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Abstract

Nanopores with diameters ranging from 30 nm to 50 nm were drilled in silicon

nitride membranes using a transmission electron microscope (TEM) electron

beam. High pressures of cold helium gas were applied to one side of the

membranes to achieve flow through the nanopores. Mass flows for pressure

gradients up to 1000 psi were measured with the goal of achieving transonic

flow. Measured mass flows were compared to theoretical choked flow values

and the flow speeds were deduced analytically. The ultimate goal of this work

was to determine whether or not TEM drilled nanopores can act as de Laval

nozzles and accelerate fluid to, or close to the speed of sound. While the silicon

nitride nanopores do present some technical difficulties, we estimated that in

our nanopores, Unruh temperatures on the order of 7× 10−3 K were reached,

leading to phonons being emitted at a rate in the range of 105 to 106 Hz.
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Abrégé

Des nanopores de diamètres situés entre 30 et 50 nm ont été perçés dans des

membranes de nitrure de silicium (amorphe) à l’aide d’un microscope élec-

tronique en transmission (MET). De hautes pressions de gaz d’hélium froid

ont été appliquées d’un côté de la membrane permettant l’écoulement du flu-

ide à travers le nanopore. Le débit de masse a été mesuré pour des differences

de pressions allant jusqu’à 1000 psi, l’objectif étant d’atteindre un écoulement

transonique. Les mesures ont été comparées à un modèle théorique et les

vitesses d’écoulement ont été déduit analytiquement. Le but de ce projet est

de déterminer si les nanopores perçés à l’aide du MET peuvent agir comme

des tuyères de Laval et accélerer le fluide à des vitesses proches de celle du

son. Bien que les nanopores utilisés présentent des difficultés techniques, il a

été estimé qu’il permettraient d’observer une température de Unruh de l’ordre

de 7× 10−3 K, et les phonons seraient émis à une fréquence de l’ordre de 105

à 106 Hz.
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Chapter 1

Introduction

1.1 Background of This Work

In 1976, William Unruh first proposed that accelerating bodies emit radiation

[1]. Unruh’s proposal followed up on the work done by Stephen Hawking on

black hole evaporation [2]. Hawking discovered that black holes emit radiation

when he applied quantummechanics to the metric at the surface of a black hole.

After applying a mathematical treatment similar to what was done by Hawking

with black holes, but to accelerating bodies, Unruh found that accelerating

bodies should emit radiation in the form of photons [3]. This radiation of

photons from accelerating bodies is now called the Unruh effect. There also

exists an analogue system where the Unruh effect radiates in phonons. While

Hawking radiation has never been measured, the Unruh effect creates Hawking-

like radiation that could be recreated in the laboratory.

While any accelerating body creates Unruh radiation, the corresponding

Unruh temperatures are usually negligibly small. To provide a measurable

Unruh effect, either the accelerations must be extremely large to create high

Unruh temperatures, or the temperature of the fluid must be so low, as to
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allow low Unruh temperatures to be detected. There are several different

approaches to detecting the Unruh effect. The most common approaches are

creating sonic black holes in de Laval nozzles, in Bose-Einstein condensates,

and using moving waves in water [4, 5, 6].

This work will specifically study sonic black holes in de Laval nozzles. A

sonic black hole is a de Laval nozzle that accelerates a fluid to the speed of

sound in the throat of the nozzle and to supersonic speeds beyond the throat. A

sound wave emitted downstream from the throat cannot classically propagate

back through the nozzle. Due to the Unruh effect, these sonic black holes, also

known as dumb holes should still emit radiation. [3].

1.2 Goal of This Work

This work is the continuation of a project begun by Guillaume Dauphinais

and Michel Savard [7, 8]. Dauphinais and Savard designed the experimental

apparatus and used the same nanopore fabrication methods used here. This

work will be intentionally brief on nanopore fabrication and stability as well

as on the details of the experimental apparatus, as they were covered thror-

oughly in Dauphinais, 2011 [7]. While these previous works focussed primarily

on nanofluidics, this project will study high pressure flows and their relation

to sonic black holes. The ultimate goal of this work is to determine whether

transmission electron microscope (TEM) drilled nanopores can accelerate he-

lium gas to the speed of sound and thus create, in principle, a sonic black

hole.

Chapter 2 will cover the mathematical background of Hawking radiation

and the Unruh effect, as well as some of the motivation behind this research.

Chapter 3 will examine the physics of de Laval nozzles and choked flow, and
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explain the basic equations necessary for this research. Chapter 4 will provide

a description of the experimental setup, the experimental procedure and the

equipment used. Finally, Chapter 5 will summarize the mass flow data from

the nanopores used, calculate the speeds reached and estimate the resulting

Unruh temperatures and phonon emission rates.
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Chapter 2

Black Holes and Sonic Black Holes

2.1 Black Holes

Black holes were first proposed by Karl Schwarzschild in 1916 as a solu-

tion to the field equations in Einstein’s theory of General Relativity [9]. They

were then interpreted as regions of space-time where gravity is so strong that

nothing, not even light, could escape [10]. Based on early the understanding of

black holes, four laws of mechanics were then derived to describe them. These

four laws of black hole mechanics had a strong resemblance to the four laws of

thermodynamics, but since black holes could not radiate and had no temper-

ature, black hole mechanics could not be combined with thermodynamics into

a complete theory. That changed in 1975 when Stephen Hawking formulated

Hawking radiation, the thermal radiation of particles from the surface of a

black hole [2, 11].

2.1.1 Hawking Radiation

Hawking radiation can be derived in many different ways. It was first

derived by Stephen Hawking by applying quantum mechanics to the event

horizon of a black hole [9]. A simple derivation of Hawking radiation starts
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with considering the Euclidean signature of a Schwarzschild black hole - that

is, the transformation to imaginary time for a black hole with no angular

momentum or charge. In natural units, where c = G = 1, the metric of a

Schwarzschild black hole is given by

ds2 = − (1−R/r) dt2 + (1−R/r)−1 dr2 + r2dΩ2 (2.1)

where R = 2M is the Schwarzschild radius of the black hole which depends

on the mass M , r is the radial distance from the black hole and Ω is the solid

angle.

