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Abstract 

The proliferation of large digital audio collections has motivated recent research on 

content-based music information retrieval. One of the primary goals of this research is to 

develop new systems for searching, browsing, and retrieving music. Since tonality is a 

primary characteristic in Western music, the ability to detect the key of an audio source 

would be a valuable asset for such systems as well as numerous other applications. 

A typical audio key finding model is comprised of two main elements: feature 

extraction and key classification. Feature extraction utilizes signal processing techniques 

in order to obtain a set of data from the audio, usually representing information about the 

pitch content. The key classifier may employ a variety of strategies, but is essentially an 

algorithm that uses the extracted data in order to identify the key of the excerpt. 

This thesis presents a review of previous audio key detection techniques, as well as 

an implementation of an audio key detection system. Various combinations of feature 

extraction algorithms and classifiers are evaluated using three different data sets of 30-

second musical excerpts. The first data set consists of excerpts from the first movement 

of pieces from the classical period. The second data set is comprised of excerpts of 

popular music songs. The final set is made up of excerpts of classical music songs that 

have been synthesized from MIDI files. A quantitative assessment of the results leads to a 

system design that maximizes key identification accuracy. 
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Abrégé 

La prolifération de grandes collections de musique numérique a récemment mené à de la 

recherche qui porte sur la récupération d’information musical d’après le contenu.  Un des 

principaux objectifs de ce travail de recherche est de développer un nouveau system qui 

permet de chercher, feuilleter et récupérer de la musique numérique.  Étant donné que la 

tonalité est une des principales caractéristiques de la musique occidentale, l’habilité de 

détecter la tonalité d’une bande sonre serait un outil indispensable pour un tel system et 

pourrait mener à maintes autres applications.  

Un model de détection de tonalité typique comprend deux principaux éléments : 

l’identification des structures et la classification des tonalités.  L’identification des 

structures comprend des techniques de traitement de signaux afin d’obtenir de 

l’information à partir d’une bande sonore, cette information porte typiquement sur le 

contenu du ton.  Un classificateur de tonalité peut servir plusieurs fonctions, mais est 

essentiellement un algorithme qui traite l’information extraite d’une bande sonore afin 

d’identifier sa tonalité. 

Cette thèse vise à revoir les techniques de détection de tonalité existantes, ainsi que 

implantation d’un tel système.  Diverses combinaisons de classificateurs et d’algorithmes 

de télédétection et de reconnaissance seront évaluées en utilisant trois différentes bandes 

sonores d’une durée de 30 secondes.  La première bande sonore comprend des extraits de 

musique classique.  La deuxième bande sonore comprend des extraits de musique 

populaire.  La troisième bande sonore comprend des extraits de musique classique créés 

avec un synthétiseur employant l’interface numérique des instruments de musique 

(MIDI).  Une analyse quantitative des résultats mènera à un système qui optimise la  

détection de tonalité. 
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Chapter 1 

 Introduction 

The proliferation of large music collections has created a need for new technology that 

allows users to interact with digital libraries in an efficient and meaningful manner. This 

need has motivated a great deal of research on content-based music information retrieval 

and indexing, with the aim of allowing users to more effectively locate, index, and 

browse digital music libraries. In light of the fact that tonality is a primary characteristic 

in Western music, the ability to automatically extract the tonal key from an audio source 

would be a valuable component for such systems. 

In order to approach the problem of automatically extracting the key from audio, it is 

worthwhile to first define exactly what key is in Western music. According to the Oxford 

Dictionary of Music, key is “the pitch relationships that establish a single pitch-class as a 

tonal center or tonic (or key note), with respect to which the remaining pitches have 

subordinate functions” (Kennedy and Bourne 2006). There are also two primary modes 

for keys, known as major and minor. The tonic can be any one of the twelve different 

pitch-classes. So, there are a total of twenty-four distinct keys, if we are considering an 

equal-tempered scale and enharmonic equivalence (i.e., C# and Db have different names 

but the same pitch-class). 

Key detection, in its simplest terms, refers to the task of automatically identifying 

which of the twenty-four possible keys a piece of music belongs to. Such identification 

may use a symbolic representation of music as input, such as a score or MIDI file. Audio 

key detection, on the other hand, is the more specific case of determining the key of a 

piece of music from an acoustic input.  
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This thesis studies the problem of audio key finding and presents a systematic 

evaluation of several audio key-finding models. The goal is to implement a system that 

maximizes key identification accuracy. The majority of the excerpts used to evaluate the 

models are of pieces from the classical period, as this is the standard set by previous 

studies on the subject (see Appendix A, which shows the data sets used for previous 

studies on audio key detection). In addition to classical music, a set of excerpts of popular 

music and excerpts of audio that have been synthesized from MIDI files of classical 

music are also used.  

1.1 Motivation and Applications 

As distribution and access to music becomes easier and digital music libraries continue to 

grow in size, it is becoming increasingly important to find new technologies that allow 

more effective ways to search, browse, and interact with music. 

Several factors have led to unprecedented levels of dissemination and access to 

digital music, including ubiquity of high-capacity storage and portable media devices, 

technological improvements in digital audio compression, low-latency networks, and 

wide-spread availability of digitally distributed music (Cano, Koppenberger, and Wack 

2005). It is not uncommon for a home user to have thousands of songs in their personal 

library. Commercial distributors may have hundreds of thousands of songs in their 

catalogue.  

The predominant method of searching, browsing, and interacting with these 

collections is based on textual metadata (e.g., artist name, song name). Although 

expressive metadata can be sufficient for many scenarios, it is subject to several 

drawbacks. For instance, descriptive metadata is entered by a human and therefore 

represents an opinion, which makes it difficult to maintain consistency throughout large 

collections without editorial supervision (Casey et al. 2008).  
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Content-based music information retrieval (MIR) is an area of research that focuses 

on creating tools to extract, organize, and structure musical data. One of the fundamental 

goals of MIR is to provide easier ways to find music, or information about music (Casey 

et al. 2008). Automatic processing extracts a set of low-level features (e.g., pitch-class 

profile, spectral flux). The low-level features can then be used to create mid-level 

representations that contain a higher level of abstraction (e.g., key). Mid-level 

representations, such as tonal key, are useful in the context of content-based MIR because 

they provide musically salient information that can be used for other purposes such as 

audio matching, classification, music recommendation, or further musical analysis (Bello 

and Pickens 2005). For example, key detection is commonly used as a component in 

chord recognition systems. 

Key finding models also play an important role in research on music perception, 

specifically with regards to how humans identify the key of music. A study by Temperley 

and Marvin (2008) used theoretical distributions of pitch-class profiles to generate 

random melodies and tested whether participants were able to identify the key that was 

used to generate the melody. They then used several types of key finding models on the 

same melodies and compared the results to those of the human participants in order to 

ascertain which model was most representative of how humans perceive key. If audio 

key-finding systems reach an adequate level of accuracy, then it may also be possible for 

them to help resolve tonal ambiguity in music. 

Audio key detection can also be a practical utility for end-user applications. Mixing 

is a process used by DJs to create smooth transitions between songs. By way of ‘beat 

matching,’ the rhythmic elements of the songs are aligned with one another and then 

mixed together (Pauws 2006). Many contemporary DJs also use a technique known as 

‘harmonic mixing’ in which the songs being mixed together are either in the same key or 

a closely related one (e.g., dominant, relative major/minor). In order to use this technique, 

the key of each song in question must first be known. So an application that automatically 

identifies the key of every song in a music library greatly facilitates this process. 
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1.2 Approaching Audio Key Detection 

Key detection is the task of automatically identifying which of the twenty-four possible 

keys a piece of music belongs. There are two primary categories of key finding models: 

symbolic and audio. The first one uses a symbolic representation of music as input (e.g., 

a MIDI file), of which the pitch data is entirely disclosed and complete. The second 

category of key finding models operates on audio signal as input and uses signal 

processing techniques in order to extract pitch information. As a result, audio key finding 

has the added challenge of dealing with incomplete and ambiguous pitch data (Chuan and 

Chew 2007). 

A typical audio key detection system is depicted in Figure 1.1. Such systems are 

comprised of two main elements: feature extraction and key classification. The feature 

extraction component can also be further subdivided into frequency analysis and pitch-

class generation. Frequency analysis is the application of signal processing techniques in 

order to extract a frequency representation of the audio signal (e.g., FFT, Constant-Q 

Transform). This information is then used to generate a pitch-class distribution, 

representing the relative strength of each pitch-class within the signal. Finally, the key 

classification model uses the pitch-class distribution in order to estimate the key. Creating 

audio key detection systems with this type of modular design facilitates the isolation and 

identification of errors in each component so that they can be dealt with accordingly 

(Chuan and Chew 2005). 
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Fig 1.1: Example of a typical audio key finding system. 

Signal processing techniques such as the fast Fourier transform provide an accurate 

and reliable means for generating a frequency representation of the audio signal. As such, 

most of the errors encountered during the feature extraction stage can be attributed to 

problems with the pitch-class generation algorithm. The following are some of the 

common errors encountered with pitch-class generation (Chuan and Chew 2005): 

• Tuning Variations 
Audio recordings can sometimes contain sounds that are produced by mistuned 

instruments. Pitch-class generation algorithms that do not account for this 

possibility and use direct frequency to pitch conversions may lead to inaccurate 

pitch-class distributions. 

• Low Frequency Resolution 

Humans perceive pitch on an approximately logarithmic scale. So the frequency 

difference between two low notes is less than the frequency difference between 

two high notes. As a result, the pitch-class generation algorithm must have a finer 

resolution for lower frequencies in order to discern the difference between 

adjacent pitch-classes. 

• Effect of Partials 

In addition to the fundamental frequency, most sound waves produced by 

instruments also contain partials that are closely related to the harmonic series. 

These partials can affect the resulting pitch-class distribution. 

Although there are many different types of models that have been used for key 

classification, several types of errors are commonly encountered. These errors are often 

the result of the identified key having a similar pitch-class distribution to that of the 
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correct key (Chuan and Chew 2005). Several common types of errors for key 

classification are as follows: 

• Perfect 5th Errors 
The dominant key has only one difference in the pitch-class set from that of the 

tonic key, so there is a great deal of overlap in their distributions. It is often also 

the strongest partial, second to the actual tone. 

• Relative Major/Minor Errors 
Relative keys have identical pitch-class sets but have different theoretical 

distributions. This makes distinguishing the difference very difficult in certain 

cases. 

• Parallel Major/Minor Errors 

Parallel keys have the same tonic but are in different modes. A pitch-class 

distribution with strong tonic and dominant classes, but ambiguity for the rest of 

the distribution may lead to this type of error. 

Audio key detection is also highly affected by the type of music that is being 

analyzed. The degree of tonal complexity varies greatly depending on the type of music. 

It is common for the key to change within a piece, which is known as a modulation. 

Before approaching audio key detection for music with modulations, the errors discussed 

in this section for single keys must first be addressed and resolved. As such, this thesis 

will deal exclusively with short musical excerpts in which no modulations exist. 

1.3 Thesis Structure 

The remainder of this thesis is organized as follows: 
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• Chapter 2: Background 
The scientific background and concepts relevant to the context of this thesis are 

presented. This includes an introduction to tonality as well as previous research on 

key detection, both from symbolic and audio sources. 

• Chapter 3: Software Design 
The details of the software implementation created for this thesis are given. This 

includes the types of signal processing parameters, feature extraction algorithms, 

and classifiers that were used. 

• Chapter 4: Description of the Data 
Two types of data were used to train and evaluate the software: musical excerpts 

and pitch-class templates. This chapter presents the details for both of these. 

• Chapter 5: Experimental Setup 
The experiment used to parameterize and evaluate the software consisted of three 

phases. This chapter describes the details for each of these phases. 

• Chapter 6: Results and Discussion 
In this chapter, the results of each phase of the experiment are reported and 

comments on the findings are presented. 

• Chapter 7: Conclusions 
A review of the experiment, results, and findings is presented. Comments on the 

outcome and future research for the field are also presented. 
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Chapter 2 

 Background 

2.1 Introduction 

The purpose of this chapter is to introduce some of the concepts relevant to the context of 

this thesis, as well as to present previous research efforts on key detection. Section 2.2 

briefly introduces some of the basic music theory for tonality and key. Section 2.3 goes 

on to present a scientific background on both symbolic and audio key detection. 

2.2 Tonality and Key 

Tonality has been thoroughly studied from many different perspectives, including music 

theory, music history, psychoacoustics, and music psychology (Vos 2000). As a result of 

this multidisciplinarity, definitions for the term vary a great deal in the literature, 

depending on the context. According to Hyer (2002), “Tonality most often refers to the 

orientation of melodies and harmonies towards a referential (or tonic) pitch-class. In the 

broadest possible sense, however, it refers to systematic arrangements of pitch 

phenomena and relations between them.” Music-theory or cognitive-based geometrical 

models have been devised in order to represent these relationships (Noland and Sandler 

2009). For example, the Harmonic Network or Tonnetz is a model developed by Euler 

that uses two-dimensional geometry to represent the harmonic relationships between the 

different pitch-classes (Harte et al. 2006). Within the planar representation, pitch-classes 
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that have stronger harmonic relationships (e.g., perfect fifths) are located closer to one 

another, as depicted in Figure 2.1.  

 

Fig. 2.1: The Harmonic Network or Tonnetz. Horizontally adjacent pitch-
classes represent perfect fifth intervals, diagonally adjacent pitch-classes 
represent major/minor third intervals, and vertically adjacent pitch-
classes represent semitone intervals (from Sapp 2006). 

If octave equivalence is assumed (i.e., A1 = A2), then the plane of the Tonnetz can be 

represented as a tube with fifth intervals forming a helix on its surface. If the tube is then 

arranged such that the helix has the major third intervals aligned above one another, then 

we arrive at Chew’s (2000) Spiral Array model (Harte et al. 2006). The model, illustrated 

in Figure 2.2, maps pitches to points on the spiral, such that pitch-classes with prominent 

harmonic relationships are in close proximity (e.g., chord pitches, pitch-classes for a key). 

 

18 CHAPTER 2. SCIENTIFIC BACKGROUND

2.3 Tonality induction

There have been many efforts in the literature to model the human cognition of tonality, mainly in the
fields of cognitive science and music psychology. Most of them focus their studies on western music (e.g.
Longuet-Higgins and Steedman (1971); Temperley (1999); Krumhansl (2000); Chew (2000)), although there
have been some efforts to analyze other tonal systems (see for instance Krumhansl (2000)). We focus here
on the tonality models and their relation to tonality induction.

As mentioned in Section 2.2.1, Shepard designed a model which spaced all twelve pitches equally over
one full turn of a spiral (see Figure 2.3) (Shepard (1982)). This model emphasizes the close relationship
between pitches related by octave intervals. Further extensions to incorporate perfect fifth interval relations
resulted in double helix structures that still did not explained the major third.

One of the first studies dealing with automatic tonal analysis is the one by Winograd (1968), which pro-
poses a method for the automatic harmonic analysis of a musical piece, using ideas derived from linguistics.
Riemann (19th century music theorist), stated that the tonality derives from establishing of significant tonal
relationships through chord functions. This theory agrees that the most relevant intervals are the perfect fifth
and the major/minor third, which are present in the major and minor triads. Riemman represented these re-
lations in a harmonic network: the Tonnetz. The Tonnetz, shown in Figure 2.6, represents the set of pitch
classes, where criss crosses horizontals of perfect 5ths with diagonals of major and minor thirds. Lewin and
Cohn defined a transformational theory within the Tonnetz (Lewin (1987); Cohn (1997)).

Figure 2.6: Tonnetz or harmonic network (from Sapp (2001)), representing the set of pitch classes, where
crosses horizontals of perfect 5ths with diagonals of major and minor thirds.
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Fig. 2.2: Representations of the perfect 5th, major 3rd, and minor 3rd 
intervals in the Spiral Array Model (from Chew 2000). 

In music theory, the terms key and tonality are often used interchangeably. However, 

for the context of this thesis we will primarily use the term key, which we define as one 

particular tonic and a mode (Hyer 2001). The tonic is the first and most stable pitch-class 

within the diatonic collection for the key. The mode governs both the melody type and 

scale and there are two basic modes: major and minor. 

The major and natural minor are the two primary types of diatonic scales, which 

consist of seven notes with five whole tone intervals and two semitone intervals. The only 

difference between the two scales is the step sizes for the various scale degrees. Table 2.1 

provides a legend of the scale degrees for the major and minor modes and Figure 2.3 

shows the scale degrees and step sizes for C major and A natural minor scales. 

 

major 3rd

perfect 5th

minor 3rd

perfect 5th
major 3rd
minor 3rd

LEGEND :
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Major Minor 
I Tonic I Tonic 
II Supertonic II Supertonic 
III Mediant III Mediant 
IV Subdominant IV Subdominant 
V Dominant V Dominant 
VI Submediant VI Submediant 
VII Leading Tone #VI Raised Submediant 
VIII Tonic VII Subtonic 
  #VII Leading Tone 
  VIII Tonic 

Table 2.1: The scale degrees for the major and minor modes. 

 

Fig. 2.3: The C major scale (left) and the A minor natural scale (right). 
Step sizes (in semitones) are shown above and the scale degrees are 
shown below. 

In addition to the natural minor scale, there are two other types of minor scales: the 

harmonic minor and melodic minor. The harmonic minor scale is equivalent to the natural 

minor except the 7th degree is raised by one semitone such that the interval between the 6th 

and 7th degrees forms an augmented second. The ascending melodic minor scale has both 

the 6th and 7th scale degrees raised by one semitone and the descending melodic minor 

scale is equivalent to the natural minor scale. The harmonic minor and ascending melodic 

minor scales are depicted in Figure 2.4. 
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Fig. 2.4: The harmonic minor scale (left) and the ascending melodic 
minor scale (right). The descending melodic minor scale is identical to 
natural minor scale in Figure 2.3. Step sizes (in semitones) are shown 
above and the scale degrees are shown below. 

If we consider enharmonic equivalence (i.e., C# and Db have different names but the 

same pitch-class), then we have a total of twenty-four distinct keys: one for each pitch-

class in the major and minor modes. Each key also has harmonic relationships to other 

keys. Relative major/minor keys have the same pitch-class set but different modes (e.g., C 

major and A minor). Parallel major/minor keys have the same tonic but different modes 

(e.g., C major and C minor). Two keys separated by a perfect 5th (e.g., C major and F 

major) are also closely related since they share all but one pitch-class in their diatonic 

collection. 

2.3 Key Detection 

There have been many attempts to create key-finding models in the literature and these 

can be separated into two distinct groups: symbolic key detection models and audio key 

detection models (Temperley and Marvin 2007). The first group deals with symbolic data, 

such as a score or MIDI file. In this case, the input is always complete and free of any 

ambiguity with regards to pitch and duration of events. The second category operates 

directly on an audio signal, requiring the extraction of data to a format that can be 

interpreted by the key-finding algorithm. The scope of this thesis is only concerned with 

the latter category of key-finding models. As such, this section presents some of the more 
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notable research on symbolic key detection as well as a more comprehensive review of 

previous research efforts on audio key detection. 

2.3.1 Symbolic Key Detection 

The first notable attempt to create a model that addressed the problem of key-finding was 

that of Longuet-Higgins and Steedman (1971). They observed that pitch-classes 

belonging to a key have relatively small Euclidian distances from one another on the 

Harmonic Network (see Figure 2.1). This observation formed the basis for their model, 

which used a shape-matching algorithm in order to identify the key (Chew 2000). For the 

purposes of the algorithm, a shape defines the mode of the key (i.e., all major keys have 

the same shape and all minor keys have the same shape) and location of the shape 

determines the tonic. Figure 2.5 shows two examples of “shapes” outlined in the 

Harmonic Network. The algorithm processes the notes of a melody in the order in which 

they appear. With the appearance of each note, the keys corresponding to shapes that do 

not contain that note are eliminated from consideration. If the end of the melody is 

reached and only one key remains, then it is chosen. If, however, more than one key 

remains, then a tonic-dominant rule is utilized1. In the case where no keys remain, then 

the key whose tonic is the first note in the melody is chosen2. The model was evaluated on 

the 48 fugue subjects of Bach’s Well-Tempered Clavier. Although it correctly identified 

the key in every case, it should be noted that these pieces are relatively simplistic in their 

harmonic structure. Temperley and Marvin (2008) point out that it is relatively easy to 

find examples of melodies that would produce an incorrect result. 
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Fig. 2.5: Examples of shapes outlined in the Harmonic Network for 
Longuet-Higgins and Steedman’s (1971) shape-matching algorithm 
(from Chew 2000). C major on the left and A minor (harmonic) on the 
right. 

One of the most significant advances in symbolic key detection was made with the 

algorithm proposed by Krumhansl and Schmuckler, known as the Krumhansl-Schmuckler 

(K-S) algorithm (Krumhansl 1990). The approach is based on the set of key profiles 

derived from the experiments of Krumhansl and Kessler (1982). The key profiles, shown 

in Figure 2.6, are supposed to represent the ideal distribution of pitch-classes within a 

key. A key profile consists of a twelve-dimensional vector, where each value of the vector 

represents the relative stability of the corresponding pitch-class within the given key. 

There are 24 key profiles, one for each of the 12 major and minor keys. 

The algorithm first calculates an input-vector from a MIDI file, which is a normalized 

representation of the total duration of each pitch-class within the piece. A correlation is 

then calculated between the input-vector and each of the 24 key profiles. The key 

corresponding to the profile with maximum correlation to the input-vector is then chosen3. 

The basic assumption of the K-S model is that the generated input-vector will 

correspond closely to the correct key profile. This assumption may be correct in many 

cases (e.g., when there is a strong presence of notes in the tonic-triad). However, there is 

an abundance of examples in which this assumption will lead to an incorrect result. In an 

effort to overcome these limitations, Temperley (1999) proposed several modifications to 

the K-S algorithm. Firstly, he suggests that note durations be ignored altogether, such that 

the values of the resulting input-vector are binary3. Secondly, he makes slight 
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modifications to the key profiles in order to help distinguish between keys with very 

similar pitch-class distributions. 

