10 5 6 80.32 87.08

Combined NB 51 32 17 26 79.32 85.58
Average K-NN 9.14% 4.89% 3.71% 5.74% 77.10 83.31

Table 6.6: The best performing classifiers for Phase I, using the
parameters and algorithms listed in Table 6.5. The types of errors are
shown as well as the score that is based on the MIREX ’05 metric
(MIREX score). The bottom row shows the best performing classifier for
the average of the four data sets1. K-NN: k-nearest neighbor, NB: naïve
Bayes.

6.1.6 Discussion

The results of Sub-phase A (Table 6.1) show a great deal of variation in performance

based on the selected frequency analysis parameters. As a general trend, we see that the

performance tends to increase with the amount of window overlap. This is perhaps

attributable to the fact that as the temporal resolution decreases with the window size, a

larger window overlap is required to compensate. A clear pattern is also apparent that the

worst performance is achieved with the smallest window size of 1024 samples, most

likely due to the decreased frequency resolution.

An analysis of the results of Sub-phase B (Table 6.2) indicates that the use of the

spectral flatness measure extension actually decreases the performance in all cases. On

the other hand, both the peak detection and low-frequency clarification extensions lead to

improved results in all cases.

The results of Sub-phase C (Table 6.3) show that the periodic cleanup procedure

tends to improve the performance, albeit only slightly. Only in the case where the period

6 Results and Discussion

74

was set to 1.01 seconds was the performance decreased relative to the arithmetic mean

aggregator.

The results of Sub-phase D (Table 6.4) show that the k-nearest neighbor algorithm

performs better than the other classifiers in almost every case (i.e., for the classical,

popular, and MIDI data sets, as well as the average result). Only in the case of the

combined data set did the naïve Bayes classifier and neural network outperform the k-

nearest neighbor algorithm by a slight margin. It should be noted, however, that the

system was parameterized using the k-nearest neighbor algorithm for the first three sub-

phases.

6.2 Phase II: Pitch-Class Template Evaluation

For the second phase of the experiment, each of the four different types of classifiers (a

neural network, a k-nearest neighbor algorithm, a support vector machine, and naïve

Bayes classifier) is trained with each of the six different types of pitch-class templates

described in Section 4.3. This leads to a total of twenty-four different trained models.

Each of the trained models is then evaluated using each of the four training data sets

described in Section 4.2.1. These results provide a means of comparison to the results

from Phase I, which are based solely on cross-validation.

6.2.1 Results

The results are shown in tables for each type of pitch-class template that was used to train

the classifiers. Each table lists the results of the evaluation for the four different training

data sets, as well as the average result for the four data sets. Table 6.7 shows the results

for the classifiers trained with the diatonic pitch-class template. Table 6.8 shows the

results for the classifiers trained with the Krumhansl pitch-class template. Table 6.9

6 Results and Discussion

75

shows the results for the classifiers trained with the Temperley pitch-class template.

Table 6.10 shows the results for the classifiers trained with the Krumhansl-diatonic pitch-

class template. Table 6.11 shows the results for the classifiers trained with the

Temperley-diatonic pitch-class template. Lastly, Table 6.12 shows the results for the

classifiers trained with the Papadopoulos pitch-class template.

Results (%) Classifier Classical Popular MIDI Combined Average

K-nearest Neighbor, K=1 57.66 52.67 63.16 57.17 57.67
Neural Network 45.97 40.67 51.67 46.62 46.23

Support Vector Machine 62.50 56.00 66.51 62.27 61.82
Naïve Bayes 48.79 41.33 50.24 47.45 46.95

Table 6.7: Diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 64.52 80.67 63.64 63.43 68.07

Neural Network 54.44 54.00 46.41 51.57 51.61
Support Vector Machine 63.71 74.67 58.37 64.58 65.33

Naïve Bayes 57.66 48.00 57.89 55.35 54.73

Table 6.8: Krumhansl templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 69.35 76.67 72.25 71.50 72.44

Neural Network 68.15 70.00 68.42 68.70 68.82
Support Vector Machine 71.37 80.67 70.33 73.31 73.92

Naïve Bayes 59.27 60.67 62.20 60.63 60.69

Table 6.9: Temperley templates used to train the classifiers.

6 Results and Discussion

76

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 62.50 82.67 65.07 67.55 69.45

Neural Network 64.52 76.00 63.16 66.89 67.64
Support Vector Machine 65.73 81.33 64.11 69.03 70.05

Naïve Bayes 37.10 48.00 30.14 37.40 38.16

Table 6.10: Krumhansl-diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 68.55 71.33 70.81 69.69 70.10

Neural Network 70.16 68.00 73.21 70.68 70.51
Support Vector Machine 68.95 74.67 70.81 71.00 71.36

Naïve Bayes 58.87 55.33 53.11 56.01 55.83

Table 6.11: Temperley-diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 58.06 68.00 48.33 57.00 57.85

Neural Network 57.66 74.00 48.80 58.65 59.78
Support Vector Machine 56.85 75.33 48.80 58.65 59.91

Naïve Bayes 58.87 42.00 59.81 55.02 53.93

Table 6.12: Papadopoulos templates used to train the classifiers.

6.2.2 Summary

Table 6.13 gives a summary of the average result (i.e., the average of the results for the

four training data sets: classical, popular, MIDI, and combined) for each type of classifier

and each type of pitch-class template that was used for training. The average of the

average results for each type of pitch-class template (rightmost column) and each type of

classifier (bottom row) are also shown.

6 Results and Discussion

77

Table 6.14 presents the results of the best performing models (i.e., classifier and

training template type) for Phase II. The types of errors are shown as well as the score

using the metric from the MIREX ’05 audio key finding task (MIREX score). See

Section 6.15 for details on the types of errors and the MIREX metric.

Results (%) Template K-NN NN SVM NB AVERAGE

Diatonic 57.67 46.23 61.82 46.95 53.17

Krumhansl 68.07 51.61 65.33 54.73 59.94

Temperley 72.44 68.82 73.92 60.69 68.97

Krumhansl-
diatonic 69.45 67.64 70.05 38.16 61.33

Temperley-
diatonic 70.10 70.51 71.36 55.83 66.95

Papadopoulos 57.85 59.78 59.91 53.93 57.87

AVERAGE 79.12 72.92 80.48 62.06 67.51

Table 6.13: A summary of the average result of the four training data
sets for each of the classifiers and each of the pitch-class templates. The
rightmost column shows the average of the average results for each type
of pitch-class template. The bottom row gives the average of the average
results for each type of classifier. The bottom-right cell shows the
average of all the results. K-NN: k-nearest neighbor, NN: neural
network, SVM: support vector machine, NB: naïve Bayes.

6 Results and Discussion

78

Data Set Classifier Template
Perfect

5th
Errors

Relative
Major /
Minor
Errors

Parallel
Major /
Minor
Errors

Other
Errors

Raw
Score
(%)

MIREX
Score
(%)

Classical SVM Temperley 33 19 10 9 71.37 81.13

Popular K-NN Krumhansl-
diatonic 14 4 5 3 82.67 88.80

MIDI NN Temperley-
diatonic 23 14 7 12 73.21 81.39

Combined SVM Temperley 76 39 22 25 73.31 82.22

Average SVM Temperley 12.33% 6.78% 3.58% 4.06% 73.92 82.69

Table 6.14: The best performing models for Phase II, using the
parameters and algorithms selected from Phase I (see Table 6.5). The
types of errors are shown as well as the score that is based on the
MIREX ’05 metric (MIREX score). The bottom row shows the best
performing model for the average of the four data sets1. K-NN: k-nearest
neighbor, NN: neural network, SVM: support vector machine, NB: naïve
Bayes.

6.2.3 Discussion

An analysis of the results presented in Table 6.13 reveals that the combination of

classifier and pitch-class template used for training greatly influences the performance of

the model. For instance, when the Krumhansl template is used to train the neural network

and naïve Bayes classifiers, the average accuracy is 51.61% and 54.73%, respectively.

Whereas when the Krumhansl-diatonic template is used to train the same classifiers, the

average accuracy is 67.64% and 38.16%, respectively. This suggests that if any particular

classifier is chosen for audio key detection, it is important to carefully consider the type

of pitch-class template that is used for training, as it can greatly affect performance.

However, the results also seem to indicate that the classifiers trained with the Temperley

and Temperley-diatonic pitch-class templates perform well in almost every case.

6 Results and Discussion

79

We can also see from Table 6.11 that the k-nearest neighbor and support vector

machines have the best average performance for the various types of training templates.

In the case of the k-nearest neighbor classifier, this could be due to specialization, since

the feature extraction algorithm was parameterized using the k-nearest neighbor classifier

with the training data sets in Phase I. However, the fact that the support vector machine

had the best overall average performance seems indicative that it is a good choice of

classifier, at least in the case when pitch-class templates are used for training.

Looking at the results for the first three data sets in Table 6.14 (Classical, Popular,

and MIDI), we see that the best performing models in each of the three cases consists of

different classifiers and pitch-class templates for training. This suggests that the choice of

classifier and training template is also heavily dependent on the corpus of music that is

being analyzed, which supports the hypothesis of Gómez (2006b).

6.3 Phase III: Test Set

The third phase of the experiment consists of evaluating all of the trained models from

Phase I and II of the experiment with the test data sets. There are sixteen models from

Phase I trained with the training data sets (see Section 6.15) and twenty-four models from

Phase II trained with the pitch-class templates (see Section 6.2). Each of the models is

evaluated with each of four test data sets (see Section 4.2.2). This phase is particularly

important because it provides a set of results that is completely independent from the

training data.

6.3.1 Results

The results are shown in tables for each type of training data or pitch-class template that

was used to train the classifiers. Each table lists the results of the evaluation for the four

6 Results and Discussion

80

different test data sets, as well as the average result of the four test data sets. Table 6.15

shows the results for the classifiers trained with the diatonic pitch-class template. Table

6.16 shows the results for the classifiers trained with the Krumhansl pitch-class template.

