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ABSTRACT 

1\ meLhodology was dcveloped in this study for identifying the 

cogn 1 LI v(', pedagogical, and compu ta tional characteristics of computer-based 

Il',Hnlllg cnvlronmcnLs. The characlcrization of the cognitive and 

ped .1gogical [ca L ures was achieved by decomposing the learning 

('nvir()nmcnt~ illto episodes which were composed of sequences of "views". 

Each "view" was described in terms of the different types of knowledge 

prl'~cnLed, the pedagogical strategies used to present the knowledge, and the 

forms and funclions of user-computer interactions elicited. The 

wm putational characLerislics were described in terms of modularity and 

oLher programming properties. The methodology was applied ta 

l'hL' racterizing Lhe instructional programs produced by student teachers using 

I.ogo. 

The results showed that this methodology can successfully identify the 

cognitive, pedagogical and computational characteristics of the learning 

t'llvironments. It can aiso clari[y what can be learned in a microworld, 

t'~pl'CiL1Ily the "powerful ideas" in Logo environments. In addition, the 

\Isability and wnstraints of learning environments in meeting the learners' 

l'Ognitiw nccds cturing the learning process can be assessed. Several findings 

,lJ'(.' parlicular Important in this study. First, student teachers represented 

domain knowledge in a concrete and isolated manner. Second, sorne student 

lt',1Cht'rs dcvelopcd elcgan t pedagogical strategies such as "modeling", 

"sc.lffolding", and "exploration". However, the problematic representations 

0/ npcrating knowledge indicate that student teachers often faHed to consider 

h\ll11,ln ILlctors in dcsigning computer interface for system operation. Finally, 
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this study indicated that the lcarning environments constrtlctl'd h" studl'nt 

teachers lacked interactions. In particular, these enVll .. 1l1wnt~ provided 

insufficient interactions for lcarning domain knowledge and tor provIlhng 

learners with the flexibilities in chosing task activities, task cnmpll''\.ity, and 

various assistance to mect the individual needs. 

This methodology has implications for studies of instructlOn.l1 

software interface and instruction al softw,uc evaluation. IL .11 '>n h.l~ 

implications for Logo rcsearch and for expertise studil's i 11 dp\'l'loplIlg 

instructional software and other teaching contexls. Suggestlon~ lllP 111.1dl' lor 

further research in instructional software dcvelopnwnl and tl1(' pxpl'rti~l' 

related to such development. 
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Rrsumé 

Cette thèse présente une méthode qui a été développée afin d'ldentifier 

les caractéristiques cogniti ves et pédagogiques d'environnements 

d'apprent)~sage informatisés. De plus, cette méthode permet d'identifier les 

caractéristIques computationnelles de ces environnements. Les 

Ctlfi.lc[('ristiques cognitives et pédagogiques sont identifiées en décomposant 

h)(!rarchiqucment les environnements d'apprentissage en différentes "vues". 

Chaque vue est analysée en terme des types de connaissances présentés, des 

stratégies pédagogiques employées pour présenter ces connaissances, et des 

interactions utilisateur-ordinateur qui sont favorisées. Les caractéristiques 

computa tionnelles sont décIites en termes de modularité et de fonctions de 

progrllmmation. Cette méthodologie est appliquée à la description 

d'environnements pédagogiques prodUlts par des maîtres en formation 

u 111isan t Logo. Les résultats indiquent que la méthode résussit à identifier les 

caractéristiques cognitives et pédagogiques des environnements 

d'apprentissage. Les résultats indiquent également qu'il existe une relation 

en tre 1 es c~ractéris tiques pédagogiques et les caractéris tiques 

computationnelles des environnements étudiés. De plus, les avantages et les 

inconvénients des environnements d'apprentissage pour rencontrer les 

besoins cogintifs drs utilisateurs peuvent être diagnostiqués. Finalement, 

cette méthode a des implications pour l'étude des interfac.es des logiciels 

pédagogiques et de l'expertise dans le développement de logiciels 

pédagogiques. Les avenues de recherches ultérieures sont discutées . 
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• 

• 

ACKNOWLEDGMENTS 

1 want to thank aIl people who showed me 10\'1.', kll1dlWS~ .md who 

helped me in various ways. 

1 would like to express my deepest love and gratitude to 111y p.Hl'nb 

and my sisters Chen Jie and Chen Tao for their unconditinn.l1 Inn' .1Ild 

support. l also wOllld like to thank FengShia 1 {su and her chtldrl'1\ Ml'llnd,l 

Hall and l\1artin Hall for making their home as warm as my own. 

In producing of this thesls, 1 would like to heartily thank my fril'nds 

David Kaufman, Soibhan Hart y, and Andre Kushniruk for bcing my 

proofreaders and providing mvaluable editorial suggestion. 

AIl wonderful teachers 1 have had dcserve special recognition. 1 am 

particularly grateful to Dr. Alain Breuleux and Dr. Glenn F. Cartwnght who 

spared no effort to help me complete this thesis after the tragie sudden dedth 

of my supervisor Dr. Guy Groen. 

1 would like to specially thank Prof. Bruce Shore and Ms. Pat Grafton 

for their care and help in solving the associated administrative probll'ms 

caused by this tragedy. l wOllld like to thank Erika Franz and Marion l3arfurth 

for providing emotional support \.\ i1en it was much needed. 

AIso, 1 would like to thank aIl students who voluntarily participated in 

this study in Félculty of Education, McGill University. 

Finally, 1 wish to express the deepest gra titude and greatest respect to 

my supervisor, Dr. Guy Green, who inspired and supervi~ed this study and 

worked with me enthusiastically until his untimely death just prior to thp 

submission of this thesis. It is to Dr. Groen Iowe the greatest debt not only in 

the production of this study, but also in my growth as a researcher 

iv 



• 

• 

Dr Groen was like an experienced ocean explorer who knew aIl the 

<'l'crels of the ocean However, he did not slmply tell me what treasure he 

hao found nor how J might find it. Instead, he let me delve into the sea and 

gave me the freedûm ta explore my interests. Whenever 1 became 10st in the 

(!xploration, he was always there to give me direction. When 1 made a 

dlscovcry, cven if a liny one, he always shared the excitement with me and 

encourtlged me lo go further and deeper. Today, when 1 look back on the two 

years of sludy supervised by Dr. Groen, 1 realize that he was practicing the 

theory he stated as that the best way to teach is ta give the learner the 

opportunity ta indulge in Eree problern-solving activities. The approach is to 

follow the model of the learner as a researcher and the teacher as a research 

director. 

IL was my great fortune to have Dr. Groen as rny supervisor in his last 

years. My Hfe has been enriched by experiencing his outstanding expertise, 

his serious attitude towards research, and his warmness, as weIl as the 

enthusiasm, encouragement and confidence he inspired. It is with the 

greatest respect and admiration that l dedicate this thesis ta his memory . 

v 



• TABLE OF CONTENTS 

CHAPTER 1. OVERVIEW OF THE STUDY.. .. .................. . 

CHAPTER 2. REVIEW OF THE LITERA TURE ....................... ....... ....... .. .... 6 

Instructional Software .............................................................................. 7 

Formative Evaluation. ..................... . .............. ......... ...... ......... R 

Summative Evaluation............................ ....... . ... ... ...... ...... H 

Meta-analysis .............. ................................ ............ .... ....... ......... 1..) 

Findings from Educational Software Evaluation ......................... l) 

The Need for Developing a Methodology to Iden tif Y the 

Cognitive and Pedagogical Characteristics of 

Instructional Software .................................................................... 12 

Intelligent Tutoring Systems .......................................................... 13 

Human-Computer Interface .................................................................... 1...J. 

Research Approachcs to Human-Computer Interface .................. 15 

The Methods for Evaluating the Usability of Hum,m-

Computer Interface .................................................................... 1 H 

Application of Human-Computer Interface Approachcs ta 

Studying Instructional Software Interface ................................... 23 

Logo Exploratory Learning Environments ................................................ 26 

The Claims of Logo ............................................................................... 27 

The Tests of the Claims: Findings from Empirical Sludics .......... 27 

Limitations of Previous Logo Studies............ ..... ......... ..... .. .... 34 

Empirical Studies on Programming Expertise ............... .............. ... .. .. 35 

• Findings from Expert-Novice Studies in Programming ........... 38 

vi 



• The Limitation of Previous Studies on Programming 

Expertise ............................................................................................ 46 

Summaryof the Chapter ................................................................................ 48 

CI -fAPTER 3. METI-IODOLOGY ............................................................................ .51 

Subjects ........................................................................................................... 51 

Materials ....................................................................................................... 52 

Computer I-Iardvvare ............................................................................. 52 

Software... .. ............................................................................................. 52 

Readings ................................................................................................... 53 

Other Ma terials ........................................................................................ 53 

I)ata Source ....................................................................................................... 53 

Working Samples and Sharing .......................................................... .54 

Midterm Project ...................................................................................... 54 

Final Project and Short Paper .............................................................. .55 

[)ata Analysis .................................................................................................... 55 

Characterization of the Learning Environments ........................... .57 

Characterization of Program Structures ............................................ 66 

CHAPTER 4. RESULTS AND DISCUSSION ..................................................... 71 

Characteristics of the Learning Envlronments ......................................... 71 

Knowledge Presen ted to the Users ...................................................... 72 

The Characteristics of Pedagogical Strategies .................................... 83 

ID teractions .............................................................................................. 103 

Summary of the Characteristics of the Learning 

Environments ................................................................................... 113 

Characteristics of the Program Structures ................................................. 114 

• Page Structures ........................................................................................ 115 

Procedure Structures .............................................................................. 124 

vii 



• Prograrnming Properties ........................... . 

Manual Operators ............. . ........ .... . ... 

The Relationships between Program Structures .lnd thl' U ... !.' ni 

Pedagogical Strategies......... .......... .. 132 

CHAPTER 5. CONCLUSION ............ ..... 1 y; 

Summary of the Research Findings 1.1'; 

Implications for Instructional Software Dcve10pnwnt Ill) 

Implications for Studying Instructional Software InterL1Cl'S Iyl 

Implications for Instructional Software EvaluatIOn. .. ... I·D 

Implications for Studying Expertise in Instructional Software 

Design and Human Teaching ............................ ................... ......... .145 

The Knowledge and Skills Reflected in the Final Products of 

Programming...... .................. ............... ............. . ............. .. . . ..145 

The Study of Teaching Expertise........... ............ . ..... .. ISO 

Implications for Logo studies.............. ................ . ..... ........ .. ... 151 

A Learning Tool.......... ............................... .......... ..... ..... ............ 151 

A Research T001...................... ...................... ............... ......... .152 

Implications for Providing Instruction in the Dcvclopmcnt of 

Instructional Software ...... .......... ...... ......... ................ .. ........ . J S1 

Limitations of This Stud y................ ....... ..... .. ...... .. ..... ... .154 

Further Research ..................................................................................... 1 S4 

• 
viii 



• LIST OF TABLES 

Table 1. Frequencies of the codings representing the different types of 

knowledge and pedagogical strategies used for aIl projects ........... 73 

Table 2 Frequencies of different types of knowledge presented in 

each project. .............................................................................................. 76 

Table 3. Frequcncies of tasks, working spaces and evaluation and 

feedback .................................................................................................... 85 

Table 4. Frequencies of pedagogical strategies used in each project. ............. 88 

Table 5. Frequcncies of different types of rnanual opera tors and their 

functions designed for aIl projects ...................................................... 105 

Table 6. Frequencies of different functional opera tors designed in 

each project. .............................................................................................. 108 

Table 7. Frequencies of autornatic opera tors designed in aIl projects .......... 109 

Table 8. Page structures, procedure structures and prograrnrning 

utiliLies designed in each project. ........................................................ 116 

Table 9. The distribution of the rnanual operators ........................................... 130 

Table 10. The prograrn structures anci the use of pedagogical 

strategies .................................................................................................... 133 

• 
IX 



• LIST OF FIGURES 

Figure 1. The hierarchical organization of a learning environment .... . ~b 

Figure 2. The view space and the cornmand space in a view. .............. 37 

Figure 3. A framework for characterizing the learning environmenls... .6..t-

Figure 4. Syrnbols used in the diagrams. ............................... . .......... . .. 6l) 

Figure 5. A combination of instruction and demonstration with 

scrolling effects .................................................................................... 91 

Figure 6. A combination of instructions and demonstrations user 

controlled by pressing the enter key ............................................. 94 

Figure 7. A combination of demonstrations, explanations, and 

instructions with clearing text and clearing graphies ................. 99 

Figure 8. A combination of task presentation, working spaces, and 

evaluation and feedback. ................................................................. 102 

Figure 9. An example of complex and crowded text with scrolling 

effects ................................................................................................... 111 

Figure la. A linear page structure Iinked by automatic operators ................... 118 

Figure 11. A linear page structure linked by manual opera tors......... ..... ..... .1 1 li 

Figure 12. A linear page structure in which the direction of operation 

is controlled by pressing a key ....................................................... 119 

Figure 13. A linear page structure cornbining autornatie and manual 

opera tors. ........... ................ .................. ....... ................... ...... ............. .120 

Figure 14. A modular page structure consisting of two main levels 

with the bottom ones parallel. ......................................................... 121 

• Figure 15. A modular page structure consisted of other modular and 

linear pages..................................... .............. ................ .............. . .122 

x 



• fIgure 16. Singlc-level procedures used to link a page, to answer a 

qUEstion, or to choose an activity ............................................... 125 

Figure 17 A lmear procedure attached by single-level procedures ................ 126 

FIgu re 18. Â. modular procedure structure with recursion ............................... 127 

• 
xi 



• 

• 

Chapter 1 

OVERVIEW OF THE STUDY 

The purpose of this thesis is to develop a methodology for 

characterizing computer-based learning environments. Such a l1wthodology 

is required in or der to describe the important features that determllH.' tlH' 

effectiveness of instructional software and idenl1fy the charactl'ristlcs 01 

instructional software that distinguish expert programmers from novicl' 

programmers. Methods currently used in instructional software l'valuation 

and in studying programming expertise are inadequate to address the widl' 

range of cognitive and pedagogical issues involved. Therdore, thi~ thl'sis 

focuses on identifying the cognitive and pedagogical, as well as the 

computational eharaeteristics of instruetional software. 

The critical roles that computers play in modern school learning 

necessitate a doser examination of computer-based learning environml'nt~. 

It is equally important to assess whethcr such learning environmenh meet 

the user's cognitive needs in the learnmg process, and to explain what 

features of the learning environments promote sucecss or failurc. In 

addition, the study of programming expertise requires a methodology that 

enables us to look at the products, and not just the proce~ses, of 

programming. 

In order to charaeterize effeetively instructional software, it is necessary 

to look at the programs From both the learning environment and program 

structure perspectives. A learning environment refers ta the display (e.g, 

text, graphies, speech, and animation, etc.) and user-computer interactions 

elicited by a program for a specifie edueational purpose (c.g., learning 'iubJeet 
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matter knowledge, developing general problem-solving ability or motor 

skills, etc.). Learning environments play critical roles in the acquisition of 

knowledge and skills. This is because a user acquires knowledge and skills in 

in teracting wi th the information provided by a program. It is the learning 

environment that a user cornes into contact with and explores. Therefore, 

the cognitive and pedagogical characteristics of the learning environments 

determine the effectiveness of learning. In addition, in the domain of 

instructional software design, expert programmers differ from novice 

programmers not only in terms of the knowledge they possess, but also in 

lerms of the way they convey that knowledge to the user through the 

medium of the computers, as weIl as the interactions they design to promote 

Iearning. The differential knowledge a programmer possesses and skills for 

conveying such knowledge will be reflected in the products of programming. 

Thercfore, the methodology for studying programming expertise should 

allowone to examme the products of programming with respect to the types 

of knowledge presented to the user, the ways that knowledge is presented in 

terms of pedagogical strategies, and the kinds of interactions promoted in a 

learning environment. 

Program structures refer to the computational characteristics of 

instructional software. The computational characteristics have a significant 

impact on the allocation of resources, data storage, and execution time and 

these factors constrain the efficiency of the instructional software. Pro gram 

structures are particularly important for large and complicated systems. 

Furthcrmore, in the area of instructional software design, an expert 

programmer may differ from a novice by the way in which a program is 

structured. Therefore, the description of instructional software must include 

a characterization of the program structures. 
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This study attempts to achieve four major goals. The first goal is lo 

develop a methodology for characterizing the learning environml'nts 

provided by instructional software. This methodology is applied III the 

context of characterizing the instructional programs produced by student 

teachers using Logo. The second goal is to evalu.1te the usability .'md 

constraints of the learning environments in meeting the user's cognitIve 

needs during the learning process. The tlurd goal is to characll'rI/.e lIlL' 

program structures and examine whether there is any relationship belween 

the learning environments and the program structures. Finally, this ~l uti y 

investigates how the characteristics of products of programming rl'lll'cl 

programmers' differential knowledge and skills in instructional softwan' 

design, in addition to those suggested in previous programming studies. 

The characterization of a learning environment IS achieved by 

decomposing a learning environment into cp/sodes (Le., sets of exerciscs or 

lessons) which often consist of sequences of views. A vicw refers to a sereen 

display and the interactions associated with this particular ')creen display. 

Each view is then characterized with respect to the types of knowledge 

presented, the manner in which the knowledge is prcscnted in tcrms of 

pedagogical strategies, and the forms and functions of the interactions. The 

usability and constrétints of the learning environments are assessed in terms 

of the supports needed for explora tory learning. 

The characterization of program structures is conducted by dcpicting 

the program structures as either linear or modular, with con~iderdtion of 

other programming properties (e.g., reusable subproccdures, conditional 

statements, variables, and recursion). This study also investigatcs If therc b 

any relationship between the learning environments and the program 

structures of the programs produced by student teachers using a Logo-based 
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application called LogoWriterH1
. 

The reason for using Logo ra ther than another programming language 

as the context [or characterizing the learning environments constructed by 

"tudent teachers is that Logo, a dialect of LISP, is often regarded as a novice

oriented progrf1mming language. Logo has the ilexibility for designing and 

cxpanding program structures. It can also be used to produce sophisticated 

programs and to engage high-level programming skills. Programming is a 

very complex and dlfficult activity and it takes lots of effort and lime to 

produce a program. For novice prograrnmers, like student teachers, the task 

is ev en more difficult. It is critical to choose a novice-oriented programming 

language to minimize the difficulhes of constructing an executable or 

"runnable" program so that novice programmers can devote greater effort to 

"claborate" the learning environments that this study attempts to 

characterize. Meanwhile, it is important to select a programming language 

that has the polential [or eliciting high-level programming skills and to 

construct sophisticated programs. Logo is an appropriate programming 

language that satisfies the se preconditions for developing a methodology for 

characterizing the learning environments constructed by programmers at 

variolls lcvels of programming skills. 

Logo learning environmen ts crea te the conditions under which 

powerful ideas can take root (Papert, 1980). The fact that the computer-based 

learning environment, or the notion of a microworld, has never been 

defined in a precise fashion, has hampered its usefulness (Groen, 1985). 

Groen suggested that a more precise definition may c1arify the notion of a 

microworld and the powerful ideas that take place in such an environrnent. 

In summary, developing a methodology to characterize the 

instructional programs praduced by student teachers using Logo can serve 
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sever al purposes. First, it can heip us to understand the 11.lturc ot l'omputcr

based learning environments and it can aiso help us 10 de termine whether 

the characteristics of a Iearning environment meet the users' cognitive needs 

in the learning processes. Second, the results from the asseSSl11ent l',ln 

provide guidelines for developing instructional software. Third, tIll' 

identification of the important features of instructional programs ("Hl hl'lp liS 

to de termine how the characteristics of final products of programming rdll.'ct 

the cognitive skills of programmers at various levcls of expl'rtisc in the 

domain of instructional software design. Finally, the precise definition ot tIll' 

learning environment can provide a better understanding of the nature of 

Logo, and can also contribute to the theoretical discussion of what is ll'arned 

in such an environment. 
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Chapter 2 

REVIEW OF THE LITERATURE 

The major goal of this study is to develop a methodology to identify 

precbely the charactenstics of instructional programs produced by student 

tcachers usmg Logo. In order to understand the characteristics of 

instructional software, it is necessary to consider at least the following three 

perspectives: a) the cognitive and pedagogical features, b) the human

computer interface, and c) the computational structure of the program. These 

thrce perspectives form the basic organization of the review of the literature 

prcsented in this chapter. 

First, this chapter reviews the studies on instructional software 

evaluation. The issue is whether the current methods used are adequate for 

identifying the cognitive and pedagogical features of instructional software 

and determining its effectiveness. Second, the process of knowledge 

communication between the user and the computer is examined from the 

point of view of human-computer interaction research. This chapter presents 

the methods for evaluating the usability of human-computer interface and 

discusses whether the notion of human-computer interface needs to be 

modified in order to account for the special properties of instructional 

software. Third, this chapter summarizes the findings on Logo, and explains 

why it is necessary to characterize learning environments in Logo. Finally, 

this chapter reviews studies on programming expertise and argues that such 

studies should integrate analyses of both the cognitive processes that a 

programmer engages in when producing a program and the products that a 

programmer produres as a result of the programming processes. 
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Instructional Software 

This section presents il general introductory definition of instruction.l1 

software, reviews studies on instructional software evaluation, and .ugues 

that the methods used in most of these studies do not take into .1ccount the 

important features that contribute to the effectiveness of lI1structioIlal 

software. 

Traditional instructional software includes four primary categories 

CCriswell, 1989; Hannfin & Peck, 1988): a) tutorial; b) drill and practIce; c) 

exploratory environrnent; and d) garnes and simulation. In tutorial 

environments, the computer provides instruction to teach the l1~l'r new 

knowledge, whereas in drill and practice environrnents the computer 

provides exercises to the user as reinforcernent so that the user can practiCl' on 

what he or she has already learned and receive feedback. Exploratory 

environments allow the user ta engage in relatively unconstrained problem

solving activities, and the user learns by doing and exploring. Cames ,md 

simulations are computer environments that present attractive pictures, 

animation, and even sirnulate complex concepts and events. The user can 

play games or manipulate the simulation process by giving input. 

The primary objective of using variotls educational techniques i5 tü 

improve the effectiveness of learning. To assess the effectiven('s5 of 

instructional software, formative and surnmative l'valuations are often 

conducted. In addition, meta-analysis method is used to 5urnmarizc the 

results of surnmative evaluations for different categories of instructional 

software and then compare them . 
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Forrndtive Evaluation 

[oormative evaluation is conducted to identify features that require 

modification. Formative cvaluation procedures are applied extensively in 

the ongoing process of program development. Issues ranging from design 

IUgIC to selection of vocabulary, from cIari ty of graphies to branching 

exccution, {rom the judging of student Input to the clarity of the lesson text 

should be aH considcred (Hannafin & Peck, 1988). 

Summative Evaluation 

Summative evaluation is conducted to de termine whether an 

educational product is effective after it has been built. The purpose of 

summative evaluation is to valida te performance rather than to locate are as 

in necd of improvement (Hannafin & Peck, 1988). Summative evaluation is 

often used in experimental comparison studies. In this type of study, 

typically, pretests and posttests on critical variables (E: g., accuracy and latency 

of students' response) are conducted. The performance level achieved by the 

treatment group which uses the software being evaluated is compared with 

that of a comparison group whieh uses another instructional method or of a 

control group which receivcs no treatment. The conclusion is based on the 

statistical analysis of the results of the tests. If there 1S a significant difference 

bctween the two groups and the treatment group performs better in the 

posttest than the comparison group or the control group, th en the software 

bcing evaluated is considered effective . 
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Mela-anal ysis 

Investigators have used meta-analysis to summ.1rtze v.Hious 

summativE: evaluation studies on the effectiveness of education.ll soltW.He 

(e.g., Kulik & Kulik, 1987; Roblyer, Castine & King, 1(88). Met.l-an.11ysis 

studies attempt to determme whether a particular cat(\gory of Cduc.1tlon,ll 

software is efficient, and \.Vith whom, how, and whcn. For e'\.lmple, 

investigators often try to determine if educational software can impro"t' 

students' performance in basic skills, for specifie grade levl'ls, .ll\d 111 

particular content areas. In addItion, the y try to determine what kinds 01 

students profit most from using computers to learn, and may al50 address 

whether educational software improves students' attitudes toward 5choo\ ùnd 

learning. 

