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Abstract

Sophisticated audio coding paradigms incorporate human perceptual effects in order to

reduce data rates, while maintaining high fidelity of the reconstructed signal. Auditory

masking is the phenomenon that is the key to exploiting perceptual redundancy in audio

signaIs. Most auditory models conservatively estimate masking, as they were developed for

medium to high rate coders where distortion can be made inaudible. At very low coding

rates, more accurate auditory models will be beneficial since sorne audible distortion is

inevitable.

This thesis focuses on the application of human perception to low-rate audio coding. A

novel auditory model that estimates masking levels is proposed. The new model is based

on a study of existing perceptual literature. Among other features, it represents transient

masking effects by tracking the temporal evolution of masking components. Moreover, an

innovative bit allocation algorithm is developed that considers the excitation of quantization

noise in the allocation process. The new adaptive allocation scheme is applicable with any

auditory model that is based on the excitation pattern model of masking.
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Sommaire

Des algorithmes sophistiqués de codage audio tirent profit des effets de perception humaine

afin de réduire le débit de transmission. L'application du masquage auditif constitue la base

pour exploiter la redondance perceptuelle des signaux audio. Généralement, les modèles

auditifs estiment l'effet de masque de façon conservatrice parce que ceux-ci ont été conçus

pour des codeurs à débit moyen et élevé, lesquels auront suffisamment de bits pour rendre

la distorsion inaudible. À bas débit, la précision des modèles auditifs devra être améliorée

pour contrecarrer une certaine distorsion audible inévitable.

Cette thèse étudie l'intégration des effets de perception humaine aux codeurs à bas débit

binaire. Un nouveau modèle auditif qui estime le niveau de masquage produit par un signal

audio est présenté. Entre autres caractéristiques, le modèle représente les effets transitoires

du masquage en suivant l'évolution temporelle des composantes de masquage. De plus, un

nouvel algorithme d'allocation binaire qui considère l'excitation auditive produite par le

bruit de quantification est présenté. Cet algorithme d'allocation adaptif peut être combiné

avec tout modèle de masquage basé sur la répartition de l'excitation auditive.
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Chapter 1

Introduction

Audio coding is used in a variety of applications such as personal communication systems,

internet multimedia and digital broadcast. The digital representation of information bear­

ing signaIs allows for reliable and efficient transmission or storage. Audio compression

algorithms are concerned with the digital representation of sound using a reduced number

of information bits. The prevalence of audio coders has increased along with the advent of

next generation communication systems, for which rising traffic volumes substantiate the

need for bandwidth efficient representation.

Transparent coding is achieved when the original and coded signaIs are perceptually

equivalent to a human listener. The Compact Disc (CD) representation, operating in stereo

at 1.41 Mbjs, is a benchmark for transparent quality. Although essentially perceptually

fiawless, CD representation results in an excessively high data rate for transmission or

storage of sound. Audio coding algorithms aim at reducing information bit requirements,

while maintaining an acceptable quality for the reconstructed signal.

Traditionally, reductions in data rate have been achieved by exploiting the redundancy

that is inherent in audio signaIs. More recently, advanced audio coding algorithms have

been proposed that consider human perception in order to further reduce data rates while

maintaining high fidelity. The quality of reconstruction from a coded signal is ultimately

established from the perception of human listeners. Perception involves the recognition

and interpretation of sensory stimuli. Audio signaIs stimulate the human auditory system,

leading to their perception. Distortion may be introduced when representing sound at a

reduced data rate. Perceptual audio coders shape the distortion in frequency such that it
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is imperceptible by the human ear. Alternatively, perceptual coding can be described as

the representation of information that contributes to the perception of a sound; only signal

components that affect perception are represented. The exploitation of perceptual effects

in the design of audio coders has led to high compression 'ratios while maintaining audible

distortion at a minimum level. Auditary masking, which is introduced in the following

section, is the primary perceptual effect that is considered in audio coding.

1.1 A uditory Masking

Auditory masking is the process by which a stronger audio signal inhibits the perception

of a weaker signal. The intensity of the weaker audio signal must be raised so as to be

heard by a human listener. The masking threshald (or masked threshold) corresponds to

the increased threshold of audibility, resulting from the presence of the stronger masker

signal.

A variety of masking instances occur in everyday life. For example, the music of a car

radio can mask the sound of the engine of the car, provided that the music is considerably

louder [1]. Similarly, a speaker must raise his/her voice when background noise increases

in order to be heard. Masking is a phenomenon in sensory perception that has received

significant attention from researchers in the field of psychoacoustics. Psychoacoustic exper­

iments have been performed by several researchers in order to discover and model auditory

masking effects. The amount of masking is influenced by various factors including signal

level, frequency and duration. The phenomenon of auditory masking is explained in more

detail in Chapter 2.

1.2 Perceptual Audio Coding

A number of paradigms have been proposed for the digital compression of audio signaIs.

Accordingly, audio coders are commonly categorized as either parametric caders or wave­

farm caders. The concept of perceptual audio coding is relevant in the latter case, where

auditory perception characteristics are applicable.

Parametric coders represent the source of the signal rather than the waveform of the

signal. Such coders are suitable for speech signaIs since accurate speech production models

are available. More specifically, the vocal tract is modelled as a time-varying filter that is
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excited by a train of periodic impulses (voiced speech) or a noise source (unvoiced speech).

The parameters that characterize the filter are encoded and then used by the decoder to

synthesize speech segments. More advanced parametric coders also include the error signal

resulting from the reconstruction using the extracted speech parameters. The error signal

generally represents the excitation to the vocal tract filter, as implemented in Code-Excited

Linear Predictive (CELP) coders.

On the other hand, waveform coders attempt to accurately replicate the waveform of

the original signal. Such coders provide a more perceptually agreeable reconstruction of

general audio signaIs than parametric coders. Efficient waveform coders remove redundancy

within the coded signal by exploiting the correlation between signal components, either in

time or transform domain. Perceptual waveform coders additionally remove information

that is irrelevant to the perception of the signal. The block diagram of a generic perceptual

audio coder is illustrated in Figure 1.1. The encoding of the input signal is performed in

the upper branch of the diagram, whereas the lower branch determines the bit assignment

per signal component.

Input
Signal

-
Transforrn

Quantization/,-- Domain
Encoding r-

Mapping

r
M

- U r----.
X

Masking Perceptual
L.--. FFT - Threshold r--- Bit f------

Computation Allocation

-

Bit
Stream

Fig. 1.1 Basic structure of a perceptual audio coder.

1.2.1 Transform Domain Mapping

A transformation is applied so as to obtain the spectral representation of the input signal.

The transformation typically corresponds to a unitary transform or a bank of critically

sampIed bandpass filters. Severa! advantages result from encoding the input signal in a

transform domain [2]. Firstly, effective transforms compact the information of the signal
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into fewer coefficients, ensuing in a more efficient usage of quantizers (Section 1.2.3). Trans­

form coefficients are less correlated than temporal samples of the input signal. Secondly,

the desired frequency resolution is achievable through judicious selection of the transforma­

tion. Auditory masking effects are significantly influenced by the frequency composition of

the input signal. As such, transform domain coding is ideal for the application of auditory

perception characteristics.

The transformation is applied to temporal frames of the input signal during intervals for

which the signal is considered stationary. Audio coders typically segment the input signal

into frames ranging from 2 ms to 50 ms, depending on the desired temporal and frequency

resolution [3].

1.2.2 Masking Threshold Computation

A masking threshold is computed based on the frequency representation of the signal.

More specifically, the Discrete Fourier Transform (DFT) coefficients are used to evaluate

the masking threshold. Audio signaIs have complex spectra, composed of multiple masking

components. Masking components are extracted from the spectrum of the input signal and

individual masking effects are combined to yield an overall masking threshold. Auditory

models deliver a masking threshold along with the amount of allowable distortion in the

frequency domain. Classical masking applications assume that signal energy lying below

the masking threshold is inaudible. As many as 50% of transform coefficients are masked

in transform coding of music and speech signaIs [2]. A frequently cited example of masking

is the 13 dB miracle. Noise added to an audio signal, having a spectral structure that is

adapted to that of the signal, is inaudible for signal-to-noise ratios as low as 13 dB [4]. A

common output of the masking threshold computation stage is the Signal-to-Mask Ratio

(SMR), which represents the ratio of the signal input to the amount of masking produced

by the signal.

1.2.3 Quantization

Quantization is defined as the process of transforming the sample amplitude of a message

signal into a discrete amplitude taken from a finite set of possible amplitudes [5]. In digital

audio coding, an already quantized signal is further quantized by representing its samples

using a smal1er set of amplitudes. More specifical1y, signal components are represented
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using fewer bits. The quantization process introduces an error in the representation of the

signal. The resulting error is defined as the difference between the quantized signal and the

original signal. The distribution of the quantization error depends on both the quantizer

design and the distribution of the input signal. As such, the quantization process can be

modelled as the addition of an error to the input signal, as depicted in Figure 1.2, where

eq ( n) represents the quantization erroI. In audio coding, distinct quantizers are employed

to represent the different components or sub-bands of the input signal, depending on the

applied transformation.

~] --..1 Qumrtiz"

(a)

--- yp] x[n] -----l~+}----. y[n]

(b)

Fig. 1.2 Illustration of the quantization process.

1.2.4 Perceptual Bit Allocation

The allocation of information bits to the different quantizers is performed adaptively, based

on the computed masking threshold. Firstly, spectral components lying beneath the mask­

ing threshold need not be represented. Such components do not contribute to the perception

of the audio signal according to classical masking principles. Secondly, the noise that is

introduced by the quantization process is shaped in frequency such that it becomes in­

audible. For instance, more noise is allowed where the masking threshold is high, resulting

in the allocation of fewer information bits to those regions. The process is referred to as

spectral noise shaping.

1.3 Challenges in Low-Rate Audio Coding

The incorporation of perceptual effects has been extensively applied in medium to high

rate audio coding. Standardized coders, such as MPEG-l [6], MPEG-2 AAC [7] and Dolby
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AC3 [8], arguably achieve CD quality at rates of 96 kb/s to 256 kb/s for wideband audio

signaIs. Within this range, the noise that is introduced is shaped such that it lies consid­

erably below the masking threshold. As a result, auditory models that are conservative

in predicting the amount of masking are employed. The amount of masking is commonly

underestimated so as to ensure that distortion remains inaudible.

More recently, it has been shown possible to reduce data rates to less than 10 kb/s for

narrowband audio signaIs, while maintaining acceptable quality [2]. In the vicinity of 1

bit per sample, distortion is considerably higher, which entails the need for very accurate

masking models. The level of introduced quantization noise is generally comparable to the

masking threshold. The current work focuses on the application of auditory masking in

low-rate coding of narrowband audio signaIs.

1.4 Other Applications of Auditory Masking

While audio coding is the most widespread, other applications of human auditory per­

ception have been proposed in speech and audio processing. For instance, certain signal

enhancement techniques and perceptual quality evaluation models consider auditory mask­

ing effects. A brief overview of these applications is provided in this section.

1.4.1 Audio Signal Enhancement

Several signal enhancement techniques have been proposed to improve the perceived qual­

ity of audio signaIs. These methods are commonly used in speech communications to

remove background noise from a transmitted signal. However, the reduction of noise often

introduces irritating artifacts due to the inaccuracy of noise estimates.

In conventional spectral subtraction, the estimated noise is removed from the short­

term spectrum of the input signal. Over-subtraction inserts distortion in the reconstructed

signal, causing such artifacts. Auditory masking has been introduced in order to restrict the

amount of noise that is attenuated [9, 10, 11]. A masking threshold is computed from the

spectrum of the input signal. Rather than subtracting aH of the noise, only the part that is

above the masking threshold is removed. Noise below the masking threshold is considered

inaudible. This approach has been found to reduce the number of introduced artifacts since

fewer modifications are performed to the signal. Similarly to spectral subtraction, auditory

masking effects have been applied to signal subspace methods of speech enhancement [12].
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1.4.2 Perceptual Quality Evaluation of Audio SignaIs
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The performance of audio coding schemes is evaluated using objective and/or subjective

quality measures that compare the coded signal with the input reference signal. Typical

objective measures, such as Signal-to-Noise Ratio (SNR) or Mean-Square Error (MSE), do

not accurately represent the perceived quality of the reconstructed signal. This inconsis­

tency increases when considering low-rate coders that incorporate auditory masking effects.

Rather than performing time-consuming and expensive subjective listening experiments, a

model of human auditory perception is used to evaluate the perceptual difference between

the reference signal and the signal under test.

The block diagram of a basic model for the perceptual quality evaluation of audio sig­

naIs is illustrated in Figure 1.3. A masking threshold is computed from the frequency

representation of the reference signal. The error signal is evaluated as the difference be­

tween the frequency representations of the reference signal and the signal under test. An

audio quality measure is determined from the comparison between the error signal and

the masking threshold. The described model evaluates audio quality based exclusively on

auditory masking. More sophisticated models incorporate complex perceptive and cogni­

tive representations of the human auditory system that consider additional psychoacoustic

metrics.

a:ene iü> lit
~h

ëqtl11y lOi
M i:

ë.
~

M

~h
iü>

liliiIt
ëqtl11y +
M +

Fig. 1.3 Generic model for the perceptual evaluation of audio quality using
auditory masking [13].
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1.5 Thesis Contribution
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Extensive research has been performed by audio coding specialists to incorporate human

perception within medium to high rate coders. At low coding rates, sorne distortion is

inevitable, which entails the need for a more accurate representation of perceptual effects.

The current work is primarily concerned with research on auditory masking and its appli­

cation to low-rate audio coding, with the aim of improving audio quality for bandwidth

limited applications such as wireless communications and internet multimedia.

An assembly of psychoacoustic experimental results and auditory masking models are

first presented and analyzed. Resulting from this study, a new algorithm is proposed

for the prediction of auditory masking. Among other features, transient masking effects

are modeled by tracking the temporal evolution of masking components. Moreover, it is

suggested that psychoacoustic effects produced by quantization noise should be considered

along with the masking threshold in the perceptual bit allocation algorithm. An adaptive

bit allocation scheme is presented that considers the auditory excitation produced by the

quantization noise. Quintessentially, this thesis proposes: (1) an innovative model for the

prediction of auditory masking and (2) a novel perceptual bit allocation algorithm.

1.6 Thesis Synopsis

This thesis is structured into 6 chapters. Chapter 2 introduces concepts related to sound

levels, the human auditory system and psychoacoustic processing that form a foundation

for the proposed work. A collection of experimental results related to auditory masking and

psychoacoustic processing are presented, along with associated models for their application.

Chapter 3 presents auditory models that have been developed for the prediction of

masking thresholds in speech and audio processing. A thorough review of these models

is provided along with the identification of their shortcomings. A novel auditory masking

model is proposed that incorporates many of the psychoacoustic findings that are presented

in Chapter 2.

Chapter 4 provides a review of adaptive bit allocation strategies for audio coding. A

novel bit allocation scheme is presented that is based on a new criteria for the allocation of

bits. The proposed allocation scheme collaborates with the masking threshold computation

in the modelling of auditory effects.
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Chapter 5 is dedicated to the evaluation of the proposed bit allocation scheme and the

proposed auditory masking model. They are compared to previous work based on informaI

subjective listening experiments.

Finally, a complete summary of the proposed work is provided in Chapter 6, aiong with

directions for future related research.
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Chapter 2

Psychoacoustic Principles

The notion of auditory masking was introduced in the previous chapter in conjunction with

an overview of its engineering applications. This chapter commences with the presentation

of fundamental concepts related to sound levels and the human hearing system. Following,

auditory masking is further described along with a presentation of a collection of related

psychoacoustic results from various researchers. These psychoacoustic experiments examine

the relation between sound stimuli and hearing perception. This relation includes the

effects of both the physiology of the ear and the cognitive processing of auditory stimuli.

Psychoacoustic models are then developed from the collected experimental data in order

to predict effects such as auditory masking.

