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Kinetic Theory of Irrever. Processes

in a System of Radiation and Matter



Abstract

Thermodynamics of irreversible processes in a radiation field is formulated,
based on kinetic theory, by treating nonequilibriuin radiation as a nonequilibrium
photon gas interacting with matter. The generalized hydrodynamic equations for
macroscopic variables necessary for describing temporal and spatial evolution of ir-
reversible processes in the system of matter and radiation are derived from kinetic
equations by using the modified moment method. The method rigorously yields
the conclusion that entropy differential is not an exact differential when the system
is away from equilibrium. Therefore, an extended Gibbs relation for the entropy
density does not hold valid. However, .u extended Gibbs relation-like equation
holds for the compensation differential which has heen shown to be an exact dif-
ferential. The entropy balance equation is cast into an equivalent form in terms
of a new function called the Boltzmann function. In the context of the present
formalism the light-induc- i viscous flow is theoretically explained for the entire
range of pressure. The modified moment method has been extended to the covari-
ant Boltzmann equation in order to formulate a theory of relativistic irreversible
thermodynamics. Furthermore, the kinetic theory foundations for relativistic ir-
reversible thermodynamics for the system of radiation and matter are provided.
The statistical mechanical formulas are obtained for various material and radiative
transport coefficients. The radiative transport coefficients stand in simple ratios
independent of material parameters. The ratios calculated are in agreement with

those used in the phenomenological theory using the Rosseland mean.



Résumé

La thermodynamique des processus irréversibles dans un champ de radiations
a été exprimée, sur la base de la théorie cinétique, en considerant les radiations
hors de 1’équilibre comme étant un gaz de photons interagissant avec la matiére,
Les équations hydrodynamiques généralisées pour les variables nécéssaires & la de-
scription temporelle et spatiale de 'évolution des processus irréversibles dans le
systéme de matitre et de radiation, ont été dérivées de la théorique cinétique en
utilisant la théorie des moments modifiés. Cette méthode a permis de conclure
qu'en toute rigueur, la différenticlle d’entropie n'était pas exacte pour un systéme
loin de 'équilibre. Par conséquent, 'extension des relations de Gibbs ne peut étre
valide, De toutes fagons, une relation de Gibbs étendue remplace la différentielle
de compensation qui, elle, est exacte. L’équation de continuité pour l'entropie a
été exprimée en termes d'une nouvelle fonction appelée fonction de Boltzmann.
Dans ce formalisine, ’écoulement visqueux induit par la lumiére a été expliqué
théoriquement pour toute 1'échelle de pressions. La méthode des moments modifiés
a été étendue a 1'équation covariante de Boltzmann pour formuler une théorie rel-
ativiste de la thermodynamique irréversible . De plus, les bases de la théorie pour
la thermodynamique irréversible relativiste des systémes de radiation et de matiére
ont été établies. Les formules statistiques ont été obtenues pour des nombreux
matériaux et de coefficients de transport radiatives. Les coefficients de transport
sont liés dans un rapport simple indépendant des paramétres des matériaux. Les
rapports calculés sont en accord avec ceux utilisés dans la théorie phénoménologique

qui considére la moyenne de Rosseland.
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Chapter 1
Introduction

It is well known that radiation, especially, equilibrinm (black-body} radiation,
has played a germinal role in the development of modern physics {1, 2]. Planck’s
pioneering work on blackbody radiation lay down the foundation of quantum me-
chanics. Einstein's celebrated paper in 1917 [3] first introduced the concept of the
stimulated emission of radiation by atoms which has led to the invention of modern
laser technology. Since then many progresses have been made both for understand-
ing radiation and its applications which are major tools to investigate microscopic
structures of matter,

Radiation we encounter in the laboratory and nature is generally in a nonequi-
librium state; in other words, a strictly thermal radiation field, namely, an isotropic
Planck distribution of photons, is hardly ever found in open systems from which
photons escape. Nonequilibrium radiation occurs in various contexts such as laser
physics (4], astrophysics [5], plasma physies [6], atomic physics [7a], photochemistry
[7b] and solar energy conversion [7c] etc. Thermodynamics of equilibrium radiation
is described by an equilibrium Gibbs relation for entropy change in a way completely
parallel to equilibrium thermodynamics of matter. Since there is nonequilibrium
thermodynamics of matter, we would ask a natural question: is there also a parallel
formalism for nonequilibrium radiation? One of the aim of this thesis is to answer
this question.

Since radiation cannot reach equilibrium by itself but requires interactions with
matter to do so, understanding irreversible phenomena of radiation would require
study of the macroscopic behavior of radiation and matter as a single system and,
in particular, the irreversible thermodynamics of matter interacting with radiation.
Despite the important roles which radiation has played in physical sciences, abun-

dant studies commensurate to the roles played, and recent works reported in the
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literature ({8] and also see, for example, ref. [9]), there is still a considerable need
for study in the area of nonequilibrium radiation.

In the hope to put the theory of irreversible processes in a radiation field on
a par with that for matter alone, Wilt [10] carried out studies on the question of
irreversible thermodynamics for radiation from mid fifties until the early seventies.
He presented an entropy balance equation for radiation, but did not develop the
theory further to construct a theory of irreversible processes in the presence of
radiation although such a theory would be necessary to answer the questions of local
thermodynamic equilibrium, etc., raised in his papers. Essex {11] also addressed his
study to an aspect of thermodynamics; he extended the principle of the minimum
entropy production to include radiation. The subject is briefly treated from a
kinetic theory viewpoint in the monograph by de Groot et al. [8] in terms of
Compton scattering of electrons in the relativistic formalism, but not enough to form
a basis to carry on with further studies of irreversible thermodynamics. Radiation
thermodynamics is also discussed by Kremer and Miiller [12].

Quite recently, the combination of laser physics and gas kinetic theory has
produced some interesting phenomena such as laser-cooling {13} and light-induced
kinetic effects [14] etc. G. Nienhuis and his coworkers developed a kinetic theory of
gas in the presence of light [9], which extended the well known Chapman-Enskog
method to include the interactions between atomic (molecular) gas and light.

From an astrophysical viewpoint nonequilibrium radiation has been discussed
by using radiative energy transfer equations. An extensive study on the solution of
radiative energy transfer equation for various boundary conditions and the astro-
physical implications of the solution is covered in Chandrasekhar’s monograph [2].
As Weinberg pointed out that since the discovery of the 2.7 K radiation background
an increased attention has been paid to the possible cosmological role of dissipative
processes {15]. A more substantial study of radiative transport problems can be

found in the monographs of Oxenius [6] and Mihalas and Mihalas [5]. This phe-
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nomenological theory of radiative transport does not provide dynamical foundations
for nonequilibrium radiation.

The theory of irreversible processes of radiation has not as yet reached even
the formative level achieved [16) {for that of matter. It has some way to go before a
satisfactory maturity is achieved as a theory, especially when the system is removed
far from equilibrium. In the works mentioned earlier, radiation is not put on the
same footing as matter at the kinetic level, since it is treated by ineans of a phe-
nomenological equation of radiative energy transfer and the evolution of radiation
entropy is inadequately treated as to allow a practicable theory of irreversible ther-
modynamics of radiation. Since the radiative encrgy transfer equations taken in
these works are not coupled to the kinetic equation for matter which may be away
from equilibrimin, one is not able to follow the irreversible evolution of radiation
and matter together. In this thesis we approach the problem by starting from the
kinetic theory viewpoint that takes radiation and matter as a mixture of particu-
late photons and material particles which evolves from a nonequilibrium state to
an equilibrium state.

We assume a semiclassical Boltzmann equation for photons which is coupled to
the Boltzmann equations for material particles {17]. The quantum effect of photons
is contained in the collision integral of the Boltzmann-Uehling-Uhlenbeck equation
for bosons. This way, the system of radiation and matter is viewed as a mixture of
photons and material particles which interact with each other according to the laws
of mechanics. The 1najor motivation for this approach is in the desire to formulate
irreversible thermodynamics of radiation and matter on equal footing and in a
unified manner. Instead of the Chapman-Enskog method [18] and the Grad moment
method (19], we employ the modified moment method [20] to solve the Boltzmann
equations of photons and material particles. The distinctive features of this method
are follows. Firstly, it is capable of treating nonequilibrium processes occurring far

from equilibrium. The conventional methods are only valid in the linear regime
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or near-cquilibrium states. Secondly, it allows to establish an exact irreversible
thermodynainic structure. The H theorem for the system of radiation and matter
is a natural outcome of the kinetic equations. The second law of thermodynamics
is rigorously sutisfied in the context of the modified moment method.

In addition, the present formalism shows that the extended Gibbs relation for
entropy change used in the extended irreversible thermodynamics [21] does not hold
valid. However, there is the compensation differential which is an exact differential
in the irreversible thermodynamics that satisfies the extended Gibbs relation-like
equation, but this means a revision of the logical structure of the extended irre-
versible thermodynamies is necessary. A new form of local H theorem is derived in
terms of the Boltzmann function introduced as a Legendre transformation of the
entropy density.

The kinetic theory permits deeper insight into irreversibility and thermody-
namics of radiation: for example, the classical theory of blackbody radiation is
recovered from the formalism presented here; it also enables us, from the kinetic
theory and thermodynamic viewpoints, to look at the celebrated theory [3] of Ein-
stein, by which the Planck distribution function was shown to be consistent with
the Boltzmann distribution function for matter. The present theory in fact allows
to make & nonequilibrium correction to the Planck distribution function, which is
not possible to obtain if the steady state argument is used as in Einstein’s theory. It
will be shown that the consistency between the Planck distribution function for ra-
diation and Boltzmann distribution function for matter is a result of the H theorem
and therefore of the second law of thermodynamics. The equilibrium distribution
functions so obtained are unique because of the H theorem.

One of the most important aspects of kinetic theory iz that it can provide a
way to derive the expression for the nonequilibrium distribution function. Since
the interaction of photons with particles via emission, absorption and scattering

leads to an exchange of energy and momentum between radiation field and material
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gas, photons and particles are, in gencral, in nonequilibrium state. What is the
nonequilibrium distribution function for a radiation field? We should answer this
question from both theoretical and experimental aspects, The theoretical formula
of nonequilibrium distribution function is obtained in the context of the modified
moment method which can be reduced to the Chapman-Enskog result in the linear
regime,

With the help of distribution functions we can define a set of moments which
basically belong to two different classes. One subset contains all the conserved vari-
ables such as mass, kinetic energy and hydrodynamic velocity which are collisional
invariants. Another subset consists of all the nonconserved variables (fluxes). Of
course, determining the distribution function is equivalent to determining these in-
finite number of moments. However, it is hopeless to find solutions for this infinite
set of moments in general. On the other hand experimental measurable quantities
are finite. A practicable theory should be constructed in terms of a finite number
of physical quantities. This means that we have to truncate the set of moments
according to physical demands of an event. The truncation procedure leads from
a microscopic description in terms of the distribution function to a hydrodynamic
description in terms of a finite number of moments. The evolution of the system will
be determined by the governing equations for the physically meaningful moments.
Since these moments also appear in the expression of entropy density, the evolution
equations of the moments are coupled to the entropy balance equation. The second
law of thermodynamics plays role as the constraint to select physically acceptable
solutions of the moment evolution equations.

The present kinetic theory formalisin establishes a bridge which links the ex-
perimental measurable quantities (macroscopic level) of a system and the dynamic
mechanism of constituent particles (atomic or molecular level). This makes it
possible to evaluate macroscopic variables in terms of particle interactions under

nonequilibrium conditions. In this sense, the generalized hydrodynamic equations
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of radiation and matter have been derived from the coupled Boltzmann equations
for photons and material particles by the modified moment method. Solving these
generalized hydrodynamic equations under certain initial and boundary conditions
will give us the values of the macroscopic quantitics which are necessary to describe

the system of radiation and matter.

The evolution of a system consisting of matter and a radiation field viewed as
n gas-Kinetic mixture of material particles and photons has a great advantage. This
opens the way to employ the apparatus of gas kinetics for describing the system,
where the microscopic cvolution equation has the form of a Boltzmann equation.
Since interacting systems of matter and racdiation cover a broad class of problems
under active study, such as laser-couling [13], optical piston [14] and light-induced
viscous flow [22], etc., the kinetic theory of such systems would be necessary to
understand the experimental results.

Light can exert forces on atom because photons carry momentum. The ex-
change of photon momentum with an atom can occur incoherently, as in the case of
absorption and reemission of photons, or coherently, as in the case of redistribution
(or lensing) of the incident field by the atom. By utilizing photon momentum, it is
possible to manipulate atoms by light. Many of the successes in atom manipulation
have occurred because not only laser can exert powerful forces on atoms but also
techniques have been found to cool these particles to low temperature which are
still in the vapor phase. Once the atoms are cooled to temperatures on the order
of 1 millikelvin, the electric and magnetic dipole forces can easily overcome thermal
motion, and these feeble forces become sufficient to control the atoms. Therefore
the atoms, which originally had an equilibrium velocity distribution with a high
average kinetic energy, end up in a nonequilibrium state with a narrow velocity dis-
tribution and a low average kinetic energy. It is apparent that light is able to lower
the entropy of matter. In order to provide a molecular theory of irreversible ther-

modynamical properties, for example, efficiency rate of a cooling process, a kinetic
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theory would be necessary. Laser cooling and trapping are finding applications in a
number of areas [23]. An application that is receiving considerable attention is the
construction of better time standards in the microwave or optical domain. A variety
of precision measurements will benefit from the long measurement times possible
with laser-cooled atoms. Perhaps the most exciting applications in the field of laser
cooling and trapping will come out of the ability to study problems in the polymer

physics and biology on a single molecular basis.

A completely different mechanism for affecting the motion of atoms by applying
a resonant light is light-induced kinetic effects. These are due to the combination
of a state-dependent collision cross section and a velocity-selective excitation of
atoms by laser. The most studied manifestation of light-induced kinetic effects
is the light-induced drift. Because of the Doppler effect, a traveling laser beamn
produces velocity-selective excitation of atoms. In other words, the excitation rate
differs from zero only when the component of particle velocities along the laser
propagation direction is near the Doppler-selected velocity v, = (w1 — wo)/ki, with
wy the central frequency of radiation, w, the transition frequency of the particles,
and k; the wave number. Since particles can only be excited within this narrow
group, it is natural to expect that the distribution functions of excited and ground
state contain a narrow structure around v,. This velocity selection yields opposing
fluxes of excited and ground state atoms. Because of the momentum conservation
law these two fluxes will cancel each other if there is no buffer gus in a system.
However, both fluxes feel different diffusion resistances in the optically inactive
buffer gas which is not affected by the light field since the collision cross section of
an excited atom is generally larger than that of the ground state atom. In particular,
an optical piston effect has been observed in the experiment for an optically dense
system [24]. When the laser frequency is tuned in the red Doppler wing the drift
velocity is in the laser propagation direction, thercfore the light can penetrate the

optically dense system farther and farther, sweeping the active atoms to the dark
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end of the tube. This is the so-called optical piston action or front formation. There
are some other light-induced kinetic phenomena which have been observed in one-
component gas system (without a buffer gas), for instance, surface light-induced
drift [25] and light-induced viscous flow {22}, cte.

At this point it is worthwhile to mention some applications of the light-induced
kinetic effects. The optical piston effect has been used for isotope separation; surface
light-induced drift may provide a tool to analyze the mechanism of particle-wall in-
teraction; light-induced viscous flow makes it possible to determine internal particle
interactions by measuring the macroscopic drift and there would still be some more
potential applications. The underlying mechanism of surface-light drift is quite
different from that of optical piston; it is due to state-dependent molecule-surface
interactions whereas the light-induced viscous flow is the result of the combina-
tion of a state-dependent collision cross section and nonuniform illumination which
produces stresses in the gases and gives rise to a particle flow.

However, the experimentel results on light-induced viscous fiow can not be
well understood by using a linearized kinetic theory. More specifically, in 1989
Hoogeveen et al. [22] reported on an experimental result which demonstrated a gas
flow induced in a capillary by a Doppler-broadened laser beam whose intensity is
radially distributed. The flow generates a pressure difference and a stress in the
capillary. By measuring the pressure difference by a differential manometer and
plotting it against the gas pressure, they were able to show that the normal pres-
sure regime behavior follows the classical Navier-Gtokes theory prediction, namely,
the Hagen-Poiseuille volume flow rate which accounts for the flow rate of a gas
through a tube under & pressure gradient when the pressure is in the normal range.
However, as the pressure was decreased down to the rarefied gas regime, the curve
for the pressure difference vs. pressure started to decrease in contrast to the Hagen-
Poiseuille theory prediction. In other words, there appears a maximum in the curve

at some low pressure.



In fact, this abnormal behavior is very closely related to the so-called Knudsen
paradox. M. Knudsen [26] in 1909 obscrved that the volume flow rate of gas through
a capillary under a pressure difference increases as the pressure diminishes below
a value in the rarefied gas regime, in contrast to the classical Navier-Stokes theory
prediction that the flow rate should vanish. Since this was reproducible [27] but not
possible to explain by the classical Navier-Stokes theory, the phenomenon was called
the Knudsen paradox. It is not a paradox, but an indication of the inadequacy of
the Navier-Stokes theory which cannot properly handle flows of gases in the range
of large Knudsen numbers ( 0.1 typically or larger). It has recently been explained
adequately by using the generalized hydrodynamic theory [28]. The basic physical
reason for the phenomenon is that as the gas density diminishes, the mean free
path in the gas becomes very long, thus the range of momentum transfer becomes
accordingly long, and, as a consequence, the gas behaves as if it is a non-Newtonian
fluid in the sense that the viscosity of a rarefied gas depends on the shear rate.
Such a fluid has a vanishing viscosity at the wall of the tube which results in a plug
flow. The ultimate consequence of this is that a non-energy-dissipating collimated
beam is formed in the capillary at low pressure and thus the molecule moves axially
and ballistically along the tube under a pressure difference. This phenomenon will
be explained by applying the results of the kinetic theory of radiation and matter
{29] described later. The basic idea of this theory has also been applied by Enk
and Nienhuis [30] to analyze some irreversible processes in connection with the

light-induced kinetic effects.

In the proceeding discussions nonrelativistic kinetic theory of radiation and
matter and its applications have been presented. However, there are some prob-
lems, particularly in astrophysics and nuclear physics (heavy ion collision), where a
relativistic description is necessary {8]. Therefore, we need to develop a relativistic
kinetic theory which is parallel to the nonrelativistic counterpart as we mentioned

earlier in order to understand nonequilibrium behavior of many-body systems con-
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sisting of high speed particles. The relativistic irreversible thermodynamics and its
applications were presented by Miiller [31] and other people [32]. The relativistic
Boltzinann equation was also used to study irreversible processes in relativistic gases
by employing either the Chapman-Enskog method or the Maxwell-Grad moment
method to approximately solve the kinetic equation [8]. Especially, these methods
were used as means to obtain or justify a macroscopic theory of irreversible processes
in the relativistic framework. When we aim to formulate a theory of irreversible
processes, the question of the nature of entropy unavoidably arises, but relativistic
kinetic theory has not as yet yielded a satisfactory answer to the question. The
range of validity of the existing approximate relativistic thermodynamic theories

depends on the answer to this question.

The modified moment method has been extended to solve the relativistic Boltz-
mann equation [33]. This extension is able to yield a rigorous answer to the question
of whether the entropy differential for irreversible processes is exact or not. The
answer turns out to be that it is not an exact differential if the system is away from
equilibrium. This means that the extended Gibbs relation forming the basis of ex-
tended relativistic irreversible thermodynamics (EIT) does not hold valid at least
from the viewpoint of the covariant Boltzmann equation. However, there is a differ-
ential form called the compensation differential that looks like the extended Gibbs
relation used in EIT, but this means a revision of the existing EIT formalism and its
logical structure. There are a number of theoretical results that the present quest
for the answer has produced: the generalized hydrodynamic equations of relativistic
fiuids; the question of temperature in relativistic kinetic theory. The present for-
malism in essence puts the statistical mechanics of nonequilibrium thermodynamics
on a par with the Gibbs ensemble theory of equilibrium statistical mechanics. All
the macroscopic evolution equations are presented in such a form that they consist
of terms which are easily identifiable with the corresponding terms in their nonrel-

ativistic versions and purely relativistic terms which vanish in the nonrelativistic
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limit. Thus, the relativistic corrections to the classical generalized hydrodynamic
equations are clearly identified and made casy to obtain.

It is worthwhile to point out that the relativistic form of the generalized hydro-
dynamic equations is, mathematically speaking, hyperbolic differential equations
which give the speed of the wave solution less than the speed of light. However,
conventional hydrodynamic equativns such as the Navier-Stokes equations or the
relativistic Navier-Stokes equations are parabolic differential equations which give
an infinite speed of propagation. This is against the principle of relativity. This
problem is discussed in the framework of relativistic irreversible thermodynam-
ics which is derived from relativistic Boltzmann equation by using the Chapman.

Enskog method or the Grad moment method,

By using the relativistic kinetic theory it is possible to formulate a nonequilib-
rium statistical mechanical theory for the systems consisting of photons and rela-
tivistic particles which interact with each other in a nonequilibrium condition [34].
The covariant Boltzmann equations for photons and material particles have been
solved by means of the modified moment method which seeks the solution of kinetic
equations in a way consistent with the thermodynamic laws. The physical motiva-
tions to have a covariant kinetic theory of radiation and matter are following. The
generalized hydrodynamic equations derived from nonrelativistic Boltzmann equa-
tion are not explicitly Lorentz covariant. Therefore, the whole theory is rendered
awkward by treating particles as nonrelativistic particles and making Doppler shift
corrections for photon freauencies in the treatment of photons. It is also difficult to
make sure that the definitions of statistical formulas for macroscopic variables are
correctly made with regard to the relativistic correction and the evolution equations
have correct relativistic extensions. These awkward features can be easily removed
if a covariant theory is formulated. There are some physical problems where a rel-
ativistic formalism is unavoidable, for example, if particles move at high speed and

interact with radiation.
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The theory of transport processes is developed for a system of photons and
material particles [35]. The statistical mechanical formulas are obtained for mate-
rial and radiative transport coefficients. In contrast to the phenomenological theory
which is based on the radiative energy transfer equation there are no free parameters
in the expressions of transport coefficients of nonequilibrium radiation field. Vari-
ous radiative transport coefficients stand in simple ratios that are independent of
material parameters. The ratios calculated are in agreement with those used in the
phenomenological theory by using the Rosseland mean for the radiative absorption
cocflicient. For explicit calculations of the transport coefficients a photon-electron
system is considered with the Compton scattering as the elementary dynamical pro-
cesses underlying the transport process. The agreement with the phenomenological
theory is found to be excellent, supporting the soundness of the underlying kinetic
theory of radiation and matter,

Finally, the organization of this thesis is summarized as follows. In chapter 2
the nonrelativistic kinetic theory and irreversible thermodynamics of radiation and
matter are presented. Special attention is focused on the theoretical foundation.
An application of this theory to the light-induced viscous flow is given in chapter
3. The relativistic kinetic theory and the modified moment method are presented
in chapter 4. The covariant kinetic theory of radiation and matter is discussed in
chapter 5. The calculation of transport coefficients of photon gas is carried out in

chapter 6. Concluding remarks and discussion are given in chapter 7.

12



Chapter 2

Kinetic theory approach to irreversible

thermodynamies of radiation and matter

We present the nonrelativistic kinetic theory for an interacting system of matter
and radiation. The kinetic equations are constructed in the spirit of the Boltzmann
equation on the basis of a model for interaction between matter and radiation [17].
The H theorem is proved therewith and various aspects of nonequilibrium radia-
tion and its equilibrium limit are discussed. Since the coupled kinetic equations of
matter and radiation are nonlinear, an approximate method of solving these kinetic
equations is unavoidable. The modified moment method has been used to solve the
Boltzmann equations of matter and radiation. The most important differences of
the modified moment method with the conventional Chapman-Enskog method and
the Maxwell-Grad moment method are as follows. It seeks the solution of Boltz-
mann equation in such a way that the second law of thermodynamices is satisfied at
the order of approximation made. Secondly, it can be applied to analyze nonlinear
behavior of gas flow in a thermodynamically consistent manner whereas the nonlin-
ear order solutions by the Chapman-Enskog or the Maxwell-Grad moment method
are not generally consistent with the second law of thermodynamics. With these
kinetic equations the various macroscopic variables necessary for nonequilibrium
matter and radiation are defined and their evolution equations can be derived in

the local rest frame moving at fluid velocity u.

2.1 Kinetic equations

Let us assume a system of photons and a dilute gas consisting of particles with
internal degrees of freedom so that they can make transition from one internal state
to another on ahsorption or emission of a photon [17). The material particles in dif-

ferent internal quantum states will be regarded as different species. These material
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particles seatter, absorb or emit photons. Since the gas is dilute, the particle cor-
relations mnay be neglected. Therefore, the particle distribution in the phase space
is adequately deseribed by a singlet distribution function alone. Since the point of
interest here is in irreversible phenomena but not in some questions in dense fluid
kinetic theory, singlet distribution functions obeying some irreversible kinetic equa-
tions (e.g., Boltzmann equations) are sufficient. As to photons, since they do not
interact with each other owing to the linear nature of the electrodynamic equations
(Maxwell’s equations), the equilibrium state of photons is attained only by their
interaction with matter. If we view radiation as consisting of particulate photons,
the abscnce of photon-photon interactions suggests that a singlet distribution func-
tion should be adequate for the photon distribution. But this photon distribution
function is not independent of the distribution functions of matter since photons
interact with the material particles; in fact, the distribution functions obey a set of
coupled kinetic equations, The material particles henceforth will be called simply
the particles whenever confusion will not arise thereby.

The material gas consists of species a, b, ¢, - - - ; these species labels are assigned
a dual role to indicate both the species and the internal state in which the par-
ticular particle is found. The subscript or superscript r on a distribution function
or macroscopic variables will refer to radiation (photons).The singlet distribution
function for species a will be denoted by fa(va,r;t) where v, is the velocity of a
particle of species a and r its position at time t. Similarly, the photon distribution
function will be denoted by f,(k,,r;t) where k, is the wave vector of radiation.
The distribution functions are normalized such that they give the number density
at position r and time t. We will find it convenient for uniformity of notation to
use the wave vector k, instead of v, for particle species a: m,v, = kk, where m,
is mass of species a and % is the Planck constant/2x.

Then the change in the distribution function of species a in a small elementary

phase volume around point (r,ka) is assumed to be described by the Boltzmann
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equation [18]

(0 + (hka/ma) -V + (Mo Fo /) Vi fa(ka, v, t) = (Ofa)cot (2.1)

where & = 9/0t, Vi = 8/0k,, and F, is the external force on unit mass of species

a, which may be taken tc be the Lorentz force
Fo=z:z(E+c¢'vy x B) (2.2)

with z, denoting the charge number per unit mass of species a: z, = rg/m, if the
species is charged. The right-hand side of (2.1) represents the Boltzmann collision
‘term accounting for the change in the distribution function due to collisions of
particles of species a with other particles including photons. To be specific about

the processes, we will consider the following models for photon-matter interactions:

a+hw=a+ hw (M1)
a+hw=a*+ hw* (M.2)
a+hw=b+ hw* (M.3)

where the asterisk denotes the post-collision value. Mechanism (M.1) describes an
elastic collision between a particle of species @ and a photon frequency w; mechanism
(M.2) describes an inelastic collision by which the photon frequency and the kinetic
energy of particle a change through, for example, Compton scattering; and the
mechanism (M.3) describes a "reactive collision” by which both the material parti-
cle and the photon change to another material particle (i.e., a particle of another
quantum state) and a photon of a different frequency, respectively. This "reactive
collision” is an inelastic collision in which material particles a and b change their
internal quantum state on absorbing or emitting a photon. If a photon of frequency
w is absorbed by the material particle @ which is transformed to another species

b, then w* = 0. The reverse of this process will be a spontanesus emission of hw
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by a material particle b which subsequently becomes another material particle a.
The mechanisis presented leave out the process in which a photon is created or
destroyed during a two-body collision between particles, say, a and b. This process
requires a three-body collision in the present approach and is possible to take into
account if the kinetic equations are generalized to include the three-particle collision

operator. Its inclusion, however, would not yield a new insight that warrants the
mathematical complication incurred thereby.

To study irreversible thermodynamies of radiation and matter from the kinetic
theory viewpoint, precise details of dynamical processes of how radiation interacts
with matter is not essential except for the fact that the kinetic equations involved
are irreversible and there are well-defined processes for which relevant collision cross
sections can be calculated from the mechanical principles, either classical or quan-
tum mechanical, based on the mechanism postulated as, for example, in (M.1)-
(M.3). Therefore, it is sufficient to assume that the transition probabilities, which
will be denoted by Wif) and Wi‘?bj, are known for elastic as well as inelastic and
"reactive” collision processes, satisfy certain symmetry relations elaborated later,
and have collisional invariants such as mass, momentum and energy. For brevity
of notation the distribution function f,(ks,r,t) will be abbreviated simply by fs.
Then the Boltzmann collision term corresponding to the aforementioned elastic,
inelastic and "reactive” collision may be written in the form [17]

r
(Befadeott = 3 Celfar £+ 3.5 ColfufrlF2£2) (23)
i=a k: i=e
where the term for ¢ = r is understood to be over photon wave numbers, the prime

on the summation sign means the exclusion of the photon species, and
Colfor S = (207G [ ki [ AW (a, Kilk K9

{f;f:[l + fafa][l + Eifs'] - fa.fi[l + Eaf;][l + Eif:]}: (2-40)
ColfofrAFE F2) = (276, ] dk, f QWD (o, ke K], k)X
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{fi'f:'[l + fnfal[]- + frfr] - fafr[l + f;’f;][l + Erf:.]} (2.4b)

where dQ0 = sinfdfdd is the scattering solid angle, GG; denotes the statistical weight
for species i and G, denotes the statistical weight for photon. The asterisk denotes

the post-collision value. The symbol ¢; is defined as follows:

. = 0, ifiis a particle;
*7 11, ifiisa photon.

In defining ¢; as above, the implicit assumption is made that the particles obey the
Boltzmann statistics while the photons obey the Bose-Einstein statistics. The right-
hand side of (2.4a) accounts for the elastic and inelastic collision effects for specics a
and i (i = a,b,-..,7). The additional factor in the collision term (1 + €, f5][1 + €; fil
or {1 4 €gfa-][1 + € f7] represents the quantum effect (the indistinguishability of
identical particles) that affects the number of final or initial states allowed. The
right-hand side of (2.4b) accounts for the contribution to the population change in
species a due to a "reactive” collision of a photon and particie a. The quantum
effect is taken into account also in this case. This kind of quantum form for the
Boltzmann collision operator was first used by Nordheim [36] in 1928 and later by
Uehling and Uhlenbeck[37] in their study on quantum gases. It was also applied to
study carrier mobilities in semiconductors by Eu [38].

If the wave vector is written as k, = k,k,, where k, = |k} = w/c (cis the speed
of light, w the angular frequency and k, the unit vector in the direction of prop-

agation), the Boltzmann equation for the photon distribution function f.(k,,r,t)

coupled to (2.1) is

(at + cr‘r * V)fl"(krv r, t) = (a!fr)(co!l)' (25)

Here the collision term on the right-hand side consists of contributions arising from
elastic, inelastic and “reactive” scattering of photons by particles. It consists of

forms similar to the terms in (2.4a, b):

@cfr)eot = 3 ACfrr )+ 3 3 ColfefilF 1)) (2.60)

i=a j=a k2
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where

Celfefi) = (2n)G, ] dki / QW) (ky, kK, k) x

and

Colfrlkn) Flf (k2D FS) = (20)°Gs ] dk; / AW e (K KK, ) X
(kD 1L+ filll+ enfl = Ffeko)L + 65301 + e SR (KDY (260)

The sum over 7 in {2.6a) must be excluded in the case of i = r since photons do
not interact with each other. This means that photons cannot reach equilibrium
by themselves if they do not interact with matter. Therefore, the theory of irre-
versible thermodynamics of radiation cannot be formulated independently of the
corresponding theory for matter with which the former is in interaction.

