
A volume-preserving Characteristic Mapping Method
for the 2D incompressible Euler equations

William Holman-Bissegger

Department of Mathematics and Statistics

McGill University

Montreal, Quebec, Canada

June 2024

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Master of Science

©William Holman-Bissegger, 2024

Abstract

We consider the Characteristic Mapping Method (CMM) for the 2D incompressible Euler equations

[45]. This semi-Lagrangian scheme exploits the semigroup decomposition of the inverse flow map,

permitting arbitrary spatial resolution and faithfully capturing multi-scale dynamics. In this thesis

we decouple the time integration in the CMM framework from space. This decoupling enables

structure-preserving integration at the level of the submaps. It will also enable Characteristic

Mapping methods in domains with complex boundaries. Symplectic integrators are employed

for exact volume preservation. There is nevertheless a final composition step which cannot be

performed exactly conservatively at this stage. Instead, this composition is performed to a very

high order of conservation, in particular using Fourier upsampling. The method is applied to the

2D incompressible Euler equations on the torus. Four-modes and vortex merge experiments are

performed with a GPU implementation. Tests confirm that the final composition is essentially

conservative.

1

Abrégé

Nous considérons la méthode d’Application Caractéristique (AC) pour les équations d’Euler incom-

pressibles en deux dimensions [45]. Cette méthode semi-lagrangienne exploite la décomposition du

semi-groupe de l’application de flot inverse, permettant une résolution spatiale arbitraire et cap-

turant fidèlement la dynamique à plusieurs échelles. Dans cette thèse, nous découplons l’intégration

temporelle de celle de l’espace, dans le cadre de l’AC. Ce découplage permet une intégration

préservant la structure au niveau des sous-applications; il permettra également de mettre en œuvre

des méthodes d’AC dans des domaines ayant des frontières complexes. Des intégrateurs symplec-

tiques sont employés pour la conservation exacte du volume. Il reste néanmoins une étape finale de

composition ne pouvant être réalisée de manière tout à fait conservatrice à ce stade. Nous réalisons

cette composition plutôt avec un ordre de conservation très élevé, en utilisant un suréchantillonnage

de Fourier. Nous appliquons la méthode aux équations d’Euler incompressibles sur le tore. Des

expériences de quatre modes et de fusion de vortex sont réalisées avec une implémentation pour

cartes graphiques. Des tests confirment que la composition finale est essentiellement conservatrice.

2

Acknowledgements

I would first like to express my profound gratitude to my supervisor, Professor Jean-Christophe

Nave. I have been working under his supervision for the past three and a half years, beginning in

the middle of my undergraduate degree. This has been an incredibly rewarding experience. His

tutelage has enabled me to explore many different areas of numerical analysis. It has also brought

me tremendous growth, both professionally and personally. I deeply appreciate his patience, his

generosity with his time, and his kindness.

I would also like to thank my family: my mother and father, Christopher and Alyssa. This

project could not have been completed without their unconditional love and support. Finally, I

would like to thank some dear friends: Sophia Howard, Mikaela Fasold, Nathaniel Giroux, Jacob

Reznikov, Samuel Zeitler, Negar Matin, Maya Marsonia, Jessie Meanwell, Shereen Elaidi, and many

others. I sincerely appreciate the encouragement and companionship they have brought throughout

my academic journey.

This work was partially funded through the ANR and NSERC grants of Prof. Nave.

3

Contribution

The entire thesis was written solely by the author. Prof. Nave and some colleagues of the author

provided some assistance with regards to the structure and phrasing. Sections 1.1, 1.2, 2.2 and

3.1.2, as well as Appendix A, contain a review of background material adapted from various sources.

The rest of this thesis is the original work of the author.

4

List of Figures

2.1 Illustration of backward maps. 19
2.2 Butcher tableau of 4th-order symplectic Gauss collocation method. 26
2.3 Centered finite difference stencil in each dimension around xj 30
2.4 Finite difference Jacobian errors of symplectic schemes. 32
3.1 Spectral Jacobian errors of the backward map in the swirl test, over different grid

sizes; midpoint scheme, ∆t = 1/100. 34
3.2 Jacobian error and spectra of backward maps, near the change in regime of the

spectral Jacobian error. 40
3.3 Spectra of interpolated compositions, varying upsampling and interpolation degree.

In black is the (finite precision) spectrum of the exact composition. 50
4.1 Convergence tests: backward map errors compared to the baseline solution at t = 1. 65
5.1 Initial vorticity in the four-modes test. 68
5.2 Vorticities in the four-modes test over time. 68
5.3 Four-modes test: spectral Jacobian error of the current submap at each time step. . 70
5.4 Spectral Jacobian and enstrophy errors of composed submaps, sampled over various

grid sizes, over time. 73
5.5 Fine grid comparison error (5.2) of the current submap over time. 74
5.6 Spectral Jacobian errors of submaps over time, with optimal parameters (red) versus

some varied parameter (other colours). 76
5.7 Vortex merger test: initial and final vorticity. 78
5.8 Vortex merger test: vorticity over time. 79
5.9 Vortex merger test: spectral Jacobian error of the current submap at each time step. 80
5.10 Gradual zoom into vorticity at t = 25. 81
A.1 The first central cardinal B-splines M0-M3, and the partition of unity property. . . . 85

List of Tables

4.1 Parameters for the convergence test baseline solution. 64
5.1 Parameters for the four-modes test. 67
5.2 Runtimes for the four-modes tests. 69
5.3 Parameters for the vortex merger test. 77

5

Contents

Abstract 1

Abrégé 2

Acknowledgements 3

Contribution 4

List of figures, tables 5

1 Introduction 8
1.1 Background . 8
1.2 Review of the Characteristic Mapping Method for the 2D incompressible Euler equa-

tions . 11
1.2.1 Flows, advection and semigroup decomposition 11
1.2.2 2D incompressible Euler equations . 15

1.3 Thesis outline . 17

2 Volume-preserving time integration in the CMM 18
2.1 Space-time decoupled integration of the backward map 19

2.1.1 The backward map . 19
2.1.2 An ODE for the backward map . 20
2.1.3 Conservative integration near boundaries . 22

2.2 Symplectic integration for volume preservation . 24
2.2.1 Symplectic integrators and their properties 24
2.2.2 Examples and Runge-Kutta structure . 25
2.2.3 Volume preservation . 27

2.3 Finite difference volume preservation test . 29

3 Essentially-conservative spatial discretization 33
3.1 Illustration of spatial resolution . 33

3.1.1 Fourier-pseudospectral Jacobian test . 33
3.1.2 The Fourier spectrum . 35
3.1.3 Jacobian error and spatial truncation . 38

3.2 Backward map decomposition and sampling . 41
3.2.1 Jacobian remapping criterion . 42
3.2.2 Interpolation in X0 vs. in SDiff . 43
3.2.3 Map composition strategy . 44

3.3 Velocity interpolation . 47
3.3.1 Spectra of interpolated compositions . 48
3.3.2 Gradient of spline interpolants . 50
3.3.3 Mollification . 52
3.3.4 Construction of symplectic velocity interpolation 53

6

4 Volume-preserving CMM for incompressible Euler 55
4.1 Time integration . 55

4.1.1 Notation . 55
4.1.2 Time-stepping procedure . 56
4.1.3 Initializing the method . 59

4.2 Error analysis . 61
4.2.1 Error estimate . 61
4.2.2 Convergence tests . 64

5 Numerical experiments 66
5.1 4-modes test: optimal Jacobian configuration . 66

5.1.1 Vorticity and Jacobian . 67
5.1.2 Conservation of composed submaps and enstrophy 71
5.1.3 Fine grid comparison . 72

5.2 4-modes test: suboptimal Jacobian configuration . 74
5.3 Vortex merger problem . 75

5.3.1 Vorticity and Jacobian . 77
5.3.2 Illustration of arbitrary subgrid resolution . 78

6 Conclusion 82

A Periodic spline interpolation 84
A.1 Cardinal spline basis . 84
A.2 Construction of periodic spline interpolants . 87
A.3 Interpolation error . 88

References 93

7

1 Introduction

1.1 Background

The incompressible Euler equations model the motion of an ideal fluid in the absence of viscosity.

In this ideal flow, fluid particles move freely, while neither crossing paths nor exhibiting friction-like

interactions. For a classical derivation of the equations, see [31]. By the incompressibility condition,

the resulting flow map is at all times a volume-preserving diffeomorphism ([26]). In other words,

the flow traces a path through SDiff (M), the infinite-dimensional Lie group of volume-preserving

diffeomorphisms ([2]) of the base manifold M . In fact, a remarkable result is that flows of the Euler

equations are precisely the geodesics through the identity in SDiff (M), when the latter is equipped

with the right-invariant L2 metric (see e.g. [2], [31], [13]). This mirrors some finite-dimensional

mechanics; for instance, Eulerian motions of rigid bodies in R3 are geodesics in the Lie group of

rotations SO(3) ([2]). The incompressible Euler equations are part of the larger class of Euler-

Arnold equations, which are similar geodesic flows that arise when the group of diffeomorphisms

and its Riemannian metric are varied ([31]).

Closely related to the incompressible Euler equations are of course the incompressible Navier-

Stokes equations. These can be seen as the incompressible Euler equations with an added diffusion

term, modelling nonzero viscosity. In certain specific cases, such as on compact manifolds without

boundary, it is known that solutions of the incompressible Navier-Stokes equations converge to

solutions of the incompressible Euler equations, in the limit of zero viscosity ([13]). However in

general, particularly in the presence of boundaries, convergence is not observed. It is known that

near boundaries, the viscosity, no matter how small, creates effects that cannot be described by

the incompressible Euler equations ([3]).

For a sufficiently-regular initial vorticity in L∞, classical solutions of the 2D incompressible

Euler equations exist for all time ([3]). This is in contrast to the 3-dimensional case, where the

question of whether or not solutions develop singularities in finite time is open, even for very

regular initial conditions ([26]). However, even in the 2-dimensional case, solutions rapidly become

complex. It is known that in 2 dimensions, the L∞ norm of the gradient of the vorticity is bounded

by a double exponential in time ([47]). There are initial vorticities on the disk that are known to

reach this bound ([23]). Moreover on the torus, given an arbitrary time interval, there is an initial

vorticity whose gradient will grow exponentially in this time interval ([1]). One explanation of

this fast-growing gradient is the energy cascade in the incompressible Euler equations. Due to the

8

nonlinearity in the equations, energy can over time move from the large to the fine spatial scales

([15]). In the incompressible Euler equations, due to the absence of viscosity, these fine scale features

do not dissipate. This is in contrast to the Navier-Stokes equations, where the viscosity can cause

a diffusion of the energies at small scales ([15]). This generation of exponentially-fine scales over

time causes difficulties for numerical simulations. Accurately resolving an exponentially-growing

gradient requires an exponentially-large number of grid points in time.

Numerical algorithms for fluids, and related problems, are typically classified on a spectrum

from Eulerian to Lagrangian, based on the nature of the discretization. In an Eulerian description,

one examines fluid quantities in a fixed reference frame; in a Lagrangian description, one measures

quantities as they evolve along a fluid trajectory ([35]). There are advantages and drawbacks of

discretizing according to either description. In a Lagrangian formulation, one is not constrained

to a Courant-Friedrichs-Lewy (CFL) condition ([39]). However, it is in general highly nontrivial

to convert quantities in Lagrangian frames to their Eulerian versions, which is usually required

for time-stepping ([39]). For these reasons, some schemes operate in a semi-Lagrangian manner,

following the approach of the CIR method [12]. In a semi-Lagrangian method, it is typical to

consider quantities in an Eulerian frame, but to perform the time-stepping in a Lagrangian manner.

This is commonly implemented by integrating the characteristic ODEs backward over one time step,

and then performing a spatial interpolation ([39]).

Classical Eulerian algorithms include the Maker and Cell method [20], where the velocity and

pressure are discretized via finite differences on staggered grids, and spectral methods [8], where

collocation or Galerkin approximations are applied to the PDE in the velocity-pressure or vorticity-

stream formulations. For a comparison of these Eulerian methods in 3 dimensions, see [17]. An

example of a purely Lagrangian scheme is the vortex blob method [4]. As for a semi-Lagrangian

method, there is the Cauchy-Lagrangian method [34]. In all of the above schemes, since compu-

tations are carried out on fixed spatial grids, there are incurred spatial truncation errors. These

truncations can create undesirable resonance phenomena; see an analysis in [36] for the Galerkin

truncation case, and [34] in the case of the Cauchy-Lagrangian method. Crucially, these trunca-

tions also create artificial diffusion. Thus, traditional methods in fact simulate a small amount of

viscosity. This viscosity may lead to solutions that do not qualitatively resemble ideal, inviscid

Euler flow.

A unique approach to the numerical simulation of the incompressible Euler equations is that

of the Characteristic Mapping Method (CMM), first introduced in [30]. The CMM is a general

9

framework for advection-type problems. We review the CMM framework and its application to

the 2D incompressible Euler equations in the upcoming Section 1.2. In brief, the CMM considers

the inverse flow map. This inverse flow map is integrated in time, typically in a semi-Lagrangian

fashion. The map can be decomposed into a sequence of submaps, which recovers the whole map by

composition. Hence, a large deformation may be split into a sequence of smaller deformations. This

enables a dynamic, arbitrarily-fine spatial resolution in the solution, while only needing to compute

each submap on a fixed, coarse grid. Finally, advected quantities are computed as a pullback by

the inverse flow map, and are never directly advected on a grid. This avoids the spatial truncations

and artificial diffusion mentioned previously. The CMM framework thus enables totally inviscid

numerical solutions.

The CMM has been applied to linear transport problems, in Euclidean spaces ([30]) and on

the sphere ([41]). The incompressible Euler equations, in vorticity-stream form, can be written as

a self-advecting transport problem. The CMM has thus been applied to solve the incompressible

Euler equations in 2- and 3-dimensional Euclidean space (see [45] and [46], respectively), and on the

sphere ([40]). In a similar vein, the CMM has been applied to solve the Vlasov-Poisson equation, a

model of particles in a self-consistent electric field ([24]). This work is currently being extended to

other flows of diffeomorphisms. The CMM has seen some further applications, such as investigating

the formation of singularities in the 2D Euler equations with non-smooth initial data ([6]), and as

a particle management framework in the context of surface evolution ([44]). One shortcoming of

current Characteristic Mapping methods, however, is that they are not conservative. This is a

known drawback that is typical of semi-Lagrangian schemes, due to the spatial interpolation at

each time step ([39]).

Exact structure preservation has become an increasingly important property for numerical

schemes. That is, designing numerical methods that exactly preserve, at the discrete level, an

important structure of the continuous problem. Many standard methods are not conservative for

general problems. For instance, it is known that all Runge-Kutta methods do not preserve arbitrary

polynomial invariants ([10]). However, it is typically possible to construct conservative methods

for specific cases of interest. For example, one can construct Runge-Kutta integrators that exactly

preserve a given polynomial Hamiltonian ([10]); discrete gradient methods are available for pre-

serving first integrals ([33]); one can construct integrators that exactly satisfy a discrete variational

principle ([28]); and there are the Lie-Poisson integrators ([48]) and symplectic integrators ([18])

that preserve the Lie-Poisson and symplectic structures, respectively, of the space. There is more-

10

over the Discrete Multiplier Method [42], with which one can construct integrators that exactly

preserve a number of conserved quantities simultaneously.

We would like to design a Characteristic Mapping Method for the 2D incompressible Euler

equations which is exactly incompressible. That is, where the inverse flow map is at each time step

exactly volume-preserving. We will see that there is an obstruction to exact conservation (namely,

a spatial projection at each time step) in the time integration method typically used in the CMM.

There is also a final composition step, which we will not be able to perform exactly conservatively.

The contribution of this thesis is thus the following. We reformulate the Characteristic Mapping

framework so that the time integration of each submap is decoupled from space. This enables

exactly conservative integration of the submaps. It moreover will enable time integration that

respects spatial boundaries. Finally, we design a method in which the final composition step can

be done to a very high order of conservation.

1.2 Review of the Characteristic Mapping Method for the 2D incompressible

Euler equations

We first review the Characteristic Mapping framework, and the Characteristic Mapping Method

for the 2D incompressible Euler equations [45]. The method we develop is based heavily on the

latter.

In this thesis, the space we are working in is the flat torus T 2 = R2/Z2. We identify functions

and vector fields on T 2 with their periodic analogues on R2. We also identify maps X : T 2 → T 2

that are homotopic to the identity with maps of the form X(x) = x+η(x) for a periodic function

η : T 2 → R2. Finally, we use the following standard notation: for functions u,v : R2 → R2, for

example, u · ∇v denotes the space derivative

u · ∇v =

u · ∇v1
u · ∇v2

 = (∇v)u.

1.2.1 Flows, advection and semigroup decomposition

Let u : T 2 × [t0,∞) → R2 be a vector field, possibly time-dependent, which is C1 in space and

time. Throughout this thesis we assume that divu ≡ 0, though note that this is not necessary in

the full CMM framework ([44]). We let Φ[t0,t] : T
2 → T 2 denote the flow of u from a time t0 to a

11

later time t. That is, Φ[t0,t] solves 
∂tΦ[t0,t] = u(·, t) ◦Φ[t0,t]

Φ[t0,t0](x) = x.

We then define the inverse flow map X [t,t0] := Φ−1
[t0,t]

. We refer to Φ as the forward map, and to

X as the backward map. Note the inversion of the subscripts; Φ[t0,t] denotes the flow from t0 up

to t, and X [t,t0] denotes the flow from t back to t0.

The backward map has the interpretation of bringing particles that have been flowing under

the velocity u, back to their original locations. That is, if yx(t) is an integral curve of u indexed

by its initial position, i.e.

d

dt
yx(t) = u(yx(t), t), yx(t0) = x, (1.1)

then X [t,t0](yx(t)) = x for all t ⩾ t0. In a sense, X captures the deformation of the underlying

space generated by the velocity u. This is made more precise below.

A fundamental property of flows is that for arbitrary t0 < t1 < t2, we have

Φ[t0,t2] = Φ[t1,t2] ◦Φ[t0,t1].

For the backward map, this fact becomes the following: for arbitrary t0 < · · · < tn, we can

decompose the backward map as

X [tn,t0] =X [t1,t0] ◦ · · · ◦X [tn,tn−1]. (1.2)

This is referred to as the semigroup decomposition of the backward map.

Further properties of the backward map are show in Proposition 1.1.

Proposition 1.1. The following are properties of the backward flow map. The first holds for

arbitrary u, while the second requires divu ≡ 0.

1. The backward map solves the advection equation
∂tX [t,t0] + u · ∇X [t,t0] = 0

X [t0,t0] = id.

(1.3)

2. Suppose divu ≡ 0, and let ω ∈ C1(T 2 × [t0,∞)) solve the conservation law
∂tω + div(ωu) = 0

ω(·, t0) = ω0.

(1.4)

12

Then ω is constant along trajectories of u. In particular, the solution at any time t is given

by the pullback of the initial condition ω0 by the backward map:

ω(·, t) = ω0 ◦X [t,t0]. (1.5)

Thus, the backward map acts as a solution operator for quantities transported along the flow.

In the geometric formulation of the CMM, the backward map acts as a solution operator for general

Lie-advected quantities; see e.g. [40]. Note further that the pullback (1.5) allows for more general

advected quantities than the conservation law (1.4), such as when ω0 is not smooth. In particular,

we can take ω0 to be the indicator function of a set, as is done in [30]. Then ω0 ◦X [t,t0] tracks

the transport of the set along the velocity u. This makes precise the statement that X tracks the

deformation of the space.

The proof of Proposition 1.1 is a direct application of the method of characteristics; hence the

name, Characteristic Mapping Method.