Table 6.17 shows the results for the classifiers trained with the Temperley pitch-class

template. Table 6.18 shows the results for the classifiers trained with the Krumhansl-

diatonic pitch-class template. Table 6.19 shows the results for the classifiers trained with

the Temperley-diatonic pitch-class template. Table 6.20 shows the results for the

classifiers trained with the Papadopoulos pitch-class template. Table 6.21 shows the

results for the classifiers trained with the classical training data set. Table 6.22 shows the

results for the classifiers trained with the popular training data set. Table 6.23 shows the

results for the classifiers trained with the MIDI training data set. Lastly, Table 6.24 shows

the results for the classifiers trained with the combined training data set.

Results (%) Classifier Classical Popular MIDI Combined Average

K-nearest Neighbor, K=1 50.00 41.07 62.50 63.33 54.23
Neural Network 45.83 23.21 62.50 50.00 45.39

Support Vector Machine 54.17 42.86 70.83 66.67 58.63
Naïve Bayes 33.33 25.00 37.50 33.33 32.29

Table 6.15: Diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 33.33 73.21 50.00 60.00 54.14

Neural Network 37.50 35.71 37.50 36.67 36.85
Support Vector Machine 37.50 67.86 50.00 56.67 53.01

Naïve Bayes 37.50 37.50 33.33 36.67 36.25

Table 6.16: Krumhansl templates used to train the classifiers.

6 Results and Discussion

81

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 54.17 60.71 75.00 66.67 64.14

Neural Network 41.67 58.93 66.67 70.00 59.32
Support Vector Machine 50.00 73.21 70.83 70.00 66.01

Naïve Bayes 37.50 53.57 45.83 53.33 47.56

Table 6.17: Temperley templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 50.00 69.64 58.33 56.67 58.66

Neural Network 58.33 66.07 62.50 60.00 61.73
Support Vector Machine 45.83 67.86 58.33 60.00 58.01

Naïve Bayes 25.00 53.57 12.50 26.67 29.44

Table 6.18: Krumhansl-diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 66.67 66.07 75.00 66.67 68.60

Neural Network 62.50 50.00 66.67 66.67 61.46
Support Vector Machine 62.50 69.64 75.00 73.33 70.12

Naïve Bayes 45.83 51.79 50.00 53.33 50.24

Table 6.19: Temperley-diatonic templates used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 12.50 64.29 25.00 33.33 33.78

Neural Network 41.67 66.07 50.00 56.67 53.60
Support Vector Machine 12.50 67.86 25.00 33.33 34.67

Naïve Bayes 41.67 32.14 50.00 53.33 44.29

Table 6.20: Papadopoulos templates used to train the classifiers.

6 Results and Discussion

82

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 54.17 50.00 58.33 60.00 55.63

Neural Network 45.83 57.14 58.33 56.67 54.49
Support Vector Machine 37.50 39.29 37.50 40.00 38.57

Naïve Bayes 41.67 37.50 48.83 50.00 44.50

Table 6.21: Extracted pitch-class distributions from the classical training
data set from Phase I used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 29.17 67.86 29.17 43.33 42.38

Neural Network 25.00 60.71 37.50 40.00 40.80
Support Vector Machine 20.83 46.43 29.17 23.33 29.94

Naïve Bayes 33.33 53.57 33.33 30.00 37.56

Table 6.22: Extracted pitch-class distributions from the popular training
data set from Phase I used to train the classifiers.

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 66.67 41.07 79.17 60.00 61.73

Neural Network 66.67 32.14 75.00 60.00 58.45
Support Vector Machine 50.00 32.14 54.17 50.00 46.58

Naïve Bayes 66.67 44.64 62.50 60.00 58.45

Table 6.23: Extracted pitch-class distributions from the MIDI data
training set from Phase I used to train the classifiers.

6 Results and Discussion

83

Results (%) Classifier Classical Popular MIDI Combined Average
K-nearest Neighbor, K=1 66.67 69.64 66.67 66.67 67.41

Neural Network 62.50 71.43 70.83 73.33 69.52
Support Vector Machine 54.17 57.14 50.00 50.00 52.83

Naïve Bayes 66.67 53.57 66.67 66.67 63.40

Table 6.24: Extracted pitch-class distributions from the combined
training data set from Phase I used to train the classifiers.

6.3.2 Summary

Table 6.25 gives a summary of the average result (i.e., the average of the results for the

four test data sets: classical, popular, MIDI, and combined) for each type of classifier and

each type of pitch-class template or training data set. The average of the average results

for each type of pitch-class template (rightmost column) and each type of classifier

(bottom row) are also shown.

Table 6.26 presents the results of the best performing models (i.e., classifier and

training data set or template type) for Phase III. The types of errors are shown as well as

the score using the metric from the MIREX ’05 audio key finding task (MIREX score).

See Section 6.15 for details on the types of errors and the MIREX metric. As a means of

comparison, Table 6.27 shows the results from the MIREX ’05 audio key finding contest

participants. The entries to the contest were evaluated with a set of 1252 pieces from the

Baroque, Classical, and Romantic periods, synthesized from MIDI using two different

synthesizers. This led to a total of 2504 instances in the test data set. Details on the

entries can be found in Chapter 2 (see Table 2.2).

6 Results and Discussion

84

Results (%) Template /
Training Data K-NN NN SVM NB AVERAGE

Diatonic 54.23 45.39 58.63 32.29 47.64

Krumhansl 54.14 36.85 53.01 36.25 45.06

Temperley 64.14 59.32 66.01 47.56 59.26

Krumhansl-
diatonic 58.66 61.73 58.01 29.44 51.96

Temperley-
diatonic 68.60 61.46 70.12 50.24 62.61

Papadopoulos 33.78 53.60 34.67 44.29 41.59

Classical training
data set 55.63 54.49 38.57 44.50 48.30

Popular training
data set 42.38 40.80 29.94 37.56 37.67

MIDI training
data set 61.73 58.45 46.58 58.45 56.30

Combined
training data set 67.41 69.52 52.83 63.40 63.29

AVERAGE 56.07 54.16 50.84 44.4 51.37

Table 6.25: A summary of the average of the results of the four test data
sets. An average is shown for each type of classifier and each type of
template or training data set. The rightmost column shows the average of
the average results for each type of pitch-class template or training data
set. The bottom row gives the average of the average results for each
type of classifier. The bottom-right cell shows the average of all the
results. K-NN: k-nearest neighbor, NN: neural network, SVM: support
vector machine, NB: naïve Bayes.

6 Results and Discussion

85

Data Set Classifier
Template /
Training

Data

Perfect
5th

Errors

Relative
Major /
Minor
Errors

Parallel
Major /
Minor
Errors

Other
Errors

Raw
Score
(%)

MIREX
Score
(%)

K-NN Temperley-
diatonic 2 5 0 1 66.67 77.08

K-NN
MIDI

training
data set

3 2 0 3 66.67 75.42

NN
MIDI

training
data set

4 1 1 2 66.67 77.08

NB
MIDI

training
data set

3 1 0 4 66.67 74.17

K-NN
Combined

training
data set

5 0 0 3 66.67 77.08

Classical

NB
Combined

training
data set

2 2 1 3 66.67 74.17

K-NN Krumhansl 6 5 2 2 73.21 81.96
Popular

SVM Temperley 4 6 0 5 73.21 80.00

MIDI K-NN
MIDI

training
data set

1 1 0 3 79.17 82.50

SVM Temperley-
diatonic 2 5 0 1 73.33 81.67

Combined
NN

Combined
training
data set

2 2 0 4 73.33 77.67

Average SVM Temperley-
diatonic 6.43% 14.62% 0% 4.70% 70.12 78.96

Table 6.26: The best performing models for Phase III, using the
parameters and algorithms selected from Phase I (see Table 6.5). The
types of errors are shown as well as the score that is based on the
MIREX ’05 metric (MIREX score). The bottom row shows the best
performing model for the average of the four test data sets1. K-NN: k-
nearest neighbor, NN: neural network, SVM: support vector machine,
NB: naïve Bayes.

6 Results and Discussion

86

Participant Perfect 5th
Errors

Relative Major /
Minor Errors

Parallel Major /
Minor Errors Other Errors

Raw
Score
(%)

MIREX
Score (%)

Izmirli, Ö. 78 69 35 147 86.86 89.52

Purwins &
Blankertz 116 45 37 156 85.86 89.01

Gómez, E.
(start) 79 81 45 217 83.15 86.05

Gómez, E.
(global) 142 121 43 164 81.23 85.86

Pauws, S. 43 136 63 209 81.99 84.98

Zhu, Y. 104 75 57 270 79.79 83.22

Chuan &
Chew 178 134 42 108 73.56 79.06

AVERAGE 4.22% 3.77% 1.84% 7.25% 81.78 85.39

Table 6.27: The results of the models entered in to the MIREX ’05 audio
key finding contest. The bottom row shows the average results for all of
the entries1. Each entry was evaluated with a test data set of 2504
instances of audio files synthesized from MIDI. See Table 2.2 for details
on the entries.

6.3.3 Discussion

Looking at the rightmost column of Table 6.25 we can compare the average performance

for the different types of templates or training data sets that were used to train the

classifiers. The best average performance (i.e., average of all the classifiers) of 63.29% is

achieved using the combined training data set (see Section 4.2.2). This suggests that

using extracted pitch-class distributions from large sets of ground truth data is a viable

option for training key classifiers. It is also apparent that the Temperley and Temperley-

diatonic pitch-class templates are effective at training the classifiers, as they had the next

best average performance. This is further supported by the fact that these templates also

6 Results and Discussion

87

had the best average performance in Phase II of the experiment. On the other hand, the

classifiers trained with the popular data set had a relatively poor average accuracy of

37.67%. This could be due to the fact that the musical excerpts from the popular training

data set are too dissimilar from those in the test data sets. It may also be skewed by the

fact the popular training data set contains the least number of instances compared to the

other training data sets.