It is clear that there is a singularity as one approaches the event horizon,

i.e. when r → R. This singularity, however, is only a coordinate singularity.

This can be seen by making the following substitutions and studying some

limits. First, taking the limit r → R + ε, where ε is an infinitesimal distance,

and then using a Taylor expansion to the first order, the metric simplifies to

ds2 = − ε
R
dt2 +

R

ε
dr2 + r2dΩ2. (2.2)

Making a second substitution, η = 2
√
Rε, and using the Euclidean signature,

t = iτ , the metric becomes

ds2 =

(
η2

4R2

)
dτ 2 + dη2 + r2dΩ2. (2.3)

It is clear that under these substitutions, there is no longer a coordinate sin-

gularity. Now, defining φ = τ/2R, the metric further reduces to

ds2 = η2dφ2 + dη2 + r2dΩ2, (2.4)

which is identical to the metric of flat space in polar coordinates if τ is cyclical,
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i.e. τ ′ v τ + 4πR, or, τ ′ ∼ τ + βè. With this, one can define the time

evolution as a Boltzmann factor with β = 4πR/è. This Boltzmann factor can

be interpreted as a probability density of a particle-antiparticle pair being

created with one part inside the Schwarzschild radius and the other outside,

free to escape. The Hawking Temperature is then given by

T =
è

4πRkB
. (2.5)

In units where c,G 6= 1, the temperature is defined using the Schwarzschild

radius expressed in terms of mass as

T =
èc3

8πGMkB
=

èκ

2πckB
, (2.6)

where κ is the surface gravity of the black hole [12].

2.1.2 Difficulty of Observation

While Hawking radiation is generally accepted as a real, physical phe-

nomenon, it has never been directly observed. The widespread acceptance

is likely due to the fact that Hawking radiation can be derived in many dif-

ferent ways, using many different assumptions and all of these methods lead

to the same result. Stephen Hawking initially derived Hawking Radiation by

applying quantum mechanics to the event horizon of a black hole, but it has

also been derived using Planck scale fluctuations, quantum field theories and

various other methods [13]. While the theoretical foundation of Hawking ra-

diation is strong, observation and experiment on this phenomenon are greatly

lacking. Observation of Hawking radiation provides a unique difficulty due to

the intrinsic elusiveness of black holes and due to low Hawking temperatures.

Many different black holes have been discovered, but all of them were
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observed indirectly. A common way to identify black holes is through the study

of the objects orbiting them. If the period and radius of an orbiting object

is measured, the mass of the central object can be calculated. The orbiting

object also provides an upper bound on the radius of the massive object in

the middle. Sufficiently massive, invisible objects can often be identified as

black holes. Supermassive black holes that occur at the center of galaxies can

be on the order of millions of solar masses and are easily identified if there is

sufficient data on the stars surrounding them. Smaller black holes, however,

are much more common, but can be difficult to distinguish from neutron stars

if they have masses smaller than three solar masses. Black holes can also be

identified in X-ray binary systems. These are systems where a black hole and

another object are in close orbit with one another such that mass from the

other object, often a star, can be transferred to the black hole. This accreted

mass accelerates towards the black hole, emitting radiation, then disappears

beyond the horizon. If the emitting region can be established as small and

the mass of the accreting object can be found to be greater than three solar

masses, then the object can be distinguished from a neutron star and identified

as a black hole [14].

While all of these methods can identify an object as being a black hole,

none of them identifies Hawking Radiation itself. One of the problems with ob-

serving Hawking radiation is that, as shown in Equation 2.6, the temperature

is inversely proportional to the mass. While most astrophysical objects like

stars or galaxies are more luminous when they are large, larger black holes emit

less Hawking radiation than smaller black holes. Stefan-Boltmann’s equation

states that the power per unit area emitted by an object at a temperature T

is given by

j = σT 4, (2.7)
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while the surface area of a black hole increases as

A =
4π (GM)2

c4
. (2.8)

Therefore, the power emitted is

P = jA ∝

(
1

M

)4

M2. (2.9)

This means that a black hole of ten solar masses emits 100 times less Hawking

radiation than a black hole of one solar mass. Even a small black hole of

one solar mass has a temperature of less than 10−7K, and creates too little

radiation to be observed at astrophysical distances. Neglecting accretion, black

holes have finite lifetimes, and it is in theory possible to observe the burst of

radiation that would come from a black hole in its final moments, however,

the lifetime of a black hole goes as

t ∼= 1071

(
M

Msun

)3

s (2.10)

and at the current age of the universe, this observation would require a black

hole with a mass of 1012 kg (5 × 10−19Msun) created shortly after the Big

Bang [15]. The existence of such black holes is unknown, and the observation

of these events are be unpredictable. With no current evidence for Hawking

radiation coming from astrophysics, one must find other ways to simulate a

black hole. One possible black hole analogue that could be created in the lab

is in its acoustic analogue, the sonic black hole.

2.2 Acoustic Black Holes

Acoustic black holes, also known as dumb holes or sonic black holes, are
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analogues of astrophysical black holes in a very different physical system.

While black holes are dense objects with gravitational fields that prevent light

from escaping, acoustic black holes are fluid systems that achieve sonic flow

speeds that prevent sound waves from escaping. Like black holes, dumb holes

have a horizon. The sonic horizon is the point or cross section at which the

fluid flow reaches the speed of sound. Sound waves created downstream from

the sonic horizon cannot classically escape from a dumb hole, as they cannot

achieve speeds greater than the flow speed as would be required to transmit

the wave. Most importantly, dumb holes produce a sonic equivalent to Hawk-

ing radiation known as Unruh radiation [16]. Unruh radiation is the thermal

emission of particles from an accelerating body.