 

  

  

Fig. 2.6: Krumhansl and Kessler’s (Krumhansl 1990) major and minor 
key profiles (top). Temperley’s (2001) major and minor key profiles 
(bottom). 

Based on the Spiral Array model (see Section 2.2), Chew (2000) proposes the Center 

of Effect Generator (CEG) key-finding method. In the CEG algorithm, a passage of music 

is mapped to a point within the three-dimensional space, known as the Center of Effect, 

by summing all of the pitches and determining a composite of their individual positions in 

the model. The algorithm then performs a nearest-neighbor search in order to locate the 

position of the key that is closest to the Center of Effect. The “closest key” can be 
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interpreted as the global key for the piece, although the proximity can be measured to 

several keys, which allows for tonal ambiguities. 

Temperley and Marvin (2007) note that the vast majority of key-finding models take 

a distributional view, which postulates that listeners identify the key of a piece of music 

based solely on the distribution of pitch-classes. Based on this view, Temperley (2007) 

proposes a key-finding system that implements a probabilistic model. Within this model, 

key profiles are generated for each key, representing the probability of each pitch-class 

appearing. The profiles are constructed by performing a statistical analysis of a corpus of 

music that extracts the overall “presence” of each pitch-class. For example, the major key 

profile created from the opening movements of Mozart and Haydn’s string quartet, is 

shown in Figure 2.7. Once the key profiles have been created, the model can estimate the 

key of a melody by calculating the probability of a melody appearing if it is in a particular 

key, for each of the 24 possible keys, and choosing the key with the highest value. The 

system was evaluated on a corpus of 65 European folk songs and had a key recognition 

rate of 86.15%. 

Madsen and Widmer (2007) argue that in addition to the pitch-class distribution, the 

order of notes appearing in a piece of music may also help determine the key. They 

propose a key-finding system that incorporates this temporal information by also 

analyzing the distribution of intervals within a piece of music. Interval Profiles are 12x12 

matrices representing the transition probability between any two scale degrees. The 

profiles are then learned from key annotated data for all 24 keys. Using a corpus of 8325 

Finnish folk songs in MIDI format, the system was trained using 5550 songs and 

evaluated with the remainder. A comparison was also performed between the use of 

Interval Profiles and several types of pitch class profiles. The maximum key recognition 

rate using the Interval Profiles was 80.2%, whereas the maximum recognition rate using 

pitch class profiles was 71%. 
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Fig. 2.7: The major key profile generated from string quartets by Mozart 
and Haydn (Temperley and Marvin 2007). 

2.3.2 Audio Key Detection 

In contrast to the extensive body of literature on symbolic key detection, there exists 

relatively little documented research on audio key finding. However, there appears to be 

four distinct types of approaches for audio key detection methods: pattern matching and 

score transcription methods, template-based methods, geometric models, and methods 

based on chord progressions or Hidden Markov Models (HMMs). 

The earliest attempts at audio key detection focused on using pattern matching 

techniques or partial transcription of the audio signal to a score representation. The latter 

would seem to be the most intuitive approach, as it theoretically would allow for the 

application of exiting symbolic key-finding methods for audio. 

The vast majority of audio key detection models circumvent the need for score 

transcription by implementing template-based algorithms. These models are based on 

correlating the global distribution of pitch-classes for a piece of music with representative 

templates for each key. Temperley and Marvin (2007) call this the distributional view for 

key finding. A typical system will calculate a pitch-class distribution feature4, 
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representing the relative global intensity of each pitch-class within the piece. The pitch-

class distribution feature is subsequently compared with pitch-class templates, 

representing the ideal distribution of pitch-classes for each key. The key corresponding to 

the template with maximum correlation to the pitch-class distribution feature is then 

chosen. 

More recently there have been attempts to build audio key detection systems that 

implement Hidden Markov Models (HMMs). These types of systems will often also 

incorporate some form of chord detection or local key estimation (i.e., detection of 

modulations). 

See Appendix A for a table that summarizes the audio key detection systems 

reviewed in this section. 

2.3.2.1 Pattern-Matching and Score Transcription Methods 

Leman (1991, 1995b) proposed one of the first models for audio key detection. The 

system is based heavily on a model of the human auditory system and consists of two 

stages. The first step is to extract local tone centers in a bottom-up manner for the piece of 

music. The second stage of the system uses a pattern-matching algorithm to compare the 

extracted tone center data with predetermined templates derived from self-organizing 

maps. 

Izmirli and Bilgen (1994) proposed a system for audio key finding that implements 

partial score transcription in combination with a pattern-matching algorithm. In the first 

stage of the system, the fast Fourier transform (FFT) function is used in order to convert a 

single-part, melodic audio input into a sequence of note intervals with associated onset 

times. A second stage then employs a finite-state automata algorithm to compare the note 

sequences with predetermined scale patterns. The model then outputs a tonal context 

vector, where each element is known as a tonal component. Each tonal component 

represents the extent of any given scale usage within the melody for the corresponding 

location in time. In essence, the model provides a time-dependent tonal context for the 
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input melody and not an explicit estimation of the global key. Figure 2.8 depicts an 

example of the tonal context vector. 

In 1996, Izmirli and Bilgen (1996) went on to extend their system to handle an 

unrestricted number of simultaneous input melodies. The first stage of the model uses a 

constant Q transform (CQ-transform) in order to map the input signal to the frequency 

domain, as opposed to the FFT function used in their earlier version (Brown 1991)5. A 

simple peak-selection algorithm is then applied in order to produce a set of notes for each 

time step. The second stage of the system remains roughly the same as their previous 

implementation, but is adapted to process simultaneous occurrence of multiple notes. 

 

Fig. 2.8: The tonal context evolution of the three most prominent tonal 
components for an example melody. The x-axis denotes time and the y-
axis represents the strength of the tonal components (between 0 and 1). 
h0 = harmonic A minor, n0 = natural A minor, and M3 = C major (from 
Izmirli and Bilgen 1994). 
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2.3.2.2 Template-Based Methods 

A template-based audio key detection system typically consists of two stages. The first 

stage extracts a pitch-class distribution feature from the audio signal, representing the 

relative strength of each pitch-class within the signal. The second stage uses some form of 

algorithm to compare the pitch-class distribution feature with pitch-class templates in 

order to estimate the key. Pitch-class templates are twelve-valued vectors that represent 

the ideal distribution of pitch-classes for a given key.  

Gómez (2006a) points out that the nomenclature for pitch-class distribution features 

varies a great deal in the literature: pitch pattern (Leman 2000), pitch-class profile 

(Fujishima 1999), Harmonic Pitch Class Profile (Gómez 2005), constant-Q profile 

(Purwins et al. 2000), pitch profile (Zhu et al. 2005), and chromagram (Pauws 2004)). 

Although the name and implementation details of the pitch-class distribution features may 

vary in the approaches described in this section, we will from here on refer to these with 

the general term of pitch-class distributions, for the sake of simplicity and clarity. The 

process of creating the pitch-class distributions from a frequency domain representation 

of the signal will be called pitch-class generation (Chuan and Chew 2007).  

Similarly, there is a lack of consistency in the literature for the term used to describe 

pitch-class templates (e.g., key profiles, pitch-class profiles), so we will from here on 

refer to these only as pitch-class templates. There are three basic categories of pitch-class 

templates used for key detection: music theory-based templates, cognitive-based 

templates, and statistics-based templates (Noland and Sandler 2009). Music theory-based 

templates are constructed using some form of musical knowledge (e.g., a template with all 

diatonic pitch-classes having a value of one and all chromatic pitch-classes having a value 

of zero). Cognitive-based templates are obtained through studies on music perception and 

cognition (Krumhansl and Shepard 1979; Krumhansl 1990) and represent the perceptual 

importance of pitch-classes within a key. Statistics-based templates are derived from an 

empirical analysis of a corpus of music, and represent the average pitch-class distributions 

for that particular corpus (Gómez 2006; Noland and Sandler 2007). Pitch-class templates 
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can also be hybrids of these three categories (e.g., templates constructed from the 

cognitive experiments but weighted with statistical data). 

Purwins, Blankertz, and Obermayer (2000) proposed a model based on the probe tone 

experiments conducted by Krumhansl and Shepard (1979)6. The system employs the CQ-

transform to extract a pitch-class distribution from the audio signal. A fuzzy distance 

algorithm is then used to compare the pitch-class distribution with the cognitive-based 

templates. The system is able to track the key over time and thus is capable of identifying 

modulations in the music. An evaluation was performed using Chopin’s C minor prelude, 

Op. 28, No. 20 and was fairly successful at tracking the key, although no quantitative 

results were explicitly reported. 

Pauws (2004) implemented an audio key detection system that adopted the cognitive-

based templates directly from Krumhansl (1990). The system incorporates signal 

processing techniques designed to improve the salience of the extracted pitch-class 

distribution. The pitch-class distribution is then used as input to the maximum-key profile 

algorithm in order to identify the key. The model was tested on a corpus of 237 classical 

piano sonatas, with a maximum key identification rate of 66.2%. 

Van de Par et al. (2006) present an extension to the work of Pauws (2004) in which 

they utilize three different temporal weighting functions in the calculation of the pitch-

class templates. This results in three different templates for each key. Similarly, during 

the actual key detection, three different pitch-class profiles are extracted, one for each 

temporal weighting function. Each of the three pitch-class profiles is then correlated with 

the corresponding templates and a final correlation value is calculated from the combined 

values. The system was evaluated using the same corpus of 237 classical piano sonatas as 

Pauws (2004) and received a maximum key recognition rate of 98.1%. 

While most template-based audio key-finding systems utilize some form of Euclidian 

distance to compare pitch-class distributions with templates, Martens et al. (2004) 

implemented a model using a classification-tree for key recognition. The classification-

tree was trained using 264 pitch-class templates that were constructed from Shepard 

sequences and chord sequences of various synthesized instruments7. They conducted an 
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experiment that compared the performance of the tree-based system with a classical 

distance-based model using two pieces: “Eternally” by Quadran and “Inventions No. 1 in 

C major” by J. S. Bach. The results led them to favor the classification-tree system due to 

its ability to stabilize key estimations over longer time periods. They also noted the 

advantage of being able to tune the system for specific types of music by using a 

corresponding category of music to train the model. 

Gómez and Herrera (2004a) noted that the majority of audio key detection models 

developed up until 2004 were based on perceptual studies of tonality, which they called 

cognition-inspired models. They performed an experiment in which they directly 

compared an implementation of a cognition-inspired model with several machine-learning 

algorithms for audio key determination. The cognition-inspired model was based on the 

K-S algorithm but extended to handle polyphonic audio input. Numerous machine-

learning techniques were implemented, including binary trees, Bayesian estimation, 

neural networks, and support vector machines. The various algorithms were evaluated on 

three criteria: estimating the “key note” (i.e., tonic), the mode, and the “tonality” (i.e., 

tonic and mode). A corpus of 878 excerpts of classical music from various composers was 

used for training and testing. The excerpts were split into two sets: 661 excerpts for 

training and 217 excerpts for evaluation. The results, summarized in Figure 2.9, show that 

for the case of estimating the “tonality,” the best machine learning algorithm (a multilayer 

perceptron, neural network) outperforms the cognition-inspired model, but a combination 

of the two approaches produces the best results. 
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Fig. 2.9: A summary of the results of Gómez and Herrera’s experiment 
comparing the performance of cognition-inspired models versus machine 
learning algorithms for audio key finding (from Gómez and Herrera 
2004). 

Chuan and Chew (2005c) point out the importance of segregating the sources of 

errors in audio key detection systems between the pitch-class generation and the key 

identification stages. They formulate hypotheses for sources of errors during the pitch-

class generation stage and propose a modified algorithm that uses fuzzy analysis in order 

to eliminate some of the errors. The fuzzy analysis method consists of three main 

components: clarifying low frequencies, adaptive level weighting, and flattening high and 

low values8. They performed a direct comparison of the fuzzy analysis key-finding system 

with two other models: a peak detection model and a MIDI key-finding model. The 

evaluation utilized excerpts from a corpus of 410 classical music MIDI files, where only 

the first 15 seconds of the first movement was considered. The fuzzy analysis and peak 

detection algorithms operated on audio files that were synthesized using Winamp, and the 
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MIDI key-finding model operated directly on the MIDI files. The maximum key 

identification rates for the peak detection, fuzzy analysis, and MIDI key-finding models 

were 70.17%, 75.25%, and 80.34%, respectively. It is not surprising that the MIDI key-

finding model had the best overall performance, considering that it operates on 

unambiguous and complete pitch data. However, the results do indicate that fuzzy 

analysis provides an effective means of improving pitch-class generation for audio key 

detection systems. 

Signifying a recently increased interest in audio key detection, the 2005 Music 

Information Retrieval Evaluation eXchange (MIREX ’05) featured an audio key-finding 

competition. Six groups participated in the event (Chuan and Chew 2005b; Gómez 2005; 

Izmirli 2005b; Pauws 2005; Purwins and Blankertz 2005; Zhu 2005), submitting state-of-

art key-finding systems that were evaluated using a formalized scoring procedure. All of 

the systems were template-based and used some form of pitch-class distribution feature in 

combination with a key-finding model. However, the type of pitch-class templates (e.g., 

cognitive-based, music theory-based, statistics-based), feature extraction algorithms, and 

key models were varied amongst the participants. Table 2.2 summarizes the 

implementation details of the algorithms entered, Table 2.3 show the results of the 

evaluation, and Table 2.4 describes the scoring procedure that was used. 
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Feature Extraction 
Participant Frequency 

Analysis 
Pitch-Class 
Generation 

Key-finding 
Algorithm Pitch-Class Template 

Chuan & 
Chew FFT 

Peak detection 
with fuzzy 

analysis 

Pitch spelling 
(maps to Spiral 

Array) combined 
with Center of 

Effect Generator 
algorithm 

Music theory-based: geometric 
representation in the Spiral Array 

Gómez FFT 

Harmonic Pitch 
Class Profiles 

with 36 bins for 
tuning correction 

Maximal 
correlation with 

templates 

Cognitive-based: modified tone 
profiles TM and Tm, proposed by 

Temperley (1999) 

Izmirli FFT 

Multiple 
summary chroma 
vectors of varying 
window lengths 

K-S correlation 
with confidence 
values for each 

summary chroma 
vector 

Cognitive/Statistical/Music 
theory-based: composite of 

Temperley’s (2001) tone profiles 
(cognitive-based) and diatonic 
profiles (music-theory based), 

combined with extracted 
frequency data from real 

instrument sounds (statistics-
based) 

Pauws FFT 

Subharmonic 
summation used 
to create chroma 

spectrum 

Unknown Statistics-based: derived from 
training data 

Purwins & 
Blankertz CQ-transform 

Pitch class 
distributions with 
36 bins for tuning 

correction 

Maximal 
correlation with 

templates 

Statistics-based: derived from 
training data 

Zhu CQ-transform 

Pitch content 
classified as 

mono, chord or 
other 

Rules based on 
training data 

Music theory/Statistics-based: 
Music knowledge is used to create 
a set of rules and the parameters 

are derived from the training data 

Table 2.2: Summary of the implementation details for the systems 
entered in the MIREX ’05 audio key-finding competition (Chuan and 
Chew 2005b). 
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Relation to correct key Points 
Exact match 1 
Perfect fifth 0.5 

Relative major/minor 0.3 
Parallel major/minor 0.2 

Table 2.3: Summary of the metrics system used for the MIREX ’05 
audio key finding evaluation. Summing the total number of points and 
dividing by the total number of instances in the test set gives the 
percentage score. 

Percentage Score Participant Composite 
Percentage Score Winamp Timidity 

Izmirli 89.55% 89.4% 89.7% 
Purwins & 
Blankertz 89.00% 89.6% 88.4% 

Gómez (start) 86.05% 86.4% 85.7% 
Gómez (global) 85.90% 86.0% 85.8% 

Pauws 85.00% 84.3% 85.7% 
Zhu 83.25% 85.2% 81.3% 

Chuan & Chew 79.10% 80.1% 78.1% 

Table 2.4: Summary of the results for the MIREX ’05 audio key-finding 
competition. Two data sets were used for evaluation: Winamp 
synthesized audio and Timidity with Fusion soundfonts synthesized 
audio. The percentage scores are calculated using the system of metrics 
that was created for the competition. 

Izmirli (2005a) conducted further experiments using the model that he submitted to 

the MIREX ’05 audio key-finding competition. He evaluates the effectiveness of different 

types of pitch-class templates in combination with varying durations of analysis for the 

input signal. Two different methods are used to implement the template calculation 

model: the first is based purely on the spectral content of the signal and the second is a 

chroma-based representation that extrapolates on the spectral content. A corpus of 85 
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pieces from various composers, primarily from the common practice period is used to 

evaluate the system. The results of the experiment showed that the maximum key 

recognition rate of 86% was achieved using a chroma-based representation that combined 

the Temperley and Diatonic profiles. 

Izmirli (2006) conducts an additional experiment in which he compares the model 

submitted to MIREX ’05 with another model that utilizes dimensionality reduction. The 

goal is to determine the optimal number of dimensions to be used for the key-finding 

problem, as opposed to reducing the computational cost. An evaluation is performed 

using the two models on a corpus of 152 pieces from the classical period. It is shown that 

the performance of the key-finding system was not significantly hindered when using 6 

dimensions instead of 12. The model using 6 dimensions received a composite score of 

88.7%, whereas the reference model received an 88.9% composite score. 

Izmirli (2007) points out that the majority of key-finding models focus on identifying 

the main key of a piece, as opposed to segmenting the audio based on modulations in 

order to perform local key-finding. A new system is proposed that uses non-negative 

matrix factorization in order to segment an audio signal based on modulations. A series of 

windowed pitch-class distributions are calculated and segments are identified based on 

this technique. The same correlational model as was used in (Izmirli 2005a) is employed 

to identify the key of any given segment. Three different data sets were used to evaluate 

the model: 17 pop songs with at least one modulation each, 152 excerpts from the initial 

portion of classical music pieces, and 17 short excerpts of classical music containing at 

least one modulation each. The maximum accuracy of the segmentation-based approach 

was 82.4%, for the pop data set. 

Gómez (2006b) presents an exhaustive investigation on tonal descriptors of audio 

signals in her Ph.D. dissertation. She presents a thorough analysis of many of the 

pertinent aspects of audio key detection, including audio feature computation, evaluation 

strategies, and various template-based models for tonality. An evaluation of different 

audio key detection methods was performed for various genres of music. The study led to 

the conclusion that in most cases models that use cognitive-based templates outperform 
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those that utilize statistics-based templates. Furthermore, the results of the experiment 

indicated that the performance of any particular audio key detection model is heavily 

dependent on the genre of music that is being analyzed. 

Zhu et al. (2005) propose an audio key-finding system that utilizes the CQ-transform 

and detects the key in two distinct steps: diatonic scale root estimation and mode 

determination. The system is evaluated on a corpus of 60 pop songs and 12 classical 

music recordings, using only the first 2 minutes of each piece. The correct scale root was 

detected for 91% of the pop songs but only 50% of the classical music pieces. The rate of 

successful mode determination for the pop songs was 90% and 83.3% for the classical 

pieces. 

Zhu and Kankanhalli (2006) went on to further investigate the effects of mistuned 

recordings9 and the effect of noisy, percussive sounds on pitch-class generation. They 

conducted an analysis of 185 classical and 64 popular music excerpts and determined that 

many of the recordings contained tuning errors. They also point out that percussive 

sounds should be disregarded within an audio key detection system, because they are not 

pitched and therefore do not contribute to tonality. However, these percussive elements 

still have an effect on the frequency domain representation of the signal, contributing 

energy to the bins used to generate the pitch-class distributions. As such, they affect the 

salience of the pitch-class distributions, and in turn the accuracy of key identification. 

They propose a system to improve on these limitations. A tuning pitch determination 

algorithm is used to detect a mistuned recording and adjust the pitch-class distribution 

accordingly. They also use consonance filtering in order to discard some of the frequency 

contributions from noisy, percussive elements in the signal. Figure 2.10 shows the output 

of the extracted note partials, with and without the consonance filtering. They perform an 

experiment in which they compare the proposed system with an earlier model that does 

not account for mistuned recordings or percussive instrumentation. They claim that the 

results of the experiment indicate that the use of tuning correction and consonance 

filtering improve the key identification accuracy. 
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Fig. 2.10: Comparison of note partials with consonance filtering (right) 
and without consonance filtering (left) (from Zhu and Kankanhalli 2006). 

2.3.2.3 Geometric Models 

Chuan and Chew (2005a) present an audio key detection system that utilizes the Spiral 

Array Center of Effect Generator (CEG) algorithm (Chew 2000; Chew 2001). The system 

uses the standard FFT to extract pitch-class and pitch strength information from the audio 

signal, which is then mapped to a 3-D point in the Spiral Array. A nearest-neighbor 

search is then used in the Spiral Array in order to estimate the key. A comparison of this 

model is then made with two other template-based audio key-finding approaches: the K-S 

method and Temperley’s modified K-S method (templates shown in Figure 2.6). All three 

systems were evaluated on a corpus of 61 excerpts of Mozart symphonies synthesized 

from MIDI. Their Spiral Array CEG model received a maximum key recognition rate of 

96%, while the K-S and Temperley’s modified K-S models had a maximum recognition 

rate of 80% and 87%, respectively. 

Chuan and Chew (2007) go on to use their model in order to perform a systematic 

analysis of the various components of audio key detection systems, with the goal of 

identifying elements critical to system design. They observe that most previous 

evaluations of audio key-finding systems only report the overall key detection accuracy, 
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Fig. 8. (a) Consonance filtering output; (b), (c) comparison of note partials with
consonance filtering output in local details.

the bins of the original spectrogram. Fig. 7(a) is for CQT with
, Fig. 7(b) is for CQT with and Fig. 7(c) is

for the extracted note partials. It can be seen that the prominent
peak at bin 52 in Fig. 7(c) is almost missing in Fig. 7(a).

Precise note partial extraction is important for further analysis
of the signal such as key detection, since large errors are much
more likely to interfere with the scale structure.

