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ABSTRACT

This thesis focuses on algorithms related to ancestral genome reconstruc-

tion and phylogenetics analyses. Specially, it studies insertion and deletion

(indel) in genomic sequences, their utilities for (1) evolutionary studies of

species families, (2) multiple alignment and phylogenetic trees reconstruction

assessment, and (3) functional DNA sequence annotation. Here, the indel sce-

narios reconstruction problem is presented, in a likelihood framework, and it

can be stated as follows: given a multiple alignment of orthologous sequences

and a phylogenetic tree for these sequences, reconstruct the most likely sce-

nario of insertions and deletions capable of explaining the gaps observed in

the alignment. This problem, that we called the Indel Maximum Likelihood

Problem (IMLP), is an important step toward the reconstruction of ances-

tral genomic sequences, and is important for studying evolutionary processes,

genome function, adaptation and convergence.

In this thesis, first, we showed that we can solve the IMLP using a new type of

tree hidden Markov model whose states correspond to single-base evolution-

ary scenarios and where transitions model dependencies between neighboring

columns. The standard Viterbi and Forward-backward algorithms are opti-

mized to produce the most likely ancestral reconstruction and to compute

the level of confidence associated to specific regions of the reconstruction. A

heuristic is presented to make the method practical for large data sets, while

retaining an extremely high degree of accuracy. The developed methods have

been made available for the community through a web interface. Second we

showed the utilities of the defined indel score for assessing the accuracy of

multiple sequence alignment and phylogenetic tree reconstruction. Third, the
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provided method is included into the framework of the ancestral protein recon-

struction of phages under a reticulate evolution and the evolutionary studies

of the carcinogencity of the Human Papilloma Virus family.

The results presented in this thesis contribute in different areas of research

such as multiple sequence alignment refinement, agreement between phyloge-

netic trees and related multiple sequences alignment, analysis of evolutionary

processes and many other problems related to comparative genomics.
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ABRÉGÉ

Cette thèse traite d’algorithmes pour la reconstruction de génomes ances-

traux et l’analyse phylogénétique. Elle étudie particulièrement les scénarios

d’insertion et délétion (indels) dans les séquences génomiques, leur utilité (1)

pour l’étude des familles d’espèces, (2) pour l’évaluation des alignements multi-

ples de séquences et la reconstruction phylogénétique, (3) et pour l’annotation

de séquences génomiques fonctionnelles. Dans cette thèse, le problème de la

reconstruction du scénario d’indels est étudié en utilisant le critère de max-

imum de vraisemblance. Ce problème peut être défini de la manière suiv-

ante: étant donné un alignement multiple de séquences orthologues et un

arbre phylogénétique traduisant l’histoire évolutive de ces séquences, recon-

struire le scénario d’indels le plus vraisemblable capable d’expliquer les brèches

présentes dans l’alignement. Ce problème, dénommé ”Indel Maximum Like-

lihood Problem (IMLP)”, est une importante étape de la reconstruction de

séquences ancestrales. Il est également important pour l’étude des processus

évolutifs, des fonctions des gènes, de l’adaptation et de la convergence.

Dans une première étape de cette thèse, nous montrons que l’IMLP peut

être résolu en utilisant un nouveau type de données combinant un arbre phy-

logénétique et un modèle de Markov caché. Les états de ce modèle de Markov

caché correspondent à un scénario évolutif d’une colonne de l’alignement. Ses

transitions modélisent la dépendance entre les colonnes voisines de l’alignement.

Les algorithmes standard de Viterbi et de Forward-Backward ont été opti-

misés pour produire le scénario ancestral le plus vraisemblable et pour cal-

culer le niveau de confiance associé aux prédictions. Dans cette thèse, Nous

présentons également une heuristique qui permet d’adapter la méthode à

des données de grandes tailles. En second, nous montrons l’utilité du score
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d’indel dans l’évaluation d’alignement multiple de séquences et de reconstruc-

tion d’arbres phylogénétiques. Troisièmement, la méthode proposée a été im-

plantée dans le projet de reconstruction de séquences protéiques ancestrales

des bactériophages qui ont une évolution réticulée. Elle a également été utilisée

dans l’étude de l’évolution de la carcinogénécité des virus du Papillome Hu-

main.

Les résultats présentés dans cette thèse permettent d’ouvrir la voie sur plusieurs

problèmes comme la correction des erreurs d’alignement, l’étude de la phy-

logénie conjointe à l’alignement multiple de séquences, l’analyse de processus

évolutifs et bien d’autres problèmes de la génomique comparée.
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CHAPTER 1
Introduction

1.1 Genome organization and evolution

One of the major outcomes of the Darwinian Theory [43] is that species

evolve through changes occurring over time. The independent changes in the

genomic patrimonies of living species lead to the rise of new organisms. Exist-

ing organisms range from bacteria to multicellular plants and animals. There

are three major recognized domains of life: Eubacteria (e.g. Cyanobacteria,

Spirochetes, etc.), Archea or Archeabacteria (e.g. Crenarchaeotes, etc.) and

Eukaryotes (e.g. animals, plants, etc.). Species belonging to the first two do-

mains are called prokaryotes. Their cells do not have a true nucleus and their

DNA is not structured as eukaryotic chromosomes. For instance, prokaryotes

have cell membranes and cytoplasm, but their DNA is not separated from

the cytoplasm by a nuclear membrane as Eukaryotes. Eukaryotic species can

be divided as having a single cell (unicellular) or multiple cells (multicellu-

lar). Most of the eukaryotes have mitochondria, where the major steps in

aerobic respiration occur [49]. Moreover, plant cells may have chloroplasts for

photosynthesis.

There are several similarities between organisms of different species, such

as the presence of the cell as basic unit of life, the DNA molecules encoding

the genetic information, the transcription of the information into RNA and

its translation into protein, the gene distribution and organization, and the

function of different genomic regions [49]. Their shared properties reflect the

common origin of life depicted by their evolutionary relationships. However,

the variation in the sequence of nucleotides contained on chromosomal (or
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Figure 1–1: The living organisms are divided in three major domains. Each
circle represents one of the domains with a sample of related species. This
figure is taken from [238].

non-chromosomal) DNA molecules are the result of sets of evolutionary events

that have taken place. These events, called mutations are linked to how

DNA is copied (due to errors in the copying process or replication process)

and how chromosomes are recombined. The consequences of these events are

the diversity of the observed genomes. The goal of comparative genomics is

to analyze the function of regions by comparing the genomic data of different

individuals or species. The shared regions that derive from a common ancestor

are called homologous. However, comparing the genomic sequences of living

organisms leads to the observation of either homologous DNA sequences due

to the evolutionary relationship or mutations that cause differences between

the organisms. Hence, comparing organisms can help reveal the origin of

phenotypic and functional divergence between species. The different types of
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mutations can be divided in two parts (small-scale and large-scale mutations)

presented in subsections 1.1.1 and 1.1.2.

1.1.1 Small scale mutations

The genome is made up of a concatenation of DNA bases that are com-

posed of four different nucleotides: Adenine (A), Thymine (T), Guanine (G),

and Cytosine (C). Small scale mutations affect either a single nucleotide or

a small region that does not cross chromosome boundaries. The following

mutations affecting DNA are considered small scale mutations:

• Substitutions or point mutations: a single DNA base can flip into

another base due to similarity of their chemical structure. Substitutions

are the most common mutations that occur during genomes evolution.

In fact, the adenine (A) molecule is similar in structure to the guanine

(G) molecule (they are called purines), and the thymine (T) molecule is

similar to the cytosine (C) one (they are called pyrimidines). A purine is

more likely to change to another purine and a pyrimidine is more likely

to change to a pyrimidine. Mutations between purines or pyrimidines

are called transitions while the others are called transversions, as shown

in Figure 1–2.

Figure 1–2: The types of point mutations. The blue lines (transitions) are the
substitutions that are the most likely to occur.

• Insertions and Deletions: An insertion corresponds to the addi-

tion of one or more contiguous bases between adjacent nucleotides in a

DNA sequence. Large insertions are often associated with transposable
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elements [49]. The term deletion refers to the elimination of one or sev-

eral contiguous nucleotides during the DNA copying (replication phase).

However, when comparing the genomic data of two extant organisms, it

is impossible to distinguish between insertions and deletions (see Figure

1–3). This ambiguity can only be solved by knowing the sequence of

the common ancestor of the compared genomes. Thus, the terminology

indel is used to denote either an insertion or a deletion. More details

about indels are presented in Chapter 2.

ACGCACTACCCCACATCTACTAT - - - - TTTCACTCCCCAAATCCAACC

ACGCACTA - - - - - -  ATCTACTATAAAATTTCACTCC - - AAATCCAACC

Figure 1–3: Indels representation in genome comparison. The symbol (-),
called gap, is used to denote the absence of corresponding character at the
given position of the comparison.

1.1.2 Large scale mutations

Large scale mutations are due to chromosomal reorganizations or to changes

affecting large portions of DNA sequences. The following large scale mutations

can be found when comparing genomes:

• Duplication: it results in several copies of the same portion of the

genome being present either in different locations (Segmental duplica-

tion ) or contiguously (Tandem duplication ). The duplicated regions

could be arge regions containing several genes. It could even involve the

whole genome (whole genome duplication).

• Inversion (also called Reversal ): it corresponds to the replacement

of one strand of a DNA region with its complement while the 5’ to 3’

polarity is unchanged [49]. It reverses the order of the genes or markers

present in the related DNA region (see Figure 1–4).

4



• Transposition: it consists of cutting out a genomic region and inserting

it elsewhere in the genome (see Figure 1–4). The inserted segment could

be also reversed prior to the insertion.

• Translocation: it is a cut in two different chromosomes and followed

by a fusion of the obtain segments with the rest of the chromosomes

such that each segment that has been cut will be reinserted in different

chromosome (see Figure 1–4).

• Chromosome fission and fusion: it allows the genome to respectively

increase or reduce the number of chromosomes present in its structure by

breaking one chromosome into two pieces, or joining two chromosomes

into one.

A   E   F    B  C  D          G      H       I     J M    P     O    N

A   B   C  D         E     F   G      H       I     J M    N     O    P

Transposition

A   E   F    B  C  D          G      M J   I      H     N     O    P

Translocation

Inversion

Figure 1–4: Inversion, transposition and translocation of genomic regions con-
sisting of two chromosomes. Letters represent markers or genes, and boxes
represent chromosomes.

Such mutations are called genome rearrangements and they are less fre-

quent than small scale mutations. Recent progress in genome-scale sequencing

and comparative mapping has increased the number of genome rearrangement
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studies. The problem can be defined as finding the ancestral genome or-

ganization according to the genome organization of extant organisms [173].

This problem is hard to solve, however it has received a lot of attention (e.g.

[20, 22, 231]).

1.2 Identification of homologous genomic regions

One important basis of comparative genomics is the identification of ho-

mologous regions based on sequence similarity. In fact, sequence similarity

is often linked to function into the biological processes of organisms. To

measure similarity between homologous sequences, they have to be aligned.

Sequence alignment is one of the most studied fields in computational biol-

ogy [1, 2, 112, 180, 209, 222]. Alignment can be either pairwise [1, 212],

comprising just two sequences, or multiple [17, 25, 65, 112], with an arbi-

trary number of sequences. The main motivation for pairwise alignment relies

on the inference of function while for multiple sequence alignment, it relies on

the research of common sequence features between homologous sequences that

share the same function. In fact, pairwise alignment could be considered as a

special case of multiple sequence alignment, but in pratice the complexity of

multiple sequence alignment is such that it could not be a straight extension

of the pairwise method [106]. In most cases, multiple sequence alignments are

built by repeatedly merging pairwise sequence alignments [25, 27, 112]. In

1.2.1 and 1.2.2, we will present the most common approaches for pairwise and

multiple sequence alignment.

1.2.1 Pairwise alignment

The pairwise alignment problem can be defined as follows: Given two

genomic sequences, find the one-to-one ordered correspondence between each
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character in the two sequences such that a given criterion is optimized (mini-

mizing substitutions, optimizing a distance or similarity score, the most like-

lihood one-to-one relationship, etc.). Pairwise alignment methods are widely

used in comparative genomics, for example for retrieving data from databases

such as Genbank [96], and identifying the function of genomic regions [1].

There are two main approaches to align genomic data:

• Global Alignment: this approach is preferred when the alignment is

done for sequences that share homology for the entire sequence lengths.

Whole sequences given as input have to be aligned in a single alignment

where homologous regions have to be co-linear, with no genome rear-

rangement and no duplication. As mentioned in [14], global alignment

is adequate when the genomic regions to be aligned derive from common

ancestor with only small scale mutation events. The latter genomic re-

gions are called orthologous [15]. Most of the global pairwise alignment

methods derive from the widely used Needleman-Wunsch dynamic

programming algorithm [180]. A list of popular global alignment meth-

ods includes: Dialign [170], MUMmer [47], Avid [24] and LAGAN

[27].

• Local Alignment: this method tries to align a part of small different

segments of the given genomic regions. This is motivated by the fact

that many genomic sequences only share some homologous regions while

other parts of the sequences are unrelated [49, 106]. Hence, a local

alignment provides a prediction of the homology for a pair of subregions

of the genomic regions to be aligned. Local alignments can help to

predict homologous regions in genomic sequences that have undergone

rearrangement, and it is the best choice when the sequences to be aligned

are highly divergent (presence of a large fraction of unalignable regions)
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[38, 14]. Most of the local pairwise alignment methods derive from the

well-known Smith-Waterman dynamic programming algorithm [222].

There are a lot of local alignment methods. The most commonly used

are BLAST [1] and BLASTZ [212].

Although there is apparently strict separation between the different types

of pairwise alignment, most of the recent methods combine the global and

local strategies to find accurate alignment. Those methods identify the sets

of local alignments and then assemble them into a chain of co-linear blocks of

local alignment [26, 14].

1.2.2 Multiple sequence alignment

Multiple sequence alignment is an extension of the pairwise alignment to

more than two genomic sequences. These alignments are ubiquitous in molec-

ular biology, particularly in comparative genomics [106]. Multiple sequence

alignments contribute to genome annotation through techniques for finding

homologies between sequence families [149, 172, 207], identifying and charac-

terizing gene regions [51, 69, 137], etc. For these purposes, multiple sequence

alignments are often modeled as profiles [73, 74] or as hidden Markov mod-

els [88, 136, 137]. Another important contribution of the multiple sequence

alignment concerns the prediction of secondary and tertiary protein structure

[9, 114, 77]. In proteins, residues have different evolution schemes depending

on their role in the protein structure. Hence, the analysis of multiple sequence

alignments by looking at the distribution of substitutions at each position pro-

cures an information about the protein structure [183]. Moreover, in RNA,

the identification of correlated mutations is the basis of predicting secondary

structure [114, 254]. Finally, multiple alignments are also the core of phy-

logenetic analyses [75, 85, 174, 229]. While phylogenetic distance methods

allow one to compute evolutionary distances based on pairwise alignments, in
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character based methods, the columns of multiple sequence alignments are in-

dividually correlated to a phylogenetic tree. More details about phylogenetic

trees are presented in section 1.3.

The definition of a good alignment varies according to the type of studies.

Hence, in the literature, good alignment satisfies one of the following criterion:

• Mathematical objective functions: These are commonly based on

stochastic models of sequence evolution specifying the probability of

events such as substitutions, insertions and deletions [14]. Using those

models, alignment approaches try to maximize either the sum of the

probabilities of all the evolutionary scenarios that can lead to the align-

ment, or a weighted/unweighted sum-of-pairs of aligned nucleotides [67].

• Phylogenetic correctness: Here we try to align together nucleotides

that share the same ancestor. Hence, we try to reproduce the evolution-

ary history of each nucleotide.

• Function-based: This is often used when trying to align together re-

gions that are related according to their functional similarity such as

transcription factor binding site [14]. Here, aligned regions could be

merely different in the nucleotide-level.

There exist several computational techniques for computing multiple se-

quence alignments. Each technique is adapted to how the obtained alignment

will be used. Several methods extend the definition of a pairwise alignment

to multiple sequence alignment. In this case, several sequences can be aligned

together using an n−dimensional dynamic programming approach [170, 171].

However such a method is limited to small datasets. Instead of computing

directly a multiple sequence alignment, several methods such as Clustal [112],

Mavid [25], Mlagan [27], Muscle [71], and TBA [17] perform multiple pair-

wise alignments. The combination of the obtained pairwise alignment to a
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multiple sequence alignment is performed in different ways according to the

existing methods. Most of those alignment methods use a (user provided or

precomputed) guide tree to determine the order in which the pairwise align-

ments will be merged [112, 25, 17]. This technique is called progressive

alignment. One can notice that multiple methods are used to align the

pairwise alignments such as computing ancestral sequences [25], computing

profiles [73, 72, 112] or computing the sum-of-pairs [27, 102]. To increase the

accuracy of progressive alignment heuristics, the alignment procedure can be

iterated a number of times. The iteration procedure helps to correct mistakes

introduced earlier in the pairwise alignment computation and to refine the

whole alignment[246, 248]. Actually, iterated methods such as Muscle [71]

and ProbCons [65] tend to give more accurate alignments.

Due to the importance of multiple sequence alignment, many other dif-

ferent computational approaches have been used. Genetic algorithms have

been used to optimize multiple sequence alignment given an objective func-

tion [182, 183, 246]. Methods such as POA [143] build the multiple sequence

alignments using partial order graphs and MSA [102] tries to find an opti-

mal multiple sequence alignment using the branch and bound technique [246].

Multiple sequence alignment algorithms based on fast Fourier transform have

also been built to improve the time complexity [129]. Finally, there is an

increasing interest for probabilistic multiple sequence alignment. This new

objective leads to the emergence of a bayesian approach to multiple sequence

alignment [115] and statistical alignment [108].

1.3 Phylogenetic Trees and Networks

A phylogenetic tree is a classical way to illustrate species evolutionary

relationships. The tree can be either rooted or not, as shown in Figure 1–5.

The leaves of the phylogenetic tree correspond to the species that provided the
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information for the tree inference. When the phylogenetic tree is rooted, the

internal nodes represent hypothetical ancestor of the related subtree, while

the overall root refers to the common ancestor of the species represented.

Today phylogenetic trees are build mostly from molecular sequences (DNA,

RNA and proteins). All existing approaches for building trees take in input

multiple aligned sequences, with the exception of new emerging tools dedicated

to small datasets and using unaligned sequences [72, 108, 109].

Figure 1–5: Unrooted phylogenetic tree (left tree) can be rooted in one of its
branches, as shown in the two rightmost trees. Taken from Diallo et al. [52].

To reconstruct the evolutionary history of a given aligned sequences, two

main approaches exist. For details on the methods for inferring phylogenetic

trees, readers are referred to [75, 87, 228]. These two main approaches are:

• The distance based approach does not make reference to an histori-

cal relationship. It computes from aligned molecular sequences, pairwise

distances between sequences. Then, a hierarchical clustering procedure

allows to reconstruct the phylogenetic tree from distances. Those meth-

ods tend to be rapid but lack on consistency (due to the fact a large

part of the information contained in the DNA sequence structure is lost

when it is transformed into a distance).

• The character based approach is based on genealogy. It finds op-

timal trees by applying evolutionary models to constitute features of

the ancestor at each node. The maximum parsimony [90], maximum

likelihood [82] and Bayesian methods [196] belong to this approach.
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The popular software packages PHYLIP [85] and PAUP [229] implement the

distance, parsimony and likelihood methods of inference and also provide vi-

sualization tools and tree validation techniques. There exists several other

phylogenetic tree reconstruction softwares including MEGA [138], DAMBE

[255], T-REX [155], MrBayes [118], and PAML [258].

1.3.1 The principal methods of phylogenetic tree reconstruction

There are four main methods of phylogenetic tree reconstruction. Here,

we present an overview of those methods:

Distance methods. Distance methods compute pairwise distances prior

to the phylogenetic tree reconstruction. When the pairwise distances are suf-

ficiently close to the actual number of evolutionary changes between species,

the distance methods can reconstruct a correct tree. However, in most cases,

it is necessary to correct the pairwise distances so that they account for multi-

ple substitutions at the same site. There are several continuous time Markov

models for modelling sequence evolution and correcting pairwise distances.

The most popular ones are: Jukes Cantor [126], Kimura 2-parameter [132],

and Hasegawa-Kishino-Yano (HKY) [105].

Once a distance matrix is obtained, several clustering techniques can be

used to infer the phylogenetic tree that correlate well with the given distances.

The UPGMA (Unweighted Pair-Group Method using Arithmetic averages)

[202] method was originally proposed for taxonomic purposes [157]. It is ade-

quate when the rate of nucleotide or amino acid substitution is the same for all

evolutionary lineages. Neighbour-joining [205] is the most popular among the

distance methods. Neighbor-Joining, unlike UPGMA, considers unequal rates

of evolution on different branches of the tree. There exists several variants

to Neighbor Joining such as BioNJ [93], unweighted Neighbor-Joining [92],

etc. It is worth noting that there exists several distance-tree transformation
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methods, the popular ones being ADDTREE [211], the Method of Weighted

least-squares [159], and FITCH [89]. The main advantage of distance methods

is their small time complexity that makes them suitable to the analysis of large

datasets.

Maximum parsimony. The maximum parsimony methods are the

ones that are most commonly used by biologists due to their biological insight

and their simplicity. They infer phylogenetic trees by assessing the possible

mutations between sequences. In general, the maximum parsimony methods

find the phylogenetic tree that have the minimum number of mutations needed

for explaining the differences in the observed multiple sequence alignment (see

Figure 1–6 for an example).

Figure 1–6: The phylogenetic tree with the minimum number of mutations
between CAAG, CCAG, GCAT, and GCTT. This figure is taken from [157].

Several variations of parsimony methods exist according to different crite-

ria such as reversibility of nucleotide changes. Methods such as Fitch [90] and

Wagner [80] allow reversibilty while Dollo [81] and Camin-Sokal [30] does not.

The principle of parsimony has also been generalized to account for different

substitution scores among nucleotides [210].

Maximum likelihood. The maximum likelihood methods assign quan-

titative probabilities to mutational events instead of counting them as done in

maximum parsimony. The principle of maximum likelihood in phylogenetics
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analysis has been introduced by Felsenstein [82]. Here, all the space of possi-

ble phylogenetic trees related to the multiple sequence alignment are assessed

according to their ability to predict the observed multiple sequence alignment.

The phylogenetic tree with the highest probability of producing the multiple

sequence alignment is chosen. Maximum likelihood reconstructs ancestors for

all the internal nodes of the tree and computes also the branch lengths ac-

cording to the mutation probabilities. It is worth noting that for each possible

phylogenetic tree, various techniques allow to optimize the likelihood of pro-

ducing the multiple sequence alignment by varying branch lengths, according

to the given probabilistic evolutionary model.

The computational complexity of maximum likelihood computation makes

it applicable to only small datasets (less than 100 taxa). However, new heuris-

tics have been developed to handle large data and to be as rapid as parsi-

mony methods. The most used packages, such as DNAML in PHYLIP [85]

and PAUP [229] use a hill climbing technique by combining insertion taxa in

a growing tree and topological rearrangements [101]. Several enhancements

and algorithmic changes done in fastDNAml has improved performance and

reduced memory usage, making it feasible for about hundred taxa [184]. How-

ever, PHYML currently constitutes one of the best improvement in rapid-

ity and memory requirements [101]. PHYML optimizes a tree topology and

branch lengths of a unique tree that is progressively modified such that the tree

likelihood increases at each step. It can easily and rapidly be applied to large

datasets with more than five hundred taxa with high accuracy [101]. There ex-

ists multiple maximum likelihood programs that implement different strategies

to break the computation expensive such as NJML that combine the famous

Neighbour Joining to maximum likelihood [185], Puzzle that decomposes the

phylogenetic tree into quartets [227], and many more [146, 198, 206, 258].
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Bayesian methods. Bayesian Methods are an alternative to maximum

likelihood due to their time complexity. Here, the methods find the phyloge-

netic tree that maximizes the posterior probability of the data, which is pro-

portional to the likelihood times the prior probability of that phylogenetic tree.

The Bayesian methods have multiple advantages. They generate a number of

trees, allow estimation for their posterior probabilities, and they take into ac-

count sources of uncertainty that the standard maximum likelihood methods

ignores. Moreover, they widely used stochastic optimization and Makov Chain

Monte Carlo algorithms while exploring the space of solution [118, 147, 196].

The Bayesian methods are relatively new in phylogenetic analyses and the

results provided by these methods are quite accurate [140]. The well-know

software MrBayes reconstructs phylogenetic trees for different types of biolog-

ical and discrete sequences [118]. BAMBE can reconstruct phylogenies only

from multiple DNA sequence alignment [218].

1.3.2 Phylogenetic networks

A phyogenetic tree is a standard way of representing the evolution of

living organisms. However this representation captures only vertical depen-

dencies between the studied species. In fact, there exists multiple biologi-

cal mechanisms occurring during the evolution that cannot be depicted by

classical phylogenetic tree. The mechanisms of horizontal gene transfer, hy-

bridization, homoplasy and recombination are much more complex to model

and are usually presented through a network model [121, 160]. Phylogenetic

networks permit the representation of conflicting phylogenetic signals or alter-

native phylogenetic histories in a single figure. Figures 1–7 and 1–8 present

two different types of network models. Figure 1–7 shows a Neighbor Net pro-

gram [28] representation based on the split tree principle. In this figure, the

presence of recombination leads to a complex set of relationships among viral
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species of the tomato-infecting begomoviruses [192]. Figure 1–8 presents a

result of a horizontal gene transfer detection using T-Rex program [155] for a

set of Archaea species.

Figure 1–7: Neighbor-Net generated for the tomato-infecting begomoviruses
of South and Southeast Asia. Networked relationships among the viral species
with boxes, instead of bifurcating evolutionary tree indicate the presence of
recombination. This figure is taken from [192].

1.4 Ancestral genomes reconstruction

Since it has been shown that the phylogeny of eutherian mammals is such

that an accurate reconstruction of the genome of an early ancestral mammal is

possible [16], a lot of interest has been given to the reconstruction procedure.

An accurate reconstruction of ancestral genomes will help on various studies

such as adaptation, behavioral changes, functional divergences, etc. [135].

However, its reconstruction involves several difficult steps. For more details in

this subject, see Appendix A. Here, we briefly describe the different steps of

the reconstruction procedure.

The prediction of ancestral genomes can be decomposed into four main

steps. A crucial first steps toward the reconstruction is to build an accurate
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Figure 1–8: Horizontal gene transfer representation with T-Rex for 14 species
of Archaea [162]. Numbers on HGT arrows indicate their order of appearance
in the unique gene transfer scenario found by the HGT detection method.
Bootstrap scores for transfers are indicated by numbers close to arrow circles.
Taken from our paper presented in Appendix C [156].

multiple alignment of the extant orthologous sequences, thus establishing or-

thology relationships among the nucleotides of each sequence. Second, the

process of indel reconstruction determines the most likely scenario of inser-

tions and deletions that may have led to the extant sequences. Third, substi-

tution history is reconstructed using a maximum likelihood approach. The last

step involves dealing with genome rearrangements (inversions, transpositions,

translocations, duplications, and chromosome fusions, fissions, and duplica-

tions). One can group the three first step into the problem of reconstructing

the ancestral sequences for a set of orthologous region of different organisms.

This problem can be defined as follows: given a phylogenetic tree relating the

evolutionary history of the organisms, the DNA or amino acids sequences of

orthologous regions of the organisms; find the ancestral sequences at each node

of the tree (Figure 1–9).
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Figure 1–9: The Input of the ancestral sequence reconstruction. This figure is
adapted from [16].

1.4.1 Multiple sequence alignment for orthologous sequences for
large genomic regions

Here, the multiple sequence alignment uses the evolutionary criterion dis-

cussed in Section 1.2.2. Given a set of orthologous sequences, the multiple

alignment problem consists of identifying (by aligning them together) the sets

of nucleotides derived from a common ancestor through direct inheritance or

through substitution. Many approaches have been developed to align mul-

tiple, large genomic regions. Some of the most popular approaches include

programs like MAVID [25], MLAGAN [27, 42], and TBA [17]. All these ap-

proaches fall under the category of progressive alignment methods, and require

the prior knowledge of the topology of the phylogenetic tree that relates the

extant sequences compared (see Section 1.2.2). The threaded blocks aligner

(TBA) program, based on the well-established pair-wise alignment program

BLASTZ [212], has been shown to be particularly accurate for aligning mam-

malian sequences and is thus a tool of choice for ancestral reconstruction for

these species. After the alignment procedure, the nucleotide sequences given in

Figure 1–9 have been grouped by column according to their predicted common

history (Figure 1–10).

1.4.2 Indel reconstruction

Here, we briefly introduce the problem of indel reconstruction. For more

details, see the Chapters 2 and 3 dedicated to the indel reconstruction problem.
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Figure 1–10: The multiple sequence alignment puts in each column only nu-
cleotide that share a common ancestor. The absence of a character in a given
position is indicated by a gap (-). This figure is adapted from [16].

After obtaining the multiple sequence alignment of the extant sequences and

a phylogenetic tree with known topology and branch lengths, the next step

consists of predicting, for each ancestral node in the tree, which columns of the

alignment correspond to ancestral bases, and which correspond to nucleotides

inserted after the ancestor (Figure 1–11). While the problem of parsimonious

indel inference has recently been shown to be NP-Hard [35], good heuristics

have been developed by Fredslund et al. [91], Blanchette et al. [16], and

Chindelevitch et al. [35]. The maximum likelihood indel problem has been

recently adressed by Diallo et al. [62], Kim and Sinha [131], and Bradley

and Holmes [23] using respectively phylogenetic-hidden Markov model, hidden

Markov model and transducers.

Figure 1–11: The results of the indel reconstruction in which gaps have been
mapped as insertion (red square) or deletion (green square). The sequence
below presents the content of one ancestor after the indel reconstruction. This
figure is adapted from [16].
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1.4.3 Substitutions reconstruction

After having established which positions of the multiple alignment corre-

spond to bases in the ancestor, as presented in Figure 1–12, the next step is

to predict which nucleotide (A, C, G, or T) was present at each position of

a given ancestor using the standard posterior probability approach. The one

used by Blanchette et al. in 2004 [16] was based on a dinucleotide substitution

model where substitutions at two adjacent positions are independent except

for CpG, whose substitution rate to TpG is ten times higher than those of

other transitions [259, 215]. This phase of the reconstruction relies on the

availability of accurate branch length estimates for the phylogenetic tree.

Figure 1–12: The results of the substitution reconstruction identify the nu-
cleotide present in each character of each ancestor.The sequence below presents
the content of one ancestor after the substitution reconstruction. This figure
is adapted from [16].

1.4.4 Genome rearrangements

To complete the inference of ancestral genomes, the ancestral DNA se-

quences inferred for each block of orthologous sequences need to be ordered

into a single, contiguous genome. This problem is made challenging by the

presence of genome rearrangements (inversions, transpositions, translocations,

and duplications/losses). One of the most popular computer programs for in-

ferring ancestral gene arrangement is MGR ([21].
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1.5 Overview of the thesis

Indel evolutionary scenarios are useful in several problems such as study-

ing evolutionary processes, genome function, adaptation and convergence, an-

notation of functional regions of extant genomes, including protein-coding re-

gions, RNA genes and others. However, the ancestral genome reconstruction

procedure includes several sophisticated steps [15] as mentioned previously.

The second and third steps involve the inference of the set of substitutions, in-

sertions and deletions that may have produced a given set of multiply-aligned

sequences for a group of extant species. While the problem of reconstructing

substitution scenarios has been well-studied [82, 83, 210], the inference of in-

sertion and deletion (indel) scenarios has received less attention (in particular

the indel parsimony problem [35, 91]). Recently, the indel maximum likelihood

problem has also been adressed during my thesis [131]. The difficulty of the

indel reconstruction problem is in large part due to the fact that insertions

and deletions often affect several consecutive nucleotides. Thus, the columns

of the alignment cannot be treated independently, as opposed to the maximum

likelihood problem for substitutions [82].

Given a multiple alignment of orthologous DNA sequences and a phylo-

genetic tree for these sequences, we have proposed an exact algorithm for the

problem of reconstructing the most likely scenario of insertions and deletions

capable of explaining the gaps observed in the alignment [62]. We also de-

signed a new statistical framework for indel analysis from a given alignment

and a related phylogenetic tree. The new statistical framework provides a

way of weighing insertions and deletions of various lengths against each other.

Moreover, it provides an accurate probabilistic model of indels, an exact and

heuristic algorithm for the reconstruction of indel scenarios, and allows the es-

timation of the uncertainty for each part of the solution [58]. Similarly to the
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statistical alignment approaches [108, 109, 152], which unfortunately remain

too slow for genome-wide reconstructions, our method seeks to gain a richer

insight into ancestral sequences and evolutionary processes of more than 20

taxa. It is important to notice that the results given by such a reconstruction

can lead to several competing solutions that would be necessary to be reported

with their confidence level. Hence, we have proposed a way of visualizing the

n−best indels scenario in ancestral genome reconstruction. We also proposed

a colored output of the results corresponding to the ancestral reconstruction

confidence. Most of these realisations are present in our Ancestors 1.0 pro-

gram available at: <http://ancestors.bioinfo.uqam.ca/ancestorWeb/>. It can

be integrated into the pipeline of the project of the ancestral mammalian re-

construction initiated by David Haussler from the University of California at

Santa Cruz (UCSC), with the collaboration of several other universities such

as Pennsylvania State University and McGill University.

Several genomics data studies rely on the availability of either accurate

multiple sequence alignments or accurate phylogenetic trees from the data to

be studied1 . Most of the existing approaches for building a multiple sequence

alignment and a phylogenetic tree from a given set of sequences first build a

mutiple sequence alignment, and then reconstruct the phylogeny based on this

mutiple sequence alignment. However, such a direct dependency of mutiple

sequence alignment and phylogenetic reconstruction can lead to biased estima-

tions. Thus, the ideal solution is the joint inference of both of them. However,

existing methods are limited to small datasets (three to five species)[107]. In

this thesis, we presented a useful application of indel score towards the assess-

ment of phylogenetic tree and multiple sequence alignment accuracies. The

1 In some cases, both accurate alignment and phylogeny are required.
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latter score can lead to the use of iterative approaches in the joint inference

of phylogenetic tree and multiple sequence alignment.

The design of algorithmic tools in bioinformatics must serve in the anal-

yses of real biological data. Thus, the third part of this thesis focuses on the

application of the developed methods in large data analyses. The first appli-

cation describes to the study of the phages classification. While most of the

organisms evolve in a tree-like evolution, the phages have several evolutionary

mechanisms such as horizontal gene transfer, duplication and gene losses that

cannot not be illustrated using a classical phylogenetic tree. Here, a network

is more suitable to represent the evolution of those organisms [103, 104, 144].

One other important problem in the classification of phages is the large range

of genomic sizes. Hence, one might consider a special approach of aligning

genomes and reconstructing the species tree. Here, we are also interested in

reconstructing the ancestral protein sequences to identify the rise of new bio-

logical functions. The second dataset analyzed during this thesis is the Human

Papilloma virus family and their carcinome classification. Here, we presented

the first complete whole genome tree of the Human Papilloma virus. We ana-

lyzed indel frequencies according to the carcinome classification. The highest

indel frequencies are in the subtrees where there are only low risks of carcino-

genicity. Then, we also designed an algorithm intended for finding genomic

regions that may be responsible for HPV carcinogenicity. The algorithm is

based on the hypothesis that sequence regions responsible for cancer are ex-

pected to be very similar among the carcinogenic Human Papilloma Viruses

while they should differ a lot from the homolog regions in the non-carcinogenic

Human Papilloma Viruses.
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Missing data and horizontal gene transfer detection is an important part

of all our studies due to the analyzed data. Hence, we finish this thesis by

presenting a contribution in both cases.

1.6 Thesis roadmap

This thesis is organized as follows. In Chapter 1 we provided some

background on species evolution, genome organization, genomic data anal-

ysis through multiple sequence alignment, phylogenetic tree reconstruction,

ancestral genome reconstruction and thesis overview and roadmap. A brief

review of the recent studies on indel inference is presented in Chapter 2.

Chapter 3 presents the inference of indel maximum likelihood scenarios us-

ing exact and heuristic approaches. The Chapter 4 focuses on the represen-

tation of the results of indel inference. There, we present a web interface

implementing the tools developed. We also present an approach for repre-

senting the n−best competing indel scenarios. The first application, using

indel scores for the assessment of multiple sequence alignment and phyloge-

netic tree, is shown in Chapter 5. Chapter 6 studies phages classification

while the Chapter 7 focuses on the evolutionary study of the Human Papil-

loma Viruses and their carcinome classification. A conclusion of all the thesis

is presented in Chapter 8, followed by appendices presenting additional contri-

butions in computational tools for ancestral sequence reconstruction, missing

data analyses, horizontal gene transfer detection and description of a dynamic

programming algorithm for ancestral profile alignment. To improve the the-

sis readability, several other appendices2 are available in the thesis web page

<http://ancestors.bioinfo.uqam.ca/phdDiallo/>.

2 Those appendices contain collection of data, raw results of the related
studies, appendices of the published papers, etc.
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1.7 Publications and author contributions

This thesis includes a partial or full text and figures of ten scientific arti-

cles (including journals, proceedings and book chapter). six articles have been

published or accepted for publication. The remaining articles are in prepara-

tion. I am the first author and major contributor of eight of the ten papers. I

am second author in one paper and last author in one paper. It is worth noting

that during my Ph.D., I have written five other articles (four of them have al-

ready been published) that are not included in the thesis [53, 54, 61, 95, 181].

I am first author or major contributor of four or these papers. Below is pre-

sented the list of the included contributions according to the thesis chapters

and my contribution to each paper.

• Chapter 1

This chapter is based in part on:

– Blanchette, M., Diallo, A.B., Green, E. D., Miller, W. and Haus-

sler, D. (2007): Computational reconstruction of ancestral DNA

sequences. Chapter 11 of the book : Methods in Molecular Bi-

ology: Phylogenomics. Edited by: W. J. Murphy, Humana Press

Inc., Totowa, NJ, 171-184.