Proof of Proposition 1.1. 1. Let X(x, t) solve the advection equation (1.3). We apply the

method of characteristics, in the formulation of Evans [14]. Consider each component Xi.

We augment the usual variables with time dependence,

p =

∇Xi

∂tXi

 , y =

x
t

 .

Each component Xi solves the equation

F (p, z,y) := p ·

u(y)
1

 = 0. (1.6)

Let z denote the value of Xi along characteristics. Then the characteristic equations read

dz

ds
= ∇pF · p =

u(y)
1

 · p = 0

dy

ds
= ∇pF =

u(y)
1

 ,

where we used Equation (1.6) to simplify dz
ds . Thus Xi is constant along characteristics.

Moreover we see that the characteristic curves are precisely integral curves of u. Thus, again

13

letting yx(t) be an integral curve of u parametrized by its initial position (defined in Equation

(1.1)), we get that X(yx(t), t) is constant in t, so

X(yx(t), t) =X(yx(t0), t0) =X(x, t0) = x.

Hence X is precisely the backward map.

2. Noting that divu = 0 implies div(ωu) = u · ∇ω, the conservation law for ω reduces to an

advection equation. By the same method of characteristics applied above, ω is constant on

integral curves of u. Since (x, t) and (X [t,t0](x), t0) lie on the same characteristic, it follows

that

ω(x, t) = ω(X [t,t0](x), t0) = ω0(X [t,t0](x)).

The semigroup decomposition (1.2) and the facts of Proposition 1.1 are the heart of the CMM.

Over some long time interval [t0, tn], the deformation of the space generated by a velocity may be

quite complex. This is especially true in the case of the Euler equations, where the velocity develops

fine details over time. However, in this formulation, we can split [t0, tn] into shorter time intervals

t0 < t1 < · · · < tn, and consider the deformation in each subinterval [ti−1, ti]. These are captured

by the maps X [ti,ti−1], which we call the submaps. We can then represent advected quantities at

tn by combining the pullback (1.5) with the semigroup decomposition (1.2):

ω(·, tn) = ω0 ◦X [t1,t0] ◦ · · · ◦X [tn,tn−1]. (1.7)

In the CMM, we do not store ω on a grid; rather, we store all of the submaps X [ti,ti−1], and

use (1.7) to sample ω, using some interpolation scheme. This has a number of computational

advantages. In principle, the deformation of the space in each subinterval [ti−1, ti] is much smaller

and more manageable than the total deformation. Thus, each submap X [ti,ti−1] can be computed

on a relatively coarse grid. The total deformation and its complexities are however recovered by

the composition (1.2).

In the case of the incompressible Euler equations, ω will be the vorticity (defined below). It is

known that for certain initial vorticities, the quantity ∇ω can grow exponentially in time. Properly

representing ω on a grid, then, requires a grid with a number of points that is also exponential in

time. However, by (1.7) we have

∇ω = ∇ω0 · ∇X [t1,t0] · · · · · ∇X [tn,tn−1]

14

(where we have omitted the location at which each gradient is evaluated). We can thus still have

∇ω growing exponentially in time, while only needing each ∇X [ti,ti−1] to grow linearly in time.

In practice, we are also able to dynamically pick the times t0 < · · · < tn at which we split

the backward map. When integrating the backward map, when some criterion is reached, the

current submap is saved and we initialize a new submap at the identity. This process is called

remapping. The criterion is usually a spatial resolution criterion, based on how well the current

submap represents the deformation on the grid on which it is computed. Thus, even if the submaps

are all computed on a fixed grid, by remapping appropriately, we are able to achieve an arbitrarily-

high spatial resolution.

Moreover, computing ω by (1.7), as opposed to advecting ω on a fixed grid, does not incur the

usual dissipation errors that occur when undersampling or otherwise truncating in space. While

there may be dissipation errors incurred in the computation of the submaps, when we compute

ω = ω0 ◦X, the dissipation error in X shows up as evaluating ω0 in a slightly different location.

Thus, dissipative error in X is turned into advective error in ω. This is the key in computing the

vorticity in the case of the incompressible Euler equations in a non-dissipative manner, which is

crucial to the exactly inviscid flow.

1.2.2 2D incompressible Euler equations

The incompressible Euler equations in two dimensions ([26]) are
∂tu+ u · ∇u = −∇p

divu = 0,

(1.8)

where u : T 2 × [t0,∞) → R2 is the fluid velocity and p : T 2 × [t0,∞) → R is the pressure. We

define two important quantities related to the velocity u. The vorticity ω : T 2 × [t0,∞) → R is

defined as the 2D curl of the velocity field,

ω = curlu := ∂x1u2 − ∂x2u1.

In this thesis, we assume that u has mean zero:
∫
T 2 ui = 0, i = 1, 2. Then, since divu = 0, by

a Helmholtz decomposition on the torus there exists a function ψ : T 2 × [t0,∞) → R, called the

stream function, whose perpendicular gradient is u:

u = ∇⊥ψ :=

 ∂x2ψ

−∂x1ψ

 .

15

Thus the fluid motion is always tangent to contour lines of ψ, and ψ acts as a non-autonomous

Hamiltonian for u. Combining these definitions, we can relate all three quantities by

−∆ψ = curlu = ω. (1.9)

This equality is referred to as the Biot-Savart law. Note that our convention for ψ differs from that

of [26] by a sign. Moreover we always take ψ to have mean zero. Thus since we are on the torus

and divu = 0, the quantities ψ, u and ω are all uniquely defined in terms of one another. This is

referred to as the vorticity-stream formulation of the incompressible Euler equations ([26]).

Taking the curl of (1.8) gives a conservation law for the vorticity,

∂tω + div(ωu) = 0,

i.e. ω is an advected quantity of the fluid, constant on flow lines. In particular, writing X for the

backward map of the flow generated by u, by Proposition 1.1 we can write ω at any time t as the

pullback of the initial condition ω0 by X,

ω(·, t) = ω0 ◦X [t,t0].

Thus, computing u from the vorticity ω by inverting the Biot-Savart law (1.9), and by (1.3), we

can write a “self-advecting” evolution equation for X,
∂tX [t,t0] + u · ∇X [t,t0] = 0

u = −∇⊥∆−1(ω0 ◦X [t,t0]).

(1.10)

This is referred to as the advection-vorticity coupling ([45]), and forms a full solution to the incom-

pressible Euler equations.

The solution proposed in [45] to solve the incompressible Euler equations is to compute the

backward map X by the advection-vorticity coupling (1.10). The map and the velocity are succes-

sively updated in time using the coupling. At some time tn, the map X [tn,t0] is updated as follows.

First, the velocity is integrated backward in time to compute the backward map over one time step,

X [tn+1,tn]. Then, X [tn+1,t0] is computed by interpolating X [tn,t0] in space, and using the fact

X [tn+1,t0] =X [tn,t0] ◦X [tn+1,tn].

In previous iterations of the CMM, this has typically been implemented via the Gradient-Augmented

Level Sets method ([32]). There, both the map and its gradient are advected in a coupled manner.

The solution of the Euler equations described above enjoys the benefits mentioned in Section 1.2.1;

namely, arbitrary spatial resolution, and dissipation-free computation of the vorticity.

16

1.3 Thesis outline

The goal of this work is to construct an essentially volume-preserving Characteristic Mapping

Method. The main facets are to decouple the time integration from space, so as to use exactly-

conservative integration whenever possible, and to use high-order spatial methods when exact

conservation is not possible. As such, this thesis is organized as follows. In Section 2, we examine

the current obstruction to conservation in the CMM, and reformulate the CMM to enable space-

decoupled time integration. We then discuss properties and examples of symplectic integrators,

the conservative integrators of interest for this project. We finally perform a finite difference

test of volume preservation with an analytically-known vector field. In Section 3, we repeat the

previous test but computing the Jacobian in Fourier space. We illustrate the issue of spatial

resolution, and motivate using the semigroup decomposition of the backward map. We illustrate

the difficulty in constructing an exactly volume-preserving interpolation, and lay out an alternate

strategy for interpolation that is conservative to a very high order. Finally, we describe a specific

velocity interpolant, whose construction is rather technical but which is nonetheless required for

the essentially-conservative composition strategy. Sections 2 and 3 make essentially no mention of

the incompressible Euler equations, and thus apply to any Characteristic Mapping Method.

In Section 4 we combine constructions from the previous two sections, and design a volume-

preserving CMM specifically for the incompressible Euler equations on the torus. We describe in

detail the time integration process. We derive an error estimate, and perform convergence tests. In

Section 5, we perform numerical experiments using a GPU implementation of the algorithm pro-

posed in the previous section. We perform various four-modes and vortex merge tests. Throughout,

we examine the conservation properties of the scheme. Finally, in Appendix A, we review the prop-

erties and construction of periodic cardinal B-spline interpolation, which will be used for all spatial

interpolation.

17

2 Volume-preserving time integration in the CMM

A classical result is that the flow of a divergence-free vector field is volume-preserving ([18], VI.9).

In other words, let u : Rd × [t0,∞)→ Rd be a C1 vector field, and let Φ[t0,t] : Rd → Rd be its flow.

Then

divu ≡ 0 ∀t ⩾ t0 =⇒ det∇[t0,t]Φ ≡ 1 ∀t ⩾ t0.

This volume preservation of course extends to the backward map X. This fact is elegantly phrased

in terms of the Lie group SDiff(Rd) of volume-preserving diffeomorphisms: the Lie algebra of

SDiff(Rd) is the algebra X0(Rd) of divergence-free vector fields. This fact extends to an arbitrary

Riemannian manifold, after fixing a volume form.

We would like to numerically compute the backward map X in such a way that the discretized

map is always exactly volume-preserving. By this we mean that our numerical backward map is

always the projection onto the grid of a volume-preserving diffeomorphism. This is a desirable

property of a numerical scheme for a variety of qualitative and quantitative reasons. The condition

det∇X ≡ 1 implies that X is exactly a diffeomorphism. Computing an advected quantity ω via

the pullback

ω(·, tn) = ω0 ◦X [tn,t0],

then, is just a rearrangement of the initial condition ω0. Computing ω in this manner incurs no

numerical dissipation, and fine details present in the flow are not lost to diffusion. Moreover, having

a flow X with det∇X ≡ 1 is an equivalent definition of incompressible flow ([26]). Thus, while the

time integration may not be exact, exact volume preservation ensures that the numerical solution

is still qualitatively an incompressible flow. Finally, det∇X ≡ 1 ensures exact preservation of

conserved integrals, by the change of variables formula.

In this section, we see that the time integration method that is typically used in the CMM

is incompatible with conservation. We reformulate the time integration of the backward map to

enable conservation, by decoupling the time integration from space. While we focus on volume

preservation, this reformulation enables the use of an arbitrary conservative integrator. We then

discuss the integrators of interest for volume preservation, which are the symplectic integrators.

Finally, we illustrate the volume preservation of a symplectic flow via finite differences.

18

2.1 Space-time decoupled integration of the backward map

2.1.1 The backward map

The main object of interest in this thesis is the backward flow map X, defined in Section 1.2.1.

The picture we have of X, especially when it comes to discretization, is as follows. We think

of X [tn,t0] : T
2 → T 2 as a map from the space at time tn to the space at t0, which assigns to

trajectories of the flow at tn their initial locations at t0. In particular, we can have X [tn,t0] live on a

regular grid of points at tn. The images of these regular grid points, however, following a nontrivial

flow, will not land on a regular grid at t0. This is illustrated in Figure 2.1.

t0 tn tn+1
t

x

X[tn,t0] X[tn+1,tn]

Figure 2.1: Illustration of backward maps.

The fact that X [tn,t0] can live on a regular grid at tn is a major advantage. While X is itself

a Lagrangian quantity, it acts as a solution operator for advected Eulerian quantities, see Section

1.2.1. In particular for the incompressible Euler equations, X allows for the computation of the

vorticity ω at time tn, on the same grid as X. Since this grid is regular, it is then relatively

straightforward to compute the velocity u at tn: we can solve the Poisson problem in the Biot-

Savart law (1.9) with e.g. a Fourier spectral method.

In general, it is highly nontrivial to compute the velocity from Lagrangian quantities such

as the forward flow. This issue is precisely due to the fact that grids become deformed, and

consequently irregular, under a flow. A projection back onto some regular grid is usually required

to compute the velocity, which can be quite complicated and costly. This is a common shortcoming

of Lagrangian and semi-Lagrangian methods ([39]). This problem is however circumvented by

considering the backward map. In a sense, X maps from a Lagrangian frame to an Eulerian

frame. Moreover, the backward map represents a fundamentally Lagrangian quantity, and can be

computed in an Eulerian, Lagrangian or semi-Lagrangian manner. The Lagrangian approaches

present a considerable computational advantage. In particular, they circumvent the Courant-

Friedrichs-Lewy (CFL) condition, a significant upper bound on the time step.

19

On the other hand, a disadvantage is that a backward flow is less straightforward to compute

than a forward flow. To see this, note that we could computeX [tn,t0] by settingX [tn,t0](x) = zx(tn),

where zx(s) solves

d

ds
zx(s) = −u(zx(s), t0 + tn − s), zx(t0) = x. (2.1)

However, this requires knowledge of the velocity in the entire interval [t0, tn]. In the case of the

Euler equations, for instance, we simply do not know the velocity past the current time step; the

later velocities depend on the backward map by the advection-vorticity coupling (1.10).

The solution to step X [tn,t0] forward in time in the CMM [45] is to compute the backward flow

over one time step [tn, tn+1] using (2.1), which gives X [tn+1,tn], and then computing X [tn+1,t0] by

the composition

X [tn+1,t0] =X [tn,t0] ◦X [tn+1,tn]. (2.2)

At tn we have X [tn,t0] on regular grid points; the same is true with X [tn+1,tn] at tn+1. The flow

X [tn+1,tn], however, in general does not land at grid points at tn. This is illustrated in Figure

2.1. Thus to compute (2.2), X [tn,t0] is interpolated in space, and this interpolant is evaluated at

X [tn+1,tn].

However, we are currently unaware of how to construct a volume-preserving interpolant, or

more generally how to construct a conservative interpolant for a given conserved quantity. We go

into some more details of these difficulties in Section 3.2.2. As such, when left with the usual inter-

polation techniques, even if X [tn+1,tn] were integrated in a conservative manner, the composition

(2.2) would destroy conservation.

What we have here is a coupling between space and time; at each time step, a spatial projection

(namely, the interpolant of X [tn,t0]) is applied to the data. This coupling is undesirable from a

conservation point of view. To integrate each submap conservatively, we would ideally leave the

data free of spatial projections, and leave all matters of conservation to the integrator.

2.1.2 An ODE for the backward map

To integrate conservatively, for the reasons discussed above, we would like the time integration of

the backward map to be completely decoupled from space. Thus, we would like an ODE for the

backward map. It happens that one is available; it is given in Proposition 2.1.

20

Proposition 2.1. Let u : R2 × [t0,∞) → R2 be a C1, divergence-free vector field. Let Φ[t0,t] :

R2 → R2 be its flow, and X [t,t0] = Φ−1
[t0,t]

its inverse flow. Then X solves the ODE

∂tX [t,t0] = v(·, t) ◦X [t,t0],

with the vector field v : R2 × [t0,∞)→ R2 defined as

v = − adj(∇Φ[t0,t])(u(·, t) ◦Φ[t0,t]), (2.3)

where adj denotes the adjunct matrix. In particular, if u = ∇⊥ψ for some scalar function ψ, then

this can be written more succinctly as

v = −∇⊥(ψ(·, t) ◦Φ[t0,t]). (2.4)

Proof. For ease of notation, we suppress all time dependence. The backward map X =X [t,t0]

solves an advection equation (1.3), so we have

∂tX = −u · ∇X = −(∇X)u.

But X = Φ−1, and det∇X ≡ 1, so by the inverse function theorem we can write

∇X = (∇Φ)−1 ◦X = adj(∇Φ) ◦X,

where we also used det∇Φ ≡ 1. Using Φ ◦X = id we can write

u = u ◦Φ ◦X

and so

∂tX = − [adj(∇Φ)(u ◦Φ)] ◦X, (2.5)

which gives (2.3)

Now suppose that u = ∇⊥ψ. Let v be defined by (2.4), then

v = −∇⊥(ψ ◦Φ) = −J∇(ψ ◦Φ)

= −J(∇Φ)T (∇ψ ◦Φ),

where the matrix

J =

 0 1

−1 0

 .

21

A straightforward matrix computation shows JAT = adj (A)J for all A ∈ R2×2, so

v = − adj(∇Φ)J(∇ψ)|Φ = − adj(∇Φ)∇⊥ψ|Φ = − adj(∇Φ)(u ◦Φ),

which is the same vector field as in (2.5).

In the rest of this thesis we will use Proposition 2.1 for the time integration of the backward map,

and will denote by v its velocity. We always assume that u = ∇⊥ψ for some ψ, so we’ll exclusively

use the second definition (2.4) of v. One can check from (2.3) that if u is divergence-free, then so

is v. Moreover by (2.4) if u is Hamiltonian, then so is v. Thus the velocity of the backward map

v has the same properties as the forward velocity (for the purpose of volume preservation).

In practice, to use the velocity v, we now have to also compute the forward flow Φ of u (to

use Equation (2.4)). We see this as an acceptable overhead, however. The reason for this is that

the conservative integrators we have in mind are more often than not implicit. Their computation

thus involves many iterations of the velocity, which will itself be interpolated; the whole process is

rather expensive. On the other hand, we will see that we are not at all interested in a conservative

integration of the forward flow Φ, and so Φ can be computed by some relatively inexpensive explicit

scheme.

Finally, we note that there is an interesting duality between the forward and backward velocities.

Indeed, assume that u = ∇⊥ψ and write Ψ = −ψ(·, t) ◦ Φ[t0,t] so that v = ∇⊥Ψ as in Equation

(2.4). Then, repeating the same process but with the backward map and backward Hamiltonian,

we find that

−∇⊥(Ψ(·, t) ◦X [t,t0]) = ∇
⊥(ψ(·, t) ◦Φ[t0,t] ◦X [t,t0]) = u

recovers the forward velocity. We have not investigated this duality further, however.

2.1.3 Conservative integration near boundaries

This section is an aside for a future project, in which we would consider a domain with boundary.

Let Ω be a domain in R2 with a piecewise-smooth boundary ∂Ω. For problems on such domains,

the velocity u typically satisfies a boundary condition of the form

u · n = 0 on ∂Ω,

22

where n is the unit outward normal to ∂Ω. In the case of the incompressible Euler equations,

this corresponds to the slip boundary condition. With the above condition, the true trajectories

of u do not cross ∂Ω. It would be desirable for a numerical scheme to also have this property, i.e.

to map the interior of Ω to itself. There are a number of qualitative reasons for this. There are

also technical reasons. For instance, advected quantities, interpolants, and so on, that need to be

evaluated along trajectories, may only be defined in the interior of Ω.

A numerical integrator, however, in general does not respect boundaries. This is especially

true in the case of a complex (e.g. non-rectangular) domain. One property of interest here for

integrators is positivity preservation ([21], Sections I.7, II.4). In general, the only unconditionally

positivity-preserving integrator (that is, without restriction on the time step ∆t) is the backward

Euler scheme. Any other Runge-Kutta integrator is only positivity-preserving, for a general velocity,

when ∆t is sufficiently small.

A potential solution is to project onto Ω after each time step. This projection presents a number

of issues, however. First, an orthogonal projection may not be well-defined, for instance in the case

of a non-convex domain. One could instead consider a projection along solution curves, though

this adds a layer of complexity. Moreover, these projections can reduce the order of the method.

They will also affect the conservation properties of the scheme. Finally, they can send interior

trajectories to the boundary ∂Ω, a qualitatively undesirable feature of the solution.