IV. PITCH PROFILE FEATURE EXTRACTION

A. Consonance Filtering

If all the note partials in the extracted note partials tracks are
used in constructing pitch profile features like in [27]–[33], in-
terference can be introduced from noisy percussive sounds and
heavy bass notes that raise the energy of nearby pitches several
semitones (or even octaves) away. To construct the pitch profile
feature with high quality in the sense that it has minimal interfer-
ence, we would like to extract only those prominent note partials
that are relevant to the music scale. We propose a consonance
filtering method to extract the relevant note partials.

The basic idea behind the filtering method is that the simul-
taneous notes played are in consonance with each other in the
sense that they are from a same diatonic scale (or a same key).
This assumption is mostly true for many styles of music com-
position, such as those based on chords or counterpoint (several
independent melodies on top of each other). The filtering is done
for note partials at each time index. In our implementation, there
are 84 note partials. The filtering is described by the following

algorithm, where we denote the note partials by , where
and .

1. Set and for , set for

2. Set if for
3. Find the such that , if

then return .
4. Set , and
5. Check whether is compliant with the diatonic scale model, if yes set

and go to step 3, else set and return .

This algorithm extracts the component with highest and local
maximal energy one by one and stops until a new component
cannot fit to the diatonic model or no component is left. The
output of the algorithm specifies the filtered consonant
note partials. when pitch is selected.

In the algorithm, step 1 is for variable initialization. Step 2
gets the local maximal partials and stores them in , which
aims to eliminate the interference of any strong note. Steps 3 and
4 finds the global maximal component in and indicates it
in both and . is the scale model for . Step
5 check whether can fit to the diatonic scale model, and
if not removes the last component added from and returns

.
Compliance checking of with the diatonic scale model

is done by rotationally aligning the 12 components of with
the diatonic model [19]. If an alignment exists in which any
components of with value 1 corresponds to a scale tone in
the diatonic scale model, then is assumed to be compliant
with the diatonic model. If such an alignment does not exist, it
is assumed to be noncompliant. The components after filtering
are mainly high energy low harmonics of the music notes.

The consonance filtering output for the music signal dis-
cussed earlier is shown in Fig. 8(a). The result is compared in
local details with note partials side by side in Fig. 8(b) and (c).
Note that the filtering output is binary.

B. Pitch Profile Generation

Pitch profile is a feature that characterizes the distribution of
the filtered pitch components in the music signal over a window
of time. Although a long window can lead to a more represen-
tative pitch profile feature, it is not appropriate to use the whole
piece for a single pitch profile feature. This is because the key
can modulate (change) in the middle of the piece and thus the
feature would fail to capture the structure of the local scale or
keys. Based on our experiments, a time window of 15 s is usu-
ally adequate to exhibit the scale and key structure in the pitch
profile feature.

The pitch profile feature is computed based on the output of
consonance filtering using the following algorithm.

1. for , where , and is the
time window length.

2. , where .
3. .

In step 1, contains total time counts for pitch in the
time window. In step 2, time counts of the same pitch class are
accumulated over all octaves. In step 3, the pitch classes are
sorted according to the “circle of the fifths,” such that any two

Authorized licensed use limited to: McGill University. Downloaded on May 12,2010 at 17:00:29 UTC from IEEE Xplore.  Restrictions apply. 
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as opposed to a more detailed analysis of the performance of the individual system 

components or the effect of the type of music that is used for evaluation. They first 

propose a basic system using the fuzzy analysis and spiral array center of effect (FACEG) 

algorithm (Chuan and Chew 2005c), and evaluate it using three different key 

determination policies: the nearest-neighbor (NN), the relative distance (RD), and the 

average distance (AD). The basic system is then evaluated using excerpts of the initial 

fifteen seconds of 410 classical music pieces, ranging in styles from Baroque to 

Contemporary. The results show the average accuracy for each of the three key 

determination policies, revealing that the AD policy performs the best. However, analysis 

of the results also reveals some of the strengths and weaknesses of each policy, as well as 

the effect of the musical genre on key identification accuracy. They go on to propose 

three extensions to the basic system: the modified spiral array (mSA), fundamental 

frequency identification (F0), and post-weight balancing (PWB). Five different 

permutations using the three extensions are evaluated in a second case study using 

Chopin’s 24 Preludes. An in-depth, qualitative, and quantitative analysis of the results 

also provides insight on how and why each of the extensions can be used to improve 

audio key identification accuracy for specific situations. The basic audio key-finding 

system and its three extensions are depicted in Figure 2.11. 

 

Fig. 2.11: A typical audio key finding system (top). The basic audio key-
finding system (grey) and extensions (bottom) (from Chuan and Chew 
2007). 
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Figure 1: Audio key-finding system (fundamental + extensions).

simply reported one overall statistic for key-finding perfor-
mance [3, 7–9], which fails to fully address the importance
of the various components in the system, or the actual musi-
cal content, to system performance. We represent a solution
to audio key finding as a system consisting of several alter-
native parts in various stages. By careful analysis of system
performance with respect to choice of components in each
stage, we attempt to give a clearer picture of the importance
of each component, as well as the choice of music data for
testing, to key finding. Our approach draws inspiration from
multiple domains: from music theory to audio signal pro-
cessing. The system components we introduce aim to solve
the problem from different viewpoints. The modular design
allows us explore the strengths and weaknesses of each alter-
native option, so that the change in system performance due
to each choice can be made clear.

The rest of the paper is organized as follows. Section 1.1
provides a literature review of related work in audio key find-
ing. Section 2 describes the overall system diagram, with new
alternatives and extensions. The basic system, the FACEG
system, and the three key determination policies, the nearest-
neighbor (NN), relative distance (RD), and average distance
(AD) policies, are introduced in Section 3. The evaluation of
the FACEG system with the three key determination policies
follows in Section 4. Two case studies based on the musical
score are examined to illustrate situations in which audio key
finding performs better than symbolic key finding. Section 5
describes three extensions of the system: the modified spi-
ral array (mSA) approach, fundamental frequency identifica-
tion (F0), and post-weight balancing (PWB). Qualitative and
quantitative analyses and evaluations of the three extensions
are presented in Section 6. Section 7 concludes the paper.

1.1. Related work

Various state-of-the-art Audio key-finding systems were pre-
sented in the audio key-finding contest for MIREX [10].
Six groups participated in the contest, including Chuan and
Chew [11], Gómez [12], İzmirli [13], Pauws [14], Purwins
and Blankertz [15], and Zhu (listed alphabetically) [16].
Analysis of the six systems reveals that they share a similar
structure, consisting of some signal processing method, au-
dio characteristic analysis, key template construction, query
formation, key-finding method, and key determination cri-

teria. The major differences between the systems occur in
the audio characteristic analysis, key template construction,
and key determination criteria. In Gómez’s system, the key
templates are precomputed, and are generated from the
Krumhansl-Schmuckler pitch-class profiles [5], with alter-
ations to incorporate harmonics characteristic of audio sig-
nals. Two systems employing different key determination
strategies are submitted by Gómez: one using only the start
of a piece, and the other taking the entire piece into ac-
count. In İzmirli’s system, he constructs key templates from
monophonic instruments samples, weighted by a combina-
tion of the K-S and Temperley’s modified pitch-class profiles.
İzmirli’s system tracks the confidence value for each key an-
swer, and the global key is then selected as the one having the
highest sum of confidence values over the length of the piece.
The key templates in Pauws’ and Purwins-Blankertz systems
are completely data-driven. The parameters are learned from
training data. In their systems, the key is determined based
on some statistical measure, or maximum correlation. In
contrast, Zhu builds a rule-based key-finding system; the
rules are learned from the MIDI training data. Further de-
tails of our comparative analysis of the systems can be found
in [11].

2. SYSTEM DESCRIPTION

Consider a typical audio key-finding system as shown schem-
atically in the top part of Figure 1. The audio key-finding sys-
tem consists of four main stages: processing of the audio sig-
nal to determine the frequencies present, determination of
the pitch-class description, application of a key-finding algo-
rithm, and key answer determination. Results from the key-
finding algorithm can give feedback to the pitch-class genera-
tion stage to help to constrain the pitch-class description to a
reasonable set. In this paper, we will consider several possible
alternative methods at each stage.

For example, as the basis for comparison, we construct a
basic system that first processes the audio signal using the fast
Fourier transform (FFT) on the all-frequency signal, then
generates pitch-class information using a fuzzy analysis (FA)
technique, calculates key results using the CEG algorithm
with a periodic cleanup procedure, and applies key determi-
nation policy to output the final answer. This basic system,
shown in the gray area in Figure 1, is described in detail in
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Harte et al. (2006) point out that if enharmonic and octave equivalence are 

considered, this has the effect of joining the two ends of the Spiral Array tube to form a 

hypertorus. The circle of fifths is then represented as a helix that wraps around the 

hypertorus three times, illustrated in Figure 2.12. They then propose an audio key-finding 

model that is based on projecting collections of pitches onto the interior space contained 

by the hypertorus. This is essentially mapping to three distinct feature spaces: the circle of 

fifths, the circle of major thirds, and the circle of minor thirds. This 6-dimensional space 

is called the tonal centroid. The algorithm first applies the CQ-transform in order to 

extract the pitch-class distribution. The 12-D pitch-class distribution is then mapped to the 

6-D tonal centroid with a mapping matrix. The algorithm was applied in a chord 

recognition system, however, the authors point out that it could be adapted for other 

classification tasks such as key detection.  

 

Fig. 2.12: If enharmonic and octave equivalence are considered, then the 
Spiral Array model can be represented as a hypertorus (from Harte et al. 
2006). 

Gatzsche et al. (2008) propose a novel approach to audio key finding, making use of a 

model based on circular pitch spaces (CPS). They introduce the music theory-based 

concept of a CPS and go on to present a geometric tonality model that describes the 

relationship between keys. Furthermore, they implement an audio key-finding system that 

Figure 2: The Harmonic Network or Tonnetz. Ar-
rows show the three circularities inherent in the net-
work if enharmonic and octave equivalence are as-
sumed.

0
5 7

94116
1

8
3 10 2

Figure 3: A projection showing how the Tonnetz
wraps around the surface of a Hypertorus with the
pitch classes following the spiral of fifths when en-
harmonic and octave equivalence are assumed.

cent years by Neo-Riemanninan Music Theorists [10, 7, 12].
Close harmonic relations are modelled by small distances on
the plane. Lines of fifths travel from left to right, lines of
major thirds travel from bottom left to top right and lines
of minor thirds travel from top left to bottom right.

In Just Intonation, the Tonnetz is an infinite plane [13].
If it is assumed that a particular note spelling on one row is
equivalent to the same note spelling on the next row (i.e. F!1
≡ F!2 etc. in fig. 2), the plane wraps up and forms a tube
with the line of fifths becoming a helix on its surface. In the
case where the helix is wrapped so that major third intervals
are directly above each other on the surface of the tube this
is Chew’s Spiral Array [5]. Chew’s model allows chords and
keys to be projected as objects in a 3-D space on the interior
of the tube and has been applied successfully to problems
such as key finding and pitch spelling from symbolic data
[6].

In the case of data derived from audio, it is very difficult to
directly extract the correct spelling of pitches. This is partly
due to the fact that high resolution frequency analysis would
be needed to resolve the small differences between them.
Equally, on a more practical level, it is because the majority
of keyboard instruments are now tuned to twelve-tone equal

temperament so the differences would not be present.
If enharmonic equivalence is assumed then instead of deal-

ing with a theoretically infinite number of pitch names, there
are now just the twelve different pitch classes (here we ref-
erence C as pitch class 0). In the Spiral Array model, this
has the effect of joining the two ends of the tube together
and the result is a hypertorus with the circle of fifths wrap-
ping around its surface three times (see Figure 3). A form
of this Hypertorus appears in many different areas of music
research [10, 7, 11, 14].

We now propose a 6-dimensional interior space contained
by the surface of the Hypertorus. This allows us to apply
the same technique that Chew uses to develop the Centre of
Effect in the Spiral Array to this equal tempered model for
pitch space.

Since it is not possible to directly visualise 6-D space, it is
helpful to imagine it as a projection onto the three circular-
ities in the equal tempered Tonnetz: the circle of fifths, the
circle of minor thirds and the circle of major thirds (figure 4).
Here, the six dimensions are viewed as three co-ordinate
pairs x1, y1, x2, y2 and x3, y3. A collection of pitches (i.e.
a chord) can be described as a single centroid point in the
space. Chords with a tonal centre (such as the A major
shown as point A in figure 4) can be clearly assigned to
a point in the circle of fifths. However, there are chords
without defined tonal centres (e.g. diminished 7th and aug-
mented chords). The centroid of each of these chords lies
in the centre of the circle of fifths. On the circle of minor
thirds, however, augmented chords can be unambiguously
identified, while the circle of major thirds can uniquely de-
pict diminished 7th chords.

3. ALGORITHM
The first stage of the system is the Constant-Q spectral

analysis. This is a logarithmic frequency analysis based
on the efficient algorithm described in [3]. We calculate
a 36 bins-per-octave transform across five octaves between
fmin = 110Hz (A2) and fmax = 3520Hz (A7) from a 11025Hz
mono audio signal. To obtain this resolution at the lowest
analysed frequencies requires a 743ms window length. This
is a long analysis window in terms of musical signals so to
improve time resolution we overlap analysis frames by 1

8 th
of a window length giving an effective frame length of 93ms.
A 12-bin tuned Chromagram is then calculated from the
Constant-Q spectra using the method described in [9] giv-
ing a 12-dimensional chroma vector c for every frame.

3.1 Tonal Centroid Calculation
The six dimensional tonal centroid vector, ζ, for time

frame n is given by the multiplication of the chroma vector,
c, and a transformation matrix Φ. Dividing by the L1 norm
of c prevents numerical instability and ensures that the tonal
centroid always lies within the 6-D polytope (equation 1).

ζn(d) =
1

||cn||1

11X

l=0

Φ(d, l)cn(l)
0 ≤ d ≤ 5
0 ≤ l ≤ 11

(1)

where l is the chroma vector pitch class index and d de-
notes which of the six dimensions of ζn is being evaluated.
The transformation matrix Φ represents the basis of the 6-D
space described in section 2 and is given as:

Φ = [φ0, φ1 . . . φ11] (2)
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makes use of the model. The CQ-transform is employed in order to extract a pitch-class 

distribution, which is in turn input to the CPS model. The model then maps the vector to 7 

different circular pitch spaces, which essentially gives 7 different predictions for the key. 

 

2.3.2.4 Chord Progression and HMM-Based Methods 

The ability to automatically identify the key and label the chords from audio would be 

extremely useful for the purpose of harmonic analysis. Identifying the presence of certain 

chords in a piece of music can lead to an improved estimate of the key. Similarly, 

knowing the key of a piece of music can improve the accuracy of chord identification. As 

such, chord recognition and key detection are two closely related problems and have been 

approached simultaneously by various researchers. 

One of the most prominent tools for approaching this problem is the Hidden Markov 

Model (HMM). A HMM is a type of statistical model which is commonly used for 

temporal pattern recognition. It consists of a sequence of states that are hidden to the 

observer, which model a stochastic process. The states are observable only through 

another set of stochastic processes, which produce a set of time-based observations (Lee 

and Slaney 2007). The model is parameterized with a discrete number of states, a state 

transition probability distribution (i.e., the probability of each state transitioning to 

another one), and an observation probability distribution (i.e., the probability that each 

state leads to a particular observation) (Noland and Sandler 2006). 

Chai and Vercoe (2005) present an HMM-based audio key detection system that 

segments the signal based on modulations and identifying the key of each segment. A 24-

dimensional pitch-class distribution (i.e., half semitone resolution) is used, as opposed to 

the standard 12-dimensional vector. The proposed approach is to first detect the scale root 

note (the tonic) in one step and then to detect the mode of the key. Thus, two different 

HMMs are used, one for each step. The first HMM has 12 states (i.e., one for each key) 

and the second HMM has just 2 states (i.e., one for each mode: major and minor). State 
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transition probability distributions are represented as a 12x12 matrix for the first HMM 

and a 2x2 matrix for the second. The initial parameters of the HMMs were set empirically 

with values based on music theory. Ten classical piano pieces, manually annotated with 

key based on segmentation were used to evaluate the system. Three different criteria were 

used for the evaluation: recall (i.e., proportion of detected segmentations that are 

relevant), precision (i.e., proportion of relevant transitions detected), and label accuracy 

(i.e., proportion of correctly labeled segments). The maximum label accuracy achieved 

was approximately 83%. 

Peeters (2006a, 2006b) proposes an audio key detection system that implements one 

HMM for each of the 24 possible keys. A front-end algorithm is used to extract a 

sequence of time-based chroma-vectors (i.e., pitch-class distributions) for each of the 

songs in a training set of key annotated music. All of the chroma-vectors for songs in the 

major mode are then mapped to C major and all of the chroma-vectors for songs in the 

minor mode are mapped to C minor. This data is then used to train two HMMs: one for 

the major mode and one for the minor mode. One HMM is then created for each of the 24 

keys by applying circular permutation of the mean vectors and covariance matrices of the 

state observation probability. Peeters goes on to compare the HMM-based model with a 

template-based system that is a combination of the models proposed by Gómez (2006b) 

and Izmirli (2005a). A flowchart depicting both of the implemented methods is shown in 

Figure 2.13. In an evaluation using 302 classical music pieces, the template-based system 

had a maximum key recognition rate of 85.1%, whereas the HMM-based model had a 

maximum key recognition rate of 81%. Peeters claims that part of the reason for the lower 

recognition rate of the HMM-based system is due to the fact the training set included 

music with modulations to neighboring keys. These modulations led to perfect 5th, parallel 

major/minor, and relative major/minor errors. 

Noland and Sandler (2007) undertook an experiment in which they analyze the effect 

of low-level signal processing parameters on two audio key identification algorithms: one 

template-based algorithm and one HMM-based algorithm. The template-based algorithm 

uses the CQ-transform in order to extract pitch-class distributions from the signal, which 
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are correlated with templates derived from recordings of J. S. Bach’s The Well Tempered 

Clavier. The HMM model is based on a previous implementation (Noland and Sandler 

2006) and a simplified version is shown in Figure 2.14. The results of Krumhansl’s probe-

tone experiments (Krumhansl 1990) are used to initialize the transition and state 

observation probabilities. Both algorithms were evaluated using a corpus of 110 Beatles 

songs, testing different values for several low-level parameters: downsampling factor, 

window length, hop size, and highest constant-Q frequency. The results showed that the 

choice of parameters had different effects on the two algorithms, leading to the conclusion 

that an optimal choice of signal processing parameters is highly dependent on the 

particular algorithm that is implemented. 

 

Fig. 2.13: Flowchart of the audio key estimation system (from Peeters 
2006a). 
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Figure 1. Global flowchart of the key estimation system.

The paper is organized as follows. In section 2.2, we
propose our Harmonic Peak Subtraction function for spec-
tral observation of periodicities. In section 2.3, we propose
the mapping of it to the chroma domain. We show the im-
portance of the scale used for the mapping and propose the
use of a sone scale. In section 2.4, we present the various
key decision methods and propose a method based on hid-
den Markov modeling of the keys. In section 3, we evaluate
the performances of our system in comparison with various
other systems. The evaluation is performed using a database
of 302 baroque, classical and romantic music tracks.

2. Key estimation system

The global flowchart of the key estimation system is indi-
cated in Figure 1. We detail it in the following.

2.1. Pre-processing stages

A set of pre-processing algorithms are first applied to the
signal. The signal is first down-sampled to 11025Hz and
converted to mono by mixing both channels. The exact
starting time of the music piece in the sound file is estimated
by a method based on loudness and spectral flatness mea-
sure. The tuning of the track is then found using the method
we have proposed in [12]. In short, we test a set of candidate
tunings between 427Hz and 452Hz (the quarter-tones below
and above A4). For each candidate tuning, we estimate the
amount of energy of the spectrum explained by the frequen-
cies corresponding to the semitones based on this candidate
tuning. For the database we will use in section 3, we have
found tunings ranging from 438 to 447Hz with concentra-
tion at 440Hz and 443Hz. Using this estimation, the signal
is re-sampled (using a polyphase filter implementation) in
order to bring its tuning back to 440Hz. The rest of the sys-
tem is based on a tuning of 440Hz.

2.2. Spectral observation: Harmonic Peak Subtraction

The front-end of most key estimation systems extracts a
spectral representation from the signal. Since this represen-
tation will be mapped to the chroma domain, it is important
that it represents only information about the pitches and not

all their harmonics. Indeed, the presence of the harmon-
ics of the pitches will distort the chroma representation (for
example the harmonics h = 3, 6 will strengthen the pres-
ence of the fifth note and h = 5 the presence of the third)
and induce error in the key estimation (especially the fifth
up/down confusion). In this paper we propose the use of a
Harmonic Peak Subtraction function, which allows reducing
the influence of the higher harmonics of each pitch.

In the case of mono-pitch signals, we have proposed in
[11] a function which combines a frequency representation
S(fk) (the DFT or the Auto-Correlation of the DFT) with
a temporal representation r(τl) (the Auto-Correlation of the
signal or the Real-Cepstrum function) mapped to the fre-
quency domain. The mapping consists in considering that
the value of r(τl) is a measure of the periodicity at lag τl
or at the frequency 1/τl. We interpolate the values of r(τl)
in order to obtain the values of r(τ) at the same frequency
as the DFT τ = 1/fk. Only the positive values of r(1/fk)
are considered (Half Wave Rectification). We now have two
measures of the periodicity at the same frequencies fk and
the final function is obtained by computing the product of
both: h(fk) = S(fk) · r(1/fk). This function has been
tested in [11] for a task of pitch estimation. For this, we sim-
ply take the frequency corresponding to the maximum peak
of h(fk) as the pitch estimation. This process has achieved
97% correct recognition over a large database.