The bottom row of Table 6.25 reveals that the k-nearest neighbor classifier

outperformed the other three classifiers on average. However, it should be noted that

when considering just the classifiers trained with pitch-class templates (i.e., the trained

models from Phase II, in the top six rows of results), the support vector machine seems to

perform the best. Furthermore, the bottom row of Table 6.26 shows that the best average

performance for all of the test data sets was achieved with the support vector machine

trained with the Temperley-diatonic template. This supports the findings from Phase II of

the experiment, in which the support vector machine also had the best average

performance.

An analysis of Table 6.26 provides information on what combinations of classifiers

and training data performed the best on each of the four test data sets. For example, there

are two combinations that had the same raw score of 73.21% for the popular test data set:

the k-nearest neighbor classifier trained with the Krumhansl template, and the support

vector machine trained with the Temperley template. However, the MIREX score of

81.96% for the k-nearest neighbor model indicates that it actually outperformed the

support vector machine. The best overall performance was achieved with the MIDI test

data set using a k-nearest neighbor classifier trained with the MIDI training data set. The

raw score and MIREX score are 79.17% and 82.50%, respectively. This result is perhaps

to be expected, as the data sets of musical excerpts synthesized from MIDI are more

simplistic than excerpts of real recordings.

The k-nearest neighbor algorithm trained with the Krumhansl templates produced the

best results for the popular test data set, receiving a raw score of 73.21% and a MIREX

6 Results and Discussion

88

score of 81.96%. This is significantly better than the best results for the classical test data

set, which had a raw score of 66.67% and a MIREX score of 77.08%. This may be

attributable to the fact that the classical test data set is substantially smaller than the

popular test data set. It may also be a result of the excerpts in the popular test data set

being less harmonically complex than those in the classical set. In any event, this seems

indicative that reasonable performance is achievable for audio key detection with popular

music.

The bottom three rows of Table 6.26 show the best performance for the combined

test data set and the best average performance for all of the test data sets. The support

vector machine trained with the Temperley-diatonic template produced both of these

results, suggesting that this configuration is perhaps the most robust solution when

detecting the key from multiple genres of musical excerpts. However, further evaluations

with more ground truth data would be needed to substantiate this hypothesis.

We can get and idea of how the models presented in this thesis perform relative to

previous implementations by comparing the results in Table 6.26 with those in Table 6.27

(i.e., the MIREX ’05 audio key finding contest results). Since the MIREX contest was

evaluated using audio synthesized from MIDI files, the most meaningful comparison

would be made with the results for the MIDI test data set. The average raw score for the

MIREX contest entries was 81.78% and the average score using the MIREX metric was

85.39% (see the bottom row of Table 6.27). The best performing model for the MIDI test

data set produced a raw score of 79.17% and a score of 82.50% using the MIREX metric,

which suggests that the performance is comparable with the entries to the MIREX

contest. This is, however, not conclusive because the MIDI test data set only consists of

twenty-four instances, whereas the MIREX evaluation consisted of 2504 instances.

The results suggest that the models implemented for this thesis can perform audio

key detection with a reasonable degree of accuracy. Overall, the support vector machine

classifier trained with the Temperley-diatonic pitch-class template produces the most

consistent accuracy across the different test data sets. Further parameterization and

6 Results and Discussion

89

evaluation with this configuration would be warranted for future research. Moreover, an

expanded set of ground truth data for training and testing is needed to verify these

findings, and could very well lead to improved performance.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 For the row showing the best performing model/classifier for the average of the data sets, the types of
errors are shown as percentages. The percentage of each type of error is calculated for each data set (i.e. the
percentage of the type of error relative to the size of the data set). The values in this row are then calculated
as the average of the percentages of each type of error for all of the data sets. For example, if the four data
sets have 2%, 5%, 3%, and 7% perfect 5th errors, then the value for the perfect 5th errors in this row would
be 4.25%.

7 Conclusions

90

Chapter 7

 Conclusions

This thesis has approached the audio key finding problem by evaluating a number of

algorithms and classifiers with the goal of implementing a model that maximizes key

identification accuracy. The methods employed are extensions of previous research in the

field and are essentially built on the assumption that the key of an audio excerpt can be

identified based solely on the extracted pitch-class distribution. In order to identify the

key from the pitch-class distribution, a classifier that is trained with ground truth data or

pitch-class templates is employed.

The systematic and modular evaluation of various parameters, algorithms, classifiers,

and training data led to insights on what configurations performed well in different

circumstances. It was shown that the choice of signal processing parameters and

algorithms used for feature extraction had a significant impact on the results. The pairing

of classifier and training data also greatly influenced the performance of the system.

Moreover, it was found that certain configurations performed better depending on the

corpus of music that was being used for evaluation (e.g., classical or popular). Overall,

the most consistently accurate results, regardless of the corpus of music, were achieved

with the support vector machine that was trained with the Temperley-diatonic pitch class

template. Parameterization of the feature extraction algorithm and further evaluation with

this configuration would be a worthwhile endeavor for future research. However, a larger

set of ground truth data is needed in order to ascertain more conclusive observations

about the performance of the models in general.

7 Conclusions

91

The findings of this thesis, along with previous research in the field, suggest that a

distributional approach to audio key detection (i.e., using pitch-class distributions) can

yield reasonable performance. However, it is possible that the accuracy of a system based

on this approach is bounded by a semantic gap between the relatively simplistic pitch-

class distribution feature and the high-level concept of key. Research has shown that such

a semantic gap exists for other closely related tasks in the field of music information

retrieval (Cano et al. 2005a). For example, Aucouturier and Pachet (2004) conducted an

experiment in which they identified a glass ceiling of approximately 65% accuracy for

audio similarity applications, regardless of the type of system that was employed. Similar

findings have also been reported for polyphonic melody extraction (Paivo 2007), as well

as timbre and rhythm recognition (Lu et al. 2006). If this is the case for audio key

detection, it is important for future research to investigate new approaches that go beyond

a purely distributional view.

Cognitive studies, such as that of Temperley and Marvin (2008), have suggested that

in addition to the distribution of pitch-classes, listeners also use structural cues in order to

identify the key of music. Although it is unclear exactly what these structural cues are, it

appears that the temporal ordering and arrangement of notes do play a role in how

humans perceive tonality. This is further supported by the findings of Madsen and

Wilmer (2007). They show that the accuracy of their symbolic key detection system is

improved by incorporating a probabilistic model for the transition between scale degrees.

Incorporation of this type of temporal information could also be used to improve the

performance of audio key finding systems.

Many recently proposed audio key detection systems also make use of chord

recognition techniques in order to help ascertain the key. This approach has been shown

to be successful, particularly for systems that perform local key estimation. However, the

state-of-the-art in chord detection is still fairly rudimentary and there is much room for

improvement. For example, chord detection systems, for the most part, are still unable to

7 Conclusions

92

identify inversions. Therefore it stands to reason that as advances are made in chord

detection techniques, we could also see major improvements in audio key detection.

Regardless of the methods that are utilized, it seems that one of the most significant

roadblocks to improving the accuracy of audio key detection systems is the lack of a

standardized evaluation procedure and ground truth data set. Without a common method

for assessing the performance of various approaches, comparison is extremely difficult.

Although the MIREX audio key finding competition marks a step in the right direction, it

is not without its shortcomings. Firstly, the data set used for evaluation consists solely of

audio excerpts that have been synthesized from MIDI, which does not encompass the full

complexity of the audio key finding problem. Furthermore, only pieces from the

classical, baroque, and romantic periods are included. Ideally the data used for evaluation

would include recordings of real performances from multiple genres of music. The

second problem with the MIREX procedure is that the statistics reported from the results

do not provide sufficient information on when and why the models fail. A more

comprehensive evaluation would take a modular approach, such that the various

components of the systems (e.g., frequency analysis, pitch-class extraction, key

classifiers) could be assessed independently. With this type of procedure we could gain a

better understanding of how each component of the system influenced the results, leading

to insights that facilitate future research.

A Previous Audio Detection Systems

93

Appendix A

 Previous Audio Key Detection Systems

This appendix presents a summary of the audio key detection systems that are reviewed

in Section 2.3.2.

A Previous Audio Detection Systems

94

Author(s) Algorithm Summary Data for Training &
Evaluation

Max.
Accuracy Related Work

Leman (1991,
1994)

Local tone centers extracted.
Pattern-matching algorithm

used to identify key.

• “Through the Keys”,
Bartok

• Excerpts from Sextet No.
2, Brahms Excerpt of
Prelude No. 20, Chopin

• Excerpt of Arabesque
No. 1, Debussy

N/A

Izmirli and
Bilgen (1994)

FFT to extract sequence of
note intervals and onset
times. Pattern-matching

algorithm used to produce
tonal context vector.

• “Solfege des Solfege”,
Lavignac, Vol. 2A, No. 4 N/A

Izmirli and
Bilgen (1996)

CQ-transform with peak
selection algorithm produces

set of notes for each time
step. Same pattern-matching

algorithm as previous
implementation.

• Excerpt of Op. 34, No. 2,
by Chopin N/A Izmirli and

Bilgen (1994)

Purwins et al.
(2000)

CQ-transform extracts pitch-
class distributions. Fuzzy
distance algorithm used to
compare with templates
based on probe tones.

• C minor Prelude, Op. 28,
No. 20, by Chopin N/A

Pauws (2004)

Standard pitch-class
distribution extraction with

maximum-key profile
algorithm to compare with

Krumhansl templates.

