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Contribution to Original Knowledge 

 

Research Part I: 

Different oscillatory components were found in the high frequency and low frequency 

components of the heart rate variability signal. Correlation with seizure onset with these 

oscillatory signals was also found to be different depending which component of the heart rate 

variability was being analyzed. For the low frequency component, correlation was for found for 

circadian periodicity but for the high frequency component, correlation was found for the half-

circadian periodicity.  

Research Part II: 

Time varying coherence between brain and heart data reveled how brain-heart 

interaction have slow oscillations in a comparable manner to those found in EEG and ECG signals. 

The theta, alpha and gamma frequency bands were found to oscillate with similar periods, the 

delta and beta bands were seen deviate from those oscillatory patterns for most subjects.  

 The average periodograms showed how circadian and half-circadian periodicities were 

present consistently across subjects and across brain frequency bands. Correlation of these 

oscillatory components to seizure onset were demonstrated to be dependent on the frequency 

band and in the coherence between the low frequency component of the HRV and the specific 

bands. The circadian periodicity of the gamma band showed the most correlation with seizure 

onset 
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Abstract: 

Background: Epilepsy is one of the most common neurological disorders in the world, affecting 

approximately 1% of the world’s population. It can cause brain activity to become abnormal 

causing seizures. There are various medical risks associated with seizure onset, as well as a 

decrease in quality of life for patients diagnosed with epilepsy. However, when it comes to 

studying physiological signals in patients with epilepsy most of data used to study epileptic 

seizures are in the short-term surrounding the ictal period (the seizure itself). This assumes that 

the inter-ictal period is stable, which is at odds with the already established, long-term biological 

rhythms that are present in physiological signals. So, by studying long-term physiological signals 

in the context of epilepsy, a better sense of how the complex bodily rhythms present affect 

physiological signals at time of seizure onset. 

Objectives: The main objective this project involved the analysis of long-term analysis of 

physiological signals from subjects with epilepsy, as well as the determination of the periodic 

components on those signals and their correlation with seizure onset. 

Methods: This project was divided in two parts with different datasets used for each one. In Part 

I, an HRV signal was built from the detected R peaks of the ECG signals. The HRV was then fed 

into an MVAR model, and the power spectral density matrices were computed. The HF and LF 

components of the HRV were isolated and their periodicities were estimated. Circular statistics 

were then used to calculate the correlation of the periodic signal to seizure onset. In Part II, the 

mean intracranial EEG signal was computed, the five frequency bands were extracted, and their 

envelope is computed. Then the HRV and EEG-ENV were fed into the MVAR model, then power 
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spectral density matrices and coherence were computed. The periodicities were estimated, and 

finally circular statistics was used to compute the correlation to seizure onset in group level and 

in a subject specific manner. 

Results: For Part I, the main periodic components seen in the HRV, HF and LF signals were at 

approximately four, twelve and twenty-four hours. Correlation with seizure onset were seen in 

the HF signal at the twelve-hour periodicity and in the LF signal at the twenty-four periodicity. 

For Part II, the time-varying coherence of the theta, alpha, and gamma bands with the HRV-LF 

were more coupled, however the delta and beta bands were the most distinct ones. The 

periodicities detected in the EEG envelopes were distributed in a more spread-out way than the 

HRV-LF. The time-varying coherence had less periodic components then the EEG-ENV and HRV-

LF signals. Correlation with seizure onset had a wide assortment of variation across subjects and 

frequency bands. At a group level, the strongest correlations detected were for the circadian 

periodicities of the HRV-LF and the Gamma-ENV. 
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Abstrait (French) 

Contexte : L'épilepsie est l'un des troubles neurologiques les plus courants dans le monde. Elle 

touche environ 1 % de la population mondiale. Elle peut provoquer une activité cérébrale 

anormale à l'origine de crises d'épilepsie. Il existe divers risques médicaux associés à l'apparition 

de crises, ainsi qu'une diminution de la qualité de vie des patients diagnostiqués épileptiques. 

Cependant, lorsqu'il s'agit d'étudier les signaux physiologiques chez les patients épileptiques, la 

plupart des données utilisées pour étudier les crises épileptiques portent sur le court terme 

entourant la période ictale (la crise elle-même). Cela suppose que la période inter-ictale est 

stable, ce qui est en contradiction avec les rythmes biologiques à long terme déjà établis qui sont 

présents dans les signaux physiologiques. Ainsi, l'étude des signaux physiologiques à long terme 

dans le contexte de l'épilepsie permet de mieux comprendre comment les rythmes corporels 

complexes présents affectent les signaux physiologiques au moment de l'apparition des crises. 

Objectifs : L'objectif principal de ce projet était l'analyse à long terme de signaux physiologiques 

provenant de sujets épileptiques, ainsi que la détermination des composantes périodiques sur 

ces signaux et leur corrélation avec le déclenchement des crises. 

Méthodes : Ce projet a été divisé en deux parties. Dans la première partie, un signal HRV a été 

construit à partir des pics R détectés des signaux ECG. Le VRC a ensuite été introduit dans un 

modèle MVAR, et les matrices de densité spectrale de puissance ont été calculées. Les 

composantes HF et LF du HRV ont été isolées et leurs périodicités ont été estimées. Des 

statistiques circulaires ont ensuite été utilisées pour calculer la corrélation entre le signal 

périodique et le début de la crise. Dans la deuxième partie, le signal iEEG moyen a été calculé, les 
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cinq bandes de fréquence ont été extraites et leur enveloppe a été calculée. Ensuite, le HRV et 

l'EEG-ENV ont été introduits dans le modèle MVAR, puis les matrices de densité spectrale de 

puissance et la cohérence ont été calculées. Les périodicités ont été estimées, et enfin les 

statistiques circulaires ont été utilisées pour calculer la corrélation avec l'apparition des crises au 

niveau du groupe et d'une manière spécifique au sujet. 

Résultats : Pour la première partie, les principales composantes périodiques observées dans les 

signaux VRC, HF et LF se situaient à environ quatre, douze et vingt-quatre heures. La corrélation 

avec le début des crises a été observée dans le signal HF à la périodicité de douze heures et dans 

le signal LF à la périodicité de vingt-quatre heures. Pour la partie II, la cohérence variable dans le 

temps des bandes thêta, alpha et gamma avec le VRC-FL était plus couplée, cependant les bandes 

delta et bêta étaient les plus distinctes. Les périodicités détectées dans les enveloppes de l'EEG 

étaient distribuées de manière plus étalée que celles du HRV-LF. La cohérence variable dans le 

temps avait moins de composantes périodiques que les signaux EEG-ENV et HRV-LF. La 

corrélation avec le début des crises présentait un large éventail de variations selon les sujets et 

les bandes de fréquence. Au niveau du groupe, les plus fortes corrélations détectées 

concernaient les périodicités circadiennes du VRC-LF et du Gamma-ENV. 
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Chapter 1: Introduction 

 

1.1 General Introduction 

 

Epilepsy is one of the most common neurological disorders in the world, affecting 

approximately 1% of the world’s population [1]. Having a bimodal onset which occurs most 

commonly in early childhood and older adults, it can affect people of all ages with a wide range 

of severity and impacts [2]. It can cause brain activity to become abnormal causing seizures. 

These seizures are caused by disturbance in the electrical activity of the brain due to a 

hypersynchronous discharge of neurons. Three distinct categories are used to describe them: 

generalized seizures, focal seizures, or epileptic spasms. Generalized seizures originate 

simultaneously from both hemispheres of the brain, focal seizures are ones where EEG or clinical 

evidence can be seen that the seizure originated from a localized area within a single hemisphere, 

and epileptic spasms refers to seizures that invoke sudden extensions or flexion of extremities 

[1, 3]. 