Thus, it would be ideal if by construction, the integrator mapped Ω to itself. This is possible

to achieve by exploiting properties of conservative integrators. One possibility we have in mind

is the following. In an autonomous Hamiltonian system, integral curves follow level sets of the

Hamiltonian. We can construct an integrator that exactly conserves the Hamiltonian, for instance

with the Discrete Multiplier Method ([42]). Then if the velocity interpolant is constructed so that

∂Ω is a contour of the Hamiltonian, the integrator will by construction map the interior of Ω to

itself.

In particular, all of the work in not crossing the boundary is done by the integrator. There

is no need to design a spatial interpolant that maps Ω to itself, which may be a difficult task on

a complex domain. Using the framework of this thesis, in particular the space-time decoupled

integration of the backward map, opens the possibility for Characteristic Mapping Methods on

complicated domains.

23

2.2 Symplectic integration for volume preservation

Using Proposition 2.1, we may now integrate the backward map conservatively. For the rest of this

thesis we focus on volume preservation. The class of integrators that preserve volume, in two dimen-

sions, is precisely the class of symplectic integrators. Here we review some properties of symplectic

integrators, see some examples, and then examine their relationship to volume preservation.

2.2.1 Symplectic integrators and their properties

A map Φ between subsets of R2 is called symplectic if it preserves the standard symplectic form

dx1 ∧ dx2. This condition can be written in coordinates as

∇ΦTJ∇Φ = J, J :=

 0 1

−1 0

 .

These definitions generalize to even-dimensional spaces R2d along with their standard symplectic

structures, and to general manifolds equipped with a symplectic form.

A theorem of Poincaré ([18], VI.2) says that Hamiltonian vector fields on R2d generate flows

that are symplectic maps for all time. Moreover, a classical result says that any symplectic map

(sufficiently regular and close to the identity) is the time-1 flow of some non-autonomous Hamil-

tonian ([9]). There is thus a close connection between symplectomorphisms (symplectic maps that

are diffeomorphisms) and flows of Hamiltonian systems. In particular, it is natural to desire a

numerical integrator which, when applied to a Hamiltonian system, gives discrete (in time) flows

that are symplectomorphisms.

A numerical integrator is called symplectic if, when applied to a Hamiltonian vector field, its

resulting flow maps are symplectic. Some history on the development of symplectic integrators can

be found in [11] and [18]. It turns out that these integrators are precisely the volume-preserving

integrators in two dimensions, and are useful for volume preservation in higher dimensions. We

delay a discussion of volume preservation to Section 2.2.3. Symplectic integrators also satisfy a

number of other remarkable properties. While we will not use any of these, we spend the rest of

this section listing some of them.

Interpolating Hamiltonian. As previously mentioned, an arbitrary symplectic map that is

sufficiently close to the identity, is exactly the time-1 flow of a non-autonomous Hamiltonian. This

is a classical result when the symplectic map is analytic, known as an interpolating Hamiltonian

problem. This has also been proven to be true in the case when the symplectomorphism is only C1

24

([9]). In particular, the discrete symplectic flows we compute in this thesis (which are computed by

some Ck interpolated velocity), are exactly Hamiltonian flows; only, the Hamiltonian in question

is slightly modified.

Modified equation, quasi-interpolating autonomous Hamiltonian. On the topic of

modified Hamiltonians, it is known that flows of symplectic integrators satisfy modified equations

that are also Hamiltonian ([18], IX.3). These modified equations are typically infinite series, meant

to be interpreted formally. One can however truncate these series such that the truncations are

also Hamiltonian. Via these truncations, one can show the existence of an autonomous Hamil-

tonian whose flow approximates the flow given by a symplectic integrator, to a high order and

for an exponentially-long time. Relatedly, there are results on the existence of quasi-interpolating

autonomous Hamiltonians. That is, given a symplectomorphism, one can find an autonomous

Hamiltonian whose time-1 flow approximates the symplectomorphism exponentially-well ([5]).

Quasi-conservation and stability. It is known that symplectic integrators in general do

not conserve the Hamiltonian or other invariants. However, in light of the quasi-interpolation

results above, symplectic integrators do tend to be quasi-conservative, in the sense that they are

conservative to a very high degree and for very long times ([11], [5]). Due to this quasi-conservation,

symplectic integrators have excellent long-term stability properties ([43], [11]).

Discrete variational principle, high-order integrators. Symplectic integrators can be

shown to satisfy a discrete Hamilton’s principle ([18], VI.6). That is, they extremize a discretized

action functional, defined in terms of a discretized Lagrangian. In fact, symplectic integrators

can actually be derived by starting with a discrete variational principle. Finally, one can derive

symplectic integrators of arbitrarily-high order. This is typically achieved by the use of so-called

generating functions for symplectic maps, see [11] or [18], Section VI.5.

2.2.2 Examples and Runge-Kutta structure

Let u : R2 × [t0,∞) → R2 be a C1 Hamiltonian vector field, i.e. u = ∇⊥ψ for some Hamiltonian

ψ. Let Φ0(x) = x in R2. We will write

Φ1(x),Φ2(x), . . . : R2 → R2

for a sequence of flow maps (not discretized in space) given by a numerical integrator. Take a

sequence of uniform time steps t0, t1, . . ., with step size ∆t.

In this thesis we consider three well-known symplectic integrators. The first is one variant of

25

the symplectic Euler method,

Φn+1 = Φn +∆t u(Φn+1
1 ,Φn2 , tn), (2.6)

with the other variant seeing the velocity replaced with u(Φn1 ,Φ
n+1
2 , tn). This is a first-order

method. The second is the standard midpoint method,

Φn+1 = Φn +∆t u

(
Φn +Φn+1

2
, tn +

∆t

2

)
, (2.7)

which is second order. The last is a fourth-order method, with two intermediate stages, referred to

as a Gauss collocation method. Its Butcher tableau is given in Figure 2.2. Proofs of symplecticity

of the above methods can be found in [18], Chapter VI (though we essentially replicate the proof

for the symplectic Euler method in Proposition 2.3 below).

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Figure 2.2: Butcher tableau of 4th-order symplectic Gauss collocation method.

One notices that all the symplectic integrators above are implicit. This is in fact the case for

all symplectic Runge-Kutta methods, when applied to arbitrary velocities, at least. The following

is a theorem from [18], Section VI.7.

Theorem 2.2. An irreducible Runge-Kutta method with Butcher tableau

c1 a11 · · · a1s
...

...
. . .

cs as1 ass

b1 · · · bs

is symplectic if and only if

biaij + bjaji = bibj (2.8)

for all i, j.

Similar necessary and sufficient conditions for the symplecticity of e.g. irreducible, partitioned

Runge-Kutta methods exist, see [18]. From this we can see that a symplectic irreducible Runge-

Kutta method applied to a general velocity must be implicit: assume without loss of generality

26

that bi ̸= 0 for all i (otherwise, the method can be reduced). Then along diagonals, the condition

(2.8) gives

2biaii = b2i ,

and so aii ̸= 0, meaning the integrator is at least diagonally implicit.

There are special cases where the symplectic integrators in fact end up being explicit, for

certain forms of the velocity. For instance, if the Hamiltonian in question is separable, that is,

H(x1, x2) = T (x1) + U(x2), then some symplectic integrators, such as the symplectic Euler and

Störmer-Verlet schemes, are explicit ([18], VI.3). There are many problems in mechanics where the

Hamiltonian is separable, and so the explicit symplectic integrators are popular there due to their

high stability and conservation properties. In our case, however, we will not know velocities ahead

of time, and would not like to restrict to certain classes of velocities. Thus for our purposes, the

structure-preserving integrators are always implicit.

Finally, we note that there exist symplectic integrators in other symplectic geometries. For

instance, the so-called spherical midpoint method is a symplectic integrator on the sphere S2

([29]). It is however more challenging to derive symplectic integrators for general Hamiltonians in

non-Euclidean spaces, due to topological considerations; see the discussion in [29].

2.2.3 Volume preservation

As we saw, a map R2 → R2 is symplectic if it preserves the symplectic form dx1 ∧ dx2. But this is

exactly the volume form. Thus in two dimensions, a map is symplectic if and only if it is volume-

and orientation-preserving. Hence, in the case of a Hamiltonian vector field, the integrators from

the previous section are exactly volume-preserving. In fact, the volume preservation of symplectic

integrators only requires the vector field to be locally Hamiltonian. This reflects the fact that the

flow of a vector field is symplectic if and only if the vector field is locally Hamiltonian ([18], VI.2).

Thus, since in two dimensions locally Hamiltonian is equivalent to divergence-free, the integrators

above are volume-preserving in 2D when divu = 0. We check this explicitly in the case of the

symplectic Euler method, in the following proposition. Proofs of volume preservation for the other

integrators from Section 2.2.2 follow similarly.

Proposition 2.3. In R2, when divu = 0, the discrete flow Φn(x) defined by the symplectic Euler

method (2.6) satisfies det∇Φn+1(x) = det∇Φn(x). In particular when Φ0 = id, each Φn is a

volume-preserving map.

27

Proof. We can write the symplectic Euler step as F (x,Φn+1(x)) = 0 with

F (x,y) = Φn(x)− y +∆t u(y1,Φ
n
2 (x), tn).

Then Φn+1 is defined by the implicit function theorem. The theorem also gives an expression for

∇Φn+1 (equivalently, by the chain rule):

∇Φn+1 = −(∇yF)−1∇xF =⇒ det∇Φn+1 =
det∇xF

det∇yF
.

Here, the gradients of F are evaluated at (x,Φn+1(x)). We compute

det∇yF = det

−1 + ∆t ∂x1u1 0

∆t ∂x1u1 −1

 = 1−∆t ∂x1u1,

where u is evaluated on (y1,Φ
n+1
2 , tn). Similarly, a straightforward computation gives

det∇xF = (1 +∆t ∂x2u2) det∇Φn.

Thus

det∇Φn+1 =
1 +∆t ∂x2u2
1−∆t ∂x1u1

det∇Φn.

But since divu = 0, we in fact have det∇Φn+1 = det∇Φn.

In higher dimensions, the situation of volume preservation is more delicate. In R2d, d > 1,

symplectic implies volume-preserving: the wedge power of the symplectic form is the scaled volume

form. The converse is not true, however; here symplectic is much stronger than volume-preserving.

This reflects the fact that general divergence-free vector fields in R2d are far from Hamiltonian.

Thus a symplectic integrator might not be volume-preserving for a divergence-free vector field in

higher even dimensions. And in odd dimensions, of course, there is no symplectic structure to begin

with. While in certain very specific cases a symplectic integrator can be volume-preserving in R3

for instance ([18], VI.9), the general case remains unclear.

Moreover in [22], it is shown that non-partitioned Runge-Kutta methods in dimension n ⩾ 3

cannot be volume-preserving, for a general divergence-free analytic velocity. In the same article

however is proposed a workaround for volume-preserving integration in arbitrary dimensions. We

illustrate here idea in the case of three dimensions.

In R3 an arbitrary divergence-free vector field u can be written as a curl,

u = curlψ =


∂x2ψ3 − ∂x3ψ2

∂x3ψ1 − ∂x1ψ3

∂x1ψ2 − ∂x2ψ1

 .

28

This however can be rewritten as a sum of vector fields that resemble 2D Hamiltonians:

u =


0

∂x3ψ1

−∂x2ψ1

+


−∂x3ψ2

0

∂x1ψ2

+


∂x2ψ3

−∂x1ψ3

0

 .

This decomposition into a sum of 2D Hamiltonians generalizes to arbitrary dimension, which is

given in [22]. The proposal in [22] is then to apply a 2D symplectic integrator to each component of

the decomposition above, and to combine these flows via a splitting method. The resulting scheme

is volume-preserving in higher dimensions.

2.3 Finite difference volume preservation test

To get a sense of the volume preservation qualities of symplectic integrators, we perform a test.

Here we compute the backward flow map of an analytically-known velocity, and approximate its

Jacobian with a finite difference scheme. Of course, since the finite difference is not exact, the

computed Jacobian error will not be exactly at machine precision. In the next section we will

repeat the test and compute the Jacobian with Fourier spectral methods. There we will see a

Jacobian error at machine precision. We will also see qualitative differences between the finite

difference and spectral Jacobian errors, which is part of the reason for which we include this test.

We think of the torus as R2/2πZ2. We take the following Hamiltonian vector field,

u(x) = ∇⊥
(
2 sin2

(x1
2

)
sin2

(x2
2

))
.

This is an autonomous version of the so-called swirl test, from [30]. We take an autonomous vector

field because the velocity of the backward map is then simply

v = −u.

In particular, we do not need to worry about computing the forward flow and interpolating the

velocity, to use the backward velocity of Proposition 2.1. We would like to test with an analytically-

known vector field, to see the best Jacobian results available. We will cover the non-autonomous

case with our interpolation strategy of Section 3.

Here and in the rest of this thesis, we use the notation χ to denote a discretized backward map.

Define a grid Γ of N ×N points,

Γ = {xj := hj : 0 ⩽ j1, j2 < N}, (2.9)

29

•

•

• • xj • •

•

•

δ

Figure 2.3: Centered finite difference stencil in each dimension around xj .

where h = 2π
N . Around each point xj of Γ we put a finite difference stencil. Let δ > 0 denote the

stencil size. For this test we choose δ = 10−3.5. The stencil consists of the points xj + (iδ, 0) and

xj + (0, iδ) for i ∈ {±1,±2}, and is illustrated in Figure 2.3. Consider the fourth-order centered

finite-difference approximation

d

dx
f(x0) ≈

1

δ

(
1

12
f(x0 − 2δ)− 2

3
f(x0 − δ) +

2

3
f(x0 + δ)− 1

12
f(x0 + 2δ)

)
(2.10)

for f : R→ R. We first flow a stencil of points around each xj by a symplectic integrator. We then

use the above finite difference (2.10) to approximate the gradient of the backward map at each xj ,

using the stencil points. Finally, we take the maximum Jacobian error over the grid. That is, we

compute ∥detDχ− 1∥ℓ∞(Γ), where we have written D for the finite difference described above.

The symplectic integrators are implemented by a standard fixed-point iteration. The iteration is

initialized with a forward Euler step. We iterate until the increment is within a parameter εsym > 0.

Here we take εsym = 10−13. We have found experimentally that we do not need to take εsym too

close to machine precision for convergence of the Jacobian error. Moreover we do not want to take

εsym too small, to avoid convergence issues and so as to not introduce spurious oscillations.

For the first three tests, we isolate the following parameters: the grid size N , the symplectic

integrator (and in particular, the order of the integrator), and the time step ∆t. The Jacobian

errors over time are plotted in Figure 2.4 for t ∈ [0, 5]. Figure 2.4a compares the Jacobian errors

across grid sizes. Here the midpoint integrator is used, and ∆t = 1/100. Figure 2.4b compares

the various symplectic schemes. Here we take N = 128 and ∆t = 1/100. Figure 2.4c compares

different values of ∆t. Here we use the midpoint integrator and N = 128. Finally we run a fourth

test, which is a long-term test. Jacobian error results are plotted in Figure 2.4d. Here we run until

t = 100, using the midpoint integrator, N = 128, and ∆t = 1/10. We shall return to this long-term

30

test in the following section.

We see that there are very little Jacobian differences when varying the grid size and the sym-

plectic scheme. There are some small differences when varying ∆t; the Jacobian error is smaller

for larger ∆t. However, this is likely due to the simple fact that there are more computations to

be carried out for smaller ∆t. These tests illustrate a crucial point: symplectic integrators are, by

construction, exactly volume-preserving. They are not volume-preserving up to some order, which

is the case for all other integrators. Volume preservation here is an “algebraic” property of the

integrators, and not an analytic one.

31

(a) Grid size comparison; midpoint

scheme, ∆t = 1/100.

(b) Integrator comparison; N = 128, ∆t =

1/100.

(c) Time step comparison; midpoint

scheme, N = 128.

(d) Long-term test; midpoint scheme, N =

128, ∆t = 1/10.

Figure 2.4: Finite difference Jacobian errors of symplectic schemes.

32

3 Essentially-conservative spatial discretization

At this point we are able to integrate a backward map in a conservative manner. We will see that,

for reasons of spatial resolution, using a single map is insufficient. We will instead split the backward

map into submaps, using the semigroup decomposition (1.2). This however presents an additional

problem: how to compose submaps in a conservative manner. At this stage, we are unaware of

how to do so. Instead, we perform the composition to a high order of volume preservation. We will

do so in part using Fourier-spectral upsampling. Thus, for the rest of this thesis, we switch from

computing the Jacobian error with finite differences to doing so in Fourier space.

In this section, we first examine the issue of spatial resolution. We then discuss a strategy to

compose the submaps to a high order of conservation. Finally we describe an interpolation scheme

for the velocity, which will be required for the composition strategy to be correct.

3.1 Illustration of spatial resolution

3.1.1 Fourier-pseudospectral Jacobian test

We begin by repeating the volume preservation test of Section 2.3, this time computing the Jacobian

in Fourier space. We denote by F the DFT/FFT, and use a hat to denote the true Fourier

coefficients. We take the same grid Γ of N ×N points. Let F be a function T 2 → R, and denote

by f ∈ RΓ its projection onto the grid: fj = F (xj). We compute ∂xj in frequency space as usual

by the Fourier collocation derivative operator ([8]), which we denote by Dj : RΓ → RΓ:

Djf = F−1(Dj · F(f)).

Here the dot means componentwise multiplication, and Dj is the matrix of wavenumbers

(Dj)k = ikj .

We write D for the Fourier collocation version of the gradient operator ∇.

Remark 3.1. Here we flow maps χ that are periodic perturbations of the identity. We assume the

maps take the form

χ(x) = x+ η(x),

for η a periodic map on T 2. Operations in Fourier space should be applied to smooth, periodic data.

For the sake of notation, however, we will write

Dχ := I +Dη.

33

We will use similar notation for the Fourier upsampling and periodic spline interpolation operators,

that we will define in the upcoming sections. Thus, while we understand that operators in Fourier

space should be applied to the periodic perturbation η and not to the map χ, we will apply them to

χ for notational convenience.

(a) Short-term Jacobian error. (b) Long-term Jacobian error.

Figure 3.1: Spectral Jacobian errors of the backward map in the swirl test, over different grid sizes;

midpoint scheme, ∆t = 1/100.

At each time step, we plot the maximum spectral Jacobian error of the map χ[t,t0] on the grid;

that is, the quantity

edet[χ[tn,t0]] := ∥detDχ[tn,t0] − 1∥ℓ∞ .

We note that we do not use the spectral gradient in any computations that flow the map. The

maps are integrated exclusively by the symplectic integrators, and there are no spatial projections

between time steps. We only use the spectral gradient to assess the Jacobian generated by the

symplectic integrators. The test is run with the midpoint integrator, with ∆t = 1/100. We repeat

the test over various grid sizes N only. For the same reasons as in Section 2.3, different choices of

the scheme and of ∆t have very little effect on the Jacobian error. The Jacobian errors are plotted

in the short term and in the long term in Figure 3.1.

In the short term, we see a Jacobian error very close to machine precision. The finer grids have

a slightly larger error, but this is simply due to having to compute FFTs on a larger grid. In the

long term, however, the Jacobian error has surprising behaviour. We see that the error on each grid

splits into two distinct regimes. In the first regime we see slow growth. There is a point however

34

where the error shoots upward, after which it increases at a much faster rate. After this point is

reached, the data does not seem to be at all volume-preserving.

