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Abstract

This thesis is focused on describing phenomena that are emergent from a competition of timescales.

The main results are distributed into several chapters, preceded by a generalized introduction. A

discussion section follows, which describes the relevancy, interconnections, challenges, and future

directions of our contributions.

In chapter 2, we describe an extension to the two time-scale modified phase-field crystal model

(MPFC) for the examination of crystal plasticity. Two non-linear density dependent functions are

constructed to effectively represent hydrostatic strain and dislocation density. The functions are

then used to develop a new MPFC model, which accounts for strain and strain-rate couplings on

density dynamics. A short-wavelength dampening is also introduced to account for phonon scat-

tering and thermoelastic dissipation. Finally, a novel semi-implicit numeric scheme for efficient

simulations of this model is presented.

In chapter 3, we present an investigation of phonon relaxation of two-dimensional polycrys-

tals. We first measure the phonon spectrum averaged over different polycrystalline configurations,

using thermal fluctuations to capture rapid processes. It is shown that polycrystals have a phonon

caging regime, a signature of amorphous materials. Subsequently, we report on a mechanism of

grain-boundary melting resulting from the accumulation of phonon scattering. We find this be-

haviour exhibited in both rapid temperature annealing of polycrystalline samples and from input

of kinetic energy representative of rapid laser heating or hot-rolling. In the latter case, we theo-

rize a rate relation for the maximally achieved liquid fraction as a function of the initial kinetic

energy, defining a metastable activation energy that can be measured in experiments. We expect

that the scattering mechanisms investigated underpin grain-boundary melting and recrystallization
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processes encountered in rapid solidification experiments.

In chapter 4, a new temperature field crystal (TFC) framework is developed, which permits

the study of coupled density, vacancy and temperature field dynamics at the length scale of atomic

ordering. Following a derivation of the new thermo-density coupled MPFC model, several physical

properties of the model are demonstrated. We reproduce the thermo-density interface profiles

encountered in the steady state solidification growth limit. We further illustrate the existence of

a vacancy concentration inherent in the phase field crystal amplitude. We illustrate that in the

isochoric limit of the TFC model, it incorporates effects of thermal expansion through the change

of amplitude with respect to temperature, rather than by increasing the equilibrium lattice length.

The model is then applied to the study of select solidification processes. It is shown that the release

of latent heat during recalescence is accompanied by a change in the average thermal pressure.

Moreover, we illustrate that modulations of the recalescence curve can be indicative of plastic

deformation, dislocation activity, and phonon scattering. Notably, the temperature evolution may

be used as a marker for the grain distribution attained following grain impingement.

The linear hydrodynamic extensions to the phase field crystal models may be utilized to provide

clues and mechanisms that result from the continual transport of energy. Our studies illustrate

the difficulty in studying structural transformations due to the many competing time scales. Our

work highlights that time scale competition can give rise to numerous mechanisms that lie at the

heart of a significant number of challenges in current material processing. We infer from our

investigations that the focus for this class of behaviours is tied to shuffle of innumerable atoms,

which communicate through energy interchange.
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Abrégé

Cette thèse explore les phénomènes émergents résultant de la compétition entre échelles de temps.

Les principales découvertes sont présentées dans des chapitres suivant une introduction générale.

Une section de discussion met en évidence la pertinence, les interconnexions, les défis et les ori-

entations futures.

Le chapitre 2 étend le modèle cristallin en champ de phase modifié (MPFC) pour étudier la

plasticité cristalline sur deux échelles de temps. Des fonctions non linéaires dépendantes de la

densité modélisent la déformation et les dislocations. Cela conduit à un nouveau modèle MPFC

tenant compte du couplage de la déformation et des effets de vitesse sur la dynamique de la den-

sité, incorporant un amortissement à courte longueur d’onde pour la diffusion des phonons et la

dissipation thermoélastique.

Le chapitre 3 explore la relaxation des phonons dans les polycristaux bidimensionnels, cap-

turant les processus rapides via des fluctuations thermiques. Les polycristaux présentent un régime

de cage de phonons, similaire aux matériaux amorphes. Un mécanisme de fusion intergranulaire

est observé lors du recuit thermique rapide et de l’apport énergétique.

Le chapitre 4 introduit le cadre cristallin couplé champ de température (TFC) pour la densité

à l’échelle atomique, les lacunes et la dynamique de la température. Les propriétés du modèle

incluent les profils d’interface lors de la solidification et la concentration inhérente de lacunes. Le

modèle TFC intègre les effets de dilatation thermique via un changement d’amplitude. Il est ap-

pliqué à l’étude de la solidification, révélant les impacts du dégagement de chaleur latente et les

modulations des courbes de recalescence indiquant la déformation plastique, l’activité de disloca-

tion et la diffusion des phonons.
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Les extensions hydrodynamiques linéaires des modèles cristallins en champ de phase four-

nissent des aperçus sur le transport continu de l’énergie, soulignant les défis liés aux échelles de

temps concurrentes. En résumé, ce travail met en évidence divers mécanismes au cœur des défis

liés au traitement des matériaux, en mettant l’accent sur les interactions entre les atomes et les

échanges d’énergie.
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Chapter 1

Introduction

Innovation is driven by a desire to utilize the technology available. At times, the knowledge may

seem arcane and empirical measurements guide subsequent progress. These incremental achieve-

ments slowly unlock mysteries and allow civilizations to evolve. However as novel approaches and

techniques are brought to light, new unanswerable questions remain. Such is the spiral of techno-

logical progress that I see and the years of confusion that it has brought me; seeming to always be

brought back into the play.

The fabrication of metals and alloys is an example of this dynamic. The fruits of which have

churned industry for thousands of years, progressively allowing access to more applications. Many

forms of metals exist, often hard, brittle, or malleable and ductile. When heated to extreme temper-

atures, their properties change, like the rare structured snowflake which lands on your hand only

to melt away in shapeless form. Harnessing the molten-liquid behaviour, has allowed metals to

be cast into the stereotypical tool. Ages past, such tools had a proclivity to fracture; potentially

caused by subtle changes in the environment, at a scale locked by their technology. Great artisans,

could detect these minute fluctuations by listening to the shadows dancing on their molten work.

Just as a stew’s flavour is developed, blacksmiths would add flux and other ingredients to enhance

desired material properties. The incorporation of coal into iron during the industrial revolution is

marked as a societal shift, whence steel could be harnessed to support infrastructure (buildings,

skyscrapers, trains, and more). Yet when a bridge, or aircraft break, we ask the question: ”What
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are the fundamental causes of such a response and how can we exploit it to enhance the world we

live in?”.

In this thesis I aim to explore the layered perception of the solid-liquid transition. In particular,

how for example, from the addition of flux, a class of physical phenomena emerge. As the time

and length scales of energy transportation become coupled, a vast set of interactions and physical

consequences may ensue. Our work here is by no means exhaustive, just the tip of an iceberg. As

we depart on our grand adventure, we first return to past understanding, which will serve as our

guide through rabbit holes of unknown depths.

1.1 Thermodynamics

A paradigm of investigation began with attempt to catalogue properties associated with a given

material. At work beyond our visibility, is the dance of innumerable atoms with typical scales on

the order of 10−10 m. Motions of the atoms then define their collective state and phase. When

subjected to external stimuli, such as temperature or pressure, the behaviours characteristic to that

material may alter. In a sense, the responding material may be viewed as transitioning between

one state to another. In certain situations, the state properties vary drastically, e.g. the structured

ice cube becoming formless upon heating. Regimes where material response is uniform are sub-

sequently denoted as thermodynamic phases. To exploit a given phase throughout its state space

and understand how a material would respond, guiding equations of state are developed. Con-

ventional phases include gases, liquids, and solids. What differentiates these class of phases is

the dominate interaction length scales. In gases, atoms meander, remaining unimpeded for large

distances (typical scale 10−7 m) relative to their size. Meanwhile in liquids, the typical mean free

path is of order 10−9 m. This approaches the scale of individual atoms. Nonetheless, they remain

free to explore, veering around short range interactions. As the length scale further approaches the

interaction scale, atoms become bound together in ordered lattices, solids. We note that the inter-

actions can have certain favourable orientations. Thus many types of solids exist with differing

lattice structures. The confining movement of atoms is not only an indicator of phase, but also a
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Figure 1.1: (a) Illustrated is an example phase field crystal phase diagram between liquid and solid.

T denotes an effective dimensionless temperature, while ψ0 denotes the dimensionless density

deviation from a reference value. (b) Illustrates the free energy landscape, and the gradual increase

in solid well upon increasing temperature.

cause for the substantial difference in material properties. We tabulate the preferred phase through

phase diagrams, such as that presented in subpanel (a) of figure 1.1. The lines indicate threshold

boundaries across which, a phase transformation may ensue. Specific to first-order transitions, like

solid-liquid, a density jump occurs accompanied by a loss of long-range structural symmetry. In

subpanel (b) of figure 1.1, a solid-liquid energy landscape is demonstrated. The energy minima

may be viewed as the equilibrium states to which we assign pressures and temperatures. Given

enough energy to explore phase space, the system will tend towards the global minimizing state.

It has been the attempt for many decades to make a set of governing equation that describe the

state of a given phase. That is to say, what the temperature, pressure, and volume are at any given

point on figure 1.1. A classic example of gaseous equations of state is the ideal gas law, where no

interactions are assumed. Weak incorporation of the interaction effects has led to more generalized

variants [3, 4], which can be applied to the liquid-state. Solids meanwhile can be intimidating,

and thermodynamic descriptors are generally found by treating the lattice as woven together with

dash-pots and springs [5]. The Mie-Gruneisen equation of state encircles another class of solid-

state theories [6–8]. Here the emphasize is on making connection of the macroscopic variables

through the phonon dispersion spectrum. The use of solid-state equations has lied predominantly
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in describing high pressure environments such as tectonic plate shifts [8–10]. However, the atomic

interactions act over short distances, synonymous with a high pressure. This allows application to

not only rheology, but also the metallic alloys in aircraft. These models constitute the basis for

widely utilized thermodynamic databases [11, 12].

1.2 Kinetic theory

In many cases, we need to wait infinitely long for a material to explore its phase space. Only

upon skiing down numerous energy barriers will the material reach an energy minimizing state.

This journey can lead to undesirable material characteristics, like fracture or metastable phases.

Alternatively, the system can become frustrated, perhaps in the writing of a thesis, trapped in

a local minimum configuration. Thus it is imperative to understand the pathway followed. In

particular, it is important to consider the modes of energy transport, with which the system can

relax.

The interaction picture style of study is tantamount to molecular dynamics (MD) methods,

which have a widespread use in literature [13–16]. The focus is on propagation of the position

(−→r i) and momentum (−→g i) of every particle of mass mi through,

∂
−→
χ

∂ t
=
[−→

χ ,H
]

Poisson
, (1.1)

which is the Poisson bracket formulation of Newtonian mechanics. This form is written in terms

of a vector −→χ = ⟨−→r i,
−→g i⟩, propelled by Hamiltonian, H = ∑i

( |−→g i|
2mi

)
+∑i, j

(
Vi, j
)
, where Vi, j are

individual atomic interactions. Here interaction potentials are posited from both on quantum me-

chanical measurements [17], and emergent behaviours [18]. Molecular dynamics has seen use in

studying biological polymers [14], solid-state fluctuations [15] and dislocation evolution [16] to

name a few. The simulations technique allows access to fine scale transients, hence the plethora

of behaviour cataloging. As we have argued, the properties characterizing a material are a result

of the collective response of fine scale interactions. As a consequence, there has been substantial

investment in simulating the complete interatomic potential for large numbers of atoms. However,
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a rough estimate of the number atoms in a cubic meter of aluminum is on the order of 1028 atoms.

Thus explicit atomic tracking for macroscale phenomena becomes intractable. Recent efforts in

the theoretical framework direction have been on bridging scales to allow for larger studies [19].

To compensate, coarse-grained theories (Langevin, Fokker-Planck, ...) emerged [20]. Herein

symmetry variables, order parameters, (conservation laws, orientation symmetries, ...) set the

fundamental time and length scales. This permits study of emergent phenomena associated with

a particular symmetry, or energy mode. A connection to the interaction picture, can be found

through projection operator formalism, pioneered by Zwanzig [21] and Mori [22]. The essence

of this technique is a separation of rapid fluctuations from the symmetry variables associated to

the system. By projection onto the plane of slow variables, we can arrive at a memory function

recasting of Eq. 1.1,

∂ χ(t)
∂ t

= iΩχ(t)+
∫ t

0
dt ′
(
⟨ f (0) f (t− t ′)⟩χ(t ′)

)
+ f (t). (1.2)

Here χ(t) describes the set of slow modes and Ω denotes the frequency matrix thereto associated.

Meanwhile, f (t) represents the rapid noise fluctuations, and ⟨ f (0) f (t− t ′)⟩ is a memory kernel of

the interaction between rapid and slow variables. Eq. 1.2 is formally exact to Eq. 1.1. The main

postulate arises in the form of the memory kernel and statistics of f (t). For simplicity one often

assumes a self-averaging background, ⟨ f ⟩= 0, and ⟨ f (t) f (t ′)⟩= 2Dδ (t− t ′), where D is diffusion

operator. Reexpanding the memory Eq. 1.2 results in,

∂ χ(t)
∂ t

=−D
[
χ(t)

]
+ f (t). (1.3)

Thus we have arrived at a coarse-grained description of our complex system. More complex non-

linear forms can be arrived at through additional constraints and alternative noise statistics. For

what follows we shall consider mainly the macroscale density field, thus the association of χ(t)

with ρ(r, t). With Eq. 1.3, the study of emergent phenomena for our hypothetical cubic meter

of aluminum can be analyzed. In summary, the coarse-grained theories should be considered

fundamental to a scale set by the scale separation.
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1.3 Hydrodynamic Formalism

The framework provided by Eq. 1.3 sets the basis for more complex multi-component theories [23–

27], such as hydrodynamics. When applied to large scale phenomena the additional fluctuations

from f (t) are assumed negligible. It is within this concept that I believe Boon and Yip were amazed

by the potential of hydrodynamic approaches to study molecular liquids [28]. For this application,

conservation laws associated with symmetry variables enter in the form,

∂ χ

∂ t
=−∇ · Jχ , (1.4)

where Jχ represents the current associated with field χ , flowing through a local volume element.

In this sense, the conservation evolution equation is local. However, we note that in biological

systems, the mixture of scales and energy modes often requires non-localized variants [29]. Ad-

ditional advection terms may be added, as is necessary in description of weather patterns. We

are most interested in linear classical solid-liquid hydrodynamics description for which thermody-

namic consistency relations are employed to express the current.

So to begin, we list the symmetry variables associated with our solid-liquid system. Since

mass cannot be created nor destroyed at the energy scales pertinent to this work, the density, ρ

must be a conserved quantity. In addition, for a reversible process, energy, E, and momentum,

g, are conserved as required by Noether’s theorem in accordance with spatial and time reversal

invariance. The five modes described by ρ , E, and g constitute a minimal description of liquids.

As in the case of the anti-ferromagnet, order parameters associated with the continuously broken

symmetry need be additionally introduced. Hence for crystals, we must add an additional equation

for the global spatial symmetry in the form of a lattice. The relevant variables are distortions of the

lattice denoted by δ
−→x which carry energy as they propagate through the solid. These propagation

are often denoted as phonons. This consideration adds an extra three modes in the description of

solids. We note that the phonons motion can be viewed as conserved when interpreted in terms of

strain, δui, j =
−1
2

(
∂xi
∂ r j

+
∂x j
∂ ri

)
. We further highlight that certain phonon oscillations are known to

propagated in the liquid phase, but dampen out rapidly [30, 31]. In this context, we note that there
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exists other classes of phases, such as liquid crystals that require only parts of the strain tensor.

(i.e. nematics and smectics) [24]. In summary, solids and liquids may be described through,

∂ρ

∂ t
=−∇ ·g, (1.5a)

∂g
∂ t

=−∇ ·σ , (1.5b)

∂ε

∂ t
=−∇ ·q, (1.5c)

and

∂
←→u
∂ t

=−∇ · Ju, (1.5d)

where it remains to interpret the currents.

We turn our attention to the first and second laws of thermodynamics to understand how

Eqs. 1.5 relate to different transportation modes. Namely, how the energy is decomposed, and

that no work may be extracted from a reversible process. It is customary to posit the solid thermo-

dynamics,

dε = T d(ρs)+µdρ + vdg+ ..., (1.6)

which relates energy fluctuations (dε) to entropic energy (T d(ρs)), chemical energy (µdρ), kinetic

energy (vdg), and other forms. We note that s stands for the entropy density, while µ , the chemical

potential which are interrelated via the Legendre transformation definition,

F = ε−T ρs =−P+µρ. (1.7)

This relation arises from the Legendre transformation definition between the grand potential, G

and energy, E.

The intensive quantities of the theory are coupled through the Gibbs-Duhem closing relation,

ρdµ =−ρsdT +dP−g ·dv+ .... (1.8)
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Subsequently by the second law of thermodynamics, we require,

T
d
dt

∫
dr
(

ρs
)
= 0, (1.9)

for any reversible process. When integrating Eq. 1.9 by parts and substitution of Eqs. 1.5-1.8, we

may relate current densities to gradients of our variables. To maintain analyticity, it is standard to

only consider the linear contributions. Non-linear additions, such as advection can tacitly added in

accordance with experimental observation.

1.4 Experimental Connection

When exploring the murky depths, it is important we not lose sight of reality. The theories that

we have described are only validated by direct evidence. We shall mention in passing some direct

connections between experimental measurements and correlations determinable from the coarse-

grained theories, such as Eq. 1.3. Although we mention this in passing, a more complete picture

may be garnered from scattering theory, describe in texts such as [28], or [32].

The main observable in scattering theories are correlation functions, similarities at different

spatial and/or temporal points. In the context of density fields, we denote Cρ,ρ = ⟨ρ(r, t)ρ(r′, t ′)⟩

the density correlation function. Here ⟨·⟩ represents the thermal average associated with rapid

fluctuations. As we shall see, Cρ,ρ can be imaged through coherent neutron scattering. Meanwhile,

the self-correlation, Ssel f = ⟨ρ(r, t)ρ(r, t ′)⟩, provides information about the self-similarity in time.

This metric is the focus of incoherent neutron scattering experiments.

First it necessary to mention that thermal noise fluctuations captured by f (t) are readily de-

tectable with measured statistics. Perhaps one of the most famous examples is in regards to Brow-

nian motion. It was shown that a scalar constant noise diffusion, D, can be connected with the

velocity and the mobility, M , of macroscopic pollen grains. This fluctuation-dissipation associa-

tion was later expounded upon by Kubo through interrelating real and imaginary components of
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susceptibilities [33]. The tenants follow from,

M kbT ≡
∫

∞

0
dt
(
⟨χ(0)χ(t)⟩e−iωt

)
=
∫

∞

0
dt
(
⟨ f (0) f (t)⟩e−iωt

)
≈ D, (1.10)

where the fluctuation memory is directly connected to the correlations of F [χ(t)].

Particular to scattering or diffraction experiments, the resultant spread of energy is focus. A

metric for which, is the differential cross section, d2
σ

dΩdE ′ , measured for incident wavevector, k′,

d2
σ

dΩdE ′
=

k′

2π h̄k

∫
dt
(

eiω(t−t ′)⟨∑
a,a′

[
baba′e

ik(x′−x)]⟩). (1.11)

This form adopts the notation of Chaikin and Lubensky [32], where ba (ba′) is the magnitude

of interaction potential associated with particle a (a′). Further simplification can be made by

decomposition of the sum into coherent (a = a′) and incoherent (a ̸= a′) components. In turn this

provides a connection between the statistical density correlations and the two scattering types:

d2σ

dΩdE ′

∣∣∣
coherent

∝ Cnn(k,ω), (1.12)

and
d2σ

dΩdE ′

∣∣∣
incoherent

∝ Sself(k,ω). (1.13)

In essence, we have illustrated the correlations represent fundamental metrics to compare out-of-

equilibrium theories to experiments. We have presented in figure 1.2 subpanel (a) an example time

and length scale map of commonly used measurements techniques. Scales larger than illustrated

are fundamental to astrophysics. Meanwhile smaller scales are focus to quantum mechanical phe-

nomena. Subpanel (b) of the same figure additionally illustrates some model techniques that can

be used at different scales. Increase in scattering power, and scale allows us to make observation

beyond our inherent vision. In turn, this permits further construction of theoretical frameworks.
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Figure 1.2: Illustrated are typical time and length scale regimes for common simulation techniques

(subpanel (a)) and experimental methods (subpanel (b)). Scales ranges from nanoscale to meso-

scopic systems.

1.5 Phase Field Crystal

The reduction of time and length scales is particularly relevant for the study of solidification. One

example of the reason is the impact that short time fluctuations and atomistic defects can have on

the global microstructure. There have been numerous attempts at describing the complete inter-

action picture of the growth process. However, as we have argued, coarse-grained theories can be

used to overcome computational constraints of N-body simulations. Fundamental to a new scale,

coarse-grained theories can still provide analysis of emergent topological and interface instabil-

ities. Phase field models propagate an order parameter, in accordance with the symmetry. The

order parameter is then driven by thermodynamic gradients as in hydrodynamics to recover ex-

pected correlation temporal scaling [34]. These methods, allow study of species transport through

and across an interface. At the cost however, of specifying interface fluctuation depths and inter-

face anisotropy, inherent to the vibration and preferred orientation of the atoms. Provided sufficient

constraints in a given range of parameter space, phase field methods can be used to probe inter-

face instabilities, e.g. Taylor-Saffman [35], Mullins-Sekerka [36], and Asaro-Tiller-Grinfeld [37,

38] to name a few. At the scale of the lattice structure, phase field crystal methods have been

widely applied [39], at the cost of shorter and smaller simulations. The scale naturally incorpo-

rates topologic instabilities, like dislocations. As we shall show as one result of my work, vacancy
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concentrations are buried in the formalism. The scale of plasticity opens a rich wonderland of

dislocation interactions and structures.

The phase field crystal construction took inspiration from phase field models. Herein a time

averaged continuum density field, ρ , is considered the relevant order parameter for solidification.

As we shall see, this follows because the ρ can be viewed as obtaining a spatial symmetry upon

solidification. The diffusive evolution of ρ is driven by gradients of the free energy, such as the

chemical potential µ = δF
δρ

. So, it is important to determine a minimal description of the chemical

potential in terms ρ . This will require approximation, since in general µ can be a highly complex

functional.

1.5.1 Classical Density Functional Theory Derivation

The classic method followed by Elder et al. in construction of the phase field crystal free energy lies

in reference to classical density functional theory [20]. In the work Ramakrishnan et al., expansion

of the free energy around the liquidus, allowed connection to the density field for freezing [40].

This approach is expounded upon by the reviews of Evans [41] and Singh [42]. The starting point is

the separation of the free energy, F = Fideal+Finteraction+Fexternal, into non-interacting, interaction,

and external contributions.

The ideal gas component is readily obtainable by considering the statistics of non-interacting

particles. It follows,

Fideal = kbT
∫

dr
(

ρ
[

log(Λρ)−1
])

(1.14)

where Λ = ( 2π h̄2

mkbT )
3/2 is the thermal de Broglie wavelength. One often writes ρ = ρreference(1+ψ),

to express fluctuations of the density away from a reference by the dimensionless parameter ψ .

Due to the computational complexities associated with logarithms, small perturbations of ψ are

considered. In this limiting case, the ideal energy can be expanded,

Fideal = Fideal[ρreference]+ kbT ρreference

∫
dr
(

ψ log(Λρreference)+
ψ2

2
− ψ3

6
+

ψ4

12
+ ...

)
. (1.15)

The minimal expansion necessary to capture a free energy well associated with the idealized state
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consists of truncating the expansion at O(ψ4). The minimal truncation has proven resilient in

describing a uniform density phase energy minimum, but has challenges when large density jumps

are considered [43].

Just as an apple falls under gravitational attraction, a monolayer of graphene can be influenced

by sandwiching layers. In this way, energy may enter the statistics of an isolated system in terms

of an external potential energy, Vreference. In terms of a free energy,

Fexternal = kbT ρreference

∫
dr
(
(1+ψ)Vexternal

)
, (1.16)

Often the external potential is assumed vanishing. In such cases, we consider a fully isolated

system. We note that with appropriate choice of Vexternal, this may be a means to induce stress onto

a system.

The final energy ingredient is associated to interactions. Following a functional series expan-

sion of the interaction energy,

Finteraction = Finteraction[ρreference]+
∞

∑
n=1

1
n

∫ n

∏
i=1

[driδρ(ri)]
(

δ nFinteraction

∏
n
j [δρ(r j)]

)
. (1.17)

Following the description of Evans, the interaction energy may be viewed as the generating func-

tional of the n-point correlation function [41]. Thus it follows that,

Cn(|r1− r2|, |r1− r3|, ...) =−(kbT )−1 δ nFinteraction

∏
n
j [δρ(r j)]

, (1.18)

written in terms of separation distance, |ri− r j|, due to spatial reflection and isotropy symmetry

requirements. We note that the zeroth and first order term enter as constants, with a latter the

result of translational invariance. Ramakrishnan et al. demonstrated that the two-point correlation

function was the minimal ingredient necessary to describe the freezing transition for a number

of materials with simple crystal structures [40]. As a result of the expansion around the liquid

density, the higher order correlations become necessary to describe the material deep within the

solid phase. The Taylor series expansion methodology represents only one method to approximate
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the interaction energies.

Combining the free energies components discussed thus far yields,

F = F0 + kbT ρreference

∫
dr
(

ψ log(Λρreference)+
ψ2

2
− ψ3

6
+

ψ4

12
− ψ

2
C2 ∗ψ

)
. (1.19)

This equation thus represents the minimal description of solidification statistics, where ∗ represents

the correlation operation.

Further assumption is necessary, since the two-point correlation is not a simple function. Short-

range features can be captured through postulated forms such as Percus-Yevick [44] or Tarazona

[45]. Recent progress in density functional theory has been in fundamental measure theory, in

which an interaction scale expansion of the correlation is used [46]. Phase field crystal models

adopt a long-range perspective, building a polynomial representation of the Fourier space correla-

tion,

Fk[C2] = (1−Bl +2Bxk2−Bxk4). (1.20)

As we shall see, the parameters Bl and Bx can be fit to the first peak of the static liquid state

structure. Oettle et al. showed that Eq. 1.20 was sufficient in capturing the ordering transition,

but required additional smoothing to connect with real space density functional theory correlations

[47]. Higher order polynomials have been developed to describe more complex crystal geome-

tries [48–51]. Alternatively, structural phase field crystal correlation function exists that introduce

Gaussians centered at the lattice wavevector magnitude [52].

The correlation in Eq. 1.20 permits the coexistence of an ordered and disorder phase. Depend-

ing on the value of Bl and Bx, a certain phase may dominate the system. In figure 1.3 subpanel (a),

we have provided an example image of the density field, for the faceted growth of the solid phase.

Subpanel (b) shows the one-dimensional line profile of subpanel (a) cut along the indicated red

line. As illustrated in the solid phase, atoms are treated as coarse-grained around their local lattice

site positions. Meanwhile, the liquid phase is assumed uniform, where coarse-graining removes

any liquid-state structure.
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Figure 1.3: An example faceted solidification simulation is provided in subpanel (a). The asso-

ciated red line cuts the density profile shown in subpanel (b). By averaging over a unit cell, the

average density can be obtained. This has been superimposed onto the line profile in subpanel (b).

A density jump shown is characteristic of the first order transition.

1.5.2 Thermodynamics

The form of the free energy appearing in Eq. 1.19 can now be interpreted in terms of the macro-

scopic variables discussed earlier. To understand the phase energetics, it customary to make the

mode-expansion ansatz. In doing so,

ρ(r) = ρ +ΣG jA|G j|e
iG j·r, (1.21)

where the sum is over reciprocal lattice vectors, G j. The parameter ρ = ρref(1+ψ0) represents

the uniform average density adopted by the system. The liquid phase is preferred when AG j = 0

minimizes the free energy. Meanwhile, the ordered phase is the equilibrium configuration when

the minimizing amplitude is non-zero.

We note the existence of additional lower dimensional phases such as the stripe phases. The

different phase energetics can be found through substitution of Eq. 1.21 into the free energy in 1.19.

Subsequent integration over a unit cell will approximate the bulk phase free energies. Keeping only
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the first crystallographic mode results in,

F
kbT ρref

= A(T )+λ (T )ψ0 +(Bl(T ))
ψ2

0
2
−

ψ3
0

6
+

ψ4
0

12

+120A4
|G|+(32ψ0−16)A3

|G|

+(12−12ψ0 +12ψ
2
0 −12(1+Bx +Bl(T )))A2

|G|.

(1.22)

In reference to our fixed volume numeric grid, we are keeping the total number of lattice sites

conserved. When considering more exotic configurations that lack an analytic representation, the

free energy and thermodynamic potentials may be extracted numerically.

To investigate what parameter range will favor a specific bulk phase, we build the associated

phase diagram. Here we solve the condition of phase coexistence:

µ1 = µ2 (1.23a)

f1−ρ1µ1 = f2−ρ2µ2. (1.23b)

Here µi =
δF
δρ

is the chemical potential and ρi coexistence density associated to phase i. The

chemical potential may be extracted analogously to the free energy of Eq. 1.22,

µ

kbT ρref
= λ (T )+ψ0Bl(T )−

ψ2
0

2
+

ψ3
0

3

+(−12+24ψ0)A2
|G|+32A3

|G|,

(1.24)

with AG found through minimization of the free energy in Eq. 1.22 at a given average density and

temperature. Although explicit calculation of the coexistence relations is possible, one can also

make use of a convex hull algorithm of the free energy as detailed by Seymour et al. in their thesis

[53]. Repeating the calculation at different temperatures and average densities results in a phase

diagram as illustrated in figure 1.1. All coexistence lines need be determined when multiple phases

are considered.