There are various medical risks associated with seizure onset, as well as a decrease in 

quality of life for patients diagnosed with epilepsy [4]. A higher prevalence of depression, 

cognitive difficulties, mood disorders, and other psychiatric disorders are seen compared to the 

general population [5]. Bone health problems such as low bone density or osteoporosis are 

commonly observed, this is due to the long-term use of Antiepileptic drugs (AEDs). AEDs have an 

effect on vitamin D resulting in calcium deficiency [6]. It was seen that the relative risk of fractures 
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was generally higher as well; with a sevenfold risk of seizure-related femur fractures in 

institutionalized patients, and a twofold risk of fractures for non-institutionalized patients [7]. An 

increasing amount of comorbidities have been associated with epilepsy and seizure onset, many 

of which have bidirectional relations, causing a great deal of distress and tribulations on the 

patients, this has led to a great deal of interest in how to improve the quality of life of these 

patients [8]. 

Due to all the complications that arise because of epilepsy, there has been considerable 

interest in developing seizure detection and prediction algorithms. These algorithms could be 

used to avoid injuries, providing therapies in times of seizure susceptibility and abort seizure 

through targeted therapy [9]. One of the difficulties for the construction of general usage 

algorithms is that most of the physiological signals used to study epileptic seizures are in the 

short-term surrounding the ictal period (the seizure itself) [10]. This assumes that the inter-ictal 

period is relatively stable, which is at odds with the already established, long-term biological 

rhythms that are present in physiological signals. The bodily rhythms present show complex 

dynamics and large oscillations that can cause false seizure predictions, so considering the 

circadian periodicities when studying physiological signals can lead to a decrease of false 

positives [11, 12]. It was found seizure onset correlated strongly to periodic components of 

functional brain networks obtained from EEG in long term data [10]; thus further demonstrating 

the need of studying long term physiological signals in the context of epilepsy.  
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1.2 Project Objectives 

 

The broad objectives of this project involved the analysis of long-term analysis of 

physiological signals from subjects with epilepsy. The physiological signals studied were the 

electrocardiogram (ECG) signals of the heart and the intracranial electroencephalography (iEEG) 

signals of the brain. The idea behind looking at these signals was so that the long-term biological 

rhythms are considered when studying physiological signals from subjects with epilepsy, so as to 

be able to understand how these rhythms affect seizure onset. The project was divided into two 

parts, each with their own general and specific objectives: 

Part I: The analysis of long-term heart rate variability (HRV) and the correlation of its periodicities 

to epileptic seizure onset.  

Part II: The analysis of long-term brain-heart interactions between frequency bands from the 

brain signals and the heart rate variability, and the correlation to epileptic seizure onset. 

For Part I, the specific objectives involved: Quantifying the long-term periodic patterns in 

the HRV signal and in the high frequency (HF) and low frequency (LF) power; then, investigating 

whether seizure onset is correlated with these periodic patterns. 

For Part II, the specific objectives involved: First, Quantifying the interactions between 

iEEG and ECG, more specifically, the coherence between the frequency bands from the brain and 

the LF components of the HRV; then, quantifying the long-term periodic patterns that are present 

in all those time series, and finally Investigating whether seizure onset is correlated with these 

periodic patterns in both a group level basis, and an individual level basis. 
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1.3 Datasets 

 

Two datasets were used for this project, both containing long-term physiological 

recordings of the brain and of the heart. 

The first dataset was recorded at the Neurology Ward of the Cyprus Institute of Neurology 

and Genetics and contains the EEG and ECG signals. Seizures and sleep intervals were marked by 

specialized neurophysiologists. Out of the ten subjects, one of them did not have a seizure during 

the recording, two of them had recording session of less than 24 hours, and two of them had the 

data corrupted and thus have not been able to be used. Out of the ten subjects, six of them were 

recorded using the XLTek EEG recording system at 200 Hz, and the other four were recorded 

using the Nicolet system at 500 Hz. Table 1 shows a summary of the subjects considered in this 

dataset with their respective length of recording and number of seizures. From this dataset only 

the ECG signals were considered. This dataset was used for Part I. 

 

SUBJECT RECORDING LENGTH 
(HOURS) 

NUMBER OF 
SEIZURES 

1 69 4 

2 21 1 

3 67 2 

4 22 2 

5 66 2 

6 45 1 

7 27 6 
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8 24 0 

 

Table 1: List of subjects used for part 1 

 

 

The second dataset was recorded at the clinical neurophysiology department at the 

Maastricht university hospital from patients who underwent examination for candidacy of 

epileptic surgery, and it contains long term recordings of iEEG and ECG signals. Out of the full 

dataset, 12 subjects were considered One of the subjects did not have a seizure in the length 

being considered. The recordings were sampled at 2048 Hz. Table 2 shows a summary of the 

subjects considered with their respective length of recording and number of seizures. Figure 1 

shows the placement of the intracranial EEG electrodes for one of the subjects. This dataset was 

used for Part II. 

 

SUBJECT RECORDING LENGTH 
(HOURS)  

NUMBER OF 
SEIZURES 

1 229 36 

2 165 38 

3 102 8 

4 170 16 

5 145 37 

6 189 22 

7 173 21 

8 171 78 

9 142 80 

10 211 18 
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11 91 22 

12 90 0 

 

Table 2: List of subjects used for part 2 

 

 

 

Figure 1: Distribution of intracranial EEG electrodes 
 A) Shows the number of electrodes in each brain region close to zone of epileptic lesion.  

B) Location of electrodes in the brain 
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Chapter 2: Literature Review 

 

2.1 The Autonomic Nervous Systems 

 

Epileptic seizures will alter the function of the Autonomic Nervous system (ANS) [13]. The 

ANS, plays a role in maintaining the homeostasis in the body, functions without any conscious, 

voluntary control. It engages in the regulation of blood pressure, gastrointestinal responses to 

food, contraction of the urinary bladder, focusing of the eyes, and thermoregulation. It can be 

divided into two functionally and anatomically different divisions: the sympathetic system and 

the parasympathetic system [14]. The sympathetic response is activated during stressful 

situations regulates the “fight or flight” response, its output to the heart is controlled by neurons 

from the rostral ventrolateral medulla and can cause increase in atrio-ventricular conduction and 

ventricular excitability, resulting in increased heart rate. The parasympathetic response regulates 

the “rest and digest” response, its output to the heart is controlled by the vagus nerve, increases 

vagal efferent activity, ventricular excitability, and atrioventricular conduction, resulting in a 

decrease of heart rate [15, 16]. In order to study the ANS, the heart rate variability (HRV) signal 

obtained from the heart, and more specifically its high frequency (HF) and low frequency (LF) 

components of the heart rate variability are used as a proxy measurement [17].  
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2.2 ECG and The Heart-Rate Variability Signal 

 

The HRV is obtained from the ECG signal, which represents the electrical activity of the 

heart. A typical ECG waveform consists primarily of a P wave, a QRS complex, and a T wave; where 

the P wave happens during atrial depolarization, the QRS complex represents depolarization of 

the ventricles, and the T wave represents repolarization of the ventricles [18]. From this ECG 

signal, an HRV time-series can be obtained by obtaining the distance between the R peaks of 

adjacent QRS complexes. Figure 2 shows what a typical ECG waveform looks like with the interval 

between two R peaks signaled.  

Something to consider when working with the ECG signal is the sort of noise it could be 

subject to. The most common type of noises identified in ECG are, Powerline interference, 

Baseline Wander, Muscle Artifacts and Electrode movement noise [19]. Power line interferences 

are sources of noise that occur due to power lines and cables present in the ECG data collection; 

this can be caused by magnetic induction in the cables, loops in cables, electromagnetic waves in 

nearby equipment, etc. Baseline wander is a low frequency component noise that occurs due to 

breathing, changes in respiration. Muscle artifacts occur due to muscle activity during the ECG 

recordings. Electrode movement noises are cause by the movement of electrodes which in turn 

causes the skin to stretch, and causes changed in impedance between skin and electrode. These 

are the most difficult to remove since their spectrum can completely cover the ECG signal and 

has similar morphology to the P, QRS and T waves [20, 21]. 
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Figure 2: Typical ECG waveform with one RR interval represented [18]  

 

 

Once the HRV signal is obtained, which correspond to a time series of R peak events, the 

signal can be decomposed to three principal components: a Very Low Frequency (VLF), Low 

Frequency (LF), and High Frequency (HF). VLF is characterized by a frequency range of 0 – 0.04 

Hz; LF by a range between 0.04 – 0.15 Hz; and HF by a range of 0.15 – 0.4 Hz [22]. LF has been 

related to both sympathetic and parasympathetic activities, the HF has been related exclusively 

to the parasympathetic system activation [15].  