My contribution to this book chapter was the literature review and

the chapter redaction. I did the summary of the principal source of

information used in this chapter. The materials used in this chap-

ter come principally from a paper published by Blanchette and the

other coauthors in 2004 [16].
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• Chapter 2

Parts of this chapter come from:

– Diallo, A.B., Makarenkov, V., and Blanchette, M. (2006): Finding

Maximum Likelihood Indel Scenarios. Proceedings of Recomb-CG

2006, Lecture Notes in Computer Science, 4205, Springer Verlag,

171-185.

All the work in this publication has been done by me under my

advisors supervision.

• Chapter 3

This chapter contains the full text of:

– Diallo, A.B., Makarenkov, V., and Blanchette, M. (2007): Exact

and heuristic method to the indels maximum likelihood problem.

Journal of Computational Biology. 14 (4), 446-461.

All the work in this publication has been done by me under my

advisors supervision.

• Chapter 4

This chapter contains the text of:

– Diallo, A.B., Makarenkov, V., Blanchette, M. (2009): Ances-

tor 1.0: A web interface for ancestral sequence reconstruction. In

preparation.

All the work in this publication has been done by me under my ad-

visors supervision.
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– Diallo, A.B., Gaul, E. (2009): Visualization of the n−best indel

likelihood scenarios. 14 pages. In preparation.

I contributed equally to this paper with Mr. Eric Gaul. I did the

modeling of the indel scenarios handling and the confidence analy-

ses. I designed and implemented the algorithm to find the n−best

indel scenarios. Mr. Gaul implemented the java library for the vi-

sualization.

• Chapter 5

This chapter contains the full text of:

– Diallo, A.B., Makarenkov, V., Blanchette, M. (2009): Indel score

for the assessment of multiple sequence alignments and phyloge-

netic trees reconstruction accuracy. In preparation.

All the work in this publication has been done by me under my

advisors supervision.

• Chapter 6

This chapter contains the full text of:

– Diallo, A.B., Nguyen, D., Badescu, D., Boc, A., Blanchette, M.

and Makarenkov, V. (2009): Étude de classification des bactériophages.

Mathématiques, Informatique et Sciences Humaines. 16 pages.

Submitted.

I have contributed equally with Dung Nguyen in this paper. We are
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joint first authors of the publication. I did the ancestral protein se-

quence reconstruction and the phylogenetic analyses. I implemented

the framework for the ancestral sequences studies. D. Nguyen col-

lected data, did the cognitive analyses and currently manages the

database. A. Boc was responsible for the horizontal gene transfer

analyses. D. Badescu contributed to the implementation of the rest

of the framework. This work was done under the guidance of my

advisors.

• Chapter 7

This chapter contains the full text of:

– Diallo, A.B., Badescu, D., Makarenkov, V., Blanchette, M. (2009):

A whole genome study and identification of specific carcinogenic re-

gions of the Human Papilloma Viruses. Journal of Computational

Biology. Accepted for publication.

I am the major contributor of this paper. I designed and imple-

mented the algorithms presented in the paper, implemented the p-

value computations, and I also did the indel analyses. Badescu D.

retrieved, managed and prepared the data and analyzed the predic-

tion of carcinogenicity. This work was done under the guidance of

my advisors.

• Appendix A

This chapter contains the full text of:

– Blanchette, M., Diallo, A.B., Green, E. D., Miller, W. and Haus-

sler, D. (2007): Computational reconstruction of ancestral DNA
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sequences. Chapter 11 of the book : Methods in Molecular Bi-

ology: Phylogenomics. Edited by: W. J. Murphy, Humana Press

Inc., Totowa, NJ, 171-184.

My contribution to this book chapter was the litterature review and

the chapter redaction. I did the summary of the principal source

of information used in this chapter. The materials used in this

chapter come principally from a paper published by Blanchette and

coauthors in 2004.

• Appendix B

This chapter contains the full text of:

– Diallo, A.B., Makarenkov, V., Blanchette, M. and Lapointe, F.-J.

(2006): A new efficient method for assessing missing nucleotides in

DNA sequences in the framework of a generic evolutionary model.

Proceedings of the meeting of the International Federation of Classi-

fication Societies 2006, Data Science and Classification. eds Batagelj,

V., Bock, H.H., Ferligoj, A., Ziberna, A., Springer Verlag, Ljubli-

jana, 333-340.

All the work in this publication has been done by me under my

advisors supervision.

• Appendix C

This chapter contains the full text of:

– Makarenkov, V., Boc, A., Diallo Al. Bo. and Diallo Ab.Ba.

(2008): Algorithms for detecting complete and partial horizontal
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gene transfers: Theory and practice, in Data Mining and Math-

ematical Programming, P.M. Pardalos and P. Hansen eds., CRM

Proceedings and AMS Lecture Notes, 45, 159-179.

My contribution in this publication is about 20%. I did the pro-

cedure of the simulation studies. V. Makarenkov and A. Boc did all

the model, the implementation and the bootstrap validation.
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CHAPTER 2
Review of Indel studies

2.1 Preface

This chapter makes a review of recent indel studies. It begins with the

presentation of the biological origin of indels and the different kinds of bioin-

formatics studies related to those events. The second part of this chapter

describes the problem of finding the best indel scenario. It briefly introduces

the actual approaches used to solve this problem. Different sections of this

chapter have been taken from Diallo et al. [62].

2.2 Biological origins of indels

Insertions and deletions, as well as the other types of mutations, can arise

in two different contexts [190]:

• chromosome replication, where errors sometimes occur in the replication

that lead to changes in the DNA sequences. This phenomenon is called

replication-dependent mutations;

• alteration of the DNA sequences in processes that are independent of

DNA replication. This is identified as replication-independent mu-

tations. Transposable elements or transposons, which can move from

one site to another without requirement for sequence relatedness at the

donnor and acceptor sites, are the most important source of the alter-

ation.

Indel mutations affect both somatic and germline cells. However, due to

the fact that only the germline mutations are inherited by descendants, only

those mutations could have a consequence in genome evolution and could be
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observed in comparative genomics. Replication-dependant indels are gener-

ally due to a looping out of either the template DNA strand or the growing

strand during the DNA syntesis [190]. Moreover, replication slippage leads

to replication errors by the the DNA polymerase, which could lead to the

deletion or insertion of DNA segment. The latter phenomenon is more likely

to occur between neighbouring repeats. In the case of an insertion, it will

correspond to a duplication of the corresponding DNA segment. The other

source of replication errors is segments of identical bases in the DNA. These

mechanisms often produce short indels (up to 20 to 30 nucleotides). Longer

indels are mainly due to either recombination via unequal crossing over, exon

shuffling and transposition or transposons. It is worth noting that transposons

constitute a large fraction of the eukaryotic genomes size [16, 130]. Finally, it

is important to notice that horizontal gene transfers can be viewed as indels

if the donor lineages are unknown.

Indels can be divided into three categories:

• indel events occuring in the intronic or intergenic regions, which do not

have not a direct impact on protein production;

• mutiple of three nucleotide indels in translated DNA regions, which cause

a deletion or an insertion of new amino acids;

• non multiple of three nucleotide indels in translated DNA regions cause

shifts in the reading frame. This leads to have changes in most of the

produced amino acids and it is also likely to modify the position stop

codon [190].

Moreover, a recent study divided indels into five classes (indels of a single base,

monomeric base pair expansions/contractions, multi-base pair expansions of

2-15bp repeats units, transposon insertions, and indel containing random se-

quences) [165]. Table 2–1 gives the percentage of the different classes in the
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Human Genome. Ryan and coauthors found that the density of indel in the

human genome is about one indel per 7.2kb of DNA, and more than 36 %

of the indels are found in known genes and promoters [165]. Several studies

pointed out the importance of indels in various diseases such as Huntington’s

disease, fragile X syndrome, myotonic dystrophy and many types of tumors

[70, 190, 232, 240, 249].

Table 2–1: The percentage of the different classes of indels in the human
genome. The values presented in this table are extracted from [165].

Indel Class % of indels
Single bases 29.1
Monomeric base pair expansions 18.5
Multibase pair expansions 11
Transposons 0.6
Random sequences 40.8

2.3 Diversity of indels studies

Recently, many studies have focused on indel events. Those studies can

be divided into three categories. The first category studies genetic variation

within species haplotypes [13, 44, 165, 250]; the second one studies indels in

genomes evolution among species [12, 151, 220]; and the third one concerns

methods attempting to reconstruct indel scenarios from species evolution [16,

35, 58, 91, 131]. In the next sections, we will focus on the third category.

However, we will begin with a brief review of some results obtained by the two

first categories. First, an initial map of indel variation in the human genome

has been produced with more than 400,000 unique indel polymorphisms and it

is available in dbSNP of the NCBI [40, 165, 241]. Second, Lunter and coauthors

have designed a neutral indel model for the identification of human functional

DNA. They account for indel rate variation and compute the intergap distance

distribution between human and mouse. They found that the intergap distance

follows a geometric distribution and deviations observed can be related to indel
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selective pressure [151]. Moreover, indels in human protein coding regions have

been found to be subject to different levels of selective pressure in relation

to their structural impact on the amino acid sequence. Furthermore, indels

are more likely to be found in regions that do not form important structural

domains [45]. In another context, indels are used as phylogenetic markers and

have been shown to help improve phylogeny reconstruction [6, 204] as well as

multiple sequence alignment reconstruction[134, 150]. Various studies are now

trying to treat gaps in a probabilistic framework. However the results of those

methods are limited to small numbers of sequences [152, 163, 236, 237].

2.4 The Indel Scenario Problem

In this section, we will give a precise definition for the problem of finding

the best indel scenario for a given set of orthologous sequences. Consider a

rooted binary phylogenetic tree T = (VT , ET ) with branch lengths λ : VT →

R+. If n is the number of leaves of T , there are n−1 internal nodes and 2n−2

edges 1 .

Consider a multiple sequence alignment A of n orthologous sequences

corresponding to the leaves of the tree T . Since the only evolutionary events

of interest here are insertions and deletions, A can be transformed into a binary

matrix, where gaps are replaced by 0’s and nucleotides by 1’s. Let Ax be the

row of the binarized alignment corresponding to the sequence at leaf x of T ,

and let Ax[i] be the binary character at the i-th position of Ax. Assuming

that the alignment A contains L columns, we add for convenience two extra

columns, A[0] and A[L+ 1], consisting exclusively of 1’s.

1 It is worth noting that certain methods can deal with unrooted trees (for
instance see [91])
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Definition 2.1 (Ancestral reconstruction) Given a multiple alignment A

of n extant sequences assigned to the leaves of a tree T , an ancestral recon-

struction A∗ is an extension of A that assigns a sequence A∗u ∈ {0, 1}L+2 to

each node u of T , and where A∗u = Au whenever u is a leaf.

The following restriction on the set of possible ancestral reconstructions is

necessary in some contexts.

Definition 2.2 (Phylogenetically correct ancestral reconstruction) An

ancestral reconstruction A∗ is phylogenetically correct if, for any u, v, w ∈ VT

such that w is located on the path between u and v in T , we have (A∗u[i] =

A∗v[i] = 1) =⇒ (A∗w[i] = 1).

Requiring an ancestral reconstruction to be phylogenetically correct corre-

sponds to assuming that any two nucleotides that are aligned in A have to

be derived from a common ancestor, and thus that all the ancestral nodes be-

tween them have to have been a nucleotide. This prohibits aligned nucleotides

to be the result of two independent insertions. Assuming that this property

holds perfectly for a given alignment A is somewhat unrealistic, but, for mam-

malian sequences, good alignment heuristics have been developed (e.g. TBA

[17], MAVID [25], MLAGAN [27]) and have been shown to be quite accurate

[17]. It might be necessary, in the future, to relax this assumption, but, for

now, we will concentrate only on finding phylogenetically correct ancestral

reconstructions.

Since we are considering insertions and deletions affecting several consec-

utive characters, we delimit each operation by the positions s and e in the

aligned sequences where it starts and ends. Let x and y be two nodes of the

tree, where x is the parent of y. The pairwise alignment consisting of rows A∗x

and A∗y is divided into a set of regions defined as follows (see Figure 2.4).
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Definition 2.3 (Deletions, Insertions, Conservations, and Length) Consider

the pairwise alignment of A∗x and A∗y, and let 0 ≤ s ≤ e ≤ L+ 1.

• The region (s, e) is a deletion if (a) for all i ∈ {s, . . . , e}, A∗y[i] = 0, (b)

A∗x[s] = A∗x[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is a deletion (i.e.

we only consider regions that are maximal).

• The region (s, e) is an insertion if (a) for all i ∈ {s, . . . , e}, A∗x[i] = 0,

(b) A∗y[s] = A∗y[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is an insertion.

• The region (s, e) is a conservation if (a) for all i ∈ {s, . . . , e}, A∗x[i] =

A∗y[i] and (b) no region (s′, e′) ⊃ (s, e) is a conservation.

• The length of region (s, e) is the number of non-trivial positions it con-

tains: l(s, e) = |{s ≤ i ≤ e|A∗x[i] 6= 0 or A∗y[i] 6= 0}|.

A pair of binary alignment rows A∗x and A∗y can thus be partitioned into a set

of non-overlapping insertions, deletions, and conservations.

Ax: 1  1101  00  1010  1  001

Ay: 1  0000  11  1010  0  001

              C
1

       D
1

          I
1

          C
2

        D
2

      C
3

      l(C1)=1 l(D1)=3  l(I1)=2  l(C2)=2 l(D2)=1 l(C3)=1

*

*

Figure 2–1: Example of the partition of a pairwise alignment of A∗x and A∗y
(where x is the parent of y) into deletions, insertions, and conservations. The
length of each operation is given below it.

Definition 2.4 (Indel scenario) The indel scenario defined by an ancestral

reconstruction A∗ is the set of insertions and deletions that occurred between

the ancestral reconstructions at adjacent nodes in T .

All that remains is to define an optimization criterion on A∗. Two main

choices are possible: a parsimony criterion or a likelihood criterion. Hence, the

next two sections present the Indel Parsimony Problem (IPP) and the Indel

Maximum Likelihood Problem (IMLP).
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2.5 The Indel Parsimony Problem (IPP)

The parsimony approach for the indel reconstruction problem has been

introduced by Fredslund et al. ([91]) and Blanchette et al. [16]. In its simplest

version, it attempts to find the phylogenetically correct ancestral reconstruc-

tion A∗ that minimizes the total number of insertions and deletions defined

by A∗:

indelParsimony(A∗) =
∑

u,v:(u,v)∈ET

|{(s, e) : (s, e) is an indel from A∗u to A∗v}|

(2.1)

The Indel Parsimony Problem is NP-Hard [35]. Most authors have studied a

weighted version of the IPP where the cost of indels depends linearly on their

length (affine gap penalty). It is worth noting that the existing methods for

solving the IPP do not consider the edge lengths as input for finding the best

scenario.

2.5.1 Algorithm of Fredslund et al.

In their article, Fredslund and coauthors solved the Indel Parsimony Prob-

lem by processing a so-called gap graph through heuristics [91]. In their algo-

rithm, the tree T = (VT , ET ) is unrooted and the branch lengths are ignored.

Their algorithm proceeds in three steps:

Step 1: Constructing the gap graph

The gap graph is built from a set of gap intervals and the corresponding tree

covering. The gap intervals correspond to the regions with consecutive identi-

cal alignment columns (see Figure 2–2). For each gap interval, the tree covering

corresponds to the set of subtrees with the same gap structure. Furthermore,

each subtree cannot be extended without including a taxa with a nucleotide.

Hence, the tree coverings of the example shown in Figure 2–2 are F1 = {{2}},

F2 = {{2}, {4, 5}}, F3 = {{1, 2, 3, 4}} and F4 = {{1, 2}, {4}}.
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From the tree coverings, a gap graph is induced according to the following

rules. Each subtree in the tree coverings corresponds to a vertex in the gap

graph. Using consecutive intervals, the edges are induced according to the

different comparisons between the subtrees from the tree coverings of all the

consecutive intervals. For instance, an edge between subtrees x and y from

consecutive intervals is induced according to the following rules :

• Merge two vertices if they cover the same set of leaves (i.e identical

subtrees).

• Create a directed edge from x to y, if y includes all the taxa in x.

• Create a directed edge from y to x, if x includes all the taxa in y.

• Create an undirected zigzag edge between x and y, if the two sets share

common taxa but none of them includes all the taxa of the other.

• Finally, there will be no edge between x and y, if the two sets share no

common taxa.

The Figure 2–3 shows the gap graph obtained from the example presented

in Figure 2–2.

Step 2: Preprocessing the gap graph

Once the gap graph is obtained, the algorithm finds the most parsimonious set

A Large Version of the Small Parsimony Problem 423

– If T1 is the father of T2 a directed edge is created from the vertex (T2)I2 to
the vertex (T1)I1 .

– If T1 and T2 are cousins, an undirected zigzag edge is created between the
vertices (T1)I1 and (T2)I2 .

– If T1 and T2 are unrelated, no edges are created.

Thus, to construct a gap graph from a gap division D = {(Fi, Ii)}, we first
create a vertex for each subtree in each tree covering Fi. Then we traverse the
gap intervals Ii looking at two consecutive intervals at a time and merge any twin
vertices, create directed edges between fathers and sons, and create undirected
zigzag edges between cousins. Note that twin vertices may be extended to more
than two gap intervals. We next proceed to a full example.

Figure 4 shows an alignment of five sequences. It has four gap intervals
I1, . . . I4, each with its own tree covering F1, . . .F4. Each subtree in each tree
covering induces a vertex in the gap graph, so initially we get the six vertices
{2}I1 , {2}I2 , {4, 5}I2,

I1 I2 I3 I4
1: nnnn-----
2: ---------

3: nnnn--nnn

4: nn-------

5: nn--nnnnn

! ! !
!

!
!

!
!
!!

!
""

"
!!

!

""
"

3

5
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1

{2}I1∪I2 {1, 2}I4

{1, 2, 3, 4}I3

{4, 5}I2 {4}I4

Fig. 4. Alignment with five sequences 1–5 and
four gap intervals I1–I4, evolutionary tree, and
induced gap graph. The tree coverings for the
four gap intervals are F1 = {{2}}, F2 =
{{2}, {4, 5}}, F3 = {{1, 2, 3, 4}}, and F4 =
{{1, 2}, {4}}.

{1, 2, 3, 4}I3, {1, 2}I4, and
{4}I4 . Traversing the gap in-
tervals, first we merge the two
{2}-vertices since they lie in con-
secutive intervals, and then we
create a directed edge from this
new vertex to {1, 2, 3, 4}I3 since
{2} ⊂ {1, 2, 3, 4}. Next we create
an undirected zigzag edge be-
tween {4, 5}I2 and {1, 2, 3, 4}I3

since neither is contained in the
other while they still share the
leaf 4. Finally, we create directed
edges going from {1, 2}I4 and
{4}I4 to {1, 2, 3, 4}I3. For clarity
we write the subtree of a gap
graph vertex as either a variable
in parentheses, like in (T ′)I , or
a specific list of leaves with no
parentheses, like in {1, 2}I.

Our algorithm now works
with the gap graph to find the
most parsimonious set of indels
that explains the gaps in the alignment, given a gap penalty function g(l) =
α + βl. We first go through a preprocessing phase in which we reduce the po-
tentially very large and complex gap graph. In the second phase, we resolve the
reduced graph to find the optimal solution.

Figure 2–2: Alignment with five sequences and four gaps intervals and the
related phylogenetic tree. n represents a presence of nucleotide. This figure is
taken from [91].
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of indels that explain the alignment, given a gap penalty function g(l) = α+βl

where l is the length of the gap. To achieve this goal,in this second step, the al-

gorithm attempts to reduce the potentially very large and complex gap graph.

Several lemmas and two theorems are required for the latter issue. In sum-

mary, the theorems allow a connection between indels and gap graph vertices

and suggest to avoid placing indels lower than necessary in the phylogenetic

tree. The processing goes over the gap graph in several passes. In each pass,

local application of lemmas and theorems allow to reduce the graph. The Fig-

ure 2–4 presents an example of reduced graph using the same tree of Figure

2–3. The reduced graph is divided into chains where two vertices belong to the

same chain if and only if there exists a path connecting the two vertices that

does not cross a leaf vertex. The chains can be treated independently since

indels causing gap in the vertices of one chain could not have caused gaps in

vertices of another chain.

Step 3: Resolving the reduced gap graph

Each chain is analyzed independently. For instance, the chain a in Figure

2–4 has two indel scenario explanations. 1) There is only one indel occurring

between the root of subtree {1, 2, 3} and its closest neighbor; 2) The indel in

this chain is the result of three independent indels in each leaf branch of the

subtree.

A Large Version of the Small Parsimony Problem 423

– If T1 is the father of T2 a directed edge is created from the vertex (T2)I2 to
the vertex (T1)I1 .

– If T1 and T2 are cousins, an undirected zigzag edge is created between the
vertices (T1)I1 and (T2)I2 .

– If T1 and T2 are unrelated, no edges are created.

Thus, to construct a gap graph from a gap division D = {(Fi, Ii)}, we first
create a vertex for each subtree in each tree covering Fi. Then we traverse the
gap intervals Ii looking at two consecutive intervals at a time and merge any twin
vertices, create directed edges between fathers and sons, and create undirected
zigzag edges between cousins. Note that twin vertices may be extended to more
than two gap intervals. We next proceed to a full example.

Figure 4 shows an alignment of five sequences. It has four gap intervals
I1, . . . I4, each with its own tree covering F1, . . .F4. Each subtree in each tree
covering induces a vertex in the gap graph, so initially we get the six vertices
{2}I1 , {2}I2 , {4, 5}I2,

I1 I2 I3 I4
1: nnnn-----
2: ---------

3: nnnn--nnn

4: nn-------

5: nn--nnnnn

! ! !
!

!
!

!
!
!!

!
""

"
!!

!

""
"

3

5
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1

{2}I1∪I2 {1, 2}I4

{1, 2, 3, 4}I3

{4, 5}I2 {4}I4

Fig. 4. Alignment with five sequences 1–5 and
four gap intervals I1–I4, evolutionary tree, and
induced gap graph. The tree coverings for the
four gap intervals are F1 = {{2}}, F2 =
{{2}, {4, 5}}, F3 = {{1, 2, 3, 4}}, and F4 =
{{1, 2}, {4}}.

{1, 2, 3, 4}I3, {1, 2}I4, and
{4}I4 . Traversing the gap in-
tervals, first we merge the two
{2}-vertices since they lie in con-
secutive intervals, and then we
create a directed edge from this
new vertex to {1, 2, 3, 4}I3 since
{2} ⊂ {1, 2, 3, 4}. Next we create
an undirected zigzag edge be-
tween {4, 5}I2 and {1, 2, 3, 4}I3

since neither is contained in the
other while they still share the
leaf 4. Finally, we create directed
edges going from {1, 2}I4 and
{4}I4 to {1, 2, 3, 4}I3. For clarity
we write the subtree of a gap
graph vertex as either a variable
in parentheses, like in (T ′)I , or
a specific list of leaves with no
parentheses, like in {1, 2}I.

Our algorithm now works
with the gap graph to find the
most parsimonious set of indels
that explains the gaps in the alignment, given a gap penalty function g(l) =
α + βl. We first go through a preprocessing phase in which we reduce the po-
tentially very large and complex gap graph. In the second phase, we resolve the
reduced graph to find the optimal solution.

Figure 2–3: The gap graph induced from the example of Figure 2–2. This
figure is taken from [91].
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since they can be dealt with independently: indels causing gaps in the vertices
of one chain could not have caused gaps in vertices of another chain.

Say that after preprocessing, (a part of) the gap graph looks like Figure 5. In
the second phase of our algorithm, we analyze each chain in turn. Looking first at
chain a, we see that only the vertex (123) is still undecided (the others being leaf
vertices). Referring to Theorem 1, we note that since there are no cousin edges
in this chain, the only indels we need to consider for the optimal explanation
are the ones already represented by vertices in the chain. That means there are
only two possible explanations for the gaps represented by the vertex (123): 1)
Either they are the result of one indel occurring between the root of the subtree
{1, 2, 3} and its closest relative (in which case we confirm the vertex), or 2) they
are the result of three indels occurring between 2 and its closest relative, 1 and its
closest relative, and 3 and its closest relative, respectively, extending the already
confirmed neighboring indels/vertices (in which case we decompose the vertex).
If we let l123 be the length of its associated alignment interval, the extra cost
for resolving the vertex (123) in each of these two explanations is α + βl versus
3βl. For the optimal explanation we simply choose the cheaper one (in general,
if several options are optimal, we choose one arbitrarily).

1 12

2 123 1234 345 5 45 4

3
chain a:

(2), (123), (1), (3)

chain b:

(1), (12), (1234), (345), (5)

chain c:

(5), (45), (4)

Fig. 5. Gap graph with three chains (same tree as in Figure 4). We omit interval labels
on the vertices, and we write, e.g., (2345) to denote the subtree {2, 3, 4, 5}.

Chain b has three undecided vertices: (12), (1234), and (345). Moreover, the
latter two are cousins and so by Theorem 1 we need to consider indels whose
subtrees lie in their intersection. That gives two additional potential indels not
already represented in the chain by vertices, namely {3} and {4}. Interestingly,
the vertex (12) can therefore be confirmed right away: its only possible decom-
position is in subtrees {1} and {2}, but since {2} is neither present as a vertex
nor lies in the cousin intersection, this indel could never be part of an optimal
explanation. For the same reason, the vertex (1234) may either be confirmed or
decomposed in one way only, namely with three indels with the subtrees {1, 2},
{3}, and {4}. And finally the vertex (345) may either be confirmed or decom-
posed in three indels with the subtrees {3}, {4}, and {5} (this time, Theorem 1
dictates that the indel {4, 5} is not an option in chain b). In total therefore we
have four combinations which we need to check in this chain. Lastly, in chain c
we may either confirm the vertex (45) or decompose it in {4} and {5}.

Figure 2–4: An example of reduce gap graph with three distinct chains named
a, b and c (same tree as in Figure 2–2). This figure is taken from [91].

This algorithm is exponential in the length of the alignment. However,

dependent on the gap configuration in the alignment, the algorithm could

be extremely fast (less than one second for an alignment of nine HIV whole

genome with about 10000 columns).

2.5.2 Algorithm of Blanchette et al.

The heuristics proposed by Blanchette and coauthors used a greedy ap-

proach implemented in the inferAncestor program. The latter program is avail-

able from http://www.mcb.mcgill.ca/˜blanchem/software. The inferAncestor

program integrates the steps of indel and substitution inference. This program

is presented in details in the appendix A. Given a multiple alignment, first,

all the gaps in the alignment are marked as unexplained. Then, the algorithm

iteratively selects the insertion or deletion, performed along a specific edge of

the tree and spanning one or more columns of the alignment, that yields the

largest number of alignment gaps explained per unit of cost. The number of

gaps explained by a deletion is the number of unexplained gaps in the sub-

tree below which the deletion occurs. The number of gaps explained by an

insertion is the number of unexplained gaps in the complement of the subtree

above which the insertion occurs. The costs can be fixed or defined heuris-

tically. Once the best insertion or deletion has been identified, its gaps are
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marked as explained. This does not preclude them from being part of other in-

dels, but they will not count in their evaluation. Finally, heuristics are used to

reduce errors due to incorrect alignment, in particular to reduce the problems

caused by two repetitive regions from two distantly related species mistakenly

aligned to each other, with other species having gaps in that region.

2.5.3 Algorithm of Chindelevitch et al.

In their paper, Chindelevitch and coauthors presented two ways of solving

the IPP [35]. The first one is a greedy algorithm and the second one is based

on the Integer Linear Programming (ILP). Their simulations indicated that

the ILP approach finds the optimal indel score in all simulations while the

greedy one gives a nearly optimal score (the score differences are less than 2

in all cases). However these results are based on small datasets. The greedy

algorithm works in two phases requiring the application of six different rules.

Phase 1: the presence or absence of character is identified for each ancestral

position in each ancestral node where all the children of the given node at the

same position have a common character. Phase 2: the heuristic traverses

each obtained sequence from the internal nodes and applies one of its rule to

decide whether an undecided character should be explained according to the

neighboring columns. The process is repeated until all the ancestral characters

are inferred. The running time of this greedy algorithm is linear with respect

to the number of taxa and the length of the alignment. In the second approach

for solving the IPP using ILP, the authors showed an efficient way of encoding

the IPP as a 0-1 Integer Linear Programming problem. Once the encoding

is done, they used a standard package for linear programming to find the

solution. It is worth noting that the latter approach displays an exponential

running time in function of the length of the alignment.
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2.6 Indel Maximum Likelihood Problem

In this section, we introduce our own version of the indel reconstruc-

tion problem in a probabilistic framework similar to the Thorne-Kishino-

Felsenstein model [237]. To this end, we need to define the probability of

transition between an alignment row A∗x and its descendant row A∗y. This

probability will be defined as a function of the probability of the insertions,

deletions, and conservations that happened from A∗x to A∗y.

Let PDelStart(λ(b)) be the probability that a deletion starts at a given po-

sition in the sequence, along a branch b of length λ(b), and let PInsStart(λ(b))

be defined similarly for an insertion. We assume that these probabilities only

depend on the length λ(b) of the branch b along which they occur, but not on

the position where the indel occurs. A reasonable choice is PDelStart(λ(b)) =

1− e−ψDλ(b) and PInsStart(λ(b)) = 1− e−ψIλ(b), for some deletion and insertion

rate parameters ψD and ψI , but our algorithm allows for any other choice of

these probabilities. Thus, the probability that none of the two events happens

at a given position, which we call the probability of a conservation, is given

by PCons(λ(b)) = e−(ψD+ψI)λ(b). We make the standard simplifying assump-

tion that the length of a deletion follows a geometric distribution, where the

probability of a deletion of length k is αk−1
D (1 − αD) and the probability of

an insertion of length k is αk−1
I (1 − αI). One can thus see αD (resp. αI) as

the probability of extending a deletion (resp. insertion). This assumption,

necessary to design a fast algorithm, holds relatively well for short indels, but

fails for longer ones [130]. Our algorithm allows the parameters αD and αI to

depend on the branch b, but the results reported in Section 3.5 correspond to

the case where αD and αI were held constant across the tree. The probability

that alignment row A∗x was transformed into alignment row A∗y along branch

b can be defined as follows:
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Pr(A∗y|A∗x, b) =
∏

(s,e): deletion from A∗x to A∗y

PDelStart(λ(b)) · (αl(s,e)−1
D (1− αD)) ·

∏
(s,e): insertion from A∗x to A∗y

PInsStart(λ(b)) · (αl(s,e)−1
I (1− αI)) ·∏

(s,e):conservation from A∗x to A∗y

(PCons(λ(b))l(s,e) (2.2)

This allows us to formulate precisely the problem addressed in this paper:

INDEL MAXIMUM LIKELIHOOD PROBLEM (IMLP):

Given: A multiple sequence alignment A of n orthologous sequences related

by a phylogenetic tree T with branch lengths λ, a probability model for inser-

tions and deletions specifying the values of ψD, ψI , αD, and αI .

Find: A maximum likelihood phylogenetically correct ancestral reconstruc-

tion A∗ for A, where the likelihood of A∗ is:

L(A∗) =
∏

b=(x,y)∈ET

Pr(A∗y|A∗x, b) (2.3)

During my Ph.D., Kim and Sinha published the indelign program for

solving the IMLP [131]. Their algorithm is based on pair hidden Markov

Model. Recently, Bradley and Holmes improved on the implementation of

Indelign using transducers [23]. In the next section we introduce the indelign

program and show the differences between the two implementations.

2.6.1 Algorithm of Indelign

Given a multiple sequence alignment, the Indelign program [131] can be

used to annotate the indels on each branch of a phylogenetic tree by solv-

ing the IMLP, it can also make limited changes to the alignment to infer a

better evolutionary history. Furthermore, the Indelign program can infer in-

del evolutionary paramaters from related multiple sequence alignments and a

phylogenetic tree. To solve the IMLP, Indelign builds a pair-hidden Markov
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model in each edge of the tree (for example see Figure 2–5). The ANNO-

TATE component of Indelign solves the IMLP either by naively evaluating

all the possible indel scenarios or by building a dynamic programming matrix.

The dynamic program first builds blocks that can be annotated independently

of the other blocks and then resolves the adjacent and indel dependent blocks.

Each node u of the tree is associated to a matrix of size 2k where k corresponds

to the number of blocks. This matrix records the likelihood of the maximum

likelihood indel scenarios for the subtree rooted u. The time complexity of the

naive algorithm is O(2k(n−1))n while that of the dynamic program is O(2kn),

where n is the number of taxa. Hence, in the worst case (blocks correspond

to alignment columns) the two methods are exponential in function of the

alignment length. The SEARCH component of the Indelign program per-

mits to obtain all alignments derived from the given one with a limited class of

modifications. Those alignments can be quickly evaluated to help improving

the alignment quality with respect to the maximum likelihood evolutionary

scenario (including indels and substitutions). Indelign’s complexity makes

it applicable to only dataset with small number of taxa and short sequence

lengths. It also prevents having certain configurations of indel scenario such as

having an indel falling in the middle of another indel. It also avoids multiple

hits of indels in the same branch. The indelign program is described in details

in [131].
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2.6.2 Algorithm of Bradley and Holmes

Recently, Bradley and Holmes showed how the Indelign program can be ef-

ficiently implemented using finite-state transducers instead of the pair-hidden

Markov model [23]. A transducer is a machine similar to a pair-hidden Markov

model: it is a two-tape finite state machine with transition and emission

weights [67]. Their method places a transducer on each branch of the phylo-

genetic tree and automates the construction of systematic scoring schemes for

solving the IMLP. The complexity of the transducer approach is O(la2n) where

a is the number of state in the transducer (a = 3 in the simplest transducer).

To make this approach practical for a realistic dataset, a Markov Chain Monte

Carlo (MCMC) approach has been implemented to sample from the posterior

distribution over indel scenarios. It starts with an initial estimate of indel

scenario and then computes successive local MCMC moves (edge and node

sampling) [23]. It is worth noting that the authors do not make available an

implementation.
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CHAPTER 3
Exact and Heuristic Methods for the Indels Maximum Likelihood

Problem

3.1 Preface

In this chapter, we present a solution to the Indel Maximum Likelihood

Problem (IMLP) described in chapter 3. We proposed to solve the IMLP

using a new type of hidden Markov model called tree-HMM. The content of

this chapter is taken from the published paper Diallo et al. [58] (see appendices

for the full version of this paper).

3.2 Abstract

Given a multiple alignment of orthologous DNA sequences and a phyloge-

netic tree for these sequences, we investigate the problem of reconstructing the

most likely scenario of insertions and deletions capable of explaining the gaps

observed in the alignment. This problem, that we called the Indel Maximum

Likelihood Problem (IMLP), is an important step toward the reconstruction

of ancestral genomics sequences, and is important for studying evolutionary

processes, genome function, adaptation and convergence. We solve the IMLP

using a new type of tree hidden Markov model whose states correspond to

single-base evolutionary scenarios and where transitions model dependencies

between neighboring columns. The standard Viterbi and Forward-backward

algorithms are optimized to produce the most likely ancestral reconstruction

and to compute the level of confidence associated to specific regions of the re-

construction. A heuristic is presented to make the method practical for large

data sets, while retaining an extremely high degree of accuracy. The methods

are illustrated on a 1Mb alignment of the CFTR regions from 12 mammals.
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3.3 A Tree-Hidden Markov Model

In this section, we describe the tree hidden Markov model that is used to

solve the IMLP. A tree-hidden Markov model (tree-HMM) is a probabilistic

model that allows two processes to occur, one in time (related to the sequence

history in a given column of A), and one in space (related to the changes

toward the neighboring columns). Tree HMMs were introduced by Felsenstein

and Churchill (1996) [88] and Yang (1996) [256] to improve the phylogenetic

models that allows for variation among sites in the rate of substitution, and

have since then been used for several other purposes (e.g. detecting conserved

regions [217] and predicting genes [215]). Just as any standard HMM [67], a

tree-HMM is defined by three components: the set of states, the set of emission

probabilities, and the set of transition probabilities.

3.3.1 States

Intuitively, each state corresponds to a different single-column indel sce-

nario (although additional complications are described below). Given a rooted

binary tree T = (VT , ET ) with n leaves, each state corresponds to a different

labeling of the edges ET with one of three possible events: I (for insertion),

D (for deletion), or C (for conservation). The set S of possible states of the

HMM would then be S = {I,D,C}2n−2. However, this definition is not suffi-

cient to model certain biological situations (see Figure 3–1). We will use the ’*’

symbol to indicate that, along a certain branch b = (x, y), no event happened

because there was a base neither at node x nor at node y. This will happen

in two situations: when edge b is a descendant of edge b′ that was labeled

with D (i.e. the base was deleted higher up the tree), and when there exists

an edge b′ that is not between b and the root and that is labeled with I (i.e.

an insertion happened elsewhere in the tree). The fact that these extraneous

events can potentially interrupt ongoing events along branch b means that the
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HMM needs to have a way to remember what event was actually going on

along that branch. This transmission of memory from column to column is

achieved by three special labels: I∗, D∗, and C∗, depending on whether the ∗

regions is interrupting an insertion, deletion, or conservation. Thus, we have

S ⊆ {I,D,C, I∗, D∗, C∗}2n−2. Although this state space appears prohibitively

large (62n−2), the reality is that a number of these states cannot represent

actual indel scenarios, and can thus be ignored. The following set of rules

specify what states are valid.

Definition 3.1 (Valid states) Given a tree T = (VT , ET ), a state s assign-

ing a label s(b) ∈ {I,D,C, I∗, D∗, C∗} to each branch b ∈ ET is valid if the

two following conditions hold.

• (Phylogenetic correctness condition) There must be at most one branch

b such that s(b) = I.