Past work on fitting the phase field crystal model parameters to experimental measures, has

been restricted to the thermodynamics along the density plane [54, 55]. Such consideration is
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sufficient when working under an isothermal approximation, though limiting the permissible tem-

perature range of phase diagrams. The closest attempt at addressing the temperature thermody-

namics has been done by Mellenthin et al. when fitting the phase field crystal amplitude heights

to molecular dynamics simulations [56]. As part of this thesis, we shall form a connection to the

Grueneisen equation of state for extension of the theory to the non-isothermal case.

1.5.3 Density Diffusion

In combination with the length scale captured in free energy of Eq. 1.19, phase field crystal models

perform a time scale cutoff. By connection with hydrodynamics of global mass conservation,

∂ρ

∂ t
= ∇ ·D∇

δF
δρ

+∇ · Jη . (1.25)

The dynamics capture the local diffusion of mass and ordering, driven by gradients of the chemi-

cal potential, µ = δF
δρ

= kbT ρreference
[

log
(
Λ
)
+(1−C2)∗ψ

]
. The vector field Jη denotes a noise

current representative of fast processes on the order the atomic vibrations and which have been

averaged out in the free energy functional. The noise current is assumed to obey, ⟨Jη ,i⟩ = 0 and

⟨Jη ,iJη , j⟩= kbT Dδi jδ (t− t ′)δ (r− r′), where δi j is the Kronecker delta between vector directions

i and j. This relation is of order the thermal scale in accordance with the fluctuation-dissipation

theorem. The diffusion factor, D is often treated as a constant to allow for a linear description. In

dynamic density functional theory, D = D0 +D1ρ , since the lack of density cannot diffuse. This

addition may be important in the study of vapour phases, which represent more complex phase

field crystal variants [57, 58]. The constant diffusion assumption is expected valid for a sufficient

density range. We note that Eq. 1.25 may alternatively be recast through, δρ = ρreferenceδψ , in

terms of the dimensionless perturbation from our reference. The density field is generally propa-

gated numeric in accordance with Eq. 1.25. This can be achieved through Euler time stepping or

the pseudospectral methods that we outline in the following chapter [1].

Phase field crystal models captured by Eqs. 1.19 and 1.25 can be related to the liquid state

structure factor, S(q, t) = ⟨|δρ|2⟩ = ρ2
reference⟨|δψ|2⟩. As a result of spatial inversion symmetry,
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Figure 1.4: (a) An example simulation of the dendritic growth of an initial circular seed placed in

an undercooled liquid melt. An inset is provided highlighting the faceted morphology at the solid-

liquid interface. (b) Impingement patterning obtained after rapid crystallization. (c) An enhanced

image of the grain structure and constituent dislocations.

the liquid state structure factor can in turn be related to the scattering functions described earlier.

To start, Eq. 1.25 can be linearized,

∂Fk[ψ]

∂ t
+Dk2(1−C̃2

)
Fk[ψ] = ∇ · Jη , (1.26)

where the ideal free energy is truncated at second order. Recasting via an integrating factor,

Fk[ψ](t) = e−Dk2(1−C̃2)tFk[ψ](0)+
∫ t

0
dt ′
[
∇ · JηeDk2(1−C̃2)(t ′−t)

]
. (1.27)

Using the statistical properties of Jη , allows,

S(k, t) = ⟨|Fk[ψ](t)|2⟩= e−2Dk2(1−C̃2)tS(k,0)+
kbT

2(1−C̃2)

(
1− e2Dk2(1−C̃2)t

)
. (1.28)

In the seminal work of Elder et al., the liquid static structure factor, S(k,∞), was shown a function

of the parameters of entering C̃2 [39]. The parameters were subsequently fit to the structure factor

of liquid argon at 85K. We note that the linearized structure factor computed in Eq. 1.28, has

exponential decay character. In highly coupled systems, it is often the goal to find the stretched

exponential exponent of time. This exponent can be indicative of alternative relaxation pathways.

Phase field techniques require specification of the anisotropic growth behaviour of an interface.
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Meanwhile, the phase field crystal formulation explicitly includes the atomistic plasticity. As a re-

sult, solidification into an undercooled melt can result in the Mullins-Sekerka interface instability,

akin to snowflake formation [36, 59]. Given an initial planar surface perturbation, a competition

of lateral and longitudinal driving force results in the selection of a growth wavelength. The wave-

length can grow stably for a select solidification velocity range, and is the center of intense study

for microstructure selection [60–64]. Starting from a circular seed, symmetry of the snowflake

arises as a result of the lattice structure of the solidifying phase. An example dendritic pattern

is provided in subpanel (a) of figure 1.4 for a hexagonal lattice highlighting the resultant sixfold

symmetry.

Nucleation statistics has been another area of study, because of the near infinite grain orienta-

tions captured in phase field crystal models [65–69]. This phenomenon lies at the start of solidifi-

cation, when an activation barrier exists between the parent and daughter phases. Subpanel (b) of

figure 1.4 illustrates the process, with a impinged grain boundary magnified in subpanel (c). The

differing lattice orientations results in a grain boundary, comprised of a series of dislocations. The

dislocations can be viewed as deformation of the lattice structure, where local spatial symmetry is

broken. During impingement grain interactions can induce large stresses that can rotate a grains

and introduce additional dislocations [70].

Dislocation formation and motion lie at the heart of the structural rigidity of a metal. Ideal

lattices are prone to fracture along a given axis. By the addition of dislocations, energy can be

contained in the dislocation dynamics. Such consideration is tantamount to time-temperature-

transformation diagrams often used by metallurgists. Depending on the available energy, disloca-

tions may climb or gliding along lattice planes. Nonetheless, sufficiently energy can still induce

fracture, and in certain conditions, recrystallization of the underlying lattice. Dislocations and

grain boundary dynamics have been the study of phase field crystal models for numerous years

[71–73] and notably, the substantial work done by Berry et al. [74, 75].

As a result of the diffusive dynamics, dislocations instantaneously interact. To alleviate this

behaviour, Stefanovic et al. introduced a wavelike extension of the density diffusion dynamics of

Eq. 1.25, termed the modified phase field crystal model [76]. Further derived from hydrodynamics,
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Majaniemi et al. showed that the second order time scale introduces propagating stress waves that

carry information about nearby stress sources [77]. The modified phase field crystal model was

shown capable in observing grain slip mechanisms for polycrystalline samples under imposed

shear. Unfortunately, Berry et al. illustrated that the dislocation climb and glide timescale were

inseparable [75]. Our recent work constructs a framework linking the second time scale to vacancy

diffusion, which may allow the separation of climb and glide time scales [1]. A similar factor was

added afterwards by Kun et al. to illustrate the time scale separation for amplitude phase field

crystal variants [78].

1.6 Coupled Kinetics

Recent experiments in high energy solidification (rapid solidification [79, 80], laser melting [81–

83], shock strengthening [84–86]) have found evidence of phases far off the expected phase di-

agram. In certain scenarios, amorphous patterns (lacking long-range crystal structure) can form

[87]. Although characters of the amorphous phase can be garnered from caging dynamics in the

time dependence of the correlation decay, no clear understanding of the amorphous phase is known.

The high energy systems discussed here becoming increasingly common with the ability to rapidly

cast, 3d print, and deform materials for desired structure. Thus it is necessary to study how the

system will behave and what class of phenomena the dynamics fall under. The tenants of this the-

sis are in part built on the hypothesis that high energies can shift the local phase diagram, limiting

energy relaxation.

The phase field crystal models that we have discussed thus far are highly idealized environ-

ments pertaining to a single solidifying species. In general, materials can be made out of multiple

components, with competing lattice structures. As a result of the additional elements, phase space

can become complex. In fact, the statistics associated with high entropy alloys (usually three or

more species) remains a subject of intense debate [88, 89]. Luckily there exists a natural extension

of the phase field crystal model to describe substitutional binary alloys [71]. In such systems, the

free energy is supplemented by additional interaction correlation functions and entropic mixing
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factors. This is then accompanied by diffusion equations for each species. Ofori-Opoku et al. have

since developed a framework to describe multi-component substitutional alloys in the dilute limit

[90]. We mention that at present intermetallic phases remain intractable.

With use of the binary phase field crystal variant, Berry et al. demonstrated that during solidi-

fication species competition can result in caging, observable in the auto-correlation function [91].

As a result of fluctuations, the system is capable of frustrating itself, unable to escape the local

configuration. Later work by Fallah et al. documented the deviation from ideal Oswald-ripening

due to the presence of dislocations [92, 93]. In particular, the dislocation agglomerates, which

represent sites of high energy, drew in solute. The high local solute concentration, was shown suf-

ficient to precipitate phases far from the global thermodynamics. Both studies are testament to our

hypothesis of species limited energy relaxation. When solving the diffusion of a coarse-grained

density field, the additional hydrodynamic Eqs. 1.5 are assumed instantaneously satisfied. It begs

the question: ”What limiting and caging behaviours arise from the added variables, and how may

this feature explain a new class of emergent phenomena?” So we depart for the new territory of

coupled dynamics, that describe the energetic dance of atoms, the atomic scale shuffle.
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Chapter 2

Quasi-Phonons in Phase Field Crystal

Models

Topological plasticity has been illustrated fundamental to the scale of atomic ordering, and the

focus of phase field crystal models. Purely diffusive motion however, assumes instantaneous and

local dislocation interactions. Wave-like density dynamics have been proposed to relax the free

energy by density propagations, which emanate from stress sources, such as dislocations. The

additional temporal time scale introduces quasi-phonons that propagate across a lattice. As phonon

fluctuations move across the lattice, they can scatter of dislocations and grain-boundaries. This

observation is then indicative of the interaction between short time ballistics and density diffusion.

We thus begin investigation of our hypothesis on coupled and competing dynamics, in terms of

lattice deformations and dislocation behaviours during solidification, which is central to the phase

field crystal methodology. The following chapter pertains to our exploration and extension of the

two timescale phase field crystal models, ensuring realistic couplings between phononic and mass

diffusion [1]. In addition, we highlight a novel iteration scheme for rapid simulation that used

throughout this thesis.
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Time-scale Investigation with Modified Phase Field Crystal Method

Duncan Burns, Nikolas Provatas, Martin Grant

Abstract

This paper extends the two time-scale modified phase-field crystal model to examine crys-

tal plasticity. Two non-linear density dependent functions are constructed to effectively repre-

sent hydrostatic strain and dislocation density. The functions are then used to develop a new

modified phase field crystal model, which accounts for strain and strain-rate couplings on den-

sity dynamics. The non-linear additions provide tunable parameters for controlling dislocation

climb versus glide, as well as phonon softening mechanisms. A short-wavelength dampening

is also introduced to account for phonon scattering and thermoelastic dissipation processes.

Finally, a novel semi-implicit numeric scheme for efficient simulations of this model is pre-

sented, which also serves as a generalization of the commonly used Fourier pseudo-spectral

method. The technique gives rise to unconditionally stable dynamics with simple numeric

implementation requirements.



2.1 Introduction

There has been increasing interest in the exploration of material microstructure evolution. Un-

derlying structure can be an indicator of beneficial material properties for industrial applications,

from bridge-design to nano-fabrication. As an example, a structure’s fatigue resistance has been

found to be correlated with the average grain size and disorder within a crystal [2.1]. Although

much has been learned, microstructure growth remains a challenging and active area of current

research due to the many competing time and length scales involved. First-principal methods, such

as hydrodynamics, allow study of equilibrium structures. General materials can however be far

out-of-equilibrium. Examples include martensitic steels, dislocation hardened metals, or multi-

constituent alloys. To explore the growth of structures out-of equilibrium, effective simulation

models and techniques are needed to probe the physics governing their formation and evolution.

Molecular dynamics methods are often employed which track the individual motions of atoms,

generally solving Newton’s equations. Therein atoms evolve in time by means of the working

statistical ensemble. A specially chosen potential is used to describe atomic interactions. For

example, Van der Waals forces can be included with the use of the Lennard-Jones type potentials.

Hansen et al. [2.2] showed that such potentials enabled the study of structural phase transitions.

In solving Newton’s equations, molecular dynamics naturally incorporates multi-time scale events

which can affect the resultant material structure. Unfortunately, computational requirements for

molecular dynamics can restrict simulations to fast time scales on the order of nano-seconds and

system sizes on the order of 100 atoms. The limitations can therefore involve the use of fictitious

strain rates for example, and late stage morphologies can be difficult to observe experimentally.

Major advances in microstructure characterization have been made with the use of continuum

phase-field methods, which allow for the description of order to disorder transitions by coupling

thermodynamics fields to an order parameter. In particular, the effect of competing time scales

may be studied by tracking the properties of the transition interface as a function time. However,

phase-fields lack the granularity to treat atomistic motion and require substantial modifications to

treat elasticity. To overcome the computational barrier of molecular dynamics while permitting
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atomistic resolution, the phase field crystal (PFC) model was developed for the study of solidifica-

tion [2.3]. PFC operates on diffusional time scales, set by vacancy diffusion, with a probability-like

distribution representation of the density field [2.4]. Extensive studies have been conducted with

the use of PFC to observe grain boundary dynamics [2.5] and varying nucleation events [2.6, 2.7].

PFC has proven to be a powerful methodology for micro-structure and material defect characteri-

zation near equilibrium, and for late-time conditions.

Out-of-equilibrium microstructure evolution often requires the coupling of diffusive and in-

ertial time scales. As an example, phonons, elastic excitations within a material, can scatter and

contribute to grain boundary screening [2.8], dislocation nucleation and destruction [2.9, 2.10], and

induce varying types of phase transitions [2.11]. The study of such behaviours requires additional

reactive modes to be included alongside diffusive dynamics. To incorporate effective phononic cur-

rents in phase field crystal models, Stefanovic et al. [2.12] proposed a phenomenological two-time

scale damped wave equation termed the modified phase field crystal (MPFC) for the observation

of dislocation diffusion through and along grain boundaries; a simplistic derivation of which will

be examined here to understand the various contributions and effects one may expect. Using the

MPFC approach, material elasticity and plasticity have been explored near the ideal solid state for

a variety of crystalline symmetries [2.13, 2.14]. Further work done by Berry et al. used the MPFC

variant to investigate the glass transition exhibited by two component metals [2.15] and found good

agreement with experiments, illustrating caging.

The damped wave equation can thus be used to describe elastic waves, and its simple and nat-

ural form easily allow for two-time scales to be modelled. Majaniemi et al. derived the modified

phase field crystal (MPFC) equation from linearized hydrodynamics and showed that under certain

conditions the MPFC model incorporates phonon oscillations [2.16]. In particular, MPFC follows

from hydrodynamics when strain diffusion dominates and viscous dissipation is negligible. While

valid near the ideal crystal limit, the conditions break down in polycrystals and pseudo-liquid struc-

tures. Extensions to the MPFC model are thus required to describe fracture and higher frequency

responses. As an example, phonon boundary scattering and softening can lead to the inability of

phonons to jump across a grain boundary, leading to potential dislocation nucleation [2.17], ma-
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terial failure [2.18] and lower thermal conductivity [2.19]. Multi-time scale PFC-hydrodynamic

models have been developed to include the vibrational modes to study these systems at the cost

of additional dynamic variables that can complicated the numerics [2.20]. Furthermore, plasticity

couplings with the amplitude variant of phase field crystal model [2.21] have also been proposed

[2.22].

This paper introduces two novel modifications to the existing MPFC modelling approach. The

first is an alternative derivation of the MPFC model which self-consistently incorporates momen-

tum dissipation. The second is a convolutional filtering procedure that extracts dislocation density

and hydrostatic strain from the PFC density. Beyond providing a simple procedure for efficiently

tracking dislocation and strain maps in time, this convolution on the density field is shown to corre-

spond to a higher-order non-linear addition to the excess free energy, which also enters the MPFC

dynamics. This non-linear addition to the dynamics allows for strain and strain rate couplings

on vacancy dynamics, which can result in interesting out-of-equilibrium growth processes. A third

contribution of this work is the derivation and application of a simple unconditionally stable (linear)

numerical time-stepping algorithm based on exponential time integration [2.23]. This algorithm

is shown to offer substantial numerical efficiency compared to the Euler time stepping algorithms

used previously [2.13, 2.14]. The algorithm is applied to the new MPFC model, demonstrating its

robustness on recovering late-stage Mullins-Sekerka instabilities of solid-liquid interfaces [2.24],

and numerous rapid crystallization morphologies [2.25, 2.26]. It is expected that the MPFC model

modification and the numerical approach introduced in this paper will permit the further explo-

ration into time-scale couplings and quantification with the phase field crystal technique.

2.1.1 Phase Field Crystal

To begin a brief review of the phase-field crystal (PFC) technique is described [2.3]. PFC was first

developed as an extension to phase field methods and complement to dynamic density functional

theory. PFC operates by the time, t, evolution of a continuum coarse-grained density field, ρ ,
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acting as an order parameter through conserved Cahn-Hilliard type dynamics,

∂ρ

∂ t
= D∇

2
µ +∇ ·ηi. (2.1)

Here D can be matched to the vacancy diffusion constant, and a thermodynamic current is in-

troduced through the chemical potential, µ = δF
δρ

, where F is the free energy. Processes that

occur faster than the natural material diffusion contribute to the noise, ηi, which satisfies the usual

fluctuation-dissipation theorem: ⟨ηi⟩ = 0 and ⟨ηiη j⟩ ∝ kBT δi j, where kBT is the thermal energy-

scale. The system evolves along a path that minimizes the free energy. Construction of the free

energy can be done by an expansion in correlations of the density functional free energy of freez-

ing, as was proposed by Ramakrishnan et al. [2.27]:

F = Fideal gas +Fexcess

=
∫

Ω

dr
[

ρ2

2
− ρ3

6
+

ρ4

12
− ρ

2
(C2 ∗ρ)+ ....

]
,

(2.2)

where r denotes spatial position defined in a volume Ω. C2 ∗ρ represents the convolution of the

density field with the two-point correlation function. Higher correlation functions can also appear

in the theory, but for the sake of simplicity, this study will drop the higher order contributions. The

distinguishing feature of phase-field crystals models is that their correlation function is built as an

expansion in Fourier space, which can in some cases be taken back to real space. For this work,

the two-point correlation function is taken to be the standard form,

C2(∇
2) =−(Bl−1)−2BxR2

∇
2−BxR4

∇
4, (2.3)

where Bl is inversely proportional to the liquid state isothermal compressibility, Bx is related to

the material elastic constants, and R, the unit cell size as described by Provatas et al. [2.4]. To

eliminate the divergence of the correlation for large k, a smooth cut off may be taken to mimic the

liquid state structure factor, found through S(k) (1−C2(k))−1 [2.28]. Such a contribution may be
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necessary in order to incorporate short length scale effects.

Equilibrium configurations arise as minima of the free energy and can be approximated by

means of a one-mode expansion of the continuum density field:

ρ(r) = ρ̄ +ρsolid = ρ̄ + ∑
{G}

AGeiG·r, (2.4)

where the sum is computed over reciprocal lattice vectors, G, with long-range order being intro-

duced through their complex amplitudes, AG. The correlation may thus be viewed as an interaction

energy which assigns a cost between the disordered liquid, ρ̄ and the ordered solid structure, ρsolid.

The preferred phase can be modulated through the effective temperature, dB = Bl−Bx. This dif-

ference affects the depth of the free-energy wells. Modifications of the correlation can be made to

include different thermodynamic phases [2.29] and crystalline structures [2.30, 2.31].

The PFC model described through the equations (2.1-2.2) allows for the study of crystalliza-

tion. Notably, topological defects such as dislocations and grain boundaries are naturally incorpo-

rated into the framework. In figure 2.1(A), a polycrystalline sample simulated with the PFC model

is shown (Subpanels B-E are discussed in section 2.2). In the presence of dislocations the ideal

lattice shifts by a deformation, r→ r+u. Instead of delta sharp Bragg peaks, the strain broadens

and shifts the Bragg peak profiles. The evolution of u is associated with phonon dynamics. In what

follows the phase field crystal model is extended to include quasi-phononic behaviour. The local

hydrostatic strain and dislocation density will be shown extractable through convolutional filters

that are exploited to extend the single-field modified PFC formulation.

2.2 Modified Phase Field Crystal Model

As discussed above, Stefanovic et al. [2.12] made a phenomenological theory to incorporated the

additional elastic excitations compared to the diffusive form of equation (2.1). This extension led
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Figure 2.1: Illustrated in (A) is a polycrystalline sample simulated with the phase field crystal

model. The system was prepared through seeded grain growth until impingement occurred on a

512×512 numeric grid. The grid spacing was selected to ensure a lattice length of roughly 10 grid

points. Subpanel (B) highlights the dislocations present within the bulk and grain boundaries, con-

structed using equation (2.24). Subpanel (C) represents the effective hydrostatic strain field arising

from the dislocations using equation (2.23). The gradient highlights the direction perpendicular to

the slip plane and subsequently perpendicular to the Burger’s vector. σ1 = 0.2 and σ0 = 0.2 were

used for the filters. (D) and (E) show a zoom in of the density field and strain field respectively

corresponding to the red square in panel (A). Figure adapted from [2.32].

to the modified phase field crystal with a dissipative wave equation,

∂ 2ρ

∂ t2 +β
∂ρ

∂ t
= D∇

2
µ. (2.5)

A central topic of discussion in this work will be how the parameter β introduces an inertial

relaxation time of propagating modes. Treating β as a constant, Stefanovic et al. investigated

plastic deformation, and found experimental agreement with reverse Hall-Petch weakening [2.33].

Likewise, Berry et al. explored dislocation dynamics described by the MPFC equation, finding

dislocation creep, glide, and dislocation nucleation from pinned (and stressed) dislocation pairs

[2.15]. However, the timescale for dislocation glide and climb were shown inseparable. Thus
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further modifications to the MPFC are required to make the model more quantifiable.

2.2.1 Derivation

To discuss the various parameters entering in equation (2.5) a simplistic derivation is presented (a

complete form can be found arising from linearized hydrodynamics [2.16]). The starting consid-

eration is a volume of material under local mass and momentum conservation,

∂ρ

∂ t
=−∇ ·g, (2.6)

and,
∂g
∂ t

=−∇ ·σ . (2.7)

The above equations reflect the temporal evolution of the mass and momentum in response to the

currents given by the momentum, g, and stress, σ , respectively. The conservation laws hold as

global constraints even in the coarse-grained limit (t≫ 1 and k≪ 1). Depending on the response

length scales, the control volume may need to be sufficiently large. The two equations can be

combined by taking a time derivative of the mass conservation equation,

∂ 2ρ

∂ t2 = ∇ ·∇σ = ∇ · (∇σ
R +∇χ +∇σ

diss). (2.8)

Here the stress tensor has been decomposed into reversible, σR, dissipative, σdiss, and conditionally

reversible stress contributions, χ . The reversible stress χ accounts for elastic material response

when the distortion evolves slowly in time and gradually in space. The dissipative stress is to be

interpreted as a memory dependent response. The conditionally reversible stress arises as a result

of plastic deformation and motion, which should vanish near equilibrium. Defect dynamics such

as vacancies and dislocations have been shown by Fleming et al. in the context of hydrodynamics

to reduce the stress of the material [2.34]. Recently, Kim et al. showed that dislocation dynamics

can result in stress reduction drops as a result of the bond breaking [2.35]. With sufficient kinetic

energy, defects can also trigger dislocation nucleation [2.36], twinning [2.37], voiding [2.18], and

29



out-of-equilibrium phase transitions [2.38].

The constraints imposed by equation (2.8) are accompanied by the strain, ui j, which represents

the symmetry variables reflecting distortion from an ideal lattice [2.34, 2.39]. In particular, fluctu-

ations of the density away from an ideal crystal can be related to pressure disturbances through,

δρ ∝−∇ ·δu. (2.9)

In the coarse-grained limit defect concentration will also affect the relation (2.9). Through a

projection-operator formalism, Walz et al. [2.40], and separately Majaniemi et al. [2.16], de-

termined a contribution from defects for the study of non-ideal crystals. The aim of projection-

operator techniques is to separate slowly evolving variables of a system from faster components.

This separation relates how fluctuations of the slow variables are coupled and introduces noise

currents to approximate the faster dynamics. Through such a procedure, an additional variable,

δc, corresponding to a defect density can be introduced (δc can also include higher strain terms).

Relation (2.9) is then modified to account for defects,

δρ ≈−∇ ·ρδu−αδc, (2.10)

where ρ is the average density and α is a tunable parameter coupling defects such as dislocations

to local density. Density fluctuations are thus driven by a competition of the strain and defect

dynamics. Expressing the correction δc in terms of strain leads to,

δρ ≈−∇ ·ρδu−α∇ ·δu+α∇ ·δco. (2.11)

The above decomposition may be motivated by recognizing that defects, vacancies and dislocations

contribute to the strain in a material. Here the additional term ∇ · co can include higher order

contributions to the strain and density. For simplicity let δc0→ 0, which is also valid in the low

strain limit.
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The non-dissipative stress can be determined through the thermodynamic identity,

σR +χ ≈ δE
δui j

, (2.12)

which relates the stress arising from variations in the system’s total energy, E, to variations in

strain, ui j. The total energy is comprised of the kinetic energy and interaction energy. With the use

of equation (2.11), the non-dissipative components of the stress may be determined via the chain

rule for functionals,

σR +χ =
∫

δE
δρ

δρ

δui j
= ρµρ −αµc, (2.13)

in which the replacements δE
δρ

= µρ and δE
δc = µc have been used. The total energy equation (2.13)

shows that stress is generated from fluctuations of the mass and defect densities. The plastic, time

dependent stress, can in general include higher order couplings between the density and defect

fluctuations. Such effects can however be subsumed into a noise current when determining the

relation (2.11), which has been set to 0 here for simplicity. Substitution of the equation (2.13) into

equation (2.8) results in,

∂ 2ρ

∂ t2 = ∇
2(ρµ)−∇

2(αµc)+∇ ·∇σ
diss, (2.14)

which shows that inertial density dynamics are thus impeded by the presence of defects within the

crystal.

In the late time limit, diffusion is the dominant mode of the defect dynamics. Thus ∂c
∂ t ≈

η∇
2(µc), where an appropriate diffusion constant, η , is introduced. One can further simplify

equation (2.14) by noting that a time derivative of the equation (2.10) permits the substitution,
∂ρ

∂ t ≈ α
∂c
∂ t + ρ∇ · ∂u

∂ t . The strain contribution here reflects pressure wave disturbances, such as

might occur from vacancies nucleating and moving through the bulk; for example, dislocation

velocity can be reduced by the local phonon density, an effect termed dislocation drag [2.41]. The
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above consideration reduce equation (2.14) to,

∂ 2ρ

∂ t2 +
1
η

∂ρ

∂ t
− ρ

η
∇ · ∂u

∂ t
= ∇

2(ρµρ)+∇ ·∇σ
diss. (2.15)

The aforementioned competition between density and defect dynamics results in a damped wave

equation. Here, the vacancy diffusion constant η sets the scale of the dampening; however vacancy

transport can also be assisted by a propagating strain field, thereby reducing the dampening factor.

It is noted that the above strain dependence of the stress follows an empirical form also established

in other studies of plastic deformation [2.42]. Such a term would not appear in an ideal solid,

where the distortion field evolves slowly and gradually in space.

To proceed further, the parameter µρ = δE
δρ

that emerges in equation (2.13) needs to be related

to the chemical potential, µ = δF
δρ

. To achieve this, the total energy can be related to the liquid-solid

free energy, F , appearing in equation (2.2) by

E = F +
∫ |g2|

2ρ
− γo

∫
δc∇ ·u, (2.16)

where the second term on the RHS represents the kinetic energy contribution. The parameter γo

enters as a phenomenological constant scaling the third term, which has appeared previously in

the study of two dimensional melting by Zippelius et al. [2.43] as the lowest order permissible

coupling of the defect density and strain fields. Using the fluctuation relationship of equation

(2.10) gives,
δ

δρ

∫
Ω

drδc∇ ·u≈ −1
α

∇ ·u, (2.17)

where the lowest order strain coupling is retained. The parameter µρ may thus be related to the

chemical potential through, µρ = µ + γo
α

∇ ·u. Using this to replace µρ in equation (2.15) gives,

∂ 2ρ

∂ t2 +
1
η

∂ρ

∂ t
= ∇

2(ρµ)+
ρ

η
∇ · ∂u

∂ t
+

ργo

α
∇

2
∇ ·u+∇ ·∇σ

diss. (2.18)

To avoid potential over-counting γo may be tuned 1.

1The strain-defect interaction in equation (2.16) can be derived from the free energy as a three point correlation
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The second and third terms appearing in equation (2.18) can be identified with the properties

of the conditionally reversible stress χ . In particular,

∇
2
χ =

ρ

η
∇ · ∂u

∂ t
+

ργo

α
∇

2
∇ ·u, (2.19)

where γo enters as a phenomenological constant 2. The strain-rate component arises from mo-

tion of plastic defects. Such a stress-strain-rate coupling has appeared in empirical form for the

characterization of stress in plastic deformation [2.42]. The γo term is an additional contribution

to χ that has been shown to arise from the coupling of the defect density and strain [2.43]. This

term has previously appeared in the earlier work by Majaniemi et al. [2.16, 2.44] and may be the

source of differing sound velocities between hydrodynamic and PFC models. It is noteworthy that

in nearly equilibrated crystalline matter (i.e. or at late times in the evolution process) the dilational

strain vanishes near equilibrium, i.e., ∇ ·u→ 0, which makes the conditionally reversible stress in

equation (2.19) vanish, as assumed.

Continuing on with the derivation of the new MPFC model, the dissipative stress components

are approximated to recover an appropriate form in the coarse-grained limit. A simplistic and lin-

earized form of the dissipation can be constructed through a viscosity parameter. The viscosity

sets the momentum dissipation time, τR, through the relation, 1
τR

∇σdiss = −g. Taking the diver-

gence of this equation gives ∇
2
σdiss ≈ −τR∇ · g, which through the mass conservation results in

∇
2
σdiss = τR

∂ρ

∂ t . The relaxation time is in general a function of the defect density and is thus a

spatial function. However, in our coarse-grained limit, a Taylor series expansion of the dissipation

around k = 0 is performed, with appropriate symmetry constraints. This results in

τR ≈ ν0 +ν2∇
2 +ν4∇

4 + ... (2.20)

component of order O(ρ3) using an effective strain field ∇ ·ueff which is defined in the following section in equation
(2.23). Such a coupling is missed using a PFC model expanded solely up two-point correlation in the excess energy
as in equation (2.2).