The underlying process of this method is that the ACF
(or Real-Cepstrum) r(τ) can be considered as the decom-
position of the power spectrum (log-amplitude spectrum),
A(fk), on a cosine function gτ (fk) = cos(2πfkτ) and there-
fore measures the periodicity of the peaks of A(fk). This is
illustrated in Figure 2 where we superimposed gτ (fk) on
A(fk) for various lags: τ = T0/5, τ = T0 and τ = 2T0.
We decompose gτ (fk) into its positive and negative part:
gτ (fk) = g+

τ (fk) − g−τ (fk). Positive values of r(τ) occur
only when the contribution of the projection of A(fk) on
g+

τ (fk) is greater than the one on g−τ (fk) (this is the case
for the sub-harmonics of f0, τ = k/f0, k ∈ N+). Non-
positive values occur when the contribution of g−τ (fk) is
larger than or equal to the one of g+

τ (fk) (this is the case for
the higher harmonics of f0, τ = 1/(kf0), k > 1, k ∈ N+).
On the other side, energy in the spectrum S(fk) only exist
for f = f0, 2f0, ... so that when multiplying S(fk) and
r(1/fk) only the peak at f = f0 remains.

This function is not a pitch detection algorithm but a rep-
resentation that strengthens the energy at the pitch frequency
and reduces the energy at the other harmonics. Because of
that we would like to use this method as a front-end for key
estimation which would therefore avoid the effect we have
mentioned above about the presence of higher harmonics.

However in the case of multi-pitch signals, the above-
mentioned function cannot be applied directly. For multi-
pitch signal, the relationship between r(τ) and the period-
icity of the various pitches becomes intricate. We therefore
use the same underlying process but without the use of the
projection on cosine functions. This process can be summa-
rized as testing the hypothesis that fk is a pitch (value given
by the projection of A(fk) on g+

τ (fk)) against the hypothe-
sis that fk is a higher harmonic (projection on g−τ (fk)) or a
lower harmonic of another pitch (multiplication by S(fk)) 1 .

1 It should be noted that this method does not allow to solve the missing
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Fig. 2.14: Simplified version of the HMM, showing only three of the 
possible keys (from Noland and Sandler 2007). 

Burgoyne and Saul (2005) present a system for tracking chords and key 

simultaneously, that implements a Dirichlet-based HMM. A Dirichlet distribution is a 

type of probability distribution that can be used in place of the more common Gaussian 

distribution for the implementation of an HMM. Dirichlet distributions place more 

emphasis on the relations of the outputs as opposed to their magnitudes. This is preferable 

for the case of chord detection from pitch-class distributions, because the important aspect 

is the presence of certain notes and not their magnitude. Burgoyne and Saul’s system uses 

Dirichlet distributions to parameterize the observation distributions of the HMM in their 

system. The HMM was trained using a corpus of 5 Mozart symphonies in 15 movements, 

accompanied with ground truth harmonic analysis. Evaluation was then performed using a 

recording of Minuet from Mozart’s Symphony No. 40. The correct chords were detected 

83% of the time, however, the system was unable to identify the correct key. 

Lee and Slaney (2007) also approach the audio key-finding problem by implementing 

an HMM-based system that performs chord recognition and key detection simultaneously. 

The system uses the Tonal Centroid vector that was proposed by Harte et al. (2006) (see 

Section 2.3.2.3). A separate 24-state HMM is built for each of the 24 possible keys, and 

Noland AND Sandler Signal Processing Parameters for Tonality Estimation

lations away from the home key are short and largely

restricted to closely related keys; there is an equal

number of tracks in each key; and the key of each

track is given in the title so it is not necessary to

rely on human judgement.

The hpcp is summed over each track, then rotated

such that the key note is represented by the first bin.

The rotated hpcp vectors are then weighted by the

duration of the track and summed over the major

then minor keys, to give a 36-bin profile for a major

and minor key. The profiles are then normalised to

sum to 1. The derived profiles are shown in figure 1.
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Fig. 1: 36-bin major and minor hpcp pro-
files derived from recordings of The Well-
Tempered Clavier by J.S. Bach. Profiles are
shown relative to C.

The song under test is passed through the hpcp cal-

culation, and the hpcps for each frame are summed.

The correlations between the major and minor pro-

files and all 36 rotations of the hpcp for the song

are then found, and the rotation and profile giving

the highest correlation is taken to be the key of the

song.

3. ALGORITHM 2: HIDDEN MARKOV
MODEL OF HARMONY
A more complex algorithm based on HMMs as de-

scribed by Noland and Sandler [10] was also tested.

It uses the results of Krumhansl’s probe tone exper-

iments [3] to initialise the transition and observa-

tion probabilities of an HMM where the states repre-

sent keys and the observations represent chord tran-

sitions. The observation probabilities are derived

from the chord transition ratings ([3], p.193), which

give a measure of the importance of chord transitions

within a given key; and the key transition probabili-

ties are taken from the correlations between key pro-

files ([3], p. 38), which give a measure of how closely

related each pair of keys is. A simplefied diagram of

the model is shown in figure 2.

Standard HMM decoding techniques give the prob-

ability of each key at each time step, and these are

summed over the whole track. This results in a 24-

element vector, where each element represents the

importance of a particular key within the track. The

element with the highest value is taken to represent

the key of the song.

Fig. 2: Simplefied diagram of the HMM. Only
3 of the 24 keys are shown.

The original approach works from chord symbol an-

notations, but here we work from audio using the

chord recognition algorithm described by Harte [11].

It uses a 12-bin tuned chromagram as its first sig-

nal processing stage, which requires similar process-

ing to the hpcp of algorithm 1. The chromagram

frames are multiplied by binary vectors representing

major, minor, augmented and diminished triads in

all 12 rotations, and the triad and rotation giving

the highest value is taken to be the chord for that

frame. These chords are used as the observations for

the HMM.

4. PARAMETERS UNDER TEST
Both algorithms begin with the same frame-based

frequency analysis. It was decided to investigate

those parameters that are common to both algo-

rithms, so the downsampling factor, window length,

AES 122nd Convention, Vienna, Austria, 2007 May 5–8
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each state represents a single type of chord10. A corpus of 1046 audio files synthesized 

from MIDI was used to train the HMMs. The system was subsequently evaluated using 

recordings of 28 Beatles songs and the overall key detection rate was 84.62%. 

Several instances have been reported in the literature of using HMMs for local key 

finding from audio, such that the system is able to track key modulations. Catteau et al. 

(2007) proposed a system of this type that performs simultaneous key and chord 

recognition from audio. Using music theory derived from Lerdahl (2001), the system 

implements a probabilistic framework, incorporating models for observation likelihood 

and chord/key transition. Chord and key labels are inserted on a frame-by-frame basis 

over the course of the audio file. An evaluation was performed using 10 polyphonic audio 

fragments of popular music and the correct key was labeled for 82% of the frames. 

Papadopoulos and Peeters (2009) approach the local audio key estimation problem by 

considering combinations and extensions of previous methods for global audio key 

finding. The system consists of three stages: feature extraction, harmonic and metric 

structure estimation, and local key estimation. The feature extraction algorithm extracts a 

chromagram from the audio signal, consisting of a sequence of time-based pitch-class 

distributions (Papadopoulos and Peeters 2008). Metric structure estimation is then 

achieved by simultaneously detecting chord progressions and downbeats using a 

previously proposed method (Papadopoulos and Peeters 2008). The final stage of the 

system performs local key estimation using an HMM with observation probabilities that 

are derived from pitch-class templates. They create five different versions of the system 

using different types of pitch-class templates: Krumhansl (1990), Temperley (2001), 

diatonic, Temperley-diatonic (Peeters 2006b), and an original template where all pitch-

classes have an equal value except for the tonic, which has triple the value. The system is 

then evaluated using five movements of Mozart piano sonatas, with manually annotated 

ground truth data corresponding to chords and local key. A maximum local key 

recognition rate of 80.22% was achieved by using the newly proposed pitch-class 

template. 
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Shenoy et al. (2004) present a novel, rule-based approach for estimating the key of an 

audio signal. The system utilizes a combination of pitch-class distribution information, 

rhythmic information, and chord progression patterns in order to estimate the key. The 

audio signal is first segmented into quarter note frames using onset detection and dynamic 

programming techniques. Once segmented, an algorithm is employed to extract the pitch-

class distribution for each frame. Using this information, the system is then able to make 

inferences about the presence of chords over the duration of the audio signal. Finally, the 

chord progression patterns are used to make an estimate for the key of the piece. The 

system was evaluated with 20 popular English songs and had a key recognition rate of 

90%. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 If the first note appearing in the melody is the tonic for a key candidate, then that candidate is chosen as 
the key. If the first note is not the tonic for any of the candidates, then the same process is applied using the 
dominant instead of the tonic. 
2 This algorithm is an example of what Temperley (1999) calls a flat input/flat-key approach. 
3 The original K-S algorithm is an example of what Temperley (1999) calls a weighted-input/weighted-key 
approach. The modified algorithm proposed by Temperley (1999) is an example of what he calls a flat-
input/weighted-key approach. 
4 There are many different terms used in the literature for pitch-class distribution features. Perhaps the first 
reported instance of a pitch-class distribution feature was that of Fujishima (1999), who implemented the 
pitch-class profile as part of his chord recognition system. See section 2.3.2.2 for more examples of 
nomenclature used for pitch-class distribution features. 
5 The primary advantage provided by the CQ-transform lies in the fact that the mapping to the logarithmic 
frequency domain has a resolution that is geometrically proportional to the frequency. Conversely, FFT 
maps to the frequency domain with a constant frequency resolution (Purwins et al. 2000). 
6 The probe tone experiments were a cognitive study that derived ratings for each pitch-class within an 
established tonal context. Hence Purwins, Blankertz, and Obermayer’s (2000) model is an example of a 
template-based audio key detection system that uses cognitive-based pitch-class templates.  
7 These templates are a combination of cognitive and statistics-based templates. 
8 Clarifying low frequencies is designed to overcome some of the errors attributed to the reduced resolution 
for lower frequencies. Fuzzy logic is used to determine the likelihood that a detected frequency component 
is actually attributable to a pitch-class. The adaptive level weighting scheme scales the FFT results in the 
various frequency ranges to improve the salience of the detected pitch content. The flattening of high and 
low values is a final step that sets the pitch class membership to 1 if the detected value is greater than 0.8 
and sets the value to 0 if the detected value is less than 0.2. 
9 The ISO standard tuning pitch states that A = 440Hz, which is know as the concert pitch. However, there 
exists other historical standards for tuning, such as the diapason normal, which has A=435Hz. Furthermore, 
many acoustic recordings have inaccuracies in their tuning pitch. For instance, an orchestra will typically be 
tuned using the oboe as the reference pitch, which itself may be tuned incorrectly (Zhu and Kankanhalli 
2006).  
10 In this model there are two types of chords, major and minor, for each of the 12 chromatic pitch-classes. 
For example, an F minor triad is considered the same type of chord as an F minor seventh. This leads to 24 
different possible chord types. 
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Chapter 3 

 Software Design 

3.1 Introduction 

The software application implemented for this thesis is designed to automatically identify 

the key of musical excerpts from an audio signal. It employs signal processing techniques 

in order to extract salient pitch information from the signal, which is then used as input to 

the classifier in order to identify the key. There are four main components in the 

application, all of which were developed modularly (see Figure 3.1): frequency analysis, 

pitch-class extraction, pitch-class aggregation, and key classification. Several versions of 

each component were created, using a variety of parameters, techniques and algorithms. 

The modular approach then allowed the various component versions to be paired with 

one another and evaluated in order to identify the configuration with maximum accuracy. 

The remainder of this chapter will describe the details of each of these components as 

well as any other pertinent information relating to the design and implementation of the 

application. 
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Fig. 3.1: The four primary components of the audio key detection 
software application. 

3.2 Software Packages 

jMIR is an open-source, java-based framework intended for prototyping and developing 

automatic music classification applications (McKay and Fujinaga 2009). Two 

components of the jMIR software package were used to implement the audio key 

detection application for this thesis: jAudio and ACE. 

jAudio is an application framework for feature extraction from audio files (McEnnis 

et al. 2005). It is designed to reduce the duplication of effort required for developing new 

feature extraction algorithms. For example, the system handles the loading of files using 

Java’s audio interface, which might otherwise be a laborious task for the researcher to 

implement. It also comes bundled with a number of commonly used audio features, 

which can either be extracted directly or used for the calculation of other features. The 

application has the ability to extract features for each window of an audio signal, as well 

as to use aggregators in order to collapse a sequence of windowed values into a single 

vector (e.g., mean, standard deviation). The capabilities of jAudio made it an optimal 

choice for the feature extraction algorithms used for this thesis. 

ACE (Autonomous Classification Engine) is a meta-learning software package 

designed for performing and optimizing music classification tasks (McKay et al. 2005). 

Built on the Weka machine learning framework, ACE provides the ability to experiment 

with a variety of classifier algorithms, parameters, and dimensionality reduction 

techniques in order to determine an optimal arrangement for the particular task. The 
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flexibility and ease of use of ACE make it an ideal choice for experimenting with various 

classifier configurations for the audio key detection problem. As such, it was used for the 

classification portion of the software application built for this thesis. 

3.3 Feature Extraction 

The feature extraction component of the software involves the application of signal 

processing techniques in order to extract meaningful information from the audio signal 

that can be used to identify the key. The feature extraction algorithm implemented for 

this thesis can be further subdivided into three components: frequency analysis, pitch-

class extraction, and pitch-class aggregation. This section will describe the 

implementation details for these components. 

3.3.1 Frequency Analysis 

The frequency analysis component consists of the application of a transform function in 

order to convert an audio signal from the time domain to a frequency domain 

representation. For the purposes of audio key detection, the FFT (Fast Fourier Transform) 

is the most commonly employed technique for obtaining a frequency domain 

representation from the audio signal. Figure 3.2 shows the time domain representation of 

an example audio excerpt as well as the frequency domain representation, calculated 

using the FFT function within Matlab.  
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Fig 3.2: First 100 samples of an audio signal with a 100 Hz sine wave, a 
440 Hz sine wave, and random noise (left). Frequency domain 
representation using from an FFT (right). 

jAudio comes bundled with the ability to extract both magnitude an power spectrums 

from an audio file using a complex to complex FFT function with or without a Hanning 

window. It also provides the ability to easily configure several of the low-level signal 

processing parameters, such as the sampling rate, window size, and window overlap. 

In order to compute the FFT, the audio signal must be divided into windows (also 

known as frames) and so it is necessary to make a choice for the window size and the 

amount of overlap between consecutive windows. The window size is directly 

proportional to the frequency resolution of the resulting frequency domain representation. 

However, the window size is inversely proportional to the temporal resolution. In other 

words, the frequency resolution increases with the window size, whereas the temporal 

resolution decreases. Since humans perceive pitch on a logarithmic scale, lower pitches 

are closer in frequency, and therefore a higher frequency resolution is required to 

differentiate between them. In the context of key detection it is necessary to have a high 

frequency resolution, so larger window sizes are often used. Although this leads to a 

reduced temporal resolution, increasing the window overlap amount can be used to 

compensate for this effect. A finer temporal resolution improves the ability of the system 
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to detect pitch content in the presence of dramatic temporal variations. However, larger 

window overlaps also lead to increased amounts of data and processing times. 

The choice of sampling rate, window size, and window overlap can have a dramatic 

effect on the salience of pitch-class distribution that is extracted from the signal (Noland 

and Sandler 2009). We experiment with various values for these parameters in order to 

investigate how they affect key detection accuracy when paired with different classifiers. 

Table 3.1 summarizes the combinations of frequency analysis parameters that were 

tested. 

 
Sampling Rate Window Size Window Overlap 

11,025 1024 0 
22,050 1024 0 
44,100 1024 0 
11,025 4096 0 
22,050 4096 0 
44,100 4096 0 
11,025 8192 0 
11,025 8192 0.5 
22,050 8192 0 
22,050 8192 0.5 
22,050 8192 0.8 
44,100 8192 0 
44,100 8192 0.5 
11,025 16,384 0 
11,025 16,384 0.5 
22,050 16,384 0 
22,050 16,384 0.5 
44,100 16,384 0 
44,100 16,384 0.5 
44,100 16,384 0.8 

Table 3.1: Summary of the combinations of parameters that were used 
when calculating the magnitude spectrum using the FFT. 
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3.3.2 Pitch-Class Extraction 

Once we have obtained a frequency domain representation for each window of the audio 

signal, it is necessary to apply an algorithm in order to extract the pitch-class distribution. 

We present a basic algorithm for mapping from the analysis frequency spectrum to the 

pitch-class distribution vector. We also present several extensions that can be used in 

conjunction with the basic algorithm, as well as with one another. Table 3.2 summarizes 

the combinations of extensions that were tested. 

 
Extension 1 Extension 2 Extension 3 

- - - 
PD - - 

SFM - - 
LFC - - 
PD SFM - 
PD LFC - 

SFM LFC - 
PD SFM LFC 

Table 3.2: Summary of the combinations of extensions that were tested 
in combination with the Basic Algorithm. The first row indicates a 
permutation in which no extensions were used. PD = Peak Detection 
Extension, SFM = Spectral Flatness Measure Extension, LFC = Low 
Frequency Clarification Extension. 

3.3.2.1 Basic Mapping Algorithm 

The basic algorithm uses a mapping matrix in order to translate the windowed 

frequency spectra into pitch-class distribution vectors. Using the standard value of 440 

Hz to set the fundamental reference frequency of A4 (i.e., A1 = 55 Hz), we first utilize the 

function n(f) to map the analysis frequency bins fj to a semitone note scale: 
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      (3.1)  

 An intermediate 12xN matrix D is then created with projected values of n(f) for each 

pitch-class in the range of -6 to +6: 

  (3.2) 

A Gaussian distribution function is then employed in order to produce the mapping 

matrix M. The use of the distribution function helps to counteract the effects of any 

possible spectral leakage or tuning errors in the audio signal: 

  (3.3) 

Finally, the pitch-class distribution vector p is obtained by multiplying the FFT 

spectrum values xj by the corresponding mapping matrix entry. 

  (3.4) 

The minimum analysis frequency to be used in the mapping is set to 55 Hz (A1), a 

value based on our own preliminary experimentation as well as previous research 

(Noland and Sandler 2007). The maximum analysis frequency considered is set to 1760 

Hz (A6). This results in a total of five octaves to be included in the analysis, which covers 

the majority of fundamental note frequencies for our corpus of music (Chuan and Chew 

2005b). 
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The final step in the algorithm is to normalize the pitch-class distribution vector such 

that the values of all of the elements sum to one. 

3.3.2.2 Peak Detection Extension 

The peak detection extension algorithm is based on the Local Maximum Selection 

method proposed by Chuan and Chew (2005a). Using this method, a peak is defined as 

any FFT bin value that is greater than the average value to both the left and right within 

any given semitone region in the analysis frequency range. Furthermore, only one peak 

may exist within any given semitone region. When used in conjunction with the basic 

algorithm, the only difference is in how the actual pitch-class distribution vector is 

created. Instead of summing every frequency component multiplied by the mapping 

matrix, as shown in Equation 3.4, only the peak frequencies are added to the bins of the 

pitch-class distribution. Here, the function f(x) represents the peak selection function: 

  (3.5) 

3.3.2.3 Spectral Flatness Measure Extension 

The Spectral Flatness Measure (SFM) Extension employs the technique proposed by 

Izmirli (2005a). The SFM is defined as the ratio between the geometric mean and the 

arithmetic mean of any given range of values in the analysis frequency range (xi to xj): 

  (3.6) 



3   Software Design 
 

46 

  (3.7) 

  (3.8) 

A SFM value that is closer to 1 indicates a flatter spectrum, whereas values closer to 0 are 

indicative of peaks in the signal. We calculate the SFM for half octave regions within the 

analysis frequency range (55 Hz to 1760 Hz). Regions that have an SFM greater than 0.6 

have the values set to 0.  

3.3.2.4 Low Frequency Clarification Extension 

The Low Frequency Clarification Extension is based on one component of the fuzzy 

analysis techniques proposed by Chuan and Chew (2005c). The method is meant to 

counteract some of the errors produced as a result of the reduced frequency resolution in 

the low end of the analysis frequency spectrum. In our version, the low frequencies are 

considered to be those in the first two octaves of our analysis frequency range (i.e., 55 Hz 

to 220 Hz). First, the peak detection algorithm described in Section 3.2.2.2 is used to find 

the peaks in the first two octaves of the frequency spectrum. Each of these peaks is then 

compared to any peaks that may exist in the region one semitone above and one semitone 

below. If the value of any given peak is smaller than either of those found in the two 

neighboring semitone regions, then it is excluded from the mapping to the pitch-class 

distribution vector. The logic behind this step is that if a neighboring semitone region has 

a peak value that is greater than it’s own, then it is likely that the given peak is a result of 

spectral leakage. 
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3.3.3 Pitch-Class Aggregation 

After extracting the pitch-class distribution for each window of the audio signal, the data 

must be collapsed into a single array representing the global pitch-class distribution for 

the entire signal. In a typical audio key detection system, the arithmetic mean of the 

windowed values is used to accomplish this. However, Chuan and Chew (2005c) note 

that during the calculation of pitch-class distributions, errors tend to accumulate over 

time. In order to counteract this problem, they propose a periodic cleanup procedure. The 

pitch-class aggregator implemented for this thesis uses an adapted version of this 

technique. The procedure first consists of separating the windowed pitch-class 

distribution values into subsets of equal size. The arithmetic mean is calculated for each 

subset of windowed pitch-class distributions and the smallest two pitch-class values are 

then set to zero. Finally, the arithmetic mean is calculated for all of the subsets and then 

normalized (i.e., values of all indices sum to one) to give the global pitch-class 

distribution. Figure 3.3 illustrates this process. 

We experiment with several different sizes for the subsets of windowed values, 

corresponding to varying period times for the cleanup procedure. We compare the results 

with an arithmetic mean aggregator that does not implement the periodic cleanup 

technique. Table 3.3 summarizes the various pitch-class aggregators that were tested. 
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Fig. 3.3: The periodic cleanup process used when collapsing the 
windowed pitch-class distribution vectors into a single, global pitch-class 
distribution vector. 