• 237 classical piano
sonatas 66.2%

van de Par et
al. (2006)

Extension of Pauws (2004)
algorithm that uses 3

different temporal weighting
functions

• 237 classical piano
sonatas, composers: J.S.
Bach, Shostakovich,
Brahms, and Chopin

98.1%
Direct

extension of
Pauws (2004)

Martens et al.
(2004)

Pitch patterns extracted from
the audio signal using an

auditory model.
Classification tree is used to

identify key from pitch
patterns.

• Templates created from
24 sequences of Shepard
chords

• Evaluation performed
with excerpt of
“Eternally”, by Quadran,
a passage of “Inventions
No. 1 in C major”, by
J.S. Bach, and an excerpt
of “Children”, by Robert
Miles

N/A

Uses bottom-
up tonal center

extraction
proposed by

Leman (2000)

A Previous Audio Detection Systems

95

Author(s) Algorithm Summary Data for Training &
Evaluation

Max.
Accuracy Related Work

Gómez and
Herrera
(2004a)

Extraction of the Harmonic
Pitch Class Profile (HPCP),

see Gómez (2006b) for
details. Machine-learning

algorithms, including binary
trees, Bayesian estimation,

neural networks, and support
vector machines used for

classification. Comparison
also made with cognition

inspired model as well as a
combined approach (i.e.,

cognition inspired +
machine learning)

• 878 excerpts of classical
music (661 for training,
217 for evaluation),
composers: Mozart,
Chopin, Scarlatti, Bach,
Brahms, Beethoven,
Handel, Pachelbel,
Tchaikovsky, Sibelius,
Dvorak, Debussy,
Telemann, Albinoni,
Vivaldi, Pasquini, Glenn
Gould, Rachmaninoff,
Schubert, Shostakovich,
Haydn, Benedetto, Elgar,
Bizet, Liszt, Boccherini,
Ravel, and Debussy

84%

HPCP based
on PCP by
Fujishima

(1999)

Chuan and
Chew (2005a)

FFT used to extract pitch-
class distribution from the

signal. Key classification is
achieved by mapping to a
point in the Spiral Array.

• 15 second excerpts of 61
renditions of 28
symphonies (1st
movement only), by
Mozart

96%

Based on the
Spiral Array
model (Chew

2002)

Chuan and
Chew (2005c)

Fuzzy analysis techniques
used to improve quality of

extracted pitch-class
distributions. CEG with

Spiral Array model is used
for key classification.

• 15 second excerpts from
410 classical audio files
recorded from MIDI.

75.25%

Same as
MIREX ’05
algorithm

(Chuan and
Chew 2005c)

Chuan and
Chew (2007)

Basic algorithm is the same
as (Chuan and Chew 2005a).

Three extensions are
proposed: the modified

spiral array, fundamental
frequency identification, and

post-weight balancing.

• “Twenty-Four Preludes,”
by Chopin ~70%

Uses same
basic

algorithm as
(Chew 2005a)

Izmirli (2005a)

FFT is mapped to pitch-
classes in order to extract the

distribution. Spectral
flatness measure is used to
disregard frequencies not

containing peaks. Pitch-class
distributions are compared

to various templates in order
to estimate key.

• 85 classical music pieces
from common practice
period, composers: J. S.
Bach, Beethoven,
Brahms, Chopin,
Clementi, Corelli,
Dvorak, Handel, Haydn,
Hoffman, Kraus, Mozart,
Pachelbel, Scarlatti,
Schubert, Scriabin,
Telemann, Tchaikovsky,
and Vivaldi

86%

A Previous Audio Detection Systems

96

Author(s) Algorithm Summary Data for Training &
Evaluation

Max.
Accuracy Related Work

Izmirli (2006)

Same model as (Izmirli
2005a) but uses

dimensionality reduction
techniques to reduce pitch-

class distribution
dimensions.

• First 30 second excerpts
of 152 pieces from the
classical period,
composers: Albinoni,
Albrechtsberger, Alkan,
Bach, C. P. E. Bach,
Beethoven, Bella,
Brahms, Chopin,
Clementi, Corelli,
Dvorak, Grieg, Handel,
Haydn, Hofmann, Kraus,
Liszt, Mendelssohn,
Mozart, Pachelbel,
Paganini, Prokofiev,
Rachmaninov, Scarlatti,
Schubert, Scriabin,
Telemann, Tchaikovsky,
and Vivaldi

88.7% (Izmirli
2005a)

Izmirli (2007)

Non-negative matrix
factorization used to perform
local key-finding. Same cor-
relational model as (Izmirli
2005a) used to identify key

for a series of windowed
pitch-class distributions.

• First 30 second excerpts
of 152 pieces from the
classical period (same as
Izmirli 2006)

• 17 pop songs with at
least one modulation

• 17 short excerpts of
classical pieces with at
least one modulation

82.4% (Izmirli
2005a)

Gómez (2006)

Exhaustive study on various
approaches to audio key

detection. Thorough analysis
of pertinent aspects of audio

feature computation,
evaluation strategies, and

various models for tonality
induction.

N/A N/A

Zhu et al.
(2005, 2006)

Four step process for feature
extraction: (1) CQ-

transform; (2) tuning
correction; (3) extract note
partials; (4) create pitch-

class distribution from note
partials using consonance

filtering and pitch profiling
process. Two step process

for key detection: (1) detect
scale root; (2) detect scale

mode.

• 60 pop songs (pop-rock
style with vocals and
instrumentation,
including drums)

• “The Four Seasons,” by
Vivaldi (4 parts, 3
movements each)

91%

A Previous Audio Detection Systems

97

Author(s) Algorithm Summary Data for Training &
Evaluation

Max.
Accuracy Related Work

Harte et al.
(2006)

CQ-transform used to
extract pitch-class

distribution, which is
mapped to 6-D tonal

centroid feature. Algorithm
applied for chord

recognition.

• 16 songs, by The Beatles N/A

Pitch-class
distribution
created from

CQ-transform
based on
algorithm

from Harte
and Sandler

(2005)

Gatzsche et al.
(2006)

CQ-transform employed to
extract pitch-class

distribution, which is used as
input to the circular pitch
space model in order to

detect the key.

• First 80 second excerpt
of ”Sonate für Cello und
Klavier in a-Moll (D.
821), Allegro moderato,”
by Schubert

• ”C-major prelude,”
BWV 846, by J. S. Bach

N/A Harte et al.
(2006)

Chai and
Vercoe (2005)

24-bin pitch-class
distribution used as input to
two HMMs: one to detect

scale root and one to detect
mode.

• 10 classical piano pieces,
composers: Mozart,
Chopin, Dvork,
Rubenstein, Paderewski,
Beethoven, and
Schumann

~83%

Related to
chord

segmentation
system by

Sheh and Ellis
(2003)

Peeters (2006a,
2006b)

Pitch-class distributions used
as input to 24 different
HMMs (one for each

possible key).

• 302 European baroque,
classical, and romantic
music pieces, composers:
J. S. Bach, Corelli,
Handel, Telleman,
Vivaldi, Beethoven,
Haydn, Mozart, Brahms,
Chopin, Dvorak,
Schubert, and Schuman

81%

Comparison
made between
the methods

for
interpreting
global key

used by
Gómez

(2006a) and
Izmirli
(2005a)

Noland and
Sandler (2007)

A HMM system that is
initialized based on tone-
profile values is used to
investigate the effects of

low-level DSP parameters.

• 110 pop songs, by The
Beatles

• “Well-Tempered
Clavier, Book I,” by J. S.
Bach

98%

Based on
previous
model by

Noland and
Sandler

(2006), which
follows the

work of Bello
and Pickens

(2005)

A Previous Audio Detection Systems

98

Author(s) Algorithm Summary Data for Training &
Evaluation

Max.
Accuracy Related Work

Burgoyne and
Saul (2005)

A Dirichlet-based HMM
model for tracking chords
and key simultaneously.

• 15 movements of 5
symphonies, by Mozart
(training)

• “Minuet, Symphony No.
40,” by Mozart
(evaluation)

83%

Directly
implements
the PCP by
Fujishima

(1999)

Lee and Slaney
(2007)

24 separate HMMs (one for
each key), each with 24

states (representing different
chords) used to track chords

and key simultaneously.

• 1046 audio files (rock),
synthesized from MIDI
(training)

• 28 pop songs by The
Beatles (evaluation)

84.62%

6-D centroid
vector from
Harte et al.

(2006) used as
input to the
HMM. Also

related to
work by
Peeters

(2006b).

Catteau et al.
(2007)

Frame-by-frame pitch-class
distributions are extracted
from the audio signal. A

unified probabilistic
framework that predicts

chord/key transitions is used
to label each of the frames.

• 10 polyphonic audio
excerpts (60 seconds)

• 96 MIDI-to-wave
synthesized audio
excerpts

• 144 classical cadence
excerpts

• 20 chord sequences

82%

System is an
extension of
the work by
Bello and

Pickens (2005)

Papadopoulos
and Peeters

(2009)

Local key-finding system
that combines various

approaches. Three stages:
(1) pitch-class distribution

extraction; (2) metric
structure estimation by

detecting chord progressions
and downbeats; (3) local key

estimation using an HMM
with observation

probabilities derived from
pitch-class templates.

• 5 movements of piano
sonatas, by Mozart 80.22%

Global key
estimation

from Gómez
and Herrera

(2004a)

Shenoy et al.
(2004)

Audio signal segmented in
quarter note frames and
pitch-class distribution

extracted for each frame.
Rule-based model is used to
infer presence of chords and

key for each frame.

• 20 pop English songs 90%

Build on the
idea of Goto
(2001) and
Goto and
Muraoka
(1999) to

incorporate
high-level

music
knowledge

B Training Set Excerpts

99

Appendix B

 Training Set Excerpts

Detailed information on the musical excerpts used for the training sets is provided in the

following pages. Appendix B.1 lists the excerpts used from the classical corpus,

Appendix B.2 lists the excerpts used from the popular corpus, and Appendix B.3 lists the

excerpts used from the MIDI corpus.