The time at which the error switches regime seems to depend on the grid size N . Moreover,

while we don’t include the relevant plots here, it depends only on N , and not on ∆t or on the

integrator used. Further, no matter the grid size, there will always eventually be a point where

the error shoots upward. The spectral Jacobian error here is qualitatively very different from the

finite-difference error from Section 2.3. This is especially true considering the long-term test in

Figure 2.4d. There, the finite-difference error seemed to stay close to zero for a long time, at least

until t = 100. Moreover, we know that our maps should be volume-preserving by construction,

due to the symplectic integrators. There thus appears to be a contradiction. It turns out that this

behaviour is not contradictory, and we explain it in the coming sections.

3.1.2 The Fourier spectrum

To explain the Jacobian behaviour of the previous section, we first see some Fourier approximation

theory. We introduce some objects and facts from [8], Sections 2.1, 9.1. Here, again, F : T 2 → R

is a function and f is its projection onto the grid.

Define the space of trigonometric polynomials of degree N/2,

SN = span {eik·x : −N/2 ⩽ k < N/2}.

The inequality −N/2 ⩽ k < N/2 is taken componentwise. There are two main ways of projecting

functions to SN : truncation and interpolation. The truncation operator PN is defined as expected,

by truncating higher wavenumbers:

PN

∑
k∈Z2

F̂ke
ik·x

 =
∑

−N/2⩽k<N/2

F̂ke
ik·x.

We next define the interpolation operator IN as follows: INF is the unique element of SN which

interpolates F on the grid Γ ([8]). INf is similarly defined for any data f on the grid. This

interpolant can be constructed using the DFT. In fact, the DFT precisely computes the (scaled)

Fourier coefficients of the interpolant: F and IN are related by

(Ff)k = N2(ÎNf)k.

It follows that the quantity computed by the Fourier collocation derivative is the smooth derivative

35

of the trigonometric interpolant, projected back onto the grid:

Djf = (∂xjINf)|Γ. (3.1)

Hence, understanding the operator D requires a study of the interpolation operator, and in partic-

ular the interpolation error.

The interpolation error ∥INF − F∥ is in general quite nontrivial to quantify. Indeed, interpo-

lating a function over a grid may miss important features of the function. As such, an analysis

of sampling and aliasing is required; see [8] for discussions of these. Fortunately, we may think

of the interpolation error in terms of the truncation error ∥PNF − F∥, on regular grids at least.

The following relations between the two hold. The L2 interpolation error is always at least the L2

truncation error ([8]):

∥INF − F∥L2 ⩾ ∥PNF − F∥L2 .

On the other hand, the L∞ interpolation error is never more than twice the L∞ truncation error

([7]):

∥INF − F∥L∞ ⩽ 2∥PNF − F∥L∞ .

Moreover in [8], it is shown that the L2 interpolation error is asymptotically equal to the L2

truncation error, as the grid size N → ∞. Thus, while interpolation sees problems not present in

truncation, namely aliasing, it in fact suffices to consider truncation as a model for the interpolation

error. The truncation error is much more straightforward. The truncation operator zeroes all modes

higher than the Nyquist frequency N/2, which is the highest representable frequency on the given

grid. It then follows from Parseval’s identity that the L2 truncation error is given directly in terms

of the removed Fourier coefficients:

∥PNF − F∥2L2 = 4π2
∑

k/∈[−N/2,N/2−1]2

|F̂k|2.

To estimate the truncation error, we thus consider the decay in the Fourier coefficients. It is a

fact that when F ∈ Cm(T 2), the Fourier coefficients of F decay like

|F̂k| = O
(
|k|−(m+1)

)
, as |k| → ∞,

where |k| =
(
k21 + k22

)1/2
. Thus, C∞ functions typically have geometric convergence of Fourier

coefficients ([7]),

|F̂k| = O
(
e−c|k|

)
, c > 0.

36

The rate of decay of Fourier coefficients roughly indicates how complicated a function is. A function

with more fine details will have slower decay in its spectrum. Crucially, the facts about decay also

extend to the discrete Fourier coefficients. Indeed, when the grid size N is sufficiently large, we

have

|(Ff)k| = O
(
|F̂k|

)
as N, |k| → ∞ and as long as |k| ⩽ N/2; see [8]. These facts, combined with the interpolation

bound, give the well-known geometric convergence of pseudospectral methods (for smooth prob-

lems).

On a computer, we will almost always incur truncation errors, since we can only store finitely

many coefficients (and functions of interest are almost never finite Fourier series). However, if

the truncation error is not much more than εmach, where εmach denotes machine precision, then

we consider this truncation acceptable. Indeed, we will be accumulating round-off errors around

εmach either way. As such, when working on a fixed grid of size N , we consider a function F to be

“well-represented” on the grid if the εmach-support in frequency space of F is contained below the

Nyquist frequency. By this we mean that |F̂k| ⩽ εmach whenever |k| ⩾ N/2. Conversely, if Fourier

coefficients of F around the Nyquist frequency are above εmach, then the truncation error (and

thus, the spectral derivative error) becomes significant compared to the finite precision round-off

error.

To conclude, the Fourier collocation derivative (3.1) is computed via an interpolation. The

interpolation error can be modelled as a truncation. When the εmach-support of the Fourier coeffi-

cients is contained below the Nyquist frequency, we expect the interpolation error to be small, and

thus to have spectral (essentially machine precision) accuracy in the derivative (3.1). Otherwise,

and in particular when aliasing occurs, the truncation may be large, and the spectral accuracy can

be lost.

Finally, it is in general difficult to estimate the incurred truncation and interpolation errors,

especially when solving for unknown functions on the grid. To this end, what is typically done is to

inspect the L2 energies below the Nyquist frequency, and to estimate the truncation above Nyquist

based on these. Define

EK(f) =
1

2

∑
K⩽|k|<K+1

|(Ff)k|2

as in [45]. Then again by Parseval, EK(f) measures the L2 energy of f in each “shell” of wavenum-

bers K ⩽ |k| < K + 1. We can then estimate the magnitude of truncation by considering EK(f)

37

for K near N/2.

3.1.3 Jacobian error and spatial truncation

At this point we are in a position to explain the Jacobian behaviour of Section 3.1.1. χ ∈ (R2)Γ

is the flow by a symplectic integrator on the grid. We will also adopt the following notation:

χ(x) : R2 → R2 denotes the same flow by the symplectic integrator, without discretizing in space.

Then χ is the projection of χ(x) onto the grid. By construction, since the integrators are symplectic,

we always have det∇χ(x) ≡ 1. However, by computing Dχ, we are not computing ∇χ(x), but

rather ∇INχ(x). The Jacobian error thus depends on the truncation incurred by INχ(x). To

estimate the truncation error, we inspect the spectra of the maps over time, in Figure 3.2.

We consider the Jacobian error on the grid of size N = 64. In Figure 3.2a, we have zoomed

into the spectral Jacobian error, near the change in regime. Here we clearly see the two different

regimes of error growth, with the switch happening near t ≈ 2.3. In Figure 3.2b we plot the spectra

of the maps at times t = 1.0, 2.2, 3.2. At t = 1.0 we see the spectrum decay nicely until it hits ε2mach.

This indicates that the backward map is well-represented on the grid at this point. At t = 2.2 we

see that the εmach-support of the spectrum has just crossed the Nyquist frequency. At t = 3.2 we

see that the spectrum is much higher than ε2mach at Nyquist, which corresponds to a much higher

Jacobian error. One can imagine a series of coefficients to the right of the graph that have been

truncated. In Figure 3.2c we plot the spectra at much finer times t = 1.6, 1.8, . . . , 2.6. We see the

spectra rise slowly in time. The spectra seem to first cross the Nyquist at some t ∈ [2.0, 2.2], which

corresponds roughly to when the spectral Jacobian error shoots upward. Finally in Figure 3.2d we

compare maps across grid sizes: the spectrum of the N = 64 grid is overlaid on the spectrum of

the N = 128 grid, at t = 3.2. We recall from Figure 3.1 that at this time, the spectral Jacobian

error of the N = 128 grid is still in the first regime. On the other hand, the error of the N = 64

grid has already shot upward here. One can picture in this graph that the N = 64 grid is missing

coefficients that have been truncated (though this is technically interpolation, and not truncation).

To conclude, we reiterate that the maps are still always volume-preserving. That is, they are

projections onto the grid of exactly volume-preserving maps. The time integration is decoupled

from space, i.e. the evolution is diagonal in time. The map data at each grid point is thus the

same regardless of the current grid size. In other words, the data on the coarser grids is just the

restriction of the data on the finer grids. The obstruction to having a small spectral Jacobian error,

then, has only to do with the number of grid points, or equivalently the number of Fourier modes.

38

When we see a sudden growth in the spectral Jacobian error, it is because we are undersampling

the map and seeing aliasing errors. We are seeing a spatial truncation that shows up in the solution

as dissipation, averaging.

One may wonder why the Jacobian error is not exactly at machine precision in the first regime.

Indeed, there seems to always be a growth in Jacobian error, although it is very slow at first. This

is because a volume-preserving map can almost never be written in the form χ(x) = x+η(x) where

η is a finite Fourier series. The reason for this can be seen roughly as follows. Suppose we have a

map of the form χ(x) = x+ η(x) with η ∈ SN . Suppose that χ is exactly volume-preserving, i.e.

det∇χ ≡ 1. This can be rewritten as

1 = det∇χ = det(I +∇η) = (1 + ∂x1η1)(1 + ∂x2η2)− ∂x2η1∂x1η2,

which becomes

tr∇η + det∇η = 0. (3.2)

Since η ∈ SN we in fact have

tr∇η = det∇η = 0. (3.3)

This can be seen as follows. Assume that Equation (3.3) does not hold, so tr∇η and det∇η are

both nonzero. Both of these have compact support in Fourier space, since η ∈ SN . The determinant

term is similar to a convolution in Fourier space. Thus, barring some convenient cancellation, in

most cases we should have that the frequency support of det∇η is strictly larger than that of tr∇η.

Then there is some wavenumber k such that F(det∇η)k ̸= 0, yet F(tr∇η)k = 0. This contradicts

Equation (3.2), however.

The conditions of Equation (3.3) are extremely restrictive. The identically zero Jacobian alone

implies that ∇η1 and ∇η2 are everywhere colinear, and so the contour lines of η1 and η2 are the

same. In other words, η1 is a function of only η2 (and vice versa). Maps obtained by integrating a

velocity will almost never be of this form. It follows that a general volume-preserving map of interest

cannot be represented as a finite Fourier series perturbation of the identity. This is expected, given

the nonlinearity of the determinant. This means that when computing the spectral Jacobian, we

will always have a nonzero truncation. Thus, even in the first regime, we will always see a slow

growth in the spectral Jacobian error.

39

(a) Spectral Jacobian error of backward

map, N = 64, near the change in regime.

(b) Spectra of backward map, N = 64, at

t = 1.0, 2.2, 3.2.

(c) Spectra of backward map, N = 64,

near t = 2.2.

(d) Spectra of backward map at t = 3.2,

N = 64 vs. N = 128 grid.

Figure 3.2: Jacobian error and spectra of backward maps, near the change in regime of the spectral

Jacobian error.

40

3.2 Backward map decomposition and sampling

In the previous section, we saw that on a fixed grid, we eventually lose spatial resolution in the

backward map. This affects not only the Jacobian, but all important features of the solution.

Recall however that we can use the semigroup decomposition (1.2) to split the backward map

X [tn,t0] =X [τ1,τ0] ◦ · · · ◦X [τm,τm−1] (3.4)

over some time intervals [τi−1, τi]. The complex deformation is then split across multiple maps,

each of which can be accurately represented on the fixed grid. In particular, the decomposition

avoids large spatial truncation. The decomposition of the backward map has nothing to do with

conservation; each submap is exactly volume-preserving. It is purely an issue of spatial resolution.

The above decomposition of the backward map is absolutely necessary in order to accurately

represent the solution. However, it presents a new problem. We will eventually need to evaluate

the advected quantity

ω = ω0 ◦X [τ1,τ0] ◦ · · · ◦X [τm,τm−1]. (3.5)

Performing this composition with grid data requires interpolating each χ[τi,τi−1]. We would ideally

perform this interpolation in an exactly volume-preserving manner. However, to our knowledge,

there is currently no method to construct such an interpolant. Instead, we will perform this

composition to a very high order of volume-preservation.

Moreover, the loss of spatial resolution does not only affect the backward map, but the advected

quantity ω itself. Indeed, even if the backward maps are exactly volume-preserving, and we sample

ω by Equation (3.5), if this sampling is done on too coarse a grid, we will see the same spatial

truncation problem in ω. We will see this undersampling of ω in Section 5. Thus, the solution of

the method we design does not consist of ω, sampled by (3.5), on a fixed grid. Rather, the solution

consists of a sequence of submaps χ[τ1,τ0], . . . ,χ[τm,τm−1], as well as a specific interpolation scheme,

to sample ω at arbitrary locations by the composition (3.5).

In this section we define the criterion by which we will split the submaps into the decomposition

(3.4), called the remapping criterion. We then examine the obstruction to exactly volume-preserving

composition. Finally we define our strategy for composing the submaps and sampling the final ω.

41

3.2.1 Jacobian remapping criterion

We refer to the process of dynamically splitting the backward map into submaps as remapping. We

describe the remapping procedure now; the procedure is the same as for previous Characteristic

Mapping methods (e.g. [45]). By the semigroup decomposition, we can arbitrarily decompose the

backward maps into submaps. The submaps start at the identity and can be integrated indepen-

dently. In practice, this means that we are able to integrate the submaps as follows. Suppose we

are integrating the first submap χ[t,τ0] (we let τ0 := t0). At time tn, we have χ[tn,τ0]. Suppose that

upon computing χ[tn+1,τ0], a spatial resolution criterion is violated. We discard the computation of

χ[tn+1,τ0], set τ1 := tn, and store the submap

χ[τ1,τ0] := χ[tn,τ0].

We then initialize a new submap at the identity χ[tn,τ1] := id, and continue the iteration with

this new submap. This process is what we refer to as remapping. We repeat this process with

each subsequent submap until the iteration is complete. This yields a sequence of time intervals

[τ0, τ1], . . . , [τm−1, τm] as well as a sequence of backward maps χ[τ1,τ0], . . . ,χ[τm,τm−1] over these

intervals. This is the dynamic decomposition of the backward map.

The remapping criterion we will use is based on the spectral Jacobian error. This is the same

condition as in [45]. Recall

edet[χ] = ∥detDχ− 1∥ℓ∞ .

We remap when edet[χ] > δdet, for some parameter δdet. Typically, δdet will be on the order of

10−13. This means that each submap will satisfy edet[χ[τi,τi−1]] ⩽ δdet. Part of the motivation for

this definition, from a conservation and composition point of view, is given in the upcoming Section

3.2.3.

There are however other reasons for which we believe the Jacobian remapping condition makes

sense, from a spatial resolution point of view. Firstly, the Jacobian det∇χ is a difference of

multiplications in physical space. Hence, its Fourier coefficients are a difference of convolutions

of the Fourier coefficients of ∇χ. For finite Fourier series, the support in frequency space of a

convolution is in general the Minkowski sum of the supports of the factors. We thus expect the

εmach-support of the Jacobian to grow past the Nyquist frequency before that of the map does.

Moreover, as a derivative, the Fourier coefficients of Dχ are scaled by the wavenumber compared

to the coefficients of χ. The spectrum of Dχ thus decays more slowly than that of χ. It is thus a

42

general practice to inspect derivatives, to determine how well data is represented on a grid. Finally,

the Jacobian is a nonlinear invariant. In Section 3.1.3 we showed that is rarely well-represented by

finite Fourier series. We thus expect the spectral Jacobian error to give a reasonable indication of

the truncation error.

3.2.2 Interpolation in X0 vs. in SDiff

We have mentioned previously that it is not clear how one would construct a structure-preserving

interpolant in SDiff(T 2), the group of volume-preserving diffeomorphisms, such that moreover this

interpolant is practical to construct and evaluate. We illustrate here the difficulty. By interpolant

here we really mean approximation, as the constructions here are not generally interpolating.

We first contrast with the relative ease of interpolation in X0, the algebra of divergence-free

vector fields. Suppose we have u ∈ X0(T
2). We would like to construct a polynomial approximation

ũ such that ũ ∈ X0(T
2) as well. A standard approach, as is done in [45], is as follows. We assume

that u = ∇⊥ψ for some function ψ : T 2 → R; we interpolate ψ and call the interpolant ψ̃; and

finally we set ũ = ∇⊥ψ̃. Note that this last gradient is the gradient of a polynomial, which can be

evaluated exactly. This gives an identically divergence-free polynomial ũ. We note that we are not

concerned with any properties of the interpolant ψ̃. All of the work in constructing a divergence-free

interpolant is done by the gradient operator. To summarize, we have an operator ∇⊥ for which

the following hold.

1. ∇⊥ maps from the vector space of functions T 2 → R, inside which interpolation is straight-

forward, to the space X0(T
2).

2. There exists a ψ such that u = ∇⊥ψ.

3. We can find ψ from u by solving the Poisson problem −∆ψ = curlu. This can be done

efficiently and to spectral accuracy in Fourier space, for instance.

4. When ψ̃ is a polynomial, ∇⊥ψ̃ can be inexpensively and exactly evaluated.

To construct an interpolant in SDiff(T 2), we could imitate the above procedure. This would

consist of replacing the operator ∇⊥, which constructs elements of X0(T
2), with an operator G,

that constructs elements of SDiff(T 2). For this interpolant to be computationally feasible, it should

satisfy similar properties to those listed above. We can thus extract from the points above some

axioms that G should satisfy, for the purpose of yielding a practical interpolation.

1. G maps from a vector space V , inside which we can interpolate, to SDiff(T 2).

43

2. G is surjective, or sufficiently close to surjective.

3. G is relatively straightforward to invert, to some sufficiently high order. Of course, G need

not be injective, and by invert we mean to find an element in each fibre.

4. G is inexpensively and exactly computable, on the subspace of interpolants in V .

To satisfy the first axiom, a reasonable choice for G could be some volume-preserving approximation

of the exponential map exp : X0(T
2) → SDiff(T 2). That is, a symplectic integrator. In a similar

vein, we could take G as a map from the space of Hamiltonians to the symplectomorphisms, given

the close connection between these two spaces mentioned in Section 2.2.1.

However, it is unclear which such G would satisfy all four axioms simultaneously. As an example,

take G to be a time-1 step of the (symplectic) midpoint method, given a Hamiltonian. That is,

G : C1(T 2)→ SDiff(T 2), ψ 7→ Φ, where Φ satisfies

Φ = id +∇⊥ψ

(
id +Φ

2

)
. (3.6)

Then G satisfies axiom 1. Moreover, it is proven in [9] that any C1 symplectomorphism, not too far

from the identity, can be written as the time-1 flow of the midpoint method, for some autonomous

Hamiltonian. This fact is remarkable on its own. It also establishes axiom 2, that G is surjective

(for symplectomorphisms not too far from the identity).

On the other hand, it is not clear how to practically construct such a Hamiltonian. Thus axiom

3 does not hold. Moreover, the midpoint expression (3.6) is implicit. We typically compute this

by fixed-point iteration. If the symplectomorphism is far from the identity, then the iteration may

not converge, it may require a significant amount of interpolations of the Hamiltonian, and so on.

Thus axiom 4 also fails.

To conclude, practical interpolation is currently infeasible in SDiff. More generally, an inter-

polant that conserves some given invariant must be constructed in a case-by-case basis, and may

not even exist. On the other hand, interpolation in X0 is relatively straightforward. We will exploit

this fact in our composition and velocity interpolation schemes. In particular, we perform many

operations in the algebra X0, rather than attempting any in the group SDiff.

3.2.3 Map composition strategy

At this point we have a sequence of submaps χ[τ1,τ0], . . . ,χ[τm,τm−1] on the grid, each exactly volume-

preserving and each having spectral Jacobian error edet[χ] ⩽ δdet. Eventually we will need to

44

evaluate the advected quantity ω. In the case of the incompressible Euler equations, ω is the

vorticity, which is ultimately the quantity of interest. Recall that we can write ω as

ω = ω0 ◦X [τ1,τ0] ◦ · · · ◦X [τm,τm−1].