The restriction on the summation sign mentioned earlier can be removed if we

formally introduce the transition probabilities:
Wi (ke ko lki, k2 = 0, Wi, (ke ke [KE, KE) = 0

identically. Furthermore, if we also define F';. = 0, then the Boltzmann equation for
photons becomes formally similar to the Boltzmann equations for material particles
(2.1). Thus, we summarize the Boltzmann equations for the system consisting of

photons and material particles by the unified equation

[0 + (Rkif/mi) - V + (miFi/R) - V] filki, x, t)
=Y {Cefir fi) + DD Cl i FilFE 1))
!

j=e k

= Rilfil =) Rilfifi (2.7)

j=a
where the subscript ¢ runs over all species, matter and photon, fk,/m, must be

understood to be ck,, and m, is a fictitious photon mass defined later.
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In counection with the Boltzinann equation we note the following properties of
the transition probabilities:

Wi Irl
D, = 29
These relations stem from the prineiple of microscopic reversibility and will be used
for proving the H theorem for the kinetie equations postulated.
In the existing works [2, §, 6, 10, 11] ou radiation mentioned earlier, a radiation
cnergy transfer equation is used, whicl is a linear evolution equation for the intensity

I, of radiation of frequency 1. For exaple, if we quote Wildt[10], the radiation

energy transfer equation is

5 0 J
c laIu + Zﬂs 'a_r:Iu = —(kp + o0 )y + ap Lo + €00 (29)

where gt is a direction cosine, w, the absorption coefficient, ¢, the (isotropic)
scattering coefficient, €,p the spontancous emission cocefficient and I,y the integral
of I, over angles (i.c., the cnergy density). This is a prototype of radiation energy
transfer equations used in the existing theories of radiation. The radiation intensity

I, is lincarly proportional to the photon distribution function fi(k.,r;t),
frlkp,rit) = (/R (Kkpy 1y ). (2.10)

Therefore, the left-hand side of (2.9) is basically the same as that of (2.5). However,
the right-hand side of (2.9) differs from that of (2.5) as given by (2.6a) and (2.6b) in
that the former is linear in I, whereas the latter is nonlinear in photon distribution
functions. It must be noted, though, that their physical significances share the
same origin since both account for a photon population change due to interactions
between matter and radiation one way or another. Nevertheless, there is one very
important difference: that is, the kinetic equation (2.5) together with (2.1) naturally

yields the (equilibrium) Planck distribution as a consequence of the H theorem as
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will be shown in section 2.2, In contrast to this, the radiation energy transfer
equation (2.9) requires the frequency-dependent source function defined by I} =
€o0/K, s an input obtained by some other physical considerations, and this I} is
taken to be the Planck distribution function. It is casy to see that although the
equilibrium solution for (2.9) should be the intensity of black radiation (the Planck
distribution), such a solution is merely implicit, being hidden in the coefficients €,
and &, that must be chosen in an ad hec manner by an auxiliary theory outside
the framework of the theory in question. For the purpose of formulating a theory
of irreversible thermodynamics for radiation this aspect of equations like (2.9) is a

major weakness that is not present in the kinetic theory.
2.2 The H theorem, entropy and Planck’s law

The kinetic equations for the system of matter and radiation admit an H func-
tional with which an entropy can he defined. The entropy so defined can be shown

to increase with time, reaching a maximum at equilibrium. We define the entropy

of the system by the formula

S(t) = Sm(t) + Se(t) (2.11)
with

Sn(t) = ~ka ¥ (21)°6; f dr / dki fi(lnfi — 1) (2.124)

Si(t) = —kg(27)°G, f dr f dko{folnf, =1+ flinll+ £])  (2.125)

where S;;, and S, are respectively the entropy of matter and of radiation. Note that
the sum over 7 in (2.12a) is only for the material species. We shall abbreviate the

averaging operation with angular brackets,

(2r)7%G; /dki--' = ()i
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or
@076, [dheeo= (o,

from which the subscrip i or 7 will be dropped whenever there is no possibility of

notational confusion. Differentiation of S(t) with time yiclds

dS _dS, , dS.

dt 4t ' dt
=-kp Z’ / dr(In fi0. f;)
— kg / de({Infy — [l + f.]}00f:). (2.13)

By introducing the symbol ¢; defined before, we can cast the entropy derivative in

a simpler, unified form

%‘? = —kg Zfdr({lnf.- —In(1 + € fi]} O, fi) (2.14)

where the sum over 7 is now material species as well as radiation. On substitution

of the kinetic equation (2.7) and integrations by parts we can put (2.14) in the form

% - kngdr(ln[e; + fHRD

= kp Zr: zr: ]dr(ln[ef + £ R

= ks >y /dr(zn{[e,- £+ £ )Ry

-

ta > Y [drltn{sy i+ et + eif)
J H
[fifill + & ff 11+ € £} 1} R ;i)

>0 (2.15)

where the third equality is due to the symmetrization with respect to particle indices
and the fourth equality is the result of symmetrizing collision integrals by using the
microscopic reversibility expressed by (2.8). Cast in such a form, the right-hand
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side of the fourth equality is seen to be always positive and we conclude that the
entropy time derivative is always positive: it is the H theorem. The equality holds

at equilibrium where hold the relations
In( ;eqfi‘cq) = In(fﬂeqfieq) (ﬂ,l' -';é T), (2.160)

ln{f:cqf;cq[l + frttl']} = ln{f“?f"?[l + f:eq]} (a ‘-/: r)' (2165)

where fyeq, etc., mean the equilibrium distribution functions. Eqgs. (2.16a, b) imply
that the logarithmic functions of the equilibrium functions are summational invari- -
ants. Since there are only five summational invariants such as mass, momentum
and energy, In fqeq, etc., must be functions of the summational invariants. By us-

ing the usual procedure [18] taken for constructing the equilibrium solution for the

Boltzmann equation, we easily deduce
faeq = ezp[—B(Ha - p3)] (2.17a)

exp(—pu2) = ng* (exp(—~PAH.)) (2.17b)

where H; is the kinetic energy, 8 = 1/kpgT, T being the absolute temperature, and
443 the normalization factor which is simply the equilibrium chemical potential. We
will elaborate on these quantities later when local equilibrium distribution functions
are introduced. Since different internal states of material species are counted as dif-
ferent species and the kinetic equations postulated do not contain an internal state
evolution operator, they do not permit determination of population distributions
of various species over internal states. This defect may be cured if the Hamiltonian
of the system is given by H; = m;c?/2 + ¢2,, €%, corresponding to the internal en-
ergy, ¢; peculiar velocity defined ¢; = v; —u where u is the so-called hydrodynamic

velocity:
1 '/
u=- dvimivifi(vi,r;t
Ly Fvim)
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and p the total mass density of material particles. With the help of the hydrody-
namic velocity u, we define the substantial time derivative as following:

d
E:@,-{-u-v.

The normalization factor Su? is also added a factor, say, —Ing; where

4 = Z exp(_ﬁ‘s?a)t
3
the sum is being over the internal states of species s.

Eq. (2.16b) may be recast as follows:

In{fiegll + freglt = In{full + 751}
and with the definition
exp(W?) =1+ f7} (2.18)
it takes the form
In{ f3eqeapl=We*]} = In{facqeap~ W)}, (2.19)

Since this relation then is in exactly the same form as (2.16a), it is possible to
deduce that W? consists of summation invariants only: in fact, it is sufficient to

take in the laboratory frame

W = B(hw — x2) (2.20)

where ¢ is the exponent of the normalization factor which will turn out to be equal

to zero if the photon number is variable. From (2.18) and (2.20) we find

Frealw) = {ewpl(huo - p2)B] - 1) (2.21)

It is easy to show pu® = 0 if the photon number is variable. The equilibrium number

density of photon is given by

ny = NofV = {freq(w))

=n-%"? j:o dww? {ezp{(hw — p2)p) — 1} 1. (2.22)
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This nwinber changes as 42 and g change. If the radiation pressure is denoted by
Pr, the thermodynamic potential in the grand canonical ensemble , = —p,V may

be written as
Q, = (V/ni*B) ./:o dwwiin{l — exp[(p® - hw)B]}. (2.23)
In that case, the number density n. is given by
ne = —(0Q./0u)T Vv (2.24)

where g is the chemical potential and, moreover, the differentiation of §2, with

respect to pf exactly yields (2.22). We thus identify u2 with the chemical potential
u
Hy = (2.25)
Furthermore
p=(0A%/0n.)r,v = =T(3S2/0n; )T,V (2.26)

where A? is the work function, and if A is required to be a minimum as it is varied

with respect to n,, we must have

(0A2/On. )Ty =0 (2.27a)

which implica
pe =0. (2.27b)

That is, equilibrium radiation has a vanishing chemical potential. Therefore, the

equilibrium distribution function takes the form

freq(w) = [ezp(hwp) — 1)~ (2.28)

In order to determine the parameter 8 we proceed as follows: According to the

Stefan-Boltzmann law [39] the radiation energy density is given by

E% = 4055T%/c (2.29)

24



where osp is the Stefan-Boltzmann constant. We now calculate E2 by using freq

given in (2.28) and equate the result with the one in (2.29),

dospT /e = 72 [15(he)* 8. (2.30)

Thus, we find

(BT)™* = (60he® /7)o sB (2.31)

which must be a universal constant since ogg is universal as verified experimentally,
namely, by the Kirchhoff law (1, 39]. This universal constant turns out to be the

Boltzmann constant raised to the fourth power and hence there follows the relation

This identification of 8 also agrees with the meaning of 3 obtained from the defini-
tion of temperature in terms of the equilibrium distribution function f,., for species
a # r. The existence of a single parameter 3 for both radiation and matter must
be emphasized. This way, we have identified 8 from the viewpoint of radiation in
a completely consistent manner with that of matter, and the distribution function
so determined is the well known form for black body radiation, namely, the Planck
formula. In the present framework it is a unique equilibrium solution for the ki-
netic equation (2.7) since there is only one linear combination of the summational
invariants satisfying (2.16), and this uniqucness is ultimately due to the H theorem.
Moreover, this solution (2.28) and Maxwell distribution function (2.17) are mutually
consistent with each other. This mutual consistency between the Planck distribu-
tion function for radiation and the Boltzmann distribution function for matter was
first shown by Einstein in his well known paper [3] of 1917 where stimulated emis-
sion was also introduced. A term corresponding to the stimulated emission appears
as the quantum effect term in the collision integral in the present theory. Einstein

exploited the detailed balance to show that the Planck distribution function couid
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be derived alternatively to the original derivation. Here, the kinetic theory deriva-
tion shows that the aforcimentioned consistency is deeply rooted in the H theorem
and therefore the second law of thermodynamics.

Since the equilibrium distribution functions are known, it is possible to calcu-
late equilibrium thermodynamics quantities [39] with them. Here we only make a

few relevant remarks helpful for the calculation required. Firstly, note that
dk, = kidk,dk, = ¢ dwdk,
and, secondly, G, = 2 for photons. Then, it is straightforward to show that
5° =4V E?/3T. (2.32)
The radiation energy density is given by
E® = x%(kgT)*/15(he)® (2.33)
which, on subsititution into (2.32), yields
52 = 1605pT*V /3c. (2.32")
A similar calculation may be made for 2, with z2 = 0 and we find
pr=E2/3 (2.34)

for the radiation pressure. Note that S° is independent of n,. Let us cast (2.32),

by using (2.43), into the form
S;=(Ex +pV)/T  (E7=EQV)
which implies that the radiation enthalpy is simply given by

H® = TS°,
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This means that the radiation Gibbs free energy is equal to zero, and it agrees with

the fact that the radiation chemical potential is equal to zero.

In the casz of gases obeying the Roltzmann statistics the thermodynamic tem-

perature is defined by

1/T = (0S/OE)v (2.35)
where § and E are the cutropy and the internal energy of the system, respectively.
In the case of equilibrium radiation we have defined the temperature through the
Stefan-Boltzmann law. This procedure can be shown to be consistent with the
thermodynamic definition of temperature given above. It is straightforward to see

that there holds the equilibrium Gibbs relation for radiation (1, 39
TdSe = dE? + p.dV. (2.36)

This relation is deeply rooted in the Stefan-Boltzmann law of radiation and it is a

motivation for defining the radiation temperature by means of the aforementioned

law.

2.3 Nonequilibrium distribution functions and macroscopic evolution

equations

The H theorem makes it possible to determine uniquely the mutually consistent
equilibrium distribution functions (2.17) and (2.28). There remains the problem
of determining the nonequilibrium distribution functions obeying (2.7). Since the
kinetic equations (2.7) are nonlinear integro-differential equations which may not
be solvable exactly, approximate solutions must be sought after. It is emphasized
that any approximate methods should satisfy the second law of thermodynemics.
The modified moment method has been shown to satisfy the strict requirement [20,

40] in the case of material gases. In this method the nonequilibrium distribution

functions are sought after in an exponential form,

fi = expl-B(H: + HV — )] (2.37)
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where pi; is the normalization factor defined by

exp(~Bpi) = ni ' (exp{-B(Hi + H{"))) (2.380)

and H,-(”, the nonequilibrium part of the distribution function, is written in the

form

HY =3 x{® o al®, (2.38b)
a2l

Here, .\’f“) are as yet undetermined functions of macroscopic variables only and
hf-‘“) arc expressible in terms of tensor Hermite polynomials of peculiar velocity
¢; = hki/m; — u with u denoting the mean fluid velocity, which will be statistically
defined later. The symbol © means a scalar product of vectors or tensors. Here we

list some physically relevant terms of hE“’ as follows

hgl) = [mycie;]®, hf-” = %Tr(m.-c.-ci) — pi/ni,

S = (%mic? +e—hiei, RV =myc;, (2.39)

where [ ](?} denotes the traceless symmetric part of the second rank tensor, p;
is the static pressure of material species i and n; its density, and A; the enthalpy
defined by k; = E; + piv;. It is apparent that h$°) are the microscopic expressions
of hydrodynamic variables, since when averaged over the velocity distribution, hf-a)
will give the shear stress, the excess trace part of the stress, the heat flux and mass
flux, etc. The details are given, for example, in ref. [40]. Since radiation part is our
main subject, we will pay much attention to them.

The nonequilibrium distribution function of radiation may be constructed in a

form similar to the Planck distribution function as follows
fr(w) = frlkr,r,t) = {ezp[W,(k,)] - 1} (2.40)

where W, is a function of w,k,, r and t. As well known, the equilibrium Planck

distribution satisfies Wien’s law (1, 39), that is, fr. is & function of dimensionless
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variable * = hw/kgT only, in the labratory frame. Since Wien's law is a scaling
law, it is likely to remain valid even for nonequilibrium radiation. Therefore, we
use Wien's law to define the nonequilibrium temperature of radiation which will
give rise to a sensible structure for irreversible thermodynamics. Let us introduce

dimensionless vector x = hk,/kgT = X, then W, is looked for in such a way that
BW(w, k) = W.(x) (2.41)

that is, W;(x) is not an explicit function of T but the reduced variable x. By using

this form of the distribution function the energy density of nonequilibrium radiation

is

E, =V E. =2(2r)"° /dk,-hw{e;rp[W,-(x)] —1}-!

= (kgT)*Fg (2.42)

where
Fe= f dxz {ezp[Wy(x)] — 1}

which is a function independent of temperture T
Since a system of radiation and matter is considered as a gaseuus mixture of

photons and material particles, the kinetic temperature of this system should be

defined such that
3 | rl
-2—nkBT = (Z -ém;v?f;) + (hwfr) = (Z Em;v,?f.-eq) + (hw freq) (2.43a)

where n is the total number density of material particles and photons: n = ¥/, ni+
n,. The radiation distribution function then must be consistent with the matter

distribution functions determined such ihat (2.43a) holds in addition to two other

conditions,

Z, pi = (Z’mifi) = (Z' mifieq) (2436)
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pu = Z’p,-u,- = (Z m,v,fi} = z mMiVifieq). (2.43¢)

These conditions are the so-called matclnng conchtxons which give the operational
meanings of temperature, mass density and hydrodynamic velocity. We remark
that these kinetic definitions of macroscopic variables are consistent with the ther-
modynamic definitions. In some works on kinetic theory of gaseous mixtures, a
multi-temperature is introduced, that is, different temperatures are assigned to dif-
ferent species. But such temperatures do not have thermodynamically operational
meaning. For instance, if a cavity contains nonequilibrium gas and radiation, it
is impossible to determine, and meaningless to talk about, the gas and radiation
temperature separately since the gas and the radiation interact with each other
and hence there is no way to measure the temperature of each species directly and
independently. Therefore, it is necessary to formulate a kinetic theory in terms of
a common temperature for an interacting system of radiation and matter. Such a
temperature is generally space and time dependent for a nonequilibrium system.
In order to derive evolution equations for the macroscopic variables for the
photon gas we first introduce the energy-momentum tensor T which is define sta-

tistically by the formula
y B .
7 = 204 [ SRyl fo(p) (249
where p® = (p - p)}/? for photons. Under the Lorentz transformation p — p' [the

four-momentum p = p* = (p,p®)), it can be shown,

3
‘“’f,( )= 2

f(p = invariant. (2.45)
pOf r

Since the distribution function is a Lorentz scalar

f=(p) = fi{p’),

the energy-momentum tensor 7% transforms as a second rank tensor,
. . [d&p . .
T = 2ch~3 / p—f,’p"p”fi(p')
3
- [P
= 2ch™? —p-al?-p"p" +(p). (2.46)
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Under the Lorentz transformation the frequency transforms as

v = (1 =k, - u/c) (247)
where
v = {1 =u?/A)V2 &k, =k, /k,

Eq. (2.47) can be reduced to the nonrelativistic Doppler formula

v' = v(1 -k, ufc) (2.47")

if the high order terms of O(c=?) are neglected. The aberration formula for k, is
given by

ki = [1a(1 — k- u/e)] 7 {k = (u/c)lru + k- u/e(l + 7)) (2.48)
In consistency with the nonrelativistic approximation neglecting the terms O(c=?)
or higher, (2.48) may be written as
K. =~ (k, — u/e)(1 =k, -u/fe)". (2.48")
Then it is easy to show that in the local rest frame radiation energy density can be
given by the statistical formula

E, =2p"3 /dsphw(l -2k, - u/c)fe(p,r,t). (2.49a)

Under the aforementioned nonrelativistic approximation we may put E, in a fol-

lowing form
E, = (hw(k, — u/c) - (ck, — u)f;) (2.494')
where
(Afr) = 2h8 /d"’pAfr.

Other macroscopic quantities which are necessary to describe the system, such as

heat flux, pressure tensor, etc. are defined accordingly

Q. = (h(1 — k, - ufc)(ck, — u)f;) (2.49b)
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P, = (hw(k, — u/c)(k, — u/e)fr). (2.49¢)

The hydrodynamic pressure of photon gas is defined by

pr = %Ev = (2/34°) f d*phw(k, — ufc) (ke — u/e)freq. (2.49d)

These statistical mechanical quantities of radiation are in close correspondence with
their matter counterparts defined in terms of the peculiar velocity with respect to
the hydrodynamic velocity u.

According to the modified moment method, W, is taken to be the following

form in the local rest frame moving with the velocity u
Wy = B{hw(l + k, - u/e) + > X @Al — ) (2.50a)
5

where g, is the exponent of normalization factor for the radiation distribution func-

tion,
nr = (fr); (2.50b)

X.(-a) are functions of macroscopic variables such as stress tensors, heat flux, etc.,
which will be determined from the kinetic equations postulated; and finally ¢ are

defined in such a way that they give relavent macroscopic variables when averaged

with the distribution function

Y = hwf(k, — u/e)(k, — u/e))?, (2.51a)
h®) = (h/3)Tr((k, — u/e)(ky — u/c)] — pr/nr, (2.51b)
A = [hw(l -k, - ufe) — &](ck, — u/e), (2.51¢c)
Y = ck, —u, (2.51d)
W% = hwPy(k, ~u/jc),  ete. (2.51e)

where €, = E,/n, = n*kpT/30¢(3) is the mean energy per photon and Pi(z) is
the Legendre polynomial of order 3 and ¢{(3) = 1.202 is a Riemann zeta function.

Higher order moments may consist of higher order Legendre polynomials, At this
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point it is useful to make the following comments in connection with the moments
defined in (2.51). Firstly, the Doppler effect has been taken into account although
the nonrelativistic approximation is used. Secondly, in the phenomenological the-
ory the radiative energy transfer equation (2.9) is solved by taking the Eddington
diffusion approximation [2, 5]. It is nothing but the lowest order approximation in
a moment method for the equation, which is generalized by including in principle
a complete set of spherical harmonics of k,. In other words, this generalization is
a moment method for the radiative encrgy transfer equation. The present moment
method has some important distinguishing aspects: (1) Our starting point is the
Boltzmann-type kinetic equation for photon gas instead of a radiative energy trans-
fer equation. This formalism establishes a bridge between the dynamical theory and
the macroscopic phenomenological theory; in other words, once we know the differ-
ential cross section of particle interactions the physically measurable quantities can
be computed in principle. There is no phenomenological parameter at all; (2) We
impose the second law of thermodynamics as a constraint to ensure that the theory
and its approximate solutions satisfy the requirements of the thermodynamic laws,
and the acquisition thereby of a theory of irreversible thermodynamics for radiation
and matter.

The macroscopic quantities such as shear stress tensor, excess trace part of
pressure tensor, heat flux, ete., associated with radiation now can be calculated

with the corresponding moments introduced:

) = 11, = (R ), (2.52a)
32 = A, = (P, (2.52b)
80 = QL = Q- &.J, = (A f,), (2.52¢)
&M = I /mp = (h{V f;) = ((ck, - w)fy), (2.52d)
38 =T, = (h!¥f,), (2.52¢)

where é. = £,/m, and a fictitious photon mass m, is introduced by the relation
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mr = 4VagpT/c®, which has the numerical value 7.5646 x 10~18Jm=3K~4. The
final outcome of the theory will be inconsequential to the choice of this fictitious
mass as long as it is a constant, and the definition made above seems reasonable.
One of the purposes of the present kinetic theory is to derive the evolution
equations for the macroscopic variables of matter and radiation. Although this
procedure is standard as one used in the case of matter alone [20], we should notice
that there exist the source terms in the balance equations because of the energy
and momentum exchange between photons and particles. Here we will not repeat

the derivation process, but present the final results below [17]:

Mutier part

Sip=-V-pu (2.534)
pdic; = =V - I + Al (2.535)
pdu ==V Pr+Y pFi+ AW (2.53¢)

i
pdiem = -V Qm — P : Vu+ 3 Fi- J; + AL (2.53d)
H
pd &1 = Z{* 4 Al (2.53¢)

where the mass density, stress tensor, heat flux, internal energy density of matter

are, respectively, denoted by

p= Z,Pi» Pm - Z' Pi! Qm = Z‘ Qii E€m = 2' €y,

the summation being over all material species; other symbols are defined as follows:

A = (miRy), (2.54a)
@ =NVl 2. O

AL = Z ((5mic} + eD)Ry), (2.54b)

AS.::) = Z’(m.—v;&t;), (2.54¢)

A = (R{MRy), (2.54d)
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and

3 = pdl® = (W, 2.55a
) t 1}

Z{ =~V (N )+ (fild + € - 9 + (i Fy/R) - R, (2.55b)
We arrange the various fluxes in the following order:
o 1, 2, 3, 4, ...,

ISP 1 PRIV o [ PR

IR
where Q! = Q; — h;J;, h; being the enthalpy per unit mass of material species .
The dissipation terms AE“), etc., are related to the entropy preduction which we

will discuss later on. The streaming terms Z}“) can be written in a more explicit

form for the leading moments as follows:

z{ = —v -V —2[P; - Vul® — 2[J(deu - Fy)|®, (2.56a)
n 2 2
Z = v .y 3 Vu—2AV u- %J.- (diu - Fy)
= pidiIn(piv®/*[ci) — 3i - V(pi/ pi), (2.56b)

z{) = -V . 4{ - @} Vu - (du - F) - (P; - piV)
— o Vu - Jidih; - Py Vu, (2.56¢)

7{9 = -V . P; - pi(diu — F;) - J; . Vu, (2.56d)

where
U = (e f),

o = (cicicifi),

and U is the unit second rank tensor.

Radiation part :

pdic, = =V - J. + A, (2.57a)
pdidr = -V P + A, (2.57b)
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pd,er=—V-Q,——Pr:Vu—u-V-Pr+Af.‘),

pd @) = Z(a) 4 Al

(2.57¢)

(2.57d)

where ¢ = muns/p, & = ¢r/p = Qu/ctp, & = Eofp, & = 3" /p, and

the streaming term as well as the dissipative terms are defined, respectively,

2() = V. ((ck, = WA £} + {felde + (ck, — u) - V]R),
AP = (m, R,),

AW = (b)) (ke - u/c)Rr),

ALY = (hw(k, — u/c) - (k. —u/c)Rr),

AL®) = (hIR,).

(2.58a)
(2.58b)
(2.58¢)
(2.584)

(2.58¢)

We will point out the meaning of the dissipation terms in a later section. Here we

write the streaming terins in a more explicit form:
Z0) = —v .l — 2[P, . Vu](?,
Z® = -7 . 2 AP, - p,U) : Vu — p,diin(p,v®/e,)
= Jr - V(pe/pr),
Z®M = V.93 - QL. Vu-—-du-P, - P,.Vé, - I diér,
ZW = ¢~V . P, — prdiu—J, . Vu,
ZG) = _7 .9 3¢5 . gy,

etc.

where

B = ((cky — WALV ;),

lPS-s) =c"? ((Cfcr - u)(ci’.‘r - u)(cf{r — u}fe).

(2.56'a)

(2.56'b)
(2.56'c)
(2.56'd)

(2.56%¢)

The nonrelativistic approximation has been used to derive the evolution equations

for the radiation part (2.57) and (2.58). It is emphasized that the evolution equa-

tions for radiation and matter are coupled through the source terms and they are
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also coupled to the entropy balance equation which will be presented later. This set
of evolution equations are called the generalized hydrodynamic equations for radi-
ation and matter. By solving these equations we can determine the nonequilibrium
distribution functions for radiation and matter.

We now calculate the normalization factor p, which is closely related to the
chemical potential of photon gas. As mentioned carlier, the equilibrium chemical
potential of photon gas is equal to zero, therefore a nonvanishing chemical potential
is one of the characteristics of nonequilibrium radiation, With the help of (2.50b)
we have

n, = ([exp(W,) - 1],

where W, is given by (2.502). Since f, must be positive, W, is positive for all §

and w. With the help of Taylor expansion we may write n, in the form

ne = _(exp(—qWr)) (2.59)
921
where
W = 8(H — pr), (2.60a)
H=tw(l+k.-ufc)+ ) X @hl. (2.60)

It is convenient to introduce the following symbols:

z = ezp(Bu,) ~ 1, (2.61a)

vg = (ezp(—qfH)) (¢21), (2.61b)

then, (2.59) may be cast into the form

ne= Y y,(z+1)% (2.62)

g>1

It can be recast into

ne— v =2 qug+ D 27 ala— Dygz +--+ D yez"™). (2.62")

g21 g1 g21 g21
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Let us further define

==Y Yo (2.63)
¢21
e 5 B) =D quet+ Y 27 alg — Lygz +o o+ )yl (2.64)
721 q21 g1

We should point out that ¢ is a well-defined function of z und § since y,; are
explicitly calculable with H given in (2.60b). With these notations, (2.62') can be

simply recast in the form

2 = 7p(z,B). (265)

By solving this equation for = we will get the chemical potential of nonequilibrium

radiation. With the help of the Lagrange theorem [41] we find the solution to be
S . .
2= Z 'j—!(dJ-I(PJ/dzJ-i);-:O- (2-66)
i=1

Therefore the chemical potential is given by

T

Bur=In{1+) J_f(df—‘cpi Jdzi"1).20}. (2.67)

=1
Here it is worthwhile to discuss more about the chemical potential of nonequilib-
rium radiation. Since ¢z, 8) is a very complicated function, it is difficult to find
solutions of (2.67). Therefore it would be more practicable to seek the lowest order

approximation which is given by the formula
Bur = In[l +79(0,)] = In[l + (n; - qu)/z qYq). (2.68)

421 g21

This equation gives the dependence of the chemical potential on the nonequilibrium

correction for the distribution function. Note that n, is a function of S only,

_ A@)(kaT)

T (2.69)

The high order approximations can be evaluated iteratively from the lowest order

approximation if it is necessary for the real problems. At this point we will examine

38



the behavior of u, when the system approaches equilibrium. At equilibrium state
all the fluxes are equal to zero, that is, H — hw, and consequently 7 — 0. In this

limit the chemical potential vanishes:
fr = 0

which is in accord with the fact that the equilibrium chemical potentinl x% equals
zero as shown before. This consistency with the physical requirement confirms that
our formula for the chemical potential of nonequilibrium radiation g, is correct.

Until now the dissipation terms AE“), etc. which appear in the entropy pro-
duction and the flux evolution equations have not been calculated explicitly. In..
order to put the flux evolution equations in a more transparent form with regards
to the X§°’) dependence, we may apply the cumulant expansion method to evaluate
the dissipation terms. The most important and physically relevant results can be
covered by the first order cumulant approximation for the entropy production. In
that approximation we find

r

AP = (B9)™ DD RET @ X{Mge(X), (2.70)
i o
g = (m/2kpT)/? [(nd)?, (2.71)
ge(X) = sinhlx(X)]/r(X), (2.72)
X)) =YY x e R 0 x{M)172, (2.73)
i J o 7

where RE;"') are the collision bracket integrals appearing in the Chapman-Enskog
theory {18]; their explicit forms will be given later on. In addition, d is the mean size
parameter and m is a mass and the factor g scales the Boltzmann collision integral
to a dimensionless form. Here we give the details of the derivation of (2.70). The

entropy production for the system of radiation and matter is defined by
r
o=kpg™' Y (in(ei + £V )aRi). (2.74)
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By substituting the distribution functions (2.37) and (2.40) into the definition of
the entropy production and taking into account various collisional invariants, we

can cast o in the form:

_l(zf ZX.(O} o) AEQ) + ZX:(-O) 0 AS-C!))
i o o

4
=T BA + AeAL)

,
=7 YV x@ oA -1 (Y Al + aal™). (274)

i t
Writing R; more explicitly and defining the dimensionless collisional average by

{ Jes
(e = (21)73G / dk; f AW 61650 + Wik - (2.75)

we recast (2.74) in the following form:

o =kgg'5, (2.76a)

= =200 0 2 ML fsille + fim ek 7Y)
i § ok
= (& + fi)les o+ fidlinei + £70))e. (2.765)

Here & is a dimensionless (or reduced) entropy production. By substituting the

distribution functions

= [ezp(Wi) — &}~
into (2.76b), & can be expressed in the form
A l¢ . " .
7= 3 20 DW= Widleap(—W) = eep(~Wis)Ce (2.77a)
where
= {[1 - esexp(-Wi)][1 — ¢jexp(—W;){1 — exexp(-W})]
X {1 — gexp(-=W)]} 4, (2.77b)
Wi =Wi+W;, ete (2.77¢)
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Note that Cy is the quantum effect contribution to the entropy production which will
be put equal to unity in the classical limit; In that case, (2.77a) reduces to the same
form as the classical formula for a gas mixture. At the lowest order approximation

C, will be approximated by replacing W;, etc., with W?, namely, the exponent of

the local equilibrium distribution function:
C;’ = G (W7, W) (2.78)

Then we apply a cumulant expansion method [20] to evaluate &. Let us define

K= %(Z SN DU W - W), (2.79a)
N
where
(s Nt = - Ces (2.795)

This collisional average has two distinctive components: elastic (together with in-
elastic contribution) and reactive. The former will be expressed as [ -'];; and the
latter [--);j;kt. By using the same cumulant expansion method as in ref. [20], we

obtain & to the first order cumulant approximation:
6 = ksinh(x). (2.80)
Here the dissipation function s may be written as
K2 = % Er: i_[(Ws’} — Wii)?i; + % Z Zr: z;: i[(“'i‘: ~ Wii)lijm
= &2 -;- rcg. o (2.81)

The elastic part k2 of the collision integral involves the transition probebility W,-; )

while the reactive part £? involves the transition probability W,-(J.';'L. Since
Wi=WP+ > X 0h® - u,
o
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and W} is a collisional invariant, we find

Wi - Wi =83 (X(7 0 b + X[ o i - X[ 0 A" - X;% oK)
o

—- Blug + B — i — B5). (2.82)

On the substitution of this result into the elastic part in (2.81), we obtain &2 in the

following form:
T r
2= 53 Y xorliY o x{. (2.83a)
i J oo
The renctive collision operator is symmetric with respect to the interchange of

reactant particles or product particles and to the reversal of the collision processes.

