
•

•

The Characterization of Learning Environments and Program Structures of

Instructional Programs Produced Using Logo

Mei Chen

A Thesis Submitted ta the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Arts

Department of Educa tional Psychology and Counselling

McGill University, Montreal

N ovem ber 1992

© Mei Chen, 1992

Shortened 'verSlon of ttlPSl'_, t lt If-'

The characterlzaLlon of }pc31-nlnq PrJ\'ll Ollilll'Ill', tOI

InstructlOnal solf~-Jal-e

•

•

ABSTRACT

1\ meLhodology was dcveloped in this study for identifying the

cogn 1 LI v(', pedagogical, and compu ta tional characteristics of computer-based

Il',Hnlllg cnvlronmcnLs. The characlcrization of the cognitive and

ped .1gogical [ca L ures was achieved by decomposing the learning

('nvir()nmcnt~ illto episodes which were composed of sequences of "views".

Each "view" was described in terms of the different types of knowledge

prl'~cnLed, the pedagogical strategies used to present the knowledge, and the

forms and funclions of user-computer interactions elicited. The

wm putational characLerislics were described in terms of modularity and

oLher programming properties. The methodology was applied ta

l'hL' racterizing Lhe instructional programs produced by student teachers using

I.ogo.

The results showed that this methodology can successfully identify the

cognitive, pedagogical and computational characteristics of the learning

t'llvironments. It can aiso clari[y what can be learned in a microworld,

t'~pl'CiL1Ily the "powerful ideas" in Logo environments. In addition, the

\Isability and wnstraints of learning environments in meeting the learners'

l'Ognitiw nccds cturing the learning process can be assessed. Several findings

,lJ'(.' parlicular Important in this study. First, student teachers represented

domain knowledge in a concrete and isolated manner. Second, sorne student

lt',1Cht'rs dcvelopcd elcgan t pedagogical strategies such as "modeling",

"sc.lffolding", and "exploration". However, the problematic representations

0/ npcrating knowledge indicate that student teachers often faHed to consider

h\ll11,ln ILlctors in dcsigning computer interface for system operation. Finally,

•

•

this study indicated that the lcarning environments constrtlctl'd h" studl'nt

teachers lacked interactions. In particular, these enVll .. 1l1wnt~ provided

insufficient interactions for lcarning domain knowledge and tor provIlhng

learners with the flexibilities in chosing task activities, task cnmpll''\.ity, and

various assistance to mect the individual needs.

This methodology has implications for studies of instructlOn.l1

software interface and instruction al softw,uc evaluation. IL .11 '>n h.l~

implications for Logo rcsearch and for expertise studil's i 11 dp\'l'loplIlg

instructional software and other teaching contexls. Suggestlon~ lllP 111.1dl' lor

further research in instructional software dcvelopnwnl and tl1(' pxpl'rti~l'

related to such development.

ii

•

•

Rrsumé

Cette thèse présente une méthode qui a été développée afin d'ldentifier

les caractéristiques cogniti ves et pédagogiques d'environnements

d'apprent)~sage informatisés. De plus, cette méthode permet d'identifier les

caractéristIques computationnelles de ces environnements. Les

Ctlfi.lc[('ristiques cognitives et pédagogiques sont identifiées en décomposant

h)(!rarchiqucment les environnements d'apprentissage en différentes "vues".

Chaque vue est analysée en terme des types de connaissances présentés, des

stratégies pédagogiques employées pour présenter ces connaissances, et des

interactions utilisateur-ordinateur qui sont favorisées. Les caractéristiques

computa tionnelles sont décIites en termes de modularité et de fonctions de

progrllmmation. Cette méthodologie est appliquée à la description

d'environnements pédagogiques prodUlts par des maîtres en formation

u 111isan t Logo. Les résultats indiquent que la méthode résussit à identifier les

caractéristiques cognitives et pédagogiques des environnements

d'apprentissage. Les résultats indiquent également qu'il existe une relation

en tre 1 es c~ractéris tiques pédagogiques et les caractéris tiques

computationnelles des environnements étudiés. De plus, les avantages et les

inconvénients des environnements d'apprentissage pour rencontrer les

besoins cogintifs drs utilisateurs peuvent être diagnostiqués. Finalement,

cette méthode a des implications pour l'étude des interfac.es des logiciels

pédagogiques et de l'expertise dans le développement de logiciels

pédagogiques. Les avenues de recherches ultérieures sont discutées .