One aspect that has to be considered when working with HRV signal is that it is a 

stochastic process whose points are non – equidistant, meaning that two neighboring points are 

not continuous functionally dependent from one another, which can create issues when 

performing spectral analysis of HRV to be used as the proxy measurement for the ANS. 
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In order to study the changes in power spectra over time, the spectrogram has to be 

computed. Generally. the most common way of computing a spectrogram is through the usage 

of sliding window of fast Fourier transform (FFT). However; this method can be problematic when 

using the HRV signal due to the fact that points have to be equidistant for the sliding FFT, and 

interpolation could introduce biases in shorter time segments [23]. There are a few methods that 

have been proposed for adapting the FFT for its usage in HRV analysis. The most common 

techniques are: One way is by interpolating between the points to obtain equidistant values; 

however, this will cause the problem of actually replacing the measured values, this is especially 

important when considering that beat to beat are point event, with no values in between. 

Another approach is to obtain the mean of the HRV values and usage to build equidistant steps, 

the purpose of this is so that the measured values do not change. However, by doing this we are 

distorting the rhythm, creating a series of equidistant points that would have a constant value 

[22, 23]. 

 Some of the other methods that are used for HRV spectral analysis are time-frequency 

distribution (TFD) methods such as the Wigner Ville Distribution, and autoregressive models [23, 

24]. With autoregressive models being the most suitable ones as they provide better frequency 

resolution [25]. 

TFDs are an approach used for non-stationary process that describes the frequency 

content of the signal as function of time. The choice of which TFD is used has to be done for each 

signal depending on it characteristics, the most common one being the quadratic TFD, whose 

general form can be seen in Equation 1 [26].  
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𝜌𝑧(𝑣, 𝑓) = ∬ 𝑔(𝑣 − 𝑢, 𝜏)𝑧 (𝑢 +

𝜏

2
) 𝑧 ∗ (𝑢 − 𝜏2)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑢𝑑𝜏

∞

−∞

 
Eq. 1 

 

The Wigner Ville distribution is the most common TFD used for HRV spectral analysis, 

which correspond to the case in the quadratic TFD where 𝑔(𝑣, 𝜏) is equal to one. 

 Time varying autoregressive models are another commonly used to represent 

nonstationary signals and perform spectral analysis in the HRV signal. They work by estimating 

the value of the signal at time point t value by using previous values and a constant a which is 

usually estimated by method of least squares and an error function. At each time point t, the Z 

transform can be used to compute the instantaneous PSD [23].  

 

2.3 ANS and Cardiovascular system in Epilepsy 

 

The output of the autonomic nervous system into the heart gets regulated by brain 

structures as the prefrontal cortex and insular cortex, the amygdala, one of the lateral regions of 

the hypothalamus, several regions of the medulla, and a few other structures such as: BNST (ben 

nucleus of stria terminalis), PVN (paraventricular nucleus), DMH (dorsomedial hypothalamic 

nucleus), and PAG (periaqueductal grey matter of the midbrain), and a region of the lateral pons. 

The medulla integrates all this information from the various reflex centers, and there a distinction 

can be made between parasympathetic activity and the sympathetic activity [16].  
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Epileptic seizures can cause abnormalities in the ANS leading to a dysfunction in the 

operation of the cardiovascular system and in the heart. Patients with epilepsy tend to have 

lower HRV values than the healthy population [27, 28]. It has also been reported that there is an 

increase of heart rate seen in a high proportion of seizures, one study showing that the average 

HR of patients (78 beats/min) went up for 93% of patients (73% of seizures) by 10 beats/min or 

more; and for 80% of patients (55% of seizures) by 20 beats/min or more [29]. During epileptic 

seizure, ECG abnormalities can be frequently seen, in one study there were reported in 26% of 

seizures (which corresponded in 44% of the subjects); with those abnormalities commonly 

characterized by a steep acceleration phase and wide fluctuations during and immediately after 

the seizure onset [29]. As for changes that are seen in the frequency spectra, epilepsy patients 

showed to have lower values of HF-HRV, with a trend of higher values of LF for subjects receiving 

treatment [28]. All of these findings indicate that there is a direct effect in the ANS that stems 

from epilepsy and epileptic seizure onset, creating a sympathovagal imbalance.  

One other reason to study the effects of the cardiovascular system in patients with 

epilepsy is because of Sudden Unexpected Death in Epilepsy (SUDEP). SUDEP refers to the 

unexpected death of a patient with epilepsy where post-mortem examination does not reveal a 

structural or toxicological cause of death, and that it was not cause by seizure onset [30]. It is 

estimated that approximately 15% of epilepsy related deaths could be attributed to SUDEP [31]. 

The mechanism of how SUDEP occurs is currently unknown; however, the various hypothesis of 

how it occurs point to the fact that it seems to be related to autonomic dysfunction or 

sympathovagal imbalance and abnormalities in cardiac mechanisms [13, 28]. It has even been 

proposed that HRV could be a potential biomarker of SUDEP risk [32]. By further studying and 
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understanding the relation of epilepsy and epileptic seizures onset with the ANS and its 

cardiovascular systems, a better understanding of why SUDEP occurs could be achieved, as well 

as eventually perhaps find practical clinical markers for it. 

 

2.5 Brain – Heart Interactions 

 

The study of brain-heart interactions is referred to as the study of the interaction between 

the cortical activity in the central nervous system (CNS) and the ANS [33]. This has become an 

emerging field of study which aims to take advantage of the advances in neuroimaging, signal 

processing and network science to obtain a more complete understanding of a complex 

physiological system. Moreover, there has been evidence for clinical implications of dysfunctional 

brain heart interactions [34]. For example, in older patients suffering from nonrheumatic atrial 

fibrillation, the most frequent arrhythmia in older patients, and without previous incidence of a 

stroke, a lower Mini-Mental State Examination score was seen than in a reference group, 

indicating that atrial fibrillation may cause a cognitive disorder [35].  

In order to study these brain-heart interactions numerous approaches are used, the most 

common ones being Granger Causality (GC), information transfer approaches such as transfer 

entropy (TE) and time-delay stability (TDS), phase synchronization approaches such as phase-

locking values (PLV) or phase lags indexes (PLI) and time variant and frequency selective 

approaches such as time-frequency analysis and coherence measurements [33, 36-38]. The 
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choice of which one of these approaches to be used has to be determined based on the goals of 

the specific study in mind. 

GC is a statistically tool to determine if one signal can be used to predict the value of 

another signal. If a signal X1 “Granger-cause” a signal X2, then the past values of X1 can be used 

to predict future values of X2 [39]. GC is also widely used in studies in functional neuroimaging, 

where the aim is to understand the relationship between specific brain areas and mental 

functions [40].  

TE is a non-parametric measure of how information is transferred between two signals. It 

is particularly useful when evaluating nonlinear couplings without the need for a priori 

information [41, 42].  

TDS is a network-based approach used to study the dynamics of multiple interconnected 

systems as they transition from one physiological state to another; in other words, it determines 

which changes in the output of a given system are consistently followed by corresponding 

modulations in the signal output of another system [36]. 

PLV and PLI are non-parametric estimates of phase synchronization that do not depend 

on the amplitude of the signals and aim to elucidate the consistency of phase difference between 

two signals [43]. PLV evaluates the instantaneous phase difference between the two signals, this 

assumes that in sections of the signals that are coupled, the oscillation properties of their phases 

will be connected and thus the phases will evolve together. If this is the case then the difference 

between the phases will be constant and the signals are said to be phase-locked [44]. The concern 

that arises when it comes to PLV is the fact that in the present of common source, the phase 
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synchrony detected would be biased. In order to reduce that bias, the concept of PLI is can be 

introduced. PLI disregards the phase locking that is centered around zero mod π and defines an 

asymmetry index for all the phase differences. When phases are distributed around a difference 

of zero, no phase coupling exists, and a deviation from this flat distribution will indicate phase 

synchronization [45].  