2.2.1 Unruh Radiation

In the analogue system, Unruh temperatures can be derived in many differ-

ent ways, similar to Hawking temperatures. A simple way to derive the Unruh

effect is by considering a barotropic, irrotational fluid with zero viscosity, for

simplicity. The continuity equation, i.e. the Euler equation and the barotripic

equation of state, can the be written as

∂ρ

∂t
+
−→∇ · (ρ−→v ) = 0, (2.11)

ρ

(
∂v

∂t
+
(
−→v · −→∇

)
−→v
)

= −−→∇p, (2.12)

and

p = p (ρ) , (2.13)

respectively. One can then pick exact solutions, po (t, x) ,ρ0 (t, x) , and ψo (t, x),

where −→v =
−→∇ψ, with linear fluctuations p1, ρ1, ψ1, etc. The equations of
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motion for these fluctuations can be combined to form the equation

∂

∂t

(
c−2s ρo

(
∂ψ1

∂t
+−→v0 ·

−→∇ψ1

))
=
−→∇·
(
ρ0
−→∇ψ1 − c−2s ρ0−→v0

(
∂ψ1

∂t
+−→v0 ·

−→∇ψ1

))
,

(2.14)

where cs is the speed of sound. This equation is, in fact, identical to the

equation
1√
−g

∂

∂xµ

(√
−g gµν ∂

∂xν
ψ1

)
= 0, (2.15)

where g = [det (gµν)]−1, for the metric

gµν (t,−→x ) =
1

ρ0 cs


−1

... −vj0

· · · . . . · · ·

−vi0
...
(
c2sδij − vi0v

j
0

)
 . (2.16)

The inverse of this matrix is the so called acoustic metric,

gacousticµν =
ρ0
cs


− (c2s − v20)

... − [v0]j

· · · . . . · · ·

− [v0]i
... δij

 (2.17)

[17].

This is the acoustic metric that was initially derived by Unruh. Following

Unruh’s procedure and using the change of time coordinates,

τ = t+

ˆ
vr0 (r) dr

c2s − vr20 (r)
, (2.18)

the metric can be written as

ds2 =
ρ0
cs

[(
c2s − vr20

)
dτ 2 − csdr

2

c2s − vr20
+ r2dΩ2

]
. (2.19)

10



Figure 2.1: de Laval nozzle and acoustic black hole

ωemittedωobserved

Inlet Outlet

Nozzle throat

subsonic subsonic

(a) Laval nozzle with subsonic flow.
Phonons are redshifted and transmitted
through the throat of the nozzle.

ωobserved

Inlet Outlet

Acoustic black hole

subsonic supersonic

(b) Laval nozzle achieving sonic flow.
Phonons are emitted from the throat of the
nozzle.

Now, assuming that the velocity smoothly exceeds the speed of sound at r = R,

vr0 = −cs + α (r −R) +O
(
(r −R)2

)
, (2.20)

the metric can be written as

ds2 ≈ ρ0 (R)

cs

[
2csα (r −R) dτ 2 − dr2

2α (r −R)

]
, (2.21)

where the angular part was neglected. This conspicuously resembles the metric

near the event horizon of a black hole, given by

dŝ2 =
(r̂ − 2M)

2M
dt̂2 − 2M dr̂2

r̂ − 2M
(2.22)

[3].

Since a similar metric applies to both the case of an accelerating, irrota-

tional fluid and to the region surrounding a black hole, similar physics will

apply as well. This implies that, like a black hole, the accelerating fluid should

also theoretically radiate. Making the appropriate substitutions in changing

from a black hole in general relativity to an accelerating fluid, the Unruh

11



temperature can be expressed as

T =
~gH

2πkBcs
, (2.23)

where gH here, is the sonic equivalent to the surface gravity given by

gH = cs

(
∂v

∂x

) ∣∣∣
v=cs

(2.24)

[5]. In Equation 2.23, the speed of sound replaces the speed of light as the speed

of the radiated waves and the fluid acceleration replaces the surface gravity of

a black hole. It should be noted that the Unruh effect can be generalized to

cases where no horizon is produced, and it is not necessary for a fluid to reach

the speed of sound for Unruh Radiation to be created. Any accelerating fluid

will radiate phonons, although most will radiate at such low temperatures, and

thus be undetectable. The primary difference between sonic flows and mere

high speed flows is the establishment of a trapped region and the creation of

a sonic horizon in flows that become sonic [18].

2.2.2 Nanopores - Why Go Small

While there are many different approaches to creating sonic black holes,

such as Bose-Einstein condensates or gravity waves in water, for example, this

work will deal with creating a sonic black hole in a nanonozzle [16, 19]. De

Laval nozzles are relatively simple tools used to create sonic and transonic

flows, under the right conditions of pressure and shape. The reason for using

small de Laval nozzles is to maximize the Unruh temperature. As is seen in

Equations 2.23 and 2.24, the controlled variable in the Unruh temperature

is the fluid acceleration. For a fluid moving through a Laval nozzle with a

velocity which depends only on the z position in the direction of the flow, the

12
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Figure 2.2: Theoretical Unruh temperature for sonic helium gas moving
through a symmetrical de Laval nozzle with varying membrane thicknesses.
The calculation assumes a constant fluid acceleration from a stationary fluid
in the inlet to sonic flow in the throat.

velocity gradient must satisfy

c2s − v2

vc2s

(
dv

dz

)
= − 1

A

dA

dz
, (2.25)

using the Bernoulli equation and conservation of mass, where A (z) is the the

cross sectional areal of the nozzle. Assuming that the shape of the nozzle near

the throat is approximately quadratic, i.e.