To sample ω at a point x0, then, we interpolate each χ[τi,τi−1] as χ̃[τi,τi−1], and compute

ω(x0) =
(
ω0 ◦ χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1]

)
(x0). (3.7)

An important remark is in order. In a traditional numerical method, the solution would consist of

ω at the final time, on a fixed grid. Restricting to a single grid size is undesirable due to spatial

truncation, however. We saw this explicitly in the spectral Jacobian, for the case of the submaps.

The same is true for ω: computing ω by (3.7) is still prone to undersampling, as we will see in

Section 5.1.2. Thus, instead, the solution of our method consists of the data of Equation (3.7): a

specific interpolant χ̃[τi,τi−1] for each χ[τi,τi−1] (and hence, a scheme to arbitrarily sample ω, without

constraining to a single grid size).

We cannot perform the composition (3.7) in an exactly conservative manner, as illustrated in

the previous section. Instead, we construct the interpolants χ̃[τi,τi−1] in such a way that the order of

conservation is as high as possible. Thus while each map is exactly conservative, for lack of a better

option, we essentially brute-force the final composition. Our solution for high-order conservation

relies heavily on upsampling in Fourier space. We thus first define the Fourier upsampling operator.

We take a grid Γup of Nup×Nup points, where Nup ⩾ N . Then the Fourier upsampling operator

UNup : RΓ → RΓup maps data f on the coarse grid to data on the fine grid, by padding with zeros

in Fourier space:

Uf =
N2

up

N2
F−1


0 0 0

0 Ff 0

0 0 0

 .
Here the 0 are matrices of zeros of appropriate size. Ff is of course centered so that

F(Uf)k =
N2

up

N2
F(f)k

whenever k ∈
[
−N

2 ,
N
2 − 1

]2
. The scaling factor comes from the fact that the DFT coefficients

are scaled by the grid size compared to the Fourier coefficients. Put differently, the upsampling

operator interpolates f in SN , passes through the embedding SN ↪→ SNup , and projects onto the

45

fine grid:

Uf = (INf)|Γup .

We return to the problem of interpolation that is conservative to a high order. Consider a single

map χ := χ[τi,τi−1] on a grid. χ is obtained by some number of steps of a symplectic integrator on

the grid. We again write χ(x) for the exact map obtained by the symplectic integrator, without

discretizing in space. That is, χ = χ(x)|Γ, and χ(x) is exactly volume-preserving. One possibility

for interpolating χ to a high order of conservation, is to compute χ(x) itself to as high an order

as possible. If the truncation error ∥PNχ(x) − χ(x)∥ is not much more than machine precision,

then we can recover χ(x) to spectral accuracy with INχ. While evaluating this trigonometric

interpolation at arbitrary locations is not practical, we can still obtain INχ on a very fine grid by

upsampling. We can then interpolate between these fine grid points by some high-degree polynomial

interpolation.

We thus define the solution of the method as follows. Denote the operator that interpolates

with periodic splines of degree p as Sp(p)[·]. We go into more detail on the spline interpolation in

the following section and in Appendix A. We upsample each backward map to a fine grid of size

Nup, and interpolate with degree p splines: define the interpolants

χ̃[τi,τi−1](x) = Sp(p)
[
UNup

[
χ[τi,τi−1]

]]
(x)

for i ∈ {1, . . . ,m}. We recall that the upsampling and spline construction do not apply directly to

χ but rather to the perturbation of the identity, see Remark 3.1. Typical values we will use for

upsampling and interpolation degree, in our incompressible Euler implementation, are Nup = 2048

and p = 7. The final advected quantity at time t = τm, which is the solution of the method, is then

the smooth function

ω = ω0 ◦ χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1].

In particular, ω does not live on a fixed grid, and can be sampled arbitrarily. The burden of spatial

resolution is effectively passed onto the backward maps.

We now inspect the conservation of this interpolation scheme. Suppose that χ satisfies the

remapping condition edet[χ] = ∥detDχ− 1∥ℓ∞ ⩽ δdet. As Dχ = (∇INχ)|Γ, we then have

∥det∇INχ− 1∥L∞ ⪅ δdet.

46

Since upsampling is just trigonometric interpolation and projection onto a finer grid, we thus also

have

∥det∇INupUNupχ− 1∥L∞ ⪅ δdet.

Thus Uχ is volume-preserving to the same order as χ, in the spectral Jacobian sense. However,

Uχ lives on a much finer grid. If we now interpolate Uχ as above and call the interpolant χ̃, we

have

∥det∇χ̃− 1∥L∞ ⪅ δdet +O
(
N−p

up

)
(see the spline interpolation error estimate, Theorem A.1). We typically take p = 7 and Nup = 2048.

Assuming Nup is small enough that we may replace the O above with a constant C (depending on

χ and its derivatives), with these parameters the bound above becomes

∥det∇χ̃− 1∥L∞ ⪅ δdet + C · 6.6 · 10−24.

We believe that this level conservation error in the interpolant is acceptable, especially given how

close to machine precision δdet is.

For this composition strategy to work, we note that we require edet[χ] ⩽ δdet. Or more generally,

that the truncation error is small. This is required for the upsampling to approximate the flow of

the integrator. Thus, while the spectral Jacobian error does not reflect the volume preservation of

the map, we will indeed need a small spectral Jacobian, for the purposes of composition. This also

partially motivates the Jacobian remapping condition.

3.3 Velocity interpolation

The spectral Jacobian error of Section 3.1.1, in the first regime before the truncation is significant,

looks ideal. In those tests, however, the velocity was known analytically. In the incompressible

Euler equations, and in general for the velocity of the backward map, the velocity is only known at

grid points, and thus must be interpolated. Interpolating the velocity with a standard cubic scheme

does not yield a good spectral Jacobian error, as we shall see. Moreover, the interpolant must be

identically divergence-free for the symplectic integrators to produce volume-preserving maps. In

this section, we thus construct a velocity interpolant, that looks as much like a nice, analytic,

divergence-free vector field as possible.

47

We emphasize that any divergence-free interpolant, no matter its construction, will yield volume-

preserving maps. The result of a symplectic integrator is always exactly volume-preserving. How-

ever, here we would also like our maps to have suitable decay in their spectra, to be able to apply

our composition strategy from Section 3.2.3. We thus first perform some processing steps on the

velocity, so that the resulting maps have sufficiently decaying spectra. We note that we do not apply

any projections to the maps themselves. We preprocess the velocity, but leave the responsibility

of conservation up to the integrator. In particular, we perform computations in the algebra X0,

where these are straightforward, rather than in the group SDiff. We believe that the philosophy of

working in an algebra rather than working in a group is a valuable one.

3.3.1 Spectra of interpolated compositions

One step of an implicit integrator, when computed by fixed-point iteration, is just a finite number

of compositions with the velocity. We are thus interested in what happens to the Fourier spectrum

under composition. In general, the result of a composition has unbounded spectrum, even when

the functions being composed both have bounded spectrum. This can be seen already with very

simple waves: by a Taylor expansion we have

eix ◦ eix = 1 + ieix − 1

2
e2ix − i

6
e3ix + · · · ,

a Fourier series with unbounded spectrum. Thus, even though our velocity will be represented

by finite Fourier series, we should expect the maps to have unbounded spectra after a single time

step. Hence, we are interested in the rate of decay of compositions. Composing functions g ◦ f

known analytically will yield sufficient decay. However, if g is interpolated with a standard cubic

scheme for instance, then the decay of the resulting composition is not satisfactory. In general,

cubic interpolation schemes yield interpolants that are C2. The resulting Fourier coefficients thus

decay like O
(
|k|−3

)
. This does not yield coefficients near the Nyquist frequency that are below

machine precision, on any reasonable grid size. Thus in this section we look for interpolants with

quickly-decaying spectra.

In this thesis, all spatial interpolation will be performed with periodic cardinal B-splines. We

review the spline basis and interpolant construction for periodic bivariate splines in Appendix A.

For the sake of exposition, we repeat the important points here. We denote by Sp(p) the space of

periodic bivariate splines of degree p. We also denote by Sp(p)[·] : RΓ → Sp(p) the interpolation

operator. For odd p, Sp(p) is the space of functions q ∈ Cp−1(R2/2πZ2) such that q reduces to

48

a polynomial inside each grid cell of Γ. We can construct basis functions of arbitrary degree by

the Cox-de Boor recursion formula. Moreover given data on the grid, an interpolant in Sp(p) can

be easily constructed by inverting a convolution in Fourier space. Finally, de Boor’s algorithm is

available for the numerically stable evaluation of the basis functions. Because of these facts, it is

straightforward to construct B-spline interpolants of arbitrarily-high degree.

We now return to the problem of lowering the spectrum of a composition. The obvious way to

lower the spectrum is to raise the regularity of the interpolant. Elements of Sp(p), being globally

Cp−1, have Fourier spectra decaying like O (|k|−p). We will thus take the interpolation degree p

to be higher than 3; for our Euler implementation we typically take p = 7. Another way to lower

the spectrum is to construct the interpolant on a finer grid. Though the interpolant is typically an

unknown function on a fixed grid, we can still achieve this by upsampling the interpolant. These will

be our two ways of lowering the spectrum of interpolants: upsampling and raising the interpolation

degree.

To illustrate the effects of upsampling and raising the degree of interpolation, we run a compo-

sition test. Define the test functions

f(x) = (cosx1, sinx2), g(x) = sin (2x1) cos (2x2),

which were chosen arbitrarily. We consider the problem of computing h := g ◦ f . Take a base

grid Γ of N ×N points, on which the interpolant g is sampled, with N = 64. We interpolate g by

g̃ := Sp(p)
[
UNup [g|Γ]

]
, for parameters p and Nup, and compute the spectrum of g̃(f |Γ). We test

the effects of upsampling and of the degree separately. In the upsampling test we take p = 3 and

let Nup range from 64 (no upsampling) to 8192. In the degree test we take p ∈ {3, 5, 7, 9}, and set

Nup = 64, so there is no upsampling. The resulting spectra are plotted in Figure 3.3.

We see that we can indeed lower the spectrum of the composition with upsampling and higher-

degree interpolation. In our numerical experiments, we shall see that we need to use both up-

sampling and a high p simultaneously. In our Euler implementation, we typically take p = 7 and

Nup = 2048, 4096. We concede that it is unusual to see such high-degree interpolation in a nu-

merical scheme for a PDE. Indeed, we do not want to take p too high, so as to avoid spurious

oscillations. However, we’ve found that raising the degree is acceptable performance-wise (on a

GPU, at least), and has a good payoff in the spectrum. Moreover, we cannot simply raise Nup

without bound. For Nup ≳ 4096 we start to see serious performance degradation. Indeed, with

49

(a) Different upsampling grid sizes, with

degree p = 3 interpolation.

(b) Different degree p interpolation, no up-

sampling.

Figure 3.3: Spectra of interpolated compositions, varying upsampling and interpolation degree. In

black is the (finite precision) spectrum of the exact composition.

Nup = 8192 for instance, performing the velocity upsampling requires

81922 points × 2 doubles/complex point × 8 bytes/double × 2 velocity components = 2GiB

of memory, simply to store the FFTs.

3.3.2 Gradient of spline interpolants

For volume preservation, our velocity interpolant must be identically divergence-free. To construct

such interpolants we follow the procedure laid out in Section 3.2.2. That is, we interpolate the

Hamiltonian, and take the polynomial gradient ∇⊥, which can be evaluated exactly. This must be

done with some care, however. Derivatives of B-splines are finite differences. Since we compute

these on a very fine (upsampled) grid, we’ve found that these finite differences incur significant

round-off error. We would like to avoid these numerical difficulties, as we are interested in seeing

a spectral Jacobian error as close to machine precision as possible.

In this section, we construct the derivative of a B-spline as a shifted B-spline of a lower degree,

and compute the spline coefficients of the derivative by a diagonal operation in Fourier space.

This avoids the aforementioned numerical issues caused by the finite differences. It also reduces

the number of B-spline evaluations. The latter is an important consideration, since the repeated

evaluation of the velocity in the fixed point iteration of the symplectic integrators is the most

50

expensive step of the method.

Suppose we have data f on the grid, and we interpolate by f̃ := Sp(p)[f]. We illustrate here the

computation of ∂
∂x1

f̃ . Following the construction in Appendix A, we compute the spline coefficients

ak of f̃ and write

f̃(x) =
∑

0⩽k<N

akbp,k1(x1)bp,k2(x2).

Here bp,k is a shifted and scaled periodic cardinal B-spline, centered at the point xk = kh, defined

in Equation (A.2). A known fact is that the derivative of a cardinal basis spline is a difference

of splines of lower degrees, see Equation (A.3). This fact extends to our basis functions bp,k, see

Equation (A.4). It follows that we can write the polynomial derivative

∂

∂x1
f̃(x) =

∑
0⩽k<N

ak
h

(
bp−1,k1

(
x1 +

h
2

)
− bp−1,k1

(
x1 − h

2

))
bp,k2(x2). (3.8)

We could simply evaluate ∇f̃ by Equation (3.8). However, the terms of Equation (3.8) are finite

differences, and so this direct evaluation is undesirable, for the reasons mentioned above. Thus

instead of evaluating Equation (3.8) directly, we proceed as follows. Notice that by periodicity of

the basis splines, we can rewrite the expression of Equation (3.8) as

∂

∂x1
f̃(x) =

∑
0⩽k<N

ckbp−1,k1

(
x1 +

h
2

)
bp,k2(x2), (3.9)

with coefficients ck to be found. A straightforward exercise in comparing like terms in Equations

(3.8) and (3.9) shows that the spline coefficients of f̃ and ∂
∂x1

f̃ are related by

ck =
1

h
(ak − ak1+1,k2).

The above expression is still a finite difference, and we’ve found that evaluating Equation (3.9)

with these coefficients still causes issues numerically. However, by the Fourier shift property we can

write ak1+1,k2 by multiplying ak in frequency space by e−ik1h. We can thus write an expression for

the spline derivative coefficients in Fourier space,

F(c)k =
1− e−ik1h

h
F(a)k. (3.10)

Computing the spline coefficients by Equation (3.10) eliminates the previously mentioned numerical

issues.

51

3.3.3 Mollification

In the case of the incompressible Euler equations, we know that the velocity develops fine details

over time. Equivalently, the Fourier spectrum of the velocity rises over time. In the time integration,

these fine details are then carried over to the backward maps. This causes the spectra of the maps,

and thus their spectral Jacobian error, to rise very quickly. In fact, at higher times where the

velocity is highly detailed, we see a large spectral Jacobian error after even a single time step. We

thus apply a smoothing to the velocity to eliminate fine details. We note that we do not mollify

the maps themselves; this itself would eliminate conservation. We only mollify the velocity data

that we then pass to the symplectic integrators.

We perform a simple mollification by truncating Fourier modes. Given a parameter Kmol, define

the mollification operatorM : RΓ → RΓ which acts on grid data f by

F(Mf)k =


F(f)k if |k| ⩽ Kmol,

0 otherwise.

This is a low-pass filter, equivalent to convolving with a sinc mollifier in physical space. In prac-

tice, we apply the mollification operator to Ψ, where ∇⊥Ψ = v, before interpolating. However,

commuting convolutions and derivatives, this is equivalent to mollifying the velocity directly.

That we are allowed the mollify the velocity requires some justification. In principle, the error

incurred by the mollification should be less than the error incurred by the integrators. Moreover,

the primary reason for mollifying the velocity is to ensure that fine details are not carried over to

the maps. Thus, if in fact the mollification truncates important information in the velocity, we can

simply increase the grid size of the maps and increase Kmol. Further, truncation of Fourier modes

gives a smaller L2 norm in the velocity, by Parseval’s identity. That is, mollification corresponds

to a decrease in energy. The result is a flow that is slightly slower in time ([45]).

Finally, we operate under the assumption that the flow is generated by the large scales in the

velocity. The fine scales of the velocity contribute very little to the global deformation and can

be discarded. This is the assumption made in [45]. The assumption comes from the connection

between the CMM for Euler, and the Lagrangian averaged Euler-α (LAE-α) equations. The LAE-α

equations are a modification of the incompressible Euler equations, where a Lagrangian averaging

(depending on the parameter α) of the velocity is used. The result is that at spatial scales larger

than α, solutions accurately resemble those of the regular Euler equations; at scales finer than α,

features are averaged out. Since the averaging happens at the level of the velocity, the flow is still

52

incompressible. See [27] for a derivation of the LAE-α equations. It happens that in the CMM

for Euler formulation, inserting a Lagrangian averaging of the velocity into the advection-vorticity

coupling (1.10) recovers the LAE-α equations ([45]).

3.3.4 Construction of symplectic velocity interpolation

We finally construct a velocity interpolant that will yield maps with suitable spectrum decay, and

thus suitable spectral Jacobian. For a velocity v = ∇⊥Ψ, suppose that we know the Hamiltonian

Ψ on the grid. Alternatively, that we know v on the grid, but can solve for Ψ by the Poisson

problem −∆Ψ = curl v. Combining the previous sections, we mollify and upsample Ψ, then apply

high-degree interpolation:

Ψ̃ := Sp(p)
[
UNupMKmol

Ψ
]
.

Our velocity interpolant is then defined as the polynomial gradient ṽ = ∇⊥Ψ̃.

This consists of four operations: mollification, upsampling, spline construction and spline gra-

dient. These are four operations on the spline coefficients, that are “diagonal” in Fourier space.

The upsampling is not technically diagonal, as it changes the grid size. Still, this can be seen as

a sequence of pointwise multiplications in Fourier space. These are summarized in Algorithm 3.1.

Once these spline coefficients are computed, we are ready to evaluate ṽ by Equation (3.9) and de

Boor’s algorithm.

53

Algorithm 3.1 Symplectic velocity interpolant construction.

Input:

• Ψ: grid data, the Hamiltonian of the backward map

• Kmol: mollification wavenumber cutoff

• Nup: upsample grid size

• p: degree of Hamiltonian interpolant

Output: c1,k, c2,k: spline coefficients of the components of the velocity interpolant

1: â← F(Ψ)

2: âk ←


âk if |k| ⩽ Kmol

0 otherwise

∀k ▷ mollification

3: â← N2
up

N2


0 0 0

0 â 0

0 0 0

 ▷ upsampling

4: âk ← âk/F(Kp)k ∀k

▷ compute spline coefficients by inverting convolution, Kp defined by (A.6)

5: ĉ1,k ← 1−e−ik2·2π/Nup

2π/Nup
âk ∀k ▷ coefficients of spline derivative, Equation (3.10)

6: ĉ2,k ← −1−e−ik1·2π/Nup

2π/Nup
âk ∀k

7: c1 = F−1(ĉ1), c2 = F−1(ĉ2)

54

4 Volume-preserving CMM for incompressible Euler

In this section, we derive a volume-preserving Characteristic Mapping Method for the 2D incom-

pressible Euler equations on the torus. Combining the advection-vorticity coupling (1.10) with

the backward velocity of Proposition 2.1, the incompressible Euler equations become a system of

flows for the forward and backward maps. We integrate these with various explicit and symplectic

integrators, using the velocity interpolation scheme of the previous section. The final vorticity can

then be sampled using the composition strategy described in Section 3.2.3. We first describe a time

integration procedure for the flows. We then derive an error estimate, and perform convergence

tests.