• (Star condition) Let b ∈ ET , and let anc(b) ⊂ ET be the set of branches

on the path from the root to b. Then s(b) ∈ {I∗, D∗, C∗} if and only

if ∃b′ ∈ anc(b) such that s(b′) = D or ∃b′ ∈ (ET \ anc(b)) such that

s(b′) = I.

The number of valid states on a complete balanced phylogenetic tree with n

leaves is O(n · 32n) (the number is dominated by states that have a ’I’ on a

branch leading to a leaf, which leaves all other 2n− 3 edges free to be labeled

with either C∗, D∗, or I∗). Although this number remains exponential, it is

significantly better than the 62n−2 valid and invalid states.

3.3.2 Emission probabilities

In an HMM, each state emits one symbol, according a certain emission

probability distribution. In our tree-HMMs, each state emits a collection of

symbols, corresponding to the set of characters obtained at the leaves of T

when indel scenario s occurs. Intuitively, we can think of a state as emitting
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an alignment column. The following definition formalizes this.

Definition 3.2 Let s be a valid state for tree T = (VT , ET ) with root r. Then,

we define the output of state s as a function Os : VT → {0, 1} with the following

recursive properties:

1.

Os(root) =

 0, if ∃x ∈ VT such that s(x) = I

1, otherwise
(3.1)

2. Let e = (x, y) ∈ ET , with x being the parent of y. Then,

Os(y) =


0, if s(e) = D

1, if s(e) = I

Os(x), otherwise

(3.2)

Let C be an alignment column (i.e. an assignment of 0 or 1 to each leaf

in T ). We then have the following degenerate emission probability for state s:

Pre(C|s) =

 1 if Os(x) = C(x) for all x ∈ leaves(T )

0 otherwise
(3.3)

Thus, each state s can emit a single alignment column C. However, many

different states can emit the same column.

Missing data

In presence of missing characters among the input sequences, the emission

probability can be adapted such that the equality between Os(x) and C(x) is

assessed according to 0’s and 1’s in C(x) only. It is worth noting that missing

characters are different to gaps noted by −. Hence, the presence of missing

data increases the number of states for a given column.
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3.3.3 Transition probabilities

The last component to be defined is the set of transition probabilities of

the tree-HMM. The probability of transition from state s to state s′, Prt(s
′|s),

is a function of the set of events that occurred along the edges of T . Intuitively,

Prt(s
′|s) describes the probability of the single-column indel scenario s′, given

that scenario s occurred at the previous column. This transition probability

is a function of insertions and deletions that started between the two columns,

of those that were extended going from one column to the next. Specifically,

we have:

Pr
t

(s′|s) =
∏
b∈ET

ρ(s′(e)|s(e), b), (3.4)

where ρ is given in Table 3–1.
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3.4 Tree-HMM paths, ancestral reconstruction and assessing un-
certainty

We now show how the tree-HMM described above allows us to solve the

IMLP. Consider a multiple alignment A of length L on a tree T . A path π

in the tree-HMM is a sequence of states π = π0, π1, ..., πL, πL+1. Based on

standard HMM theory, we get:

Pr(π,A) = Pr(π0, A0)
L+1∏
i=1

Pre(A[i]|πi) · Prt(πi|πi−1) (3.5)

Figure 3–1 gives an example of an alignment with some of the non-zero prob-

ability paths associated.

Theorem 3.1 Consider an alignment A on tree T . Then π∗ = argmaxπ Pr(π,A)

yields the most likely indel scenario for A, and a maximum likelihood ancestral

reconstruction A∗ is obtained by setting A∗u[i] = Oπ∗i
(u).

Proof 3.1 It is simple to show that for any ancestral reconstruction Â for

A, we have L(Â) = Pr(π,A), where π is the path corresponding to Â. Thus,

maximizing Pr(π,A) maximizes L(Â).

3.4.1 Computing the most likely path

To compute the most likely path π∗ through a tree-HMM, we adapted

the standard Viterbi dynamic programming algorithm [244]. Let X(i, k) be

the joint likelihood of the most probable path ending at state k for the i first

columns of the alignment. Let c ∈ S be the state made of C’s on all edges

of T . Since the dummy column A[0] consists exclusively of 1’s, c is the only

possible initial state. For any i between 0 and L + 1 and for any valid state

s ∈ S, we can compute X(i, s) as follows:

X(i, s) =


1, if i = 0 and s = c

0, if i = 0 and s 6= c

Pre(A[i]|s) ·maxs′∈S(X(i− 1, s′) · Prt(s|s′)), if i > 0

(3.6)
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Figure 3–1: The set of valid, non-zero probability states associated to the
multiple alignment given at the top of the figure. When edges are labeled
with more than one character (e.g. C∗, D∗), the tree represents several pos-
sible states. For the third column, not all possible states are shown. Arrows
indicate one possible path through the tree-HMM. This path corresponds to
two interleaved insertions, shown by two boxes in the alignment, illustrating
the need for the I∗ character.

Finally, π∗ is obtained by tracing back the dynamic programming, starting

from entry X(L + 1, c). To ensure numerical stability, we use a log transfor-

mation and scaling of probabilities as described by [67].

The running time of a naive implementation of the Viterbi algorithm is

O(|S|2L), which quickly becomes impractical as the size of the tree T grows.

However, we can make this computation practical for moderately large trees

and for long sequences. Even though the number of states is exponential in

the number of sequences, most alignment columns can only be generated with

non-zero probability by a much more manageable number of states. Given an

alignment A, it is possible to compute, for each column A[i], the set Si of valid

states that can emit A[i] with non-zero probability. For instance, an alignment

column with only 1’s will lead to only one possible state, independently of the
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number taxa of n. The set Si can be constructed using a bottom approach

presented in Algorithm 3. More states can be discarded by using the fact that

the transition probability between most pairs of states is zero. We can thus

remove from Si any state s that is such that the transition to s from any state

in Si−1 has probability zero. Proceeding from left to right, we get S ′0 = S0,

and S ′i = {s ∈ Si|∃t ∈ S ′i−1 s.t. Prt(s|t) > 0}, where S ′i ⊆ Si. For instance, if,

in all states of Si−1, an edge e is labeled by deletion D, then none of the states

in Si can have edge e labeled with C∗ or I∗. This yields a large improvement

for alignment regions consisting of a number of adjacent positions with a base

in only one of the n species and ensures that the algorithm will be practical

for relatively large number of sequences (see Section 3.5).

Algorithm 1 buildValidState(node root, C)

Require: root: a tree node, C: an alignment column.
Ensure: Set of valid, non-zero probability states for C.
1: if root is a leaf then
2: return list of possible operations according to the character at that

leaf
3: else
4: leftList = buildValidState(root.left, C)
5: rightList = buildValidState(root.right, C)
6: return mergeSubtrees(leftList, rightList, root)
7: end if

3.4.2 Assessing uncertainties of the ancestral reconstruction

A significant advantage of the likelihood approach over the parsimony

approach is that it allows evaluating the uncertainty related to certain aspects

of the reconstruction. For example, it is useful to be able to compute the

probability that a base was present at a given position i of a given ancestral

node u:

Pr(A∗u[i] = 1|A) =
∑

s∈S:Os(u)=1

Pr(πi = s|A). (3.7)
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Algorithm 2 mergeSubtrees(StateList leftList, StateList rightList, node
root)

Require: leftList and rightList: the lists of partial states, root: a tree node.
Ensure: Set of valid, non-zero probability states combining elements in

leftList and rightList.
1: mergedList ← emptyList
2: for all partial states l in leftList do
3: for all partial states r in rightList do
4: if compatible(l, r) == true then
5: m = merge(l, r)
6: if root == initialroot then
7: mergedList.add(m)
8: else
9: for op ∈ {C,D, I, C∗, D∗, I∗} do

10: if isPossibleUpstream(m,op) then
11: mergedList.add(addAncestorBranch(m,op))
12: end if
13: end for
14: end if
15: end if
16: end for
17: end for
18: return mergedList

This allows the computation of the probability of making an incorrect pre-

diction at a given position of a given ancestor. The forward-backward is a

standard HMM algorithm to compute Pr(πi = s|A) (see [67] for more details).

The optimizations developed for the Viterbi algorithm can be trivially adapted

to the Forward-Backward algorithm.

3.5 Results of the exact method

Our tree-HMM algorithm was implemented as a C program that is avail-

able upon request. The program was applied to a ∼700kb region of the CFTR

locus on chromosome 7 of human, together with orthologous regions in 11

other species of mammals: chimp, macaque, baboon, mouse, rat, rabbit, cow,
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dog, Rodrigues fruit bat (rfbat), armadillo, and elephant1 [79]. This locus is

representative of the whole genome, and contains coding, intergenic regions,

and intronic regions. The multiple alignment of these regions, computed us-

ing TBA [17, 164], contains 1,000,000 columns. To simplify the calculations,

consecutive alignment columns with the same gap structure were assumed to

have undergone the same evolutionary scenario and were thus merged into a

single ”meta-column” we called an alignment region. Our alignment consisted

of 123,917 such regions. Thus, during the execution of the Viterbi or Forward-

Backward algorithm, the states are computed for each region instead of for

each individual column, adapting the transition probabilities as a function of

the width of each region. The phylogenetic tree used for the alignment and for

the reconstruction is shown in Figure 7–1. The branch lengths are based on

substitution rates estimated on a genome-wide basis [164]. For illustrative pur-

poses, and similarly to the empirical values obtained by [130], the parameters

of the indel model were set as follows: ψD = 0.05, ψI = 0.05, αD = 0.9, and

αI = 0.9. However, we find that the ancestral reconstructions and confidence

levels are quite robust with respect to these parameters (data not shown).

We first compared the maximum likelihood ancestral reconstruction found

using our Viterbi algorithm to the ancestors inferred using the greedy algo-

rithm of Blanchette et al. (2004) [16]. Table 3–2 shows the degree of agreement

between the two reconstructed ancestors, for each ancestral node. We observe

that both methods agree to a very large degree, with most ancestors yielding

more than 99% agreement. The most disagreement concerns the ancestor at

the root of the eutherian tree, which, in the absence of an outgroup, cannot

1 In the case of cow, armadillo, and elephant, the sequence is incomplete
and a small fraction of the bases are missing.
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Figure 3–2: Phylogenetic tree for the twelve species studied in this paper.

be reliably predicted by any method. We expect that in most other cases of

disagreement, the maximum likelihood reconstruction is the most likely to be

correct, although the opposite may be true in case of gross model violations

[116].
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The main strength of the likelihood-based method is its ability to measure

uncertainty, using the forward-backward algorithm, something that no previ-

ous method allowed. Assuming a phylogenetically correct alignment and a cor-

rect indel model, the probability that the maximum posterior probability re-

construction is correct is simply given by max{Pr(A∗u[i] = 1|A), 1−Pr(A∗u[i] =

1|A)}. For example, if Pr(A∗u[i] = 1|A) = 0.3, then the maximum posterior

probability reconstruction would predict A∗u[i] = 0, and would be right with

probability 0.7. Figure 3–3 shows the distribution of this probability of correct-

ness, for each ancestral node in the tree, over all regions of the alignment. We

observe, for example, that 98% of the positions in the Boreoeutherian ances-

tor (the human+chimp+baboon+macaque+mouse+rat, cow+dog+rfbat an-

cestor, living approximately 75 million years ago), are reconstructed with a

confidence level above 99% 2 . The ancestor that is the easiest to reconstruct

confidently is obviously the human-chimp ancestor, where less than 0.14% of

the regions have a confidence level below 99%. Again, the root of the tree

is the node that is the most difficult to reconstruct confidently. Overall, this

shows that most positions of most ancestral nodes can be reconstructed very

accurately, and that we can identify the few positions where the reconstruc-

tion is uncertain. A potential drawback of the tree-HMM method is that its

running time is, in the worst case, exponential in the number of sequences

being compared. However, the optimizations described in this paper greatly

reduce the number of states that need to be considered at each position, so

the algorithm remains quite fast. Our optimized Viterbi algorithm produced

2 We need to keep in mind, though, that these numbers assume the cor-
rectness of the multiple alignment, as well as that of the branch lengths and
indel probability model, so that they do not reflect the true correctness of the
reconstructed ancestor.
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Figure 3–3: Distribution of the confidence levels, over all 123,917 alignment
regions, for each ancestor. The vast majority of the ancestral positions are
reconstructed with a probability of correctness above 99% (assuming the cor-
rectness of the alignment).

its maximum likelihood ancestral predictions on the 12-species, 1,000,000 col-

umn alignment in 7 hours on a Powerbook G5 machine, while the forward-

backward algorithm produced an output after approximately double of that

time. Figure 3–4 shows the distribution of the number of states that were

actually considered, per alignment column. Most alignment columns are ac-

tually associated to less than 100 states. However, a small number of columns

are associated to a very large number of states (15 regions have more than

100,000 states). Fortunately, these columns are rarely consecutive, so the in-

curred running time is not catastrophic for small number of species. However,

to be applicable to complete genomes and to scale up to the more than 20
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Figure 3–4: Distribution of the number of states considered (|S ′i|), over all
123,917 regions.

mammalian genomes that will soon be available, our algorithm requires fur-

ther optimizations. These optimizations move away from an exact algorithm,

toward approximation algorithms.

3.6 Heuristic algorithm for the IMLP

For each region i of the alignment and each possible state s ∈ S ′i, the ex-

haustive method considers all possible states for the next column, even though

the Viterbi value X(i, s) of some current state s may be far away from the

maximal Viterbi value at that position, maxs′∈S′i X(i, s′) . These states are less

likely to be eventually chosen in the best path of the tree-HMM. Hence, to

reduce the number of states created and reduce computation time, only states

near the maximum Viterbi value are used to compute states for the next col-

umn. Thus, for region i, we distinguish between created states S ′i and used

states Ri ⊆ S ′i, where only the second set will be involved in the creation of

the states of the next column and in their Viterbi calculation. For position i,
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state s ∈ S ′i is retained in Ri if and only if log2(
maxs′ X(i,s′)

X(i,s)
) < t, for some fixed

threshold t. We note that this is equivalent to setting X(i, s) to zero for each

s ∈ S−R. A similar heuristic can easily be applied to the Forward-Backward

algorithm. If t is sufficiently large, the loss in accuracy should be minimal for

both algorithms, as will be shown next.

We computed the indels scenarios of the data sets presented in Section

3.5 by using different values for the threshold t. The approximate Viterbi

algorithm was run using t = 0, 1, 3, 5, 7, 9, 10, 20, 100, and +∞. Note that

setting t = 0 results in a ”greedy” algorithm that only considers the maximum

Viterbi value at each position, while t = +∞ give the original, optimal Viterbi

algorithm. Figure 3–5 shows the number of states created (average of |S ′i|) and

used (average of |Ri|) for all values of t, as well as the resulting running time.

For small values of t, e.g. t ≤ 3, only a handful of states are used, resulting

in a very fast execution (less than 3 minutes). The average of number of

states created increases relatively quickly with t, while the number of states

used remains quite low (44.34 for t = 100). The average number of states

created for t = 20 is about the same as the average number of states of

the exact algorithm (see Figure 3–5), which shows that the used states are

sufficient to give the necessary information to generate most valid states for

next columns. Even though the average number of states created and used

for 0 ≤ t ≤ 5 is very low, the indels scenarios produced are very similar to

the best scenario obtained by the exact method (see Table 3–3). We note

that, for t = 5, the agreement with the exact algorithm is more than 99.99%

for all the ancestors, while the running time is reduced by a factor of ten,

and by a factor of one hundred for t = 3. For t ≥ 9, the heuristic gives the

optimal scenario, while still yielding a 5-fold speed-up. All values of t tested

gave solutions that agreed with the optimal solution better than the solution
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(S ′i) and used (Ri), for the different values of the cutoff t. Running times (in
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produced by the greedy algorithm of [16]. Finally, we note that, while our

optimal Viterbi and Forward-Backward algorithms are limited to 12 to 15

species, our heuristic allows the inference of near-optimal solutions for much

larger alignments. When run on a 1,000,000 column alignment of 28 species

of vertebrates, our heuristic with t = 3 produced a solution in less than two

hours. Since the exact algorithm cannot be run on such a large data set, it

is difficult to estimate the quality of the solution obtained but, based on our

experience on the smaller data set (Table 3–3), we expect a very high accuracy

even at such a stringent cutoff.
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3.7 Discussion and Future Work

The method developed here allows predicting maximum likelihood indel

scenarios and their resulting ancestral sequences for large alignments. Fur-

thermore, it allows the estimation of the probability of error in any part of

the prediction, using the forward-backward algorithm. Integrated into the

pipeline for whole-genome ancestral reconstruction, it will improve the qual-

ity of the predictions and allow richer analyses. The main weakness of our

approach is that it assumes that a phylogenetically correct alignment and an

accurate phylogenetic tree are given as input. While many existing multiple

alignment programs have been shown to be quite accurate on mammalian ge-

nomic sequences (including non-functional or repetitive regions) [17], it has

also been shown that a sizeable fraction of reconstruction errors is due to in-

correct alignments [16]. Ideally, one would include the optimization of the

alignment directly in the indel reconstruction problem, as originally suggested

by Hein in 1989 [107]. However, with the exception of statistical alignment

approaches [152], which remain too slow to be applicable on a genome-wide

scale, genomic multiple alignment methods do not treat indels in a probabilis-

tic framework. We are thus investigating the possibility of using the method

proposed here to detect certain types of small-scale alignment errors, and to

suggest corrections.

When predicting ancestral genomic sequences, it is very important to

be able to quantify the uncertainty with respect to certain aspects of the

reconstruction. Our forward-backward algorithm calculates this probability of

error for each position of each ancestral species. However, errors in adjacent

columns are not independent: if position i is incorrectly reconstructed, it is

very likely that position i + 1 will be wrong too. We are currently working

on models to represent this type of correlated uncertainties. This new type of
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representation will play an important role in the analysis and visualization of

ancestral reconstructions.

Finally, it will be important to assess the results given by the heuristic

so that the cutoff value t is chosen appropriately for the data at hand. For

example, the heuristic could be applied iteratively by increasing the cutoff

until a stationary likelihood score is reached. This heuristic will be useful to

reconstruct the indel scenarios for data sets containing more than 20 taxa and

could be easily applied to the large number of mammalian genomes that are

about to be completely sequenced.
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CHAPTER 4
Web Tools for Indel and Ancestral Sequence Reconstruction

In this chapter, we present two web tools intended to contribute to the

ancestral sequence reconstruction project. The first allows the visualization of

the n best indel scenarios for a given set of aligned sequences [56]. The second

is dedicated to a web interface allowing one to compute three important steps

of the ancestral genome reconstruction project (multiple sequence alignment,

indel inference and substitution inference) [59].

4.1 Visualizing the n best Indels scenario in Ancestral Genome
Reconstruction

4.1.1 Preface

This section contains a part of the following paper: Diallo, A.B., Gaul,

E. (2009): Visualization of the n best indel likelihood scenarios. In preparation.

14 pages.

4.1.2 Abstract

The reconstruction of indel evolutionary scenarios often leads to several

solutions. These solutions may disagree for several blocks of characters in the

reconstructed ancestors. Although two solutions may be equally parsimonious,

the likelihood associated to the reconstructed blocks where the divergence

occurs can be different, depending on where one looks in the tree. Diallo

et al. 2007, in addition to describing a method to compute the most likely

indels evolutionary scenarios, showed that the likelihood of each ancestral

character (position) can be assessed to be present or not [58]. In this paper,

we propose an efficient way of visualizing ancestral reconstructions and the

likelihood associated to each of the reconstructed blocks. We establish a way
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of presenting the conflicting solutions in a single figure while highlighting the

regions that have a high/low likelihood. The tool we propose displays the set

of conflicting solutions using a graph to represent each ancestral sequence or

each operation that can explain transitions between two nodes. The tool is

web-based, and the navigation within the figures is intuitive.

4.1.3 Introduction

Given a phylogenetically-correct multiple sequence alignment, there are

two main approaches to infer evolutionary scenarios of insertions and dele-

tions: the most parsimonious scenario and the most likely indel scenarios.

The reconstruction of the most parsimonious scenario has been studied by

[35, 91]. Recently, two algorithms have been described for the maximum like-

lihood reconstruction ([62, 131]), which is preferable to get a broader view of

the process, but also presents significant algorithmic challenges. In this paper,

we proposed an extension of [62], allowing one to compute and to visualize the

results of the most likely indel scenarios. While several indel solutions could

have the same parsimony score or likelihood score, part of their solution might

differ. Hence, the likelihood associated to each part of a given solution could

be a good measure for the comparison between competing solutions. In [62],

a tree-based hidden Markov model [217] was used to identify the most likely

indel scenario. Here, the standard Viterbi and Forward-backward algorithms

used to produce the most likely ancestral reconstruction has been extended

to allow the computation of the n−best indel scenarios and to compute the

likelihood associated to specific regions of the solution. We also define an

efficient way to reconcile those solutions, or highlight possible disagreements

between them. For this purpose, the following probabilities and likelihoods

need to be computed: the probability of either having a nucleotide or not at

each position of the ancestor, the likelihood of the transition from a character
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(gap or nucleotide) into another character at neighboring position. The pro-

posed tool presents the n best indel solutions for the entire set of all ancestral

nodes. Highlights of the consensus in each part of the competing solutions

have been presented. Other informations, such as the sequence of operations

between an ancestors and its descendants, are also presented. The designed

tool is web-based, and uses a simple navigation scheme to avoid overloading

the user with information. Here, we used intuitive concepts from information

theory to simplify the interpretation of the results. The proposed tool allows

users to grasp at a glance the likelihood of the best solution, and to decide if

the potential conflicts between other possible scenarios and the best one are

worth considering or not.

4.1.4 Computing the n best paths using the Viterbi algorithm

The standard Viterbi algorithm (see [67]) computes the best sequence of

states that explains an observed sequence of emitted character from a given

hidden Markov model. One can adapt the algorithm, while increasing tempo-

ral and spatial complexity, to obtain the n best paths, where n is a parameter

specified by the user. More precisely, the standard Viterbi algorithm maxi-

mizes the value P (π|M), where M is the given sequence of observation and

π is a sequence of states that can emit M . It works by filling the Viterbi

table of Viterbi values vk(i) that is indexed by the states of the hidden

Markov model (e.g. k) and the given positions (columns, e.g. i) of the emit-

ted sequence. The value at the last column represents the maximal value for

P (π|M). Then, the most likely sequence of states can be retrieved by a trace-

back approach. However, to keep the n−best paths, we must also be aware

that each pair state-column may be part of one or many of these best paths.

The intuitive approach is to keep track of the n best Viterbi values at each
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state-column:

v1
k(i− 1), v2

k(i− 1), . . . , vnk (i− 1).

A back pointer to the state-column-order of the last column that led to the

current value can be recorded to facilitate the traceback of the paths (see

Figure 4–1). Hence, each Viterbi value can be computed according to the

following formula:

vαk (i) = ek(i)× αthbestscorel,hvhl (i− 1)alk, (4.1)

where ek(i) is the emission probability of column i from state k, and alk is the

transition probability from state l to state k, both values being given by the

model.

The presented approach is expensive due to a n-fold increase of both

space and time. However, several optimizations could take place such as such

as those presented in [37].

Having the n best paths, we can now extract from each path the recon-

structed sequence for a given node or branch, and merge the information into
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Figure 4–1: Computation of the n best paths with Viterbi algorithm.
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a consensus Directed Acyclic Graph to summarize consensus or disagreement

among optimal solutions for the corresponding node or branch.

Definition 4.1 (consensus Directed Acyclic Graph) The consensus di-

rected acyclic graph is a graph representing several conflicting indel scenarios

for a given node or branch. Given n indel scenarios from a multiple sequence

alignment A and phylogenetic tree T , a directed acyclic graph Gb representing

the possible subset of {0, 1}L sequences given by the indel scenarios for a node

b of T is computed as follows:

• Create begin node and end node to represent the character position of

respectively the first column and the last column of the alignment.

• Build a single node for each consecutive characters shared by a set of

solutions for a given region of the alignment.

• Build individual nodes for a given region of the alignment with different

characters in the set of solutions.

• Build arcs between nodes such that each indel solution is represented by

a path from the begin node and the end.

• For each node, the corresponding sequence of characters is used as label.

• Each label of an arc contains the set of identification of the indel solutions

that have a path traversing this arc.

One can notice that merging the labels of the nodes for a given path of a

directed acyclic graph gives an ancestral sequence for the corresponding indel

scenarios. Similar directed acyclic graphs can also be built for the branches of

the phylogenetic tree according to the indel evolutionary scenarios on branches.

An example of a consensus directed acyclic graph is presented in Figure 4–3.

It is important to notice that, for a given set of best indel scenarios, most

of the best paths could be share large regions on a given node. The differences

between the ancestral sequences given by the different solutions are mostly
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reflected by a single character difference, in different positions. Moreover,

representing these kind of solution for large genomic sequences will lead to

directed acyclic graphs that are difficult to visualize and to interpret. Hence,

in this approach, we required the divergences between solutions to be present

in several consecutive columns to be taken into account. The threshold used

in this study is seven consecutive characters.

4.1.5 Assessing uncertainties

The goal of the visualization tool is to highlight the regions for which it

is more difficult to establish a consensus solution. Here we present how the

uncertainty can be computed and represented in the obtained indel results.

For this purpose, we separate this task into two parts: how to compute the

uncertainty from the model and represent it in the consensus directed acyclic

graph (for detailed presentation), and how to represent this uncertainty for

reconstructed sequences on the global tree (for fast observation).

Computing the reconstruction uncertainties and representing it

in the consensus Directed Acyclic Graph. From a consensus directed

acyclic graph, we would like to answer the following two questions. Given an

evolutionary model of indel, a node (or the branch) of the tree, the alignment

of extant species and a position in the given alignment:

• What is the probability to have a character at the given position in the

given node of the reconstructed sequence ?

• What is the probability of having a nucleotide at the next position given

that the current position of the ancestor sequence has a nucleotide?

The answer to the first question can be obtained by computing for each an-

cestral node Al, the likelihood of having a nucleotide at position i, defined as
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follow:

P [Al(i) = 1|Alignment] =
∑

{k|k predicts 1 at Al(i)}

P [πi = k|Alignment] (4.2)

Application of the forward-backward algorithm [67] gives the answer (where the

paths for which we compute the forward and backward values are restricted

to those that pass through k on column i). To compute the probabilities

of transitions, the following normalization scheme, computed from the Bayes

formula, is suitable:

P [Al(i)|Al(i− 1), Alignment] =
P [Al(i− 1), Al(i)|Alignment]
P [Al(i− 1)|Alignment]

(4.3)

Representing uncertainties of reconstructed sequences in the

global tree. The events that happen on edges of the input tree, at a certain

position of the alignment are represented as four operations (conservation, in-

sertion, deletion, and no event), showed using characters C, I, D and ∗. A

straightforward way to see rapidly if the best solutions agree together is to

compute what we call the agreement of the events for a branch at a certain

position. Given the probability distribution pC , pD, pI , p∗ of the characters at

this point (over all paths of the HMM), the agreeement among them is defined

as follows:

Agreement = 1−Normalized entropy = 1−
−
∑
{i∈{C,D,I,∗}} pilog(pi)

log(4)
(4.4)

The intuitive interpretation of the agreement is that it will be the highest

(i.e. 1) if we are sure that the identified character is the right one, and the

lowest (i.e. 0) if the uncertainty is the highest. To represent the agreement

for all positions of a sequence of events, we use a histogram, that is attached

to the corresponding branch of the phylogenetic tree. The user can instantly
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appreciate the degree of discrepancy in the reconstructed regions, by identify-

ing zones in the histograms where the agreement between retrieved operations

given by the indel scenarios is low. For the characters, the probability to have

a 1 at a certain position in the given ancestor (node) is represented using a

level of shadding.

4.1.6 Visualizing the reconstruction and the uncertainties

Technical considerations. The tool was developed in Java for web

purposes. Each figure corresponds to a generated PNG file, with an as-

sociated map that defines the boundaries of the clickable elements within

the figure. The GraphViz package has been used to generate the graphs,

and JFreeChart to generate histograms. An output sample is available at:

<http://www.mcb.mcgill.ca/˜egaul/viagr/>.

Interpretation of the program output. Figures 4–2 and 4–3 presents

the visualization of the results obtained from the reconstruction of the 40 best

indels scenarios of eight mammalian sequences and 1kb alignment size. A

quick glance at the red histograms directly under the root (node 7 of Figure

4–2) tells us that the problem is difficult for the first third of the alignment,

which is not surprising, given the little information contained in this area of

the alignment (see Figure 4–4). However, there is a consensus for the recon-

structions of the last two-third of the sequences (the ancestor seems to be

mostly composed of characters in that area).

Clicking on node 7 in the tree of Figure 4–2 gives a detailed view as

presented in Figure 4–3. Hence, one can visualize the details of the competing

paths represented here. The values computed by the previous formulas are

available by pointing any nodes, as well as any edges of the consensus directed

acyclic graph. Since determining the n best paths is a pre-processing step
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to filter out uninteresting reconstructions, one should notice that not all the

values are presented, but only the most interesting ones.

4.1.7 Conclusion

We have proposed a web-based tool to visualize the results of the re-

construction of most likely indels scenarios, given an alignment of extent se-

quences. One of the major assets of this tool is to present uncertainty on the

reconstruction in a clear and intuitive way, by histograms presenting agreement

between most likely scenarios, and consensus directed acyclic graphs present-

ing consistent and/or conflicting zones in reconstructed sequences. Another

important characteristic of the tool is to facilitate visualization of the results
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Figure 4–2: First level view: part of the tree with probability histograms (in
blue) and agreement histograms (in red). We see at a glance that the example
problem is hard for the first third part of the alignment. One has to click on
the histogram to visualize the consensus directed acyclic graph (e.g. node 7 is
represented in Figure 4–3).
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Figure 4–3: Consensus Directed Acyclic Graph summarizing four paths from
the best ones in the reconstruction of the root node (7) (view of columns 2
to 20 from the example presented in the result). The number on the edges
represent the path identifications.
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Figure 4–4: Part of the sequence alignment of eight mammals given as input
of the indels scenarios for the visualization of the Figure 4–2.

themselves by displaying them along the phylogenetic tree in a graphical-

oriented way. Some problems are still to be resolved, the most striking one

being the long processing time between the moment the user inputs an align-

ment and the moment when results are displayed. However, the tool is still

usable in a batch-oriented system. It is also important to notice that we

presented the results according to the n best paths. However, it would be pos-

sible, instead of summarizing the n best paths in the consensus directed acyclic

graph, to create one that would keep only nodes and/or edges for which the

probabilities given by the result of the forward-backward algorithm are above

a fixed threshold. We plan also to extend this tool to offer a way to zoom and

choose the detail level in which the user wants to navigate. Hence, it would

be possible to track large zones for which there is a reconstruction conflict, as

well as localize the zone with low level of confidence.
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4.2 Ancestors 1.0: A web server for the ancestral genome recon-
struction

4.2.1 Preface

This section contains the following paper ready to be submitted : Diallo,

A.B., Makarenkov, V., Blanchette, M. (2009): Ancestors 1.0: A web interface

for ancestral sequence reconstruction. Bioinformatics, Application Note. In

preparation.

4.2.2 Abstract

Ancestral genome reconstruction is composed of five difficult steps: Iden-

tifying syntenic regions, inferring ancestral arrangement of syntenic regions,

aligning orthologous sequences, reconstructing insertion and deletion histories,

and finally inferring substitution histories. Here, we present a web server al-

lowing one to easily and quickly compute the last three steps of the ancestral

genome reconstruction procedure. We implemented several alignment meth-

ods, an indel maximum likelihood solver and the context-dependent Felsen-

stein algorithm for predicting substitutions. The results presented by the

server include the posterior probabilities for the last two steps of the ancestral

genome reconstruction and the error rate of each ancestral base prediction.

This server is available at the following URL address:

<http://ancestors.bioinfo.uqam.ca/ancestorWeb/>.

4.2.3 Introduction

Comparative genomics is a field that uses the information provided by the

patterns of selection to understand the functions and the evolution on different

genomic regions. Studies in comparative genomics are often based on a direct

analysis of multiple sequence alignments of extant sequences [208]. However,

the recent interest for ancestral genome reconstruction also provides clues on
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several aspect of evolutionary changes [15, 16]. Ancestral genome reconstruc-

tion attempts to predict the DNA sequences of all ancestral species in a given

phylogeny according to a multiple sequence alignment. Accurate ancestral

genome reconstruction can contribute to the study of adaption, behavioral

changes and functional divergence [15, 16, 58]. Two of the most important

steps in ancestral genome reconstruction procedure are the prediction of sub-

stitution and insertion and deletion (indel) that may have produced a given set

of aligned regions [16]. Although the inference of indel evolutionary scenarios

is useful in several problems, it has received relatively little attention. We

have recently proposed a statistical framework that enables one to infer the

most likely indel scenario and to estimate uncertainties of predictions based

on fixed indel rate parameters and a given multiple sequence alignment. The

developed framework is adequate for small-scale genomic regions with inser-

tions, deletions and substitutions [58, 62]. Substitutions are predicted using

an adaptation of the Felsenstein algorithm [82, 88] described in [16]. The max-

imum likelihood indel scenario is predicted by an exact algorithm described in

[62]. This algorithm uses a special type of hidden Markov model [194], called

tree-HMM, which is a combination of a standard hidden Markov model and

phylogenetic trees [88, 257]. We showed that the most likely path through

the tree-HMM leads to the most likely indel scenario and that a variant of

the standard Viterbi algorithm [67] can solve the problem. The uncertainty

associated to each of the reconstructed ancestral regions can be assessed using

the standard Forward-Backward algorithm [67].

The Ancestors web server presented in this paper performs the last three

steps of the ancestral genome reconstruction procedure. It allows to compute

multiple sequence alignments using several widely used algorithms, to infer

exact or heuristic based indel scenario and to predict substitutions. All the
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steps have been combined in a single web interface. The results are presented

as colored output indicating the level of confidence of each prediction. Ances-

tors 1.0 is available at the following URL address:

<http://ancestors.bioinfo.uqam.ca/ancestorWeb/>.

4.2.4 User inputs and Ancestors 1.0 outputs

The Ancestors 1.0 interface can be divided in two parts. The first con-

cerns the user inputs to the program through a web form. The second one is

dedicated to presenting the obtained results. At each step, the user can send

via an e-mail questions or feedback to the system administrator. Sample sets

are also ready to test. Moreover, there are links to the required formats for

the different inputs and an explanation of the different sections of the results.

User inputs. The Ancestors 1.0 web form is divided in three parts

(see Figure 4–5). The first part allows users to supply a set of orthologous

sequences in Fasta format. The sequences could either be aligned or not.

Users can choose a method of sequence alignment even though the sequences

are already aligned. Realigning sequences could help increasing the alignment

accuracy. The following multiple sequence alignment procedures are available:

Clustal-W [112], Dialign [170], Mavid [25] and TBA [17]. Those methods have

been chosen for one or more of the following reason(s): they are widely used in

comparative genomics, and they have been shown to be accurate on genomic

data, they can handle a reasonable large datasets.

The second part allows users to supply a rooted phylogenetic tree related

to the multiple sequence alignment data that can be used to guide the an-

cestral sequence reconstruction. The tree format is the widely used Newick

format. The third part concerns the choice of the indel approach to use and

the related parameters. There are parameters related to the tree-HMM and

other parameters related to either the exact algorithm or the heuristic one.
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Users can either ask to report the most likely indel scenario or the posterior

decoding for predicting the presence or absence of characters at each position

of the ancestral sequences. The posterior decoding can be used to compute

the confidence levels of the predictions as described in [58]. The substitution

parameters are those of the HKY [105] evolutionary model. Future versions

of the program will allow the reconstruction of the phylogenetic tree by sup-

plying several phylogenetic tree reconstruction methods. Moreover, the form

should allow unrooted tree as input and proposed ways to rooted it.

Ancestors 1.0 outputs. The Ancestors 1.0 results are made available

using different plain text and HTML format files. The summary of those files

is given as default output (see Figure 4–6). The results present each input file,

followed by the result of the alignment method (if an alignment procedure has

been chosen). Then, the summary of the different command lines executed is

given as a plain text. The results of the indel predictions are presented in three

files (the indel scenario, the tree-HMM state created, the posterior probability

for each position of each sequence).

The results of the ancestral nucleotides predicted contain the characters

in plain text and HTML file. The HTML file presents a colored output ac-

cording to the level of prediction confidence, as shown in Figure 4–7. Those

confidence levels are given in separate file together with the obtained posterior

probabilities.

4.2.5 Ancestor Help

Users can consult the Ancestors 1.0 user guide available at the web site for

detailed explanation of the file formats present in Ancestors 1.0. For specific

help request, users can use the bug report form.
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Figure 4–5: The Ancestors 1.0 user input form. The interface consists of three
parts: the alignment, the phylogenetic tree and the indel parameters. On the
right of the display, links are given to commonly used tools and databases
in comparative genomics. The alignment and the tree present a set of phage
genes.
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Figure 4–6: The Ancestors 1.0 main output. It gives the links to all the
obtained result files as well as input files.

Figure 4–7: The ancestral sequence predictions and the corresponding con-
fidence level (between 0 and 100) of each character. These confidence levels
have been computed according to the confidence level of the indel predictions
as well as the substitution predictions. The ancestral names correspond to a
concatenation of the children names.
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CHAPTER 5
Evolutionary Score for the Multiple Sequence Alignment

refinement and the Joint Inference of Phylogenies and Multiple
Sequence Alignment

5.1 Preface

In this chapter, we show a way of using the previous framework for indel

maximum likelihood problem to compute an indel likelihood score that can be

used for phylogenetic tree inference and alignment quality assessment. This

score is valuable for refining alignment and trees as well as doing the joint

inference of both. The text presented here is taken from Diallo et al. [60], (in

preparation).