Time variant and frequency selective approaches can be used to analyze acute changes in 

both the EEG and ECG-HRV signal as representing these signals in a time-frequency spectra allows 

to analyze how these signals behave across time in a specific frequency range of interest, hence 

these same techniques can be used to study the interactions between those signals [46, 47]. The 

most common method used in this approach is the coherency measurement, which characterizes 

the linear relationship between two variables in the frequency domain. It can be interpreted as 

the proportion of the power of one time series that can be explained by its linear regression on 

the other series at a given frequency [38]. 

 

2.6 Intracranial EEG 

 

To study brain-heart interactions, high quality brain and heart signals need to be used. A 

neuroimaging modality that is becoming more common both in clinical applications and research 

is intracranial EEG (iEEG). A downside being that adoption of is highly dependent on highly trained 

professionals Figure 3 shows how its usage has been increasing throughout the years [48]. For 

clinical applications in the context of epilepsy, it is used primarily for the evaluation of the surgical 
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candidacy, more specifically for the localization of the seizure onset zone. For many patients, 

non-invasive modalities can localize the seizure onset zone; however, a study showed that 30–

40% of patients considered for would likely benefit from intracranial evaluation [49].  

 

Figure 3: Increase in the number of publications related to intracranial EEG data [48] 

 

 

Although there are various methods and types of electrodes, the two main ones are 

subdural strips (or grids) and depth electrodes, which is called Electrocorticography (ECoG) [50]. 

While grids and strips of subdural electrodes provide a large coverage over the bare surface of 

the cerebral cortex, they are often implanted in one hemisphere and do not reach deeper brain 

structures. The other commonly electrodes implanted are the depth electrodes which can enable 

bilateral monitoring of superficial and deep cortical structures. A combination of the several 

types of electrodes is used quite often, especially in monitoring for candidacy of epilepsy surgery, 

which allows is for a larger coverage of the brain area [48, 51].  
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Figure 4: A representation of the two types of intracranial EEG electrodes.The color bar shows the 
strength of the signal being recorded. The difference in signal strength between scalp EEG and both 

modalities of intracranial EEG can be noted [51]. 

 

iEEG has various advantages over scalp EEG such as: higher SNR, sparse sampling and 

broad spatial coverage, and higher temporal resolution. iEEG has a SNR that can be as high as 

one hundred times higher than in scalp EEG. This is in part because of ~10x higher amplitude of 

iEEG signal compared to scalp EEG, and significantly reduced problem of electro-magnetic noise 

from the recording room, physiological noise from cardiac signal or muscle contractions, or skin 

potentials (e.g., skin cells on the scalp or ionic potential of sweat glands) with intracranial 

recordings [48]. Because iEEG electrodes are dictated by clinal need of implantation in each 

patient, it allows for a more personalized recording set up. As well as providing the opportunity 

for excellent global coverage across the whole brain. Implantations typically have around 150 to 

200 different recording sites allowing to cover a wide range of regions. The temporal resolution 

allows for a sampling rate between 1000 Hz and 3000 Hz. Even if conventional scalp EEG and 

MEG can have record at a similarly high sampling rate, the iEEG signal being highly localized it 

provides a source of signal that is more spatially defined, allowing the observation of fast 
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dynamics between precisely localizable populations of neurons across distinct brain regions [48, 

50]. 
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Chapter 3: Research Part I – Long Term properties of HRV in Epilepsy 

 

3.1 Preface to Research Part I 

 

 

In order to complete the general and specific objectives for Part I, first the ECG signal was 

processed to obtain the three relevant time-series, the HRV, HF, and LF. Periodicities were 

detected in those three signals, and then correlation to seizure onset was computed. 

 

3.2 Methods: 

 

3.2.1 Pre-process 

 

The ECG dataset was extracted from the total dataset. For the patients whose data was 

recorded using the Nicolet system, the data was down sampled to 200 Hz, for the patients whose 

data was recorded using the XLTek system, the data was not resampled.  

The data was bandpass filtered between 0.5 Hz and 60 Hz using a second order 

Butterworth Filter with a passband rippled of 5 dB and a stopband attenuation of 20 dB. The 

filtered data was then examined, and a threshold was applied based on the motion artifacts that 

were present in the data, which in some cases were significant, due to the fact that the data was 

recorded for extended periods of time. 
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3.2.2 QRS-detection 

 

A QRS detection algorithm based on the Pan-Tompkins methods was utilized on the 

filtered ECG signal in order to obtain the HRV signal [52]. This algorithm starts by applying a set 

of filters; first a low pass filter, then a high pass filter, differentiation is then performed to obtain 

information about the QRS slope. The signal is then squared to intensify the slope and help 

distinguish it from the T wave. A moving integration window is used to obtain the width of the 

QRS complex. The adaptive threshold that the algorithm uses to decide on the QRS complex are 

based on the amount of noise detected, which is obtained by the filtering process. Further 

processing was done to shift ectopic beats, and smooth out dubious areas of the tachogram. 

From the tachogram obtained, the HRV was obtained by creating a time series of the interval 

between each R peak. The data was then smoothed out, then subtracted by its mean and then 

divided by its standard deviation.  

 

 

Figure 5: Processing pipeline of R peak detection based on Pan-Tompkins detection algorithm [53] 
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3.2.3 MVAR-Model 

 

In order to obtain a time-frequency representation of the HRV, an Autoregressive model 

(AR) was used to obtain a time series with points that are equidistant. The autoregressive model 

used was one proposed by a previous member of the Biosignals and Systems analysis laboratory 

[54]. The time-varying model, estimates the next point in the time series, based on the last points 

by using a Kalman Filter. The difference between a conventional AR based model and the one 

being used is that it estimates the noise covariance matrix at each step recursively. This is done 

so that parameters that exhibit large fluctuations are assigned larger covariance matrices than 

parameters with slow and small fluctuations as well as to address the fact that time-varying 

parameters may be characterized by a mixture of slow, fast, and abrupt variations. The general 

form of the MVAR model is represented by Equation 2. 

 

 
𝑦(𝑛) =  ∑ 𝐴𝑘(𝑛) 𝑦(𝑛 − 𝑘) +  𝜀(𝑛) = 𝐴(𝑛)Φ(𝑛) +  𝜀(𝑛)

𝑃

𝑘=1

 
 

Eq. 2 

 

For this application, y, is the obtained time series corresponding to the HRV. 𝐴𝑘 

corresponds to a time-varying autoregressive matrix for each model order k. 𝜀(𝑛) was assumed 

to be a zero-mean white noise vector. The maximum model order used was ten. 

The application of this model was used to accomplish various things: First, create a signal 

that is equidistant and sampled at regular intervals throughout its entirety. Then, to make up for 
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any potential gaps that were present due to the highly corruptible motion artifacts present in the 

original ECG signals. Lastly, to obtain a time-varying spectral density matrix of the HRV signal, 

which is obtained through Equation 3. 

 

 𝑆(𝑓, 𝑡) =  𝐻𝑒(𝑓, 𝑡) ∑ 𝐻𝑒𝐻𝑒(𝑓, 𝑡) Eq. 3 

 

 𝐻𝑒(𝑓, 𝑡) = [𝐼 − 𝐴(𝑓, 𝑡)]−1 Eq. 4 

 

 
𝐴(𝑓, 𝑡) = ∑ 𝐴𝑘(𝑡)𝑒−𝑖2𝜋𝑓𝑘𝑇

𝑝

𝑘=1
  

Eq. 5 

 

Where 𝐻𝑒(𝑓, 𝑡), the Hermitian transpose, is the time-varying transfer matrix in the 

frequency domain as time point 𝑡 and 𝐴(𝑓, 𝑡) is the time-varying coefficient matrix.  

 

3.2.4 HRV, HF, and LF isolation 

 

After obtaining the spectrogram for the HRV from the MVAR model, the high-frequency 

component (0.15-0.40 Hz) and low-frequency components (0.04-0.15 Hz) were isolated. Then, a 

time-series based on the average of a band surrounding the peak of the frequency component 
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was obtained. Three time-series are obtained, one for the HRV, one for the HF component and 

one for the LF component. 