2.1 Temporal and Spectral Properties of Sound

Sound is generated through the mechanical vibration of objects. The vibrating motion

travels through physical media, causing acoustic waves. In most cases, the physical medium

corresponds to air while the sound waves represent the variations of atmospheric pressure.

For example, the movement of the cone or dome of a speaker causes vibrations in the air.

The magnitude of sound is represented as a time-varying pressure, expressed in units

of Pascal (Pa). Audible sound pressures can vary from 10-5 Pa (absolute threshold of

hearing in the middle audible range) to 102 Pa (threshold of pain) [14]. Given the extent

of this range, sounds are more commonly characterized by their logarithmic level or Sound

Pressure Level (SPL). The SPL expresses the pressure relative to some reference value on
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a decibel scale,

Il

(2.1)

where the reference pressure Po has a value of 10 JLPa. An additional measure of sound

magnitude is the sound intensity, which represents the sound energy transmitted per second

through a unit area of a sound field [1]. Since sound intensity is proportional to the square

of pressure, the level can also be expressed as a ratio of sound intensity levels,

L = 10 loglO(I1Jo) dB, (2.2)

where the reference intensity Jo has a value of 10-12 W1m2
. Table 2.1 lists examples of

levels (in dB SPL) along with their corresponding pressure and intensity ratios for typical

sounds.

Table 2.1 Examples of sound pressure level, pressure and intensity ratio of
typical sounds [1].

Sound Level
dB SPL

120
100
70

50

30
20

6.5
o

Intensity Ratio
IlIa

1012

1010

107

105

103

102

4.5

1

Pressure Ratio
PIPa

106

105

3160
316
31.6
10

2.1
1

Typical
Example

Loud rock concert
Shouting at close range

Normal conversation
Quiet conversation

Soft whisper
Country area at night

Absolute threshold at 1 KHz
Reference level

It is generally more convenient to evaluate the level of a sound from its frequency domain

representation. For discrete spectra (e.g., periodic signaIs), the overalllevel is calculated

by summing the levels of individual spectral components. Individual component levels are

directly related to the squared magnitude of the Fourier series coefficients of the signal.

As for continuous spectra, the overalllevel is obtained by integrating the sound intensity

density. The sound intensity density represents the sound intensity per Hertz. The density

is calculated from the squared magnitude of the Fourier transform of the signal.
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2.2 The Human Auditory System
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Two distinct processing stages are recognized within the human auditory system [14]. In the

first stage, commonly known as the ear, sound pressure waves are converted to mechanical

vibrations. The ear converts processed mechanical oscillations to electrical impulses that are

delivered to the auditory nerve. The general structure of the ear is displayed in Figure 2.1,

including the outer ear, the middle ear and the inner ear. In the second stage, auditory

nerve impulses are processed by the brain, resulting in auditory sensations. Interestingly,

this auditory structure is shared amongst most animaIs.

INNEREAR

Fig. 2.1 Structure of the human ear, adapted from [15].

2.2.1 The Outer Ear

The outer ear is composed of the pinna and the auditory canal (also known as meatus).

The pinna is the visible part of the ear that directs sound pressure waves towards the

auditory canal. The pinna influences higher frequency sounds, contributing to the ability

of localizing sounds [14]. Sound waves travel through the air-filled auditory canal from the
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pinna aIl the way to the tympanic membrane. Open at one end and closed at the other,

the meatus acts as a quarter-wavelength resonator, amplifying signaIs within the range of

3-5 kHz by as much as 15 dB [16]. As such, the outer ear principally accounts for the high

sensitivity of the auditory system within this frequency range.

2.2.2 The Middle Ear

The middle ear originates at the tympanic membrane (also known as the eardrum) where

sound pressure waves are converted to mechanical vibrations. The eardrum is connected to

three small ossicular bones that lie within the air-filled cavity of the middle ear, as shown

in Figure 2.2. Mechanical oscillations travel through the malleus, the incus and the stapes

that connect to the inner ear via the oval window. These three bones are also commonly

referred to as hammer, anvil and stirrup, and are noteworthy for being the smallest bones

in the body [1].

inner
ear

Eustachian
tube

Fig. 2.2 Structure of the middle ear, adapted from [17].

The middle ear primarily acts as an impedance-matching stage between the air medium

ofthe outer ear and the fluid of the inner ear. It accounts for the acoustical impedance mis­

match between the eardrum and the oval window, reducing the amount of wave reflection.

The closest impedance match occurs in the 1 kHz range, at which point sound pressure is
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increased by as much as 20 dB [18J. Above this range, the middle ear resembles a low-pass

filter having an attenuation of -15 dB/oct [15J.
Finally, the Eustanchian tube equalizes the air pressure between the middle ear and the

surraunding environment. Pressure differences between the auditory canal and the middle

ear cavity greatly hinder the ability to vibrate of the tympanic membrane. Mismatches are

commonly encountered in situations such as flying or diving. Normal hearing is resumed by

swallowing as the upper thraat end of the Eustanchian tube is opened, enabling pressure

equalization [14].

2.2.3 The Inner Ear

The inner ear has the most significant raIe in perception within the auditory system. It

includes the cochlea, from which mechanical vibrations emanating from the oval window are

transformed into electrical impulses. The structure of the inner ear is detailed in Figure 2.3.

semi circular
canals

incus &
malleus

auditory
nerve

Fig. 2.3 Structure of the inner ear, adapted from [17J.

The cochlea is a spiral-shaped tube of 35 mm length, coiled into appraximately 2.5

turns [15]. Within its hard bony walls are two nearly incompressible lymphatic liquids.

The region close to the oval window is recognized as the base, whereas the inner tip of the

coil is known as the apex. Both Reissner's membrane and the basilar membrane partition
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the cochlea along its length into three channels. A cross-sectional view of the cochlea is

illustrated in Figure 2.4, showing the scala vestibuli, the scala media and the scala tympani.

The helicotrema, a small opening near the apex, allows for pressure equalization between

the scala vestibuli and the scala tympani. Pressure in the scala tympani is reduced through

the round window of the basilar membrane, located near the base. Oval window vibrations

are transmitted to the cochlear membranes through the incompressible fluids, setting them

in motion.

(a)

Scala
Media

Organ
Haïr
Cens

Iuner

Hair --::::;;:~F-~Il::;:=--~m
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(b)

Outer
Haïr
Cens

Fig. 2.4 Cross section of the cochlea, adapted from [15J.

2.2.4 The Basilar Membrane

The basilar membrane extends throughout the cochlea, from the basal end to the apex.

Profile and rigidity vary along its length and significantly influence the response along

the basilar membrane to different frequencies. It is rigid and thin near the oval window

(0.04 mm) while the apex is limp and vast (0.5 mm) [15]. Each point along the basilar

membrane is associated with a Characteristic Frequency (CF) for which the amplitude of its

vibrations is maximal. More specifically, travelling waves reach a maximum amplitude at

the location along the basilar membrane where the characteristic frequency is equal to the

frequency of the wave. Higher characteristic frequencies correspond to the base, whereas

lower characteristic frequencies are near the apex.
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The basilar membrane supports the organ of Corti, where 30 000 sensory hair cells attach

to the auditory nerve [15]. The sensory cens arearranged in one row of inner hair cens on

the inner side of the organ of Corti, and three rows of outer hair cens near the middle of

the organ of Corti [14]. The motion of the basilar membrane causes the bending of hair

cens, leading to neural firings in the auditory nerve. Neural information propagates to the

brain where it undergoes cognitive processing.

2.3 Absolute Threshold of Hearing

The absolute threshold of hearing (or audibility threshold) indicates the minimum sound

pressure level that a sound must have for detection in the absence of other sounds. The

threshold in quiet is easily measured through hearing experiments. A mean threshold

is obtained by averaging the individual thresholds of numerous listeners. The audibility

threshold shows a prominent dependence on frequency, as illustrated in Figure 2.5. Terhardt

proposed an expression for the frequency dependent threshold [19] based on experimental

data from an earlier study [20],

Tq(J) = 3.64 (1:00) -0.8 - 6.5 exp [ - 0.6 (1:00 -3.3) '] + 10-3 (1:00) 4 dB, (2.3)

where f is expressed in Hz. The auditory threshold represents the combined effects of the

outer and middle ear frequency responses along with the internaI noise of the inner ear [la].

2.4 Critical Bands and Auditory Filters

As previously mentioned, a frequency-to-place conversion occurs within the inner ear that

affects the frequency selectivity of the hearing system. Frequency selectivity is crucial to

perception as it determines the ability of the auditory system to resolve frequency compo­

nents. The concept of critical bands is introduced to define a frequency range within which

changes in stimuli greatly affect perception. It is suggested that the ear integrates sound

energy within a critical band. When two sounds have energy in the same critical band, the



2 Psychoacoustic Principles 17

10 100 1000
Frequency (Hz)

10000

Fig. 2.5 Absolute threshold of hearing for normallisteners.

sound having the highest level dominates perception [15].
Fletcher first presented the concept of critical bands in 1940 [21]. He measured the

audibility threshold of a sinusoid in the presence of narrowband noise, centred at the

same frequency of the sinusoid. While maintaining its power density constant, the noise

bandwidth was gradually increased. It was observed that the audibility threshold increased

with the noise bandwidth up to a certain point, where further increases in bandwidth had

minor effect on the threshold. Fletcher called this value the critical bandwidth. Following

his experiments, he suggested that the peripheral auditory system behaves alike a bank of

bandpass filters, where the bandwidth of each filter corresponds to the critical bandwidth.

These filters are now commonly referred to as auditory filters. As discussed in Section 2.2.4,

each point along the basilar membrane is associated with a characteristic frequency. Hence,

the response at a given point along the basilar membrane corresponds to the output of the

the auditory filter centred at its characteristic frequency.

Scharf measured the bandwidth of critical bands as a function of their centre fre­

quency [22J. While attempting to represent the inner ear as a discrete set of non-overlapping

auditory filters, he determined that 25 critical bands were sufficient to represent the au­

dible frequency range of the ear. The bandwidth of the resulting critical bands are listed

in Table 2.2, with centre frequencies spanning from 0 to 19 kHz. It is evident that auditory

filter bandwidths are larger at lower centre frequencies than at higher centre frequencies.
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According to Scharf's results, critical bands are constant below 500 Hz, while they steadily

increase above 500 Hz. Additionally, the majority of critical bands lie below 5 kHz. The

ability of the ear to resolve components is superior at low frequencies than at high fre-

quencies. It has been suggested that each band corresponds to approximately 1.5 mm of

spacing along the basilar membrane in such a discrete critical band structure [15].

Table 2.2 List of critical bands measured by Scharf [22].

Critical Band Lower Frequency Centre Frequency Upper Frequency Bandwidth
Number Hz Hz Hz Hz

1 0 50 100 100
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
5 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160

10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 550
18 3700 4000 4400 700
19 4400 4800 5300 900
20 5300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500
25 15500 19500

Given the importance of the critical band concept, a perceptual scale has been based

upon it. The critical-band rate is obtained by adding one critical band to the next in such a
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way that the upper limit of the lower band corresponds to the lower limit of the next higher

critical band [14]. Accordingly, there is a one-to-one mapping between frequency and the

number of critical bands. The critical-band rate is expressed in units of Bark, where an

increment of one Bark corresponds to one critical band. Zwicker suggested an analytical

expression that characterizes the dependence of critical-band rate on frequency [14],

Z = 13 arctan(760j) + 3.5 arctan(f/7500)2, (2.4)

where 1 and Z are expressed respectively in Hz and Bark. The bandwidth of each critical

band as a function of its centre frequency is approximately given by:

(2.5)

where BW(f) is expressed in Hz. Similarly, Schroeder proposed a relationship between

frequency and critical-band rate that is mostly linear below 500 Hz and exponential above

1 kHz [23],

Z = 7 arcsinh(f/650), (2.6)

where 1 is expressed in Hz and Z in Bark. Schroeder suggested that this equation accurately

matched experimentally measured critical bands for frequencies up to 5 kHz.

An alternative measure for the perceptual frequency of the ear was proposed by Moore

and Glasberg [24]. Their novel scale is based on the Equivalent Rectangular Bandwidth

(ERB) of the auditory filters of the inner ear. The ERB of a filter corresponds to the

bandwidth of the rectangular filter which has the same peak transmission and passes the

same power given a white noise input [1]. Moore and Glasberg proposed an equation

relating the ERB to the centre frequency of an auditory filter,

ERB = 24.7(43701 + 1), (2.7)

where 1 is expressed in Hz. Each ERB corresponds approximately to a 0.89 mm section

along the basilar membrane [IJ. When comparing ERB to the traditional critical band­

widths listed in Table 2.2, certain discrepancies arefound at lower frequencies. Moore and

Glasberg argued that the bandwidth of auditory filters steadily decreased below 500 Hz,

whereas previous critical bandwidth measurements were relatively constant within the same
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range. The proposed perceptual scale corresponds to the number of ERB's,

Number of ERB's = 21.4 loglQ(4370 j + 1). (2.8)

The three perceptual frequency relations mentioned above are illustrated in Figure 2.6.

Zwicker's equation is represented by the solid line, Schroeder's equation is represented by

the dotted line and the ERB scale is represented by the dashed line. It is apparent from the

figure that ERB is smaller than the critical bandwidth for auditory filters having low centre

frequencies. As a result, the number of ERBs grows more rapidly at low frequencies than

the critical-band rate. Both Zwicker's equation and Schroeder's equation are very similar

below 5 kHz, whereas the critical band rate grows faster for the latter at high frequencies.

Schroeder's critical band relation yields greater perceptual resolution for wideband signaIs.
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Fig. 2.6 Mapping between perceptual frequency and linear frequency. Solid
line: Zwicker's equation in Barks. Dotted Hne: Schroeder's equation in Barks.
Dashed Hne: Number of Equivalent Rectangular Bandwidths (ERB).

2.5 Auditory Masking

Essential mechanisms involved in the processing of auditory stimuli were presented in the

previous sections. The current section focuses on the psychoacoustic phenomenon of mask-
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ing. As discussed in Chapter 1, auditory masking is the process by which the perception

of one sound is suppressed by another. Masking is characterized by an increase in the

audibility threshold of a signal in the presence of a stronger signal. The amount of masking

corresponds to the quantity by which the threshold is augmented above the threshold in

quiet. The stronger masking signal is commonly referred to as the masker, whereas the

signal being masked is identified as the maskee, target or probe signal.

Masking effects are generally categorized as one of two types: simultaneous or temporal

masking. Simultaneous masking occurs when the masker and maskee are presented to the

ear concurrently. Temporal masking, also termed non-simultaneous masking, occurs when

the masker and target have a temporal offset with respect to each other. Accordingly, the

target may be masked when presented prior to the masker onset or following its offset. The

former scenario is known as backward masking while the latter is recognized as forward

masking. The different masking types are illustrated in Figure 2.7, where the solid and

dotted lines represent the masker and masking threshold respectively. Backward masking

is observed prior to the masker onset. The masker is present from 0 ms to 200 ms, corre­

sponding to simultaneous masking. The masker is removed at 200 ms, beyond which point

masking continues as indicated by the decaying dashed line in the figure. Simultaneous and

temporal masking, as illustrated in Figure 2.7, have been observed for a variety of masker

and target types.
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Fig. 2.7 Varions types of masking obtained from a 200 ms masker burst,
adapted from [3]. Solid line: masker signal. Dashed line: masking threshold.
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A method is required to characterize masking with respect to frequency and time. A

masking pattern, also known as masked audiogram, is a graph of the amount of masking

produced by a given sound as a function of the centre frequency of the target sound or

its temporal location [1]. The amount of masking produced by a signal may noticeably

differ from one listener to another. As such, masking patterns are commonly obtained by

averaging masking thresholds observed by numerous listeners. A more detailed discussion

concerning masking patterns and their characteristics is presented in Section 2.7.