4.1 Time integration

Let u be the velocity in the 2D incompressible Euler equations. Let Φ denote the flow of u, and let

X be the backward map. Then, as in the advection-vorticity coupling (1.10), we have u = ∇⊥ψ,

where the stream function ψ solves −∆ψ = ω0 ◦ X, following the Biot-Savart law (1.9). From

Proposition 2.1, the backward map X is then the flow of the velocity v = −∇⊥(ψ ◦Φ). We have

arrived at a system of flows for the forward and backward maps, with coupled velocities:

∂tX = v ◦X

∂tΦ = u ◦Φ

ψ = −∆−1(ω0 ◦X)

v = −∇⊥(ψ ◦Φ)

u = ∇⊥ψ.

(4.1)

We now describe a scheme to integrate (4.1), using the symplectic integrators from Section 2.2.2

and the velocity interpolation of Section 3.3.

4.1.1 Notation

In addition to the quantities used in Equation (4.1), we define the following quantity for convenience:

write Ψ = −ψ ◦Φ, so that v = ∇⊥Ψ. That is, Ψ acts as a non-autonomous Hamiltonian for the

backward map. All of the quantities thus far refer to the true solution.

We then denote by χ a discretized backward map, and by φ a discretized forward map. We

compute these on a uniform rectilinear grid Γχ of Nχ × Nχ points. The vorticity ω, the stream

55

function ψ and the forward velocity u are computed on a grid Γψ of Nψ ×Nψ points. Finally, the

velocity v of the backward map, which we will obtain from Algorithm 3.1 by upsampling, lives in

a grid Γv of size Nv ×Nv. All grids follow the same definition of Equation (2.9).

There are thus three grids at play. The grid Γχ is typically the coarsest grid. We would like

to keep Nχ as small as possible, as it is on this grid that the bulk of computations will occur.

Namely, these are the fixed point iterations in the symplectic integrators, which all require multiple

evaluations of the velocity. The next grid Γψ is typically finer than Γχ. The motivation for

this is that we need to properly resolve the stream function ψ, which generates the velocities,

and accumulates fine details over time. Finally, the grid Γv is the finest; it holds the upsampled

backward velocity.

We denote by p the global order of all the integrators at play. We denote the degrees of

spatial interpolation by plow and phigh. phigh, which is typically 7, is used for the interpolation of

the symplectic velocity, as motivated in Section 3.3.1. plow, which is typically 3, is used for all

other spatial interpolation, whenever we are not concerned with the decay in the spectrum of the

resulting quantity. We assume uniform time steps t0, t1, . . ., with step size ∆t. Finally, we will also

be interpolating in time, using Lagrange interpolation. We denote by s the degree of interpolation

in time, and by ℓti(t) the Lagrange basis polynomial at the node ti. To differentiate between

interpolated quantities and quantities of the true solution, we denote interpolated quantities with

a tilde.

U and M denote the upsampling and mollification operators, defined respectively in Sections

3.2.3 and 3.3.3.

4.1.2 Time-stepping procedure

Suppose that at the beginning of a time step, t = tn, we have the current submap χ[tn,τm] and

forward flow φ[τm,tn], as well as the previous, completed submaps χ[τ1,τ0], . . . , χ[τm,τm−1]. We also

have access to all the quantities we describe below, from previous time steps. We describe a method

to compute χ[tn+1,τm] and φ[τm,tn+1].

We begin by approximating the vorticity ωn at tn as the pullback of ω0 by the backward map,

which by the semigroup decomposition (1.2) we can write as

ωn = ω0 ◦ χ[τ1,τ0] ◦ · · · ◦ χ[τm,τm−1] ◦ χ[tn,τm]. (4.2)

This is computed as follows. First, χ[tn,τm] is upsampled onto the grid Γψ, if necessary. Then, each

56

χ[τi,τi−1] is interpolated in space; we call this interpolant χ̃[τi,τi−1]. Finally, the composition (4.2) is

evaluated on the finer grid:

ωn :=
(
ω0 ◦ χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1]

)(
UNψ [χ[tn,τm]]

)
. (4.3)

The interpolation degree for χ̃[τi,τi−1] is taken to be plow. The lower-order interpolation may be used

here since the velocities resulting from this computation will be mollified. Next, we approximate

the stream function by inverting the Biot-Savart law (1.9), as well as the forward velocity:

ψn := −∆−1ωn

un := ∇⊥ψn.
(4.4)

These are computed in frequency space. As usual, the Poisson problem is solved with the integral

condition
∫
T 2 ψ

n = 0.

Flowing the forward and backward maps in the interval [tn, tn+1] requires the respective veloci-

ties in this interval. However, the velocities at any t > tn are unknown at this point. We have found

that it is sufficient, for the order of accuracy that we desire, to extrapolate the velocities. This is

performed by interpolating the velocities over some previous time steps with Lagrange interpola-

tion. We note that there are some alternatives to this extrapolation if a higher order is desired.

For instance, one could modify an Adams-Bashforth multi-step method to estimate X [tn+1,τm] in

terms of the velocities un−s, . . . ,un. One would then have an estimate of ωn+1, which gives un+1,

circumventing the need for extrapolation. In this work, however, we shall just use the extrapolation

method.

At this point, we may choose to flow either the forward or backward map first (or, perhaps,

to flow them both simultaneously in a coupled fashion). We choose to first flow the forward map

φ, and then flow the backward map χ, using the updated backward velocity given in terms of

φ[τm,tn+1]. To this end, we mollify the forward velocities ui, and then interpolate them by degree

plow splines in space and degree s Lagrange polynomials in time:

ũ(x, t) :=
n∑

i=n−s
Sp(plow)[M[ui]](x)ℓti(t). (4.5)

The mollification is performed in order to smooth out the fine details that u acquires over time,

which by our assumption contribute very little to the overall flow. Note that by commuting convo-

lutions and derivatives, this is equivalent to mollifying ψn or ωn. We then apply some integrator

of order p to φ[τm,tn] with the velocity ũ, to obtain φ[τm,tn+1]. This integrator is typically RK2 or

RK4.

57

We remark that we are not concerned with any conservation properties of φ; we compute φ

purely to compute the velocity of χ. We can thus make some choices in the interest of performance

and accuracy. For instance, we can flow φ by some non-conservative (and in particular, explicit)

integrator, such as RK4. We are moreover not concerned with the decay in the spectrum of φ, and

so we only use the lower-order spatial interpolation. Finally, we also do not need to take care to

construct ũ to be exactly divergence-free. This allows computing each ui as a gradient in Fourier

space rather than as a polynomial gradient, which saves an order of accuracy in space.

We are now ready to flow the backward map χ. To this end we first interpolate the stream

function in space and time:

ψ̃(x, t) :=

n∑
i=n−s

Sp(plow)[ψi](x)ℓti(t). (4.6)

This interpolant is used to extrapolate ψ. The lower-order spatial interpolation is used, as once

again, the backward velocity computed from the quantity ψ̃ will be mollified. We then compute

the Hamiltonian of the backward map following Proposition 2.1, at time tn+1 using the updated

forward flow:

Ψn+1 := −ψ̃(φ[τm,tn+1], tn+1). (4.7)

From Ψn+1 we compute the velocity used for the symplectic flow of the backward map, as described

in Section 3.3. That is, we mollify Ψn+1 with cutoff Kmol, upsample it onto the fine grid Γv,

interpolate it with the higher-order splines, and take the polynomial gradient. This amounts to the

following steps:

Ψn+1 ←MKmol
[Ψn+1]

Ψn+1 ← UNv [Ψ
n+1]

Ψn+1(x)← Sp(phigh)[Ψn+1](x)

vn+1(x) := ∇⊥Ψn+1(x).

(4.8)

All of these steps are diagonal in frequency space, computed as in Algorithm 3.1. We then inter-

polate this quantity in time,

ṽ(x, t) :=

n+1∑
i=n−s+1

vi(x)ℓti(t),

and apply one step of an order-p symplectic integrator with the velocity ṽ to χ[tn,τm], to finally

obtain χ[tn+1,τm].

58

Remark 4.1. In this section we defined in particular the quantities ωn and ũ. We note that these

do not constitute the solution of the method. Rather, these are only intermediate quantities used to

flow the backward maps. The solution of the method is still defined to be the composition

ω0 ◦ χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1]

as defined in Section 3.2.3.

After each time step we check the remapping condition, and if it is violated, we initialize a new

submap. Algorithm 4.1 summarizes the time-stepping and remapping processes.

4.1.3 Initializing the method

The above iteration process relies heavily on velocity extrapolation. However, at t = t0, we only

know one sample of the velocity in time, namely u0 = ∇⊥(−∆−1ω0). Given this single sample, we

could simply lower the order of interpolation in time near t0. However, this also lowers the global

order of the method. Thus, here we describe a scheme to sample some high-order approximations

of the velocity near t0, so as to bootstrap the method.

For simplicity, we illustrate the process to obtain a second-order approximation of the forward

velocity u after one time step. At t = t0 := 0, the forward velocity u0 = ∇⊥(−∆−1ω0) is known.

We then initialize u1 = u0, and interpolate u0 and u1 in space and time by ũ. We want to

approximate X [∆t,0]. In this case since the final time ∆t is known (and small), we can do so by

integrating ũ backward, which is equivalent to integrating

ṽ(x, t) := −ũ(x,∆t− t) (4.9)

forward, for t ∈ [0,∆t]. Thus we apply one step of some explicit, sufficiently-high order integrator,

to χ[0,0] := id with the velocity ṽ from (4.9), to obtain χ[∆t,0]. We set ω1 = ω0(χ[∆t,0]) and u
1 =

∇⊥(−∆−1ω1), and then again interpolate by ũ. We then reset χ[0,0] = id, integrate χ[∆t,0] again,

recompute ω1 with the new map, and update u1 = ∇⊥(−∆−1ω1) with the better approximation.

We iterate this process until the ω1 computed by the one-step flow converges; then ω1 is an at least

second-order approximation to ω at t = ∆t.

Once this process converges, we use ω1 to compute all the quantities from Section 4.1.2 that

are necessary for the time-stepping, we interpolate all these quantities in time, and then proceed

with the above time-stepping as usual. Note that we do not save the map χ[∆t,0] computed here,

as this map is not computed in a volume-preserving fashion.

59

Algorithm 4.1 One time step of volume-preserving CMM for 2D incompressible Euler.

Input:

• χ[τ1,τ0], . . . ,χ[τm,τm−1]: previous submaps

• χ[tn,τm]: current submap

• φ[τm,tn]: current forward flow

• ψi, ui and vi: stream functions and forward and backward velocities, respectively, from

previous time steps

1○ Compute vorticity and forward velocity

1: ωn ← ω0 ◦ χ[τ1,τ0] ◦ · · · ◦ χ[τm,τm−1] ◦ χ[tn,τm] ▷ computed by Equation (4.3)

2: ψn ← −∆−1ωn, un ← ∇⊥ψn ▷ computed in Fourier space, Equation (4.4)

2○ Forward flow

3: ũ(x, t)← Interpolate (M(un−s), . . . ,M(un)) ▷ degree plow in space, s in time

4: φ[τm,tn+1] ← Explicit RK integrator step (φ[τm,tn], ũ(x, t))

3○ Compute backward velocity

5: ψ̃(x, t)← Interpolate (ψn−s, . . . , ψn) ▷ degree plow in space, s in time

6: Ψn+1 ← −ψ̃(φ[τm,tn+1], tn+1)

7: vn+1(x)← Construct symplectic velocity (Ψn+1)

▷ Algorithm 3.1 with parameters Kmol, Nv, phigh

4○ Backward flow

8: ṽ(x, t)← Interpolate (vn−s+1(x), . . . , vn+1(x)) ▷ degree s in time

9: χ[tn+1,τm] ← Symplectic integrator step (χ[tn,τm], ṽ(x, t))

5○ Remapping

10: if edet[χ[tn+1,τm]] > δdet then

11: χ[τm+1,τm] ← χ[tn,τm] ▷ store previous submap

12: m← m+ 1, χ[tn,τm] ← id, φ[τm,tn] ← id ▷ reset current maps

13: go to line 4 ▷ restart current time step

14: end if

60

One can extrapolate the above process to achieve an approximation of the initial velocities to

any order, by adding more samples in time and raising the order of the interpolation and integration.

Thus for third order, for instance, one would also compute u1/2, interpolate {u0,u1/2,u1}, compute

χ[∆t/2,0] and χ[∆t,0], and update the velocities accordingly.

4.2 Error analysis

4.2.1 Error estimate

In this section, we provide an asymptotic estimate of the global error of the backward map, com-

puted from the scheme described in Section 4.1.2 . The error is given in the ℓ∞ norm on the grid.

For ease of notation we omit dependence on the grid; thus by the expression ∥χ[tn,t0]−X [tn,t0]∥ℓ∞ ,

for instance, we understand that X [tn,t0] is first projected onto the same grid as χ[tn,t0]. For sim-

plicity, we prove the error estimate for one single submap χ[tn,t0] only, with no remapping. Some

error analysis has been done in the CMM with remapping and over multiple submaps; see e.g. [40].

We shall make some assumptions while deriving the error bound. First, when computing ωn by

Equation (4.2), we can write

∥ωn − ω(tn)∥ℓ∞ = O
(
∥χ[tn,t0] −X [tn,t0]∥ℓ∞

)
using a Lipschitz condition for ω0. When computing ψn and un by Equation (4.4) however, we

shall also assume that

∥ψn − ψ(tn)∥ℓ∞ , ∥un − u(tn)∥ℓ∞ = O
(
∥χ[tn,t0] −X [tn,t0]∥ℓ∞ +∆x1/∆x

)
. (4.10)

This is the assumption made in [45]. It is made rigorous in [40], where the authors derive error

estimates in the appropriate Hölder norms. The end result however is the same.

Another assumption is that all the quantities in question are sampled onto sufficiently fine grids,

so that there is no significant aliasing errors; and thus that any errors incurred from operations in

frequency space are on the order O
(
∆x1/∆x

)
.

Moreover, we do not include the effects of any mollification in the analysis, similar to the error

analysis in [45]. The justification for this is twofold. First, the primary reason for mollifying the

backward velocity v is to have sufficient decay in the spectrum of the resulting map χ. However,

if in the error analysis we may take the grid for χ to be arbitrarily fine, then we are not concerned

with how quickly the spectrum of χ decays, and thus we may discount mollification. Secondly, we

mainly mollify the stream function ψ. However, the grid of ψ is separate than that of χ, and so

61

we can make Γψ as fine as required to resolve all important details of the flow, independent of the

other grids.

For notational convenience we take Nχ = Nψ = Nv, and let ∆x = 2π
Nχ

be the uniform spacing

of all three grids. While in practice, Nχ and Nv differ by several powers of two, we understand

that the upsampling only affects the constant in front of the error bound, and not the order of the

method. We also remark that the interpolated velocities ũ and ṽ may be discontinuous in time at

each ti, but that this does not have an effect on the overall order of the method. This is because the

Runge-Kutta integrators here only require regularity in the interior of each time interval [ti, ti+1]

for convergence ([45]).

Finally, we remark that the estimates here are essentially standard ODE and interpolation

estimates, due to the decoupling of space and time. The estimate is exactly what one would expect

given the order of each integrator and interpolant. Moreover, the powers of ∆x and ∆t in the

estimate are separate. This is in contrast to other implementations of the CMM (e.g. [45]), where

the error analysis is slightly more involved and the errors in space and time are coupled.

Theorem 4.2. Under the assumptions above, the global error of the backward map is asymptotically

∥χ[tn,t0] −X [tn,t0]∥ℓ∞ = O
(
∆tmin (p, s+1) +∆xmin (plow+1, phigh)

)
.

Proof. Define the error in the backward and forward maps respectively, at any time ti, to be

Ei := ∥χ[ti,t0] −X [ti,t0]∥ℓ∞ , Eiφ :=∥φ[t0,ti] −Φ[t0,ti]∥ℓ∞ .

Given En, we derive an asymptotic bound on En+1.

We first bound the error in the forward map in terms of the error in the backward map. ũ is

defined by Equation (4.5) as the interpolation of the ui, of degree plow in space and s in time. Thus

by (4.10) and the spline interpolation error estimate Theorem A.1, we have

∥ũ(t)− u(t)∥L∞ = O
(
En +∆ts+1 +∆xplow+1 +∆x1/∆x

)
= O

(
En +∆ts+1 +∆xplow+1

)
for all t reasonably close to tn. Then, φ[tn+1,t0] is obtained from φ[tn,t0] by one step of an integrator

of order p with velocity ũ, so by Grönwall’s lemma we can write

En+1
φ ⩽ ∥φ[tn,t0] −Φ[tn,t0]∥ℓ∞ +O

(
∆tp+1 +∆t sup

tn⩽t⩽tn+1

∥ũ(t)− u(t)∥L∞

)
= Enφ +O

(
∆tp+1 +∆tEn +∆ts+2 +∆t∆xplow+1

)
.

62

Iterating this over previous time steps yields

En+1
φ ⩽ O

(
∆t

n∑
i=1

Ei +∆tp +∆ts+1 +∆xplow+1

)

= O
(
En +∆tmin (p, s+1) +∆xplow+1

)
. (4.11)

Next we interpolate the stream function following Equation (4.6), with degrees plow in space

and s in time, so again by (4.10) and Theorem A.1 we have

∥ψ̃(t)− ψ(t)∥L∞ = O
(
En +∆ts+1 +∆xplow+1

)
for t near tn. Then following Equation (4.7) we set Ψn+1 = −ψ̃(φ[tn+1,t0], tn+1), and estimate

∥Ψn+1 −Ψ(tn+1)∥ℓ∞ = ∥ψ̃(φ[tn+1,t0], tn+1)− ψ(Φ[tn+1,t0], tn+1)∥ℓ∞

⩽ ∥ψ̃(φ[tn+1,t0], tn+1)− ψ(φ[tn+1,t0], tn+1)∥ℓ∞

+ ∥ψ(φ[tn+1,t0], tn+1)− ψ(Φ[tn+1,t0], tn+1)∥ℓ∞

⩽ ∥ψ̃(tn+1)− ψ(tn+1)∥L∞ + C∥φ[tn+1,t0] −Φ[tn+1,t0]∥ℓ∞

where C is a Lipschitz constant for ψ(tn+1). It follows that

∥Ψn+1 −Ψ(tn+1)∥ℓ∞ = O
(
En + En+1

φ +∆ts+1 +∆xplow+1
)
. (4.12)

Following Equation (4.8), we upsample and interpolate Ψi, this time with the higher-degree

splines, and take vi to be the perpendicular gradient of this interpolation. This derivative of

polynomials makes us lose an order in space, by Theorem A.1, and so

∥ṽ(t)− v(t)∥L∞ ⩽ ∥Ψn+1 −Ψ(tn+1)∥ℓ∞ +O
(
∆ts+1 +∆xphigh

)
(4.13)

for t ∈ [tn, tn+1]. We finally apply one step of a symplectic integrator of order p to χ[tn,t0], with

velocity ṽ, so once more Grönwall’s lemma gives

En+1 ⩽ En +O

(
∆tp+1 +∆t sup

tn⩽t⩽tn+1

∥ṽ(t)− v(t)∥L∞

)
.

Inserting equations (4.11), (4.12) and (4.13) and simplifying gives

En+1 = O
(
En +∆t ·∆tmin (p, s+1) +∆t∆xplow+1 +∆t∆xphigh

)
.

Finally, iterating over previous time steps yields

En+1 = O
(
∆tmin (p, s+1) +∆xmin (plow+1, phigh)

)
.

63

Time step ∆t 1/512 Time interpolation order s+ 1 4

Map grid Nχ 512 Integrator order p 4

Stream function grid Nψ 2048 Mollification cutoff Kmol 20

Upsampled velocity grid Nv 2048 Fixed-point convergence εsym 10−13

Spatial interpolation degree plow 5 Spatial interpolation degree phigh 7

Table 4.1: Parameters for the convergence test baseline solution.