5.2 Abstract

Recently, several papers pointed out the necessity of the joint inference

of phylogenetic trees and multiple sequence alignments. Such an inference

will tend to avoid the cycle of direct dependency of both reconstructions

[71, 72, 107]. However, a joint inference requires the availability of an ad-

equate criterion of assessing the agreement between a phylogenetic tree and

a multiple sequence alignment. Here, we propose to use the indel likelihood

score as a measure of such an agreement. This indel likelihood score can be

computed efficiently using existing tree-HMM approach proposed by Diallo

and coauthors in 2007 [58]. Monte Carlo simulations were realized to obtain

synthetic multiple sequence alignments and phylogenetic trees. The simula-

tion results showed that the indel likelihood score correlates well with the

accuracies of both phylogenetic tree and multiple sequence alignment.
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5.3 Introduction

Comparative genomics is a field that uses the information provided by

the patterns of selection to understand the functions and the evolutionary

processes on different genomic regions. Studies in comparative genomics (as

well as several other areas in computational biology) are often based on a

direct analysis of multiple sequence alignments [208]. However, the recent

interest for ancestral genome reconstruction also contributes to get clues on

several aspects of evolutionary changes [15]. Ancestral genome reconstruction

attempts to predict the DNA sequences of all ancestral species in a given phy-

logeny according to a multiple sequence alignment. One of the most important

steps in the ancestral genome reconstruction procedure is the prediction of the

set of substitutions, insertions and deletions that may have produced a given

set of aligned regions [16]. Although the inference of insertion and deletion

(indel) evolutionary scenarios is useful in several problems, such as annotating

functional genomic regions [208, 215], it has received relatively little atten-

tion. We have recently proposed a probabilistic framework that allows to

infer the most likely indel scenario and estimate uncertainties of predictions

based on a given phylogenetic tree and fixed indel rate parameters. The devel-

oped framework is adequate for small-scale genomic regions with insertions,

deletions and substitutions [58]. It makes the assumption of having correct

multiple sequence alignment and phylogenetic tree as input. While many ex-

isting multiple sequence alignment and phylogenetic tree programs have been

shown to be quite accurate on different genomic sequences [25, 72, 129], it

has also been shown that a large fraction of ancestral sequence reconstruction

errors is due to incorrect alignments [15]. The problem of having a correct

alignment and an accurate phylogeny is a significant issue in computational

biology [72]. Most of the existing approaches for building multiple sequence
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alignment and a phylogenetic tree from a given set of sequences first build a

multiple sequence alignment and then reconstruct the phylogenetic tree based

on this multiple sequence alignment. However, such a direct dependency of

multiple sequence alignment and phylogenetic reconstruction can lead to bi-

ased estimations. Thus, the ideal solution is the joint inference of both of them.

Ideally, one would include the optimization of the alignment and phylogenetic

tree directly in the indel reconstruction problem, as originally suggested by

Hein [107]. However, with the exception of statistical alignment approaches

[107], which remain too slow to be applicable on a genome-wide scale, few

genomic multiple sequence alignment methods treat indels in a probabilistic

framework. Existing methods for the identification of indel and substitution

scenarios make the assumption of having as input a correct alignment and an

accurate phylogeny. However, several studies try to overcome this issue by

doing successive alternate refinements of the multiple sequence alignment and

the phylogenetic tree. The multiple sequence alignment and the phylogenetic

tree are corrected in separate frameworks. Seminal contribution makes an iter-

ative refinement of the tree and the multiple sequence alignment [72] or only a

refinement of the multiple sequence alignment [131]. The difficulty of handling

both in the same algorithmic schema is due in part to unavailability of a quick

estimator of the joint accuracy of the multiple sequence alignment and the

phylogenetic tree. In this paper, we propose to use the evolutionary likelihood

score as an estimate of both correctness. Moreover, the evolutionary score can

be used to choose the best phylogenetic tree or the best alignment. Previous

studies on defining likelihood scores often rely only on substitutions, except

for an initial contribution implemented in Indelign program[131]. However,

the computational requirement of the latter program makes it unpractical for

large datasets such as analyzing long regions of several sequenced mammalian
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genomes. In this paper, we showed how this score can be computed easily

using the ancestors framework [58]. Moreover, we demonstrate, using simu-

lation studies, how it agrees and fits well with multiple sequence alignment

correctness and phylogenetic tree accuracy.

5.4 Indel Likelihood Score

In this section we will give a precise definition of the indel likelihood score.

Consider a rooted binary phylogenetic tree T = (VT , ET ) with branch lengths

λ : VT → R+. If n is the number of leaves of T , there are n − 1 internal

nodes and 2n − 2 edges. Consider a multiple alignment A of n orthologous

sequences of size L corresponding to the leaves of the tree T . An ancestral

reconstruction corresponds to an extension of A that assigns a sequence A∗u ∈

{1, 0}L to each node u of T , and where A∗u = Au whenever u is a leaf. Notice

that a pair of binary alignment rows A∗x and A∗y can be partitioned into a

set of non-overlapping insertions, deletions, and conservations. Following the

rules of phylogenetic correctness defined in [58], let Γ be the set of all correct

reconstructions of A∗.

Consider an evolutionary model describing the probabilities of indels along

each edge of the phylogenetic tree. This defines the probability of transition

between an alignment row A∗x and its descendant row A∗y. This probability is

a function of the probability of the insertions, deletions, and conservation that

happened from A∗x to A∗y. It can be defined as follows:

Pr(A∗y|A∗x, b) =
∏

(s,e): deletion from A∗x to A∗y

PDeletion(s, e, b) ·

∏
(s,e): insertion from A∗x to A∗y

PInsertion(s, e, b) · (5.1)

∏
(s,e): conservation from A∗x to A∗y

PConservation(s, e, b)
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where (s, e) delimits the position start s and end e of a specific region; PInsertion(s, e, b)

and PDeletion(s, e, b) represent the probability of respectively inserting and

deleting a region of size e−s+1 according to the branch length b; Pconservation(s, e, b)

corresponds to the probability of the characters to be conserved according to

the branch length b. Hence the likelihood of an ancestral reconstruction A∗

for A can be formulated as :

L(A∗) =
∏

b=(x,y)∈ET

Pr(A∗y|A∗x, b). (5.2)

Given T , A, and an evolutionary model Θ, the indel likelihood score can be

defined as:

Is(T,A,Θ) =
∑
A∗∈Γ

L(A∗) (5.3)

In a previous publication, we solved the indel maximum likelihood problem us-

ing a tree-HMM [58]. This tree-HMM represents all the possible phylogenetic

correct indel scenarios, where each correct indel scenario refers to an unique

assignment A∗ ∈ Γ. Hence, the execution of the standard forward algorithm

in the tree-HMM will sum all the possible assignments A∗ ∈ Γ as required to

compute Is(T,A,Θ) [67].

5.5 Simulation Procedure

A Monte Carlo study was conducted to test the ability of our indel score to

measure the agreement between a phylogenetic tree and a multiple sequence

alignment. For this purpose, the mammalian tree given in Figure 5–1 was

used to simulate the evolution of a known (but synthetic) ancestral sequence

through the different lineage of the phylogenetic tree, using the simulation

program Simali (http://www.bx.psu.edu/miller lab/ ) [17], based on the Rose

program [226]. This program adequately simulates the evolution of sequences

under no selective pressure and performs random substitutions, deletions, and

insertions along each branch, in proportion to their length [16]. For each
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alignment size 1000, 5000 and 10000, fifty different multiple sequence align-

ment were generated (A1 to A50). Then, we removed all the gaps to obtain 50

sets of unaligned sequences (U1 to U50) for each alignment size.

1

PIG

COW

CAT

DOG

HUMAN

CHIMP

BABOON

MOUSE

RAT

Figure 5–1: The mammalian tree used for the evolution simulation.

Each of the unaligned set of sequences was submitted to following five

widely used alignment methods: Clustalw [235], Dialign 2-2 [170], Mafft [129],

Mavid [25] and Muscle [71]. We computed a base-per-base alignment accuracy

by comparing the obtained alignments to the original ones (see Figure 5–2). It

appears that two types of alignment accuracies were generated (good quality

with score > 0.8 and poor quality with score < 0.6).

Once the multiple sequence alignments obtained from the alignment pro-

grams, they were used to infer phylogenetic trees. Here, we used the distance

method bionj [93] (an extension of the popular neighbor joining [205]); the par-

simony method Dnapars from PHYLIP [85]; the maximum likelihood meth-

ods Dnaml (from PHYLIP) and PHYML [101]; the quartet puzzling method

Puzzle [227]. The HKY evolutionary model [105] was used for methods re-

quiring evolutionary model. This is also the model used for the sequence

evolution simulation. Each phylogenetic tree obtained was then compared to

the true phylogeny using the Robinson and Foulds topological distance [201].

The Robinson and Foulds distance between two phylogenetic trees is the mini-

mum number of operations, consisting of merging and splitting internal nodes,

that are necessary to transform one tree into another [201]. This distance is
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Figure 5–2: The accuracy of the different multiple sequence alignment meth-
ods for the alignment size 1000, 5000 and 10000 (from top). The x-axis corre-
sponds to the iteration number. The y-axis corresponds to the base-per-base
alignment accuracy.

90



reported as percentage of its maximum value (2n-6 for a phylogeny with n

leaves). The lower this value is, the closer the obtained tree to the true tree.

Once all trees are obtained, the indel likelihood score is computed for each

combination of alignment and phylogenetic tree.

5.6 Results and conclusion

To verify how indel likelihood score correlate with both accuracies of mul-

tiple sequence alignments and phylogenetic trees, we took, for each simulation

dataset and each alignment size, the alignment-tree pair with the best indel

likelihood score. Then, we verified if the associated multiple sequence align-

ment and phylogenetic trees correspond to those giving respectively the best

base-per-base alignment score and the best Robinson and Foulds topological

distance. The results presented in Figure 5–3 show that in more than 80%

of the cases the best indel score corresponds to the best multiple sequence

alignment and the best phylogenetic tree. Despite the fact that in several

cases the indel scores does not come from the most accurate multiple sequence

alignment and phylogenetic tree, the given results are near the optimal one

(less than two Robinson and Foulds operations and between the five three best

alignment score).

For comparing alignments of similar size and phylogenetic trees with sim-

ilar number of taxa, the indel likelihood score can be a good estimate of the

agreement between the phylogenetic tree and the multiple sequence alignment.

But, it cannot be used as an overall criterion of comparison between non sim-

ilar data, due to the fact the defined indel likelihood score is dependant of the

size of the data. However such a score, should be used in procedure of joint

inference of phylogenetic tree and multiple sequence alignment or refining one

of them. In this case different dataset size issue is not present. Even though

the results in Figure 5–3 are interesting, one might consider the nucleotide

91



Figure 5–3: Fraction of the simulated datasets where the alignment tree with
the best indel likelihood score corresponds to the best alignment (measured by
the base-per-base similarity to the correct alignment), identified by als, and
the best tree (measured by the Robinson and Foulds topological distance to
the true tree), identified by rf. The results are presented for alignment size
1000, 5000 and 10000.

substitution issue. This issue can be solve by computing the substitution like-

lihood for all predicted ancestral indel assignment. Even though the latter will

require a huge computation complexity, we plan in the future to find an effi-

cient way of combining both. In a different context, the indel likelihood score

can be used as a measure of phylogenetic tree method accuracy in place of the

widely used Robinson and Foulds topological distance [201] or as alignment

method accuracy in various simulation studies. In the case of the Robinson

Foulds distance, the original tree of comparison is required for the distance

computatio, however it is not needed for the indel score compution. The fact

that indel likelihood score uses the branch lengths and the direct association

with the alignment will constitute a great advantage. In the future, we plan

using the defined score to improve phylogenetic trees through local tree rear-

rangement such as Nearest Neighbor Interchange and numerical optimization
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of branch length. We also plan on refining multiple sequence alignments by

making a set of local changes such that the score improves. Finally, all the

simulated data used in this study is available at the following URL:

<http:// ancestors.bioinfo.uqam.ca/phdDiallo/IndelScore/>.
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CHAPTER 6
Étude de Classification des Bactériophages

6.1 Preface

This chapter presents an application of the developed ancestral recon-

struction framework to reconstruct the evolutionary history of phages. One

major challenge is the presence of eventual horizontal gene transfer and partial

data. Here we reconstruct the ancestral protein sequences for Viral ortholo-

gous groups and place them in the consensus phylogenetic tree. The text

presented in this chapter is taken from Diallo et al. [63], in preparation.

6.2 Résumé

Les bactériophages constituent l’un des groupes d’organismes les plus

abondants dans la biosphère. Leur recensement est toujours en cours et les

taxonomies proposées sont nombreuses et diverses. Cependant la difficulté

intrinsèque, due à la diversité du mode d’évolution et à la complexité de

l’écosystème des sujets, est telle qu’une classification exhaustive et conver-

gente reste à établir. Dans cet article, nous présentons une nouvelle approche

de l’étude de la classification des bactériophages. Cette approche originale

combine à la fois les méthodes de détection des transferts horizontaux de

gènes et de reconstruction de séquences ancestrales.

Mots clés: Classification arborescente, Inférence

phylogénétique, Transferts horizontaux de gènes,

Reconstruction de séquences ancestrales.

6.3 Abstract.

Phages are one of the most present groups of organisms in the biosphere.

Their identification continues and their taxonomies are divergent. However,
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due to their evolution mode and the complexity of their species ecosystem,

their classification is not complete. Here, we present a new approach to the

phages classification that combines the methods of horizontal gene transfer

detection and ancestral sequence reconstruction.

keywords: Ancestral sequence reconstruction, Classification,

Horizontal gene transfer, Phylogenetic inference.

6.4 Introduction

Les bactériophages (ou phages) sont des virus qui infectent les bactéries

et les archéobactéries (ou Archaea). Leur évolution est complexe à cause des

mécanismes d’évolution réticulée comprenant le transfert horizontal de gènes

(THG) et la recombinaison génétique. Une représentation phylogénétique

sous forme de réseau est nécessaire pour interpréter l’histoire d’évolution des

bactériophages [148]. Par ailleurs, la classification de ces micro-organismes

présente intrinsèquement d’autres difficultés dues, d’une part, à la non-conservation

de gènes au cours de leur évolution [203], et d’autre part, à la diversité des

tailles de leurs génomes [148]. Il existe plusieurs classifications des bactériophages

(e.g. [123, 29]). L’approche de classification, adoptée au cours des dernières

décennies, est basée sur les critères de morphologie et d’homologie des ADN

développés pour les phages (e.g. L. lactis, [123]). La grande majorité des

phages a été classée en trois principaux groupes : 936, c2 et P335. Ainsi, la

plupart des études des phages tiennent compte de l’existence de ces groupes.

Cependant, plusieurs travaux récents sur l’analyse comparative d’un nom-

bre croissant de séquences génomiques et de l’émergence récurrente de nou-

veaux phages virulents imposent de facto une révision du mode de classi-

fication [224, 199, 50]. Dans cet article, nous proposons une approche en

trois phases visant à établir la classification des bactériophages : l’inférence

phylogénétique, la détection de transferts horizontaux de gènes [160] et la
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reconstruction de séquences protéiques ancestrales [62, 58, 15]. L’arbre phy-

logénétique des bactériophages a été reconstruit à partir d’une matrice bi-

naire correspondant au contenu en gène de ces organismes. Les THG ont

été identifiés pour déterminer le réseau phylogénétique correspondant [160]

[Makarenkov et al, 2006]. Enfin, les séquences protéiques ancestrales ont été

reconstruites. Cette reconstruction ancestrale permet de mener différentes

études approfondies, notamment celle concernant les origines des fonctions

protéiques de ces micro-organismes.

6.5 Données Sur Les Bactériophages

6.5.1 Classifications existantes

Les bactériophages sont des micro-organismes très présents dans l’univers.

Depuis le séquenage récent de nombreux micro-organismes, les estimations in-

diquent une population globale de bactériophages de l’ordre de 1030, ce qui

représente la forme de vie la plus abondante sur Terre [111]. De nombreux

échanges de gènes et des réarrangements de séquences à travers les recombi-

naisons homologues soumettent les bactériophages à une évolution réticulée

[144]. Le THG consiste en un échange direct de matériel génétique d’une

lignée à une autre [66]. Bactéries et Archaea ont développé des mécanismes

sophistiqués pour acquérir rapidement de nouveaux gènes à l’aide du THG.

Le Comité International sur la Taxonomie des Virus (International Com-

mittee on the Taxonomy of Viruses ou ICTV) [29] propose une version de

taxonomie de ces micro-organismes. Mais la difficulté spécifique due à la

diversité du mode d’évolution réticulée et à la complexité de l’écosystème

des sujets, est telle qu’une classification exhaustive et convergente n’est pas

encore disponible. Par exemple, suivant les classifications établies, la ma-

jorité des phages attaquant les bactéries du lait (Lactococcal lactis) appar-

tiendraient à l’un des trois principaux regroupements, notamment, 936, c2 et
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P335 [50]. Or, plusieurs travaux récents sur l’analyse comparative des phages

semblent démontrer des incohérences dans ces regroupements [224, 223, 199,

50]. Les protéines responsables d’une même fonction dans différents organ-

ismes peuvent soit provenir d’un ancêtre commun ou d’une acquisition de gènes

indépendante et spécifique à chaque lignée d’espèces [223]. Ainsi, les classifi-

cations des phages devraient également étudier le processus d’apparition des

fonctions protéiques et l’évolution réticulée de certains gènes.

6.5.2 Données VOG

La banque de données GenBank, hébergée sur le site du National Cen-

ter for Biotehcnology Information (NCBI) dispose d’une base de données de

groupements relatifs aux protéines virales. Cette ressource, nommée Viral

COG Clusters of Orthologous Groups (VOG) [5], fournit des molécules stan-

dard pour la recherche génomique virale. Les données disponibles proviennent

de génomes complets présents dans GenBank. Les données VOG sont des

séquences de protéines regroupées de manière prédéfinie en famille selon la

fonction protéique à laquelle elles sont associées. Un VOG peut compren-

dre des séquences de plusieurs espèces différentes. Le contenu informationnel

des VOG est utilisé pour améliorer l’annotation fonctionnelle des nouvelles

protéines.

L’étude phylogénétique des bactériophages présente une double difficulté

en raison de la grande variabilité à la fois de la composition génétique et de

la taille des génomes. La première difficulté découle de la grande divergence

des séquences protéiques [203]. La seconde difficulté est due aux tailles très

disparates de génomes, qui sont d’ordre 2 de magnitude (le nombre de gènes

codant en protéines varie de 8 à 381), en comparaison aux procaryotes (de

∼400 à ∼7 000 gènes) et aux eucaryotes (de ∼4 000 à ∼60 000 gènes), qui

sont d’ordre 1 de magnitude [148]. Bien que la meilleure faon de normaliser les
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génomes de ces micro-organismes en vue d’inférer leur histoire d’évolution reste

un débat ouvert [168], la tendance actuelle est de combiner l’étude d’évolution

du contenu en gènes et l’analyse des alignements de chacune des protéines qui

se retrouvent dans les génomes de plusieurs phages [148]. Grâce aux VOG,

les regroupements des protéines orthologues apportent des données nécessaires

pour résoudre la première partie de notre problème. La méthode de normal-

isation de l’hétérogénéité de tailles de génomes utilisée sera présentée dans

la section suivante. Dans le cadre de cette étude, 163 génomes complets de

bactériophages issus de 9 familles différentes, dont une avec des annotations

partielles (unclassified), ont été obtenus à partir de GenBank. Les séquences

de ces génomes sont distribuées dans 602 regroupements VOG.

6.6 Reconstruction de la phylogénie des bactériophages

La plate-forme d’inférence phylogénétique utilisée prend en entrée les

différents groupes de VOG et les séquences protéiques associées à chaque

groupe. Elle produit, en premier, un arbre phylogénétique d’espèces qui

présente la première hypothèse classique sur l’évolution des bactériophages.

Cette présentation en arbre ne tient pas comptes des transferts horizontaux

de gènes. La plate-forme produit en second, les arbres de gènes (i.e. des

protéines) individuels qui représentent l’évolution de chacun des gènes con-

sidérés dans les VOG.

6.6.1 Construction de l’arbre phylogénétique d’espèces

Pour construire la classification arborescente des bactériophages, une ma-

trice binaire de présence et d’absence de gènes (i.e. de regroupements VOG)

dans chacun des 163 phages a été composée (Figure 1). Ainsi, la matrice

obtenue contient 163 lignes et 602 colonnes qui représentent respectivement

les phages et les VOG. Les méthodes d’inférence phylogénétique utilisant une
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approche de distance et une approche bayésienne ont été appliquées pour re-

construire l’arbre (voir Bartélemy et Guénoche [1988] pour plus de détails sur

les techniques d’inférence d’arbres phylogénétiques). Des tests de robustesse

ont été effectués pour mesurer le taux des regroupements d’espèces présents

dans l’arbre obtenu.

Méthode de distance. Comme requis par les méthodes de distance,

une matrice de dissimilarités inter-génomiques a été initialement calculée.

Plusieurs types de distances ont été récemment utilisés pour mesurer la dis-

tance entre les génomes : le coefficient de corrélation standard [97], le coeffi-

cient de Jaccard [97], le coefficient de Maryland Bridge [168] et la Moyenne

Pondérée [68]. Dans cette étude, nous avons testé ces différents coefficients.

Les résultats obtenus étaient très similaires, compte tenu qu’il n’y a pas d’ordre

a priori dans les regroupements VOG. Dans notre étude, le coefficient de

Jaccard a été utilisé. La méthode de Neighbor Joining (NJ) [205] a permis

d’inférer l’arbre phylogénétique d’espèces. Un test de bootstrap a été réalisé

pour évaluer la stabilité des groupes présents dans les topologies en fonction

de différents échantillons de la matrice binaire. Les différents échantillons

aléatoires ont été obtenus à l’aide du programme SeqBoot inclus dans le pa-

quet PHYLIP [85]. Dans cette étude 100 échantillons ont été retenus. À la

suite de l’inférence phylogénétique de chacun des échantillons, un arbre de

consensus a été inféré pour chacune des approches. Le programme Consense

inclus également dans le paquet PHYLIP a servi à générer l’arbre de consensus

par la règle de majorité étendue (50%).

Méthode bayésienne. L’inférence bayésienne produit un arbre phy-

logénétique à partir de la distribution a posteriori des topologies d’arbres.

Elle évalue l’espace de solutions au moyen des chanes de Markov. Dans cette

étude, le logiciel MrBayes [119, 118] a été utilisé avec 2 millions de générations

99



échantillonnées à toutes les 100 générations, 4 chanes et 2 exécutions indépendantes,

créant ainsi 20 000 arbres. Un arbre de consensus a été inféré à partir des 1000

derniers arbres les plus stables (i.e. générations stationnaires). Le programme

Consense a servi à construire l’arbre de consensus par la règle de majorité

étendue (50%).

6.6.2 Inférence des arbres de gènes

Un arbre de gène a été inféré pour chaque groupe VOG (Figure 1). Les

séquences protéiques associées à un VOG donné ont été alignés en utilisant

ClustalW [235]. Le programme MrBayes a été utilisé pour inférer les arbres

de gène pour les 602 alignements de séquences de VOG.

 

été inféré à partir des 1000 derniers arbres les plus stables (i.e. générations stationnaires). 

Le programme Consense a servi à construire l’arbre de consensus par la règle de majorité 
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Figure 1 : Construction des arbres phylogénétiques d’espèces et de gènes; pour les 
arbres d’espèces, une matrice binaire a été obtenue en fonction de la présence ou de 
l’absence de phage dans chaque VOG. Les arbres de gènes ont été inférés à partir des 
séquences protéiques alignées. 

4 DÉTECTION DES THG 

La détection des THG a été effectuée, en utilisant le programme HGT Detection du package 

T-Rex [Makarenkov, 2001], suivant une version améliorée de l’algorithme de réconciliation 

topologique entre l’arbre de gènes et l’arbre d’espèces [Makarenkov et al, 2006]. HGT 

Detection (Cf. le site www.trex.uqam.ca) prend en entrée un arbre d’espèces et un arbre de 

gènes pour le même ensemble d’espèces. Les THG sont ainsi calculés, en indiquant en 

sortie l’origine et la destination pour chacun des transferts inférés. Les principales étapes de 

l’algorithme heuristique pour identifier des THG sont les suivantes : 

Figure 6–1: Construction des arbres phylogénétiques d’espèces et de gènes;
pour les arbres d’espèces, une matrice binaire a été obtenue en fonction de la
présence ou de l’absence de phage dans chaque VOG. Les arbres de gènes ont
été inférés à partir des séquences protéiques alignées.
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6.7 Détection des THG

La détection des THG a été effectuée, en utilisant le programme HGT De-

tection du package T-Rex [155], suivant une version améliorée de l’algorithme

de réconciliation topologique entre l’arbre de gènes et l’arbre d’espèces [160].

HGT Detection (Cf. le site <www.trex.uqam.ca>) prend en entrée un arbre

d’espèces et un arbre de gènes pour le même ensemble d’espèces. Les THG

sont ainsi calculés, en indiquant en sortie l’origine et la destination pour cha-

cun des transferts inférés. Les principales étapes de l’algorithme heuristique

pour identifier des THG sont les suivantes :

Pas préliminaire

Inférer les arbres phylogénétiques d’espèces (i.e. arbre de contenu en gène

dans notre cas) et celui de gène (l’arbre du VOG considéré dans notre cas),

notés respectivement T et T ′. L’arbre T est un arbre réduit de l’arbre complet

construit pour 163 bactériophages et contenant seulement les phages présents

dans le VOG considéré. Les deux arbres doivent être enracinés. S’il existe

dans T et T ′ des sous-arbres identiques ayant au moins 2 feuilles, réduire la

taille du problème en remplaant dans T et T ′ les sous-arbres identiques par

les mêmes éléments auxiliaires.

Pas 1 . . . k

Tester tous les THG possibles entre les paires d’arêtes dans l’arbre Tk−1 (Tk−1 =

T au Pas 1) à l’exception des transferts entre les arêtes adjacentes et ceux qui

violent les contraintes d’évolution (pour plus de détails voir [189]). Choisir

en tant que THG optimal, le déplacement d’un sous-arbre dans Tk−1 qui min-

imise la valeur de la distance topologique de Robinson et Foulds [201] entre

l’arbre obtenu après le déplacement de ce sous-arbre et de son greffage sur
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une nouvelle arête, i.e. l’arbre Tk, et l’arbre de gène T ′. Réduire ensuite la

taille du problème en remplaant des sous-arbres identiques, ayant au moins 2

feuilles, dans l’arbre transformé Tk et l’arbre de gène T ′. Dans la liste des THG

retrouvés rechercher et éliminer les THG inutiles en utilisant une procédure

de programmation dynamique de parcours en arrière. Un transfert inutile est

celui dont l’élimination ne change pas la topologie de l’arbre Tk.

Conditions d’arrêt et complexité algorithmique

L’algorithme s’arrête quand la distance de Robinson et Foulds devient égale

à 0 ou quand aucun autre déplacement de sous-arbres n’est possible suite

à des contraintes biologiques. Théoriquement, une telle procédure requiert

O(kn4) d’opérations pour prédire k transferts dans un arbre phylogénétique à

n feuilles. Cependant, due à des réductions inévitables des arbres d’espèces et

de gènes, la complexité pratique de cet algorithme est plutôt O(kn3).

6.8 Reconstruction des séquences protéiques ancestrales

La reconstruction ancestrale permet d’étudier l’évolution des espèces, la

sélection adaptative et la divergence fonctionnelle [135]. Elle tient compte de la

recréation de protéines et de l’évolution d’ADN en laboratoire de sorte qu’elles

puissent être étudiées directement [33]. De plus, la reconstruction ancestrale de

protéines peut mener aux découvertes de nouvelles fonctions biochimiques qui

ont été perdues au cours de l’évolution [124]. Les séquences de protéines ren-

ferment des informations sur leurs passés historiques [191]. Dans cette étude,

nous nous sommes intéressés en particulier aux fonctions protéiques et à la

recherche de séquences ancestrales des VOG. Ces séquences ancestrales facilit-

eraient l’analyse de similitude structurale des acides aminés en présentant des

séquences représentatives de groupes de phages. Cette étude permet de réduire
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la complexité des analyses. Les séquences protéiques ancestrales et leur prob-

abilité a posteriori au niveau de chaque caractère sont prédites. Ces protéines

ancestrales pourraient servir comme représentants de familles de bactériophage

lors de différentes analyses de génomique comparée. La reconstruction des

séquences protéiques ancestrales s’effectue en deux étapes: reconstruction des

ancêtres et représentation des séquences obtenues dans l’arbre d’espèces déjà

construit.

6.8.1 Reconstruction des séquences ancestrales

Au préalable, les séquences protéiques de chaque VOG ont été alignées en

utilisant le programme d’alignement de séquences multiples ClustalW [235].

Les arbres phylogénétiques représentant l’histoire d’évolution de chacun des

VOG ont été reconstruits à l’aide du programme MrBayes [119, 118] . L’arbre

de consensus a été inféré, puis enraciné, en utilisant la technique du point

médian (midpoint). Étant donné un alignement de séquences de régions ortho-

logues et un arbre phylogénétique, la reconstruction de séquences ancestrales

consiste à l’inférence pour chaque nœud interne de l’arbre phylogénétique,

de la séquence génomique correspondante. Cette inférence s’effectue en deux

étapes: la reconstruction du scénario d’insertion et de délétion (i.e. indel)

le plus vraisemblable, et l’inférence des acides aminés à chaque position des

ancêtres où la présence d’un caractère a été prédite. Ces deux étapes sont

réalisées respectivement par les algorithmes de Diallo et al. [62, 58] et Felsen-

stein [82] qui sont implantés dans le programme Ancestor disponible à l’URL

suivant : <www.mcb.mcgill.ca/∼banire/ancestor>.

6.8.2 Représentation des séquences ancestrales

Les séquences ancestrales obtenues sont représentées sur l’arbre d’espèce

(Figure 3a) en utilisant la technique de l’ancêtre commun le plus proche

(ACP). Ainsi chaque VOG est associé à une séquence ancestrale située au
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nœud ancestral minimal commun. Il est important de noter que dans la

présente étude, l’ordre des VOG n’a pas été pris en compte. Il serait intéressant

dans un travail futur de trier les gènes pour déterminer l’ordre exact dans

les séquences ancestrales [21]. Cette représentation permet d’identifier au

cours de l’évolution les diverses apparitions de nouvelles fonctions. Ainsi pour

chaque VOG, la séquence ancestrale a été inférée. Un exemple de ces résultats

présentés dans la section suivante concerne la famille des phages attaquant les

bactéries du lait, L. lactis (sous-section 6.3).

6.9 Résultats

6.9.1 Reconstruction de la phylogénie des bactériophages

Les arbres phylogénétiques d’espèces inférés par NJ et MrBayes étaient

très similaires au niveau des regroupements d’espèces (avec de meilleurs scores

de robustesse au niveau des groupes retrouvés par MrBayes). Ceci converge

avec les études antérieures de comparaison d’inférence phylogénétique préconisant

une meilleure précision pour des méthodes bayésiennes comparativement aux

méthodes de distance [140]. Ainsi, la Figure 2 montre l’arbre phylogénétique

de bactériophages avec les différentes statistiques obtenues pour la méthode

bayésienne. Globalement, l’arbre phylogénétique d’espèces incorpore un grand

nombre de signaux phylogénétiques : au total, 116 phages, c-à-d 71% des

génomes étudiés, ont été classés dans 22 groupes avec des scores de proba-

bilités a posteriori supérieur à 50%. Ces groupes robustes contiennent entre

3 et 10 phages, avec une taille moyenne de clades de 6 espèces. Plusieurs

familles d’espèces, 12 sur 22 groupes, référencées par ICTV ont été retrouvées

par notre analyse : Siphoviridae (groupes 1, 2, 6, 8, 9, 10, 13, 22), Podoviridae

(groupes 14, 20, 21) et Myoviridae (groupe 4). Cependant plusieurs clades

demeurent non résolus. Cela est dû à l’absence d’information convergente au

niveau du contenu en gène, traduit par la présence de différentes topologies
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associées à ces organismes parmi les arbres générés par MrBayes. Par ailleurs,

on constate que la plupart de ces clades font partie des espèces partiellement

annotées (unclassified).

6.9.2 Détection des THG

Au niveau des transferts, nous avons calculé les statistiques globales des

THG intra (Within) et inter (In/Out) groupes. Plusieurs points sont remar-

quables : (a) les groupes 2, 5, 6, 12 à 16, 21 et 22 ont un nombre de transferts

intra-groupes supérieur à ceux d’inter-groupes, alors que le reste des groupes

a une tendance inverse, à l’exception cependant des groupes 4 et 9 qui n’ont

pas de transferts intra-groupes ; (b) les groupes 1, 5, 6, 7, 10, 12, 14, 16,

21 et 22 en donnent plus qu’ils en reoivent, et inversement pour le reste, à

l’exception du groupe 11 qui ne donne ni reoit de transferts, et du groupe 8

qui en donne autant qu’il en reoit ; (c) les groupes qui en donnent beaucoup

plus que la moyenne (informations non représentées sur la Figure 2) sont les

suivants : le groupe 1 au groupe 8 (19 transferts), le groupe 17 au groupe 20

(12 transferts), le groupe 20 au groupe 17 (15 transferts) et le groupe 8 au

groupe 1 (14 transferts). Les transferts entre les espèces hors groupes (i.e. les

clades non résolus discutés plus haut) n’ont pas été comptabilisés dans cette

étude.

6.9.3 Reconstruction des séquences protéiques ancestrales

Les résultats de la procédure de reconstruction des séquences protéiques

ancestrales sont présentés sous forme d’arbres et de tableaux (Figure 3ab, vue

partielle). Ainsi, nous déterminons pour chaque VOG, sa protéine ancestrale

et le nœud ancestral correspondant dans l’arbre d’espèces. Ce travail permet

d’identifier, à des fins de comparaison de génomes, l’ensemble des fonctions

assignées à chaque nœud ancestral de l’arbre d’espèces (Figure 3b, voir les
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Figure 2 : Arbre phylogénétique d’espèces inféré par MrBayes [Huelsenbeck & Ronquist 2001]. Les 

scores de robustesse sont indiqués pour les arêtes internes; 12 des 22 groupes identifiés (représentés par 

des triangles pleins) correspondent aux taxonomies de NCBI/ICTV. Pour chaque groupe, I (In) signifie 

le nombre de THG entrant dans le groupe, O (Out) le nombre de THG sortant du groupe et W (Within) 

Figure 6–2: Arbre phylogénétique d’espèces inféré par MrBayes [119, 118] . Les
scores de robustesse sont indiqués pour les arêtes internes; 12 des 22 groupes
identifiés (représentés par des triangles pleins) correspondent aux taxonomies
de NCBI/ICTV. Pour chaque groupe, I (In) signifie le nombre de THG entrant
dans le groupe, O (Out) le nombre de THG sortant du groupe et W (Within)
le nombre de THG à l’intérieur de ce groupe. La figure a été dessinée à l’aide
de l’outil de représentation d’arbres iTol (disponible sur : http://itol.embl.de).

Annexes pour les résultats complets). Une prochaine étape serait la compara-

ison des structures des protéines ancestrales reconstruites à celles des sous-

groupes correspondants. Ce travail permettrait de déterminer quels sont les
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domaines conservés dans les ancêtres, les fonctions existantes, les variations

des séquences protéiques, les fonctions perdues par certains organismes, les

fonctions acquises par les organismes de faon indépendante, etc. Ces résultats

permettraient également de définir des séquences consensus pour les sous-

arbres de phages, ce qui permettrait de réduire la complexité de la comparai-

son intergroupe de phages lors des analyses comparatives de séquences. À des

fins de validation et de comparaison, il est important de mentionner ici qu’un

score de prédiction de chaque séquence ancestrale (et des caractères prédits)

a été également calculé en utilisant la probabilité à posteriori d’inférence de

chaque caractère.

Considérons par exemple le nœud 3 (Figue 3a) qui est le nœud ancestral

commun le plus proche des phages 936 (et L. phage P2), c2 et p335. Selon la

taxonomie de référence d’ICTV, les phages attaquant les bactéries de L. lactis

sont membres de l’ordre des Caudovirales qui regroupe trois familles : Myoviri-

dae, Siphoviridae et Podoviridae. Tous les phages attaquant les bactéries de

L. lactis connus sont principalement membres de la famille Siphoviridae [50]

(commenant, en suivant l’ordre circulaire, par l’espèce O1205 et se termine

par l’espèce SPBc2; Figure 3a) et quelques espèces de la famille Podoviridae

(commenant par l’espèce phyYeO312 et se termine par l’espèce PaP3). Figure

3a présente un exemple d’un sous-arbre de l’arbre d’espèces complet (Figure 2)

comprenant les phages attaquant les bactéries de lait. Le nœud 3 est l’ancêtre

commun le plus proche des phages P335, Phage936, c2 (et L. phage P2). Deux

séquences protéiques ancestrales inférées pour ces organismes, leur fonction et

les VOGs correspondants sont reportés dans la table (Figure 3b).

6.10 Conclusion

L’approche présentée ici combine à la fois les méthodes de détection de

transferts horizontaux de gènes et de reconstruction de séquences ancestrales
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pour proposer une autre hypothèse sur la classification des bactériophages. Les

résultats obtenus apportent des informations additionnelles qui visent à mieux

comprendre l’histoire d’évolution de ces micro-organismes. En effet, l’issue de

cette étude a permis de : (a) fournir une classification des bactériophages ten-

ant compte de l’évolution réticulée, (b) fournir des statistiques sur les différents

transferts horizontaux inter et intra-groupes, (c) générer des séquences an-

cestrales des phages et identifier leur origine dans l’histoire évolutive de ces

organismes. Le dernier point permet aussi d’identifier des patrons communs

aux groupes de séquences. Cependant, dans cette étude, nous avons occulté

plusieurs problèmes dont ceux liés à l’exactitude des alignements obtenus, les

scénarios de reconstructions ancestrales alternatifs ainsi que le problème lié à

l’ordre des VOG dans les différents génomes. Les statistiques complètes con-

cernant la classification des bactériophages sont disponibles à l’URL suivant :

<http://www.info2.uqam.ca/∼makarenv/Annexe SFC2007.pdf>.
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Figure 3: (a) Sous-arbre de l’arbre d’espèces complet (Figure 2) comprenant les membres des familles 

Siphoviridae et Podoviridae. Le nœud 3 est l’ancêtre commun le plus proche des phages attaquant les 

bactéries de L. lactis, i.e. les organismes P335, Phage936, c2 (et L. phage P2). (b) Deux séquences 

protéiques ancestrales inférées pour ces organismes, leur fonction et les VOGs correspondants. 
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protéiques ancestrales inférées pour ces organismes, leur fonction et les VOGs
correspondants.