2Some plastic stress is already accounted for in the usual PFC free energy, F . The extra components entering
through the parameter χ act as higher order strain coupling, which necessarily arise at large deformations experienced
in plasticity. The parameter γo can thus be tuned to account for possible double counting between these two effects.
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In non-equilibrium crystals the vacancy diffusion rate mimics long-range dissipation, as was also

assumed above. Due to the lack of long-range dissipation in ideal solids the zeroth order term

vanishes, giving ν0 = 0. The second order term, ν2 can be interpreted as Akhiezer dampening, re-

sulting from phonon-phonon and phonon-defect scattering [2.45]. Thermoelastic wave-scattering

is also incorporated into ν2 [2.46]. Moriel et al. [2.47] demonstrated that in low temperature

glasses (∼ 50K) the fourth order contribution, ν4 dominates. They ascribe this feature to boundary

scattering, because of the short-range symmetry. Since most of phase field crystal systems are

restricted to near the melting point, ν4 may be set to zero.

Using both equation (2.19) and equation (2.20) reduces equation (2.18) to the following modi-

fied MPFC form,

∂ 2ρ

∂ t2 = ρ∇
2

µ−
(

1
η
−ν2∇

2
)

∂ρ

∂ t
+∇

2
χ. (2.21)

At late times, and close to the melting point, χ → 0 and the second order dissipation dominates.

Under such conditions a traditional MPFC-type model is recovered, i.e.,

∂ 2ρ

∂ t2 +

(
1
η
−ν2∇

2
)

∂ρ

∂ t
= ρ∇

2
µ. (2.22)

Comparing equation (2.22) with original MPFC model of equation (2.5) reveals that the dissipa-

tion parameter has been modified here to account for contributions from the defect dynamics and

friction-like dissipation effects, i.e., β →
(

1/η−ν2∇
2
)

.

2.2.2 Hydrostatic strain

Further simplification can be made to the form of equation (2.21) by rewriting χ into a density

dependent function. This reconstruction allows for a single-variable field theory which accounts

for the plasticity couplings introduced in equation (2.19). First some background will be provided

about existing techniques to extract hydrostatic strain and defect density, then a new convolutional

filter will be constructed.
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Hÿtch et al. developed a convolution procedure to extract the small strain tensor from the one

mode expansion by applying a Gaussian mask on the Bragg peak maxima positions. The approach

is termed Geometric Phase Analysis [2.48] and its simplicity allows experimental determination

of strain intensities and Burger’s vectors in high resolution electron microscopy [2.49]. The work

of Guo et al. [2.50] combined the use geometric phase analysis with phase field crystal methods in

their study on grain dynamics. Geometric phase analysis has also appeared in the work of Skaugen

et al. [2.51] and Liu et al. [2.52] for the study of dislocation dynamics. The technique, however,

requires foreknowledge of the reciprocal lattice vectors, and is thus restricted to amplitude models

developed by Elder et al. [2.21]. Nonetheless, one can extract some low-strain information based

on the size of the Bragg circle, that is in the neighbourhood of |G| in Fourier space.

Ungár tabulated the structural features correlated with different types of structure factor peak

aberrations [2.53]. Notably, dislocations and their strain profiles influence the asymmetry, as was

studied by Groma et al. [2.54, 2.55]. Microstresses and grain boundaries lead to symmetric broad-

ening of the diffraction peak. Asymmetry thus acts as a measure of the dislocations and strain

independent from microstresses and grain boundary interface effects.

The following procedure may be performed to construct an effective hydrostatic strain field,

∇ ·ueff, based on the asymmetry of the structure factor peak,

∇ ·ueff ≈ γ1F
−1

[
ke−

k2
σ0 F

[
ρF−1[(k−|G|)e−(k−|G|)2/(σ1)F [ρ]

]]]
, (2.23)

where k denotes the radial wavenumber, and F is to be understood as a Fourier transform opera-

tion and σ1 a scale to separate the long wavelength contributions to those near |G|. In accordance

with the correlation of equation (2.3), |G|= 1
R . The constant γ1 sets the appropriate scale and pro-

portionality. Note that the convolution is real provided the density is real. Shown in figure 2.1(B)

is the strain field, computed through equation (2.23), which is generated by dislocations present

within a polycrystalline sample. Figure 2.1(B) highlights the strain field produced from disloca-

tions present within a polycrystalline sample. Sub-panel 2.1(E) zooms in on a pair of dislocations.

The gradient in color from black to white points in a direction perpendicular to the Burger’s vector
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of the dislocation. Thus the polarity of a dislocation can be determined, through the nonlinear

convolution (2.23). This construction alleviates the need to use peak fitters or foreknowledge of

the reciprocal lattice vector direction. To obtain a smooth profile associated to long wavelengths,

a Gaussian smoothing filter is applied with scale σ0. Dislocations may further be separated from

their polarities and strain information. By taking an absolute value of the Fourier coefficients near

|G|, a dislocation density, ρdis, may be constructed,

ρdis ≈ γ2

∣∣∣F−1[e−(k−|G|)2/(σ1)F [ρ]
]∣∣∣, (2.24)

where γ2 enters as a scale parameter. The above equation is in essence the Warren-Averbach

method [2.56] used in X-ray diffraction to determine the average microstrain. Thus defects have

been correlated as sources of strain within the material. An example of the dislocation density is

presented in figure 2.1(C) where a Gaussian smoothing filter has been applied as in equation (2.23).

The long range islands present within the grain bulks denote the presence of coherency strain. The

coherency strain results from long-range bending of the ideal lattice structure due to the misfit at

grain boundaries. Such a filter can track residual strain or dislocation density without the need for

a peak-finder.

2.2.3 Modified MPFC model

By substituting the effective strain field ∇ ·ueff form of equation (2.23) into equation (2.19), the

conditionally reversible stress may be related to the density field according to

∇
2
χ =

ρ

η

∂H (ρ)

∂ t
+

ργo

α
∇

2H (ρ), (2.25)

where

H (ρ) = γ1F
−1

[
ke
−k2
σ0 F

[
ρF−1[(k−|G|)e−(k−|G|)2/(σ1)F [ρ]

]]]
(2.26)
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is the convolutional filter introduced in equation (2.23). The component ∂H (ρ)
∂ t appearing in equa-

tion (2.25) can be further simplified by application of the chain rule,

∂H (ρ)

∂ t
= γ1F

−1

[
ke
−k2
σ0 F

[
∂ρ

∂ t
F−1[(k−|G|)e−(k−|G|)2/(σ1)F [ρ]

]
+ρF−1[(k−|G|)e−(k−|G|)2/(σ1)F [

∂ρ

∂ t
]
]]] (2.27)

Through equation (2.25) the strain dependent wave equation equation (2.21) may be recast into

a modified MPFC equation written as a single-field theory in terms of density,

∂ 2ρ

∂ t2 +

(
1
η
−ν2∇

2
)

∂ρ

∂ t
= ρ∇

2
µ− γ∇

2H (ρ)+φ
∂H (ρ)

∂ t
, (2.28)

where γ = ργo
α

and φ = ρ

ηα
. The strain-rate parameter φ in equation (2.28) introduces effective

plastic couplings into the model. Since plastic material response can be highly temperature de-

pendent future studies may entail making connection between φ and the lattice temperature. As

is illustrated in figure 2.1, the effective hydrostatic strain vanishes along the glide plane of the

dislocation. This is due to γ setting differing diffusion rates along the glide plane compared to per-

pendicular to it. Consequently, The strain-defect coupling, γ , can be used to modify the time scale

difference between dislocation glide and climb. This is a new feature of this model not possible in

previous PFC models, an innovation that should allow for a quantitative separation of time scales

for dislocation glide mediated dynamics versus dislocation creep, which is climb dominated.

To summarize, this section derived a new modified phase field crystal (MPFC) model that

incorporates non-equilibrium vacancy strain and strain-rate contributions to the dynamics of the

density field. Crucial to the construction of this modified MPFC equation (2.28) was the use of a

novel non-linear convolution defined by equation (2.23) to relate these effects in terms of a single

density field ρ . The additional strain couplings are expected to allow for a more accurate de-

scription of non-equilibrium processes in rapid crystallization phenomena. Future studies will be

done that utilize the added vacancy-strain components to study fracture strength and dislocation

dynamics. Such an investigation may elucidate the role of vacancies in construction of a defor-
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mation mechanism map, which separates diffusional flow, power-law creep, and plastic response

regimes. Furthermore, phonon scattering of dislocations can yield measurements of the thermal

conductivity of a polycrystal, as well as highlighting the role of grain boundary screening 3.

2.2.4 Memory Formalism Approach

It is noteworthy that with the use of an integrating factor equation (2.28) can be formally inverted

into the following form,

ρ̇ = D∇ ·
∫ t

−∞

ds[M(t− s)K(t,s)(∇µ(s)+ζ )], (2.29)

where the memory function, M is defined by M(t) = De−tβ and where a noise source ζ has been

tacitly added to equation (2.28). The function K(t,s) includes the non-linear components which

vanish near equilibrium, where K(t,s)→ 1. This type of equation was previously introduced by

Galenko et al. [2.57] in their investigation of MPFC dynamics in the absence of defect/friction-

related dissipation. The representation in equation (2.29) directly shows that the noise current,

derivable from generalized Langevin dynamics, has an exponential correlation in time. This has

similarly appeared in a subsequent study by Ankudinov et al. [2.58]. Equation (2.29) permits

comparison to current correlations in models discussed in generalized hydrodynamic texts that in-

clude dissipative contributions [2.59] and mode coupling [2.60]. The reconstruction further allows

discussion of two distinct limits of the memory function, β ≫ 1 and β ≈ 1.

When β≫ 1, the system is overdamped and the memory function reduces to M(t)→Dδ (t). As

will be shown explicitly below, propagating modes only occur above a critical wavevector, which

needs be tuned. In this limit of the memory function the diffusive dynamics of the original phase

field crystal in equation (2.1) are recovered. It should be noted that in order to compare simulations

of differing dampening coefficients (MPFC to PFC for example), time needs to be appropriately

re-scaled. Following Berry et al. [2.15] one can introduce a renormalized time τ = β t, where t

denotes the iteration time.
3Grain boundary screening is also expected to play a role in the mechanics of dislocation pile-up.
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Figure 2.2: Illustrated is the real (A) and imaginary (B) dispersion curve for varying values of the

dissipation when the viscous dissipation is set to zero, ν→ 0. The real components represent prop-

agating solutions, while the imaginary components reflect dampening of the wave. The following

values for the dissipation were chosen: β0 = 0 solid green line, β0 = 4 red dashed line, β0 = 10

dotted blue line. Other simulation parameter were chosen as follows: Bx = 1, Bl = 0.8, ρ = 0.1,

and R = 1. Figure adapted from [2.32].

When β ≈ 1, the system is underdamped. In such a scenario density perturbations will prop-

agate without dampening for a time, tω ∝
1
β

. Low dampening can be used to explore phonon

scattering and dislocation nucleation mechanisms from shock wave compression tests. Berry et al.

[2.13] found that the underdamped limit of the previous MPFC equation can also capture caging

behaviour in two-component glasses. It is expected that the additional contributions to the MPFC

equation introduced in this work may in future permit the study of single-component metallic

glasses.

2.2.5 Floquet Analysis

To better understand the propagation behaviour arising from the dissipation in our MPFC model,

one can proceed similarly to Stefanovic et al. [2.12] through a Bloch-Floquet analysis applied to

equation (2.5), which lends itself to the analysis of linear problems. The following discussion will

thus consider the limit of χ → 0, i.e., on equation (2.22). This analysis considers a perturbation of

39



the density away from the ideal equilibrium density, which is represented as equation (2.4),

ρ(r) = ρideal(r)+ ∑
{G0}

bG0eiG0·reiQ·reiωt , (2.30)

where G0 represents the set of reciprocal lattice vectors and the zero vector. In the above, variations

of the amplitudes (and liquid) are considered through the fluctuations denoted by bG0eiQ·reiωt .

Substituting equation (2.30) into equation (2.5) and integrating over a unit cell will recover the

effective dispersion relation. Keeping only linear terms of the fastest growing mode, b0, the sub-

stitution yields,

−ω
2 + iβω =−DQ2

(
ρ(ρ−1)+

3
8
|A|2 +

(
1−C2(Q)

))
, (2.31)

where A is taken as the first order amplitude that minimizes the free energy. The effective disper-

sion relation can then be solved, yielding,

ω(Q) = i
β

2
±
√
−β 2

4
+DQ2

(
ρ(ρ−1)+

3
8
|A|2 +

(
1−C2(Q)

))
. (2.32)

To further explore the dispersion, one can decompose ω into propagating (real) and dissipa-

tive (imaginary) modes, i.e., ω = ωR +ωI . The effective phase velocity can be determine by,

vp = ωR/Q, with a dissipation time tdiss ≈ 1
ωI

. The propagating mode ωR is illustrated in figure 2.2

for typical simulation parameters. Of particular note is the lack of long wavelength propagation

as the dampening factor, β , is increased. Stefanovic et al. argued that the effect can be removed

by forcing the propagation length, Lprop = vptdiss ≈ ωR
QωI

, to be larger than the maximum numeric

system size. This poses a severe limitation in the ability of the previous MPFC model to cap-

ture experimentally relevant observations. Recent experimental [2.61] and theoretical work [2.62]

has found that in visco-elastic liquids, long wavelength transverse waves are restricted to specific

length scales. It is postulated that the lack of long-range order and the soft breaking of the spatial
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Figure 2.3: The dispersion relation of equation (2.32) is shown when the viscosity, β → β0 +

k2β1 is introduced (A real part, B imaginary part). The following values for the viscosity were

chosen: β2 = 0 solid green line, β2 = 4 red dashed line, β2 = 10 dotted blue line. Other simulation

parameter were chosen as follows: Bx = 1, Bl = 0.8, ρ = 0.1, and R = 1. Figure adapted from

[2.32].

symmetries results in the development of a k-gap 4. The k-gap referred to above can be consistently

captured by the new MPFC model introduced in this work.

Figure 2.3 illustrates the dispersion relation of equation (2.32) with the effective viscosity func-

tion introduced in this work. It is notable that increasing the viscosity results in a (temperature

controlled) high |k| cutoff above which propagation is impossible. The traditional MPFC model,

with ν2 set to 0, is valid when observing vacancy dynamics near the ideal crystal state. However,

in polycrystalline materials thermal/viscous dampening can result in high frequency phonon soft-

ening. Phonon softening can subsequently trigger dislocation nucleation [2.63]. It is noted that

the k-gap contained in our new MPFC model is also consistent with the hydrodynamic phase field

crystal extension of Heinonen et al. [2.20]. However, separating the transverse and longitudinal

contributions of the propagation can be challenging with the MPFC formalism as they are coupled,

and so the framework constructed by Heinonen et al. allows for easier separation of the compo-

nents. On the other hand, the ease of this time scale separation comes with the loss of simplicity of

a single variable theory/model. The dissipation of the new formulation facilities the simulation of

4As an example, Such a suppression of the long wavelength cutoff may permit the study of high temperature
liquid-solid systems near the supercritical transition.
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realistic hydrodynamic response with a single field, thereby significantly reducing the complexity.

2.3 Numerical Simulation Scheme

This section derives a generalization of the commonly used semi-implicit pseudo-spectral numer-

ical integration method. This can be used to render efficient numerical simulations of the new

MPFC equation introduced in this work, as well as a wide variety of other equations. The sim-

plicity and unconditional stability in the linear source function are shown to be a general result of

exponential time integration in both real and Fourier space.

2.3.1 General Form

The starting point is the definition of the density field ρ and its time derivative ∂ρ

∂ t which lie on

a numerical grid of size Ω = Ωx×Ωy×Ωz. The new model outlined in equation (2.21) can be

restructured into a 1st order matrix equation. This is done by introducing the vector P =

ρ

ρ̇


as highlighted by Hadadifard et al. in their study of the generic damped wave equation [2.64].

Namely,

∂P
∂ t

=

0 I

L −β (∇2)

P+

 0

Nl

. (2.33)

Here L = D∇
2(1−C2) refers to the linear operations acting on the density field ρ , while Nl =

D∇
2(−tρ2 + vρ3)+βnl includes the nonlinear contributions. The parameter βnl can include other

nonlinear couplings between ρ , ∂ρ

∂ t , or boundary conditions. The restriction of a physical density

field and free energy enforces the operators L, and β to be real. For simplicity one may denote

F =

 0

Nl

 and M =

0 1

L −β

. One can then integrate equation (2.33) between the current time

point, t, and a numeric time step t +dt, which yields

P(t +dt) =exp(Mdt)P(t)+
∫ t+dt

t
exp
(
M(t +dt− s)

)
F(s)ds. (2.34)
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The first component on the right side of equation (2.34) captures consistent evolution of ρ and ∂ρ

∂ t in

response to the linear driving terms through a matrix exponential. The second component captures

the nonlinear response and must be approximated due to the dynamic evolution of F(t). Note that

the exponential is a matrix operation and should be treated as short-hand for the corresponding

series expansion.

Provided the integration bound is small one may approximate, F(s) ≈ F(t), allowing connec-

tion to the form of the pseudo-spectral method of Mellenthin et al. [2.65],

P(t +δ t)≈exp(Mdt)P(t)+
∞

∑
n=0

Mn dtn+1

(n+1)!
F(t). (2.35)

The matrix series term of equation (2.35) can be simplified when M is a non-singular matrix

through the inverse operation, yielding

P(t +dt)≈exp(Mdt)P(t)+M−1(exp(Mdt)−1
)
F(t). (2.36)

When M is a circulant matrix 5 one will recognize that for the PFC operators, the k = 0 mode

is the only singular eigenvalue of the matrix M. The singular component corresponds to a local

conservation requirement. This reconstruction is reasonable to treat as an action on the vector

F(t) because the eigenvalues of
(

exp(Mdt)−1
)

decay faster than M−1. To further enforce density

conservation, an auxiliary condition may also be introduced and solved at each time step according

to

∂ρk=0

∂ t
= 0, (2.37)

ρk=0 = ρ̄. (2.38)

Equation (2.36) provides a generalized form of the semi-implicit integration scheme. Although

equation (2.36) appears simple in form, the matrix exponential, which can be determined through

an eigenvalue decomposition, can be notoriously difficult to utilize. In particular, the matrix ex-

5i.e., A square matrix that is diagonalized by a discrete fourier transform.
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ponential is not guaranteed to be a sparse operation. If using grid sizes above 2563 substantial

computational memory is required to store the full exponential. In such a scenario techniques

which avoid the need to store the matrix exponential are necessitated. This is investigated next.

When the matrix exponential is Taylor expanded, exp(Mdt) ≈ I+Mdt, explicit Euler time

stepping is recovered:

ρ(t +dt) = ρ(t)+dt
∂ρ

∂ t
,

∂ρ(t +dt)
∂ t

= Ldtρ(t)+(1−dtβ )
∂ρ(t)

∂ t
+dtNl(t).

(2.39)

The required iteration matrices are reduced in memory cost by destabilizing the dynamics at in-

creasing values of dt. To maintain stability at higher computation cost per iteration, a Padé ap-

proximation of the matrix exponential [2.66] can be made in equation (2.36), yielding

(I−dtM)P(t +dt) = (I+dtM/2)(P(t)+

L−1Nl(t)

0

)+(I−dtM)

L−1Nl(t)

0

. (2.40)

The (n,m) Padé approximation is a rational series representation with numerator of order n and de-

nominator order m. That is, a function, f (x), may be approximated by Qn(x)
Rm(x)

for polynomials Qn(x)

and Rm(x) with order given by their subscripts. The (1,1) expansion used to construct equation

(2.40) is ex = 1+x/2
1−x/2 . When working with large sparse matrices the action of the inverse matrix,

(I− dtM)−1 on a vector can be determined with the use of Gaussian elimination. One can save

some computation time by preconditioning by means of an LU decomposition. Instead of rational

series approximations, exponential Runge-Kutta can be used [2.66] or the scaling-squaring method

of Mohy et al. [2.67].

2.3.2 Fourier Space

Adapting the above technique to Fourier space offers the advantage that the matrix exponential

is sparse. This is seen by recognizing that the matrix M reduces to Ωx×Ωy×Ωz (2x2) block

diagonal matrices corresponding to the different Fourier wave vectors, ki. An exponential of each
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(2x2) matrix may then be analytically taken:

exp(Mkdt) = exp
(
−dtβ

2

)C+βS 2S

2LkS C−βS

, (2.41)

where,

C = cosh
(√

4Lk +β 2 dt
2

)
, (2.42)

and,

S =
sinh

(√
4Lk +β 2 dt

2

)
√

4Lk +β 2
. (2.43)

By substituting equation (2.41) into equation (2.36) one can arrive at the generalized form of the

Fourier space scheme:

ρk(t +dt) = e−
dtβ

2
(
(C+βS)ρk(t)+2Sρ̇k(t)

)
+
(
e−

dtβ
2 (C+βS)−1

)Nl
Lk

, (2.44)

and,

ρ̇k(t +dt) = e−
dtβ

2
(
(2LkS)ρk(t)+(C−βS)ρ̇k(t)

)
+2Se−

dtβ
2 Nl, (2.45)

where C and S are as defined in equation (2.41). The scheme of equations (2.44-2.45) provides a

method to consistently evolve the density field and the corresponding time derivative.

In the overdamped limit, β → ∞, the scheme (2.44-2.45) reduces to the pseudo-spectral form,

ρk(t +dt) = eLk
dt
β ρk(t)+(eLk

dt
β −1)

Nl(t)
Lk

. (2.46)

Such a form, in this limit, has previously been outlined by Mellenthin et al. in their study on

premelting [2.65] and is similar to that obtained by Chen et al. in their work on Cahn-Hilliard
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Figure 2.4: Illustrated in sub-figures A-D is the growth of a dendrite in time on a 2048× 2048

numerical grid (A: t=0, B: t=50000, C: t=100000, D: t=160000). To remove unwanted Moire

resolution effects from the images, a phase-field like filter is applied, ρs = F−1
[
e−

k2
0.2 F

[
|ρs|
]]

,

which separates liquid (white) from solid (black). A zoom in of the true density field of a dendrite

branch is provided. Sub-figure E shows the free energy computed from equation (2.2) as a function

of time. The numerical parameters of the system are as follows: dx = dy = 1, Bl = 1, Bx = 1.4,

dt = 0.1, R = 10dx
√

3
4π

, β = 60, D = 100, ρ =−0.33. Figure adapted from [2.32].

dynamics [2.68].

By proceeding through matrix exponentiation the form described by W. Zhou et al. [2.69] is re-

covered with a couple of differences. Notably the k=0 component of the model is solved separately

through an auxiliary condition ensuring conservation of density. Furthermore equation (2.36) pro-

vides direct comparison to the popular pseudo-spectral method highlighting application in real

space (which may be necessary for highly coupled dynamics) with effective boundary conditions

that can be incorporated into the nonlinear component.
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2.3.3 Convergence

The unconditional linear stability can be shown by noting the augmentation matrix exponential,

exp(Mdt), is bounded in [−1,1]. Letting λi denote the ith eigenvalue of the matrix M, one can

check the stability of the linear contribution of equation (2.36) by ensuring λi < 0 since then

0 < exp(Mdt)< 1. Solving for the eigenvalues one finds,

λi =−
βk

2
± 1

2

√
βk +4Lk. (2.47)

It is thus evident that λi < 0 for all k of our system, since Lk < 0 and equal only if k = 0. The

stability requirement of explicit methods for solving the phase field crystal model, dt ⪅ dx6, can

be avoided. The overall stability is however still dependent upon the nonlinear component, F(t),

and the approximation used to arrive at equation (2.35). Nonetheless, the stability improvement is

observed to yield substantial computation efficiency dependent upon the dt, dx, and β parameters

used.

Although stability provides values of the time step size for which the system does not diverge,

consistency must also be ensured to obtain meaningful solutions. Consistency may be determined

straightforwardly by proving the local truncation error vanishes in the limit dt and dx go to zero.

The local truncation error is often defined as the difference of the partial differential equation and

the scheme being utilized. Through a Taylor series expansion for small dt on both the P(t + dt)

and exp(Mdt) terms of equation (2.35). The truncation error can be found to be O(dt2) arising

from the approximation used for the non-linear terms. Note that in order to see the granularity of

atoms, dx must be chosen smaller than the atomic lattice length set by R.

2.3.4 Demonstration of new MPFC Equation with Numerical Scheme

To illustrate the versatility of our algorithm at late times, an example of seeded dendrite growth

is shown in figure 2.4. Often found in nature, such snowflake-like patterns emerge as a result

of the well-known Mullins and Sekerka surface instability [2.24]. Since the solid phase has a

preferred crystallographic direction the solid-liquid interface energy has anisotropic character. The
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Figure 2.5: Illustrated in sub-figures A-D is the rapid crystallization of a circular seed placed in the

center of a 2048x2048 numeric mesh (A: t=100, B: t=2000, C: t=4000, D: t=8000). Each snapshot

has been zoomed in to a 800x800 sub-domain to highlight the atomic structure. Using the strain

filter introduced in equation (2.23), sub-figure E highlights the root-mean-square hydrostatic strain

as a function of simulation time. An inset is provided magnifying the region defined by the red

box. Sub-figure F shows the hydrostatic strain map corresponding with sub-figure D (t=8000). A

scale bar is provided with scale set by γ1 = 1. The numeric parameters of the system are as follows:

dx = dy = 1, Bl = 1, Bx = 1.4, dt = 0.005, R = 10dx
√

3
4π

, β = 0.1, D = 10, ρ =−0.3. Figure adapted

from [2.32].

anisotropy of the growing interface triggers the formation of a dendrite arm. For a hexagonal

crystal, a sixfold symmetric dendrite is to be expected, which is recovered in figure 2.4. The

asymmetry visible in subpanels B-C appears as a result of the one-mode-approximation used to

initialize the system. As the system continues to grow the asymmetry vanishes. Furthermore, as

the dendrites arms grow in size, their interface destabilizes resulting in further sidebranching. This

subsequent phenomenon does not occur in the illustration since the chosen parameter set yields

faster growth compared to the sidebranch formation time-scale. If the system were prepared in

a state closer to the liquidus or the dendrites continued their growth up to a sufficient size, side
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branching would occur. Figure 2.4(E) also illustrates a decreasing unitless free energy performed

as a sanity check of the dynamics. The decrease is as expected of a system evolving toward

equilibrium.

Beyond the standard surface instability leading to interesting growth morphologies in solidi-

fication, the growth rate of the solid-liquid interface during rapid crystallization has been shown

coupled to strain dynamics that can have a strong impact on the resultant crystal morphology

[2.70]. At low velocities, the growth is mediated by density diffusion at the boundary. Since this

formation pathway can be understood from mass diffusion, the realm of low interface velocities are

more amenable to traditional diffusive dynamics. With increasing velocity, crystallization transi-

tions away from mass diffusion. The interface growth is then dominated by local strain and kinetic

attachment effects. The novel contributions of the model introduced in this article become impor-

tant during such rapid crystallization. Because of the speed of the interface, dislocations, liquid

pools, and vacancies can be left behind within the bulk crystal as has been observed by Jreidini et

al. [2.25] in their study on aluminium.

Figure 2.5 illustrates an example of the rapid crystallization microstructure starting from a cir-

cular seed. The presence of dislocations and liquid pools within the forming crystal are observed.

Using equation (2.23) the root-mean-square of the hydrostatic strain was measured as a function

of the evolution time and plotted in figure 2.5(E). At early times, the strain transitioned from log-

arithmic to linear dependence. Such behaviour has been reported previously by Jörgenson et al.

[2.71] for the radius of a circular crystal nucleating and undergoing surface destabilization. It is

suspected that at early times the strain is concentrated at the solid-liquid interface, thus scaling like

the radius. As the growth progresses, there is evidence of some non-linearity, which may be related

to the presence of defect structures entrenched in the bulk crystal. In particular, the solid-liquid

interface moves faster than mass diffusion relaxes the lattice strain. As a result, the formation of

defects may provide a means to alleviate the deformation build-up that occurs near the interface.

The liquid pools and dislocations are shown in figure 2.5(F) to have dipolar-like strain fields, as

additionally reported by Jreidini et al. [2.25], which form a dendritic-like profile within the bulk

crystal. Through the strain distribution analysis of figure 2.5 the new formulation induced a strain-
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interface coupling that emerges during rapid solidification. The new MPFC equation is hence an

efficient method for exploring non-traditional strain effects in additive manufacturing. In addition

to elucidating the role of dislocation dynamics during rapid crystallization, the new modified phase

field crystal model can also be used in quantification of rapid crystallization experiments using new

ultra-fast or dynamic transmission microscopy, which will be explored in future studies.

2.4 Conclusion

In summary, a novel derivation of the MPFC model was illustrated. Strain and dissipative con-

tributions were added to the evolution equation missing from previous formulations. The strain

additions are associated to the vacancy dynamics embedded into the form of the MPFC system.

This vacancy-strain coupling relies on a novel convolution, introduced in equation (2.23), from

which the hydrostatic strain can be approximated directly from the density field as a non-linear

function. As such, the strain does not need to be explicitly tracked in time through an auxiliary

dynamic equation, as is done in other hydrodynamic methods. Moreover, the vacancy-strain cou-

plings provide a means to elucidate the time-scale difference between dislocation climb and glide

allowing for the construction of deformation mechanism maps. In addition to the strain couplings,

dissipative contributions reflecting thermal and phonon-self scattering are incorporated into the

dynamics of the proposed formulation. The above effects are captured in the context of a single-

variable modified MPFC dynamic equation (2.28). The associated linear propagation behaviour

that enters into the new modified phase field crystal equation is examined. Dissipation results

in the emergence of a low wavevector gap. Meanwhile, scattering mechanisms can result in a

high wavevector cutoff, recovering a feature of previous hydrodynamic phase field crystal models,

without however, requiring the complexity of a multi-field approach.