4.2.2 Convergence tests

We perform convergence tests to provide numerical evidence of the error estimate in the previous

section. The initial vorticity we use is that of the four-modes test (see [45], [34]). We go into more

detail about the four-modes test and the implementation in the upcoming section.

We test the convergence in space and time separately. In all tests we compute a single backward

map until t = 1. We estimate the backward map error by comparing against a baseline numerical

solution with high parameters. These parameters of the baseline solution are shown in Table 4.1.

For the time convergence test, we then vary ∆t ∈ {1/256, . . . , 1/32} and compute the map error

in both second and fourth order in time configurations. The other parameters match those of the

baseline solution. The results are plotted in Figure 4.1a. For the space convergence test, we vary

Nχ ∈ {32, . . . , 256} and compute the error in the fourth and sixth order in space configurations.

The results are plotted in Figure 4.1b. In all tests we see convergence rates matching those predicted

by Theorem 4.2.

64

(a) Time convergence test. (b) Space convergence test.

Figure 4.1: Convergence tests: backward map errors compared to the baseline solution at t = 1.

65

5 Numerical experiments

We have developed a GPU implementation of the algorithm proposed in Section 4. In this section

we run various tests inspired by the previous iteration of the Characteristic Mapping Method for the

2D incompressible Euler equations [45]. All simulations are run on an NVIDIA GeForce RTX 4070,

with 12 GB VRAM and 5888 CUDA cores. The implementation is written primarily in Python,

with GPU computations enabled by the library CuPy. Certain portions, namely the interpolation

and symplectic integrators, are implemented directly as CUDA kernels in C++. The proposed

algorithm, being a semi-Lagrangian scheme, is naturally parallelizable. The only operations that

are not pointwise in physical or frequency space are FFTs.

This is not the first GPU implementation of a Characteristic Mapping Method; see for instance

[37] and [24]. This implementation was developed independently, however. We also note that

efficiency is not necessarily the focal point of this thesis. Thus, while we present some simulation

times, although fast, these are almost certainly not optimal.

In this section we perform four-modes tests and a vortex merger test. We first perform a four-

modes test with optimal parameters for the spectral Jacobian. We inspect the generated vorticity

and Jacobian error of each submap, and in particular investigate the conservation when composing

submaps. We then consider a four-modes test where the parameters do not lead to a satisfactory

Jacobian error. We finally run a vortex merger simulation, where we consider the Jacobian error

in an unstable test and illustrate the arbitrary spatial resolution of the method.

5.1 4-modes test: optimal Jacobian configuration

In this section and the next, we run a four-modes test. The initial vorticity of this test is

ω0(x) = cos (x1) + cos (x2) + 0.6 cos (2x1) + 0.2 cos (3x1).

The four-modes test is ideal for scrutinizing the spatial accuracy of schemes. The spatial complexity

of solutions grows at a precise rate; see the radius of analyticity plots of the vorticity in [34]. This

test is performed in [45] with the Characteristic Mapping Method, and in [34] with the Cauchy-

Lagrangian method. The Cauchy-Lagrangian method is a scheme for the incompressible Euler

equations that integrates solutions in time by expanding fluid particle trajectories as Taylor series.

By its nature, the Cauchy-Lagrangian method is very high order and can get near machine precision

solution and conservation error. However, it is not formulated in terms of the backward map, and

thus cannot exploit the semigroup decomposition (1.2). As a result, for reasons of spatial resolution,

66

Time step ∆t 1/32 Time interpolation order s+ 1 2, 4

Map grid Nχ 256 Integrator order p 2, 4

Stream function grid Nψ 256 Mollification cutoff Kmol 20

Upsampled velocity grid Nv 2048 Fixed-point convergence εsym 10−13

Spatial interpolation degree plow 3 Jacobian remapping condition δdet 10−13

Spatial interpolation degree phigh 7

Table 5.1: Parameters for the four-modes test.

fine grids are required. In [34], the four-modes test is run with the Cauchy-Lagrangian method

until t = 5, with grid sizes ranging from 10242 to 81922. In contrast, in [45] with the Characteristic

Mapping Method, the test is run until t = 8, and the backward maps only need to be computed

on a grid of size 1282. Here, we compute the backward maps on a grid of size Nχ = 256, as we’ve

found that we need slightly more resolution to properly resolve the Jacobian.

In this section we perform the test with parameters that we have found to be optimal for the

four-modes initial condition. The parameters are listed in Table 5.1. In particular we use degree

phigh = 7 interpolation and upsampling to Nv = 2048 for the symplectic velocity interpolation.

Moreover, we use a mollification cutoff Kmol = 20, which is approximately one sixth of the Nyquist

frequency of the map grid. We repeat the test with the second and fourth order integrators.

5.1.1 Vorticity and Jacobian

We first inspect the vorticity generated by the method. A contour plot of the initial vorticity is

plotted in Figure 5.1. We then plot the vorticity at times t = 1, 2, . . . , 8 in Figures 5.2a-5.2h. For

the contour plots we use the maps generated by the fourth order scheme. Following our definition

of the solution of the method in Section 3.2.3, each submap χ[τi,τi−1] is interpolated as χ̃[τi,τi−1].

This interpolation uses an upsampled grid of size Nup = 2048 and degree 7 splines. To plot the

vorticity, we then sample the pullback

ω0 ◦ χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1]

on a grid of size N = 1024. The vorticity plots are visually essentially identical to those in [45] and

[34] with the Characteristic Mapping and Cauchy-Lagrangian methods, respectively.

We next inspect the spectral Jacobian error of each submap. In Figures 5.3a and 5.3b we

plot the spectral Jacobian errors of the submaps over time, for the integrators of order 2 and 4

67

Figure 5.1: Initial vorticity in the four-modes test.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Figure 5.2: Vorticities in the four-modes test over time.

68

Solution time t 1 2 3 4 5 6 7 8

Runtime, order 2 1.58s 2.25s 3.40s 4.54s 5.79s 7.14s 8.56s 10.09s

Runtime, order 4 1.92s 3.69s 5.52s 7.49s 9.53s 11.75s 14.04s 16.30s

Time to sample ω 0.068s 0.13s 0.20s 0.30s 0.40s 0.53s 0.66s 0.78s

Table 5.2: Runtimes for the four-modes tests.

respectively. That is, at each time step, we plot the spectral Jacobian error of the current submap

at that time. In these plots we clearly see the remapping process. When the spectral Jacobian

error reaches δdet = 10−13 we initialize a new submap at the identity. We thus see a sequence of

“spikes”, each representing the evolution of one submap. To compute the solution until t = 8, 20

submaps are required for the second order integration and 24 submaps are required for the fourth

order configuration. This discrepancy is due to the fact that the fourth order integrator has more

intermediate stages, and hence accumulates more rounding error than the second order integrator.

In particular, we see again that the Jacobian error is independent of the order of the scheme.

Considering the number of submaps required, we see a serious improvement over the space-time

coupled Characteristic Mapping Method. In the CMM for incompressible Euler implementation

of [45], 105 submaps are required to reach the final time t = 8. Moreover, we see in [45] that the

number of submaps required to represent the solution rises significantly at higher times. Here, the

number of time steps per submap is more steady over time. Finally, we note that [45] employs

a Jacobian remapping condition with δdet = 10−4. Our condition of δdet = 10−13 is thus a large

improvement. This is not a fair comparison, however, given that [45] does not perform exactly

volume-preserving integration.

Finally, we examine the time taken to run these simulations. Table 5.2 shows the total runtime

required to reach each t = 1, 2, . . . , 8, for both the second and fourth order configurations. Table

5.2 also shows the amount of time taken to sample the vorticities plotted above. That is, the time

taken to upsample each submap to the 20482 grid, and evaluate each submap at 10242 points with

degree 7 interpolation. In particular, we see that we can very quickly sample the final vorticity at

arbitrary locations.

69

(a) Order 2 integration.

(b) Order 4 integration.

Figure 5.3: Four-modes test: spectral Jacobian error of the current submap at each time step.

70

5.1.2 Conservation of composed submaps and enstrophy

Each submap is exactly volume-preserving by construction. We would now like to examine the

conservation properties when we compose the submaps, and when we sample the vorticity using

this composition.

We first examine the volume preservation of the composed maps. We take the same submaps

χ[τi,τi−1] as in the test of the previous section; that is, the exact same data that generated the

above plots and table of runtimes. In particular, each χ[τi,τi−1] lives on a grid of size 2562. Then,

as usual, χ̃[τi,τi−1] is obtained from χ[τi,τi−1] by upsampling to a grid of size 20482 and interpolating

with degree 7 splines. We then sample the composition

χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τm,τm−1]

on various choices of grid size N . We plot the spectral Jacobian error of the resulting composed

map over time. To be precise, suppose that at time tn the current submap is χ[tn,τi]. Then, we

upsample χ[tn,τi] to the grid size N , evaluate the composition(
χ̃[τ1,τ0] ◦ · · · ◦ χ̃[τi,τi−1]

)(
UNχ[tn,τi]

)
, (5.1)

and compute the spectral Jacobian error. The results are shown in Figure 5.4a. We see a jump in

the Jacobian error near t ≈ 0.7; this is the point at which we switch from having a single submap

to having multiple submaps.

Otherwise, here we see the same behaviour as for the spectral Jacobian of a single submap. We

at first see a slow growth of the spectral Jacobian error, and then see a sudden regime change where

the error quickly rises. The change in regime represents a loss of spatial resolution on the current

grid size, and is later for finer grids. In particular, we see that the spectral Jacobian error in the

composition is again only a property of the grid, and not of the data. In practice, we would rarely

be interested in the Jacobian error of the composed maps, since at later times, the Jacobian might

require an extremely fine grid to be properly resolved. However, sampling the composition (5.1) at

individual points remains essentially volume-preserving. We again emphasize that the composition

uses the submaps on relatively coarse grids. In particular, the time to compute the submaps is the

same as in Table 5.2. It is only to estimate the spectral Jacobian that the fine grids are used.

We next examine conservation in the advected vorticity ω. In general, the vorticity has infinitely

many conserved integrals. For any measurable function h : R→ R, the quantity∫
T 2

h(ω(x, t))dx

71

is constant in time. This follows from the change of variables formula and the volume preservation

of the backward map. Taking h(ω) = ω2 gives a conserved quantity known as the enstrophy ([26]).

We thus define the following quantity:

Enstrophy conservation error := ∥ω∥2L2 − ∥ω0∥2L2 .

This is computed at each time step, on various grid sizes N2, using the same vorticity sampling

strategy as above. The enstrophy is computed in Fourier space by Parseval’s identity. The compo-

sition (5.1) is again sampled over time, for different grid sizes N = 256, 512, 1024, 2048. We then

compute the vorticity on the grid by sampling ω0. The enstrophy error is plotted over time in

Figure 5.4b.

The situation in the enstrophy error is very similar to that of the composed Jacobian. On

sufficiently fine grids, the error is essentially at machine precision. For any grid size however, there

is a point at which ω is no longer well-represented on the grid, and the error begins to grow. In

particular, enstrophy is exactly conserved, but it may take an extremely fine grid to see, numerically,

that it is conserved. We see the enstrophy error remain near machine precision longer than the

Jacobian error, even for the same grid sizes. This is due to the fact that the Jacobian involves

taking a derivative, while the enstrophy does not. The derivative multiplies in Fourier space by the

wavenumber, raising the tail of the spectrum.

An important conclusion is the following: our composition strategy is essentially volume-

preserving. By extension, integrals of ω are essentially conserved. By this we mean that the

sampling at individual points is essentially conservative. Seeing this conservation numerically,

however, requires sampling on a full grid. To avoid aliasing errors, this grid must be sufficiently

fine. Thus, one may always sample the final vorticity at arbitrary locations. However, when making

statements about the final vorticity on a grid, one must be careful to make the grid sufficiently fine.

5.1.3 Fine grid comparison

Our composition strategy relies on the assumption that upsampling the submaps yields data that

is spectrally close to volume-preserving. In other words, upsampling should give, up to spectral

accuracy, the same data as flowing a symplectic integrator on the fine grid. We would like to

validate this assumption.

We perform the following test. We take the same configuration as in the previous sections. At

each time we have the current submap, on a grid of size 2562; we denote this submap by χ256. This

72

(a) Composed spectral Jacobian error.

(b) Composed enstrophy error.

Figure 5.4: Spectral Jacobian and enstrophy errors of composed submaps, sampled over various

grid sizes, over time.

73

Figure 5.5: Fine grid comparison error (5.2) of the current submap over time.

map is integrated by a backward velocity, which we call ṽ256. We then take a map χ512, on a finer

grid of size 5122, and integrate it with the coarse velocity ṽ256. We also imitate the remapping of

χ256; that is, when the coarse grid remaps, the fine grid remaps as well. Thus, we are computing

the same flow as χ256, but on a finer grid. At each time step, we compute the following quantity:

Fine grid comparison error := ∥χ512 − U512χ256∥ℓ∞ . (5.2)

That is, we inspect how well upsampling the coarse grid data recovers the fine grid data, and thus

how well it recovers the volume-preserving flow as a whole.

The quantity (5.2) is plotted over time in Figure 5.5. We see that upsampling the coarse grid

data recovers the fine grid data to incredible accuracy. In fact, the difference is always less than

10−13, which is the iteration tolerance of the fixed-point iteration for the symplectic integrators.

Thus, up to machine precision, upsampling can indeed recover the flow of the symplectic integrator.

We note finally that this upsampling comparison could serve as an alternate remapping criterion.

Instead of the Jacobian remapping condition, one could also integrate a selection of points on a finer

grid. In this example, we would integrate χ256, as well as a small set of points in Γ512 \ Γ256. We

would then remap based on the difference between the offgrid points and U512χ256. This would be

of interest especially for the case where we would conserve some other quantity than the Jacobian.

5.2 4-modes test: suboptimal Jacobian configuration

In this section, we illustrate that our choices of parameters in the previous section are in fact

necessary to achieve a satisfactory spectral Jacobian error. We run the four modes test. Unless

74

specified otherwise, the parameters used are the same as in the previous section; that is, those from

Table 5.1. Here we replace the Jacobian remapping condition with a fixed remapping strategy. We

remap every 8 time steps, regardless of the Jacobian error. We again will plot at each time step

the spectral Jacobian error of the current submap at that time.

We first consider the effect of not upsampling the backward velocity. We set Nv = 256, and still

use degree phigh = 7 interpolation for the Hamiltonian. The spectral Jacobian error is plotted in

Figure 5.6a. We see the spectral Jacobian error quickly leave the region of machine precision. We

next consider using lower degree interpolation: we now keep Nv = 2048, and use degree phigh = 3, 5

interpolation. The spectral Jacobian error is plotted in Figure 5.6b. We see that the error is

satisfactory only in the very short term for phigh = 5, and is never so for phigh = 3. Indeed, with

phigh = 3, the spectrum of the interpolated velocity decays only like O
(
|k|−2

)
, since we lose one

order when taking the polynomial gradient. This insufficient decay carries over to the backward

map, and so we see a large spectral Jacobian error. The situation is better for phigh = 5, where

the spectrum decays like O
(
|k|−4

)
, but this is still insufficient. Finally, we consider using weaker

mollification. This is an important consideration, as we need to be careful to not remove important

details from the velocity. We take Kmol = 32, which is one quarter of the Nyquist frequency of

the map grid. The spectral Jacobian error is plotted in Figure 5.6c. Here we see that at later

times, too many fine details from the velocity are carried over to the maps, raising their spectra. In

conclusion, we see that the parameters of Section 5.1 are indeed necessary to achieve an acceptable

spectral Jacobian error.

5.3 Vortex merger problem

We next run a vortex merger test, imitating the test from [45] with the Characteristic Mapping

Method. The initial condition consists of two Gaussians, each with σ = 0.07, placed at a distance

of 0.3 from each other in the periodic unit square. We take a sum of the quickly-decaying Gaussians

to make the vorticity periodic. To be exact, we take

ω0(x) = −
∑

m∈Z2

(g(x− (0.15, 0)−m) + g(x+ (0.15, 0)−m))

with

g(x) =
1

σ
√
2π

exp

(
−1

2

|x|2

σ2

)
.

In this configuration we have two vortices of the same sign, and so the vortices have a propensity

of merging. In the presence of viscosity, these vortices would merge and eventually vanish under

75

(a) Nv = 256 (no upsampling) vs. Nv =

2048.

(b) phigh = 3, 5, 7.

(c) Kmol = 32 vs. Kmol = 20.

Figure 5.6: Spectral Jacobian errors of submaps over time, with optimal parameters (red) versus

some varied parameter (other colours).

76

Time step ∆t 1/32 Time interpolation order s+ 1 4

Map grid Nχ 512 Integrator order p 4

Stream function grid Nψ 512 Mollification cutoff Kmol 32

Upsampled velocity grid Nv 4096 Fixed-point convergence εsym 10−13

Spatial interpolation degree plow 3 Jacobian remapping condition δdet 5 · 10−13

Spatial interpolation degree phigh 7

Table 5.3: Parameters for the vortex merger test.

the effect of diffusion. However, since the Euler equations are exactly inviscid, the vortices will not

dissipate and will instead keep circling around each other, generating many instabilities and fine

scale features as time goes on.

This test is known to be very unstable. Small changes in the parameters yield large differences

in the solution. As a result, our plots quickly begin to look different from those of [45], especially

when it comes to the fine scales. We include this test for two reasons. First, we show that even in

the presence of such large instabilities, we still have conservation of the Jacobian. The conservation

is independent of any other qualities of the solution. Next, we would like to illustrate the arbitrary

spatial resolution of the method, and the fact that we can represent features much smaller than

the grid size. We do this by gradually zooming into the final vorticity plot. We run the test until

t = 25, as opposed to t = 20 as in [45]. This is because the instabilities develop at different rates

between the two methods. The parameters for this test are shown in Table 5.3.

5.3.1 Vorticity and Jacobian

We first plot the vorticity. The initial (t = 0) and final (t = 25) vorticities are plotted in Figure

5.7. The vorticity at various times in between is plotted in Figure 5.8. The vorticity is sampled

by the backward maps by the same composition strategy as for the four-modes test. We see the

flow develop extremely fine features over time. Representing the solution on a fixed grid would

require an exponentially-growing grid size over time. On the other hand, using the semigroup

decomposition of the backward map, we are able to compute the solution on a fixed grid, using a

linear amount of submaps over time.

We next inspect the spectral Jacobian error of each submap; this is plotted in Figure 5.9. We

see that the number of time steps per submap is relatively consistent over time, despite the fine

77

(a) t = 0 (b) t = 25

Figure 5.7: Vortex merger test: initial and final vorticity.

instabilities that develop. This confirms that conservation of the Jacobian is independent of other

properties of the solution. A total of 131 submaps is required to reach t = 25. This averages to

5.45 submaps per unit of time. To reach t = 20, 109 submaps are required. In the comparable test

of [45] with the Characteristic Mapping Method, 605 submaps are used to reach t = 20. We thus

again see that we are able to use less submaps than [45], due to the lack of spatial projections at

each time step. In particular, this results in significant savings in memory.

5.3.2 Illustration of arbitrary subgrid resolution

Finally, we illustrate the ability to resolve arbitrary sub-grid features of the solution. We recreate

the test performed in [45]. We pick an arbitrary location, and zoom in to the final vorticity by

sampling the submap composition on gradually smaller frames. The sampling is done by the same

composition strategy as in the four-modes test. The gradual zooms are plotted in Figure 5.10. In

particular, the final frame has a width of 2−13. We are thus able to resolve solution features that

are much smaller than the size of the grid on which the backward maps are computed. We reiterate

that this is possible since the discrete flow is exactly inviscid, and thus the fine scales are not lost

to numerical diffusion.