109



CHAPTER 7
A whole genome study and identification of specific carcinogenic

regions of the Human Papilloma Viruses

7.1 Preface

This chapter contains a large evolutionary study including indel analyses

of all the complete sequenced Human Papilloma Viruses. Here we analyze

how indel distribution obtained from our developed framework can be related

to the carcinogenic structure of the phylogenetic tree. It also presents an

algorithm to identify specific carcinogenic regions with respect to their evolu-

tionary properties (small scale mutations). The text presented in this chapter

is taken from Diallo et al. 2009 [55], accepted for publication into the journal

of Computational Biology.

7.2 abstract

In this article, we undertake a study of the evolution of Human Papil-

lomaviruses (HPV), whose potential to cause cervical cancer is well known.

First, we found that the existing HPV groups are monophyletic and that the

high-risk of carcinogenicity taxa are usually clustered together. Then, we

present a new algorithm for analyzing the information content of multiple se-

quence alignments in relation to epidemiologic carcinogenicity data to identify

regions that would warrant additional experimental analyses. The new algo-

rithm is based on a sliding window procedure and a p-value computation to

identify genomic regions that are specific to HPVs causing disease. Examina-

tion of the genomes of 83 HPVs allowed us to identify specific regions that

might be influenced by insertions, deletions, or simply by point mutations,

and that may be of interest for further analyses.
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7.3 Introduction

Human papillomaviruses (HPV) have a causal role in cervical cancer with

almost half a million new cases identified each year [3, 19, 175]. The HPV

genomic diversity is well known [4]. About one hundred HPV types are iden-

tified, and the whole genomes of more than eighty of them are sequenced (see

the latest Universal Virus Database report by International Committee on

Taxonomy of Viruses (ICTV)). A typical HPV genome is a double-stranded,

circular DNA genome of size close to 8 Kbp, with complex evolutionary re-

lationships and a small set of genes. In general, the E5, E6, and E7 genes

modulate the transformation process, the two regulatory proteins, E1 and E2,

modulate transcription and replication, and the two structural proteins L1

and L2 compose the viral capsid. Protein E4 has an unclear function in the

HPV life cycle, however, several studies indicate that it could facilitate the

viral genome replication and the activation of viral late functions [253], and

it could also be responsible for virus assembly [193]. A HPV is considered

to belong to a new HPV type if both its complete genome has been cloned

and the DNA sequence of the gene L1 differs by more than 10% from the

closest known HPV type. The comparison of HPV genomes, conducted by

ICTV, is based on nucleotide substitutions only [177, 46]. Older HPV clas-

sifications were built according to their higher or lower risk of cutaneous or

mucosal diseases. Most of the HPV studies were based on single gene (usu-

ally E6 or E7) analyses. The latter genes are predominantly linked to cancer

due to the binding of their products to the p53 tumor suppressor protein and

the retinoblastoma gene product pRb [242]. To define carcinogenic types, we

used epidemiologic data from a large international survey on HPVs in cervical

cancer and from a multicenter case-control study conducted on 3,607 women

with incident, histologically confirmed cervical cancer recruited in 25 countries
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[177, 176]. HPV DNA detection and typing in cervical cells or biopsies were

centrally done using PCR assays which attest for the quality of the study [177].

More than 89% of patients them had squamous cell carcinoma (i.e. Squam

cancer) and about 5% had adenosquamous carcinoma (i.e. Adeno cancer) see

Table 7–1 adapted from [177]. More than half of the infection cases are due

to the types 16 and 18 of HPV, which are thus referred to as high-risk HPVs

[32].

Table 7–1: Distribution of carcinogenic HPVs for the Squam and Adeno types
of cancer. Complete genomic sequence data is not available yet for HPVs-35,
HR, 68, and X.

Squamous cell carcinoma Adenocarcinoma
and adenosqua-
mous carci-
noma

HPV types Number % positive Number % positive
HPV-16 1,452 54.38 77 41.62
HPV-18 301 11.27 69 37.30
HPV-45 139 5.21 11 5.95
HPV-31 102 3.82 2 1.08
HPV-52 60 2.25
HPV-33 55 2.06 1 0.54
HPV-58 46 1.72 1 0.54
HPV-56 29 1.09
HPV-59 28 1.05 4 2.16
HPV-39 22 0.82 1 0.54
HPV-51 20 0.75 1 0.54
HPV-73 13 0.49
HPV-82 7 0.26
HPV-26 6 0.22
HPV-66 5 0.19
HPV-6 2 0.07
HPV-11 2 0.07
HPV-53 1 0.04
HPV-81 1 0.04
HPV-55 1 0.04
HPV-83 1 0.04
Total 2,293 85.89 168 90.37
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In this paper, we first studied a whole genome phylogenetic classification

of the HPV and the insertion and deletion (indel) distribution among HPV

lineages leading to the different types of cancer. First, we inferred a phylo-

genetic tree of 83 HPVs based on whole HPV genomes. We found that the

evolution of the L1 gene, used by ICTV to establish the HPV classification,

generally reflects the whole genome evolution. Second, we compared the gene

trees built for the 8 most important HPV genes (E1, E2, E4, E5, E6, E7, L1

and L2) using the normalized Robinson and Foulds topological distance [201].

Then, we described a new algorithm for analyzing the information content

of multiple sequence alignments in order to identify regions that may be re-

sponsible for the carcinogenicity. This algorithm is based on a new formula

taking into account the sequence similarity among carcinogenic taxa and the

sequence dissimilarity between the carcinogenic and non-carcinogenic taxa,

computed for a genomic region bounded by the position of the sliding win-

dow. To facilitate the identification of relevant regions, we compute p-values

for the different regions according to their score obtained with our new for-

mula. Using the new technique we developed, we examined all available genes

in 83 HPV genomes and identified the specific genomic regions that would

warrant interest for future biological studies.

7.4 Indel analysis of HPV genomes and reconciliation of HPV gene
trees

The 83 completely sequenced HPV genomes (all identified by the ICTV)

were downloaded and aligned using ClustalW [235], producing an alignment

with 10426 columns. The phylogenetic tree of 83 HPVs (Figure 7–1) was

inferred using the PHYML program [101] with the HKY substitution model.

Bootstrap scores were computed to assess the robustness of the edges using

100 replicates. Most branches obtain support above 80%, but for a better
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readability, they are not represented in Figure 7–1. However, they are given

in the supplemental materials 1 . As suggested in [242], the bovine PV of type

1 was used as outgroup to root this phylogeny. To the best of our knowledge,

the constructed phylogenetic tree is the first whole genome phylogenetic tree

of HPVs.

Our analysis revealed the presence of 12 known monophyletic HPV groups

that are denoted by numerated nodes, labeled according to the ICTV annota-

tion, in Figure 7–1. The other monophyletic groups obtained were not depicted

by numbers. The whole-genome phylogeny obtained usually corresponds to the

HPV classification provided by ICTV on the basis of the L1 gene. Most of the

dangerous HPVs (see Table 7–1) can be found in the sister subtrees rooted by

the nodes 16 and 18.

As carcinogenicity may be introduced into a HPV by an insertion or

deletion (indel) of a group of nucleotides, we first addressed the problem of

indel distribution in the evolution of HPV. Thus, the most likely indel scenario

was inferred using a heuristic method described in [62, 58]. Such a scenario

includes the distribution of the predicted indel and base conservation events

for all HPV genes. Table 7–2 reports, for each of the 8 main genes of HPV,

the total number of conservations, insertions and deletions of nucleotides that

occurred during their evolution. Genes E1, L1 and L2 show more than 90%

conservation at the nucleotide level, E2, E4 and E6 between 80 and 90%, and

E5 and E7 respectively 73% and 59%.

1 Supplemental materials are available at:
http://ancestors.bioinfo.uqam.ca/articles/JCB2009/supplemental.zip
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The highest indel frequencies are in the subtrees rooted at node 61 where

there are only low risks of carcinogenicity (Figure 7–1). The groups included

in the subtree A have low percentage of indels on in each branch. Thus, one

could conclude that indel rates could not be related to gained of carcinogecity.

However, due to the fact that it is less likely that carcinogenicity has been

gained several times independently (through substitutions for instance) in dif-

ferent taxa, one plausble hypothesis is that the organisms of the subtree A

inherited their carcinogenicity from their closest common ancestor.

We also carried out an analysis intended to compare the topologies of the

gene phylogenies built for the 8 main HPV genes. Thus, we first aligned, using

ClustalW [235], the HPV gene sequences, separately for each gene, and inferred

8 gene phylogenies using the PHYML program [101] with the HKY model. In

order to measure their degree of difference, we computed the Robinson and

Foulds (RF) topological distances between each pair of gene trees [201]. As

the number of tree leaves varied from 70 to 83 (due to the non-availability of

some gene sequences for a few HPVs), we reduced the size of some trees prior

to this pairwise topological comparison and normalized all distances by the

largest possible value of the RF distance, which is 2n− 6 for two binary trees

with n leaves. Figure 7–2 shows the results obtained, with RF distances are

depicted as stacked rectangles. The results suggest that the trees representing

the evolution of the E4 and E5 genes differ the most, on average, from the

other gene phylogenies, whereas the phylogeny of E2 reconciles the most the

topological differences of this group of gene trees. Two HPV gene phylogenies

differ from each other by about 32%, on average. In the future, it might also be

interesting to compare the gene trees we obtained using Maximum Likelihood

tests such as Shimodaira-Hasegawa [213] or Kishino-Hasegawa [133] and to
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assess the confidence of phylogenetic tree selection using program such as

CONSEL [214].

These results confirm the hypothesis made in a number of HPV studies

(see for instance [179, 243]), that most HPV genes undergo frequent recom-

bination events. Uncritical phylogenetic analyses performed on recombinant

Figure 7–1: Phylogenetic tree of 83 HPVs obtained with PHYML. The 21 car-
cinogenic HPV are shown in bold. The white nodes identify the existing HPV
groups according to the ICTV and NCBI taxonomic classifications; the shaded
nodes (A and B) distinguish between the non-carcinogenic and carcinogenic
families. Bootstrap scores are above 80% for most of the branches; for a better
readability, they are not represented. The HPVs 1 and 34 are present in two
copies, (1 and 1a) and (34A and 34B), respectively.
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Figure 7–2: Average normalized Robinson and Foulds topological distance for
each of the 8 main HPV genes. Each column of the diagram represents a gene
and consists of the stacked rectangles whose heights are proportional to the
values of the normalized Robinson and Foulds topological distances between
the phylogeny of this gene and those represented by the stacked rectangles.
The column heights depicts the total average distance. For the sake of presen-
tation the percentage values on the ordinate axis were divided by 7 (which is
the number of pairwise comparisons made for each gene tree).

sequences could lead to the impression of novel, relatively isolated branches.

Recently, Angulo and Carvajal-Rodriguez (2007) have provided new support

to the recent evidence of recombination in HPV. They found that the gene

with recombination in most of the groups is L2 but the highest recombination

rates were detected in L1 and E6. Gene E7 was recombinant only within the

HPV16 type. The authors concluded that this topic deserves further study be-

cause recombination is an important evolutionary mechanism that could have

a high impact both in pharmacogenomics and for vaccine development.

7.5 Algorithm for the identification of putatively carcinogenic re-
gions

This section describes a new algorithm intended for finding genomic re-

gions that may be responsible for HPV carcinogenicity. The algorithm is based

on the hypothesis that sequence regions responsible for cancer are likely to be
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more similar among carcinogenic HPVs than between carcinogenic and non-

carcinogenic HPVs. The following procedure was adopted. First, 83 available

HPV genomes were downloaded and inserted into a relational database along

with the clinical information regarding identified HPV types and histologi-

cal type of cancer occurrences [177, 176]. We constructed three HPV Types

Datasets: ”High-Risk”, containing HPVs16 and 18, ”Squamous”, containing

HPV types responsible for Squamous Cell Carcinoma (HPV-6, 11, 16, 18, 26,

31, 33, 39, 45, 51, 52, 53, 55, 56, 58, 59, 66, 73, 81, 82, 83) and Adeno with

types responsible for Adenocarcinoma (HPV-16, 18, 31, 33, 35, 39, 45, 51, 58,

59). See Table 7–1 for more details. HPV types with incomplete genome infor-

mation or without annotations were excluded from the dataset. As previously,

we used the gene sequences aligned separately for each gene.

Then, we scanned all gene sequence alignments using a sliding window

of a fixed width (in our experiments the window width ranged from 3 to 20

nucleotides, see Figure 7–3). First, a detailed scan of each gene with increments

of 1 nucleotide was performed to identifying the regions with a potential for

causing carcinogenicity (the main results are reported in Table 7–3), and called

here hit regions. Second, a non-overlapping windows of width 20 nucleotides

was carried out for plotting Figures 7–4, 7–7 and 7–8. Three separate analyses

were made for the three above-described carcinogenic families: High-Risk,

Squamous and Adeno HPVs.

Once the window position is fixed and the taxa are assigned to the sets X

(carcinogenic HPVs) and Y (non-carcinogenic HPVs), the hit region identifi-

cation function, denoted here as Q, can be computed. This function is defined

as a difference between the means of the squared distances computed among

the sequence fragments (bounded by the sliding window position) of the taxa

from the set X and those computed only between the sequence fragments
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Figure 7–3: A sliding window of a fixed width was used to scan all each HPV
gene separately. The sequences in black belong to the set X (carcinogenic
HPVs; in this example HPVs 16 and 18), all other sequences belong to the set
Y (non-carcinogenic HPVs). The organism is indicated in the column on the
extreme left.

from the distinct sets X and Y . The mean of the squared distances computed

among the sequence fragments of the carcinogenic taxa from the set X, and

denoted here V (X), is computed as follows:

V (X) =
1

(|X| · (|X| − 1)/2)

∑
{x1,x2∈X|x1 6=x2}

dist2h(x1, x2), (7.1)

and the mean of the squared distances computed only between the sequence

fragments from the distinct sets X and Y , and denoted here as D(X, Y ), is

computed as follows:

D(X, Y ) =
1

|X| · |Y |
∑

{x∈X,y∈Y }

dist2h(x, y), (7.2)

where disth(x1, x2) is the Hamming distance between the sequence fragments

corresponding to the taxa x1 to x2.

Then, the hit region identification function Q is defined as follows:

Q = ln(1 +D(X, Y )− V (X)). (7.3)

The larger the value of this function for a certain genomic region, the more

distinct are the carcinogenic taxa from the non-carcinogenic ones. The use
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of the Hamming distance instead of the well-adapted sequence to distance

transformations such as the Jukes-Cantor (1969), Kimura 2-parameter (1980)

or Tamura-Nei (1993) corrections, is justified by the two following facts: first,

often the latter transformation formulae are not applicable to short sequences

(remember that in our experiments the sequence lengths, equal to the sliding

window width, varied from 3 to 20 nucleotides), and second, most of the well-

known transformation models either ignore gaps or assign a certain penalty

to them. As the carcinogenicity of HPVs can be related to an insertion or

deletion of a group of nucleotides, the gaps should not be ignored but rather

considered as valid characters, with the same weight as the other nucleotides,

when computing the pairwise distances between the genomic regions.

The time complexity of this algorithm executed with overlapping sliding

windows of a fixed width, and advancing one alignment site by step, is O(l ×

n2×w), where l is the length of the multiple sequence alignment, n the number

of taxa, and w the window width. However, this complexity can be reduced

to O(n2 × l) if we avoid recomputing the Hamming distance for neighbouring

overlapping windows. This can be done by only removing the value of the

left column of the sliding window while taking into account the value of added

column in the Hamming distance of the sliding window. For a non-overlapping

sliding window, the time complexity is O(n2 × l). If the width of the sliding

window varies, as it was the case in our experiments, the time complexity

should be obviously multiplied by the difference between the maximum and

minimum window widths. The detailed algorithmic scheme is presented below.

To identifiy a region as a hit, one might use a measure to determine

whether the given region has a value of Q higher than a given threshold.

However, it is unclear what will be the best value of threshold, since the
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Algorithm 3 Algorithmic scheme(MSA, MSA L,X, N(X), Y, N(Y),
WIN MIN, WIN MAX, S, TH)

Require: MSA: Multiple sequence alignment (considered as a matrix),
MSA L : Length of MSA,
X: Set of carcinogenic taxa,
N(X): Cardinality of the set X,
Y: Set of non-carcinogenic taxa,
N(Y): Cardinality of the set Y,
WIN MIN: Minimum sliding window width,
WIN MAX: Maximum sliding window width,
S: Sliding window step,
TH: Minimum Q value for Hit (i.e., hit threshold).

Ensure: Set of Hit Regions: (win width, idx, Q), where
win width : Current sliding window width,
idx : Hit Index (i.e., its genomic position),
Q : Value of the hit region identification function.

1: for win width from WIN MIN to WIN MAX do
2: for idx from 0 to MSA L−win width with step S do
3: MSA X ← MSA[X][idx..idx+ win width]
4: MSA Y ← MSA[Y ][idx..idx+ win width]
5: V (X)← D(X, Y )← 0
6: for all distinct i, j ∈ X do
7: V (X)← V (X) + dist2h(MSA X[i], MSA X[j])
8: end for
9: V (X)← 2× V (X)/(N(X)× (N(X)− 1))

10: for each i ∈ X and j ∈ Y do
11: D(X, Y )← D(X, Y ) + dist2h(MSA X[i], MSA Y[j])
12: end for
13: D(X, Y )← D(X, Y )/(N(X)×N(Y ))
14: Q← ln(1 +D(X, Y )− V (X))
15: if Q > TH then
16: identify the current region (win width, idx, Q) as a hit region
17: end if
18: end for
19: end for

distribution of values of Q might be different in function of the alignment.

One possibility could be to rank the Q values and choose a set of highest

ones. Moreover, an approach involving the computation of p-values could be

implemented to determine the regions that have a value of Q that is different
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from the normalQ values of the alignment. Here, we used these two approaches

to choose the relevant regions according to their value of Q. To compute the

p-value for each given region Wi with a Q value Qi, Monte Carlo sampling

was perfomed, to estimate the distribution of the Q values for a subset of W

randomly chosen columns. One million samples were generated and their Q

values computed. The p-value of Qi is then the fraction of samples that obtain

a Q value larger or equal to Qi. It is worth noting that one would expect most

of the region with value of Q to have a p-value above 0.001.

7.6 Results, discussion and conclusion

The procedure for identifying hit regions in the 83 available HPV genomes

was carried out twice: first, with overlapping windows of width w (w = 3 to

20), advancing one alignment site by step, and second, with non-overlapping

windows of width 20. The 8 most important HPV genes (see Table 7–3) were

scanned in such a way. The scan based on the overlapping windows provided

over 35,000 values of Q larger than 0.25. From the best 100 results obtained

for each gene, we manually selected (see Table 7–3) the longest contiguous

regions (up to 20 nucleotides) corresponding to the largest values of the hit

region identification function Q. The values of Q were dependent on the

window width, with better results usually associated with small windows.
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For instance (see Table 7–3), for larger window sizes, the largest values of Q

were found during the scans of genes E2 and E6 for all types of HPVs, with the

exception of the overall best score obtained during the scan of the gene L1 for

the High-Risk HPV types (the value of 0.574 for a 14-nucleotide region starting

with the index 241, see Table 7–3). For windows of small width, the largest

values of Q were observed during the scan of the gene E4 for the High-Risk

HPV category but in Table 7–3 we show only the best results for the longer

contiguous regions of size 13 to 20 nucleotides. All the regions presented in

Table 7–3 have a p-value at most 10−6.

Figure 7–4 depicts the progressive results obtained during the scan of the

L1 gene and the High-Risk HPVs (HPVs-16 and 18) with the non-overlapping

windows of size 20 nucleotides. The highest score, for the non-overlapping

windows of size 20 among all genes and all types of HPV-caused cancers, of

the Q function (Q = 0.55) was obtained for this gene.

Figure 7–4: The variation of the hit identification function Q for the High-Risk
HPVs (HPVs-16 and 18) obtained with the non-overlapping sliding widows of
width 20 during the scan of the L1 gene. The abscissa axis represents the
window position.
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As most of the largest values of Q were obtained for the genes E2 and

E6, we also present in Figure 7–7 and 7–8 the progressive results diagrams

illustrating the scan of these genes with the non-overlapping windows of size

20. The largest values of the hit region identification function Q are usually

found during the scan of the genes E2 and E6. Moreover, we found that

in these two genes the number of regions obtaining p-values less than 0.001

is the largest. For instance, in gene E6, three large regions of size between

40 nucleotides and 60 nucleotides have a p-value less than 0.001 (Figure 7–5

and 7–6). The last region of figure of E6 surprisingly corresponds to a PDZ

domain-binding motif (-X-T-X-V) at the carboxy terminus of the protein,

which is essential for targeting PDZ proteins for proteasomal degradation.

Such proteins include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1

[36]. The interaction between the E6 protein and hDLG or other PDZ domain-

containing proteins could be an underlying mechanism in the development of

HPV-associated cancers [239] .

It is worth noting that according to recent findings the high expression

of E6 and disruption of E2 might play an important role in the development

of HPV-induced cervical cancer [247]. As result of E6 high expression, the

immune system is potentially evaded [186]. Disruption of the gene E2 was ob-

served in invasive carcinomas [31] and in high-grade lesions [99]. Surprisingly,

the overall largest value of Q was obtained for a specific region of the L1 gene.

This underlines the possible use of our method for investigating particular re-

gions of capsidal proteins in relation with vaccine design. It has been shown

that linear epitopes within the protein L1 that induce neutralizing antibodies

exist [39].
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Figure 7–5: The variation of the hit identification function Q for the High-Risk
HPVs (HPVs-16 and 18) obtained with the non-overlapping sliding widows of
width 20 during the scan of the E6 gene. The horizontal line cutting the
graph represents the threshold of p-value less than 0.001. The abscissa axis
represents the window position.
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Figure 7–6: The variation of the p-value in the different region of the alignment
for the High-Risk HPVs (HPVs-16 and 18) obtained with the non-overlapping
sliding widows of width 20 during the scan of the E6 gene. The abscissa axis
represents the window position.
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We observed that the results obtained depend on the window width. As

substitutions affect individual sites whereas indels often involve several consec-

utive nucleotides, small window sizes will tend to favor the former. However,

the use of the Hamming distance, which does not ignore gaps in calculation,

and variable window width allows us to account for both substitution and in-

del events. In the future, it would be interesting to study in more detail, in

collaboration with virologists, all genomic regions providing the highest scores

of the hit region identification function Q (particular attention should be paid

to the E2, E6 and L1 genes), and to determine, for each selected region, the

evolutionary events (substitutions or indels) responsible for the observed dif-

ferences in the carcinogenic and non-carcinogenic HPVs, and then establish

at which level (i.e. on which branch) of the associated gene phylogeny this

event has occurred. It may also be interesting to consider merging our results

to those given by methods for detecting sequences under lineage-specific se-

lection such as DLESS [216]. Next, we plan to compare this work with other

approaches on the computational virology, which used some simpler methods,

such as signatures, to analyze other viruses. Another interesting development

would be to design more sophisticated statistical tests allowing one to measure

the statistical significance of the obtained results.
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Appendix

Gene E2: HPVs-16 and 18
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Figure 5: The variation of the hit identification function Q for: (a) High-Risk HPVs 

(HPV-16 and 18), (b) Squam cancer causing HPVs, and c) Adeno cancer causing 

HPVs obtained with the non-overlapping sliding widows of width 20 during the gene 

E2 scan.  

 2

Figure 7–7: The variation of the hit identification function Q for: (a) High-
Risk HPVs (HPV-16 and 18), (b) Squam cancer causing HPVs, and c) Adeno
cancer causing HPVs obtained with the non-overlapping sliding widows of
width 20 during the gene E2 scan.
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Figure 6: The variation of the hit identification function Q for: (a) High-Risk HPVs 

(HPV-16 and 18), (b) Squam cancer causing HPVs, and c) Adeno cancer causing 

HPVs obtained with the non-overlapping sliding widows of width 20 during the gene 

E6 scan. 
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Figure 7–8: The variation of the hit identification function Q for: (a) High-
Risk HPVs (HPV-16 and 18), (b) Squam cancer causing HPVs, and c) Adeno
cancer causing HPVs obtained with the non-overlapping sliding widows of
width 20 during the gene E6 scan.
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CHAPTER 8
Conclusion

In this thesis, we proposed in Chapter 3 an exact algorithm for the prob-

lem of reconstructing the most likely scenario of insertions and deletions ca-

pable of explaining the gaps observed in a given alignment according to a

given phylogenetic tree [58, 62]. Furthermore, we also designed a new prob-

abilistic framework for indel analyses. The new probabilistic framework pro-

vides a way of weighing insertions and deletions of various lengths against

each other. It also provides an accurate probabilistic model of indels, an

exact and heuristic algorithm for the reconstruction of indel scenarios, and

allows the estimation of the uncertainty for each part of the solution. Simi-

larly to the statistical alignment approaches, which unfortunately remain too

slow for genome-wide reconstructions, our method seeks to gain a richer in-

sight into ancestral sequences and evolutionary processes of more than 20

taxa. This framework is the core of the Ancestors 1.0 program available at:

<http://ancestors.bioinfo.uqam.ca/ancestorWeb> and presented in chapter 4

of this thesis. It will be integrated soon into the pipeline of the project of the

ancestral mammalian reconstruction initiated by David Haussler from the Uni-

versity of California at Santa Cruz (UCSC), with the collaboration of several

other universities such as Pennsylvania State University and McGill Univer-

sity. Apart of ancestral sequence reconstruction, we showed the utility of the

indel model to (1) improve multiple sequence alignment and phylogenetic tree

reconstructions, (2) and to replace the topological distance of Robinson and

Foulds [201] or multiple sequence alignment scores in simulation procedures

(chapter 5). Furthermore, we presented two applications of our framework
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in the studies of phages (chapter 6) and Human Papilloma Viruses (chapter

7). In the phages analyses, we proposed a new approach to reconstruct the

phage classification and an extension of the ancestral sequence reconstruction

framework to allow horizontal gene transfers and partial genomic data. In

chapter 6, our probabilistic framework has been used to analyze the relation

of indel evolutionary events and the phylogenetic aspect of carcinogenicity [55]

. We also provided an efficient way for identifying specific carcinogenic regions

according to their evolutionary events, and proposed the first whole genome

classification of the Human Papilloma Viruses family [54].

8.1 Major contributions

The most important contributions of my thesis can be summarized as

follows:

• Providing algorithms to solve the indel maximum likelihood problem for

large data sets.

• Providing web server and visualization tools for the inference of ancestral

sequences and their uncertainties.

• Providing databank of phages ancestral sequences.

• Providing a method to assess the joint inference of phylogenetic tree

and multiple sequence alignment, and using it to select the best tree-

alignment pair.

• Proposing an algorithm to identify specific regions according to the re-

lation between their carcinogenic evolution and the mutation events.

• Providing framework for ancestral sequence reconstruction for reticulate

evolutionary genomes allowing horizontal gene transfer events.

8.2 Perspectives

In the future, we intend to correct certain types of small-scale multiple

sequence alignment errors using our ability to reconstruct ancestral sequences
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and their uncertainty. Given an original imperfect alignment, we will predict

ancestral profile sequences based on our framework. The algorithm will realign

each extant sequence to its most recent ancestor using our pairwise profile-

profile alignment (see Appendix D). Then recent ancestors will be realigned

with their ancestor. This approach is similar to the MAVID method [25].

However, MAVID does not use profiles, and considers gaps as fifth symbol,

while the introduction of affine gap penalties as described in appendix D would

be preferable.

We also propose to use our indel likelihood score presented in chapter 5,

combined with the substitutions likelihood score to design a new method (ex-

tending our phylogenetic-Hidden Markov Model approach [58]) for the joint

inference of phylogenies and multiple sequence alignment [108] that can be

applicable to large genomic data. For this purpose, we will design an iterated

algorithm that can build partially accurate multiple sequence alignment from

unaligned sequences using one of existing alignment methods, then infer ances-

tral sequences using the developed algorithm. Finally, the uncertainties related

to the ancestral prediction can be used to refine the alignment and re-estimate

the ancestral characters, followed by the tree topology rearrangement using

the existing techniques such as Nearest Neighbor Interchange (NNI), Subtree

Pruning and Regrafting (SPR) and others. Branch lenghts estimations can

be handled apart as individual branch length optimization. Variant of the

numerical optimization of branch lenghts showed in PHYML [101] would be

adequate for this problem. This scenario could be iterated until a convergence

is obtained. If the tree rearrangement steps improve highly the agreement

in each iteration, the method will converge quickly, and will be preferable

to the available profile-HMM based one SATCHMO [72] that do alignment

and tree reconstruction in parallel. Another important task would be refining
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the visualization of the ancestral sequence reconstruction such that very large

datasets could be efficiently analyze. Finally, once all the mentioned tools are

operational, we will have an accurate and easy way to use indels likelihood

framework that can play an important role in genome analyses, studying for

example the impact of indels on gene regulation, functional region annotation

and more.
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APPENDIX A
Computational Reconsruction of Ancestral DNA Sequences

A.1 Preface

This appendix contains a presentation of the motivation of ancestral se-

quences reconstruction, the different steps and their challenges. It is published

as a book chapter [15].

A.2 Abstract

This chapter introduces the problem of ancestral sequence reconstruc-

tion: given a set of extant orthologous DNA genomic sequences (or even whole

genomes), together with a phylogenetic tree relating these sequences, predict

the DNA sequence of all ancestral species in the tree. Blanchette et al. (2004)

have shown that for certain sets of species (in particular, for eutherian mam-

mals), very accurate reconstruction can be obtained. We explain the main

steps involved in this process, including multiple sequence alignment, insertion

and deletion inference, substitution inference, and gene arrangement inference.

We also describe a simulation-based procedure to assess the accuracy of the

reconstructed sequences. The whole reconstruction process is illustrated using

a set of mammalian sequences from the CFTR region.

A.3 Introduction

Following the completion of the human genome sequence, there is now

considerable interest in obtaining a more comprehensive understanding of its

evolution [122, 233, 197]. Patterns of evolutionary conservation are used to

screen human DNA mutations to predict those that will be deleterious to

protein function and to identify noncoding sequences that are under negative

selection, and hence may perform regulatory or structural functions [161, 41,

135



10]. Long periods of conservation followed by sudden change may provide

clues to the evolution of new human traits [98, 78]. All of these efforts depend,

directly or indirectly, on reconstructing the evolutionary history of the bases

in the human genome, and hence on reconstructing the genomes of our distant

ancestors.

Although some information about ancestral species has been irrevoca-

bly lost during evolution, there is still the possibility that large regions of

the genomes of ancestral species with many modern descendants can be ap-

proximately inferred from the genomes of modern species using a model of

molecular evolution. Indeed, it has recently been reported that in the specific

case of mammalian evolution, ancestral genome reconstruction was possible to

a surprising degree of accuracy [16].

The ideal target species for a genomic reconstruction is one that has gener-

ated a large number of independent, successful descendant lineages through a

rapid series of early speciation events. In this case, the problem can be viewed

as attempting to reconstruct an original from many independent noisy copies.

In the limit of an instantaneous radiation, the accuracy of the reconstruction

approaches 100% exponentially fast as the number of copies increases. From

the Cretaceous period, a good choice for reconstruction would be the genome

of the eutherian ancestor, as this species is believed to have spawned the rel-

atively rapid radiation of the different lineages of modern placental mammals

[76, 225]. This ancient species also has the added advantage of being a human

ancestor, so its reconstruction, however speculative, may shed additional light

on our own evolution, perhaps helping to explain features of the human and

other modern mammalian genomes.

In this chapter, we describe the set of computational approaches and

tools that exist for reconstructing ancestral sequences and for estimating the
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accuracy of such a reconstruction. This area being relatively new, there is

not a single tool that performs all the steps involved in the reconstruction.

Instead, tools developed by different authors need to be used sequentially. The

methods are illustrated on a 1.8Mb region of mammalian genomes, containing

the CFTR gene, sequenced by the ENCODE project [234]. Much of this

chapter is derived from Blanchette et al. (2004).

A.4 Materials

A.4.1 Sequence data

To reconstruct ancestral sequences, orthologous DNA regions from as

many descendants as possible need to be compared. The more orthologous

sequences are available, the more accurate the reconstruction will be, pro-

vided accurate evolutionary models are used. For vertebrate sequences, a

good repository of complete genome sequences is the UCSC Genome Browser

(http://genome.ucsc.edu, [128]). Besides raw DNA sequences, multiple genome

alignments, and various types of genome annotation are accessible from the

same site.

For the purpose of this chapter, we illustrate the process of ancestral

sequence reconstruction using a 1.8Mb region of the human genome including

the CFTR gene, together with orthologous regions from 19 other mammals

(available at the UCSC Genome Browser). This deep coverage is not currently

available over all the genome, but only for the targeted sequencing of the

ENCODE project [234].

A.4.2 Phylogenetic information

An important component of ancestral sequence reconstruction is the knowl-

edge of the phylogenetic relationships among the species being compared.

Knowing the correct tree topology and estimating the length of its branches is

crucial for an accurate reconstruction, as well as for estimating the accuracy
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of that reconstruction through simulations. For many sets of species, accepted

phylogenetic trees are now available (see for example [153], and [76]). For

others, the exact phylogenetic relationships remain unclear and need to be in-

ferred prior to reconstruction, using programs like Phylip [85], PhyML [101], or

MrBayes [118]. These tools are also necessary to estimate the branch lengths

of the phylogenetic tree using a maximum likelihood approach.

A.4.3 Sequence annotation

In some cases, functional annotation of extant sequences can be used to

obtain more accurate reconstruction of ancestral sequences. This is particu-

larly the case for coding region annotation and repetitive region annotation.

For metazoans, a good source of such annotations is the UCSC genome browser

and the Ensembl Genome Browser (http://www.ensembl.org).

A.5 Methods

This section introduces the techniques that have been developed for pre-

dicting ancestral DNA sequences based on their extant descendants, and for

estimating the accuracy of the reconstruction. We illustrate this reconstruc-

tion process and the type of information that can be derived from it using 1.8

Mb region surrounding the CFTR gene in mammals (see [16] for more details).

A.5.1 Predicting ancestral sequences

The prediction of ancestral genomes can be decomposed into four main

steps. A crucial first step toward the reconstruction is to build an accurate

multiple alignment of the extant orthologous sequences, thus establishing or-

thology relationships among the nucleotides of each sequence. Second, the

process of indel reconstruction determines the most likely scenario of inser-

tions and deletions that may have led to the extant sequences. Third, sub-

stitution history is reconstructed using a maximum likelihood approach. The
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last step involves dealing with genome rearrangements (inversions, transpo-

sitions, translocations, duplications, and chromosome fusions, fissions, and

duplications).

Multiple sequence alignment. Given a set of orthologous sequences,

the multiple alignment problem consists of identifying (by aligning them to-

gether) the sets of nucleotides derived from a common ancestor through direct

inheritance or through substitution. Many approaches have been developed to

align multiple, large genomic regions. Some of the most popular approaches

include programs like MAVID [25], MLAGAN [27, 42], and TBA [17]. All these

approaches fall under the category of progressive alignment methods, and re-

quire the prior knowledge of the topology of the phylogenetic tree that relates

the extant sequences compared (see Section A.2). The threaded blocks aligner

(TBA) program, based on the well-established pair-wise alignment program

BLASTZ [212], has been shown to be particularly accurate for aligning mam-

malian sequences and is thus a tool of choice for ancestral reconstruction for

these species. The program is available at: http://www.bx.psu.edu/miller lab/.

The multiple sequence alignment problem is discussed in more details in Millers

chapter in this book.

Indel Reconstructing. Given a multiple sequence alignment of the

repeat-soft-masked extant sequences and a phylogenetic tree with known topol-

ogy and branch lengths, the next step consists of predicting, for each ancestral

node in the tree, which columns of the alignment correspond to ancestral

bases, and which correspond to nucleotides inserted after the ancestor. While

the problem of parsimonious indel inference has recently been shown to be

NP-Hard [35], good heuristics have been developed by Fredslund et al. [91],

Blanchette et al. [16], and Chindelevitch et al. [35]. Currently, the only pub-

licly available program for indel reconstruction is the inferAncestors program
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based on the greedy approach of Blanchette et al. [16]. This section describes

briefly how the program works.

Given a multiple alignment, all the gaps in the alignment are first marked

as unexplained. The algorithm iteratively selects the insertion or deletion,

performed along a specific edge of the tree and spanning one or more columns

of the alignment, that yields the largest number of alignment gaps explained

per unit of cost. The number of gaps explained by a deletion is the number of

unexplained gaps in the subtree above which the deletion occurs. The number

of gaps explained by an insertion is the number of unexplained gaps in the

complement of the subtree above which the insertion occurs. The costs can be

defined heuristically. The cost of a deletion is given by 1 + 0.01 log(L) 0.01

b where L is the length of the deletion and b is the length of the branch along

which the event takes place. The cost of an insertion is given by 1 + 0.01

log(L) 0.01 b r, where L and b are defined as above and r is a term that takes

value 0.5 if the repetitive content of the segment inserted is more than 90%.