Meta-analysis uses "cHect size" (ES) as a criterion to evaluale Icarning 

effectiveness. Effect size is calculated by first subtracting the mean scores 

(differences between pretests and posttests) achieved by the non-trC.1tment 

group from that achieved by the treatment group, and then dividing the 

results by the pooled standard deviation of the lwo groups. Thcn the 

individual studies in one area are compiled to determine ovcrall cffect size. 

ES is often used to quantify the amount of effect due to a given trealment and 

compare the effectiveness of different instructional software. 

Findings from Educational Software Evaluation 

The results from meta-anal ysis indicated that instruclional ~ofl ware 

generally has significant effects on aU kinds of skills within aIl content areas 

at a11 grades, regardless of the sample of students and the types of 
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instructional software used (e.g., Kulik & Kulik, 1987). Such results are 

presented in detail in the sections below. 

• For whom is the instructionai software effective? 

Meta-analysis conducted by Roblyer, Castine, and King (1988) showed 

significantly higher results for students using instructional software at 

college/adults levels than at e1ernentary and secondary levels. The effects 

were fairly homogeneous in low-achiever and regular groups. Therefore, 

Instructional software seemed to benefit college students more than 

elementary sludents and secondary students. 

When types of instructional software were compared for different 

student characteristics, investigators (Roblyer et aL, 1988; Kulik, 1981) found 

that tutorials seemed to benefit good students or oider students, whereas drill 

and practice produced highest effect sizes in elernentary schoo1. However, 

other investigators (Burns & Bozeman, 1981) found that disadvantaged 

students achieved significantly oetter gains in performance in comparisons 

with advantaged students in tutorials, and achieved about as weIl as 

advantaged students in most drill and practice studies. The overall results 

concerning which students benefit most from different kinds of instructional 

software 1$ not clear. 

• In what content areas is instructional software more effective? 

By comparing the effectiveness of instructional software achieved in 

different content areas, sorne researchers found that instructional software 

was much more effective for learning in science th an either in mathematics, 

language, or general problem-solving skills (Roblyer, et aL, 1988). These 
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researchers suggested tpat science was an cspcdally promisin~ "reil lor lIS1l1g 

instructional software. The relative effcctivcness achii'\'l'd 11\ the .Hl'.lS l)1 

rnathernatics, language L1.nd problcm-solving sk.i!!.:; was comparable (RoblYl'r, 

et al., 1988). However, there have been divergent tïndings whlch mdk.ltl'd 

that instructional software in mathematics was more effective t han III 

language areas (Vinsonhaler & Bass, 1972; Roblyer & King, 1983) 

• What types of instructional software are more effective? 

Sorne studies have indicated better results with tutorials thlln with 

drill and practice in mathematics, reading (Roblver et aL, 1988) llnd lan~t1,1ge 

arts (Burns, et al. 1981; Samson, Niemiec, Weinstein & Walberg, ILJH5) In 

contras t, other studies (Niemiec Samson, Weinstein & Walberg, 1987) have 

found that drill and practice was more effective than tutorial al the 

elementary level, and that it was par~icularly effective for mathematics 

computation skills. 

• How can instructional software be used effectively? 

Investigators (Roblyer, et al., 1988; Willett, Yamashi ta & Ander~on, 

1983) have found that simulated experiments in science were highly effective 

only when students were provlded with the opportunity to interpret results 

and rnake decisions on the basis of thE' results. 

In comparisons of supplement versus replacemen t roles for 

instructional software, the findings suggest that instructional software is 

more effective in supplemental than replacement uses (Roblyer et al., 1988), 

which suggests that teacher participat:on is necessary for the 5ucces5ful 

irnplementation of instructional software. 

• ... 1 
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The Need for Developing a Methodology to Identify the Cognitive and 

Pedagogical Characteristics of Instructional Software 

12 

Thcre are several problems in the evaluation studies reported in the 

prevlOus sectIOn. First, ES used in meta-analysis is a comparative value and 

it dl'pcnd~ on not only the ef[ect in the treatment group, but also in the non

lrl'alment group. The larger the effect in the non-treatment group, the lower 

the ES will be. Therefore, ES cannot provide an estimate of the effectiveness 

of a given soflware independent of the effectiveness of the comparison 

group(s). 

Second, the inconsistent findings in these studies suggested that the 

cffecliveness of instructional software was confounded with a number of 

factors such as students characteristics, teacher interventions, and the nature 

of the subject areas in which software was used. Results from these studies 

are .llifIcult to interpret. According to Breuleux (1992) the difficulty is caused 

mainly by the faet that most reports of instruetional software: a) do not 

present the assumptions that are implemented in the software; b) do not 

dearly explam how the assumptions are actually implemented; and c) do not 

systematlcally test alternative combinations of assumptions and 

1 m plemen ta tions. 

The third problem is that, these evaluations were based on categories of 

mstructional software rather than on specifie programs. The inconsistent 

findings on the effectiveness of the same types of instruetional software may 

.11so indicate that one piece of instructional software is efficient whereas 

another is inefficient within the same category. It might be the eharacteristics 

of the individual software rather than the categories of instructional software 
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that determined the differential effectiveness. Howeyer, previolls l'\'tllu.ltlOll 

of instructional software did not provide sufficicnt information rcg.uding tlw 

characteristics of individual instructional software. Without precise 

identification and description of the cognitive and pl'd.1gogÏC'.11 ch.1racteristlcs 

of individu al programs, i t is impossible to examine thcir strcngths ,md 

weaknesses. Consequently, it is difficult to determine what factors within the 

individual software promote success or failure and provide further usel ul 

information for good instructional software "ign. 

Intelligent Tutoring Systems 

The promise of computer-assisted instruction is to providc learncrs 

with a rich learning environment that is tailored to the uscr's individual 

learning needs and objectives (Clancey & Soloway, 1990). Ilowever, 

traditional instructional software does not seem to have such capacity. Since 

the 19705, researchers have applied artificial intelligence (AI) methods to 

create more sophisticated learning environments called l1'ltcl/igcnt tlltorInS 

systems (ITSs). 

Intelligent Tutoring Systems (ITSs) arc computer programs that use AI 

techniques for presenting knowledge and carrying out cornplex interactIOns 

with students (Sleernan & Brown, 1982). In current ITS re~earch, many 

different architectural componen ts are proposcd and u~ed in unique 

cornbinations and often with unique structures (Psolka, Massey & Mutter, 

1988). In spite of the variety, the standard architecture of an ITS consists of 

three primary components: the student rnodeling module, the expert 

module, and the tutorial module (Clancey & Soloway, 1990; Frye, Liltman & 

Soloway, 1988). Ideally, the student model involves a description of all 



• 

• 

Review of the Literature 14 

aspects of the studen t5' knowledge and behaviour pertinent to performance 

(Wenger, 1987). In an ITS, the expert module contains a representation of the 

Jomain knowledge lo be communicated and aiso serves as a standard for 

evaluating student performance. The tutorial module embodies specifie 

instrucliona J goals such as, the remediation of particular misconceptions or 

the sequencing of material Much research effort goes into developing these 

modules since they form the core of ITS (Frye et al., 1988). Until recently, the 

idea that pedagogical knowledge could be explicitly represented in tutoring 

systems has received less attention than the representation of the subject 

matter (Wenger, 1987). The need for investigating interface design issues in 

instructional software has been underlined only in the more recent field of 

intelligent tutonng systems (e.g., Frye, Littman & Soloway, 1988) but there is a 

lack of specIfie research findings. Significant effort will need ta be directed 

toward looking at interface design. 

Human-Computer Interface 

Research on human-computer interaction draws attention to the 

importance of interface in the design of software systems. Sin ce there has 

been little research on the issues of instructional software interface, the area 

of human-computer interface resear,-h will also be reviewed ta provide a 

better understanding of the interactive processes involved in computer-based 

learning environmen t5. 

According to Card, Moran, and Newell (1983), the defining notion of 

the human-computer interface is that the user and the computer engage in a 

communicative dialogue because both have access to the stream of svmbols 
J 
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flowing back and forth to accomplish the communication; each can interrupt, 

query, and correct the communication at variolls points in the process. 

This statement emphasizes two agents - the user and the computer in 

the communicative dialogue. Ravden and Johnson (1989) proposed il clear 

definition of human-computer interface: 

The user interface generally consists of information displayed to the 

user and facilities which allow the user to enter information into the 

computer, to manipulate information which is displayed, and lo take 

control actions. It enables the user to access and make use of the tasks 

for which it has been designed. It provides the user with information 

about the system, about what il does, and about what lhe user ran and 

should do. It enables the user to learn about the system and lo build an 

understanding of how it works (p. 15). 

Researchers generally consider that the human-computer llllerface 

consists of three components: the user, the computer, and the tasks. These 

three principal components represent the three major topies in the res('arch 

on human-computer interface. 

Research Approaches to Human-Computer Interface 

Researchers in the fields of computer science and software engineering 

generally agree that the human-computer interface should and can be 

improved, although there is currently no consensus on exactly how to deSign 

a better human-computer interface. The promising approaches are 

dependent upon analyzing the dynamic interactions bctween computer 

sysi.t:!ms, tasks, and users (Bennett, 1984; Eason, 1981; Shackcl, 1991) . 



• 

• 

Review of the Literature 16 

Computer systems 

The research on computer systems From the perspective of human

computer has two foei. One focus is on the physical devices of computer 

system, another focus is on the cognitive factors related to computer systems. 

Physical devices. The studies on physical devices are mostly related to 

display layout and input-output devices. Early studies of physical devices 

considercd the physical quality of display (e g., luminance, contrast, 

regeneration rate, and resolution). More recently studies were concerned 

with display layout and development of input-output devices Ce.g., mouse, 

ligh l pen, hand writing input, touchscreen, voice synthesizer, picture 

processing, and video display terminaIs) (e g., Balzert, 1988, Bullinger, 1988). 

Cognitive factors. Naturalness, feedback, and consistency are the 

cognitive factors generally investigated in human-computer interaction 

research. In addition, simplicity and individualization are often studied. It is 

frequently asserted that novices and unsophisticated users would find 

computer systems more congenial dnd easy to use if they could communicate 

with the computer using termiI ology similar to natural language commands 

and queries (e g., Ledgard, Whiterside, Singer & Seymour, 1980). However, 

sorne researchers found that the use of an artificial data-base language 

resulted in faster performance than when natural language was used (Small 

& Welson, 1977). The eHects of immediate or delayed feedback, and positive 

or negative feedback in the human-computer interface have been 

investigated (Corbett & Anderson, 1992; Shneiderman, 1980a). Consistency is 

regarded as an important aspect of the quality of user interface. Consistency 

rcfers to regularities in various aspects of the interactions or interface: the 
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actions that the user has to perform in order to achieve a task, the fel'dbL1ck 

the system provides, the spatial layout of the screen, etc. (Schiele & Crl'en, 

1990). Consistent interfaces allow users to rnolke generL11izatlons on the basis 

of their current knowledge. This facilita tes the learning procl'ss and thl' 

developrnent of automated responses which can help reduce thl' uscr's 

working mernory load (Schiele & Green, 1990). 

Tasks 

Computers have been widely used to perforrn tasks such as word 

processing, calculation, drawing, and accounting. Researchers in the fil'ld of 

human-computer interactions have studied the tasks of pmgrarnrning 

(Brooks, 1977), editing (Card, Moran & Newell, 1980), learning 10 use a word 

proc~ssor (Carroll & Mack, 1984), and fault diagnosis (Rouse, Rouse & 

Pellegrino, 1980). The typical approach is to dccompose the> task into 

hierarchical branches and analyze the behaviour of the liser with the 

behaviour of the computer. 

Users 

The hurnan factors considered in human-cornputer interactions are 

wo:rking memory load, long-terrn rnernory (LTM), and mental models of 

problem solving activities in the process of interacling with the c()mputcr~ 

Working mernory load is considered to be pow much immedlate 

information the user has to keep in working memory whereas LTM is 

considered to be how easy is it for the user ta recall information needed to 

accomplish a task (Card, Moran & Newell, 1983). Mental model is a 

theoretical construct that has been used to describe how individuals farm 
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internaI models of systems from interacting with these systems (Norman, 

1983). Researchers have begun ta consider the user's mental models in 

hurnan-cornputer interaction, investigating, for exampIe, the user's mental 

models of tasks, how different types of representations affect the user's 

performance and how to apply what we know of the user's knowledge ta 

design interface and train users (Carroll & OIson, 1987). 

The Methods for Evaluating the Usability of Human-Computer Interface 

Measuring usability means measuring the behaviour of a user and the 

system during the performance of a task. The usability of human-computer 

interface is measured by !~ow easily and how effectively the computer can be 

used by a specific set of users, gi ven particular kinds of training and user 

support to fulfill the specified range of tasks in a defined set of environments 

(Chapanis, 1991; Shackel, 1984, 1991). 

There are three criteria usually suggested for evaluating usability 

(ShackeI, 1991). The first criterion is the success rate in meeting a specified 

range of users, tasks, and environments. The second criterion is the ease of 

use as judged by the users (e.g., convenience, comfort, effort, and satisfaction). 

The last criterion is the effectiveness of human use in terms of performance 

(e.g., time, errors, number, and sequence of activities, etc.) in learning, 

relearning, and carrying out a representative range of operations. 

Based on these criteria, the methods for evaluating the usability of an 

lIlterface include task analyses, questionnaires, comparisons of a program 

against "standards" (e.g., checklists, specifications) and field tests or 

experiments . 
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Task analysis 

Investigators have argued that task analysis was potenti,llly the !11ost 

powerful method in the field of human-computer interaction (Hel) either lor 

evaluating systems ar for praducing requirement specifications (Clrd, Mnr.111 

& Newell, 1983). A task analysis allows one to descrillP the cogniti Vl' tlnd 

motor aspects of the tasks (Dlaper, 1989). 

According ta Card, Moran, and Newell (1983), an tlsSumplion 

underlying task analysis is that, humans behave in goal-oriented ways, ,1l1d 

within their limited perceptual and informatian-processing abililies, atll'mpt 

to adapt to the task environments to attain their goals (p. 10). A la~k analysis 

models the behaviour of expert user performance by glving hb or her goals, 

aperators, methods, and selection rules for choosing among ml'thod 

al terna ti ves. 

The GOMS modei (Goals-Opera tors-Methods-Selection ruIes) proposed 

by Card, Moran, and Newell (1983) describes the behaviour of a computer

user in a text editing task. In this mode l, the user's cognitive structure 

consists of four components: a) a set of goals, b) a set of opera tors, c) a set of 

methods for achieving the goals, and d) a set of selection rules for choosing 

among competing methods for goals. 

Card, Moran, and Newell (1983) suggested sorne basic performance 

variables to be used as criteria for measure the ease and effectiveness of the 

human-computer in terface by other researchers. These variables include 

functionality, time ta learn to use the system, time to perform specifie tasks, 

as weIl as types and number of errors made. The GOMS model can be used ta 
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predict the user behaviour sequence and the time required to perform 

particular task. 

Subjective measures of usability: questionnaires 

Subjective measures of ease of use, often combined with task analysis 

methods, are obtamed by ratings on questionnaires that include questions on 

attitude (Zoltan & Chapanis, 1982; Shneiderman, 1987), user's acceptance (i.e., 

how the user subjectively rates the system) and enjoyability of the system 

(i.e., how much fun it is for the u~er). 

Evaluating a program against a "standard" 

Using a checklist is a practical method for evaluating the usability of 

the human-computer interface. The evaluator carries out the tasks for which 

the system is designed and evaluates the system according to the items listed 

in the checklist reflecting conventions shared by the field of computer system 

design or less frequently by the principles of human cognition. The checklist 

usually includes visual clarity, consistency, compatibility, informative 

feedback, explicitness, and appropriate functionality. Flexibility and control, 

error prevention and correction, user guidance and support are aiso often 

included in the checklist (Ravden & Johnson, 1989). For exampIe, the 

checklist may suggest that "X percent of typical users should be able to read 

and understand the instruction in less than y time", or "X percent of typicai 

users should be able to diagnose and correct their errors in less than y 

minutes. " 
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Diagnostic evaluation 

Diagnostic evaluation refers to the process of choosing a target user lo 

perform the tasks for which computers are designed, and observing and 

analyzing the user's behaviour in great detail. Diagnostic evalu.ltlOl\ is 

something like a physician diagnosing a disea~e: usmg the errors, difficultics, 

help requests, response times, and complaints as symptoms for dl,lgnosing 

problems (Chapanis, 1981). By analyzing the user's performance frame by 

frame, the experimenter probes to find uut whether the instructions \Vt'fl\ 

unc1ear, whether the information presented was inadequate, and whethcr the 

vocabulary was too difficult (Chapanis, 1981). 

Experimental evaluations 

Experimental evaluations refer to the tests that involve comparing 

particular features or functionality with more than one group of subjects or 

comparing several different products with sirnilar subjects (Chapanis, 1991). 

Wh en comparing sorne features with different subJects, the evaluator 

measures the users' performance in terms of time, questions, and errors. 

This method can answer whether the same features are easier for populiltion 

A than for population B, but does not answer why the same Eeatures are 

easier for population A th an for population B. Whcn comparing different 

products with similar subjects, the evaluator measures the difficulty of 

different features of each program by mean percentages of "essentially correct" 

scores. This method can answer the question whether program A is casier 

than program B, but it dces not answer why Ais easier than B . 
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Most of the evaluation methods presented above are conducted after 

the development of whole systems has been completed. A disadvantage of 

such evaluations is that any problem detected will demand considerable 

modification when it may be too late to effect the desired change. 

A cognitive walkthrough method 

PoIson, Lewis, Rieman, and Wharton (1~91) developed a cognitive 

walkthrough meihod which was adapted from the design walkthrough 

techniques that have been used for many years in the software community. 

In a cognitive walkthrough evaluation, the author of a particular aspect of 

design presents to a group of peers a proposed design solution. The method 

involves hand simulation of the cognitive activities of a user. The peers 

evaluate the solution using an explicit set of criteria appropriate to the 

particular class of design issues. The criteria are focused on the cognitive 

processes needed by the users to successfully complete the tasks for which the 

system was designed. That is, first-time users can perform tasks with little or 

no formaI instruction or informaI coaching. They must learn to operate the 

system by using eues provided by the system rather than by using prior 

knowledge acquired through instruction. 

During the walkthrough process, the reviewers step through the 

acti\.)ns, considering the behaviour of the interface and its effect on the user, 

and diagnosing wltether a typical use will succeed or fail. In particular, the 

reviewers must identify those actions that would be difficult for the average 

member of the target population to choose or execute, and analyze the causes 

of f ail ures . 
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Application of Human-Computer Interface Approaches to Studying 

Instructional Software Interface 

23 

Studies on the human-computer interface have made il grc.lt 

contribution to understanding and improving the usability of computer 

systems. These studies have captured the fundamental compolH'nts of thp 

human-computer interface and have provided some thcory-b""ed or 

conv€'ntion-based methods to evaluate the easiness and effcctiveness of <l 

human-computer interface. However, the study of human factors in human

computer interaction is relatively new and has not focused on computer uscs 

for learning tasks (Frye et aL, 1988). Therefore, the concepts and approaches 

taken in the area of human-computer interfaces need ta be clarified and 

adapted in order to be used for studying in::.tructional software interface. 

The users in most studies of human-computer interfaces were either 

experts who displayed error-free behaviour or novices who had subject 

matter knowledge but did not know how to operate the computers. The 

typical users of instructional software are novices who have neither 'iubJCct 

matter knowledge nor operating knowledge. Consequently, instructional 

software needs to be evaluated both from the point of VIeW of the subject 

matter knowledge that is presented to the learncr and the operating 

knowledge that the learner must use to operate the system. fn lerms of the 

operating knowledge, it is important to consider whether the compu ter 

environment provides eues for operating the system and for learning to 

operate the system by exploration. This kind of assessment can be u~ed not 

only to detect and diagnose problems but also to find the strengths of the 
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system 50 that a more complete picture of the instructional software can be 

provided. 

The evaluations of hum an-computer interfaces in general were 

focused on "usability" which refers to easiness and effectiveness of 

performing the tasks rather than "learnabili ty" which refers to easiness and 

effectiveness of learning subject matter knowledge. When the researchers in 

the area of human-computer interfaces used words such as "learning" or 

"lcarnabihtY"1 they referred to learning how to use the computer rather than 

learning subject matter knowledge. In previous studies of human-computer 

interfaces, most tasks did not involve the learning of subject matter 

knowledge. Morcover, sorne studies only required the users to perforrn 

routine tasks (Card, Moran & Newell, 1983). Therefore, the tasks involved 

little learning abou t how to use computers. The evaluation of the 

instructional software needs to be concerned with both the usability of 

operating the system and the learnability of subject matter knowledge. 

The vaIidity of "standards" 

Instructional softwarel particularly ITS, is a relatively new area of 

research, so the attributes of good instructional software are not known. 

Thus1 there is no "standard" for good instructional software that is weIl 

established. Furthermore, the requirements for the instructional software 

interface may differ on the basis of the characteristics of learners, the nature of 

subject areas, and teaching approaches. This complexity presents considerable 

difficulty for establishing a "standard" . 
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User's behaviour versus system's behaviour 

Most methods for evaluùting the usability of hl1mùn-COmpull'r 

interface focus on evaluating the user's behaviour rather than the system's 

behaviour. For example, an evaluation conducted by Software D1gest 09R.t) 

presented the numbers of tasks that a user can pertorm with the system Ü.l' , 

versatility), time of learning ta opera te the system, time of perform1l1g spl'cIfic 

tasks, and error rate as measures of usabilily (Ch.1panis, 1991). The correlatiOn 

of the above variables indicated that aIl measures, except versatility, are 

positively correlated. What this finding suggests is that the programs that 

were easier ta use, easier ta start up, easier ta learn ta use, ,md allowed users 

to perform tasks more quickly, were less versatile (Chapams, 1991). 

What can be learned from such evaluation? Does it mean that the 

versatility has te be reduced if the programs are ta be casier to use, casier to 

start up, easier te learn to use, and allow the users to deal wlth errors more 

easily? The results of these evaluations are difficult tü interpret and do not 

seem to provide sufficient information for improving the quality of the 

prograrns. In order to evaluate and compare the quahty of instructlOnal 

software, and provide further useful information for improving the system, 

it is necessary te identify and describe the system's behaviol1r in conJunctïon 

with the user's behaviour. 

Computer-based environments 

Studies of human-computer interfaces in the computer engineering 

community often viewed the computer-based environment~ in terms of the 

physical devices (i.e., input-output devices). It is more important to vicw a 
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computer-based learning environment in terms of cognitive and pedagogical 

fcatures (e.g., pedagogical strategies used to present various types of 

knowledge, interactions promoted). It is the cognitive learning environment 

that has the most signifïcant effect on a user's learning when the user engages 

in the activities of learning subject knowledge. This emphasis does not imply 

that a cognitive environment is completely independent of physical devices. 

1 Jowcvcr, il good set of computer devices does not guarantee a good cognitive 

en vironmen t. 

Logo Exploratory Learning Environments 

The present study uses Logo as a tooi for investigating the 

development of instructionai software. Logo was originally designed for 

children and it is regarded as an exploratory learning environment in which 

children can learn by discovery and doing. The underlying ration ale is 

adapted from Piagetian constructivism which asserts that learning takes place 

through the construction of mental models developed in exploration. Papert 

(1986) explained constructivist theory from two perspectives. First, from a 

psychological perspective, learning is considered as a reconstruction rather 

than a transmission of knowledge. Second, from an educational perspective, 

learning is particularly effective when it is embedded in an activity that the 

learners experience in constructing a meaningful product (such as a computer 

program) r,1ther than Jcquiring knowiedge and facts without a context which 

can be immedlately used and understood. Logo programming requires the 

exphcit defmition of ideas, the reconstruction of the ideas or the development 

of computational models of the concepts, turning the children into 

epis temologists. 
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The Clairns of Logo 

The five most important daims made by Papert and other Logo 

advocates (Brooks, 1977; Nkkerson, 1982) ('an be summarized as lollows: 

First, Logo can serve as an object-to-think-with, a mode! for the notIOn 01 

assimilation. It can be used as a tool to construct learning ènvironments III 

which other learning can occur, and therefore it supports otl'H'r school 

learning. Second, it is hypothesized that,. through the processes of 

programming the computer to perform various tasks, Logo allows 5tudenLs Lo 

acquire certain cognitive capabilities which can be transferred Lo problem 

solving in many other contexts. Third, the experiences from Logo Cdn bring 

about a more positive mindset in students as intellectual agents, increasing 

their self-esteem and making science and rnathematics attractive to children. 