78

(a) t = 2 (b) t = 4 (c) t = 6 (d) t = 8

(e) t = 10 (f) t = 12 (g) t = 14 (h) t = 16

(i) t = 18 (j) t = 20 (k) t = 22 (l) t = 24

Figure 5.8: Vortex merger test: vorticity over time.

79

Figure 5.9: Vortex merger test: spectral Jacobian error of the current submap at each time step.

80

(a) Width = 2−2 (b) Width = 2−3 (c) Width = 2−4

(d) Width = 2−5 (e) Width = 2−6 (f) Width = 2−7

(g) Width = 2−8 (h) Width = 2−9 (i) Width = 2−10

(j) Width = 2−11 (k) Width = 2−12 (l) Width = 2−13

Figure 5.10: Gradual zoom into vorticity at t = 25.

81

6 Conclusion

We have seen how the time integration method used in the Characteristic Mapping Method for

the 2D incompressible Euler equations [45] is incompatible with conservation. This is due to a

spatial projection at each time step, which is common for semi-Lagrangian schemes. We have

reformulated the CMM to decouple the time integration from space, enabling conservative inte-

gration and integration in the presence of boundaries. The time integration of the submaps is

now totally Lagrangian; we have, in effect, minimized the overall number of spatial projections

required over time. Symplectic integrators were utilized for exactly volume-preserving integration.

We saw that the Fourier spectral Jacobian error gives an indication of the spatial resolution of the

submaps, motivating a spectral Jacobian-based decomposition of the backward map. We utilized

high-degree polynomial interpolation and Fourier upsampling in the interpolation of the velocity to

minimize the spatial truncation error in the submaps. As such, the submaps can be interpolated to

a high order of conservation, using the same upsampling and high-degree polynomial techniques.

Exactly-conservative interpolation is however not possible at this stage. These constructions were

applied to simulate the incompressible Euler equations on the torus. In numerical experiments, we

saw that the spectral Jacobian error of the submaps is independent of other solution features; in

particular, we can resolve very fine-scale features while retaining exact conservation. We finally saw

that our interpolation scheme gives an essentially-conservative composition across submaps. The

final composition can be sampled pointwise at arbitrary locations. To see conservation, however,

the composition must be sampled on a sufficiently fine grid.

There are many possible avenues for further work. One extension to the method that is already

in progress is an extension to the unit square. In this domain, the Fourier basis is replaced by

the Chebyshev basis, which enables the same upsampling that was utilized here. One could also

envision an extension to the sphere S2, following the geometric formulation of the CMM for 2D

incompressible Euler of [40]. In this approach, one could utilize spherical harmonics for upsampling,

and the spherical midpoint symplectic integrator ([29]) for volume preservation. A generalization

of Proposition (2.1), where we derived the velocity of the backward map, to arbitrary dimensions

or geometries, would be useful. Another direction would consider a different equation, such as the

Vlasov-Poisson equations, similar to their CMM implementation in [24], as well as other such flows

of diffeomorphisms. One could moreover be interested in the conservation of a different quantity

than the Jacobian; for this, the alternate remapping criterion suggested in Section 5.1.3 could be of

82

use. Finally, with the ideas of Section 2.1.3, one could consider a CMM over complicated domains

with boundary; the flow around an obstacle, for instance.

83

Appendix A Periodic spline interpolation

For spatial interpolation in this thesis, we use periodic bivariate cardinal B-spline interpolation. In

this appendix we review the spline basis and the construction of spline coefficients in Fourier space,

and see an error estimate.

A.1 Cardinal spline basis

We begin by defining a convenient set of basis functions. Denote by Mp : R → R the central

cardinal B-spline of degree p ([38]). This is defined recursively by

M0(x) =


1 if −1

2 ⩽ x < 1
2

0 otherwise

Mp+1(x) =
p
2 + 1 + x

p+ 1
Mp

(
x+ 1

2

)
+

p
2 + 1− x
p+ 1

Mp

(
x− 1

2

)
.

(A.1)

We note that the p here is off by one compared to [38]. Here we match p to the polynomial

degree. Moreover, Equation (A.1) is an instance of the more general Cox-de Boor formula applied

to uniformly-spaced knots.

For example, the central cardinal B-splines of degrees 1-3 can be seen to be

M1(x) =


1 + x −1 ⩽ x < 0

1− x 0 ⩽ x < 1

M2(x) =


1
2

(
3
2 + x

)2 −3
2 ⩽ x < −1

2

1
2

(
3
2 − x

2
)
−1

2 ⩽ x < 1
2

1
2

(
3
2 − x

)2 1
2 ⩽ x < 3

2

M3(x) =



1
6(2 + x)3 −2 ⩽ x < −1

1
6(4− 6x2 − 3x3) −1 ⩽ x < 0

1
6(4− 6x2 + 3x3) 0 ⩽ x < 1

1
6(2− x)

3 1 ⩽ x < 2

The central cardinal B-splines of degrees 0-3 are shown in Figure A.1a-A.1d.

Some important properties of the central cardinal B-splines, from [38], are as follows. Define

the space of splines over R, with the integers as knots, by

Sp = {q : q ∈ Cp−1(R), q is a polynomial of degree p in each (n, n+ 1), n ∈ Z}.

84

(a) M0(x) (b) M1(x)

(c) M2(x) (d) M3(x)

(e) Four central cardinal B-splines of degree 3 shifted

by integers (blue), and their sum (red), forming a par-

tition of unity.

Figure A.1: The first central cardinal B-splines M0-M3, and the partition of unity property.

85

Analogously, there is the shifted class of splines,

S∗p = {q : R→ R : q
(
x+ 1

2

)
∈ Sp}.

Then, for odd p, the set of integer shifts of Mp forms a basis of Sp, and for even p, a basis of S∗p .

In particular each Mp is globally Cp−1. Moreover, for any function f : R → R, there exist unique

spline coefficients ak such that the piecewise-polynomial

q(x) =
∑
k∈Z

akMp(x− k)

interpolates f at the integers. Next, the integer-shifted Mp form a partition of unity over R; this

is illustrated in Figure A.1e. Finally, the support of Mp is
[
−p+1

2 , p+1
2

]
.

To evaluate the central basis splines, de Boor’s algorithm is available ([25]). The recursive

algorithm computesMp(x) in a manner very similar to the Cox-de Boor formula A.1. This algorithm

is numerically stable, avoiding the evaluation of finite differences, which are used in other definitions

of the basis splines.

We next define a basis of interpolants over a grid on the torus T 2 = R2/2πZ2. Take a grid Γ of

N ×N points,

Γ = {xj := hj : 0 ⩽ j1, j2 < N},

where h = 2π
N . We define a basis for interpolants over Γ as follows. First, define a 1-dimensional

basis function bp,k by starting with a degree p cardinal basis spline, and then scaling, shifting and

periodicizing:

bp,k(x) =
∑
m∈Z

Mp

(
x
h − k − 2πm

)
.

Then, abusing notation, we also write bp,k for the tensor product of these:

bp,k(x) := bp,k1(x1)bp,k2(x2). (A.2)

The bp,k form a basis of the space of periodic bivariate splines of degree p over Γ ([19]), which we

denote by

Sp(p) := span{bp,k(x) : 0 ⩽ k < N}.

We omit the dependence of Sp(p) on Γ. We also denote by Sp(p)[·] the projection of functions or

grid data onto this space.

86

Finally, a well-known ([38]) expression for the derivative of a centered cardinal B-spline is

d

dx
Mp(x) =Mp−1

(
x+ 1

2

)
−Mp−1

(
x− 1

2

)
. (A.3)

Thus, derivatives of splines are shifted splines of lower degree. It follows that for our spline basis

over T 2 we have

∂

∂x1
bp,k(x) =

1

h

(
bp−1,k1

(
x1 +

h
2

)
− bp−1,k1

(
x1 − h

2

))
bp,k2(x2), (A.4)

and analogously for ∂
∂x2

bp,k.

A.2 Construction of periodic spline interpolants

Let f : T 2 → R be a function. We would like to interpolate f on the grid Γ by a piecewise-

polynomial in Sp(p). Define a candidate interpolant q(x) ∈ Sp(p) as

q(x) =
∑

0⩽k<N

akbp,k(x).

We seek spline coefficients ak so that q(xj) = f(xj) for all j. This condition can be written as

f(xj) =
∑

0⩽k<N

akbp,k(hj). (A.5)

Equation (A.5) is a linear system for the coefficients ak. The matrix in question is block-circulant

with circulant blocks, and can be solved with a sparse solver.

The spline coefficients may be solved for much more efficiently, however, by noting following.

The basis functions bp,k have a shift property: bp,k(x + hj) = bp,k−j(x). Moreover the basis

functions are symmetric in k at x = 0: bp,−k(0) = bp,k(0), since Mp is even. Thus Equation (A.5)

can be rewritten as

f(xj) =
∑

0⩽k<N

akbp,k−j(0) =
∑

0⩽k<N

akbp,j−k(0).

We recognize the right-hand side as a circular convolution. Thus, defining the kernel

Kp =


bp,(0,0)(0) · · · bp,(0,N−1)(0)

...
. . .

bp,(N−1,0)(0) bp,(N−1,N−1)(0)

 (A.6)

the coefficients ak are related to the grid data by

f |Γ = Kp ∗ a.

87

In particular, this means we can efficiently solve for the spline coefficients from the grid data with

the FFT by elementwise division in frequency space,

a = F−1(F(f |Γ) /F(Kp)).

A.3 Interpolation error

Periodic uniform spline interpolation satisfies the usual estimates expected of polynomial interpo-

lation. Here we list some 1-dimensional estimates in the case of odd-degree splines. These easily

extend to multiple dimensions. The following is a theorem of [16].

Theorem A.1. Let p be odd, f ∈ Cp+1(S1), and let q be the periodic spline of degree p interpolating

f on a uniform grid. Let 0 ⩽ r ⩽ p. Then

∥f (r) − q(r)∥L∞ = O(hp+1−r)

as the grid size h→ 0.

Some best constants for small p have been found. For instance, for the quintic case p = 5, it is

shown in [19] that

∥f (r) − q(r)∥L∞ ⩽ εr∥f (6)∥L∞h6−r,

with constants ε0 ≈ 0.071, ε1 ≈ 0.22, and so on, independent of the function f to interpolate.

88

References

[1] S. A. Denisov, Infinite superlinear growth of the gradient for the two-dimensional Euler

equation, Discrete & Continuous Dynamical Systems - A, 23 (2009), pp. 755–764.

[2] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, vol. 125 of Applied

Mathematical Sciences, Springer International Publishing, Cham, 2021.

[3] C. W. Bardos and E. S. Titi, Mathematics and turbulence: where do we stand?, Journal

of Turbulence, 14 (2013), pp. 42–76.

[4] J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels,

Journal of Computational Physics, 58 (1985), pp. 188–208.

[5] G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity

symplectic mappings with application to symplectic integration algorithms, Journal of Statistical

Physics, 74 (1994), pp. 1117–1143.

[6] J. Bergmann, T. Maurel-Oujia, Xi-Yuan, Yin, J.-C. Nave, and K. Schneider, Sin-

gularity formation of vortex sheets in 2D Euler equations using the characteristic mapping

method, 2024. arXiv preprint, arXiv:2404.02008.

[7] J. P. Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition, Courier Cor-

poration, June 2013.

[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid

Dynamics, Springer, Berlin, Heidelberg, 1988.

[9] F. Cardin, On symplectomorphisms and Hamiltonian flows, Journal of Fixed Point Theory

and Applications, 24 (2022), p. 33.

[10] E. Celledoni, R. Mclachlan, D. Mclaren, B. Owren, G. Quispel, and W. Wright,

Energy-preserving Runge-Kutta methods, ESAIM: Mathematical Modelling and Numerical

Analysis, 43 (2009), pp. 645 – 649.

[11] P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinear-

ity, 3 (1990), p. 231.

89

[12] R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential

equations by finite differences, Communications on Pure and Applied Mathematics, 5 (1952),

pp. 243–255. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160050303.

[13] D. G. Ebin and J. Marsden, Groups of Diffeomorphisms and the Motion of an Incompress-

ible Fluid, Annals of Mathematics, 92 (1970), pp. 102–163.

[14] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.

[15] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.

[16] M. Golomb, Approximation by periodic spline interpolants on uniform meshes, Journal of

Approximation Theory, 1 (1968), pp. 26–65.

[17] T. Grafke, H. Homann, J. Dreher, and R. Grauer, Numerical simulations of possi-

ble finite time singularities in the incompressible Euler equations: Comparison of numerical

methods, Physica D: Nonlinear Phenomena, 237 (2008), pp. 1932–1936.

[18] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-

Preserving Algorithms for Ordinary Differential Equations, Springer Science & Business Media,

Mar. 2013.

[19] C. A. Hall, Error bounds for periodic quintic splines, Communications of the ACM, 12 (1969),

pp. 450–452.

[20] F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous In-

compressible Flow of Fluid with Free Surface, The Physics of Fluids, 8 (1965), pp. 2182–2189.

[21] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations, vol. 33 of Springer Series in Computational Mathematics,

Springer, Berlin, Heidelberg, 2003.

[22] F. Kang and S. Zai-jiu, Volume-preserving algorithms for source-free dynamical systems,

Numerische Mathematik, 71 (1995), pp. 451–463.

[23] A. Kiselev and V. Šverák, Small scale creation for solutions of the incompressible two-

dimensional Euler equation, Annals of Mathematics, 180 (2014), pp. 1205–1220.

90

[24] P. Krah, X.-Y. Yin, J. Bergmann, J.-C. Nave, and K. Schneider, A Characteristic

Mapping Method for Vlasov–Poisson with Extreme Resolution Properties, Communications in

Computational Physics, 35 (2024), pp. 905–937. Publisher: Global Science Press.

[25] E. T. Y. Lee, A simplified B-spline computation routine, Computing, 29 (1982), pp. 365–371.

[26] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in

Applied Mathematics, Cambridge University Press, Cambridge, 2001.

[27] J. E. MARSDEN and S. SHKOLLER, The Anisotropic Lagrangian Averaged Euler and

Navier-Stokes Equations, Archive for Rational Mechanics and Analysis, 166 (2003), pp. 27–46.

[28] J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer-

ica, 10 (2001), pp. 357–514.

[29] R. McLachlan, K. Modin, and O. Verdier, A minimal-variable symplectic integrator on

spheres, Mathematics of Computation, 86 (2016), pp. 2325–2344.

[30] O. Mercier, X.-Y. Yin, and J.-C. Nave, The Characteristic Mapping Method for the Lin-

ear Advection of Arbitrary Sets, SIAM Journal on Scientific Computing, 42 (2020), pp. A1663–

A1685.

[31] K. Modin, Geometric Hydrodynamics: from Euler, to Poincaré, to Arnold., arXiv: Mathe-

matical Physics, (2019).

[32] J.-C. Nave, R. R. Rosales, and B. Seibold, A gradient-augmented level set method with

an optimally local, coherent advection scheme, Journal of Computational Physics, 229 (2010),

pp. 3802–3827.

[33] R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first

integral of an ordinary differential equation, Discrete and Continuous Dynamical Systems, 34

(2014), pp. 1147–1170.

[34] O. Podvigina, V. Zheligovsky, and U. Frisch, The Cauchy–Lagrangian method for nu-

merical analysis of Euler flow, Journal of Computational Physics, 306 (2016), pp. 320–342.

[35] J. F. Price, 12.808 Supplemental Material, Topics in Fluid Dynamics: Dimen-

sional Analysis, a Coriolis tutorial, and Lagrangian and Eulerian Representations,

91

2022. https://ocw.mit.edu/courses/res-12-001-topics-in-fluid-dynamics-fall-2023 (accessed

10/06/2024).

[36] S. S. Ray, U. Frisch, S. Nazarenko, and T. Matsumoto, Resonance phenomenon for

the Galerkin-truncated Burgers and Euler equations, Physical Review E, 84 (2011), p. 016301.

[37] N. Saber, Two-dimensional Characteristic Mapping Method with inertial particles on GPU

using CUDA, Master’s thesis, I2M-AMU, July 2021.

[38] I. J. Schoenberg, Cardinal Spline Interpolation, Society for Industrial and Applied Mathe-

matics, 1973.

[39] A. Staniforth and J. Côté, Semi-Lagrangian Integration Schemes for Atmospheric Mod-

els—A Review, Monthly Weather Review, 119 (1991), pp. 2206 – 2223.

[40] S. Taylor and J.-C. Nave, A characteristic mapping method for incompressible hydrody-

namics on a rotating sphere, Oct. 2023. arXiv preprint, arXiv:2302.01205.

[41] , A projection-based Characteristic Mapping method for tracer transport on the sphere,

Journal of Computational Physics, 477 (2023), p. 111905.

[42] A. T. S. Wan, A. Bihlo, and J.-C. Nave, Conservative Methods for Dynamical Systems,

SIAM Journal on Numerical Analysis, 55 (2017), pp. 2255–2285.

[43] A. T. S. Wan and J.-C. Nave, On the Arbitrarily Long-Term Stability of Conservative

Methods, SIAM Journal on Numerical Analysis, 56 (2018), pp. 2751–2775.

[44] X.-Y. Yin, L. Chen, and J.-C. Nave, A Diffusion-Driven Characteristic Mapping Method

for Particle Management, SIAM Journal on Scientific Computing, 43 (2021), pp. A3155–A3183.

[45] X.-Y. Yin, O. Mercier, B. Yadav, K. Schneider, and J.-C. Nave, A Characteristic

Mapping Method for the two-dimensional incompressible Euler equations, Journal of Compu-

tational Physics, 424 (2021), p. 109781.

[46] X.-Y. Yin, K. Schneider, and J.-C. Nave, A Characteristic Mapping Method for the three-

dimensional incompressible Euler equations, Journal of Computational Physics, 477 (2023),

p. 111876.

92

[47] V. I. Yudovich, The flow of a perfect, incompressible liquid through a given region, Dokl.

Akad. Nauk SSSR, 146 (1962), pp. 561–564.

[48] G. Zhong and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson inte-

grators, Physics Letters A, 133 (1988), pp. 134–139.

93

	Abstract
	Abrégé
	Acknowledgements
	Contribution
	List of figures, tables
	Introduction
	Background
	Review of the Characteristic Mapping Method for the 2D incompressible Euler equations
	Flows, advection and semigroup decomposition
	2D incompressible Euler equations

	Thesis outline

	Volume-preserving time integration in the CMM
	Space-time decoupled integration of the backward map
	The backward map
	An ODE for the backward map
	Conservative integration near boundaries

	Symplectic integration for volume preservation
	Symplectic integrators and their properties
	Examples and Runge-Kutta structure
	Volume preservation

	Finite difference volume preservation test

	Essentially-conservative spatial discretization
	Illustration of spatial resolution
	Fourier-pseudospectral Jacobian test
	The Fourier spectrum
	Jacobian error and spatial truncation

	Backward map decomposition and sampling
	Jacobian remapping criterion
	Interpolation in X0 vs. in SDiff
	Map composition strategy

	Velocity interpolation
	Spectra of interpolated compositions
	Gradient of spline interpolants
	Mollification
	Construction of symplectic velocity interpolation

	Volume-preserving CMM for incompressible Euler
	Time integration
	Notation
	Time-stepping procedure
	Initializing the method

	Error analysis
	Error estimate
	Convergence tests

	Numerical experiments
	4-modes test: optimal Jacobian configuration
	Vorticity and Jacobian
	Conservation of composed submaps and enstrophy
	Fine grid comparison

	4-modes test: suboptimal Jacobian configuration
	Vortex merger problem
	Vorticity and Jacobian
	Illustration of arbitrary subgrid resolution

	Conclusion
	Periodic spline interpolation
	Cardinal spline basis
	Construction of periodic spline interpolants
	Interpolation error

	References