When the symmetry properties are exploited, the reactive part 2 of the dissipation

function can be written as

=Y N Y EPosfM o X + Y X 09l 0 X()
Poa v J#i

+> A" (2.83b)

where the coefficients ERE?"), etc., can be cast in terms of the collision bracket

integrals:

1 - L] L ] L] L]
R = 2B A" + A" — A — VA" - AY — T — B

1 ajs o =
+ 58% D (R = AR = B, (2.84a)
J#i
o 1 o)« [ 4 L ] . .
RG™ = U - R - R G #5). (2845)

We have affixed a prime on one of the subscripts i's in (2.84a) to indicate another
particle of species i, while the coefficients 95-;-'7) etc., are defined by the collision

bracket integrals as follows:
r r T
(e _ 142 (@)l (@ pdny.
S = gﬁ zk:z‘{[h. hi Ve + zj:[hi hi Nkt (2.85a)
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. a a o,
‘3(.';”) = 5.132 Z Z{[h(a )hg-')]u-.kz =l R Mm) G #£J), (2.85b)
k {
1.,
" = 28 [Wm, (2:85¢)
Ai = =g + 1 — i — p5). (2.85d)

Here, Q9 is the reaction rate constant which is simply the equilibrium average of
the transition probability of reaction i + j == & + ! (note that one of the species is
a photon.), and A; the corresponding affinity. Since the number of internal states
are the same as the number of species in the present model, the sum of the reactive

contribution to k2 runs over all species.

The summation of the elastic and inelastic components of the dissipation funec-

tion leads to

R = RS 4 g7 (2.86)

which is related to transport coefficients and, therefore, %Z-’) represent the correc-
tions to the transport coefficients which arise from the "reactive” collisions between

material particles and photons, The entropy production may be written in the form
o = kpg~'x%sinh(k)/x.

Comparing this expression of ¢ with (2.74'), we can easily identify AE“), etc. with

the help of the dissipation function obtained above:
r
A% = (B9)7 3D R © X[ Msinh(x)/x, (2.87)
i
and
A" =~ (pg) - AR, (2.88)

These results are very useful when we deal with hydrodynamic problems, and they
are also essential for evaluating transport coefficients. We will discuss these issues

in the later sections.
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2.4 Irreversible thermodynamics of radiation and matter

The key guantities in the study of irreversible therimodynamics are the entropy,
entropy Hux, and entropy production. Following the modified moment method [40]
used for the case of matter alone, we formulate a local theory of irreversible ther-
modynanics of radiation and matter. For this purpose it is necessary to introduce
local entropy and related variables. In the local frame the local entropy density &

is defined as an additive sum of contribution from matter and radiation:

pS(I‘,t] = P‘S‘m(r»t) + pSe(r, t)? (2'890)
pS(rit) = =k Y (fillnfi = 1)), (2.895)
pSe(r,t) = —kp{{felnfr = (1 + f)n(1 + f))), (2.89¢)

where p is the local mass density of matter. It is emphasized that the rationale
for the definition of entropy in (2.89a) is as follows. Treating the total entropy
as the sum of radiation and matter entropies is motivated by the general aim of
the present thesis to unify the thermodynamics of radiation and matter. As we
mentioned earlier, a system consisting of radiation and matter is considered as a
gas-mixture of photons regarded as different species and material particles. Since
entropy is an extensive quantity, the total entropy of system must be the sum of the
entropies of the total constituent particles. The different expressions for radiation
and matter entropy are due to the fact that photons are quantum particles satisfying
Bose-Einstein statistics whereas material particles are classical. The manner of
defining the radiation entropy density S as well as other macroscopic variables in
terms of unit mass of matter with which radiation is in interaction may be justified.
It is most appropriate from the kinetic theory viewpoint to define macroscopic
variable densities on the basis of the total mass density. However, photons have zero
rest mass. For this reason we define the radiation entropy density per unit mass

of matter. It also gives operationally meaningful quantities, especially when the
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evolution equations for various radiation-related macroscopic variables are defined
in the local rest frume moving at the hydrodynamic velocity u and, consequently,
the matter-related quantities such as the velocity gradient appear in the evolution
equations for radiation variables. At this point we need to mention that with the
help of the fictitious photon mass the total mass density may be defined as the sum
of the particle mass density and the fictitious mass density of the photon in order to
evaluate the densities of macroscopic variables, but their evolution equations become
rather messy because of the temperature denendence of the fictitious photon mass.

It is straightforward to derive the entropy balance equation from kinetic equa-
tions (2.7). Ou diffcrentiation of pS in (2.89) with respect to time and substitution

of the kinetic equations into it there results the entropy balance equation in the

form
pdiS(r,t) = =V - J, + o(r,t). (2.90a)

According to the H theorem shown earlier, the entropy production of the system

satisfies
o(r,t) 20 (2.905)

with the equality holding at equilibrium. This is a statistical mechanical represen-
tation of the second law of thermodynamics. The various definitions for the entropy

flux J, and the entropy production & are as follows:

J, = I 4 3im), (2.91a)
0 =0r+0m, (2.91b)
3™ = kg Y (fieslinfi = 1)), (291¢)
3O = k(e — )lnds = L 1 £ )in(L + ), (2.914)
om=—kg ¥ (InfiRs), (2.91¢)
0, = —kp(lin, — In(1+ F)IRy). (2.01)
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Lere the subscripts or the superseripts m and r stand for the matter part and
t.ie radiation part, respectively. The matter parts of the entropy flux and entropy
production are the same as those in the case of matter alone whereas radiation
parts contain the quantumn contributions of photons. Since we have chosen the
local rest frame moving at hydrodynamic velocity u, the Doppler effect should be
taken into account for photons, that is, theie is a term (ck, — u) appearing in the
radiation entropy flux. The consideration of the Doppler effect makes the present
formalism better balanced between the matter and radiation parts. It is useful to
interpret (2.91d) that the radiation entropy flux is basically the average value of
kp(ck, — w((1 + f-1)n(1 + f.) — Inf,] with respect to the distribution function
fr in the local rest frame, and this interpretation is also applying in computing the
entropy flux in terms of radiation heat flux, ete.

The evolution equations (2.53a)-(2.53e) and (2.57a)-(2.57d) for macroscopic
variables must be subordinated to the entropy balance equation (2.90a), or more
specially, the H theorem (2.90b). Since the kinetic equations cannot be solved
exactly, seeking an approximate solutions for the distribution function is inevitable.
The H theorem requires that the approximate forms for various dissipation terms
AE“’ and Ag“), etc. in the evolution equations should be taken in such a way
that the entropy production remains always positive semidefinite. By this way,
the evolution equations or generalized hydrodynamic equations for radiation and
matter are made rigorously consistent with the H theorem, that is, the second law
of thermodynamics. This is the basic strategy of the modified moment method. As

shown earlier, the entropy production can be written as

r
o =T Y XP oA - T3 ad( + aAM). (292)

i o i
With the same distribution functions as for the entropy production the entropy flux

can be directly derived from its definition. The matter part is given by
I =71 S(Qi - pidi+ Y X 09l +pidifp)  (293)
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where
pi = nikgT, ji; = p/my,
and
${® = (e;h{ fy). (2.94)

The entropy flux for the radiation part can be recast in the following form

D = THQr — e dr + D X @l 4 prge/pr + 3D, (2.95)

where
Yl = {(ckr — WA fr),  $r =c7?Q,, (2.96a)
I = ~kp{(cky ~ w)in[l - exp(-W,))). (2.96b)

Note that the local rest frame forms for h{® are used in this calculation, and the
radiation entropy flux has an additional term J f,;) due to the quantum character
of photon gas. We observe that the radiation entropy flux is rather similar to its

matter counterpart. Therefore, the total entropy flux may be written as

3, =T (Qi = 33 + T7N(Qr - rds) + Jun. (2.97)

In comparison with the Chapman-Enskog result for the entropy flux, there is an
additional term J,, which contains the nonlinear contributions of matter and radi-

ation and the quantum contribution of photons to the entropy flux:
3, =T"! Z' Zx'_(a) ® ¢'§a) + T} Z X,(.a) 0 ¢'(_a)
i o a
!
+ 3 pidi/ pi + prér/pr + 38, (2.98)
i

Once the entropy flux and entropy production are known the entropy density for

the system of radiation and matter can be calculated.
In order to analyze the relation between the time derivative of the entropy
density and other independent macroscopic variables we will cast the entropy bal-

ance equation into a more explicit form that indicates the macroscopic variable
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dependence of 8. Such a similar relation cxists in equilibrium statistical mechan-
ics, namely, the Gibbs relation. For nonequilibrium systems the so-called extended
Gibbs relation was shown to be valid in the lincar regime. The question is: does
this relation hold for systems that are far away from equilibrium? The answer is
not. To show that this is the case, we substitute the entropy production {2.92) and
the entropy flux (2.97) into the entropy balance equation (2.90a); we then eliminate
the gradients of the heat fluxes Q, and Q; and fluxes J,, and J, with the help
of the energy balance equations (2.53d) and (2.57¢) and the mass fraction balance
cquations (2.53b) and (2.57a). The dissipation terms Al® and Al appearing in
the entropy production are also eliminated by using the flux evolution equations

(2.53e) and (2.57d). The final result of this long calculation is

I
diS =T~ (diem + dier + (P + PtV = Y fidici — fredicr
i
+ 35 % 0d 8™ + Y X 0d,8) + 8

=T die+pdV =) fdici + 3 > XV 0d @)+ R, (2.99)

where
E=Em +Ery P =Pm + Pr, (2.100)
R=—p (Vo L+ T2Y S XP 02+ 71 Y X9 0 2)
+ (0T N +TL,) : Vu+ T (A + AV -1
+T7(Qm +Qr) - VinT + Y ;- [V(3/T) - Fi/T]

+3,- V(3 /T)). (2.101)

Here the matter and radiation parts are combined into a single term in the spirit
that treats radiation as if it is another species of matter. It is clear that &} does not
equal zero for the nonequilibrium system where the values of various macroscopic

quantities and their spatial gradient terms will be dependent on the path taken by
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the system evolving from one state to another in the Gibbs space. Therefore, d;S
1s not an exact differential as is the case for an equilibrium system for which the
cquilibrium Gibbs relation holds for ;8. It is well known that the Gibbs relation
is one of the most important result in the ecquilibrium thermodynamics since it
provides a way to calculate the thermodynamic functions. One hopes that a similar
relation may hold for nonequilibrium systems, if then irreversible thermodynamics

can be formulated in parallel to equilibrium thermodynamics. To achieve this aim

we define the following differential:

r r
Td¥ =dis+pdV =Y pidici+ Yy X\ 042", (2.102)

which is called the compensation differential. It must be noted that the matter
and radiation parts are combined in this compensation differential. The physical
meaning of the compensation differential is that it describes the transfer of energy
and matter between an elementary volume enclosing matter and radiation and its
surroundings. After imposing the integrability conditions the compensation differ-
ential becomes exact. It means that the various thermodynamic functions can be
evaluated by using the compensation differential and its integrability conditions.

With d,¥ so defined as in (2.102), the entropy balance equation takes the form
dtS = dg'I’ + R. (2.103)

The implication of this equation is that the entropy differential d;S becomes the
compensation differential d;¥ and thus an exact differential if and only if & = 0.
The circumstance happens only for equilibrium systems or for linear irreversible
processes in which linear thermodynamic force-flux relations replace the constitu-
tive equations for fluxes @EG) (2.53e) and (2.57d). In the former case the equilibrium
Gibbs relation holds for the system of radiation and matter and in the latter case
there exists the local equilibrium Gibbs relation. Except for these two cases the

entropy differential is not an exact differential for systems that are away from equi-

librium.

49



The physical significance of S can be better understood by the following anal-

ysis. First we rewrite the kinetic equations of matter and radiation in the forms:
filde + ¢i - ¥ + (muFi/h) - Vi)In(fi] fieg) = Ril fi), (2.104a)

Felde+ (ke =) - VU + £7)/(1+ F7)l = —(1+ f) 7 Re(fe),  (21048)

where ¢ = a,b,-++, excluding r and the equilibrium distribution functions satisfy
[di + ci - V + (miFi/h) - Vi) fieqg =0, (2.105q)

[de + (cky — u) - V] freq = 0. (2.105b)

For the macroscopic variables of equilibrium or local equilibrium states, there exits

the Gibbs-Duhem relation

S cide(A3/T) = Vde(pm/T) + €mde(1/T). (2.106)

Then, together with the formulae (2.56) and (2.582) for Zi(“) and Z{%, respectively,

and also the nonclassical part J,, of the entropy flux, we finally obtain

R = (3 60 © 4 - di(s/T)) + endi(1/T) + Vd(pn/T) - 25
—'P"Ika Z' V- (vifi) + 07 kBV - ((ck- — u)inl — exp(-W,)])

+p ks i'(fi [di + vi - V + (miFi/R) - Vijin(fif fieg))

+ P"’kn(f:-[dx + (ckr —u)- V)in[(1+ f20)/(1+ 7)), (2.107)

where

X = xlep,

+ T (Qum +Qr) - VinT + 3 Ji - [V(23/T) + Fi/TI}. (2.108)
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Here &} is the linear entropy production per unit density which includes the contri-

butions from both radiation and matter. The last term in (2.108) does not have a

radiation component since the chemical potential of equilibrium radiation is equal

to zero and also F,. = 0. With the help of the cquation (2.104a), the second last

term in (2.107) can be recast into
-1 '
pmks 3 (filde + - 9+ (miFo/B) - Velin(fi/ fieq)
i

= p'lka Z'GR;).

(2.109)

The last term in {2.107) may be written in a similar form by using (2.104b)

okl frlde + (cky = u) - Vlinl(L+ F2})/(1 + £74)

= p ks ((1+ o)1 Re) = p k(L — exp(=Wo)|R).

Since
Z’(ER,-) + (R) =0
and also
- Z:' V. leifi) -V ((Cﬁr —u)fr)

=03 dieifmi) = 3 AP g — A

= pZd!(Cilmi) = 0.
We obtain

R=Y"13 & 0 dX{¥ - cidi(@i/T)] + emde(1/T)

+ Vdi(pm/T) - 6L+ X

where

R, =p"'ka{V- {(ck, — u){ezp(—W,)[1 - exp(- W;)]~?

+Inft = eop(-WoI}) + 3 (Ri) + {[1 = exp(~W;)Re)}.
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It represents a quantum contribution of photons to the entropy flux. Note that when
R = 0, the classical forin of the entropy flux  is recovered. Since the equilibrium

radiation has no chemical potential, the corresponding Gibbs-Duhem equation is
erd(1/T) + Vdy(pe/T) =0 (2.113)

we are finally able to write ® in the form

N =edy(1/T) + Vdi(p/T) + i(z &Y 0 d XM - cidi(p:/T))

! 4]

-+ . (2.114)
When the system is at equilibrium, the time and space derivative of intensive macro-
scopic variables such as T, p/T, etc., are equal to zero and various fluxes as well
as N also vanish. Therefore ® vanishes at equilibrium. However, as demonstrated
earlier, R is not equal to zero generally for the system away from equilibrium. In

order to reveal the physical meaning of R, let us introduced a new function, the

so-called Boltzmann function
B=§-Te+pV —ic.ﬁ.‘-{-i:Z&'S“) ® X!, (2.115)
then the entropy balance equation i‘s transfor;lledainto the form
dB = -6 +R,. (2.116)

This is an equivalent form of the entropy balance equation. Since & is positive
semidefinite, the differential equation (2.116) can be regarded as a local form of the
H theorem, if the sign of R, is the same as that of —d;, or it is absent. However, it
seems at first glance that a definite sign of R can no longer be attached to (2.116)
unlike the case of classical monatomic gases. The term R, originates from the

quantum nature of the photon gas.
The aim to have a local form of H theorem for a quantum gas can be achieved

by introducing a suitable function as follows {42):

D= o = ks Y (1= £7000(L+ SR, (2117)
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Differentiating I' respect to time and using the kinetic equation (2.7), we find the

equation for T,

dF _ —LBZV {c;[1 = f; FMn Q1+ OIF)

+Z +*BZZM+L SRS (2018)

By virtue of the collisional invariance of the Boltzmann collision integral, it follows

from (2.118) that

R (2.119)

Thererfore, by defining a new Boltzmann function Br for the quantum system by

the formula

-~

Br =B +T, (2.120a)

we can recast the differential equation for Br in a form similar to the one for classical

gases,
d .
d_tBr = —0L. (2.1206)

Since & 2 0, the derivative on the left-hand side of this equation has a definite
sign and the Boltzmann function Br is a decreasing function of time. Eq. (2.119)
means that the entropy density acquires a2 quantum correction term in addition to
the contributions known in the case of classical gases.

Up to now our discussions are limited to the boson gas, but it is necessary to
extend these results to fermions such as electron gas in semiconductor, etc.. The
kinetic equation for the fermions is the Boltzmann-Nordheim equation; in this case

R, is given by

R -pkazv (esl1 + 57 1 - 1)+ DSR4

=1 =1

+p7 kB 5_: Z(f,-(l + £ Ri(fif))- (2.121)

i=1 j=1
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Then, on defiuition of I' by the formula

r

D=pl=kgy (1+f;In(1 - F)fi) (2.122)

j=1

the evolution equation for I' can be shown to be

p‘i—f = —kg Y V- (e[l + £ In(1 = fi)I£;)
=1
~kp > Y UL+ )RS, (2.123)

i=1 j=1
which implies that the Boltzmann function Br defined by
r r . .
Br=S-T ' s+ V=Y ap+y » X&)+ (2.124)
i=1 =1 a
obeys the same equation as (2.120b). The only difference between the boson and

fermion gases is in the definition of I'.
2.5 Nonequilibrium corrections for distribution functions

Since the thermodynamic structure is universal as we have presented earlier,
it has the same form for all systems. However, calculation of physical measurable
quantities requires the knowledge of dynamic interactions, namely, the differential
cross sections from the kinetic theory viewpoint. In the context of the present
formalism the dynamic information is contained in the unknowns X{* and X{*).
Therefore, a complete kinetic theory should provide a method to determine Xfa) and
Xina way consistent with thermodynamic laws, Since the Boltzmann equations
cannot be solved exactly in closed analytical form, these unknown functions can
only be determined approximately. The most obvious way is to substitute (2.37)
and (2.40) for the distribution functions into the kinetic equations (2.1) as well

as (2.5) and generate the evolution equations for X ,-(c') and X$°), which may be

solved together with other evolution equations for macroscopic variables already
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presented. Since this method is very complicated, we look for another more direct
method, albeit approximate. As we know the distribution function can be expanded
in terms of a complete sct of moments as in the conventional moment method for

material gases, the same expansion is also valid for photon gas,
fim fea(l+ 3 A 0K (21250

fr = freg(l+ ) A O AL, (2.125b)

where the coeffients AS“) and AS-“) are functions of macroscopic variables such as
temperature, fluxes, etc. If one tries to construct a theory of irreversible processes
with the forms (2.125a) and (2.125b), the attemnpt will be frustrated because these
forms are not appropriate for calculating the entropy, entropy flux and entropy
production which is always positive semidefinite. Nevertheless, it is a mathemat-
ically acceptable way of expressing the nonequilibrium distribution function. The
nonequilibrium canonical form used in the modified moment method allows us to
avoid the aforementioned difficulty associated with the entropy and related quanti-
ties. The nonequilibrium canonical forms and the moment expansions (2.125) share
the same sets of material and photon moments. This means that the unknows X '-(")
and X{* in the nonequilibrium canonical forms can be determined from (2.125) by

equating them and solving the equation for the unknowns. We thereby obtain the

equations:
k50 - 3 X o b)) = In(1+ 3 A @ A7) (2:126a)
a>l 121
and
{eaplBW2 + 3 X( @ K - )] — 1)
= freg(1+ Y A @A) (2.1260)
where

freq = {CTP(BWE) - 1}-1, W,? = h(-l)(l + f(,- J u/C).
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Firstly, we consider matter part. Since the moments h?’) are chosen such that they

are orthogonal in the following sense
(RERS fieg) = Bag (BVR ficg) (2.127)
A can be given in terms of fluxes as follows:
B = (fiegh{(1+ Y AP 0 b)) = A1 © (fiegh{TRT).  (2128)

12! -

Note that the fluxes on the left-hand side are determined from the flux evolution
equations. The quantity in the angular brackets in (2.128) is a function of temper-
ature only. This means that the coefficient A{® is directly proportional to &{*),
The calculations of the angular brackets are straightforward. We simply present

the results for a few leading moments:

AN = pell/p, AP =0,
AR = B(8/5pi)(mi/2ksT) /20,

A = pl2/ni(@mikpT) /|28, (2.120a)

Then, the unknowns X E") can be obtained from (2.125a) in terms of the coefficients

AEC'). To the lowest order approximation the results are

xM = —o{V/op;, X = -20/3p; =0,

X =80 pihs, X = -0 (21290

The radiation part requires fresh consideration because the distribution func-
tion is different from those for the matter part owing to the quantum nature of

photons. By multiplying R to (2.125b) and integrating over k., we obtain
B = (freg(1+ 3 AL © D). (2130)
o
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To evaluate the integrals in (2.130), it is convenient to change the variable of inte-

gration by transformations

-
-

a=ke-ufe,  q=(w/c)d+wu/c.

Then, by using the propertics of integrals of Cartesian tensors, we find that the

same rules of calculation apply as for those for the matter part. It is possible to

show that
(freghl™) =0 (2.131)

since the fluxes vanish at equilibrium. With the help of the orthogonality relation

of a completed set of photon moments,

(freeh{RI) = Ban{freghRLM), (2.132)

we find
A @ (freghiTh(7) = 2. (2.133)

Since the integrals are functions of temperature only, the coefficients A are pro-
portional to the fluxes ®!*), The calculation of these integrals is rather technical,

so we simply present the results:

AWM = gel1) /0.4887p,, AP = g2 /5.1967p,,
A®) = pol®/1.200np,, AWM =38 /n,,

AP = gol®) /0.5237p,. (2.134)

The unknows X{* of the radiation part can be expressed in terms of A, The
procedure is different from that of the matter part because of the quantum na-
ture of photons. We will give the details. We rewrite the distribution function of

nonequilibrium photon gas in the form

exp(~Wr) =1 = (1 + f)™", (2.135)

57



On substitution of the canonical form for f. into (2.135) and taking the logarithm

yields the equation

1 A(O‘) hg-a)
S XD O M = - kaTin( s @)
~ L+ erp(—-AW2) Y, A @ by

Multiplyin hY and freq and integrating over k.., we obtain
g q g E

X1 © (fregh{Mhi)

1+ 3, A o Al
= ~kgT( fh{Pn( ol SO ) (2136)
14 exp(-BW2) Y, Ar O kY

Approximate results for X! can be obtained by expanding the logarithmic func-

tion. To the lowest order approximation, we find
X&) = _kpTA), (2.137)

The second order and high order approximations may be evaluated by an iterative
method. To the lowest order approximation, the unknowns X () for radiation are

given by

XM = —9M/0.4887p,, X = —3¥/5.1967p,,
X = —e/1,200mp,, XYW =_388W/n,,

X®) = _{9/0.5237p,. (2.138)

These approximate results (2.129b) and (2.138) for Xfa) and X{*) are essential
for calculating the dissipative terms A(,-Q) and Al etc., whose first order cumu-
lant approximants have already been presented earlier. The dissipation terms thus
calculated, the macroscopic evolution equations (2.53a)-(2.53¢) and (2.57a)-(2.57d)
are closed and solutions can be obtained from them. subject to initial and boundary
conditions appropriate for the hydrodynamic problem in hand. We will call these

coupled partial differential equations the generalized hydrodynamic equations of
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radiatio: « 1 matter. The macroscopic variables which are necessary for deserib-
ing the irreversible processes in question, of course, appear in the entropy balance
equation. Therefore, the solutions of the generalized hydrodynamic equations niust
be subject to the entropy balance equation. In the sense that the entrepy pro-
duction ¢ is positive semidefinite, that is, AE“) and AL are such that ¢ > 0, the
generalized hydrodynamic equations fully conform with the second law of thermo-
dynamics. Under the present formalism of kinetic theory, onc of the remaining tasks
in macroscopic physics is hydrodynamic and thermodynamie. It requires solution of
the generalized hydrodynamic equations and study of irreversible thermodynamic

relations between various macroscopic properties. Of course, calculation of the

transport coefficients is another task. We will discuss these issues in later sections.
2.6 Discussion and concluding remarks

A nonrelativistic kinetic theory for a system consisting of photons and material
particles which interact with each other is formulated. Instead of the conventional
equation of rudiation energy transfer we have proposed a semiclassical Boltzmann
equation for photons which is coupled to the Boltzmann equations for material par-
ticles. In this theory, the system of matter and radiation is viewed as a gaseous
mixture of material particles and photons. The advantage of this consideration is in
formulating irreversible thermodynamics of matter and radiation on equal footing
and in a unified manner. The kinetic theory enables us to show that the Planck
distribution function for equilibrium radiation is consistent with the Boltzmann dis-
tribution function for material particles and that they are unique. Furthermore, the
mathematical structure of irreversible thermndynamics and the radiation hydrody-
namic equations in a rather general form, namely, the generalized hydrodynamic
equations for matter and radiation, have been derived. In addition, the present
theory shows that inrtead of the extended Gibbs relation used for d;S in the local

equilibrium assumption approach there exists the compensation differential d,¥,
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which plays the same role as the entropy density in the local equilibrium approach
and reduces to ;S at equilibrium, With the compensation differential we may in-
troduce the Boltzmann function such that a local form of H theorem is obtained.
By solving the evolution equations for fluxes such as radiation stress tensor, radia-
tion heat flux, ete., the radiative transport coefficients can be computed even if the
system is removed far away from equilibrium since the modified moment method ex-
ceeds the limit of validity of the first-order Chapman-Enskog theory [18)] for solving
the Boltzmann equation.

The local H theorem (2.120b) for B and the calculation of the compensation
differential is exact within the nonrelativistic kinetic framework since no approxi-
mation is made for the involved equations and the related quantities. This means
that the extended Gibbs relation for the eniropy density does not hold valid, at least
from the kinetic theory viewpoint, for the systems eway from equilibrium unless
there occur some special circumstances in which N = 0 identically. These particuler
cases include the equilibrium state ilself and linear irreversible processes which can
be described by hinear force-fluz relations.

In equilibrium statistical mechanics of Gibbs, an exact but formal theory is
developed for equilibrium thermodynamics in terms of partition functions or an
equilibrium distribution function, and various thermodynamic functions and rela-
tions thereof are calculated. In the present formalism, a comparable formal theory
is attained for nonequilibrium processes described by a set of Boltzmann equations,
and the unknows X,(“) occupy the place of the partition function in eq -ilibrium
statistical mechanics which must be computed explicitly in terms of temj .. .ure,
density, and other system parameters. Thus, we have in essence acquired a formal
theory of irreversible processes comparable to equilibrium stalistical thermodynam-
ics of Gibbs,

The moment method used here for radiation has a feature in common with the

spherical harmonics approximation [43] for the radiation energy transfer equation,
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but the use of the H theorem and an exponential forin {2.40) for the distribution
function of photons is a distinctive feature that has important consequences in the
quest for a mathematical theory of irreversible processes in a system of radiation
and matter. It makes the present formalism fill up the lacunae left at the level of
irreversible thermodynamics by the existing theories of radiative energy transfer.
The most important aspect of the modified moment method is capable of treating
nonequilibrium processes occurring far from equilibrium. Therefore, it is reasonable
to expect that the theory presented here for radiation and matter holds valid far
from equilibrium. Applications of the theory to realistic problems and comparing
with experiments are the only way to justify the theory. We will present the result
of applying the generalized hydrodynamic equations of radiation and matter to the
experiment of light-induced viscous flow in the next chapter.

Finally, we remark that a nonrelativistic approximation is made for photons
in the calculations of X{*) and J{” and in the energy balance equation since we
have neglected some small terms of the order (u/c)? and higher. Such an awkward
feature will disappear if the theory is formulated in a Lorentz covariant form by
using relativistic Boltzmann equation. We will present such a study in chapter 5.
Our original intention was to have a practicable theory which suitably describes irre-
versible thermodynamics of systems consisting of atoms (or molecules) and photons.
Since atoms (or molecules) move very slowly compared with photons, a nonrelativis-
tic theory is physically acceptable. We believe that the theory presented provides an
internally consistent mathematical structure with which to study kinetic theory and

irreversible thermodynamics of radiation and matter from a molecular viewpoint,
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Chapter 3

Application of the kinetic theory of radiation

and matter to the light-induced viscous flow

The irreversible thermodynamics of radiation and matter which is derived from
the kinetic theory can cover a broad range of natural phenomena. In this chapter we
will present an application of the kinetic theory of radiation and matter presented
in the previous chapter to the light-induced kinetic effects [29]. In recent years,
laser has been successfully used to manipulate atoms and molecules, or trap them
in a volume, or cool a gas [13]. Under the theme of light-induced kinetic effects [14]
a munber of intriguing experiments have been reported on the action of laser on
atoms and molecules, By tuning a narrow-band laser within a Doppler-broadened
absorption line of an atomic or molecular gas and inducing velocity-selective exci-
tations of atoms or molecules by means of the Doppler effect, it has been possible
to produce macroscopic drifts of particles. These drifts give rise to a number of
interesting effects such as an optical piston [24], light-induced viscous flow arising
from collisions in the bulk [22] and with the surface [25], etc.

The light-induced kinetic effects are distinguished from those originating from
the photon pressure. They are in fact much larger than the latter in magnitude
since collisions between the matter particles are intimately related to them and
momentum transfer by matter particles are much larger than that by photons.
Since the basic physical cause for the velocity drift has been discussed by various
authors (9, 44] since the work by Gel’'mukhanov and Shalagin [14] , we will not dwell
on it here. It is interesting to see that light-induced kinetic effects are in essence an
outcome of the combination of gas kinetic effects and laser spectroscopy which seem,
until recently, to be unrelated fields. In this chapter we present a theory of light-

induced viscous flow in a gas and compare theoretical results with the experiment
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by Hoogeveen et al. {22]. The purpose of doing these is twofolds, First of all, it
serves as an experimental justification of the kinetic theory of radiation and matter
presented in the previous chapter. Secondly, the low pressure behavior of the light-
induced viscous flow has not been explained theoretically. It is necessary to have a

theory to better account for the experimental results.