Fourth, the flexibility of Logo allows children to display and develop their 

creativity. Finally, Logo is claimed to be accessible with virLually no pre

requisites and to offer potential for unlimited development; therefore, il can 

be used by different populations with diverse charactcristics. 

The Tests of the Claims: Findings from Empirical Studies 

Based on these daims, previous Logo research has focused on 

understanding the cognitive and social effects of children's experiences with 

Logo. Specifically, researchers tried to find out, first of a11, what are Lhe 

cognitive outcomes {or children of programming the compu ter to perform 

various tasks? In particular, can Logo help studenLs acquir<? certain cognitive 

capabilities, and can these capabilities be transferred to problem solving tn 

other domains? Second, can Logo, as a programmtng language, be a general 
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educatlOnal tool for constructing learning environments in which other 

learning can occur? In other words, does learning Logo facilitate learning 

other subjects? The third question is, what is the effecti veness of Logo with 

various instructional methods and for various target populations. In 

addition, there are sorne concerns related to the social and motivational 

impacts of Iearnmg Logo, such as on self-esteem and motivation ta learn. 

Recent research focused on exploring the constructive attributes of Logo for 

mathematlcs learning These studies are discussed further on in this chapter. 

• Logo is supportive of learning other subject knowledge 

Programming is a~sumed to require the use of fundamental concepts 

such as variables and recur~ :ve structures, which are important in 

mathematics and physics. These concepts are difficult to learn in 

conventional teaching and the use of variables and recursion in the 

functional context of programming makes them more easily comprehended 

(Papert, 1980; Nickerson, 1982). Studies have shown that, generally, Logo is 

supportive of other school learning and is useful for communicating difficult 

abstract concepts, such as in mathematics (Feurzig, Papert, Bloom, Grant & 

Solomon, 1989; Howe, Ross, Johnson, Plane & Inglis 1982; Howe, O'Shea & 

Plane, 1979; Kurland, Pea, Clement & Mawby, 1986; Sutherland, 1992; Statz, 

1973) and in particular, geometry (Abelson & diSessa, 1980; Lehrer, Randle & 

Sancilio, 1989). 

Logo is best known for its applications in mathematics, but it has 

become fairly widespread and its applications go beyond mathematics 

(Wcnger, 1987). Studies also indicate that Logo can be used as tools to learn 
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physics (Briskman, 1984; Dale, 1984), languages (Bouchard & Emirk.1nial\, 

1984; Bull, 1983), as weIl as logical reasoning (Gorman & Bourne, 1983). 

• Can Logo prograrnming develop certain cognitive abilitles and can 

these abilities be transferred to other domains? 

Programming is a complex activity which demands variolls cognitive 

abilities. It is hypothesized that in the proccss of programming these 

cognitive abilities will develop. However, the answers to this qUl'!->tion Littll'r 

with different implementing rnethods and school settings and 11l'ncl' llrl' 

controversial. Sorne studies showed that learning to program can have 

positive effects on thinking and problem solving Skills (Fellr7lg, Papcrt, 

Bloom, Grant & Solomon, 1989; Kynigos, 1992; Mayer, Dyck & Vilberg, !9H6), 

and debugging skills (Howe, Ross, Johnson, Plane & Inglis 19H2, Howe, 

Q'shea & Plane, 1979; Statz, 1973). The debugging skills acqllired in Logo 

programming can be transferred to nonprograrnming domains (Klahr & 

Carver, 1988). Investigators also found that Logo had an important effect on 

creativity (Clements & Gullo, 1984; Reimer, 1985). 

Other studies, however, found little evidence that current approaches 

to teaching programming bring students to the level of programming 

competence needed to develop cognitive abllity and the kinds of systematic, 

analytic, and reflective thought that is characteristic of expert adult 

programmers. These studies did not support that learmng to program can 

help children develop a model of computer functlOning that would enable 

them to write useful programs (Kurland, Clement, Mawby & Pea, 19R6; Pea & 

Kurland, 1984; Rampy, 1984). Kurland, Pea, Clement and Mawby <19R6) 

found that students were doing so-called brute-force paraxraph programmlng 

in which they decided on sets of desired screen effects and then lined up 
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commands lo cause the screen effects. In this process, students did not engage 

in problem decomposition or use the powerful features of the language to 

structure a solution to the programming problem. In addition, a study found 

that very few chlldren had a correct understanding of concepts such as flow of 

control, conditionals, or recursion (Kurland & Pea, 1985). Children's 

sponlaneous projecls often did not involve the use of variables and children 

had lo be inlliatcd lo il (Hllle!, 1992; Sutherland, 1992). As can be expected, 

since students had not developed the programming competence and 

cognitive abilities in the first place, the studies found little evidence of 

transfer of cognitive skills to other domains. 

• Logo can bring about positive effects on students' self-esteem, 

motivation, and attitudes towards learning 

Most studies indicated that experience with Logo has positive effects on 

students' self-esteem, motivation, and attitudes toward learning. Especially, 

Lego-Logo is highly motivational to young learners of both genders (Papert, 

1986). However, Roblyer, Castine and King (1988) stated that no conclusions 

could be drawn about the impact of Logo on students' image of themselves on 

the basis of evidence available. 

• The effectiveness of Logo with various instructional rnethods 

Learning by exploration is recornmended by Papert as the best way to 

use the Logo environment (1980). Papert strongly suggests to help children 

learn how to develop and debug their own theories rather than to teach thern 

theories adults consider correct (Pa pert, 1972a, 1972b). Papert c1aimed that, 

without the imposition of adult authority and adult ideas, children can corne 
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to an understanding of the nature of fundamental programming concppts 

such as recursion. Newman (1986) argued that this is not truc for 

programming because computer programming is sel dom mastered by young 

children. 

From a problem solving perspective, Groen (1978) argued that: 

The best way to use the Logo environment is to give the learner the 

opportunity to indulge ln fret! problwl-solvins ac/ruItIcs (e g , 

inventing computer programs that do interesting thing~) The child 

selects a project and is free to do anything he or she wishes lo 

accomplish it, subject to quite explicit constraints imposed by the Logo 

environment. The goal is to improve the learner's ability lo artlcul.lte 

the working of his or her own mind and particuiarly the Interaction 

between him/herseH and reahty in the course of Iearning and 

thinking. The approach is to follow the model of the child as 

researcher and the teacher as research director (p. 56-57). 

Results from empiricai studies showed that the eHects of Logo differed 

according to implementing methods and schooi settings. In contrast to other 

views, certain studies found that a structured teaching method is more 

effective than an unstructured, discovery-oriented method (LI ttlcfIt.·Id, 

Delelos, Bransford, Clay ton & Franks, 1989). Among vanous methods, asking 

children to design instructional software with assistance from the tcach('r 

seemed to be an effective rnethod for learning both Logo and fracti()n~ (1 lard, 

1988). Recent research tended to emphasize that teacher's role is critical 111 

building the bridge between Logo and mathematical task activities (Curtner, 

1992) and providing problems and information relevant to the constraints on 

programming context (Sutherland, 1992). Therefore, the results support that 

children can learn efficiently by r:xploration in Logo environment when 

being directed or assisted by the teacher. 
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• The nature of the Logo explora tory learning environments 

Groen indicated that computer programs are structures that coordinate 

other structures (1978). He explicitly articulates sorne of the properties of the 

microworld and programming in the following quote: 

First, a programming language ... can provide an introduction to 

malhematical formalIsrn that is better coordinated with the natural 

structures of the chlld. Second, the process of writing a computer 

program encourages thinking about how one would perform the 

actions that are bC'ing embodied in the program. Third, and most 

irnportantIy, the pupi! rnay invent a grossly incorrect or "buggy" theory 

about the microworld. Computer-based microworlds are naturally self

correcting ... The nature of the errors may yield additional information. 

If the cause is nontrivial, the task of debugging or discovering the cause 

of the error may lead to major modifications in the theory (p. 371). 

These concerns seern to be the topics of recent studies on Logo. 

Researchers (Edward s, 1992; Hoyles and Noss, 1992; Loethe, 1992; Kynigos, 

1992) atternpted to determine the extent to which Logo provides a 

mathematical environment and whether there are properties of the Logo 

environment that are inherently mathematical. They also attempted to 

sketch an understanding of how Logo opera tes as a medium for ~~ildren to 

express their mathematical ideas. The conclusions were that, first, the 

mathernatical nature of Logo prograrnming allows children to express 

geometrical ideas in a "natural" way (Loethe, 1992, Kynigos, 1992, Edwards, 

1992). Second, Logo offers a means for students to accept and use abstract 

symbols (Sutherland, 1992). Third, the most importantly, the microworld 

provides rneaningful, interpretable feedback that the learners can use to 
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refine their understanding of the structure of the new mathematic,11 entities 

they encounter. 

Misconceptions can be corrected by students themselvcs through .1 

process of conceptual "debugging" (Edward s, 1(92). Thereforc, then'\ is 

considerable evidence that Logo provides a computational ('Iwironment 111 

which mathematics can, at sorne level, take place and that It ('L1I1 provldc 

access to otherwise unattamable mathematical ideas (Iloyles and Noss, 1989). 

The rationale was derived from the way in which the Logo envmmment can 

provide pupils with an opportunity to engage in mathematical problem 

posing and solving during which they develop control over their own 

learning, and the use of computational lools which can potenl1ally structure, 

amplify, and reorganize thinking (Noss & Hoyles, 19<)2). However, N oss and 

Hoyles (1992) suggested that the idea that Logo provldes an "aIl purpose 

learning environment" has raised a range of unrealistic expectalions 

concerning the development of general problern-solving skills. 

In summary, studies showed that Logo supports other school learning 

and that experience with Logo has positive effects on students' sclf-csteem, 

motivation, and attitudes toward learning. Howcver, the dala on whcther 

cognitive abilities can be developed from experience with Logo and further be 

transferred to other domains is controversial. Moreover, the studies which 

did not find positive cognitive eff€cts in learning to program also indicaled 

that children did not progress very far in programming skills, or in depth of 

understanding program concepts. More recent studies have conflrmed the 

constructive nature of Logo environ ment for mathematics learning . 
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Limitations of Previous Logo Studies 

The limitations of the previous research are created by three major 

factors: the research questions asked, the research methods, and the subjects 

used. 

First, the nature of the Logo learning environment was not studied 

[rom the perspective of learning mathematics un Hl recently by Noss and 

Hoyles (1992) and other researchers (Edwards, 1992; Loethe, 1992; Kynigos, 

1992). Noss and Hoyles concluded that Logo provides an explora tory 

environmcnt that is inherently mathematical rather than an all-purpose 

learning environrnent. In order to examine whether the Logo environment 

can provide a general computational representation for learning, it is 

neccssary to invesligate the use of Logo for learning other knowledge rather 

than mathematics. This study uses Logo as the medium for student teachers 

to develop instructional prograrns for teaching. 

Second, in past Logo research, researchers who conducted empirical 

studies usually used either extensive observations or pretests and posttests to 

rneasure the cognitive outcome from the interaction with Logo. However, 

these methods cannot account for what the child learned in the Logo 

environment, which is the way of establishing a correspondence between the 

concrete world and one of abstract representations (Groen, 1984) and 

intellectual structures (Papert, 1980). Groen (1984) further presumed that 

more extensive use of empirical methods in cognitive science might be of 

considerable value in research on Logo, because this use could result in the 

emergence of a body of research in which theory and data are closely linked . 
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Therefore, this study uses a cognitive method to examine the structures 

constructed in Logo environment. 

Finally, mo~tly chlldren were used as subJects in previous Logo studil's 

rather than university students or adults. Because childrcn's maturity lcveb, 

cognitive abilities, and intellectual experiences differ greatly fr0111 Lldults, il is 

not surprising to find that childrcn had not dcvcloped the kinds nt cognitive 

skills or abilities in Logo programmmg that are the ch<Hacteristlc~ of l>'\.pl'rt 

adult programmers. In order to determine whether lcarncrs can develop the 

kinds of cognitive skills or abilities in Logo programmmg that are the 

characteristics of expert adult programmers, this study WIll use university 

students whose maturity levels, cogl1ltive abtlities, and intellectual 

experiences are similar to those of professional programmers. 

Children's programming is emphaslzed as a way of building 

intellectual structures; professional adult programming, however, hJS bccn 

extensively studied as a cognitive skill in the arca of cognitive science. The 

findings from empirical studies of programming are presented below. 

Empirical Studies on Programming Expertise 

In order to understand the characteristics of instructional software, it is 

necessary to take into account the structure of the program, from a 

computational perspective. Research relevant to this aspect of the de~cription 

cornes from empirical studies on programming expertise. These studiec:; have 

also investigated the cognitive processes in which programmers engage, the 

content and organization of programming knowlcdge, and related cognitive 

abilities. These findings provide a basis for understanding what is reqUlred 

from the designer in developing efficient software, mcluding instructional 
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software. Because the products and processes in programming are closely 

interrelated, they need to be studied in an integrated way. A second reason 

for reviewing the research on programming expertise is to undf>rstand ~he 

rnethods used to compare experts and novices in programming and to 

determine how these methods can be irnproved. The current methods used 

in studies of programming expertise for describing program structures are 

very few and incomplete. 

Programming is a complex configuration of various activities oriented 

loward devcloping a product consisting of a series of instructions that direct a 

computer to accomplish sorne tasks (Pea & Kurland, 1984). Programmmg 

consists of such activities as understanding the problem to be solved, 

designing a solution, coding ü~p solution using a programming language, 

comprehending the written program in order to debug, testing the program's 

correctness, and evaluating usability for target population. These activities 

require cognitive skills such as systematic planning, procedural, and 

conditional reasoning (Brooks, 1977; Jeffries, Turner, PoIson & Atwood, 1981; 

Nickerson, 1982; Pea & Kurland, 1983; Pennington, 1982). Programming aiso 

demands knowledge of subject matter and knowledge of programming 

languages and computer architecture. In addition, knowledge of design 

strategies is also required (Adelson & Soloway, 1988; Pennington, 1987). 

Successful software design involves the coordination of the activities in 

which goals and opera tors interact with various skills and knowledge. 

The basic issue addressed in programming expertise studies is similar 

to that asked in other areas. That is, what distinguishes outstanding 

individuals in a domain from less outstanding individuals in that domain, as 

weIl as from people in general (Ericsson & Smith, 1991). To capture the 

essence of programming expertise and the related abilities of programming, 
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two types of tasks are often used: the representative programmmg t.lsk, such 

as recursive programming and tasks that measure a related functinn or 

ability, such as, recall of programming codes. Methods such as thinklllg

aloud, observing task performance, and expIan.ltlOl1 are often llsed lo gain 

understanding of the cognitive proccss('s and the strategies employC'd in 

performing some representative tasks, as well as the contpnt and org.1l1iz.llion 

of knowledge the subjects utilized in their problem solving. The me.lsure 01 

related functions and abilities, su ch as memory tests are often used to make 

inferences regarding expertise. 

Research on programming skills has focused on the programming 

processes which coordinate and display the various knowledge and skills by 

comparing experts and novices. Sorne findings from expertise studies are 

similar to findings in other domains, whereas others are dlfferent. For 

ex ample, studies in other domains consistently show that experts use forward 

reasoning (see Groen & Patel, 1988, 1990), but studies in programming 

indicated both experts and novices use backward reasoning (Adelson, 

Soloway, 1985; Jeffries, Turner & PoIson, 1981). Also, research !11 olher 

domains showed that experts display bet~er memory performance (deGrool, 

1966; Chase & Ericsson, 1982), but the results in programming suggested that 

this is not al ways true (Adelson, 1984). Thereforc, the findmgs from 

programming provide a unique perspective to look at expertbe. The 

following section will present findings from programming expertise studies 

that focused on the programming proces!:!?s and related cognitive factors . 
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Findings from Expert-Novice Studies in Programming 

The studies of prograrnming expertise have analyzed almost every 

aspect of the prograrnmèr's behaviour displayed in the processes of 

programming and related cognitive abilities using novice-experts 

comparisons Results from expert-novice studies have revealed certain 

charactenstics of programming expertise. This section focuses on findings 

concermng process, represen ta tions, memory performance, validation of 

prograrns, and prograrn structures. 

1. Process 

Decomposition of complex tasks into more manageable subtasks is 

essential to successful software design. Researchers consistently found that 

both novice and expert programmers use a top-down decomposition to 

reduce the complexity of tasks in programming design (e.g, Jeffries, Turner & 

PoIson, 1981). That is, starting from a global statement of a problem, a 

programmer de composes the initial problem into subproblems, then further 

mto subproblerns, until the problem is solved by implementation of 

programming code. As decomposing proceeds from the top to the bottom the 

abstract solution become more concrete, until the solution can be 

implemented in progranl codes ( Adelson & Soloway, 1985; Jeffries, Turner & 

PoIson, 1981). 

The difference between novices and experts is that novice code the first 

part of a solution until the first part can be implemented in program codes, 

they th en code the next part of the solution, and so on. This process is called 

depth-first decomposition. In contrast, experts use a top-down, breadth-first 
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decomposition strategy. They develop the solutions for aIl clements at the 

same level equally and all information <lbout the current state of the design is 

at the same level of abstraction so that <111 clements (.11' mteract wlth e.lch 

other. Therefore, both novices and experts use top-down decomposi tion 

strategy, but novices decompose depth-iirst whereas experts decompose 

breadth-first (e.g., Jeffries et al., 1981) However, ",hen expert programmers 

solve problems in an unfanuliar domain they create the partial solutions and 

combine them to form a full solution (Adelson & Soloway, 19R5). Thb 

strategy is similar to the ones used by novices 

• Expert programmers devote a great deal of effort to understanding a 

problem and its constraints before breaking it intI) subproblems. 

In addition to strategies used in th€' df'composition process, expert and 

novice programmers aiso differ in other aspects of the dccomposition 

programming process. Sirnilar to the findings of research in other domains 

(Paige & Simon, 1966; deGroot, 1966), expert programmers are found to 

devote a great deal of effort ln understandmg a problem before atlempLing Lo 

break it into subproblems. They clanfy con~trainls on the problern, derive 

their implications, explore potential interactions, and relate thlS information 

to real-world knowledge about the task. Novices, on the other hand, show 

Httle inclination to explore aspects of subproblems before proposing a 

solution. This has serious consequences for both the correctness and the 

efficiency of their design (Jeffries et al., 1981) . 
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• Experts tend to decompose the problem based on known solutions, 

efficiency and aesthetics, whereas novice programmers do nol show 

su ch a tendency. 
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Experts decompose the problem into manageable, minimal, and 

mteracting parts in order to reach the point where the subproblems have 

known solutions. In contrast, novices are much less effective in their use of 

thi~ itcrative decomposltion rnethod. They seem to lack the more subtle 

aspects of the decomposition. In addition, experts state alternative solutions 

and select arnong them based on the hypothesized efficiency and aesthetics, 

whereas novices seldom consider more th an one possible solution to any 

subproblem. Even in the few cases in which novices choose among 

alternatives, they base their decisions on programming convenience rather 

than on efficiency or aesthetics (Jeffries et al., 1981). 

2. Representations 

Rcsearch has shown that expert prograrnmers have effective 

represcntations of programming knowledge at both the abstract and concrete 

levels (e.g., Adelson, 1985), whereas novice programmers only have concrete 

representation (Jeffries et al., 1981; Linn, 1985; Sheiderrnan & Mayer, 1979; 

Soloway, 1984). These studies indicated that expert programmers represent 

programming problems in terms of the general concepts, the underlying 

structures of broad classes of problems, the solution strategies which crosscut 

many types of problems. and routinized plans (Soloway, 1984) or templates 

(Linn, 1985). In addition, expert programmers' mental representations of 
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programs are based on procedural (flO\v control) rather th.11\ function.ll (goal 

hierarchy) relations (Pennington, 1987). 

In contrast, novice programmers have difficulties r(~presl'nting 

knowledge effectively. Even if novice prograrmners begin 10 dcvelop aIl 

understanding of the programming language and wrile fl'Iatlvel \' 

sophisticated programs, they may still represent problcms in tl"rms ot the 

surface codes, format, and syntactic properties of the langu.lge (S.lIllurc,lY, 

1985). These findings mirror the results of expert-novice comparisons in 

domains, such as phyS1CS (Chi, Feltovich, & Glaser, 1980, which found th.lt 

experts represent problems according to abstract principles, whereas novlce~ 

tend to rely on surface structures to organize their representation of problems. 

• Experts have superior recognition abilities for idcntifying the di1~s of 

relevant solutions and the conditions of applicability. 

Experts have templates which include the critical fcatures of the 

problem, relevant solutions and the conditions of the apphcability. Expert 

programmers simply retrieved the appropria te templal() from memory and 

applied it when they solve problems in [amiliar domain. They are also able 

to retrieve a known solution in a novel conlext and adapt the solution to the 

particular context of a design problem (Adelson & Soloway, 1985; Jcffrie~ ('t 

al., 1981) 

Novice prograrnmers operated on lhe partial template which could be 

retrieved from their rnemory or the texts (Anderson, Farrell & Sa uers, 1 YH4; 

Pirolli, 1986; Pirolli & Anderson, 1985). They showed no evidence of 

recognizing the applicability of information in a novel situation comparable 

to situations they had learned previously. In addilion, the information they 

generated in the course of solving the problem was often nol ilvailable when 
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il wa~ most needed, and when it was available, they did not attempt to alter 

the previous solution ta the current problem (Jeffries et al, 1981). 

• Expert and novice programmers interpret the same concepts 

differently. 

Novices have inadequate understanding of many of the basic concepts 

of computer science. The same technical computer science terrns do not have 

the same meaning for the novices as they do for experts (Jeffries, et al., 1981). 

Studies have consistently indicated that expert and novice programmers have 

different understandings of recursion1 (Jeffries, 1982; Kahney, 1982; Kahney 

& Eisenstadt, 1982; Kurland & Pea, 1985). 

• Expert programmers have a weIl developed design schema of 

programming knowledge. 

According to Jeffries et al. (1981), a design schema is a template for 

developing programming structures that is independent of its content. This 

has impact on almost on every facet of the prograrnmer's behaviour in 

software design. It directs the programmer's behaviour in an efficient way. A 

programming schema is complex and it is developed in stages as a result of 

experience with software design. The mature design schema facilitates the 

refinement of understanding, retrieval of known solutions, generation of 

alternatives, and critical analysis of solution components. Experts are 

assumed to possess such a design schema, whereas novices programmers 

1 Rl'curslOn rcfers ta cl proceS5 that 15 capable of triggering new mstantiahans of itself, 
with control paS5mg forward to successIve Instanhations and back from tenninatied ones. This 
is the model ot the recurSlve process that experts have, whereas novices have a "looping" 
modcl of recurSlOn. That 15, novices vlew a rccursive procedure as a single abject instead of a 
!>cn.ll of ne\\' m!>tantJatlOns. 
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have a less developed design schema. This explains why their behaviour 15 

less efficient. 