2.5.1 Simultaneous Masking

Simultaneous masking is the most significant since it produces the largest amount of mask­

ing. According to Moore, there are two distinct hypotheses that describe the origins of

masking [1]. The first concept involves the swamping of neural activity by the stronger

masker signal. Consider an example where a Bark-wide noise masker is presented at a

sound pressure level of 40 dB. By adding a tone of 20 dB SPL within the same critical

band, the increase in sound pressure level within the auditory filter is only 0.04 dB. It has

been suggested that the ear cannot discriminate such small differences in sound pressure

level. Consequently, the tone remains undetected in the presence of the more intense noise

signal. This mechanism is in accordance with the concept that the ear integrates sound

energy within each auditory filter.

The second mechanism suggested as a foundation for masking is suppression. In this

case, the masker suppresses neural activity caused by the target signal. Neural activity is

contained to the random and spontaneous hair ceIl firings that normaIly occur during silence

periods. This resuIts in a highly non-linear process that is difficuIt to predict. Although

different in nature, Moore suggests that both mechanisms could contribute to simultaneous

masking effects.

2.5.2 Temporal Masking

Temporal masking effects also provide a significant contribution to masking thresholds.

Backward or pre-masking occurs when the target precedes the masker. Thiede proposed

two distinct mechanisms that explain the incidence of backward masking [25]. Firstly, he

suggested that intense signaIs are processed more rapidly than weak signaIs. The maskee

can be overtaken by the masker during the processing of the signal, either within the
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inner ear or at a cognitive level. Secondly, he suggested that backward masking results

from the reduced temporal resolution of the ear. Average levels of maskee and masker

determine masking thresholds rather than instantaneous levels. Backward masking has

received considerably less attention in psychoacoustic research compared to other types of

masking. It has been shown that backward masking only begins 20 ms prior to the masker

onset [14]. Sorne experiments have also shown that a short tone ending 1 ms before the

beginning of a noise burst can experience up to 60 dB of masking [15].

On the other hand, forward masking is significantly more effective in suppressing the

perception of target signaIs. Forward, or post-masking, is observed when the target signal

follows the masker. Its effects are observed up to 200 ms following the masker offset [15].

Moore reported the following characteristics of forward masking, determined from a series

of psychoacoustic experiments [26]:

1. Forward masking is increased when the target approaches the masker offset in time.

The amount of forward masking decreases linearly as the logarithm of the delay

between the masker and the target increases.

2. Despite the initial amount of forward masking, it always decays to zero after 100 to

200 ms. This implies that the slope of forward masking decay is steeper for higher

masker levels.

3. Increments in masker level do not result in equivalent increments in the amount of

forward masking.

4. The amount of forward masking increases as the duration of masker increases.

In a later publication, Moore suggested that the following three factors contribute to for­

ward masking [1]:

1. The basilar membrane vibrations continue for a certain amount of time after the

masker offset. This effect, known as ringing, contributes to the masking of the target

signal when temporally overlapped.

2. Fatigue in the auditory nerve or the time required for its adaptation following the

masker offset.

3. The neural activity produced by the masker persists at higher processing levels than

the auditory nerve, following the masker offset.
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A variety of psychoacoustic studies have attempted to relate masking effects to the output of

auditory filters. It has been shown that masking cannot be determined by simply examining

the response of the auditory filter centred at the masker frequency. Masking patterns

have different spectral characteristics above and below the masker signal. As such, it

is instructive to examine the excitation that a sound produces throughout the audible

spectrum. The excitation pattern of a sound is a representation of the activity or the

excitation evoked by that sound as a function of characteristic frequency along the basilar

membrane [27].

A method was suggested by Moore and Glasberg to predict the excitation patterns

of sounds using the notion of auditory filters [28]. The excitation at a given frequency

corresponds to the output of the auditory filter centred at that frequency. This method is

illustrated in Figure 2.8 by deriving the excitation produced by a 1 kHz tone. Figure 2.8(a)

displays the responses of five auditory filters having different centre frequencies. The roex

filters described in [26] were employed in this example. 1 The input sinusoid is represented

by the verticalline at 1 kHz. The response of each filter with respect to the tone is marked

along the vertical line. Figure 2.8(b) displays the response of each auditory filter to the

input sinusoid as a function of their centre frequency, yielding the excitation pattern.

Zwicker proposed a psychoacoustic model to predict the amount of masking produced

by a sound that is based on its excitation [14]. The model exploits the just-noticeable

level variations of the excitation pattern. The detection of a target signal is determined by

comparing the excitation produced by the masker alone with that of the masker presented

with the target signal. If the difference between the two excitation patterns is greater than

a certain value at the output of any auditory filter, the target signal is detectable. The

critical value represents the just-noticeable difference in level. Zwicker suggested that a

value of 1 dB fit the observed experimental data.

The method described, commonly referred to as the excitation pattern model of mask­

ing, forms the basis for the models that are described later in Chapter 3. While it provides

a straightforward approximation to the amount of masking produced by a signal, its ac­

curacy remains uncertain. The model assumes that listeners use the overall level of the

1Roex filters are characterized by an asymmetric frequency response that forms an exponential with
a rounded top. Such filters were derived using the notched-noise method for estimating auditory filter
shapes [26J.
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Fig. 2.8 Derivation of the excitation pattern produced by a 1 kHz tone.

signal as its only detection eue. However, psychoacoustic experiments have revealed that

listeners often utilize off-frequency listening or other more complex eues to improve signal

deteetion. Masking patterns exhibit a dependence on the nature of both the masker and

target signaIs.

2.7 Masking Patterns

Four basic combinations of masker and target types are commonly reported in literature,

where each signal can be either a tone or noise band. The majority of reported psy­

choacoustic experiments involve masking of tonal target signaIs. The two combinations

having noise-like targets, which are the most relevant in audio coding applications, have

received less attention. This section presents simultaneous masking patterns for different

masker-target combinations while noting their differences. Masking curves are typically ap­

proximated as triangular on a critical band scale, having different slopes above and beyond

the centre frequency of the masker.

Veldhuis noted the lack of results concerning noise-like targets when he argued that

most masking models are unsuitable for the masking of quantization noise targets in audio

coding [29J. He conducted an informaI experiment to measure the masking threshold pro­

duced by a tone for critical band noise targets at various frequencies. Although masking
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curves for the noise target had similar shapes to those obtained for tonal targets, sorne

differences brought him to conclude that further study in masking of noise was necessary.

Similarly, previous work has shown sorne considerable differences in masking patterns

produced by tonal and noise maskers. For instance, narrowband noise maskers are generally

more effective than sinusoidal maskers for frequencies below the masker [30]. Furthermore,

the sIopes on the lower frequency side become less steep with decreasing masker level

for tonal maskers, whereas they remain practically invariant for noise maskers [14]. On

the higher frequency side, pure tones commonly produce more masking than narrow-band

noise for masker levels in the neighbourhood of 80 dB SPL [31]. Traditional simultaneous

masking patterns measured by Zwicker are reproduced in Figure 2.9 [14]. Figure 2.9(a)

displays masking patterns of a sinusoidal target produced by a Bark-wide noise masker at

various sound pressure levels. In Figure 2.9(b), the masker is a 1 kHz tone whereas the

target signal is a noise band.

Moore et al. have recently investigated the four possible masker and signal type com­

binations in a series of five experiments [32]. The objective of their research was to show

complex irregularities in masking patterns in order to disprove the idea that signal thresh­

olds are directly related to the spread of masker excitation. They conducted a series of

experiments involving different masker and signal characteristics to determine the roles of

various cues in signal detection. Such detection cues are used to explain masking curves

when the traditional excitation pattern models fail.

In their first experiment, they compared masking patterns for sinusoidal and noise

maskers centred at 1 kHz for a variety of masker levels. Target signaIs were either sinu­

soidal or noise-like, comprising of all four masker-target combinations. All noise signaIs

were narrowband with a bandwidth of approximately one critical band. The masking pat­

terns obtained using the noise masker were similar for both types of target signaIs. Slight

differences were observed for certain subjects, for whom the masking patterns for noise

signal were more regular on the higher frequency side. Upper and lower frequency slopes

were generally in accordance with previously reported results. Additionally, the threshold

level was on average 0.7 dB higher for the noise target than for the tonal target. Thresh­

olds surrounding the masker in frequency were only a few decibels below its level, which is

consistent with the concept that the overall change in sound pressure level was used as the

main detection cue.

The masking patterns observed from sinusoidal maskers were characterized by numerous
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Fig. 2.9 Masking patterns obtained from maskers of various sound pressure
level, centred at 1 kHz [14}. Masker levels are indicated next to the curves.

irregularities, as weIl as greater differences between individual listening subjects. The

interaction between masker and target signaIs produce additional detection cues such as

beats and combinations tones. These cues contribute to the irregular dips, peaks and

shoulders observed throughout the masking patterns. For signal frequencies neighbouring



2 Psychoacoustic Principles 28

the masker, noise target thresholds were lower than those of the tonal signal by as much

as 15 to 20 dB. While the change in level produced by adding the target was believed to

be the only detection eue in the presence of a tonal target, an additional detection eue was

available for the noise target. More specificaIly, the availability of a within-channel cue of

fluctuation in level produced by the noise signal was very effective in the reduction of the

audibility threshold. Moore compared his experimental results for tone-masking-noise to

those previously reported by Greenwood in [33] and [34], and found them to be alike.

For frequencies above and below the masker, the two target types produced similar

masking patterns when masked by the sinusoid. It is also important to note that Moore

reported higher masking produced·by the tonal masker than the noise masker for frequencies

above 2 kHz. They summarized their first experiment by stating that the masker type

mostly determined the masking characteristics above and below the masker frequency,

except when the masker and target were centred. Apart from tone masking noise, the

three other masker-signal combinations produced similar thresholds when the target signal

and masker frequencies are equal.

In another experiment, Moore et al. measured masking patterns produced by sinusoidal

and noise maskers using noise targets. The masking patterns were determined for a variety

of masker levels and frequencies, while noise targets covered a wide range of frequencies

below and above the masker. Experimental results were similar to those reported in experi­

ment 1. Once again, they observed masking pattern slopes that were almost level invariant

on the low frequency side, whereas patterns became steeper as the level increased on the

high frequency side. AIso, the tips of the masking patterns using the sinusoidal masker were

flatter and weIl below the tips using the noise masker. The tonal masker produced more

masking than the noise masker for higher masker levels when the target signal frequency

was more than 500 Hz above the masker frequency.

2.8 The Temporal Course of Masking

In Section 2.5, masking effects were categorized according to the temporal relation between

masker and target. Since they exhibit different properties, masking types should be accu­

rately identified when analyzing signaIs. This represents a challenging requirement when

considering complex signaIs such as speech or music.

AlI of the experimental results presented thus far were concerned with a specific type
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of masking. Masker and target signal characteristics generally remain constant throughout

the duration of experiments. For instance, the level and centre frequency of tonal maskers

are maintained constant throughout the duration of an experiment. Moreover, the temporal

relation between masker and target is clearly defined according to the desired masking type.

In simultaneous masking experiments, maskers are considered stable as they have been

present for a long duration with stable parameters when the target is presented. Similarly,

in the temporal masking experiments, the masker is introduced or removed completely

when the target is presented.

For general audio signaIs, such experimental assumptions regarding maskers and targets

are invalid. Masking components in audio signals exhibit a complex temporal evolution. It

is generally difficult to isolate the beginning or the end of a masker. In addition to their

birth and death processes, masker characteristics, such as level and centre frequency, can

vary from one analysis frame to another. It is thus important to consider the temporal

evolution of masking effects rather than accounting for classical simultaneous and tempo­

ral masking individually. Changes in masking threshold should be determined from the

temporal position of targets with respect to time-varying maskers.

2.8.1 Temporal Variation of Masker Spectral Properties

The auditory system is capable of tracking changes in masker characteristics as they vary

in time. Zwicker examined temporal masking patterns produced by sounds periodically

modulated in frequency [14]. In one experiment, the 1.5 kHz centre frequency of a tonal

masker was sinusoidally modulated. A centre frequency swing of ±700 Hz was used with

a variety of modulation rates. A short test tone was presented for detection at different

temporal positions during the period and at frequencies spanning the modulation range.

The experimental results indicate that the ear is capable of tracking the temporal variations

of the masking pattern for centre frequency modulation rates approaching 8 Hz. Above this

rate, the deviation in masker frequency results in a fiat masking threshold. Rapidly varying

tones exhibit similar masking patterns to those produced by narrowband noise maskers.

The critical modulation rate corresponds to a frequency variation of ±1l2 Hz using an

analysis window of 20 ms, which is approximately one critical band in the 1.5 kHz range.

The situation is rather different when considering noise maskers. Experimental results

regarding the temporal variation of noise masker spectral characteristics are few. Further-
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more, changes in noise maskers are difficult to identify when analyzing audio signaIs. A

proper definition of the noise masker bandwidth is required, which is the topic of discussion

in Section 2.10. Additionally, noise components have inherent random amplitude fluctua­

tions. Frequency components within the masker bandwidth are intrinsically different from

one analysis window to another.

2.8.2 Target Temporal Position

In addition to their time-varying spectral characteristics, masking components sporadically

appear and disappear throughout the flow of an audio signal. As a result, masking patterns

vary as a function of the temporal position of target signaIs with respect to the birth

and death of sinusoidal maskers [35, 36, 37, 38]. Each of these experiments have shown

a considerable elevation of the signal threshold near the masker onset and offset. The

overshoot effect has been used to describe the increase in signal masked threshold when the

signal is doser to the masker onset [35]. The overshoot effect is illustrated in Figure 2.10,

where a tonal masker of 500 ms duration is presented to the listener. The audibility

threshold of a shorter target signal (20 ms duration) is measured as a function of its

temporal position with respect to the masker onset. Elevations in the order of 15 dB,

decaying over a 100 ms second period, have been observed near the masker onset [35].

Although present, the effect is less significant near the masker offset.
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Fig. 2.10 Masking threshold of a tonal target as a function of its temporal
position with respect to the onset of a 500 ms tonal masker, based on [35].
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The overshoot effect is commonly considered to be the result of the spectral splatter

produced at the masker onset, similarly to the effect of windowing in signal processing.

When a signal is windowed, its frequency response is convolved with the frequency response

of the window. As a result, the energy of the signal is spread into neighbouring frequency

components. The frequency response of a tonal masker reassembles more that of a noise

masker in such conditions. Following a series of experiments, Smith suggested that short­

term neural adaptation might also contribute to overshoot effects [39]. In a later study [38],

Bacon and Moore concluded that transient responses of the masker near its onset reduce

the usefulness of the transient responses of the target, making the signal more difficult to

detect. The process was referred to as transient masking.

As for narrowband maskers, confiicting results have been reported. According to

Zwicker, the overshoot effect does not appear for narrowband maskers [14]. Zwicker also

presented results that contradict those of Elliot, who observed an overshoot when the target

signal is above the narrowband noise masker in frequency [40].

2.9 Additivity of Masking

Music and speech signaIs are composed of a multitude of complex spectral components.

Accordingly, several masker components interact to yield an overall masking threshold. A

variety of models have been suggested to represent the combination of masking effects from

multiple maskers. As reported by Veldhuis in [29], Theile et al. proposed a conservative

addition law for masking thresholds [41]. The total masking threshold at any given fre­

quency was chosen as the maximum of aIl individual masking thresholds and the threshold

in quiet.

Green first reported a study concerning the addition of masking in 1967 [42]. He mea­

sured masking thresholds for a sinusoidal masker and a narrowband noise masker when

presented individually, calibrating them such that they produced an equal amount of mask­

ing. According to the traditional power spectrum model of masking2 , the output of the

auditory filter centred on the target signal frequency should increase by 3 dB when the

two maskers are combined, resulting in an equal amount of increase in masking. However,

Green measured between 9 and 13 dB more masking when the two maskers were pre-

2In the power spectrum model of masking, the power of different maskers is linearly added at the output
of the auditory filter.



2 Psychoacoustic Principles 32

sented simultaneously. This corresponds to as much as 10 dB of additional masking above

the amount predicted by the power spectrum model. The amount of additional masking

above 3 dB produced by combining maskers is commonly referred to as excess masking in

literature [26].