A(z) = A0 + βz2, (2.26)

c2s − v2 = 2cz
dv

dz
, (2.27)

and that the speed of sound is independent of pressure, which is reasonable if

the pressure change is less than a factor of ten near the throat, the acceleration

of the fluid must satisfy
dv

dz
= cs

√
β

A0

(2.28)

[17, 20]. This indicates that for Laval nozzles of the same quadratic geometry

13



under the same conditions, the Unruh temperature of a nozzle with a diameter

of 100 nm would be a factor 104 higher than that of a 1 mm nozzle. The power

of phonons emitted also increases for smaller nozzles; the Stefan-Boltzmann

law indicates that the power of phonons emitted is proportional to T 4 and Ao,

so

Power = σsoundT
4A0 ∝

1

r2
. (2.29)

The temperature decreases with increasing nozzle radius and length. The

length controls the distance over which the fluid can accelerate and the radius

must scale with the length in order for the de Laval nozzle to accelerate the

fluid smoothly. Figure 2.2 shows how the Unruh temperature changes for a

nanonozzle with varying membrane thicknesses, assuming that the fluid ac-

celeration is constant and that the nozzle diameter scales with the membrane

thickness. It is clear that in order to achieve higher Unruh temperatures, the

scale of the de Laval nozzle must be small.

14



Chapter 3

Fluid Dynamics

The goal of this work is to examine an experimental setup and test its

ability to achieve high accelerations in order to optimize Unruh temperatures,

and its ability to produce sonic flows in order to create a sonic horizon. For

sonic flows to be achieved, it will be shown that it is necessary to have a

converging-diverging nozzle, otherwise known as a de Laval nozzle.

3.1 de Laval Nozzle

Fluid flow through a pipe can be described by the conservation of mass

equation,

Qm = ρvA = constant, (3.1)

where ρ is the density of the fluid, v is the velocity, and A is the cross sec-

tional area of the pipe. This formula works for pipes even if the area is not

constant, provided that the density and velocity are the average values at a

given cross section and that there are no leaks or sources of additional fluid.

Since this work will be dealing exclusively with the flow of cold helium gas,

with a dynamic viscosity 1000 times lower than water, it is reasonable to use
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Euler’s equation for an inviscid fluid,

(
−→v · −→∇

)
−→v = −1

ρ

−→∇P. (3.2)

For flow along a streamline,

v dv = −dP
ρ
, (3.3)

and using the definition of the speed of sound,

dp

dρ
= c2s, (3.4)

it is possible to describe the mass flux, j = ρv, by

dj

dv
= ρ

(
1− v2

c2s

)
. (3.5)

Differentiating the conservation of mass equation yields

1

v

dv

dz
+

1

A

dA

dz
+

1

ρ

dρ

dz
= 0, (3.6)

where the flow here is chosen to be moving in the z direction. Combining

Equations 3.3, 3.4, and 3.6, it is possible to write

1

v

(
1− v2

c2s

)
dv

dz
= − 1

A

dA

dz
(3.7)

[21]. This equation shows why it is necessary to use a converging-diverging

nozzle to achieve supersonic speeds. For v < cs, the two sides of Equation

3.7 have opposite signs, indicating that as the area decreases, the velocity

increases. The sign of the left hand side changes once v > cs. This implies
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that if the speed of sound is achieved in the throat of the nozzle, then the

flow accelerates to supersonic speeds beyond the throat of the nozzle if the

nozzle widens. It is also worth noting that a nozzle can only achieve v = cs

in the throat where dA/dz = 0. A simple converging nozzle cannot achieve

supersonic speeds.

If no shockwave occurs in the flow, then helium gas can be treated as an

ideal gas. Using the ideal gas law along with the Bernoulli equation, the basic

flow properties can be solved for exactly for the inlet pressure, density and

temperature, P0, ρ0, and T0, respectively. The inlet values, where v = 0, can

be found to be

P = P0

[
1− 1

2
(γ − 1)

v2

c2s

] γ
γ−1

, (3.8)

ρ = ρ0

[
1− 1

2
(γ − 1)

v2

c2s

] 1
γ−1

, (3.9)

and

T = T0

[
1− 1

2
(γ − 1)

v2

c2s

]
, (3.10)

where γ = cP/cV is the specific heat ratio, which is 5/3 for helium. This model

assumes that helium can be treated as a perfect gas, that the flow is isentropic

and that there is steady flow. The velocity of the flow can then be computed

to be

v(z) =

√√√√ 2γ

γ − 1

P0

ρ0

[
1−

(
P (z)

P0

) γ−1
γ

]
(3.11)

if the downstream pressure P (z) is known [23].

If the downstream pressure is not known, another approach can be used to

calculate the velocity of the flow. Given the equation of conservation of mass,

Equation 3.1 and the formula for the speed of sound,

cs =
√
γRsT (3.12)
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where Rs is the specific gas constant, the mass flow can be found using

Qm = ρAM
√
γRsT (3.13)

whereM = v/cs, is the Mach number. Furthermore, using the perfect gas law,

ρ =
P

RsT
(3.14)

and the isentropic relation,

P = P0

(
T

T0

) γ
(γ−1)

, (3.15)

both of which are reasonable assumptions for cold helium gas, the mass flow

can be calculated using

Qm =
AP0√
T0

√
γ

Rs

M

(
1 +

γ − 1

2
M2

)−(γ+1)
2(γ−1)

. (3.16)

Using the isentropic relation for temperature,

T

T0
=

(
1 +

γ − 1

2
M2

)−1
, (3.17)

the mass flow can be defined entirely in terms of the Mach number and the

initial conditions of the inlet of the nozzle,

Qm =
AP0√
T0

√
γ

Rs

M

(
1 +

γ − 1

2
M2

)−(γ+1)
2(γ−1)

. (3.18)

This equation can be used to calculate the Mach number of the flow in the

throat when the mass flow, initial pressure and initial temperature are known.

Once the Mach number is known, Equation 3.17 can be used to find the tem-
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perature, Equation 3.12 can be used to find the speed of sound, and the com-

bination of the speed of sound with the Mach number allows calculation of the

speed through the throat of the nozzle [22].