To complement the theoretical analysis, an efficient numerical time stepping algorithm (out-

lined in equations (2.44) and (2.45)) was also introduced for the efficient simulation of the new

modified phase field crystal model introduced in this work. Late time growth forms were shown to

be efficiently accessible with our numerical scheme and model. As a demonstration of our numer-
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ical algorithm dendritic growth of a pure material was simulated. As the rapidity of crystallization

increased, the solidification process was observed to be dominated by dislocation and liquid pool

formations. These observations were consistent with past experiments of rapid solidification on

aluminium thin-films. This effect of strain diffusion is expected to play a dominant role in mi-

crostructure formation mechanisms related to rapid solidification phenomena. The contributions

described in this article provide a framework for future study of elasto-plastic response in rapid

crystal growth and solid-state dynamics.
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Chapter 3

Phonon Caging

Thus far we have constructed a theoretic and numerical framework to investigate how phonon

motion can be coupled to density diffusion. In addition, we have introduced minimal couplings

between vacancy and density dynamics, including hydrostatic strain. coupled diffusion obser-

vations in rapid solidification. The following chapter applies the formulations developed in the

previous chapter to the examination of phonon scattering on polycrystalline materials. In particu-

lar we measure the density autocorrelation function, highlighting evidence of dynamic cross-over

regime between ballistic and grain boundary diffusion. This behaviour has been measured in past

experiments, and thus we provide a thermodynamic view of phonon-grain boundary pile up.
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A Mechanism of Grain-Boundary Phonon Scattering and Softening
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Abstract

In this article we present the first numerical investigation of phonon relaxation in two-

dimensional polycrystalline systems simulated with a multi-timescale phase field crystal model.

We first measure the phonon spectrum averaged over different polycrystalline configurations,

using thermal fluctuations to capture the rapid processes. We find two main peaks in the spec-

trum attributable, respectively, to dampening and softening of different wavelength phonons.

In particular, it is shown that polycrystals have a phonon caging regime, a signature of amor-

phous materials. Subsequently, we report on a mechanism of grain-boundary melting resulting

from the accumulation of phonon scattering. We find this behaviour exhibited in both rapid

temperature annealing of polycrystalline samples and from input of kinetic energy representa-

tive of rapid laser heating or hot-rolling. In the latter case, we theorize a rate relation between

the maximally achieved liquid fraction as a function of the initial kinetic energy, defining a

metastable activation energy that can be measured in experiments. We expect that the scatter-

ing mechanisms investigated in this work underpin grain-boundary melting and recrystalliza-

tion processes encountered in rapid solidification experiments.



3.1 Introduction

Despite significant progress in understanding how the microstructure controls the properties of

many materials, the dynamical mechanisms that govern non-equilibrium microstructure formation

remain arcane. The challenge is tied to the plethora of interaction pathways between competing

time and length scales. In this sense, the behaviour of a metal is subject to the underlying atomic

lattice structure that sets a fundamental length scale. Depending on local available energy, the

atoms can break their spatial symmetry to form a melt, void, fracture or nucleate a dislocation.

These metastable defect structures are linked to resultant changes in macroscale properties, such

as hardness or ductility. In addition to the length scale, vibration of atoms sets a fundamental time-

scale. Phonons propagate through a material, transferring energy that can precipitate defects, cause

phase transformations, or recrystallization. The scattering of phonons off metastable structures can

also alter the transport properties, such as thermal conductivity. To fabricate optimized materials

in rapid processes such as additive manufacturing or shock peening, the study of dynamical defect

formation and plasticity is ergo imperative.

The preferential recrystallization at sites of high strain energy is well documented [3.1]. This

idea is crucial in rolling, where polycrystals are mechanically distorted [3.2]. Recent experiments

on stainless steels [3.3, 3.4] have demonstrated that energy input from a laser, or shock front [3.5],

can have a similar effect. With lower imparted energies, long-lived melt-pools have been found

that emanate from grain boundaries [3.6, 3.7]. Liquid close to the solidification temperature has

been measured with incoherent neutron scattering to capture the caging regime of the dynamic

structure factor [3.8], a feature that has been recently reported in polycrystals [3.9]. Unfortunately,

some of these experiments rely on post-mortem analyses. As a result, the dynamical mechanisms

at play remains elusive.

During material processing, phonons scatter and soften, potentially increasing the local energy

density through dampening. Many studies have been conducted on the heat transport behaviour

in amorphous materials, where the lack of long-range structure allows excessive phonon dampen-

ing [3.10, 3.11]. The energy absorption can be seen by frequency peaks in the phonon density of
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states, amenable to Raman scattering experiments. Meanwhile, dips in spectrum denote regions

of phonon depletion. A large band is often found in the terahertz frequency range, termed the

Boson peak. In recent literature, conflicting arguments have been given of the cause of the Boson

peak [3.12–3.14]. Starting from a dampening process in the dispersion relation, Bagglioli et al.

demonstrated the appearance of such a peak feature [3.15, 3.16]. Often associated to glassy ma-

terials, polycrystals have been shown to exhibit similar caging properties as in glasses [3.9]. We

thus expect, polycrystals also exhibit a Boson peak with suppressed prominence, depending on the

grain-boundary density. At lower frequencies, van Hove singularities can also appear in polycrys-

talline materials, whose dispersion relation becomes singular. Herein we show the existence of

both types of peak structures and their contributions from phonons of different length scales.

Few simulation methods exist to complement experiments in the study the late stage diffusion

behaviour resulting from phononic propagation. Conventional phonon scattering analyses at the

atomistic scale can be carried out with molecular dynamics. However, phonon coupling to the

resultant structure profile can be intractable to explore due to the limiting numerical time step

step by vacancy hopping. For this reason, we employ the phase field crystal (PFC) methodology

originally developed Elder et al., which simulates the temporally averaged density field [3.17]

of a material. Phase field crystal methods have been systematically advanced overt the past 20

year and have already demonstrated effective for investigating solidification of different crystal

structures [3.18–3.21] and topological plasticity in the solid state [3.22–3.26]. Although originally

describing only diffusive growth, recent progress has extended the hydrodynamic framework of

the PFC methodology to examine phonon scattering on sub-diffusive time scales, but still longer

than MD time scales [3.27–3.29]. These multi-time scale models are often said to propagate quasi-

phonons.

This article shows the results of a novel study on phonon triggered recrystallization in two

spatial dimensions. First we provide a brief overview of the phase field crystal (PFC) model, and

our simulation approach. Subsequently, we illustrate three novel procedures in the context of PFC

simulations that allow measurements of the intermediate scattering function, longitudinal density

of states, and an approximation of the input kinetic energy. We then detail new results on the

62



ρrefkbT Bl Bx R β0 β2 D dt dx dy L
1 1.0 0.98 1 0.1 0.1→ 1 1 0.01 0.8502 0.9817 512

Table 3.1: List of parameters used during this investigation. L denotes the length of the square

numeric grid. Qualitative units are reported, which favour the hexagonal solid phase. The numeri-

cal spacings dx and dy we chosen such that the atomic spacing, ao ≈ 10dx. Table is adapted from

[3.30].

appearance of a Boson peak and secondary grain-boundary van Hove singularity in polycrystaline

materials. Finally, we study the input of kinetic energy into polycrystalline samples, thus triggering

melting, and crystallization. We propose a potential rate relation that describes the maximally

achieved metastable defect-fraction (e.g. melt pools, dislocations, etc.) as a function of the input

kinetic energy. We expect that the resultant mechanism explored herein are of frequent occurrence

in rapid solidification processing, including in additive manufacturing, and may help elucidate

current challenges with these emerging methods.

3.2 Investigation of Polycrystalline Phonon Scattering

3.2.1 Model

Phase field crystal models herald back to the work of Elder et al. [3.17]. Here the authors construct

a pseudo Landau-Ginzburg theory for a time-averaged density field, which implicitly subsumes

contributions from thermal and phonon vibrations. The model has been demonstrated to describe

dynamic plasticity on the atomic scale, both qualitatively [3.18, 3.22] and quantitatively [3.24,

3.31]. The inherent anisotropy further permits studies of interface driven diffusion [3.32] and

grain boundary premelting. The technique has also exhibited glassy behaviours [3.23, 3.33, 3.34],

to which we shall later make connections.

The model begins by construction of an effective free energy, F , as a functional of the density

field, ρ . Expanding about a uniform reference density near the transition point, ρre f , the free

energy can be split into ideal gas and interaction components [3.35]. The latter of which takes

the form of a series of correlations of increasing order. Expanding the ideal contribution near the
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(a)

(b)

Initialization

Polycrystal Sample

Figure 3.1: Illustration of the phase field crystal density field during polycrystalline growth on

a 10242 simulation domain. Subpanel (a) highlights the structure after 100 time steps with an

initial distribution of circular seeds. After 5000 time steps, the uniform liquid phase almost fully

crystallizes and individual grains impinge on another. Subpanel (b) shows the resultant hydrostatic

strain map of the impinged polycrystal, which uses the density filter introduced in appendix 3.6.1.

The inset magnifies the density field of a grain-boundary region. Figure adapted from [3.30].

64



reference density, and keeping only contributions from the two-point correlation results in [3.36],

F
ρre f kbT

=
∫

Ω

[
ρ2

2
− ρ3

6
+

ρ4

12
− ρ2

2
(1−Bl)

+ρBx(R2
∇

2
ρ +

R4

2
∇

4
ρ)
]
,

(3.1)

where the free energy has been recast into dimensionless units by division through the Boltzmann

energy scale kbT and the reference density. Here Ω refers to the simulation domain. Bx, Bl , R, are

components of the assumed two-point correlation function, while Bl controls the liquid compress-

ibility and has some intrinsic temperature dependence. Meanwhile, Bx controls the solid pressure

and compressibility also has an inherent temperature dependence as described in Appendix 3.6.1.

Below a certain temperature, the correlation causes the hexagonal phase of atomic length R, to be

a minimum energy configuration, while at higher temperatures the systems favours the formation

of a uniform density distribution. Appendix 3.6.1 describes the thermodynamic phase diagram of

the model for liquid-solid coexistence. It is also noted that modifications of the two-point corre-

lation and inclusion of higher order correlations can allow for further crystallographic phases or

vapour phases [3.37, 3.38]. Additional fields can also be added to allow for description of multi-

component alloys [3.20].

The dynamics of the phase field crystal density field propagate through a damped wave-like

equation derived in detail in our earlier work [3.29]. This is given by,

∂ 2ρ

∂ t2 +β0
∂ρ

∂ t
−β2∇

2
(

∂ρ

∂ t

)
= D∇

2
(

δF
δρ

)
+∇ ·η , (3.2)

where gradients in the chemical potential, µ = δF
δρ

act as a source of both diffusive and wave-

like density propagation in a solid. The mobility parameter, D is assumed constant here, though

some thermal and dynamic dependencies may already be embedded in the form of the free energy

attained after coarse-graining in time. The vector field η denotes a noise current representative

of fast processes on the order the atomic vibrations and which have been averaged out in the free

energy functional. The noise current is assumed to obey, ⟨ηi⟩ = 0 and ⟨ηiη j⟩ = σδi j, where δi j

is the Kronecker delta between vector directions i and j. This relation is in accordance with the
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fluctuation-dissipation theorem where σ is on order of the thermal scale. As argued in our previous

work [3.29], dissipation arising from vacancy diffusion is attributable to the β0 term. Meanwhile

the β2 term is a novel addition to previous PFC works with phonon effects [3.27, 3.28], affecting

the dissipation based on the wavevector modes of the signal, thus allowing for a description of

phonon softening. The parameter β2 may also be viewed as a phase dependent modulation to the

dissipation. The additional dampening arises from temperature and phonon-phonon scattering that

are evidently important for our current work. When the dissipation approaches infinity, the wave

model reduces to the conventional local diffusive model. The inclusion of the first, inertial, term

provides a short time scale that is important for rapid elastic relaxation in dynamics, a feature that

can significantly change dislocation dynamics and the growth morphology a solid-liquid front (e.g.

from planar to cellular). It is noteworthy that the full model of Reference [3.29] also included strain

diffusion, which was argued to modify dislocation climb and glide timescale. This effect was also

recently introduced effectively into an PFC amplitude model framework [3.39].

For simulations reported in this work we use the set of model parameters listed in Table 3.1,

which also includes the numerical parameters used. We solve equation 3.2 through the pseudo-

spectral method that was developed previously [3.29].

3.2.2 Polycrystalline Sample Construction

We studied phonon scattering in polycrystalline samples solidified in the phase space of the afore-

mentioned PFC model. The construction of a polycrystalline material whose grain boundary dis-

tribution matches experiments can be quite challenging. In selective laser melting, grain structures

resemble those achieved in directional solidification experiments. Depending on the rapidity of the

process, grains may develop as cellular fronts, or dendritic networks that impinge. In the former

scenario when the characteristics Mullins-Sekerka wavelength is large, grain sizes can be thou-

sands of atoms large. The plasticity of such configurations is believed to be dominated by lone

dislocations and geometrically necessary dislocations near cell boundaries. Meanwhile, the grain

structure of crystals comprising impinged dendritic networks can be composed of many smaller

high-angle nano-grain boundaries. Nano-crystalline structure is generally accompanied by va-
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Initial Sample Ballistic Caging Diffusive

Figure 3.2: Illustrated is the dynamic structure factor, S(q∗, t), measured at the reciprocal lattice

wave vector q∗, as a function of time, t. Subpanel (a) shows a comparison of S(q∗, t) for 4 poly-

crystalline samples with different initial grain size distributions. The curves are supplemented with

transparent bordered region denoting the standard error attained from averaging over 10 different

realizations of thermal noise (σ = 0.2). Subpanel (b) depicts the dependence of S(q∗, t) with dif-

ferent model dissipation values. The decay behaviour of an ideal crystal is also illustrated in grey.

Below, the maps of |∂ρ

∂ t | highlight the dynamic behaviour of samples at differing stages of evolu-

tion: initial sample, ballistic regime, β–dissipation (caging) regime, and α–dissipation (diffusive)

regime, respectively. An inset is provided in each map that highlights a subsection of the density

field, which was grain-boundary in the initial impinged sample. Figure adapted from [3.30].
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cancy clusters [3.40], whose local thermodynamics may favour fracture or melt-pool formation.

Upon recrystallization these metastable defects may cause large misorientation gradients [3.41].

We further note that unstable growth below the spinodal can also generate a plethora of metastable

structures. It is noted that it is often difficult to gather ample statistics of such structures from

experiments. Furthermore, the non-equilibrium extent of such structures can be challenging to

ascertain.

In this work, we focus on reproducing a realistic statistical distribution of grains, with an em-

phasis on different misorientation grain boundaries. We constructed 50 simulation samples that

were initialized with normally distributed angles, and random initial seed sizes and number. To

allow for crystallization, the seeds were placed inside an undercooled liquid melt, and the system

was then allowed to grow according to equation 3.2 until grain impingement. An illustration of a

typical polycrystalline sample during the growth phase is shown in subpanel (a) of figure 3.1. The

impingement criterion can be found by observing changes in the slope of the free energy in time.

An example of one of our fully solidified polycrystalline samples is shown in subpanel (b) of figure

3.1, where a strain map is provided to highlight the dipolar character of individual dislocations that

emerge after impingement. Lines of jammed dislocations separate the individual grains from an-

other. We note that some long-range strains are found within bulks that result from the bending of

slip lines. Our typical grain sizes range between 4 to 50 atoms in length. The resultant grains can

subsequently be characterized through their grain-number, grain-size, strain distribution (⟨∇ ·u2⟩),

and energy distribution.

3.2.3 Intermediate Scattering Function

A metric often used in incoherent neutron scattering of polycrystalline materials is the self inter-

mediate scattering function, or dynamic structure factor, S(q, t). This can be evaluated by

S(q, t) = ⟨ρ̃−q,0ρ̃q,t⟩, (3.3)
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where ρ̃q,t denotes the Fourier transform of the density field at wavevector magnitude q, and time

t. The average, ⟨·⟩ is performed over realizations of the thermal noise, and all radial variations of

wavevectors of magnitude (q). To compare with experimental results, one would further average

over crystalline configurations, though the main features are expected to be self-averaging over

large enough samples.

The structure factor provides information about the nature of the crystal evolution. Berry et al.

have previously used this metric in binary phase field crystal models, to illustrate caging in glassy

undercooled melts [3.31] where a timescale competition exists between different atomic species.

In such cases, the intermediate scattering function exhibits multi-stage stretched exponential rela-

tions, with additional stages resulting from the timescale of heterogeneous escape. We have found

similar evidence in relation to the competition of mass and phonon motions in polycrystalline sam-

ples, as will be shown below. Namely, phonon caging results in an extension of a plateau region

between the ballistic and diffusive dynamic regimes, which is often termed β -relaxation in neutron

scattering experiments of glassy materials. Molecular dynamics studies conducted by Zhang et al.

originally showed that polycrystals may share this glass-like feature [3.9]. We note that a dip prior

to the β -relaxation regime has been referred in the studies of glasses to be related to the so-called

Boson peak [3.42]. In the context of polycrystalline materials, the extent of the plateau may shed

some light on the inherent amorphous structure of grain boundaries and defects.

Thus we measured S(q, t) for the evolution of the polycrystals that we created earlier. The

evolution was simulated in the presence of a large noise, σ = 0.2. This choice of noise amplitude

was chosen to represent the highly non-equilibrium excitation strains that develop in a material

during a large ad-hoc quench. The measured S(q, t) is illustrated in subpanel (a) of figure 3.2 for

a number of polycrystalline samples exhibiting similar two-time scale behaviour. The crossover

behaviour between the ballistic and caging regimes was found to impacted by the amount of high

wavevector dissipation, which is controlled through β2. This is illustrated in subpanel (b) of the

same figure, which also includes the structure function evolution of an idealized lattice that only

contains a single decay timescale.

Subpanels (c1-c4) illustrate |∂ρ

∂ t | at different stages of the structure evolution. Here, an initial
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seed (c1) begins inactivated, subsequently releasing elastic propagations that diffuse (c2). This

quasi-phonon diffusion takes the density configuration away from the starting state. Although no

plastic deformation is associated with this early response, the time averaged density field varies in

local amplitude. The ballistic diffusion factor may then be deduced from the initial exponential

decay scale seen in subpanel (a). In an idealized lattice only local amplitude fluctuations drive

the system out of the starting configuration as was observed in subpanel (b). In polycrystalline

materials however, a significant portion of kinetic energy and activity is limited (caged) near to

the grain-boundaries, while grain bulks remain relatively unchanged. This behaviour is observed

in subpanel (c3) and constitutes the crossover regime between quasi-phonon diffusion and plas-

tic diffusion. As quasi-phonons are depleted from the grain bulks, large density regions remain

unperturbed. As a result the autocorrelation function plateaus. Meanwhile phonons scatter off

and collect at sites of high energy. This allows for the formation of metastable states. In multi-

component alloys, intermetallic phases may form. In our pure material system, recrystallization

follows and the system grows and coarsens through mass diffusion (c4). Rough estimates of re-

quired annealing times can be garnered from analyzing the decay scale of the dynamic structure

factor.

3.2.4 Longitudinal Phonon Density of States

The rapid imparting of laser energy into a lattice can cause temperature pile-up, a property of

phonon scattering and softening that contributes to the caging-regime described above. This ne-

cessitates the investigation of the spectrum of phonon frequencies and energies, which can be

analyzed through the phonon density of states, G (ω). Following molecular hydrodynamics [3.43],

the density of states can be calculated through

G (ω) = Fω

[
N
∫

Ω

d2q⟨−→g (q,0) ·−→g (q, t)⟩S(q, t)

]
, (3.4)

where N is a normalization constant, −→g (q, t) is the Fourier transform of the local momentum

density and ⟨·⟩ is a thermal average as performed in the calculation of the intermediate scattering
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Figure 3.3: Normalized longitudinal phonon density of states for two values of β2 dissipation. The

inset focuses on the high frequency broad peak exhibited by both data sets. The frequency, ω is

given in units of the inverse of the time step, dt−1. As we have alluded to earlier, the negative den-

sity of states should be interpreted as a depletion of longitudinal modes. The transparent borders

reflect the standard error of the measured averaged of polycrystal samples. Figure adapted from

[3.30].

function S(q, t). This metric is often probed in Raman spectroscopy to understand which phonons

frequencies are the active energy carriers in a given process. In such studies the longitudinal and

transverse momentum contributions can be separated through use of the incident polarization. The

phonon density of states has remained a valuable metric in thermal conductivity optimization.

Moreover, the phonon density of states can differentiate between glassy structures and pristine

lattices. The reason for which is that glassy materials exhibit additional scattering and dampening,

hence resulting in harmonic sets of peaks in the vibrational spectrum.

Even a qualitative assessment of the phonon density of states has remained elusive in phase field
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crystal modelling, as the momentum has not been extractable. This has made the study of phonon

behaviours challenging to compare to experiments. However, by making use of the Helmholtz

decomposition a relation between the longitudinal momentum, −→g l , and ∂ρ

∂ t can be developed.

Since hydrodynamics constitutes the basis for the derivation of our dynamical model, we exploit

the mass continuity equation, writing it as,

∂ρ

∂ t
= ∇ ·−→g

= ∇ ·
(
∇φ−→g +∇×H−→g

)
= ∇

2
φ−→g .

(3.5)

Here the momentum has been decomposed into longitudinal,−→g l =∇φ−→g , and shear,−→g s =∇×H−→g ,

modes. Taking the derivatives to Fourier space then permits a relation between the longitudinal

component and ∂ρ

∂ t given by

−→g l = ∇F−1

[
∂ ρ̃

∂ t
−k2

]
, (3.6)

where ρ̃ is the Fourier transform of the PFC density field. This expression can be self-consistently

determined during simulations. To avoid numerical divergence, we set the k = 0 component of
−→g l to 0. The longitudinal momentum can be interpreted as coming from shock fronts released or

scattered from stress sources within the bulk polycrystal. Substituting equation 3.6 into equation

3.4 and Fourier transforming in time allows for an approximate measure of the longitudinal density

of states, neglecting potential cross terms between−→g l and−→g s. We expect these contributions to be

quantitatively important, but unnecessary to provide a qualitative picture of the phonon spectrum

peaks.

The phonon density of states is intricate, with many frequency peaks closely distributed from

one another. In a pristine lattice, Debye’s theory of phonon dispersion predicts, G (ω) ∝ ωd−1,

where d is the spatial dimension. Thus it is customary to report the ratio, Γ(ω) = G (ω)
ωd−1 , which

for a perfect crystal is expected to be constant. However, a realistic material will always exhibit

some defect or metastable structures that modify the dispersion relation. As a consequence, addi-

tional peaks are found in Γ(ω), as illustrated in figure 3.3. This is also observed in the terahertz

frequency range where additional peaks are known to result. They are likely due to the dominance
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of mechanisms such as caging, scattering and softening, although the precise cause of such peaks

remains a subject of debate. Some peaks may be attributed to Van Hove singularities where the

dispersion relation becomes singular [3.14]. Alternatively, the Ioffe-Regel limit may be the cause

of maxima, wherein phonons with wavelengths less than their mean free path experience additional

dampening [3.44]. Near 1.5 THz (ω ≈ 22dt−1 in the PFC data of figure 3.3) a broad asymmetric

peak called the Boson peak has also been reported [3.12, 3.13]. Originally documented in low

temperature glasses, the Boson peaks is believed to occur due to excessive phonon softening [3.12,

3.13, 3.15] and has been found to occur in higher temperature systems.

3.2.5 Variation of Input Kinetic Energy

The phonon spectrum allows a description of the shock pulses that can be induced in a polycrys-

tal during material processing. In reference to selective laser melting, depending on the energy

imparted per area (fluence), recrystallization, plastic deformation, or fracture will ensue. Here

electrons become excited, distributing their excitation energy to lattice vibrations on femto- to pi-

cosecond time scale [3.6]. Local energy densities may exceed various formation energies to allow

for corresponding transformations. Alternatively, shock peening processes aim to increase dislo-

cation density resulting from the interaction of the shock with material structure. Furthermore in

rolling, shock deep within the bulk is produced from the pressure imposed by the rollers. In the

context of phase formations and phonon dampening, we view the energy imparted in these vari-

ous processes as instantaneous, though we acknowledge that the early time behaviour may play a

dominant role.

We thus model the energy imparted onto a lattice as a kinetic energy, Tl , that can be related to

the laser energy via: Elaser = γTl . Here γ denotes an effective absorptivity of the crystal. This can

be connected to the longitudinal momentum we determined earlier as,

Tl(t) =
∫

Ω

dr
⟨−→g l(r, t) ·−→g l(r, t)⟩

2ρref
, (3.7)

where T is the effective temperature of the system, and ρref is the reference density.
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Figure 3.4: Linear relationship obtained between ⟨−→g l ·−→g l⟩ and ⟨(∂ρ

∂ t )
2⟩ for three different system

sizes. The errorbars represent averaging over 500 realizations of the initial ∂ρ

∂ t . The inset shows

the distribution of momenta for the case of ⟨
(

∂ρ

∂ t

)2
⟩ = 0.5 (−→g x and −→g y are blue and orange re-

spectively). Figure adapted from [3.30].

As a first attempt to apply equation 3.7 to phase field crystal models, we introduce momentum

through a normal distribution of the initial ∂ρ

∂ t field, with average ⟨∂ρ

∂ t ⟩r = 0 everywhere. For a

given variance, 500 realizations of ∂ρ

∂ t were constructed on a numerical grid the same size as our

simulation domain in Table 3.1 (512 x 512). We subsequently found the momentum components,
−→g x and −→g y, to be approximately normally distributed. The inset of figure 3.4 illustrates the his-

togram of momenta, which when fitted and averaged over realizations provides a measure of the

variance ⟨−→gl ·−→gl ⟩. The main part of Figure 3.4 plots the relation between input ⟨
(

∂ρ

∂ t

)2
⟩ and the

measured ⟨−→gl · −→gl ⟩ for three domain sizes. For the 512x512 system, we find the linear relation

⟨−→gl ·−→gl ⟩ = 1.267⟨(∂ρ

∂ t )
2⟩, with reduced R2 = 1.00. Here the latter fit is applicable to the simula-
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tions that we report below. The above procedure provides a simple connection through equation

3.7 between ⟨(∂ρ

∂ t )
2⟩ and the input kinetic energy.

3.3 Interpretation of Results

3.3.1 Phonon Relaxation Mechanisms

Our phase field crystal simulations of polycrystal relaxation revealed a ubiquitous caging regime

in the intermediate scattering function as seen in figure 3.2. That is, a multi-stage stretched

exponential-like curvature. This interpretation is consistent with molecular dynamic simulations

of Ni polycrystals, which found a similar two time-scale behaviour [3.9]. This glassy caging

behaviour was lacking in simulations of an idealized crystal (without grain-boundaries) as is il-

lustrated in subpanel (b) of the same figure. Our results thus suggest that grain-boundaries are

the cause of the two-time scale behaviour. Thus we suspect that increasing the defect density will

result in materials that further resemble their metallic glass counterparts in regards to the phonon

scattering spectrum. Our observations are mainly qualitative, and would thus require a careful

treatment of grain boundary energy, such as in the work done by Mellenthin et al. [3.45] to con-

nect to an quantitative material. We leave the study of how changing the polycrystal grain size and

grain boundary energy affect the phonon spectrum to future works.

In addition to the glassy-like properties of polycrystals, we further observe that phonon scat-

tering results in liquid pools that suppress further ballistic scattering, and coarsen after formation.

Some example videos of this process for different values of the dissipation constant (β2) can be

found in the supplementary material [3.46]. The liquid pools seem to result in ringing (Boson peak)

of the dynamic structure factor during the crossover from ballistic to diffusive motion. In regards

to the density field, this corresponds to a relaxation in the bulk, but energetic grain boundaries. It is

noted that in the limit of substantial low-wavelength dissipation, the ringing modes are suppressed

as is shown in subpanel (b) of figure 3.2 when comparing the results for β2 = 1 and β2 = 0.1.

Furthermore, the melt pool sizes are also found to be suppressed as β2 was increased (See supple-

mental videos [3.46]). The pool nucleation mechanism is likely influenced by local grain energies,
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which is different for each polycrystalline sample studied. Here we have averaged over different

grain-boundary energies, however further analysis of the impact of grain-boundary energies may

be conducted in future works. While the melt pools appear to form on grain boundaries, they can

also form along slip planes of the host lattice structure when two grain boundaries are close to

one another. These liquid pools recrystallize on longer timescales than their formation, potentially

annealing into dislocations. It is noteworthy that the defected regions and recrystallization zones

resemble the necklace structures found in dynamic recrystallization experiments [3.47] that can

lead to serrated grain boundaries. Importantly, energy is being added to the system by external

mechanical deformation. The induced strain subsequently generates phonons propagating through

the lattice and carry the energy to the grain boundaries. Typically, when a material is externally

strained, recrystallization takes place on the grain boundary within the bulk. When the recrystal-

lized grains are small relative to their host, the morphology resembles a necklace. As the input

energy is increased, further heterogeneous nucleation takes place. In certain scenarios, the liq-

uid pools could become highly depleted in density, where we suspect cavitation or fracture would

commence. Additionally, we note in multi-component alloys, the high energetics may induce con-

comitant precipitation similar to the work by Medina et al. where energy is added through external

strain loading [3.48]. These aforementioned processes thus describe a recrystallization mechanism

occurring as a result of phonon caging and scattering.