Pitch-Class Aggregator Algorithm Period for Cleanup 
Procedure 

Arithmetic mean - 
Periodic cleanup ~ 1 second 
Periodic cleanup ~ 2 seconds 
Periodic cleanup ~ 4 seconds 

Table 3.3: Summary of the different pitch-class aggregator algorithms 
that were tested. The period for the cleanup procedure is measured in 
number of windows, which is dependent on the window size. As such, 
the approximate time value (in seconds) is given. 
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3.3.4 Key Classification 

In order to classify a particular instance of a musical excerpt, the pitch-class distribution 

is first extracted using the previously described techniques. The pitch-class distribution is 

then used as input to a trained classifier, which identifies the instance as belonging to one 

of the 24 possible keys.   

The classifiers are trained using two different types of data: pitch-class distributions 

extracted from training sets (see Section 4.2) and pitch-class templates derived from 

previous research (see Section 4.3).  

Four different classifiers from the ACE framework are used: a neural network, a k-

nearest neighbor algorithm, a support vector machine, and a naïve Bayes classifier. The 

remainder of this section will introduce these classifiers and provide the details of their 

implementation. 

3.3.5 Neural Networks 

The brain is composed of billions of elementary processing units, known as neurons. A 

single neuron is in and of itself, a relatively simple structure that acts to collect, process 

and propagate electrical signals throughout the brain. The immense processing power of 

the brain is believed to emerge only as a result of the vast interconnected network of 

these basic units. Early research into artificial intelligence sought to mimic these 

structures by creating artificial neural networks (ANNs) and has since lead to the modern 

field of computational neuroscience. Today, neural networks remain one of the most 

popular and effective forms of machine learning systems (Russel 2003). 
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3.3.5.1 ANN Units 

In 1943 MucCulloch and Pitts devised a simple mathematical model of a neuron, 

illustrated in Figure 3.4. This over-simplified version of a neuron serves as the basic 

processing unit in an ANN. Each unit consists of three primary components: weighted 

input links, an activation function and output links.  

 

Fig. 3.4: Simple model of a neuron (Russel and Norvig 2003) 

A unit receives a signal from it’s weighted input links and sums the the input: 

  (3.9) 

The output of the unit is then calculated from its activation function: 

  (3.10) 
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3.3.5.2 Network Topologies 

The computational power of artificial neural networks is derived from the complex 

interconnections amongst the units and not the individual units themselves (Kostek 

2005). There are two primary types of ANN topologies: feedforward and recurrent 

(cyclic). Recurrent topologies are not typically used for classification problems so we 

will restrict our attention to feedforward networks. Feedforward networks essentially 

represent a function of their current inputs, where the connection weights act as the 

function parameters (Russel 2003). Figure 3.6 shows a simple example topology for a 

feedforward ANN with two input units, two hidden units and one output unit. Equation 

3.11 shows the function represented by the same network. 

 

Fig. 3.6: A simple feedforward network topology with two input nodes, 
one hidden layer with two nodes, and one output node. 

  (3.11) 

The simplest type of feedforward ANN consists of a single input layer and a single 

output layer and is known as a perceptron. Perceptrons are limited by the fact that they 

can only represent linearly separable functions. In order to overcome this limitation, 

additional hidden layers must be added, which is known as a multilayer perceptron. 
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Mulitlayer perceptrons allow for the representation of a linear combination of perceptron 

threshold functions. With only one hidden layer, a multilayer perceptron is able to 

represent any continuous function of it’s inputs. By adding additional hidden layers, any 

discontinuous function can be represented. 

3.3.5.3 Learning Algorithms 

In order to train a neural network to represent a function appropriately, a learning 

algorithm must be applied. The goal is to adjust the connection weights in order to reduce 

the error and improve performance with the training set. This essentially amounts to an 

optimization search in the weight space. For a single layer perceptron, the gradient 

descent algorithm is typically used. For a multilayer perceptron, the most common 

learning algorithm employed is backpropagation. 

3.3.5.4 Implementation 

The neural network used for this thesis consists of a feedforward multilayer perceptron 

with a backpropagation learning algorithm. A number of different topologies and 

parameter values were experimented with in preliminary testing in order to identify 

optimal values. Table 3.4 summarizes the final makeup that was used. 
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Parameter Description Value 

Input nodes Number of nodes in the input layer. We use one 
node for each pitch-class. 12 

Output nodes Number of nodes in the output layer. We use 
one for each possible key. 24 

Hidden layers Number of hidden layers in the network. 1 
Nodes in hidden layers Number of nodes in the hidden layer. 18 

Learning rate The amount the connection weights are updates 
after each epoch. 0.13 

Momentum 
The amount of momentum applied when 

updating weights. Momentum allows 
adjustments to persist over several epochs. 

0.19 

Training epochs The number of epochs (cycles) that are used to 
train the network. 1000 

Table 3.4: A summary of the topology and parameter values used for the 
neural network classifier. 

3.3.6 K-Nearest Neighbor Algorithm 

The k-nearest neighbor algorithm consists of classifying an instance by searching the 

feature space for the closest training examples. The instance is assigned to the class that 

the majority of its k nearest neighbors belongs to. If k=1, then the instance is simply 

assigned to the class of its nearest neighbor. The implementation used for this thesis uses 

a 12-dimensional feature space, one dimension for each pitch-class, and a Euclidean 

distance metric for evaluating the distance between instances. Preliminary tests indicated 

that a value of 1 for k significantly outperformed any other value and so it was the only 

value used. 

3.3.7 Support Vector Machines 

A support vector machines is a type of supervised learning classifier that belongs to the 

more general category of kernel machines (Russel and Norvig 2003). The fundamental 

idea is that if input data is mapped to a sufficiently high number of dimensions, then it 
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will always be linearly separable. Except in special cases, N data points will be linearly 

separable in an N-1 dimension space. As such, support vector machines search for ways 

to re-express the input data using computed features. This amounts to a quadratic 

programming optimization problem, searching for an optimal linear separator that 

maximizes the functional margin between the positive examples on the one side and the 

negative examples on the other side. 

Supposing there are xi input examples that can be classified as yi = ±1, then the 

problem of identifying the optimal linear separator can be expressed as finding the values 

of αI that maximize the value of the following expression: 

 

 

(3.12) 

   (3.12) 

 

Once the optimal values for αi have been derived, the equation that defines the linear 

separator is: 

  (3.13) 

All of the values of αI are zero, except for those that are closest to the actual linear 

separator, which are known as the support vectors. 
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3.3.8 Naïve Bayes Classifiers 

The naïve Bayes classifier utilizes the calculation of probabilities based on the observed 

sample data. This is based on the equation known as Bayes rule (Russel and Norvig 

2003): 

  (3.14) 

The classifier works under the assumption that a single cause influences several 

effects, all of which are conditionally independent. In the case of key finding, this would 

mean that the key (i.e., the cause) influences the twelve values in the pitch-class 

distribution (i.e., the effects), all of which are conditionally independent of one another. 

Given this, it is possible to use parameter estimation techniques (e.g., method of 

maximum likelihood) in a supervised learning setting in order to train the model to 

classify future instances. 
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Chapter 4 

 Description of the Data 

4.1 Introduction 

This chapter describes the data that was used for training and evaluating the audio key 

detection application. Two types of data are presented: musical excerpts and pitch-class 

templates. The pitch-class templates are used strictly as training data for a set of 

classifiers for Phase II of the experiment (see Section 5.3). The musical excerpts are used 

to parameterize the system using cross-validation in Phase I of the experiment (see 

Section 5.2), as well as to evaluate the trained classifiers in Phase II and III of the 

experiment (see Section 5.3 and 5.4). The bulk of the excerpts consist of music from the 

classical period, which follows the trend set by the majority of the previous studies on 

audio key detection (see Appendix A, which shows the data sets used for previous studies 

on audio key detection). 

4.2 Musical Excerpts 

Three different corpora of key-annotated musical excerpts are used as ground truth data 

for training and evaluating the classifiers: classical, popular, and MIDI. The first corpus 

is comprised of excerpts from the classical period, containing a variety of styles and 

instrumentation, including symphonies, sonatas, concertos, preludes, and fugues. Only 

the first movements are used and the key is derived from the title of the piece. The second 
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corpus consists of excerpts of popular music songs, primarily in the pop-rock style. The 

keys labels for this data set use the annotations from Mauch et al. (2009) as well as 

manual annotations identified by ear. The final corpus is made up of excerpts of audio 

that have been synthesized from MIDI files of classical music using Quicktime. All MIDI 

files are from the classicalarchives.com website and the instrumentation that came in the 

file is used. The key labels for this corpus are also derived from the titles of the pieces. 

The excerpts from all of the data sets consists of only the first 30 seconds of the piece, so 

as to encompass the portion that is most likely to establish the global key as well as to 

avoid modulations. Furthermore, every excerpt has been manually verified by ear to be in 

the key that it is annotated with. 

Section 4.2.1 presents the training data sets from each of the three corpora that are 

used to parameterize the system in Phase I of the experiment (see Section 5.2) as well as 

to evaluate the system in Phase II of the experiment (see Section 5.3). Section 4.2.2 

describes the data sets that are used to evaluate the trained classifiers in Phase III of the 

experiment (see Section 5.4). 

4.2.1 Training Sets 

Four different data sets are used to parameterize and evaluate the system for Phase I and 

II of the experiment. The first data set (“Classical”) is comprised of 248 excerpts of 

pieces from the classical corpus, including excerpts of pieces by J. S. Bach (48), C. P. E. 

Bach (6), Beethoven (17), Boccherini (8), Clementi (17), Haydn (106), Mozart (18), 

Salieri (3), and Schubert (25). The second data set (“Popular”) is made up of 150 excerpts 

of songs from the popular corpus, Including songs by The Beatles (126), Carole King (7), 

and Queen (17). The third data set (MIDI) consists of 209 excerpts from the MIDI 

corpus, with pieces by Bach (48), Beethoven (65), Haydn (57), Mozart (18), and Schubert 

(21). The final data set (“Combined”) is the composite of the first three data sets (i.e., 248 

excerpts from the classical corpus, 150 excerpts from the popular corpus, and 209 
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excerpts from the MIDI corpus). For detailed information on the excerpts used for the 

training sets, see Appendix A. 

4.2.2 Test Sets 

Four different data sets are used to evaluate the trained classifiers in Phase III of the 

experiment (see Section 5.4). The first data set is from the classical corpus and consists of 

excerpts of the first 30 seconds of each of Chopin’s 24 preludes Op. 28. The second data 

set also consists of excerpts of the first 30 seconds of Chopin’s 24 preludes Op. 28, but 

synthesized from MIDI files obtained from the classicalarchives.com website. The third 

data set is made up of 59 excerpts from a variety of artists in the popular corpus, 

primarily in the pop-rock style. The final data set consists of a random selection of 10 

excerpts from each of the three aforementioned data sets (i.e., 10 excerpts from the 

classical test data set, 10 excerpts from the MIDI test data set, and 10 excerpts from the 

popular test data set). For detailed information on the excerpts used for the test sets, see 

Appendix B. 

4.3 Pitch-Class Templates 

Six different pitch-class templates are used to train a set of classifiers (see Section 5.3). 

The data used for these templates is compiled from the research of Krumhansl (1990), 

Temperley (2001), Izmirli (2005a), and Papadopoulos (2009). All of the templates have 

their values normalized so that they sum to one. Table 4.1 gives a summary of all of the 

templates. Table 4.2 presents the data that was used for each pitch-class value in the 

various templates and the remainder of the section shows graphical representations of the 

data. 
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Template Description 

Diatonic (D) Diatonic pitch-classes have a value of one (before normalization) and 
all others are zero  

Krumhansl (K) Derived from the probe tone experiments of Krumhansl and Kessler 
(Krumhansl 1990) 

Temperley (T) Temperley modified the Krumhansl templates with improved results 
(Temperley 2001) 

Krumhansl-Diatonic (KD) The product of the diatonic and Krumhansl templates 

Temperley-Diatonic (TD) The product of the diatonic and Temperley templates (Izmirli 2005a) 

Papadopoulos (P) Diatonic pitch-classes have an equal value, except the tonic, which has 
triple the value 

Table 4.1: A summary of all of the pitch-class templates. 

Pitch-
Class DM Dm KM Km TM Tm KDM KDm TDM TDm PM Pm 

0 0.14 0.14 0.15 0.14 0.13 0.13 0.21 0.21 0.17 0.17 0.33 0.33 
1 0 0 0.05 0.06 0.05 0.05 0 0 0 0 0 0 
2 0.14 0.14 0.08 0.08 0.09 0.09 0.12 0.11 0.12 0.12 0.11 0.11 
3 0 0.14 0.06 0.12 0.05 0.12 0 0.18 0 0.16 0 0.11 
4 0.14 0 0.10 0.06 0.12 0.05 0.15 0 0.16 0 0.11 0 
5 0.14 0.14 0.10 0.08 0.10 0.10 0.14 0.12 0.14 0.14 0.11 0.11 
6 0 0 0.06 0.06 0.05 0.05 0 0 0 0 0 0 
7 0.14 0.14 0.12 0.10 0.12 0.12 0.17 0.15 0.16 0.16 0.11 0.11 
8 0 0.14 0.06 0.09 0.05 0.09 0 0.13 0 0.12 0 0.11 
9 0.14 0 0.09 0.06 0.09 0.05 0.12 0 0.12 0 0.11 0 

10 0 0 0.05 0.08 0.04 0.04 0 0 0 0 0 0 
11 0.14 0.14 0.07 0.07 0.10 0.10 0.10 0.10 0.14 0.14 0.11 0.11 

Table 4.2: The data used for each of the pitch-class templates. D: 
diatonic, K: Krumhansl, T: Temperley, KD: Krumhansl-diatonic, TD: 
Temperley-diatonic, P: Papadopoulos, M: major, m: minor. 
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Fig. 4.1: Graphical representation of diatonic, Krumhansl, and 
Temperley pitch-class templates. 
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Fig. 4.2: Graphical representation of the Krumhansl-diatonic, 
Temperley-diatonic, and Papadopoulos pitch-class templates. 

0.00	


0.03	


0.06	


0.09	


0.12	


0.15	


0.18	


0.21	



I	

 II	

 III	

 IV	

 V	

 VI	

 VII	



Krumhansl-Diatonic Major	



0.00	


0.03	


0.06	


0.09	


0.12	


0.15	


0.18	


0.21	



I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	



Krumhansl-Diatonic Minor	



0.00	


0.03	


0.06	


0.09	


0.12	


0.15	


0.18	



I	

 II	

 III	

 IV	

 V	

 VI	

 VII	



Temperley-Diatonic Major	



0.00	


0.03	


0.06	


0.09	


0.12	


0.15	


0.18	



I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	



Temperley-Diatonic Minor	



0.00	


0.05	


0.10	


0.15	


0.20	


0.25	


0.30	


0.35	



I	

 II	

 III	

 IV	

 V	

 VI	

 VII	



Papadopoulos Major	



0.00	


0.05	


0.10	


0.15	


0.20	


0.25	


0.30	


0.35	



I	

 II	

 III	

 IV	

 V	

 VI	

 #VI	

 VII	

 #VII	



Papadopoulos Minor	





5   Experimental Setup 
 

62 

Chapter 5 

 Experimental Setup 

5.1 Introduction 

As described in Chapter 3, the software consists of four different components: frequency 

analysis, pitch-class extraction, pitch-class aggregation, and key classification. Several 

versions of each of these components were created, using a variety of parameter values 

and algorithms. We will refer to these various permutations as prototypes. 

The experiment is comprised of three phases. Phase I is essentially a 

parameterization of the system. Four sub-phases are run, in which various combinations 

of frequency analysis parameters, pitch-class extraction algorithms, pitch-class 

aggregators, and classifiers are tested. The evaluation uses 10-fold cross-validation with 

each of the four training data sets (see Section 4.2.1). The results of Phase I are then used 

to select the prototype (i.e., the combination of frequency analysis parameters, pitch-class 

extraction algorithm, and pitch-class aggregator) to be used for the subsequent phases of 

the experiment. Furthermore, a set of models is trained using the data extracted with the 

selected prototype. One model is trained for each type of classifier (see Section 3.4) and 

each of the 4 training data sets. 

Phase II of the experiment trains and evaluates another set of models. One model is 

trained for each type of classifier and each type of pitch-class template (see Section 4.3) 

and is subsequently evaluated using each of the 4 training data sets. This phase provides a 
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means of comparison between the models trained with the pitch-class templates and those 

that are evaluated using cross-validation in Phase I. 

The final phase of the experiment uses the 4 test data sets (see Section 4.2.2) to 

evaluate all of the trained models from the previous two phases. There are 16 models 

trained from Phase I (i.e., one model of each type of classifier trained with each of the 4 

training data sets) and 24 models trained from Phase II (i.e., one of each type of classifier 

trained with each of the 6 types of pitch-class templates). 

Five different types of results are given for each phase of the experiment. One result 

is given for each of the four types of data sets: classical, popular, MIDI, and the 

combined data set. The final type of result given is the average of the results from the 

four different data sets. 

5.2 Phase I: Cross-Validation Evaluation 

Phase I entails testing the different prototype feature extraction algorithms using the k-

nearest neighbor algorithm with k=1 and 10-fold cross-validation. The prototype 

implementations include 20 different sets of frequency analysis parameters (see Table 

3.1), 8 combinations of pitch-class extraction algorithms (see Table 3.2), and 4 types of 

pitch-class aggregators (see Table 3.3). A final evaluation is performed using the 4 

different types of classifiers: a neural network, a k-nearest neighbor algorithm, a support 

vector machine, and a naïve Bayes classifier. All of the evaluations for Phase I of the 

experiment are run with the training data sets described in Section 4.2.1. 

It is clear that testing every permutation of these components would lead to a 

prohibitively large set of results. As such, the different versions of each component are 

only evaluated with a selected portion of permutations of the other components. This is 

accomplished by performing 4 different sub-phases of the experiment: A: frequency 

analysis, B: pitch-class extraction, C: pitch-class aggregation, and D: key classification. 
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Using the results from each sub-phase, only one set of parameters or algorithms are used 

for the subsequent sub-phases. 

5.2.1 Sub-Phase A: Frequency Analysis 

The 20 different permutations of frequency analysis parameters (see Table 3.1) are tested 

in combination with the basic mapping algorithm for pitch-class extraction (i.e., no 

extensions are used), the arithmetic mean pitch-class aggregator, and the k-nearest 

neighbor classifier with k=1 and 10-fold cross-validation.  

5.2.2 Sub-Phase B: Pitch-Class Extraction 

Each of the 8 different permutations of pitch-class extraction extensions (see Table 3.2) is 

evaluated with the best performing average frequency analysis parameters from Sub-

phase A. The k-nearest neighbor classifier with k=1 is used with 10-fold cross-validation. 

5.2.3 Sub-Phase C: Pitch-Class Aggregation 

The best performing average prototype from Sub-phase B is tested in combination with 

the 4 different types of pitch-class aggregators (see Table 3.3). Once again, the k-nearest 

neighbor algorithm with k=1 is used with 10-fold cross-validation for evaluation. 

5.2.4 Sub-Phase D: Key Classification 

The 4 different classifiers (neural network, k-nearest neighbor, support vector machine, 

and naïve Bayes) are evaluated using the best performing average prototype from Sub-
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phase C. This essentially provides a summary of the best performing prototype for Phase 

I.  

5.2.5 Training Models 

The data extracted (i.e., pitch-class distributions) using the best performing prototype is 

used to train a set of models that will be evaluated as part of Phase III of the experiment. 

One model is trained for each of the 4 types of classifiers and each of the 4 different 

training data sets, leading to a total of 16 models. 

5.3 Phase II: Pitch-Class Template Evaluation 

Phase II of the experiment trains each of the 4 different classifiers with each of the 6 

different types of pitch-class templates described in Section 4.3. This leads to a total of 

24 different models (i.e., 4 classifiers x 6 pitch-class templates for training). Each of these 

models is then evaluated using the each of the four training data sets described in Section 

4.2.1. The purpose of this phase is to provide a means of comparison between the models 

trained with the pitch-class templates and those that were evaluated using cross-

validation in Phase I of the experiment. 

5.4 Phase III: Test Set Evaluation 

Both Phase I and II of the experiment utilize the training data sets for evaluation. Since 

the training data sets were used to parameterize the system in Phase I, the results of these 

evaluations have possibly overfit the data. As such, Phase III of the experiment is 

designed to give a more reliable evaluation using the test data sets described in Section 

4.2.2. Each of the 16 trained models from Phase I, and the 24 trained models from Phase 
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II, are evaluated using each of the 4 test data sets, which were not used during the 

training sessions.
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Chapter 6 

 Results and Discussion 

6.1 Phase I: Cross-Validation Evaluation 

The first phase of the experiment is designed to parameterize the feature extraction 

parameters and algorithms. Sub-phase A evaluates the frequency analysis parameters, 

Sub-phase B evaluates the pitch-class extraction algorithms, Sub-phase C evaluates the 

pitch-class aggregators, and Sub-phase D shows the performance with the four different 

classifiers. The first three sub-phases (i.e., A, B, and C) all use the k-nearest neighbor 

algorithm with k=1 as the classifier. All of the sub-phases use 10-fold cross-validation on 

each of the four training data sets (see Section 4.2.1) for evaluation. In addition to results 

for each of the four data sets, the average result of the four data sets is also given. 

6.1.1 Sub-Phase A: Frequency Analysis 

For Sub-Phase A, three frequency analysis parameters, namely sampling rate, window 

size, and window overlap were varied. Table 6.1 shows the results of the evaluation using 

the four different training data sets (see Section 4.2.1) as well as the average of the four 

results. 

The results show that the following frequency analysis parameters had the best 

performance for the average of the four training data sets: a sampling rate of 22,050 Hz, a 
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window size of 8192 samples, and a window overlap of 0.8. Therefore, these parameter 

values were selected for all subsequent phases of the experiment. 