 

3.2.5 Periodicity Estimation 

 

In order to assess the periodicities of the three time-series, the periodogram was 

computed for each one of them. The periodograms were computed by first computing their 

autocovariance (𝑠𝑘), and then performing the FFT on those autocovariances obtained. Equation 

6 was used to compute the autocovariance of a signal, and Equation 7, which denotes Fourier 

transform pairs, was used to obtain the periodograms. 

 

 
𝑠𝑘 =

1

𝑛
∑(𝑦𝑖 − �̅�)(𝑦𝑖+𝑘 − �̅�)

𝑛−𝑘

𝑖=1

 
Eq. 6 

 

 
𝑃𝑆𝐷(𝑓) =  ∑ 𝑠𝑘𝑒−2𝑖𝜋𝑓𝜏

∞

𝜏=−∞

 
Eq. 7 

 

Periodicities were assessed by plotting these periodograms in terms of the inverse of the 

frequency to obtain the period and assessing where significant peaks where present. To obtain 

band-limited signals around those detected components the periodicities were isolated by using 
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a zero-phase filter, which causes no phase distortion or time-delay. For each detected periodicity, 

± 1 hours were considered. 

 

3.2.6 Hilbert Transform  

 

Once the periodic signals were obtained for all detected periodicities on each of the time-

series, the Hilbert transform was calculated for each of the periodicities. The Hilbert transform 

can be used as a method for obtaining the magnitude and phase information from a signal. The 

Hilbert transform is calculated using Equation 8.  

 

 
𝐻[𝑥(𝑡)] =  

1

𝜋
𝑃𝑉 ∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

  
Eq. 8 

 

Where PV refers to the Cauchy Principal Value, which is a method of assigning a value to 

an improper integral which otherwise could be undefined [55]. In this scenario, the Hilbert 

transform was applied to the band limited periodic signal to obtain the instantaneous phase for 

each of the periodicities.  
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3.2.7 Circular Statistics, Rayleigh Tests, and correlation with seizure onset 

 

The circular nature of the data considered will cause the usage of commonly used 

statistical techniques to provide wrong or misleading results. In order to assess whether seizure 

onset correlate to specific periodic components of any of the three-time series, circular statistics 

was used. Circular statistics is a useful tool for data in an angular scale, where there is not a 

designated zero [56].  

The instantaneous phases at the moment of seizure onset were wrapped from 0 to 2pi, 

and a mean resultant vector was calculated, which represented the average direction of the 

circular data. The length of that mean vector, R, was also obtained, as it can be used as a 

measurement of the circular spread or can be used for hypothesis testing in directional statistics. 

The closest R is to one, the more concentrated the data sample around the mean direction is. 

The mean resultant vector is computed using Equation 8, and the resultant vector length 

through Equation 9, where ri are the directions transformed to unit vectors in the two-

dimensional plane: 

 

 �̅� =  
1

𝑁
∑ 𝑟𝑖𝑖   Eq. 8 

   

 𝑅 =  ‖�̿�‖ Eq. 9 
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In order to do hypothesis testing, Rayleigh test can be used to determine if the data is 

uniformly distributed among a circle. If the Null Hypothesis is rejected (obtained p value less than 

0.05) it means that the data is not uniformly distributed. This test computes how large the 

resultant vector length R must be to indicate a non-uniform distribution. 

The p-value under the Rayleigh test is calculated by Equation 10. 

 

 𝑝 = exp [√1 + 4𝑁 + 4(𝑁2 − 𝑅𝑛
2 − (1 + 2𝑁)] 

 

Eq. 10 

 

With, 

 𝑅𝑛 = 𝑅 ∗ 𝑁 

 

Eq. 11 

3.3 Results 

 

3.3.1 Signals preprocessing, QRS detection and spectrograms 

 

After applying a bandpass filter between 0.5 and 60 Hz to remove artifacts in the ECG, the 

signals were examined manually to assess if significant motion artifacts were still present. In the 

cases where motion artifacts were present, those sections with the motion artifacts were 

removed from the ECG signals. After QRS complex detection in the ECG segments without motion 
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artifacts, those signals were concatenated, and interpolation was performed replacing the 

missing data with random data with the same mean and variance. Figure 6 shows a sample of an 

ECG signal from one of the subjects, with the respective HRV signal obtained from QRS complex 

detection 

 

 

 
Figure 6: Extract of ECG signal from one subject  

A) ECG signal was bandpass filtering 
 B) Corresponding HRV signal 

 

  

 

 B) 

 

A) 
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The HRV signals were subtracted by their mean and divided by their standard deviation 

before being run through the time varying MVAR model, which then computed their 

spectrograms. Figure 7 show two of the spectrograms obtained from the MVAR model. For all 

subjects, most of power of the signal was concentrated in the LF component. 

 

From the spectrograms, examples of the derived HF and LF bands can be seen for those 

two subjects in Figure 8, as well as the equidistant HRV signal obtained from the MVAR model.  

 

 

Figure 7: Spectrograms of HRV computed from two of the subjects 
A) Spectrogram of Subject 02 (21 hours)  
B)  Spectrogram of Subject 03 (67 hours) 
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3.3.2 Detection of periodic components 

 

The periodogram was computed for the three-time series of each subject. The square 

root of the power obtained was plotted against the inverse of the frequency. Figure 9 shows the 

three periodograms obtained for subject 03. Peaks in these periodograms were used to estimate 

the periodic components of the signals. Table 3 shows a summary of all the detected periodic 

components across the three-time series for all subjects. Significant periodicities at the group 

Figure 8: Examples of the three-time series derived from the MVAR model for two of the subjects 
 A) and B) correspond to the HRV signal with its equidistant points. 

 C) and D) correspond to the HF band obtained from the spectrogram. 
 E) and F) correspond to the LF band obtained from the spectrogram. 
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level were deemed to be the one sixth of the circadian periodicity (around 4 hours), the half-

circadian periodicity (around 12 hours) and the circadian periodicity (around 24 hours). The exact 

hour that this components occur varied in some instances, however, this was expected due to 

inter subject variability.  

 

 

 

Figure 9: Periodograms obtained for subject 03 
A) Periodogram for the HRV signal. 

B) Periodogram for the HF time-varying power.  
C) Periodogram for the LF time-varying power. 
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SUBJECT RECORDING 
LENGTH (HOURS) 

HRV 
PERIODICITIES 

(HOURS) 
 

HIGH-FREQUENCY 
PERIODICITIES 

(HOURS) 

LOW-
FREQUENCY 

PERIODICITIES 
(HOURS) 

 

1 69 24 4,12,24 4, 12, 24 

2 21 5, 20 4, 10,14 4, 7, 10 

3 67 6, 24 4,5,8,12, 24 5,8,14,22 

4 22 12, 15 3, 13 3,13 

5 66 4, 24 4, 24 8, 24 

6 45 4, 28 4, 12, 24 4, 12, 24 

7 27 16, 19 6, 11 6, 11 
8 24 12 3, 7 3, 7 

 

Table 3: Detected periodicities for each subject in Part I 

 

 

 

3.3.3 Filtered periodic signals and seizure correlations 
 

Once the periodic components were identified, the three time-series were band passed 

filtered to extract the periodic signals and then compute the correlation of periodicities with 

seizure onset. Figure 10 shows three of those filtered periodic signals for some of the most 

common detected periodicities. Table 4 shows the p-values obtained from performing the 

Rayleigh test after computing correlation with seizure onset with significant periodicities of 4, 12 

and 24 hours. Table 5 shows the respective length of the resulting length vectors, R. A significant 

correlation between seizure onset and periodic signals were found for the 24-hour LF signal and 

for the 12-hour HF signal.  



32 
 

 

 

 

P-VALUES    

 HRV HF LF 
24 HOURS 0.3270 0.4265 0.0130 
12 HOURS -- 0.0140 0.2721 
4 HOURS 0.3821 0.1193 0.0867 

 

Table 4: p-values from Rayleigh test 

 

 

Figure 10: Examples of the filtered periodic signals from subject 03 

A) The filtered circadian periodicity of the HRV signal. 