Further analysis of the phonon scattering spectrum through the longitudinal phonon density of

states, revealed the emergence of resonance peaks. We note that the negative density of states,

should be viewed as a depletion of available sites, since we are only considering longitudinal

components of the velocity. In figure 3.3 we show the longitudinal density of states averaged over

10 polycrystals for two values of β2 that control the low wavelength phonon dissipation. In both

cases, we see a peak at roughly ω ≈ 22 dt−1. An inset is provided expanding this region. In the case

of the lower dissipation (orange), we find additional peaks at lower frequencies. In the latter case,

phonons propagate further between potential sites of scattering and softening. To this extent, we

believe the additional resonances are caused by the phonon scattering/softening at boundaries. This

interpretation is consistent with dispersion relation calculations that suggest softening as a culprit
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for low frequency peaks. Meanwhile, we suspect the high frequency peak could be a potential

Boson-peak. We note however that this peak may be an artifact of the approximations that went

into deriving equation 3.4. As result, further metrics to connect the high frequency peak may be

necessary. In particular, low frequency shear waves may interact with the longitudinal modes.

Importantly, the features of the resonance peaks are qualitatively consistent with experimental

measurements of laser irradiated thin films, which are measuring the process at much shorted time

scales [3.49, 3.50]. Waldecker et al., further highlight the dominant activity of the longitudinal

acoustic modes, such as those we have been able to measure [3.50]. More intricate hydrodynamic

amplitude variants of the phase field crystal model that explicitly track the velocity vector field

may also be able to elucidate the shear contributions.

3.3.2 Laser Melting

Our discussion thus far has dealt with polycrystalline lattices subjected to large thermal noise.

These investigations are thus applicable to thermal annealing experiments. However in the rapid

solidification encountered in processes such as additive manufacturing, energy is transferred near

instantaneously from a shock. Following the procedure described in the previous section, we add

an initial burst of kinetic energy, Eo, in the form of a density distribution corresponding to an ini-

tial ⟨
(

∂ρ

∂ t

)2
⟩. This addition represents the first attempt at describing the energy embedded in shock

fronts that are found in both bulk material that are subjected to mechanical deformation [3.47] and

in laser melting systems [3.51]. Subsequently we compare the defect fraction (in accordance with

the thresholding method described in Appendix 3.6.2) over 10 simulations of different realizations

of a fixed input energy. Additionally, our simulations were repeated over different polycrystalline

configurations. The defect fraction comprised of structural defects, such as dislocations, and melt

pools. The simulation is supplemented with a small noise, σ = 0.01, which accounts for rapid

dynamics below the coarse graining scale of the PFC model. Figure 3.5 illustrates that an increas-

ing input energy leads to an increasing maximal defect fraction, as measured using the procedure

in Appendix 3.6.2. Subpanel (a) demonstrates the tracked defect fraction as a function of time

for different input energies. Subpanels (c1− c4) show the typical density fields at t = 1500∆t for
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Figure 3.5: This figure highlights the response of a crystal to an initial input of kinetic energy.

Subpanel (a) illustrates the defect fraction measured as a function of time, for different input en-

ergies. The associated errorbars are captured by transparent borders denoting the standard error,

when averaged over different polycrystal samples. Subpanel (b) shows the maximal achieved de-

fect fraction as a function of the input energy. Thereto we fit equation 3.8 (red line) with adjusted

R2 = 0.9985. Here a1 = 10.46, a2 = 0.1051, a3 = 0.6092, and a4 =−10.44. Errorbars denote the

standard error measured over different polycrystal samples. Subpanels (c1-c4) illustrate the density

field at time 1500∆t for different input kinetic energies for the same sample. The insets represent

a thresholding analysis to determine the defect fraction. Figure adapted from [3.30].
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different input kinetic energies, with the insets showing the defect fraction thresholding. Sub-

panel (b) highlights the maximally achieved defect fraction as a function of the input energy. It

is noted that the defect fraction shown in the density maps as insets in Fig. 5. This metric sub-

sumes features such as grain-boundaries, dislocations, and metastable liquid zones, all of which

are created due to the stress/strain imparted by the input laser energy. We observe that these all

serve as templates from which subsequent recrystallization occurs in the sample. In that sense, we

are seeing both traditional mechanisms of recrystallization caused by stress/strain in the solid state

[3.3], but also predicting novel mechanisms such as local recrystallization arising from metastable

liquid/amorphous pools. Such mechanisms are expected to be ubiquitous in shocked materials,

excited by laser irradiations [3.51, 3.52].

In analogy to the metastable Ostwald ripening curves [3.53], we attempt to describe defect nu-

cleation rate through rate relation considerations. In this scenario, the energy dissipates roughly

exponentially in time, Ein(t)≈ Eoe−bt , with b dependent on the dampening in equation 3.2. Once

an energy threshold has been reached, melt pools are found to form at defect sites and along slip

lines of the crystal in relation to our earlier results. This qualitative morphology is in further cor-

roboration with the necklace structures described above, We argue that the liquid pools have a

substantial amount of energy buried in their solid-liquid interfaces. Thus we make the approxima-

tion that the volume of a given melt pool is proportional to boundary energy. We thus make the

conjecture,

∂Eboundary

∂ t
= Γ+−Γ−

= e
− EA

Eoe−bt Eboundary−ΓThermodynamic,

(3.8)

where Γ+ = e−
EA
Ein Eboundary represents the energy absorption rate expected to occur uniformly

across the boundary. Here EA denotes an effective activation energy for melt-pool growth. As

a result of the metastability of the melt-pools, a thermodynamic restoring force that disperses in-

terfaces is introduced through Γ−, which is taken here as a constant. Equation 3.8 can be solved in
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the limit of b << 1 to yield,

Eboundary(t)≈C1ete
− EA

Ein
+ΓThermodynamice

EA
Ein . (3.9)

The integration factor C1 includes an energy dependence that needs be determined. We then de-

termine the time, tmax, at which the boundary energy is maximized. This is achieved by setting

equation 3.8 to zero, and performing a Taylor-expansion of equation 3.8 for small t. Recasting the

equation 3.9 results in the approximate form,

Eboundary(tmax,Eo)≈ a1ea2e−
a3
Eo

+a4. (3.10)

Here, ai are the coefficients of our kinetic theory. Note that a3 has dimensions of energy, and may

be viewed as an effective activation energy to form metastable structures. The relation is expected

to be independent of spatial dimension. However, we expect the boundary absorptivity to deviate

as a result of the dislocation dimensionality. We have only aim here to describe the maximally

achieved defect fraction subjected to an energy burst in the sample. To further account for healing

and coarsening, ΓThermodynamics may be extended to include energy and time dependence. We

leave such a study for future work. We also note that equation 3.10 only accounts for a single

phase transformation. In multi-phase studies (e.g. precipitation, void, etc.) equation 3.8 may be

supplemented by additional activation energy terms.

We fit equation 3.10 to the maximal defect fraction extracted from the data of figure 3.5(a).

The results are shown in 3.5(b). The results suggest are consistent with the above analytical theory

for low input energies. It is noted that equation 3.8 represents a rather crude approximation of the

system, since grain boundary structure, density segregation, fracture nucleation, and temperature

effects can also impact the resultant curve. In particular, our analytical theory poorly predicts the

high energy regime where a secondary defect peak is found to emerge in the simulation data of

figure 3.5(a), which we believe is a result of the thresholding used to determine the defect fraction.

In particular, this is because the high energy density fields (subpanel c4) are found to be highly

amorphous and not accounted by the thresholding. We note that phase field crystal models may
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breakdown at this high energy limit as other structures such as metallic glass or fracture may form.

To this end, future work may extend our study to multi-component materials following Ofori et

al. [3.20]. Alternatively, fracture may be treated through the introduction of a vapour phase as

in the work of Frick et al. [3.38]. We expect that the trends reported here are expected to be

true independent of spatial dimension. However, a more quantitative validation of our results

with experiments may also require the inclusion of latent heat to extend the theory to account for

consistent coarsening time-scales. Nonetheless, we have illustrated in this work that laser induced

recrystallization should include a pathway involving heterogeneous nucleation from nano-liquid

pools found at high energy grain-boundaries.

3.4 Summary

In this article we have used PFC modelling with two-time scale dynamics (MPFC) to examine

phonon excitation in polycrysatlline nanomaterials. In particular, we have investigated the dynamic

structure factor of a polycrystalline material subjected to multi-time scale dynamics. In comparison

to the single exponential decay of an idealized lattice, polycrystals are found to exhibit a two step

decay process, commonly exhibited by glasses. A caging regime is found that results from phonon

softening and is affected by the amount of high wavelength dissipation. Phonon accumulation

was also found to result in the formation of metastable melt-pools. We have also performed the

first analysis of the longitudinal phonon density of states with phase field crystal models. Herein

we uncovered multiple peaks that emerge from phonon scattering and a broad peak, which is

potentially relatable to the Boson-peak. As we have described, a more detailed investigation of the

phonon scattering properties may be explored through use of hydrodynamic coupled phase field

crystal models that explicitly evolve a velocity field.

Our phonon relaxation studies were then used to investigate the rapid transfer of energy into

polycrystalline materials, and their subsequent relaxation and recrystallization. We found that

increasing input energy resulted in an increase of the defect density and the formation of liquid

pools. We developed a simple theory to describe the maximally achieved defect fraction as a
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function of input energy. At low energies our results are in a agreement with the theory. Thus

our work suggests that early stage shock-induced recrystallization is dominated by the formation

of melt-pools. Future experimental work may be performed to assess the validity of our theory.

Owing to the density depleted pools, high input energies are further expected cause cavitation and

fracture, or nucleation of other metastable structures. Such processes may be the topics of future

studies with the use of multi-component models or vapour phase models.
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3.6 Appendix

3.6.1 Phase Diagram

The phase field crystal model is built as an expansion of the free energy about the liquidus for the

study of solidification. For the details, we refer the reader to the work of Provatas et al.[3.36]. Here

an effective temperature is varied through the parameters Bl or Bx that enter into equation 3.1. To

understand the preferential selection of crystalline order versus uniform liquid state, it is customary

to make a one-mode expansion of the density,

ρ(r) = ρ +ΣG jA|G j|e
iG j·r. (3.11)

The parameter ρ represents the uniform average density adopted by the liquid phase. AG j are the

amplitudes centered about the reciprocal lattice vectors G j, which act as order parameters of the

crystal’s translational symmetry. Substitution of equation 3.11 into 3.1 and subsequent integration
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Figure 3.6: This figure illustrates the phase diagram obtained through a one-mode ansatz of the

equilibrium crystal structure. The corresponding stable phase region is as denoted. The star de-

notes the phase state used for our study. Figure adapted from [3.30].

over a unit cell represents the approximate bulk free energy. All further free parameters, such as

AG j and R, would need to be minimized. The solutions of which enumerate the bulk free energies

of the thermodynamic phases. We emphasize that this expansion is an ansatz of the minimal energy

states, which in generality should be verified through numeric simulation.

One may then solve the condition of phase coexistence:

µ1 = µ2 (3.12a)

f1−ρ1µ1 = f2−ρ2µ2. (3.12b)

Here µi =
δF
δρ

is the chemical potential and ρi coexistence density associated to phase i. Although

explicit calculation of the above relations is possible, one can also make use of a convex hull
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algorithm of the free energy as detailed by Seymour et al. in their thesis[3.54]. Repeating the

calculation at different temperatures results in a phase diagram as illustrated in figure 3.6. The

highlighted points denote the temperatures and density used throughout this paper.

3.6.2 Imaging Methods

The density field carries large amounts of information in the Fourier modes. One can analyze the

deviations from the mode expansion form of equation 3.11 to extract specific information about

interface structures. As introduced in earlier work, the strain field can be extracted from

∇ ·u≈F−1

[
k exp

{
− k2

σ0

}
F
[
ρF−1[

(k−|G|)exp
{
−(k−|G|)2

σ0

}
F [ρ]

]]]
,

(3.13)

where F denotes the Fourier transform operator. We use this filter not only for visualization

of dislocations, but also as a metric for the dislocation density of a given polycrystal. The inset of

Figure 3.1 shows and example of this filter.

We also make use of,

F−1

[
e−

k2
σ0 F [|ρ|]

]
≈ ρ

2 + |AG|2, (3.14)

which combined with thresholding allows for a rough characterization of the local phase. Our

studies of defect fraction utilized a σ0 = 0.3. The thresholding entailed summing the number of

pixels with density values above 0.3 and subsequent division by the total pixel number. To our

knowledge this type of approach was first described by Kocher et al. [3.55], when attempting to

coarse-grain the phase field crystal model to a single order parameter.

3.6.3 Finite Size Analysis

Since our simulations are performed on a two-dimensional periodic domain, wave attenuation

needs to be ensured to occur on scales larger than the system size. To ensure that peaks detected
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with the density of states were not artifacts of finite size effects, we performed additional sim-

ulations on numerical grids with lengths 256 and 1024 grid points. We refer the reader to the

supplemental material for videos of the process [3.46]. We found that the system size had negli-

gible affect on the melting and recrystallization behaviour described throughout this work, nor on

the presence of phonon softening that resulted in two time-scale dynamics.
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Chapter 4

Temperature Coupling

To date, phase field crystal models have remained largely isothermal. However, many experimental

configurations are open systems. As a result temperature can escape. Furthermore solidification is

associated to a reduction of entropic degrees in freedom that are released as heat. In connection to

our earlier observations, the large local energies can shift the phase diagram or reduce solidification

growth velocity. In addition, temperature gradients are known to induce thermal stresses, which

have the potential to cause of material fracture as well as secondary phase transformations within a

material. The following chapter is subsequently aimed at introducing the energy diffusion equation

into the MPFC formulation, along with a self-consistent description of latent heat production. As

a consequence, our method captures the heat release from phase changes, phonon scattering and

lattice fluctuations. In particular, we aim to illustrate that temperature increase can be limited and

coupled to both density and vacancy diffusion.
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Two Dimensional Phase Field Crystal Study of Thermo-Density

Coupling: Thermal Expansion, Recalescence, and Plasticity

Duncan Burns, Nikolas Provatas, Martin Grant

Abstract

In this article we present a thermal coupling to a recently published two-time scale phase

field crystal model (MPFC) to describe latent heat contributions of systems undergoing rapid

phase transformations. We call this formulation Temperature Field Crystal (TFC), which per-

mits the study of coupled density, vacancy and temperature field dynamics at the length-scale

of atomic ordering. Following a derivation of the new thermo-density coupled MPFC model,

several physical properties of the model are demonstrated. We reproduce the thermo-density

interface profiles encountered in the steady state solidification growth limit. We further illus-

trate the existence of a vacancy concentration inherent in the phase field crystal amplitude. It is

shown that with a frozen thermal gradient, of the form often used in directional solidification

studies, a vacancy gradient is established along with an associated thermal stress. In particular,

we show that within the isochoric limit of the model, effects of thermal expansion are incorpo-

rated through the change of amplitude with respect to temperature, rather than by increasing

the equilibrium lattice length. The TFC model is then applied to the study of select solidifica-

tion processes. It is shown that the release of latent heat during recalescence is accompanied

by a change in the average thermal pressure. Moreover, we illustrate, for the first time that

modulations of the recalescence curve can be indicative of plastic deformation, dislocation ac-

tivity, and phonon scattering. Notably, the temperature evolution may be used as a marker for

the grain distribution attained from nucleation following a system quench.



4.1 Introduction

Solids are in part characterized by their translation and rotation symmetry. The inherent struc-

ture differentiates solids from disordered thermodynamic phases, such as liquids and amorphous

materials. Ordering can greatly affect global thermodynamic properties, or response behaviours.

Individual phases of matter may be represented by minima of a free energy landscape. However,

the kinetic pathway connecting them is by caveat out-of-equilibrium. In particular, the dynamical

evolution of modes describing the transition between phases is tied to the different energy trans-

portation mechanisms that operate at distinct length- and time-scales. The competition of energy

pathways for energy relaxation, leads to the emergence of a wide set of phenomena such as caging

[4.1, 4.2] and banding [4.3, 4.4], to mention a few.

Besides their interesting physics, non-equilibrium phase transformations are also of paramount

importance to particular materials manufacturing processes, such as splat quenching, hot rolling

of solids, and laser remelting and solidification. Here, the presence of large input energies can

greatly alter the state of base material, leading to its subsequent transformation into phases com-

prising zones of frustration or defected microstructures. At low impart energies, a solid elasti-

cally deforms, sending oscillations through the lattice that dissipate energy gradients. However, at

higher fluences, the lattice bonds break apart, producing dislocations and melt pools, which can re-

crystallize into inter-metallic or glassy phases, or even voids or cracks. Fine control of the material

properties can be gained from increasing the density and nature of such thermally driven defects.

As a concrete example, consider splat cooling, where the extreme solidification rates trap excess

vacancies [4.5] and solute [4.6], which can lead to the formation of precipitates or metastable struc-

tures during coarsening. Another example occurs during hot rolling, where the induced strains on

a metal sheet are so extreme as to lead to numerous recrystallization pathways to relieve the input

strain energy [4.7]. The explosive interest in additive manufacturing in recent yeas has been largely

due to the ability to form complex defect microstructures during solidification. In each scenario

described above, the control of nanostructure is tantamount, and affects material properties.

The multi-scale nature of non-equilibrium phase transitions also makes their study challeng-
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ing. Some information may be garnered from spatial and auto-correlation functions of the density

and velocity as are measured in neutron scattering or electron microscopy techniques. Unfortu-

nately such experiments are limited by spatial and temporal resolution, often only allowing atomic

scale visibility in post-mortem measurements. The lack of complete theory and set of high reso-

lution videos thus necessitates the development of computational models and simulation to probe

the dominant dynamic behaviour of the growth, while also providing governing equations for key

variables describing a process in a particular phenomenon. The multi-scale nature of most mate-

rials processes makes development of a comprehensive theory intractable. However, much can be

gleaned from simplified theories retain the salient features of a dynamical phase transformations

describing microstructure formation. This is done by exploiting time- and length-scale cutoffs, thus

separating the dominant transport variables from that of the assumed self-averaging background.

Numerous simulation methods have been utilized to analyze microstructure growth behaviour

at differing time- and length-scales fundamental to specific processes of interest. At the scale

of individual atoms, while retaining atomic vibration resolutions, molecular dynamics techniques

are used [4.8]. However, this resolution places limitations on the length and time scales acces-

sible in simulations due to computational complexity. Continuum models are thus used to study

longer length and times scales of crystal growth at the cost of neglecting the shorter length spatial

regimes. One approach is through sharp interface models that contain an effective description of

an interfaces through appropriate moving boundary conditions [4.9, 4.10]. For example, the lo-

cal shift in free energy due to curvature requires the application of the Gibbs-Thomson interface

curvature correction. At the intermediate scale between sharp interface models and molecular dy-

namics is the phase field (PF) technique. PF models are continuum field theories that carry some

internal structure in the interface, but self consistently recover sharp-interface constraints on scales

where the inverse curvature is larger than the interface thickness [4.11]. However, any process

emergent at the atomic scale, such as elasticity, plasticity, grain boundaries are not inherently and

self-consistently captured by traditional phase field models.

Plasticity has a topological nature and can be incorporated into a continuum model by encoding

in it the propensity for orientational ordering, as is done in phase field crystal (PFC) models. Such
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methods propagate a coarse-grained density field, which can be used to observe elastic distortion

[4.12] and dislocation dynamics [4.1]. Recent interest in phase field crystal methods has in part

been due to the rich interplay between crystal plasticity and microstructure evolution during so-

lidification and solid precipitation, caused by the large amounts of energy that can be stored in a

material during processing, as discussed above. While traditional phase field (PF) and phase field

crystal (PFC) models are limited to dynamics on diffusional time scales, they have also been ex-

tended through various hydrodynamic approximations to account for multiple time scales, which

also makes them amenable to the study of interface trapping [4.13], as well as quasi-phonon prop-

agation [4.14–4.16].

Most phase field crystal (PFC) modelling studies have, to date, largely assumed immediate

energy transfer to an infinite bulk solid. Subsequently the models are treated as isothermal. This

leads, among other things, to temperature being treated as isothermal throughout a material. How-

ever, this approximation becomes inadequate for describing rapid processes, ranging from rapid

solidification [4.17] to crystal plasticity [4.18, 4.19]. A self-consistent coupling of density to heat

transport in PFC modelling can allow for a new modelling paradigm for investigating the important

role of spatio-temporal temperature variations on rapid solidification, thermally-mediated stresses

and plasticity within materials.

There have been some notable works that have attempted to couple the PFC modelling ap-

proach to heat transport [4.20–4.22]. In the work of Kocher et al., thermal-density coupling was

designed such as to produce latent heat at an advancing solidification front in a Model C type fash-

ion [4.23, 4.24]. Such considerations were sufficient to capture basic recalescence phenomena.

Wang et al. advanced the topic by making efforts to correct the temperature dependence of the free

energy to ensure concavity of the free energy with respect to temperature [4.21]. Punke et al. have

since expanded this formulation to include an explicit temperature dependence to the ideal lattice

spacing and showed differing dendritic morphologies when crystal were subjected to large thermal

expansion strains [4.22].

In this work, we use the hydrodynamics of mass, momentum and energy conservation to de-

rive a novel phase field crystal (PFC) formulation that will be shown to couple vacancy and strain
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diffusion encoded in the density field to thermal transport. For simplicity of reference, we coin the

PFC paradigm that emerges from our derivation as the temperature field crystal (TFC) framework

as its main feature is to incorporate into PFC a mechanism for describing energy transport due

to vacancy diffusion, strain and latent heat of structural changes, all of which emerge from the

model’s thermo-density coupling. Following the derivation of TFC, we proceed to illustrate en-

thalpy changes during solidification and how they account for the latent heat release, demonstrating

that phonons carry a portion of this energy through the bulk solid. We compare simulations of den-

dritic growth to the classical sharp interface predictions of a thermally controlled dendrite growth

[4.25]. In particular, we measure the interface velocity and illustrate the recovery of the analytic

exponential decay profile of the temperature. Following this, we show that when working in a con-

stant volume, the phase field crystal free energy naturally accounts for thermal expansion, through

temperature variations of the pressure. To this end, we use the TFC model to simulate the dynam-

ics of a crystal within a region of imposed heating and chilling at its boundaries. The established

temperature gradients are shown to be accompanied by a vacancy gradient contained in the density

field amplitude magnitude. As another demonstration of TFC, we show that recalescence during

solidification is accompanied by a corresponding pressure rise within the material. Within this

context, we also demonstrate decalescence, the reduction of temperature when heating a solid to

above the melting point. Finally, we end this work by highlighting the relation between recales-

cence and plasticity, i.e a process whereby dislocation annihilation forms new bonds that release

a latent heat into the solid, thereby resulting in asymmetric recalescence curves. Our results indi-

cate that temperature rate measurements can be used as a marker for nucleated grain distributions,

annealing, and phonon activity.

4.2 Preliminaries

4.2.1 Modified Phase Field Crystal model

The phase field crystal (PFC) modelling treats a material as a continuum defined through a peri-

odic order parameter ψ , which simultaneously allows for the thermodynamics representation of
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both homogeneous phases (liquid and gas) or atomically structured (solids) phases [4.12]. This

parameter is related to the time-averaged local material density through, ρ = ρref(1+ψ), which

is convenient for defining quantities in terms of the perturbation of the local density ρ away from

a reference point ρref. In PFC modelling, the free energy F [ψ] is functionally expanded around

the liquid density at a given reference temperature. The expansion is designed to be minimized

(under appropriate constraints) by either a homogeneous phase (ψ → 0), a state with an ordered

lattice structure (ψ ̸= 0), or both (coexistence). More recently, PFC free energies have been intro-

duced that can distinguish between two homogeneous phases, thus allowing for the representation

of vapour-liquid-solid phases [4.26, 4.27]. The PFC density has also been coupled one or more

solute fields for the investigation of binary alloys [4.28], whose dynamics now contains equations

of motion for the total density coupled to that of each solute [4.29]. In this work, we will derive

our formalism for thermo-density coupling for a single component (i.e. pure) material defined by

a single density field ψ .

Motivation for the form of the free energy has been taken from the density functional theory of

freezing [4.30]. When expanding around a high temperature liquidus point, the free energy can be

split into two contributions. Namely, a non-interacting ideal gas component and an expansion in

n-point density-density correlations, Cn. The minimal form of the free energy is generally taken to

C2. Here,

F̃ =
F
T

= ρrefkB

∫
Ω

d2r
[
A(T )+λ (T )ψ

+
ψ2

2
− ψ3

6
+

ψ4

12
− ψ

2
(C2 ∗ψ)

]
,

(4.1)

where kbT denotes the Boltzmann thermal scale and Ω the spatial domain. In isothermal models,

λ (T ) is generally set to 0, whereby the ψ2,ψ3,ψ4 prefactors are correspondingly modified [4.31].

Here we include this linear contribution to ensure concavity of the free energy with respect to tem-

perature. Meanwhile, the function A(T ) is a placeholder function for all temperature dependencies

independent of density, This function includes the thermal de Broglie wavelength component of

the ideal gas free energy and comprises corrective factors to the liquid free energy. We note that in
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isothermal model variants, A(T ) is often taken 0.

In the work of Elder et al., the correlation function is expanded in gradients, C2(k) = (1−Bl +

2Bxk2−Bxk4) [4.12]. Here Bl and Bx are relatable to the liquid and solid bulk moduli respectively,

holding some inherent temperature dependence. Depending on the value of Bl and Bx, a hexagonal

structure or uniform phase may minimize Eq. 4.1. In 4.9.1 we detail the thermodynamics of the

system and build the associated phase diagram. For describing more exotic crystal structures, the

Fourier transform of C2 can be represented by a sum of Gaussians centered at the relevant wavevec-

tor [4.32]. Each of the correlation function descriptions act on a coarse-grained density field. As a

result, atomic profiles in the solid state have breadth accounting for rapid lattice vibrations, which

differentiates the correlations from the true density correlation function. In this sense, the correla-

tion form contains additional rapid kinetic energy considerations in combination with the entropic

and stress energy contributions.

Microstructure dynamics in PFC modelling represents a ”flow” of the ψ field through the free

energy landscape built into the functional F . This flow is guided through a dynamical equation

that, in its simplest form, operates on diffusive time scales and preserves total system mass and

allows for. More complex variants of PFC dynamics also couple diffusive flow to hydrodynamics

to capture shorter time scales, leading to a linear two-time scale dynamical equation coined the

modified phase field crystal model [4.16],

∂ 2ψ

∂ t2 +β

[
∂ψ

∂ t

]
= DTref∇

2
(

δF̃

δψ

)
+∇ ·η , (4.2)

where gradients of the chemical potential, µ = δF/δψ act as a driving current of the wave-like

dynamics. It is noted that in expanding the free energy around a reference state, we tacitly make

the approximation F(T ) ≈ Tref F̃ in Eq. 4.1, in order to ensure linearity of Eq. 4.2. Although

this approximation has the potential to limit the state space explored, we expect that around the

reference temperature Tref heat transfer properties will be correctly captured. It is emphasized,

however, that in all subsequent uses of the free energy (thermodynamic analyses or dynamical

equations), we employ the dimensional form F = T F . Eq. 4.2 produces quasi-phonons from
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sources of high local energy that diffuse with scale, D and experience dissipation in accordance

with β =
[
β0−β2∇2]. The gradient nature of β accounts for the different scattering experienced

by different wavelength lattice oscillations, with ∇2 being the minimal contribution necessary to

account for the sudden drop-off of the longitudinal dispersion relation. The assumed self-averaging

background fluctuations are captured through η in accordance with fluctuations-dissipation where

⟨ηi⟩ = 0 and ⟨ηiη j⟩ = σδi j. In the case of diffusive dynamics
(
β → ∞ and D/β ≈ O(1)

)
; here

phonon propagation is subsumed into the fluctuations. Furthermore, we note that Eq. 4.2 is con-

sistent with the global density conservation symmetry. It is also noteworthy that Eq. 4.2 contains

strain-vacancy flow, as shown in [4.2].

For this work, the free energy encapsulated in the correlation function is of primary focus.

This free energy contribution is then associated to entropic, stress, and rapid vibrational sources.

Thereto, we associate an effective temperature, T . The slow (non self-averaging) kinetic energy

is meanwhile captured in the inertial propagation inherent in Eq. 4.2. This description is not

dissimilar from two-temperature models that are used to describe rapid laser melting, for which

we describe more details later. it is noted that evolution solely through Eq. 4.2 with free energy of

Eq. 4.1 assumes instantaneous bulk energy transfer upon destruction of the atomic bonds. In this

approximation, the system is treated as infinite in extent thus the bulk acts as an energy sink. Here,

we will specifically investigate the dynamics described above coupled to the flow of heat in terms

of the temperature, T .

4.2.2 Hydrodynamics of Solids

In a previous publication we have shown that hydrodynamics can be utilized to arrive at kinetic

equations describing a time averaged density field with quasi-phonon ballistics, with Eq. 4.2 a

limiting case [4.16]. These effective phonons propagate at artificially low velocities, but sufficient

to capture phenomena resulting from time scale differences, such as trapping [4.2] and dislocation

annihilation velocities [4.33]. The waves mediate the interaction between sources of stress with

an inherent dissipation from scattering mechanisms that are averaged over. The dynamics encap-

sulated in Eq. 4.2 conserve both the mass and momentum. Eq. 4.2 assumes constant temperature,
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applicable in the limit of rapid thermal equilibration to a infinite reservoir. To account for tempera-

ture flux, we use the framework of hydrodynamics to account for fast competitive flows in density,

momentum and local energy, with corresponding transport coefficients. It is expected that so cou-

pling these three fields will be sufficient to capture crossover phenomena associated with energy

relaxation from atomic to the mesoscale. An important topic to which the model can subsequently

be used is in investigation of rapid solidification phenomena.