Another idea related to the design schema is the p/111/ schemll propo~cd 

by Rist (1986, 1989) and Spohrer, Soloway, and Pope (1985). A plan IS .1 set nt 

stereotyped sequences of actions that expert prograrnmcrs kno\\' and that C,ln 

be adapted to the current situation. Sorne rescarchcrs regard pwgramming 

plans as the most important characterislic of 'H.ivancl'd prngr.1mmlllg skllb 

(Adelson, 1981; Bonar & Soloway, 1985; Dalbey, Tourniaire & Lill 11 , 19R6; 

Detiennne & Soloway, 1989; Kurland, Mawby & Cahir, lYR4; Shneidermtll1, 

1976; Soloway, Adelson & Ehrlich, 1988; Spohrer, Soloway & Pope, Il)RS; 

Rist, 1986). It is assumed that experts do not only dcvclop a greater range of 

these plans than novices, but also know the "rules of programrning 

discourse" that govern the valid application of plans in particul.lr 

circumstances (Soloway & Ehrlich, 1984). 

3. Memory performance 

Experts possess chunks that represent functional units in their 

respective domains, whereas novices do not possess such chunks as 

demonstrated in performance on recall tasks (Adelsün, 1981; McKeithen, 

Reitman, Rueter & Hirtle, 1981; Shneiderman, 1980b). Resul ts from 

Shneiderman's studies further showed that experts were able tü chunk lines 

of code together into meaningful configurations which allowed them to 

achieve better memory performance, whereas less experienccd users were less 

able to farm such chunks 50 they recalled fewer stimuli. 

Adelson (1984) reported findings that contradict the notion that experts 

have superior memory performance. She indicated that novices had belter 
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memory for the details of code than did experts. The explanation appeared to 

be that experts focused more on the overall goal structure of the 

programmmg task Lhan on the actuai code because it is easier for them to 

solve a programmmg task than to memorize a detailed solution whereas it 

was the reverse for novices. Therefore, expert programmers do not always 

display superior memory performance. 

4. Validation of programs 

Novices and experts differ in their skill in testing designs and 

programs. Experts have well-developed knowledge of debugging strategies 

associated with t~eir programmip g ternplates and they are good at designing 

tests for revealing poter. Hal problems. In contrast, novices often test only the 

obvious or usuai forms of input and may systematically fail to test aIl of the 

codes (Kurland et aL, 1986; Mandinach & Linn, 1989). 

5. Program structures 

One of the differences between the study of cognitive skills in 

computer programming and those in most domains is that the tasks in 

programming often involve constructing products. It is reasonable to assume 

that, besides the process of prograrnming, expert programmers a1so differ 

from novices in the ways they design the final products of programming. 

Previous studies of programming skills did find differences between experts 

and novices in terms of program structures, in particular in ways to construct 

recursion . 
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• Expert programmers construct modular programs whercas novice 

prograrnmers construct linear ones. 
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Effective programs require modular structures sa that large systpms can 

be divided "naturally" into coherent parts that can be separately dC\'l'loped 

and maintained (Abelson, Sussman & Sussman, 1985) Most studies on 

learning to prograrn distinguish between a linear program and a modular 

program. A linear program empha ,izes the generation of effects withuut ,my 

consideration or understanding of the inner structure of the code (Soloway, 

1984). A modular program, however, is considered as emphasiLing deganl 

and efficient programming, and is accompanied by a higlH>r-level 

understanding of programming (Carver, 1987; Kurland, Clènment, M,HVby & 

Pea, 1987). The cognitive dernands for modular programming ,1re dilferent 

from those for linear programming. Researchers indica tcd th.1 l expert 

programmers tend to construct modular programs while novices tend to 

construct linear ones. 

• Experts and novices differ in the way they construct recursion. 

An essential aspect of recursi ve programming is related Lo how one 

exits the recursive cycle. Novice prograrnmers often conslrucL il cycle which 

permits them to exit from the middle of the cycle, whereas experts construcl 

exit points from the top or the bottom a cycle, a strategy lhat is beheved ta be 

superior (Soloway, Bonar & Erihlich, 1983). 

In summary, the results from studies of prograrnming experti~e 

showed that, first, both experts and novices use top-down decomposition 

strategy. The differences between experts and novices in decomposition are 



• 

• 

Review of the Literature 46 

that experts devote more effort to analyze the problem, and they decompose 

the problem based on known solutions, effieiency, and aesthetics using 

breadth-first strategy. In contrasc, novices use depth-first strategy to solve 

problems and they do not show a tendeney to consider efficiency or aesthetics. 

Expert programmers select a solution among alternatives based on the 

hypothesized efficiency and aesthetics whereas novice programmers select a 

solution based only on convenlCnce. 

Second, expert programmers have weIl developed representations of 

programming knowledge whereas novice progr2.mmers only have low-Ievel 

representations of programming knowledge. The well developed knowledge 

representatlOn is often called as a design schema. This schema impacts 

almost every aspect of the programmer's behaviour in software design and it 

directs the programmer's behaviour in an efficient way. Expert programmers 

have such a design schema 50 they are able to retrieve and modify a known 

solution ta fit a current problem whereas novices do not have such a design 

schema sa they are unable either to retrieve the solution or to adapt it to a 

novcl problem. 

The results do suggest experts demonstrate an enhancerl ability to 

chunk meaningful stimuli but do not necessarily remember more details of 

code than novices. Expert programmers also differ from novice programmers 

in the ways they construct the prograrn structures. 

The Limitation of Previous Studies on Programming Expertise 

Previous studies of programming have provided a great deal of 

understanding of the content and organization of programming knowledge, 

the general strategies for solving problems, and the related cognitive abilities. 
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However, a limitation of the these studies is that they only focused on the 

programming process and did not examine the Important featmes of the 

products in order to see if and how they distmguish expert Irom novice 

programmers. 

Programming is a complex configuration of activlties oriented tow,ud 

developing a product. Different types of knl 'vledge, Skills ,1Ild il bilities 

interact in a very intricate way in the programming proccss <1nd it is \'l'ry 

difficult to assess the roles played by each factor in <lchieving outstanding 

performance. For example, it is not convincmg to say that the designer who 

uses top-down and breadth-first strategies will definilely produce .l bl'tler 

program than the one who uses top-down and deplh-first strategll'~. In f.lct, 

just like an expert runner is distinguished from novice runner by how Llst he 

or she arrives the goal, an expert programmer may be dlstinguished from 

novice programmers by how weIl he or she can produce a program. 

Therefore, expertise or outstanding achievements in programmlng may be 

identified by the products that a programmer produced Ilowevcr, in many 

do mains in which experts produce complex products as texts, it is dlfficulty to 

analyze such products in order to identify the measurable :tspects capturing 

the superior quality of the product. Therefore, researchcrs focused on 

systematic characteristics of the cognitive process in order to diffcrentiale 

experts from novices (Ericsson & Smith, 1991). 

Similarly, the methods available in current expertise re')carch are 

unable to identify the measurable aspects capturing the expertise embedded in 

the fina! products of programming. In addition, the previous studies of 

programming expertise have not yet covered programming expertise in 

designing instructional software. Therefore, to dcvelop a methodology to 

characterize instructional software will have considerable value. 
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The identification of programming expertise from the programming 

product does not imply that it can replace the studies of the cognitive 

processes of programming Instead, the emphasis is based on the assumption 

that the dlffcrent knowledge, skills, and abilities that the programmers 

possess will be displayed not only in the processes, but also in the final 

products of programming. The better understanding of programming 

expertibc can be achieved only when the components of the superior 

performance displayed in both the processes and products can be described 

and identified. 

Summary of the Chapter 

This chapter presented a review of literature to develop the rationale 

underlying this study. The review considered perspectives of instructional 

software evaluation, human-computer in teraction, the Logo approach, and 

the studies of programming expertise. This section presents the key points for 

devcloping a methodology to identify the cognitive, pedagogical, and 

compulational charactej:istics of instructional programs produced by student 

tcachers using Logo. 

First, the previous evaluation of instructional software may indicate 

only whether in~tructional software is efficient. However, it does not identify 

the cognitive and pedagogical characteristics or give any other information 

regarding the strengths and weaknesses of the instructional software that 

de termine the effectivcness of instructlOnal software. Therefore, it is difficult 

to distinguish one program from another and further to compare them. 

Consl'qucntly, the results from these evaluations do not provide sufficient 

guidelines for developing efficient instructional software. This study suggests 
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that previous evaluation rnethods should be complernented by the 

characterization of the important features of instructional so!tware th.1t 

determine effectiveness. 

Second, the process of knowledge communication betw('l~n .1 USl'r and .1 

computer IS studied as human-computer interface, without any consideration 

of the instructional properties of the software. Thprefore, the concepts .1I1d 

approaches in the study of hurnan-computer interface have to be modl!ied III 

order to effectively study instructional software interface. 

Third, the previous studies on Logo did not explore the nature of I.ogo 

environment until recently. Recent studies have confirmed that Logo 

provides a cornputational environment that is inherently mathematic.1l. For 

example, the mathematical nature of Logo programming allows children 10 

express geometrical ideas in a "natural" way. However, the computation"l 

application of Logo is limited to learnmg mathematics. The present study 

will explore whether the suitably constructed, computational nature of Logo 

environment can be used for learning other knowledge that requir(>s 

computational representations, such as learning how to teach in a computer

based medium. 

Finally, previous studies of programming expertise have provided a 

great deal of understanding of programming as a problem solving activity, 

however, they did not, or were unable to account for the diffcren t 

programming expertise embedded in the final products of programming. 

Furthermore, the previous studies of programming have not yet considered 

the expertise involved in designing instructional software interface. 

Therefore, the development of a methodology to identify the cognitive, 

pedagogical, and cornputational characteristics of instructional ~oftware 
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produced by student teachers using Logo may prove to have significant 

research value in several related areas of investigation . 
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Chapter 3 

METHODOLOGY 

The methods for characterizing computer-bilsed learning cnvironmenls 

and program structures are developed in the context of student tcachers lIsing 

Logo to produce instructional programs. This chapter dcscribcs the fr.11l1l'Work 

and methods for characterizing the learning environments and progr.1m 

structures. 

To effectively characterize instructional software, it is necessary to 

distinguish between the learning environment and the program structure!'>, 

which are two different aspects of a program. A primary goal of thls resl'arch is 

to characterize the learning environments constructed by student teclchcrs in 

developing instructional programs using Logo. The charclcteristics of the 

learning environments constructed by student teachers are assessed in tcrms of 

the usability and constraints in meeting the user's cognitive nceds during the 

learning process. 

As mentioned previously, LogoWriter™ is a Logo-based application 

incorporating unique program structures and screen layouts. This study also 

investigates how student teachers structure pages and procedures, as weIl as use 

program properties. 

Subjects 

Subjects were 18 university students (14 females and 4 males), between 23 

and 35 years of age, participating in a one semes ter, undergraduate, lI1troductory 

Logo course. AlI subjects were majoring in the elementary and secondary 
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teaching programs in the Faculty of Education at McGill University. None had 

any previous experience with computers. 

Materials 

Computer Hardware 

A laboratory equipped with 24 Apple Macintosh Le microcomputers and 

colour monitors, four Apple ImageWriter printers, and one Apple LaserWriter 

laser prin ter was used during the cJassroom sessions for completing assignments 

and projects. AlI rnicrocomputers were connected to a local network server, and 

a1l printers were connected to the microcomputers by AppleTalk links 50 that 

student teachers could print from any of the computers. 

Student teachers had free access to the laboratory for completing 

assignments and projects during the period of the course. 

Software 

The software used in this course was LogoWriterHf produced by Logo 

Computer Systems Inc., for Apple Macintosh computer systems. Four features 

distinguish LogoWriter™ from Logo. The first feature is that LogoWriter™ has 

the c,lpacity to execute more than one page2 easily in a pro gram, with or without 

the user's interactions. The second feature is that, using a mou se, the user can 

drag the turtle around and use it as a pen to draw pictures on the front page 

2 A page m LogoWnterT\I has a front sidc and a flip side. The front side is divlded into 
two parts: front page and command center. The front page can display the screen cffects of the 
procedures, whcrc.ls the command center can be used to type the commands. The flip side is 
u!>cd to wri te proccd ures or a program. 
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(screen). The third feature is that there is a word processor in Logo\Vriter 1 \1. The 

last feature is that LogoWriterT\1 has a special screen byout which divides the 

screen into a front page and a eomrnand center so the user can see the procedures 

and their effeets at the same time. 

Readings 

Student teachers were required to use a reference book (Le Gallais, 

Shapiro & van Gelder, 1988). This book explains sorne of the basic concepts and 

skills used in Logowritern1, sueh as drawing graphies, writing procedures, tl~1I1g 

variables, recursion, and structuring procedures. Eaeh chapter provides .111 

explanation of specifie concepts and primitives followed by il series of prc.lctice 

exarnples and suggested activities. The chapters aiso discuss common probleIns 

encountered by the learners and present suggestions for teaching 1 randouts on 

Macintosh computers and Logo programming were distributed to the t>tudents al 

the beginning of sorne sessions. In addition, Papert's Mindstorms (19RO) was 

recommended reading for the student teachers. 

Other Materials 

Student teachers aiso used paper and penciis in the class. 

Data Source 

The data used in the present study eonsisted of the final proJects 

completed by the student teaehers at the end of the semes ter as part of the course 

requirements. In arder to situate these projects, it is necessary to describe briefly 

the overall structure of the course. 
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The teaching method used in this course can be characterized as "project

driven" learnmg in which students were required to produce a sequence of 

working samples, two projects, and a terrn paper These requirements are 

de~cnbed in more detail below. There were 24 semi-weekly classroorn sessions 

of thn'c-hour duration during which the students worked on the exercises or on 

thcIr proJects indlvidually and at their own pace. Meanwhile, the mstructor and 

an a<,<;l~lant ob<;ervcd the students' learning and provlded help when it was 

needcd In addItion, cxplanatIOns about Macintosh microcompulers and Logo 

programming were given in 15 minute sessions at the beginning of 

approximately 10 of the sessions 

Working Samples and Sharing 

Students were required to replicate the exercises in the reference book or 

expand creatively on these exercises. They were instructed to sutmit these 

working samples to their individual computer "folders" on the server so tha1 they 

could look at each other's work. 

Students worked individually during this phase, but they could discuss 

and help each other in class. It was clearly indicated that the working samples 

would 110t be graded but that they had to be handed in to complete the course. 

Midterm Project 

After six weeks, students were required to complete a midterm project. 

The objective was ta show how creative students could be within the Logo 

environment and grades were based on the extent ta which students deviated 

from the book. After the midterm proJects were graded, the ten best projects 

,vere put in a display foider in the server so that aIl students could look at them. 



• 

• 

Methodology 55 

Final Project and Short Paper 

Toward the end of the term, an students were asked to plan and design a 

final project individually or in groups. The students were required 10 use Logo 

procedures to develop a program with which a us cr cou Id inter.lct in .ln 

interesting way. In addition, students ,,,'cre encouraged to tise .l mndul.u 

programming style to break down a problem into small units as explained in tlll' 

reference book. The grade was based on the interest and effechveness 01 the 

instructional strategy developed. 

At the same time, students were asked to write a short paper to indicatl' 

how they would use Logo for instructional purposes. Il was cxplained that the 

paper should be an idea paper rather than a reading assignment or optionally, 

students could combine the term paper with the project. Thus, the paper would 

be a description and justification of the final project. 

The thirteen projects were submitted at the cnd of the term included nine 

individual projects and four group proJects. These projects constituted the data 

for this research. 

Data Analysis 

The present study distinguishes between learning environments and 

program structures. A learning enVlronment refers to the dIsplay (c.g, text, 

graphies, animation, and speech) of instructional software and the user-compu ter 

interactions the software promotes, which is charactenzed in tcrms of the types 

of knowledge presented, the pedagogical strategies used to present thi~ 

knowledge, and the forms and functions of the interactions. Program structures 
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refer to the computational construction of the program units, such as pages or 

procedures, as weIl as other programming properties. 

The hierarchical organization of a learmng environment is described 

grllphically in Figure 1 A learning environment in this study is characterized by 

dividing lt into episodes which are cornposed of sequences of v/cws, with task 

descriptions at each level An episode refers to a lesson or a set of exercises 

developed by sludent teachers for specifie instructional purposes, whereas a 

view refers to the display on a screen and the interactions the screen display 

elicits. A vicw is changed when there is a significant effect on the screen. 

EpISOde 1 
(Task dC5CnfXlon 01 ep1sodc 1) 

A Lcammg Envlfonmcnt 
ITask D&nfXlonsol a Program) 

J 
Ep1sode 2 

ITask dcscriphon 01 eplsode 2) 
Episode n 

ITask desrnphon of eplsode n) 

vicw 1 t -+ VlCW 12 --. vicwl. n -. view21 .... Vlew 2 2 -. view 2 n -+ VICW 31 .... VICW 3 3 -+ view 3 n 

Figure 1. The hierarchical organization of a learning environment. 

Each view consists of view space and command spaee. The view space refers to the 

static attributes of a view - the typcs of knowledge presented and the pedagogical 

strategies used to present the knowledge. The command space refers to the 

dynamic attdbutes of a view which includes automatie operators and manual 

0l'crators (see Figure 2). Automatic opera tors refer to the cases in which a 
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program does not require any input from the user to execute a procedure 

whereas manual opera tors necessitate user input (e.g., user-computer 

interactions). The manual opera tors are characterized in terms of the forms and 

functions. 

Figure 2. The view space and the command space ln a view. 

Program structures are characterized in terms of modulant y that rcfers to 

linear or modular structures. A linear structure refers to a unit (it can be a page or 

a procedure) which employs subunits in a linear sequence. A rnodular structure 

refers to a unit that can be divided "naturally" into coherent parts that can be 

developed and maintained separately. 

In characterizing prograrn structures, sorne specifie program propcrties arc 

considered, such as reusable procedun:s, conditional staternents, variables, and 

recursion. These properties are described in detail in a subsequent section. 

Charaderization of the Learning Environments 

A learning environment is hierarchically decomposed into views and each 
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conceptual unit (e.g., a statement, a question, or a configuration) and interactions 

aSbociated with a partleular view is eharacterized with respect to the types of 

knowledge presented, pedagogieal strategies used to present this knowledge, 

and the forms and functions of the interactions. 

Types of knowledge 

In order to have a clear picture of the types of knowledge presented in a 

lcarning environment, the knowledge is categorized as domain knowledge, 

operating knowledge, affective knowledge, or implementation knowledge. 

InstruetionaJ software is al ways used for specifie instructional purposes, 

such as for teaching art or mathematics. Such knowledge that a program is 

designed to teach is referred to as domain knowledge. Successful execution of a 

program by the user requires knowledge of the features of the program (Le., 

what a program can do), as weIl as knowledge of how to manipulate the 

program (e.g., how to retrieve a page). This type of knowledge is referred to as 

operatillg knowlcdge. Both domain knowledge and operating knowledge are sub

categonzed as either declarative knowledge (describing facts, events, concepts, 

prmciples or relationships) or procedural knowledge (explai,ting actions or 

conditlOlls under which the actions can be taken). In addition, studies on 

learning have suggested several other subcategorical knowledge be important in 

learning situatIOns. These studies suggested that, first, learning and strategy 

acquisition occurs at impasses (Siegler, 1989; VanLehn, 1988, 1990). Second, 

Iearners have certain mIsconceptions and they exist in aIl kinds of learning, such 

as physics (diSessa, 1988), chemistry (Albert, 1978; Erickson, 1979). In addition, 

it is indicated that problem-solvir.,5 strategies and learning strategies can be 

taught, and there are many methods for doing 50 (Collins, Brown & Newman, 

1 
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1989; Mason, Burton & Stacey, 1982; Schoenfeld,1985) 

Based on these research findings, it is reasonable to <lssunw that efficient 

teachinr orograms might present so called "bug problems" that th{' learners often 

make mistakes on, indicate misconceptions and the origins ot the 

misconceptions, as well as provide variolls strategies for problem solving or 

learning, su ch as heuristic strategies, control strategies, and learnll1g stratl'gies 

(Collins, Brown & Newman, 1989). Thercfore, the charactt'rizatlOI1 of the 

learning environments should include these sub·categoncal kl'owll~dge This is 

particularly crucial for describing domam knowledge. 

Because the pro gram is manipulatcd by human beings rather than by 

machines, the program might present the knowlcdge that has the social and 

affective impacts on the users. AIl knowledge related to emotion, motivation, or 

self-tsteem is referred to as affective knowlcdge In addition, a program may 

indicate what the program is designed for, who can use it, and how to use it. 

This type of knowledge is referred to as knowledge for implemnztatunI about 

content area, target populations and methods. 

This study concerns the global nature of the knowledgc presented in the 

learning environments and the pedagogical strategies used to prc~ent the 

knowledge. Therefore, this study is not preoccupied with the que~tions of 

whether the complexity of the domain knowledge is approprirlte to the 

characteristics of its target population, or whether the content of domain 

knowledge is organized logically and systematically, or whether the affective 

knowledge has positive effects on retaining the user's motivation and self

esteem . 
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Pedagogical sttategies 

Conventional instruction usually involves pedagogical strategies such as 

settmg goals, providing instructions, explanations: demonstrations, and presenting 

tasks as weIl as askmg questIons. Evaluation and feedback is aiso an important 

pedagogical strate!7Y. These categories are used to determine the ways that 

student lcachers present various types of knowledge in the learning 

environments. However, in the process of interacting with a computer, a user 

can only give input when a corresponding working space is provided by the 

program. Therefore, pedagogical strategies for characterizing computer-based 

learning enVlronments should mclude the provision of working spaces. Brief 

definitions of seven pedagogical strategies used in this study are presented 

below. 

1. Settmg goals. An instructional designer informs a learner of the new 

knowledge or skills he or she is expected to acquire when a program or a 

learning episode (a lesson or a set of exercises) is finished. For ex ample, a stated 

goal can be to teach children geometry. Since human activities are goal-oriented, 

the knowledge of goals or objectives can help a learner to organize and direct his 

or her bchaviour effectively. Therefore, the goals or objectives should be 

spcClfied at the beginning of a program or an episode. 

2. InstructIOns. This refers to the uninterrut .... ted presentation of any type of 

knowledge. For exarnple, the instruction can be that a :ectangle requires two 

inputs, length and width. 

3. EtplallatlOns. This refers to any type of knowledge which is explicitly 

provided to the user in anticipation of potential sources of confusion. For 

example, following a dernonstration, the program informs the user on how to 
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generate the procedures used to perfonn the demonstrations. 

4. Demonstrations. Demonstrations are the proœsses by which .\ progrdtn 

shows a user how to perform a particular task by illustration. For l''\.lmpll'f .1 

program can exhibit the screen effects after displaying il set ot procrdun.'s 

5. Presentmg tasks. The tasks that users are demanded lo pl'riorm Ml' 

presented through text or graphies. For ex ample, a student is dirccted to tind 

points in a grid. 

6. Asking questions. The users are presented questions and they h,1VC to 

give specifie answers ta these questions. For example, il user is askcd: "Which 

the correct answer? " 

7. Providing working spaces. After a task is presentcd, a user is provided 

the space to work on the screen. An example would be after the program il~ks il 

question, the program waits for an input from the user. 

8. Evaluation and feedback. A user's performilnce 15 evaluated and the 

feedback is provided accordingly. For instance, a user may be told "Very good! 

You got the right answer! ". 

In characterizing learning environments, the concern is not only with what 

types of knowledge are presented to the user and how they arc prescn ted, IJtl t 

aiso what kind of interaction the user has with the program. In arder to addrc~s 

the latter, the dynamic attributes of a view must be considered. 

In teracti or..s 

As mentioned above, the command space incIudes the opera tors requireù 

ta change a view or produce any effect on the screen. These operat()r~ arc 

categorized as automatic opera tors or manual opera tors 

Automatic opera tors. Using automatic opera tors, a program docs not 
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require any input from the user to execute the program. There are several types 

of automatic opera tors in Logo. One type is where the program uses the CT or 

CG primitives in its procedures to clear the text or graphies from the screen 

wilhout any input. Another type of automatic operator is the scrolling effects 

that are produced when a program uses the PRL'\JT or TYPE primitive ta print 

more information than can be displayed on a screen. The last auton:atic operator 

is when a program uses GETPAGE in a procedure 50 that the execution of 

retrieving a page changes the Vlew 

Manual operators. In rnost cases, a program requires input from the user 

ta execute the program Such inputs are called rnanual opera tors and theyare 

grouped into seven categmies in this study: 

1. Pressing a letter or a nurnber; 

2 Pressing <enter> when a procedure appears on the screen; 

3. Typing a command; 

4. Typing a command and a variable; 

5. Using primitives; 

6. Typing a ward in response to a question; 

7. Typing a sentence. 

These manual opera tors can accomplish several functions. These 

functions are lis ted in the below: 

1. Ta chose a type of tasks or activities (e.g., pressing a key ta chose a type 

of activities: "+" for addition, "_II for subtraction, "X" for multiplication, and "+" 

for division). 