3.2 Choked Flow

As can be seen from Equation 3.5, the mass flow maximizes when v = cs.

This means that there is a maximum flow that can be achieved by a nozzle with

a specific configuration. These flows are refered to as choked flows. Increasing

the upstream pressure of a choked flow will not increase the flow speed in

the throat of the nozzle. The properties of these choked flows can easily be

computed and thus provide a check if sonic flow has been achieved. Given the

equations in Section 3.1, the following properties can be derived for the throat

of a choked flow:

T∗ = T0

(
2

γ + 1

)
, (3.19)

P∗ = P0

(
2

γ + 1

) γ
γ−1

, (3.20)

ρ∗ = ρ0

(
2

γ + 1

) 1
γ−1

, (3.21)

c∗ = c0

√
2

γ + 1
. (3.22)

These quantities refer to the temperature, pressure, density and speed of sound

as measured in the throat of a nozzle which reaches sonic flow. The mass flow

is then

Q∗ = ρ∗c∗A∗ =

√
γm

kTo

(
2

γ + 1

) 1+γ
2(γ−1)

A∗P0 (3.23)

[23]. This is the best expermental test to determine whether the speed of

sound has been achieved in a nozzle as it requires the fewest assumptions and

allows a direct comparison of mass flows [23]. If the flow is below the speed of

19



sound, then Equation 3.18 should be used to calculate the flow speed.

Unfortunately, neither of these methods provide information on the fluid

acceleration. This work will then assume constant acceleration from the en-

trance to the nozzle to the throat of the nozzle. While the inlet velocity can

reasonably be treated as being zero, assuming a constant acceleration will un-

derestimate the maximum achieved Unruh temperatures. A more accurate

approach would be to numerically calculate the acceleration of the fluid using

computational fluid dynamics, i.e. solving numerically for the Navier-Stokes

equation for a given throat geometry. This work is currently on-going.
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Chapter 4

Experiment

4.1 Samples

The samples used in this experiment were transmission electron microscope

(TEM) wafers purchased from Silson Ltd. These samples consist of a small

silicon nitride window on a Si[100] wafer. The wafers are 200µm thick while

the silicon nitride membranes used were 30, 50, 75, and 100 nm thick. Small

windows were used to ensure that the total force on the membranes was small

even at high pressures, allowing pressures of 900 to 1100 psi1 to be applied

before the membranes risked being damaged.

4.2 Nanopore Fabrication

All nanopores in this experiment were drilled using a transmission electron

microscope. Using a TEM, nanopores can be drilled by focussing the electron

beam on a silicon nitride membrane [24]. This technique allows real time

visualization of the nanopore as well as subnanometer image resolution. TEM

drilling also allows precise size control of the nanopore as a hole can be shrunk

or enlarged once drilled [25, 26]. By lowering the beam intensity, the silicon
1In this work, the non-SI unit of pressure "psi" will be used for historical reasons
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28.6 x 21.5 microns

Figure 4.1: Silicon nitride membrane prior to drilling. Image taken with a
JEM-2100F transmission electron microscope.

nitride on the surface can be fluidized, allowing matter to flow towards the open

pore in a free energy minimization process, provided that the diameter of the

pore is less than half the thickness of the membrane. Studies have been done to

determine the three dimensional structure of pores drilled using a transmission

electron microscope and found that matter is removed on both sides of the

membrane, thus creating an hourglass shape [26]. Longer exposures, however,

create a more cylindrical nanopore. This hourglass shape is a good starting

point for a nano-scale de Laval nozzle. Figure 4.2b shows the shape of the

nanopore extracted from the TEM picture shown in Figure 4.2a.

The profile is inferred using the brightness of different points of the image

and averaging all points with the same radial distance from the center of

the nanopore. The pointed shape at the narrowest part of the nanopore is

therefore likely an artifact caused by the averaging of different points and the

asymmetry of the pore. This method of finding the profile is not sufficient

if the precise shape of the nanopore is to be used in calculations, but it is
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Figure 4.2: 40 nm nanopore
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(b) Cross section of the nanopore shown in (a)
constructed using relative electron intensity

nevertheless sufficient to establish the hourglass shape of the nanopore and

provide the diameter of the nanopore opening.

4.3 Gas Handling System

In our flow experiment, pressure is applied to the nanopores using a gas

handling system that contains helium gas. The gas handling system consists of

a helium reservoir, stainless steel capillaries, two dipsticks submerged in liquid

nitrogen, pressure gauges, valves, several cold traps, a vacuum pump or mass

spectrometer and a cell to contain the nanopores.

4.3.1 Gas Flow

Capillaries connect each part of the gas handling system in order to trans-

port helium from one part of the gas handling system to another. When

experiments are not being done, the gas handling system is connected to a

turbo vacuum pump in order to clear the capillaries of helium, which could be

detected during experiment. Between the vacuum pump and the rest of the
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gas handling system is a cold trap, which consists of charcoal submerged in

liquid nitrogen. The cold traps freeze any contaminants that might enter the

gas handling system and prevent them from clogging the capillaries.

To perform experiments, the turbo vacuum pump is replaced by a mass

spectrometer. The mass spectrometer has a vacuum pump of its own in order

to maintain pressure gradients. Gas is allowed into the capillaries from the

helium reservoir, directed by the valves, through a cold trap, through the cell

which contains a nanopore and out to the mass spectrometer which then reads

the volume flow.

4.3.2 Vacuum Pumps

This experiment used a two stage vacuum pump system. The primary

pump was a Varian TV 700 turbo-molecular pump which was then backed

by an Edwards 5 two stage rough pump. The turbo-molecular pump is not

intended for use at atmospheric pressures, thus necessitating the rough pump

in order to reduce the initial pressure. This pump system is used between every

experimental test in order to remove as much helium from the gas handling

system as possible, allowing experiments to being at low pressures.