Green explained excess masking by arguing that two different modes of sensory process­

ing were employed for signal detection, depending on which masker type was presented.

He described a system N that provided effective cues for signal detection when the noise

masker was presented alone. Similarly, a sensory processing system S was identified for sig­

nal detection in the presence of a sinusoidal masker. When the two maskers were combined,

the noise signal rendered system S ineffective while the sinusoidal signal rendered system

N ineffective. Green attributed the increase in masking threshold to the inadequacy of

individual detection cues, resulting from the blending of both masker types.

Lutfi also examined the additivity of simultaneous maskers in a more recent study [43].

He limited his experiments to spectrally non-overlapping maskers in order to restrain in­

teraction between masking components. He measured excess masking in the range of 10

to 17 dB when two equally intense maskers were combined. His results were obtained for

various masker combinations, using two sinusoidal maskers, two narrowband noise maskers

or a sinusoidal masker with a narrowband noise masker. Moreover, Lutfi observed similar

results whether the two maskers were on the same side or opposite sides in frequency of the

target signal. Another interesting finding was that the amount of excess masking obtained

by combination of two maskers was independent of the individual masker levels.

Lutfi argued through various experiments that neither different types of sensorial pro­

cessing modes, as suggested by Green [42], nor off-frequency lîstening were adequate to

explain these results. He rather suggested a model in which the effects of each masker are

summed after undergoing independent compressive transforms. Let MA and MB represent

the amount of masking produced by maskers A and B when presented individually. The

combined masking threshbld, M AB , can be computed using a non-lînear transform,

Lutfi found a transform that accurately matched his data, given by:

( &)PF(MA ) = 10 10 •

(2.9)

(2.10)



2 Psychoacoustic Principles 33

A value of the constant p ranging from 0.20 to 0.33 best fit the results of his experiments.

Note that when pis equal to 1, the model reduces to the traditional power spectrum model

of masking and no excessmasking is predicted. Finally, he generalized the compression

model for any arbitrary number K of spectrally non-overlapping maskers, given by:

(2.11)

Subsequently, Lutfi applied his model to predict results from previous studies that measured

masking by sounds with various complex spectra [44]. He considered an extensive range

of studies that included different masker combinations as weIl as a variety of individual

masker levels. He applied his model to results from a study by Canahl [45] that combined

four tonal maskers as weIl as studies by Nelson [46] and Zwicker [47] that combined two

tonal maskers. He also considered the original experiment by Green [42] which employed a

tonal and noise masker, along with a study by Patternson and Nimmo-Smith [48] where two

noise maskers were presented simultaneously. Lutfi discovered that, in such experiments

where there was minimal spectral overlap between maskers, setting p = 0.33 predicted

masking that was in agreement with the collected data. Following, he applied his model to

an experiment by Bilger [49] in which there was a considerable overlap between two noise

maskers. He concluded that fixing p = 0.5 yielded a considerably more accurate prediction

than the traditional linear model in such a situation.

Moore found it important to evaluate the data that Lutfi used in the derivation of the

non-linear model of addition since it corresponded to a large divergence from the tradi­

tional power spectrum model of masking [50]. He presented two experiments that showed

cases under which the compressive non-linearity model fell short. Moore argued that the

excess masking measured by Lutfi was influenced by two factors: (1) combination-product

detection and (2) the use of different detection cues for the single masker and masker pairs.

The latter of these two factors was particularly important in an experiment where two

narrowband noise maskers were combined. He demonstrated that excess masking occurred

only if the two maskers had uncorrelated envelope fluctuations. This supports the idea

that subjects use envelope fluctuations as a detection cue in the presence of a single noise

masker. When two uncorrelated maskers are combined, the effectiveness of this detection

cue is reduced and excess masking occurs. However, the cue remains when the noise bands

have correlated envelope fluctuations and can occasionally lead to a release in masking. The
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decrease in masking resulting from the combination of correlated noise maskers is referred

to as Comodulation Masking Release.

More recently, Humes and Jesteadt investigated the additivity of simultaneous mask­

ing effects for a variety of masker conditions [51]. They reconsidered Lutfi's power-Iaw

model [43] as weIl as Humes et al.'s modified power-Iaw model with compressed internaI

noise [52]. The latter regards the internaI noise of the ear as a distinct masker that pro­

duces a continuous masking threshold, more commonly known as the threshold in quiet.

Observed masking thresholds result from the combination of the internaI noise masker with

external maskers, which have aIl undergone a compressive transform. As such, the modified

power-Iaw model makes more sensible predictions for weak maskers. If MA corresponds to

the masking threshold produced by masker A and QT represents the threshold in quiet, the

nonlinear transform is given by:

( .:'iA)P ( 9..T.)PF(MA ) = 10 10 - 10 10 • (2.12)

In their study, Humes and Jesteadt recognized that interactions between maskers affect

the contribution of each masker to the overall threshold. They suggested that inter-masker

suppression might play a significant role in the combination of temporaIly overlapping

maskers. Nevertheless, the modified power-Iaw model accurately predicted masking in

the context of Moore's experiment [50] which contradicted Lufti's additivity model. More

generaIly, a parameter p ranging from 0.1 to 0.3 provided close estimates for masking

additivity in aIl of their experiments.

The different masking additivity models are compared in Figure 2.11, where the pre­

dicted combined masking threshold produced by two maskers is illustrated. In Figure 2.11(a),

both maskers A and B produce an equivalent amount of masking when presented individ­

uaIly. The combined threshold is shown as a function of the individual levels. In Fig­

ure 2.11(b), the individual masker threshold produced by masker A is fixed to 40 dB while

the threshold produced by masker B is varied. Predictions are provided for Theile's model,

the power spectrum model, the power-Iaw model and the modified power-Iaw model. It

is evident that masking estimates widely vary depending on the additivity model, espe­

cially when individual masking thresholds are comparable in magnitude. As much as 9 dB

in excess masking is predicted using the power-Iaw and modified-power law models when

individual masking thresholds are equal.
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(a) Combined masking threshold when
maskers A and B produce equal amounts of
individual masking.

(b) Combined masking threshold when
masker A individually produces a 40 dB
threshold and masker B is varied.

Fig. 2.11 Predicted masking threshold produced by the combination of
maskers A and B. Dash-dotted line: masking predicted using the power spec­
trum mode!. Dotted line: masking predicted using Theile's model. Dashed
line: masking predicted using the power-law mode!. Solid Hne: masking pre­
dicted using themodified power-law mode!.

Masker signaIs are always clearly defined in experiments related to the addition of

masking. However, this is not the case when considering complex audio signaIs such as

speech and music. Veldhuis and Kohlrusch advised using a conservative criterion for masker

additivity when applied to signaIs with a complex spectrum, sinee the interactions between

maskers are unknown [53]. Given the compelling evidenee in favour of excess masking, it is

suggested to employa compressive transform with a conservative parameter, e.g., p = 0.5,

for the addition of masking. However, a clear definition of masking components is required

if the power-Iaw model is to be applied. The problem of identifying maskers within a

complex signal is addressed in the following section.

2.10 Masker Integration

The characteristics of masking components used in psychoacoustic experiments are gener­

ally very weIl defined within the experimental setup. Unfortunately, the distinction between

maskers in the analysis of audio signaIs is much more ambiguous. Audio signaIs are com-
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posed of a variety of complex elements that combine to form the spectrum of the signal. The

question arises as to where should the spectral boundaries between masking components

be positioned. For example, a portion of the spectrum can either be entirely integrated as

a single noise masker, or partitioned and integrated as multiple noise maskers.

The importance of masker integration increases when considering non-linear models for

the prediction of masking. For instance, estimates from level dependent masking patterns

are influenced by masker spectral boundaries. Masker sound pressure levels are directly

related to the bandwidth over which they are integrated. Thus, multiple noise components

would not yield the same masking threshold as would a single larger masker within the same

bandwidth. Similarly, the masking additivity models that were introduced in Section 2.9 are

greatly influenced by the number of maskers as weIl as their sound pressure levels. Masking

additivity is linear within the bandwidth over which maskers are integrated, whereas the

additivity of distinct maskers is non-linear.

Humes and Lee performed a study that explored the spectral boundaries for the non­

linear additivity of simultaneous masking [54]. In their experiment, they measured masking

thresholds for a variety of configurations that combined two noise maskers. The amount

of spectral overlap between the maskers was varied from no overlap to complete overlap.

Their results showed that the masking effects from both components were added linearly

when they overlapped within a critical band, centred at the signal frequency. On the other

hand, the modified power law model [51] provided a good estimate to the additivity of

masking for spectrally non-overlapping maskers.

These results suggest that the spectrum of a complex audio signal should be partitioned

into a discrete set of non-overlapping critical bands. The sound pressure level of each masker

is obtained by integrating the short term power spectral density over the bandwidth of the

corresponding critical band.

2.11 Target Integration

Masking patterns are significantly influenced by the nature of the signaIs being masked.

As previously mentioned, target signaIs result from the quantization process in audio com­

pression. However, spectral boundaries between noise targets are not apparent since the

quantization noise occupies the entire bandwidth of the coded signal. A clear definition of

noise targets is necessary if masking is to be predicted.
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Veldhuis seemingly addressed this issue after he identified that experimental results

using tonal targets were inappropriate for quantization noise targets [29]. He proposed

the definition of unit Bark noise targets sinee the ear integrates sound energy over critical

bands. Although he provided little evidenee, Veldhuis' ideas were consistent with other

psychoacoustic findings. For instance, consider the excitation pattern model of masking

that was introduced in Section 2.6. If the output of any auditory filter differs by more than

1 dB when the masker and target are combined, the target signal is audible. Since auditory

filter bandwidths correspond to critical bandwidths, it appears reasonable to consider unit­

Bark targets. Furthermore, the majority of reported experiments using noise targets employ

critical band-wide noise bands.

2.12 Chapter Summary

This chapter introdueed essential concepts concerning the perception of audio signaIs. The

human auditory processing system was presented and the notion of masking described. Psy­

choacoustic results were subsequently introduced. These form the basis for the application

of masking in audio coding.

Although numerous findings were presented, insufficient data is available to adequately

model masking effects when considering complex signaIs. The majority of reported experi­

ments involve relatively simple sound stimuli. The large number of masking components in

audio signaIs exhibit complex interactions with each other and with the quantization noise

targets. Such complex interactions have not yet been addressed in the literature and their

detailed effects with respect to masking are unknown.

Nevertheless, sorne of the results that were presented in this chapter can be used to

improve the accuracy of existing auditory models. For instance, the application of the

excitation pattern model of masking (Section 2.6), the temporal course of masking (Sec­

tion 2.8) and the discussions regarding masker and target integration (Section 2.10 and

Section 2.11) represent potential contributions to the estimation of masking. Perceptual

models that predict the amount of masking produced by audio signaIs are presented in the

following chapter.
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Chapter 3

Auditory Masking Models

Several of the auditory characteristics that were presented in Chapter 2 have been em­

ployed in audio coding to model masking effects of sound stimuli. As a result, various

masking models have been proposed with different levels of accuracy and complexity. Four

recognized auditory models that predict the amount of masking are presented in this chap­

ter. AlI of these models are based on the excitation pattern model of masking, which was

introduced in Section 2.6. FinalIy, a novel auditory model is presented that attempts to

solve several of the inadequacies of current models.

3.1 Johnston's Model

Johnston proposed an auditory masking model in [55] that was largely based on the work

of Schroeder [23]. Johnston's model was used to derive a short-term spectral masking

threshold, from which quantization noise was shaped in a transform coder. The model

operates on 64 ms frames of audio signaIs sampled at 32 kHz, yielding a spectral resolution

of 15.625 Hz per frequency bin.

The first step in threshold calculation corresponds to critical band analysis. The short­

term power spectrum is obtained from the complex spectrum of the input signal as follows:

(3.1)
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where X[k] represent the DFT coefficients of the input signal1. The energy in each critical

band is calculated by partitioning the power spectrum into non-overlapping maskers, each

having unit-Bark width,
bhi

B[i] = L P[k],
k=bli

(3.2)

where bli and bhi are the lower and upper boundaries of critical band i and B[i] is the band

energy.

The critical band spectrum is spread in order to estimate masking effects between unit­

Bark maskers. The spreading function, S, which has lower and upper slopes of 10 dB/Bark

and - 25 dB/Bark, is described analytically by:

Si,j = 15.81 + 7.5((j - i) + 0.474) - 17.5(1 + ((j - i) + 0.474)2)1/2 dB, (3.3)

where i and j represent the Bark indices of the target and masker bands respectively. The

spreading function is independent of both the centre frequency and level of the masking

signal. The spread Bark spectrum is obtained by convolving the Bark spectrum with the

spreading function,
z

Cri] = L Si,jB[j],
j=1

(3.4)

where Cri] denotes the spread energy in band i and Z is the total number of critical

bands. The convolution is carried out in the power spectrum domain, hence requiring the

conversion of Si,j from its decibel representation. The convolution between the spreading

function and the Bark spectrum is efficiently implemented as a matrix multiplication by

forming the spreading matrix Sij, resulting in:

c=Sb. (3.5)

The noise threshold is obtained from the spread Bark spectrum by subtracting from it

an offset (in decibels), which is dependent on the nature of the masking signal. As tonal

maskers and noise maskers generate different masking patterns, Johnston uses the Spectral

Flatness Measure, SFM, to characterize the tonality of the signal. The Spectral Flatness

1For a frame of the input signal, the coefficients of a Discrete Fourier Transform (DFT) correspond to
the samples at equally spaced frequencies of the Discrete-Time Fourier Transform (DTFT).
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Measure is a ratio of the Geometrie Mean (GM) to the Arithmetic Mean (AM) of the power

spectrum,
GM

SFMdB = 10 IOglO AM'

The result is subsequently converted to a tonality coefficient a, according to:

. (SFMdB )a = mIn SFM ,1,
dBmax

(3.6)

(3.7)

where SFMdBmax = -60 dB. A signal that is purely tonal would yield a coefficient a = 1,

whereas a noise-like signal has a coefficient a approaching zero.

The tonality index, a, is used to geometrically weight the two different threshold offsets

produced by tonal maskers and noise maskers. For the former, Johnston estimates the

noise threshold to be 14.5 + i dB below the spread Bark spectrum Cri), where i is the

Bark frequency. Noise maskers have a uniform masking index of 5.5 dB across the Bark

spectrum. The resulting offset, G[i), to be subtracted from Cri], is given by:

G[i] = a(14.5 + i) + 5.5 (1 - a) dB.

The spread threshold, T[i), is computed as:

T[i] = lOIoglO (C[i])-(O[i]/lO).

(3.8)

(3.9)

The next step involves the inversion of the convolution operation that was required in the

computation of the spread threshold, T[i]. The rationale underlying this process is related

to the excitation pattern model of masking. A target signal is audible if the difference

between the excitation patterns produced by the masker individually and the combination

of masker and target is less than a critical value. Assuming linear summation of excitation

patterns in the power domain, T[i] represents the maximum acceptable excitation produced

by the target signal. As a result, the noise power is obtained by deconvolving its excitation

pattern, T[i], with the spreading function. Johnston argued that this procedure is highly

unstable, owing to the shape of the spreading function. He proposed a renormalization

of the noise energy threshold rather than deconvolution. The renormalization multiplies

each T[i] by the inverse of the energy gain per band, assuming each band has unit energy.

This compensates for the increase in critical band energy estimates that result from the
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convolution with the spreading function. The normalized threshold is designated as T[i].
Finally, the normalized threshold, T[i], is compared to the absolute threshold of hearing.

In view of the fact that the playback levels are unknown, absolute thresholds are established

such that a signal of 4 kHz, having a peak amplitude of ±1 least significant bit (assuming

16-bit coding per sample), is at the threshold of audibility. Equivalently, the assumed

playback level of a full scale sinusoid is 86.9 dB SPL. The maximum value between T[i]
and the absolute threshold of hearing is chosen within each critical band, yielding the final

masking threshold.