We start our derivation from the set of hydrodynamic equations used by Cohen et al. [4.34,

4.35], wherein vacancy concentration is incorporated as a separate thermodynamic variable along-

side the strain in the solid. The resultant dynamic equations for the conservation of mass density

(ρ), momentum density (g) and energy density (ε), combined with strain (←→u ) flow, are given by

∂ρ

∂ t
=−∇ ·g, (4.3a)

∂g
∂ t

=−η∇
↔
σ +ν∇∇g, (4.3b)

∂ε

∂ t
=
−(ε +P)

ρref
∇ ·g+DT ∇

2
φ +αT ∇

2T, (4.3c)

and

∂
←→u
∂ t

=− 1
ρref

∇g+Dv∇∇φ +∇
DT

T
∇T, (4.3d)

where only diagonal components transport coefficients are considered. The first order contribu-

tions, such as the viscosity (ν), act as an approximation of scattering mechanisms that lead to

an isotropic diffusion. Aside from dissipation, The momentum is primarily driven by the stress

tensor,
↔
σ . In the energy equation, P, αT , and DT refer to the pressure, thermal diffusivity, and a

thermodiffusion transport coefficients respectively. The strain dynamics have a back-coupling to

the thermodiffusion factor, DT , describing a movement of vacancies in response to temperature

gradients. The last equation also includes the time averaged vacancy diffusion factor Dv. Follow-

ing Cohen, we define φ as as the variation of energy with strain under the assumption of constant

density i.e. an effective vacancy stress. 4.9.2 makes an explicit connection between the φ and the
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vacancy chemical potential that was introduced in our previous work [4.16].

For simplicity we take only the diagonal components of the transport coefficients. Thus, our

approximation is limited to the presence of shear propagation modes. It is noted that shear waves

are believed to be a contributor to massive deformation, such as in the formation of martensitic

steels. Some of the time scale differences can be accounted for by suppression of the transport

coefficients in equations 4.3a-4.3d. A potential avenue to further include these features is through

additional order parameter as has been associated with the hexatic phase [4.36]. Future work may

entail the extension of the methods herein to amplitude phase field crystal variants [4.37].

To proceed, we postulate the usual coarse-grained relation between density, vacancy concen-

tration and strain [4.38], i.e.,

δρ =−δc−ρref∇ ·u, (4.4)

where Tr←→u =−∇ ·u. Through Eq. (4.4), the strain evolution Eq. 4.3d may be recast into a vacancy

diffusion equation. In particular, substitution of 4.4 into 4.3d results in,

∂c
∂ t

= Dv∇
2
φ −DT

∇T ·∇T
T 2 , (4.5)

which expresses that vacancy flow is governed by gradients in the vacancy stress (constant density)

and temperature. As mentioned, the transport coefficient DT is the vacancy thermodiffusion factor,

and the ratio DT/Dv has in past been denoted by the Ludwig-Soret coefficient [4.39], which has

been measured for a variety of materials [4.40–4.42]. More recently, the thermodiffusion factor has

been posited as a mechanism for hydrogen blistering in systems with large temperature gradients,

such as in the exhaust pipes of nuclear plants [4.43].

4.3 Formulation of a Heat Transport Equation with PFC Cou-

pling

In this section, we use the equations in the last subsection to derive an energy equation that couples

to the PFC density field. Rearranging Eq. 4.5 for φ and using Eq. 4.4, allows to re-write Eq. 4.3c
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for the energy dynamics in a way that is explicitly independent of the vacancy stress, φ , i.e.,

∂ε

∂ t
=
−(ε +P)

ρref
∇ ·g+ DT

Dv

∂ρ

∂ t
+αT ∇

2T − D2
T

Dv

∇T ·∇T
T 2 . (4.6)

Here ε +P, denotes the enthalpy density h, whose connection to latent heat has been described by

Kadanoff et al. [4.44]. This latent heat contribution is imperative to recover/enforce the Clausius-

Clapeyron relation. It will also be shown that in addition to the usual heat release due to order

changes, this enthalpic contribution to the latent heat also ascribes a heat of formation for disloca-

tions and amorphous material phases. These features can be then explored in the context of bond

breaking and bond formation.

We next express Eq. 4.6 in terms of temperature, T , and free energy, F , using the thermody-

namic relations

ε =−T 2 δ

δT

[F
T

]
, (4.7a)

and

p = (1+ψ)
δF
δψ
− f , (4.7b)

where f denotes the free energy density, i.e., the integrand of Eq. 4.1 (multiplied by kB T ρref). We

note then that large simplification can be made by using chain rule to express ∂ε/∂ t. Since our

free energy depends on the temperature, T , and order parameter, ψ , we have,

∂ε

∂ t
=−T

δ 2F
δT 2

∂T
∂ t
− δF

δψ

∂ψ

∂ t
(4.8)

We note that at equilibrium, the prefactor, −T δ 2F/δT 2, represents the isochoric heat capacity.

When including solute transport in the framework additional chemical potential factors would

appear in Eq. 4.8, consistent with the math encountered in phase field modelling [4.45].
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Combining Eqs. 4.6 and 4.8, we arrive at the simplified form,

(
−T

δ 2F
δT 2

)
∂T
∂ t

=

(
h−µ +T

∂ µ

∂T
+

DT

Dv

)
∂ψ

∂ t

+αT ∇
2T − D2

T
Dv

∇T ·∇T
T 2

(4.9)

Thermodynamic stability requires that δ 2F/δT 2 < 0, for the simultaneous increase of temperature

and energy. We note that this condition enforces temperature evolution, which softens the presence

of interfaces.

For a system at the coexistence temperature TM, undergoing a phase transformation, the Clausius-

Clapeyron relation is expected to hold. Under such a constraint, ∂ψ/∂ t ≈ ∆ψ/τ , where ∆ψ de-

notes the density change upon the transition and τ is the timescale of the process. At the transition

point, the temperature will not vary, hence

(
h−µ +T

∂ µ

∂T
+

DT

Dv

)∣∣∣∣
coexistence

= 0

since ∂Ψ/∂ t ̸= 0. Furthermore, µliquid = µsolid, a statement of chemical equilibrium. Subsequently

we may write,

L = ∆h =− TM
∂ µ

∂T

∣∣∣∣
coexistence

, (4.10)

where L is the latent heat of fusion. Eq. 4.10 is a representation of the Clausius-Clapeyron relation

in the µ−T plane and used in the seminal work of Mullins et al. to estimate the capillary length

[4.46].

4.3.1 Specialization to the PFC Free Energy

To specialize the above density-coupled heat transfer equations in Eq. 4.9 to the case of solidifi-

cation, we substitute the free energy in Eq. 4.1, and expand the derivative expressions involving

the free energy in Eq. 4.9 in terms of the density and temperature. We walk through some of the

details next.
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We first evaluate the mobility component, which yields,

δ 2F
δT 2 = kB ρref

[
2

∂A(T )
∂T

+T
∂ 2A(T )

∂T 2

+

(
2

∂λ (T )
∂T

+T
∂ 2λ (T )

∂T 2

)
ψ

−ψ
∂C2

∂T
∗ψ−T

ψ

2
∂ 2C2

∂T 2 ∗ψ

]
.

(4.11)

Here the model assumes a temperature dependence in the coefficients and the two-point correla-

tion, C2. In the work by Kocher et al. [4.20] it is assumed that all the temperature dependence is

in the correlation function (i.e., A(T ) = λ (T ) = 0), which leads to a bulk heat capacity that is con-

stant and vanishing at the reference density. In particular, for certain density ranges the previous

formulation of Kocher et al. may violate the thermodynamic stability condition, δ 2F/δT 2 < 0. It

is noted that Wang et al. make the approximation that A(T ) = θ log(T/To), which arises from the

ideal gas thermal de Broglie wavelength. Such a factor can also be used to shift the heat capacity,

and obeys the above concavity condition.

The latent heat contribution on the left hand side of Eq. 4.9 can also be expanded, yielding,

h−µ +T
∂ µ

∂T
=kbT ρref

[
T
(

ψ

2
−1
)

∂C2

∂T
∗ψ

+T (1−ψ)
∂λ (T )

∂T
−T

∂A(T )
∂T

−
(

1+
ψ

2

)
C2 ∗ψ

] (4.12)

Substituting Eqs. 4.11 and 4.12 into Eq. 4.9 can finally be used to construct a heat transport equa-

tion in terms of an arbitrary phase field crystal (PFC) two-point correlation interaction kernel. Al-

though in this work we will restrict our attention to the basic gradient correlation kernel developed

by Elder et al., other forms can also be used, such as those leading to more complex crystalline lat-

tices [4.32]. Moreover, other forms of the free energy can be substituted into the above formalism,

such as those suitable for multiple phases [4.26, 4.27].
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Figure 4.1: Growth of a planar solidification of an initialized stripe of solid placed in an under-

cooled melt. Subpanel (a1 and a2) show the evolving density and temperature fields at t = 100000,

respectively. Subpanels b1 - b3 highlight one dimensional profiles cuts along the red line denoted

in a1 and a2. Two instances in time are shown of the density (b1), the velocity (b2) and temperature

(b3), with the t = 100000 profiles shifted vertically for clarity. The interface position is tracked

as a function of time in subpanel (c1). A linear fit of the interface positions is performed between

2×104 and 12×104 to estimate the steady state growth velocity. Subpanel c2 fits the exponential

decay region of the smoothed temperature profile for comparison against Eq. 4.18. We list the

simulation parameters used in Tables 4.1 and 4.2.

4.3.2 Reduction to a Minimal Model: The Temperature Field Crystal (TFC)

Model

It is instructive to distill a minimal model from Eqs. 4.9-4.12. To do so we use the gradient

correlation kernel introduced by Elder et al.,

C2(k) = (1−Bl(T )+2Bxk2−Bxk4), (4.13)
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where Bl and Bx control the bulk moduli of the disordered and ordered phases, respectively. We

illustrate this connection in more detail in 4.9.1. For the sake of simplicity, we make the approxi-

mation that the liquid bulk modulus is weakly temperature dependent according to

Bl(τ)≈−B0
l +B1

l τ, (4.14)

where τ = T/Tref is a dimensionless temperature parameter. In doing so, the bulk modulus can

be viewed as expanded around a reference temperature corresponding to the reference density of

the liquidus around which the free energy was expanded. Here it will be assumed that B1
l > 0 and

B0
l > 0, which is consistent with Singh et al. who examined a wide variety of thermomechanical

properties of liquid metals [4.47]. This is further consistent with past density functional theory

derivations of phase field crystal models [4.31]. Meanwhile, we shall also make the assumption

that Bx is independent of temperature. We note that although Bx is independent of temperature, the

solid bulk modulus still retains temperature dependence in accordance with 4.9.1.

The additional temperature dependencies A(T ) and λ (T ) added into the free energy in Eq. 4.1

can be obtained by expansion from the ideal gas contribution [4.48]. Each such component will

be proportional to log(ρref ΛT ), where ΛT is the thermal de Broglie wavelength. We thus make the

approximation,

A(τ)≈ A0−A1
τ, (4.15)

and

λ (τ)≈ λ
0−λ

1
τ, (4.16)

These linear forms are only expected to hold quantitatively within a narrow temperature region,

but can still be relatively good approximations for reasonably chosen Ai and λ i. These forms also

allow for the additional flexibility for better approximating the disorder phase energy. We choose

the parameters Ai > 0 and λ i > 0 in accordance with the thermodynamic stability criteria and

thermomechanical properties listed in Appendix 4.9.1.

In summary, by making the substitutions of Eqs. 4.13-4.16 into the simplified form 4.9 we
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arrive at the following final form of the TFC temperature equation to couple to the PFC density

equation:

MT (ψ,τ)
∂τ

∂ t
= αT ∇

2
τ− D2

T
DvTref

∇τ ·∇τ

τ2

+Trefτ

[
λ

0−A0− 1
2
(1+A0)ψ2−2λ

1
τ +2A1

τ

+

(
−A0 +λ

1
τ +2B1

l τ +Bx (2+ψ)∇
2

+Bx

(
1+ψ

2

)
∇

4

)
ψ

]
∂ψ

∂ t
+MT (ψ,τ)S(x, t),

(4.17)

where MT (ψ,T ) = τ
[
2A1 + 2λ 1ψ −B1

l ψ2]. Here S(x, t) has been added as a time dependent

temperature source function, which may act locally to represent an external heat source. Eq. 4.17,

in conjunction with the PFC dynamical Eq. 4.2, comprise a coupled set of evolution equations that

are propagated iteratively in time. To solve the above thermo-density coupled TFC model, We

use explicit Euler time-stepping to propagate the temperature field in Eq. 4.17 in conjunction with

semi-implicit pseudospectral methods for the density field, the details of which are found in our

earlier work [4.16].

4.4 Application to Steady-State Solidification

In this section, we test that the temperature field crystal (TFC) model can correctly capture the

meso-scale physics of heat transport across a solidifying front. In the review by Langer on interface

driven instability patterning, the one-dimensional steady state temperature profile of a planar inter-

face is found analytically [4.25], in terms of the dimensionless temperature, u = (T −TM)/(cPL).

Here TM refers to the melting temperature, cP to the isobaric heat capacity and L denotes the latent

heat, which is assumed constant across the interface. The steady profile for an interface moving at
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Figure 4.2: An idealized crystalline lattice is allowed to relax subjected to constant temperature

regions imposed in the sample at the locations shown in subpanel (a). Along the indicated red

line, the temperature, pressure, density, and density wave amplitude magnitude are presented in

(b1), (b2), (b3), and (b4) respectively. The amplitude magnitude was extracted through a spline

connecting peaks of the density field. The simulation parameters used are listed in Tables 4.1 and

4.2 (noting that we use units throughout where kBρrefTref = 1, as shown in Table 4.1).

velocity v was found to obey,

u(z) =


exp
(
−2 z

lDT

)
−1, if z≥ 0

0, else,
(4.18)

where z denotes the distance into the liquid phase with origin positioned at the solid-liquid inter-

face. The thermal length, lDT = DT/v, sets the exponential decay scale of the temperature into the

liquid. Here DT denotes the thermal diffusivity, which can be approximated via, DT = αT/M̄T

(where the overbar denotes the mean value). Since, u is proportional to T , we should expect the
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exponential decay of the steady state temperature profile to be identical to the dimensionless tem-

perature field in Eq. 4.18. We thus simulate our TFC model with aim to recover the consistent

temperature decay scale given by, lDT . We note that while sharp interface theories and traditional

phase field models typically assume a constant latent heat release, in reality, we expect higher-

order non-uniformity in the latent heat released due to density variations across the solid-liquid

interface structure. This is ignored in this test.

We initialize a stripe of solid into a supercooled liquid environment. The parameters (listed in

table 4.1 at the end) are chosen to favour the planar growth of the solid. Figure 4.1 illustrates time

snapshots of the density (a1) and temperature (a2) fields. A one-dimensional profile is obtained by

analysis along the indicated red line. In subpanels (b1) - (b3), the associated density, velocity, and

thermal profiles are presented for two time snapshots of the growth, shifted vertically for clarity. In

subpanel (b1) a clear distinction between the solid and liquid is shown with an interface established

through a decay in the density amplitude. High density variation at the front leads to peaks in

∂ψ/∂ t, the source of the latent heat term in Eq. 4.17. Through this latent heat coupling, the high

density activity releases a subsequent heat into the growing solid phase, increasing its temperature,

as shown in the color panel a2. In subpanel b3 we observe the establishment of the characteristic

steady state temperature profile across the solid-liquid interface. It is noted that because of the

solid and liquid coexistence density difference captured by the TFC model, the solid depletes the

liquid density surrounding the interface, resulting in a depletion layer in the temperature profile,

to be expected as a result of our initialization, with uniform average density distribution. Such a

feature is absent from the sharp interface model which neglects density difference. This behaviour

likely the cause for the reduced solid temperature in the work by Punke et al. [4.22].

We track the interface position by filtering the density field through,

η = F−1
[

exp
(
− k2

0.0009

)
F [|ψ|]

]
, (4.19)

which we have introduced in our earlier work [4.16]. The index position of the interface is tagged

by evaluating, min
(

η−(max(η)+min(η))/2
)

. This process is summarized in the data presented
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in subpanel (c1), which plots the position of the interface versus numerical time. The asymptotic

linear scaling depicts the transition of solidification to the steady state growth limit over the time

scale examined. An effective velocity of v = 0.0009, in units of numeric lattice units over time

steps, is obtained by fitting a linear profile to the late stage growth. The fit has an adjusted R2 =

0.99972 with form y = mx+b.

To obtain the thermal diffusion length, we estimate the temperature diffusion constant, DT =

αT/M̄T , where M̄T = ⟨τ
[
2A1 + 2λ 1ψ −B1

l ψ2]⟩. These considerations give a thermal diffusion

length as lDT ≈ (0.0134)−1. A direct connection to the steady-state Eq. 4.18 is garnered by us-

ing the determined lDT . In subpanel (c2), we fit the exponential form of Eq. 4.18 to a smooth

temperature interface profile,

Tsmooth = χ ∗ τ = F−1
[

exp
(
− k2

0.0009

)
F [τ]

]
This additional smoothing is required for our comparison to remove the granularity produced due

to the atomic structure within the interface, a key feature inherent in all PFC models. Our fit

has an adjusted R2 = 0.99761, with fitted diffusion length, lDT ≈ (0.01065)−1. We recover from

our simulations a thermal diffusion length that is comparable to sharp interface models. We note

a departure from the exponential decay behaviour at the interface endpoints. On the solid side,

this is due to the release of latent heat, which results in an excess heat that need diffuse. In

the limit of infinite solid diffusion, as is assumed for the sharp-interface result, this peak will

soften, instantaneously increasing the bulk solid temperature. Meanwhile, on the liquid-side, the

phenomenon of density depletion mentioned above results in an opposing character. In the sharp-

interface theory, the solid and liquid are assumed at the idealized coexistence densities, which

differs from the true situation, which is captured in the TFC model. Lastly, although we utilized

a Gaussian smoothing factor on order of the interface size, the scale represents another possible

degree of freedom in the fit that we did not consider. Nonetheless, restricting the fit to within the

interface region shows a qualitative agreement between the profile predicted by our TFC model

and the analytic sharp interface steady state temperature profile.
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4.5 Temperature-Pressure Response

In traditional solidification processes, the solid-liquid interface can be approximated to be in lo-

cal thermal and chemical equilibrium, hence heat transport can often be neglected. During rapid

solidification processes, however, the interface is out of equilibrium [4.49] and transient thermal

kinetics must be incorporated in order to properly capture the resulting micro-structures [4.4]. Of

particular importance are also stresses that arise due to the presence of non-homogeneous temper-

ature profiles during the solidification. Such thermally-induced stresses are often associated with

thermal expansion, and are indicative of a material’s temperature history. Beyond certain threshold

such stresses can cause local precipitation and fracture to occur. It is imperative for an atomistic

temperature model to be able to capture the thermal expansion behaviour during rapid cooling.

This section demonstrates the use of the TFC formalism in capturing thermal-induced stress often

encountered in rapid solidification.

Previous attempts at including the thermal expansion behaviour in phase field crystals models

has required the explicit temperature control of equilibrium lattice length [4.22]. However, phase

field crystal models are built in a fixed volume environment. Thus fluctuations of the equilibrium

lattice length would thus result in differing lattice site number. To address this observation we treat

the volume of phase field crystal models as constant, with fixed global atomic density. From a

thermodynamic perspective the thermal expansion behaviour can be tied to the temperature depen-

dence of the pressure,
∂P
∂T

∣∣∣
V,ρ

= βκT . (4.20)

Here β is the volumetric thermal expansion factor, while κT denotes the isothermal bulk modu-

lus. Both β and κT are further described in Appendix 4.9.1 and derived form the free energy of

Eq. 4.1. The relation in Eq. 4.20 illustrates that previous phase field crystal model variants have, in

fact, already contained implicit thermal expansion properties. This is the case, for example, when

thermal gradients cause a density flow such as to reach mechanical equilibrium.

The aforementioned effect of thermal expansion in fixed-volume ensemble is demonstrated in

Figure 4.2. The figure illustrates steady-state profiles obtained from simulation of Eqs. 4.2 and
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Figure 4.3: A uniform liquid phase is linearly cooled below the recalescence point. Subpanel (a)

illustrates the minimization of the average system free energy, ⟨F⟩, in conjunction with an increase

in the average solid fraction, ⟨η⟩. In subpanel (b) the time dependence of average temperature,

⟨T ⟩, and average pressure , ⟨P⟩ are shown. The average free energy and pressure are computed

with kBTrefρref = 1 in accordance with table 4.1. We present the time response of the average

temperature rate in subpanel (c) with an inset highlighting its asymmetry, which is associated with

plastic relaxation. Subpanels (d1) - (g3) show maps of the density, velocity, and temperature during

the evolution process at the corresponding simulation times indicated in subpanel (a). An enhanced

zoom in of the density maps reveals the atomistic profile. Subpanels f1 and g1 show a map of the

hydrostatic strain associated with an impinged grain boundary. We list the simulation parameters

used in Tables 4.1 and 4.2.

4.17. Subpanel (a) highlights regions of the PFC density in a domain in which the temperature is

maintained fixed at T0 = 18 at the two ends of the system and T1 = 16 in the middle. This choice
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was made to qualitatively emulate the effect a chill wall or heating surface. The corresponding

one-dimensional temperature and pressure profiles along the red line in subpanel (a) are shown in

subpanels b1 and b2 respectively.

Acting as a mediator of stress relief, the phase field crystal density field varies in amplitude.

This is illustrated in figure 4.2 subpanel b3 and b4, where the latter image is obtained by a maximal

envelope of the density field of b3. This phenomenon is to be expected from considerations of

steady-state solid hydrodynamics, as was discussed earlier. The behaviour is in analogy to electro-

migration where a vacancy gradient is established in response to gradients of an electric potential

[4.50]. Fluctuations in the density field can be connected to variations in the vacancy concentration

following Eq. 4.4. Moreover, we expect the existence of vacancy pressure to be produced in the

presence of a given vacancy concentration. In the context of a time averaged density field, thermal

excitations broaden the atomic profile, while maintaining a uniform average density.

We have illustrated that the phase field crystal amplitude is qualitatively tied to the vacancy

concentration. Thus, in the shift to traditional constant-volume (isochoric) phase field crystal

models, thermal expansion is mediated by a corresponding change of amplitude, which in turn

indicates a vacancy pressure. Our findings suggest that assessing thermal stress damage in phase

field crystal models must entail a quantification of the local amplitude gradients. We expect that

the pressure equilibration encountered when moving into a constant pressure ensemble will result

in a thermally-expanded lattice length. We note that phase field crystal models can be readily ex-

tended to the constant pressure ensemble through introduction of an auxiliary Lagrange multiplier

Eq. [4.29].

4.6 Recalescence

Blacksmithing from past millennia has relied on the skill of artisans to assess the conditions of their

material relative to the dynamic point of a structural transition within it. Depending on the cooling-

rate, local heat release from a phase transformation will result in dancing shadows on the surface of

a piece of red-hot iron. This phenomenon is known as recalescence, with a corresponding reverse
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process, decalescence. Although known for years, high resolution temperature profiles indicate

that the material is undergoing more than just the change of phase during these processes. More

recent experiments have found that the temperature and its rate of change during recalescence can

shed light on the critical nucleus size that triggered the phase transition [4.51]. This section applies

the TFC modelling formalism to study the cooling rate following a first order phase transforma-

tion, showing how the processes of recalescence can be used to assess the defect density in the

solidifying material. Specifically, it is shown that following the temperature-time-transformation

(TTT) curves of this processes subsumes information on both structural phase transformations and

dislocation activity.

4.6.1 Transformation Induced Heat Generation

We used the TFC framework to uniformly cool a liquid phase. The results are shown in Figure

4.3. At the recalescence temperature, thermal fluctuations drive the system over the transition

barrier resulting in nucleation of a crystal. The material subsequently crystallizes, with a drop in

system free energy. We illustrate the free energy, ⟨F⟩, drop behaviour in subpanel (a) of Figure

4.3. The corresponding solid fraction, η , is provided, measured by thresholding using Eq. 4.19.

Subsequently, the number of grid points satisfying
(

η(x, t)− (0.1+ψ0)
)
> 0 is tabulated, thereby

providing a rough picture of the transition.

Figure 4.3 also shows density, velocity, and temperature maps at different stages of the solid-

ification in subpanels di, ei, fi, and gi. Below the recalescence temperature, the liquid phase (di),

solidifies, with differently orientation nuclei (ei). The latent heat release increases the solid phase

temperature, which is captured in subpanel (e3). As the misoriented seeds impinge ( f1), the latent

heat production is reduced at the grain boundaries, which is highlighted in the temperature map

of subpanel ( f3). Further density evolution results in annealing, the plastic relaxation of grain

boundaries and dislocations (gi subpanels).

We illustrate the general recalescence phenomena in subpanel (b). In particular, latent heat

release leads to an average temperature (⟨T ⟩) rise that separates bulk uniform cooling from the

phase transformation. In conjunction with our earlier discussion on thermal expansion, the average
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system pressure is also found to correspondingly rise. In certain situations we note that the pressure

fluctuations associated with a phase transition can be sufficient to shift local thermodynamics. As a

result, additional phases may form that are metastable in the context of the global thermodynamics.

We also observe an asymmetry in the time rate temperature change between the nucleating liquid

phase compared to late stage of solidification when crystals impinge. This is magnified as an

insert of subpanel (c). As the polycrystalline system relaxes, the slow cooling rate accounts for

the latent heat carried dislocations and phonons. To our knowledge, the TFC formalism is the

atomic-continuum methodology that can capture latent heat release associated to plastic relaxation

and phonon processes. This is discussed further below.

4.6.2 Plasticity Induced Heat Generation

In the absence of external temperature heating/cooling (source term S(x, t) = 0 in Eq. 4.17), we

investigate the latent heat production associated with solid-state annealing. Here, we use TFC

model parameters that favour the formation of a solid. By initialization of a polycrystalline sample

through the procedure outlined in earlier work [4.2], we allow the grain boundary structure to

relax. We summarize the results of system evolution in figure 4.4. Insets are provided in the

figure to highlight the hydrostatic strain map of two polycrystalline snapshots. In subpanel (a)

we observe an average free energy decrease, the late stages of which are associated to dislocation

annihilation and grain rotation. As expected, energy is released in such stress relaxation events.

Analogous to recalescence, the average temperature and pressure rise (b). We believe that the

asymmetric curvature observed in subpanel (c) of figure 4.3 is associated with such deformation

heating. We note that the heat generation associated with this process is an order of magnitude

smaller than the heat release associated with order-disorder of solidification. The difference is in

part due to the location on the phase diagram. However, this can alternatively also be caused by the

low dislocation energies in two dimensions. In three dimensional systems, we expect an increase

in heat generation due to plastic processes, in accordance with the increase in dislocation and grain

boundary energy.

Dislocation activity is associated with temperature fluctuations in conventional temperature-
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Figure 4.4: A polycrystal is simulated with TFC and allowed to relax, a processes featuring dis-

location flow and grain elimination. Subpanel (a) shows the time dependence of the average free

energy. Decreasing steps are indicative of the dislocation and grain boundary mobility. Two differ-

ent snapshots of the hydrostatic strain map are provided to emphasize the grain structure. Subpanel

(b) highlights the change of corresponding average temperature, ⟨τ⟩= ⟨T/Tref⟩, and average pres-

sure, ⟨P⟩, associated to the relaxation process in (a). We list the simulation parameters used in

Tables 4.1 and 4.2.

time-transformation diagrams. The aforementioned observations indicate that TFC formalism can

serve as an effective temperature-time-transformation modelling approach, at least for processes

associated with solidification, since like any PFC approach, it represents an expansion near liquid

coexistence. Rapid solidification experiments have found the existence of dislocations, metastable

phases and microstructures [4.6, 4.52–4.55]. In such scenarios, the interfacial behaviour departs

from the steady state scenario of section 4.3. We thus expect that TFC may allow characteriza-

tion of non-uniform latent heat generation that can be indicative of secondary phase formation
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Figure 4.5: The heating of a polycrystal with two values of the dissipation constant β2 is simu-

lated with TFC. Subpanel (a) illustrates the initial polycrystalline density map with corresponding

hydrostatic strain. In subpanel (b) we highlight the average system free energy, ⟨F⟩, and average

solid fraction, ⟨η⟩ for both values of β examined. We illustrate the corresponding temperature and

pressure ramps in subpanel c. We depict the rate of temperature increase in subpanel (d). Two

dominant mechanistic regimes are highlighted, delineated in time by the vertical green line. We

list the simulation parameters used in Tables 4.1 and 4.2.

and/or dislocation formation and activity. The TFC formalism can further serve as a candidate

for modelling the dislocation structure obtained during solidification banding, which results from

temperature diffusion scales becoming similar to that of mass diffusion [4.4]. In the solid-state,

information about dislocation density nucleation (From applied stress or laser induced excitation)

may be characterized from the average temperature response. Alternatively, dislocation dynamics

can be assessed central to experimental measurements of the internal friction spectrum [4.56] can

be investigated. Phase field crystal models have previously been shown capable at investigating
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grain boundary slip [4.57]. In conjunction with temperature response, the internal friction spec-

trum of polycrystals may be concomitantly investigated within the framework of the TFC proposed

formalism.

4.6.3 Phonon Induced Heat Generation

Another source of potential heat generation arises from phonon scattering. As high energy density

perturbations propagate through a polycrystalline sample, thermal and defect scattering can split

into higher frequency contributions. Such oscillations should be subsumed in the transient thermal

variations accompanying the density field. The magnitude of phonon related temperature fluctu-

ations can be significantly smaller than either crystallographic transformations described above.

However, during processes such as shock loading, large phonon populations scatter and can in-

crease the system temperature. Solid-state shock/strain heating has been documented experimen-

tally [4.58]. We expect that during rapid phase transitions similar phenomena will be represented

in through the heat transport designed into the formalism.

We illustrate an example of phonon induced heating in figure 4.5. Two dissipation constants are

examined. Subpanel (a) shows an initial polycrystalline sample that is prepared as in the previous

section. An inset is provided to enhance the grain structure for clarity. The crystal is rapidly heated

to above the decalescence temperature, at which point melting occurs. We emphasize this feature

in subpanel (b) where a decrease in solid fraction ⟨η⟩, indicative of the phase transition, is accom-

panied by a reduction in system free energy. The corresponding average temperature and pressure

are illustrated in subpanel (c) of the same figure. Due to the large heating rate, the thunderbolt

recalescence shape is not immediately observable. To elucidate this, we plot the average temper-

ature rate in subpanel (d). As is expected of a reverse recalescence response, the temperature rate

first decreases in time, reflecting the absorption of energy required for the transition from solid to

liquid phase. Once grain boundaries have fully wetted and islets of solid remain, phonon activity

becomes prevalent. As a result, the temperature rate can exceed the uniform heating rate applied to

the system. Identical initial polycrystal and heating conditions are simulated with two values of β2.