3.1 Light-induced viscous flow

More specifically, in 1989 Hoogeveen et al. {22] reported on an experimental
result which demonstrated a gas flow induced in a capillary by a Doppler-broadened
laser beam. The profile of the laser beam is assumed to be cylindrically symmetric
but radially distributed such that the highest intensity is at the center of the tube,
The flow generates a pressure difference and a stress in the capillary. By measuring
the pressure difference which the flow produces in the capillary by a differential
manometer and plotting it against the gas pressure, they were able to show that
the normal pressure regime behavior follows.the classical Navier-Stokes theory pre-
diction, namely, the Hagen-Poiseuille volume flow rate which accounts for the flow
rate of a gas through a tube under a pressure gradient when the pressure is in the
normal range. In fact, the linear constitutive relation between the pressure tensor
and the velocity gradient has been used in order to obtain the Hagen-Poiseuille
volume flow rate. Therefore, it can not be true for nonlinear flow problems. The
experiment by Hoogeveen et al. shows that as the pressure is decreased down to
the rarefied gas regime, the curve for the pressure difference vs. pressure starts to
decrease in a sharp deviation froin the Hagen-Poiseuille theory prediction. In other
words, there appears a maximum in the curve at some low pressure. This behavior
has remained unexplained until now. Let us briefly present the theory of Hoogeveen
et al. in an attempt to understand light-induced viscous flow in a one-component

molecular gas.
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The light-induced kinetic effects are the consequences of the combination of
velocity-selective excitations and state-dependent collisions. A traveling laser beam,
the frequency of which is slightly tuned off resonance, excites those atoms which
are Doppler shifted into resonance; the excitation is thus velocity selective. A hole
appears in the ground-state velocity distribution of the absorbing atoms, whereas a
peak appears in the excited-state distribution. This results in antiparallel fluxes of
excited and ground-state atoms. In the absence of buffer gas these two fluxes cancel
because of the momentum conservation law. However, this will not be the case
when the atoms are embedded in a buffer gas. In that situation velocity-changing
collisions will tend to thermalize the velocity distributions. Since an excited atom
usually lhas a larger collision cross section than a ground-state atom, the average
velocity of the excited-state atoms will suffer a stronger collisional damping than
that of the ground-state atoms. As a result, the optically active atoms acquire a

net drift velocity opposite to that of the Doppler-selected velocity.

The light-induced drift can also happen in a one-component molecular gas
where intermolecular collisions dominate. This is the so-called light-induced viscous
flow [22]. It seems somewhat unexpected that in a pure gas such the effect happens.
The light-induced viscous flow is due to the fact that the combination of a state-
dependent collision cross section and nonuniform illumination produces stresses in

the gas which give ri.c to a particle flow.

An elementary picture of the light-induced viscous flow is following. Excited
particles in the boundary layer near the wall have suffered their last collision, when
they are in the range of I, from the wall whereas the ground state particles collide
with the wall at a distance of I, where I, and I; are the mean free path of the
excited state particle and the ground state particle, respectively. Since I_, > 1.,

the excited state particles are located in a relatively dark region of the tube in
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ground state particles which are in a light regime. Thevefore, the peak in the excited-
state distribution is smaller than the dip in the ground-state distribution because
of the nonuniformity of the laser intensity. Consequently, the total distribution
function of ground state particles and the excited state particles have a dip around
the Doppler-selected velocity vg = (wi — wp)/k; mentioned earlier. This mcans that
there is a net parallel momentum transfer to the wall. As a result, a net particle
flow appears in the moving direction of the excited particles whose cross section is
larger than that of the ground state particles. Morcover, this process is not confined
to the boundary layer. In the same elementary mean-free-path picture, each layer of
gas transfers momentum to the adjacent layer closer to the wall. This will produce
a stress in the gas, therefore a particle flow in the bulk of the gas.

In the theoretical description of this phenomenon, two-level model for molecule
is assumed. For simplicity, the homogeneous linewidth of the transition will be
considered to be very small so that only molecules having a velocity very close to
the Doppler-selected velocity vg are excited by a narrow-band laser. To analyze the
gas flow, Hoogeveen et al. used a modification of the Chapman-Enskog method in
which the distribution function is expanded around a Maxwellian distribution of

the gas in equilibrium with the wall of the tube:

feq(v) = n(m/2rkpT)**exp(—muv? [2kpT)

= ngeq(V:)geq(vr)geq(vg), (3.1a)

where
Geq(vi) = (m/27kgT)! 2 exp(—mo? {2k T). (3.1b)

Since the velocity-selective excitation can make a hole in the ground state of a
molecule and create a peak in the excited state, the approximation for the distribu-

tion function must take care of both the Chapman-Enskog correction terms and the
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Bennett dip and peak [22]. In the scheme of linear approximation, one may write

the distribution functions for the ground and excited states as follows:

folv) = fcq(v)[l + @ — A{r,vr)é(v: — UU)]! (3.2)

fe(v) = feo(v)B(r, vr)6(vs — vo). (3.3)

Here, laser propagation direction is taken as z-axis, ¢ is the Chapman-Enskog
correction term while A(r,v,) and B(r,v,} denote the ground-state Bennett dip
and the excited-state peak, respectively. After solving the Boltzmann equation, it
is possible to get

Alr,op) = =2 - 2 , (3.4)

to the linear order of v,, and similarly for B. With the distribution function calcu-

lated, the stress is given by

1.dP(r)
vt odr

1
+ nkBTvogcq(vo)[;—Q— - (3.5)
9

Here ng is shear viscosity, v, and v, are the collision frequency of ground-state and
excited-state in BGK model (18], u(r) is the velocity profile and P(r) accounts for
the probability rate of the radiative-excitation process. Since under hydrodynamic

conditions the flow velocity vanishes at the wall [u(R) = 0], one finds

1  Avindr) nR)
u(r) = §7rv07[ el ] (3.6)
where the number density n, of excited molecules is given by
ne(r) = nP(r)geq(vo)/v. (3.7)

Since v, differs little from v,

vyt - vt 2v. — vy) /vt =200 )10,
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On the other hand, the flow of particle in a closed tube gives rise to a pressure
difference ép along the tube, This pressure difference will generate a pipe flow

which may be described by the Hagen-Poiseuille volume flow rate:

rRY
Qup = mbl’- (3.8)

Here, L is the length of the capillary, R is the radius of the capillary and 6p is the
pressure difference at ends of the capillary.
According to the experimental arrangement, the light-induced flow has to be

balanced by the Poiseuilie back flow:

R 4
9 _IR
]0 dr2rru(r) S0l ép =0. (3.9)

From this equation it may seem that explicit knowledge about the laser-beam profile
(or more precisely, the excitation profile) is required. However, if it is assumed that
the excited-state fraction near wall approaches zero, ép can be expressed in terms
of the excited-state fraction fi./n averaged over the tube cross section, since both
contain an integration over the same radial dependence. With the assumption

n.(R) = 0 one arrives at

ép L1 v Ava,
7 - BRRT (3.10a)
where
fle 1 R n.(r)
—n— = m‘/; dronr n (3.10b)

and ¥ = vl = (8kpT/mm)'/? is the mean thermal speed. The theoretical result
and experimental data have been shown in the Fig. 1. It is clear to see that
in the near-hydrodynamic pressure regime, p > 40 Pa or Knudsen number Ny =
'}i < 3. the values of (8pm/p)/(fic/n) are found to be inversely proportional to

the pressure, which is expected from (3.102) because of [ « p~!. Unlike in the

hydrodynamic pressure regime, the Hagen-Poiseuille prediction completely fails for
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the low-pressure data (p < 20 Pa or N > 0.25). The physical reason will be found

in the following scctions.

3.2 The Knudsen problem

M. Knudsen [26] in 1909 observed that the volume flow rate of a gas through
a capillary under a pressure difference increases as the pressure diminishes below a
value into the rarefied gas regime, in contrast to the classical Navier-Stokes theory
prediction that the flow rate should vanish. Therefore, there is & minimum value of
Q« at a nonzero value of pressure p as shown in Fig. 2. Knudsen was able to fit his
cxperimental data for the volume flow rate per unit pressure difference @i to the

empirical formula [26]:

_ 1+¢p
Qk = a1p + a2 T+ oap (3.11a)
where
ay = nRY/8Lne, a2 =4V2rR*/3L\/p1, (3.11b)

and ¢; and c; are numerical constants; p; is the specific density of the gas at temper-
ature T when the pressure is equal to 1 dyn/cm?. Since this was reproducible [27]
but not possible to explain by the classical Navier-Stokes theory, the phenomenon
was called the Knudsen paradox. It is not a paradox, but an indication of the in-
adequacy of the Navier-Stokes theory which cannot properly handle flows of gases
in the range of large Knudsen numbers (= 0.1 typically or larger).

The Knudsen problem was studied theoretically in the case of plane Poiseuille
flow [45, 46). Since cxperiments were performed in a circular-tube flow geometry, it
was not possible to compare the aforementioned theoretical results with experimen-
tal results, but their results predicted the existence of a minimum in the volume

flow rate. The BGK kinetic equation was used to the plane Poiseuille flow geometry
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and subjected to the slip boundary conditions in ref. [45, 46]. There is, however,
no theoretical study available for the problem in a circular-tube flow geometry.

Recently the Knudsen problem has been explained adequately by using the gen-
eralized hydrodynamic theory [28]. The basic physical reason for the phenomenon
is that as the gas density diminishes, the mean free path in the gas becomes very
long, thus the range of momentum transfer becomes accordingly long, and as a
consequence, the gas behaves as if it is a non-Newtonian fluid in the sense that the
viscosity of a rarefied gas depends on the shear rate. Such a fluid has a vanishing
viscosity at the wall of the tube which results in a plug flow. The ultimate con-
sequence of this is that a non-energy-dissipating collimated beam is forined in the
capillary at low pressure and thus the molecules move axially and ballistically along
the tube under a pressure difference.

It is assumed that a fluid is laminarly flowing in a circular tube of length L
and radius R, subject to a longitudinal pressure gradient. The pressure difference
between the entrance and exit of the tube is denoted by ép = pi — py where p; and
ps are the pressure at the entrance and exit of the tube, respectively. The fluid is
maintained at a constant uniform temperature and therefore there is no heat flux.

The generalized hydrodynamic equations are given by (2.53a)-(2.53e),

%p = —-V.pu, (3.12)
p%u e —Vp-V.I, (3.13)
d -
p i1 = —2p[Vu|® — (p/no)Tge(). (3.14)

Since the flow is assumed to be in a steady state, time derivatives are set equal to
zero. Considering the symmetry properties of circular-tube flow, the generalized

hydrodynamic equations in the cylindrical coordinates are reduced to

-éa;(pru,.) ={ (3.150)
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dp 190

At g =0 (3.15b)
Mg (1) = —2n0v (3.16)

where
qe(I1) = sinh(x)/x, (3.17)
s = 711/ng, (3.18)
7 = [2no(mekpT/2) 7?2 /\/2nkpTo, (3.19)
¥ = 5(0u./0r) (3.20)

with 5y denoting the Chapman-Enskog (Newtonian) shear viscosity, m, and o the
reduced mass and the size parameter of molecule. It is easy to find the velocity
profile by solving (3.12)-(3.14) as follows:
u:(r) = (R/78)[coshf — cosh{ér/R)) (3.21)
where
6 = T Rép/2Lny. (3.22)

The velocity profile (3.21) reduces to the well-known Hagen-Poiseuille velocity pro-

file
_ ép 2 2
u;(T) = m(R -7 ) (323)
as the parameter 8 gets small.

The volume fow of particles in the tube in unit time is given by the formula
R
Qol(ép) = 2n f drru,(r). (3.24)
0
By substituting the velocity profile (3.21) and performing the integration, we obtain

Qo(bp) = (21r/'r8)[%cosh9 + 67%(coshd — 1) — 87 sinhb)
nRi6p
= SIm (14+46Q)

= Qup(l +6Q) (3.25)
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where

6Q = 8675 cosh + 8% (coshd — 1) — ™1 sinh6] - 1 (3.26)
and
mRiép
- , 3.7
Qup ST (3.27)

Since 7 is inversely proportional to p, so is §. Therefore, §@Q vanishes as § — 0 and
thus @ becomes a linear function of p in this limit, that is, Q¢(6p) is reduced to
@ up which predicts @y p = 0 at p = 0. This is contradictory with the experiments
by Knudsen [26] and Gaede [27]. It is casy to see that the formula (3.25) has an

asymptotic behavior as
Qo(8p) — peap(o/p) as p—0
where

90 = pﬂ = ToRép/gL?]n,

7o = [2n0(m-kBT/2) *)'/? |V/20.

The minimum value of Qy(6p) can be determined by the equation:

d ._3:1 _ 1

EE{B 3[§c¢::.<sh,9 + 87 %(cosh® — 1) — 87 sinkb]} =0
it is the transcendental equation for 8,, at the minimum

0 (10 + 62 )sinhby, — 5(2 + 62 )coshfm + 10 =0
the approximate solution of this equation is

6 == 2.30

therefore the pressure at the minimum is given by

Pm = 90/8",.

7



The basic reason for the appeuarance of the minimum is that the effective viscosity
diminishes as the parameter 8 increases, and thereby the gas density or the mean
pressure decreases. The Navier-Stokes equation does not have a mechanism for
a diminishing viscosity, and the absence of such a mechanism is the reason for
the Hagen-Poiseuille result being in variance with experiment at low pressure. By
introducing Q(p) — Qo(ép)p/ép , we obtain a formula for Q(p) from (3.25), (3.26)
and (3.27):

WR48(0/)"2{1 h(80/p) + (8¢ /p)~2[cosh(Ba /p) — 1]
8Lng P 560sh(60/p) + (80/p)™*cosh(8a/p) —

— (60/p)"" sinh(60/p) }p- (3.25')

Qp) =

The theoretical result based on the (3.25') for 8y = 0.1 and the experimental result
are shown in Fig. 2.

There is, however, a difference between the theoretical result and the experi-
mental data at very low pressure regime as shown in in Fig. 2 although the theoret-
ical result is qualitatively correct. The physical reason is that in the calculation of
the flow rate () we have used the lowest order approximation for the nonequilibrium
distribution function which may not suitably describe the systems far away from
equilibrium. The higher order approximations for the nonequilibrium distribution
can be evaluated in the scheme of the modified moment method [47] but that makes
the analytic calculation of the flow rate impossible. Here we present a semiempirical
approach which can improve the behavior of the flow rate in the very low pressure
regime. This can be done by changing the p in (3.25') to p' = p+ 0.02. The result
for the flow rate Q'(p') is has been shown in the Fig. 3 which gives better fitting to

the experimental data.
3.3 Theory of light-induced viscous flow in a gas

The kinetic theory of photons and material particles given in the previous
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chapter yields a set of the gencralized hydrodynamic equatioas and lays the kinetic
theory foundation for a theory of irreversible thermodynamics of radiation and
matter. The basic idea of the theory developed here has been applied by van Enk
and Nienhuis [30] to analyze some irreversible processes in connection with the light-
induced kinetic effects. Here we apply the generalized hydrodynamic equations to
stndy the experimental result by Hoogeveen et al. [22].

Since the experiment was done in a single-component gas under the condition
of a uniform temperature, it is sufficient to consider only the stress evolution equa-
tions together with the momentum and mass balance equations. In the case of the
flow geometry and condition for the experiment, the mass balance equation is triv-
ially integrated and thus does not play a significant role in solving the generalized
hydrodynamic equations. We assume that the molecule has only two internal stetes,
and treat the molecules of different internal states as different species. This treat-
ment is reasonable since the excited molecules interact with slightly different <ross
sections from the ground state molecules and thus are distinguishable. Therefore,
there are three species in the system, because the photons are treated as another
species in the aforementioned kinetic theory of radiation and matter [17). Since the
radiated system is in a stagnant state and thus any deviation from equilibrium is

initially small, it is appropriate to take linearized stress evolution equations (2.53e)

and (2.57d) fora =1

d . r
T = —sha’f — a/%a ) .28
PdtH“ 2p.y ;,Z;:p RasIls (3.28)

where the subscript @ denotes the species 1, 2, and r, r being reserved for the
photon, IT, = pI1, is the shear stress tensor, y = [Vu + (Vu)'|/2 - UV - u/3,
u being the hydrodynamic velocity and U the unit tensor, and the summation in

(3.28) runs over 1, 2, and r. The coefficients R are related to the collision bracket
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integrals Iy as follows:

Rab = (2ﬁﬂpu1’b)“] Rab (3'29‘1)

with 7 = 1/ksT and g denoting the parameter defined in the previous chapter.
Considering the symmetry of the flow geometry, (3.202) can be reduced to the

scalar form (one component):

d - r
plla = —2pay - ;pnnﬂbm (3.29%)

where IT, = pIl, is a nonvanishing component of Iy, ¥ = [0u.(r)/8r], and u,(r)
is z-component of the hydrodynamic velocity.
Since the experiment was performed under a steady state condition, it is suffi-

cient to consider the steady-state form of (3.29b):

2p1y + p1 (Rl + Ryl + Ry 10,) =0,

2p2y + p2(Rar 111 + RopIl2 + Ro, I1,) = 0. (3.30)
Solving this equation for II, and II; and adding them up, we obtain
O=1 +1z = =20y + 11 (3.31)

where 79 is the shear viscosity of the gas which can be expressed in terms of the

collision bracket integrals in the scheme of the present kinetic theory,
o = (R11 + Raz — 2R12)/(R11Ra2 — RY,) (3.32)
and
M = —[R1+(Raz — Riz) + Ro2r(R11 — R12)}(R11R22 — R%,) M, (3.33)

The I1}, is the stress generated by the laser and is proportional to the light intensity

which is distributed radially across the cross section of the capillary.
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According to the experimental arrangement, the flow generated by the light is
exactly balanced by the opposing flow due to the pressure difference in the differen-

tial manometer, the matter part of the stress is equal to zero. Therefore, we obtain
form (3.31)

20y =11, (3.34)

sidopting this equation to the geometry of the flow and integrating the resulting
equation where ¥ = 3[0u,(r}/9r], we obtain the radial velocity profile in the capil-
lary

us(r) =ng! jnr drilp(r). (3.35)

Therefore, the flow rate of the gas in the capillary is given by

R R r
QU) = 2r / drrus(r) = 2mg! f drr ] dr'TlL (+')
i} 0 B
0
=1r1;0“1f drr?llL(r). (3.36)
R

We may rewrite this integral in the form

0
TR vt /n = ! / drrill (r) (3.37)
R

where v is a parameter of dimension of inverse time related to the collision frequency
defined in terms of the collision bracket integrals (this v can be easily identified
from (3.37).), . the density of the excited species, and n is the total density.
The parameter v can be evaluated explicitly, but since we are interested only in the
pressure dependence of the flow rate, it will be sufficient to treat it as a semiempirical
parameter as was done for equivalent parameter in the work of Hoogeveen et al.
[22]. Balancing the laser-generated flow with a pressure difference in a differential
manometer is equivalent to opposing the flow with another flow generated by the
same pressure difference in the absence of light. Therefore, Q(I') may be equated to

the flow rate arising from a pressure difference in the saine flow geometry. Such a
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flow rate is given in the previous chapter in connection with the Knudsen problem.

The flow rate Qg of a gas through a capillary under a pressure difference was shown

to be

Qo(6p) = (27r/‘r8)[%cosh9 +672(cosh§ — 1) — 6 sinhé)

= Qupr(l +4Q). (3.38)

Here Qy p is the Hagen-Poiseuille flow rate. It is clear that Qo(6p) approaches @up
as @ tends to zero, namely, in the Navier-Stokes theory limit. The expression for
Qo(6p) has been used to cxplain the Knudsen croblem. Now, by equating Qo(8p)

with Q{I), we obtain
TRvit./n = (27r/1‘6')[,—1>-cosh8 + 67 %(coshg — 1) — 6 sinhé)]. (3.39)

This equation can be solved for p. It may solved by an iterative method. By taking

the lowest order approximation by putting 6Q = 0, we obtain

(8p/p)o = (8Lnov/R)(Ae/n)/p=C/p (3.40)

where

C = (8Lnov/R)(fe/n).

The relation (3.40) is the classical hydrodynamic result given by Eoogeveen et al.
It is a linear relationship between (§p/p)o/(7ie/n) and p~! as observed in their
experiment [22] in the normal pressure regime. By using this result as the zeroth

iterate and substituting it into (3.39), we obtain the first iterate:
(6p/ph = %Cb‘{bgpasinhg(b/?.p) + p®[beosh(b/2p) — 2psinh(b/2p))2}~! (3.41)

where
b = [no(mksT/2)**1**(RC[2Lnq0). (3.42)
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This process of iteration can be continued and the sequence rapidly converges.
Therefore, the first iterate is found sufficient in practice. The formula (3.41) is our
main theoretical result. The subscript 1 will be dropped from (dp/p)i. We now
test this formula against the experimental data by Hoogeveen et al. [22]. Using
the parameters spesified for the experiment [22] and fixing the constant C with
a data point in the high pressure regime, the pressure difference is calculated as
a function of p by using (3.41). The result is shown in Fig. 4. In the normal
pressure (high pressure) range this formula reduces to the formula derivable from
the Hagen-Poiseuille flow rate and gives an inverse pressure dependence. As the
pressure is reduced to the rarefied gas regime, the nonlinear contribution in {3.41)
becomes dominant and ép/p begins to diminish after a certain value of p, producing
a maximum. However, the ép/p decreases too fast in the very low pressure regime,
compared with the experimental data. This may be attributed to the fact Qq(ép)
has been calculated to an approximation by using a lower-order approximate dis-
tribution function. It is possible to improve the distribution function by including
the higher order approximation, but such a distribution function would not allow
an analytic form for Qo(ép). In view of this situation, we may take a semiempir-
ical approach by introducing a parameter in (3.41). We find that if p in (3.41) is
replaced with p' = p + 3.7, the formula performs much better. Namely, we take
instead of (3.41) the following formula:

§p/p =%Cb“{b2(p + 3.7)3sink?[b/2(p + 3.7)] + (p + 3.7 x
[bcosh(b/2(p + 3.7)) — 2(p + 3.7)sinh(b/2(p + 3.T))*} 1.  (3.43)
The 8p/p value computed with this formula is plotted against p in Fig. 5 which
shows an excellent fitting of the experimental data over the entire range of pressure

studied. Notice that the maximum position, which is around p = 20 Pa, remains

almost unchanged by this shift in p to p'.
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The present theoretical result is a product of a combination of the kinetic the-
ory of radiation and matter [17] and the kinetic theory of rarefied gases [28], each
of which gives rise to a set of generalized hydrodynamic equations that may be
solved appropriately, given the boundary ard initial conditions. Especially, in the
case of the latter kinetic theory and generalized hydrodynamics one does not need
the conventionally used slip boundary conditions since the nonlinear transport pro-
cesses take care of the slip phenomena, as is evident from the Knudsen problem
which is adequately resolved [28] without resorting to the slip boundary conditions.
Therefore, the present theory, as an application of the kinetic theory of radiation
and matter, not only provides the theoretical explanation of the light-induced ki-
netic effect observed by Hoogeveen et al. [22] but also provides another credible
evidence that the generalized hydrodynamic theory {40] used for gas dynamics is
a useful theoretical tool that can adequately treat gas dynamic problems even if
slip boundary conditions are not taken as are in the conventional gas dynamics. In
any event, the experiment studied here may be viewed as an interesting example of

experiments related to the Knudsen problem.
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Figure Captions: Chapter 3

Fig. 3.1 The maximum of the observed pressure difference, normalized by the
excited-state fraction as a function of pressure for the transition @(12,2) (squares)
and (}(12,3) (circles) for two quartz surfaces; (@(12,2) transition for surface of

stainless steel denoted by crosses. The solid straight line gives the Navier-Stokes

result.

Fig. 3.2 Reduced flow rate (G and Q) vs pressure {(in units of em Hg) for
69=0.1. The dash curve is the resuli of Knudsen's empirical formula for Q, while

the solid curve is the result of the generalized hydrodynamic equations for Q.

Fig. 3.3 Reduced flow rate vs pressure (in units of em Hg). The solid curve
is the original result of the generalized hydrodynamic equations. The dash curve is
plotted according to Knudsen’s empirical formula. The dash-dot curve is the result

by using improved formula for Q(p') where p' = p + 0.02.

Fig. 3.4 Scaled pressure difference vs pressure for light-induced flow in a
capillary. The dash line is the Navier-Stokes-theory prediction and solid curve is
the prediction made by using the present theory. The squares, circles, and crosses
are experimental data for the @(12,2), @(12,3), and @(12,2), respectively. The
Q(12,2) data were obtained with a stainless-steel capillary, whereas a quartz capil-

lary was used for the Q(12,2) and Q(12,3) data.

Fig. 3.5 Scaled pressure difference vs pressure for light-induced flow in a
capillary. The dash line is the Navier-Stokes-theory prediction and solid curve is
the prediction made using the improved formula (3.43). The squares, circles, and

crosses are experimental data for the Q(12,2), Q(12,3), and Q(12,2), respectively.



The Q(12,2) data were obtained with a stainless-steel capillary, whereas a quartz

capillary was used for the Q(12,2) and Q(12,3) data.
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Chapter 4

Relativistic Boltzimann equation and

relativistic irreversible thermodynamics

The nonrelativistic form of irreversible thermodynamics and generalized hy-
drodyuamic equations for the system of radiation and matter is presented in the
chapter 2. In that theory the material particles are treated nonrelativistically and
the Doppler effect for photons are considered in the nonrelativistic approximation
while photons are relativistic particles. Therefore, the nonrelativistic formulation
leaves an unsatisfactory aftertaste. A nonrelativistic approximation destroys ex-
plicit Lorentz covariance of the kinetic equations whereas the covariance of kinetic
theory for photons is important. In that scheme we have to carefully consider rela-
tivistic corrections for photons. This awkward feature can be removed if a covariant
kinetic theory is formulated [34]. Morcover, there are some important problems,
particularly in astrophysics and nuclear physics, where a relativistic kinetic theory
is required since particles move at high speed. For instance, the theory will be useful
in understanding electron and neutrino transport properties in the early universe
[8].

Instead of the Chapman-Enskog method and the Grad moment method which
are only valid in the linear regime, the modified moment method has been extended
to solve the relativistic Boltzmann equation [33]. In this way, the relativistic gener-
alized hydrodynamic equations can be derived from the covariant Boltzmann equa-
tion for a relativistic gas mixture. Unlike the Navier-Stokes equations which are
parabolic differential equations, the relativistic generalized equations are hyperboli-
cal differential equations which give a finite speed of wave propagation. This is con-
sistent with the principle of relativity. The relativistic irreversible thermodynamics

is also construcied based on the kinetic theory. The modified -noment method for
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the covariant Boltzmnann equation rigorously shows that the entropy differential is
not an exact differential if the system is away from equilibrium. Therefore, an ex-
tended Gibbs relation does not hold valid for the entropy density in contrast to the
usual surmise taken in the extended irreversible thermodynamics [21]. However,
an extended Gibbs relation-like equation holds for the compensation differential as
in the case of its nonrelativistic counterpart. The entropy balance equation is cast
into an equivalent form in terms of a new function called the Boltzmann function.
The equation is seen to be a local expression of the H theorem [33]. Together with
the generalized hydrodynamic equations for various macroscopic variables, these
macroscopic evolution 2quations form a mathematical structure for a theory of ir-
reversible processes in relativistic monatomic gases. In this chapter, in order to
prepare for eventual formulation of a covariant theory of radiation and matter, we
will forinulate irreversible thermodynamics for material gases first by starting from
the relativistic Boltzmann equation. The relativistic kinetic theory for the system

of photons and material particles will be presented in the next chapter.
4.1 Relativistic kinetic equation

From the kinetic theory viewpoint, when m-component mixtures of & rela-
tivistic monatomic gases are in a nonequilibrium state, the time evolution of the
systems may be described by a relativistic Boltzmann equation. By solving this
equation the hydrodynamic and thermodynamic variables are determined. There
exist three different ways of solving the relativistic Boltzman equation, namely, the
Chapman-Enskog method, the Grad moment method and the modified moment
method. The former two methods are well established [8] but they are only valid in
the linear regime. Here we present the third method which allows us to obtain an
exact irreversible thermodynamics for relativistic gas systems and analyze nonlinear

processes in nonequilibrium systems [33]. Before the kinetic equation is introduced
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is uscful to fix the notation and the convention for vectors and tensors appearing

in the theory.
A point r in space-time is denoted by o four-vector
r=at = (et,r) (4.1a)
where ¢ is the speed of light, ¢ is time, r is the three-vector for spatial position and
index u rarges 0,1,2,3; here 0 is the time component and the rest of the indices
are the space components, The corresponding four-momentum of species ¢ is
pi = pf = (0], p3),
A = (0} + mic?)' 2, (4.18)
The covariany gradicnt operator is denoted by
Oy =(c™18, V)

where 8, = 8/0t and V = d/0r. In this work the following convention is adopted

for the metric
g"¥ = diag(1,-1,-1,-1). (4.2)
If the hydrodynamic velocity is denoted by U#(z), which will be defined later, then
associated with the metric tensor in (4.2) is the projector A#¥:
AP (z) = —g*¥ + c2UH(2)U" (). (4.3)
Here U#(z) is normalized to ¢
Uy, =t (4.4)

This projector tensor has the following properties:

ARV = AVE (4.5a)
Ay, =0, (4.5b)
APA,, = —AP, (4.5¢)
Ak = -3, (4.5d)
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These properties will be frequently used when relativistic macroscopic evolution
cquations, namely, hydrodynamic equations, are derived from the kinetic equation.

The covariant Boltzman equation for the single distribution function fi(z, pi)
may be written in the form

Pfa;;fi(&",l)i) = Zc(fhfl) (4'6‘1)

=1

where the collision integral is given by the formula
C(firf;) =Gij / I p;d*p;d*BiWi;(piv;lpip})

x [ff(x,p1)f; (= p}) = filz, pi) fi(2, 25)]5 (4.6b)
with d*p; = d&*p;/pS,d®p} = &*p}/p}*, etc. and Wi;(pip;|pip}) denoting the
transition rate for transition from the initial state (pi, p;) to the final state (p}.p})
as & result of a collision between particles { and j. The factor Gij = 1 — §;;/2
insures that the final state is not counted twice. The asterisk denotes the post-
collision value. Note that the subscripts ¢ and j play a dual role of labeling &

species and a particle of that species. The transition rale is a scalar under Lorentz

transformation and obeys the microscopic reversibility (detailed balance)
Wij(pipjlpip) = Wiji(p; p}lpins)- (4.7)
This property is important for proving the H theorem.

4.2 Mean values and hydrodynamic variables

The distribution function makes it possible to calculate statistical mechanical
mean values for observables. First of all, the distribution function is normalized to

the number density n;(z)

() = [ Epiife.p). (4.80)
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We remark that this should not be confused with the hydrodynamic number density
defined later. In the same maune:, the particle flux of species ¢ is given by the

statistical mechanieal formula

i) = f Py, il ) (4,85)

where v; = ¢p;/p°, the velocity of particle . With these two quantities a covariant

vector, namely, particle four-flow can be coustructed:

NE(z) = (p filz, pi)). (4.9)

Here the angular brackets are the abbreviation of the integral

dapi L

(---):c p?

The covariant energy-momentum tensor of species i is defined by the statistical

mechanical formula
T#(z) = (pl'pf filz, pi))- (4.10)

Then, the total number four-flow and total energy-momentum are given by

NE=3"NE. (4.11a)
i=1
and
™ =3 T (4.11b)
i=l

The definition of hydrodynamic velocity in relativity is not unique. There are two
different definitions: one is due to Eckart [48] and the other is due to Landau and
Lifshitz (49]. Here the Eckart definition will be adopted since it is simpler and more

closely in line with the nonrelativistic counterpart. It is defined by

U# = cN*[(N*N, )2, (4.12)

83



This definition clearly satisfies the normnalization condition (4.4). With the hydro-
dynaniic velocity we now define the hydredynamic number density p; of species ¢

by

pi = c U, N} (4.13a)

and the total hydrodynamic number density by
m
p=) pi=ctU,N", (4.13b)
i=1

which implies

N# = pU®, (4.14)

We remark that p; is not the same as n; and a clear distinction should be made
between them to avoid possible confusion that might arise in connection with rel-
ativistic hydrodynamic equations and its nonrelativistic counterparts derived from
the nonrelativistic Boltzmann equation. It is easy to show the relation between p

and n as follows:

p(z) = n(z)(1 — u?/c?)1/2, (4.15)

The various relevant macroscopic variables such as energy density, heat flux,
etc. can be defined in covariant form with the help of the hydrodynamic velocity

just defined. The scalar energy density ¢; of species ¢ is given by
E; = pie; = c—zUpT,-”yUy. (4.16)

The heat flux Q¥ and diffusion flux J! are also expressed in terms of the energy-

momentum tensor as follows:

Q¥ = U, T Ak, (4.17)
J¢ = NI' — ¢;N¥, (4.18q)
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where ¢; is the number fraction:

¢ = pi/p. (4.185)
It is more convenient to use a new heat flux defined by
Q¥ =Qf - hJb, (4.19a)
where h; is the enthalpy per particle of species i
hi=. pip7t. (4.19b)

Here p; is the hydrodynamic pressure of species i. We will give its statistical def-
inition '-ter. Clearly, from the definitions of heat flux and diffusion flux it can be
shown the useful identities U,Q¥ = 0 and U,J¥ = 0; consequently, U.Q¥ = 0.