3.2 MPEG-l Psychoacoustic Model 1

The Moving Pictures Expert Group (MPEG) draft [6] provides two informative psychoa­

coustic models that compute the just-noticeable level of noise for signal coding. This

section describes the first of the auditory masking models, while the second is presented

in Section 3.3. The output of the auditory model is a Signal-to-Mask Ratio for each coder

sub-band. The model operates on different frame sizes, depending on the sampling rate of

the input signal.

The masking threshold is computed from the short-term power spectral density esti­

mate of the input signal. The power density spectrum is obtained from the FFT of the

input signal, following multiplication by a Hann window. The magnitude of each spectral

component is converted to a decibel scale, yielding the estimate P[k]. The power spec­

trum is normalized to an anticipated playback level of 96 dB SPL, such that the maximum

spectral component corresponds to this value.

The following step involves the discrimination between tonal and noise maskers. This

accounts for the dependence of masking thresholds on the nature of the maskers. Firstly,

tonal components are identified through the detection of local maxima within the power

spectrum. A component is labelled as a local maximum if P[k] > P[k - 1] and P[k] 2:
P[k + 1]. Components are declared as tonal if P[k] - P[k + j] 2: 7 dB, where j lies within

a neighbourhood that is dependent on the centre frequency, k. The sound pressure level of

the tonal masker, PTM (Z), where z is the Bark value of the frequency line k, is computed

as follows:

PTM (Z) = 10 loglO (lOP[k-l]/lO + lOP[kl/lO + lOP[k+l J/lO). (3.10)
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Tonal maskers are removed from the power spectrum, P[k], by setting aU frequency lines

within the examined range to -00. The sound pressure levels of noise maskers are obtained

by summing the energies of spectrallines within each critical band, yielding PNM(Z).

Subsequently, the number of maskers considered for threshold computation is reduced.

At first, only maskers having a level above the absolute threshold of hearing are retained.

A decimation process then occurs between multiple tonal maskers that lie within half of

a critical band. The tonal masker having the highest level is maintained while the other

elements are removed from the directory of maskers.

The contribution of each masker to the overaU masking threshold is evaluated. The

spread of masking effects is modeUed using the spreading function described below:

17~z - 0.4 PM (Zj) + 11

(0.4 PM (Zj) + 6)~z

s(Zj,~Z,PM(Zj)) = -17~z

for -3 ~ ~z < -1,

for -1 ~ ~z < 0,

for 0 ~ ~z < 1, (3.11)

-00 otherwise,

where Zj, ~z and PM(Zj) represent respectively the masker Bark frequency, the Bark fre­

quency separation between the masker and target and the sound pressure level of the

masker. The spread of masking is only considered within the range of -3 ~ ~z < 8, for

reasons of implementation complexity.

The masking indices for tonal maskers, aTM(z), and noise maskers, aNM(z), expressed

below in Eq. (3.12), are both frequency dependent. They represent the offset ta be sub­

tracted from the excitation pattern of the masker to obtain the masking pattern.

aTM(Z) = -1.525 - 0.257 Z - 4.5 dB,

aNM(z) = -1.525 - 0.175 Z - 0.5 dB.

The individual masking thresholds from each masker are calculated according to:

(3.12a)

(3:12b)

MTM (Zj, ~z) = PTM (Zj) + aTM(Zj) + s(Zj, ~z, PTM (Zj))

MNM(Zj, ~z) = PNM(Zj) + aNM(Zj) + s(Zj, ~z, PNM(Zj))

dB,

dB,

(3.13a)

(3.13b)
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where Zj represents the masker critical band rate and ,6.z represents the Bark frequency

separation between the masker and target. The individual masking thresholds are computed

for each coder sub-band, using all maskers. The global masking threshold per coder sub­

band is computed by summing the individual masking contributions from each masker

along with the absolute threshold of hearing, TQ(z),

(3.14)

Finally, the Signal-to-Mask Ratios are calculated by subtracting the global masking

threshold, Mg(z), from the signal power in each coder sub-band.

3.3 AAC Auditory Masking Model

An informative psychoacoustic model was given in the Advanced Audio Coding (AAC)

standard [7] that is practically identical to the second psychoacoustic model presented

in [6]. The model evaluates the maximum inaudible distortion energy for the coding of a

frame of audio. The outputs are a Signal-to-Mask Ratio (SMR) and an energy threshold

for each coder subband. The masking model is scalable in the sense that it accommodates

a variety of input signal sampling rates and provides for two different frame lengths.

The first step in threshold calculation is the evaluation of the complex spectrum of the

input signal. After multiplication by a Hann window, an FFT is computed, yielding X[k].
X[k] is represented in terms of its magnitude, r[k], and phase components, <j>[k],

X[k] = r[k] ei</>[k]. (3.15)

The energy in each coder partition is calculated by summing the energies of each component

within a sub-band,
kh

e[b] = L r 2 [k],
k=kl

(3.16)

where kz and kh denote the lower and upper boundaries of sub-band b.

The tonality of the input signal, which is used to estimate the amount of masking

produced, is estimated using a method proposed in [56]. Rather than providing a global
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value, this method evaluates a local tonality index for each sub-band that is estimated

by means of a coherence measure. The coherence measure corresponds to a prediction of

spectral components, in polar coordinates, from the spectrum of the two preceding frames,

rpred[kl = rt-1[kl + (rt-dkl- rt-2[k)) ,

4>pred[k] = 4>t-1[k] + (4)t-dk] - 4>t-2[k)) ,

(3.17a)

(3.17b)

where rpred and 4>pred represent the predieted magnitude and phase. Each component pre­

diction pair is transformed to an unpredictability measure, c[k], by comparing with the

actual spectral pair,
c[k] = dist(X[k], Xpred[k))

r[k] + irpred[k] l '
where the distance operator is defined as:

dist(X[k], Xpred[k)) =IX[kl- Xpred[kll

=( (r[k] cos (4)[k)) - rpred[k] cos (4)pred[k))r+

2) 1/2
(r[k] sin (4)[k)) - rpred[k] sin (4)pred[k)) )

(3.18)

(3.19)

The partition unpredictability, c[b] , is computed by weighting each unpredietability measure

by its component energy, as follows:

kh

c[b] = L c[k] r2 [k].
k=k1

(3.20)

Subsequently, the partition energy, e[b], and unpredictability measure, c[b], are individ­

ually convolved with the spreading function. The resulting spread partition energy and

spread unpredictability are respectively denoted es[b] and cs[b]. The spreading curve em­

ployed by the AAC model is referred to as the rounded modified function [57], as shown

in Fig. 3.1. Following the convolution, the spread unpredictability, cs[b], is normalized by

the spread energy, es[b]. This procedure is required because of the weighting by the signal

energy that was involved in the computation of the unpredictability measure. The result

of the normalization is designated as i\[b].
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The spread energy, es[b], is normalized as well due to the nature of the spreading

funetion. This accounts for the increase in energy estimates within each sub-band that

results from the convolution operation. The normalized spread energy is denoted es [b], as

shown below:
- lb] = es[b]
es n[b] .

The normalization factor, n[b], is given by:

bmax

n[b] = L sri, b],
i=l

(3.21)

(3.22)

where sri, b] represents the spreading between masker i and target b.

Subsequently, the unpredietability, cs[b], is converted to a tonality index, t[b]. The

tonality index is limited to the range 0 < t[b] < 1, where a purely tonal signal would yield

a unit value,

t[b] = -0.299 - 0.43 loge (Cs [b]). (3.23)

The required Signal-to-Noise Ratio per band for noise inaudibility is computed from

the tonality indices. The value for Noise-Masking-Tone (NMT) is seleeted as 6 dB for all
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bands, while the value for Tone-Masking-Noise (TMN) is selected as 18 dB.

SNR[bJ = 18t[bJ + 6(1 - t[bJ)
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(3.24)

Next, the noise energy threshold, n[b], is calculated from the signal energy and the

required SNR per band,
n[bJ = ës[bJ lO-SNR[bl/lO. (3.25)

The AAC auditory model avoids pre-echoes2 in threshold calculation by comparing the

current noise energy threshold with the noise energy threshold calculated in the previous

frame, nprev[bJ. The comparison is accomplished on a per band basis, as follows:

n[bJ = min(n[b], (2nprev [bJ)). (3.26)

This last step ensures that the masking threshold is not biased by a high energy onset

occurring near the end of an analysis window. The resulting noise threshold is compared

with the threshold in quiet. The maximum between the two values is retained within each

band.

Finally, the Signal-to-Mask Ratio is calculate per coder sub-band, as shown below:

3.4 PEAQ Model

(
e[bJ )

SMR[bJ = 10 IOglO n[bJ . (3.27)

An auditory model was developed by the International Telecommunications Union (ITU)

within the framework of the Perceptual Evaluation of Audio Quality (adopted as ITU­

R BS.1387) [13J. PEAQ provides advanced metrics for the assessment of the perceptual

quality of audio signaIs. Among other model output variables, a masking threshold is

estimated from the auditory model. This section describes the various steps involved in the

computation of the masking threshold within PEAQ. It is worthy of note that this model

is the most advanced studied thus far.

The masking threshold is calculated from an FFT-based model of the ear. A 48 kHz

2Pre-echoes occur when a signal with a sharp onset begins in the later segment of an analysis window,
following a period of low energy [3J.
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input signal is segmented into frames of 2048 samples having 50% overlap. Following the

multiplication by a Hann window, a short-time discrete Fourier transform is computed.

The frequency domain signal, X [k] for 0 ~ k ~ (NF - 1), is normalized to a recommended

playback level of 92 dB 8PL.

The frequency domain signal undergoes an attenuation process which combines the

filtering effects of the outer and middle ear. An expression was adopted from [19] for the

transfer function of the outer~middleear system, given by:

AdB = -2.184(1/1000to.8 + 6.5e-O.6(f/lOOO-3.W - 10-3(1/1000)3.6,

W(I) = lOAdB (f)/2o,
(3.28)

where f is represented in Hz. The vector weights to be applied to the normalized FFT

outputs are given by:

W[k] =W(~), (3.29)

where Fs represents the input signal sampling frequency. The outer ear weighted outputs

are referred to as Xw[k],
(3.30)

where GL represents the scaling factor for playback level normalization.

The frequency spectrum is subsequently partitioned into nonoverlapping bands accord­

ing to a critical band scale. The pitch mapping is calculated from an approximation pro­

posed in [23],

z = 7 arcsinh ( 6~0 ) , (3.31)

where z represents the critical band rate in Bark units. The size of each frequency group

corresponds to a resolution of 0.25 Bark, resulting in 109 bands. Each group is charac­

terized by a lower frequency, fdi], a centre frequency, fc[i] and an upper frequency, fu[i].
The energies of the outer ear weighted outputs are summed within each frequency group,

yielding Peri]. The final pitch patterns, E[i], are obtained by adding a frequency dependent

offset that represents the internaI noise of the inner ear. The expression used to model the

internaI noise, EIN , is detailed below in Equation (3.32). The result of this stage is a decibel
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representation of the pitch patterns, L[i].

EINdB(J) = 1.456(J/1000)-0.8,

EIN[iJ = lOEINdB (fc[iJ)/lO.
(3.32)

The excitation patterns are obtained through the spreading of the pitch pattern energies.

The spreading function is adopted from an auditory model developed by Terhardt [19J.
The upper-frequency slope is assumed to be dependent of masker sound pressure level and

frequency, while the lower slope is independent of such factors. The spread of excitation is

performed according to:

{

27(i -1)!1z,
SdB(i, i, E) =

( - 24 - ]c[~ + 2log lO E) (i - i).6.z,

i s, l,

i ? i,
(3.33)

(3.34)S(i l E) = 1 lOSdB (i,I,E)/lO
, , A(l, E) .

where i and l represent respectively the target and masker bands. The resulting spreading

function is given by:

The denominator in the expression, A(I, E), is used to normalize the spread of energy.

Due to its shape, the spreading function increases the energy estimates in each band. The

normalization regulates the energy gain to unity, as A(I, E) is the sum over i of S(i, i, E).

The spread energy in band i is computed by summing the spread energy contributions from

aU bands,
1

Es[i] ~ B;[iJ [t' (E[I]S( i, 1, E[I))) 04 ) "' (3.35)

An additional term is incIuded to reverse the convolution operation required in the evalu­

ation of the spread energy, as proposed by Johnston [55J. Bs[iJ is computed by summing

the spread energies of aU bands, assuming they have unit energy,

1

Bs[i] = [~1 (S(i, l, Eo))OA) 0.4

1=0

(3.36)

Forward masking effects are represented by smearing the band energies over time. A

bank of first order low-pass filters is used to model the time domain spreading. The
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frequency dependent time constants of the filters are computed as:

, 100
7[1,] = 7 min + fc[i] (7100 - 7min),
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(3.37)

where 7100 = 0.03 sand 7 m in = 0.008 s. The final excitation patterns are calculated accord­

ing to:

Ef[i, n] - a[i]Ef[i, n - 1] + (1 - a[i])Es[i, n),

Es[i, n] = max(Ef[i, n), Es[i, n]),

where a[i] is derived from the time constants by:

a[i] = exp ( - 187.~ 7[i]) .

(3.38)

(3.39)

Finally, the masking threshold is computed by subtracting a frequency dependent offset,

in decibels, from the excitation patterns. The masking offset, m(k), is given by:

m[i] = {3.0'
(0.25)2 i,

0.25i ~ 12,

0.25i> 12.
(3.40)

The resulting masking threshold per band, M(z), is calculated as follows:

M['] = Es[i]1, .!!:!.lfl'
1010

3.5 Current Model Inadequacies

(3.41)

Four of the most prominent auditory models have been presented, ranging from Johnston's

low complexity model to the high complexity PEAQ model. However, these models do not

represent certain psychoacoustic findings that were presented in Chapter 2, as discussed

below.
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3.5.1 Determination of Sound Pressure Level
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The determination of sound pressure level is essential in auditory models where the absolute

threshold of hearing and level dependent characteristics are considered. This requires a

proper normalization of the spectrum of the audio signal to an expected playback level. AIl

of the methods described thus far normalize the spectrum according to a single frequency

component. Once the spectrum is normalized, the sound pressure level of a given frequency

band is obtained by summing aIl of the components within that band. This approach is

very sensitive to frequency resolution, which depends on both sampling frequency and frame

size. For instance, the sound pressure level within a frequency band will decrease by 3 dB

if the frequency resolution is halved. This suggests the necessity for a more robust level

computation. The sound pressure level should accurately represent the level presented to

the ear, independently of the frequency resolution of the auditory model.

3.5.2 Additivity of masking

Psychoacoustic results have revealed the presence of excess masking when combining the ef­

fects of individual maskers. Excluding PEAQ, auditory models generally combine separate

masking thresholds using a power spectrum summation. This results in an underestimation

of global masking. On the other hand, the PEAQ model employs Lutfi's power-Iaw addition

to combine masking effects. Although Lutfi's model yields more accurate predictions, there

exist uncertainties regarding the correctness of its application. The root of the problem lies

in masker integration, which is described in the foIlowing section.

3.5.3 Masker Integration

In Section 2.10, arguments were presented that suggest noise maskers should be integrated

over a complete critical band. While aIl of the auditory models partition the spectrum

according to a critical band scale, Johnston's model is the only one that integrates the

spectrum over a complete Bark. The other models attempt to increase their resolution by

using bands that are fractions of critical bands. The increase in resolution is undesirable

when considering non-linear models as it has a significant effect on masking estimates.
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3.5.4 Modelling Simultaneous and Temporal Masking
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Masking threshold computation generally commences by estimating simultaneous masking

effects. The more intricate models, such as AAC [7] and PEAQ [13], also estimate for­

ward masking patterns. The effects of simultaneous and temporal masking are modelled

individually and their corresponding thresholds are combined to yield the overall threshold.

Aud~o signaIs have much more complex temporal patterns than the masking stimuli that

were used in masking experiments. Alluding to Section 2.5, simultaneous masking occurs

when the masker and target signaIs are time aligned. Related masking experiments usually

employ steady-state maskers, i.e., components that have been audible for a considerable

amount of time. Simultaneous masking models do not consider the duration of masking

components. As a result, transient components are modelled as steady-state maskers.