4.3.3 Experimental Cell

The experimental cell is used to connect the silicon nitride membranes

containing nanopores to the gas handling system. It is composed of stainless

steel and is designed to function and be leak free at room temperature and

while submerged in liquid nitrogen at 77 K. The main components of the

cell are two stainless steel cylinders with brass adapters that connect to the

capillaries of the gas handling system. There are then holes through the center

of the cylinders to connect the capillaries to a small space in the middle where

the sample will be placed. O-rings are placed at each connection to ensure
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1 2 3 2 4 5 6 3 2 1

1 Brass adapter

2 Indium o-ring

3 Stainless steel cell

4 Silicon wafer

5 Invar plate

6 Copper o-ring

Figure 4.3: Experimental cell with all parts labelled.

that there are no leaks.

To assemble the experimental cell with a membrane, a small indium o-

ring is placed in a slight groove around the hole on the bottom cylinder. The

silicon wafer is then placed on top of the indium and a small invar plate can be

screwed in carefully to hold the membrane in place and compress the indium,

thus creating a seal to ensure that any helium entering the cell can only pass

though the nanopore. The plate also contains a small hole through the middle,

allowing helium to flow towards the membrane. Around the plate is another

small groove in which a copper o-ring is placed. The top cylinder can then be

placed on top of the bottom half and screwed in, compressing the copper ring

and again creating a seal to keep air from entering the cell and to keep helium

from escaping. Once the cell is assembled, leak checks are performed at both

room temperature and at 77K.

4.4 Experimental Procedure

In this work, experiments were run with the experimental cell at room

temperature and 77 K, but all high pressure tests were done at 77 K. All

experiments began at low pressure, with the turbo vacuum pump attached.

This ensured that, as much as possible, all helium detected is coming through
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the nanopore rather than being residual helium in the capillaries between the

nanopore and the mass spectrometer. The turbo vacuum pump is usually left

on overnight for best results.

Once the mass spectrometer is attached, all valves are opened between

the nanopore and the mass spectrometer so that a background reading can

be obtained. It usuallly takes 1.5 to 2 hours to obtain a stable background

reading. At this point, the mass spectrometer is zeroed so that the reading

shown is due to flow through the nanopore alone.

To begin measurements, the valves are controlled to allow a small amount

of helium into the capillaries above the nanopore. It takes approximately 7

minutes for the gas to move through the nanopore and obtain a stable pressure

and flow. Once stable flow is achieved, the pressure is read using the pressure

gauge above the cell and the flow is read from the mass spectrometer. These

values are written in a lab book, along with the room temperature, while the

data from the mass spectrometer is continuously displayed on a computer to

best determine when stable flow is achieved.

After the first measurement is taken, the valves are once again controlled

to allow the pressure to increase above the nanopore. This process continues,

generally by increasing the pressure by factors between 1.2 and 1.5 as to provide

even point spacing on logarithmic plots, until the pressure above the nanopore

reaches that of the helium reservoir (78 psi). Once this pressure is achieved,

the dipsticks need to be used to increase the pressure further. One of the

dipsticks is moved from the liquid nitrogen dewar to a liquid helium dewar.

Gas from the capillaries and the helium reservoir is then allowed to flow into

the dipstick. The low temperature of the helium reduces the pressure in the

dipstick, allowing more helium mass to enter the same volume. The valves

around the dipstick are then closed to prevent helium flow and the dipstick is
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moved back into liquid nitrogen, thus increasing the temperature of the gas as

well as the pressure. This high pressure helium is then allowed to flow through

the nanopore. This process is repeated until no more helium can be extracted

from the helium reservoir, often around 1100 psi.

After a complete set of data has been taken, the experiment is done in

reverse. This allows additional data to confirm the validity of the first experi-

ment, allows the helium to move back into the reservoir for later experiments

and also allows more precise control of helium pressures than the initial ex-

periment. Helium pressures are reduced by once again moving the dipstick

from the liquid nitrogen dewar to the liquid helium dewar. The valves are

opened slightly to allow helium to flow slowly from above the nanopore into

the dipstick. Like in the first experiment, 7 minutes are allowed to pass with

the valves above the nanopore closed to allow the pressure and flow to stabilize

before data points are taken. Data points are once again taken at set intervals

until no more pressure can be extracted from above the nanopore. Once the

experiment is complete, the dipstick is moved back to liquid nitrogen to allow

the helium to move back into the helium reservoir.

This experiment takes time and complete data sets often take more than

one day. This causes a few problems. For one, other experiments take place

in the lab which often release helium is into the air, although never while

data is being taken. Because of this, the helium levels in the room change

from day to day and this cannot be accounted for after taking the initial

background reading. The other problem is that, while the room temperature

is taken throughout the experiment to convert volume flows as read from the

mass spectrometer into mass flows, the mass spectrometer itself creates its own

heat. When data is taken at the start of the day, the mass spectrometer is

cool and thus it is reasonable to assume that the helium measured in the mass
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spectrometer is at room temperature, but as the experiment progresses, the

mass spectrometer can heat the helium beyond room temperature. While this

does not cause large errors in the calculations made based on the measured

volume flows, it can create slight offsets that are visible in plots of the data.
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Chapter 5

Results

5.1 Low Pressure Tests

Low pressure tests were done on all samples used, either separately or as part

of high pressure tests. At low pressures, it is simple to determine the radius

of the nanopore used directly from the measured volume flow. This allows

confirmation that the observed flow is indeed through the nanopore alone and

that there are no external leaks.

The conductance is defined by

G =
Qm

∆P
' Qm

P
, (5.1)

where Qm is the mass flow, since one side is kept under vacuum [27]. The

conductance is constant if the Knudsen number,

Kn =
λ

D
, (5.2)

is greater than ∼10. In equation 5.2, D is the diameter of the nanopore, and
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λ is the mean free path, defined by

λ =
kBT√
2πd2P

. (5.3)

Here, T is the temperature in the experimental cell and d is the diameter of a

helium atom. The mass flow can be calculated from the volume flow measured

in the mass spectrometer using the equation

QV =
kBTlocal
m

Qm. (5.4)

In this case, Tlocal is the temperature where the volume flow is being measured.