The total heat flux Q* is a summation of Q¥

Qr=) et

However, owing to the definition of J!' the diffusion fluxs are not all independent

of each other since there holds the relation

S Jt=0
i=1
The stress tensor P/' is defined as
P! = ABTITAY, (4.204a)

In order to reveal its physical meaning we decompose P!’ into the traceless sym-
metric part II*, the excess trace part A; and the hydrodynamic pressure p; of

species ¢ as follows:
PF = pi AP + A AR +TIEY. (4.205)
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The traceless part is related to the viscous phenomena while the excess trace part is
associated with the dilatation {or compression) of the gas. The hydrostatic pressure
is defined in terus of equilibrium (or local equilibrium) energy-momentum tensor

T":

el

1

pi=3 A LTH. (4.21a)
Then, it is casy to sce that
1 ny 1 11
A.‘ = EA“FPi -pi= §A;tVT£ — Pi» (4.21b)
nsw = P:"w _ %Aarl}arA;w. (4210)

The component stress tensors add up to the total stress tensor:

H!m — ini‘w’ A = iAig p= ipi-
=1 i=1 i=1

Because of this decomposition for P!, the energy-momentum tensor can be cast

into the form:
T# = cPEUFUY + cX(QIUY + U*QY) + PP (4.22)

In the proceeding discussions the statistical meaning of hydrodynamic vari-
ables has been presented. However, the hydrodynamic description must satisfy the
thermodynamic laws, particularly, the second law of thermodynamics. In order to
formulate irreversible thermodynamics for a relativistic system it is necessary to
introduce the entropy four-flow in a covariant form

Sh(z) = Z SE = —kp Z Blinfilz,pi) = 1 fi(z, pi))- (4.23)
i=1
With the four-vector S# and hydrodynamic velocity U# we can introduce the scalar

entropy S(z) or the scalar entropy per particle S as follows:

S(z) = pS(z) = ¢ 72U, 5*. (4.24)
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This is the quantity we are gong to deal with in the theory of irreversible processes

that will be constructed on the basis of the covariant Boltzmann equation.,
4.3 Relativistic generalized hivdrodynamic equations

The particle number and encrgy-momentum conservation laws are easily de-
rived from the covariant Boltzmamn equation since these quantitics are the colli-
sional invariants of the Boltzmann collision integral. The covariant balance equa-

tions for the particle number and energy-momentum are, respectively,
B N* =0 (4.25)

and
3, T = 0. (4.26)

Various fluid dynamic equations can be obtained from these balance equations.

With the definitions of the operators

-

D =U*3,, (4.27a)

V# = —A*,, (4.27b)
the covariant derivative can be decomposed into two components as below:
o* = ¢~UMD + V*. (4.27c)

The operator D will he called convective time derivative, which is analogous to the
nonrelativistic substantial time derivative, and V# to the gradient operator.

By using the decomposition of 9" and various definitions such as hydrodynamic
density ete. given earlier, it is possible to derive from the conservation laws (4.25)
and (4.26) the following balance equations of density, density fractions, momentum

and energy. Since the details are well documented in [8] we list the results only:
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Equation of continuity:

Dp = —pV, U". (4.28)

Density fraction balance equation: For systems without a chemical reaction
pDe; = =V, J} +c"2JEDU,. (4.29)
Momentum balance equation:
¢ 2hpDUM = V' p 4 APQ, P + ¢~ (ARDQY - Q*V,UY —Q¥V,U*)  (4.30)

wlere

Pov — Z(Aiaau + H:-”) = AAY + Tiev (4'31(‘1)

i=1

and h is the enthalpy per particle of the mixture:
m
h = Z(E,‘ + p,‘pi_l) =€ —{-pp_l. (4316)
=1

Energy balance equation:
pDe = =V ,Q* —pV, U* + PV, U, +2c72Q*DU,. (4.32)

These balance equations contain macroscopic variables such as the stress tensor,
heat flux and diffusion fluxes, ete. which require their own evolution equations. We
can derive them from the covariant Boltzmann equation. First we introduce a tensor
{@ 1 defined as the average of its molecular expression p? {***! with respect

to the distribution function [33]

¢§a)'w'"la — (pfhf-a)"”""f;(m,m)) (4.33)

(@)uv..d

where h; is the ath element of a set of molecular expressions of moments in

terms of which the distribution function may be expanded. The leading moments
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relevant to physical applications of the theory developed here are:

. TP - 1
B = AU THALAY - 2 A0 ARPTHT, (4.34a)

n 1., _ t
= 56‘(Uw?) YALpipl - pileis (4.34b)

B = AU THALRIU, = @il = e} Usp})UP]},  (4.34c)

B = AP b — e U], (4.34d)
ctc.
where
a; = AFATPTPT fei) g [DEALDT PTUPY) ™! feidgpe] " (4.34¢)

These moments tend to the nonrelativistic moments appearing in the nonrelativistic

kinetic theory [20] in the limit of u/c — 0. They are constructed by means of the
Schmidt orthogonalization method such that they give rise to physically relevant

variables when averaged.

The physical measurable quantities ®{***!? which are tensors of various

ranks, are the constraction of ${®*' with U,

(I’Ea)pu...l = C_QUad)Sa)p.u...la. (435)
It is then easy to show that

@E_l)!w = I @EZ) =A; (I,E-'!)# = Q' (I,E“)J‘ =J# ete

i

Thus, we are treating ¢§°)"”""” as components of a "four-tensor” and macroscopic
moments &{***! are their contractions with the hydrodynamic four-velocity in
the sense similar to the scalars such as the number density, entropy density, ete.

This way, they are put on equal conceptual footing with the conserved variables and
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entropy density to which they are related, as will be shown later. The evolution

(er}pp. o

cquation for i, is casily derived from the covariant Boltzmann equation:

aowgn);w...la = (P?aahin“wm'fi(-r,Pi)) + J\Ea]uu...l (436)

where the dissipation term

m

Aga)lw---l - Z(hEO)IWmIC(ﬁ.’fi)) (437)

i=1
is closely related to the entropy production which we will discuss later. With the

definition of (i)ﬁ“"“’"" as Q}E-“)"""" per particle,
gl _ et (4.38)
and by making use of (4.35), we obtain
pDEIs _ gl | p (st (4.39)

where the kinetic term 2!***! is given by

ZEM ! = (7 QR fil, pi)) + O (AT ), (4.40)

This statistical mechanical formula can be worked out more explicitly for the leading

moments as follows:

ZOm = _ v, Qe oy, . vU @ 4 op (VT
+{(£ip?pIpi(piU) NV UA(ALTY + URA}))
+ 20U + TV, U° — 2c72(Q; DU) @
~ SURBBIHE U VAL (UAT,UY + U 9,U%)
- %(f.-p.’-’p}'pi-p?cz(p.‘- Ue)~2)VoUa(BF AY - %A:fA"")
— cY(PFTUY + PYTU*)DU,
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+{pi + A NTHDUY + UV DU, (4.41a)

ne

Z = o v, by %nf"[vv](‘-’) — ;i Din(piv®*)
F AT = Wi/ pi) + 5e2QUDU,

- %(fiP?P{Pf‘P?CQ(Per)_Q)Va[!,\.’_\rh (4.41b)
Z3M = _ QM L DU, — (i + A)DUP = JFDh;

+ QPTLUR 4 ai JPURY by + (i + AUV,

~UMIY VU, — cT2UFQY DU,

= ai{fipfpf F(Uepf) ™)V

+ (Fipf Pl (Uep)) ™) aihi Vo Uy

— (fid pT (U5 DhiBsa; + UF NI hi0sa;, (4.41¢)
ZM = _ v, QM _ grg Uk - o, DU* — UM JY DU,

= {fiptpi P} (piUe)*) Vo U, (4.41d)

where

[VU](‘-!J#V = %(V“U" + VYUHF) — %A””V"U,,
(A4 BIOW = (47 By + 4°° BY) = AP A7 By,

qu)u...crp — !’b‘(a)u...a,u _ ‘i)g_a)u...aNp.

We emphasize that the evolution equations (4.39) are coupled to the momentum,
energy and concentration balance equations introduced earlier. As in the nonrela-
tivistic kinetic theory this set of equations is open and therefore must be suitably
closed by means of a closure relation. When the set is thus closed, it provides rela-
tivistic generalized hydrodynamic equations consisting of (4.28)-(4.30), (4.32) and
(4.39) with the number of moments limited to a finite value by the closure. The
flux evolution equation (4.39) can be easily shown to tend to the nonrelativistic

counterpart in the limit of ¢ — co. The manner in which the moments {d?f-“)} are
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defined is significantly different from the one in the conventional moment method

8, 50] and as a consequence their evolution equations are significantly different.
4.4 The H theorem, equilibrium solution, temperature and pressure

With the definitions of the entropy four-flow and the scalar entropy density we
can derive the entropy balance equation from the relativistic Boltzmann equation.

The covariaut formn of the cntropy balance equation is given by

OpS* = Ocny(x) (4.42)
where
acnl(l') = _kB Z Z(Infi(xapf)c(fl'u fJ))' (4'43)
=1 j=1

By following the well known procedure [8] based on the symmetry properties of
the transition probability, it is easy to show that the entropy production g.n:(z) is
positive:

Uent(I) 2 0, (4-44)
with the equality applying only at equilibrium. This is the content of the H theorem.

It is a statistical mechanical representation of the second law of thermodynamics.

In terms of the scalar entropy density we will write the entropy balance equation in

a more useful form:

pDS = 8,7} + geni(z) (4.45q)
where the entropy flux is given by
Ji =58 - SNt = §F - pSU*. (4.45b)

Various balance equations and flux evolution equations previously introduced are

subject to the entropy balance equation in the sense that the entropy production
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Gent{d) must remain positive so that the second law of thermodynamics is satis-
fied. As it stands, the entropy balance equation provides no clue as to how this
requirement of the second law is fulfilled. This point is usually clarified by using an
approximate distribution function (e.g., the Chapman-Enskog solutions), but since
the thermodynamic laws must be satisfied rigorously, any conclusion drawn in that
respect on the basis of an approximate solution to the kinetic equation cannot be
relied on if the system is removed from equilibrium by an arbitrary degree. We
therefore must employ a rigorous approach. The modified moment method [20)
meets this stringent constraint. As a further preparation for this method, we now
consider the equilibrium solution te the covariant Boltzmann equation.

QOwing to the H theorem, the equilibrium solution fe; to the covariant Boltz-
mann equation is uniquely determined. The result is the well known Jiittner func-
tion (8]

fei = exp[—B(p{ Uy — pf)] (4.46)

where pf is the normalization factor which turns out to be the chemical potential,
and 8 turns out to be proportional to the inverse temperature: 8 = 1/kgT. This
parameter 3 is determined by comparing the thermodynamic entropy, pressure,
and internal energy with the statistical mechanical entropy, pressure, and internal
energy calculated with the equilibrium solution of the kinetic equation by following
the basic strategy of the Gibbs ensemble theory. Since the equilibrium entropy

four-flow with f.; given as in (4.46) is
m
St =kpf ) (TEUs + N&/B - uiNE), (4.47a)
=1
we find the equilibrium scalar entropy in the form

Se=keBlE+p/B-3 uipi. (4.475)

i=1
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The thermodynamie temperature Ty is defined by
= (05./0F). (4.48)

By mauking S, in (4.47) correspond to the thermodynamic entropy, and other terms
in it to the encrgy, pressure and density, respectively, we are able to find the pa-
rameter T: Ty = T. This identifies the physical significance of T It is the absolute

temperature and

B =1/kpT, = 1/kpT. (4.49)

Henceforth, Ty and T are interchangeably used, In fact, T means T unless stated

otherwise, Since the chemical potential is defined by
18 /T = —(3S./9p3) (4.50)

in thermodynamics, the normalization factor uf is indeed the chemical potential.

The ideal gas equation of state is identified by
p=pkgT, (v=p71). (4.51)

It must be remembered that this T is the temiperature of the equilibrium system,
which will be occasionally denoted by T, if necessary, to make distinction from the
nonequilibrium temperature.

The hydrodynamic pressure has been given by (4.21a) in terms of the equilib-

rium energy-momentum tensor which we will work out more explicitly:

m
p= pi= Z AT
i=1

Substituting the equilibrium distribution function (4.46) into it, we find

%Z ot B! (4520)

p= Z 4rm?ef2Ko(mic*B)exp(Bus) (4.52b)

i=1
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where Ky(z) is a modified Besscl function [48] of the second kind. The density p
may be similarly calculated:
m
p=c N = Z drmicd=  Ky(miederp(Bus). (4.53)
i=1
This, together with (4.52b), implies the equation of state (4.51). Thercfore, the
thermodynamically defined pressure through the equation of state (4.51) is consis-
tent with the statistical mechanical definition of p in (4.52a). The situation thus is
seen to be the same as in the nonrelativistic kinetic theory in that the kinetically
and the thermodynamically defined pressure are identical. However, this is not the
case for the internal energy.
In the nonrelativistic kinetic theory the temperature is defined such that the

following relation holds true between the internal energy and the temperature [18]
= St 4.54
£ = 5 Bd. ( R )

The temperature defined in this manner is called the kinetic temperature and co-
incides with the thermodynamic temperature defined through the thermodynamic
relation

T-! = (8S./OE). (4.55)

However, in the relativistic theory the situation is altered significantly since if the
kinetic temperature is defined by (4.54), then it does not agree with the thermo-
dynamic temperature defined by means of (4.55). Nevertheless, (4.55) is consistent
with (4.51). One recovers the coincidence between (4.54) and (4.55) in the limit
of uf/c — 0, in which the term mc? is neglected; see ref, [8] for expression for e.
However, it would be preferable to have the thermodynamic temperature coincide
with the kinetic temperature in the relativistic kinetic theory as well, since the ki-

netic theory should be a molecular representation of thermodynamics underlying
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microscopic processes, Here we define the kinetic temperature for a system of par-
ticles with finite masses such that it precisely coincides with the thermodynamic
temperature as follows:
3 m .
SpkpT. = ) _(26) (Pt Ueplew = mic) feilz, pi))- (4.56)
- i=]
This definition yiclds a correct nonrelativistic limit. It is rooted basically in the
idea that the temperature is a measure of kinetic energy. Since the integrand in

(4.96) is scalar, that is, its value is independent of frame, it is convenient to choose

the local rest frame where U, = (¢,0,0,0) to evaluate the integral. Then,
fei = exp[—Blep? — pf)) (4.57)

where 8 = 1/kpT; with the subscript ¢ restored to mean the thermodynamic tem-

perature. Thus, we find

3 o1
sokaTe =) | sezp(Buf) f d*pie; — mict/ei)exp(—Pe:) (4.584)
i=1 ~
where
e = pf = (cp} + mich)12. (4:58)

With the transformations
zi = mic?p, T = fe;,

(4.58a) may be put in the form

3 “ 4!
sokaTe = ) exp(fuf)2me ™~ ooy

i=1

22Ky (2;). (4.59)
In view of the fact that the chemical potential is given by

exp(—Bu§) = 4rmic(pif) ™! Kao(2i),
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it follows from (4.59) that

Tt =Tl

since the right-hand side of (1.59) is equal to 3pkTy/2. This proves the coincidence
of the kinetic temperature with the thermodynamic temperature, if the kinetic
temperature is defined as stated in (4.56). It must be noted that Eq. (4.56) is
another way of expressing Tolman's equipartition theorem [52]. Thercfore, the
definition of temperature by (4.56) is seen to be based on the equipartition law.
In other words, the relativistic kinetic temperature may be defined by means of
the equipartition thcorem of Tolman, whick equally holds for both nonrelativistic
and relativistic theories. This interpretation of the definition of kinetic temperature
provides us with a universel way of defining temperature for both nonrelativistic and
relativistic theories: the equipartition law of Tolman.

The local rest frame version of the definition (4.56) of kinetic temperature in
relativity was suggested by ter Haar and Wergeland [53], and it was later taken by
Menon and Agrawal [54], but as pointed out by Landsberg [55], their definition is
preceded by Tolman [52]. On the other hand, in the Chapman-Enskog theory [8] the
kinetic temperature is defined such that the equation of state in thermodynamics
and in kinetic theory coincide with each other. Therefore, there appear to be two
different modes of defining the temperature, but, in fact, they are identical at least

in the case of dilute gases. Since,

2.4 2 0w
PPt UepUey — mic® = c“plip{ Ay

substitution of this relation into (4.56) yields

3 1
§PkBT= = EAvnTgw

=3

a7



which implies the equation of state. This result elaborates on what has been said
carlier in connection with the matching conditions used in the Chapman-Enskog

theory.
4.5 Modified moment method

With the equilibrium distribution function uniquely determined by the H the-
orem and the parameter therein identified with the thermodynamic temperature
and chemical potential, it i1s now possible to develop a method to determine the
nonequilibrium distribution function such that it is consistent with the H theorem.
In the nonrelativistic kinetic theory the determination of a nonequilibrium distri-
bution function is made possible by the modified moment method {20]. Here we
extend the same method to solve the relativistic Boltzmann equation. This exten-
sion allows us to establish rigorously the irreversible thermodynamics for relativistic
systems [33]. To begin with, the following consideration is helpful for adopting a
general stratcgy.

Since the nonequilibrium distribution function must be reduced to the equilib-
rium distribution function as the system tends toward equilibrium, it is natural to
construct the former hased on the latter. Therefore, we look for the nonequilibrium

distribution function in the form

fi= £ (Bes pe, UL)AS;

where f? = f2(B.,pe,U#) is the equilibrium distribution function already deter-
mined and A f; is the nonequilibrium correction. This correction term may be ex-
pressed in a variety of ways corresponding to different ways to solve the Boltzmann
equation. In order to have a operational meaning for the parameters appearing

in the distribution function, the nonequilibrium distribution function will be de-
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termined to satisfy the matching conditions. There exist three different matching

conditions which are used in the literature:

Eckart’s matching conditions [48]:
Pe = Py vl =U#, E, = E;
Landau and Lifshitz’s matching couditions [51):
pe=p,  EUP=EU* - QN

Stewart's matching conditions [50]:
Pe =, Ul =U*, E. - 3p. = E - 3p.

In nonrelativistic kinetic theory the energy matching condition automatically
matches the nonequilibrium temperature to the equilibrium temperature appearing
in the distribution function. This matching condition in fact serves simultaneously
as the statistical mechanical definition of the nonequilibrium temperature. In the
matching conditions of the relativistic kinetic theory mentioned earlier we notice
that none of them can serve as the statistical mechanical definition of nonequilib-
rium temperature since the internal energy is not equal to 3kpT/2 for a monatomic
gas if the particle is relativistic. Therefore, the kinetic theories using the aforemen-
tioned matching conditions do not unequivocally and mathematically identify the
nonequilibrium temperature appearing in the nonequilibrium distribution function.
We believe that it is not sufficient to simply call the temperature in the equilibrium
solution of the kinetic equation local and dependent on space-time and then use
it in the nonequilibrium distribution function as is usually done in the literature
since then it is not statistically defined within the framework of the nonequilibrium

theory in hand.
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Since we need to fix the statistical mechanical meaning of nonequilibrium tem-
perature for the nonequilibrium distribution function of a relativistic gas, we propose

for the matching conditions meeting the requirement we set for them in connection

with temperature as follows:

(]J" U:lfl) = (p‘:"UﬂfCt-)q (4.500)

m l

Z(p,- fiy= _Z(p.- feids (4.600)

CMAﬂ%M—Zcp“LMWM (4.60c)

i;l , m i=1
Zﬁ(p' Pl Z

The first two conditions are the same as those in the matching conditions of Eckart

(pip! fei) (4.60d)

C-Jl'—'

and Stewart and the third matches the internal energies. The last condition simul-
taneously serves as the temperature matching condition. Notice that (4.60c) and
(4.60d) are the matching conditions for the projections of the energy-momentum
tensor onto two different directions. These conditions imply that f; is determined in
terms of p,U#,and T or p among other macroscopic variables, and that the nonequi-
librium part of f; is such that

(PLUfl4:) =0,

m

Z(Pi‘f?%’) =

Y (Pt UuptUs f64) =0,
2
,m

Y (tpt ey Ap =0,

=1

if fi is written as

fi= (14 ¢:)
It must be pointed out that in the Chapman-Enskog method of solution for the co-
variant Boltzmann equation, condition (4.60d) is not explicitly imposed for the
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nonequilibrium distribution function. In the present relativistic kinetic theory
(4.60d) defines the kinetic temperature. The relativistic version of the general-
ized hydrodynamic equations remains basically unchanged by the various matching
conditions presented in this work, although some details of the generalized hydrody-
namic equations get modified to some extent because some macroscopic quantities
become modified depending on what we mean by nonequilibrium temperature.

Now, the nonequilibrium distribution function is matched with f.; as described

and written in an exponential form

fi = eapl-BPEU, + HY — )] (4.61a)

where

Hl(].) = Z X(CI:) .!h(ia)f...b'}l

T,
az>l

=5 x®on® (4.61b)
a2l

and g; is the normalization factor given by the formula

ezp(=Pp:) = pi (e pMUreap(=B(PEV, + D X{E) 1)), (461c)

a>l

The parameter § = 1/kpT has the meaning as fixed by (4.60d) and elaborated
earlier. The tensors 7{,(: 3 ; are as yet undetermined functions of macroscopic vari-
ables, but will be determined such that (4.61a) satisfies the kinetic equation and any
approximation to them does not violate the H theorem. Consequently, the resulting
formalism for irreversible processes remains consistent with the second law of ther-
modynamics. To construct such a formalism, we assume that Xf“) are somchow
known and then proceed to construct the formalism. (In this sense the attitude
taken here is similar to that by the Gibbs ensemble theory where the partition

function is assumed to be known and with it thermodynamic functions and their

101



relations are sought after.) By making sure that the entropy production remains
positive to the approximation to be made in the future to the unknown Xfa), the
consisteney of the formalism with the second law of thermodynamies is preserved.
For a = 1 the unknown is the sccond rank tensor; for a = 2 it is a scalar; while for
& = 3 and 4 the unknowns are vectors. The sum over a in (4.61b) in principle runs
over any number of terms, but it must be such that f; is normalizable. Only this
restriction is necessary in formulating the theory since the distribution function is
explicitly used only to define macroscopic observable in the moment method, and
once that is done, its role in the kinetic theory is basically over except for the entropy
production for which the restriction just mentioned is sufficient. The exponential
form for f; will be called the nonequilibrium canonical form.

Substitution of the nonequilibrium canonical form for f; into (4.43) for the
entropy production yields the formula

m
cont =T Y 3 X2, O

i=l a2l

=T i Y xPoal® (4.62)

i=1 a1
for which the collisional invariants of the Boltzmann collision integral are exploited.
As in the case of its nonrelativistic version [20], the entropy production in this
form suggests that energy dissipation arises owing to the dissipative evolution of
nonconserved macroscopic variables CIJS.")” vl " As it stands in (4.62), Oent is easily
seen to remain positive no matter what approximation is made to the unknown X ,-(a),
thanks to the H theorem and the nonequilibrium canonical form for f;. Sinceit is not
possible to determine Xf"’ exactly, the positivity of o.n¢ is a very useful property to
have in formulating a thermodynamically consistent theory of irreversible processes.
This is made possible by the nonequilibrium cancnical form for the distribution

function. The entropy balance equation (4.45a), as it stands, does not reveal how the
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second law works to conform irreversible processes to it. With the nonequilibrium
canonical form, the situation is greatly improved and we are now able to calculate
the entropy differential accompanying irreversible processes in o way consistent with
the sccond law.

On substitution of the nonequilibrium canonical form into the statistical me-
chanical formula (4.23) and the entropy flux (4.45b) and use of the decomposition

(4.22) for T, we obtain the entropy flux of four-vector in the form

m m

Je=TT Y @~ mI) T YD XD, (4.63a)

i=1 i=]l a2l
where
Q(io)u...cr,u - lpga)u...au _ (“I)(ia)u...aNp

= — i AR (4.63b)

Now, by subtituting (4.63a) and (4.63b) into the entropy balance equation (4.8)
and eliminating the dissipation term AE"’ and the divergences of @ and J! with

the help of the evolution equation for <i>(,-°) and the balance equations, we obtain

DS in the form

DS =T~"(De + pDv — i piDe; + i S x{¥ 0 D&

i=1 =1 a>l
—~¢"2QFDU,) + R (4.64)
where
R = Rg — R, (4.65¢)
Rg = (pT)7! Z(——HﬁvaU# - 8 AV, U,
i=1
+ QP9 InT + JETO,:), (4.655)
m
Re =" 3 T (0,(X 0.002) + X% 0 27) (4:85¢)
i=1 a>l
X=X pi=wl/Ti v=p"Y QF =Q%/p. (4.66)

103



Here we define the compensation differential

DY = T~Y(Ds+pDv =Y p;iDei+ 3 > X{¥ 0 D& - c72Q*DU,) (4.67)
i=1

i=1 a>1
which differs from the nonrelativistic formula only by the appearance of the velocity
derivative term that is O(c™?) and thus vanishes in the nonrelativistic limit. It is
interesting to see that in relativistic theory the fluid velocity appears explicitly as
a Gibbs variable in contrast to the nonrelativistic theory.

Since the term ¥ does not vanish when the system is a-way from equilibrium,
owing to the fact that the fluxes do not vanish in a nonequilibrium condition, the
entropy differentinl DS is not equal to the compensation differential D¥ and hence
does not become a Pfaffian form [57). Eq. (4.64) presages the invalidity of the
extended Gibbs relation for DS unless ® = 0 identically, To answer this question,
we examine ¥ in detail.

The nonequilibrium contribution ® may be cast into a more transparent and
useful form. To this end, the following relations are useful. The nonequilibrium
canonical form for f; may be recast into the form

S X 0 h® = Api ~ kaln(fi] £2), (4.68)
=

where
Ap; = fi — p?, g = pi/T.

By using the kinetic equation and formula (4.40), it is possible to show that

in m

Y Y X0z =3 S [fiptou(X) 0 kM)

i=1 o>l i=1a>1

+8,(ALX( 0 9{™))

=3 ST UApt (8. Xy @ K

i=1 a>l

+ (8, X)) 0 Arpi®), (4.69)
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From the kinetic equation

m

S (fiptBuln(fi] £2) = 0 (4.70)

t1=1

and, in view of (4.28) and the decomposition 0#* = ¢~2U# D 4 V#, we got

(fipt(0u¥(V) @ H) + (B X @ ALy(™”
= B X" O #{™" + AL X[y @ (™
= ("2, D + V,) X 0 i — (V,X() @ M
= ¢, {"" @ DX

= ¢{*) @ DX, (4.71)

then there follows the relation

n
Re = p~' STINFO AR - 3(™ @ DX

=1
m m

=p 'Y IV AR =Y Y $V 0 DX —aiDAR].  (472)
i=1 i=1 a>l

The Gibbs-Duhem relation following from the statistical mechanical definition of

p§ may be written in the form
" eiD§ = eD(1/T) + vD(p/T). (4.73)
i=1

With (4.72) for R, and (4.73), R can be recast into a more transparent form

=3O & 0 DX{* - c;DAR;) +eD(1/T) +vD(p/T) — 61 (4.74)

m
=1 a>l
where
m
gL =—(pT)™ Y (T V Uy + ANVFU, + QY VuInT + JETV,).  (4.75)

i=1
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Note that this quantity is a measure of energy dissipation due to irreversible pro-
cesses in the system. By defining the Boltzmann function 8
m m
B=S-T 'e+pr—D cimi— 3 »_ &0 X (4.76)
i=} i=]l a2l
and combining (4.64) with (4.74), we finally obtain a differential equation for B

which is equivalent to the entropy balance cquation (4.45a):
DB = —éy - ¢~2T~'Q*DU*. (4.77)

This equation differs from the nonrelativistic analog [20] by the last term which

vanishes in the nonrelativistic limit. By using the the momentum balance equation,

we may write (4.77) in the form

DB = -Z, (4.78)

where

m
Ea=—(pT)' ) [-TI*V,U, + AVEU,
t=1

4+ Q¥(VuInT + 2™V ,p) + JETV 1]

=T Q¥ [Ae0, P™ + ¢4 (A, DQY - QYUY - Q¥V,U,). (4.79)

The dissipation term Z4 contains terms quadratic in fluxes such as Q# and P°*
which are one order higher than the terms in & ; they are relativistic effects.

The dissipation term =4 does not vanish if there is an irreversible process
present in the system, and consequently DB # 0 except at equilibrium. This means
that DS is not an exact differential and not equal to the compensation differential
DV away from equilibrium. That is, the eztended Gibbs relation for DS does not
exist if the system is away from equilibrium, in coniradiction with the premise made

in the relativistic version of extended irreversible thermodynemics. Thisis a rigorous
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result based on the covariant Boltzmann equation and does not require an explicit
solution for the unknowns .\'.-(“) for its validity as long as the latter exist. There
exists a differential form for the compensation function ¥ that looks like an extended
Gibbs relation, however. It may be used to construct a thermodynamie theory of
irreversible processes in a way parallel to equilibrium thermodynamics. The theory
will provide various relations between nonequilibrium thermodynamic quantities
that can be related to experimental obscrvables. In any case, the present result on
DS calls for revision of the exiting notions of nonequilibrium entropy and entropy

fluxes and of the applications thereof in extended irveversible thermodynamics [21},

including its relativistic version.
4.6 Cumulant expansion for the dissipation terms AS“)

The dissipation terms ASQ) defined in (4.37) must be calculated in terms of
macroscopic variables before the evolution equations for <I>S°‘) are solved for specific
flow problems. Since A(ia) are intimately related to the entropy production and the
latter must remain positive regardless of the approximation made to AS"), it is best
to calculate the dissipation terms through the entropy production that is manifestly
positive. As in the nonrelativistic kinetic theory, the aim is nicely achieved if a
cumulant expansion is employed.