On the other hand, temporal masking occurs prior to the onset of a masker or after

its offset. Forward masking models typically use a low pass fllter to estimate the temporal

masking contribution. This method assumes that all of the components that were present

in the previous frame are no longer present in the current frame. This is an incorrect

assumption as most signal components last several frames. It is thus important to consider

the temporal course of masking components as well as the temporal position of target

signaIs with respect to these maskers, as suggested in Section 2.8.

3.5.5 Application of the Excitation Pattern Model of Masking

The four auditory models presented hitherto originate from the excitation pattern model of

masking. In Section 3.1, the deconvolution problem was introduced as a result of the appli­

cation of this model. Johnson suggested renormalization to approximate the result. This

procedure was adopted as well by the PEAQ auditory model. As for the MPEG models,

the need for deaspreading remained unacknowledged. The deconvolution issue is addressed

later in Chapter 4, where a solution based on the bit allocation scheme is proposed. Rather

than despreading the calculated threshold, the distribution of quantization noise takes into

consideration its excitation pattern.
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3.6 A Novel Auditory Model
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The following section describes an innovative auditory model that was developed for the

purpose of noise shaping in audio coders. This model predicts masking while incorporating

the psychoacoustic results that were presented in Chapter 2.

3.6.1 Time-to-Frequency Mapping

The first step in threshold prediction is a time-to-frequency conversion. A standard FFT

is computed from a frame of the input signal, resulting in the spectrum X[k]. The sound

pressure density is obtained from the spectrum as follows:

[ ]
_'X[k]12

Pk - ç , (3.42)

where ç represents a normalization constant. The sound pressure level of a given masking

component is obtained by integrating the density over its occupied bandwidth, as described

in Section 2.1. Because of the discrete nature of the FFT, the density is composed of samples

having !::.j frequency separation. The continuous integration is approximated by summing

the density samples, weighted by their frequency interval, !::.j. The sound pressure level of

the ith component is given by:

L[i] =1 P(j)dj ~ L P[k]!::.j,
Je:Fi keKi

(3.43)

where :Fi represents the frequency range and ICi represents the corresponding range of

discrete indices. The multiplication by !::.j guarantees that the SPL accurately represents

the level of the continuous-time signal presented to the ear, regardless of the spectral

resolution of the mode!.

The normalization is required to ensure that components are considered at their play­

back levels. When unknown, the playback level is chosen such that a full scale sinusoid

has an overall sound pressure level of 92 dB. This implies that the scaling factor corre­

sponds to the inverse of the power of a full scale sinusoid. Although sinusoids have line

spectra, temporal windowing spreads the power of the tone into surrounding components.

The power of a sinusoid is calculated using the integral approximation described in Equa-
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tion (3.43). The integration should be performed over aU frequency components as a result

of the window spreading. However, the majority of the power of the sinusoid is contained

within three frequency components: the component closest to the centre frequency of the

sinusoid and both of its neighbouring components. As a result, the integral approximation

only considers these three components.

3.6.2 Masker Identification

Masking components must be identified from the spectrum of the audio signal. This task is

accomplished by first locating tonal maskers within the sound pressure density, P[k]. Noise

maskers are obtained from the remaining spectral components.

A variety of methods have been proposed for the extraction of tonal components from

complex spectra. Of these, peak picking has been extensively used [19, 58, 59]. This

technique estimates the frequencies of sinusoids as the locations of the peaks within the

spectrum. Details underlying peak picking for the current work are similar to those devel­

oped by Terhardt [19]. The sound pressure density is scanned for local maxima, such that

P[k] > P[k - 1] and P[k] 2: P[k + 1]. Candidates found through this criterion are tested

according to:

(3.44)

where j = -3, -2,2,3 and PdB[k] is the decibel representation of P[k]. The latter condition

ensures that tonal components lie above neighbouring spectral components by at least 7 dB.

The sound pressure level of an uncovered sinusoid is obtained by integrating the density

over the region which it is spread. Again, the integration is approximated by summing

the central component with the two neighbouring components, weighted by the frequency

resolution. The sound pressure level of the ith sinusoid, centred at the kth frequency bin,

is given by:

LT[i] = (P[k - 1] + P[k] + P[k + 1])~f. (3.45)

Along with its level, LT[i], the centre frequency of the sinusoid, Wi, is kept on record,

(3.46)

Detected sinusoids are removed from P[k] by setting aU three components within their

summation range to zero. This ensures that noise masker estimation is not biased by tonal
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components.

Noise maskers are obtained by partitioning the spectrum into non-overlapping critical

bands, as suggested in Section 2.10. The level of a given noise masker, LN[i], is calculated by

integrating P[k] over its corresponding critical band. The frequency-to-Bark conversion is

calculated according to the mapping given by Schroeder [23], expressed in Equation (3.31).

3.6.3 Masker Temporal Structure

As previously mentioned, the tracking of masker variations between consecutive frames

is essential for modelling the temporal course of masking. In Section 2.8, results on the

temporal course of tonal maskers were presented. Considerably fewer results pertaining to

the temporal structure of noise masking patterns are available in literature. As such, the

temporal structure of noise maskers is neglected. The assumption that masking patterns

are invariant to temporal variations of noise maskers is reasonable. By nature, noise bands

have inherent random amplitude fluctuations. The power of noise bands usually differ

between frames, making it difficult to track their evolution.

The tracking of tonal maskers is accomplished using a method proposed by McAulay

and Quatieri for sinusoidal coding [58]. In sinusoidal coding, speech signaIs are synthesized

based on a sinusoidal representation. Sinusoidal parameters estimated in one frame are

matched with those of the previous frame to allow a continuous evolution of sinusoids.

The process of matching tones is based on the minimization of frequency deviation. The

concept of birth and death of sinusoidal components is also introduced to account for rapid

movements in spectral peaks. As a result, the duration of each tone is given in number of

frames. The algorithm is described below.

Let wj-l and wi denote respectively the frequencies of the jth tone in frame (n - 1)

and the ith tone in frame n. N and M represent the number of sinusoids detected in each

frame, where N =1= M in general . Further, assume that matches have been found for the

first (i - 1) sinusoids in frame n. A set of candidate matches for frequency i is evaluated

according to the criterion:

(3.47)

The matching interval ~ was selected as 0.1 x wi, based on the work of Levine [60]. This

implies that the frequency of atone can vary by as much as 10% between consecutive frames.

In the case where no candidates satisfy Equation (3.47), the ith sinusoid is considereda birth
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having a duration of zero frames. This particular scenario is illustrated in Figure 3.2(a).

When candidates are available, a tentative match is selected with component l within the

set, for which the frequency deviation is smallest, i.e.,

(3.48)

A match is not yet declared since a better correspondence for wr-1 might be available with

another unmatched sinusoid in frame n. The match is verified by ensuring that,

Iw"!' - wn-11 < Iwn - wn-11
~ 1 k l , (3.49)

for k > i. If this condition is satisfied, the match is confirmed between wr-1 and wi, as

shown in Figure 3.2(b). If on the other hand Eq. 3.49 fails, two situations are possible.

Firstly, no other frequency lies within the interval b. and sinusoid i is declared a birth. In

the second case, frequency wr_l1 is unmatched and lies within the interval b.. In this case,

a match is declared and the duration of sinusoid i is computed. Both circumstances are

illustrated in Figure 3.2(c) and Figure 3.2(d). Once complete, the process is recommenced

with sinusoid (i + 1) until all sinusoids in frame n have been considered.

After trajectories are formed by minimizing frequency deviation, the amplitudes of

matched sinusoids are compared in the search for discontinuities. If sinusoid levels differ

by more than 15 dB, they are considered as two different trajectories, resulting in a birth

for the current frame and death in the previous. This additional criterion was proposed by

Levine within the scope of his work on multiresolution sinusoidal analysis [60]. An example

of the sinusoid tracking procedure is illustrated in Figure 3.3.

The output of this stage is the critical band rate and sound pressure level of tonal and

noise maskers. Component age, expressed in number of frames, is available as well for

sinusoids. Since sinusoidal masking effects are stable after 100 ms, a maximum duration

corresponding to this value is considered. For example, a duration ranging from 0 to 4

frames is sufficient for a model employing 20 ms frames.

3.6.4 Excitation Patterns

Following the identification of maskers from the power spectrum of the input signal, masker

excitation patterns are computed. Both tonal and noise maskers are spread using the same
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Fig. 3.2 Possible scenarios resulting from the sinusoid tracking procedure,
adapted from [58].

upper and Iower slopes proposed by Terhardt [19]:

{

27(i -I)~z,
SdB[i, l, L[i)) =

( -24 - Jc[n + 0.2L[i]) (i - I)~z,

i 5: l,

i ?:. l,
(3.50)

where fc[l] and L[I] correspond to the masker centre frequency, expressed in hertz, and

sound pressure Ievel. The spread energy of each masker is evaluated per target signal.

Target signaIs are organized as a set of non-overlapping unit-Bark frequency bands tha,t

span the entire spectrum of the input signal, as suggested in Section 2.11. The resulting
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Fig. 3.3 Example of the sinusoid tracking procedure spanning a period of
four frames, adapted from [58].

excitation patterns are expressed in matrix format as EN and ET, produced by noise and

tonal maskers respectively.

3.6.5 Masking Index

A masking index is subtracted from the individual excitation patterns in order to obtain

the masking patterns, MN and MT. The masking index for noise maskers, IN, is set to

5.5 dB. The masking index for tonal maskers is given by:

[ ] 12.5 [0]fT i = IN + --DT 1, ,
1]

(3.51)

where 1] represents the maximum component duration and DT[i] represents the duration

of the ith tonal component. As a result, the masking index of atone birth is identical to

that of a noise masker, which is consistent with the argument that energy splatter renders

short tones equivalent to noise maskers. On the other hand, the masking index of stable

tones corresponds to 18 dB.
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3.6.6 Masking Threshold
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The masking threshold is obtained by combining the individual masking patterns produced

by noise and tonal maskers. Masking additivity is performed according to the power-Iaw

method that was described in Section 2.9. The resulting masking threshold per critical

band, M[i], is given by

(3.52)

where p was chosen to be 0.5. Coincidently, the selected value of p results in the addition

of masking in the magnitude domain rather than in the power domain. Finally, the SMR

is evaluated by dividing the signal power per critical band by the masking threshold.

According to the excitation pattern model of masking, the computed threshold, M,

corresponds ta the audibility threshold for the excitation produced by the target signal.

The de-spreading of the masking threshold is addressed in the following chapter, where a

solution is presented as part of the bit allocation scheme. As a result, the output of the

novel auditory model remains the masking threshold for the excitation produced by the

noise targets.

3.7 Chapter Summary

This chapter has presented four auditory masking models that have been developed for the

purposes of audio coding and the evaluation of perceptual quality of audio signaIs. The

masking models were described and their shortcomings identified. Finally, a novel auditory

model was proposed that considers the psychoacoustic findings that were presented in

Chapter 2. The deconvolution problem which results from the application of the excitation

pattern model of masking was considered. The proposed model estimates a threshold that

represents the maximum inaudible excitation produced by a target signal. Rather than de­

spreading the evaluated threshold, a solution to the deconvolution problem was proposed

within the adaptive bit allocation algorithm, which is presented in the following chapter.
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Chapter 4

Perceptual Bit Allocation for

Low-Rate Coding

Various models that predict the amount of masking produced by complex audio signaIs

were presented in the previous chapter. According to the excitation pattern model of

masking, such models evaluate the maximum inaudible level of the excitation produced by

a quantization noise target. The deconvolution problem was identified whereby masking

thresholds must be de-spread in order to evaluate a limit in noise power.

This chapter examines the application of perceptual models to audio coding. Different

bit allocation strategies that consider auditory masking are presented. Following, a novel

perceptual bit allocation scheme is presented that attempts to solve the deconvolution

problem. The proposed algorithm considers the excitation produced by the quantization

noise targets in the allocation of information bits to coder sub-bands.

4.1 Adaptive Bit Allocation

Spectral components of the audio signal are generally grouped into coder sub-bands. As

such, coder sub-bands are quantized individually; a quantizer is associated with a sub-band.

A fixed number of bits are available to represent aH of the spectral components in every

analysis frame. However, the number of bits allocated to each sub-band can vary from

one frame to another. The underlying constraint is that the total number of allocated bits

remains constant.

Information bits are allocated to coder sub-bands such that a distortion criterion is
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optimized. The process is known as spectral noise shaping, where the spectrum of the

quantization noise is shaped according to a certain criterion. Distortion measures can be

categorized as either non-perceptual or perceptual. In either case, the distortion measure

generally depends on the amount of quantization noise present in the reconstructed signal.

Signal-to-Noise Ratio, among others, is an example of anon-perceptual distortion measure.

The amount of noise above the masking threshold (i. e., audible noise) is an example of a

perceptual criterion. The allocation of bits to coder sub-bands is performed using the

greedy algorithm, which is described in the following section.

4.1.1 Greedy Bit Allocation Algorithm

The greedy algorithm is a simple and intuitive method for achieving integer-constrained

bit allocation [61]. The algorithm is performed iteratively, ensuring an integer assignment

of bits to each quantizer. At each iteration, one bit is allocated to the quantizer for which

the decrease in a distortion measure is largest. The algorithm is greedy since bit allocations

are optimized per iteration rather than considering the final distortion. Segall argued that

the greedy algorithm is optimal when the individual distortion functions are convex and

monotonically decrease with the number of allocated bits and the total distortion is the

sum of the individual distortions [62]. The algorithm, as described in [61], is summarized

below.

Assume that B bits are available for N quantizers. Let Wi{b) represent the distortion

function associated with the ith quantizer having b bits. Additionally, let bi(m) represent

the number of bits allocated to the ith quantizer after m iterations.

Step Ü -- Initialize the number of bits assigned to each quantizer to zero such that bi(ü) = Ü

for i = 1 ... N.

Step 1 ~ Find the index j such that:

j = arg~ax (Wi(bi(m - 1)) - Wi(bi(m)) ).
t

Step 2 -- Set bj(m + 1) = bj(m) + 1 and bi(m + 1) = bi(m) for all i =1= j.

Step 3 - Set m = m + 1. If m ~ B, return to step 1.

(4.1)

In another form of the greedy algorithm, a bit is assigned where the distortion measure

is largest, which is not necessarily the band where the highest decrease in distortion occurs.
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In this case, Equation (4.1) should be replaced by:

j = arg max Wi (bi(m)).
i

4.1.2 Noise Power Update
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(4.2)

The greedy algorithm, as described above, requires an update of the noise power at each

iteration. Performing the quantization and computing the error in the representation of

the signal is a standard method for updating the noise power. However, this approach can

result in a large processing delay, particularly for complex quantizers.

As an alternative, the average noise reduction resulting from the allocation of a bit can

be used to update the noise power. As described in [2), a large set of data vectors is used

off-lïne to determine the average distortion produced by each quantizer. The rate-distortion

relationship represents the average distortion as a function of the number of allocated bits

per quantizer. The noise power is then updated using the average noise reduction, which

is obtained as a function of the number of bits from the rate-distortion relationship. This

method results in a lower computational complexity at the expense of a lower accuracy in

noise update. An example of rate-distortion data is provided later in Section 5.3.4.

The average noise reduction is particularly appealing for the first implementation of

the greedy algorithm, where allocation is dependent onthe noise reduction rather than the

initial noise power. The noise reduction must be computed for each quantizer, resulting in

as many quantizations as there are quantizers per iteration. In this case, it is advantageous

to use the expected decrease in noise power. A modified version of the greedy algorithm

that employs the reduction in noise is presented later in Section 4.3.

4.2 Noise Energy-based Bit Allocation

This section describes bit allocation schemes for which the distortion function is based on

the quantization noise energy per coder sub-band. Coder sub-bands are treated individually

and noise targets are considered to be independent of each other. More specifically, noise

perception in one sub-band is independent of quantization noise targets in neighbouring sub­

bands. An exact application of the greedy algorithm is performed to achieve bit allocation.