B Training Set Excerpts

100

B.1 Training Set Excerpts from the Classical Corpus

Composer Conductor /
Performer(s) Release Title

Label,
Release

Date
Excerpts

J. S. Bach Glenn Gould

The Well–
Tempered Clavier
II: Preludes and

Fugues

Sony
Classical,

1993
48 (BMV 870-893)

L.
Beethoven

Claudio Arrau,
János Starker,

Henryk Szeryng,
and Bernard Haitink

conducting the
Royal

Concertgebouw
Orchestra

The Complete
Piano Sonatas &

Concertos

Philips
Classics,

1998

8 (Concertos No. 1–5; Piano
Variations in C Op. 120; Piano

variations & fugue Op. 35;
Triple concerto for Piano, violin

& cello Op. 56)

L.
Beethoven

Conductor: Josef
Krips; Performers:
London Symphony

Orchestra

The Nine
Symphonies

Padmini
Music, 1995 9 (Symphony No. 1–9)

L.
Boccherini

Conductors: Pablo
Casais & Raymond

Leppard;
Performers:

Severino Gazzelloni,
Pepe Romero, &
Maurice Gendron

The Best of
Boccherini

Philips,
1993

8 (Concerto for flute in D major
Op. 27; String Quintet in E

major Op. 11–5 G. 275
(Minuet); Quintet for guitar &

strings in D major No. 4 G. 448;
String Quartet in D major Op.
8–1 G. 165; Cello Concerto in

B flat major No. 9 G. 482;
Symphony in C major Op. 12–3

G. 505; Quintet for guitar &
strings in C major No. 9 G. 453;
Symphony in B flat major Op.

12–5 G. 507)

M. Clementi Howard Shelley
The Complete

Piano Sonatas, Vol.
1

Hyperion,
2008

17 (Piano Sonata Op. 1 No. 1–
6; Piano Sonata Op. 2 No. 2, 4,
6; Piano Sonata Op. 7 No. 1–3;

Piano Sonata Op. 8 No. 1–3;
Harpsichord Sonata in G major
WO 14; Harpsichord Sonata in

A flat major WO 13)

C. P. E.
Bach

Conductor: Hartmut
Haenchen;
Performers:

Kammerorchester

Berliner Sinfonien
Brilliant
Classics,

2002
5 (Wq. 174, 175, 178, 179, 181)

C. P. E. Roland Münch, Orgelkonzerte Capriccio, 1 (Wq. 34 H. 444)

B Training Set Excerpts

101

Composer Conductor /
Performer(s) Release Title

Label,
Release

Date
Excerpts

Bach Hartmut Haenchen,
Kammerorchester

1987

F. J. Haydn

Conductor: Adam
Fischer; Performers:
Austro-Hungarian

Orchestra, Wolfgang
Herzer, Gerhard

Turetschek, Rainer
Kuchl, & Michael

Werba

Haydn: Complete
Symphonies

Brilliant
Classics,

2002

106 (Symphony No. 1–104;
Sinfonia A Hob. I–107;
Sinfonia B Hob. I–108;

Sinfonia Concertante in B flat
major Op. 84 Hob. I–105)

W. A.
Mozart Glenn Gould The Complete

Piano Sonatas

Sony
Classical,

1994

18 (Piano Sonatas No. 1–18: K.
279–284, K. 309–311, K. 330–

333, K. 457, K. 533/494, K.
545, K. 570, K. 576)

A. Salieri,
F. Salieri

Paul Badura-Skoda,
Pietro Borgonovo,

& Clementine
Hoogendorn

 Antonio Salieri:
Concertos,

Francesco Salieri:
Sinfonia / Scimone,

I Solisti Veneti

Erato, 1999

3 (Concerto for Piano in B flat
major; Concerto for Flute and

Oboe in C major; Sinfonia in B
flat major)

F. Schubert Alfred Brendel Schubert: Piano
Works 1822–1828

Philips,
1989

16 (D. 850, 784, 959, 817, 783,
915, 958, 780, 845, 946, 899,

935, 894, 840, 760, 960)

F. Schubert

Conductor: Herbert
Blomstedt;

Performers: Dresden
Staatskapelle

The Symphonies
Berlin

Classics,
2010

9 (Symphony No. 1–6, 6, 9)

	

B.2 Training Set Excerpts from the Popular Corpus

Artist Album Song Title
The Beatles Please Please Me I Saw Her Standing There
The Beatles Please Please Me Misery
The Beatles Please Please Me Anna (Go To Him)
The Beatles Please Please Me Boys
The Beatles Please Please Me Ask Me Why
The Beatles Please Please Me Please Please Me
The Beatles Please Please Me Love Me Do
The Beatles Please Please Me Baby It's You
The Beatles Please Please Me Do You Want To Know A Secret
The Beatles Please Please Me A Taste Of Honey
The Beatles Please Please Me There's A Place

B Training Set Excerpts

102

Artist Album Song Title
The Beatles Please Please Me Twist And Shout
The Beatles With the Beatles It Won't Be Long
The Beatles With the Beatles All I've Got To Do
The Beatles With the Beatles All My Loving
The Beatles With the Beatles Don't Bother Me
The Beatles With the Beatles Little Child
The Beatles With the Beatles Till There Was You
The Beatles With the Beatles Please Mister Postman
The Beatles With the Beatles Roll Over Beethoven
The Beatles With the Beatles Hold Me Tight
The Beatles With the Beatles You Really Got A Hold On Me
The Beatles With the Beatles I Wanna Be Your Man
The Beatles With the Beatles Devil In Her Heart
The Beatles With the Beatles Not A Second Time
The Beatles With the Beatles Money
The Beatles A Hard Day's Night A Hard Day's Night
The Beatles A Hard Day's Night I Should Have Known Better
The Beatles A Hard Day's Night If I Fell
The Beatles A Hard Day's Night I'm Happy Just To Dance With You
The Beatles A Hard Day's Night And I Love Her
The Beatles A Hard Day's Night Tell Me Why
The Beatles A Hard Day's Night Can't Buy Me Love
The Beatles A Hard Day's Night Any Time At All
The Beatles A Hard Day's Night Things We Said Today
The Beatles A Hard Day's Night You Can't Do That
The Beatles A Hard Day's Night I'll Be Back
The Beatles Beatles for Sale No Reply
The Beatles Beatles for Sale I'm a Loser
The Beatles Beatles for Sale Baby's In Black
The Beatles Beatles for Sale Rock and Roll Music
The Beatles Beatles for Sale I'll Follow the Sun
The Beatles Beatles for Sale Mr. Moonlight
The Beatles Beatles for Sale Kansas City– Hey, Hey, Hey, Hey
The Beatles Beatles for Sale Words of Love
The Beatles Beatles for Sale Honey Don't
The Beatles Beatles for Sale Every Little Thing
The Beatles Beatles for Sale I Don't Want to Spoil the Party
The Beatles Beatles for Sale What You're Doing
The Beatles Beatles for Sale Everybody's Trying to Be My Baby
The Beatles Help! Help!
The Beatles Help! The Night Before
The Beatles Help! Another Girl

B Training Set Excerpts

103

Artist Album Song Title
The Beatles Help! Ticket To Ride
The Beatles Help! Act Naturally
The Beatles Help! It's Only Love
The Beatles Help! You Like Me Too Much
The Beatles Help! Tell Me What You See
The Beatles Help! I've Just Seen a Face
The Beatles Help! Yesterday
The Beatles Help! Dizzy Miss Lizzy
The Beatles Rubber Soul Norwegian Wood (This Bird Has Flown)
The Beatles Rubber Soul You Won't See Me
The Beatles Rubber Soul Nowhere Man
The Beatles Rubber Soul Think For Yourself
The Beatles Rubber Soul The Word
The Beatles Rubber Soul Michelle
The Beatles Rubber Soul What Goes On
The Beatles Rubber Soul Girl
The Beatles Rubber Soul I'm Looking Through You
The Beatles Rubber Soul In My Life
The Beatles Rubber Soul Wait
The Beatles Rubber Soul If I Needed Someone
The Beatles Rubber Soul Run For Your Life
The Beatles Revolver Taxman
The Beatles Revolver Eleanor Rigby
The Beatles Revolver I'm Only Sleeping
The Beatles Revolver Here, There And Everywhere
The Beatles Revolver Yellow Submarine
The Beatles Revolver She Said She Said
The Beatles Revolver Good Day Sunshine
The Beatles Revolver And Your Bird Can Sing
The Beatles Revolver For No One
The Beatles Revolver Doctor Robert
The Beatles Revolver I Want To Tell You
The Beatles Revolver Got To Get You Into My Life

The Beatles Sgt. Pepper's Lonely
Hearts Club Band Sgt. Pepper's Lonely Hearts Club Band

The Beatles Sgt. Pepper's Lonely
Hearts Club Band With A Little Help From My Friends

The Beatles Sgt. Pepper's Lonely
Hearts Club Band Lucy In The Sky With Diamonds

The Beatles Sgt. Pepper's Lonely
Hearts Club Band Getting Better

The Beatles Sgt. Pepper's Lonely
Hearts Club Band She's Leaving Home

The Beatles Sgt. Pepper's Lonely Being For The Benefit Of Mr. Kite!