To this end, we first write the distribution function in the form

fi = Fexp(—wi) (4.80)

where f? is the local Jiittner (equilibrium distribution) function

£} = exp[~B(pfU, ~ u5)), (4.81a)
exp(—Pp) = pi* (¢ *ptUyexp(—Bpi U, (4.81b)
wi = BHM — Aw,). (4.81c)
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We also define the abbreviation
Tij = wi +wj, Yij = w +wj, (4.82)
and the following reduced variables
! =cp!B, U# = Ut/e, (4.83)

The distribution function may be scaled with the factor p/(mkpT)%/? where m is

the mean rest mass of the mixture; that is,
£ = [p/(mkpT )2 7. (4.84)

Therefore, f? is dimensionless. The transition rate W;; is scaled by A2/mkpT where
A is a parameter with the dimension of length. We may take A to be the mean free

path or the interaction range or the size parameter. Thus, we write

Wij = Wi;(A2/mkpT) (4.85)
so that W;; is dimensionless. It is then convenient to define the parameter

g = (mc?/kgT)* [cA?p® (4.86)

which has a dimension of volume x time. If this parameter is multiplied to the

collision integral for the entropy production, it is rendered dimensionless as follows:
aeﬂt(:c) = kB&ent(m)/g (487)

where the dimensionless reduced entropy production &.,¢(z) is given by the integral

. 1 ¢
Bent(®) = 7 Y <« (zij — yis)lexp(—vij) — exp(~zij)] > (4.88)
i=] j=1
where
£...»=0Gjj daﬁgdsﬁjdaﬁ;daﬁ;ﬁf?Wﬁ . (4.89)
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with @*#; = d®7;/72. Then, with the definitions

m m

O ) =) " < (wij — yij)eap(~<yij) = 1] >, (4.90a)
i=1j=1

O (e = ZZ & (235 — yij)lexp(—cri;) — 1) >, (4.905)
i=1 j=1

the reduced entropy production may be written as

enl@) = 31OM(e) = O] emn. (4.91)

Now, the factors ©(*)(¢) are in exactly the same form as the factors appearing in the
nonrelativistic version of the modified moment method for the entropy production,
We can, therefore, apply the same cumulant expansion method as for the nonrela-
tivistic version to obtain the cumulant expansion for Gene(z). Since the method is

well documented [56], we will simply list the result. Let

x

I

A
|
INgE
[]s

-
1
b
N,
I
-

(zij = yij)* >, (4.92a)

K
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W b
NE

-
I
—
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Il
-

(i = ¥i) (25 + vij) >, (4.92b)

K3

%

] -
.Ms
M

-
I
-
L
]
-

(zij — i )2 (}; + zijvis +yi;) >, ete. (4.92¢)

Then, we find to the first order cumulant approximation the reduced entropy pro-

duction has the form

Fent(z) = Ksinhk 2 0. (4.93)

It is easy to see that &.ni(z) is always positive and therefore the second law of
thermodynamics is satisfied completely. The higher order cumulant approximations
can also be obtained in a similar procedure. First, let us ohserve that x may be

expressed in the quadratic form
1/2
m
= |3 S xPerM o X (4.94)

i=1 j=1 a, 421
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where RS;'-') are the collision bracket integrals appearing in the Chapman-Enskog

method. To write them explicitly, we define the brackets as follows:
(45 B],‘J- = Gij / clar‘ricz'si‘rjcisi'r;dai'r;f?f_?ﬂ’ijél ® B.
Then, the collision bracket integrals are:

R(G"r) - ﬁil(h(a) + b () }(_0)' _ (ﬂ)-)(h(‘v) + h('r) hg‘r)‘ - hs'ﬂ.)]ii‘

+= ﬁ?Z[(h‘“’ REMY(R — ROy, (4.950)
J#i
R =2 3 ((h™) — BEYREY = BSOY]G, G# 5). (4.95b)
J#E

These integrals satisfy the Onsager reciprocal relations. We remark that x? is
intimately related to the Rayleigh-Onsager dissipation function which is quadratic
in fluxes.
By using (4.94) in (4.93) and comparing the latter with (4.62), we find the
dissipation terms to the first order cumulant approximation:
Ale) = Z Z R(M) ® XJ(-")(sinhn/rc). (4.96)
j=1>1
This form of dissipation terms is completely consistent with the second law of ther-
modynamics inasmuch as the entropy production in (4.93) is positive. Higher order

forms Aga) can be similarly found from the higher cumulant approximations for

&cnt-
4.7 Determination of the unknowns X,-(“)

With various thermodynamically consistent macroscopic evolution equations
and the entropy balance equation in place in the theory, there now remains the
task of determining the unknowns Xf") appearing in the nonequilibrium canonical

form of the distribution function. They can be determined in a manner completely
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parallel to the case of the nonrelativistic theory. Nevertheless, since the equations
involved are different, it is necessary to elaborate on the method.

Since the distribution function can be expanded into moments as in the con-

ventional moment method, we may write
fi= 0+ ) AR o i) (4.97)
a>1
where the coefficients .450) are functions of macroscopic variables such as tempera-
ture, fluxes, etc. as will be shown presently. It must be noted that the construction
of an irreversible thermodynamic theory with the form (4.97), particularly when
the system is away from equilibrium, is not appropriate since the entropy produc-
tion can not be positive beyond the iinear order. However, thc moment expansion
for the nonequilibriumn distribution function is mathematically acceptable. On the
other hand, the nonequilibrium canonical form and the moment expansion share
the same set of moments. This means that we can calculate the unknowns X Ea) in
the nonequilibrium canonical form with the help of the moment expansion (4.97).
By equating (4.61a) and (4.97) and taking logarithm, we obtain the equation
k5 (ar = Y XP o k™) =in(1+ Y A 0 A), (4.98)
a1 v21

Since the moments hE") are chosen such that they are orthogonal in the following

sense
(U BB = b (£2(pHUA) T RIE) (4.99)
where ES—“) are defined by
BleY = 20, pf h{%. (4.100)

A!®) are given in terms of fluxes as follows:

Gt = (TR 3 A 0 K
721
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_ AEO) o Z(f?f-tgahw""flf-ﬂ)

121

— AE-Q) o (f?fl(‘_a);w...lhga))- (4101)

Note that the Auxes on the left-hand side are determined from the flux evolution
equations. The quantity in the angular brackets in (4.101) is a function of temper-
ature only. Therefore, the cocfficients A{* are directly proportional to ${®**",

In fact, it is possible to write

A = %‘I’E”“"/(f?ﬁ?’ : MY, (4.1020)
AP = o (RPN, (4.1025)
AP = %‘1’5”"/ (2R ), (4.102¢)
A" = %‘1’5‘””/ FORYR,  ete (4.102d)

By applying the same procedure as for (4.101), we obtain from (4.98) the X,-(a) in

terms of A{™:
~BXV(ARD O R) = AV (PR @ b))
which implies that

X\ = - Al (4.103)

where AE"') are given by (4.102a)-(4.102d). It is convenient to write the results in

the form

X = _gle) /gl (4.104)
where gf“) can be easily identified from (4.102); their nonrelativistic limits are

otV =2 o =2pi/8 o =TCoipi; ¢*) =muni. (4.105)

Here C‘,,,- is the specific heat per mass of species i at constant pressure. The results

given in (4.105) are already known in the nonrelativistic version of the modified
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moment method [20]. This means that the present modified moment method for
covariant Boltzmann equation contains the nonrelativistic counterpart as a limiting
case. On other hand, the coincidence with the well-known results at the nonrel-

ativistic limit serves as a justification for the extension of the meodified moment

method for the relativistic Boltzmann equation.

4.8 Transport coefficients

In order to cvaluate the transport coefficients of relativistic gases in terms of
dynamical quantities such as differential cross sections, we first linearize the flux

evolution equations (4.39) as follows:

pD(i)Sa);w.- d_ YSG)IW 4 —{(Bg)” lgf") ZZ R(c'")‘“' 10 (I)h) (4.106)
=121
where XS‘*’" ¥+l are the linear parts of the kinematic terms A (e)uv--l. yhev are related

to the thermodynamic driving forces by the relations:

xsl)ﬁw —_ 2p‘[VU](2)#” x(z) = —p,-Dlnv”/a;

Xga)ﬁ — picz(V”nT - %V"l D) (4.107)
and
R(G'Y) (gfor)) IR(GT)(Q(T)) (4.108)

is the collision bracket integrals.

For system in a steady state, the linearized flux evolution equations (4.106) can

be reduced to the constitutive equations

(a)pu A — (Bg)" a)ZZR(a'r);w 4 4,2_7)___0, (4.109)

Jj=1~21

This is a set of coupled linear equations. Since the system is isotropic we can expand

the various rank tensors R(")" v in terms of isotropic tensors, for instance,
= - 1
RE;”””H = RE;I)[E(AukAuI + AulAvk) A””AH], (4‘110)
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then,

1 kl
—~AFYA
5 }

= 5PN Y ~ B (6 - ATy (a1
J#i

RO _ ER“”'W“[E(AH*‘AW + A,ulAvk) _

Similarly,
RUD =026y (5 %
[(hS” A = I~ R s (B 4 B — A — R

1 . .
t3 oIt - Y (R = P (4.111%)

j#i
Here the prime on the subscript i means another particles of species :. Since *I)g-l)

is a traceless symmetric tensor, we find
plil vkl (1 5(11 1
R DreMgl) = RV, (4.112)

When a = 2, R(m is a scalar, therefore

5(22) _ 5(22)
R,-J- = ’R,-J- (4.113)
where
72512_2) = ﬁz(gl(z)ggz) 5 Z[(h(z) h(z)-) (hsz) _ hffz)')]ij- (4.114)
J#i

In case of a = 3, the tensor nga)’“’ is decomposable as follows:

Rg@)tw — 7‘3%;%3)‘&#” (4.115)
where
— 1 *
R = LGP L IO K. 00 AP (g
J#i
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Therefore, we finally obtain
PN LY X (3) _ 5> (33) 5(N)n -
RU (I)Ju = R'J ‘I’J . (4.11{)

With the help of these properties, we can write (4.109) in the form:

AR (3g)tgt) ZR(“)‘I’UW =0, (4.1184a)

(2) (Bg)" 'gf )ZT,(N)@(?) 0, (4.118b)
m

W _ (Bg)g! J)ZRW)@(&)» (4.118c)

On solving these equations for the fluxes, we obtain the linear constitutive equations

from which the transport coefficients may be determined:

m
B = fg SRV 1g), (4.119a)
j-'l
o = 392(7@(22) Dix$P /e, (4.1198)
i=1
@(3)"—,392(72(33) xS g, (4.119c)
i=1

Comparing (4.119) with the linear phenomenological constitutive equations, such
as, the Newtonian law of viscosity and the Fourier law of heat conduction, we obtain

the shear viscousity, bulk viscousity, and heat conductivity in terms of the collision

bracket integrals as follows:

shear viscosity:

n=Y_Y Balpi/gi" YRy, (4.1200)

=1 j=1

bulk viscosity:

N
NE
NSE

By(5p;/3g5 ) (RAD-1), (4.1200)

i 1

1)
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thermal conductivity:

m m
X="%" Bolpict /g )RED). (4.120¢)
i=1 j=1
Once the differential cross sections for particular systems of relativistic gases are

given, we are able to compute all these transport coefficients by using the formulas

(4.120).
4.9 Discussion and conclusion

We have applied the modified moment method for the covariant Boltzmann
equation for a relativistic monatomic gas mixture. The method affords us a rig-
orous conclusion concerning the entropy differential when the system is away from
cquilibrium; 1t is not an ezact differential since R, or equivalently =4, ts not equal
to zero if there erxists a nonequilibrium process in the system. This means that
the extended Gibbs relation forming the basis of the extended irreversible thermo-
dynamics (EIT) does not hold valid at least from the viewpoint of the covariant
Boltzmann equation. However, there is the compensation differential that looks
like the extended Gibbs relation used in EIT, but this means a revision of the ex-
isting EIT formalism and its logical structure. The entropy balance equation is
put into another equivalent form in terms of the Boltzmann function B introduced
as a Legendre transformation of the entropy density. However, the differentiation
of B is not an exact differential, since =4 is not even a differential form in the
nonequilibrium Gibbs space. As a matter of fact, this Boltzmann function B is
dependent on the initial condition and the history of the process involved, namely,
B is path-dependent. This means that dS is not integrable, therefore, not an exact
differential, and the extended Gibbs relation simply does not exist. As mentioned
earlier, the non-vanishing B for irreversible processes has some significant conse-

quences for irreversible thermodynamics and, in particular, for the EIT formalism.
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The most immediate and obvious consequence is the fact that the extended Gibbs
relation for dS cannot be taken for granted and the notion and role of entropy
density for noncquilibrium system should be basically revised (33, 57]. In fact,
for nonequilibrium systems the entropy density itself is a quantity depending on
the path taken in the nonequilibrium thermodynamic phase space (nonequilibrium
Gibbs space) by the system when it makes transition from a state to another in the
space. Therefore, the notion of equilibrium entropy, which is a state function (an
exact differential), does not apply to the nonequilibrium entropy if it is defined by
the statistical formula (4.23) or its scalar version.

In the case of the extended Gibbs relation for dS, if the processes are in a
steady state so that De, Dv, Dey, DCi)E-c'), and DU, are equal to zero then the
entropy does not change despite the fact that the system is in nonequilibrium.
Contrary to this situation, since as long as there are spatial gradients of velocity,
temperature, concentrations, etc. so that =g # 0, the Boltzmann function changes
even if the processes are steady, that is, DS does not vanish at the steady state.

Therefore, the entropy density evolves on a constant hypersurface:
¥(e,v,c, @E"),Up) = constant.

Figuratively speaking, it winds the surface which may be imagined to be a hy-
percylinder in the nonequilibrium Gibbs space, owing to the steady production of
entropy since the entropy is produced even at a steady state. This difference in the
behavior of entropy from the EIT, where the extended Gibbs relation is assumed,
makes the present theory suitable to deal with not only systems near equilibrium
but also those far away from equilibrium.

The present study also indicates that the compensation differential may be used
to investigate the thermodynamics of nonequilibrium systems in a way rather par-

allel to equilibrium thermodynamics. Nevertheless, such a formalism still requires
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integration of the relutivistic generalized hydrodynamic equations as an integral
part of the theory, Since the latter are not trivial to solve, there remains a great
deal of work to be done on the subject matter in the future. This formalism in
essence puts the statistical mechanies of nonequilibrium thermodynamics on the
par with the Gibbs ensemble theory of equilibrium statistical thermodynamics in
the sense that all thermodynamic functions and evolution equations are expressed
in terms of Xf“) , which must be ultimately obtained by solving the generalized
hydrodynamics, just as all equilibrium thermodynamic functions and relations are
expressed in the Gibbs ensemble theory in terms of a partition function which must
be computed for each and every system in the end.

All the macroscopic evolution equations are presented in such forms that they
cousist of terms which are easily identifiable with the corresponding terms in their
nonrelativistic versions and purely relativistic terms which vanish in the nonrela-
tivistic limit. Thus, the relativistic corrections to the classical generalized hydro-
dynamic equations are clearly exposed and made easy to obtain. Since the full rel-
ativistic generalized hydrodynamic equations are much more complicated to solve
than their already difficult nonrelativistic counterpart, the first order relativistic
corrections to the latter are all one can hope for in practice at present, and the

relativistic generalized hydrodynamic equations presented here should be useful for

such a study.
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Chapter 5

Covariant kinetic theory and irvreversible

thermodynamics of radiation and matter

The nonrelativistic kinetic theory of irreversible processes in a system of radi-
ation and matter presented in the chapter 2 is generalized to the relativistic case.
This generalization enables us to remove the awkwardness inherent to the nonrel-
ativistic theory and provide kinetic theory foundations for relativistic irreversible
thermodynamices for a system of radiation and matter. The Boltzmann equations,
more precisely, a modified form of the Wang Chang-Uhlenbeck cquations [58] have
been solved by means of the modified moment method which seeks the solution of
the kinetic equations in a way consistent with the thermodynamic laws [34]. The
motivations to have this covariant kinetic theory are following. Relativity principle
requires that governing equations in theory must be Lorentz covariant. As men-
tioned earlier, treating material particles as nonrelativistic particles and making
Doppler shift corrections for photon frequencies makes calculation inconvenient. It
is also difficult to make sure that the definitions of statistical formulas for macro-
scopic variables and the evolution equations are correct limits of relativistic theory.
These features can be easily removed if a covariant theory is formulated. Secondly,
there are some problems, especially in the study of the carly epoch of the universe,
where a relativistic formalism is required since particles move at high speeds and
interact with radiation. It will be shown that the present covariant kinelic the-
ory recovers all the nonrelativistic evolution equations in correct forms with proper
relativistic connections and thus verifies the previous nonrelativistic formulation
(17).

First, covariant Boltzmann equations are briefly presented for a system consist-

ing of photons and material particles with internal degrees of freedom. The material
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gas molecules can wake transitions between various internal states in interaction
with photons by alsorbing, emitting, or scattering the latter. These dynamical
processes at the particnlate level are described by the Boltzmann collision terms in
the covarinut Boltzmmann equations. Consequently, the generalized hydrodynamie
cquations are derived from the covariant kinetic equations for radiation and matter
which are fully consistent with the thermodynamic laws at any degree of removal
from equilibrivm.

The consistency between the relativistic Boltzmann distribution and the Planck
distribution function has been a point of controversy in the past [59, 60], and present
covariant kinetic theory makes it possible to examine it. We show that both distri-
bution functions are consistent with each other within the framework of relativity
and their mutual consistency is intimately related to the H theorem and therefore
deeply rooted in the second law of thermodynamics. In this connection it is inter-
esting to recall that the original derivation by Planck of the radiation distribution

function itself was based on thermodynamics {1).
5.1 Covariant Boltzmann equations for radiation and matter

We assume that the system consists of a gas with iaternal degrees of free-
dom (e.g., atoms or diatomic molecules, etc.) which interact with a radiation field
{(photons) that is not necessarily in equilibrium. The internal quantum states of
the material particles will be denoted by ¢ and the particles in different internal
quantum states will be regarded as different species. Therefore, the material gas
is considered as a mixture of particles with different "colors” distinguished by the
value of . For example, if the particle species is the hydrogen atom, then the index
represents the 1s,2p, ..., states suitably arranged. The mass of the particle species
i will be denoted by m; and its momentum by p;, the kinetic energy by cp? with ¢

denoting the speed of light.
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It is then convenient to introduce the four-momentum of species

po=pl = pi) (5.1)

where
plo= (P pi+mict) 2, (5.2)
This formula looks like the one holding for a structureless particles, but different
masses m; are assigned to the particles in different internal states. The point can

be illustrated in a following way. According to relativistic quantum mechanics, the

Dirac equation for the hydrogen atom gives the cnergy eigenvalues [61] depending

on the two quantum numbers n and J

Eny = m.c?[1 4 Z2a?[(n — ¢ ;)12 (5.3a)

where

er= T4 5 -1 +5) - 22672 (5.35)

D] —

a is the fine structure constant: « = €?/hc = 1/137, Z, is the electron number
in atom and m, is the rest mass of the electron. If we set E,; = m;c® where ¢
stands for the set (n,J), (5.3a) suggests that the mass of the excited particles is
not same as the rest mass of the ground-state particles. Therefore, m; contains the
information on the internal state of the particle. It is easy to show by expansion

that approximately

m; =m,+ Ei/c2 (5.4)

where E; is the energy eigenvalue: E; = —Z2a?/2:2. The time component p? in
the four-momentum in (5.1) is understood in the sense of (5.4) or its precursor
(5.3a) and will be used accordingly in the calculations made in connection with the
two-body dynamics in this work. The singlet distribution function of species ¢ will

be denoted by fi(z,p;), the italic subscript r being reserved for radiation.
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We consider the following microscopic collision processes:

iy =i"43" (M1)
i+j=hk+1 (M2)
i+ hw=i"+ hw* (M3)
i + hw = j + hw* (M4)

where i, j, k and ! stand for the species and the asterisk denotes the post-collision
quantity. Therefore, for example, w* means the frequency of radiation after col-
lision. Let subscript a stand for species of particles including photons which will
be designated the rth species. We assume that the singlet distribution function

fa(,pa) for species a obeys the covariant Boltzmann equation

Pidufalz,pa) = ) Roalfafi] = Ralf] (5.5)
b=i
where
Ralfal = D (CUafs) + DD Celfa Sl f2 £ (5.6)
b=i ko

Here the subscript b runs over all species including material particles and photons.

The Boltzmann collision integrals C(f. fs) and Cr(fafo|fi fi') are given by

Clfefs) =Ca [ SRS BEHW puilrizi)x
[fafi(L+ eafa)(1+ e fo) — fofo(l + eafa X1 + e fp))
+ 226 [ ERdHE W pamlpind)
- [;Ef:‘l(l +eafaltefs) = fafo(l+exfO)L+eaf), (5.7)

and

CrluflfLf7) = G j &R 5 W (papalpRo]) %
[fiff(l+efa)l+efs)— fofos(l+eafi)1+af)). (5.8)
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Here 5% = d*pa/p?, ete. and @, and G, stand for the statistical weights for the
material particles and photons. The Wil 1 (7 and 1177 stand for the transition
probabilities for elastic, inelastic and “reactive” collisions. The transition proba-
bilities for photon-photon interactions W (p,p,|ptps) = 0, W) (ppe|ptpt) = 0,
and W) (p,.p.|ptp:) = 0 since the photons do not interact with each other. These
transition probabilities can be calculated from the quantun mechanics for a given
dynamic mechanism. Therefore, we assume that they are known. Writing the ki-
netic equations for material particles and photons as in (5.5), we have put both the
material gas and photon gas on the cqual footing and thereby consider the system
of photons and material gas as a dilute gas mixture. We close this section by adding

that the transition probabilities have the following symmetry properties
W papslpip]) = W (pipilpaps), ete. (s =en,r). (5.9)

These relations originate from the microscopic reversibility and are crucial for prov-

ing the H theorem.

5.2 Entropy, the H theorem and equilibrium distribution function

In order to formnulate irreversible thermodynamics, we must introduce the en-

tropy four-flow for the system of radiation and matter by the formula

St(z) =84 () + S(z), (5.10a)
Sh(@) == ks Y (file,pi)linfi(z, ) - 11pk)s (5.100)
Sr(e) = - kB({'fr(T’Pr)Infr(x?Pr)"'

[+ fe(z,pe)lin(l + fe(z, pr)]}P0) s (5.10¢)

where SE(z) and S#(z) are the entropy four-flow of matter and radiation, respec-

tively, and the angular brackets abbreviate the integration over momentum space:
(Au(2,0))e = Gac [ BPuha(z,pa)s (a=isr).
J
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The subscript @ or r to the angular brackets indicates the particle involved, but
they will be omitted whenever no confusion arises because of the omission.
By applying the well-known procedure in the Boltzmann kinetic equation, we

obtain the balance equation for the entropy four-flow

0,5"(z) = oene(2) (5.11)

where

Oent(z) = —kp Z({Infa(xapa) = n[l + €a fa{z, pa )]} Rafa})- (5.12)

a=i
It is casy to show that the entropy production is positive semidefinite and equal to

zero, only if the system is at equilibrium:

1 r r ..
7eni(@) = gha 3D (SO + eefa)(1 +aofs)/
fafo(l + eafi)(1+ € f5 ) Ras)
>0. (5.13)
This is the H theorem. The equality holds at equilibrium reached in long time.
Owing to the H theorem, the equilibrivm distribution functions of material

particles and photons can be uniquely determined by the following relations:
ln(f;eqfi-eq) = ln(fncqft'eq) (a,i # T‘), (5.14&)
In{faeqfreg(l + freg)l = Inlfacqfrea(L + freg)) (@ #7), (5.14b)

where f;.q, cte. are the equilibrium distribution functions. By using the procedure

taken for constructing the equilibrium solution of the Boltzmann equation, it is

found that

fieg = ezp[—B.(pf U, — FD)]: (5.15a)

exp(~Bei®) = p™ Y (eap(~BeptUl)), (5.155)
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where the total number of material particles p, is given by

pe =S (freqla, pi)). (5.16)

]
The parameter 8, can be shown to be related to the inverse of the absolute temper-

ature T, if the procedure of the Gibbs ensemble theory described in the chapter 2

is taken, that is,
Be =1/kgT. (5.17)

In the nonrelativistic limit, fi.q becomes
fieg = pc(m/‘lkaTe):mZ_lcmp[—Be(%mcc? + E;)|, (5.18a)
where Z is the internal partition function given by
Z = Z' exp(— B E;). (5.18b)
The equilibrium distribution function of radiation is easily shown to have the form
freq = lezp(BeptUL) — 17, (5.19)

if the photon number is variable [17]. Since fi.q and fr.; both are Lorentz scalars,

it is permissible to use the local rest frame

U, = (c,0,0,0), (5.20)

then the covariant forms of the distribution functions are reduced to

fieg = exp[—Be(cpl — 1)), (5.21)

freq = [ezp(fefuw) — 1)1, (5.22)

By using the Stefan-Boltzmann law it is possible to show [8) that the parameter

B. in (5.22) is given by (5.17). Therefore, the two distribution functions fi., and
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freq share the same parameter 8., namely, the sume temperature. Furthermore,
they are mutually consistent because their mutual consistency is demanded by the
H theorem. It is interesting to note that Einstein derived (5.22) from the equilib-
riumn condition between radiation and material particles in his famous paper of 1917
[3]. The present approach clucidates the kinetic theory and dynamic bases which
are absent in his theory. In the recent past, Boyer [59] claimed that the Boltzmann
distribution function for relativistic material particles and Planck distribution func-
tion are not consistent within the framework of quantum theory, and this has been
a point of controversy (60]. The derivation of (5.21) and (5.22) presented earlier
shows that they arc completely consistent with each other. Moreover, it shows that
the Planck distribution law is deeply rooted in the H theorem and thus the second
law of thermodynamics. It also points out that it is not possible to think of a radi-
ation distribution function without taking into account the corresponding material
particle distribution function and the interaction between radiation and matter.
We define the energy-momentum tensor of matter or radiation in equilibrium

by the statistical mechanical formula

TJ‘J; = (phpt facg(z,Pa)), (a=1,7). (5.23)

With the help of the projector defined by A#¥ = —gh#¥ 4 ¢~2[/#[J¥ the equilibrium

energy-momentum tensor can be decomposed into components as follows:
TE = pA AW 4 c~2ESUAU (5.24)
where the energy density E? is defined by
E; = C_QU;ITA‘:;UV = ¢ HpE iUV, faeq(2, Pa)) (5.25a)
and the hydrostatic pressure p? is given by
B = SAuTH, = S (PEPLAL facg(3 D)) (5.258)
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Thercfore, the total material internal encrgy and total material pressure are given,

respectively, by the formulas

E, = Z' E? and Pl = Z' P = pekpT. (5.26)

Here the prime on the summation sign means the exclusion of photons. The last
equality is easy to show in the local rest frame [33]. The sccond equation in (5.26)
is well known result for gases consisting of structurecless particles. It also holds
for dilute gases consisting of particles with an internal structure. By using the
definition of the projector A,, and the identity p#p,, = 0 for photons, we can show

from (5.25a) and (5.25b)

1
p = 5EL. (5.27)

In fact, this relation is indeed verifiable by using the local rest frame. We also can

derive the Stefan-Boltzmann law,

E? = aggT? (5.28)
where agg is the Stefan-Boltzmann constant:
asp = 8 k% /15033, (5.29)

In connection with this, we recall that the parameter 8. in the radiation distribu-
tion function is determined such that the equilibrium radiation energy is given by
(5.28). The f, so determined exactly coincides with the one given in (5.17). This
coincidence is a result of the demand made by the H theorem that the material gas
and radiation be in equilibrium. Other thermodynamic quantities for radiation and

matter can be calculated with the equilibrium distribution functions determined.

5.3 Modified moment method for the covariant Boltzmann equation
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Sinee the kinetie equations in (5.5) are not solvable in closed, analytical form,
approximate solutions must be sought after. In the modified moment method [20]
the approximate solutions are constructed such that they are consistent with the
sceond law of thermodynamics. The relativistic extension of this method is pre-
sented in chapter 4. In this method the nonequilibrium distribution functions for

material species are expressed in an exponential form

fi(z,pi) = expl=B(p U, + H = )] (5.300)
where 3 is a parameter that will be discussed presently, p is the normalizetion factor
defined by

cop(~fu) = p 3 (expl-B(pIU, + HI), (5.305)

and H f” is the nonequilibrium contribution to the distribution function which may

be written in a bilinear form

HD =3 X[ o n®, (5.31)
a2zl

Here, ’fc') are as yet undetermined functions of macroscopic variables only, which

must be determined such that the second law of thermodynamics is satisfied, and
hsa) are the molecular expressions for macroscopic moments. They may be chosen
to be a set of orthogonal polynomials which are also orthogonal to the conserved
moments, namely, the density and the reversible part of the energy-momentum
tensor. The symbol ® means taking an appropriate scalar product. The leading
tensor polynomials hga) suitably ordered are as follows:
KR = A(Usp) T (ABAY - 200e A YT, (5.320)
WD = 2 U Bunlet ~ pilpi+ (07 - E-E), (532
RO = ~(Uap}) " {AEPIPIU + aihilpt - "2 (Usp})T'UH]},  (5.32¢)
R = (U} P! — X (UnP}) UM, (5.324)

ele,
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where p; and h; are the density and the enthalpy of "color” species {, respectively,

and

E =3 (Eifiea)s (5.330)

97! = Cint/Cy (Cv=Cu+ Cint) (5.33b)

with Ci. and Cin: denoting the translational and the internal specific heat per
molecule at constant volume, respectively, and q; the same as the definition in the
previous chapter. In the case of gases without an internal structure the last term
in h?) vanishes and the monatomic gas used previously is recovered [33].

Various balance equations can be derived from the kinetic equations and they
contain macroscopic variables such as the stress tensor, heat flux, ete. which re-
quire their own evolution equations. They can also be derived from the covariant
Boltzmann equation. To this end, we first define a tensor {7 e the average

. . {a)ur..d,
of its molecular expression pf h; :

wl(-a)ﬂv...lcr — (p?hsﬁlﬂw'--'fi(x'Pi)) (5.34)

where h{®**! is the ath element of the orthogonal tensor polynomial set intro-

duced earlier. We then introduce macroscopic moments ‘i’f-")"""'l by teking con-

traction of ¢S°)“”""“ with U,
Bl@mwd - Z’ c-2Ua¢'(_a)pu...la = pdloduv.t (5.35)
i
where p is the total density of material particles. By using the substantial time

derivative D defined by D = U ".6,,, we easily obtain from the kinetic equation the

evolution equation for the material flux glglnvd,

pD@{@my-d = gleduveod o plahrnd (5.36)
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where
—! a)uv.., ! rla)pv..ia
280me = N I e p ) + 5T 0p(ATRIET), (5.87)
and

At = SRR £y, pi))). (5.38)

i
The kinematic tevs 257! ave the same as those for nonradiative systems given
in the chapter 3 and the dissipation terms A{**! will be given in a later section

where their approximations are discussed.

Let us denote by II#Y, Ay, and QF, the traceless symmetric part of the stress
tensor, the excess trace part of the stress tensor, and the heat flux, respectively.

They can be introduced in terms of the energy-momentum tensor. Since

Th = Z T = Z pipt filz, pi)
= Z [cT*BUMUY 4+ c7(QIUY + QYU*) + P!

H
= 2 ERURDY + cHQRUY + QY UF) + P, (5.39a)

the aforementioned variables are projections of the energy-momentum tensor:

PE =3 PP = ARTTAY, (5.396)
which means that
Ap = %A,WP,‘;‘," ~ Pm, (5.39¢)
oy =Py - 3A"T::,’A,..,, (5.39d)
= —UT AL, (5.39¢)

and

tn=3" B, (5.40)
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namely, the total internal energy of material gas. Here the diffusion flux is defined

by
JE = N N (5.41a)

m?

where

N, = Z' N} = E' (vt filx, pi)). (5.41b)

Then, the leading members of the moment set just defined are

GV =T B = A+ RO - 1)/AE; PR = Ql; ete (542)

m m?

Here
AE = Y (B - Bl pi): (5.43)

It is important to note here that the second member of moment set @2 in (5.42) is
different from the one corresponding to monatomic gases [33] since the latter does
not have the term arising from the internal energy fluctuation, namely, [2(9-! —
1)/3]AE. Since the theory for the matter part is already presented in the previous
chapter, here attention will be paid to the radiation part.