Three different distortion measures are presented.
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The distortion measure in this approach is the absolute noise energy. This is a purely objec­

tive measure that does not require any psychoacoustic processing (i. e., masking threshold

computation). The noise energy is initialized to the normalized signal energy prior to the

first bit allocation iteration. At each iteration, a bit is allocated to the band which has the

highest noise energy. Once a bit is assigned to a band, the quantization noise energy for

that band is reduced.

4.2.2 Noise-to-mask ratio

In this approach, the ratio of the quantization noise to the masking threshold is used as a

distortion criteria. It is assumed that noise is inaudible in one sub-band if it lies below the

masking threshold. This method attempts to distribute equally the perception of noise in

all coder sub-bands.

The Noise-to-Mask Ratio (NMR) is initially set to the Signal-ta-Noise Ratio (SMR).

More specifically, the quantization noise is equal to the signal energy in each band prior

to bit assignment. Information bits are assigned at every iteration to the band having the

largest updated NMR. The allocation of a bit to a band reduces the NMR associated with

that band. Once the NMR in a band reaches zero, the noise energy lies below the masking

threshold, at which point the noise is considered inaudible. No bits are assigned to bands

for which the NMR is negative, unless excess bits are available.

4.2.3 Audible Noise Energy

The distortion criterion in this approach is the absolute level of noise above the masking

threshold. This differs from the previous approach where the relative noise level with

respect to the masking threshold was employed, i. e., the ratio between the noise level

and the masking threshold. In this case, the non-Iogarithmic difference between the noise

level and the masking threshold within each coder sub-band is considered. As a result,

information bits are distributed such that the overall amount of audible noise is minimized.
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Najafzadeh and Kabal performed informallistening tests to evaluate subjective preferences

of the noise energy-based methods [63]. A narrow-band low-rate audio coder was employed

to compare the bit allocation schemes.

As expected, the quantized outputs resulting from the absolute energy approach had

a higher SNR than that of any other method. Since audio signaIs typically exhibit more

energyat low frequencies, more bits were allocated to this region. Higher frequency compo­

nents were poorly represented using this criterion for bit allocation. This method yielded

the least pleasant of reconstructed signaIs for listening subjects. The bit allocation schemes

that employa masking threshold provided similar perceptual quality. However, listening

subjects favoured the NMR-based approach as it caused less high frequency distortion

than the audible noise method. As a result of Najafzadeh's findings, only the NMR-based

approach will be considered herein within the class of noise energy-based methods.

4.3 Noise Excitation-based Bit Allocation

Target signaIs from different coder sub-bands were considered to be independent in the

previous section. However, owing to the properties of the ear, the quantization noise in one

band is generally perceived in neighbouring bands. Noise targets excite hair cells associated

with adjacent bands similarly to masker signals. The combined quantization noise targets

exhibit a complex excitation pattern.

According to the excitation pattern model of masking, the threshold for noise audibility

is given in the spread domain, i. e., following convolution with the spreading function. How­

ever, bit allocation is performed in the non-spread domain. Johnston identified the need to

despread the predicted masking threshold in order to apply it to noise shaping [55]. Many

researchers have proposed models that have neglected or simplified this step (e.g., renor­

malization of the masking threshold). The current work suggests employing the excitation

of the quantization noise in the bit allocation rather than attempting the deconvolution

of the masking threshold. In other words, the bit allocation is performed by taking into

account the spread of the excitation of the quantization noise.

Let Es(z) and ER(z) represent respectively the excitation patterns of the clean and

reconstructed audio signaIs. The excitation pattern model of masking states that the noise
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(4.3)

where MTh represents the masking threshold. Assuming power domain addition of the

excitation patterns produced by the clean signal and the quantization error, Equation (4.3)

can be rewritten as:

(4.4)

(4.5)

where EQ(z) represents the excitation pattern produced by the quantization noise. As such,

the objective of noise excitation-based bit allocation is to minimize EQ(z) with respect to

MTH(Z).

A difficulty emerges with respect to the application of the greedy allocation algorithm

when considering noise excitation. The distortion measure is not localized to coder sub­

bands. More specifically, assigning an information bit to one band affects the noise exci­

tation in other bands. The greedy bit allocation algorithm must be adapted accordingly.

Rather than optimizing the distortion on per band basis, the objective is to obtain the

maximum auditory gain at each allocation iteration.

4.3.1 Previous Noise-Excitation-Based Methods

Perreau-Guimaraes et al. proposed a bit allocation scheme that is based on the excitation

produced by the quantization noise [64]. Firstly, they argued that bit allocation should be

performed in the Bark frequency scale. Information bits are allocated to basilar sub-bands,

where basilar sub-bands are equivalent to critical bands. Once the allocation is complete,

bits are distributed to the coder sub-bands contained within each basilar sub-band.

Perreau-Guimaraes suggested that the majority of perceived noise results from the basi­

lar sub-band where the ratio of noise excitation to masking threshold is highest. Accord­

ingly, the objective at each iteration of the algorithm is the reduction of noise excitation

in band i o for which:

io = arg~ax (~:~~)).
As a result of spectral spreading, the excitation Eo( io) is influenced by an array of bands

lying in the vicinity of io. The allocation of a bit to an adjacent band may perhaps further

decrease EQ(io) compared to the allocation to io. For instance, the addition of a bit to io

scarcely reduces EQ(io) when the primary contributor to the excitation is a neighbouring
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band. The band to which a bit is allocated is selected as:

jo = argmax (SF(io,j) SQU)),
j
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(4.6)

(4.7)

where SF(io,j) represents the spreading of band j into band i o and SQU) represents the

noise power in band j. Due to the rapid decrease away from the peak of the spreading

function, it is suggested to only consider a restricted group of candidate bands that lie near

io. Once selected, the noise power in band jo is updated along with its contribution to the

overall noise excitation.

Although more accurate than noise energy-based approaches, this bit allocation scheme

optimizes a single band at each iteration. Bit allocation is not performed based on the

overall auditory benefit. A novel bit allocation scheme that considers overall noise audibility

rather than localized noise audibility is presented in the following section.

4.3.2 A Novel Bit Allocation Scheme

In accordance with Perreau-Guimaraes, bit allocation should be performed to basilar sub­

bands. This follows from the discussion in Section 2.11 where it was suggested that noise

targets should be defined over bands of unit-Bark width. Furthermore, the auditory mask­

ing model proposed in Section 3.6 provides masking threshold estimates on a critical band

basis.

At each iteration of the greedy algorithm, a bit is assigned to the basilar band which

yields the highest overall auditory gain. A clear definition of auditory gain is required along

with the corresponding distortion criteria that will be optimized in the allocation. Firstly,

the Noise-Excitation-to-Mask Ratio, or NEMR, is formally introduced within the current

work,

NEMR(z) = EQ(i) .
MTH(i)

The NEMRs in each band are amalgamated to yield a distortion criteria. The current work

proposes the sum of aIl the NEMRs above 1 as the perceptual distortion, D p ,

D p = L NEMR(z).
NEMR(z»l

(4.8)

More specifically, only bands for which the noise excitation is audible are considered in the
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perceptual distortion. The overall auditory gain resulting from the allocation of a bit is

defined as the reduction in perceptual distortion. In addition to the perceptual distortion,

the total distortion, DT, is defined as the sum of all NEMRs,

Z

DT = LNEMR(z).
z=l

(4.9)

The perceptual distortion resulting from each possible allocation must be evaluated so

as to determine which band receives the additional bit. The following steps are performed

independently for each band at each iteration:

Step 1 - Estimate the reduction in noise power resulting from the allocation of a bit to

the ith band. The noise reduction is obtained using the rate-distortion curve

associated with the ith band.

Step 2 -- Compute the reduction in noise excitation produced by the ith band. This is

performed by multiplying the reduction in noise excitation by the spreading

function.

Step 3 - Subtract the reduction in noise excitation to the overall noise excitation estimate.

In order to simplify computational complexity, it is assumed that the excitation

produced by different noise targets is added linearly.

Step 4 - Compute the perceptual distortion and the total distortion resulting from the

allocation of a bit to the ith band.

The information bit is allocated to the band yielding the lowest perceptual distortion. In

the case where bits are abundant, it is possible that the updated perceptual distortion be

null. The remaining bits are allocated using the total distortion criteria.
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This chapter has presented traditional bit allocation methods that are based on the quanti­

zation noise power. From this family of algorithms, the NMR-based approach was deemed

most appropriate and has been selected for the remainder of this thesis. Secondly, noise­

excitation based bit allocation schemes were presented. A novel algorithm that incorporates

psychoacoustic processing along with a new optimization criterion was proposed, whereby

each iteration of the algorithm attempts to minimize overall audible excitation produced

by quantization noise targets.
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Chapter 5

Performance Evaluation

This chapter presents the evaluation of the auditory masking model and the bit allocation

scheme that have been proposed. Firstly, a discussion is provided concerning the validity

of objective and subjective performance metrics for the evaluation of the current work.

Secondly, the experimental setup for subjective evaluation is presented. Performance results

for the adaptive bit allocation scheme are provided, followed by results for the auditory

masking mode!.

5.1 Objective Evaluation

Various objective metrics have been proposed for the quality evaluation of audio signaIs.

Among these, Signal-to-Noise Ratio and Segmental Signal-to-noise Ratio are the most

prevalent. Such metrics measure distortion by simply comparing the original and coded

signaIs, without considering human perception. Accordingly, they are inappropriate for

the evaluation of perceptual-based coding algorithms. Metrics based exclusively on noise

energy favour coding paradigms that minimize overall noise rather than audible noise.

Discrepancies in quality evaluation resulting from the use of SNR are generally larger at

low coding rates, where the amount of coding noise is significant.

Perceptual-based models for quality evaluation have also been proposed, as discussed

in Section 1.4.2. Such methods are designed to represent the quality evaluation of human

listeners. However, these metrics favour the performance of coding schemes that employ

similar perceptual models, rendering them inappropriate for the performance evaluation

of dissimilar auditory masking models. Additionally, the auditory models employed by
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these methods do not accurately represent certain perceptual characteristics, as suggested

in Section 3.5. In essence, objective quality measures are inappropriate for the evaluation

of the current work.

5.2 Subjective Evaluation

Subjective evaluation is the ultimate method for assessing the quality of audio signaIs.

Sound files are presented to listeners that grade and/or compare them according to per­

ceived quality. When presented speech signaIs, listeners generally seek out intelligibility

and naturalness. Overall audible distortion is a common target for the evaluation of music

and general audio signaIs. Although highly indicative of audio quality, subjective listening

tests are expensive with regard to time and resources. Regardless, subjective performance

evaluation is the ideal candidate for assessing the performance of perceptual-based coding

algorithms.

Several informaI listening tests were performed in order to validate the concepts intro­

duced within the current work. Four untrained listeners were presented with the original

sound file, followed by sound files that were processed using different algorithms. Listeners

were asked to compare and rank the processed files from best to worst, in terms of per­

ceptual quality. When undecided, listeners were asked to tie the files that were equally

preferred. The generation of experimental data is described in the following section.

5.3 Experimental Data

The experimental data employed for the performance evaluation of the proposed algorithms

was generated using four different audio segments. The selected signaIs included a female

speech segment, a male speech segment and two music segments.

The original sound files were processed using the test bed that is depicted in Figure 5.1.

AlI original segments were sampled at 16 kHz and represented using Pulse Code Modulation

(PCM) with 16 bits per sample. The test bed implements many features of a perceptual

audio coder. More specificaIly, it is based on the perceptual audio coders developed by

Johnston [55] and Najafzadeh-Azghandi [2]. While it does not implement the entire audio

coding process, the test bed is sufficient for the evaluation of differences between the algo­

rithms under comparison. The development of a complete audio coder is out of the scope
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of the current work.
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Fig. 5.1 Functional block diagram of the proposed test bed.

5.3.1 Time-to-Frequency Mapping and Critical Band Grouping

The time-to-frequency mapping is achieved by first segmenting the input signal into blocks

of 32 ms length, corresponding to 512 samples at a rate of 16 kHz, followed by the multi­

plication with a Hanning window. A 1/16 th frame overlap (Le. 32 samples) is introduced

in order to reduce block-edge distortion effects incurred in the reconstruction. The recon­

struction of the audio signal is achieved using the overlap-add method, as described in [65].

A 512-point FFT is performed on the windowed input signal, yielding the desired frequency

response.

Each coder sub-band includes the frequency components lying within a critical band,

i.e., there exists a one-to-one correspondence between coder sub-bands and critical bands.

This is based on the auditory models under investigation, which report masking thresholds

on a critical band basis. The frequency-to-Bark conversion is calculated according to the

mapping given by Schroeder [23], which is expressed in Equation (2.6). The output of the

critical band grouping stage is represented using a gain scalar and shape vector per critical

band, as described in Section 5.3.3 and Section 5.3.4.

5.3.2 Auditory Masking Model and Perceptual Bit Allocation

The auditory masking threshold evaluation and the perceptual bit allocation stages repre­

sent the algorithms under test. The former computes the masking threshold according to
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the desired model, while the latter determines the number of bits allocated per signal com­

ponent. The bit allocation is performed using the average rate-distortion curve that was

described in Section 4.1.2 for aIl of the algorithms under study. The rate-distortion curve,

which depends on the quantization process , is explained in more detail in Section 5.3.4.

5.3.3 Gain Representation

A scalar gain factor is extracted from each coder sub-band. The gain is computed as the

average energy of aIl components within the sub-band. In a real audio coder, the gain

factors are quantized and transmitted to the decoder. In the test bed, the gain factors are

left unquantized. This simplification is appropriate for the comparison of auditory masking

models and bit allocation schemes, which are only applied to the shape representation.

5.3.4 Shape Quantization

A shape vector represents the contour of the spectral components within a coder sub­

band. More specifically, FFT bins are grouped within a sub-band and normalized by the

associated gain factor to generate the shape vector. The assignment resulting from the bit

allocation stage is applied to the representation of the shape vector.

The objective of this stage is the introduction of quantization noise into the audio

signal spectrum. The quantization of shape vector components is achieved using scalar

product quantizers. Real and imaginary parts of complex components are quantized as

separate elements. Although vector quantizers are generally more efficient in representing

signaIs [61], their design is too complex for the current purpose. Sub-optimal scalar product

quantizers are used, as the aim of the subjective experiment involves the evaluation of

relative performance rather than absolute performance.

Following the gain factor normalization, individual signal components have a "bell­

curve" distribution with zero mean and unit variance. Scalar quantizers, optimized for a

Gaussian source, were designed using the Lloyd-Max algorithm [61]. Provided that the

amount of noise introduced by the quantization process is known at the bit allocation

stage, the approximation of a Gaussian distribution should not jeopardize the comparison

between the auditory models and bit allocation schemes under study.

The amount of quantization noise as a function of the number of allocated bits per coder

sub-band is conveyed to the bit allocation stage through the rate-distortion relationship,
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as described in Section 4.1.2. The rate-distortion relationship represents the average noise

energy as a function of the number of allocated bits. Sample rate-distortion curves for

four coder sub-bands are illustrated in Figure 5.2, given the quantization scheme described

above. The rate-distortion curves can be accurately approximated using a linear function.
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Fig. 5.2 Average distortion as a function of the number of bits assigned
to a coder sub-band. From bottom to top, the curves represent the rate­
distortion relationship for the pt sub-band (5 components), the 5th sub-band
(8 components), the lQth sub-band (12 components) and the 15th sub-band
(24 components).

The estimated slopes are given in Table 5.1 along with the number of components within

each of the 23 coder sub-bands. As the number of components within a band increases,

the gain resulting from the allocation of a bit is smaller. As such, greater reductions in

quantization noise energy are obtained for lower coder sub-bands.