2. To chose task complexity (e.g., pressing a key to chose a level of 

multiplication: "1" for one-digit problems, "2" for two-digit problems, and "3" for 

bug problems) . 

3. Ta answer questions (e.g., Question: how many provinces in Canada? 
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Answer: ten). 

4. To select answers for multiple choice questions (e.g. e.g , QuestiOn: ho\\' 

many provinces in Canada? a) S, b) 10, and c' 9. Answer: b). 

5. To perform tasks (e.g., using the commands provided by the program 

to find the points on a grid). 

6. To chose various assistance (e.g., receiving a correct answer; receiving 

an explanation of the origins of a mistake; receiving a suggested strL1tl'gy tn solvl' 

the current problem). 

7. To opera te the system (e.g , pressing the enter to continue). 

In order to characterize the types of knowledge presented, the pedagoglc,ll 

strategies used to present them, and the forms and functions of interactIOns, as 

weIl as the relationship among them, a framework was developed. This 

framework is described in the following section. 

Procedures for characterizing the learning environmenls 

Figure 3 shows the framework developed in this sludy for characlerizing 

the learning environments. This framework also consists of view ~pace and 

command space. View spaces include the different types of knowleJge a 

program provides and the pedagogical strategies used to present l'le knowledge. 

Command spaces include the automatic and manual operator~ requireJ by the 

computer system. Notice that there are lhree dimensions in this framework and 

each dimension is coded by two or three-character codings. Therefore, 

conceptual units cornposed of the learning environments are described by seven

character codings . 
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The rows on the left of the view space include l'our mall)r types 01 

knowledge, which include subcategories of knowledge. The differL'nt types ot 

knowledge are often represented by one to three digits, which are pl.1ced ,1t the 

begmning of the seven-character codmgs. To the nght of Vl('W spaCL', the 

eolumns include eight pedagogleal strategies \-vhich are reprL'sentl'd by 

upper case letters, and thelr necessary sequences are indlcated by lnwl'rcase 

letters sueh as a, b, and c and sa on These two letlers are located in the mlddle 

of the codings. The dimensIOn at the top of the view spLKe is the commL1l1d ~p,Kl' 

which represents the opera tors deslgned 111 a vlew. The l'orms and tl1l' l'Ullctions 

of the opera~ors are represented by the last two-digit codings. The lormat 01 111l' 

codings for each eonceptual unit is: 

digit {(digit) digit} LETTER {(letter)} {digit (digit)} 

Note that the letter or digit in braces indica Ling the subcatl"'gories of 

knowledge, the necessary sequence for pedagogical strategIes, and the opera tors 

required for execution, respectively are optional. Por cxampll', presenting a task 

for taking the action of operating the system is coded as 2(2)1 En, <md providing 

working space and requiring the user to press a letter to opera te the system is 

c:oded 2(2)1 Cn 4(7), while "n" indicating the sequence of pedagogical ~tratcgies 

in a pro gram. 

Ali final proJects produced by student teachers were executed using the 

cognitive walkthrough method developed by PoIson, Lewis, Ri('man <l11d 

Wharton (1991). As mentioned previously, the learning environment was 

divided into episodes, and these episodes often consist of sequences of Vlews. 

Each conceptual unit in a view was examined and coded by the framework 

developed in this study which describes the types of knowlcdge a view pre<,ents, 

the peùagogical strategies used to present the knowledge, and the forms and 

functions of interactions. During the walkthrough process, similar to what 
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PoIson et al. (991) did, the reviewer stopped at each action and considered the 

strengths and weakness of the environment in terrns of the effects on the typical 

user, and diagnosed whether a user would succeed or fail in the explora tory 

lcarmng processes3 Sorne descriptions and cornrnents were made when each 

view was examined. The coding for each conceptual unit and each operator was 

record cd The codings for each project were sumrnarized in terms of the types of 

knowledge, pedagogical strategies, and the forms and functions of the operators. 

The overall data for aU proJects v.'ere then analyzed to a ttain a global picture of 

the learning environments constructed by a11 student teachers. Further, the data 

in each project were compared in order to identify the characteristics of each 

project. 

Characterization of Program Structures 

In LogoWriterTVI , the ways of structuring the pages and procedures are 

very flexible and they ma y have an impact on the interactions of a program. 

Therefore, it is necessary to take the interaction issue into consideration when 

charactcrizing the prograrn structures developed with LogoWriter™. In this 

study, the program structures include page structures, procedure structures, and 

other program properties. 

The prograrn structures are characterized in terms of single-level, linear, 

rnodular or fragrnented structures. Program properties such as reusable 

procedures, conditional staternents, variables, and recursion are also considered. 

J The e"ploratory Icarmng hcre retcrs to the proccss by which the flrst-hme user can 
Iearn system operatIOn usmg cu es provlded by the system and the novice learner can learn 
SUb)l'Ct matter knowledge usmg the supports provldcd by the system, rather than receivmg 
mstructlon or Cll.lchmg from the leacher. ThiS process !'an be cal!ed as gUided explora tory 
learmng, where.ls the term "c"ploralory learnmg" used m Logo can he caUed as open exploratory 
lt\lmmg \Il whlch leamers can construct or m\'ent produrts. 



• 

• 

Methodology 67 

In addition, the operators used to link pages and procedures were examined 

The program structures 

Traditionally, program structures are categorized as either \incar LH 

modular. However, there might be single-Ievel and fragmcnted structures in tl1l' 

programs produced by studel'.t teachers in LogoWriter 1 \t because thc t.'tl~y

retrieval feature of LogoWriter l \1 enables student teachers to design a shdt.'-lih' 

program (where a program consists of several pages and aIl pages art' l'\.l'Luted 

automatically one after another) WhlCh does not necessarily involve e1ther linetlf 

or modular structures. Therefore, the program structures refer to single-leve1, 

linear, modular, and fragmented ones. 

As mentioned earlier, a lwear structure refers to a unit which emp\oys 

subunits in a !inear sequence and a modlilar structllre refers Lo a unit thal can be 

divided "naturally" into coherent parts that can each be separately devl'loped 

and maintained. A single-Ic'vel structure, of course, has onl y a one level procedure. 

What distinguishes a single-Ievel structure from a fragmented strllctllre is that él 

single-Ievel structure explicitly indicates how it should be used, while él 

fragmented structure does not. 

Program properties in this study refer to reusable procedures, conditional 

statements, variables and recursion. They are listed below: 

1. A reusable procedure refers to the procedure that is user) as .1 

subprocedure by more than one superprocedure. 

2. A condztional statement refers to a procedure that consisLs of a 

conditional evaluation and is executed if a condition is met. 

3. A variable has a name and a value. Using variables, it i5 possible for a 

procedure to opera te on different data each time it is invoked, but the pattern of 
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what the procedure does with the data remains constant. 

4. A recurSlOn is a proceèure which uses Itself as a subprocedure. 

The operators used to link pages ahd proced ares 

When more than one page is designed in a prograrn or more th an one 

procedure is designed on a page, the execution requires opera tors. The 

categori('s of opera tors used in characterizing prograrn structures are the same as 

those used In c11dracterizing the learnmg environments. That is, the opera tors are 

abo categorized as automatic and manual opera tors. AlltornatÏC opera tors refer 

ln the cases in which aIl pages are retrieved by GETPAGE or GETTOOLS 

primitives in a (ST ARTUP) procedure on the first page, or aIl procedures are 

executed in one procedure. Manual operators refer to the cases in which a user's 

input are reqUlred in linking the pages or the procedures. Because interactions 

depend on the manual opera tors rather than automatic operôtors, the 

characlerizallOn of the program structures is only on the forms of manual 

operators and thcir functions. 

Procedures for characterizing program structures 

In order Lo identify the program structures, aIl pages and procedures in 

each proJect were drawn as diagrams using the symbols shown in Figure 4. The 

page structures, procedure structures, and the program properties used by each 

prolect were then summarized. To tmd whether the ways that the student 

Leachers structure the pages and procedures have an impact on the interactions 

111 the learning environments, the distribution of the manual operators is 

lI1dicated as the I11.1Illlal operators bctween pages, between procedures, and 

\\'ithin procedures. The functions for the manual opera tors located in different 
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places are compared 

In order to explore if there is any relationship betwecn the pl'd.lgOglC.ll 

strategies and the program structures, the projects which used ,lppropn.lte 

pedagogical strategies are separated From those which did not Tl1l'Sl' t\\'o "lI1d~ 

of projects are further compared with the characteristics of the progr.1ll1 

structures. 

C ____ ) c_~ 
Pages 

Top level procedures Subprocoduros 

<> c ___ ? 
Conditions 

A reusable procodure Rocurslon procoduros 

Direct connections or paths 

Indlroct connections or paths 

,,,,--,,,,. no cues --, ..... , No indication of tho eX1sting paths 

var A varlablo 

Figure 4. Symbols used in the diagrams. 

In summary, the methodology in this study consi~ts of charactenzation of 

the learning environments and program structures. A learning cnvmmment wa~ 



• 

• 

Methodology 70 

broken down hierarchically into episodes and these were further broken down 

into views. Each conceptual unit in a view was th en examined and coded by the 

framework developed in this study for charactenzing the types of knowledge, 

the pedagogical strategies used to present this knowledge, and the mteractions 

cliciled in a view During the walkthrough process, the reviewers didgnosed 

whether a typical user would succeed or fail in explorat0ry learning processes, 

bascd on the strengths and weaknesses of the learning environment. The 

program structures, however, werc characterized by single-levet fragrnented, 

linear, and modular structures, and the opera tors used ta link the structures, as 

weil as prograrnming properties. Finally, the characteristics of prograrn 

structures were compared with the apprapriateness of the pedagogical strategies 

uscd in the prajects . 
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RESULTS AND DISCUSSION 

The results from the characterization of the learning environment~ Lll1d 

program structures are presented and discussed in three m,lJor sectIOn..,. Fir~t, 

this chapter presents the results From encoding the learning environnll'nt~ in 

arder to identify the characteristics of the learning enVIn.1nmC'nts constructL'd by 

student teachers. The strengths and weaknesses of the learning environnwnts 

were assessed in the walkthrough processes. Second, this chapter presents the 

results from characterizing the prograrn structures of LogoWriter 1 \-1 and 

discusses their attributes. Finally, this chapter examines the relationship betwecn 

the characteristics of the program structures and the learning environments «(l.g., 

pedagogical strategies). 

Characteristics of the Leaming Environments 

There are several major issues in characterizing a learning environment 

provided by instructional software. The first concerns the types of knowledge 

presented to the user and the consequences of lack of an important type of 

knowledge, such as the knowledge required to opera te the sy~tem. The "'t'cond 

issue is how the knowledge is presented to the user That is, what pedagogical 

strategies does a designer use to convey the knowledge to the user, and whether 

the pedagogical strategies support learning dornain knowledge and system 

operation. The third issue is whether the input required [rom th(' u'>er facilitate 

the user's learning and whether the user has the freedom to cho()c.;e actlvities and 

task compiexities, and to seek various aSsistance according to his or her needs. 
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In arder ta address these issues, first, the frequencies of the codings 

rcpre&enting the different types of knowledge and pedagogical strategies were 

categorized and summanzed. Second, the tasks, questions, and working spaces, 

as weil as evaluation and feedback were matched for each actIOn (e.g., each 

manualoperator); theIr sequence and appearance for each action was examined. 

The frequencies of tasks, questions, and working spaces, as weIl as evaluation 

tlnd fct'dback for aIl actions were presented. Thrrd, the different types of manual 

opernlors and their functions werc mdicated. Finally, the overall results were 

presented in tables identifying the different types of knoY\'ledge, pedagogical 

strategies used to present this knowledge, as weIl as the forms and the functions 

of interactions. These data in each proJect were also presented and compared. 

Knowledge Presented tD the Users 

Table 1 shows the frequencies of the codings representing the different 

types of knowlcdge and the pedagogical strategies used to present such 

knowledge in the learning environments constructed by student teachers. The 

rows indicate four major categories of knowledge presented, whereas colurnns 

indicate eight pedagoglcal strategies used to present the knowledge. Data from 

this table show that domain knowledge represented the primary knowledge 

(73%) and that operatmg knowiedge was the second most important (18%). In 

addition, affective knowledge (4%) and the knowledge for implementation about 

content area, target population, and methods (5%) was aiso presented. 

Currently, no conclusion can be drawn regarding a reasonable percentage of 

various types of knowledge. Howe\'er, from a qualitative view point, the 

cl1Llractcrization of the four major categories of knowledge indicated sorne 

incohcrence in representing knowledge. For example, the codings from student 
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Table 1 

Frequencies of dlfferent types of knowledge and pedagogical strategies for ail projects. 

Settmg InstructIons ExplanatlOns DemonstratIons Provldlng Askmg Provldmg EvaluatIon Total Percent 
Goals Tasks Queshons Worklng and 

Space Feedback 
Types of Knowledge 

DeclaratIVe 15 117 25 45 57 28 37 44 368 
Domam Knowlegdge 73% 

ProcejuraJ 50 218 41 79 71 21 57 6 543 
Knowledge 

Dedarahve 17 2 19 
Operabng Knowledge 18% 

ProceduraJ 46 2 56 97 201 
Knowledge 

Affective Knowledge 38 17 55 
4% 

Content Area 2 20 22 

Implel1'entH '\J Target PopulaoJn 5 5 
Knowleoge of 5% 

T eachlng MethOds 2 20 14 36 

IOIal 69 481 70 124 198 49 191 67 1249 

Percent 5°' le 39"/0 6°' ,0 10% 16°/0 401 
'0 15°'0 SClo 
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tcachers' projects sometimes display sequences of codings like 1(2)Ea, 1(2)Ba, 

2(2)Eb, 2(2)Gb, 1 (2)Ga In these kinds of patterns, the second type of knowledge 

IS prcmaturely introduccd before the representation of the previous one is ended 

appropridtely 50 It seems that various types of knowledge were sometimes 

reprcsented mcoherently in the learning environrnents constructed by student 

tf'lehcrs. 

Further analysis about the subcategories of the knowledge mdieated 

s('veral [catures of domc.lin knowledge presented m the learning environrnents 

constructed by stud<..'I1t teach~rs. First, the knowledge about facts, events, 

concepts, and actions fonns the major parts of the environrnents whereas the 

knowledge about principles, conditions undH which the actions could be taken 

was seldom mvolwd. Second, most programs presented the isolated elements 

such as faets, concepts, events, and actions. When the programs sometimes 

presented the elements as a whole, only temporal, partial, or identical 

relationships were involved. The programs usually did not present the more 

criLical relationships such as causal and conditional relationships. Third, the 

programs did not (lmploy so called "bug problems" that the learners often make 

mistakes on; they did not indicate the learner's mlsconceptions, or any ::;trategies 

for efficient problem solving or lerrning. In short, the instructional prograrns 

produced by ~tudent teachers only presented relatively simple knowledge such 

as f.1ets, events, concepts, and actions. 

Frequencies of the codings representing the different types of knowledge 

in each projeet, shown in Table 2, mdicate that aIl projects presented dornain 

knowledge in the lC.lrnmg environments, but only 62% of them presQnted 

opertlting knowledge. Seventy-seven percent of the projects presented affective 

knowledge dnd b2% of the proJects presented the knowledge for implementation 

about the content area, target population, and teachmg methods. 
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Missing operating knowledge 

As rnentioned, successful execution of the programs by the lISl~rS m,1Y 

require knowledge of the program features and knowledge of how to opera tl~ thl' 

program. However, the fact that 38% of the projecb nm~tructed by studl'nl 

teachers did not present any operatmg knowlcdge motlvall's Ml ex.1min,llio1\ 01 

whether operating knowledge is necessary and of the consequences of thb 

absence. 

• Is operating knowledge necessary in successful execution of an 

instructional program? 

Table 2 shows that Projects 1,6, 9 and 11 did not present any operating 

knowledge in the learning environments. In order to dctermine the consequcl\CP 

of the absence of uperating knowledge in these pro]ects, as well as in other 

projects which partially lack operating knowledge, the codmgs from thet>e 

proJects were analyzed in detall. 

The analysis reveais three findings. First, it was found that thl' execution 

of a program did not demand any operating knowlcdge when aH cpisodes or 

views in a program were linked by automatic operators. Por cxamplc, in ProJCcl 

9, th'2 first episode of a program (it is a page in most cases) hnkcd the r('!,t of the 

episode:; in a startup procedure with the rcsuit that a11 cpisode~ couJù be 

executed automatically without interaction of the user. Thcrcfore, the pro gram 

required nelther manual opera tors nor operating knowledge to link the cpisodes 

or views. 

Second, it was found that executing a program did not rcquiT(~ Jny 

operating knowledge when a rnanual operator for choosing activities, Jn~wcnng 
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Table 2 

Frequencies of dlfferent types of knowledge presented ln each project. 

ProJect No Domain Operatmg AHectlve Implementlng Knowledge of 
DeclaratIve Procedura! Declarative Procedural Knowledge Content Area Target Population Teachlng 
Knowledge Knowledge Knowledge Knowledge Methods 

1 28 6 10 
2 2 23 5 11 1 2 
3 5 12 1 20 3 3 

1-
4 97 20 , 68 20 2 
5 6 17 17 3 2 5 
6 5 108 
7 56 2 8 9 
8 22 58 1 3 
9 40 1 
10 2 6 1 9 1 1 1 
11 27 5 3 , 2 
12 48 14 22 10 1 2 
13 57 248 11 45 1 3 3 21 

Percent 01 the 100% 62% 77% 62'% 
ProJects 
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questions, or choosing assistance wlthin dom.1Ïn knowlcdge pl.1ycd tIlt' rolL' ot 

lin king the next episode or view. For eX:lmple, in Projeet 7, the progr,1111 

presented the following question to a user: 

Do you know what time it is? (Showing a clock) 

Type in a letter and press RETURN. 

A) 4: 30 

B) 6: 00 

C) 8: 15 

The correct answer, which is represented by 13, wIll ch.1l1ge the VleW to ,\ 

happy face with feedback. After a few seconds, the happy face is replaced by " 

new question. In this case, the manual operatar pl"ys the double roles 01 

answering a question in a domain and linking the curr('nt vil'w 10 the next one. 

Despite the faet that operating knowledge is not required for n,<ccuting the 

program, the program must still mdicate how the user is supposcd 10 answer the 

damain question. Otherwise, the user's answer will be invalid far operatmg the 

system. 

Finally, it was found that a program must present operalÏng knowledge 

for its successful execution when the program requires a manual operator to link 

the episodes or views. Othenvise, the user would be uT1ablc to figure out what to 

do next. For example, bath Projects 1 and 11 eonsisted of fr.Jgmented pages and 

required manual aperatars ta link these pages during program cxecution. 

However, the designers did nat present any knowledge of how to hnk lh('se 

episodes and views, and consequently the user did not know what to do wh('n <1 

view or an episode was finished. 

To summanze, a program does nut need to present any operating 

knowledge when the episades ar views are linked by automatlc opera tors, or 

when the manual operators far domain knowledge play the role of Iinkmg 

episodes or views. However, a program must present opcrating knowledge to 



• 

• 

Results and Discussion 78 

the u,>er wnen a manual operator is required to link to an episode or a view. In 

thb case, lack of operatmg knowledge in the learning environments will create 

difficulties for the novice user to execute the programs. These difficulties will be 

J1lustrated in detaIl m the following section. 

• What is the consequence of lacking operating knowledge or incomplete 

representation of opcrating kJlowledge? 

The absence of operating knowledge when a manual operator is required 

to link the current episode or view to the next one is the most common problem 

in tbe learmng environments constructed by student teachers There are several 

situations in which a learning environment lacks operating knowledge. The first 

situation IS that student teachers designed paths to the next episode or view, but 

they dld not ah",;1y~ mdicate these paths to the user 50 the path rernained hidden. 

For example, in ProJect 13, the designer designed one path to the next page by 

pressing the N key and another path to the previous page by pressing the P key 

in alllessons On the fi~st view of episode 1, the deSigner indicated that the user 

can always press N to s"!e next page and press P to see previous page. The 

dL'signer assumed that the user would always be able to remember these two 

simple, clear and casily-memorized commands, 50 she did not indicate that the 

user needed to press N or P key in subsequent episodes and views. In the third 

vicw of cpisode 2, the designer explained what the user was supposed to do in 

the rest of the lesson. At the end of that view, the following text was presented: 

When you are ready te colour, type UcolourH inte the 

,'ommand center. AlI four turtles will appear. Assign 

,lt least one very dark colour and another very light 

0ne. HAVE FUN 1 

The designer assumed that the user would press N or P at that moment . 

Ilowcn:'r, It was more probable that the user would type "caJour" at the current 
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view since there "vas no operating knowledge pr~spntcd .lt tlll' l'nd nt tlll' \'IL'\\'. 

Unfortunately, the working space for the command "colour" W.1S loc.ltl'Li in 

another view sa there V\..lS no corresponding working space dvatlable to pC'rtorm 

this task at the current Vlew. As expected, a bug occurrcd whe11 thl' user tn't.'Li in 

"colour". Therefore, the absence of operating knowledgc l'an rL'sult 111 difficultÎl'~ 

and even bugs for the user in executing the program This l'x.lmple .llsn 

illustrates that operating knowledge is not only reqmred in a progr.lll1, but .lbo 

in each view when a manual operator is required to link episodes nr Vle\% The 

lack of operating knowledge in an episode or a view when manual operator~ 

were required for system operating were found in most ot the projects. 

The second situation is where student teachers neither present oper.üing 

knowledge nor design the path to the next view when a manu.ll operalor is 

required to link the current view to the next. For example, on the tl'nth vit.'w of 

episode 10 in Project 4, the designer presented only an open-ended que~tion 

which was not accornpanied with evaluation and feedback. There was nelther 

operating knowledge nor a pa th 10 the next episode when the user needed to 

move on ta the next episode. As a consequence, the user encounlen·d an imp<l~s(, 

and had ta quit the program and restart it in order to choose other branche~. 

A learning environment must present operating knowledge whenever cl 

manual operator is required ta link an episode or a VlCW Moreovt.'f, this 

operating knowledge must correspond to each view in which a working ~pdce 

for operating the system is provided. Otherwise, l'ven If the program h.l<, 

presented consistent, simple, mean111gful and easily-memorLœd command~ Jt 

the beginning, the user may experience difficulty or encountcr lmpa%p<., during 

the execu tian of the program. 

In addition to lacking operating knowledge when manuaJ operator<, ,1re 

required for operating the system, sorne other problcms in presenting opl'raling 
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knowlcdge were detc':tcd in the walltthrough and encoding processes. Codings 

from student teachers' proJects indicate that m 85% of the projects there were 

problcms in presenting operating knowledge. The other 15% of the projects 

which did not have any problem presenting operating knowledge were thase 

which nceded neither manual operators nor operating knowledge to link the 

cpisodes and views In alher ward s, all proJects which required manu al 

opC'rdtors for Iinkmg episades or Vlews had problems with providing adequate 

opcrating knowlcdge. Other problems, besides missing operating knowledge 

cncountered in the learning environments constructed by student teachers, are 

prc~enled below. 

M ismatch between tasks and working spaces for operating knowledge 

Sometimes the dlfficulty experienced in executing a program is caused by 

a mismalch between tasks and working spaces for operating knowledge. That is, 

the designer does present operating knowledge for linking one view ta another 

al a certain point, but does nat present it at lhe right place. For example, in the 

second episode of Project 2, the designer presented a task for operating 

knowlcdge three views ahead of its workll1g space. In other cases student 

teachpr~ prcsented the tasks for operating the system first, and then presented 

the domain tasks for the user to perform; after the user had made a great deal of 

effort to perform the dlm1ain tasks, the designer presented the workmg space for 

operatll1g the system without indicating the tasks for using that working space, 

b,lseLÏ on the assumption that ~he user would remember the task for operating 

the system \vhich was presented before the user performed the domain tasks. 