We remind the reader that as β2 is increased, the phonon decay length-scale is reduced. As a result,
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the simulation with lower value of β2 contains a higher phonon density [4.2]. Our results suggest

that a larger phonon density can generated more heat, and thus increase the average temperature of

the system. We note that in addition to phonon activity, a different β2 can also shift the time scale

of the simulation.

4.7 Summary

In this article we have presented a new phase field crystal variant (coined ”TFC” for convenience)

that self-consistently couples the two-time scale (MPFC) phase field crystal density dynamics to

heat transport. In the derivation, we highlighted the additional enthalpic contributions to latent heat

that were neglected in previous studies that examined such a thermo-density coupling. We demon-

strated consistency of the model’s heat transport properties by examining various phenomena. We

found a qualitative agreement in the temperature profile across a steady-state solidification front

and the analytically predicted forms found in the literature 4.18. We further demonstrated that

the formalism captures the physics of thermal expansion in an isochoric system. At slow cool-

ing rates, we observed the commonly found form of temperature versus time seen in recalescence

during solidification, as well as the less commonly observed form of the pressure versus time

accompanying recalascence. We further highlighted heat generation arising from plastic deforma-

tion mechanisms, as well as from phononic response. These latter features in particular are absent

from conventional continuum and diffusive phase field modelling techniques. With atomistic res-

olution, quasi-phonon, and temperature diffusion modes present to the TFC formalism, it opens

a new paradigm for investigation of the role of thermal stresses and thermally-coupled plasticity

processes in microstructure formation occurring in rapid solidification regimes.

In constant volume ensemble, the conventional phase field crystal free energy predicts ther-

mally mediated pressure variations. In the TFC formalism, a change of local temperature carries

with it associated pressure gradients, which in turn affects local vacancy concentration, the latter

of which is connected to the amplitude and average density encoded in the PFC equation. Large

changes in local temperature and/or pressure changes (e.g. shock loading or laser heating) are also
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Figure # ρrefkb Tref D A0 A1 λ 0 λ 1 Bx B0
l B1

l αT DT Dv S(x, t) β0 β2 σ ⟨ψ⟩
Figure 1 1 1 1 10 10 10 0.1 0.7 1 0.1 1000 0 1 0 1 1 0.001 0.09
Figure 2 1 1 1 10 10 10 0.1 0.7 1 0.1 1000 0 1 0 1 1 0.001 0.15
Figure 3 1 1 1 10 10 10 0.1 0.7 1 0.1 1000 0 1 −2 ×

10−7
1 1 0.001 0

Figure 4 1 1 1 10 10 10 0.1 0.7 1 0.1 1000 0 1 0 1 1 0 0.1
Figure 5 1 1 1 10 10 10 0.1 0.7 1 0.1 1000 0 1 2 ×

10−6
1 1,

10
0 0

Table 4.1: List of parameters used in the TFC model during this investigation. Each row reflects

the parameter set used for generation of the corresponding figure.

expected to trigger metastable phase nucleation, particularly in multi-component alloys. We ex-

pect that such meta-stable processes may be examined by the proposed TFC formalism as they will

have a signature in their temperature response since metastable structures will have an associated

latent heat release.

We demonstrated that the recalescence curves contain a substantial amount information about

the inner working of metals. Within the context of TFC, the recalescence curve encompasses in-

formation about ordering changes in a transformation, plastic deformation processes, as well as

phonon-generated heat generation mechanisms. We suspect that detailed temperature measure-

ments during solidification and/or annealing may allow for non-invasive metrics of microstructure

and phonon response.
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Figure # LX LY dx dy dt
Figure 1 512 512 0.8502 0.9817 0.02
Figure 2 512 2048 0.8502 0.9817 0.01
Figure 3 512 512 0.8502 0.9817 0.01
Figure 4 128 128 0.8502 0.9817 0.02
Figure 5 512 512 0.8502 0.9817 0.02

Table 4.2: List of numerical parameters used during this investigation. Each row reflects the

parameter set used for generation of the corresponding figure.

4.9 Appendix

4.9.1 Thermodynamics

Mode-Expansion Formalism

Phase field crystal models are built through an expansion of the free energy about a point on the

liquidus. In Elder et al. [4.12], the correlation function is built by its connection to the liquid-

state structure factor of Argon, which is tacitly assumed to have a generic form applicable to the

crystallization of other materials. The effective temperature built into the free energy is such as to

control the formation of ordered phases from disordered phases without structure. To understand

the phase energetics that emerge from a PFC model, it customary to approximate the solid phase

through an associated mode-expansion ansatz given by

ρ(r) = ρ +ΣG jA|G j|e
iG j·r, (4.21)

where the sum is over reciprocal lattice vectors, G j. The parameter ρ = ρref(1+ψ0) represents

the uniform average density adopted by the system. The liquid phase corresponds to a state where

AG j = 0 minimizes the free energy. Meanwhile, the ordered phase is the equilibrium configu-

ration where the minimizing amplitude is non-zero. We note the existence of additional lower-

dimensional phases such as the stripe phase. The energetics of different phases can be analyzed

through substitution of Eq. 4.21 into the free energy in Eq. 4.1 and integrating over a unit cell of the

solid phase being considered. This approximates the system’s free energy in terms of (ρ̄,AG j). As
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an example, we investigate here the coexistence of a the classic 2D solid with a triangular lattice

with a liquid. Keeping only the first crystallographic mode of the triangular lattice in equation 4.21

results in the following free energy,

F
kbT a2ρref

= A(T )+λ (T )ψ0

+(Bl(T ))
ψ2

0
2
−

ψ3
0

6
+

ψ4
0

12

+120A4
|G|+(32ψ0−16)A3

|G|

+12(1−ψ0 +ψ
2
0 − (1+Bx +Bl(T )))A2

|G|,

(4.22)

where F denotes the free energy per atom. In reference to our fixed volume numerical grid, we

keep the total number of lattice sites with lattice length a conserved. When considering more exotic

configurations that lack an analytic representation, the free energy and thermodynamic potentials

may be extracted numerically.

Phase Diagrams

To investigate what parameter range will favor a specific bulk phase, we build the associated phase

diagram. Here we solve the condition of phase coexistence:

µ1 = µ2 (4.23a)

f1−ρ1µ1 = f2−ρ2µ2, (4.23b)

where µi = δF/δρ is the chemical potential and ρi coexistence density associated to phase i. The

chemical potential may be extracted as in the previous section,

µ

kbT ρref
= λ (T )+ψ0Bl(T )−

ψ2
0

2
+

ψ3
0

3

+(−12+24ψ0)A2
|G|+32A3

|G|,

(4.24)
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We next find the AG that minimize the free energy in Eq. 4.22, and substitute these into the equa-

tions 4.23a and 4.23b, which can then be solved for the coexistence densities of each bulk phase,

ρ̄1 and ρ̄2, at a corresponding temperature. Although explicit calculation of the coexistence rela-

tions is possible, one can also make use of a convex hull algorithm of the free energy as detailed

by Seymour et al. [4.59], and readily available in many applications like Mathematica. Repeating

the calculation at different temperatures and average densities results in a phase diagram such as

the one illustrated in figure 4.6 for the classic PFC model of Ref. [4.12]. The highlighted regions

spans the set of temperatures and average system densities used throughout this article.
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Figure 4.6: Illustrated is phase diagram with parameters as listed in Table 4.1. Simulations were

performed in two-dimensions, hence necessitating the free energy minimization with all lower

dimensional structures, such as the stripe phase.
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Thermomechanical Components of Model

Past work on fitting the phase field crystal model parameters to experimental measures, has been

largely restricted to the thermodynamics of the phase diagram [4.60, 4.61]. Such consideration

is sufficient when working under an isothermal approximation, though limiting the permissible

temperature range of phase diagrams. The closest attempt at addressing temperature thermody-

namics has been done by Mellenthin et al. when fitting the phase field crystal amplitude heights

to molecular dynamics simulations [4.62]. As we have alluded to earlier in this article, such com-

parison is tantamount to setting the temperature scaling of the solid pressure. It is noteworthy

that special care must be made to ensure molecular dynamic simulations contain the proper anhar-

monicity behaviours [4.63]. Here, we illustrate a connection between the free energy parameters

of Eq. 4.1, through the Grüneisen equation of state. Here fluctuations of the internal energy trigger

corresponding pressure changes with scale set by the Grüneisen constant, γ , given by

γ =V
∂P
∂E

∣∣∣
V
=

βT κT

CV ρref(1+ψ)
, (4.25)

where κT , βT , and CV denote the isothermal bulk modulus, volumetric thermal expansion factor,

and isochoric heat capacity respectively. We note that substantial experimental data has been

tabulated such thermodynamic constant [4.47, 4.64–4.66].

Through the same procedure as solving for bulk phase energies, we can solve for the bulk

pressure using equation 4.7b,

P
kbT ρref

= λ (T )−A(T )+ψ0Bl(T )

−
ψ2

0
2
(1−Bl(T ))−12(1−Bl(T )+Bx)A2

|G|

(4.26)
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By taking the appropriate thermodynamic derivatives, namely,

κT = ρ
∂P
∂ρ

∣∣∣
T,N

= (1+ψ)
∂P
∂ψ

∣∣∣
T,N,V

, (4.27a)

βT =
1

κT

∂P
∂T

∣∣∣
V,N

, (4.27b)

CV =−T
∂ 2F
∂T 2

∣∣∣
T,N,V

, (4.27c)

the associated material constants can be determined in terms of the PFC free energy.

The free energy of Eq. 4.1 is expanded around a liquidus reference density ρref and temperature

Tref. Using materials-specific values for these to scale the PFC free energy parameters, and evalu-

ating the material constants in equations 4.25 and 4.27 at the expansion point, yields the following

system of equations,

κT ref = lim
ψ→0

κT = ρrefkbτTrefBl(τ), (4.28a)

βT,ref = lim
ψ→0

βT =
λ 0−A0 +2(−λ 1 +A1)τ

τTrefBl(τ)
, (4.28b)

CV,ref = lim
ψ→0

CV = kbρref2A1
τ, (4.28c)

γref = lim
ψ→0

γ =
λ 0−A0 +2(−λ 1 +A1)τ

2A1τ
. (4.28d)

By direct comparison to experimental measurements, the above system of equations allows us to

compute the phase field crystal model parameters that corresponds to a specific material. In ac-

cordance with our assumption of weak temperature dependence, it may be appropriate to further

expand Eqs. 4.28 around the reference temperature, Tref, of the model. While the above proce-

dure defines a consistent formalism for evaluating the PFC model parameters, it is noted that the

weak temperature dependence assumed throughout this paper may not be adequate to describe the

complete phase diagram.
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4.9.2 Reactive Stress

In this section we illustrate the connection between φ and the vacancy chemical potential, µc =

δF/δc|T,ρ . The coefficient φ was alluded to in our discussion on solid hydrodynamics and is

associated to the vacancy stress. Following the notation of Cohen et al.,

φ =
δE
δui j

∣∣∣
s,ρ

, (4.29)

at fixed entropy and lattice deformation [4.34]. Thus the lack of lattice site occupancy gives rise

to a stress captured through φ . Performing a Legendre transformation to the constant tempera-

ture ensemble followed by use of relation 4.4 connecting strain, vacancy concentration, density

fluctuations yields,

φ =
δF
δui j

∣∣∣
T,ρ

=

(
δF
δc

∣∣∣
T,ρ

)
∂c

∂ui j
. (4.30)

We may hence interrelate the vacancy chemical potential, δF/δc|T,ρ = µc, to the vacancy stress

entering the hydrodynamics encapsulated in Eqs. 4.3a-4.3d.

In our previous work, the form of the stress tensor,←→σ , entering Eq. 4.3b had been assumed to

derive the MPFC dynamics of Eq. 4.2. In particular,

σ =
δE
δui j

∣∣∣
s
= σR +χ, (4.31)

where σR = δE/δui j|s,c denotes the reversible stress and χ = δE/δui j|s,ρ the conditionally re-

versible stress. In the notation of Cohen et al., χ = φ . With vanishing vacancy concentration, a

reversible deformation would restore itself by solely mass diffusion. However, non-vanishing va-

cancy contributions would result in additional strain and strain-rate modifications to the dynamics.

We note that the interrelation between χ and φ , implies following Eq. 4.30 that χ = µc
∂c

∂ui j
. In

other words, the additional stress contribution added in our previous work, amounts to the addition

of a vacancy chemical potential.

127



4.10 Bibliography

[4.1] J. Berry and M. Grant. “Phase-field-crystal modeling of glass-forming liquids: Spanning

time scales during vitrification, aging, and deformation”. In: Physical Review E 89 (6

2014), p. 062303. DOI: 10.1103/PhysRevE.89.062303.

[4.2] D. Burns, N. Provatas, and M. Grant. “Two-dimensional phase field crystal simulation of

laser-induced recrystallization: A mechanism of grain-boundary phonon scattering and

softening”. In: Physical Review Materials 7 (8 2023), p. 083402. DOI: 10 . 1103 /

PhysRevMaterials.7.083402.

[4.3] A. Karma and A. Sarkissian. “Interface dynamics and banding in rapid solidification”. In:

Physical Review E 47 (1 1993), pp. 513–533. DOI: 10.1103/PhysRevE.47.513.

[4.4] K. Ji et al. “Microstructural Pattern Formation during Far-from-Equilibrium Alloy So-

lidification”. In: Physical Review Letters 130 (2 2023), p. 026203. DOI: 10.1103/

PhysRevLett.130.026203.

[4.5] M. Hillert, M. Schwind, and M. Selleby. “Trapping of vacancies by rapid solidification”.

In: Acta Materialia 50.12 (2002), pp. 3285–3293. ISSN: 1359-6454. DOI: 10.1016/

S1359-6454(02)00150-7.

[4.6] T. Pinomaa et al. “Multiscale analysis of crystalline defect formation in rapid solidifica-

tion of pure aluminium and aluminium–copper alloys”. In: Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences 380.2217 (2022),

p. 20200319. DOI: 10.1098/rsta.2020.0319.

[4.7] J.A. Dantzig and M. Rappaz. Solidification: 2nd Edition - Revised & Expanded. Engineer-

ing Sciences. CRC Press LLC, 2016. ISBN: 9782940222971.

[4.8] B. J. Alder and T. E. Wainwright. “Studies in Molecular Dynamics. I. General Method”.

In: The Journal of Chemical Physics 31.2 (2004), pp. 459–466. ISSN: 0021-9606. DOI:

10.1063/1.1730376.

128

https://doi.org/10.1103/PhysRevE.89.062303
https://doi.org/10.1103/PhysRevMaterials.7.083402
https://doi.org/10.1103/PhysRevMaterials.7.083402
https://doi.org/10.1103/PhysRevE.47.513
https://doi.org/10.1103/PhysRevLett.130.026203
https://doi.org/10.1103/PhysRevLett.130.026203
https://doi.org/10.1016/S1359-6454(02)00150-7
https://doi.org/10.1016/S1359-6454(02)00150-7
https://doi.org/10.1098/rsta.2020.0319
https://doi.org/10.1063/1.1730376


[4.9] G. Caginalp. “Stefan and Hele-Shaw type models as asymptotic limits of the phase-field

equations”. In: Physical Review A 39 (11 1989), pp. 5887–5896. DOI: 10.1103/PhysRevA.

39.5887.

[4.10] R. F. Sekerka. “Morphology: from sharp interface to phase field models”. In: Journal

of Crystal Growth 264.4 (2004). Proceedings of the Symposium - Progress in Crystal

Growth, pp. 530–540. ISSN: 0022-0248. DOI: https://doi.org/10.1016/j.

jcrysgro.2003.12.033.

[4.11] K. R. Elder et al. “Sharp interface limits of phase-field models”. In: Physical Review E 64

(2 2001), p. 021604. DOI: 10.1103/PhysRevE.64.021604.

[4.12] K. R. Elder and M. Grant. “Modeling elastic and plastic deformations in nonequilibrium

processing using phase field crystals”. In: Physical Review E 70 (5 2004), p. 051605. DOI:

10.1103/PhysRevE.70.051605.

[4.13] P. K. Galenko et al. “Solute trapping in rapid solidification of a binary dilute system:

A phase-field study”. In: Physical Review E 84 (4 2011), p. 041143. DOI: 10.1103/

PhysRevE.84.041143.

[4.14] P. Stefanovic, M. Haataja, and N. Provatas. “Phase-Field Crystals with Elastic Interac-

tions”. In: Physical Review Letters 96 (22 2006), p. 225504. DOI: 10.1103/PhysRevLett.

96.225504.

[4.15] S. Majaniemi and M. Grant. “Dissipative phenomena and acoustic phonons in isothermal

crystals: A density-functional theory study”. In: Physical Review B 75 (5 2007), p. 054301.

DOI: 10.1103/PhysRevB.75.054301.

[4.16] D. Burns, N. Provatas, and M. Grant. “Time-scale investigation with the modified phase

field crystal method”. In: Modelling Simulation Material Science and Engineering 30 (6

2022), p. 064001. DOI: 10.1088/1361-651X/ac7c83.

[4.17] R. Chen et al. “Effect of cooling rate on solidification parameters and microstructure of

Al-7Si-0.3Mg-0.15Fe alloy”. In: Transactions of Nonferrous Metals Society of China 24.6

(2014), pp. 1645–1652.

129

https://doi.org/10.1103/PhysRevA.39.5887
https://doi.org/10.1103/PhysRevA.39.5887
https://doi.org/https://doi.org/10.1016/j.jcrysgro.2003.12.033
https://doi.org/https://doi.org/10.1016/j.jcrysgro.2003.12.033
https://doi.org/10.1103/PhysRevE.64.021604
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.84.041143
https://doi.org/10.1103/PhysRevE.84.041143
https://doi.org/10.1103/PhysRevLett.96.225504
https://doi.org/10.1103/PhysRevLett.96.225504
https://doi.org/10.1103/PhysRevB.75.054301
https://doi.org/10.1088/1361-651X/ac7c83


[4.18] J. S. Langer, E. Bouchbinder, and T. Lookman. “Thermodynamic theory of dislocation-

mediated plasticity”. In: Acta Materialia 58.10 (2010), pp. 3718–3732.

[4.19] J. S. Langer. “Thermal effects in dislocation theory”. In: Physical Review E 94 (6 2016),

p. 063004. DOI: 10.1103/PhysRevE.94.063004.

[4.20] G. Kocher and N. Provatas. “Thermodensity coupling in phase-field-crystal-type models

for the study of rapid crystallization”. In: Physical Review Materials 3 (5 2019), p. 053804.

DOI: 10.1103/PhysRevMaterials.3.053804.

[4.21] C. Wang and M. S. Wise. “A Thermodynamically-Consistent Phase Field Crystal Model

of Solidification with Heat Flux”. In: Journal of Mathematical Study 55.4 (2022), pp. 337–

357. ISSN: 2617-8702. DOI: https://doi.org/10.4208/jms.v55n4.22.01.

[4.22] M. Punke et al. “Explicit temperature coupling in phase-field crystal models of solidifica-

tion”. In: Modelling Simulation Material Science and Engineering 30 (6 2022), p. 074004.

DOI: 10.1088/1361-651X/ac8abd.

[4.23] P. C. Hohenberg and B. I. Halperin. “Theory of dynamic critical phenomena”. In: Review

Modern Physics 49 (3 1977), pp. 435–479. DOI: 10.1103/RevModPhys.49.435.

[4.24] “Phase Field Crystal Modeling of Pure Materials”. In: Phase-Field Methods in Materials

Science and Engineering. John Wiley & Sons, Ltd, 2010. Chap. 8, pp. 167–208. ISBN:

9783527631520. DOI: https://doi.org/10.1002/9F783527631520.ch8.

[4.25] J. S. Langer. “Instabilities and pattern formation in crystal growth”. In: Review Modern

Physics 52 (1 1980), pp. 1–28. DOI: 10.1103/RevModPhys.52.1.

[4.26] G. Kocher and N. Provatas. “New Density Functional Approach for Solid-Liquid-Vapor

Transitions in Pure Materials”. In: Physical Review Letters 114 (15 2015), p. 155501. DOI:

10.1103/PhysRevLett.114.155501.

[4.27] Z. Wang et al. “Minimal phase-field crystal modeling of vapor-liquid-solid coexistence

and transitions”. In: Physical Review Materials 4 (10 2020), p. 103802. DOI: 10.1103/

PhysRevMaterials.4.103802.

130

https://doi.org/10.1103/PhysRevE.94.063004
https://doi.org/10.1103/PhysRevMaterials.3.053804
https://doi.org/https://doi.org/10.4208/jms.v55n4.22.01
https://doi.org/10.1088/1361-651X/ac8abd
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/https://doi.org/10.1002/9F783527631520.ch8
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1103/PhysRevLett.114.155501
https://doi.org/10.1103/PhysRevMaterials.4.103802
https://doi.org/10.1103/PhysRevMaterials.4.103802


[4.28] N. Ofori-Opoku et al. “Multicomponent phase-field crystal model for structural transfor-

mations in metal alloys”. In: Physical Review B 87 (13 2013), p. 134105. DOI: 10.1103/

PhysRevB.87.134105.

[4.29] M. J. Frick, N. Ofori-Opoku, and N. Provatas. “Incorporating density jumps and species-

conserving dynamics in XPFC binary alloys”. In: Physical Review Materials 4 (8 2020),

p. 083404. DOI: 10.1103/PhysRevMaterials.4.083404.

[4.30] T. V. Ramakrishnan and M. Yussouff. “First-principles order-parameter theory of freez-

ing”. In: Physical Review B 19 (5 1979), pp. 2775–2794. DOI: 10.1103/PhysRevB.

19.2775.

[4.31] K. R. Elder et al. “Phase-field crystal modeling and classical density functional theory of

freezing”. In: Physical Review B 75 (6 2007), p. 064107. DOI: 10.1103/PhysRevB.

75.064107.

[4.32] M. Greenwood, N. Provatas, and J. Rottler. “Free Energy Functionals for Efficient Phase

Field Crystal Modeling of Structural Phase Transformations”. In: Physical Review Letters

105 (4 2010), p. 045702. DOI: 10.1103/PhysRevLett.105.045702.

[4.33] J. Berry et al. “Phase field crystal modeling as a unified atomistic approach to defect

dynamics”. In: Physical Review B 89 (21 2014), p. 214117. DOI: 10.1103/PhysRevB.

89.214117.

[4.34] C. Cohen, P. D. Fleming, and J. H. Gibbs. “Hydrodynamics of amorphous solids with

application to the light-scattering spectrum”. In: Physical Review B 13 (2 1976), pp. 866–

877. DOI: 10.1103/PhysRevB.13.866.

[4.35] P. D. Fleming and C. Cohen. “Hydrodynamics of solids”. In: Physical Review B 13 (2

1976), pp. 500–516. DOI: 10.1103/PhysRevB.13.500.

[4.36] B. I. Halperin and David R. Nelson. “Theory of Two-Dimensional Melting”. In: Physical

Review Letters 41 (2 1978), pp. 121–124. DOI: 10.1103/PhysRevLett.41.121.

131

https://doi.org/10.1103/PhysRevB.87.134105
https://doi.org/10.1103/PhysRevB.87.134105
https://doi.org/10.1103/PhysRevMaterials.4.083404
https://doi.org/10.1103/PhysRevB.19.2775
https://doi.org/10.1103/PhysRevB.19.2775
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.13.866
https://doi.org/10.1103/PhysRevB.13.500
https://doi.org/10.1103/PhysRevLett.41.121


[4.37] M. Salvalaglio and K. R. Elder. “Coarse-grained modeling of crystals by the amplitude

expansion of the phase-field crystal model: an overview”. In: Modelling Simulation Ma-

terial Science and Engineering 30 (5 2022), p. 053001. DOI: 10.1088/1361-651X/

ac681e.

[4.38] C. Walz and M. Fuchs. “Displacement field and elastic constants in nonideal crystals”. In:

Physical Review B 81 (13 2010), p. 134110. DOI: 10.1103/PhysRevB.81.134110.

[4.39] T. Koyama and Y. Tsukada. “Ludwig–Soret effect formulated from the grain-boundary-

phase model”. In: Calphad 73 (2021), p. 102269. ISSN: 0364-5916. DOI: https://

doi.org/10.1016/j.calphad.2021.102269.

[4.40] R.A Swalin and C.A Yin. “Thermal diffusion of vacancies in aluminum”. In: Acta Met-

allurgica 15.2 (1967), pp. 245–248. ISSN: 0001-6160. DOI: https://doi.org/10.

1016/0001-6160(67)90198-8.

[4.41] J.P. Stark. “Vacancy concentrations in single crystal thermal diffusion experiments”. In:

Scripta Metallurgica 5.9 (1971), pp. 727–732. ISSN: 0036-9748. DOI: https://doi.

org/10.1016/0036-9748(71)90153-0.

[4.42] P. Shewmon. “Thermal Diffusion of Vacancies in Zinc”. In: The Journal of Chemical

Physics 29.5 (2004), pp. 1032–1036. ISSN: 0021-9606. DOI: 10.1063/1.1744650.

[4.43] A. Hellouin de Menibus et al. “Formation and characterization of hydride blisters in

Zircaloy-4 cladding tubes”. In: Journal of Nuclear Materials 449.1 (2014), pp. 132–147.

ISSN: 0022-3115. DOI: https://doi.org/10.1016/j.jnucmat.2014.03.

006.

[4.44] L. P. Kadanoff and P. C. Martin. “Hydrodynamic equations and correlation functions”.

In: Annals of Physics 24 (1963), pp. 419–469. ISSN: 0003-4916. DOI: https://doi.

org/10.1016/0003-4916(63)90078-2.

[4.45] N. Provatas, T. Pinomaa, and N. Ofori-Opoku. CRC Press, 2021. DOI: https://doi.

org/10.1201/9781003204312.

132

https://doi.org/10.1088/1361-651X/ac681e
https://doi.org/10.1088/1361-651X/ac681e
https://doi.org/10.1103/PhysRevB.81.134110
https://doi.org/https://doi.org/10.1016/j.calphad.2021.102269
https://doi.org/https://doi.org/10.1016/j.calphad.2021.102269
https://doi.org/https://doi.org/10.1016/0001-6160(67)90198-8
https://doi.org/https://doi.org/10.1016/0001-6160(67)90198-8
https://doi.org/https://doi.org/10.1016/0036-9748(71)90153-0
https://doi.org/https://doi.org/10.1016/0036-9748(71)90153-0
https://doi.org/10.1063/1.1744650
https://doi.org/https://doi.org/10.1016/j.jnucmat.2014.03.006
https://doi.org/https://doi.org/10.1016/j.jnucmat.2014.03.006
https://doi.org/https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/https://doi.org/10.1201/9781003204312
https://doi.org/https://doi.org/10.1201/9781003204312


[4.46] W. W. Mullins and R. F. Sekerka. “Stability of a Planar Interface During Solidification

of a Dilute Binary Alloy”. In: Journal of Applied Physics 35.2 (1964), pp. 444–451. DOI:

10.1063/1.1713333.

[4.47] R.N. Singh, S. Arafin, and A.K. George. “Temperature-dependent thermo-elastic proper-

ties of s-, p- and d-block liquid metals”. In: Physica B: Condensed Matter 387.1 (2007),

pp. 344–351. ISSN: 0921-4526. DOI: 10.1016/j.physb.2006.04.029.

[4.48] H. Emmerich et al. “Phase-field-crystal models for condensed matter dynamics on atomic

length and diffusive time scales: an overview”. In: Advances in Physics 61.6 (2012),

pp. 665–743. DOI: 10.1080/00018732.2012.737555.

[4.49] T. Pinomaa, A. Laukkanen, and N. Provatas. “Solute trapping in rapid solidification”. In:

MRS Bulletin 45.11 (2020), 910–915. DOI: 10.1557/mrs.2020.274.

[4.50] N. Wang, K. H. Bevan, and N. Provatas. “Phase-Field-Crystal Model for Electromigration

in Metal Interconnects”. In: Physical Review Letters 117 (15 2016), p. 155901. DOI: 10.

1103/PhysRevLett.117.155901.

[4.51] J. Xu et al. “The recalescence rate of cooling curve for undercooled solidification”. In:

Scientific Reports 10.1 (2020), p. 1380. ISSN: 2045-2322. DOI: 10.1038/s41598-

019-56079-6.

[4.52] M. Golizadeh et al. “Rapid solidification and metastable phase formation during surface

modifications of composite Al-Cr cathodes exposed to cathodic arc plasma”. In: Journal of

Materials Science & Technology 94 (2021), pp. 147–163. ISSN: 1005-0302. DOI: https:

//doi.org/10.1016/j.jmst.2021.03.059.

[4.53] K.G. Prashanth and J. Eckert. “Formation of metastable cellular microstructures in se-

lective laser melted alloys”. In: Journal of Alloys and Compounds 707 (2017). Selected

papers presented at ISMANAM 2016, July 3rd-8th, Nara, Japan, pp. 27–34. ISSN: 0925-

8388. DOI: https://doi.org/10.1016/j.jallcom.2016.12.209.

133

https://doi.org/10.1063/1.1713333
https://doi.org/10.1016/j.physb.2006.04.029
https://doi.org/10.1080/00018732.2012.737555
https://doi.org/10.1557/mrs.2020.274
https://doi.org/10.1103/PhysRevLett.117.155901
https://doi.org/10.1103/PhysRevLett.117.155901
https://doi.org/10.1038/s41598-019-56079-6
https://doi.org/10.1038/s41598-019-56079-6
https://doi.org/https://doi.org/10.1016/j.jmst.2021.03.059
https://doi.org/https://doi.org/10.1016/j.jmst.2021.03.059
https://doi.org/https://doi.org/10.1016/j.jallcom.2016.12.209


[4.54] J. H. Perepezko and W. J. Boettinger. “Use of Metastable Phase Diagrams in Rapid Solidi-

fication”. In: MRS Online Proceedings Library (OPL) 19 (1982), p. 223. DOI: 10.1557/

PROC-19-223.