 
Results (%) Sampling 

Rate (Hz) 
Window 

Size 
Window 
Overlap Classical Popular MIDI Combined Average 

11,025 1024 0 63.89 52.39 72.34 69.04 64.42 
22,050 1024 0 55.58 42.91 61.91 55.41 53.95 
44,100 1024 0 37.98 25.19 37.27 35.45 33.97 
11,025 4096 0 73.36 61.96 74.68 76.01 71.50 
22,050 4096 0 74.20 61.60 77.65 75.84 72.32 
44,100 4096 0 66.51 53.01 73.44 67.41 65.09 
11,025 8192 0 74.83 59.24 71.14 76.16 70.34 
11,025 8192 0.5 75.28 60.85 75.26 77.41 72.20 
22,050 8192 0 73.40 61.28 73.41 75.60 70.92 
22,050 8192 0.5 75.32 64.27 75.47 77.04 73.03 
22,050 8192 0.8 76.86 65.07 77.67 79.23 74.71 
44,100 8192 0 70.79 64.75 76.60 76.12 72.07 
44,100 8192 0.5 72.31 62.54 76.60 77.56 72.25 
11,025 16,384 0 70.11 61.27 73.72 76.60 70.43 
11,025 16,384 0.5 72.09 61.24 76.40 78.20 71.98 
22,050 16,384 0 71.07 62.42 77.04 75.22 71.44 
22,050 16,384 0.5 74.48 62.75 73.68 76.96 71.97 
44,100 16,384 0 74.50 62.00 73.83 76.50 71.71 
44,100 16,384 0.5 75.69 63.25 75.59 77.93 73.12 
44,100 16,384 0.8 76.10 64.58 76.48 77.73 73.72 

Table 6.1: The results of the frequency analysis parameter evaluation, 
varying the sampling rate, window size, and window overlap. Results are 
shown for each of the four training data sets (see Section 4.2.1) as well 
as the average for the four data sets. The row with the best average value 
is highlighted. 

6.1.2 Sub-Phase B: Pitch-Class Extraction 

The best average performing frequency analysis parameters identified in Sub-Phase A 

were used for Sub-Phase B. Table 6.2 shows the results of evaluating eight different 

combinations of pitch-class extraction extensions for each of the four training data sets, 

as well as the average of the four data sets. 
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The results of the evaluation indicate that the best average performance is achieved 

with the basic mapping algorithm in combination with the peak detection and low-

frequency clarification extensions. As such, this combination of pitch-class extraction 

extensions was used for all subsequent phases of the experiment.  

 
Results Pitch-Class Algorithm Classical Popular MIDI Combined Average 

BA 76.86 65.07 77.67 79.23 74.71 
BA + PD 77.13 67.38 79.16 77.31 75.25 

BA + SFM 74.34 57.40 75.29 72.66 69.92 
BA + LFC 75.56 66.23 79.84 79.14 75.19 

BA + PD + SFM 71.84 59.56 74.99 75.28 70.42 
BA + PD + LFC 78.34 67.35 79.45 80.42 76.39 

BA + SFM + LFC 75.73 62.11 78.92 77.53 73.57 
BA + PD + SFM + LFC 75.19 60.80 77.87 76.96 72.71 

Table 6.2: The results of evaluating various combinations of pitch-class 
extraction extensions on each of the four training data sets. The average 
of the results from the four data sets is also given. The row with the 
highest average result is highlighted. BA: basic mapping algorithm, PD: 
peak detection, SFM: spectral flatness measure, LFC: low-frequency 
clarification. See Chapter 3 for details.  

6.1.3 Sub-Phase C: Pitch-Class Aggregation 

For Sub-Phase C, the best performing average parameters from Sub-phase A are used 

(i.e., a sampling rate of 22,050 Hz, a window size of 8192 samples, and a window 

overlap of 0.8) in combination with the best average performing pitch-class extraction 

algorithm from Sub-Phase B (i.e., the basic algorithm with the peak detection and low 

frequency clarification extensions). Each of the four variations of pitch-class aggregators 

is evaluated with the four training data sets. Table 6.3 presents the results for each of the 

four data sets, as well as the average of the four. 
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The results of the sub-phase show that the periodic cleanup aggregator with a period 

of 4.01 seconds had the best average performance. Therefore it was used for all 

subsequent phases of the experiment. 

 
Results (%) Pitch-Class Aggregator Classical Popular MIDI Combined Average 

AM 78.34 67.35 79.45 80.42 76.39 
PC, period = 1.04 seconds 78.31 66.17 79.92 78.37 75.69 
PC, period = 2.01 seconds 79.53 68.58 78.74 79.77 76.66 
PC, period = 4.01 seconds 79.89 70.13 80.32 78.98 77.33 

Table 6.3: The results of the pitch-class aggregator evaluation on each of 
the four training data sets, as well as the average result. The row with the 
highest average result is highlighted. AM: arithmetic mean, PC: periodic 
cleanup. 

6.1.4 Sub-Phase D: Key Classification 

For Sub-Phase D, the best performing average parameters from Sub-phase A are used 

(i.e., a sampling rate of 22,050 Hz, a window size of 8192 samples, and a window 

overlap of 0.8) in combination with the best average performing pitch-class extraction 

algorithm from Sub-Phase B (i.e., the basic algorithm with the peak detection and low 

frequency clarification extensions), and the best average performing pitch-class 

aggregator from Sub-Phase C (i.e., periodic cleanup with a 4.01 second period). Each of 

the four classifiers is evaluated using each of the four training data sets with cross-

validation. Table 6.4 shows the results of the evaluation for each of the four training data 

sets, as well as the average result of the four data sets. 
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Results (%) Classifier Classical Popular MIDI Combined Average 

K-nearest Neighbor, K=1 79.89 70.13 80.32 78.98 77.33 

Neural Network 76.38 63.21 77.55 79.30 74.11 

Naïve Bayes 76.81 63.08 73.13 79.32 73.09 

Support Vector Machine 67.01 61.37 67.61 72.06 67.01 

Table 6.4: The results of the key classification using the four different 
classifiers with each of the four training data sets. The average result of 
the four data sets is also given. The best result in each column is 
highlighted. 

6.1.5 Summary 

Table 6.5 summarizes the frequency analysis parameters, pitch-class extraction 

algorithm, and pitch-class aggregator that were selected based on the results of Sub-phase 

A, B, and C of Phase I. The data (i.e., pitch-class distributions) extracted using this 

configuration are used to train a set of models that will be evaluated in Phase III. One of 

each of the four classifiers is trained with each of the four training data sets, leading to a 

total of sixteen trained models. 
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Sampling 
Rate (Hz) Window Size Window 

Overlap 
Pitch-Class Extraction 

Algorithm Pitch-Class Aggregator 

22,050 8192 0.8 

Basic mapping 
algorithm with peak 
detection and low-

frequency clarification 
extensions 

Periodic cleanup aggregator 
with a period of 4.01 seconds 

Table 6.5: Summary of the frequency analysis parameters, pitch-class 
extraction algorithm, and pitch-class aggregator selected based on the 
results of Sub-phase A, B, and C of Phase I. 

Table 6.6 shows the results of the best performing classifiers from Sub-phase D, for 

each of the four data sets as well as the average of the four data sets. In order to provide 

more detailed results for the best performing classifiers, the types of errors are also listed. 

A perfect 5th error refers to when a key is detected that is a perfect 5th (i.e., seven 

semitones) away from the correct key (e.g., detected key: C, correct key: G). A relative 

major/minor error refers to when a key is detected that is the relative major/minor of the 

correct key (e.g., detected key: C, correct key: Am). A parallel major/minor error refers 

to when a key is detected that is the parallel major/minor of the correct key (e.g., detected 

key: A, correct key: Am). Furthermore, the metric from the MIREX ’05 audio key 

finding task is also given (MIREX score). This metric gives 1 point for the correct key, 

0.5 points for perfect 5th errors, 0.3 points for relative major/minor errors, and 0.2 points 

for parallel major/minor errors. The MIREX score is then calculated by dividing the 

number of points by the total number of instances. 
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Data Set Classifier 
Perfect 

5th 
Errors 

Relative 
Major / 
Minor 
Errors 

Parallel 
Major / 
Minor 
Errors 

Other 
Errors 

Raw 
Score 
(%) 

MIREX 
Score 
(%) 

Classical K-NN 20 11 9 10 79.89 83.87 
Popular K-NN 15 8 8 15 70.13 77.67 
MIDI K-NN 20 10 5 6 80.32 87.08 

Combined NB 51 32 17 26 79.32 85.58 
Average K-NN 9.14% 4.89% 3.71% 5.74% 77.10 83.31 

Table 6.6: The best performing classifiers for Phase I, using the 
parameters and algorithms listed in Table 6.5. The types of errors are 
shown as well as the score that is based on the MIREX ’05 metric 
(MIREX score). The bottom row shows the best performing classifier for 
the average of the four data sets1. K-NN: k-nearest neighbor, NB: naïve 
Bayes. 

6.1.6 Discussion 

The results of Sub-phase A (Table 6.1) show a great deal of variation in performance 

based on the selected frequency analysis parameters. As a general trend, we see that the 

performance tends to increase with the amount of window overlap. This is perhaps 

attributable to the fact that as the temporal resolution decreases with the window size, a 

larger window overlap is required to compensate. A clear pattern is also apparent that the 

worst performance is achieved with the smallest window size of 1024 samples, most 

likely due to the decreased frequency resolution. 

An analysis of the results of Sub-phase B (Table 6.2) indicates that the use of the 

spectral flatness measure extension actually decreases the performance in all cases. On 

the other hand, both the peak detection and low-frequency clarification extensions lead to 

improved results in all cases. 

The results of Sub-phase C (Table 6.3) show that the periodic cleanup procedure 

tends to improve the performance, albeit only slightly. Only in the case where the period 
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was set to 1.01 seconds was the performance decreased relative to the arithmetic mean 

aggregator. 

The results of Sub-phase D (Table 6.4) show that the k-nearest neighbor algorithm 

performs better than the other classifiers in almost every case (i.e., for the classical, 

popular, and MIDI data sets, as well as the average result). Only in the case of the 

combined data set did the naïve Bayes classifier and neural network outperform the k-

nearest neighbor algorithm by a slight margin. It should be noted, however, that the 

system was parameterized using the k-nearest neighbor algorithm for the first three sub-

phases.  

6.2 Phase II: Pitch-Class Template Evaluation 

For the second phase of the experiment, each of the four different types of classifiers (a 

neural network, a k-nearest neighbor algorithm, a support vector machine, and naïve 

Bayes classifier) is trained with each of the six different types of pitch-class templates 

described in Section 4.3. This leads to a total of twenty-four different trained models. 

Each of the trained models is then evaluated using each of the four training data sets 

described in Section 4.2.1. These results provide a means of comparison to the results 

from Phase I, which are based solely on cross-validation. 

6.2.1 Results 

The results are shown in tables for each type of pitch-class template that was used to train 

the classifiers. Each table lists the results of the evaluation for the four different training 

data sets, as well as the average result for the four data sets. Table 6.7 shows the results 

for the classifiers trained with the diatonic pitch-class template. Table 6.8 shows the 

results for the classifiers trained with the Krumhansl pitch-class template. Table 6.9 
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shows the results for the classifiers trained with the Temperley pitch-class template. 

Table 6.10 shows the results for the classifiers trained with the Krumhansl-diatonic pitch-

class template. Table 6.11 shows the results for the classifiers trained with the 

Temperley-diatonic pitch-class template. Lastly, Table 6.12 shows the results for the 

classifiers trained with the Papadopoulos pitch-class template. 

 
Results (%) Classifier Classical Popular MIDI Combined Average 

K-nearest Neighbor, K=1 57.66 52.67 63.16 57.17 57.67 
Neural Network 45.97 40.67 51.67 46.62 46.23 

Support Vector Machine 62.50 56.00 66.51 62.27 61.82 
Naïve Bayes 48.79 41.33 50.24 47.45 46.95 

Table 6.7: Diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 64.52 80.67 63.64 63.43 68.07 

Neural Network 54.44 54.00 46.41 51.57 51.61 
Support Vector Machine 63.71 74.67 58.37 64.58 65.33 

Naïve Bayes 57.66 48.00 57.89 55.35 54.73 

Table 6.8: Krumhansl templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 69.35 76.67 72.25 71.50 72.44 

Neural Network 68.15 70.00 68.42 68.70 68.82 
Support Vector Machine 71.37 80.67 70.33 73.31 73.92 

Naïve Bayes 59.27 60.67 62.20 60.63 60.69 

Table 6.9: Temperley templates used to train the classifiers. 
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Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 62.50 82.67 65.07 67.55 69.45 

Neural Network 64.52 76.00 63.16 66.89 67.64 
Support Vector Machine 65.73 81.33 64.11 69.03 70.05 

Naïve Bayes 37.10 48.00 30.14 37.40 38.16 

Table 6.10: Krumhansl-diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 68.55 71.33 70.81 69.69 70.10 

Neural Network 70.16 68.00 73.21 70.68 70.51 
Support Vector Machine 68.95 74.67 70.81 71.00 71.36 

Naïve Bayes 58.87 55.33 53.11 56.01 55.83 

Table 6.11: Temperley-diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 58.06 68.00 48.33 57.00 57.85 

Neural Network 57.66 74.00 48.80 58.65 59.78 
Support Vector Machine 56.85 75.33 48.80 58.65 59.91 

Naïve Bayes 58.87 42.00 59.81 55.02 53.93 

Table 6.12: Papadopoulos templates used to train the classifiers. 

6.2.2 Summary 

Table 6.13 gives a summary of the average result (i.e., the average of the results for the 

four training data sets: classical, popular, MIDI, and combined) for each type of classifier 

and each type of pitch-class template that was used for training. The average of the 

average results for each type of pitch-class template (rightmost column) and each type of 

classifier (bottom row) are also shown. 
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Table 6.14 presents the results of the best performing models (i.e., classifier and 

training template type) for Phase II. The types of errors are shown as well as the score 

using the metric from the MIREX ’05 audio key finding task (MIREX score). See 

Section 6.15 for details on the types of errors and the MIREX metric. 

 
Results (%) Template K-NN NN SVM NB AVERAGE 

Diatonic 57.67 46.23 61.82 46.95 53.17 

Krumhansl 68.07 51.61 65.33 54.73 59.94 

Temperley 72.44 68.82 73.92 60.69 68.97 

Krumhansl-
diatonic 69.45 67.64 70.05 38.16 61.33 

Temperley-
diatonic 70.10 70.51 71.36 55.83 66.95 

Papadopoulos 57.85 59.78 59.91 53.93 57.87 

AVERAGE 79.12 72.92 80.48 62.06 67.51 

Table 6.13: A summary of the average result of the four training data 
sets for each of the classifiers and each of the pitch-class templates. The 
rightmost column shows the average of the average results for each type 
of pitch-class template. The bottom row gives the average of the average 
results for each type of classifier. The bottom-right cell shows the 
average of all the results. K-NN: k-nearest neighbor, NN: neural 
network, SVM: support vector machine, NB: naïve Bayes. 
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Data Set Classifier Template 
Perfect 

5th 
Errors 

Relative 
Major / 
Minor 
Errors 

Parallel 
Major / 
Minor 
Errors 

Other 
Errors 

Raw 
Score 
(%) 

MIREX 
Score 
(%) 

Classical SVM Temperley 33 19 10 9 71.37 81.13 

Popular K-NN Krumhansl-
diatonic 14 4 5 3 82.67 88.80 

MIDI NN Temperley-
diatonic 23 14 7 12 73.21 81.39 

Combined SVM Temperley 76 39 22 25 73.31 82.22 

Average SVM Temperley 12.33% 6.78% 3.58% 4.06% 73.92 82.69 

Table 6.14: The best performing models for Phase II, using the 
parameters and algorithms selected from Phase I (see Table 6.5). The 
types of errors are shown as well as the score that is based on the 
MIREX ’05 metric (MIREX score). The bottom row shows the best 
performing model for the average of the four data sets1. K-NN: k-nearest 
neighbor, NN: neural network, SVM: support vector machine, NB: naïve 
Bayes. 

6.2.3 Discussion 

An analysis of the results presented in Table 6.13 reveals that the combination of 

classifier and pitch-class template used for training greatly influences the performance of 

the model. For instance, when the Krumhansl template is used to train the neural network 

and naïve Bayes classifiers, the average accuracy is 51.61% and 54.73%, respectively. 

Whereas when the Krumhansl-diatonic template is used to train the same classifiers, the 

average accuracy is 67.64% and 38.16%, respectively. This suggests that if any particular 

classifier is chosen for audio key detection, it is important to carefully consider the type 

of pitch-class template that is used for training, as it can greatly affect performance. 

However, the results also seem to indicate that the classifiers trained with the Temperley 

and Temperley-diatonic pitch-class templates perform well in almost every case. 
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We can also see from Table 6.11 that the k-nearest neighbor and support vector 

machines have the best average performance for the various types of training templates. 

In the case of the k-nearest neighbor classifier, this could be due to specialization, since 

the feature extraction algorithm was parameterized using the k-nearest neighbor classifier 

with the training data sets in Phase I. However, the fact that the support vector machine 

had the best overall average performance seems indicative that it is a good choice of 

classifier, at least in the case when pitch-class templates are used for training. 

Looking at the results for the first three data sets in Table 6.14 (Classical, Popular, 

and MIDI), we see that the best performing models in each of the three cases consists of 

different classifiers and pitch-class templates for training. This suggests that the choice of 

classifier and training template is also heavily dependent on the corpus of music that is 

being analyzed, which supports the hypothesis of Gómez (2006b). 

6.3 Phase III: Test Set 

The third phase of the experiment consists of evaluating all of the trained models from 

Phase I and II of the experiment with the test data sets. There are sixteen models from 

Phase I trained with the training data sets (see Section 6.15) and twenty-four models from 

Phase II trained with the pitch-class templates (see Section 6.2). Each of the models is 

evaluated with each of four test data sets (see Section 4.2.2). This phase is particularly 

important because it provides a set of results that is completely independent from the 

training data. 

6.3.1 Results 

The results are shown in tables for each type of training data or pitch-class template that 

was used to train the classifiers. Each table lists the results of the evaluation for the four 
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different test data sets, as well as the average result of the four test data sets. Table 6.15 

shows the results for the classifiers trained with the diatonic pitch-class template. Table 

6.16 shows the results for the classifiers trained with the Krumhansl pitch-class template. 

Table 6.17 shows the results for the classifiers trained with the Temperley pitch-class 

template. Table 6.18 shows the results for the classifiers trained with the Krumhansl-

diatonic pitch-class template. Table 6.19 shows the results for the classifiers trained with 

the Temperley-diatonic pitch-class template. Table 6.20 shows the results for the 

classifiers trained with the Papadopoulos pitch-class template. Table 6.21 shows the 

results for the classifiers trained with the classical training data set. Table 6.22 shows the 

results for the classifiers trained with the popular training data set. Table 6.23 shows the 

results for the classifiers trained with the MIDI training data set. Lastly, Table 6.24 shows 

the results for the classifiers trained with the combined training data set.  

 
Results (%) Classifier Classical Popular MIDI Combined Average 

K-nearest Neighbor, K=1 50.00 41.07 62.50 63.33 54.23 
Neural Network 45.83 23.21 62.50 50.00 45.39 

Support Vector Machine 54.17 42.86 70.83 66.67 58.63 
Naïve Bayes 33.33 25.00 37.50 33.33 32.29 

Table 6.15: Diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 33.33 73.21 50.00 60.00 54.14 

Neural Network 37.50 35.71 37.50 36.67 36.85 
Support Vector Machine 37.50 67.86 50.00 56.67 53.01 

Naïve Bayes 37.50 37.50 33.33 36.67 36.25 

Table 6.16: Krumhansl templates used to train the classifiers. 
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Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 54.17 60.71 75.00 66.67 64.14 

Neural Network 41.67 58.93 66.67 70.00 59.32 
Support Vector Machine 50.00 73.21 70.83 70.00 66.01 

Naïve Bayes 37.50 53.57 45.83 53.33 47.56 

Table 6.17: Temperley templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 50.00 69.64 58.33 56.67 58.66 

Neural Network 58.33 66.07 62.50 60.00 61.73 
Support Vector Machine 45.83 67.86 58.33 60.00 58.01 

Naïve Bayes 25.00 53.57 12.50 26.67 29.44 

Table 6.18: Krumhansl-diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 66.67 66.07 75.00 66.67 68.60 

Neural Network 62.50 50.00 66.67 66.67 61.46 
Support Vector Machine 62.50 69.64 75.00 73.33 70.12 

Naïve Bayes 45.83 51.79 50.00 53.33 50.24 

Table 6.19: Temperley-diatonic templates used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 12.50 64.29 25.00 33.33 33.78 

Neural Network 41.67 66.07 50.00 56.67 53.60 
Support Vector Machine 12.50 67.86 25.00 33.33 34.67 

Naïve Bayes 41.67 32.14 50.00 53.33 44.29 

Table 6.20: Papadopoulos templates used to train the classifiers. 
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Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 54.17 50.00 58.33 60.00 55.63 

Neural Network 45.83 57.14 58.33 56.67 54.49 
Support Vector Machine 37.50 39.29 37.50 40.00 38.57 

Naïve Bayes 41.67 37.50 48.83 50.00 44.50 

Table 6.21: Extracted pitch-class distributions from the classical training 
data set from Phase I used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 29.17 67.86 29.17 43.33 42.38 

Neural Network 25.00 60.71 37.50 40.00 40.80 
Support Vector Machine 20.83 46.43 29.17 23.33 29.94 

Naïve Bayes 33.33 53.57 33.33 30.00 37.56 

Table 6.22: Extracted pitch-class distributions from the popular training 
data set from Phase I used to train the classifiers. 

Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 66.67 41.07 79.17 60.00 61.73 

Neural Network 66.67 32.14 75.00 60.00 58.45 
Support Vector Machine 50.00 32.14 54.17 50.00 46.58 

Naïve Bayes 66.67 44.64 62.50 60.00 58.45 

Table 6.23: Extracted pitch-class distributions from the MIDI data 
training set from Phase I used to train the classifiers. 
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Results (%) Classifier Classical Popular MIDI Combined Average 
K-nearest Neighbor, K=1 66.67 69.64 66.67 66.67 67.41 

Neural Network 62.50 71.43 70.83 73.33 69.52 
Support Vector Machine 54.17 57.14 50.00 50.00 52.83 

Naïve Bayes 66.67 53.57 66.67 66.67 63.40 

Table 6.24: Extracted pitch-class distributions from the combined 
training data set from Phase I used to train the classifiers. 