B) The filtered four-hour periodicity for the HF signal.  

C) The filtered eight-hour periodicity for the LF signal. 
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R VALUES 
   

 
HRV HF LF 

24 HOURS 0.3223 0.3126 0.5273 

12 HOURS -- 0.5410 0.3068 

4 HOURS 0.409 0.4604 0.549 

 

Table 5: R value obtained from angular plots 

 

 

Figure 11 shows the angular plot and histogram distribution for the statistically significant 

correlation between the 24-hour periodicity and the LF signal and the also the statistically 

significant correlation between the 12-hour periodicity and the HF signal. 
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Figure 11: Angular plots for statistically significant correlations 
 The red lines correspond to the mean resultant vector.  

 A) Position of seizure on phases of 24-hour periodic components of the LF signal. B) Respective angular 
histogram with phases distribution.  

C) Position of seizure on phases of 12-hour periodic components of the HF signal  
D) Respective angular histogram with phases distribution. 

 

  



35 
 

Chapter 4: Research Part II – Long Term Brain Heart Interactions in 

Epilepsy 

 

 

4.1 Preface to Research Part II 

 

In order to accomplish the general and specific objectives for Part II, the ECG and iEEG 

signals first were processed separately. The ECG was processed using the same methodology as 

in Part I. For the HRV analysis, the focus was on the LF power over time as it has been seen that 

the LF band is more prominent in subjects with epilepsy. For the iEEG signals, the processing 

scheme was done separately for each one of the frequency bands. Figure 12 details the 

processing scheme that was used.  
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Figure 12: Processing scheme research part II 

 

 

4.2 Methods 

 

4.2.1 Envelope of iEEG signals 

 

The first step was computing the envelope of the iEEG frequency bands. The envelope 

corresponds to the boundary within which the signal is contained. The purpose of computing the 

envelope was to have a representation of the signal that has a similar frequency range as the 

HRV signal of the heart [46]. 
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In order to achieve this, first the iEEG signal was down sampled to 256 Hz, preprocessed 

to remove artifacts, then the 5 EEG frequency bands were extracted and then their envelope was 

computed using Equation 12. The frequency bands used correspond to the following: Delta band 

(1-4 Hz), Theta band (4 – 8 Hz), Alpha band (8 - 13 Hz), Beta band (13 – 30 Hz), and Gamma band 

(30 – 80 Hz) [57]. 

 

 
𝑒𝑛𝑣(𝑡) =  √𝑥𝐵𝑃

2 + 𝐻2
[𝑥(𝑡)]  

Eq. 12 

 

With 𝑥𝐵𝑃 being the band-passed filtered iEEG frequency band and 𝐻[𝑥(𝑡)] being the 

Hilbert transform of that same signal. 

 

4.2.2 Coherence 

 

Once the envelope of the EEG frequency bands was obtained, the QRS detection 

algorithm was used to detect the R peaks in the ECG signal and build an HRV time-series. Then, 

the two time-series has their mean subtracted, were divided by their standard deviation, and run 

through the MVAR model that computes the time-varying power, as well as the coherence 

between the two signals. 

The coherence was computed using Equation 13. 
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𝐶𝑂𝐻(𝑓, 𝑡) =  

𝑆𝑥𝑦(𝑓, 𝑡)

√𝑆𝑥𝑥(𝑓, 𝑡)√𝑆𝑦𝑦(𝑓, 𝑡)
 

Eq. 13 

 

 

With 𝑆𝑥𝑦 being the cross spectra between the envelope of the EEG band and the HRV of 

the ECG, 𝑆𝑥𝑥 and 𝑆𝑦𝑦 being the spectral power density matrices of the envelope and of the HRV. 

 

4.2.3 Periodicity Estimation 

 

To estimate the periodicities, first their autocorrelation was computed and then the FFT 

was used to obtain a periodogram for each time-series, for each subject.  

An average periodogram across all subjects was then calculated for the HRV-LF, for each 

EEG-ENV, and for each time-varying coherence. This was done in order to obtain a clearer view 

of where the longer periodicities exist across all the subject with their wildly varying length. The 

periodogram were computed through various methods, however, the FFT of the autocorrelation 

method was chosen due to the fact that by selecting a window around the zero lag of constant 

length across subjects it made it possible to average out across subjects with different recording 

lengths. Before computing the average periodogram, the periodograms obtained for each subject 

were normalized. 
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4.2.4 Correlation with seizure onset 
 

 

Correlation with seizure onset was computed both at the group level and an individual 

level. The fact that most subjects contain various seizures allows to assess whether seizure onset 

correlates with the specific periodic components that were detected, a step that could not be 

performed in Part I. Correlations at the group level were performed by pooling together the 

seizures from all the subjects. 

The correlation of the filtered periodic signals with seizure onset was performed in the 

same way as in Part I, computing the p-value through the Rayleigh test using Equation 10.  

After computing the correlation at the group level, in order to look at how subjects with 

drastically more seizures could bias the results, a bootstrap-based method was used. The number 

of seizures from the subject who had the least amount of seizures onset were noted (8 seizures), 

and a random selection of that number of seizures was obtained from each subject. The 

correlation of periodic components with seizure onset was calculated 100 times, with a different 

sampling of eight seizures per subject, for a total of 96 seizures per iteration. 

 

4.3 Results 

 

4.3.1 Brain-heart interactions for all the frequency bands 
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First, the envelope was computed for the iEEG signals of each frequency band. Figure 13 

shows a sample of the envelopes computed from the iEEG signal that was used for the periodicity 

and coherence analysis. 

 

 

Figure 13: Extract of the Envelope computed for Gamma envelope of EEG band of subject 07 

 

 

The HRV signal obtained from the ECG and then iEEG-ENV signals were z-scored and used 

as input for the MVAR model to obtain the power over time, then the coherence was computed. 

For each subject eleven time-series were obtained: HRV-LF, one for each of the envelopes of the 

brain bands, one for each time-varying coherence between HRV-LF and each EEG envelope. 

Figure 14 shows three of those signals for one of the subjects with the time of seizure onset 

marked. 
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In Figure 15 the coherences for the five different brain frequency bands can be seen for 

this same subject. These were further smoothed out for the purpose of being able to compare 

more easily between the frequency bands. The coherences for all the subjects are in Appendix 

A. 

 

 

Figure 14: Time series used in Part II.  
A) Power over time for HRV-LF.  

B) Power over time for Gamma-ENV.  
C) Power over time for coherence 
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4.3.2 Detection of periodic components 

 

In order to detect the periodic components in the signals, their autocorrelation was first 

computed. Figure 16 shows an example of the autocorrelations computed, which then were used 

to obtain the periodograms of each signal.  

 

 

 

Figure 15: Time-varying coherence between HRV-LF and each EEG-ENV 
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A consistent window around the zero lag was to obtain the periodograms for all the 

signals of all subjects, the window selected -80 to 80 hours. In order to identify the periodic peaks 

more easily, the power was divided by the variance of the signal, then its square root was plotted 

in terms of the inverse of its frequency. Figure 17 shows the periodograms of the HRV-LF, 

Gamma-ENV, and coherence obtained for subject seven. 

Figure 16: Autocorrelation plots for signals 
A) Autocorrelation for HRV-LF.  

B) Autocorrelation for Gamma-ENV.  
C) Autocorrelation for coherence 
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 Periodicities in signals were detected from the periodograms. In order to assess the 

periodic components detected across subjects, histograms were built for the detected periodic 

peaks and the average periodogram was computed for each signal. The histograms with the 

distributions of the detected periodic peaks for the HRV-LF, Gamma-ENV and coherence between 

those two signals can be seen in Figure 18. The histograms with distributions for all the other 

signals are in Appendix B.  

Figure 17: Periodograms for time signals  
A) Periodogram for HRV-LF.  

B) Periodogram for Gamma-ENV. 
 C) Periodogram for coherence 
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Only the periodicities detected above eight hours were considered for the histograms and 

the average periodograms due to the fact that at shorter time frames, the periodic peaks 

observed are less clear for various subjects.  