The mlsmatch bet'ween tasks and working spaccs for operating systems is 

indic.1led by coding patterns Iike 2(2) Ea, 2(2) Ba, 1(2) Eb, 1(2) Gb, 2(2) Ga. Two 
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problems can be discovered in such patterns. One is that the indk,ltors ot 

necessary sequence "a" and "b" are not in alphabetical order; another is lh,lt tlH' 

types of knowledge are mlxed up. 

There are two consequences of such mismatch. The first ('onsL'qtH.'nCL~ l~ 

that it increases the users' working memory load wl1l'n they are pL'rlormmg 

domain tasks or procesfJing domain knowledge The second consequence IS th.1t 

users will have difficulty in providing input to link the vÎews Il tlH'Y C.1nnot 

remember the operatillg kIlv,,"ledge when they finally gel to the work.1l1g ~p<lCl' 

after performing the domain trtsks. 

Incomplete instruction for operating knowledge 

Student teachers often skipped important con1poncnts of the proCt'dure ... 

when they presented operating knowledge. Por example, tlwy migh 1 Ilol 

indicate the page narne or show the required quotation mark when they askel1 

the user to use GETPAGE or GETTOOLS primitives, or they nllght forgf't to 

indicate that the user needs ta press the enter key when instructing the user to 

type a commando As a consequence, novice users would becornc c()nfll~('d iWe! 

frustrated because the procedures did not conforrn to the instruction. 

Misconceptions of the operating knowledge 

Two types of rnisconceptions of operating knowledge werc found often in 

student teachers' ll1structions. One is misconception of key functlon... For 

example, one student teacher instructed the user to use the return key, the arrow 

keys, and/or the space bar to move the cursor from the commilnd center tn the 

blanks on the front page for answeriI'g questions. Howevcr, no maLLer how h,lrd 

the user tried, it never worked becal'se what the user necded to do Wi1S to hol<..1 
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the command key and press U to move the cursor up, or click the mOllSl' III the 

appropria te place. 

The second misconception conccrns oper,lting proccdufl's. For t~\,lmpil\ ,\ 

student teacher presented the following instruction to LIll' user: 

If you need to see what you just re,hl, TYPE st ,-'P 

STARTUP. 

The misconception in this instruction is tha t, "stop" l'an onl y be lIsl'd in .1 

procedure and it is not used as cl command to be typed 111. Furlhermml', CVl'n il 

"stop" could be used as a command, the computer could not fl'spond Lo 

command "stop" when it was executing the program. When the computer had 

fini shed its execution, therp was nl.") point In stopping the execution any mort' 

When these misconceptions oecur in instructions. a novice user may bèCl>me 

extremely confused and frustrated, and finally give up. 

To summarize the above findmgs on operating knowledge, ~uccessflll 

execution of the program requires presen ting sufficient opcratll1g knowlcdge in 

the corresponding view when a manual operator is requircd to link an episode or 

a view. Any problems of operating knowledge, such as lack of operating 

knowledge, mismatch between operating tasks and working ~paces, and 

ignorance of important component of operating knowledge, as weil as the 

designer's misconceptions on operating knowledge will creale difficultics for the 

user to execute the program. 

Besides domain knowledge and operating knowledge, other types of 

knowledge, sueh as affective knowledge and knowledge for implcmentation on 

content areas, target population and methods arc <llso important in uscrs' 

learning. However, this study did not consider the characteristlcs of other 

knowledge and their relative impacts on user's learning. Inslead, lhls ~tudy 

focussed on domain knowledge and operating knowledge which i~ more 
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Important in detcrmining the nature of the Iearning environments. Based on the 

filct that the domain ~nowledge presented by student teachers is relatively 

.,impIe, this thesis did not anaIyze the subcategories of domain knowiedge and 

pedagogieal strategies used to prespnted them, In arder ta simplify the data 

<111;:11 y~is. The following section presents pedagogieal strategies used to con vey 

dl'clarative and procedural knowiedge for both domain knowiedge and 

opl'rt.1ting knowledgc, and anaIyzes their strengths and weakness. 

The Characteristics of Pedagogical Strategies 

Table 1 shows the overall pedagogical strategies used by student teachers, 

dnd the knowledge that each strategy presents. These data indicate that 

instruction was the major pedagogieal strategy used by student teachers (39%), 

providing task was second (16%), fol1owed by providing working spaces (15%), 

demonstrations (10%), and explanations (6%). The least-used strategies were 

seWng goals (5%), providing evaluation and feedback (5%), and asking questions 

(4%). 

Although it is diffieult to draw general conclusions regarding the 

reasonable expected proportions of different types of pedagogical strategies 

without considering the types of CAL and the nature of the content areas, as weIl 

as the learning approaches that the designer taken, it is necessary ta match the 

task, working space, and evaluation and feedback for each action and examine 

their sequence and appearance. This is because the user cannat perform the tasks 

or answer the questions if there are no workin.g spaces to do so. In addition, 

studies have indicated that irnmediate evaluation and feedback is critical in 

user's success in J computer-based learning environment (e.g., Corbett & 

Anderson, 1991). Therefore, it is necessary ta look at whether the tasks and 
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questions are accompanied \Vith corresponding worKmg SP,l((,S ,md WhL'tl1l'r thl' 

evaluation <md/ or feedback corresponds to the USt'r's performl1IlCl' ,1I1d ,lI\s\wrs 

Because the codings are based on conceptulli units l)f the text ,1lld gr,lphic .. 

of the display in each view and the opera tors the \'ie\\' promotcs, r,lthL'I th,ll' 

actual numbers of tasks, \\'orking spa ces, and evalua lion and fccd b.1CK, Il IS 

possible that student leachers use several conccptual units to prèsent lIlt' sanH' 

tasks. Therefore, the tasks, \ ..... orking spaces, and l'valuation ,md/or fl'l'dback 

were investigated in tenus of each action. In addition, their sl'queI1œ .1nd 

appearance for each action was indlcated by the lowcrcase lcttl'rs. The clctUlll 

frequencies of the tasks, working spaces and evaluation and feedback are ~hown 

in Table 3. 

The balance between providing working spaces, tasks and questions, 

and evaluation and/or feedback 

Results in Table 3 indicate that the talaI number of tasks and questions are 

not equal to those of working spaces. The breakdown of types of knowledge 

reveals that: a) for declarative domain knowledge, aIl tasks and questions are 

provided with working spaces, b) for procedural domain know1edgl', 1 CY,V" of the 

tasks and questions are not provided with working spa ces, and c) for operating 

knowledge, aIl tasks have working 5paccs (in faet there are 1.7 times more 

working spaces than there are tasks and questions). 

Results presented in Table 3 a150 show that the evalualion and feedback i~ 

rnuch less than the tasks and questions. For declaratlve domain know1edge, 74% 

of the task and questions are provided wi th evalua tion and/or feedback, 

whereas only 23% of the tasks and questions are provided with eva1uation 

and/or feedback for procedural domain knowledge. None of the tasks and 
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Table 3 

Frequencles of tasks, worklng spaces and evaluation and feedback. 

Presentlng Tasks Asklng QuestIOns Provldlng Evaluation and 

Types of Kilowledge 
Worklng Spaces Feedback 

Domain Declarative Knowlegdge 4B 9 57 42 

Procedural Knowledge 98 5 93 24 

Operatlng Declarative Knowledge 0 0 0 0 

Procedural Knowledge 55 0 93 0 

Total 201 14 243 66 

questions is accornpanied by feedback and/or evaluation for operating 

knowledge. 

The overall data on pedagogical strategies reveals several obvious 

problerns in the learning environrnents constructed by student teachers. First, 

sorne lcarning environrnents constructed by student teachers provided 

insufficient working spaces for performing the tasks and answering questions for 

procedural knowledge. As a result, the user would fail to perforrn the tasks or 

answer questIons. Further exarnination of the working spaces designed for 

performing tasks and answering questions for domain knowledge indicates that 

student teachers often designed ill-structured working spaces. For exarnple, they 

designed spaces on the screen so that the users could type their answers in the 

bo'\l's, or type in answers for open-ended questions on the screen. However, 

thcre was no mteraction between the user and the prograrn. As a consequence, 

no l'valuation .md feedback could be provided in these cases . 
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Second, the fact that working spac('s wen' 1 7 times more t rcqul\l1 t 1 h,m 

tasks on operating knowledge indicates that the designers sometin1l'~ did nnt 

present tasks for operating the system even if tlley had dcsignl'd workmg sp.1ù'~ 

for do 50. Thus, a user often became unable to contmue al the end of an cpbodl' 

or a view due to his or her lack of understandmg a lask, l'ven if thl'fl\ wl're a p,llh 

to the following episode or view. This finding corresponds 10 thal l'merglllg 

from the charactenzahon of types of knowll'dgc in the previous section. 

Finally, the results showed that only 7.t% of the task and que~tions Wl'rl' 

provided with evaluation and/or fcedback for domain declaralivc knowledgc, 

whereas only 23% of the tasks and questions were provided with l'val uation 

and/or feedback for domain procedural knowledge. This suggcsts that thcre 

was a serious shortage of evaluation and feedback m tll<.' learning cnvironml\nts 

constructed by student teachers. This shortage of l'valuation and fc(\dback may 

be due to the lack of working spaces and the unrcadablc input m !ll-~tructur()d 

working spaces. On the other hand, the fact that no fecdbclck and l'valuation was 

provided for operating knowledge is not regarded as a problem sinet! the Logo 

program itself can provide feedback on operating knowlcdge. 

The coherence of pedagogical stra tegies 

In addition to the above findings, the indicators of necessary sequences 

from codings reveal two problems in the sequence of pedagogical strategies. The 

first problem concerns the coherence of presenting tasks and providing working 

spaces. Incoherences between providmg tasks or instructions on how to perform 

the tasks and working spa ces were often found in the learmng envmmmenl~ 

constructed by student teachers. It occur2d when, in the course of presentmg 

tasks and instructing the user on how to perform the tasks, the sludent teacher 
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interrupted one pre~entation with another irrelevant presentatlOn, or when the 

tasks or instructions were provided a few views ahead of the working spaces. 

Such incoherence is mdicated by the sequences of lowercase letters that are m 

alphabetical disorder. The second problem in the sequence of pedagogical 

strategies concerns the coherence of task representations An incoherent task 

presentation occurs when the text and che pictures that present the same task are 

scparated in different views. 

There are several consequences of Incoherent pedagogical strategies. First, 

they increase the user's working memory load. Second, they increase the 

difficulty for the user in understanding the instructions and tasks. The users 

might cven be un able to continue the execution if t!1ey forget the instructions or 

the Lasks by the Lime they get to the working spaces. Finally, the incoherence 

between mstruclions, tasks, and working spaces would cause bugs when the user 

performs tasks that do not have corresponding working spaces in the current 

view. 

The distribution of strategies across projects 

In order to further investigate how student teachers used pedagogical 

strategies in the learning environments they constructed, che pedagogical 

strategies used in each project are shown in Table 4. Data in Table 4 indicate that 

aIl projects used three pedagogical strategies: providing instructions, providing 

tasks, and providmg working spaces. Sixty-nine percent of the projects 

employed settmg goals as a strategy, and the same proportion of projects 

employed the explanation strategy. In addition, 62% of the projects used 

demonstration strategies, 54% of projects designed evaluation and/ or feedback, 

and 35% of proJects used the strategy of asking questions. 
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Table 4 

Frequencies of pedagogical strategies used in each project. 

ProjeCt No. Setbng Goals Instructions ExplanaliOns Demonstrations Presentlng T asks Askmg Questions Provldlng Worklng Evaluation and 
spaces Feedback 

1 7 10 10 10 
1 

i 2 2 27 2 6 7 

1 3 2 22 1 
1 

5 6 8 

.. 64 58 53 20 

5 3 26 2 2 10 7 

6 2 45 2 20 14 1 29 

7 17 8 1 16 8 8 17 

8 9 19 36 13 3 1 2 1 

9 20 19 1 1 -
10 1 8 1 5 4 2 

11 1 29 5 2 1 

12 5 39 3 3 18 8 12 9 

13 44 158 13 61 46 18 49 
Perœnt of the 

Proj€Cts 69% 100% 69% 62% 100% 38~,: ~OO% 54~' 10 
- ~-

1 ~~_ _ ----------------
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What lhese data indicate is that instructions, providing tasks, and 

providing working spaces are three basic strategies used by aU student teachers. 

In addition, demonstrations, explanations, and askmg questwns were also used 

ln sorne proJects as more advanced str;)teglE's. For example, ln ProJect 13, the 

designer first provided instructions on the content area in which the program 

was supposed to be used, the target population, and implementation methods. 

Later, the designer provided instructions on the structures of the lessons. 

Through the first two views of instructions, it was c1ear to the user the purpose of 

the program, who could use It, and how ta use IL Furthermore, the designer set 

the goals and objectives at the beginning of each les son so that the user knew in 

advance what he or she was supposed to do. 

In the rest of the prograrn, ProJect 13 used a combination of pedagogical 

strategies simildr ta the one used in Projects 6, 8 and 9. These projects showed 

consistent coding patterns. Such patterns are composed of instructions, 

demonstrations, and explanations in an elegant way 50 that the user could see 

the procedures needed for performing particular tasks, and the screen effects 

these procedures produced, such as in Project 13 (See Figure 5) and Project 6 (Sec 

Figure 6) Slightly different from Projects 6 and 13, Project 8 used 

demonstrations, explanations, and instructions intensively ta tutor the user on 

the nature of a grid, how to make il grid, and how ta find points on a grid (See 

Figure 7) These combinations of pedagogical strategies helped the user visualize 

abstract concepts 50 that the domain knowledge was effidently conveyed ta the 

user . 
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Another common feature in these four projects was th.1t task~ ,1lld 

working spaces were provided for users to practice or explore wh.1t they h,1d 

learned right after the tutorial was fmished. In addition, the designers pro\'idt.'d 

the users with important elements of the procedures required for pprtorming 

tasks, or the rneans to access these elements while the tasks are bemg pC'rtormed. 

Moreover, these projects enabled the users to control the fIow of e'l.l'cution. In 

Project 6, users could control the speed of producing the screen l'ifect~ of each 

procedure by pressing the enter key, while in Project 13, tl1(' designer .lllowed the 

user to go back to the previous page or to move on to the next one by pressing 

"n" or "p" key. 

There was also a pattern of pedagogical strategies for drill and pr.Ktice 

programs. Projects 4 and 7 and sorne episodes of Project 1 used the Cllmbination 

of presenting tasks, working spaces, and irnrnediate evaluations and feedback 

(see Figure 8a-8d). 

·0 Figure 8 -- - --, =-

WHICH 15 THE RIGHT ANSWER? ~ 3x5=a) 14 
b) 15 
c) 17 

~ 

r: 

~ 
~ 

Figure 8 a 

(continued on next page) 
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Figures 8 a-do A combination of task presentation, working 

spaces, and evaluatlon and feedback. 
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The findings from characterizing pedagogical strategies are that, on the 

one hand, student teachers have developed sorne pedagogical strategies to 

convey the knowledge efficiently. On th" other hand, there were still sorne 

problems with the pedagogical strategies used. Flrst, the learning environments 

provided insufficient working spaces, or ill-structured working spaces which did 

not prornote interactions for performing tasks and answering questIOns in 

domains. The second problem was that the learning environments presented 

working spaces for operating knowledge without any indication of these 

working spaces. The third problem was that sorne sequences of pcdagogical 

strategies led to incoherent presentation of tasks and incoherent Instructions, 

tasks, and working spaces. Finally, there was a serious shortage of cvaluation 
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and feedback in the Iearning environments constructed by student teachers . 

The characterization of knowledge and pedagogicaI strategies has shown 

both the advantages and lImitations of the learning environments constructed by 

student teachers. From a human-computer interaction perspective, the 

knowledgc presented ir, the Iearnmg environments IS regarded as the output of 

the computer whereas the manual opera tors from the user are regarded as the 

input of the computer. Il IS necessary to determine what kind of input a 

computer requires from the user within the context of interaction. From the 

perspective of learning, the characterization of a learning environment should 

consider whether a Iearning environment provides sufficient user-computer 

interactions (i.e., Iearning activities) and whether such mteractions facilitate 

Iearning. Furthermore, it is necessary to investigate whether the learning 

environment provldes the freedom for the user to choose activities, task 

complexities, and various types of assistance according to his or her individual 

needs. The following section will attempt to discuss these issues by 

characterizing the interactions. 

Interactions 

The interactions in the learning environments were characterized by the 

attributes of the opera tors required to execute prograrns, which are either 

automatic or manual. Automatie operators refer to the cases where the execution 

of a program does not require any input from the user. In contrast, rnanual 

opera tors refer to the cases when the execution of a prograrn requires the user's 

input. Through manual opera tors, a user may be able to perforrn tasks, answer 

questions, or opera te the system. In addition, it is possible for the user to select 

activities, choose task complexity, or choose various types of assistance according 
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to his or her needs. 

Ratio of manual and automatic operators 

Tables 5 and 6 show the overall opera tors and their functions desi~nl'd in 

the learning environrnents constructed by student teachers. Studcnt tC<lchers 

designed 58% autarnatic opera tors and .t2% rnanual opcrators The r.ltio ni 

autornatic opera tors suggesls that the llsers did not h<we the Irecdom Lo control 

the flow. It also suggests that these learning environrnents migh t not provlde 

sufficient interactions which are critical in the learning proccss and wlllch l'nable 

the user the flexibihty to select activities or lask cornplexily, as weIl as various 

types of assistance. These results will be further exammcd by anJlyzing the 

manual operators designed far different purpases. 

Characteristics of manual opera tors 

In the learning environment canstructed by student teachers, data from 

Table 5 indicate that 39% af the manual opera tors were dC'signed for operaling 

the systems, 3.nd 55% of the manual operalars were designed for performing 

tasks and answering questions. Only three percent of the manual opera lors wcrc 

designed for choosing assistance, and the same percent of the mil.nual opera lors 

were designed for choosing activities. There were no manual opera tors for 

choosing task complexity . 
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Table 5 

Frequencies of dlfferent types of manual operators and their functions designed for ail proJects. 

Chooslng T asks or • ChooSlng Task Answenng Answenng Multiple Performlng Chooslna Operatmg the Total Percent 
ActlVltJes CompleXlty Questions Cholee Questions Tasks Assistance System 

Pressing a letter or a 
number 

19 43 62 27% 
Pressing enter aher a 

procedure 
16 16 70 1. ,0 

Typmg a command 

6 2 4 8 41 61 26% 
Typmg a command + a 

vanable 
28 28 12% 

Usrng the pnmlbves 

22 7 29 12% 
T yprng a ward 

accordlng 10 a quesbon 

17 13 1 31 13% 
T yprng sentence(s) 

6 6 3% 
Total 

6 0 23 34 70 8 92 233 
Percent 

3% 0% 10% 15% 30% 3% 39% 100% 
- ----- -L- ----- -1-
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The ratio of rnanual operators for performing tasks and answering 

questions vs. operating the system. 

106 

The numbers of manual opera tors for performing tasks and answering 

questions for domain knowledge are only 1 38 times grf'aler th.ln lhose lm 

operating the systems. This ratio suggests that the learning enVlf(.mmenls 

constructed by student teachers lack the interactions that promole ta~k 

performance and learning. In addition, the filet that the manu,lI operatnrs \\'I..'rl' 

rarely deslgned for choosing the activtties, types of assistance, or task complexlly 

indicates that the learning environments provided the users with very limi tl'd 

control over the system and that they did not have the flexibility to meet tlw 

individual's needs in the learning process. 

The forms of manu al operators for performing tasks, answering 

questions, or operating the system. 

In order ta determine whether the input required from thc user supported 

the user in learning the domain knowledge and in operatmg the system, manu.11 

opera tors were categorized further according to theIr [orms. Data 111 Table 5 

shows that there were four types of manual opera tors for performing ta~ks for 

domain knowledge: typing a commànd, typing a eommand wIlh a viHiJblp, 

using the Logo primitives, and pressing the enter key when the procedures 

appear on the sereen. The manual opera tors for answcring questions consbted of 

typing a word or a sentence, or pressing a lettcr or a number for multiple choice 

questions. The manu al opera tors for operatmg the systems mamly mcluded 

typing a command, pressing a letter or a number, or using primIllves 

What was observed from these data was that the student tcachers tended 

to use pressing a letter or a number for operating the system and typing a 
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command or command with a variable to perform the tasks in domains. Tt 

seemed that they tried to minimize the difficulty of operating the system by 

~implifying the input required from the users. On the other hand, for performing 

the tasks, they used the input which required more understanding and gave 

uscrs more flexibilily. Therefore, the manual opera tors the y designed for 

performing tasks in domams could support learning the domain knowledge and 

operating the systems. 

Distribution of manual opera tors in projects. 

The data in Table 6 indicate that 85% of the projects designed manual 

opera tors for performing tasks or answering questions, 46% of the projects 

designed the manual opera tors for operating the systems, and 31 % of the projects 

designed the manual opera tors for the users to choose the activities or tasks. 

Only 15% of the proJccts designed the manual operators for choosing types of 

assistance and none of the projects designed the manual operatûrs for choosing 

task complexity. 

These data suggest that, even though only two percent of the manual 

opera tors were used for choosing activities, one-thlrd of the student teachers had 

considered providing such flexibility to the users. However, the fact that 15% of 

projects did not include any manual opera tors for performing tasks or answering 

questions for domain knowledge further confirmed that the learning 

environments constructed by sorne student teachers lacked the interactions that 

promoted task performance and learning for domain knowledge . 
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Table 6 

Frequencies of d,fferent functional operators ln each proJect. 

ProJect No ChooSlng T asks or Chooslng T ask Answenng Answenng Mulbple Cholee Performmg Chooslng Operatmg the 
Actlvrtles Complexlty Questions Questions Tasks ASSistance System 

1 7 3 

2 2 4 

3 1 6 

4 1 6 16 31 

5 
, 

3 4 1 

6 1 20 8 

7 9 1 

8 20 

9 10 

10 1 3 

11 2 

12 3 5 4 

13 39 43 
Percent ot the 

ProjElCts 31:,~ 0% 23% 38% 61~~ 15% 46% 
-------
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Characteristics of automatic operators 

The data in Table 7 show that the most frequently used automatic 

opera tors in the Jearning environments constructed by student teachers were 

scrolling effects (86%). The disadvantages of scrolling, including other automatic 

opera tors are that, first, the user's interactions which are critical in learning 

processes are rarely involved in executing a program 50 the computer5 only 

present movable text or pictures, and their unique potential for interacting with 

users is not u tilized. Second, the text and graphies are prearranged through 

automatic opera tors so the user did not have any choice in the learning 

proccsses. Fmally, the user couid not control the execution of the program, 50 it 

becomes a serious problem when the text is difficult to understand, poorly 

formatted, and presented at an inappropriate speed. One example of such 

disadvantages of using automatic opera tors can be seen in Episode 1 of Project 

12. ThiS episode involved a high proportion of scrolling effects to present text 

that was complex and crowded ;:,0 it was difficult ta read and understand (See 

Figure 9). 

Table 7 

Frequencies of automatic operators designed in ail projects. 

Automatlc Operators General Cleanng Texls Cleanng Total percent 
Graphlcs 

Cleanng 9 19 3 31 9% 

Sàollmg 260 38 298 86% 

Aulomallca,-iy Executmg 19 19 5% 
pilges 
Total 288 19 41 348 100% 
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On the other hand, the appropria te use of aut0l11,1tic opC'fa tors may reduce 

the difficulty that the users confront in using l11al1ual ope'ralors due to 

problematic represenlations of operating knowledge Also, the' user's working 

memory load may be reduced beeause the program automatlcally presents thl' 

texts or pictures and the user does not need to worry about how lo opera te tht.' 

system. Therefore, users l11ay work more smoothly if the lexts are ea~y 10 

understand, well forrnatted, and presentcd at a reasonable paee for tlll' user'i 

Project 13 also involved a hlgh proportion of scrolling. Dittt'rent trom 

ProJect 12, the texts in Proje(:t 13 were short, easy to undersland, and weil 

formatted. In addition, the text on how to use procedures to draw varIOUS 

shapes was combined with demonstrations of the 5creen effccts prodUCl'd by 

those procedures (See Figure 5). Not only could the user sec the procedures 

needed to perforrn the tasks and thelr sere en effeets without any intenuption, but 

also the speed of the scrolling could be slowed down. Thus, the user could work 

smoothly with automatic opera tors in th15 program. 