6.3.2 Summary 

Table 6.25 gives a summary of the average result (i.e., the average of the results for the 

four test data sets: classical, popular, MIDI, and combined) for each type of classifier and 

each type of pitch-class template or training data set. The average of the average results 

for each type of pitch-class template (rightmost column) and each type of classifier 

(bottom row) are also shown. 

Table 6.26 presents the results of the best performing models (i.e., classifier and 

training data set or template type) for Phase III. The types of errors are shown as well as 

the score using the metric from the MIREX ’05 audio key finding task (MIREX score). 

See Section 6.15 for details on the types of errors and the MIREX metric. As a means of 

comparison, Table 6.27 shows the results from the MIREX ’05 audio key finding contest 

participants. The entries to the contest were evaluated with a set of 1252 pieces from the 

Baroque, Classical, and Romantic periods, synthesized from MIDI using two different 

synthesizers. This led to a total of 2504 instances in the test data set. Details on the 

entries can be found in Chapter 2 (see Table 2.2). 

 



6   Results and Discussion 
 

84 

Results (%) Template / 
Training Data K-NN NN SVM NB AVERAGE 

Diatonic 54.23 45.39 58.63 32.29 47.64 

Krumhansl 54.14 36.85 53.01 36.25 45.06 

Temperley 64.14 59.32 66.01 47.56 59.26 

Krumhansl-
diatonic 58.66 61.73 58.01 29.44 51.96 

Temperley-
diatonic 68.60 61.46 70.12 50.24 62.61 

Papadopoulos 33.78 53.60 34.67 44.29 41.59 

Classical training 
data set 55.63 54.49 38.57 44.50 48.30 

Popular training 
data set 42.38 40.80 29.94 37.56 37.67 

MIDI training 
data set 61.73 58.45 46.58 58.45 56.30 

Combined 
training data set 67.41 69.52 52.83 63.40 63.29 

AVERAGE 56.07 54.16 50.84 44.4 51.37 

Table 6.25: A summary of the average of the results of the four test data 
sets. An average is shown for each type of classifier and each type of 
template or training data set. The rightmost column shows the average of 
the average results for each type of pitch-class template or training data 
set. The bottom row gives the average of the average results for each 
type of classifier. The bottom-right cell shows the average of all the 
results. K-NN: k-nearest neighbor, NN: neural network, SVM: support 
vector machine, NB: naïve Bayes. 
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Data Set Classifier 
Template / 
Training 

Data 

Perfect 
5th 

Errors 

Relative 
Major / 
Minor 
Errors 

Parallel 
Major / 
Minor 
Errors 

Other 
Errors 

Raw 
Score 
(%) 

MIREX 
Score 
(%) 

K-NN Temperley-
diatonic 2 5 0 1 66.67 77.08 

K-NN 
MIDI 

training 
data set 

3 2 0 3 66.67 75.42 

NN 
MIDI 

training 
data set 

4 1 1 2 66.67 77.08 

NB 
MIDI 

training 
data set 

3 1 0 4 66.67 74.17 

K-NN 
Combined 

training 
data set 

5 0 0 3 66.67 77.08 

Classical 

NB 
Combined 

training 
data set 

2 2 1 3 66.67 74.17 

K-NN Krumhansl 6 5 2 2 73.21 81.96 
Popular 

SVM Temperley 4 6 0 5 73.21 80.00 

MIDI K-NN 
MIDI 

training 
data set 

1 1 0 3 79.17 82.50 

SVM Temperley-
diatonic 2 5 0 1 73.33 81.67 

Combined 
NN 

Combined 
training 
data set 

2 2 0 4 73.33 77.67 

Average SVM Temperley-
diatonic 6.43% 14.62% 0% 4.70% 70.12 78.96 

Table 6.26: The best performing models for Phase III, using the 
parameters and algorithms selected from Phase I (see Table 6.5). The 
types of errors are shown as well as the score that is based on the 
MIREX ’05 metric (MIREX score). The bottom row shows the best 
performing model for the average of the four test data sets1. K-NN: k-
nearest neighbor, NN: neural network, SVM: support vector machine, 
NB: naïve Bayes. 
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Participant Perfect 5th 
Errors 

Relative Major / 
Minor Errors 

Parallel Major / 
Minor Errors Other Errors 

Raw 
Score 
(%) 

MIREX 
Score (%) 

Izmirli, Ö. 78 69 35 147 86.86 89.52 

Purwins & 
Blankertz 116 45 37 156 85.86 89.01 

Gómez, E. 
(start) 79 81 45 217 83.15 86.05 

Gómez, E. 
(global) 142 121 43 164 81.23 85.86 

Pauws, S. 43 136 63 209 81.99 84.98 

Zhu, Y. 104 75 57 270 79.79 83.22 

Chuan & 
Chew 178 134 42 108 73.56 79.06 

AVERAGE 4.22% 3.77% 1.84% 7.25% 81.78 85.39 

Table 6.27: The results of the models entered in to the MIREX ’05 audio 
key finding contest. The bottom row shows the average results for all of 
the entries1. Each entry was evaluated with a test data set of 2504 
instances of audio files synthesized from MIDI. See Table 2.2 for details 
on the entries. 

6.3.3 Discussion 

Looking at the rightmost column of Table 6.25 we can compare the average performance 

for the different types of templates or training data sets that were used to train the 

classifiers. The best average performance (i.e., average of all the classifiers) of 63.29% is 

achieved using the combined training data set (see Section 4.2.2). This suggests that 

using extracted pitch-class distributions from large sets of ground truth data is a viable 

option for training key classifiers. It is also apparent that the Temperley and Temperley-

diatonic pitch-class templates are effective at training the classifiers, as they had the next 

best average performance. This is further supported by the fact that these templates also 
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had the best average performance in Phase II of the experiment. On the other hand, the 

classifiers trained with the popular data set had a relatively poor average accuracy of 

37.67%. This could be due to the fact that the musical excerpts from the popular training 

data set are too dissimilar from those in the test data sets. It may also be skewed by the 

fact the popular training data set contains the least number of instances compared to the 

other training data sets. 

The bottom row of Table 6.25 reveals that the k-nearest neighbor classifier 

outperformed the other three classifiers on average. However, it should be noted that 

when considering just the classifiers trained with pitch-class templates (i.e., the trained 

models from Phase II, in the top six rows of results), the support vector machine seems to 

perform the best. Furthermore, the bottom row of Table 6.26 shows that the best average 

performance for all of the test data sets was achieved with the support vector machine 

trained with the Temperley-diatonic template. This supports the findings from Phase II of 

the experiment, in which the support vector machine also had the best average 

performance. 

An analysis of Table 6.26 provides information on what combinations of classifiers 

and training data performed the best on each of the four test data sets. For example, there 

are two combinations that had the same raw score of 73.21% for the popular test data set: 

the k-nearest neighbor classifier trained with the Krumhansl template, and the support 

vector machine trained with the Temperley template. However, the MIREX score of 

81.96% for the k-nearest neighbor model indicates that it actually outperformed the 

support vector machine. The best overall performance was achieved with the MIDI test 

data set using a k-nearest neighbor classifier trained with the MIDI training data set. The 

raw score and MIREX score are 79.17% and 82.50%, respectively. This result is perhaps 

to be expected, as the data sets of musical excerpts synthesized from MIDI are more 

simplistic than excerpts of real recordings. 

The k-nearest neighbor algorithm trained with the Krumhansl templates produced the 

best results for the popular test data set, receiving a raw score of 73.21% and a MIREX 



6   Results and Discussion 
 

88 

score of 81.96%. This is significantly better than the best results for the classical test data 

set, which had a raw score of 66.67% and a MIREX score of 77.08%. This may be 

attributable to the fact that the classical test data set is substantially smaller than the 

popular test data set. It may also be a result of the excerpts in the popular test data set 

being less harmonically complex than those in the classical set. In any event, this seems 

indicative that reasonable performance is achievable for audio key detection with popular 

music. 

The bottom three rows of Table 6.26 show the best performance for the combined 

test data set and the best average performance for all of the test data sets. The support 

vector machine trained with the Temperley-diatonic template produced both of these 

results, suggesting that this configuration is perhaps the most robust solution when 

detecting the key from multiple genres of musical excerpts. However, further evaluations 

with more ground truth data would be needed to substantiate this hypothesis. 

We can get and idea of how the models presented in this thesis perform relative to 

previous implementations by comparing the results in Table 6.26 with those in Table 6.27 

(i.e., the MIREX ’05 audio key finding contest results). Since the MIREX contest was 

evaluated using audio synthesized from MIDI files, the most meaningful comparison 

would be made with the results for the MIDI test data set. The average raw score for the 

MIREX contest entries was 81.78% and the average score using the MIREX metric was 

85.39% (see the bottom row of Table 6.27). The best performing model for the MIDI test 

data set produced a raw score of 79.17% and a score of 82.50% using the MIREX metric, 

which suggests that the performance is comparable with the entries to the MIREX 

contest. This is, however, not conclusive because the MIDI test data set only consists of 

twenty-four instances, whereas the MIREX evaluation consisted of 2504 instances.  

The results suggest that the models implemented for this thesis can perform audio 

key detection with a reasonable degree of accuracy. Overall, the support vector machine 

classifier trained with the Temperley-diatonic pitch-class template produces the most 

consistent accuracy across the different test data sets. Further parameterization and 



6   Results and Discussion 
 

89 

evaluation with this configuration would be warranted for future research. Moreover, an 

expanded set of ground truth data for training and testing is needed to verify these 

findings, and could very well lead to improved performance.

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For the row showing the best performing model/classifier for the average of the data sets, the types of 
errors are shown as percentages. The percentage of each type of error is calculated for each data set (i.e. the 
percentage of the type of error relative to the size of the data set). The values in this row are then calculated 
as the average of the percentages of each type of error for all of the data sets. For example, if the four data 
sets have 2%, 5%, 3%, and 7% perfect 5th errors, then the value for the perfect 5th errors in this row would 
be 4.25%. 



7   Conclusions 
 

90 

Chapter 7 

 Conclusions 

 

This thesis has approached the audio key finding problem by evaluating a number of 

algorithms and classifiers with the goal of implementing a model that maximizes key 

identification accuracy. The methods employed are extensions of previous research in the 

field and are essentially built on the assumption that the key of an audio excerpt can be 

identified based solely on the extracted pitch-class distribution. In order to identify the 

key from the pitch-class distribution, a classifier that is trained with ground truth data or 

pitch-class templates is employed. 

The systematic and modular evaluation of various parameters, algorithms, classifiers, 

and training data led to insights on what configurations performed well in different 

circumstances. It was shown that the choice of signal processing parameters and 

algorithms used for feature extraction had a significant impact on the results. The pairing 

of classifier and training data also greatly influenced the performance of the system. 

Moreover, it was found that certain configurations performed better depending on the 

corpus of music that was being used for evaluation (e.g., classical or popular). Overall, 

the most consistently accurate results, regardless of the corpus of music, were achieved 

with the support vector machine that was trained with the Temperley-diatonic pitch class 

template. Parameterization of the feature extraction algorithm and further evaluation with 

this configuration would be a worthwhile endeavor for future research. However, a larger 

set of ground truth data is needed in order to ascertain more conclusive observations 

about the performance of the models in general. 
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The findings of this thesis, along with previous research in the field, suggest that a 

distributional approach to audio key detection (i.e., using pitch-class distributions) can 

yield reasonable performance. However, it is possible that the accuracy of a system based 

on this approach is bounded by a semantic gap between the relatively simplistic pitch-

class distribution feature and the high-level concept of key. Research has shown that such 

a semantic gap exists for other closely related tasks in the field of music information 

retrieval (Cano et al. 2005a). For example, Aucouturier and Pachet (2004) conducted an 

experiment in which they identified a glass ceiling of approximately 65% accuracy for 

audio similarity applications, regardless of the type of system that was employed. Similar 

findings have also been reported for polyphonic melody extraction (Paivo 2007), as well 

as timbre and rhythm recognition (Lu et al. 2006). If this is the case for audio key 

detection, it is important for future research to investigate new approaches that go beyond 

a purely distributional view. 

Cognitive studies, such as that of Temperley and Marvin (2008), have suggested that 

in addition to the distribution of pitch-classes, listeners also use structural cues in order to 

identify the key of music. Although it is unclear exactly what these structural cues are, it 

appears that the temporal ordering and arrangement of notes do play a role in how 

humans perceive tonality. This is further supported by the findings of Madsen and 

Wilmer (2007). They show that the accuracy of their symbolic key detection system is 

improved by incorporating a probabilistic model for the transition between scale degrees. 

Incorporation of this type of temporal information could also be used to improve the 

performance of audio key finding systems. 

Many recently proposed audio key detection systems also make use of chord 

recognition techniques in order to help ascertain the key. This approach has been shown 

to be successful, particularly for systems that perform local key estimation. However, the 

state-of-the-art in chord detection is still fairly rudimentary and there is much room for 

improvement. For example, chord detection systems, for the most part, are still unable to 
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identify inversions. Therefore it stands to reason that as advances are made in chord 

detection techniques, we could also see major improvements in audio key detection. 

Regardless of the methods that are utilized, it seems that one of the most significant 

roadblocks to improving the accuracy of audio key detection systems is the lack of a 

standardized evaluation procedure and ground truth data set. Without a common method 

for assessing the performance of various approaches, comparison is extremely difficult. 

Although the MIREX audio key finding competition marks a step in the right direction, it 

is not without its shortcomings. Firstly, the data set used for evaluation consists solely of 

audio excerpts that have been synthesized from MIDI, which does not encompass the full 

complexity of the audio key finding problem. Furthermore, only pieces from the 

classical, baroque, and romantic periods are included. Ideally the data used for evaluation 

would include recordings of real performances from multiple genres of music. The 

second problem with the MIREX procedure is that the statistics reported from the results 

do not provide sufficient information on when and why the models fail. A more 

comprehensive evaluation would take a modular approach, such that the various 

components of the systems (e.g., frequency analysis, pitch-class extraction, key 

classifiers) could be assessed independently. With this type of procedure we could gain a 

better understanding of how each component of the system influenced the results, leading 

to insights that facilitate future research.
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Appendix A 

 Previous Audio Key Detection Systems 

 

This appendix presents a summary of the audio key detection systems that are reviewed 

in Section 2.3.2. 
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Author(s) Algorithm Summary Data for Training & 
Evaluation 

Max. 
Accuracy Related Work 

Leman (1991, 
1994) 

Local tone centers extracted. 
Pattern-matching algorithm 

used to identify key. 

• “Through the Keys”, 
Bartok 

• Excerpts from Sextet No. 
2, Brahms Excerpt of 
Prelude No. 20, Chopin 

• Excerpt of Arabesque 
No. 1, Debussy 

N/A  

Izmirli and 
Bilgen (1994) 

FFT to extract sequence of 
note intervals and onset 
times. Pattern-matching 

algorithm used to produce 
tonal context vector. 

• “Solfege des Solfege”, 
Lavignac, Vol. 2A, No. 4 N/A  

Izmirli and 
Bilgen (1996) 

CQ-transform with peak 
selection algorithm produces 

set of notes for each time 
step. Same pattern-matching 

algorithm as previous 
implementation. 

• Excerpt of Op. 34, No. 2, 
by Chopin N/A Izmirli and 

Bilgen (1994) 

Purwins et al. 
(2000) 

CQ-transform extracts pitch-
class distributions. Fuzzy 
distance algorithm used to 
compare with templates 
based on probe tones. 

• C minor Prelude, Op. 28, 
No. 20, by Chopin N/A  

Pauws (2004) 

Standard pitch-class 
distribution extraction with 

maximum-key profile 
algorithm to compare with 

Krumhansl templates. 

• 237 classical piano 
sonatas 66.2%  

van de Par et 
al. (2006) 

Extension of Pauws (2004) 
algorithm that uses 3 

different temporal weighting 
functions 

• 237 classical piano 
sonatas, composers: J.S. 
Bach, Shostakovich, 
Brahms, and Chopin 

98.1% 
Direct 

extension of 
Pauws (2004) 

Martens et al. 
(2004) 

Pitch patterns extracted from 
the audio signal using an 

auditory model. 
Classification tree is used to 

identify key from pitch 
patterns. 

• Templates created from 
24 sequences of Shepard 
chords 

• Evaluation performed 
with excerpt of 
“Eternally”, by Quadran, 
a passage of “Inventions 
No. 1 in C major”, by 
J.S. Bach, and an excerpt 
of “Children”, by Robert 
Miles 

N/A 

Uses bottom-
up tonal center 

extraction 
proposed by 

Leman (2000) 
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Author(s) Algorithm Summary Data for Training & 
Evaluation 

Max. 
Accuracy Related Work 

Gómez and 
Herrera 
(2004a) 

Extraction of the Harmonic 
Pitch Class Profile (HPCP), 

see Gómez (2006b) for 
details. Machine-learning 

algorithms, including binary 
trees, Bayesian estimation, 

neural networks, and support 
vector machines used for 

classification. Comparison 
also made with cognition 

inspired model as well as a 
combined approach (i.e., 

cognition inspired + 
machine learning) 

• 878 excerpts of classical 
music (661 for training, 
217 for evaluation), 
composers: Mozart, 
Chopin, Scarlatti, Bach, 
Brahms, Beethoven, 
Handel, Pachelbel, 
Tchaikovsky, Sibelius, 
Dvorak, Debussy, 
Telemann, Albinoni, 
Vivaldi, Pasquini, Glenn 
Gould, Rachmaninoff, 
Schubert, Shostakovich, 
Haydn, Benedetto, Elgar, 
Bizet, Liszt, Boccherini, 
Ravel, and Debussy 

84% 

HPCP based 
on PCP by 
Fujishima 

(1999) 

Chuan and 
Chew (2005a) 

FFT used to extract pitch-
class distribution from the 

signal. Key classification is 
achieved by mapping to a 
point in the Spiral Array. 

• 15 second excerpts of 61 
renditions of 28 
symphonies (1st 
movement only), by 
Mozart 

96% 

Based on the 
Spiral Array 
model (Chew 

2002) 

Chuan and 
Chew (2005c) 

Fuzzy analysis techniques 
used to improve quality of 

extracted pitch-class 
distributions. CEG with 

Spiral Array model is used 
for key classification. 

• 15 second excerpts from 
410 classical audio files 
recorded from MIDI. 

75.25% 

Same as 
MIREX ’05 
algorithm 

(Chuan and 
Chew 2005c) 

Chuan and 
Chew (2007) 

Basic algorithm is the same 
as (Chuan and Chew 2005a). 

Three extensions are 
proposed: the modified 

spiral array, fundamental 
frequency identification, and 

post-weight balancing. 

• “Twenty-Four Preludes,” 
by Chopin ~70% 

Uses same 
basic 

algorithm as 
(Chew 2005a) 

Izmirli (2005a) 

FFT is mapped to pitch-
classes in order to extract the 

distribution. Spectral 
flatness measure is used to 
disregard frequencies not 

containing peaks. Pitch-class 
distributions are compared 

to various templates in order 
to estimate key. 

• 85 classical music pieces 
from common practice 
period, composers: J. S. 
Bach, Beethoven, 
Brahms, Chopin, 
Clementi, Corelli, 
Dvorak, Handel, Haydn, 
Hoffman, Kraus, Mozart, 
Pachelbel, Scarlatti, 
Schubert, Scriabin, 
Telemann, Tchaikovsky, 
and Vivaldi 

86%  
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Author(s) Algorithm Summary Data for Training & 
Evaluation 

Max. 
Accuracy Related Work 

Izmirli (2006) 

Same model as (Izmirli 
2005a) but uses 

dimensionality reduction 
techniques to reduce pitch-

class distribution 
dimensions. 

• First 30 second excerpts 
of 152 pieces from the 
classical period, 
composers: Albinoni, 
Albrechtsberger, Alkan, 
Bach, C. P. E. Bach, 
Beethoven, Bella, 
Brahms, Chopin, 
Clementi, Corelli, 
Dvorak, Grieg, Handel, 
Haydn, Hofmann, Kraus, 
Liszt, Mendelssohn, 
Mozart, Pachelbel, 
Paganini, Prokofiev, 
Rachmaninov, Scarlatti, 
Schubert, Scriabin, 
Telemann, Tchaikovsky, 
and Vivaldi 

88.7% (Izmirli 
2005a) 

Izmirli (2007) 

Non-negative matrix 
factorization used to perform 
local key-finding. Same cor-
relational model as (Izmirli 
2005a) used to identify key 

for a series of windowed 
pitch-class distributions. 

• First 30 second excerpts 
of 152 pieces from the 
classical period (same as 
Izmirli 2006) 

• 17 pop songs with at 
least one modulation 

• 17 short excerpts of 
classical pieces with at 
least one modulation 

82.4% (Izmirli 
2005a) 

Gómez (2006) 

Exhaustive study on various 
approaches to audio key 

detection. Thorough analysis 
of pertinent aspects of audio 

feature computation, 
evaluation strategies, and 

various models for tonality 
induction. 

N/A N/A  

Zhu et al. 
(2005, 2006) 

Four step process for feature 
extraction: (1) CQ-

transform; (2) tuning 
correction; (3) extract note 
partials; (4) create pitch-

class distribution from note 
partials using consonance 

filtering and pitch profiling 
process. Two step process 

for key detection: (1) detect 
scale root; (2) detect scale 

mode. 

• 60 pop songs (pop-rock 
style with vocals and 
instrumentation, 
including drums) 

• “The Four Seasons,” by 
Vivaldi (4 parts, 3 
movements each) 

91%  
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Author(s) Algorithm Summary Data for Training & 
Evaluation 

Max. 
Accuracy Related Work 

Harte et al. 
(2006) 

CQ-transform used to 
extract pitch-class 

distribution, which is 
mapped to 6-D tonal 

centroid feature. Algorithm 
applied for chord 

recognition. 

• 16 songs, by The Beatles N/A 

Pitch-class 
distribution 
created from 

CQ-transform 
based on 
algorithm 

from Harte 
and Sandler 

(2005) 

Gatzsche et al. 
(2006) 

CQ-transform employed to 
extract pitch-class 

distribution, which is used as 
input to the circular pitch 
space model in order to 

detect the key. 