Once the best insertion or deletion has been identified, its gaps are marked as

explained. This does not preclude them from being part of other indels, but

they will not count in their evaluation. Finally, heuristics are used to reduce

errors due to incorrect alignment, in particular to reduce the problems caused

by two repetitive regions from two distantly related species mistakenly aligned

to each other, with other species having gaps in that region.

Substitutions reconstruction. After having established which posi-

tions of the multiple alignment correspond to bases in the ancestor, the infer-

Ancestors program predicts which nucleotide (A, C, G, or T) was present at

each position in the ancestor using the standard posterior probability approach

[259] based on a dinucleotide substitution model where substitutions at two

adjacent positions are independent except for CpG, whose substitution rate
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to TpG is ten times higher than those of other transitions [215]. This phase of

the reconstruction relies on the availability accurate branch length estimates

for the phylogenetic tree, which can be obtained as described in Section A.2.

The inferAncestors program. The inferAncestor program, available

from http://www.mcb.mcgill.ca/˜blanchem/software, integrates the steps of in-

del and substitution inference. The algorithm takes as input a multiple align-

ment in fasta format, together with a phylogenetic tree in New Hampshire

format. The program outputs a predicted ancestral sequence for each internal

node of the phylogenetic tree. Two other files are output, describing the con-

fidence of the prediction made for each base of each ancestral sequence. The

first describes the confidence in the prediction of presence or absence of a base

at each position of each ancestral sequence. The second describes the confi-

dence of the actual nucleotide (A, C, G, or T) predicted. The inferAncestor

program is written in C++ and has been tested on Linux and Mac OS X.

Genome Rearrangements. To complete the inference of ancestral

genomes, the ancestral DNA sequences inferred for each block of ortholo-

gous sequences need to be ordered into a single, contiguous genome. This

problem is made challenging by the presence of genome rearrangements (in-

versions, transpositions, translocations, and duplications/losses). One of the

most popular computer programs for inferring ancestral gene arrangement is

MGR ([21], http://www.cse.ucsd.edu/groups/bioinformatics/MGR), which is

described in details in Bourques chapter in this book.

A.5.2 Assessing reconstruction accuracy through simulations

This section describes a simulation-based method for assessing the accu-

racy of the reconstructed ancestor. An alternate approach based on retro-

transposons is described in [16].
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To assess the reconstructability of ancestral genomic sequences from their

extant descendants, the simplest method is to use simulations of sequence

evolution. Starting from a known (but synthetic) ancestral sequence, we let

the sequence evolve along the branches of the tree, until the leaves are reached.

The ancestral sequence reconstruction procedure is then applied to the set of

simulated leaves, and the prediction made is compared to the known ancestral

sequence.

The simulation program Simali (http://www.bx.psu.edu/miller lab/ ), based

on the Rose program [226], can be used to mimic the evolution of sequences

under no selective pressure. Given a phylogenetic tree, the program simu-

lates sequence evolution by performing random substitutions, deletions, and

insertions along each branch, in proportion to its length. The program allows

for the insertion of retrotransposons, which is an important source of error in

sequence alignment, and thus in ancestral sequence reconstruction.

To assess the reconstructability of ancestral mammalian genomic sequences,

Blanchette et al. [16] performed a series of computational simulations of the

neutral evolution of a hypothetical 50Kb ancestral genomic region into or-

thologous regions in 20 modern mammals (Figure A–1). The simulations are

based on the phylogenetic tree inferred by Eizirik et al. [76] on a set of genes

for a large set of mammals. Substitutions follow a context-independent HKY

model [105] with Ts/Tv = 2, p(a) = p(t) = 0.3, and p(c) = p(g) = 0.2, except

that substitution rates of CpG pairs are ten times higher than other rates

[215]. Deletions are initiated at a rate of about 0.056 times the substitution

rate, their length is chosen according to a previously reported empirical distri-

bution [130] that ranges between one and 5000 nucleotides, and their starting
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Figure A–1: Estimated reconstructability of ancestral mammalian sequences.
Average base-by-base error rate in the reconstruction of each simulated an-
cestral sequence. The error rate shown is the sum of the percentages of bases
that are missing, added, or mismatched as a result of errors in the reconstruc-
tion, averaged over one hundred simulations of sets of orthologous sequences
of length approximately 50kb. Error rates are given first for all regions, and
in parentheses for non-repetitive regions only. The species names at the leaves
only indicate what organisms we simulated; no actual biological sequences
were used here. The tree topology and branch lengths are derived directly
from Eizirik et al. [76].
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point is uniformly distributed. Insertions occur randomly according to a mix-

ture model. Small insertions (of size between 1 and 20nt) occur at half the rate

of deletions, their size distribution is empirically determined [130] and their

content is a random sequence where each nucleotide is chosen independently

from the background distribution. They also simulate the insertion of retro-

transposons. For this they used a library of 15 different types of transposable

elements chosen to cover the large majority of repetitive elements observed in

well-studied mammals [127]. The rate of insertion of each repeat varies from

branch to branch, so that certain retrotransposons (like ALUs, SINEs B2,

BOV) are lineage-specific, while others (L1, LTR, DNA) are both present in

the sequence at the root of the tree (with a range of decaying level) and can be

inserted along any branch. The code and parameters used for our simulations

are available with the Simali package.

After generating a set of simulated sequences, the sequences are first soft-

repeat-masked using RepeatMasker [219] and then aligned using one of the

methods in A.1.1. The repeat-masked multiple alignment is then fed to the

inferAncestors program, which produces a prediction of the ancestral sequence

at each internal node of the phylogenetic tree. To compare the actual ances-

tral sequence generated by simulations to the predicted ancestral sequence,

we align them and count the number of missing bases (those present in the

actual ancestor but not in the reconstruction), added bases (present in the

reconstruction but not in the actual ancestor), and mismatch errors (positions

in the reconstruction assigned the incorrect nucleotide). The sum of the rates

of all three types of errors, calculated separately at each ancestral node in the

phylogenetic tree, is used to estimate the reconstructability of a given ancestor.

In the case of mammalian sequences, Blanchette et al. [16] used the above

simulation-based procedure to show that the sequence of certain mammalian
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ancestors can be reconstructed remarkably accuractely. Figure A–1 shows

that under this phylogenetic tree with a relatively rapid placental mammalian

radiation, the neutral non-repetitive regions of the Boreoeutherian ancestral

genome that have evolved under their simple model should be reconstructable

with about 99% base-by-base accuracy from the genomes of 20 present-day

mammals. Repetitive regions are not reconstructed as accurately because

they are more often involved in misalignments, which can result in incorrect

predictions. Nonetheless, even counting errors in repetitive regions, the total

accuracy is more than 98%. The simulations suggest that even in the non-

repetitive regions, much of the difficulty of the reconstruction problem lies in

the computation of the multiple alignment, as a reconstruction based on the

correct multiple alignment derived from the simulation itself (and thus un-

available for actual sequences) had less than half the number of reconstruction

errors. Examining reconstructions made using smaller subsets of this set of 20

species, it was found that, including repetitive regions, an accuracy of about

97% can be achieved using only ten species chosen to sample most major mam-

malian lineages (Figure A–2). Sampling only five of the most slowly evolving

lineages yields an accuracy of about 94%. Little is gained with our current

reconstruction procedures by adding more than ten species because the risk of

misalignment increases, while the unavoidable loss of information in the early

branches persists.

A.5.3 Reconstruction of actual mammalian sequences

Blanchette et al. [16] applied the reconstruction method described above

to actual high-quality sequence data from a region containing the human
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Figure A–2: Estimated reconstructability of the Boreoeutherian ancestor.
Fraction of the simulated Boreoeutherian ancestral sequence reconstructed
incorrectly as a function of the number of extant species used for the re-
construction. For each number of species used, results are given counting all
bases (left columns) and only non-repetitive bases (right columns). Species are
added in the following order: human, cat, chipmunk, sloth, manatee, rousette
bat, mole, pig, beaver, tree shrew, horse, pangolin, mouse, armadillo, aardvark,
okapi, dog, mole-rat, rabbit, lemur.

CFTR locus, using 18 additional orthologous mammalian genomic regions gen-

erated by the NISC Comparative Sequencing Program ([234], www.nisc.nih.gov).

Simulations on synthetic data like those described above indicate that for the

topology and set of branch lengths for these 19 species, the ancestral sequence

that can be the most accurately reconstructed based on the sequences avail-

able is the Boreoeutherian ancestor, and that neutrally evolving regions of this

ancestral genome can be reconstructed with an accuracy of about 96%. On a

site-specific basis, simulations suggest that more than 90% of the bases of the

predicted ancestor can be assigned confidence values greater than 99%. The

reconstructed ancestor and site-specific confidence estimates are available at

http://genome.ucsc.edu/ancestors.
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Figure A–3: Example of reconstruction of an ancestral Boreoeutherian se-
quence based on actual orthologous sequences derived from a MER20 retro-
transposon. Arrows indicate positions where the reconstructed ancestor dif-
fers from the MER20 consensus. Longer arrows indicate the positions where
the knowledge of the MER20 consensus sequence would have changed the
ancestral base prediction. The position of the human sequence displayed is
chr7:115,739,755-115,739,899 (NCBI build 34). The alignment of the flanking
non-repetitive DNA (not shown) verifies that the sequences from the different
species are in fact orthologous. The tree and branches are derived directly
from [76]. 147



Figure A–3 illustrates the reconstruction in a non-coding region of the

CFTR locus that exhibits a typical level of sequence conservation. This region

is located in a 32Kb intron of the CAV1 gene, about 13Kb from the 5exon.

The bases in this region are relics left over from the insertion of a MER20

transposon sometime prior to the mammalian radiation and are thus unlikely

to be under selective pressure. Notice that despite the fact that the alignment

of certain species (in particular, mouse, rat, and hedgehog) appears somewhat

unreliable, the inference of the presence or absence of a Boreoeutherian an-

cestral base at a given position is quite straightforward given the alignment,

and so is, to a lesser extent, the prediction of the actual ancestral base it-

self. The MER20 consensus is shown for comparison. Most positions where

the reconstructed Boreoeutherian ancestral base disagrees with the MER20

consensus are likely due to substitutions in this MER20 relic that predated

the Boreoeutherian ancestor, since the support of the reconstructed base is

very strong in the extant species. If the MER20 consensus sequence is used as

an outgroup in the reconstruction procedure, only two bases (indicated by a

longer arrow) are reconstructed differently, indicating that the reconstructed

ancestral sequence is very stable and most of it is likely to be correct.

A.6 Notes

The accuracy of the reconstruction depends crucially on the length of

the early branches of the phylogenetic tree. In the context of the ancestral

mammalian sequence reconstruction, Blanchette et al. [16] have shown that

if the major placental lineages had diverged instantaneously, they would be

able to reconstruct the simulated Boreoeutherian ancestral sequence, including

repetitive regions, with less than 1% error. In contrast, if the early branch

lengths inferred by Eirizik et al. [76] turned out to underestimate the actual
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lengths by a factor of two, the error rate would jump to 3%, and to 6% if they

were underestimated by a factor of four.

One of the non-intuitive results presented by Blanchette et al. [16] is the

observation that more ancient ancestral genomes can often be reconstructed

more accurately than their more recent descendants. Why exactly is this so?

For simplicity, consider the case of reconstructing a single binary ancestral

character state in the root species (e.g. purine vs pyrimidine at a given site)

under a simple model in which the prior probability distribution on the ances-

tral character is uniform, substitution rates are known, symmetric, homoge-

neous, and not too high, and the total branch length in the phylogenetic tree

from the root ancestor to each of the modern species is the same (i.e. assume

a molecular clock). Here each of n modern species has a state that differs from

the ancestral one with the same probability p ¡ 1/2. If the tree exhibits a star

topology, in which each of the modern species derives directly from the ances-

tor on an independent branch, then it is clear that the maximum likelihood

and Bayesian maximum a posteriori reconstructions of the ancestral character

agree, and the reconstructed state is the one that is most often observed in

the n modern species. The probability of an error in reconstruction is:

n∑
dk= n

2 e

(
n

k

)
pk(1− p)n−k

which is at most [4p(1− p)]n/2 [113], [142](Lemma 5 p.479 ). This error ap-

proaches zero exponentially fast as n increases. The star topology has a kind

of phase transition where the ancestor becomes highly reconstructable once

enough present day sequences are available to compensate for the length of

the branches leading back to the ancestor.

In contrast, a non-star topology such as a binary tree that has the same

total root-to-leaf branch length and the same number n of modern species at

149



the leaves has two nonzero length branches from the root ancestor R leading

to intermediate ancestors A and B, and information is irrevocably lost along

these two branches. No matter how large the number n of modern descendant

species derived from A and B, one can do no better at reconstructing the state

at R than if one knew for certain the state in its immediate descendants A and

B. Even with this knowledge, the accuracy of reconstruction of R from A and

B will be strictly less than 100% for all reasonable models and nonzero branch

lengths. The reconstruction gets poorer the longer the branch lengths are to

A and B. This extends to the case where the ancestor R being reconstructed

has a bounded number of independent immediate descendants and to the case

where descendants of an earlier ancestor of R (outgroups) are also available.

The long branches connecting them to the rest of the tree are why some more

recent ancestral sequences in the tree of Figure A–1 are less reconstructable

than the Boreoeutherian ancestor, which acts almost like the root of a star

topology.
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APPENDIX B
Missing Data in phylogenetic reconstruction

This appendix presents our contribution in improving phylogenetic re-

construction accuracy obtained from dataset with partial missing data. it is

published as proceeding [57].

B.1 Preface

B.2 Abstract.

The problem of phylogenetic inference from datasets including incom-

plete characters is among the most relevant issues in systematic biology. In

this paper, we propose a new probabilistic method for estimating unknown

nucleotides before computing evolutionary distances. It is developed in the

framework of the Tamura-Nei evolutionary model [230]. The proposed strat-

egy is compared, through simulations, to existing methods ”Ignoring Missing

Sites” (IMS) and ”Proportional Distribution of Missing and Ambiguous Bases”

(PDMAB) included in the PAUP package [229].

B.3 Introduction

Incomplete datasets can arise in a variety of practical situations. For

example, this is often the case in molecular biology, and more precisely in

phylogenetics, where an additive tree (i.e. phylogenetic tree) represents an

intuitive model of species evolution. The fear of missing data often deter

systematists from including in the analysis the sites with missing characters

[251, 208]. Huelsenbeck [117] and Makarenkov and Lapointe [158] pointed out

that the presence of taxa comprising big percentage of unknown nucleotides

might considerably deteriorate the accuracy of the phylogenetic analysis. To

avoid this, some authors proposed to exclude characters containing missing
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data (e.g. [120] and [221]). In contrast, Wiens argued against excluding char-

acters and showed a benefit of ”filling the holes” in a data matrix as much

as possible [251]. The popular PAUP software [229] includes two methods for

computing evolutionary distances between species from incomplete sequence

data. The first method, called IMS (”Ignoring missing sites”), is the most com-

monly used strategy. It proceeds by the elimination of incomplete sites while

computing evolutionary distances. According to Wiens, such an approach rep-

resents a viable solution only for long sequences because of the presence of a

sufficient number of known nucleotides [252]. The second method included in

PAUP, called PDMAB (”Proportional distribution of missing and ambiguous

bases”), computes evolutionary distances taking into account missing bases.

In this paper we propose a new method, called PEMV (”Probabilistic esti-

mation of missing values”), which estimates the identities of all missing bases

prior to computing pairwise distances between taxa. To estimate a missing

base, the new method proceeds by computing a similarity score between the

sequence comprising the missing base and all other sequences. A probabilistic

approach is used to determine the likelihood of an unknown base to be either

A, C, G or T for DNA sequences. We show how this method can be applied

in the framework of Tamura-Nei evolutionary model [230]. This model is con-

sidered as a further extension of the Jukes-Cantor [126], Kimura 2-parameter

[132], HKY [105], and F84 [88] models. In the next section we introduce the

new method for estimating missing entries in sequence data. Then, we discuss

the results provided by the methods IMS, PDMAB and PEMV in a Monte

Carlo simulation study carried out with DNA sequences of various lengths,

containing different percentages of missing bases.
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B.4 Probabilistic estimation of missing values

The new method for estimating unknown bases in nucleotide sequences,

PEMV, is described here in the framework of the Tamura-Nei [230] model of

sequence evolution. This model assumes that the equilibrium frequencies of

nucleotides (πA, πC , πG and πT ) are unequal and substitutions are not equally

likely. Furthermore, it allows for three types of nucleotide substitutions: from

purine (A or G) to purine, from pyrimidine (C or T) to pyrimidine and from

purine to pyrimidine (respectively, from pyrimidine to purine). To compute

the evolutionary distance between a pair of sequences within this model, the

following formula is used:

D = −2πAπG
πR

ln

(
1− πR

2πAπG
PR −

1

2πR
Q

)
−2πCπT

πY
ln

(
1− πY

2πCπT
PY −

1

2πY
Q

)
(B.1)

−
(
πRπY −

πAπGπY
πR

− πCπTπR
πY

)
ln

(
1− 1

2πRπY
Q

)
,

where PR,PY and Q are respectively the transitional difference between purines,

the transitional difference between pyrimidines and the transversional differ-

ence involving pyrimidine and purine; πR and πY are respectively the frequen-

cies of purines (πA + πG) and pyrimidines (πC + πT ).

Assume that C is a matrix of aligned sequences, the base k,denoted as

X, in the sequence i is missing and X is either A, C, G or T. To compute the

distance between the sequence i and all other considered sequences, PEMV

estimates, using Equation B.2 below, the probabilities Pik(X), to have the nu-

cleotide X at site k of the sequence i. The probability that an unknown base

at site k of the sequence i is a specific nucleotide depends on the number of

sequences having this nucleotide at this site as well as on the distance (com-

puted ignoring the missing sites) between i and all other considered sequences
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having known nucleotides at site k. First, we calculate the similarity score δ

between all observed sequences while ignoring missing data. For any pair of

sequences, this score is equal to the number of matches between homologous

nucleotides divided by the number of comparable sites.

Pik(X) =
1

Nk

 ∑
{j|Cjk=X}

δij +
1

3

∑
{j|Cjk 6=X}

(1− δij)

 , (B.2)

where Nk is the number of known bases at site k (i.e. column k) of the

considered aligned sequences, and δij is the similarity score between the se-

quences i and j computed ignoring missing sites. The following theorem char-

acterizing the probabilities Pik(A), Pik(C), Pik(G) and Pik(T), can be stated:

Theorem 1. For any sequence i, and any site k of the matrix C, such that

Cik is a missing nucleotide, the following equality holds: Pik(A) + Pik(C) +

Pik(G) + Pik(T) = 1.

Due to space limitation the proof of this theorem is not presented here.

Once the different probabilities Pik are obtained, we can compute for any

pair of sequences i and j, the evolutionary distance using Equation B.1. First,

we have to calculate the nucleotide frequencies (Equation B.3), the transi-

tional differences PR and PY (Equation B.4), and the transversional difference

Q (Equation B.5). Let πX be the new frequency of the nucleotide X:

πX =
Λi
X +

∑
{k|Cik=?} Pik (X) + Λj

X +
∑
{k|Cjk=?} Pjk (X)

2L
, (B.3)

where X denotes the nucleotide A, C, G or T;Λi
X is the number of nucleotides

X in the sequence i; symbol ? represents a missing nucleotide; L is the total
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number of sites compared.

P (i, j) =
P ′ (i, j) +

∑
{k|(Cik=?orCjk=?)} P

′ (i, j, k)

L
, (B.4)

Q(i, j) =
Q′ (i, j) +

∑
{k|(Cik=?orCjk=?)}Q

′ (i, j, k)

L
, (B.5)

where P’(i,j) is the number of transitions of the given type (either purine to

purine P’R, or pyrimidine to pyrimidine P’Y ) between the sequences i and j

computed ignoring missing sites; P’(i,j,k) is the probability of transition of the

given type between the sequences i and j at site k when the nucleotide at site k

is missing either in i or in j (e.g. if the nucleotide at site k of the sequence i is A

and the corresponding nucleotide in j is missing, the probability of transition

between purines is the probability that the missing base of the sequence j is

G, whereas the probability of transition between pyrimidines is 0); Q’(i,j) is

the number of transversions between i and j computed ignoring missing sites;

Q’(i,j,k) is the probability of transversion between i and j at site k when the

nucleotide at site k is missing either in i or in j.

When both nucleotides at site k of i and j are missing, we use similar for-

mulas as those described in [64]. It is worth noting that PEMV method can be

used to compute the evolutionary distance independently of the evolutionary

model (Equation B.6):

d∗ik =
N c
ij −Nm

ij +
∑
{k|(Cik=?orCjk=?)}(1− P

k
ij)

L
, (B.6)

where Nm
ij is the number of matches between homologous nucleotides in the

sequences i and j; Nc
ij is the number of comparable pairs of nucleotides in i

and j (i.e. when both nucleotides are known in the homologous sites of i and

j); Pk
ij is the probability to have a pair of identical nucleotides at site k of i

and j.
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B.5 Simulation study

A Monte Carlo study has been conducted to test the ability of the new

method to compute accurate distances matrices that can be used as input of

distance-based methods of phylogenetic analysis. We examined how the new

PEMV method performed, compared to the PAUP strategies, testing them on

random phylogenetic data with different percentages of missing nucleotides.

The results were obtained from simulations carried out with 1000 random

binary phylogenetic trees with 16 and 24 leaves. In each case, a true tree

topology, denoted T, was obtained using the random tree generation procedure

proposed in [139]. The branch lengths of the true tree were computed using

an exponential distribution. Following the approach of Guindon and Gascuel

[100], we added some noise to the branches of the true phylogeny to create

a deviation from the molecular clock hypothesis. The source code of our

tree generation program, written in C, is available at the following website:

http://www.labunix.uqam.ca/˜makarenv/tree generation.cpp.

The random trees were then submitted to the SeqGen program [195] to

simulate sequence evolution along their branches. We used SeqGen to obtain

the aligned sequences of the length l (with 250, 500, 750, and 1000 bases) gen-

erated according to the HKY evolutionary model [105] which is a submodel of

Tamura-Nei [230]. According to Takashi and Nei (2000), the following equi-

librium nucleotide frequencies were chosen: πA = 0.15, πC = 0.35, πG = 0.35,

and πT = 0.15. The transition/transversion rate was set to 4. To simulate

missing data in the sequences, we used one of the two strategies described

by Wiens (2003). This strategy consists of the random elimination of blocks

of nucleotides of different sizes. This elimination is certainly more realistic

from a biological point of view. Here, we generated data with 0 to 50% of

missing bases. The obtained sequences were submitted to the three methods
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for computing evolutionary distances. For each distance matrix provided by

IMS, PDMAB and PEMV, we inferred a phylogeny T’ using the BioNJ al-

gorithm [93]. The phylogeny T’ was then compared to the true phylogeny T

0 

0,2 

0,4 

0,6 

0,8 

1 

0 10 20 30 40 50 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 10 20 30 40 50 

0 
0,2 
0,4 
0,6 
0,8 

1 
1,2 
1,4 
1,6 
1,8 

0 10 20 30 40 50 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

0 10 20 30 40 50 

(a) (b) 

(c) (d) 

Figure B–1: Improvement in topological recovery obtained for random phylo-
genetic trees with 16 species. The percentage of missing bases varies from 0
to 50% (abscissa axis). The curves represent the gain (in %) against the less
accurate method of PAUP. The difference was measured as the variation of the
Robinson and Foulds topological distance between the less accurate method
of PAUP and the most accurate method of PAUP (4) and PEMV (©).The
sequences with (a) 250 bases, (b) 500 bases, (c) 750 bases, and (d) 1000 bases
are represented.

using the Robinson and Foulds topological distance [201]. The Robinson and

Foulds distance between two phylogenies is the minimum number of opera-

tions, consisting of merging and splitting internal nodes, which are necessary
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to transform one tree into another. This distance is reported as percentage of

its maximum value (2n-6 for a phylogeny with n leaves). The lower this value

is, the closer the obtained tree T’ to the true tree T.
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Figure B–2: Improvement in topological recovery obtained for random phylo-
genetic trees with 24 species. The percentage of missing bases varies from 0
to 50% (abscissa axis). The curves represent the gain (in %) against the less
accurate method of PAUP. The difference was measured as the variation of the
Robinson and Foulds topological distance between the less accurate method
of PAUP and the most accurate method of PAUP (4) and PEMV (©). The
sequences with (a) 250 bases, (b) 500 bases, (c) 750 bases, and (d) 1000 bases
are represented.

For each dataset, we tested the performance of the three methods depend-

ing on the sequence length. Figures B–1 and B–2 present the results given by

the three competing methods for the phylogenies with 16 and 24 leaves. First,
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for the phylogenies of both sizes PEMV clearly outperformed the PAUP meth-

ods (IMS and PDMAB) when the percentage of missing data was large (30%

to 50%). Second, the results obtained with IMS were very similar to those

given by PDMAB. Third, the gain obtained by our method was decreasing

while the sequences length was increasing. At the same time, the following

trend can be observed: the impact of missing data decreases when sequence

length increases. Note that the same tendency has been pointed out by Wiens

[252].

B.6 Conclusion

The PEMV technique introduced in this article is a new efficient method

that can be applied to infer phylogenies from nucleotide sequences compris-

ing missing data. The simulations conducted in this study demonstrated the

usefulness of PEMV in estimating missing bases prior to phylogenetic recon-

struction. Tested in the framework of the Tamura-Nei model [230], the PEMV

method provided very promising results. The deletion of missing sites, as it

is done in the IMS method, or their estimation using PDMAB (two methods

available in PAUP) can remove important features of the data at hand. In this

paper, we presented PEMV in the framework of the Tamura-Nei [230] model

which can be viewed as a generalization of the popular F84 [88] and HKY85

[105] models. It would be interesting to extend and test this probabilistic ap-

proach within Maximum Likelihood and Maximum Parsimony models. It is

also important to compare the results provided by BioNJ to those obtained

using other distance-based methods of phylogenetic reconstruction, as for ex-

ample, NJ [205], FITCH [86] or MW [159].
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APPENDIX C
Algorithms for Detecting Complete and Partial Horizontal Gene

Transfers: Theory and Practice

C.1 Preface

This appendix presents our contribution in the detection of horizontal

gene transfer. This method was useful for the inference of the phages classifi-

cation (see Chapter 6). It is published as proceeding [156].

C.2 Abstract.

We describe two methods for detecting horizontal gene transfers in the

framework of the complete and partial gene transfer models. In case of a

complete gene transfer model a new fast backward selection algorithm for

predicting horizontal gene transfer events is presented. The latter algorithm

can rely either on the metric or on the topological optimization to identify

horizontal gene transfers between branches of a given species phylogeny. In

case of the topological optimization, we use the well-known Robison and Foulds

(RF) topological distance, whereas in case of the metric optimization, the

least-squares (LS) criterion is considered. We also formulate and prove the NP-

hardness of the partial gene transfer problem. Second, an efficient algorithm

for predicting partial transfers, using the Gauss and Seidel optimization, is

discussed. We also show how to assess the reliability of a specific gene transfer

or a whole gene transfer scenario. In the application section, we apply the

new algorithm to detect possible gene transfers occurred during the evolution

of the gene rpl12e.
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C.3 Introduction

Horizontal gene transfer (HGT) is a direct transfer of genetic material

from one lineage to another. The understanding that horizontal gene trans-

fer might have played a key role in biological evolution is one of the most

fundamental changes in our perception of general aspects of molecular biol-

ogy in recent years [66, 145, 144]. Bacteria and Archaea have sophisticated

mechanisms for the acquisition of new genes through HGT which may have

been favoured by natural selection as a more rapid mechanism of adaptation

than the alteration of gene functions through numerous point mutations. If

the donor DNA and the recipient chromosome display some homologous se-

quences, the donor sequences can be stably incorporated into the recipient

chromosome by homologous recombination. The three main mechanisms of

HGT are the following: transformation, consisting of uptake of naked DNA

from the environment; conjugation, which is mediated by conjugal plasmids or

conjugal transposons; and transduction, consisting of DNA transfer by phage.

These transferring mechanisms can introduce sequences of DNA that display

little similarity with the remaining DNA of the recipient cell [66].

There are a few ways to identify the genes that have been transferred

horizontally. First, sequence analysis of the host genome may reveal areas

with GC content or codon usage patterns atypical to it [141]. Second, if a

sequence is found in only one organism and is absent from all other closely

related organisms, it is more likely that it has been introduced horizontally into

this organism rather than deleted from all the others. Third, the comparison

of a morphology-based species tree or a molecular tree based on a molecule

that is assumed to be refractory to horizontal gene transfer (e.g. 16S rRNA

or 23S rRNA) against a phylogeny of an observed gene may reveal topological

conflicts which can be explained by horizontal transfers.
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Several attempts to use network-based models to depict horizontal gene

transfers can be found (see for example: [245, 187, 34, 103], or [104]). A model

of horizontal gene transfer that maps gene phylogenies into a species tree has

been introduced by [103]. Mirkin et al. [167] and Hallett et al. [104] have

developed algorithms allowing for simultaneous identification of gene dupli-

cations, gene losses, and horizontal gene transfers. The papers by Moret et

al. [169, 178] give an overview of the network modeling in phylogenetics. In

a recent paper published in the SFC2004 proceedings, [166] considered some

approaches for biologically meaningful mapping of data of individual gene fam-

ilies into an evolutionary species tree. One approach first produces a gene tree,

then maps it into the species tree, whereas the other approach first takes the

gene phyletic profile, maps it into the species tree and then tunes it into a

directed scenario based on the similarity data.

In this article we continue the work started in Ref. [18], where we described

a HGT model based on least-squares, and in Ref. [160], where we showed the

difference between complete and partial gene transfer models. First, we de-

scribe a polynomial-time HGT algorithm for the detection of complete trans-

fers and test it with respect to the two optimization criteria: Least-squares

(LS) and Robinson and Foulds (RF) topological distance. We also suggest how

to assess the reliability of horizontal gene transfers identified by our algorithm.

In the application section, we show how the new algorithm predicts transfers

of the gene rpl2e for the group of 14 Archaea organisms which were originally

examined in Ref. [162].

C.4 Algorithms for Predicting Horizontal Gene Transfers

C.4.1 Basic definitions

We start this section with some basic definitions about phylogenetic trees

and tree metrics, generally following the terminology of Barthélemy and Guénoche [7,
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8]. The distance δ(x, y) between two vertices x and y in a phylogenetic (i.e.

additive) tree T is defined as the sum of the edge lengths in the unique path

linking x and y in T . Such a path is denoted (x, y). A leaf is a vertex of degree

one.

Definition C.1 Let X be a finite set of n taxa. A dissimilarity d on X is a

non-negative function on (X ×X) such that for any x, y from X:

1. d(x, y) = d(y, x), and

2. d(x, y) = d(y, x) ≥ d(x, x) = 0.

Definition C.2 A dissimilarity d on X satisfies the four-point condition if

for any x, y, z, and w from X:

d(x, y) + d(z, w) ≤ Max{d(x, z) + d(y, w); d(x,w) + d(y, z)}.

Definition C.3 For a finite set X, a phylogenetic tree (i.e. an additive

tree or a X-tree) is an ordered pair (T, φ) consisting of a tree T , with vertex

set V , and a map φ :X→ V with the property that, for all x ∈ X with degree

at most two, x ∈ φ(X). A phylogenetic tree is binary if φ is a bijection from

X into the leaf set of T and every interior vertex has degree three.

The main theorem relating the four-point condition and dissimilarity rep-

resentability by a phylogenetic tree (i.e., phylogeny) is as follows:

Theorem C.1 (Zarestskii, Buneman, Patrinos & Hakimi, Dobson) Any

dissimilarity satisfying the four-point condition can be represented by a phylo-

genetic tree such that for any x, y from X, d(x, y) is equal to the length of the

path linking the leaves x and y in T . This dissimilarity is called a tree metric.

Furthermore, this tree is unique.

Figure C–1 is an example of a tree metric on the set X of 5 taxa and the

associated phylogenetic tree.
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Figure 1. An example of a tree metric on the set X of 5 taxa.

Definition 2. A dissimilarity d on X satisfies the four-point condition if for
any x, y, z, and w from X:

d(x, y) + d(z, w) ≤ Max{d(x, z) + d(y, w); d(x,w) + d(y, z)}.

Definition 3. For a finite set X, a phylogenetic tree (i.e. an additive tree
or a X-tree) is an ordered pair (T, φ) consisting of a tree T , with vertex set V , and
a map φ :X→ V with the property that, for all x ∈ X with degree at most two,
x ∈ φ(X). A phylogenetic tree is binary if φ is a bijection from X into the leaf set
of T and every interior vertex has degree three.

The main theorem relating the four-point condition and dissimilarity repre-
sentability by a phylogenetic tree (i.e., phylogeny) is as follows:

Theorem 2.1 (Zarestskii, Buneman, Patrinos & Hakimi, Dobson).
Any dissimilarity satisfying the four-point condition can be represented by a phy-
logenetic tree such that for any x, y from X, d(x, y) is equal to the length of the
path linking the leaves x and y in T . This dissimilarity is called a tree metric.
Furthermore, this tree is unique.

Figure 1 is an example of a tree metric on the set X of 5 taxa and the associated
phylogenetic tree.

2.2. Optimization criteria. Here we present a fast greedy algorithm for pre-
dicting complete horizontal gene transfers. The algorithm for identifying HGTs
proceeds by a progressive reconciliation of the given species and gene phylogenetic
trees, denoted T and T ′ respectively. Usually, the species tree T is inferred from
the genes that are refractory to horizontal gene transfer and genetic recombination
(e.g., 16sRNA sequences). This tree represents the direct or tree-like evolution.
The gene tree T ′ represents the evolution of a given gene which is supposed to
undergo horizontal transfers.

At each step of the algorithm, all pairs of branches in T are tested against
the hypothesis that a horizontal gene transfer has occurred between them. The
considered HGT model assumes that the transferred gene supplants the entire ho-
mologous gene of the host or that the homologous gene is simply absent at the
host genome. In such a model, the original species phylogenetic tree T is gradually
transformed into the gene phylogenetic tree T ′ through a series of subtree moves
(i.e., gene transfers or HGTs). The topology of the gene tree T ′ is kept fixed. The
goal is to find the minimum possible sequence of trees T, T1, T2, . . . , T ′ that trans-
forms T into T ′. Obviously, a number of necessary biological rules should be taken
into account. For instance, the transfers within the same lineage as well as some
double-crossing transfers should be prohibited (for more detail, see [20, 30, 31, 10]).

Figure C–1: An example of a tree metric on the set X of 5 taxa.

C.4.2 Optimization criteria

Here we present a fast greedy algorithm for predicting complete horizontal

gene transfers. The algorithm for identifying HGTs proceeds by a progressive

reconciliation of the given species and gene phylogenetic trees, denoted T and

T ′ respectively. Usually, the species tree T is inferred from the genes that are

refractory to horizontal gene transfer and genetic recombination (e.g., 16sRNA

sequences). This tree represents the direct or tree-like evolution. The gene

tree T ′ represents the evolution of a given gene which is supposed to undergo

horizontal transfers.

At each step of the algorithm, all pairs of branches in T are tested against

the hypothesis that a horizontal gene transfer has occurred between them. The

considered HGT model assumes that the transferred gene supplants the entire

homologous gene of the host or that the homologous gene is simply absent at

the host genome. In such a model, the original species phylogenetic tree T is

gradually transformed into the gene phylogenetic tree T ′ through a series of

subtree moves (i.e., gene transfers or HGTs). The topology of the gene tree

T ′ is kept fixed. The goal is to find the minimum possible sequence of trees

T, T1, T2, . . . , T
′ that transforms T into T ′. Obviously, a number of necessary

biological rules should be taken into account. For instance, the transfers within

the same lineage as well as some double-crossing transfers should be prohibited

(for more detail, see [154, 188, 189, 103]).
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We consider two optimization criteria which can be used at each algo-

rithmic step to select the best HGT. The first optimization criterion that we

consider is the least-squares (LS) function Q. It is computed as follows:

Q =
∑
i

∑
j

(
d(i, j)− δ(i, j)

)2
, (C.1)

where d(i, j) is the pairwise distance between the leaves i and j in the species

tree T (or in the tree T1 obtained from T after the first subtree move) and

δ(i, j) the pairwise distance between i and j in the gene tree T ′. The sec-

ond criterion that can be useful for assessing discrepancy between the species

and gene phylogenies is the Robinson and Foulds (RF) topological distance

[201]. The RF metric is an important and frequently used tool to compare

the topologies of phylogenetic trees. This distance is equal to the minimum

number of elementary operations, consisting of merging and splitting nodes,

necessary to transform one tree into the other. This distance is also the num-

ber of bipartitions or Buneman’s splits belonging to exactly one of the two

trees. When the RF distance is considered, we can use it as an optimization

criterion as follows: all possible transformations of the species tree, consisting

of transferring one of its subtrees from one branch to another, are evaluated

in a way that the RF distance between the transformed species tree T1 and

the gene tree T ′ is computed. The subtree transfer providing the minimum of

the RF distance between T1 and T ′ is retained. Note that the problem ask-

ing to find the minimum number of subtree transfer operations necessary to

transform one tree into another (i.e. also known as Subtree Transfer Problem)

has been shown to be NP-hard [110].
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C.4.3 Greedy backward algorithm for predicting complete horizon-
tal gene transfers

In this section we discuss the main features of our algorithm based on

the backward selection of horizontal gene transfers. Consider a gene transfer

in the species tree T going from b to a and transforming it into the tree T1

(Fig. C–2). The following timing constraint is considered (see also Ref. [160]):

to allow the transfer between the branches (z, w) and (x, y) of the species tree

T , the cluster combining the subtrees rooted by the vertices y and w must be

present in the gene tree T ′. Such a constraint enables us, first, to arrange the

topological conflicts between T and T ′ that are due to the transfers between

single species or their close ancestors and, second, to identify the transfers

that have occurred deeper in the phylogeny (i.e., closer to the tree root). The

usage of this constraint allows the method to follow the order that is opposite

to the order of evolution and infer first the most recent HGTs which are easier

to detect.