[4.55] H. Jones. “Splat cooling and metastable phases”. In: Reports on Progress in Physics 36.11

(1973), p. 1425. DOI: 10.1088/0034-4885/36/11/002.
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Chapter 5

Discussion

The investigation of chapters 2-4 documents our progression towards the overarching hypothesis

of species limited energy relaxation. Particularly, phase field crystal techniques were utilized to

understand the microstructural response that arises from the incorporation of additional energy

carrying modes. With inspiration drawn from past binary alloy studies [91–93] and experimental

measurements [79], the conservation laws of hydrodynamics are used as a template for a new

class of phase field crystal approaches. Therein, mass, strain, momentum, and temperature fields

propagate according to local gradients of driving forces.

In Chapter 2 we built a foundation for the isothermal PFC study of phonon-density dynamics

in terms of a single density field equation denoted (MPFC). Novel strain and dislocation mappings

are used to interrelate the density, hydrostatic strain, and vacancy concentration. Herein phonon

dispersion associated to thermal scattering is added, which forms a connection to more complex

crystal propagation equations. In the limit of high dissipation, the model was shown capable of

recovering Mullins-Sekerka interface instabilities. As the dissipation was reduced, we showed

that phonon induced deviations of steady-state growth emerge. In passing, a minimal free energy

term was discussed to separate strain diffusion from chemical diffusion. It was argued that such

an addition may permit the separation of climb and glide time scales. The study was further

supplemented by a numeric algorithm for rapid simulation.

Our first application of this latest MPFC innovation developed in chapter 2 consists of a density

136



dependent function, capable of extracting the hydrostatic strain map of polycrystalline materials.

The detailed measurement of lattice deformation relative to an idealized packing constitutes an

important metric in microstructure analysis. For example, the strain can be used to characterize

dislocations and grain boundaries by their energies [94]. In the phase field crystal study of grain

boundary sliding, Stefanovic et al. employed a thresholding and peak finding algorithm to deter-

mine the interatomic positions and thereby deduce the strain. Peak finders, which have seen use

in other phase field crystal literature are however computationally taxing. In addition, the time re-

solved structure of the phase field crystal atomic profile has ill-defined atomic positions near grain

boundaries. To alleviate these challenges, the Fourier space density structure is utilized [95–98].

Unfortunately, the requirement of well separated Bragg peaks limits the application of study to

nearly idealized lattices. We noted that substantial information of the dislocation properties can

be obtained through only the trace of the strain tensor. Subsequently, we drew on inspiration from

powder X-ray diffraction methods, such as Warren-Averbach and Scherrer decomposition. It was

noted that the asymmetry of the Bragg ring, the circle of corresponding wavevector magnitude on

which the Bragg peaks sit, is indicative of the local compression and rarefaction. A phenomenolog-

ical relation between hydrostatic strain and density field was subsequently developed. In passing,

we also introduced a dislocation map built from the intensity of the Bragg ring. Our relations serve

as tools to characterize the dislocations and grain boundaries constituting polycrystalline materials.

Since the relations are phenomenological in origin, the proper scaling and proportionality remain

unknown. We believe that future comparison between our relations and experimental dislocation

strain energies may serve as verification and quantification of our relations.

A second application of the MPFC method developed in chapter 2 investigated a class of phe-

nomena arising from phonon-defect interactions, we extended the modified phase crystal frame-

work to incorporate additional strain dynamics. In diffusional phase field crystal techniques, the

ballistic phonon related response is removed during the coarse graining procedure and thereby

treated as instantaneous. Wave-like dynamics were thus introduced to transport stress information

in the form of quasi-phonons [76]. This treatment permits a more detailed study of dislocation

plasticity, especially in the limit of highly energetic defect structures found for example in shock
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experiments or laser heating. Majaniemi et al. formed a theoretical connection of the two-time

scale phase field crystal model to solid hydrodynamics, through vacancy and strain considerations

[77]. Since no past descriptions, allowed for dynamic calculation of the strain, the strain contri-

butions were assumed negligible. In highly deformed systems, such as polycrystals, or in systems

exhibiting ballistics, strain corrections become increasingly relevant. With the strain filter intro-

duced earlier in mind, we proceeded through an alternative derivation of two timescale approach

than Majaniemi et al.. In particular, strain and strain rate factors were separated from chemical

driving forces into a conditionally reversible stress This behaviour is akin to formulations in dis-

crete dislocation dynamics simulations [99] and continuum dislocation models [100]. The mapping

between hydrostatic strain and density, permits a single field partial differential equation captur-

ing an additional order in the phononic response for qualitative mechanism analysis in shocked

systems. In addition to the new modified phase field crystal model, we built an extension to the

commonly used semi-implicit spectral method for rapid simulation.

One of the additions we made that is encapsulated in the conditionally reversible stress, is

hydrostatic strain diffusion. This factor entered the free energy as the minimal strain-vacancy

coupling. Such a component was argued necessary to recover the proper set of propagation modes

in the hydrodynamic description of solids by Zippelius et al. [101]. For a lone dislocation, the

hydrostatic strain points in the direction of the Burgers vector. As a consequence, we argued that

mass motion emanating from hydrostatic strain diffusion, should allow differentiation between

climb and glide time scales, which is a nonphysical feature of phase field crystal models [102].

In the works of Kun et al. that followed our publication ([1]), a similar argument was given for

the time scale separation within the context of amplitude phase field crystal models [78]. It is

interesting to note that climb occurs through vacancy diffusion, while glide occurs as a result of

shear stress relaxation. We highlight that careful treatment of the vacancy and density couplings

both thermodynamic and dynamic in origin, can correct some non-physical dislocation motion in

phase field crystal models. Although this representation is minimal, one may be able to readdress

the Hall-Petch and Cobble-creep phenomena for polycrystalline materials under strain.

We also described a procedure to introduce phonon dissipation into the model. Since the phase
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Figure 5.1: Illustrated is the autocorrelation function described in Eq. 3.3, measured for two dif-

ferent values of k2 dissipation (β2): (a) Measured at Fourier wavevector q = 0.76q∗. (b) Measured

at the Bragg peak wavevector q∗. (c) Measured at Fourier wavevector q = 1.26q∗.

field crystal density represents a time averaged atomic distribution, it is expected that propagat-

ing phonons lose energy as they encounter short ranged vibrations, which are subsumed into the

breadth of the atomic profiles. In addition, we note that phonons may encounter other point de-

fect structures such as vacancies, which are captured in the atomic amplitude height. In ideal-

ized lattice, both thermal and phonon self scattering are known to scale with order O(k2) [103].

Higher order corrections have also been argued when significant lattice deformation is present as

in amorphous materials [104]. We subsequently performed a linear perturbative plane wave analy-

sis, allowing analytic expression for the phonon dispersion. Due to linear dissipation, acting on all

wavevector phonons, we observed the emergence of a k-gap for small wavevectors (k). This has

been corroborated in recent hydrodynamic theories [105]. We further found a propagating mode

cut-off at higher frequency resultant from the viscosity-like dissipation (O(k2)) in addition to a

maxima of the phonon dispersion relation. This type of behaviour of the dispersion relation is

indicative of a Van-Hove singularity, where the phonon density of states becomes singular. Such

singularities are well-known to occur in crystalline materials and are indicative of sites that can

store phonon energy. More complex amplitude phase field crystal models that simultaneously sim-

ulate large number of fields, have introduced viscous decay of the velocity and obtained similar

dispersion relations [106]. We have thus illustrated a connection between the amplitude models

and single field theories. Our analysis only considered the minimal wave dissipation order and

linear response. As such, our model behaviours may deviate in disordered materials (glassy, amor-
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phous, ...), which are known to have complex dispersion relations. We note that that some features

may be captured in the nonlinear strain considerations described earlier.

In Fig. 5.1, the autocorrelation function is presented at three different wavevectors with dif-

ferent amounts of phonon viscosity (β2). In connection with the memory formalism described in

chapter 2, differing β2 shift the decay time scale of the different wavevectors modes. As a result,

the dynamics of defects, which are associated with a broad range of wavevectors can be greatly

affected. A rough comparison to neutron scattering experiments that directly measure S(q, t) can

be performed to estimate an appropriate β2 value. We thus treat the new thermal dissipation as a

necessary and minimal approximation to study phonon-defect scattering.

The solid-liquid interface constitutes the first defect-type we investigated. For a specific set

of driving conditions when phonon have sufficient relaxation time, the competition of lateral and

parallel interface diffusion results in dendritic growth. The morphologies of which are greatly de-

pendent on interface velocity, but grow with global symmetry associated with anisotropy of the

atomic lattice structure. At rapid velocities, akin to splat cooling, vacancy trapping may ensue

that embeds dislocations, metastable phases and vapour pockets into the growing solid [107, 108].

We thus simulated the solidification of a circular solid seed with differing phonon dissipations and

temperature conditions. At slow growth rates and high dissipation, the conventional dendritic pat-

tern was recovered. Meanwhile at rapid growth rates with decreased dissipation, the interface out

sped the interfacial stress, leaving a dendritic network of dislocations fossilized into the solid struc-

ture. Furthermore, we noted the presence of additional dislocations and highly depleted regions

that entered from fluctuations of the advancing interface. The trapped dislocations are in accor-

dance with experimental observation. We believe the density depleted pools, may serve as sites of

fracture or metastable phase formation in further corroboration with experiments. Such findings

are likely readily available for phase field crystal models when additional phases at incorporated

into the formalism. We note that the rapid growth conditions correspond to steady state interface

growth in the diffusional models, which do not capture the aforementioned trapping mechanisms.

Our first investigations have thus illustrated a class of phonon-defect coupling phenomena crucial

for microstructure analysis in rapid solidification.
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Chapter 3 constitutes further exploration of the new isothermal modified phase field crystal

model introduced in chapter 2. Measurements of the density autocorrelation function revealed a

two step exponential decay exhibited by polycrystals relaxing under large thermal noise strength.

We illustrated that the crossover from phonon ballistics to structural relaxation was accompanied

by phonon accumulation at grain-boundaries. The high local energies were shown sufficient to

induce liquefaction, which would subsequently recrystallize. The character of the autocorrelation

within the cross-over regime is indicative of experimentally observed boson peak which are often

measured through the longitudinal phonon density of states. By means of a novel method to deter-

mine the longitudinal velocity, the longitudinal phonon density of states was shown measurable,

in qualitative agreement with boson peak measurements. We further stimulated a number of poly-

crystalline samples by imposing an initial energy distribution. Liquefaction that was followed by

subsequent recrystallization was observed. Upon increasing the imposed energy, an increase in the

amount of recrystallization took place. For this scenario, we constructed a predictive relation for

the maximally achieved defect fraction as a function of imposed initial energy.

Our simulations of polycrystal relaxation in the presence of large driving noise strength re-

vealed a phonon-defect caging regime in the intermediate scattering function. That is, a multi-stage

stretched exponential-like curvature, similar to binary caging reported by Berry et al. [91]. We note

that the intermediate scattering function is also known as the density autocorrelation, which mea-

sures the self-similarity of the atomic profile. Our findings are consistent with molecular dynamic

simulations of Ni polycrystals that exhibited similar two time-scale behaviour [109]. Because of

the lack of phonon grain boundary scattering, we illustrated that the caging regime was missing

from the relaxation of idealized lattices. One way thus to interpret the two-time response from

a coarse-grained perspective, is as a departure from the self-averaging assumption of the noise

correlations. In particular, this results from phonons softening and localizing their energies near

defect structures; a defect limited motion of phonons. It is interesting to note that two-time scale

responses are commonly exhibited by glass and amorphous materials. As a result, we suspect in-

creasing the defect densities in polycrystalline materials, will lead to an increased resemblance to

their metallic glassy counterparts. The observations we have made are mainly qualitative, requir-
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ing a careful treatment of grain boundary energy to connect to any quantitative material, perhaps

through the dislocation strain energies described earlier. We leave the study of how changing the

polycrystal grain size and grain boundary energy affect the phonon spectrum to future works.

In addition to the glassy-like properties of polycrystals, we found that phonon-defect scattering

can result in disordered pools that suppress further ballistic scattering, and coarsen after formation.

Because of the phonon suppression, the disordered regions may be related to the ringing of the

dynamic structure factor during the crossover from ballistic to diffusive motion. We found that a

decrease in disordered pool count occurred in conjunction with an increase in phonon dissipation.

While the melt pools appear to form on grain boundaries, they can also form along slip planes of

the host lattice structure when two grain boundaries are close to one another. These liquid pools

recrystallize on longer timescales than their formation, potentially annealing into dislocations.

Defect dimensionality can have a large impact on the associated formation energy. Since our

simulations are two dimensional, dislocations would have a higher energy to dissociate. Thus,

in three dimensions we believe that it is more likely to relax by emission of Shockley partials.

Nonetheless, if enough energy has locally accumulated, liquefaction or fracturing will ensue. The

autocorrelation function is directly accessible in neutron scattering experiments. Here the two time

scale response and ringing have been observed, with the latter often denoted the boson peak. There

has been debate in the literature as to the cause of the boson peak. Our simulations suggest that the

nature of boson peak is caused by grain boundary dissociation from phonon defect interaction. To

further corroborate our findings, we sought alternative descriptors of the boson peak.

The boson peak additionally appears as a peak in the phonon density of states, measured either

in inelastic neutron scattering or Raman spectroscopy. Through the use of Helmholtz decomposi-

tion, we interrelated the time derivative of the density field to the longitudinal momentum. Within

the context of past single field phase field crystal models, the velocity had been unobtainable. We

illustrated that this metric permits the evaluations of the system kinetic energy and longitudinal

phonon density of states. Further analysis of the phonon scattering spectrum through the longitu-

dinal phonon density of states, revealed the emergence of a boson peak. In the case of the lower

dissipation, and thereby phonon density, we found additional peaks. We suspect these features

142



are Van-Hove singularities, which we showed were controllable through the viscous dissipation.

The position of the dominant boson peak was observed to be unaffected by the wavevector of the

phonon dispersion maxima, which is associated with the Van-Hove singularity. This finding cor-

roborates the distinction between the Van-Hove singularity of the idealized lattice and the boson

peak [110]. We note that our dispersion analysis was a linear approximation and did not account

for the presence of grain boundaries. It remains a possibility that the grain boundary introduces

additional van-hove singularities to the system. Nonetheless, in connection with our past find-

ing, the boson peak seems to be caused by phonon accumulation at grain-boundaries. We further

note that the peak may be an artifact of the approximations that went into deriving the density of

states equation. As a result, further metrics to connect the high frequency peak may be necessary.

In particular, low frequency shear waves may interact with the longitudinal modes. Importantly,

the shape of the resonance peaks are qualitatively consistent with a maximal envelope of the ex-

perimental measurements of laser irradiated thin films, which are measuring the process at much

shorted time scales [82, 111]. Waldecker et al. further highlight the dominant activity of the

longitudinal acoustic modes, such as those we have been able to measure [82]. More intricate

hydrodynamic amplitude variants of the phase field crystal model that explicitly track the velocity

vector field may be able to elucidate the shear contributions.

In comparison to thermal annealing pathways for recrystallization, a material may be recrys-

tallize as a result from a passing shock wave. The transmitted energy may have resulted from

induced mechanical deformation, for example in rolling, or alternatively from laser irradiation. In

the context of phase field crystals, such energy may be added near instantaneously. Thus to model

the propagation of a shock wave, we make the minimal approximation, that at a given time step,

a distribution of momentum is implanted in lattice. Upon relaxation, we found a similar appear-

ance of disordered structures, followed by recrystallization. Some recent additive manufacturing

experiments corroborate the shocked induced recrystallization pathway [84]. When applying an

increasing amount of burst energy to a number of polycrystalline samples, we found an increase

in the amount of metastable pools formed. By measuring the defect fraction, we found that over

time the defects coarsened away. We then made a rate relation for the maximally achieved defect
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Figure 5.2: Illustrated is an example simulation of laser induced melting and voiding as studied in

chapter 3. A vapour phase field crystal model is used with parameters as in figure 1 of ref. [57]. (a1)

A phase diagram is shown in terms of the effective temperature Bl and average density ⟨ψ⟩. (a2).

The initial polycrystalline density maps. Subpanels bi and ci refer to simulations with different

amounts of input energy. (b1) The density map snapshot at t = 900. (b2). The temporal evolution

of average pressure, ⟨P⟩, and average free energy, ⟨F⟩. (c1). The density map snapshot at t = 900.

(c2) The temporal evolution of average pressure, ⟨P⟩, and average free energy, ⟨F⟩. An inset is

provided for subpanels (b2) and (c2) illustrating the slope of the average pressure.

fraction, since this is a rough indicator of the amount of recrystallization. We found very good

agreement to our simulations with our rate relation for low input energies. At extreme input en-

ergies, we believe that the phase field crystal model breaks down, because of large density jumps.

It is interesting to note that our time dependent rate relation shares similarities to Oswald ripening

theories [112]. Meanwhile the energy rate relation has similar qualitative form to experimental

measurements of the recrystallization fraction for steel [113]. However, a more quantitative vali-

dation of our results with experiments requires the inclusion of latent heat and heat flow to extend

the theory and account for consistent coarsening time-scales. In addition, multiple phases may be

necessary to account for fracture or precipitate formation, both of which are parasitic to the recrys-

tallization [114]. Nonetheless, our studies on recrystallization pathways, are indicative of phonon
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defect coupling being a culprit.

In Fig. 5.2, we illustrate an example of laser induced voiding that we previously mentioned.

Such fracture response can occur in highly irradiated materials. We use the model described by

Kocher et al. for the inclusion of a vapour phase into the free energy landscape [57]. As before,

an initial polycrystal is grown, which we bombarded with different amounts of kinetic energy that

is input through ⟨
(

∂ρ

∂ t

)2⟩. With reduced input energy, for which no vapor pockets form, phonons

continually scatter of defect structures (b1). As a result, we observe ringing in the average system

pressure (b2). As vapor pockets form in response to the induced shock (c1), additional dissipation

of the disturbance can be seen in subpanel (c2). Furthermore, we note the presence of a peak

in the average system pressure, which only appears when the polycrystal fractured. A potential

explanation for this behaviour is due to the system overcoming an energy barrier to recrystallize.

However we note that the simulations contained in Fig. 5.2 represent only a single instance of

induced noise. Thus to further corroborate this behaviour proper statistics need to obtained for

different instances of noise and polycrystalline structure. Irregardless, we illustrated the potential

for the inclusion of a vapour phase for the study of fracture in laser induced irradiation.

Chapter 4 expounded upon our hydrodynamic formalism of our previous works by the inclu-

sion of a temperature field of kinetic and entropic origins. In comparison to past thermal phase

field crystal models, enthalpic latent heat release is incorporated, in addition to phonon dynam-

ics. Upon spatial coarse-graining, it is shown that the method recovers the decay scale order of

the one-dimensional analytic temperature interface profile for steady state solidification. We fur-

ther illustrated that the coarse-grained density field contains information of equilibrium vacancy

concentration within the modulation amplitude heights. A vacancy gradient is illustrated to be

emergent from applying a fixed temperature gradient across a solid sample. Such behaviour is ar-

gued indicative of the constant volume nature of typical phase field crystal methods. The technique

serves as a tool for future investigation of temperature induced plasticity evolution, or phonon gen-

eration. To this end, we illustrated heat generation from phase transitions, plastic relaxation, and

phonon dissipation. Furthermore, we describe the connection between parameters entering our

free energy in terms of the thermomechanical equations of state. In summary, we illustrated how
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temperature flow can become slaved to mass and phonon diffusion.

Seldom are solidification and plasticity isothermal. Latent heat release and ambient heating can

greatly shift a material temperatures. Temperature gradients can induce vacancy flow [115] or can

be tailored to control solidification rates [116]. Additionally, grain boundary morphologies may

differ as a result of the heating route of an experimental apparatus. If heating is hyper localized, a

different local thermodynamics may be sampled, allowing metastable phase formation. Thus it is

imperative both on qualitative and quantitative grounds to incorporate temperature effects. Langer

et al. have in past mentioned the importance of a model that can incorporate temperature effects in

addition to phonons and plasticity [100, 117]. We have hence built a framework that extends the

phononic phase field crystal model, incorporating temperature dynamics that obey energy conser-

vation. We note that energy can be stored at faster and smaller scales than our simulation resolution,

which through noise can lead to a breaking of the symmetry. As far as we are aware, temperature

field crystal represents the first coupling between the two time scale models and temperature. This

allows a new paradigm of investigations of the aforementioned experiments. During the inception,

care was taken to include all temperature dependent contributions entering the free energy from

classical density functional theory. In addition, an added enthalpic heat contribution was required

to conform to Clausius-Clapeyron relation. We note that earlier class of temperature phase field

crystal models do not abide to the thermodynamic constraints, and as such suffer from an ill de-

fined latent heat [118–120]. We showed that a rough agreement could be made between analytic

temperature profiles encountered in sharp-interface limits for steady state solidification. It remains

as an interesting question to compare the temperature profiles obtained in finer scale models to

our results. Nonetheless, this technique lays a foundation for many future avenues of exploration.

In particular, we are interesting in the applying our methods to describe additive manufacturing

experiments, which we leave for future work.

There has been evidence suggesting residual thermal stress, associate to thermal expansion,

during solidification may be cause for significant number of failure mechanisms in metal manufac-

turing. Thermal expansion is generally interpreted as a change of lattice length, in order to conform

to the constant environmental pressure. Previous attempts introduce thermal expansion explicitly
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into phase field crystal free energy, with equilibrium lattice length that changes as a function of

temperature [120]. However, we illustrated that phase field crystal energies already contain ther-

mal expansion characteristics. Namely, they need to be interpreted as isochoric, with fixed number

of lattice site positions. Under this interpretation, changes in the amplitude magnitudes, which

represent an increase in localized vibrations can be related to vacancy flow. Applying a fixed ther-

mal gradient across an idealized lattice results in an opposing gradient in amplitude height. This is

in qualitative agreement with vacancy flow experiments which have been performed on a number

of materials [115]. We have thus addressed where thermal stress is buried in phase field crystal

models. In passing, we described how different model parameters are related to thermomechanical

variables used in experiments in terms of the Gruneisen equation of state theory. Future work may

expand on these relations to fit the phase field crystal free energy through databases such as that

tabulated by Dinsdale [121]. We mention that this process is not dissimilar from the quantification

of molecular dynamics through shock-Hugoniot response [122]. We note that constant pressure

ensembles should exhibit thermal expansion characteristics provided sufficiently small numeric

grid spacing [123]. It remains to perform a quantitative comparison of amplitude temperature

dependence to the equilibrium vacancy concentration.

As a liquid transitions to the solid state, there is a corresponding release of entropic heat. It

stands to reason that any metastable state relaxing towards equilibrium should also release a corre-

sponding heat, perhaps negligible relative to the full solidification. We hypothesis this behaviour

as a time scale coupling phenomena, since heat production is being limited by internal stress re-

laxation. Recently, the recalescence cooling curve has been argued as a metric to assess the critical

nucleus size during nucleation [124]. However the recalescence curve can be connected to time-

temperature-transformation (TTT) and dislocation-dynamics diagrams often used for metallurgical

dislocation analysis. With the new TFC formulation, we simulated the constant uniform cooling of

a liquid past the transition temperature. A characteristic recalescence profile was recovered. In ad-

dition, we highlighted asymmetry present within the slope of the average system temperature as a

function of time. We then showed that heat release can be caused by two additional sources in the

solid-state, namely dislocation annihilation and phonon scattering. To illustrate dislocation heat
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Figure 5.3: Illustrated is a comparison of the laser irradiation mechanisms with (ci) and without

(bi) the evolution of a thermal field. The model parameters used are as listed for in table 4.1 for

figure 4.3 with S(x, t) = 0, and αT = 2000. (a1) The phase diagram computed with a one mode

expansion formulation. (a2) The initial polycrystalline sample prepared at uniform temperature

and average density as denoted by the simulation point in subpanel (a1). (b1) The density map

at t = 2000. (b2) The temperature map at t = 2000. (b3) The temporal evolution of average

temperature, ⟨T ⟩, and average free energy, ⟨F⟩. (c1) The density map at t = 2000. (c2) The

temperature map at t = 2000. (c3) The temporal evolution of average temperature, ⟨T ⟩, and average

free energy, ⟨F⟩.

generation, we simulated the annealing of a polycrystalline solid with an initial uniform tempera-

ture distribution. Here we observed temperature increase that was congruent to free energy drops

associated with the dislocation motion and grain boundary coarsening. Our findings suggests that

the asymmetry of the heat generation may be caused by the dislocation relaxation following grain

impingement. The slope of the recalescence curve may thus be a non-invasive method of obtaining

the dislocation density following solidification. In addition, we illustrated that during rapid melting

of a polycrystalline solid, the reverse recalescence curve can be split into two time-scale regimes,

where one is dominated by transformative heat generation, and the other by phonon scattering

within the remaining solid islets.

With the addition of temperature, we may now, return to the study of laser induced irradiation.

In comparison to existing two-temperature models [125], the thermal framework that we have de-
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veloped can be used to observe when changes of crystalline order ensue. As we have argued, our

framework further allows a description of induced thermal pressure. To this end, we simulated the

response of a polycrystal to the input of kinetic energy with and without temperature dynamics.

The simulation is captured in Fig. 5.3, but only represents a minimal example. For isothermal

response, the input kinetic energy is dissipated into the lattice by modulations of amplitude height

as seen in subpanel (b1). However, when the thermal field is allowed to evolve, the input kinetic

energy is transferred into modulations of temperature. Such behaviour can be observed in sub-

panels (c1) and (c2). In certain places in the lattice the temperature can exceed the melting point

and liquidation follows. The absorption of heat for the transformation results in sudden decrease

in the rate of average temperature increase (c3). We note that the average temperature exceeds the

liquidus line along our average density. Our simulations are representative of an isolated two di-

mensional polycrystal. To compare against experiments we must additional incorporate heat loss,

which is possible through S(t). Such considerations are necessary, but not used in our minimal

example simulation. Once sufficient heat has been lost to the surrounding environment, recrystal-

lization may follow. We note that our simulation has only considered the case of low latent heat

barrier for transformation. Thus it remains to investigate the response when the phase transforma-

tion barrier is larger. We expect that the temperature dynamics may have reduced importance. It

may be of further interest to measure the recrystallization fraction as a function of the cooling rate

considered.

Our studies of temperature, vacancy, and density dynamics has only highlighted a select num-

ber of phenomena that could arise. Throughout this discussion, we have documented a number of

future applications and improvements that can extend our specific formalism. However, we have

only described the tip of an iceberg. What occurs when additional phases or alternative species

are introduced into the system remains unknown. How short scale interaction play a role on the

solidification and plasticity is a further question of interest, perhaps requiring a careful treatment

of noise. Further investigation may add non-linear advection to describe a whole new class of

response. Additional information of time scale coupling characteristics may perhaps lie in mea-

suring cross correlation functions, such as between density and temperature. System outside of
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metallics may additionally exhibit multi-time scale related phenomena. In multiferroic materials

for example, propagating magnetization and polarization interfaces become limited in the pres-

ence of defect structure. Alternatively, complex polymer crystallization, in food science, plastics,

biological systems, or electronics may also exhibit a complex temporal evolution.
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Chapter 6

Conclusion

Through our studies of hydrodynamic extensions of the phase field crystal models, a number of

improvements and measurements of time coupling phenomena have been explored. We have built

frameworks, and numeric methods to delve into the cross correlated dynamics of vacancy, temper-

ature, and density. In passing, we have also introduced a number of novel metrics to connect our

simulations with experimental measurements. Thereby, we have provided explanation for struc-

tural evolution mechanisms and posited new systems for future experimental exploration.

A number of research avenues are readily accessible for future analysis. The repetition of the

noise induced shock performed in Ch. 4 over a range of different material conditions represents

one direction to explore. This is of particular relevance, since the characterization of the recrys-

tallization fraction as a function of the system average temperature, pressure, and density is of

industrial importance. One may further expand on the description by incoporating an additional

solute species, which may affect the recrystallization, and potentially precipitate out of the host

lattice. Such behaviour would be in accordance with recrystallization experiments [114], but addi-

tional correlations between the phenomenon and material properties may be drawn. Supplemented

by heat transfer kinetics, the effect of thermal expansion stress on nano- and microstructure in the

presence of precipitates may also be assessed. An alternative class of work falls under hysteretic

response, where the reaction of the system lags behind the induced stimulus. As in quenching

experiments, suppose the system temperature is gradually modified. Depending on the rate of tem-
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perature change, the material may exhibit a structural frustration. In the future, a characterization

of this behaviour can be analyzed through the frameworks discussed in this thesis. A similar hys-

teresis response would be found in the magnetization as a function of the externally applied field.

In addition to rate dependence, there can be sources of frustrated evolution as the magnetization

response encounters dislocations and grain boundaries. An analysis of this Barkhausen noise ef-

fect through a magnetization and polarization extension of the phase field crystal model may allow

correlating the effect with the material defect density. Lastly, we shall mention the possibility

of investigating high spatial resolution periodic surface patterns produced as the polarization of a

stimulating laser couples to the magnetization and polarization of the material. As in the earlier

description, one may employ a multi-ferroic phase field crystal extension coupled to an external

laser source in order to characterize the patterns on a solid-liquid interface.

In summary, we have illustrated the difficulty in studying structural transformations due to the

many competing time scales. Our work emphasizes that time scale competition can not only lead

to new phenomena, but is at the heart of a significant number of challenges in the manufactory of

materials. Some such behaviour may be subject of future study with industrial applications. At the

scale of our investigations, it seems that the essence of this class of behaviours, lies in how energy

is transferred through atomic interactions, further emphasizing the necessity to examine the dance

of atoms innumerable at time and length scales beyond our vision, i.e., the atomic scale shuffle.
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