The nonequilibrium radiation distribution function is sought after in & form

similar to the Planck distribution function. Thus, we take it in the form

fr(z,pr) = {ezp[8W,(p,)] = 1} 7). (5.44)

Here the function W.(p,), as yet undetermined, will be sought after in such a way
that it is thermodynamically consistent as for the distribution function for matter
fi(z,pi). This function also must be dimensionless. Therefore, if we define the wave
vector k. of radiation by p, = hk, = hkk, = (hw/c)fc,., then the unit vector k, is
dimensionless. It is possible to form a dimensionless variable if p# is multiplied by
ef:

qr = preB. (5.45)
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Therefore, the space component of the dimensionless four-vector ¢f is given by

qQr = Ahwk,. We now look for 1V, in terms of ¢, It is convenient to define
Wilgr) = BW.(p). (5.46)
In view of the equilibrium radiation (Planck) distribution function already obtained
and the exponential form for fi(z,pi) in (5.30a), it is useful to write W.(g,) in the
form
Wi(gr) = BpEU, + BHM(gr) ~ Bur (5.47)
where g, is the normalization factor and H ,(pl)(q,) is the nonequilibrium part that

can be determined in a way analogous to the one taken for f; in (5.30a). That is,

HY =" x g a® (5.48)
§>1

where hS-‘s) are orthogonal tensor polynomials of p¥ which are also orthogonal to
the conserved moments for radiation, and . ﬁs) are the functions of macroscopic
variables such as the radiation shear stress tensor, the excess trace part of the ra-
diation stress tensor, radiation heat flux, ete. As mentioned before, BH,(-I) can be
expressed as a dimensionless function of the reduced four-vector g% and dimension-
less variables. The orthogonal tensor polynomials can be constructed by means of
the Schmidt orthogonalization method and can be expressible in terms of spherical

tensors of §¥, the unit dimensionless four-vector. We show a few leading elements

of the set:

AR = G (Up})HABAY — 2, AP YT, (5.49a)

1
W2 = S Upy) ™ At Bl = pr/pry (5.49b)

RO = —A(Usp}) AP PIU, + arhifpt - X UDUP]),  (5.49¢)

BOE = AU pY) 7 [p - cH(Uap))UP), (5.49d)
R = 2(Uap})~! Ps(AZp7)*, (5.49¢)
ete.
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where P;(z) is the Legendre polynomial of order 3 and a, is defined similarly to
(4.34¢) that we have defined for the matter species. The higher order terms involve
higher order Legendre polynomials. As is the case for the matter parts of the

macroscopic fluxes, the radiation parts of the macroscopic fluxes are defined by

' : S d S . . .
taking contraction of &M% whose statistical expression is given by

.d)f“ﬁ)jw...la - (p‘:hf.s)'”’“"f.-(x,pr)), (550)
then the fluxes are given by
(I)S‘G);w...l = C_QUad’S-G)'wmh- (5.51)

Let us denote the radiation shear stress tensor, the excess trace part of the radiation
shear stress tensor, the heat flux, number flux, and fourth moment corresponding
to (5.49), etc. by IT#¥, A., Q#, JE, T#¥! etc., respectively, then their statistical
definitions can be introduced through the encrgy-momentum tensor of radiation

which may be decomposed as follows:

Y = (phprfe(z,pr))

= ¢T3 UFUY + c7¥QEUY + QLU*) + P¥ (5.52a)

with the help of the projection operator, we obtain

P¥Y = AETITAY (5.52b)
which means that
1 |4
Ar = EAIWP!"‘ = Pr (5.52c)
[# = P# — %A,,T,"A”” (5.52d)
and
QL = -U, Ty AL, (5.52¢)
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Therefure, we can easily identify,

GV = v @) S AL B < Qi @lte = g,

oIl o I"j_“’l; ete. (5.53)

The evolution equations for 3% can be derived from the covariant Boltzmann
equation (5.5) by using the same method as for the matter parts. They may be

written in the form

D§@Enwt = Z@uved 4 ABav.l (5.54)
where
Zmod 0 plERv-t g (0 b ) (5.55)
Aot (pBruved £ (2 5 ))). (5.56)

The explicit forms for the kinematic terms Z{9#¥! are presented in Table 1. The
dissipation terms A'Y -l will be calculated later when radiative transport pro-
cesses are examined.

In the case of radiation and matter, since the photons are put on the equal
footing as far as the kinetic processes are concerned and the whole system is con-
sidered as a mixture of photons and material particles, it is reasonable t ‘i»fine a
single temperature for the mixture. Note in this connection that the photons cannot
come to equilibrium on their own without a help from the matenal gas. Therefore,
we define the temperature by the statistical mechanical formula

3 ~ 1
sockeT =3 S((PUL)° — mict)fa(z,pa)) (5.57)
e=i

where m, = 0 in the case of photon species and

P =p+ (2aspc?/kp)T>. (5.58)
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This definition of temperature is basically rooted in the equipartition law of energy
by Tolman [52] and later discussed by Landsberg [55] and by ter Haar and Wergeland
[53). The second term on the right-hand side in {5.57) arises from the recognition
that the photon number density depends on temperature and thus is not conserved,
and writing the nonequilibrium photon number densily in such a form means that

the temperature is determined such that *5.58) holds for nonequilibrium. Eq. (5.57)

can be recast into the forin

3pckBT =) A (piph fa(zpa)) = Y AT (5.59)

a=t

The nonequilibrium canonical forms (5.30a) and (5.44) involve parmmneters
8, p,pr, and p which have been defined statistically, but their operational meanings
as thermodynamic variables are not as yet fixed. In kinetic theory the nonequi-
librium distribution functions are sought after in a form constructed on the basis
of the equilibrium distribution function. Since the system of interest is away from
equilibrium, it is preferable to endow the parameters such as ., pe, Pe, etc. in the
equilibrium distribution function the status of nonequilibrium parameters. This aim
can be achieved if the nonequilibrivin parameters (8, p,p,€) defined statistically
with the nonequilibrium distribution functions are matched with the equilibrium

parameters (ﬂe; Pc:Pc»Ee):
Be=>08, pe==>p, pPe=>p, E=E&.

where we have added the internal energy (¢ = £/p) matching condition although
the distribution functions do not depend on ¢. The reason is that the internal
energy and pressure are independent components of the energy-momentum tensor.
In this manner, the local equilibrium distribution functions are constructed with
the equilibrium distribution functions and at the same time the statistically defined
nonequilibrium quantities are 2ndowed with the thermodynamie, operational mean-

ings. Then, the equilibrium distribution functions are determined around the local
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equilibrium distribution functions so constructed. When these matching conditions

are expressed in their statistical form, they are as follows:

p=Y IV = Zj' PSP, (5.60a)
NI = 3 Z(:ﬂ fy U=123) (5.608)
£ pe i((p:pz:upuu b Eubar)fa)

= er((p:pz:vuv,: + Eabar)f2), (5.60¢)
p= % i A pipife) = 3 Z Auv(piph f2)- (5.604)

Here f? is the local equilibrium distribution function defined by fie, where S, pe,
ctc. are replaced by £, p, etc. according to the matching conditions given earlier.
Other symbols are as follows: N¥ = N¥ + N¥, £ = £ + &, and p = pm + pr,
namely, the total number flux, total internal energy and total pressure, respectively.
The condition (5.60a) is for the material density only, since the photon density is
not conserved and thus should not be included in the condition. In the nonrela-
tivistic theory the fourth condition (5.60d) is not required, but in the relativistic
kinetic theory it is necessary as discussed earlier. In view of the definition of the
temperature of the system in hand given in (5.57) and its equivalent (5.59), we see
that (5.60d) is also a matching condition for temperature. These matching condi-
tions mean that the nonequilibrium part (f; — f0) of the distribution function is
orthogonal with the equilibrium part f0 with respect to the microscopic variables
appearing in the matching conditions. As is shown in the previous chapter in the
absence of radiation, these requirements are rigorously satisfied if the molecular
moments h{*) are chosen such that they are not only orthogonal with each other
but also orthogonal with the conserved moments such as the mass, velocity and

reveysible parts of the energy-momentum tensor.
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By explicitly evaluating the sccond equality in the matching condition (5.60d),

it is easy to find the parameter g appearing in the nonequilibrium distribution

functions f; and f, given in (5.30a) and (5.44):

3=1/kpT.

(5.61)

The leading tensor polynomials in the sets {hga)} and {h{®}, chosen earlier for

the nonequilibrium parts of the distribution functions, can be shown to satisfy the

matching conditions in (5.60a-d). The assumption is that it is possible to choose

the sets in such a way as to satisfy (5.60a-d).

In addition to the evolution equations for macroscopic moments <1>£°) presented

earlier, the balance equations for the conserved variables can be derived from the

covariant Boltzmanu equations (5.5). For the matter part,

8,TL = A

m?

8,N! =A™,

where

AR = S (R,

A = (Rl ).

Since the total number of material particle species is conserved,

YA = 3Tl =0

and thus

where

(5.62q)

(5.62b)

(5.62¢)

(5.62d)

(5.63)



In order to express the hydrodynamic equations in forms familiar in fluid dynamies
we take the Eckart definition [48] of four-velocity of the fluid as was in the previous

chapter. Thus the four-velocity of the fluid is defined by
Ny, = pU". (5.64}

The balance equations for the matter part are then given by the equations

Dp = -pV,U?, (5.65a)
pDe; = -8,J¢ + A, (5.65b)
PDEm = _aUQ:I + P:;”quﬁ + C_zQ:‘nDUU + UvAfm (566)

€ 2hmpDU* = V¥py, + AEBITIEY + ¢~ ALDQY, —
QL. UY - QL V. ,U"). (5.67)
Here, ¢; = pi/p and hy, = €m + pmp~! is the enthalpy of the material gas per
particles. The diffusion flux does not vanish provided that the molecules or atoms
in different internal states interact according to different force laws. There occurs
a source term in the balance equations because of the "reactive” collision terms

between photons and material particles.

For the radiation part, with definition

cr = pe/ps (5.68)

the radiation balance equations can be obtained from the covariant Boltzmann

equation:
8, N? = A", (5.69)
8, T = A¥, (5.70)
where
AL = (R[], (5.71a)
AY = (PER(fe]). (5.71b)
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With the help of the relations
d =c*U,D+V, and U,v¥ =0,

we obtain from the radiation balance equations prescuted above

pDep = =8, 07 + A, (5.72)
pDzr = =8,Q% + P**V,U, + ¢~2Q* DU, + U, A¥ (5.73)

where
Ep = Sr/p. (5-74)

It is the radiation energy per material particle. We have not listed the radiation
momentum equation here, since it is related to the radiation heat flux evolution
equation which have been already included in the flux evolution equations. In the

nonrelativistic limit of u/c — 0, this radiation energy balance equation reduces to
p(—e,-:—V-Q,»-—P,-:Vu—u-V-Pr-{-A(r‘) (5.75)

where the last term is the radiation energy term; see Eq. (2.57) in the chapter 2.
It is easy to show that other balance equations presented here also reduce to their

nonrelativistic counterparts {17].
5.4 Entropy differential and the Boltzmann function

The balance equations for conserved variables and the evolution equations for
fluxes (moments) for radiation and matter derived in the previous section constitute
the set of evolution equations for macroscopic variables of the system. However,
these equations must be subjected to the demands of the second law of thermody-
namics so that the theory based thereon becomes consistent with the second law, In
the modified moment method [20, 40] the theory is developed in & thermodynami-

cally consistent manner in the aforementioned sense. To implement this tenet, the
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statistical representation of the second law of thermodynamics, namely, the entropy
production, must he used. To facilitate the discussion, we define the scalar entropy
S(x) by
5(x) = ¢V, 8" (z) (5.76)
and the entropy flux by
JY () = §(z) — S(x)U". (5.77)
Then, with the definition of the entropy density S by
S(z) = pS(x),
we obtain, from the balance equation (5.11) for the entropy four-flow, the entropy
balance equation
pDS = =8,J¢ + 0eni() (5.78)
where the entropy production g,y is defined by (5.12). We reiterate that it is pos-
itive semidefinite. The modified moment method seeks inevitable approximations
for the distribution functions such that the entropy production remains positive
semidefinite for the approximations taken. Since approximations to the distribu-
tion functions enter the theory through the as-yet-undetermined quantities x{
appearing in the nonequilibrium contributions H{") and H™ in (5.31) and (5.48)
respectively, these unknowns must be determined such that the second law is sat-
isfled by the approximately determined unknowns., But, in practice, this second
law requirement is easily met if the entropy production is cast into a form that
remains positive semidefinite regardless of approximations for X, We will elabo-
rate on this at a more appropriate point. For now it is sufficient to pursue a formal
development for the sake of generality.
The entropy production can be formally computed if the nonequilibrium canon-
ical distribution function (5.30a) and the form (5.44) are substituted into the statis-

tical expression for ., (5.12) and the definitions of dissipation terms are used along
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with the collisional invariance of conserved quantities. The entropy production is

thereby found to be in the form
r r
Gene =T D XA - T7' Y " Al (5.79)
a=iazl a=g

where we have used the energy-momentum conservation law for the whole system

of matter and radiation

S GERAD + (PERAS) = 0. (5.798)

1
The entropy flux can be calculated with the same forms of matter and radiation

distribution functions as for the entropy production. The entropy flux consists of

the matter and radiation parts:
J: = ‘I:m + J:r (580)
The matter part is easily calculated:

Jom = Sm — SmU”

=T Y@~ wI)+ T Y Y XMl (s81)

i a2l
where

Qi = i ~ ol (5.82)
The radiation part of the entropy flux is defined by
J(z) = 8k(z) - Sp(z)U” (5.83)
which can be cast into the statistical mechanical form

T4 (x) =ha([pt — XU V)W) -
ka([pt — c2(Unp?) " U }in[L - exp(~Wy)]). (5.84)
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On use of (5.47) aud (5.48), this expression yields the form

J4 = TR — e + ) X o) + Uy, (5.85)
6>1
where
Jb, = =kp{(pt — 7 (Uspp) T U )In1 - exp(-W:)]) (5.86)
and
QY = v _pByr  (5>1). (5.87)

In the case of photons the quantum contribution J3, appears in the expression for
the entropy flux (5.85) while the matter part does not have such a term since the
material gas obeys the Boltzmann statistics.

The entropy balance equation (5.78) can be put into another form which is
more explicit with regard to the macroscopic variable dependence. This aim can
be achieved by following the same procedure as used in the previous chapter on the
relativistic extension of the modified moment method. The basic idea for this is to
use the conservation laws to eliminate the divergence terms in the entropy balance
equation and also to use the flux evolution equations to eliminate the dissipation
terms in the entropy production. Thus, we obtain the equation for DS

r T
DS =T '[De+pDv—~ Y paDea + Y ¥ Xt @ DF] + R (5.88)

a=t¢ a=fapzl
where v = p~! is the specific volume and

V== (pT) D Y (X 0 28 4+ Ta,(X(M 0 Q)] + T8, Iy}

a=ia>l

+(pT) ' [0V Us + Q*8,InT + Y J28,(a/T)). (5.89)

a=1
Here
Q=Q" +Q and " =177 + 377
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It is remarkable that (5.88) and (5.89) arc in the same forms as those for a material
gas mixture in the absence of radiation (33]. This is because the photons and
material particles are put on the equal footing in the kinetic equations in the present
theory. Since N does not vanish for systems away from equilibrium, DS is not
a Pfaffian differential in contrast to the equilibrium Gibbs relation for DS. We
will discuss further on this point later. The conclusion drawn here is the same
as for both nonrelativistic and relativistic gases in the absence of radiation. As

in the previous cases, the Pfafian differential part of DS is given a new name,

compensation differential, which is defined by

T r
DY =T '[De+pDv~) paDca+ Yy X O DI - c2Q*DU,]. (5.90)

a=i a=ta>l

This looks like the extended Gibbs relation for DS conimonly used in extended

irreversible thermodynamics [21] and its relativistic extension [62]. Then DS in

(5.88) takes the form

DS = D¥ +X. (5.91)

These results, in fact, show that the extended Gibbs relation for DS does not
generally hold if the system is away from equilibrium. If the integrability conditions
are satisfied by DV, then it is an exact differential. Eq. (5.91) may be cast into
an equivalent form more insightful in giving the significance of the entropy balance

equation for irreversible processes.

To achieve this goal, we first put the covariant kinetic equations in more useful

forms:
fipt8uin(fi/ £} = Rl i), (5.92a)
£rptBuin[(1+ £71)/(L+ 1/ ] = =1+ £) 7R ], (5.92b)

where
pedufi =0 (e=i,r). (5.98)
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The relativistic Gibbs-Duhem relation can be derived from the local equilibrium
distribution functions under the matching conditions presented earlier:
r
Y eaD(u3/T) = <D(1/T) +vD(p/T) (5.94)

a=j

where 12 = 0. By using this relation and the statistical mechanical formulas for

2{* defined earlier, we may rewrite R in the form

R =3"(Y #) © DXL — caD(a/T)] +D(1/T)

e=1 a2l

+vD{(p/T) - 6L + ], (5.95)

where

Ry = P'—lkﬂ{av([l’: - c'z(p‘,’.'U,,)U”]f,.[l — f~Hn(1 + f)])
— (£ + F) T RASD (5.96)
X = X1,

r
oy = ~(pT) -1V, Uy + Q“3,InT + Y J48,(pta/T)

a=i

—c~2Q*DU,). (5.97)
We now define the Boltzmann function B by
r T
B=S—Tet+pv—) pacat . » X&) (5.98)
a=i a=i a2l

With this function the entropy balance equation (5.78) is transformed into the

equivalent form

This form can be further transformed if a new function T'; is defined as follows [42]

Ty = plg = kp{fll = f7in(1 + £7)]) (5.100)
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and its evolution equation derived from the covariant kinetic equation is used:

pDlq = = 8, kp(fr[pl — 2 (PIUUY(1 = £7MIn(1 + 7))
+ka(fe(1+ £r) T RS (5.101)
Therefore, we find
R (5.102)

and with the definition of a new Boltzmann function for the quantum system

-

B,=B+T, (5.103)

we finally obtain an equivalent form for the entropy balance equation for the system
of radiation and matter

DB, = -4y, (5.104)
This is in the same form as for the relativistic gas mixture in the absence of radiation
[33], but the quantum contribution due to photons is already contained in the
expression of By. Since &1 does not vanish in general, if the system is away from
equilibrium, the Boltzmann function B, is not equal to zero. This means that the
entropy differential DS cannot be a Pfaffian differential in general, if the system
is not in equilibrium and the extended Gibbs relation for DS is not valid in that
case. We have shown that this is the case in the nonrelativistic formalism [17}, and
it robustly holds up even if the system is relativistic. The equivalent form (5.104)
mey be looked upon as & local form of the H theorem since there is no approximation
made to the distribution function or the unknowns X{*). Further progress in the
theory of transport processes in the system can be made if a suitable approximation
is made to the unknowns in a thermodynamically consistent manner. This goal will
be achieved in two stages: first, the entropy production will be cast in a form that

guarantees its positivity and, second, an approximation for the unknowns will be

obtained.
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5.5 Cumulant expansion for the dissipation terms

The desceription of the inodified moment method is not as yet complete since the
dissipation terms ALY in the fAlux evolution cquations are not explicitly calculated.
The formal development presented up to this point has not required explicit forms
for them, but they are necessary if transport processes are to be studied. Since
the dissipation termns are directly related to the entropy production in the system,
they must be calculated such that the second law of thermodynamics is rigorously
sutisfied by the approximate forms taken for them. Such a procedure is established
in the modificd moment method in which a cumulant expansion method is used
{33, 40]. Since the present covariant kinetic equations of radiation and matter are
similar in their structure to the covariant kinetic equations for the case of matter
alone which is discussed in the previous chapter, the cumulant expansion method
is also similar. For this reason we will be brief and present only the final results
with necessary definitions not found in the references cited. With the symbol g =
(mc?/kpT)* [cA?p? which has a dimension of volume x time, the reduced entropy

production can be written as
Gent = o'entg/kB- (5105)

To the first order cumulant approximation, the reduced entropy production is given

by
Bent = Ksinhs 2 0 (5.106)

which is positive semidefinite for all approximations for the unknowns X ), In this

expression  is given by

K= li‘i D) XD oRSY o X1 (5.107)

a=i b=i a>1 y21
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Here Rhiﬂ arc given by the collision bracket integrals appearing in the first or-
der Chapman-Enskog method. Their statistical formulas are as follows. With the
notations 7, = cdp, and

(40 Blas = GGy ¥ /d Fo P i PR WD P RED,AO B, (5.108q)

where

=00 = 1+ eafO)1 + a0 + e S + e f2)) (5.108b)

The collision bracket integrals are then given by

1 " L ]
Rlam =1;32[(h(°) N L A CO R Lt TR ALY NG N Ly AS2

Jaa¢
+ ﬁez[(h(u) R (REY — B e, (5.109a)
bsa
RS =82 [(h) = )Y — b Nas,  (a #) (5.1090)
b¥#a
Re =1ﬁ2 Z'[(h(f*) — R RED = p0%), (5.110a)
Rle™ Bzzlh(a) RO (R — RO (5.1108)

When these collision bracket integrals are explicitly evaluated with the differential
cross sections or transition probabilities for the collision processes postulated for
the covariant Boltzmann equations, the dissipation terms will be known in terms of
molecular parameters. This part of calculation is deferred to the next section,

Comparing (5.79) with (5.107) for &, we now find the dissipation terms consis-

tent with the second law of thermodynamics

AL = (Bg)~ Z 3" RE™ @ X{M(sinhx/k). (5.111)
b=i vy2>1

Higher order cumulant approximations for the dissipation terms may be obtained if
the corresponding cumulant approximation is used for the reduced entropy produec-

tion, It is straightforward to obtain them by following the procedure described in
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the literature [47]. There now remains the task of determining the unknowns . {e)

in order to complete the description of the modified moment method.

5.6 The unknowns X\

The nonequilibrium canonical form (5.30a) and {5.44) can be determined by
following the procedure described in previous two chapters. Therefore, we will
briefly present the formulas to use and the lowest order approximation for the

unknowns. The unknowns X{* are determined by the algebraic equation

= BXG O (fae T Uupihehe™) =

(fle2Uupth{in(1+ YAV OAM)  (e=ir)  (5112)
121

where tensor AL is determined as follows:
B = (fOc=2, AL © AL (5.113)

and f? is the local equilibrium distribution function. The right-hand side of (5.112)
can be expanded and evaluated term by term as described in the chapter 4. To the

lowest order, the series yields the unknowns in the following form:
X‘(‘a)yu...l - _@&1)pu...l/gc(lo) (5.114)

where
94" = Cac™?B(UapIh{™ @ R £7) (5.115)

with Co defined by C, = 1/5,C2 = 1,03 = 1/3,C4 = 1/3, etc. This set of
solution leaves the first order cumulant approximation for the entropy production
positive semidefinite. Therefore, they are thermodynamically consistent. It also
satisfies the matching conditions. In this manner, the modified moment method for

relativistic Soltzmann equation is complete. When the approximate solutions are
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used in the dissipation terms, the evolution equations are ready for solution and
transport properties can be calculated from the solutions of the evolution equations.
The evolution equations for the fluxes and the conservation equations, collectively
called the generalized hydrodynamic equations, constitute a mathematical structure
for irreversible processes in a system of radiation and matter which is consistent with

the thermodynamic laws.

5.7 Conlusion

We have formulated a covariant kinetic theory for a system consisting of matter
and radiation by putting the material particles and photons on an equal footing,
This kinetic theory has an attendant theory of irreversible processes in a system
of radiation and material gases consistent with the thermodynamic laws. These
formulations are achieved by treating the system as a gas mixture of photons and
material particles which interact with each other according to the dynamical laws
of mechanics. The covariant kinetic equations used are the Boltzmann equations
suitablely generalized to accommodate the quantum nature of radiation. By apply-
ing the modified moment method, thermodynamically consistent solutions for the
kinetic equations are obtained and a theory of irreversible thermodynamics is for-
mulated therewith for the system. As it was the case for nonradiative systems, the
entropy differential is found to be nonexact if the system is away from equilibrium,
and a differential equation for the Boltzmann function serves as a local H theorem
for the system. A theory of radiative transport processes can be developed by the
means of the flux evolution equations presented. The present covariant formulation
removes the weakness inherent to the nonrelativistic kinetic theory as shown in
the chapter 2, and the covariant generalized hydrodynamic equations derived from
the relativistic Boltzrrann equation have better balanced structures, although more

difficult to solve in practice. The generalized hydrodynamic equations, namely, the
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conservation equations and the flux evolution equations, for the system of radiation
and matter can be used to describe irreversible thermodynamic and hydrodynamic
processes oceurring far from equilibrium. The theory of transport processes is de-

veloped for the system of radiation and matter in the next chapter,
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Table 1. Kinetic Terms Z!°! for Radiation
Definitions:

[le(g),w = (V"U” + qu.u) _ %A"“V'Un

[T

[4- BJ2w =

o~

1
(A*° By + AYTBE) — EA‘“’A‘"’B,,.
Kinetic terms:

zMw = — v Qe _ofll, . VU8 4 op [VU)R)wv
+2A VU)W L TEY T, U° = 2¢72Q, DU
+ {frPIPph(peUe) )V UL (AL UY + Ut AY)
— SPDTRPLU) ) AUV, UY 4 U T,U%)
— SRR BT ) Vo UNAL A - 3 A AR)
~ ¢} [(PETUY 4 PETUM)DU- + (pr + AU DUY 4 U DUH)),
2 = — 9,00 + 218 [VUIZ) - peDin(prv®”)
+ 28,0~ VTt pelpr) + 32QEDY,
— SR () NV UsA
2Pk = — v, QB L TI* DU, — (pr + A,)DU* — J#Dh,
~ QYVUF +ardJUEV e + (pr + A )UFVYU,
— UFIIY* VU, ~ c"2U*Q"™ DU,
— ar(fptpt X (Uep) ™)V ohr
+ (fepiptprct(Uept) 2)arh, V Uy
— {frptp2c(Uept) " WarBpar + UPNS heOsay,
zMe = g, Qe _ Jry U — p, DU* — c"2U*JY DU,
— (feptpIp} A (piU)?) Vo Ua,
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Zf_&)ﬂ — VUQ(,-SMW + C—2w£5);:uDUV
— (o U P Py AL U

+ (A [ (piU )T p2 0, Ps(ARDL)).
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Chapter G
Radiative transport coefficients and their mutual relations

In the phenomenological theory of radiative energy transfer (6] the radiative
transport coefficients are expressed in terms of the Rosseland mean which phe-
nomenologically accounts for radiative absorption by matter interacting with ra-
diation. The radiative transport coefficients so expressed stand in constant ratios
independent of material parameters. For example, the ratio of the radiative shear
viscosity 72 to the radiative bulk viscosity (2 is 2/¢? = 3/85, whereas the ratio of the
radiative shear viscosity to the radiative thermal conductivity XY is 7%/A% = 1/5¢?
where c is the speed of light. If the therinal conductivity is defined with respect to
the temperature gradient VT instead of VInT, the latter ratio must be multiplied
by T. In the case of material gas, there exist similar relations and they are Eucken
ratios [63]. Such ratios of the radiative transport coefficients not only enable us to
compute one radiative transport coefficient from another, but also serve as an inter-
nal consistency check for the kinetic theory formulated to study radiative transport
processes of interest.

As we have shown in the preceding chapter, a covariant kinetic theory for a
nonequilibrium system of radiation and matter is developed [34]. The formalism
provides a molecular foundation for the irreversible processes owing to the inter-
action of radiaticn and matter. It also furnishes a method of calculating various
radiative and material transport coefficients in terms of the transition probabilities
of elementary dynamical processes involving the material particles and photons.
The formulas obtained allow explicit calculations of the transport coefficients once
dynamical quantity, such as differential cross section, is known.

In this chapter, we first present various radiative transport coefficients in terms

of the collision bracket integrals reminiscent of the collision bracket integrals appear-
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ing in the Chupman-Enskog method of solution for the Boltzmann equation [18] for
a material gas. Using the statistical formulas for the radiative transport coefficients
aud applying them to a photon-electron system, we calculate the radiative transport
cocticients and their respective ratios. The ratios thus calculated are found to be in
agreement with the phenomenological values mentioned earlier. By assuming that
the clementary collision dynamical process is the Compton scattering, we explicitly

calculate various radiative transport coefficients [35].
6.1 Transport coefficients

To begin the discussion on transport coefficients, we summarize the evolution

equations for fluxes 3¢ and 3 in one place:

PD(i)ggu);w...! = ana)pu...! + AS:)“’W!? (6.10)
pD(i,s‘B)pu...l — Zs‘é)uu...l + Ag)pu...l_ (6.15)

These equations are coupled to (5.65a)-(5.67) and (5.72)-(5.73) of the previous chap-
ter which are the conservation laws of density, number fractions, internal energy,
momentum, etc. for matter and radiation. These sets of conservation equations
and flux evolution equations constitute generalized hydrodynamic equations for the
system of matter and radiation. The solutions of these equations subject to suitable
initial and boundary conditions will describe the relativistic fluid (gas) in interac-
tion with radiation. Our main aim in this section is to obtain the kinetic theory
expressions for various transport coefficients.

For this purpose we first linearize the flux evolution equations, namely, the

constitutive equations (6.1a) and (6.1b) to obtain the set

r
PD‘I’S,"}"""" — xga)pv...l _ (ﬁg)—lgga) Z Z Rg‘;'f)#lf...l o q,(b‘T) (6.2)
b=i y21
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a A . .
where a = 7,r and 1! are related to the thermodynamic driving forces as

follows:
SR = 2p, [QU)RY \ D) = —p, Din(pav®/®);
X3 =y H(VHIRT — Ei—TV“IHp); (6.3)
and
R(ﬁ'r) (g 0))—lR£c;ﬂ(g£ﬂ)_l, (6.4)

the collision bracket integrals R( " are defined in (5.109a)-(5.110b). In order to an-
alyze the linear transport processes under a steady state condition, we may neglect

the substantial time derivative term in (6.2). Therefore, the constitutive equations

become those of linear transport processes

(a)#v 1 (Bg)~ g(o‘) Z Z Rac;-r);w...t o drg'” =0 (a =1,r) (6.5)

b=i ¥2>1

which is a coupled linear set. Solving these equations for ®5****! and compar-
ing the result with the linear phenomenological constitutive equations (i.e., the
Newtonian law of viscosity, the Fourier law of heat conduction, etc.), we obtain
the desired linear transport coefficients in terms of the collision bracket integrals
Rﬁt")" v+d " The procedure for this is well described in refs. (34, 35]. First, we

observe that since the system is isotropic the tensor Rf;;"')” ¥ may be expanded in

terms of isotropic tensors. For the case of our interest here, we have
R&lbl)#l'“ R(n)[ (A#kAul + AplAuk) puAH]’ (66)

that is,

R(“) 5R(11)IWH[ (A“kﬁylﬁ-A”'A"") A“”A“]

_ (gig u) E[(h(” i’)'):(hg"—hﬁ”')]ab- (8.7)

b#a
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Similarly,

R =2 #2672 %
[(h(” +- hm h{1)e — hﬁl,)') (WY ¢ hfll.) — RV — hw')]mr
+ 5 Z((hf,” — R (Y = D)) (6.7')

“ b#a
. . v \ . 1
Here the prime on the subscript ¢ means another particles of species a. Since @g )

is already traceless symmetric, we find
R(l])yl]‘dq’(l) = R(ll)q)(l)ﬂv. (6.8)

In cuse of @ = 3, the tensor REV# is decomposable as follows:

RGM = RV Ar (69)
where
RGY = 62(9“’ - Z[(h‘” Y (R = R, (6.10)
“ b#a
Therefore, we finally obtain
RGP el = RV ek, (6.11)
In case of a = 2, we write
5(22 5(22
R = RGD (6.12)

where

1 . .
RED = 820y 5 Y I = P - (B - AP e (6.13)
~ bsta
Therefore, the lincar set (6.5) may be written as

r
xR — (Bg) 1l YRGB = g, (6.14a)
b=3
]
X2 - (Bg) g Y RGPS = o, (6.145)
b=
r
X~ (Bg) g Y REVSI* = 0, (6.14c)
b=i
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On solving these equations for the fluxes, we obtain the linear constitutive equations
from which the transport coefficients may be determined:

T

lI’L”“" = ij Z("fc(“)*l )“b\il)’w/gén‘ (6.15(1)
b=i
,
0L = Bg D (REN=1)gu\{P g4, (6.158)
b=;
» .
B = 89 Y ROV 1y (6.15¢)
b=1

Here the subscript « is for either the matter or radiation. The transport cocflicients
may then be defined as follows:

shear mscosity:

nes = Bg(ps/gs" Y RID )y, (6.16a)
bulk viscosity:
(35 = B(5pa /39t D YRPH 1), (6.16b)
thermal conductivity:
A3y = Bg(cpb/ g Y REI=1 ). (6.16¢)

In practice, since the component transport coefficients are generally not measured,
perhaps, except for the photon species, the transport coefficients defined in (6.16)
must be summed over species to obtain the corresponding coefficients measured for

matter in the laboratory. Therefore, the transport coefficients for matter are given

by the formulas

1
n?n = Z n?js (6.170)
i
(= Z' 4 (6.17b)
i,
2 =5 (6.17¢)
‘lJ

157



Here the prime on the suuination sign means that the summation is over the matter
species only. In the case of radiation, if the coupling terms (RUEYV =)y, ete. are
neglected, then the radiative transport cocflicients are given by the formulas

shear viscosity:

e = Batpr /gt RN ), (6.18a)
bulk viscostly:
¢ = Ba(5p:/3gPYREV 1), (6.18b)
thermal conductivity:
= Bg(pr /g YRED-1),.,. (6.18¢)

Especially, in connection with (6.18) we note that

o) = B (U £2) = 2.96p, (6:19)
5-2) = %ﬁc‘z((U,‘p’,f):‘f,‘.’) = 1.23p,, (6.19b)
| = -
o8 = 2B (Uuph) £2) = 20 hel(Uuph 2 £0) + (ache) (UupE £2)]

= 18.81¢%p,, (6.19¢)
where
ar = ALAYPIPT )9 [BAEAY (DT PL (P2U) ™ £2)a] 7Y, (6.20a)

h, = 4n'kgT/90((3), (6.200)

3
(@t 19 = /1) [ Lt s2 (6.20¢)

The rest of notations is the same as that in the previous chapter.