III

•

•

ACKNOWLEDGMENTS

1 want to thank aIl people who showed me 10\'1.', kll1dlWS~ .md who

helped me in various ways.

1 would like to express my deepest love and gratitude to 111y p.Hl'nb

and my sisters Chen Jie and Chen Tao for their unconditinn.l1 Inn' .1Ild

support. l also wOllld like to thank FengShia 1 {su and her chtldrl'1\ Ml'llnd,l

Hall and l\1artin Hall for making their home as warm as my own.

In producing of this thesls, 1 would like to heartily thank my fril'nds

David Kaufman, Soibhan Hart y, and Andre Kushniruk for bcing my

proofreaders and providing mvaluable editorial suggestion.

AIl wonderful teachers 1 have had dcserve special recognition. 1 am

particularly grateful to Dr. Alain Breuleux and Dr. Glenn F. Cartwnght who

spared no effort to help me complete this thesis after the tragie sudden dedth

of my supervisor Dr. Guy Groen.

1 would like to specially thank Prof. Bruce Shore and Ms. Pat Grafton

for their care and help in solving the associated administrative probll'ms

caused by this tragedy. l wOllld like to thank Erika Franz and Marion l3arfurth

for providing emotional support \.\ i1en it was much needed.

AIso, 1 would like to thank aIl students who voluntarily participated in

this study in Félculty of Education, McGill University.

Finally, 1 wish to express the deepest gra titude and greatest respect to

my supervisor, Dr. Guy Green, who inspired and supervi~ed this study and

worked with me enthusiastically until his untimely death just prior to thp

submission of this thesis. It is to Dr. Groen Iowe the greatest debt not only in

the production of this study, but also in my growth as a researcher

iv

•

•

Dr Groen was like an experienced ocean explorer who knew aIl the

<'l'crels of the ocean However, he did not slmply tell me what treasure he

hao found nor how J might find it. Instead, he let me delve into the sea and

gave me the freedûm ta explore my interests. Whenever 1 became 10st in the

(!xploration, he was always there to give me direction. When 1 made a

dlscovcry, cven if a liny one, he always shared the excitement with me and

encourtlged me lo go further and deeper. Today, when 1 look back on the two

years of sludy supervised by Dr. Groen, 1 realize that he was practicing the

theory he stated as that the best way to teach is ta give the learner the

opportunity ta indulge in Eree problern-solving activities. The approach is to

follow the model of the learner as a researcher and the teacher as a research

director.

IL was my great fortune to have Dr. Groen as rny supervisor in his last

years. My Hfe has been enriched by experiencing his outstanding expertise,

his serious attitude towards research, and his warmness, as weIl as the

enthusiasm, encouragement and confidence he inspired. It is with the

greatest respect and admiration that l dedicate this thesis ta his memory .

v

• TABLE OF CONTENTS

CHAPTER 1. OVERVIEW OF THE STUDY..

CHAPTER 2. REVIEW OF THE LITERA TURE 6

Instructional Software .. 7

Formative Evaluation. R

Summative Evaluation............................ H

Meta-analysis 1..)

Findings from Educational Software Evaluation l)

The Need for Developing a Methodology to Iden tif Y the

Cognitive and Pedagogical Characteristics of

Instructional Software .. 12

Intelligent Tutoring Systems .. 13

Human-Computer Interface .. 1...J.