B Training Set Excerpts

104

Artist Album Song Title
Hearts Club Band

The Beatles Sgt. Pepper's Lonely
Hearts Club Band When I'm Sixty–Four

The Beatles Sgt. Pepper's Lonely
Hearts Club Band Sgt. Pepper's Lonely Hearts Club Band (Reprise)

The Beatles Sgt. Pepper's Lonely
Hearts Club Band A Day In The Life

The Beatles Magical Mystery Tour Magical Mystery Tour
The Beatles Magical Mystery Tour The Fool On The Hill
The Beatles Magical Mystery Tour Flying
The Beatles Magical Mystery Tour Blue Jay Way
The Beatles Magical Mystery Tour Your Mother Should Know
The Beatles Magical Mystery Tour I Am The Walrus
The Beatles Magical Mystery Tour Hello Goodbye
The Beatles Magical Mystery Tour Penny Lane
The Beatles Magical Mystery Tour All You Need Is Love
The Beatles Abbey Road Come Together
The Beatles Abbey Road Something
The Beatles Abbey Road Maxwell's Silver Hammer
The Beatles Abbey Road Octopus's Garden
The Beatles Abbey Road I Want You
The Beatles Abbey Road Here Comes The Sun
The Beatles Abbey Road Because
The Beatles Abbey Road You Never Give Me Your Money
The Beatles Abbey Road Sun King
The Beatles Abbey Road She Came In Through The Bathroom Window
The Beatles Abbey Road Golden Slumbers
The Beatles Abbey Road The End
The Beatles Let It Be Two of Us
The Beatles Let It Be Dig a Pony
The Beatles Let It Be Across the Universe
The Beatles Let It Be I Me Mine
The Beatles Let It Be Dig It
The Beatles Let It Be Maggie Mae
The Beatles Let It Be I've Got A Feeling
The Beatles Let It Be One After 909
The Beatles Let It Be The Long and Winding Road
The Beatles Let It Be For You Blue
Carole King Tapestry I Feel The Earth Move
Carole King Tapestry So Far Away
Carole King Tapestry It's Too Late
Carole King Tapestry Home Again
Carole King Tapestry Beautiful

B Training Set Excerpts

105

Artist Album Song Title
Carole King Tapestry Way Over Yonder
Carole King Tapestry You've Got A Friend
Queen Greatest Hits I Bohemian Rhapsody
Queen Greatest Hits I Fat Bottomed Girls
Queen Greatest Hits I Bicycle Race
Queen Greatest Hits I You're My Best Friend
Queen Greatest Hits I Don't Stop Me Now
Queen Greatest Hits I Save Me
Queen Greatest Hits I Crazy Little Thing Called Love
Queen Greatest Hits I Somebody To Love
Queen Greatest Hits I Good Old–Fashioned Lover Boy
Queen Greatest Hits I Play The Game
Queen Greatest Hits I Seven Seas Of Rhye
Queen Greatest Hits I We Are The Champions
Queen Greatest Hits II A Kind Of Magic
Queen Greatest Hits II I Want It All
Queen Greatest Hits II I Want To Break Free
Queen Greatest Hits II Who Wants To Live Forever
Queen Greatest Hits II Friends Will Be Friends

B Training Set Excerpts

106

B.3 Training Set Excerpts from the MIDI Corpus

Collection Excerpts Source
“The Well Tempered Clavier”, BWV 870–

893, J.S. Bach
48 classicalarchives.com

Concertos No. 1–5, L. Beethoven 5 classicalarchives.com
Piano Sonatas No. 1–32, L. Beethoven 32 classicalarchives.com
String Quartets No. 1–16, L. Beethoven 16 classicalarchives.com

Symphonies No. 1–9, L. Beethoven 9 classicalarchives.com
Triple Concerto for Piano, Violin, and Cello,

L. Beethoven
1 classicalarchives.com

Variations & Fugue Op. 35, 120, L. Beethoven 2 classicalarchives.com
Symphonies No. 1–13, 20, 31, 36, 45–47, 49,

52, 60, 62–72, 76, 82–104, F. J. Haydn
57 classicalarchives.com

Piano Sonatas No. 1–18, W. A. Mozart 18 classicalarchives.com
Sonatas D760, D780, D784, D817, D840,

D845, D850, D894, D899, D915, D935, D958,
D959, D960, F. Schubert

14 classicalarchives.com

Symphonies No. 1, 3–6, 8, 9, F. Schubert 7 classicalarchives.com

C Test Set Excerpts

107

Appendix C

 Test Set Excerpts

Detailed information on the musical excerpts used for the test sets is provided in the

following pages. Appendix C.1 lists the excerpts used from the classical corpus,

Appendix C.2 lists the excerpts used from the popular corpus, and Appendix C.3 lists the

excerpts used from the MIDI corpus.

C Test Set Excerpts

108

C.1 Test Set Excerpts from the Classical Corpus

Composer Conductor /
Performer(s) Release Title Label,

Release Date Excerpts

F. Chopin Rafał Blechacz The Complete
Preludes

Deutsche
Grammophon,

2007
24 (No. 1–24)

C.2 Test Set Excerpts from the MIDI Corpus

Collection Excerpts Source

Preludes No. 1–24, F. Chopin 24 classicalarchives.com

C Test Set Excerpts

109

C.3 Test Set Excerpts from the Popular Corpus

Artist Album Song Title
Bob Seger Against the Wind Against the Wind
Counting Crows Shrek 2 Soundtrack Accidentally in Love
Finger Eleven Them vs. You vs. Me Paralyzer
Stevie Wonder In Square Circle Part Time Lover
John Mayer Heavier Things Bigger Than My Body
Eric Clapton Phenomenon Soundtrack Change the World
Bryan Adams 11 I Thought I’d Seen Everything
Depeche Mode Speak and Spell Just Can’t Get Enough
Billy Joel Piano Man Piano Man
Bent Programmed To Love Private Road
Paul McCartney
& Michael
Jackson

Pipes of Peace Say Say Say

Peter Gabriel Solsbury Hill Solsbury Hill
Pink Floyd The Wall Comfortably Numb
Scissor Sisters Scissor Sisters Comfortably Numb
Lenny Kravitz Baptism Lady
Led Zeppelin Led Zeppelin IV Stairway to Heaven
Rihanna Good Girl Gone Bad Umbrella
The Police Synchronicity Wrapped Around Your Finger
America America A Horse with No Name
LCD
Soundsystem Sound Of Silver All My Friends

Etta James The Second Time Around Seven Day Fool
Blink–182 Enema of the State What’s My Age Again?
Alicia Keys The Diary of Alicia Keys If I Ain’t Got You
Weezer Weezer Say It Ain’t So

Beck Eternal Sunshine of the
Spotless Mind Soundtrack Everybody’s Gotta Learn Somtimes

Klute No Ones Listening
Anymore Silently

Cut Copy Bright Like Neon Autobahn Music Box
The Beach Boys The Beach Boys Today! Help Me Rhonda
Alanis Morissette Jagged Little Pill Ironic
Pearl Jam Vitalogy Better Man
Bananarama Cruel Summer Cruel Summer
Neil Young Harvest Heart of Gold
Green Day American Idiot Wake Me Up When September Ends

C Test Set Excerpts

110

Artist Album Song Title

Madonna The Immaculate
Collection Cherish

Rihanna Good Girl Gone Bad Take a Bow
Semisonic Reloaded 2 Closing Time
Foreigner No End In Sight Waiting for a Girl Like You
Creedence
Clearwater
Revival

Pendulum Have You Ever Seen the Rain?

Bloc Party Silent Alarm Two More Years
Alicia Keys As I Am No One
Boys Noize Oi Oi Oi Arcade Robot
Reba McEntire &
Kelly Clarkson Reba: Duets Because of You

Billy Joel An Innocent Man Uptown Girl
Britney Spears Blackout Break the Ice
Notwist Neon Golden Consequence
Cyndi Lauper She’s So Unusual Girls Just Want to Have Fun
Frente! Lonely Bizarre Love Triangle
Eurythmics Touch Here Comes the Rain Again
George Michael Faith Faith
José Feliciano José Feliciano Feliz Navidad
Fugees The Score Killing Me Softly
George Harrison Cloud Nine Got My Mind Set On You

Rick Astley Whenver You Need
Somebody Never Gonna Give You Up

Rockwell Somebody’s Watching
Me Somebody’s Watching Me

David Arnold Casino Royale
Soundtrack The Name’s Bond, James Bond

U2 All That You Can’t Leave
Behind Stuck in a Moment You Can’t Get Out Of

References

111

References

Aucouturier, J.-J., and F. Pachet. 2004. Improving timber similarity: How high is the sky?
Journal of Negative Results in Speech and Audio Sciences 1(1).

Bartsch, M. A., and G. H. Wakefield. 2004. To catch a chorus: Using chroma-based
representations for audio thumbnailing. Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics. 15–8.

Bello, J. P., and J. Pickens. 2005. A robust mid-level representation for harmonic content
in music signals. Proceedings of the International Conference on Music
Information Retrieval. 304–11.

Brown, J. C. 1991. Calculation of a constant Q spectral transform. Journal of the
Acoustical Society of America 89(1): 425–34.

Brown, J. C., and M. S. Puckette. 1992. An efficient algorithm for the calculation of a
constant Q transform. Journal of the Acoustical Society of America 92(5): 1953–
7.

Burgoyne, J. A., and L.K. Saul. 2005. Learning harmonic relationships in digital audio
with Dirichlet-based hidden Markov models. Proceedings of the International
Conference on Music Information Retrieval. 11-5.

Cano, P. 1998. Fundamental frequency estimation in the SMS analysis. Proceedings of
the Digital Audio Effects Workshop.

Cano, P., M. Koppenberger, and N. Wack. 2005a. Content-based music audio
recommendation. Proceedings of International Conference on Multimedia. 211–2.

Cano, P., M. Koppenberger, and N. Wack. 2005b. An industrial strength content-based
music recommendation system. Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2.

Casey, M. A., R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008.
Content-based music information retrieval: Current directions and future
challenges. Proceedings of the IEEE 96(4): 668–96.

Catteau, B., J.-P. Martens, and M. Leman. 2007. A probabilistic framework for audio-
based tonal key and chord recognition. In Advances in Data Analysis, edited by D.
Reinhold, and H.-J. Lenz, 637–44. Heidelberg, Germany: Springer Berlin.

Cemgil, A. T. 2004. Bayesian music transcription. Ph.D. Dissertation. Radboud
University Nijmegen.