For this experiment Tlocal is the temperature inside the mass spectrometer.

In the Knudsen regime, i.e., for Kn & 10, the conductance of a cylindrical

pore is known to be

G = K

√
πm

2kBT
R2, (5.5)

forKn > 10, where r is the radius of the nanopore andK is the Clausing factor

[28]. The Clausing factor is a constant determined by the length to radius ratio

of a cylindrical hole. It corrects the conductance for holes which can not be

considered either pin holes (L/R → 0) or infinitely long pipes (L/R → ∞)

[29].

L/R K
0.1 0.952
0.2 0.909
0.5 0.801
1 0.672
2 0.514
5 0.311
10 0.191

Table 5.1: Clausing factors for varying length to radius ratios.

In the case of nanopores drilled with a TEM, the values in Table 5.1 can
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Figure 5.1: Image of a 32.4× 35.2 nm nanopore in a 100 nm thick membrane
taken with a TEM.

α L/R
deg. 0.1 0.2 0.5 1.0 2.0 5.0 10.0
0 0.952399 0.909215 0.801271 0.671984 0.514231 0.310525 0.190940
1 0.954079 0.912490 0.808852 0.685401 0.536021 0.345995 0.236829
5 0.960373 0.924763 0.837261 0.735659 0.617560 0.478646 0.408600
10 0.967347 0.938350 0.868615 0.790779 0.705799 0.617242 0.580298
20 0.97865 0.96027 0.91851 0.87642 0.83704 0.80558 0.79641
30 0.98691 0.97614 0.95344 0.93338 0.91771 0.90814 0.90611
40 0.99268 0.98701 0.97619 0.96806 0.96288 0.96046 0.96008
50 0.9964 0.9939 0.9896 0.9870 0.9857 0.9852 0.9851
60 0.9986 0.9977 0.9965 0.9959 0.9957 0.9956 0.9955
70 0.9996 0.9994 0.9993 0.9992 0.9992 0.9992 0.9991
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
89 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.2: Clausing Factors For Conical Orifices [29]

only be used as a guide. This is because the hourglass shape of the nanopores

changes the effective length to radius ratio [30]. The shape can be taken into

account using the angle of the opening, α.

Calculating the expected conductance for a nanopore of given dimensions

ensures that all measured flow is coming through the nanopore rather than

through leaks in the indium seal. Any such leaks would be on the order of

microns and easily distinguishable from flow through nanopores. Measure-

ments of the conductance can also indicate whether the nanopore has grown
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Figure 5.2: Measured flow through the nanopore displayed in Figure 5.1
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or shrunk since the initial drilling.

Figure 5.2a shows the mass flow and conductance through the 32.4× 35.2

nm nanopore displayed in Figure 5.1. The horizontal line in Figure 5.2b in-

dicates the average conductance for all data points with Knudsen Numbers

greater than 10. This conductance is equivalent to the conductance that would

be expected from a nanopore with a diameter of 30.6 nm with a length to ra-

dius ratio of 5 and an angle of opening of 10◦. This prediction is within 10%

of the radius measured in the image.

5.2 High Pressure Tests

High pressure tests start with low pressures to test whether or not a leak might

be present. Then, the pressure is increased until either the membrane breaks

or until the gas handling system can no longer increase the pressure. These

high pressure tests are meant to test whether or not TEM drilled nanopores

can be used as de Laval nozzles that allow transonic flows.
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Figure 5.3: Nanopores Used in High Pressure Tests.
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(b) Sample 2 cross section.

5.2.1 Results

There were two samples used for high presure flow tests. Sample 1 was drilled

to 39.4× 43.7 nm while Sample 2 was drilled to 53.6× 49.7 nm. Both samples

were drilled in 100 nm thick silicon nitride membranes.

Sample 1 broke at 1100 psi with the final data point taken just above 1000

psi. A linear fit was applied to the low pressure conductance and Equation 5.5

was used to calculate the radius. These results indicate a nanopore with a 38.5

nm diameter and an angle given by α = 40◦, in close agreement with the TEM

image and the profile shown in Figure 4.2. The mass flow remained below

choked flow for all pressures, indicating subsonic flow speeds. The final data

point reached a mass flow of 85.6% of the choked flow value. Equation 3.18

was used to determine the Mach number, which was found to be M = 0.608.

This corresponds to a velocity of 296 m/s.

Sample 2 broke above 900 psi before the flow stabilized, so the final data

point is at 707 psi. The mass flow measured exceeds the calculated choked
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Figure 5.4: Sample 1 high pressure data
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flow when assuming the nanopore matched the dimensions calculated from the

TEM image. This indicates that the nanopore likely grew between drilling and

measurements. This suspicion was confirmed by the low pressure conductance

values, which indicate a diameter of 67.6 nm and and angle given by α = 25◦,

using the average values of the L/R = 5, α = 20◦ and α = 30◦ values. Using

this diameter, the choked flow is recalculated. With the new choked flow

values, the mass flow remains below choked flow for all data points. The final

data point reaches 87.3% of the choked flow value, with a corresponding Mach

number 0.630 and a speed of 306 m/s.

While the speeds in both samples remain well below the speed of sound,

thus not creating a sonic horizon, they do reach speeds of hundreds of meters

per second after accelerating over a distance of only 50 nm. This implies a

large acceleration that provides much higher Unruh temperatures than Unruh

predicted for macroscopic (mm size) de Laval nozzles [3].
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Figure 5.5: Sample 2 high pressure data
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dius taken from low pressure conductances.