Research Approachcs to Human-Computer Interface 15

The Methods for Evaluating the Usability of Hum,m-

Computer Interface .. 1 H

Application of Human-Computer Interface Approachcs ta

Studying Instructional Software Interface 23

Logo Exploratory Learning Environments .. 26

The Claims of Logo ... 27

The Tests of the Claims: Findings from Empirical Sludics 27

Limitations of Previous Logo Studies............ 34

Empirical Studies on Programming Expertise 35

• Findings from Expert-Novice Studies in Programming 38

vi

• The Limitation of Previous Studies on Programming

Expertise .. 46

Summaryof the Chapter .. 48

CI -fAPTER 3. METI-IODOLOGY .. .51

Subjects ... 51

Materials ... 52

Computer I-Iardvvare ... 52

Software... 52

Readings ... 53

Other Ma terials .. 53

I)ata Source ... 53

Working Samples and Sharing .. .54

Midterm Project .. 54

Final Project and Short Paper .. .55

[)ata Analysis .. 55

Characterization of the Learning Environments57

Characterization of Program Structures .. 66

CHAPTER 4. RESULTS AND DISCUSSION ... 71

Characteristics of the Learning Envlronments ... 71

Knowledge Presen ted to the Users .. 72

The Characteristics of Pedagogical Strategies 83

ID teractions .. 103

Summary of the Characteristics of the Learning

Environments ... 113

Characteristics of the Program Structures ... 114

• Page Structures .. 115

Procedure Structures .. 124

vii

• Prograrnming Properties

Manual Operators

The Relationships between Program Structures .lnd thl' U ... !.' ni

Pedagogical Strategies......... 132

CHAPTER 5. CONCLUSION 1 y;

Summary of the Research Findings 1.1';

Implications for Instructional Software Dcve10pnwnt Ill)

Implications for Studying Instructional Software InterL1Cl'S Iyl

Implications for Instructional Software EvaluatIOn. I·D

Implications for Studying Expertise in Instructional Software

Design and Human Teaching145

The Knowledge and Skills Reflected in the Final Products of

Programming......145

The Study of Teaching Expertise........... ISO

Implications for Logo studies.............. 151

A Learning Tool.......... 151

A Research T001......................152

Implications for Providing Instruction in the Dcvclopmcnt of

Instructional Software J S1

Limitations of This Stud y................154

Further Research ... 1 S4

•
viii

• LIST OF TABLES

Table 1. Frequencies of the codings representing the different types of

knowledge and pedagogical strategies used for aIl projects 73

Table 2 Frequencies of different types of knowledge presented in

each project. .. 76

Table 3. Frequcncies of tasks, working spaces and evaluation and

feedback .. 85

Table 4. Frequencies of pedagogical strategies used in each project. 88

Table 5. Frequcncies of different types of rnanual opera tors and their

functions designed for aIl projects .. 105

Table 6. Frequencies of different functional opera tors designed in

each project. .. 108

Table 7. Frequencies of autornatic opera tors designed in aIl projects 109

Table 8. Page structures, procedure structures and prograrnrning

utiliLies designed in each project. .. 116

Table 9. The distribution of the rnanual operators ... 130

Table 10. The prograrn structures anci the use of pedagogical

strategies .. 133

•
IX

• LIST OF FIGURES

Figure 1. The hierarchical organization of a learning environment ~b

Figure 2. The view space and the cornmand space in a view. 37

Figure 3. A framework for characterizing the learning environmenls... .6..t-

Figure 4. Syrnbols used in the diagrams. 6l)