 The average periodograms were used to determine the relative strength and consistency 

of the periodic peaks detected across all subjects. Figure 19 shows the average periodograms for 

the HRV-LF, the Gamma-ENV, and the coherence for those two signals. The average 

periodograms for the other signals are in Appendix C. The most significant periodic peaks across 

Figure 18: Histograms with distribution of periodicities detected 
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all the time series were the half-circadian and the circadian one. Interestingly, for the HRV-LF 

signal, the crests of the periodic peaks occurred right before and after the 24 hours mark. 

 

 

 

 

 

Figure 19: Average periodograms  
A) For HRV-LF.  

B) For Gamma-ENV.  
C) For coherence 
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4.3.3 Seizure onset correlation with periodic signals at the group level 
 

For analyzing whether seizure correlation the circadian and half-circadian periodicities 

were considered, as those two periodic components were the most consistent across subjects. 

The phases at time of seizure onset were pooled together for all subjects and correlation with 

seizure onset was calculated using circular statistics. When filtering out the periodic components 

out of each signals, the specific period where the peaks was seen was used. Table 6 shows the 

results of the Rayleigh test with the corresponding the mean resultant vector length for the 

signals. Figure 20 shows the angular plots for the pooled seizure correlation analysis for the 

circadian periodicity of three of the time series. 
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Figure 20: Angular plots for three circadian periodicities seizure correlation analysis  
A) Position of seizure on phases of circadian periodic components of the HRV- LF signal. 

 B) Respective angular histogram with phases distribution.  
C) Position of seizure on phases of of circadian periodic components of the Gamma-ENV signal  

D)  Respective angular histogram with phases distribution.   
D) Position of seizure on phases of of circadian periodic components of the Gamma-cohernce  

F) Respective angular histogram with phases distribution. 
 

 

 

Table 6: Correlation of seizure onset with periodic signals 

 

 

As two of the subjects had considerably more seizures than the rest of them, and in one 

of those two subjects they were localized to short time frame, the bootstrap method was used 

to analyze results with less biases. Tables 7 & 8 report the results obtained from the bootstrap 

analysis for the circadian and half-circadian periods respectively, where the number of times the 

Null hypothesis was rejects is noted for each one of the signals. 

      

 
Circadian Periodicity Half-circadian periodicity 

SIGNAL p-value R value 
 

p-value R value 

      

HRV-LF 0.0367 0.0947 
 

0.3060 0.0608 

DELTA-ENV 0.7628 0.0268 
 

0.5627 0.0455 

THETA-ENV 0.2486 0.0615 
 

0.2369 0.0876 

ALPHA-ENV 0.8547 0.0200 
 

0.0391 0.1071 

BETA-ENV 0.0205 0.1016 
 

0.5483 0.0399 

GAMMA-ENV 0.0033 0.1243 
 

0.6753 0.0323 

DELTA-LF COHERENCE 0.0138 0.1066 
 

0.1459 0.0832 

THETA-LF COHERENCE 0.0424 0.0926 
 

0.0932 0.1124 

ALPHA-LF COHERENCE 0.1869 0.0668 
 

0.0327 0.1100 

BETA-LF COHERENCE 0.0722 0.0836 
 

0.0352 0.0943 

GAMMA-LF COHERENCE 0.2918 0.0587 
 

0.0400 0.0925 
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SIGNAL p-values < 0.05 Min p-value Max p-value Min R value Max R value 
      

HRV-LF 45 0.0049 0.9705 0.0137 0.1819 

DELTA-ENV 1 0.0465 0.9938 0.0085 0.1864 

THETA-ENV 11 0.0169 0.8312 0.0381 0.1782 

ALPHA-ENV 0 0.0890 0.9934 0.0087 0.1657 

BETA-ENV 30 0.0051 0.9968 0.0060 0.2438 

GAMMA-ENV 76 2.5 x 10-5 0.1018 0.0637 0.2558 

DELTA-LF COHERENCE 20 8.9 x 10-4 0.8990 0.0349 0.2803 

THETA-LF COHERENCE 83 8.1 x 10-5 0.2583 0.1029 0.2693 

ALPHA-LF COHERENCE 1 0.0393 0.9994 0.0025 0.1915 

BETA-LF COHERENCE 10 0.0085 0.9967 0.0059 0.2317 

GAMMA-LF COHERENCE 17 0.0049 0.9628 0.0154 0.1819 

 

Table 7: Bootstrap results for circadian periodicity  

 

    

SIGNAL p-values < 0.05 Min p-value Max p-value Min R value Max R value 
      

HRV-LF 6 0.0367 0.9860 0.0149 0.2266 

DELTA-ENV 2 0.0237 0.9891 0.0124 0.2273 

THETA-ENV 13 0.0008 0.9088 0.0293 0.2501 

ALPHA-ENV 6 0.0069 0.9900 0.0118 0.2615 

BETA-ENV 2 0.0134 0.9886 0.0127 0.2438 

GAMMA-ENV 1 0.0394 0.9997 0.0019 0.1914 

DELTA-LF COHERENCE 15 0.0046 0.9989 0.0039 0.2718 

THETA-LF COHERENCE 0 0.0727 0.9839 0.0121 0.1529 

ALPHA-LF COHERENCE 16 0.0008 0.9953 0.0081 0.3108 

BETA-LF COHERENCE 21 0.0023 0.9913 0.0111 0.2888 

GAMMA-LF COHERENCE 10 0.0001 0.9907 0.0103 0.3174 

 

Table 8: Bootstrap results for half-circadian periodicity 
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4.3.4 Seizure onset correlation at the individual level 
 

 

The correlation of seizure onset to the filtered periodic signals was also computed on an 

individual basis. For each subject, the main periodicities were obtained and the angular plots with 

constructed with the phases at time of seizure onset for each of the signals. Figure 21 shows the 

filtered periodic signal of the HRV-LF of one of the subjects for the circadian period with the 

respective angular plots.  

 

Figure 21: Seizure correlation for HRV-LF for subject 6  
A) Circadian filtered periodic signals. 

 B) Angular plot with position of seizure onset. 
 C) Phases distribution  
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Out of the 12 subjects, two of them had a lot more seizures than the others, with most of 

them being concentrated in a short time range. In those two subjects, so many seizures occurring 

so close to one another mean that no correlation of seizure onset was computed with the 

periodic signals. Figure 22 shows the filtered periodic signals for subject ten, with the respective 

phase plot and distribution.  

 

  

Figure 22: Seizure correlation for coherence between HRV-LF and Gamma-ENV for subject 10  
A) Circadian filtered periodic signals.  

B) Angular plot with position of seizure onset.  
C) Phases distribution  
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Chapter 5: Discussion 

 

Research Part I 

 

As seen in Figure 7, most of the power is concentrated among the LF part of the HRV 

spectrograms, with the HF power being rather low. This indicates a suppressed parasympathetic 

activation in the ANS, which is in accordance with previous findings. The general physiological 

reaction to stress in the body is the activation of the sympathetic system and the inhibition of 

the parasympathetic system [58]. The bodies of patients with epilepsy are under stress, and this 

could be fueling feedback loops that exacerbate the medical risks associated with epilepsy and 

thus further decreasing their quality of life even more.  

Lower HF and higher LF values have been found to be predictors of cardiovascular 

morbidity and mortality [59], which suggests the need to take into account the ANS when 

studying epilepsy. Moreover, as SUDEP is theorized to be related to cardiac abnormalities, HF 

and LF measures could be used to assess risk that patients with epilepsy have of suffering SUDEP. 

For all subjects with recordings longer than 24 hours, except for one, a circadian 

periodicity was found for the three time-series. This particular subject had a recording length of 

27 hours, which might not have been long enough to detect a circadian periodicity. Interestingly 

enough, for the HRV signal, a consistent half-circadian (around 12 hours) was not detected for 

most subjects; however, for the HF and LF a somewhat consistent (6 out of 8 subjects) half 

circadian periodicity was detected. Shorter periodicities were more consistent across subjects, 
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with peaks around the ±4 hours mark being detected the most often in HF (7 subjects) and LF (6 

subjects). However, in the HRV signal, shorter periodicities were not seen consistently. The 

periodicities used in the subsequent seizure correlation analysis were chosen both because they 

were periods of interest and because of how consistently they were detected across subjects.  