To summarize the findings from characterizing the opera tors, the results 

of this study suggest that the learning environments construeted by student 

teachers lacked manual operators and overused automatic opera tors. The 

learning environments particularly lacked manual opera tors which promoted 

task performance and provided flexibility for users to meet thcir individual 

needs. However, the types of manual opera tors designed by student teachers 

seemed to support the user in learning domain knowledgc and system operation. 

In addition, the automatic opera tors sornetimes dlsplayed advantage whcn [he y 

were used appropriately. Therefore, good instructlOnal software should combinp 

the advantages of both automatic and manual opera tors ~o that uscrs cannot only 

execute the program smoothly, but also have the opportunity to mlcracl with the 

computer, as weIl as the freedom to cho05e the tasks or assistance to meet their 
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mJividual needs. 

Summary of the Characteristics of the Leaming Environments 

There are three major findings which emerged from the overall 

characterization of the learning environments constructed by student teachers. 

Flrst, the learning environments presented domain knowledge, operating 

knowledge, affective knowledge, as weIl as knowledge for implementation about 

content areas, target population, and methods. Domain knowledge was the first 

major conC('rn of al! projects, whereas operating knowledge was the second 

maJor concem Domain knowledge presented by student teachers was mostly 

about facts, events, concepts, and actions and it was seldom involved principles 

or conditions under which the actions can be taken. St metimes student teachers 

presented tem poraI, partial, or identical relationships, but they did not present 

causal and condilional relationships, or indicate "bug problems", the learner's 

misconccptions, or efficient problem-solving strategies that might be employed 

by advanced instructional programs. Further analysis of operating knowledge 

indicated lhat a program did not need to present any operating knowledge when 

the episodes or views were linked by automatic opera tors or when the domain 

m,muaI opera tors were .lsed to link episodes or views. Ho ,,rever, a program 

must present operating knowledge to the user when a manual operator is 

required to link to an episode or a view. Lack of operating knowledge when a 

manual operator is required to link an episode or a view is the main reason for a 

user becoming stuck. 

The second finding was that instructions, providing tasks, and providing 

working spaces are three major pedagogical strategies used by aIl student 

teachers. More advanced pedagogical strategies which integrated instructions, 
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demonstrations, and explanations, as weIl as hinds for assisting task performance 

were also designed by sorne student teachers Furthcrmore, ,1 few student 

teachers took the advantage of Logo c\.ploratory learnmg Cl1\'lwnnwnl and 

enabled their target learners to learn domain knowledge by expJor.llwn On the 

other hand, data also show that the learning enVlronrnents constructed by tilt' 

student teachers lacked working spa ces to perforrn tasks or answer que3tions, 

and there was a serious shortage of evaluation and fl'edb.1cJ.,. on dOl11.lin 

knowledge. In addition, insufficient tasks were presl~nted for opcrating the 

system when relevant operating working spaces were designcd The 

consequences of these problems were that, first, the lack of working sp.lces in 

domains led to failure to perforrn tasks, and second, insufficient indication of 

operating working spaces created difficultles for the user or l'ven fl'~uJted in 

failure in program execution. The insufficient working spaces .md the input to 

which the computer did not respond were the sources that the lcarning 

environments lacked evaluation and feedback, while the Jack of l'valuation and 

feedback in turn indicated that the learning L.lVironments constructed by student 

teachers were weak in assisting user' s learning. 

The last finding was that the learning environmen ts constructed by 

student teachers lacked rnanual opera tors and overused automalic opera tors. 

Moreover, the learning environrnents lacked manual opera tors for perforrning 

tasks, for providing flexibility to meet the user's individual needs, and for 

providing assistance in learning. 

Characteristics of the Program Structures 

LogoWriter™ has special features which can execule more than one page 

in a program and more than one procedure on a page with or without the user's 
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Inleraction. The program structures in this study, therefore, refer to both page 

structures and procedure structures. The program structures are also 

characterized by the statie attributes and dynamic attributes. Static attributes 

here refer to single-Ievel, linear, modular, or fragmented structures. In addition, 

programmmg utilities su ch as reusable procedures, conditional statements, 

variables and recursion are also considered as static attributes. Dynamic 

allributes of the program structure refer to the manual opera tors required in 

linking procedures or pages. The categories and functions of manualoperators 

are the same as lhose used in eharacterizing the learning environments. Table 8 

shows the program structures in each project produced by the student teachers, 

Including page structures, procedure structures, and programming utilities. 

Page Structures 

Data in Table 8 indicate that 69% of projects produced by student teachers 

used linear page structure, 23% of the projects used modular page structure and 

23% used fragmented pages. It is clear that there is consistency in the way the 

student teachers structure their pages, based on the fact that 85% of the projects 

llscd only one page structure and only 15% used two page structures . 



- -
Table 8 

Page structures, procedure structures and programming utilities used in each proJect. 

1 

ProJect No. Pages Structures Procedure Structures Programmlng Utllllles 
Unear Modular Fragmented One Leve! lInear Modular Fragmented Reusable CondltlOnal Vanables Recurslons 

Procedures Statements 

1 x x x x x x x 
2 x x x 
3 x X 

4 x )C x 
5 x x x 
6 x x x x x x x x 
7 x x x x 
8 x x x x x 
9 x x x x x 
10 x x x x 
11 x x 
12 x x x x x x 
13 x x x x x x x 

Percent Of 

1 

the PrOjects 

77% ..... 1_ 69% 23% 23% 54% 54% 46% 23% 31% 23% 23% 
-- -- --- - --



• 

• 

Results and Discussion 117 

Linear page structures 

The most common page structure in the programs produced by student 

teachers was !inear. There were severai versions of linear page structures due to 

different ways of linking the pages. The simplest version was that aIl pages are 

relrieved by the GETPAGE primitive in the first page of the program 50 the 

program did not require any inputs to Iink the pages, as shown in Figure 10. 

Anothcr version was that the user was instructed to use the GETPAGE primitive 

and the page na me to ret 'e the page when the previous page was finished, as 

shawn in Figure Il. The third version of !inear structures was that the user couid 

press one key to move to the next page when the current page was finished. 

Once the user was on the next page, then he or she couid access the previous one 

by pressing another key (see Figure 12). The final version of !inear structure 

combined an automatic operator with a manu al operator 50 that the last 

procedure in the previous page could automatically retrieve the following one 

that prcscnted a question. When the question was presented, the pro gram 

walted for a manual operator, which was a correct answer from the user. Once 

the correct answer was typed in, the following page was linked and a new 

question was presented (See Figure 13) . 
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Figure 10. A linear page structure linked by automatic operators. 

Flnal1 

Answer4 1 

Figure 11. A linear page structure linked by manu al operators . 
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Figure 12. A linear page structure in which the direction of 

operation is controlled by pressing a key . 
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Figure 13. A linear page structure combining automatic and 

manu al operators. 

Modular page structures 

The modular page structure, which is supposed to have more advantages 

th an the linear one, had two versions in the programs produced by sludenl 

teachers. In one version, the pages were structured at two main levels and the 
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bottom on es were parallel (See Figure 14). In the second version, the main frame 

was modular, while the rest of the pages couId be eilher moduIar or linear (See 

Figure 15). 
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Figure 14. A modular page structure consisting of two main levels 

with the bottom ones parallel. 
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Two problems were frequently observed in the modular page structures 

deslgned by student teachers. One problem was that sorne bottom branches did 

not have paths leading to another bran ch, 50 that users had to quit the program 

and restart it again In order to access other branches. Another problem was that 

\l1 many cases the deslgners did not indicate sorne important paths to the users 

even though they had deslgned these paths. 50 it seemed that student teachers 

l'xpenenced many problems m designing smooth modular page structures. 

~evertheless, the modular page structure did enable the user to choose 

allcrnatives in execution and therefore still has sorne advantages over the linear 

one. 

Fragmented page structures 

Not surprisingly, sorne programs designed by student teachers consisted 

of fragmented pages in which there was no indication of how ta link one page ta 

.1l1nther. Bence, the user had difficulty in executing these pages as a program. 

To sum up the fmdings from page structures, student teachers preferred 

to design linear page structures and they encountered less difficulties in doing 50 

than in designmg modular page structures. Sorne of them have developed 

consistent and systematic linear page structures which enabled users ta answer 

questlOns and control the direction of operations. In addition, sorne student 

teachers developed modular page structures that promoted alternatives in 

execution 50 that users could choose tasks or activities. However, student 

teachers seemed tn have trouble in designing the paths from Olle branch ta 

another and further in indicating these paths to the user. The fragmented pages 

were eüher a result of uncooperative group work or an inability to design 

alternative page structures. 
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Procedure Structures 

There were four procedure structures designed by student teachers. These 

procedure structures were single-level, linear, modular, and fragmented The 

data in Table 8 show that 92% of the projects mvolved single-level procedure 

structures and 54% of the projects involved either linear structures or modul,lI' 

ones, or both. Fort y-six percent of the projects had fr,lgmented pnK.'(htrl':-' ,11 

some points. 

Single-Ievel procedure structures 

The projects produced by student teachers made heavy use of single-lcvel 

procedures. The simplest single-Ievel procedure is shown in Figure 16<1, where 

the procedure named "castle" would retrieve a page with the corresponding 

name. However, student teachers used smgle-level procedures in flexible ways 

with the result that several single-Ievel procedures could accomphsh complex 

tasks. For ex ample, they used single-Ievel procedures for answering multiple 

choice questions (Figure 16b ), choosing actIvlties (Figure 16c), and performîng 

tasks. However, in most cases, the student teachers used more th an one 

procedure structure. Therefore, single-level procedures were sometimes only 

loose-ends attached to another main procedure structure (See Figure 17), for the 

purpose of performing tasks, providing feedback, or retrieving a page, or were 

used as a tocl ta present the lesson . 
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Figure 16 a Figure 16 b Figure 16 c 

Figure 16. Single-Ievel procedures used to link a page (16a), to 

answer a question (16b), or to choose an activity (16c). 

Linear procedure structures 

125 

~ 

c4 

Figure 17 shows a linear procedure structure used by a student teacher. In 

this type of procedures, the subprocedures were structured in a linear way so 

that the information was processed in sequences. Most linear procedures 

structured by student teachers were combined with single-Ievei procedures and 

modular procedures. Sorne of them also involved fragmented procedures . 
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Figure 17. A linear procedure attached by single-Ievel procedures. 

Modular procedure structures 

In addition to linear procedures, student teachers constructed modular 

procedure structures by decomposing procedures into parts, and further 

decomposing these parts into other parts (See Figure 18). One command 

phenomenon found in such a modular procedure structure is thLlt student 

teachers did not design alternatives in execution so that the execution of the the 

was still in a sequence. For example, in ProJect 1 (See Figure 18), a ,>tartup 

procedure consisted of three procedures: "hello", "runstuff" and "goodbye". 

Runstuff can be decomposed into getanswerA, getanswerB, gelanswerC and 

getanswerD, but these procedures were executed in a sequence and there was no 

alternative in execution. Furthermore, the modulaT structures constructed by 

student teachers usually had only three levels. Therefore, even though student 

teachers had developed the ability to use a decomp05itlon technique to produce 

modular procedures, these procedures were stilllinear in their execution. 
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runstuff ~OOdbY0 

( thermo )liliiii4---- drawmg plctures for the text 

Figure 18. A modular procedure structure with recursion. 

Fragmented procedure structures 

The fragmented procedures found in the programs constructed by student 

teachers seemed to be sorne leftovers from other activities in the learning phase, 

so the existence of fragmented procedures is not considered a problem. 

To sum up, the procedure structures found in student teacher's projects 

were frequently single-Ievel procedures which were used in a flexible way so 

that they could accomplish complex tasks. In addition, these single-Ievel 

procedures were often attached ta a linear or a modular procedure as loose-ends. 

The modular procedures produced by student teachers showed that student 

teachers developed decomposing techniques to produce modular procedures, 

but that these modular procedures did not allow alternatives in execution and 

tha t they are linear in logic . 
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Programming Properties 

Even though aU student teachers learned programming utilitil's slIch as 

reusable procedures, conditional statements, variables and n'cursion in the 

learning phase and were able to use them in their e'<l'rrises, data in Table H 

showed that student teacr !rs did not frequently use programmmg utilities in 

their final pro)ects. Only 23% of the pro)ects llsed cither variables nr recllrsion or 

both in their final pro)ects. In addition, another 23% of the proJccts used rcusabk' 

procedures and 31 % of the projects used conditional statements. Since the 

fragmented procedures were lefLover from the exercises, l'ven though 23(11) of the 

projects used variables in fragmented procedures, these proJects were nol 

regarded as using programming utilities. Therefore, 54% of the pro)ects ciid not 

use any programming utihties in their fmal projects It seemed that the dt'~igners 

for these projects had not developed the ability to design programming utilities 

in their final projects. In other words, they ma y have been able Lo use 

programming utilities in their exercises, but lhey were unable lo apply these 

techniques in a flexible manner to their own projects. 

As mentioned before, LogoWriter rM has the capacity to run more than one 

page in a program and more than one procedure in a page, and the pages and 

procedures require links in executing them as programs. Therefore, interaction 

issues between pages and between procedures cannot be avoided. The following 

section will present and discuss the results from characterizing the mélnual 

opera tors used to link pages or procedures in terms of the types of manual 

opera tors and their functions . 



• 

• 

Aesults and Discussion 129 

ManualOperators 

Table 9 shows the types and functions of manual opera tors located 

belween pages and between procedures, as weIl as within procedures. The data 

in this lable indicate that 47% of the manual operators designed by student 

teachers were 10ca ted bet.veen pages, 21 5% of the manual opera tors were 

located between procedures, and only 31.5% of the manual operators were 

located within procedures Such high proportion of manu al operators 10cated 

betwcen pages and between procedures indicate that the interactions in the 

learning environments constructed by sludent teachers in LogoWriterHf 

dcpended heavily on the ways designers structured the pages or procedures. In 

order to find out "'\That these manual operators were, and for what the y were 

llsed, the following sections will analyze the types and functions of the opera tors 

al different locations. 

Manualoperators between pages 

The results in Table 9 show that 36% of the manual opera tors located 

betwecn pages were used for operating the systems, 10% were used for 

answcring questions, and only two percent were used for chnosing activities or 

tasks. None of the manual opera tors between pages was used to p~rform tasks 

or choose assistance. The manual operators for operating the system were aIl 

located between pages. In other words, operating knowledge was needed for 

linking pages but not for linking procedures. In addition, most of the manual 

opera tors for choosing tasks / activities and answering questions were also 

Iocated between pages . 
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Table 9 

The distribution of the manual operators. 

Dlstnbutlon Chooslng tasks or Chooslng T ask Performmg Answenng Answenng Multiple Cholce Choosmg Operatmg the Percent 
actlvrtles Complexlty Tasks Questions Questions Assistance System 

Between Pages 150% 0 0 350% 6% 0 36% 47% 

Beteen Procedures 050% 0 11% 4% 2% 4% 0 21 50% 

Wrthm Procedures 0 0 25% 150% 5% 0% 0% 31 50% 

Percent 2% 0% 36% 9% 13% 4% 36% 100% 
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Manual opera tors between procedures 

Eleven percent of the manual opera tors located between procedures were 

used [or performing tasks, four percent were used for choosing assistance, and 

six percent were used for Jn~wcring questions, only 0.5% for choosing tasks or 

,1ctlVitics. vVIth respect ta choosing assistance, aIl the manual operators for this 

were located between procedures. 

Manual operators within procedures 

Twenty five percent of the manual operators within procedures were used 

for performmg the tasks and 6.5% were used for answering questions. None of 

the opera tors within procedures were used for choosing activities or assistance, 

or operating the system. The manual opera tors located within procedures were 

mainly used for performing tasks and answering questions. 

To sum up the findings from the characterization of the pro gram 

structures produced by student leachers, first, student teachers designed single

level, !inear, and mod ltlar ~tructures at both the page level and the procedure 

level. Among these structures, the most frequently used page structure was 

linear and the most frequently used procedure structure was single-level. 

Second, sorne student teachers developed consistent and systematic page 

structures in which va nous procedure structures werE' combined and 

functionally expanded. Third, student teachers often failed to build and later 

indicate the paths from branches to branches in nodular page structures. When 

modular procedure structures were designed, student teachers al ways failed to 

design ones which would permit alternatives in execution. Finally, most student 

tcachers \-vere un able to use the programming utilities in their project design, 
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even though the y had aU used them in the exerClses. 

Furthermore, the programs produced by student teachers usuall\' h.ld 

more than one procedure on a page and more than one page 1I1 a program 

When the manual opera tors were considered, most of thcm were locatcd 

between procedures and bet\veen pages Further analvsls indic.ltcs th.lt tlw 

manualoperators located at different places played dlf[erent lunctional mlc~ ~o 

that the programs could accomplish more complex tasks that could not bl' 

accomplished by a single procedure or a single page produccd by sludl~nl 

teachers. Therefore, the functions in the programs produced by ~tudent teadwrs 

in LogoWriter™ depended not only on the individual procedure structures and 

programming utilities, but also on the way the pages and procedures were 

structured. 

The Relationships between Program Structures and the Use of Pedagogical 

Strategies 

The characteristics of the program structures of the proJects which used 

appropriate pedagogical strategies and those which did not were compared in 

order to determine whether there was a relationship between the characteristics 

of the program structures and the pedagogical strategies As ml'ntioned before, 

Projects 6, 8, 9 and 13 had integrated instructiOns, demonslratIons, and 

explanations, accompanied by tasks and work1l1g spaces and l'ven assistance for 

performing the tasks, whereas Projects 4 and 7, as weIl as sorne epbodes in 

Project 1 used a cornbination of providing tasks, working spaccs, and immediatl' 

evaluation and feedback. Among the final proJects deslgned by studenttpachers, 

50% of them employed appropnate pedagogtcal strategies. The rl'sulte, 111 Table 8 

indicate that 77% of the proJects which employed appropnate pedagoglcal 
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strategies used programming utilities at sorne points, whereas only 15% of the 

proJects which did not use appropria te pedagogical strategies used programming 

utilities. Projects 6, 8 and 13 which employed appropria te pedagogical strategies 

a11 hcld used conditional statements, and two of them used variables and 

recurSlOn. These three projects comprised 62% of the overall programming 

utilitles for aIl proJects. Furthermore, the results in Table 10 indicate that the 

projects which employed appropriate pedagogical strategies aIl used conditional 

stdtements and recursion. In addition, they consisted of most modular procedure 

structures (71 %), variables (67%), and reusable procedures (67%), as well as 

modular page structures. Therefore, well structured programs and the use of 

programming utilities seemed to be associated with the use of appropriate 

pedagogical strategies On the other hand, the appropria te pedagogical 

strategies could be attained by using single-level procedures in a flexible way, as 

in ProJect 4. 

Table 10 

The program structures and the use of pedagogical strategies. 

Patterns 1\10 Patterns 
Pedaqoqlcal Strateoies 

Llnear 55% 45% 

Modular 67% 33% 
Page Structures 

Fragmented 50% .50% 

Fragmented 33% 67% 

Procedure Structur 
. Slngle-Ievel 59% 41% 

Llnear 57% 43% 

MOdUIar 71°/0 .39% 

Reusable Procedures 67% 33% 

Programmmg Utlhtl 
Condltlonal Statements 100% 0 

Varla0l8S ti/v/o 33°/0 

HacurslOn l Uuv/o -rr 
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To sum up, the characteristics of learning environments can be descnbed 

in terrns of the types of knowledge presented, the pcdagogical strategies used to 

present the knowledge, and the forms and functions of interactions. The 

pedagogical strategies and interactions are rc1ated to the ways that progr,1Ills ,ut:' 

structured and to that prograrnming utilities are used in the progr,111\s. When the 

programs are well structured and employ the programming utilities, the 

designers can provide more sophisticatcd learning envlronments. IIowevcr, the 

designers can also construct a smooth program without using sophistic.1ted 

programming skills when the user's cognitive learning needs in the lcarning 

processes are considered. Without the consideration of hurnan factors in the 

design of the instructional programs, the designers may produce the program 

with which the user encounters a lot of difficulty and l'ven failure in interacting . 
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CONCLUSION 

This chapter first presents a summary of the findings from this study 

nnd discusses the implications for instructional software development. Next, 

the ImplicatIOns for studying expertise in the domains of instructional 

soft ware design and human teaching are presented dnd several issues 

pertaining to studying Logo environrnents are raised. Finally, sorne posslble 

directions for future research are considered. 

Summary of the Research Findings 

This study was concerned with developing a rnethodology for 

identifying the cognitive, pedagogical, and computational characteristics of 

computer-based learning environrnents. The methodology developed 

provides precise descriptions of these features of the learning environments. 

By consldering the features of the learning environments and their effects on 

the user, a diagnostic evaluation can be made of the usability and constraints 

of a given system. 

The methodology developed in this study allaws far the investigation 

of dlfferent types of knowlcdge presented in learning environments, the 

pedagogical strategies used to present this knowledge, and the forms and 

flwctions of illteractions that the learning environments elicit (e.g., the task 

activities of the user). In addition, this study characterized the computational 

characteristics of programs in terms of single-LeveL, lincar, and modular 

structures, as weIl as other pragramming properties. 
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Three major types of problems were identified ln crl'<ltil\~ 

representations t'or knowledge. The first type of problems W<lS rel.Hl'd ln 

domain knowledge. That is, the programs presented neither L'.lUS,ll or 

conditional relationships that are important componen ts of propositions ,1I1d 

schemata of domain knowledge, nor pnnClples that reflcet the nature ot tl1l' 

domains. In addltion, these programs providcd the user \Vith 11l'ithl'r the 

difficult learning tasks that they often make mislakes nn nor the dtIL'Ïl'nt 

strategies for problem solving. Therefore, the ctomall1 knowledge L'onvl'yl.'d 

by student teachers was simple, conerete, and isolatcd. The second tnw 01 

problems related to operating knowledge. The rcsults showed that Cl'rt,lÎn 

programs partially lacked operating knowledge, or contained mcomplete or 

inaccurate instructions. The problems in presenting opcratlllg knnwll'dgl' 

created impasses for the users ta operatc the system. The thlrd lype of 

problems is that incoherent, long, and ambiguous text was sometime~ u~ed 

in representing knowledge. When the text in a view was poorly tormatœd 

and linked by automatic opera tors without providing the user any control, it 

was particularly problematic. 

In terms of pedagogical strategies, the lcarning en vlronmen ts 

constructed by student teachers employed three basIc pcd;}gogical strategies: 

giving instructions, presenting tasks, and providing working spaccs Sorne 

student teachers often elegantly integrated instructions, dcmonstratioils, and 

explanations, showing the user not only the procedures needcd ln periorm a 

particular task, but also the screen eHects produced by CJch procpd ure and 

sorne potential problems. In addition, these programs sometimes provided 

reminders to assist the learner ta perform the tasks. f'urthermorc, a few 

designers took the advantage of Logo explora tory learmng environment and 

e!labled the learners to construct and invent new products for learning 
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domam knowledge. Such combinations are called modeling, scaffolding, and 

exploration by CollIns, Brown and Newman (1989), as characteristics of ideal 

learmng envlronments. 

Several problems were detect'2d in the pedagagical strategies used in 

the learning environments developed by the student teachers. These 

problems can be interpreted In terms of difficulties in representing the 

perspective of the learner. The first problem \Vas that sorne learning 

environments lacked sufficient warkIng spaces far perforrning tasks and 

answering questions. Consequently, the user would not be able to perforrn 

tasks or answer questions. The second problem was that insufficient tasks 

were presented for using the working spaces for operating knowledge. In this 

case, the user would often encounter an impasse in executing the prograrn. 