Figure 5. A combination of instruction and demonstration with

scrolling effects .. 91

Figure 6. A combination of instructions and demonstrations user

controlled by pressing the enter key ... 94

Figure 7. A combination of demonstrations, explanations, and

instructions with clearing text and clearing graphies 99

Figure 8. A combination of task presentation, working spaces, and

evaluation and feedback. ... 102

Figure 9. An example of complex and crowded text with scrolling

effects ... 111

Figure la. A linear page structure Iinked by automatic operators 118

Figure 11. A linear page structure linked by manual opera tors.........1 1 li

Figure 12. A linear page structure in which the direction of operation

is controlled by pressing a key ... 119

Figure 13. A linear page structure cornbining autornatie and manual

opera tors.120

Figure 14. A modular page structure consisting of two main levels

with the bottom ones parallel. ... 121

• Figure 15. A modular page structure consisted of other modular and

linear pages.....................................122

x

• fIgure 16. Singlc-level procedures used to link a page, to answer a

qUEstion, or to choose an activity ... 125

Figure 17 A lmear procedure attached by single-level procedures 126

FIgu re 18. Â. modular procedure structure with recursion 127

•
xi

•

•

Chapter 1

OVERVIEW OF THE STUDY

The purpose of this thesis is to develop a methodology for

characterizing computer-based learning environments. Such a l1wthodology

is required in or der to describe the important features that determllH.' tlH'

effectiveness of instructional software and idenl1fy the charactl'ristlcs 01

instructional software that distinguish expert programmers from novicl'

programmers. Methods currently used in instructional software l'valuation

and in studying programming expertise are inadequate to address the widl'

range of cognitive and pedagogical issues involved. Therdore, thi~ thl'sis

focuses on identifying the cognitive and pedagogical, as well as the

computational eharaeteristics of instruetional software.

The critical roles that computers play in modern school learning

necessitate a doser examination of computer-based learning environml'nt~.

It is equally important to assess whethcr such learning environmenh meet

the user's cognitive needs in the learnmg process, and to explain what

features of the learning environments promote sucecss or failurc. In

addition, the study of programming expertise requires a methodology that

enables us to look at the products, and not just the proce~ses, of

programming.

In order to charaeterize effeetively instructional software, it is necessary

to look at the programs From both the learning environment and program

structure perspectives. A learning environment refers ta the display (e.g,

text, graphies, speech, and animation, etc.) and user-computer interactions

elicited by a program for a specifie edueational purpose (c.g., learning 'iubJeet

•

•

Overview of the Study 2

matter knowledge, developing general problem-solving ability or motor

skills, etc.). Learning environments play critical roles in the acquisition of

knowledge and skills. This is because a user acquires knowledge and skills in

in teracting wi th the information provided by a program. It is the learning

environment that a user cornes into contact with and explores. Therefore,

the cognitive and pedagogical characteristics of the learning environments

determine the effectiveness of learning. In addition, in the domain of

instructional software design, expert programmers differ from novice

programmers not only in terms of the knowledge they possess, but also in

lerms of the way they convey that knowledge to the user through the

medium of the computers, as weIl as the interactions they design to promote

Iearning. The differential knowledge a programmer possesses and skills for

conveying such knowledge will be reflected in the products of programming.

Thercfore, the methodology for studying programming expertise should

allowone to examme the products of programming with respect to the types

of knowledge presented to the user, the ways that knowledge is presented in

terms of pedagogical strategies, and the kinds of interactions promoted in a

learning environment.

Program structures refer to the computational characteristics of

instructional software. The computational characteristics have a significant

impact on the allocation of resources, data storage, and execution time and

these factors constrain the efficiency of the instructional software. Pro gram

structures are particularly important for large and complicated systems.

Furthcrmore, in the area of instructional software design, an expert

programmer may differ from a novice by the way in which a program is

structured. Therefore, the description of instructional software must include

a characterization of the program structures.

•

•

Overview of the Study 3

This study attempts to achieve four major goals. The first goal is lo

develop a methodology for characterizing the learning environml'nts

provided by instructional software. This methodology is applied III the

context of characterizing the instructional programs produced by student

teachers using Logo. The second goal is to evalu.1te the usability .'md

constraints of the learning environments in meeting the user's cognitIve

needs during the learning process. The tlurd goal is to characll'rI/.e lIlL'

program structures and examine whether there is any relationship belween

the learning environments and the program structures. Finally, this ~l uti y

investigates how the characteristics of products of programming rl'lll'cl

programmers' differential knowledge and skills in instructional softwan'

design, in addition to those suggested in previous programming studies.