Chai, W. 2005. Automated analysis of musical structure. Ph.D. Dissertation.
Massachusetts Institute of Technology.

References

112

Chai, W., and B. Vercoe. 2005. Detection of key change in classical piano music.
Proceedings of the International Conference on Music Information Retrieval.
468–73.

Chew, E. 2000. Towards a mathematical model of tonality. Ph.D. Dissertation.
Massachusetts Institute of Technology.

Chew, E. 2001. Modeling tonality: Applications to music cognition. Proceedings of the
Meeting of the Cognitive Science Society. 206–11.

Chew, E. 2002. The spiral array: An algorithm for determining key boundaries. In Music
and Artificial Intelligence, edited by C. Anagnostopoulou, M. Ferrand, and A.
Smaill, 18–31. Heidelberg, Germany: Springer Berlin.

Chew, E. 2007. Out of the grid and into the spiral: Geometric interpretations of and
comparisons with the spiral-array model. Computing in Musicology (Tonal
Theory for the Digital Age) 15: 51–72.

Chew, E., and Y.-C. Chen. 2005. Real-time pitch spelling using the spiral array.
Computer Music Journal 29(2): 61–76.

Chuan, C. H. 2008. Hybrid methods for music analysis and synthesis: Audio key finding
and automatic style-specific accompaniment. Ph.D. Dissertation. University of
Southern California.

Chuan, C. H., and E. Chew. 2005a. Polyphonic audio key-finding using the spiral array
CEG algorithm. Proceedings of IEEE International Conference on Multimedia
and Expo. 21–4.

Chuan, C. H., and E. Chew. 2005b. Audio key finding using FACEG: Fuzzy analysis
with the CEG algorithm. In Abstract of the Annual Music Information Retrieval
Evaluation eXchange.

Chuan, C. H., and E. Chew. 2005c. Fuzzy analysis in pitch class determination for
polyphonic audio key finding. Proceedings of the International Conference on
Music Information Retrieval. 296–303.

Chuan, C. H., and E. Chew. 2007. Audio key-finding: Considerations in system design
and case studies on Chopin’s 24 Preludes. EURASIP Journal on Advances in
Signal Processing 2007(1).

Cohen, A. J. 2000. Development of tonality induction: Plasticity, exposure, and training.
Music Perception 17(4): 437–59.

Cohn, R. Introduction to Neo-Riemannian theory: A survey and a historical perspective.
The Journal of Music Theory 42(2): 167–80.

Duan, Z., L. Lu, and C. Zhang. 2008. Audio tonality mode classification without tonic
annotations. Proceedings of the International Conference on Multimedia and
Expo (ICME). 1361–4.

Duxbury, C., M. Davies, and M. Sandler. 2001. Separation of transient information in
musical audio using multiresolution analysis techniques. Proceedings of the
COST G-6 Conference on Digital Audio Effects. 1–4.

References

113

Fujinaga, I., S. Moore, and D. S. Sullivan. 1998. Implementation of exemplar-based
learning model for music cognition. Proceedings of the International Conference
on Music Perception and Cognition. 171–9.

Fujishima, T. 1999. Realtime chord recognition of musical sound: A system using
common lisp music. Proceedings of the International Computer Music
Conference (ICMC). 464–7.

Gatzsche, G., M. Mehnert, D. Arndt, and K. Brandenburg. 2008. Circular pitch space
based musical tonality analysis. Proceedings of the Audio Engineering Society
Convention.

Gómez E. 2005. Key estimation from polyphonic audio. In Abstract of the Annual Music
Information Retrieval Evaluation eXchange.

Gómez E. 2006a. Tonal description of music audio signals. Ph.D. Dissertation.
Universitat Pompeu Fabra.

Gómez E. 2006b. Tonal description of polyphonic audio for music content processing.
INFORMS Journal on Computing 18(3): 294–304.

Gómez E., and P. Herrera. 2004a. Estimating the tonality of polyphonic audio files:
Cognitive versus machine learning modelling strategies. Proceedings of the
International Conference on Music Information Retrieval. 92–5.

Gómez E., and P. Herrera. 2004b. Automatic extraction of tonal metadata from
polyphonic audio recordings. Proceedings of the Audio Engineering Society
International Conference.

Goto, M. 2001. An audio-based real-time beat tracking system for music with or without
drum-sounds. Journal of New Music Research 30(2): 159-71.

Goto, M., and Y. Muraoka. 1999. Real-time beat tracking for drumless audio signals:
chord change detection for musical decisions. Speech Communication 27(3-4):
331-5.

Harte, C. A., and M. B. Sandler. 2005. Automatic chord identification using a quantised
chromagram. Proceedings of the Audio Engineering Society Convention.

Harte, C. A., M. B. Sandler, and M. Gasser. 2006. Detecting harmonic change in musical
audio. Proceedings of Audio and Music Computing for Multimedia Workshop.
21–6.

Hermes, D. J. 1988. Measurement of pitch by subharmonic summation. Journal of
Acoustical Society of America 83(1): 257–64.

Hoashi, K., S. Hamawaki, H. Ishizaki, Y. Takishima, and J. Katto. Usability evaluation of
visualization interfaces for content-based music retrieval systems. Proceedings of
the International Conference on Music Information Retrieval. 207–12.

Holtzman, S. R. 1977. A program for key determination. Journal of New Music Research
6: 29–56.

Hu, D. J., and L. K. Saul. 2009. A probabilistic topic model for unsupervised learning of
musical key-profiles. Proceedings of the International Conference on Music
Information Retrieval. 441–6.

References

114

Huron, D., and R. Parncutt. 1993. An improved model of tonality perception
incorporating pitch salience and echoic memory. Psychomusicology 12: 154–71.

Hyer, B. 2001. Key (i). In The New Grove Dictionary of Music and Musicians, edited by
S. Sadie and J. Tyrrell. London: Macmillan.

Hyer, B. 2002. Tonality. In The Cambridge History of Western Music Theory, edited by
T. S. Christensen, 726–52. Cambridge: Cambridge University Press.

Inoshita, T., and J. Katto. 2009. Key estimation using circle of fifths. In Advances in
Multimedia Modeling, edited by B. Huet, A. Smeaton, K. Mayer-Patel, and Y.
Avrithis, 287–97. Heidelberg, Germany: Springer Berlin.

Izmirli, Ö. 2005a. Template based key-finding from audio. Proceedings of the
International Computer Music Conference. 211–4.

Izmirli, Ö. 2005b. An algorithm for audio key finding. In Abstract of the Annual Music
Information Retrieval Evaluation eXchange.

Izmirli, Ö. 2006. Audio key finding using low-dimensional spaces. Proceedings of the
International Conference on Music Information Retrieval. 127–32.

Izmirli, Ö. 2007. Localized key finding from audio using non-negative matrix
factorization for segmentation. Proceedings of the International Conference on
Music Information Retrieval. 195–200.

Izmirli, Ö. 2009. Estimating the tonalness of transpositional type pitch-class sets using
learned tonal key spaces. In Communications in Computer and Information
Science, edited by E. Chew, A. Childs, and C.-H. Chuan, 146-153. Berlin,
Germany: Springer Berlin Heidelberg.

Izmirli, Ö, and S. Bilgen. 1994. Recognition of musical tonality from sound input.
Proceedings of the Mediterranean Electrotechnical Conference. 269–71.

Izmirli, Ö, and S. Bilgen. 1996. A model for tonal context time course calculation from
acoustical input. Journal of New Music Research 25(3): 276–88.

Jensen, J. H. 2009. Feature extraction for music information retrieval. Ph.D.
Dissertation. Aalborg University.

Kennedy, M., and J. Bourne. 2006. Oxford Dictionary of Music. New York: Oxford
University Press.

Kostek, B. 2005. Perception-Based Data Processing in Acoustics. Berlin, Germany:
Springer Berlin Heidelberg.

Krumhansl, C. L. 1990. Cognitive Foundations of Musical Pitch. New York: Oxford
University Press.

Krumhansl, C. L., and E. J. Kessler. 1982. Tracing the dynamic changes in perceived
tonal organization in a spatial representation of musical keys. Psychological
Review 89(4): 334–68.

Krumhansl, C. L., and R. N. Shepard. 1979. Quantification of the hierarchy of tonal
functions within a diatonic context. Journal of Experimental Psychology: Human
Perception and Performance 5(4): 579–94.

Lee, K. 2006. Automatic chord recognition using enhanced pitch class profile.
Proceedings of the International Computer Music Conference. 306–13.

References

115

Lee, K. 2008a. A system for acoustic chord transcription and key extraction from audio
using hidden Markov models trained on synthesized audio. Ph.D. Dissertation.
Stanford University.

Lee, K. 2008b. Acoustic chord transcription and key extraction from audio using key-
dependent HMMs trained on synthesized audio. IEEE Transactions on Audio,
Speech, and Language Processing 16(2): 291–301.

Lee, K., and M. Slaney. 2007. A unified system for chord transcription and key extraction
using hidden Markov models. Proceedings of the International Conference on
Music Information Retrieval. 245–50.

Leman, M. 1989. Symbolic and subsymbolic information processing in models of
musical communication and cognition. Journal of New Music Research 18(1):
141–60.

Leman, M. 1991. Een model van toonsemantiek: naar een theorie en discipline van de
muzikale verbeelding. Ph.D. Dissertation. University of Ghent.

Leman, M. 1994. Schema-based tone center recognition of musical signals. Journal of
New Music Research 23(2): 169–204.

Leman, M. 1995a. A model of retroactive tone center perception. Music Perception
12(4): 439–71.

Leman, M. 1995b. Music and Schema Theory: Cognitive Foundations of Systematic
Musicology. Berlin, Germany: Springer Berlin Heidelberg.