5.2.2 Phonon Temperatures

The Unruh temperatures were calculated for all data points in the high pres-

sure flows using Equations 2.23 and 2.24. It was assumed that the narrowest

point in each nozzle was exactly halfway through the thickness of the mem-

brane and so the fluid accelerated over a distance of 50 nm before reaching

its maximum speed. While the acceleration was likely not constant over the

lenth of the nozzle, more information on the pressure gradients would be re-

quired to calculate the exact accelerations than is available without numerical

simulations. A constant acceleration was therefore assumed and is likely a

conservative estimate, as a varying acceleration would necessarily include a

region of greater acceleration and thus provide a higher Unruh temperature.

The calculated Unruh temperatures are shown in Figure 5.6. Samples 1 and 2

reached Unruh temperatures of 7.2 × 10−3 K, and 7.4 × 10−3 K respectively.

Again, this is much larger than Unruh’s previous estimate in the nK range for

macroscopic nozzles [3]

The rate of phonon emission was also calculated for each sample. The
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Figure 5.6: Unruh temperatures
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(b) Unruh temperatures of Sample 2.

Stefan-Boltzmann law,

j = σsoundT
4, (5.6)

was used to find the energy radiated per unit surface area, j, and multipled

by the area A of the nanopore. T here is the Unruh temperature of the sonic

black hole. The sonic Stefan-Boltzmann constant is given in [17] as

σsound =
π2

120

k4B
c2~3

. (5.7)

This calculation assumes that the sonic black hole radiates phonons as a perfect

black body with an average energy of E = kBT . While this is certainly an

overestimate of the phonon emission, the goal here is to simply provide an

estimate regarding the number of phonons radiated. The calculated emission

rates are shown in Figure 5.7. The maximum rates of emission were 3.38×105

Hz for Sample 1 and 1.15 × 106 Hz for Sample 2. The difference in emission

rates here is primarily due to the larger area of the nanopore in Sample 2.

The Unruh temperatures and phonon emission rates calculated in this sec-
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Figure 5.7: Phonon emission rates.
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(b) Phonon emission rates of Sample 2.

tion are merely estimates based on a few simplifying assumptions. More de-

tailed knowledge of the velocity gradients would be needed to provide accu-

rate calculations of the Unruh temperature and the resulting spectrum. With

knowledge of the spectrum, a precise phonon emission rate could be calculated.

This has not yet been done, but this work is currently on-going. These cal-

culations do, however, provide an order of magnitude estimate of the phonon

emission rates and indicate that a sufficient number of phonons are emitted

such that they could, in principle, be detected with sufficiently sensitive detec-

tors. A precise calculation of the spectrum could also allow one to determine

whether the phonons can be distinguished from the thermal background noise.
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Chapter 6

Conclusion

In the present work, nanopores were drilled in 100 nm thick silicon nitride

membranes using focussed transmission electron microscope (TEM) beams.

The samples were placed in a stainless steel cell submerged in liquid nitrogen

and had varying pressures of helium gas applied across them. Mass flows were

then measured using a mass spectrometer and pressures were measured with

a pressure gauge.

Based on the measured mass flow and the known pressure and tempera-

ture, the Mach number was calculated. Using available data for the speed of

sound in helium, the velocity was calculated based on the Mach number [20].

These velocities were used in the equations for Unruh temperatures based the

assumption of constant acceleration from the opening of the nanopore to the

throat of the nozzle, midway through the membrane [5]. An estimate of the

rate of phonon emission was made using the Stefan-Boltzmann law [17]. This

estimate assumed that the nozzle radiated phonons as a perfect black body

with an average phonon energy of kBT .

Two samples were used in high pressure flow measurements. Sample 1 was

drilled to 39.4 × 43.7 nm and Sample 2 was drilled to 53.6 × 49.7 nm. The
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final speed reached by Sample 1 was calculated to be 296 m/s, or Mach 0.608

at a pressure of 1004 psi. Sample 2 reached a maximum speed of 306 m/s, or

Mach 0.630 at 707 psi. Both samples broke at higher pressures before another

data point could be taken. Sample 2 likely achieved a higher maximum speed

due to slight differences in the geometries of the samples.

While both samples failed to reach the speed of sound, they did achieve

high accelerations by reaching speeds around 300 m/s over a distance of 50

nm. This allowed Samples 1 and 2 to reach Unruh temperatures of 7.2× 10−3

K and 7.4 × 10−3 K respectively. These temperatures allowed the nanopores

to emit phonons at rates on the order of 105 to 106 Hz.

This experiment was unable to confirm whether the TEM drilled nanopores

can act as de Laval nozzles and accelerate helium gas to the speed of sound.

Since neither sample approached the speed of sound, it is unknown whether

this failure was due to the geometry of the nanopores or due to the fragility

of the membanes preventing higher pressure gradients.

In order to determine whether TEM drilled nanopores can act sufficiently

as de Laval nozzles, more precise measurements on the shape of the pores need

to be made, possibly with an atomic force microscope. These measurements

would then allow numerical simulations to be performed. These simulations

could then determine if the flow through a nanopore can reach the speed of

sound, and if so, at what pressure. It is likely that either thicker membranes

or membranes with smaller surface areas will be required in order to reach

pressures greater than 1000 psi.

Even if the type of nanopore used in this experiment cannot accelerate

fluid to the speed of sound, they are a reasonable approach to detecting Unruh

radiation. Other approaches to creating nanopores like etching will necessarily

require thicker membranes and wider nozzles [31]. While these nozzles might
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reach greater speeds and reach the speed of sound, this would only increase the

speed by a factor of 2, while the length over which the fluid accelerates might

increase by a factor of 1000. This would then reduce the Unruh temperature

by 500 times.

TEM drilled nanopores may not be able to provide the precise geometry

control that is required to create a de Laval nozzle. This suggests that TEM

drilled nanopores are not ideal as candidates for sonic black holes. They do,

however, create comparitavely high accelerations and thus high Unruh tem-

peratures, making them good candidates for detecting the Unruh effect.
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