• First 80 second excerpt 
of ”Sonate für Cello und 
Klavier in a-Moll (D. 
821), Allegro moderato,” 
by Schubert 

• ”C-major prelude,” 
BWV 846, by J. S. Bach 

N/A Harte et al. 
(2006) 

Chai and 
Vercoe (2005) 

24-bin pitch-class 
distribution used as input to 
two HMMs: one to detect 

scale root and one to detect 
mode. 

• 10 classical piano pieces, 
composers: Mozart, 
Chopin, Dvork, 
Rubenstein, Paderewski, 
Beethoven, and 
Schumann 

~83% 

Related to 
chord 

segmentation 
system by 

Sheh and Ellis 
(2003) 

Peeters (2006a, 
2006b) 

Pitch-class distributions used 
as input to 24 different 
HMMs (one for each 

possible key). 

• 302 European baroque, 
classical, and romantic 
music pieces, composers: 
J. S. Bach, Corelli, 
Handel, Telleman, 
Vivaldi, Beethoven, 
Haydn, Mozart, Brahms, 
Chopin, Dvorak, 
Schubert, and Schuman 

81% 

Comparison 
made between 
the methods 

for 
interpreting 
global key 

used by 
Gómez 

(2006a) and 
Izmirli 
(2005a) 

Noland and 
Sandler (2007) 

A HMM system that is 
initialized based on tone-
profile values is used to 
investigate the effects of 

low-level DSP parameters. 

• 110 pop songs, by The 
Beatles 

• “Well-Tempered 
Clavier, Book I,” by J. S. 
Bach 

98% 

Based on 
previous 
model by 

Noland and 
Sandler 

(2006), which 
follows the 

work of Bello 
and Pickens 

(2005) 
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Author(s) Algorithm Summary Data for Training & 
Evaluation 

Max. 
Accuracy Related Work 

Burgoyne and 
Saul (2005) 

A Dirichlet-based HMM 
model for tracking chords 
and key simultaneously. 

• 15 movements of 5 
symphonies, by Mozart 
(training) 

• “Minuet, Symphony No. 
40,” by Mozart 
(evaluation) 

83% 

Directly 
implements 
the PCP by 
Fujishima 

(1999) 

Lee and Slaney 
(2007) 

24 separate HMMs (one for 
each key), each with 24 

states (representing different 
chords) used to track chords 

and key simultaneously. 

• 1046 audio files (rock), 
synthesized from MIDI 
(training) 

• 28 pop songs by The 
Beatles (evaluation) 

84.62% 

6-D centroid 
vector from 
Harte et al. 

(2006) used as 
input to the 
HMM. Also 

related to 
work by 
Peeters 

(2006b). 

Catteau et al. 
(2007) 

Frame-by-frame pitch-class 
distributions are extracted 
from the audio signal. A 

unified probabilistic 
framework that predicts 

chord/key transitions is used 
to label each of the frames. 

• 10 polyphonic audio 
excerpts (60 seconds) 

• 96 MIDI-to-wave 
synthesized audio 
excerpts 

• 144 classical cadence 
excerpts 

• 20 chord sequences 

82% 

System is an 
extension of 
the work by 
Bello and 

Pickens (2005) 

Papadopoulos 
and Peeters 

(2009) 

Local key-finding system 
that combines various 

approaches. Three stages: 
(1) pitch-class distribution 

extraction; (2) metric 
structure estimation by 

detecting chord progressions 
and downbeats; (3) local key 

estimation using an HMM 
with observation 

probabilities derived from 
pitch-class templates. 

• 5 movements of piano 
sonatas, by Mozart 80.22% 

Global key 
estimation 

from Gómez 
and Herrera 

(2004a) 

Shenoy et al. 
(2004) 

Audio signal segmented in 
quarter note frames and 
pitch-class distribution 

extracted for each frame. 
Rule-based model is used to 
infer presence of chords and 

key for each frame. 

• 20 pop English songs 90% 

Build on the 
idea of Goto 
(2001) and 
Goto and 
Muraoka 
(1999) to 

incorporate 
high-level 

music 
knowledge 
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Appendix B 

 Training Set Excerpts 

Detailed information on the musical excerpts used for the training sets is provided in the 

following pages. Appendix B.1 lists the excerpts used from the classical corpus, 

Appendix B.2 lists the excerpts used from the popular corpus, and Appendix B.3 lists the 

excerpts used from the MIDI corpus. 
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B.1 Training Set Excerpts from the Classical Corpus 

Composer Conductor / 
Performer(s) Release Title 

Label, 
Release 

Date 
Excerpts 

J. S. Bach Glenn Gould 

The Well–
Tempered Clavier 
II: Preludes and 

Fugues 

Sony 
Classical, 

1993 
48 (BMV 870-893) 

L. 
Beethoven 

Claudio Arrau, 
János Starker, 

Henryk Szeryng, 
and Bernard Haitink 

conducting the 
Royal 

Concertgebouw 
Orchestra 

The Complete 
Piano Sonatas & 

Concertos 

Philips 
Classics, 

1998 

8 (Concertos No. 1–5; Piano 
Variations in C Op. 120; Piano 

variations & fugue Op. 35; 
Triple concerto for Piano, violin 

& cello Op. 56) 

L. 
Beethoven 

Conductor: Josef 
Krips; Performers: 
London Symphony 

Orchestra 

The Nine 
Symphonies 

Padmini 
Music, 1995  9 (Symphony No. 1–9) 

L. 
Boccherini 

Conductors: Pablo 
Casais & Raymond 

Leppard; 
Performers: 

Severino Gazzelloni, 
Pepe Romero, & 
Maurice Gendron 

The Best of 
Boccherini 

Philips, 
1993 

8 (Concerto for flute in D major 
Op. 27; String Quintet in E 

major Op. 11–5 G. 275 
(Minuet); Quintet for guitar & 

strings in D major No. 4 G. 448; 
String Quartet in D major Op. 
8–1 G. 165; Cello Concerto in 

B flat major No. 9 G. 482; 
Symphony in C major Op. 12–3 

G. 505; Quintet for guitar & 
strings in C major No. 9 G. 453; 
Symphony in B flat major Op. 

12–5 G. 507) 

M. Clementi  Howard Shelley 
The Complete 

Piano Sonatas, Vol. 
1 

Hyperion, 
2008 

17 (Piano Sonata Op. 1 No. 1–
6; Piano Sonata Op. 2 No. 2, 4, 
6; Piano Sonata Op. 7 No. 1–3; 

Piano Sonata Op. 8 No. 1–3; 
Harpsichord Sonata in G major 
WO 14; Harpsichord Sonata in 

A flat major WO 13) 

C. P. E. 
Bach 

Conductor: Hartmut 
Haenchen; 
Performers: 

Kammerorchester 

Berliner Sinfonien 
Brilliant 
Classics, 

2002 
5 (Wq. 174, 175, 178, 179, 181) 

C. P. E. Roland Münch, Orgelkonzerte Capriccio, 1 (Wq. 34 H. 444) 
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Composer Conductor / 
Performer(s) Release Title 

Label, 
Release 

Date 
Excerpts 

Bach Hartmut Haenchen, 
Kammerorchester 

1987 

F. J. Haydn 

Conductor: Adam 
Fischer; Performers: 
Austro-Hungarian 

Orchestra, Wolfgang 
Herzer, Gerhard 

Turetschek, Rainer 
Kuchl, & Michael 

Werba 

Haydn: Complete 
Symphonies 

Brilliant 
Classics, 

2002 

106 (Symphony No. 1–104; 
Sinfonia A Hob. I–107; 
Sinfonia B Hob. I–108; 

Sinfonia Concertante in B flat 
major Op. 84 Hob. I–105) 

W. A. 
Mozart Glenn Gould The Complete 

Piano Sonatas 

Sony 
Classical, 

1994 

18 (Piano Sonatas No. 1–18: K. 
279–284, K. 309–311, K. 330–

333, K. 457, K. 533/494, K. 
545, K. 570, K. 576) 

A. Salieri, 
F. Salieri 

Paul Badura-Skoda, 
Pietro Borgonovo, 

& Clementine 
Hoogendorn 

 Antonio Salieri: 
Concertos, 

Francesco Salieri: 
Sinfonia / Scimone, 

I Solisti Veneti  

Erato, 1999 

3 (Concerto for Piano in B flat 
major; Concerto for Flute and 

Oboe in C major; Sinfonia in B 
flat major) 

F. Schubert Alfred Brendel Schubert: Piano 
Works 1822–1828 

Philips, 
1989 

16 (D. 850, 784, 959, 817, 783, 
915, 958, 780, 845, 946, 899, 

935, 894, 840, 760, 960) 

F. Schubert 

Conductor: Herbert 
Blomstedt; 

Performers: Dresden 
Staatskapelle 

The Symphonies 
Berlin 

Classics, 
2010  

9 (Symphony No. 1–6, 6, 9) 

	
  

B.2 Training Set Excerpts from the Popular Corpus 

Artist Album Song Title 
The Beatles Please Please Me I Saw Her Standing There 
The Beatles Please Please Me Misery 
The Beatles Please Please Me Anna (Go To Him) 
The Beatles Please Please Me Boys 
The Beatles Please Please Me Ask Me Why 
The Beatles Please Please Me Please Please Me 
The Beatles Please Please Me Love Me Do 
The Beatles Please Please Me Baby It's You 
The Beatles Please Please Me Do You Want To Know A Secret 
The Beatles Please Please Me A Taste Of Honey 
The Beatles Please Please Me There's A Place 
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Artist Album Song Title 
The Beatles Please Please Me Twist And Shout 
The Beatles With the Beatles It Won't Be Long 
The Beatles With the Beatles All I've Got To Do 
The Beatles With the Beatles All My Loving 
The Beatles With the Beatles Don't Bother Me 
The Beatles With the Beatles Little Child 
The Beatles With the Beatles Till There Was You 
The Beatles With the Beatles Please Mister Postman 
The Beatles With the Beatles Roll Over Beethoven 
The Beatles With the Beatles Hold Me Tight 
The Beatles With the Beatles You Really Got A Hold On Me 
The Beatles With the Beatles I Wanna Be Your Man 
The Beatles With the Beatles Devil In Her Heart 
The Beatles With the Beatles Not A Second Time 
The Beatles With the Beatles Money 
The Beatles A Hard Day's Night A Hard Day's Night 
The Beatles A Hard Day's Night I Should Have Known Better 
The Beatles A Hard Day's Night If I Fell 
The Beatles A Hard Day's Night I'm Happy Just To Dance With You 
The Beatles A Hard Day's Night And I Love Her 
The Beatles A Hard Day's Night Tell Me Why 
The Beatles A Hard Day's Night Can't Buy Me Love 
The Beatles A Hard Day's Night Any Time At All 
The Beatles A Hard Day's Night Things We Said Today 
The Beatles A Hard Day's Night You Can't Do That 
The Beatles A Hard Day's Night I'll Be Back 
The Beatles Beatles for Sale No Reply 
The Beatles Beatles for Sale I'm a Loser 
The Beatles Beatles for Sale Baby's In Black 
The Beatles Beatles for Sale Rock and Roll Music 
The Beatles Beatles for Sale I'll Follow the Sun 
The Beatles Beatles for Sale Mr. Moonlight 
The Beatles Beatles for Sale Kansas City– Hey, Hey, Hey, Hey 
The Beatles Beatles for Sale Words of Love 
The Beatles Beatles for Sale Honey Don't 
The Beatles Beatles for Sale Every Little Thing 
The Beatles Beatles for Sale I Don't Want to Spoil the Party 
The Beatles Beatles for Sale What You're Doing 
The Beatles Beatles for Sale Everybody's Trying to Be My Baby 
The Beatles Help! Help! 
The Beatles Help! The Night Before 
The Beatles Help! Another Girl 



B   Training Set Excerpts 
 

103 

Artist Album Song Title 
The Beatles Help! Ticket To Ride 
The Beatles Help! Act Naturally 
The Beatles Help! It's Only Love 
The Beatles Help! You Like Me Too Much 
The Beatles Help! Tell Me What You See 
The Beatles Help! I've Just Seen a Face 
The Beatles Help! Yesterday 
The Beatles Help! Dizzy Miss Lizzy 
The Beatles Rubber Soul Norwegian Wood (This Bird Has Flown) 
The Beatles Rubber Soul You Won't See Me 
The Beatles Rubber Soul Nowhere Man 
The Beatles Rubber Soul Think For Yourself 
The Beatles Rubber Soul The Word 
The Beatles Rubber Soul Michelle 
The Beatles Rubber Soul What Goes On 
The Beatles Rubber Soul Girl 
The Beatles Rubber Soul I'm Looking Through You 
The Beatles Rubber Soul In My Life 
The Beatles Rubber Soul Wait 
The Beatles Rubber Soul If I Needed Someone 
The Beatles Rubber Soul Run For Your Life 
The Beatles Revolver Taxman 
The Beatles Revolver Eleanor Rigby 
The Beatles Revolver I'm Only Sleeping 
The Beatles Revolver Here, There And Everywhere 
The Beatles Revolver Yellow Submarine 
The Beatles Revolver She Said She Said 
The Beatles Revolver Good Day Sunshine 
The Beatles Revolver And Your Bird Can Sing 
The Beatles Revolver For No One 
The Beatles Revolver Doctor Robert 
The Beatles Revolver I Want To Tell You 
The Beatles Revolver Got To Get You Into My Life 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band Sgt. Pepper's Lonely Hearts Club Band 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band With A Little Help From My Friends 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band Lucy In The Sky With Diamonds 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band Getting Better 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band She's Leaving Home 

The Beatles Sgt. Pepper's Lonely Being For The Benefit Of Mr. Kite! 
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Artist Album Song Title 
Hearts Club Band 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band When I'm Sixty–Four 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band Sgt. Pepper's Lonely Hearts Club Band (Reprise) 

The Beatles Sgt. Pepper's Lonely 
Hearts Club Band A Day In The Life 

The Beatles Magical Mystery Tour Magical Mystery Tour 
The Beatles Magical Mystery Tour The Fool On The Hill 
The Beatles Magical Mystery Tour Flying 
The Beatles Magical Mystery Tour Blue Jay Way 
The Beatles Magical Mystery Tour Your Mother Should Know 
The Beatles Magical Mystery Tour I Am The Walrus 
The Beatles Magical Mystery Tour Hello Goodbye 
The Beatles Magical Mystery Tour Penny Lane 
The Beatles Magical Mystery Tour All You Need Is Love 
The Beatles Abbey Road Come Together 
The Beatles Abbey Road Something 
The Beatles Abbey Road Maxwell's Silver Hammer 
The Beatles Abbey Road Octopus's Garden 
The Beatles Abbey Road I Want You 
The Beatles Abbey Road Here Comes The Sun 
The Beatles Abbey Road Because 
The Beatles Abbey Road You Never Give Me Your Money 
The Beatles Abbey Road Sun King 
The Beatles Abbey Road She Came In Through The Bathroom Window 
The Beatles Abbey Road Golden Slumbers 
The Beatles Abbey Road The End 
The Beatles Let It Be Two of Us 
The Beatles Let It Be Dig a Pony 
The Beatles Let It Be Across the Universe 
The Beatles Let It Be I Me Mine 
The Beatles Let It Be Dig It 
The Beatles Let It Be Maggie Mae 
The Beatles Let It Be I've Got A Feeling 
The Beatles Let It Be One After 909 
The Beatles Let It Be The Long and Winding Road 
The Beatles Let It Be For You Blue 
Carole King Tapestry I Feel The Earth Move 
Carole King Tapestry So Far Away 
Carole King Tapestry It's Too Late 
Carole King Tapestry Home Again 
Carole King Tapestry Beautiful 
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Artist Album Song Title 
Carole King Tapestry Way Over Yonder 
Carole King Tapestry You've Got A Friend 
Queen Greatest Hits I Bohemian Rhapsody 
Queen Greatest Hits I Fat Bottomed Girls 
Queen Greatest Hits I Bicycle Race 
Queen Greatest Hits I You're My Best Friend 
Queen Greatest Hits I Don't Stop Me Now 
Queen Greatest Hits I Save Me 
Queen Greatest Hits I Crazy Little Thing Called Love 
Queen Greatest Hits I Somebody To Love 
Queen Greatest Hits I Good Old–Fashioned Lover Boy 
Queen Greatest Hits I Play The Game 
Queen Greatest Hits I Seven Seas Of Rhye 
Queen Greatest Hits I We Are The Champions 
Queen Greatest Hits II A Kind Of Magic 
Queen Greatest Hits II I Want It All 
Queen Greatest Hits II I Want To Break Free 
Queen Greatest Hits II Who Wants To Live Forever 
Queen Greatest Hits II Friends Will Be Friends 
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B.3 Training Set Excerpts from the MIDI Corpus 

Collection Excerpts Source 
“The Well Tempered Clavier”, BWV 870–

893, J.S. Bach 
48 classicalarchives.com 

Concertos No. 1–5, L. Beethoven 5 classicalarchives.com 
Piano Sonatas No. 1–32, L. Beethoven 32 classicalarchives.com 
String Quartets No. 1–16, L. Beethoven 16 classicalarchives.com 

Symphonies No. 1–9, L. Beethoven 9 classicalarchives.com 
Triple Concerto for Piano, Violin, and Cello, 

L. Beethoven 
1 classicalarchives.com 

Variations & Fugue Op. 35, 120, L. Beethoven 2 classicalarchives.com 
Symphonies No. 1–13, 20, 31, 36, 45–47, 49, 

52, 60, 62–72, 76, 82–104, F. J. Haydn 
57 classicalarchives.com 

Piano Sonatas No. 1–18, W. A. Mozart 18 classicalarchives.com 
Sonatas D760, D780, D784, D817, D840, 

D845, D850, D894, D899, D915, D935, D958, 
D959, D960, F. Schubert 

14 classicalarchives.com 

Symphonies No. 1, 3–6, 8, 9, F. Schubert 7 classicalarchives.com 
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Appendix C 

 Test Set Excerpts 

Detailed information on the musical excerpts used for the test sets is provided in the 

following pages. Appendix C.1 lists the excerpts used from the classical corpus, 

Appendix C.2 lists the excerpts used from the popular corpus, and Appendix C.3 lists the 

excerpts used from the MIDI corpus. 
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C.1 Test Set Excerpts from the Classical Corpus 

 

Composer Conductor / 
Performer(s) Release Title Label, 

Release Date Excerpts 

F. Chopin Rafał Blechacz The Complete 
Preludes 

Deutsche 
Grammophon, 

2007 
24 (No. 1–24) 

 

C.2 Test Set Excerpts from the MIDI Corpus 

Collection Excerpts Source 

Preludes No. 1–24, F. Chopin 24 classicalarchives.com 
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C.3 Test Set Excerpts from the Popular Corpus 

Artist Album Song Title 
Bob Seger Against the Wind Against the Wind 
Counting Crows Shrek 2 Soundtrack Accidentally in Love 
Finger Eleven Them vs. You vs. Me Paralyzer 
Stevie Wonder In Square Circle Part Time Lover 
John Mayer Heavier Things Bigger Than My Body 
Eric Clapton Phenomenon Soundtrack Change the World 
Bryan Adams 11 I Thought I’d Seen Everything 
Depeche Mode Speak and Spell Just Can’t Get Enough 
Billy Joel Piano Man Piano Man 
Bent Programmed To Love Private Road 
Paul McCartney 
& Michael 
Jackson 

Pipes of Peace Say Say Say 

Peter Gabriel Solsbury Hill Solsbury Hill 
Pink Floyd The Wall Comfortably Numb 
Scissor Sisters Scissor Sisters Comfortably Numb 
Lenny Kravitz Baptism Lady 
Led Zeppelin Led Zeppelin IV Stairway to Heaven 
Rihanna Good Girl Gone Bad Umbrella 
The Police Synchronicity Wrapped Around Your Finger 
America America A Horse with No Name 
LCD 
Soundsystem Sound Of Silver All My Friends 

Etta James The Second Time Around Seven Day Fool 
Blink–182 Enema of the State What’s My Age Again? 
Alicia Keys The Diary of Alicia Keys If I Ain’t Got You 
Weezer Weezer Say It Ain’t So 

Beck Eternal Sunshine of the 
Spotless Mind Soundtrack Everybody’s Gotta Learn Somtimes 

Klute No Ones Listening 
Anymore Silently 

Cut Copy Bright Like Neon Autobahn Music Box 
The Beach Boys The Beach Boys Today! Help Me Rhonda 
Alanis Morissette Jagged Little Pill Ironic 
Pearl Jam Vitalogy Better Man 
Bananarama Cruel Summer Cruel Summer 
Neil Young Harvest Heart of Gold 
Green Day American Idiot Wake Me Up When September Ends 
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Artist Album Song Title 

Madonna The Immaculate 
Collection Cherish 

Rihanna Good Girl Gone Bad Take a Bow 
Semisonic Reloaded 2 Closing Time 
Foreigner No End In Sight Waiting for a Girl Like You 
Creedence 
Clearwater 
Revival 

Pendulum Have You Ever Seen the Rain? 

Bloc Party Silent Alarm Two More Years 
Alicia Keys As I Am No One 
Boys Noize Oi Oi Oi Arcade Robot 
Reba McEntire & 
Kelly Clarkson Reba: Duets Because of You 

Billy Joel An Innocent Man Uptown Girl 
Britney Spears Blackout Break the Ice 
Notwist Neon Golden Consequence 
Cyndi Lauper She’s So Unusual Girls Just Want to Have Fun 
Frente! Lonely Bizarre Love Triangle 
Eurythmics Touch Here Comes the Rain Again 
George Michael Faith Faith 
José Feliciano José Feliciano Feliz Navidad 
Fugees The Score Killing Me Softly 
George Harrison Cloud Nine Got My Mind Set On You 

Rick Astley Whenver You Need 
Somebody Never Gonna Give You Up 

Rockwell Somebody’s Watching 
Me Somebody’s Watching Me 

David Arnold Casino Royale 
Soundtrack The Name’s Bond, James Bond 

U2 All That You Can’t Leave 
Behind Stuck in a Moment You Can’t Get Out Of 
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