Lerdahl, F. 2001. Tonal Pitch Space. New York: Oxford University Press.
Longuet-Higgins, H. C., and M. J. Steedman. 1971. On interpreting Bach. In Machine

Intelligence, edited by B. Meltzer and D. Michie, 6, 221–41. Edinburgh:
University of Edinburgh Press.

Lu, L., D. Liu, and H. J. Zhang. 2006. Automatic mood detection and tracking of music
signals. IEEE Transactions on Audio, Speech, and Language Processing 14(1): 5-
18.

Madsen, S. T., and G. Widmer. 2007. Key-finding with interval profiles. Proceedings of
the International Computer Music Conference. 212–5.

Mardirossian, A., and E. Chew. 2005. SKEFIS: A symbolic (MIDI) key finding system.
In Abstract of the Annual Music Information Retrieval Evaluation eXchange.

Mardirossian, A., and E. Chew. 2006. Music summarization via key distributions:
Analyses of similarity assessment across variations. Proceedings of the
International Conference on Music Information Retrieval. 234-239

Marolt, M. 2006. A mid-level melody-based representation for calculating audio
similarity. Proceedings of the International Conference on Music Information
Retrieval. 280-285

Martens, G., H. D. Meyer, B. D. Baets, M. Leman, M. Lesaffre, J.-P. Martens, and T. D.
Mulder. 2004. Distance-based versus tree-based key recognition in musical audio.
Soft Computing: A Fusion of Foundations, Methodologies and Applications 9(8):
565–74.

References

116

Mauch, M., C. Cannam, M. Davies, S. Dixon, C. Harte, S. Kolozali, D. Tidhar, and M.
Sandler. 2009. OMRAS2 metadata project 2009. Late-breaking Session of the
International Conference on Music Information Retrieval.

McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle. 2005. jAudio: A feature extraction
library. Proceedings of the International Conference on Music Information
Retrieval. 600–3.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: A framework
for optimizing music classification. Proceedings of the International Conference
on Music Information Retrieval. 42–9.

McKay, C., and I. Fujinaga. 2009. JMIR: Tools for automatic music classification.
Proceedings of the International Computer Music Conference. 65-8.

Mehnert, M., G. Gatzsche, K. Gatzsche, and K. Brandenburg. 2007. The analysis of tonal
symmetries in musical audio signals. Proceedings of the International Symposium
on Musical Acoustics.

Mitrović, D., M. Zeppelzauer, and C. Breiteneder. 2010. Features for content-based audio
retrieval. Advances in Computers 78: 71–150.

Müller, M., F. Kurth, and M. Clausen. 2005. Chroma-based statistical audio features for
audio matching. IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics. 275–8.

Noland, K., and M. Sandler. 2006. Key estimation using a hidden Markov model.
Proceedings of the International Conference on Music Information Retrieval.
121-6

Noland, K., and M. Sandler. 2007. Signal processing parameters for tonality estimation.
Proceedings of the Audio Engineering Society Convention.

Noland, K., and M. Sandler. 2009. Influences of signal processing, tone profiles, and
chord progressions on a model for estimating the musical key from audio.
Computer Music Journal 33(1): 42–56.

Ong, B. S., E. Gómez, and S. Streich. 2006. Automatic extraction of musical structure
using pitch class distribution features. Proceedings of the Workshop on Learning
the Semantics of Audio Signals. 53–65.

Paivo, R. 2007. Melody detection in polyphonic audio. Ph. D. Dissertation. University of
Coimbra.

Papadopoulos, H., and G. Peeters. 2009. Simultaneous estimation of chord progression
and downbeats from an audio file. Proceedings of the International Conference
on Acoustics, Speech and Signal Processing. 121–4.

Papadopoulos, H., and G. Peeters. 2009. Local key estimation based on harmonic and
metric structures. Proceedings of the International Conference on Digital Audio
Effects.

van de Par, S., M. McKinney, and A. Redert. 2006. Musical key extraction from audio
using profile training. Proceedings of the International Conference on Music
Information Retrieval. 328-329

References

117

Patterson, R. D. 1986. Spiral detection of periodicity and the spiral form of musical
scales. Psychology of Music 14(1): 44–61.

Pauws, S. 2004. Musical key extraction from audio. Proceedings of the International
Conference on Music Information Retrieval. 96–9.

Pauws, S. 2005. KEYEX: Audio key extraction. In Abstract of the Annual Music
Information Retrieval Evaluation eXchange.

Pauws, S. 2006. Extracting the key from music. In Intelligent Algorithms in Ambient and
Biomedical Computing, edited by W. Verhaegh, E. Aarts, and J. Korst, 119–32.
Dordrecht, Netherlands: Springer.

Peeters, G. 2006a. Chroma-based estimation of musical key from audio-signal analysis.
Proceedings of the International Conference on Music Information Retrieval.
115-120

Peeters, G. 2006b. Musical key estimation of audio signal based on hidden markov
modeling of chroma vectors. Proceedings of International Conference on Digital
Audio Effects. 127–31.

Peeters, G. 2007. Template-based estimation of time-varying tempo. EURASIP Journal
on Advances in Signal Processing. 2007(1): 158–71.

Pickens, J., and T. Crawford. 2002. Harmonic models for polyphonic music retrieval.
Proceedings of the International Conference on Information and Knowledge
Management. 430–7.

Povel, D.-J. 1996. Exploring the elementary harmonic forces in the tonal system.
Psychological Research 58(4): 274–83.

Purwins, H. 2005. Profiles of pitch classes circularity of relative pitch and key –
Experiments, models, computational music analysis, and perspectives. Ph.D.
Dissertation. Technischen Universität Berlin.

Purwins, H., and B. Blankertz, 2005. CQ-Profiles for key finding in audio. In Abstract of
the Annual Music Information Retrieval Evaluation eXchange.

Purwins, H., B. Blankertz, G. Dornhege, and K. Obermayer. 2004. Scale degree profiles
from audio investigated with machine learning. Proceedings of the Audio
Engineering Society Convention.

Purwins, H., B. Blankertz, and K. Obermayer. 2000. A new method for tracking
modulations in tonal music in audio data format. Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks. 270–5.

Raphael, C., and J. Stoddard. 2003. Harmonic analysis with probabilistic graphical
models. Proceedings of the International Conference on Music Information
Retrieval. 177-81.

Raphael, C., and J. Stoddard. 2004. Functional harmonic analysis using probabilistic
models. Computer Music Journal 28(3): 45-52.

Ratner, L. 1962. Harmony: Structure and Style. New York: McGraw-Hill.
Russel, S. and Norvig, P. 2003. Artificial Intelligence: A Modern Approach, Second

Edition. New Jersey: Pearson Education, Inc.

References

118

Sandler, M. 2007. Interacting with digital music. Journal of New Music Research 36(3):
227–39.

Sapp, C. S. 2001. Harmonic visualizations of tonal music. Proceedings of the
International Computer Music Conference. 423–30.

Schmuckler, M. A., and R. Tomovski. Perceptual tests of an algorithm for musical key-
finding. Journal of Experimental Psychology 31(5): 1124–49.

Sheh, A., and D. Ellis. 2003. Chord segmentation and recognition using EM-trained
hidden Markov models. Proceedings of the International Conference on Music
Information Retrieval.

Shenoy, A., R. Mohapatra, and Y. Wang. 2004. Key determination of acoustic music
signals. Proceedings of the International Conference on Multimedia and Expo.
1771–4.

Shepard, R. N. 1964. Circularity in judgments of relative pitch. The Journal of the
Acoustical Society of America 36(12): 2346–53.

Shmulevich, I., and O. Yli-Harja. 2000. Localized key-finding: Algorithms and
applications. Music Perception 17(4): 531–44.

Temperley, D. 1999. What’s key for key? The Krumhansl-Schmuckler key finding
algorithm reconsidered. Music Perception 17(1): 65–100.

Temperley, D. 2001. The Cognition of Basic Musical Structures. Cambridge, MA: MIT
Press.

Temperley, D. 2007. Music and Probability. Cambridge, MA: MIT Press.
Temperley, D., and E. W. Marvin. 2008. Pitch-class distribution and the identification of

key. Music Perception 25(3): 193–212.
Tenkanen, A. 2009. Evaluating tonal distances between pitch-class sets and predicting

their tonal centres by computational models. In Communications in Computer and
Information Science, edited by E. Chew, A. Childs, and C.-H. Chuan. Berlin,
Germany: Springer Berlin Heidelberg.

Varewyck, M., J. Pauwels, and J.-P. Martens. 2008. A novel chroma representation of
polyphonic music based on multiple pitch tracking techniques. Proceedings of the
International Conference on Multimedia. 667–70.

Vos, P. G. 2000. Tonality induction: theoretical problems and dilemmas. Music
Perception, Special Issue in Tonality Induction 17(4): 402–16.

Winograd, T. 1968. Linguistics and the computer analysis of tonal harmony. Journal of
Music Theory 12(1): 2–49.

Yoshino, I., and J.-I. Abe. 2004. Cognitive modeling of key interpretation in melody
perception. Japanese Psychological Research 46(4): 283–97.

Zenz, V. 2007. Automatic chord detection incorporating beat and key detection.
Proceedings of the IEEE International Conference on Signal Processing and
Communications. 1175–8.

Zhu, Y. 2005. An audio key finding algorithm. In Abstract of the Annual Music
Information Retrieval Evaluation eXchange.

References

119

Zhu, Y., and M. S. Kankanhalli. 2004. Key-based melody segmentation for popular
songs. Proceedings of the International Conference on Pattern Recognition. 862–
5.

Zhu, Y., and M. S. Kankanhalli. 2006. Precise pitch profile feature extraction form
musical audio for key detection. IEEE Transactions on Multimedia 8(3): 575–84.

Zhu, Y., M. S. Kankanhalli, and S. Gao. 2005. Music key detection for musical audio.
Proceedings of the International Multimedia Modeling Conference. 30–7.