Since the collision bracket integrals are appeared in the transport coefficients,

we will write them out explicitly:

REY =(eg/NggM 1 Y S 6 [ ool g g £ 20

—rire j&
£,J 3
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X Wi (Pepilprp; ); 3"’("!&“’—h$.“")®(h$.‘”-hp)'), (6.21a)
R =(eg/h)gi™g ”1“'2’2& f & b pud® pyd® 53 £ SO,
x Wi je(prmilprp}) ﬂz('h‘r“’ ~ RO @ (A0 — vy, (6.216)
Here
o= eap-8@iU, — 1)y £ = [exp(BppU,) = 1) (6.21¢)

where the chemical potential u® is given by

exp(=Bu°) = Z' drm? Ky (m;c?B)kgT/p. (6.21d)
i

The prime on the summation sign means the exclusion of the photon species. The
collision bracket integral R given in (6.21a) requires a comment. In (6.21a), the
first collision bracket integral involving » and »' in {6.7') is absent because photons
do not directly interact with each other and therefore there is no collision event
corresponding to the collision bracket integral [. . .]r+. The collision bracket integrals
can be reduced if a more specific form is assumed for the transition probability
W,S,’ 3_ joo In this chapter we will take into account only the Compton scattering.
Therefore, the sum over the collision processes denoted by the index s will be
reduced to a term and the corresponding transition probability will be denoted by
the elastic scattering component W,S,?_ .;» related to the Compton scattering cross
section of the electron. Evaluation of the collision bracket integrals for such a
scattering process is described in the next section.

In the phenomenological theory the radiative transport coefficients are given

in terms of the phenomenological Rosseland coefficient & as follows [6]:

78 = 4aT* [15¢ck, (6.22a)
(% = 4aT" /9ck, (6.22b)
20 = 4acT? /3%, (6.22c)
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where a = 8744, /10h%¢* is the so-called radiation constant. Therefore, these radia-
tive transport coefficients are related to each other by a proportionality constant.

For example, we have
ne/CY =8/5, /AL =1/5c% (6.23)

Comparison of 7! and 52 yields the Rosseland coefficient in terms of the collision

bracket integral RV

\ (1)
M’Rﬁ_l). (6.24)
Scg

&l

Similar identificatious can be made by means of (? and A%, but they give the equiv-
alent forms since different collision bracket integrals appearing in the transport

cocflicients are related to each other.
6.2 Evaluation of the collision bracket integrals

In order to be specific, we shall consider a photon-electron system where the
electron is treated as a relativistic classical particle and only the electron-photon
elastic scattering is taken into consideration. Therefore, the question of divergence
associated with the long-range Coulomb scattering does not arise and thus the
Coulomb logarithm is not present in the collision integrals. Although the present
treatment is specific to the photon-electron system, the method used is basically
the same as for other plasmas and relativistic particles. Therefore, the system
considered is a physically realistic example covered by the present kinetic theory.
The procedure used for computing the collision bracket integrals is similar to the
work of de Groot et al. [8].

There are only two sets of four-momenta for the present system, namely, those
of the photon and electron. They will be distinguished by the subscripts r and e,

respectively. For the collision process
ho(r) + e = hw*(r*) + ¢*
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we first introduce the transformation of four-momenta

PR = it 4 pl = pit o+ it (6.25q)
Q" = A (ppy — Peu ) Q*F = A (ph, — o), (6.25b)

where
At = gt _ prpv/p? (6.26)

with P2 = P#P,. We will also denote by Q? the length of the four-relative mo-
mentum: Q? = Q*Q,. From (6.25a), (6.25b) and (6.26) we can show the following

relations:

P”Qu = 0» AHVPH = 0, A"”Qu = Q#- (627)

Therefore, the total four-momentum P* is perpendicular to the the relative four-
momentum @#. The four-momenta p#, ctc. can be decomposed into the orthogonal

components P# and @* as follows:

1
pf: = '4]';'(1 + drc)P# + '2'st (6280)

1 1
pe = 5(1 —dre)P* = 5Q, (6.286)

1 1
P:# = 5(1 + dre)-l‘:'ln + EQ‘”: (6.280)
pi¥ = §(1 —dpe)P¥ - %Q‘", (6.284)

where

dre = (M2 = m?)c?/P?* = —m?c?/ P? (6.29)

in view of the fact that the photon mass is equal to zero. Since the collision process
under consideration is elastic, the electron masses are the same before and after the

collision and hence

Q* = —(1+mic!/P)P? 4+ 2mlc? = Q*2. (6.30)
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In order to make the integration in the collision bracket integrals easily, we will
change the variables from p#, p# ete. to P*, Q" etc. The Jacobian of this transfor-

mation is

APQ) _ aPQ) _
d(prype) a(p;,p;)

The transition probability W{¢) can be written in terms of the cross section o(P, @)

as follows:

W) = p2g(P, Q)51 (PH — p*#) (6.31)

where o P, ©) is a differential cross section. For the Compton scattering it is given

by the formulas [8]:

277 - r)2 — £/2)(1 -
(e = il - O+ e ) @
where
£ = (P? —m?c®)/P?, ro = e*/mec?,  z=cosO,

O being the scattering angle defined by cos® = Q- Q*/@?. The cross section
is expanded in £ and only up to the quadratic term in £ will be retained in the

subsequert calculations:

o(P,0) = 373[1 + 27 + Cu(e)t + Col2)€? + -+ (6.32")
where

Ci(z) = z(1 = 2%) — (1 + 2?),

1
Ca(z) = Z(l -){(1-2)1+(Q +2)(3 +3z)) —4z(1 +2)}, etc.
The volume element of the the space may be written as

& prd’ped*prd*p; = dM(P)AM(P*)dM(Q)AM(Q") (6.33)
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where

dM(P) = &' P8P8 P? — mic?), (6.34a)

dM(Q) = &*'Qé(P - Q51Q* + (1 + mict/PHYP? — 2m?c?), (6.34b)

here 8(y) denoting the Heaviside step function of y. The volume elements dM(P*)
and dM(Q*) have similar forms.
With the help of the previous preparation, we are capable of writing the collision

bracket integrals in more useful forms. We begin with RUD. It may be written in

the form

R = ('2gc,l32G,-/15hGgf.‘n)erp([to)/dﬂJ(P)d.M(P')dM(Q)dM(Q')
x exp(—BP*U,)L(P, Q)W U, (pk — p3*))?

r

= (9o G /30 g Peap( i) [ dM(P)AM(P*)dM(Q)M(Q")

x exp(~BP*U NP, Q)W U(Q* - Q) (6.35)

where
£° =Bl + pd) = B2, (6.36a)
T(P,Q) =1 — ezp(-BprUu) "% (6.36b)

Substitution of the expression for W€ into (6.35), the collision bracket integral

'flw) can be written in the form

RUD = (9eB2Gr/30h8g N ezp(p®)[RI) + R + 2RE)] (6.37)

where

R = / dM(P)AM(P* )M (Q)dM(Q Jexp(—~BP U,)
x T(P,Q)P?a(P,0)(U, Q"2 6W(P# — P*#), (6.38a)

163



R = f dM(P)AM(P*)dA(Q)dM(Q* Jexp(—BP U,)
x T(P,Q)P*a(D, 0)(U, Q"")?6)(P* — P*¥), (6.38b)
R = - f AM(P)AM(P* )dM(Q)dM(Q* Jexp(—BP*U,)

x T(P,Q)P2a(P.OY,U,Q"Q** 6P — P*#).  (6.38¢)

In the subsequent calculation we will put T(P, Q) equal to unity to an approxi-
mation. This approximation is tantamount to the condition that 8 is such that
BP*U, > 1. The correction terms can be calculated in the same manner as for the
case of I' =1,

It is convenient to define the integral I{a, b, ¢|P) by
I(a,b,c|P) = (3Pc)® fdM(Q)dM(Q*)a(P,G))(ﬁU“Q”)“
x (BUL Q") (-B%*Q Q). (6.39)

In the center-of-momentum frame the four-momentum P* is time-like whereas the

relative momentum Q* is space-like:
Pk = (PY,0),
and

Q# = (05Q)1 Q‘# = (0: Q*)'

We assume that the center-of-momentum frame is oriented in such a way that the
space component of U* = (U? U) is parallel to the z axis. Then, since ¢ =

(U%)? — (U=)? and U and U* may be written as
U'=U-P/P,

and
U =|((U- P)Q/P2 - cz]’ﬁ.
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Furthermore, if the spherical coordinate angles are denoted by (8, ¢) for Q = Q/|Q]
and (8*,¢*) for Q* = Q*/|Q"|, respectively, then
Q- U = Ucosb, Q' U = Ulcosé® (6.40a)
and
2=Q- Q" = 03O = cosfcos8" + sinfsin®® cos(¢ — ¢*). (6.40b)

In such frame, the collision cross scction may be expanded in Legendre polynomials

Pi(cosO):

gk

(Q-Q*Ye(P,Q-Q%) = ) (2 +1)a(c,!|8Pc)P(cos®) (6.41)

._
Il
=)

where

o(c,l|fPc) = /—1 drz®Pz)o(P,z). (6.42)

BI] —

With the definition of
dQY = sinfdlde, dQY* = sinf*de*de®,

and the abbreviation

K(a,bl) = (47)72 /deQ'(—casB)“(—-cosB')bPI(m) (6.43)

the integral I{a, b, ¢|P) may be written as

I(a,b,c|P) = 4n2(iBcQ) et N(i8cQ Y b+erD[(P . U /2 P? — 12 +b)/?

x i(zl +1)a(c, |BPc)K (a, b, ). (6.44)
=0

It is now straightforward to obtain R in terms of I (a,b,¢|P):
R =f4c= j dM(P)I(2,0,0|P)eap(~BptU,)
_.-1r2c:213 f dM(P)Q?Q*2(L - £)[(P - U)? /2 P? — 1]
x ezp(~BpiU,). (6.45)
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To evaluate this integral, we define the reduced variables
T = [phl,, v = Pec. (6.46)

Then, when the hydrodynamic four-velocity U# is taken purely time-like, the di-

mensionless four-vector may be written as
Bpte = (1,1(r? — v?)1/?) (6.47)
and the volume elemnent dM{P) may be written in the spherical coordinates as
(Be)'d' P = (Be) u(r? — v?)/2drdvdQ. (6.48)

Furthermore,

Q*Q"* = (Be)™ o™ (v? - 2%),

1-é=1- (P2 - mfc‘z)/P"" = 2%v72,

here z being defined by z = m.c?/kgT. In terms of these variables the integral may

be written in the form

R = g“ c 7‘2’2(50)—8/ / dT/dQv—7(v —22)(r? - 2)"’2 =T, (6.49)

By using the integral representation of the modified Bessel function K,(z) [8], we

may write (6.49) in the form
R = 33 mc rezz(ﬁc)“sf dvu=3(v? - 22 Ky(v). (6.50)

With the help of the asymptotic expansion of K,(v) in the limit of large z, we

obtain

2048

R \/_(47r)2\/_c orc?z}/?(fc)~8e? (6.51)
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where o 1s the Thomson cross section of the electron:

op =

[N ]
=
[ =2

Owing to the symmetry of the integral, it is casy to show
R =R, (6.52)

Taking the same procedure as for R we obtain

R = ?—\j_:(ﬁr)z vrctz= 2 (Bc) 8e ", (6.53)

From (6.51) and (6.53), we have the following relation
REYRY) = 1.03/=. (6.54)
With these equations we finally obtain the collision bracket integral in the form

RUD = (902G, /15h8 ¢V eap( B JRON(L + 1.03/z). (6.55)

The shear viscosity of the photon gas then given by

n? = 0.0305(k5T/cor) (6.56)

for which the term of order z~! is neglected as will be for other transport coefficients.
The collision bracket integral 7?.9;2) can be evaluated in & manner similar v the

procedure used for R¢:!), Here we omit the details. The final expression for R4

is given by

R =a2 (240?305 )eap(i) [ dM(PYIM(P*)aM(Q)IMI(Q')
x ezp(—BP*U )P, QYW [U(Q* - Q°*))?
;g(gr”/g"’)%ﬁ-”~ (6.57)
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Therefore, if the approximate value for R4 given by (6.55) is used, the bulk

viscosity of nonequilibrium photon gas can be computed by the formula

¢® = 0.0508(kpT/cor). (6.58)

(33)

The collision bracket integral Ry’ can be also calculated similarly. In fact, it

is related to R(“) as follows:

R(33) == C?(Ojcﬁ2/30h6 (3)2)6‘”1’([10)fdM(P)dM(P')dM(Q)dM(Q-)
x exp(—BP*U (P, Q)W [U.(Q* - @**)]
=2/ g P RUD. (6.59)

Thus the thermal conductivity of the photon gas to the same approximation as for

the viscosity is given by the formula
Al =0.154(ck T /o). (6.60)

It is useful to remark that the radiative transport coefficients given in (6.56), (6.58)
and (6.60) are independent of the photon and electron densities as are the gas
transport coefficients in the Chapman-Enskog approximation, namely, the linear

transport coefficients of dilute gases.

We obtain the ratios of the transport coefficients as follows:
n2/¢d = (99’735‘?’/9“’72(“’) (6.61)

ne/Ar = c—z(gi”’l'%‘ri“’/gi”’f'%i}f’)- (6.62)

In view of the relations (6.57) and (6.59), we easily find the following universal

relations:
0,00 _ 3
nr/Cr = g’ (6'63)
1
72/ = Ec_z(l - 0.0165). (6.64)
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Eq. (6.63) is the same as the phenomenological theory value whereas the ratio (6.64)
is less than 2% off the phenomenological theory value. This difference is attributed
to the approximate values obtained for the various integrals in the expression for
g.‘f" presented carlier. For all practical purposes the ratio may be said to be in
agreement with the phenomenological value.

In conclusion, we have computed the radiative transport coefficients [35] for
the photon-electron system by treating the electron as a relativistic classical parti-
cle in the limit of large =. We have also computed the ratios of radiative transport
coefficients which are in agreement with the phenomenological theory values. The
kinetic theory values of the ratios support the kinetic theory model presented for
the system of photons and material gases which are displaced from cquilibrium
and interact with each other. The present theory provides a well defined molec-
ular theory method of computing the parameters in the phenomenological theory
and, especially, macroscopic observables for nonequilibrium radiation and the phe-

nomenological coefficients such as the Rosseland coefficient.
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Chapter 7
Conclusion

The objective of this thesis is to develop a kinetic theory for irreversible pro-
cesses in a system of radiation and matter. Instead of using the usual equation of
radiation cnergy transfer we have postulated a semiclassical Boltzmann equation
for photons which is coupled to the Boltzmann equations for material particles.
This way, the system of radiation and matter is viewed as a mixture of photons and
material particles which interact with cach other according to the laws of mechanics
for the system. The major motivation for this approach is in the desire to formu-
late irveversible thermodynamics of radiation and matter on equal footing and in a
unified manner. This allows us to prove the H theorem for the system of radiation
and matter, which is the cornerstone of irreversible thermodynamics. In addition,
we show that the Planck distribution for equilibrium radiation and the Maxwell
distribution for equilibrium material particles are the natural consequences of the
H theorem (the second law of thermodynamics). Since the kinetic theory estab-
lishes a bridge which links the macroscopic measurable quantities of a system and
the dynamic mechanism of constituent particles (atoms or molecules), we are able
to evaluate the transport coeflicients of nonequilibrium photon and material gases
in terms of differential cross sections. Furthermore, the hydrodynamic description
for a system of radiation and matter has been derived from the kinetic theory. This
is the so-called generalized hydrodynamic equations for radiation and matter. The
present thesis includes the nonrelativistic kinetic theory and the covariant kinetic
theory of radiation and matter and some applications.

We first develop a nonrelativistic kinetic theory for a system of radiation and
matter. The H theorem for such a system is proved. This allows us to establish

irreversible thermodynamics for the system consisting of photons and material par-
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ticles. The analysis leads to the conclusion that the entropy differential is not an
exact differential form. Therefore the extended Gibbs relation does not hold for the
entropy differential when the system is away from equilibrium. The reformulation of
irreversible thermodynamics has been done by using the compensation differential
which is an exact differential form. The new local H theorem is proposed in terms
of the Boltzmann function. A coupled set of the generalized hydrodynamic equa-
tions is derived from the proposed semiclassical Boltzmann equations for photons
and material particles. Its application to the light-induced viscous flow has shown
that the radiative generalized hydrodynamic equations can account for nonlinear
flow problems for which the conventional hydrodynamic equations fail. It has also
been applied to the light-induced kinetic effects and lases-cooling [30]. Therefore,
the validity of the generalized hydrodynamic equations for radiation and matter
is confirm:d by these experiments. This way, we provide a statistical mechanical

foundati_a for nonequilibrium phenomena occurring in the system of radiation and

matter.

We have applied the modified moment method to solve the covariant Boltz-
mann equation for a relativistic gas mixture. The advantages of our method are as
follows. It is capable of dealing with nonlinear processes in nonequilibrium systems
of relativistic gases. The Chapman-Enskog method and the Grad moment method
give rise to thermodynamically consistent solutions only in the linear regime. This
extension of the modified moment method also affords us a rigorous conclusion con-
cerning the entropy differential of a nonequilibrium system: The relativistic form
of the extended Gibbs relation which forms the basis of extended irreversible ther-
modynamics (EIT) does not hold valid at least from the viewpoint of the covariant
Boltzman equation. However, there is the compensation differential that looks like

the extended Gibbs relation used in EIT, but this requires a revision of the existing
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EIT formalism and its logical structure. The compensation difierential can be used
to investigate the thermodynanics of nonequilibrivin systems in a way parallel to
equilibrium thermodynamics. All the evolution equations for the macroscopic vari-
ables which are necessary to deseribe physical systems are presented in such forms
that they consist of terms which are casily identified as the corresponding terms in

their nonrelativistic versions and those of purely relativistic terms.

With the help of the relativistic Boltzmann equation, a covariant kinetic the-
ory for a system consisting of matter and radiation has been formulated by putting
the material particles and photons on an equal footing. This kinetic theory has an
attendant theory of irreversible processes in a system of radiation and relativistic
gases consistent with the thermodynamic laws. These formulations are achieved
by treating the systemn as a mixture of photons and relativistic diluted gases which
interact with each other according to the microscopic dynamical laws of mechanics.
The covariant kinetic equations used are the Boltzmann equations suitably gener-
alized to accommodate the quantum nature of photons. By applying the modified
moment method, thermodynamically consistent solutions for the covariant kinetic
equations are obtained and a theory of irreversible thermodynamics is formulated
therewith for the system. The covariant formulation removes the awkwardness in-
herent in the nonrelativistic theory, and the covariant generalized hydrodynamic

equations have better balanced structures.

A theory of radiative transport processes can be developed by means of the
flux evolution equations. In chapter 6 we have computed the radiative transport
coefficients Jor the photon-electron system by treating the electron as a relativistic
classical particle. We have also computed the ratios of radiative transport coeffi-
cients which are in agreement with the phenomenological theory values. The correct

values of the ratios support the kinetic theory model for the system of radiation
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and matter which are displaced from equilibrium and interact with each other. The
theory provides a well defined molecular theory method of evaluating the param-
eters in the phenomenological theory and, especially, macroscopic observables for
nonequilibrium radiation and the phenomenological coetiicients such as the Rosse-

land coefficient.

On the whole, this thesis demonstrates the importance of the kinetic theory
of radiation and matter as a basis for explaining irreversible processes for systems
consisting of photons and material particles. In essence, the present formalism
puts the statistical mechanics of nonequilibrium thermodynamics on the par with
the Gibbs ensemble theory of equilibrium statistical thermodynamics in the sense
that all thermodynamic functions and evolution equations are expressed in terms
of Xf") and X!*, which must be ultimately obtained by solving the generalized
hydrodynamic equations of radiation and matter, just as all equilibrium thermody-
namic functions and relations are expressed in the Gibbs ensenible theory in terins
of a partition function which must be computed for each and every system in the
end. The generalized hydrodynamic equations, namely, the conservation equations
and the flux evolution equations, presented for the system of radiation and matter

can be used to describe irreversible and hydrodynamic processes occurring far from

equilibrium.

Finally, we provide some discussions on the validity of kinetic theory for de-
scribing irreversible processes of radiation and matter. In particular, we may esk

what approximations, in the underlying physics, are contained in the kinetic equa-

tion for photons?

The most important approximation as far as the photon kinetic equation is
concerned is that we consider photons basically as point particles which satisfy

Bose-Einstein statistics, However, according to quantum mechanics photon has
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dual character (particle-like and wave-like), therefore, photons also exhibit wave
behavior, In other words, a photon in reality is a wave packet. For the point par-
ticle picture of a photon to be valid, it is necessary that the spread of the wave
packet in phase space (momentum and coordinate) be small [43]. This means that
the spread must be sinall compared to the resolution of interest in the coordinate
space (x) and momentum space {pr) or (v, n). Since the photon distribution func-
tion is written as a function of variables x, v and n, it is sufficient to specify the
phase space coordinates of the center of wave packet and any information con-
cerning the distribution about this center is irrclevant. Owing to the Heisenberg
uncertainty principle the wave packet spreads in spatial and momentum space can-
not both be made arbitrarily small at the same time. These considerations impose
a maximum possible resolution on the spatial and momentum coordinates. In fact,
a kinetic equation for photons cannot describe the strong wave behavior manifested
in diffraction and reflection since it does not take into account the wave behavior of
photons. These phenomena depend on interference among the waves arising from

different scattering centers which scatter the same photon.

The kinetic equation of photons also neglects the effects of refraction and dis-
persion. It is known that a photon will move at less than the vacuum speed of
light in matter with a refraction index other than unity. In particular, if the re-
fractive index is a function of position, the photon will not stream in straight lines
between collisions but will undergo (continuous) refraction. In addition, if the re-
fractive index is time dependent, a photon will continuously change its frequency as
it streams between collisions. The origin of these effects are due to an interference
phenomenon of the scattering of photons which is discussed by Feynman et al. [64].
A discussion on the validity of Boltzmann equation for material particles can be

found in the book of Smith and Jensen [65],
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Nevertheless, the present kinetic theory of radiation and matter is essential to
understand some macroscopic phenomenn of nonequilibrium systems consisting of
photons and material particles, Note that the Maxwell equations are dynamical
theory for radiation like Newton's law for classical particles whereas kinetie the-
ory for photons provides a statistical description for photons in which irreversible
pracesses are involved. The role of kinetie theory for photons is similar to that of
Boltzmann equations for classical particles. Maxwell's theory and kinetie theory

represent different levels of description of physical systems.
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Appendix

Nonrelativistic limits of the relativistic

generalized hydrodynamic equations

In this appeudix we examine the nonrelativistic lint of the kinematic terms

Zi(“)’"""l and the dissipation terms :\E-“““'"'l. It can be shown that in the limit of

ufe — 0, Z}““”’"'l and .’\Ea)‘w'"l are reduced to their nonrelativistic counterpurts,
Therefore the relativistic generalized hydrodynaimic equations have the correct non-
relativistic limit which has been confirined by the experiments in various fields.
As mentioned earlier, the time-component of four-momentum is given by
P = mic(l + p} /il )2
= mic{l + p/2mic?) + 0(1/%)
= m;c + p¢/2mic + O(1/c%)
& mjc, ¢ — 00, (A1)
Since the hydrodynamic velocity U# may be written as
UF = y4(c,u) (A.2)
where
Yo = (1 —u?/c?)"V2, (A.3)
It is clear that the space-components of U* is reduced to the nonrelativistic hydro-
dynamic velocity in the limit of u/c¢ — 0. Therefore,
PV = yulep? — pi - u)

= (14 u?/2e¢*)(mic? + p?/2mi - pi - u) + O(1/c?)

1 1
smivf — mivi - u+ smi® + mic® + 0(1/c?)

=

B2 = B2 =

—m;(vi —u)? + mict + 0(1/c?)

m;c? 4+ m;c? + O(1/c?) (A.4)
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where ¢, = v, — u is the nonrelativistic peculiar velocity of species i and m;e? term
will be negleeted in the nonrelativistic theory. This mmeans that the Jittner function

hiws the following limit

fi = exp{=B(pL U, — )]
— cxp[—ﬂ(%mw? —pi), c— oo (A.5)
Therefore the Muxwell-Boltzinann distribution function is the nonrelativistic limit
of the Jiittner distribution function.

We will show that the macroscopic variables and the operators in the relativistic

generalized hydrodynamic equations approach to their nonrelativistic counterparts

in the limit of ¢ — oo.

The number density

3 ,n.
R =

I

/ @pifi +0(1/c)
=n!" +0(1/c) (A.6)

here n{™ denotes the number density in the nonrelativistic kinetic theory.

The covariant operators D and V# have the nonrelativistic limit as follows:
D=U*d, =U + U*d
=0 +u-V+0(1/c)
= ':? +0(1/c). (4.7)

The nonrelativistic counterpart of operator D is the substantial time derivative d/dt

which is widely used in fluid mechanics. The space-component of operator V¥ is

given by
Vi = —AMkg, — A,

=0/dz; +0(1/c),  (k,j=1,2,3). (48)
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Obviously, ¥ is reduced to the spatial derivative in the limit of ¢ — 0.
Let us analyze the nonrelativistic limit of the entropy four-flow. According to
the definitions in the relativistic kinetie theory [33):
?
Sh(x) = -LBCZ/ Bopt filinfi ~ 1) (A.9)

and
S = pS =7, 5% (x)

= -kpe™! 3 ] LRy, fiinfi - 1)

- kY fd“p.-f,-(lnf,- ~1)+0(1/¢)

Il

=S 4+ 0(1/c) (4.10)

where S(® is the entropy of a nonrelativistic gas-mixture. The space-component of

entropy flux J# = §# — SU® is given by
JE = gk _ Uk
=-kg ). /d3p.~c§f.-(1nf,- - 1)+ 0(1/¢)
= JIWE 4 O(1/e). (A.11)

The entropy production has the limit
d®p;
g = —kaczz./ -Eg-lnfic(fi»fj)
i3] i
=—ta 33 [ #utnfictsi i)+ 00/
I

= o™ 4 O(1/c) (A.12)

where ¢() is the entropy production of nonrelativistic gas. The dissipative terms

are given by

(a)pw.d _ Eif_E_l_ (v dee e g
At = e 3 [ SR )
=3 [ uniteisi g5) + 00 o) (4.13)
J
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In order to show the nonrelativistic limit of the relativistic generalized hydro-
dynanic equations, it is necessary to analyze the energy-momentum tensor and

other macroscopic variables, Since

T =e} /< —”—'-p:‘p:'f.(x,p.-), (4.14)
then
= °Pi 0.0 .
CZ/ —o Petfle.pi)
=nmc® + &, -+ O(1/c). (A.15)

On ignoring the rest energy part, it becomes the kinetic energy density. Let us

" consider the components T, k= 1,2,3

T“’—CZf ; — pipk f,
= cz ] d*pipt f; (A.16)

that is, 7% /¢ becomes the momentum density of nonrelativistic gas when ¢ — oo.

Moreaver,

TLJ_CZ dp, kp’f:
H
=T 4 0(1/c), kyj=123 (A.17)
where T(")*i denotes the nonrelativistic energy-momentum tensor.

With the help of these properties it is easy to show that the kinematic terms

Z{*" ! have the following nonrelativistic limit:

Zi(n);w...! = ( ga h('a);w...lfi(z’p'_)) + ar(A;¢Ea)pu...la)

3
= [ Spt ste oo

+a fd C2E AT po p{Iny- ') (A.18)
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Since

/—\‘?;Pil = (C—zUDU.u - y;u. )i

=clu.p; +0(1/cY), (4.19)
and
Aﬁpf = (C_2UkUu - Qﬁ)P:‘
= —micf + 0(1/¢), (A.20)
then
Aptp? =mic? +0(1/c). (4.21)
Therefore,

z!* = f d*pifi(di + i - VI —~ v f d*picih{™ fi + O(1/c)
= {fildi + ci - VIA™) = V- (c:h{™) fi) + O(1/e)

= (fi(de + ci - V)R = 7 9l 1 0(1/c). (A.22)

This means that in the limit ¢ — oo (the last term vanishing) the kinematic terms

are reduced to their nonrelativistic counterparts which are given in the ref. 40:

2" = -9 - — 2T ;dpu]® + 2[1; - 4] - w, 1L - %niv ‘u
+ 247 + 2piy, (4.23)

Mo w.p®_ 25142
Z‘ =-V 'l,bl 3dtu J;+3

— pidiIn(pv®/®) = V - (Jipi/ pi), (A.24)

Hg:l—ga.v-u

23 = -v . 9P — dyu - (P; -pU)+ Qi (y+uw-— %UV-U)

+ 1,95-3) {ytw-— %UV ‘u) — Yidih; - P« Vi, (A.25)
ZW =~V . Py - pidu + 3; - (- %Uv-u)u.- w, (A.26)

etc.
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where

1
w = 5[Vu-(Vu), (A.27)
o) = (mcicicifi), (A.28)
[w L] =@ - TT; - ;- w. (A.29)

In this sense, the relativistic generalized hydrodynamic equations are reduced

to their nonrelativistic counterparts under the condition ¢ — oo

g
5P = -V . pu, (A.30)

d
—u=-v. A3l
p%&: =-V-Q-P:u, (A.32)
p%«isf.“) = Z{® 4 AL, (A.33)

These are well known results in the scheme of the modified moment method for
nonrelativistic gases [20]. The discussion on the ronrelativistic limit of the gener-
alized hydrodynamic equations for radiation can also be carried out by using the
aforementioned method. Since the procedure is similar, we do not repeat here.
In conclusion, the present relativistic kinetic theory has the correct nonrelativistic

limit which has been confirmed by variois experiments.
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