Proposition C.1 If all bipartitions corresponding to the branches of the path

(x, z) in the transformed species tree T1 (Fig. C–2) can be found in the bipar-

tition table of the gene tree T ′, then the transfer from b to a, transforming the

Figure C–2: Subtree constraint: the transfer between the branches (z, w) and
(x, y) of the species tree T can be allowed if and only if the cluster regrouping
both affected subtrees is present in the gene tree; here, a single branch is
depicted by a plane line and a path is depicted by a wavy line.
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species tree T into T1, is a part of a minimum cost HGT scenario transforming

T into T ′.

This Proposition can be easily proved by induction on the number of

branches of the path (x, z).

The main steps of the HGT detection algorithm are the following:

Preliminary step. Infer species and gene phylogenies, denoted respec-

tively T and T ′, whose leaves are labeled by the same set of n taxa. Both

species and gene trees must be rooted. If there exist identical subtrees with

two or more leaves belonging to both T and T ′, reduce the size of the problem

by replacing these subtrees with the same auxiliary taxa in both T and T ′.

Step 1 (. . . k) Test all possible HGTs between pairs of branches in Tk−1 (Tk−1 =

T at Step 1) except the transfers between adjacent branches and those violat-

ing the evolutionary and subtree constraints. If no such a transfer exists, relax

the subtree constraint. In our simulations described in the section Simulation

study, this relaxation was necessary on average in 1.2% of cases. Search for

the transfers satisfying the conditions of Proposition C.1. If no such transfers

exist, choose the best HGT with respect to the selected optimization criterion

that can be in our case: the least-squares (LS) or the Robinson and Foulds

(RF) metric. Reduce the size of the problem by contracting the newly-formed

subtree in the transformed species tree Tk and the gene tree T ′. In the list of the

obtained HGTs, search for and eliminate the idle transfers using a backward

procedure. An idle transfer is the transfer whose removal does not change the

topology of the tree Tk.

Stopping condition and time complexity. The procedure stops when

the LS or RF coefficient equals zero. Such a computation requires O(kn4) time

to generate k transfers in a phylogenetic tree with n leaves. However, because
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of the progressive size reduction of the species and gene trees, the practical

time complexity of this algorithm is rather O(kn3).

Proposition C.2 If the subtree constraint is not relaxed, the HGT detection

algorithm requires at most n− 3 steps to transform a binary species tree with

n leaves into a binary gene tree with the same set of n leaves.

The proof of this proposition is based on the fact that the maximum value

of the RF distance between two binary trees with n leaves is 2n− 6 and that

each subtree transfer satisfying the subtree constraint decreases the value of

the RF distance by at least 2.

C.4.4 Partial gene transfer model

The partial gene transfer model is more general, but also more complex

and challenging. It presumes that only a part of the transferred gene has been

acquired by the host species through the process of homologous recombination

[160]. This means that the traditional species phylogenetic tree is transformed

into a directed phylogenetic network (i.e. a directed connected graph). For

example, Denamur et al. [48] proposed a method to identify gene segments

being transferred horizontally. This method was applied to detect partial

HGTs of the mutU and mutS genes within E. coli evolutionary trees. Because

many analyzes are now directed at understanding the evolution of complete

genomes, the partial gene transfer model could be also useful if one wanted to

model the transfer of a portion of a genome.

In a phylogenetic tree, there is always a unique path connecting a pair

of nodes. Adding to it a HGT branch creates an extra path between certain

nodes. Figure C–3 illustrates the case where the evolutionary distance between

the taxa i and j can be affected by the addition of the HGT branch (b, a)

representing partial gene transfer from b to a. It is relevant to assume that

the HGT from b to a can affect the evolutionary distance between the taxa
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Figure C–3: Evolutionary distance between the taxa i and j can be allowed
to change after the addition of the branch (b, a) representing a partial HGT
between the branches (z, w) and (x, y). Evolutionary distance between the
taxa i1 and j must not be affected by the addition of (b, a).

i and j if and only if the destination point a is located on the path between

i and the root of the tree; the position of j is fixed. Thus, in the reticulate

phylogeny T in Fig. C–3 the evolutionary distance d1(i, j) between the taxa i

and j can be computed as follows:

d1(i, j) = (1− α)d(i, j) + α
(
d(i, a) + d(j, b)

)
, (C.2)

where α indicates the fraction, unknown in advance, of the transferred gene

and d is the internode distance in the species tree before the addition of the

HGT branch (b, a).

On the contrary, the distance between the taxa i1 and j (Fig. C–3) must

not be affected by the addition of (b, a). Figure C–4 illustrates the other

cases where the addition of a HGT branch must not affect the length of the

evolutionary path between i and j.

The least-squares loss function Q to be minimized with the unknown

vector of edge lengths ` in T and the unknown fraction of the transferred gene
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α is as follows:

Q(L, α)

=
∑
ij∈S

(1− ȧ)
∑

k∈path(ij)

`kij + α

 ∑
k∈path(ia)

`kia +
∑

k∈path(jb)

`kjb

− δ(i, j)
2

+
∑
ij 6∈S

 ∑
k∈path(ij)

`kij − δ(i, j)

2

−→ min, (C.3)

where δ(i, j) is the given gene dissimilarity between i and j; `kij is the length

of the branch k of the path (ij) in T ; α is the fraction of the transferred gene

(0 ≤ α ≤ 1); and S is the set of pairs of taxa {ij} such that the transfer (ba)

can affect the evolutionary distance between them.

To show the NP-hardness of the least-squares optimization in the context

of the partial gene transfer the following problem can be stated:

Given: Species phylogenetic tree T (with the associated tree metric d on

the set of taxa X), gene dissimilarity δ on X, and a fixed non-negative value

ε.

Find the minimum number of partial gene transfers k such that:

Q =
∑
i

∑
j

(
dk(i, j)− δ(i, j)

)2 ≤ ε, (C.4)

where dk(i, j) is the network distance between i and j, computed using For-

mulae C.2 and C.3, in the phylogenetic network Tk obtained from T after the

addition of k partial gene transfers.

Theorem C.2 The minimum number of partial gene transfer problem

(MNPGT problem) is NP-hard.

The proof of this theorem is based on a polynomial-time reduction from

the Subtree Transfer Problem (STR problem) that consists of finding the min-

imum number of complete gene transfers to transform a given species tree
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Figure C–4: Three situations when the evolutionary distance between the
taxa i and j must not be affected by the addition of the new branch (b, a)
representing a partial HGT between the branches (z, w) and (x, y). Path
between the taxa i and j cannot to go through the branch (b, a).

Figure C–5: Transfers between two lineages crossing in such ways must be
prohibited.

T into a given gene tree T ′. The STR problem is identical to the problem

of adding to T the minimum number of complete gene transfers such that

Q =
∑

i

∑
j

(
dk(i, j) − δ(i, j)

)2 ≤ 0 (i.e., the case of ε = 0 is considered),

where dk(i, j) is the pairwise distance between i and j in the phylogenetic tree

(i.e., a particular case of a phylogenetic network). Here, the tree Tk is obtained

from T after the addition of k complete gene transfers (i.e., a particular case

of a partial transfer) and δ(i, j) is the given tree metric associated with T ′.

Several important timing constraints have to be incorporated into this

model, in addition to those taken into account in the complete HTS model,

to identify the interactions between HGTs that are not intelligible from an
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evolutionary point of view. Some of these constraints, but not all of them, were

initially pointed out by Page and Charleston [188, 189]. For instance, double-

crossing transfers between two lineages (Figs. 5a and b) must be forbidden. In

this case, the HGT events affect the ancestor of the species from the previous

transfer. Making the source and destination lineages contemporaneous for one

HGT makes the other transfer impossible (Fig. C–5).

Note that the rule illustrated in Figure 5a is automatically taken into ac-

count in the complete gene transfer model, where its violation would be equiva-

lent to the violation of the same lineage constraint (see Page and Charleston [188,

189]). For instance (Figure 5a), the HGT from (z, w) to (x, y) cannot be fol-

lowed by the transfer from (z1, w1) to (x1, y1) because after the first HGT the

branches (z1, w1) and (x1, y1) will be located on the same lineage (Lineage 2).

We also identify two cases, where the evolutionary distance between the taxa i

and j can be affected by multiple transfers (Figures 6a and b); and, two cases,

where this distance must not be affected by them (Figures 6c and d). Failure

to take these constraints into account can result in postulating transfers that

are mutually incompatible.

Assume that a partial gene transfer between the branches (z, w) and (x, y)

(i.e., from b to a in Fig. C–3) of the species tree T has taken place. The lengths

of all branches in T are reassessed in the least-squares sense after the addition

of (b, a), whereas the length of (b, a) is assumed to be 0. To reassess the

branch lengths of T , we have first to make an assumption about the value of

the parameter α (eq. C.2), indicating the gene fraction being transferred. This

parameter can be estimated either by comparing sequence data corresponding

to the subtrees rooted by the vertices y and w, or different values of α can be

tested in the optimization problem.
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Figure C–6: Cases (a) and (b): evolutionary path between the taxa i and
j can go through both HGT branches (b, a) and (b1, a1). Cases (c) and (d):
evolutionary path between the taxa i and j cannot go through both HGT
branches (b,a) and (b1, a1).

Fixing the parameter α, we reduce to a linear system the system of equa-

tions establishing the correspondence between the experimental gene distances

and the path-length distances in the HGT network. This system having gen-

erally more variables (i.e. branch lengths of T ) than equations (i.e. pairwise

distances in T ; the number of equations is always n(n− 1)/2 for n taxa) can

be solved by approximation in the least-squares sense. Let us now show how

the approximation problem can be stated and efficiently solved.

Let Aα be the matrix of dimension n(n − 1)/2 × m, each row of which

is associated with one pair of taxa of X, where n is the number of taxa and

m is a number of edges in T . The value aij,e of this matrix corresponding to

the pair of taxa ij and the edge e is equal either to 1, or to α, or to 1 − α

if the edge e is in the path (ij) in T , and is equal to 0 if not. Let ` be the

vector of edge lengths of m elements and d be given vector of gene distances

of n(n− 1)/2 elements.
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Fixing the value of α (e.g., values 0, 0.1, 0.2, . . . , and 1.0 can be tested

in turn), we obtain a linear system of n(n− 1)/2 equations with m unknowns:

Aα × ` = d.

When n ≥ 4, this system has more equations than unknowns. It can be

solved by approximation in the least-squares sense:

(A× `− d)2 → min . (C.5)

After taking the gradient we have:

At
α × (Aα × l − d) = 0. (C.6)

Following algebraic manipulations, we obtain:

At
α ×Aα × l = At

α × d. (C.7)

Thus, we have: B × ` = c, where B is a (m ×m) matrix, and c is a vector

with m components.

Following Barthélemy and Guénoche [7] and Makarenkov and Leclerc [159],

we apply a slightly modified Gauss-Seidel method to solve the above system.

The method consists of decomposing B into its diagonal (∆), its strictly up-

per triangular component (−F), and its strictly lower triangular component

(−E):

B =



b11 b12 . . . b1m

b21 b22 . . . b2m

. . . . . . . . . . . .

bm1 bm2 . . . bmm


=


−F

∆

−E

 = ∆− E− F. (C.8)

Then, we apply the iterative procedure:

∆× `k+1 = E× `k+1 + F× `(k) + c, (C.9)
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which allows us to compute gradually the components of the vector `(j)(k+1),

corresponding to the edge lengths at the k+ 1th iteration, from those of `(j)k.

If the computed value of `(j)(k+1) is negative, it is replaced with the value

0. This operation is equivalent to the projection on the cone L ≥ 0, which

ensures an appropriate solution.

The exact equation used in this method is the following for all j =

1, 2, . . . ,m:

`(j)(k+1)

=

(
−

( ∑
j+1≤i≤m

bij`(j)
(k)

)
−

( ∑
1≤i≤j−1

bij`(j)
(k+1)

)
+ cj

)/
bjj. (C.10)

Thus, the main steps of the partial gene transfer algorithm can be stated as

follows:

Preliminary step. This step corresponds to the preliminary step dis-

cussed in the context of the complete gene transfer model. It consists of in-

ferring the species and gene phylogenies denoted respectively T and T ′ whose

leaves are labeled by the same set X of n taxa. Because the classical Robinson

and Foulds distance is defined only for tree topologies, we use the least-squares

as a unique optimization criterion when modeling partial HGTs.

Step 2 Test all connections between pairs of branches in the species tree T.

For each HGT connexion satisfying evolutionary constraints, carry out the

following optimization:

[(a)]Fix the value of the fraction of the gene being transferred α (e.g., one

can try in turn the values of 0, 0.1, 0.2, . . . , and 1.0). Compute using the

Gauss–Seidel method the optimal lengths l of the edges in the species tree

(or network, starting from Step 2) T. Go back to the original equation

system: Aα × l = d. Fix the values of the vector l found using the

Gauss-Seidel method and solve this problem by least-squares considering
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as unknown the parameter α. Then, fix the optimal value of α found and

repeat the computation until both unknown parameters l and α converge

to a certain solution.

All eligible pairs of branches in T can be processed in this way. The HGT

connection providing the smallest value of the LS coefficient Q and satisfying

the defined evolutionary constraints should be selected for the addition to the

species tree T , transforming it into a phylogenetic network.

1.2.3. Step 3 (2, . . . , k) Run the algorithm until a fixed number k of partial gene

transfers is found and added to T or the value of the LS criterion Q is lower

than a pre-established threshold ε.

Time complexity of this algorithm is O(kn5) to add k partial horizontal

gene transfers to the species tree with n leaves.

C.4.5 Bootstrap validation of horizontal gene transfers

Bootstrap analysis can be used to place confidence intervals on internal

branches of evolutionary trees [84]. We designed a bootstrap validation pro-

cedure for computing the bootstrap scores either for a specific gene transfer

or a whole gene transfer scenario. The following strategy was adopted to as-

sess the reliability of obtained HGTs. Because we are mostly interested in

the evolution of a given gene or a group of genes, the sequences used to build

the species tree are not resampled. The species tree is taken as an a priori

assumption of the method and held constant. The sequence data used to

build the gene tree are drawn with replacement in order to create a series of

pseudo-replicates. The HGT detection algorithm is then carried out on the

bootstrapped pseudo-replicates. Thus, for all HGT branches appearing in the

original scenario, we verify if they appear in the obtained transfer scenarios,

using as input the original species tree and the gene tree inferred from the

sets of pseudo-replicates. It is worth noting that among resampled datasets
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only those that give rise to a gene phylogenetic tree such that it contains the

root branch separating this tree into exactly the same bipartition sets as the

root branch of the original gene tree does, are eligible for the HGT bootstrap

analysis.

Simulation study. A Monte Carlo study was conducted to test the

ability of the new method to recover correct gene transfers. In the framework

of the complete HGT model only we examined how the detection procedure

performed depending on the model of sequence evolution, number of observed

species, and sequence length. The results illustrated in Figs. C–7 and C–

8, and reported in Tables C–1 and C–2 (see Appendix) were obtained from

simulations carried out with random binary phylogenetic trees with 8, 16, 24,

32, 48, and 64 leaves, whereas the sequence length varied from 125 to 1000

sites. The simulation procedure consisted of the five basic steps described

below:

1. A true tree topology, denoted T , was obtained using the random tree

generation procedure proposed by Kuhner and Felsenstein [139]. The branch

lengths of T were computed using an exponential distribution. Following the

approach of Guindon and Gascuel [100], we added some noise to the branches

of the true phylogenies to create a deviation from the molecular clock hypothe-

sis. All the branch lengths of T were multiplied by 1+αx, where the variable x

was obtained from a standard exponential distribution
(
P (x > k) = exp(−k)

)
,

where the constant a was a tuning factor for the deviation intensity. Following

Guindon and Gascuel [100], a was fixed to 0.8. The random trees generated

by this procedure are chosen to have the depth of O
(

log(n)
)
, where n is the

number of species (i.e. number of leaves in a binary phylogenetic tree).
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2. Each random phylogeny was then submitted to the SeqGen program

[195] to simulate sequence evolution along its branches according to the Jukes

and Cantor [126], Kimura 2-parameter [132], and Jin–Nei Gamma[125] models.

3. To assess the quality of HGT detection by the new method, we devel-

oped a simulation program using the results of SeqGen. For each considered

rooted tree, viewed as an organismal phylogeny, our program created one

random horizontal gene transfer that respected the evolutionary constraints

discussed in the algorithmic section. During this operation, the program re-

generated the DNA sequences for each tree node located in the subtree affected

by the HGT. As the simulations were carried out for the complete gene transfer

model, the HGT destination sequence was set identical to the source sequence

and the new sequences were regenerated from it according to the selected

evolutionary model.

4. The sequence to distance transformation corresponding to the con-

sidered model of evolution was then applied to the DNA sequences associated

with the leaves of the phylogeny affected by the gene transfer. The NJ method

[205] was used to infer the gene trees from the obtained distance matrix. The

topology of the organismal phylogeny (i.e. true tree T ) was supposed to be

known.

5. The HGT detection method was then carried out to infer the transfer.

The experiments were conducted using the procedures based on the RF and

LS optimization. The simulations were carried out for 500 random rooted

phylogenies with 8 and 16 leaves and 100 random rooted phylogenies with 24

to 64 leaves.

Figures C–7 and C–8 present the average simulation results obtained for

random phylogenies with 8 to 64 leaves, using as optimization criteria the

RF topological distance and LS function, respectively. These figures illustrate
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Figure C–7: HGT detection rates obtained for random phylogenies with 8 to
64 leaves (8−a, 16− b, 24− b, 32−d, 48− e, 64−f) using the RF topological
distance for optimization. Jukes and Cantor (♦), Kimura 2-parameter (�),
and Jin–Nei Gamma (∆) models were used for the tree generation.
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Figure C–8: HGT detection rates obtained for random phylogenies with 8 to
64 leaves (8−a, 16− b, 24− b, 32−d, 48− e, 64−f) using the LS function for
optimization. Jukes and Cantor (♦), Kimura 2-parameter (�), and Jin–Nei
Gamma (∆) models were used for the tree generation.

180



how the detection rate changes as the number of sites varies from 125 to 1000.

As expected, the detection rate grows as the number of sites increases and

the number of species decreases. Note that for the phylogenies with 8 to 32

leaves the best results were obtained under the Kumura and Jukes–Cantor

models. For the phylogenies with 48 to 64 species the best performances were

regularly obtained under the Kimura model, whereas the results found under

the Jukes–Cantor model were the worst of the three evolutionary models.

This trend can be observed in the case of both optimization criteria. Ob-

viously, with the short sequences we have a bigger phylogenetic error that can

either appear like a HGT, when it does not occur, or disguise a real HGT.

Tables C–1 and C–2 (see Appendix) report the false positive and false nega-

tive (indicated in parentheses) detection rates obtained using as optimization

criteria the RF distance and LS function, respectively. A false positive HGT is

an incorrect transfer found by the algorithm and a false negative HGT is the

right transfer that has not been detected. A false positive HGT will always

occur if the gene tree inferred by NJ (see Step 4 above) is different from the

true gene tree (see Step 3 above), but it can also take place when both trees

are identical but a transfer going to the direction opposite to the correct HGT

disguises it, leading to the same gene tree (see [154]).

False negative HGTs are mostly due to the error of inferring the gene tree,

but can also happen when a transfer going to the opposite direction disguises

the correct HGT. As defined, the false positive detection rate is always bigger

or equal to the negative one. The analysis of Tables C–1 and C–2 shows that

the false negative rate is almost as big as the false positive rate when the tests

were conducted with large phylogenies (48 and 64 species) and short sequences

(125 and 250 sites). The false negative rate was noticeably lower than the false
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positive one in the case of the large phylogenies and long sequences. Further-

more, we have measured the recovery rates for the HGT source, destination,

and source and destination combined (i.e. the latter parameter corresponds to

the detection rate depicted in Figs. C–7 and C–8). These tests were carried

out under the Jukes and Cantor model of sequence evolution and using the

RF distance for the algorithmic optimization. Note that the transfer desti-

nations were generally better detectable than their sources. The difference in

the source-destination detection was more important for the short sequence.

For example, for the sequences with 125 sites it varied, on average, from 6%

(for 8 species) to 1% (for 64 species). However, for the longer sequences the

source and destination rates were very similar.

Generally, the procedure based on the RF distance provided better results

than that based on the LS function. Nevertheless, some noticeable exceptions

(e.g. under the Kimura model for the phylogenies with 8 leaves or under the

Jin–Nei model in the case of the short sequences) can be pointed out. The

simulation study suggested that the accuracy of the transfer detection is highly

dependable on the model of sequence evolution, number of considered species,

and length of observed sequences.

C.5 Results and discussion

We first tested our algorithm on the phylogeny of 14 species of Archaea

originally considered by Matte-Tailliez et al [162]. The latter authors discuss

problems encountered when reconstructing some parts of the archaeal phy-

logeny, pointing out the evidence of HGT events perturbing the evolution of

a number of considered genes. Matte-Tailliez et al. inferred the maximum

likelihood tree (Figure C–10, undirected lines) based on the concatenated 53

182



ribosomal proteins (7,175 positions) and compared it to the maximum likeli-

hood phylogeny of the gene rpl2e (Figure C–9) built for the same 14 organ-

isms. The calculations of the best ML tree and its branch lengths for the 53

concatenated proteins were conducted using the PUZZLE program with Γ-law

correction.

Given the topological incongruence of the obtained phylogenies, the au-

thors hypothesized a few cases of lateral transfers of the gene rpl2e. More pre-

cisely, the case of the transfer between the clades of Thermoplasmatales (Fer-

roplasma acidarmanus and Thermoplasma acidophilum) and Crenarchaeota

(Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus solfataricus) was

indicated as the most evident one.

In order to apply our method, we first reconstructed from the original se-

quences the topologies of the gene (Figure C–9) and species trees (Figure C–

10, undirected lines). The computations were conducted in the framework

of the complete gene transfer model, using the RF optimization and subtree

constraint options (Figure C–2). Five directed branches needed to reconcile

the species and gene topologies have been found (Figure C–10). The connec-

tion representing the transfer between the cluster of Halobacterium sp. and

Haloarcula marismortui and the species Methanobacterium thermoautotroph-

icum was found in the first iteration. This transfer provided the biggest drop

of the RF distance between the species and gene phylogenies; its bootstrap

score is 55%.

In the second and third iterations, we found the reconciliation branches

between the species Pyrococcus horikoshii and Pyrococcus furiosus and be-

tween Sulfolobus solfataricus and Pyrobaculum aerophilum. Both of these rec-

onciliation branches link closely related species. Such kind of connections may

be due to HGT as well as to local topological rearrangements necessary because
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of the tree reconstruction artifacts (e.g. attraction of long branches, unequal

evolutionary rates, etc). The transfer branches 4 and 5 linking the cluster

of Crenarchaeota to the species Thermoplasma acidophilum and Ferroplasma

acidarmanus can be interpreted as HGT events that might have taken place

between Thermoplasmatales and Crenarchaeota.

In the second and third iterations, we found the reconciliation branches

between the species Pyrococcus horikoshii and Pyrococcus furiosus and be-

tween Sulfolobus solfataricus and Pyrobaculum aerophilum. Both of these rec-

onciliation branches link closely related species. Such kind of connections may

be due to HGT as well as to local topological rearrangements necessary be-

cause of the tree reconstruction artifacts (e.g. attraction of long branches,

unequal evolutionary rates, etc). The transfer branches 4 and 5 linking the

cluster of Crenarchaeota to the species Thermoplasma acidophilum and Ferro-

plasma acidarmanus can be interpreted as HGT events that might have taken

place between Thermoplasmatales and Crenarchaeota.

Note, that HGT between these two groups was also predicted by Matte-

Taillez et al [162]. In fact, the transfers 4 and 5 could consist of a unique trans-

fer between the clades of Thermoplasmatales and Crenarchaeota that was sep-

arated into two transfers by our method due to the application of the subtree

constraint (Figure C–2) and the presence of the tree reconstruction artifacts.

Figure C–11 illustrates the evolution of the newly formed Thermoplasmatales-

Crenarchaeota clade involving the HGTs 4 and 5. The usage of the LS criterion

instead of RF leads to the solution consisting of 6 HGTs including all transfers

from Figure C–10 except the HGT number 2 that goes in the opposite direc-

tion. Note that a new reconciliation branch found with LS brings the species

Methanococcus jannaschii to the cluster of 4 species including Archaeoglobus
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fulgidus. This reconciliation branch turns out to be useless and have a low

bootstrap score of 14%.

C.6 Conlusion

We presented two polynomial-time algorithms for detecting horizontal

gene transfer events. We considered the complete and partial gene transfer

models, implying at each step, either the transformation of a species phylogeny

into another tree or its transformation into a network structure. The algorithm

for inferring complete gene transfers exploits the discrepancies between the

species and gene phylogenies either to map the gene tree into the species tree

by least-squares or to compute a topological distance between them and then

estimate the possibility of a HGT event between each pair of branches of the

species phylogeny. The models based on the optimization of the least-squares

function and the Robinson and Foulds topological distance were introduced.

Inferred HGTs should be carefully analyzed using all available information

about the data in hand in order to select the transfers that will be represented

as a final solution. Each gene transfer branch added to the species phylogeny

aids to resolve a conflict between it and the gene tree (i.e. helps to reconcile

the species and gene phylogenies). A bootstrap validation procedure allowing

one to assess the reliability of a specific gene transfer or whole gene transfer

scenario was proposed. A comprehensive Monte Carlo study was carried out

to test the ability of the new method to recover correct HGTs. It provided

very encouraging results especially when the Robinson and Foulds distance

was used as an optimization criterion. The example of the evolution of the

gene rpl2e was considered in the application section. More simulation work is

required to investigate the properties of the algorithm intended to infer partial

gene transfers.
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As any method of phylogenetic inferring, the new HGT detection method

is subject to a number of artifacts which generally affect phylogenetic analysis;

the main of them being: attraction of long branches, unequal evolutionary

rates, and situations when the occurrence of some HGT events almost coincides

with speciation events located closely to the recipient species. It is important

to investigate in greater details the impact of these artifacts on the HGT

detection technique introduced in this article. It would be also interesting to

extend the presented model to the case, where the gene and species trees have

different numbers of taxa; this situation can take place when some species

have more than one copy of the gene under consideration.

The software implementing the new algorithms for detecting complete and

partial horizontal gene transfers is freely available at the following URL ad-

dress: <http://www.info2.uqam.ca/˜boca05/software/> (this is a consol ver-

sion running on the Unix and Windows platforms; it is distributed along with

its C++ source code). A graphical version of this program has been also im-

plemented and included in the T -Rex web server [155] at the following URL:

<http://www.trex.uqam.ca>.

C.7 Appendix

This Appendix includes the results of the tests described in the section

Simulation Study. The results reported in Tables C–1 and C–2 correspond to

the graphics represented in Figures C–7 (optimization using the RF distance)

and C–8 (optimization using the LS function). They were obtained from

simulations carried out for random binary phylogenies with 8, 16, 24, 32, 48,

and 64 leaves, whereas the sequence length varied from 125 to 1000 sites. Note

that the sum of the HGT detection rate shown in Figures C–7 and C–8 and

of the false negative detection rate reported in Tables C–1 and C–2 is always

100%.
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Table C–1: False positive and false negative (in parentheses) detection rates
obtained for random phylogenies with 8 to 64 leaves using the RF distance as
an optimization criterion. A false positive HGT is an incorrect transfer found
by the algorithm and a false negative HGT is the right transfer that has not
been found. For each sequence length, the simulations were carried out for 500
random phylogenies with 8 and 16 leaves and 100 random phylogenies with 24
to 64 leaves.

RF rates (in %) Sequence length
125 250 500 750 1000

Jukes-Cantor 14.9(7.8) 5.9(3.5) 1.1(0.7) 0.3(0.3) 0.0(0.0)
8 Kimura 12.9(8.7) 3.3(2.2) 0.2(0.1) 0.1(0.1) 0.0(0.0)

Jin-Nei 20.1(15.0) 3.9(2.5) 1.6(1.3) 1.1(1.1) 0.5(0.5)
Jukes-Cantor 25.7(14.0) 7.1(4.5) 1.2(0.7) 0.4(0.3) 0.0(0.0)

16 Kimura 35.1(22.5) 11.9(7.9) 3.2(2.3) 0.6(0.6) 0.1(0.0)
Jin-Nei 43.0(30.0) 22.5(16.5) 7.6(6.6) 5.3(4.9) 2.3(2.3)

Jukes-Cantor 36(18) 15(10) 4(3) 1(1) 1(1)
24 Kimura 43(24) 24(13) 4(2) 2(0) 0(0)

Jin-Nei 55(35) 33(18) 19(10) 9(6) 5(4)
Jukes-Cantor 37(20) 29(11) 4(2) 1(1) 1(0)

32 Kimura 60(35) 31(14) 8(3) 3(1) 2(0)
Jin-Nei 70(38) 47(25) 16(9) 8(3) 8(3)

S
p

ec
ie

s
n
u

m
b

er

Jukes-Cantor 65(48) 49(29) 28(15) 1(1) 1(0)
48 Kimura 55(38) 46(18) 9(3) 3(1) 2(0)

Jin-Nei 70(40) 58(24) 19(8) 8(3) 8(3)
Jukes-Cantor 70(60) 45(35) 27(17) 23(13) 20(10)

64 Kimura 65(55) 35(25) 14(4) 12(2) 10(0)
Jin-Nei 60(50) 44(34) 22(12) 18(8) 14(4)

Table C–2: False positive and false negative (in parentheses) detection rates
obtained for random phylogenies with 8 to 64 leaves using the LS function as
an optimization criterion. A false positive HGT is an incorrect transfer found
by the algorithm and a false negative HGT is the right transfer that has not
been found. For each sequence length, the simulations were carried out for 500
random phylogenies with 8 and 16 leaves and 100 random phylogenies with 24
to 64 leaves.

RF rates (in %) Sequence length
125 250 500 750 1000

Jukes-Cantor 17.2(10.1) 5.0(2.5) 0.8(0.7) 0.8(0.5) 0.3(0.3)
8 Kimura 10.8(7.0) 2.8(1.9) 0.3(0.3) 0.2(0.2) 0.1(0.1)

Jin-Nei 18.6(13.8) 7.8(6.5) 1.7(1.5) 0.9(0.8) 0.5(0.3)
Jukes-Cantor 25.5(13.0) 7.6(5.3) 2.2(1.4) 0.8(0.5) 0.1(0.1)

16 Kimura 37.6(23.8) 11.9(8.4) 2.3(2.0) 0.6(0.6) 0.0(0.0)
Jin-Nei 40.9(28.8) 20.9(14.8) 8.1(6.7) 3.8(3.6) 3.3(3.3)

Jukes-Cantor 43(22) 13(11) 5(5) 3(3) 1(1)
24 Kimura 59(30) 26(9) 7(4) 4(3) 1(0)

Jin-Nei 67(33) 26(18) 12(6) 6(2) 3(1)
Jukes-Cantor 47(26) 21(14) 5(2) 0(0) 0(0)

32 Kimura 56(33) 31(17) 9(4) 0(0) 0(0)
Jin-Nei 50(33) 31(15) 12(8) 11(3) 4(0)

S
p

ec
ie

s
n
u

m
b

er

Jukes-Cantor 53(43) 38(31) 33(7) 22(12) 19(11)
48 Kimura 60(50) 34(14) 16(5) 5(1) 2(0)

Jin-Nei 65(55) 50(29) 25(8) 12(4) 10(3)
Jukes-Cantor 63(53) 52(42) 41(21) 27(17) 25(15)

64 Kimura 70(60) 45(35) 22(12) 15(2) 10(0)
Jin-Nei 75(65) 40(20) 20(10) 16(6) 12(2)
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Figure C–9: Maximum likelihood phylogenetic tree for the protein rpl2e (89
positions). Numbers close to branches are ML bootstrap scores obtained from
the sampled protein sequences using the SeqBoot and Proml (JTT model)
programs from the PHYLIP package [85]. Its topology is identical to the tree
found by Matte-Taillez et al [162, Figure 3].

Figure C–10: Species tree (Matte-Taillez et al. [162, Fig. 1a], with five rec-
onciliation branches (denoted by arrows). Numbers close to branches are ML
bootstrap scores computed by the RELL method upon 2,000 top-ranking trees
using the MOLPHY program without correction for among-site variation.
Numbers on HGT arrows indicate their order of appearance in the unique
gene transfer scenario found by the HGT detection method. Bootstrap scores
for transfers are indicated by numbers close to arrow circles. Arrows 4 and 5
depict the HGTs between the clades of Thermoplasmatales and Crenarchaeota
also predicted by Matte-Taillez et al [162].
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Figure C–11: Changes in the Crenarchaeota-Thermoplasmatales cluster oc-
curring after the addition of HGT branches 4 and 5. (a) This cluster after the
transfer 3; the species Thermoplasma acidophilum joins the Crenarchaeota
cluster. (b) This cluster after the transfer 4; the species Ferroplasma acidar-
manus is added to the clade comprising three Crenarchaeota and Thermo-
plasma acidophilum. (c) This cluster after the transfer 5.
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APPENDIX D
Dynamic programming approach for ancestral Profile-profile

alignment

D.1 Preface

This appendix presents only a preliminary dynamic programming algo-

rithmic approach to the ancestral profile alignment. This algorithm will be

useful for refining multiple sequence alignment as well as to the joint inference

of phylogenetic tree and multiple sequence alignment.

D.2 Importance of profile sequences

Profiles are commonly used in multiple sequence alignment of protein

to represent alignment column structure. A profile sequence p of length L

indicates for each position of the sequence the probability of each character

(A, C, G, T and gap for DNA profiles). The profiles are commonly built

using position specific scoring matrix PSSM or HMM profiles [67]. Profiles

are involved in alignment in two ways: (1) a sequence is aligned to an existing

multiple alignment represented by a profile (sequence-profile alignment) such

as PSI-BLAST [2] and HMMAlign from HMMER [69]; (2) two profiles are

aligned (profile-profile alignment) such as COACH [73] and MUSCLE [71].

COACH does not perform directly profile-profile alignment, it aligns multiple

sequences alignment to a built profile-HMM. Due to complicated recursion

relations, it cannot be applied to large data sets. Profile-profile alignment

is also the iterated step of ClustalW [112]. Usually the methods of profile-

profile alignments are variants of well-known pairwise sequence alignments

Needleman-Wunsch for global alignment [180] and Smith-Waterman for local

alignment [222]. They differ on the choice of the scoring functions for an
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aligned pair of profile (sum over position scores plus affine gap penalties).

Here, we define new variant of the global alignment algorithm that produces

fast solution. It will use an approach to compute the score according to the

presence or absence of characters, that permits to easily handle the problem of

scoring affine gap penalties in profiles. A preliminary version of this dynamic

programming algorithm is presented here.

Let A and B be two profiles of lenght respectively LA and LB such that

A is the most recent ancestor of B. Thus A[i, b] is the probability of having

the character b ∈ {A,C,G, T,−} in the position i ∈ [1..LA].

D.3 Consecutive pair-aligned score.

Let score(x′, y′, x, y, i, j) be the score of having 2 consecutive aligned

columns where x′, y′, x, y ∈ {0, 1} and x, y are respectively in column i and

j. x′x are the 2 consecutive characters of the first sequence and y′y are the

consecutive characters of the second sequence. We obtain:

score(x′, y′, x, y, i, j) =



(
∑

a∈{A,C,G,T}
∑

b∈{A,C,G,T}(A[i, a][j, b])×

Pscore(a, b)) x=1, y=1

(
∑

a∈{A,C,G,T}(A[i, a]×B[j,−])×

GapExtensionPenalty(a,−)) x=1,y=0, x’=1

(
∑

a∈{A,C,G,T}(A[i, a]×B[j,−])×

GapStartPenalty(a,−)) x=1,y=0, y’=1

(
∑

a∈{A,C,G,T}(A[i,−]×B[j, a])×

GapExtensionPenalty(−, a)) x=0,y=1, x’=0

(
∑

a∈{A,C,G,T}(A[i,−]×B[j, a])×

GapStartPenalty(−, a)) x=0,y=1, x’=1,

0 otherwise

where Pscore(a, b) is log-odds score of aligning the two characters.
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Dynamic programming solution.

LetXM(i, j, x, y) be the score maximal of aligningA[1..i] toB[1..j] whereas

x, y ∈ {0, 1}. x and y indicate if either gap or existing characters are consid-

ered for the profiles A and B respectively, at the end of the prefixes.

Let XI(i, j) be the maximal score that can be obtained by aligning A[i]

to a new gap when prefixes A[1..i] to B[1..j] are considered. We obtain:

XM(i, j, x, y) = max


maxx′,y′∈{0,1} {XM(i− 1, j − 1, x′, y′) + score(x′, y′, x, y, i, j)}

XI(i− 1, j − 1) + score(1, 0, x, y, i, j)

XD(i− 1, j − 1) + score(0, 1, x, y, i, j)

XI(i, j) = max

 maxx′∈{0,1} {XM(i− 1, j − 1, x′, 1) + score(x′, 1, 1, 0, i, j)}

XI(i− 1, j) + score(1, 0, 1, 0, i, j)

XD(i, j) = max

 maxy′∈{0,1} {XM(i− 1, j − 1, 1, y′) + score(1, y′, 1, 0, i, j)}

XD(i, j − 1) + score(0, 1, 0, 1, i, j)

The two auxiliary matrices are needed to compute affine gap penalties [67]. To

find the best alignment score, we will only take maxx,y∈{1,0}{XM(LA, LB, x, y).

As usual, traceback will be required to find the optimal profile alignment.