One aspect to consider about the data used in Part I is that the subjects did not have a lot 

of seizures during the recording time. This made individual based analysis on seizure correlation 

to the specific periodic components detected on the subject impossible, so the focus was only in 

analyzing seizure correlations on a group level.  

For the correlation of the periodic components with seizure onset, the two statistically 

significant results were with the circadian periodicity of the LF component of the HRV, and the 

half-circadian periodicity of the HF component of the HRV (Table 4). For the HRV signal itself, no 

correlation was found. As the measurements that are used as a proxy of the ANS are the HF and 

LF power and not the HRV signal itself, it needs to be stated that the cardiac changes that are 

present due to seizure onset are due to disruptions in the ANS and that establishing a direct link 

between seizure onset and the cardiac system is not a straightforward task.  

As the HF component of the HRV is tied to parasympathetic activation only, which in turn 

is more active in specific times of the day such is in periods of rest, it can be seen why seizure 

onset would correlate more strongly with the half-circadian periodicity instead of the full 

circadian one. The fact that the periodic circadian LF signal correlates with seizure onset could 

indicate that epileptic seizures tend to occur in conjunction with the parasympathetic and 

sympathetic systems interacting at a specific time of the day. Other studies also suggest that 
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epileptic seizures tend to occur at specific times of the day [10, 60]. While that time of the day 

seems to be particular for each subject, incorporating the information that they are more likely 

to have a seizure in a specific time of the day could potentially greatly increase the accuracy of 

seizure detection and prediction algorithms.  

Overall, this study accomplished in showing how including information about the long-

term biological rhythms could be beneficial when attempting to study epileptic seizure onset. Its 

main drawback was the limited number of seizures being considered, as well as the fact that 

some of the subjects in the dataset had recording lengths that made is hard to distinguish the 

circadian periodicities. 

 

Research Part II 

 

 

The coherence between the EEG envelopes and the HRV-LF varies substantially for each 

subject. By visually inspecting them (Figure 15 and Appendix B) it can be seen that the coherence 

patterns for different brain frequency bands seem to be coupled strongly to each other. The 

values ranged quite significantly between a minimum of around 0.05 and a maximum of 

approximately 0.8, with a coherence value of 1 indicating that the signals are perfectly coupled. 

This values are in accordance with the coherence value reported by the one other study that 

analyzed long term brain heart interactions in epilepsy using coherence, the caveat being that 

the study in question looked at coherence with the delta band only [46]. 
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Among all the bands, the delta and the beta bands appear to be the ones that are the less 

coupled with the HRV-LF, as well as vary in time differently than the other bands. Both of the 

coherence profiles for those bands, do not seem to change with the same properties as with the 

other three bands. One reason why the coherence with the delta band computed was lower than 

with the other bands might have to do with the fact that subjects with epilepsy have repeatedly 

been found to have sleeping disorders, insomnia and overall, a lesser quality of sleep [61, 62]. 

The delta band is predominantly associated with sleep, and it was found that its overall power 

spectral density increases in subjects who are sleep deprived and/or that have sleep disorders 

[63, 64]. This changes in delta power could interfere with the established circadian rhythms, and 

thus decreasing the overall coherence computed with the HRV-LF. As for the beta band, it is 

predominantly associated with movement and conscious thoughts. The subjects in this dataset 

where hospitalized for the duration of the recordings so the relative time-varying power of the 

beta band may have been more affected than the other bands in this specific recording setup.  

From the average periodograms (Figure 19 and Appendix C) it can be seen that the 

coherence profiles overall have periodic peaks that less discernable than the EEG envelopes and 

those of the HRV-LF. The coherence of the HRV-LF with the gamma band exhibited the strongest 

periodic behavior, whereas the coherence with the delta and theta band exhibited the weakest. 

Circadian and half-circadian periodicities were detected in all signal EEG frequency bands, with 

16–18-hour periodic peak being somewhat significant for most bands as well.  

A bi-circadian periodicity was consistently seen in the EEG envelopes and the HRV-LF but 

not in the coherences. Overall, there was some significant variability at how many hours exactly 
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the bi-circadian periodicity exists for the different frequency bands as it did not occur constantly 

at double where the peak of the circadian periodicity was located. 

Previous studies suggest that the EEG signal power itself does not seem to be correlated 

to seizure onset [10, 65]. However, those studies did not look at the role that the specific brain 

frequency bands play. In Tables 6, 7 & 8 it can be seen that seizure correlation with periodic 

signals depends on the specific frequency band. As each of the frequency bands is more 

prominent in different bodily function and times of the day, by not making a distinction between 

the different bands, an enormous amount of information is being lost. 

For the correlation of seizure onset with the circadian periodicity, interestingly enough, 

the envelopes of the faster bands (gamma and beta) correlate with seizure onset more strongly 

than the coherences of those respective bands, while for the slowest bands (delta and theta), the 

envelopes are not correlated but the coherences are correlated to seizure onset (Table 6). 

Whereas for the half-circadian periodicity correlation with seizure onset was weaker for the EEG 

bands, it was stronger for the coherence signals. As the relative power of the frequency bands 

changes throughout the day depending on the current state of the subject, it makes sense that 

for the EEG power the circadian periodicity was found to have stronger correlations. The 

bootstrap analysis reveals not only how much more strongly the circadian periodicity correlates 

with seizure onset but also how individual subjects can bias the results tremendously. 

It was complicated to obtain any generalizable conclusion from the individual seizure 

correlation of brain and heart interactions due to the great extent of inter subject variability. 

However, keeping in mind an end goal of creating more accurate seizure detection/prediction 
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algorithms, this information would be needed. The correlation, mean resultant vector, and 

resultant vector length can be used to determine at what part of the oscillations the seizures are 

more likely to happen, thus obtaining the time of the day which a patients is the most at risk. 

The results obtained in Part II are in accordance with the ones obtained in Part I. In both 

studies, using different datasets, a correlation between the circadian periodicity and the HJRV-LF 

was found. This further demonstrates that, for each patient, epileptic seizures tend to happen at 

a specific part of their cycle. 
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Chapter 6: Conclusion and Future Work 

 

 

The human body is a complex apparatus with various system all interacting with each 

other exhibiting short- and long-term oscillating patterns. The studies performed in this thesis 

elucidated how some of the mechanisms in the ANS, such as these long-term biological rhythms, 

are involved in subjects with epilepsy and how periodicities in multiple physiological signals seem 

to be tied to epileptic seizure onset. More specifically the circadian and half-circadian 

periodicities were found to correlate with seizure onset, thus further demonstrating how the 

assumption that the inter-ictal state is stable is not correct and the need for including these 

slower rhythms when studying epilepsy. 

It was also seen how the brain-heart interactions differ depending on which brain 

frequency band is being analyzed, and how when those interactions are looked at over many 

days, periodicities can be seen, albeit less predominantly than in the EEG frequency bands 

themselves.  

Correlation of seizure onset to periodic components of brain signals also were shown to 

depend on which EEG band is being analyzed. As each EEG band is present in different 

physiological states, this signaled that epileptic seizures seem to be more tied to specific 

physiological conditions. 

Creating robust seizure prediction algorithms is a task that is going to require many more 

years of research, however, being able to warn a person during which time of the day they are 
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statistically more likely to have seizure does not seem to be that far off. The potential health 

benefits and improvements to the quality of life if that is achieved could be enormous. 

Since the goal is to create seizure detection and prediction algorithms are able to achieve 

better sensitivity, the future directions that this studies should take need to involve devising a 

method to detect which phase of the circadian periodicities correspond to seizure onset for each 

individual subject. That information would be able to be used to determine which time of the day 

a subject is the most likely to have an epileptic seizure.  
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Appendix: 

Appendix A: Brain-heart interactions for all subjects 
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Appendix B: Histograms of detected periodicities for each signal 
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Appendix C: Average Periodograms for each signal 
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