Inputs to the shape quantization stage are the unquantized shape vectors along with

the number of allocated bits per component within each vector. The quantization process

is modelled by adding noise to the individual components, according to the number of

allocated bits. Components for which bits were not allocated in the bit allocation stage

are represented by the mean value of the signal, which corresponds to zero. The following

sections present subjective performance results for the adaptive bit allocation scheme and

auditory model.
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Coder Sub-band Centre Frequency
(Hz)

1 47
2 140
3 237
4 339
5 447
6 565
7 694
8 838
9 998

10 1179
Il 1384
12 1617
13 1883
14 2189
15 2538
16 2940
17 3402
18 3932
19 4544
20 5249
21 6060
22 6996
23 7762

Vector Size
(Number of Components)

5
8
6

6
8
8
8

10
10
12
14
16
18
22
24
28
32
36
42
48
56
64
31

Slope
(dB/bit)

-1.12
-0.72
-0.95
-0.95
-0.72
-0.72
-0.72
-0.58
-0.58
-0.48
-0.42
-0.37
-0.33
-0.27
-0.25
-0.21
-0.18
-0.17
-0.14
-0.12
-0.11

-0.09
-0.20

5.4 Evaluation of the Adaptive Bit Allocation Scheme

The novel bit allocation algorithm was conceived for use with the auditory model that is

described in Section 3.6. However, it is recognized that the algorithm is applicable with

any auditory model that is based on the excitation pattern model of masking (Section 2.6).

Accordingly, the first phase in the validation of the current work involves the evaluation of

the proposed adaptive bit allocation scheme, combined with an impartial reference auditory

model. Johnston's auditory masking model, which is described in Section 3.1, was used as

the reference model. Johnston's model is weIl recognized in the field of audio coding as it
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has been used to determine the bit allocation for perceptual-based audio coders [55].

The perceptual quality of the new bit allocation algorithm was compared to the NMR­

based approach and the method proposed by Perreau-Guimaraes et al., described in Sec­

tion 4.2.2 and Section 4.3.1 respectively. A series of listening tests were performed for the

three bit allocation algorithms. When combined with the noise excitation-based methods

(i.e., the novel algorithm and Perreau-Guimaraes' algorithm), Johnston's masking model

was modified by removing the renormalization step that is suggested in the later stage of

the masking threshold computation. The modification was not required when combined

with the NMR-based approach in the test bed.

The four original sound files were processed using the three different bit assignment

algorithms, combined with Johnston's auditory model, at coding rates of 125,250, 500 and

1000 bits per frame for shape quantization. The selected range of bit rates encompassed

scenarios having significant audible distortion (125 bits per frame) and minute audible

distortion (1000 bits per frame). As a result, 16 different auditory tests were performed per

listener, i. e., one test per original sound file per coding rate. Each auditory test commenced

with the playback of the original uncoded file, followed by the three segments that had been

processed with the bit allocation algorithms under study. As previously mentioned, listeners

were asked to rank the files from best to worst with respect to perceptual quality. When

undecided, listeners were invited to tie the two or three segments having similar quality.

AlI four listeners unanimously ranked the novel bit allocation algorithm in first place

for the lowest three bit rates with aIl sound files. In second place was the NMR-based

approach, followed by the method proposed by Perreau-Guimaraes in the last position.

The differences in perceived quality between the three algorithms were greater for the

lowest bit rate, and decreased with increasing coding rate. For the 1000 bits per frame

test case, all three methods yielded similar quality, with a slight bias towards the novel

algorithm.

The poor quality resulting from Perreau-Guimaraes' method operating at lower bit

rates was of particular interest. An investigation showed that, at such rates, the majority

of bits were allocated to higher frequency critical bands, while low frequency bands received

few or none. Johnston's auditory model computes the masking threshold by subtracting

a frequency dependent offset from the spread Bark power spectrum. The offset generally

increases with frequency, depending on the overall signal tonality. In the bit allocation

stage, the noise excitation is initialized to the spread Bark power spectrum of the input



5 Performance Evaluation 75

signal prior to the first iteration of the greedy bit algorithm. The initial NEMR is equivalent

to the frequency dependent offset that is employed in Johnston's model, which is larger

at high frequencies. Information bits are allocated to high frequency bands since Perreau­

Guimaraes' method targets the band having the highest NEMR at each iteration. Moreover,

small reductions in noise energy are obtained for high frequency allocations (as shown in

Table 5.1), requiring multiple bits to achieve a considerable decrease in local NEMR. The

phenomenon was not observed when operating at the highest coding rate, where the number

of bits was sufficient to reduce high frequency NEMRs and encode other perceptually

relevant bands. This observation clearly demonstrates the danger involved with considering

the noise excitation of a single band at each iteration of the bit allocation. Instead, the

overall noise excitation should be considered at each iteration, as discussed in Section 4.3.2.

In summary, the novel adaptive bit allocation algorithm outperformed the NMR-based

approach and Perreau-Guimaraes' method with regard to perceived quality for aIl listen­

ers. A significant gain was obtained when applying the novel algorithm, particularly at

low coding rates. Accordingly, the novel algorithm will be employed as the reference bit

allocation scheme for the evaluation of the auditory masking model, which is presented in

the following section.

5.5 Evaluation of the Auditory Masking Model

The second phase required for the validation of the current work is the evaluation of the new

auditory model that was proposed in Section 3.6. A subjective experiment was conducted

where perceptual quality using the new auditory model was compared to that of Johnston's

auditory model and the PEAQ model, described in Section 3.1 and Section 3.4 respectively.

The novel bit allocation algorithm (Section 4.3.2) was selected as the reference bit allocation

scheme in the test bed, as suggested in the previous section.

The four original sound files were processed ~sing the three auditory masking models

under study, combined with the new bit allocation algorithm in the test bed, at coding

rates of 250 and 500 bits per frame for shape quantization. The subjective experiment was

performed in a similar manner to that described in the previous section for the evaluation of

the bit allocation scheme. Subjective results were more ambiguous for this set of listening

tests than for the previous experiment. The PEAQ model was generally preferred over

the other two auditory models when applied to the female and male speech segments at
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both coding rates. The novel auditory model warranted the second position, followed by

Johnston's mode!. Nevertheless, differences in perceived quality between the latter two

models were minute. In the case of music segments, aIl three auditory models generated

similar quality reconstructed signaIs. Sorne listeners perceived slightly inferior quality using

the PEAQ model over the other two.

The observed results demonstrated that the proposed auditory model performed sim­

Harly to the other models. The PEAQ masking model yielded the best overall perfor­

mance. The novel auditory model and the PEAQ model differ mainly in the way that

the spectrum of the input signal is decomposed into masking components. The former

clearly distinguishes between tonal and noise maskers, whereas the PEAQ model performs

a high resolution decomposition of the spectrum without identifying the nature of maskers.

Additionally, the new auditory model considers transient masking effects by tracking the

temporal evolution of tonal maskers, while the PEAQ model individually accounts for si­

multaneous and forward masking.

Given the limited number of audio files that were used (2 speech segments and 2 music

segments), it is difficult to draw any meaningful conclusions from the experiment. Further

subjective testing is required, including additional sound files and a larger number of listen­

ers. Extensive testing was not performed in light of the uncertainties related to auditory

masking. As discussed in Section 2.12, insufficient data is available regarding auditory

masking for its application towards complex audio signals. A more in depth understanding

of masking effects is required, which is out of the scope of the current work.

5.6 Chapter Summary

Performance evaluations of the proposed adaptive bit allocation scheme and auditory model

were presented in this chapter. In both cases, results from informaI subjective listening tests

were provided by comparison to other well-recognized paradigms. A significant gain was

observed when considering the adaptive bit allocation algorithm, while average performance

was observed for the novel auditory model.
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Chapter 6

Conclusion

This thesis has focussed on the application of human perception to low-rate audio coding.

The phenomenon of auditory masking was studied along with its use in perceptual coding.

A review of reported psychoacoustic experiments pertaining to auditory masking and the

analysis of existing auditory models allowed for the development of a new auditory masking

model. The proposed model predicts masking from a complex input signal, while consider­

ing the temporal course of masking components as opposed to individually accounting for

simultaneous and forward masking effects. Moreover, a correct application of the excitation

pattern model of masking was achieved by taking into account the spread of excitation of

the quantization noise in the allocation of information bits. A novel bit allocation scheme

was proposed that solves the deconvolution problem, which is applicable to any auditory

masking model that is based on the excitation pattern model of masking.

Through various subjective experiments, the proposed bit allocation algorithm consid­

erably outperformed other methods with respect to perceptual quality. Improvements were

particularly noticeable for low coding rates where quantization noise is audible. As for

the proposed auditory model, performance more or less similar to other auditory masking

models was observed through limited tests. It was concluded that insufficient knowledge

relating to auditory masking is available for accurate estimation of masking thresholds

produced by complex audio signaIs, such as speech or music.

This chapter provides a summary of the current work and presents directions for future

research in the field of perceptual audio coding.
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Firstly, the motivation for low-rate audio compression was presented in Chapter 1. The

basic concept of auditory masking was introduced and its application to audio coding was

described through the presentation of a generic perceptual audio coder in Section 1.2.

The challenges involved in low-rate audio coding were discussed and the need for a more

accurate auditory masking model was rationalized. At low coding rates, the amount of

distortion that is introduced by the quantization process is comparable to the amount

of masking produced by the input signal, giving reason for a more accurate prediction

of masking. Additionally, an overview of other signal processing applications involving

auditory masking was presented in Section 1.4.

Chapter 2 introduced the basic theory of sound levels, along with a description of the

physiology of the human auditory system. The concept of critical bands was presented

in order to explain the frequency resolution of the ear. Subsequently, auditory masking

was thoroughly detailed in Section 2.5, highlighting the differences between simultaneous,

backward and forward masking.

Section 2.6 presented the excitation pattern model of masking, which forms the basis

for the prediction of masking in the proposed work. The model states that a target signal

is inaudible if its presence does not change the output of any auditory fllter by an amount

greater than 1 dB. Assuming power domain addition, a target signal should remain inaudi­

ble if the excitation it produces is 1 dB below the excitation produced by the masker at

any given frequency.

The following sections in Chapter 2 reported various characteristics of auditory masking.

Namely, the temporal course of masking (or transient masking) was described along with

the additivity of masking with multiple maskers. It was suggested that noise maskers and

noise targets spanning wide frequency ranges should be integrated over critical bands when

predicting masking thresholds. Finally, the insufficiency of reported experimental results

relating to auditory masking was discussed. The lack of data results in inaccurate modelling

of the complex interactions that exist between multiple maskers and targets.

Chapter 3 commenced with the presentation of four well-known auditory models that

predict the amount of masking produced by a complex audio signal. The models under

study spanned various levels of complexity, ranging from the simple Johnston model (Sec­

tion 3.1) to the more detailed PEAQ model (Section 3.4). Following their description, a
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discussion identifying the shortcomings of these four models was presented in Section 3.5.

Among other issues, the treatment of different types of masking and the correctness of the

application of the excitation pattern model of masking were noted.

A novel auditory model that predicts masking was presented in Section 3.6. The pro­

posed model includes the psychoacoustic findings that were presented in Chapter 2. Tran­

sient masking effects are modelled rather than individually representing simultaneous and

forward masking effects. The temporal evolution of tonal maskers is tracked, influencing

the amount of masking produced by tones.

The estimated masking threshold represents an upper bound for the excitation produced

by the quantization noise. The need for a deconvolution of the masking threshold prior to

its use for noise shaping has been acknowledged in previous work. However, this process

was neglected or simplified in the four auditory models studied in Chapter 3. The current

work proposed a solution to the deconvolution problem within the bit allocation scheme.

Rather than attempting to despread the masking threshold, bit allocation is performed by

taking into consideration the excitation produced by the quantization noise. The proposed

bit allocation algorithm was presented in Chapter 4

Chapter 4 examined various bit allocation strategies that shape quantization noise in

frequency according to a perceptual criterion. Noise energy-based methods, such as the

SMR approach, were first described, followed by noise excitation-based methods. The

NEMR was formally introduced in this thesis, along with a new distortion criterion for the

allocation of information bits. The new criterion minimizes the overall audible distortion

at each iteration of the bit allocation, rather than minimizing local distortion.

The performance assessment of the proposed work was presented in Chapter 5. Firstly,

arguments supporting the inadequacy of objective performance metrics for the evaluation

of perceptual models were discussed. The need for subjective listening experiments was

justified, followed by a description of the experimental setup in Section 5.3. The evalua­

tion of the proposed bit allocation algorithm was performed in Section 5.4 by comparison

with the NMR-based approach and Perreau-Guimaraes' method. Although few listeners

were used, a unanimous preference for reconstructed signaIs that had been coded with the

new algorithm was observed. A significant improvement in audio quality was perceived,

particularly at low coding rates.

The performance evaluation of the proposed auditory masking model was presented

in Section 5.5. Little or no performance improvements were observed when compared to
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Johnston's model and the PEAQ model. This concurs with the idea that insufficient data

is available regarding auditory masking for its application with complex audio signaIs, as

discussed in Chapter 2.

6.2 Future Research Directions

This section provides guidance for future research in the field of perceptual audio coding.

The predominant issue that remains to be addressed is the insufficiency of psychoacoustic

results and hence, the accuracy of auditory masking models. Additionally, the application

of the proposed bit allocation algorithm to a well-recognized audio coder should be studied.

The majority of reported psychoacoustic experiments that relate to auditory masking

have been performed with the aim of understanding human perception. These experiments

generally isolate a specifie aspect of auditory perception, enabling the use of relatively

simple sound stimuli. Further auditory masking experiments are required, which aim at

understanding the masking of broadband quantization noise targets by complex audio sig­

naIs.

Interactions between masking components in complex audio signaIs are not well under­

stood. For instance, the decomposition of the spectrum of an audio signal into multiple

masking components is oversimplified. Current auditory models generally segment the

spectrum of the input signal into a discrete set of non-overlapping maskers, on a critical

band scale. However, the human ear is composed of a continuum of overlapping auditory

filters. The means by which masking contributions should be combined in such a high

resolution model remains unclear.

Similarly, interactions between maskers and noise targets are not considered in current

auditory models. In audio coding, the quantization noise targets occupy the entire band­

width of the masker signal. The masking threshold is computed without consideration

for the composition of target signaIs. This results from the application of the excitation

pattern model of masking, where the overall level of the signal is considered as the pri­

mary detection cue. However, quantization noise targets might contribute to the masking

threshold by altering detection cues when presented to the ear. Additional psychoacoustic

research must be performed with sound stimuli that are relevant to audio coding.

The current work considered the temporal evolution of tonal maskers when evaluating

their masking effects. Similarly, tracking the temporal course of noise maskers should be
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investigated. Transient masking effects (e.g., the overshoot and undershoot effects) of noise

maskers should be evaluated and a method for tracking the evolution of noise components

in an audio signal should be developed.

The amount of masking produced by a signal may noticeably differ from one listener to

another. Reported masking patterns are generally obtained by averaging masking thresh­

olds observed by different listeners. The auditory model should be extended to represent

the variability in masking thresholds for different listeners.

Reductions in masking levels have been observed when listening with two ears rather

than listening with one [1]. Binaural processing involves the combination and/or compari­

son of sounds received by one ear with those received by the other ear. Binaural masking

effects have received little attention in auditory masking models thus far. Moreover, such

effects are difficult to model as they depend on the physical location of the listener with

respect to the sound source.

Finally, the proposed bit allocation algorithm should be integrated within a low rate

audio coder. The current work did not consider details such as a method for informing

the decoder of the bit allocation. For instance, certain audio coders explicitly inform the

decoder of the bit allocation by means of side information. In this case, the amount of

side information is often overly high for low-rate coders. Other coding schemes dedicate

just enough side information such that the decoder can autonomously determine the bit

allocation. However, this often results in a sub-optimal assignment since the encoder must

also allocate bits according to the limited side information. The integration of the proposed

bit allocation algorithm within various coding schemes should be studied.

This thesis has studied the work of psychoacoustic researchers and audio coding spe­

cialists, and applied human perception to low rate audio coding. Hopefully, the current

work can contribute to the improvement of perceptual quality in low rate audio coders.
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