The dynamic programming showed can be adapted for different gap penalties

for insertion and deletion events. To evaluate the accuracy of the obtained

alignment, we can use either known aligned sequences to assess the perfor-

mance of our method on the number of correctly aligned pairs of characters;

or simulated evolution of sequences with different sizes according to a fixed

phylogenetic tree.
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ABSTRACT

Given a multiple alignment of orthologous DNA sequences and a phylogenetic tree for these

sequences, we investigate the problem of reconstructing the most likely scenario of insertions

and deletions capable of explaining the gaps observed in the alignment. This problem, that

we called the Indel Maximum Likelihood Problem (IMLP), is an important step toward the

reconstruction of ancestral genomics sequences, and is important for studying evolutionary

processes, genome function, adaptation and convergence. We solve the IMLP using a new

type of tree hidden Markov model whose states correspond to single-base evolutionary

scenarios and where transitions model dependencies between neighboring columns. The

standard Viterbi and Forward-backward algorithms are optimized to produce the most

likely ancestral reconstruction and to compute the level of confidence associated to specific

regions of the reconstruction. A heuristic is presented to make the method practical for large

data sets, while retaining an extremely high degree of accuracy. The methods are illustrated

on a 1-Mb alignment of the CFTR regions from 12 mammals.

Key words: ancestral genome reconstruction, ancestral mammalian genomes, indel maximum
likelihood problem, insertions and deletions, tree-HMM.

1. INTRODUCTION

IT HAS RECENTLY BEEN SHOWN that the phylogeny of eutherian mammals is such that an accurate
reconstruction of the genome of an early ancestral mammal is possible (Blanchette et al., 2004a). This

accurate reconstruction will help on various studies such as adaptation, behavioral changes, and functional
divergences (Krishnan et al., 2004). It is also at the core of experimental paleo-molecular biochemistry
where sequences of extant taxa are used to predict and resurrect the sequences and functions of ancestral
macromolecules (Benner, 2002; Gaucher et al., 2003; Pauling and Zuckerkandl, 1963). The ancestral
genome reconstruction procedure involves several difficult steps, including the identification of orthologous
regions in different extant species, ordering of syntenic blocks, multiple alignment of orthologous sequences
within each syntenic block, and reconstruction of ancestral sequences for each aligned block. This last

1McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada.
2Département d’Informatique, Université du Québec à Montréal, Montréal, Québec, Canada.
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step involves the inference of the set of substitutions, insertions, and deletions that may have produced a
given set of multiply-aligned extant sequences. While the problem of reconstructing substitutions scenarios
has been well studied (Fitch, 1971; Felsenstein, 1981), the inference of insertions and deletions scenarios
has received less attention (Thorne et al., 1991). Indel evolutionary scenarios are useful for several other
problems such as annotating functional regions of extant genomes, including protein-coding regions (Siepel
and Haussler, 2004), RNA genes (Rivas, 2005), and other types of functional regions (Siepel et al., 2005).
The difficulty of the problem is due in large part to the fact that insertions and deletions (indels) often
affect several consecutive nucleotides, so the columns of the alignment cannot be treated independently, as
opposed to the maximum likelihood problem for substitutions (Felsenstein, 1981). The reconstruction of
the most parsimonious scenario of indels required to explain a given multiple sequence alignment has been
shown to be NP-Complete (Chindelevitch et al., 2006) but good heuristics have been developed (Blanchette
et al., 2004a; Chindelevitch et al., 2006; Fredslund et al., 2004).

A maximum likelihood reconstruction would be preferable to a most parsimonious reconstruction be-
cause it would provide a way of weighing insertions and deletions of various lengths against each other.
Moreover, provided an accurate probabilistic model is used, the reconstruction would be more accurate and
would allow to estimate the uncertainty to each of its parts. Similarly to statistical alignment approaches
(Lunter et al., 2003), which unfortunately remain too slow for genome-wide reconstructions, we seek to
gain a richer insight into ancestral sequences and evolutionary processes. In this paper, we thus focus on the
problem we call the Indel Maximum Likelihood Problem (IMLP). It consists of inferring the set of insertions
and deletions that has the maximal likelihood, according to some fixed evolutionary parameters, and that
could explain the gaps observed in a given multiple alignment. An example of the input and output of this
problem is shown in Figure 1. Kim and Sinha (2007) have recently proposed an algorithm for a similar prob-
lem, although the range of scenarios handled by their Indelign program is limited to non-overlapping indels.

We emphasize that the problem addressed here assumes that the phylogenetic tree and multiple sequence
alignment given as input are correct. The robustness of indel scenarios with respect to alignment and tree
accuracy has been previously discussed (Blanchette et al., 2004a). The more general problem where the
alignment is not given as input but has to be found simultaneously with the ancestral sequences (Hein,
1989) is clearly of great interest but appears significantly more difficult and is not addressed here. We
refer the reader elsewhere (Kim and Sinha, 2007; Bray and Pachter, 2004) for interesting first steps in that
direction.

Here, we start by giving a formal definition of the Indel Maximum Likelihood Problem. To solve the
problem, we use a special type of tree hidden Markov model (tree-HMM), which is a combination of a
standard hidden Markov model and a phylogenetic tree. We show how the most likely path through the
tree-HMM leads to the most likely indel scenario and how a variant of the standard Viterbi algorithm
can solve the problem. Although the size of the HMM is exponential in the number of extant species
considered, we show how the knowledge given by the phylogenetic tree and the aligned sequences allows
the state space of the HMM to be considerably reduced, resulting in a practical, yet exact, algorithm. We

FIG. 1. Example of an input and output to the Indel Maximum Likelihood Problem. The input (in black) consists of
the multiple alignment (shown on the left in binary format) and the topology and branch lengths of the phylogenetic
tree. The output (in gray and italics) consists of a set of insertions and deletions, placed along the edges of the tree,
explaining the gaps (zeros) in the alignment. The dashed (resp. shaded) boxes in the alignment indicate the deletions
(resp. insertions) of the scenario shown on the right. This set of operations yields the ancestral reconstruction shown
on the right.
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also present a heuristic algorithm that almost always gives the right solution and can compute the most
likely indels scenarios for more than 20 taxa. Thus, our implementations are able to solve large problems
on a simple desktop computer and allow for an easy parallelization. Finally, we assess the complexities and
accuracies of the presented algorithms on a multiple alignment of twelve orthologous mammalian genomic
sequences of�1 Mb each coming from the CFTR benchmark dataset (ENCODE Project Consortium, 2004).

2. THE INDEL MAXIMUM LIKELIHOOD PROBLEM

In this section we will give a precise definition for the Indel Maximum Likelihood Problem (IMLP).
Consider a rooted binary phylogenetic tree T D .VT ; ET / with branch lengths � W VT ! R

C. If n is the
number of leaves of T , there are n � 1 internal nodes and 2n� 2 edges.

Consider a multiple alignment A of n orthologous sequences corresponding to the leaves of the tree T .
Since the only evolutionary events of interest here are insertions and deletions, A can be transformed into
a binary matrix, where gaps are replaced by 0’s and nucleotides by 1’s. Let Ax be the row of the binarized
alignment corresponding to the sequence at leaf x of T , and let AxŒi � be the binary character at the i -th
position of Ax. Assuming that the alignment A contains L columns, we add for convenience two extra
columns, AŒ0� and AŒLC 1�, consisting exclusively of 1’s.

Definition 1 (Ancestral reconstruction). Given a multiple alignment A of n extant sequences assigned

to the leaves of a tree T , an ancestral reconstruction A� is an extension of A that assigns a sequence

A�

u 2 f0; 1g
LC2 to each node u of T , and where A�

u D Au whenever u is a leaf.

The following restriction on the set of possible ancestral reconstructions is necessary in some contexts.

Definition 2 (Phylogenetically correct ancestral reconstruction). An ancestral reconstruction A� is

phylogenetically correct if, for any u; v; w 2 VT such that w is located on the path between u and v in T ,

we have .A�
uŒi � D A

�
vŒi � D 1/ H) .A�

w Œi � D 1/.

Requiring an ancestral reconstruction to be phylogenetically correct corresponds to assuming that any
two nucleotides that are aligned in A have to be derived from a common ancestor, and thus that all the
ancestral nodes between them have to have been a nucleotide. This prohibits aligned nucleotides to be the
result of two independent insertions. Assuming that this property holds perfectly for a given alignment A
is somewhat unrealistic, but, for mammalian sequences, good alignment heuristics have been developed—
e.g., TBA (Blanchette et al., 2004b), MAVID (Bray and Pachter, 2004), and MLAGAN (Brudno et al.,
2003)—and have been shown to be quite accurate (Blanchette et al., 2004b). In the future, we plan to
relax this assumption, but, for now, we will concentrate only on finding phylogenetically correct ancestral
reconstructions.

Since we are considering insertions and deletions affecting several consecutive characters, we delimit
each operation by the positions s and e in the aligned sequences where it starts and ends. Let x and y be
two nodes of the tree, where x is the parent of y. The pairwise alignment consisting of rows A�

x and A�
y

is divided into a set of regions defined as follows (Fig. 2).

FIG. 2. Example of the partition of a pairwise alignment of A�
x and A�

y (where x is the parent of y) into deletions,
insertions, and conservations. The length of each operation is given below it.
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Definition 3 (Deletions, Insertions, Conservations, and Length). Consider the pairwise alignment

of A�
x and A�

y , and let 0 � s � e � LC 1.

� The region .s; e/ is a deletion if (a) for all i 2 fs; : : : ; eg; A�
yŒi � D 0, (b) A�

xŒs� D A�
xŒe� D 1, and (c)

no region .s0; e0/ � .s; e/ is a deletion (i.e., we only consider regions that are maximal).
� The region .s; e/ is an insertion if (a) for all i 2 fs; : : : ; eg; A�

xŒi � D 0, (b) A�

y Œs� D A
�

y Œe� D 1, and (c)

no region .s0; e0/ � .s; e/ is an insertion.
� The region .s; e/ is a conservation if (a) for all i 2 fs; : : : ; eg; A�

xŒi � D A�
y Œi � and (b) no region

.s0; e0/ � .s; e/ is a conservation.
� The length of region .s; e/ is the number of non-trivial positions it contains: l.s; e/ D jfs � i �

ejA�
xŒi � ¤ 0 or A�

y Œi � ¤ 0gj.

A pair of binary alignment rows A�
x and A�

y can thus be partitioned into a set of non-overlapping insertions,
deletions, and conservations.

Definition 4 (Indel scenario). The indel scenario defined by an ancestral reconstruction A� is the set

of insertions and deletions that occurred between the ancestral reconstructions at adjacent nodes in T .

All that remains is to define an optimization criterion on A�. Two main choices are possible: a parsimony
criterion or a likelihood criterion.

2.1. The indel parsimony problem

The parsimony approach for the indel reconstruction problem has been introduced by Fredslund et al.
(2004) and Blanchette et al. (2004a). In its simplest version, it attempts to find the phylogenetically correct
ancestral reconstruction A� that minimizes the total number of insertions and deletions defined by A�:

indelParsimony.A�/ D
X

u;vW.u;v/2ET

jf.s; e/ W .s; e/ is a deletion or an insertion from A�

u to A�

vgj

The Indel Parsimony Problem is NP-Hard (Chindelevitch et al., 2006). Most authors have studied a
weighted version of the IPP where the cost of indels depends linearly on their length (affine gap penalty).
Blanchette et al. (2004a) proposed a greedy algorithm, and good exact heuristics have been developed
(Chindelevitch et al., 2006; Fredslund et al., 2004). The limitation of these approaches is that they only give
a single solution as output, and provide no measure of uncertainty of the various parts of the reconstruction.
In contrast, a likelihood-based approach has the potential of providing a more accurate solution and a richer
description of the set of possible solutions.

2.2. Indel maximum likelihood problem

In this section, we define the indel reconstruction problem in a probabilistic framework similar to the
Thorne-Kishino-Felsenstein model (Thorne et al., 1992). To this end, we need to define the probability of
transition between an alignment row A�

x and its descendant row A�
y . This probability will be defined as a

function of the probability of the insertions, deletions, and conservations that happened from A�

x to A�

y .
Let PDelStart.�.b// be the probability that a deletion starts at a given position in the sequence, along

a branch b of length �.b/, and let PInsStart.�.b// be defined similarly for an insertion. We assume
that these probabilities only depend on the length �.b/ of the branch b along which they occur, but
not on the position where the indel occurs. A reasonable choice is PDelStart.�.b// D 1 � e� D�.b/

and PInsStart.�.b// D 1 � e� I�.b/, for some deletion and insertion rate parameters  D and  I , but
our algorithm allows for any other choice of these probabilities. Thus, the probability that none of the
two events happens at a given position, which we call the probability of a conservation, is given by
PCons.�.b// D e

�. DC I /�.b/. We make the standard simplifying assumption that the length of a deletion
follows a geometric distribution, where the probability of a deletion of length k is ˛k�1

D .1 � ˛D/ and the
probability of an insertion of length k is ˛k�1

I .1�˛I /. One can thus see ˛D (resp. ˛I ) as the probability of
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extending a deletion (resp. insertion). This assumption, necessary to design a fast algorithm, holds relatively
well for short indels, but fails for longer ones (Kent et al., 2003). Our algorithm allows the parameters ˛D
and ˛I to depend on the branch b, but the results reported in Section 5 correspond to the case where ˛D
and ˛I were held constant across the tree. The probability that alignment row A�

x was transformed into
alignment row A�

y along branch b can be defined as follows:

Pr.A�

y jA
�

x; b/ D
Y

.s;e/W deletion from A�

x to A�

y

PDelStart.�.b// � .˛
l.s;e/�1

D
.1 � ˛D//

�
Y

.s;e/W insertion from A�

x to A�

y

PInsStart.�.b// � .˛
l.s;e/�1
I

.1 � ˛I //

�
Y

.s;e/W conservation from A�

x to A�

y

.PCons.�.b///
l.s;e/

This allows us to formulate precisely the problem addressed in this paper:

INDEL MAXIMUM LIKELIHOOD PROBLEM

Given: A multiple sequence alignment A of n orthologous sequences related by a phylogenetic tree T with
branch lengths �, a probability model for insertions and deletions specifying the values of  D ;  I ; ˛D ;
and ˛I .

Find: A maximum likelihood phylogenetically correct ancestral reconstruction A� for A, where the like-
lihood of A� is:

L.A�/ D
Y

bD.x;y/2ET

Pr.A�

y jA
�

x; b/

3. A TREE-HIDDEN MARKOV MODEL

In this section, we describe the tree hidden Markov model that is used to solve the IMLP. A tree-
hidden Markov model (tree-HMM) is a probabilistic model that allows two processes to occur, one in time
(related to the sequence history in a given column of A), and one in space (related to the changes toward
the neighboring columns). Tree HMMs were introduced by Felsenstein and Churchill (1996) and Yang
(1996) to improve the phylogenetic models that allows for variation among sites in the rate of substitution,
and have since then been used for several other purpose—e.g., detecting conserved regions (Siepel et al.,
2005) and predicting genes (Siepel and Haussler, 2004). Just as any standard HMM (Durbin et al., 1998),
a tree-HMM is defined by three components: the set of states, the set of emission probabilities, and the
set of transition probabilities.

3.1. States

Intuitively, each state corresponds to a different single-column indel scenario (although additional com-
plications are described below). Given a rooted binary tree T D .VT ; ET / with n leaves, each state
corresponds to a different labeling of the edges ET with one of three possible events: I (for inser-
tion), D (for deletion), or C (for conservation). The set S of possible states of the HMM would then be
S D fI;D; C g2n�2. However, this definition is not sufficient to model certain biological situations (Fig. 3).
We will use the ‘*’ symbol to indicate that, along a certain branch b D .x; y/, no event happened because
there was a base neither at node x nor at node y. This will happen in two situations: when edge b is a
descendant of edge b0 that was labeled with D (i.e., the base was deleted higher up the tree), and when
there exists an edge b0 that is not between b and the root and that is labeled with I (i.e., an insertion
happened elsewhere in the tree). The fact that these extraneous events can potentially interrupt ongoing
events along branch b means that the HMM needs to have a way to remember what event was actually



ALGORITHMS FOR THE INDEL PROBLEM 451

FIG. 3. The set of valid, non-zero probability states associated to the multiple alignment given at the top of the
figure. When edges are labeled with more than one character (e.g., C�; D�), the tree represents several possible states.
For the third column, not all possible states are shown. Arrows indicate one possible path through the tree-HMM. This
path corresponds to two interleaved insertions, shown by two boxes in the alignment, illustrating the need for the I �

character.

going on along that branch. This transmission of memory from column to column is achieved by three
special labels: I�; D�, and C �, depending on whether the � regions is interrupting an insertion, deletion,
or conservation. Thus, we have S � fI;D; C; I�; D�; C �g2n�2. Although this state space appears pro-
hibitively large (62n�2), the reality is that a number of these states cannot represent actual indel scenarios,
and can thus be ignored. The following set of rules specify what states are valid.

Definition 5 (Valid states). Given a tree T D .VT ; ET /, a state s assigning a label s.b/ 2 fI;D; C;

I�; D�; C �g to each branch b 2 ET is valid if the two following conditions hold.

� (Phylogenetic correctness condition) There must be at most one branch b such that s.b/ D I .
� (Star condition) Let b 2 ET , and let anc.b/ � ET be the set of branches on the path from the root to b.

Then s.b/ 2 fI�; D�; C �g if and only if 9b0 2 anc.b/ such that s.b0/ D D or 9b0 2 .ET n anc.b//
such that s.b0/ D I .

The number of valid states on a complete balanced phylogenetic tree with n leaves is O.n � 32n/ (the
number is dominated by states that have an “I” on a branch leading to a leaf, which leaves all other
2n� 3 edges free to be labeled with either C �; D�, or I�). Although this number remains exponential, it
is significantly better than the 62n�2 valid and invalid states.

3.2. Emission probabilities

In an HMM, each state emits one symbol, according a certain emission probability distribution. In our
tree-HMMs, each state emits a collection of symbols, corresponding to the set of characters obtained at
the leaves of T when indel scenario s occurs. Intuitively, we can think of a state as emitting an alignment
column. The following definition formalizes this.
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TABLE 1. EDGE TRANSITION TABLE �.s0.e/js.e/; b/

s.e/ n s0.e/ C D I C� D� I�

C PCons .�.b// PDelStart.�.b// PInsStart.�.b// 1 0 0

D .1 � ˛D/PCons.�.b// ˛D .1 � ˛D/PInsStart.�.b// 0 1 0

I .1 � ˛I /PCons.�.b// .1 � ˛I /PDelStart .�.b// ˛I 0 0 1

C� PCons .�.b// PDelStart.�.b// PInsStart.�.b// 1 0 0

D� .1 � ˛D/PCons.�.b// ˛D .1 � ˛D/PInsStart.�.b// 0 1 0

I � .1 � ˛I /PCons.�.b// .1 � ˛I /PDelStart .�.b// ˛I 0 0 1

Notice that � is not a transition probability matrix, since its rows sum to more than one.

Definition 6. Let s be a valid state for tree T D .VT ; ET / with root r . Then, we define the output of

state s as a function Os W VT ! f0; 1g with the following recursive properties:

1. Os.root/ D

�

0; if 9x 2 VT such that s.x/ D I

1; otherwise
.

2. Let e D .x; y/ 2 ET , with x being the parent of y. Then,

Os.y/ D

8

<

:

0; if s.e/ D D

1; if s.e/ D I
Os.x/; otherwise

Let C be an alignment column (i.e., an assignment of 0 or 1 to each leaf in T ). We then have the
following degenerate emission probability for state s:

Pre.C js/ D

�

1 if Os.x/ D C.x/ for all x 2 leaves.T /

0 otherwise

Thus, each state s can emit a single alignment column C . However, many different states can emit the
same column.

Missing data. In presence of missing characters among the input sequences, the emission probability
can be adapted such that the equality between Os.x/ and C.x/ is assessed according to 0’s and 1’s in
C.x/ only. It is worth noting that missing characters are different to gaps noted by �. Hence, the presence
of missing data increases the number of states for a given column.

3.3. Transition probabilities

The last component to be defined is the set of transition probabilities of the tree-HMM. The probability
of transition from state s to state s0, Prt .s0js/, is a function of the set of events that occurred along the
edges of T . Intuitively, Prt .s0js/ describes the probability of the single-column indel scenario s0, given
that scenario s occurred at the previous column. This transition probability is a function of insertions and
deletions that started between the two columns, of those that were extended going from one column to the
next. Specifically, we have Prt .s0js/ D

Q

b2ET
�.s0.e/js.e/; b/, where � is given in Table 1.

4. TREE-HMM PATHS, ANCESTRAL RECONSTRUCTION,

AND ASSESSING UNCERTAINTY

We now show how the tree-HMM described above allows us to solve the IMLP. Consider a multiple align-
ment A of lengthL on a tree T . A path � in the tree-HMM is a sequence of states � D �0; �1; :::; �L; �LC1.
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Based on standard HMM theory, we get:

Pr.�; A/ D Pr.�0; A0/
LC1
Y

iD1

Pre.AŒi �j�i/ � Prt .�i j�i�1/

Figure 3 gives an example of an alignment with some of the non-zero probability paths associated.

Theorem 1. Consider an alignment A on tree T . Then �� D argmax� Pr.�; A/ yields the most

likely indel scenario for A, and a maximum likelihood ancestral reconstruction A� is obtained by setting

A�
uŒi � D O��

i
.u/.

Proof. It is simple to show that for any ancestral reconstruction OA for A, we have L. OA/ D Pr.�; A/,
where � is the path corresponding to OA. Thus, maximizing Pr.�; A/ maximizes L. OA/.

4.1. Computing the most likely path

To compute the most likely path �� through a tree-HMM, we adapted the standard Viterbi dynamic
programming algorithm (Viterbi, 1967). Let X.i; k/ be the joint likelihood of the most probable path
ending at state k for the i first columns of the alignment. Let c 2 S be the state made of C’s on all edges
of T . Since the dummy column AŒ0� consists exclusively of 1’s, c is the only possible initial state. For
any i between 0 and LC 1 and for any valid state s 2 S, we can compute X.i; s/ as follows:

X.i; s/ D

8

<

:

1; if i D 0 and s D c
0; if i D 0 and s ¤ c
Pre.AŒi �js/ �maxs02S.X.i � 1; s

0/ � Prt .sjs0//; if i > 0

Finally, �� is obtained by tracing back the dynamic programming, starting from entry X.L C 1; c/. To
ensure numerical stability, we use a log transformation and scaling of probabilities as described by Durbin
et al. (1998).

The running time of a naive implementation of the Viterbi algorithm is O.jSj2L/, which quickly
becomes impractical as the size of the tree T grows. However, we can make this computation practical
for moderately large trees and for long sequences. Even though the number of states is exponential in the
number of sequences, most alignment columns can only be generated with non-zero probability by a much
more manageable number of states. Given an alignment A, it is possible to compute, for each column AŒi�,
the set Si of valid states that can emit AŒi� with non-zero probability. For instance, an alignment column
with only 1’s will lead to only one possible state, independently of the number taxa of n. The set Si can
be constructed using a bottom approach presented in Algorithm 1. More states can be discarded by using
the fact that the transition probability between most pairs of states is zero. We can thus remove from Si
any state s that is such that the transition to s from any state in Si�1 has probability zero. Proceeding from
left to right, we get S 0

0 D S0, and S 0

i D fs 2 Si j9t 2 S
0

i�1 s.t. Prt .sjt/ > 0g, where S 0

i � Si . For instance,
if, in all states of Si�1, an edge e is labeled by deletion D, then none of the states in Si can have edge e
labeled with C � or I�. This yields a large improvement for alignment regions consisting of a number of
adjacent positions with a base in only one of the n species and ensures that the algorithm will be practical
for relatively large number of sequences (see Section 5).

4.2. Assessing uncertainties of the ancestral reconstruction

A significant advantage of the likelihood approach over the parsimony approach is that it allows eval-
uating the uncertainty related to certain aspects of the reconstruction. For example, it is useful to be able
to compute the probability that a base was present at a given position i of a given ancestral node u:
Pr.A�

uŒi � D 1jA/ D
P

s2SWOs .u/D1
Pr.�i D sjA/. This allows the computation of the probability of making

an incorrect prediction at a given position of a given ancestor. The forward-backward is a standard HMM
algorithm to compute Pr.�i D sjA/ (Durbin et al., 1998). The optimizations developed for the Viterbi
algorithm can be trivially adapted to the Forward-Backward algorithm.
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Algorithm 1 buildValidState(node root, C )
Require: root: a tree node, C : an alignment column.
Ensure: Set of valid, non-zero probability states for C .

1: if root is a leaf then

2: return list of possible operations according to the character at that leaf
3: else

4: leftList = buildValidState(root.left, C )
5: rightList = buildValidState(root.right, C )
6: return mergeSubtrees(leftList, rightList, root)
7: end if

Algorithm 2 mergeSubtrees(StateList leftList, StateList rightList, node root)
Require: leftList and rightList: the lists of partial states, root: a tree node.
Ensure: Set of valid, non-zero probability states combining elements in leftList and rightList.

1: mergedList  emptyList

2: for all partial states l in leftList do

3: for all partial states r in rightList do

4: if compatible(l , r ) DD true then

5: m = merge(l , r )
6: if root DD initialroot then

7: mergedList.add(m)
8: else

9: for op 2 {C;D; I; C �; D�; I�} do

10: if isPossibleUpstream(m,op) then

11: mergedList:add(addAncestorBranch(m,op))
12: end if

13: end for

14: end if

15: end if

16: end for

17: end for

18: return mergedList

5. RESULTS OF THE EXACT METHOD

Our tree-HMM algorithm was implemented as a C program that is available upon request. The program
was applied to a �700-kb region of the CFTR locus on chromosome 7 of human, together with orthologous
regions in 11 other species of mammals: chimp, macaque, baboon, mouse, rat, rabbit, cow, dog, Rodrigues
fruit bat (rfbat), armadillo, and elephant1 (ENCODE Project Consortium, 2004). This locus is representative
of the whole genome, and contains coding, intergenic regions, and intronic regions. The multiple alignment
of these regions, computed using TBA (Blanchette et al., 2004b; Miller, 2006), contains 1,000,000 columns.
To simplify the calculations, consecutive alignment columns with the same gap structure were assumed
to have undergone the same evolutionary scenario and were thus merged into a single “meta-column” we
called an alignment region. Our alignment consisted of 123,917 such regions. Thus, during the execution
of the Viterbi or Forward-Backward algorithm, the states are computed for each region instead of for

1In the case of cow, armadillo, and elephant, the sequence is incomplete and a small fraction of the bases are
missing.
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FIG. 4. Phylogenetic tree for the twelve species studied in this paper.

each individual column, adapting the transition probabilities as a function of the width of each region.
The phylogenetic tree used for the alignment and for the reconstruction is shown in Figure 4. The branch
lengths are based on substitution rates estimated on a genome-wide basis (Miller, 2006). For illustrative
purposes, and similarly to the empirical values obtained by Kent et al. (2003), the parameters of the indel
model were set as follows:  D D 0:05;  I D 0:05; ˛D D 0:9, and ˛I D 0:9. However, we find that the
ancestral reconstructions and confidence levels are quite robust with respect to these parameters (data not
shown).

We first compared the maximum likelihood ancestral reconstruction found using our Viterbi algorithm
to the ancestors inferred using the greedy algorithm of Blanchette et al. (2004a). Table 2 shows the degree

TABLE 2. PERCENTAGE OF ALIGNMENT COLUMNS WHERE THERE IS AGREEMENT

BETWEEN THE ANCESTOR RECONSTRUCTED BY THE GREEDY ALGORITHM OF

BLANCHETTE ET AL. (2004A) AND THAT PREDICTED BY OUR

MAXIMUM-LIKELIHOOD ALGORITHM

Ancestor

Percentage

of agreement

MouCRat 99.8181
HumCChi 99.9467
BabCMac 99.7275
MouCRatCRab 99.8181
HumCChiC BabCMac 99.7157
HumCChiCBabCMacCMouCRatCRab 99.3901
CowCDog 99.917
CowCDogCBat 99.8218
HumCChiCBabCMacCMouCRatCRabCCowCDogCBat 99.0511
HumCChiCBabCMacCMouCRatCRabCCowCDogCBatCArm 93.6531
HumCChiCBabCMacCMouCRatCRabCCowCDogCBatCArmCEle 84.9413



456 DIALLO ET AL.

FIG. 5. Distribution of the confidence levels, over all 123,917 alignment regions, for each ancestor. The vast majority
of the ancestral positions are reconstructed with a probability of correctness above 99% (assuming the correctness of
the alignment).

of agreement between the two reconstructed ancestors, for each ancestral node. We observe that both
methods agree to a very large degree, with most ancestors yielding more than 99% agreement. The most
disagreement concerns the ancestor at the root of the eutherian tree, which, in the absence of an outgroup,
cannot be reliably predicted by any method. We expect that in most other cases of disagreement, the
maximum likelihood reconstruction is the most likely to be correct, although the opposite may be true in
case of gross model violations (Hudek and Brown, 2005).

The main strength of the likelihood-based method is its ability to measure uncertainty, using the
forward-backward algorithm, something that no previous method allowed. Assuming a phylogenetically
correct alignment and a correct indel model, the probability that the maximum posterior probability re-
construction is correct is simply given by maxfPr.A�

uŒi � D 1jA/; 1 � Pr.A�
uŒi � D 1jA/g. For example, if

Pr.A�
uŒi � D 1jA/ D 0:3, then the maximum posterior probability reconstruction would predict A�

uŒi � D 0,
and would be right with probability 0.7. Figure 5 shows the distribution of this probability of correct-
ness, for each ancestral node in the tree, over all regions of the alignment. We observe, for example, that
98% of the positions in the Boreoeutherian ancestor (the humanCchimpCbaboonCmacaqueCmouseCrat,
cowCdogCrfbat ancestor, living approximately 75 million years ago), are reconstructed with a confidence
level above 99%.2 The ancestor that is the easiest to reconstruct confidently is obviously the human-chimp
ancestor, where less than 0.14% of the regions have a confidence level below 99%. Again, the root of the
tree is the node that is the most difficult to reconstruct confidently. Overall, this shows that most positions

2We need to keep in mind, though, that these numbers assume the correctness of the multiple alignment, as well
as that of the branch lengths and indel probability model, so that they do not reflect the true correctness of the
reconstructed ancestor.
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FIG. 6. Distribution of the number of states considered (jS 0

i
j), over all 123,917 regions.

of most ancestral nodes can be reconstructed very accurately, and that we can identify the few positions
where the reconstruction is uncertain.

A potential drawback of the tree-HMM method is that its running time is, in the worst case, exponential
in the number of sequences being compared. However, the optimizations described in this paper greatly
reduce the number of states that need to be considered at each position, so the algorithm remains quite fast.
Our optimized Viterbi algorithm produced its maximum likelihood ancestral predictions on the 12-species,
1,000,000 column alignment in 7 hours on a Powerbook G5 machine, while the forward-backward algorithm
produced an output after approximately double of that time. Figure 6 shows the distribution of the number of
states that were actually considered, per alignment column. Most alignment columns are actually associated
to less than 100 states. However, a small number of columns are associated to a very large number of
states (15 regions have more than 100,000 states). Fortunately, these columns are rarely consecutive, so
the incurred running time is not catastrophic for small number of species. However, to be applicable to
complete genomes and to scale up to the more than 20 mammalian genomes that will soon be available,
our algorithm requires further optimizations. These optimizations move away from an exact algorithm,
toward approximation algorithms.

6. HEURISTIC ALGORITHM FOR THE IMLP

For each region i of the alignment and each possible state s 2 S 0

i , the exhaustive method considers all
possible states for the next column, even though the Viterbi value X.i; s/ of some current state s may be
far away from the maximal Viterbi value at that position, maxs02S 0

i
X.i; s0/. These states are less likely to

be eventually chosen in the best path of the tree-HMM. Hence, to reduce the number of states created and
reduce computation time, only states near the maximum Viterbi value are used to compute states for the
next column. Thus, for region i , we distinguish between created states S 0

i and used states Ri � S 0

i , where
only the second set will be involved in the creation of the states of the next column and in their Viterbi

calculation. For position i , state s 2 S 0

i is retained in Ri if and only if log2.
maxs0 X.i;s0/

X.i;s/
/ < t , for some
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fixed threshold t . We note that this is equivalent to setting X.i; s/ to zero for each s 2 S � R. A similar
heuristic can easily be applied to the Forward-Backward algorithm. If t is sufficiently large, the loss in
accuracy should be minimal for both algorithms, as will be shown next.

We computed the indels scenarios of the data sets presented in Section 5 by using different values for
the threshold t . The approximate Viterbi algorithm was run using t D 0; 1; 3; 5; 7; 9; 10; 20; 100; and C1.
Note that setting t D 0 results in a "greedy" algorithm that only considers the maximum Viterbi value at
each position, while t D C1 give the original, optimal Viterbi algorithm. Figure 7 shows the number
of states created (average of jS 0

i j) and used (average of jRi j) for all values of t , as well as the resulting
running time. For small values of t , e.g., t � 3, only a handful of states are used, resulting in a very
fast execution (less than 3 minutes). The average of number of states created increases relatively quickly
with t , while the number of states used remains quite low (44.34 for t D 100). The average number of
states created for t D 20 is about the same as the average number of states of the exact algorithm (see
Figure 7), which shows that the used states are sufficient to give the necessary information to generate
most valid states for next columns.

Even though the average number of states created and used for 0 � t � 5 is very low, the indels scenarios
produced are very similar to the best scenario obtained by the exact method (see Table 3). We note that, for
t D 5, the agreement with the exact algorithm is more than 99.99% for all the ancestors, while the running
time is reduced by a factor of ten, and by a factor of one hundred for t D 3. For t � 9, the heuristic gives
the optimal scenario, while still yielding a 5-fold speed-up. All values of t tested gave solutions that agreed
with the optimal solution better than the solution produced by the greedy algorithm of Blanchette et al.
(2004a). Finally, we note that, while our optimal Viterbi and Forward-Backward algorithms are limited to
12 to 15 species, our heuristic allows the inference of near-optimal solutions for much larger alignments.
When run on a 1,000,000 column alignment of 28 species of vertebrates, our heuristic with t D 3 produced
a solution in less than two hours. Since the exact algorithm cannot be run on such a large data set, it is

FIG. 7. Average, over all alignment regions, of the number of states created (S 0

i
) and used (Ri ), for the different

values of the cutoff t . Running times (in seconds) are plotted with the log-scale shown on the right.
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TABLE 3. PERCENTAGE OF ALIGNMENT COLUMNS WHERE THERE IS DISAGREEMENT BETWEEN

THE ANCESTOR RECONSTRUCTED BY THE EXACT MAXIMUM-LIKELIHOOD ALGORITHM

AND THE HEURISTIC WITH DIFFERENT VALUES FOR THE CUTOFF t

Ancestor t D 0 t D 1 t D 3 t D 5 t D 7 t > 9

MouCRat 0.030 0.012 0.003 0.002 0.001 0
HumCChi 0.020 0.004 0.001 0.001 0.001 0
BabCMac 0.003 0.003 0.002 0.002 0.002 0
MouCRatCRab 0.160 0.073 0.008 0.003 0.002 0
HumCChiC BabCMac 0.060 0.041 0.011 0.002 0.002 0
HumCChiCBabCMacCMouCRatCRab 0.160 0.070 0.018 0.006 0.004 0
CowCDog 0.070 0.032 0.006 0.002 0.001 0
CowCDogCBat 0.080 0.049 0.013 0.002 0.001 0
HumCChiCBabCMacCMouCRatC RabCCowCDogCBat 0.170 0.095 0.017 0.005 0.004 0
HumCChiCBabCMacCMouCRatC RabCCowCDogCBat
CArm

0.100 0.048 0.010 0.003 0.002 0

HumCChiCBabCMacCMouCRatC RabCCowCDogCBat
CArmCEle

0.010 0.004 0 0 0 0

We emphasize that the numbers quoted are percentages, so, for example, with t D 0, the MouseCRat ancestor agrees with the
optimal solution at 99.97% of the alignment columns.

difficult to estimate the quality of the solution obtained but, based on our experience on the smaller data
set (Table 3), we expect a very high accuracy even at such a stringent cutoff.

7. DISCUSSION

The method developed here allows predicting maximum likelihood indel scenarios and their resulting
ancestral sequences for large alignments. Furthermore, it allows the estimation of the probability of error
in any part of the prediction, using the forward-backward algorithm. Integrated into the pipeline for whole-
genome ancestral reconstruction, it will improve the quality of the predictions and allow richer analyses.
The main weakness of our approach is that it assumes that a phylogenetically correct alignment and an
accurate phylogenetic tree are given as input. While many existing multiple alignment programs have
been shown to be quite accurate on mammalian genomic sequences (including non-functional or repetitive
regions) (Blanchette et al., 2004b), it has also been shown that a sizeable fraction of reconstruction errors
is due to incorrect alignments (Blanchette et al., 2004a). Ideally, one would include the optimization
of the alignment directly in the indel reconstruction problem, as originally suggested by Hein (1989).
However, with the exception of statistical alignment approaches (Lunter et al., 2003), which remain too
slow to be applicable on a genome-wide scale, genomic multiple alignment methods do not treat indels in
a probabilistic framework. We are thus investigating the possibility of using the method proposed here to
detect certain types of small-scale alignment errors, and to suggest corrections.

When predicting ancestral genomic sequences, it is very important to be able to quantify the uncertainty
with respect to certain aspects of the reconstruction. Our forward-backward algorithm calculates this
probability of error for each position of each ancestral species. However, errors in adjacent columns are
not independent: if position i is incorrectly reconstructed, it is very likely that position iC1 will be wrong
too. We are currently working on models to represent this type of correlated uncertainties. This new type
of representation will play an important role in the analysis and visualization of ancestral reconstructions.

Finally, it will be important to assess the results given by the heuristic so that the cutoff value t is chosen
appropriately for the data at hand. For example, the heuristic could be applied iteratively by increasing the
cutoff until a stationary likelihood score is reached. This heuristic will be useful to reconstruct the indel
scenarios for data sets containing more than 20 taxa and could be easily applied to the large number of
mammalian genomes that are about to be completely sequenced.
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