The third problem was that there was a serious shortage of evaluation and 

feedback provided ta the user. Finally, there was a lack of congruence in the 

pedagogical strategICs used in the learning environments constructed by 

student teachers. This was reflected by the lack of cantinuity between tasks or 

questions and working spaces, and inconsistencies between the instructions 

about how to perform tasks and relevant working spaces. The consequences 

of these problems in using pedagogical strategies are that they could increase 

the user's workIng memory load, and thus rnake it difficult for the user to 

understand and remember the instructions or tasks. These problems greatly 

reduced the efficiency of the learning environment. 

In terms of interactIOns two findings are important. On the one hand, 

there were insufficient user-computer interactions. In particular, the 

programs lacked interactions which are used far learning domain knowledge, 

or for providing the user with flexibility in cantrolling the learning process . 

On the other hand, student teachers provided interactions that seemed to 
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support learning of do main knowledge and of the system operation. Th.lt is, 

the types of manual operators designed by student tcachers for oper.lting the 

system were easy to use, those for performing domain tasks providcd 

flexibility for task performance, and those for answering questions promoted 

understanding. 

In terms of program structures, student teachers did not L'onstruct 

man y complex structures (Le., modular procedures or pages), or dld not 

construct them successfully. For example, when they dcsigt1C'd modular page 

structures, they often failed to design all the paths needed between branches 

and further to indicate these pa ths to the user Student teachers prl'ferred 

simple structures (e.g., single-level procedures, linear pages), but ilchil'ved il 

high level of consistency and systematicity. The smgle-Icvel procedufl's were 

used in a very flexible way, for example combining them WI th linear or 

modular procedures. Combined procedures appear to enhance greatly th<.> 

program's fu ïction. Student teachers designed single-level, lincar, and 

modular procedure structures. Single-Ievel was the mast commonl y 

designed procedure. 

Only a few subjects used the programming utilities, such as conditional 

statements, recursion, variables in their project design even thaugh they had 

all learned how to use these utilities in the course. This study found that 

modular program structures and use of programmmg utilities, in particular 

recursion and conditional statements, are strongly relatcd ta the use of 

effective pedagogical strategies. This phenomenon wIll be discus~ed in a latcr 

section. 

The findings from this study indicate that this methodology has the 

potential to identify the cognitive, pedagogical, and computational 

characteristics of the learning environment. The task activlties (i.e., the 
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manual opera tors) can be analyzed in great detail in terms of the types and 

functions of the opera tors, and the user's cognitive needs for performing 

these tasks are also considered in the context of the dynamics of the learning 

environments. Therefore, the individual evaluating the instructional 

software can diagnose the strengths and weaknesses of a learning 

environment and determine whether and why the system is weIl suited for 

system operation and for promoting learning subject matter knowledge. 

Implications for Instructional Software Development 

The research presented in this thesis has implications in two areas of 

instructional software development: the study of instructional software 

interface and instructional software evaluation. 

Implications for Studying Instructional Software Interfaces 

This research is related to the study of human-computer interaction 

because the method presented describes precisely the instructional software 

interface and i ts effects on the learner for performing tasks elicited by the 

system In particular, the method reveals the different types of interactions 

promoted in a learning environment, as weIl as the functions of these 

interactions. 

The methodology developed in this research differs in two significant 

ways from the methods that are used in research on human-computer 

interaction. The first difference is that it puts more emphasis on the system 

behaviour (for example the types and functions of different manual 

opera tors) than on the user's behaviour (for example the process of selecting 
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among different manual operators). The second point of drp,lrture lS that tlll' 

usability and constraints of the system are characterized in tl'rms of cogmth'l' 

and pedagogical content rather than in terms of the measures su ch as lime 

required to perform tasks or number of l'rrors made by thc user. 

In eharacterizing the cognitive, pedagogle,)l and compUI,llion,ll fcatures 

of eomputer-based learning environml'nts, this stud y has proposed a 

framework for precise description of instructional soft\-,'are interface This 

interface consists of three principal components: learning l~nvlronments, 

tasks, and users. This approaeh adopted the idea that in order 10 lI1vestlg,lle 

human-eomputer interaction, one needs to analyze the dynamic interLlct10n 

among users, tasks and computer systems (Bennett, 1972, 1979; Card, Moran 

& Newell, 1983; Chapanis,1991; Eason,1981; Shackel,1991). Moreover, this 

study has taken into consideration of the special properties of instructional 

software. 

Computer-based learning environments 

The computer systems are regarded as physical devices used to provide 

learning environments. This study proposed that computer-baseJ learmng 

environments have three types of attributes: cognItive and pedagogical, 

computational, and physical attnbutes. The cognltzve and pedasuglca/ 

attributes are reflected by the display of a program (c.g, text, graphies, speech 

and animation) and user-computer interactions promoted These attributc~ 

were described in terms of different types of knowledge, pedagogical strategies 

used to present the knowledge, and the forms and functions of interaction. 

The cognitive and pedagogical attributes of a learning en vironmen t ha ve the 

most significant impact on learning subJect matter knowledge. 
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Computational attributes refer to the characterization of structures in a 

microworld in the sense proposed by Groen (1984). The structure consists of a 

set of states and transformatIons between states. A weIl constructed 

mkroworld has the following three properties: a) the transformations should 

be modular; b) a transformatIOn can be undone to go back to the previous 

state; and c) the transformations and transformational structures have 

representations anaIogous to operations and procedures in the real world. 

The computational attnbute in this study was described In terms of the 

moduIarity of the program unils (i e, structures of pages and procedures) and 

the transformations between them (i.e, links between pages and procedures). 

r n addi tion, programming utili ties were aIso considered. Corn pu tational 

attriblltes d:termine the ease of constructing or inventing products, such as 

producing a computer program 

Plzysical aétnbute is reflected by physical devices such as input-output 

devices (i.e., a light pen, handwriting input, a touchscreen, a voice 

synthesizer, and video display terminaIs, etc). Physical attributes can be 

described in terms of text, sound, pictures, colours, and so on. Physical 

devices differ in their compacity in providing displays or accepting input, 

thus the physlcal attribllte rnay have aiso an impact on lIser's learning. 

In terms of the hierarchical organz:::atIOn of a learning environment, a 

Iearnmg environment consists of a set of episodes (Le., a sequence of Iessons 

or a set of exercises) which are composed of sequences of views. Each view 

consists of view space and command space. The view space refers to the static 

attributes (i.e., types of knowledge presented, the pedagogical strategies used to 

present this knowledge) and the command space refers ta the dynamic 

attributes of the information (i.e., the interactions prompted). The 

decompositian of a learning environment permits a fine-grained 



• 

• 

Conclusion 142 

characterization of important features of a learning en vironment and ,1 

precise diagnosis of its usability and constraints. 

Tasks 

What differs a computer-Iearning environment from other cOmpull'r 

environments (e.g., using a wordprocessor, spreadsheet, or drawmg progr,1m) 

is that the tasks are strongly constrained by what is promoted by the lel'lrning 

environment. The user':. task activities in computer-bascd lC.lrning 

environments involve learning of subject matter knowledge and ~ystem 

operation, whereas in other computer environments the user necds only to 

learn how to use the computer to perform tasks. 

The learning activities or tasks were referred to the manual oper.ltors 

promoted by the learning environ ment. There are three levels of ta~k 

descriptions for these activities: the top level rders to the global goal th,ll thl' 

user is supposed to achieve; the next level is the tasks that a l1~er is supposcd 

to perform in a lesson or a set of exercises; the boltom level, which IS rderred 

to the manu al opera tors, corresponds to the sequence of task activltlCS that 

the user needs to perform. This study categorizes the types of the opera tors 

and their functions and assesses whether the opera tors are easy 10 use 111 

operating the system and whether they are supportive 111 promoting learning 

of subject matter knowledge and providing the learner flexibiltty to control 

the learning process. 

Learners 

This study considered the users' cognitive needs in terms of their basic 

cognitive resourees Ce.g., working memory), the eues needed for .,ystem 



• 

• 

Conclusion 143 

operation (e.g., the information that the novice users need for executing the 

program), and the supports required for learning domain knowledge (e.g., 

pedagogical strategIes that facilitate learning; manual opera tors Lhat promo te 

understanding and flexibIlity). 

Instructional software interface needs to adapt to the following 

conditions: the characteri!:>tics of the population (e g., children vs. adults), the 

subJect matter (e.g, arts, science, etc. ), the subjects' stage of learning (i.e., 

novices, intermediates), and the types of the tasks (e.g., learning subject 

knowledge or constructing products). Further studies are needed to identify 

the kinds of interface required for these differential needs. 

Implications for Instructional Software Evaluation 

This research has implications for the evaluation of educational 

software. The method presented allows one to identify the cognitive and 

pedagogical characteris tics of instructional software. Such descriptions are 

reqmred in order to evaluate instructional software from the point of view of 

the knowledge that it implements, in particular by identifying the possible 

factors that account for the effectiveness of a given learning environment. 

The application of this method should allow researchers in the field to 

provide evaluations of instructional environments that are more precise and, 

therefore, can serve to improve the design of future environments. 

The methodology developed in this research allows us to identify the 

significant features of the learning environment that affect learning. This 

provides a basis for determining the effectiveness of the learning 

envlronment for performing il set of the tasks. Other methods such as 

experiment comparisons and meta-analysis (e.g., Kulik & Kulik, 1987; 
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Roblyer, Castine, & King, 1988), .1re more limited because they only pnwide 

information regarding whether the instructional software is effective but do 

not identify the factors that de termine the effectiveness. 

This method direct one's attentlon towards the educational properties 

of instructional software that are not normally accounted for by mosl 

measures of usability of human-computel interfaces. rv10re lmport.lntly, this 

method identifies the cognitive and pedagogical characteristics which are 

important 111 improving instructional s0ftware. The result~ from pre\'Îolls 

research suggest that the typical rneasures of success rate, time, and error do 

not present sufficient information for improving instructlOnal softwcHC (l',~, 

Chapanis, 1991; Shackel, 1981, 1991). 

This study suggests that cvaluation should look at not only thl' content 

and the representation of the subJect matter knowledge, but also the 

appearance of the operating knowledge and pedagogical stratcgies used 10 

present various types of knowledge. The problems in operatmg knowl('dge 

will create difficulty or even failure for the user executing the program. 

Another important cri tenon for evaluilting the usabili t y of 

instructional software is the qUJlItity and quah~y of the int('ractions. 

Guidelines for instructional software design and l'valuation usually ~uggest 

that a good system should maximize the interactions, without indicating 

what kind of interactions should be maximized. This study specificdlly 

indicates that efficient instructional ~oftware should maximize the 

interactions that promote the user's understanding and development of 

cOonitive skills, as weIl as provide the user wHh flexibilily to perform the 

tasks and enable the user to choose activities, task cornplexity and various 

types of assistance. However, the software should mmirnize the number and 

complexity of interactions required for operatmg the system. 
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Implications for Studying Expertise in Instructional Software Design and 

Human Teaching 

In order to investigate the differences between experts and novices, it is 

necessary to examine both the cognitive processes that a programmer goes 

lhrough in producing a program and the program that the programmer 

devoled aIl his knowledge and skills to produce. The identification of the 

cognitive and pedagogical characteristics of the instructional software 

provides a means of studying expertise in the domain of instructional 

software design. This method can also be modified for studying expertise and 

for addressing a wide range cognltive and pedagogical issues involved in 

hum an teaching. Therefore, there are two major implications of this research 

ior inslruclional design· the study of expertise in instructional software 

design and, more generaIly, the study of instruction. 

The Knowledge and Skills Reflected in the Final Products of Programming 

Previous research has focused on the programming processes which 

coordinale and display various knowiedge and skills. These studies found 

that novice programmers differ from expert programmers in various ways, 

such as the representation of programming knowiedge (Adeison, 1981, 1984; 

Jeffries, Turner, & PoIson, 1981; Linn, 1985; Samurcay, 1985; Schneiderman 

& Mayer, 1979; Soloway, 1984), the strategies used in programming (Adelson 

& Soloway, 1985; Jeffries, et al., 1981), and other cognitive abilities 

(Schneiderman, 1976, 1980) . 
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The present study found that there are cognitive, pedagogical, and 

computational characteristics evident in the final products of programming. 

These characteristics can be summarized as below: 

• Student teachers represented subJect matter knowledge in a con crete 

and isolated manner. The overall representation of vanous type~ ot 

knowledge was sometimes incohercnt 

Even student teacher had shown some knowledge in the domam thcy 

were trying to teach through programming, most of them only presentcd 

isolated facts, events, and concepts. Only a ftw student teachcrs introduccd 

ttamporal, partial and identical relationships, but they did not include causal 

or conditional relationships that are more important in dcvl'Ioping 

propositions and schemata. In addition, the programs provided the Il'arners 

with neither the difficult learning tasks that the learners often make mistakl's 

on nor efficient strategies for problem solving. Therefore, the domain 

knowledge found in the learning environments constructed by student 

teachers was concrete and isolated. 

In presenting various type of knowledge, studcnt leachers oftl'n 

prematurely introduced one type of knowledge before the prevlOus one was 

ended appropriately. Consequently, the overall knowledge somelimes lacked 

coherence. Furthermore, this study indicatcs that student teaehers had 

considerable operating knowledge but could not effcctively apply thls 

knowledge. For example, they sometime dld not present the operatmg 

knowledge in the view when the user needed to have the eues tn operate the 

system, although they were able to present cues in other Vlews Such 

inconsistency in presenting operating knowledge may be due to the failure in 

representing the user's perspective. 
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• Sorne student teachers developed the skills to combine the pedagogical 

strategies to convey domain knowledge efficiently whereas others still 

lack such skills. 

Certain student teachers have developed the skills to combine 

pedagogical strategies to explicitly con vey subJect matter knowledge to the 

user. These <;kills rnight be a kmd of characteristics of expert behaviour in 

instructlOnal software design. On the other hand, sorne student teachers 

have not develope~ the skills to use appropria te pedagogical strategies. For 

examplc, they provided insufficient working spaces for performing domain 

tasks or answering questions, and providing insufficient tasks for using 

working spaces for system opera6on. In addition, there was a noticeable 

incoherence between tasks or questions and working spaces, inconsistency 

between the instructions about how to perforrn the tasks and the working 

spaces, and a lack of continuity in the presentation of the tasks. There was 

insufficient evaluation and feedback. The inability to use appropriate 

pedagogical strategies greatly reduces the usability of the learning 

environrnents. 

• Not ali student teachers seemed aware of the ease and effectiveness of 

the interactions. 

Sorne student teachers have designed the types of interactions which 

promote understanding of domain knowledge and which provide more 

flexibility for the user to perform tasks. Several student teachers attempted to 

reduce the complexity involved in operating the system. These findings 

indicate that certain student teachers have developed knowledge about the 

usability and learnability of human-computer interface. 
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Many of the problems found in the learning environments constructed 

by student teachers are partially due to their lack of consideration ot the llS(lr'S 

task activities and the related cognitive needs in performing thl~se tilsks 

Since LogoWriterT\1 is a relatively simple environment, the student tetlChPT S 

rnay fail to consider the user's needs for learning how to operate a system. 

For example, programs frequently lacked eues for system operation <llthough 

student teachers indicated an ability to design su ch cues. These problems 

reduced the efficiency of the program and were avoidable. 

• The modular structures designed by student teachers lacked paths from 

one branch to another or alternatives in program execution. 

Previous studies (Carver, 1987; Kurland, Clement, Mawby & Pea, 1986; 

Soloway, 1984) often indicated that students did not engage in problem 

decomposition and only produced linear programs. This study showed th,lt 

student teachers designed a high ratio of single-level and linear structures but 

sorne student teachers had aiso developed the ability of decomposing and 

designing modular structures. However, the problern was that they often 

failed to design all paths needed from one branch to another and to indicate 

these paths to the user wh en modular page structures were implemented. 

Similarly, they did not design alternatives in the execution when the 

modular procedure structures were used. This finding indicated tha t 

although student teachers have developed the ability for decomposing and 

designing modular program structures, they were unable to interrelate the 

decomposed parts as a whole . 
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• The inability to apply to their projects the programming utilities that 

they used in exercise phases implies that student teachers possess inert 

knowledge. 

Al though ail student teachers USEd conditional statements, reusable 

procedures, variables, and recursion in their exercises, only a few applied 

them in their proJects This suggests that student teachers might know how 

to design thcse programming utilities, however, they did not learn the 

conditions under which the programming utilities can be applied. Therefore, 

the knowledge of the programming utilities still stays "inert" when the 

conditions for applying ~uch knowledge are provided. 

• Is there a balanced development for student teachers in constructing 

program structures and designing good pedagogical strategies? 

This study also found that modular structures of programs and the use 

of programming utllities, in particular recursion and conditional statements 

were related lo lhe use of good pedagogical strategies. The knowledge 

required to design modular structures, recursion, and conditional statements 

is prograrnming knowledge, whereas the knowledge required for designing 

good pedagoglcal strategies is teaching knowledge. How can we account for 

this finding? There are three explana tions that can be made. The first 

explanation is that there i" a parallel development for student teachers in 

constructing program structures and designing good pedagogical strategies. 

Adelson and Soloway (1988) indicated that balanced development between 

domain-specifie knowledge in particular application and domain

independent design model was frequently found in experts behaviour. If the 

parallel development found in novice behaviour is what was called balanced 
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development by Adelson and Soloway, this Hnding implics that the novices 

have begun to develop a kind of expert behaviour at a certain point. Thl' 

second explanation is that the design of superior pedagog1cal strategies 

requîres relevant program structures and thlS prompts student teachers to 

apply a wider range of prograrnming techniques. The last e'\planatlOn 1S that 

the transformations and transformational structures havl' natural 

representations as operations and procedures in the real world (Crol'Il, 1984). 

Recursion and conditional statements have numerous analogs lI1 the rcal 

world. In the case of instructional design, the natural representations are 

pedagogical strategies. 

The Study of Teaching Expertise 

The method presented in this research can be extended to the study of il 

wider range of instructional environments or contexts, including human 

teaching and more traditional materials. 

The methodology developed in this study can be modified for 

identifying the cognitive and pedagogical characteristics of human ll'aching 

processes. The sharing of the same research method in studying expertise in 

ITS and natural teaching cauld promo te a promising collaboration in thesc 

two areas. That is, the findings from the study of expertise in human 

teaching can be directly applied to developing efficient ITSs, whercas the 

design of ITSs pro vides a computational model ta test and improve the 

teaching theories developed in the contexts of human teaching . 



• 

• 

Conclusion 151 

Implications for Logo studies 

The primary function of Logo is as a learning environrnent. Papert 

argucd that Logo is an instrument that can be used by teachers and learners. It 

can be used in many different ways and it can have very different effects, 

depending on how it is used (Papert, 1986). This study applied the primary 

function of Logo tü student teachers constructing other learning 

cnvironments in WhlCh chiidren can learn subject matter knowiedge, and 

furthcr characterized what was constructed by using this tooI. The results 

indicate that Logo is a unique Iearning tooi by which student teachers can 

develop teaching skills in the processes of designing instructional programs, 

and that Logo can aiso be used as a research tool for testing theoretical 

hypothcses. 

A Leaming Tooi 

By characterizing the instructionai programs, this study identified 

sorne relatively sophisticated pedagogical strategies developed by student 

teachcrs using Logo. These pedagogicai strategies, WhlCh are called modeling, 

scaffoiding, and exploration by Collins, Brown and Newman (1989) as 

characteristics of ideal learning environments provide good supports for 

children learning subject matter knowledge. For example, modeling strategy 

(i e., the pedagogical strategies integrated instructions, demonstrations, and 

explanations) can help the children visuaIize the abstract concepts and build 

conceptual model. Scaffolding strategy (Le., the designer provides assistance 

or access tü the assistance wh en children perform tasks) can rninimize the 
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dlfficulty that children might face in performing task, and the explOrl1tlon 

facilities en able children to construct or Invent products (e g., computer 

programs, drawing) Therefore, the characterizalion of the lc.1rnmg 

environments does not only providl' a clear description of the cognitl\'l', 

pedagogical, and computational features of instructional program prodllcl'd 

by student teachers, but also clarifies what can be learned in Logo 

environments. It provldes evidence that the users of Logo can deve10p tlll' 

type of cognitive skills that mlght be the charactcristic of expt'rt bch.1VlOlIr 11\ 

instructional software design. Thereforc, the findings from this study do nol 

support the conclusion that the subJects cannot develop the kmds 01 

cognitive skills in Logo programming that are the characteristics of expert 

programmers, or develop a model of computer function that would cnable 

them to write useful programs (Kurland, Clement, Mawby, & Pea, 1986; Pea 

& Kurland, 1984; Rampy, 1984). Instead, the fmdings support the daim lhlll 

Logo environments create the context where other learnmg can take place 

(Papert,1986) 

Furthermore, this study indicates that Logo provides a computationdl 

environment which is not only inhercntly mathemalical as Hoyles and Noss 

(1992) indicated, but its easily-decomposing computational rl'presentations 

and debugging fa ci li ties also enable studen t teachers to develop the skills of 

teaching. Therefore, Logo is appropriate for a wider range of learning and 

learners. 

A Research TooI 

In this study, Logo was not only used as a medium for learning 

purposes, it was also used as a research tool for several research purposes. In 
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particular, it was used to develop a methodology for characterizing the 

cognitive, pedagogical, and computational characteristics of the learning 

environment. 1t was aIso used as a tool to build a framework for 

understanding instructionaI software interface. In addition, it was used to test 

the hypothesis that the final products of programming can provide insight 

into the designer's knowledge and skills pertaining to the cognitive and 

pedagogical characteristics in instructionaI software design. The results 

showed that these expectations of Logo were achieved. 

Implications for Providing Instruction in the Development of Instructional 

Software 

The characterization of learning environments and program structures 

has revealed both strengths and weaknesses of the instructional programs 

produced by student teachers. This has implications for providing instruction 

in the development of educational software. Such instruction can take into 

account the common problems that novices have Ce.g., not emphasizing 

causal and conditional relationships; not taking into consideration of the 

user's perspective), and support students in their efforts to focus on these 

difticult aspects of instructional software development. Students should be 

informed of both the typical problems and the elegant patterns found in 

instructional programs. This could help students avoid the problems ln 

presenting knowledge and develop the ability to design efficient instructional 

programs . 
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Limitations of This Study 

There are numbers of limitations to this research. The most signific<1nt 

one is that the instructional programs used as data source in this sludy were 

relatively simple. Such simplicity of the programs lImites this sludy ln 

display the potential of the methodology developed for characlcnng ll'arnll1g 

environments. Another deficieney IS related to the compositiOn 01 the 

sample which limites a cornparison of the characteristics of the progrL1ms 

produced by programmers at various levels; the group uspd wcl~ 

inexperienced in bath Logo and computers and lhere was no contrasling 

alternative group (e.g., more advanced instructors or programmers). In 

addition, the foeus of this research was exc1usively on the final products 

developed by student teachers. 

Further Research 

The methodology developed in this study is complementary to most 

methods previously used in studies of mstructional software effcctlveness 

and investigations of prograrnrning expertise Therefore, further research can 

concentra te on integrating these different approaches to achlcve different 

objectives. For exarnple, the further study on programming expertise can 

examine bath the cognitive processes and the products of programmlng. In 

addition, the "good" patterns identified in the learning environmcnts can be 

tested by experimental studies. The patterns that are va!idated can th en ~crv() 

as a basis for developing gUldelines for evaluating and designmg programs 
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There are several directions for this research. Briefly, this methodology 

can be applied to evaluating various types of instructional software or to 

conducting novice-expert studies in developing instructional software in 

order to identify the cognitive and pedagogical characteristics of good 

instructional software or expertise in instructional software design. This 

method can also be applied to the study of expertise in human teaching. The 

information regarding efficient human teaching or computer instructional 

programs can be used for evaluating and improving CAl or ITS 

en vironments. It is reasonable to assume that the refinements will be needed 

to apply this methodology to the study of expertise and instructional software 

evaluation . 
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