The characterization of a learning environment IS achieved by

decomposing a learning environment into cp/sodes (Le., sets of exerciscs or

lessons) which often consist of sequences of views. A vicw refers to a sereen

display and the interactions associated with this particular ')creen display.

Each view is then characterized with respect to the types of knowledge

presented, the manner in which the knowledge is prcscnted in tcrms of

pedagogical strategies, and the forms and functions of the interactions. The

usability and constrétints of the learning environments are assessed in terms

of the supports needed for explora tory learning.

The characterization of program structures is conducted by dcpicting

the program structures as either linear or modular, with con~iderdtion of

other programming properties (e.g., reusable subproccdures, conditional

statements, variables, and recursion). This study also investigatcs If therc b

any relationship between the learning environments and the program

structures of the programs produced by student teachers using a Logo-based

•

•

Overview of the Study 4

application called LogoWriterH1
.

The reason for using Logo ra ther than another programming language

as the context [or characterizing the learning environments constructed by

"tudent teachers is that Logo, a dialect of LISP, is often regarded as a novice

oriented progrf1mming language. Logo has the ilexibility for designing and

cxpanding program structures. It can also be used to produce sophisticated

programs and to engage high-level programming skills. Programming is a

very complex and dlfficult activity and it takes lots of effort and lime to

produce a program. For novice prograrnmers, like student teachers, the task

is ev en more difficult. It is critical to choose a novice-oriented programming

language to minimize the difficulhes of constructing an executable or

"runnable" program so that novice programmers can devote greater effort to

"claborate" the learning environments that this study attempts to

characterize. Meanwhile, it is important to select a programming language

that has the polential [or eliciting high-level programming skills and to

construct sophisticated programs. Logo is an appropriate programming

language that satisfies the se preconditions for developing a methodology for

characterizing the learning environments constructed by programmers at

variolls lcvels of programming skills.

Logo learning environmen ts crea te the conditions under which

powerful ideas can take root (Papert, 1980). The fact that the computer-based

learning environment, or the notion of a microworld, has never been

defined in a precise fashion, has hampered its usefulness (Groen, 1985).

Groen suggested that a more precise definition may c1arify the notion of a

microworld and the powerful ideas that take place in such an environrnent.

In summary, developing a methodology to characterize the

instructional programs praduced by student teachers using Logo can serve

•

•

------- ------------------

Overview of the Study 5

sever al purposes. First, it can heip us to understand the 11.lturc ot l'omputcr

based learning environments and it can aiso help us 10 de termine whether

the characteristics of a Iearning environment meet the users' cognitive needs

in the learning processes. Second, the results from the asseSSl11ent l',ln

provide guidelines for developing instructional software. Third, tIll'

identification of the important features of instructional programs ("Hl hl'lp liS

to de termine how the characteristics of final products of programming rdll.'ct

the cognitive skills of programmers at various levcls of expl'rtisc in the

domain of instructional software design. Finally, the precise definition ot tIll'

learning environment can provide a better understanding of the nature of

Logo, and can also contribute to the theoretical discussion of what is ll'arned

in such an environment.

•

•

Chapter 2

REVIEW OF THE LITERATURE

The major goal of this study is to develop a methodology to identify

precbely the charactenstics of instructional programs produced by student

tcachers usmg Logo. In order to understand the characteristics of

instructional software, it is necessary to consider at least the following three

perspectives: a) the cognitive and pedagogical features, b) the human

computer interface, and c) the computational structure of the program. These

thrce perspectives form the basic organization of the review of the literature

prcsented in this chapter.

First, this chapter reviews the studies on instructional software

evaluation. The issue is whether the current methods used are adequate for

identifying the cognitive and pedagogical features of instructional software

and determining its effectiveness. Second, the process of knowledge

communication between the user and the computer is examined from the

point of view of human-computer interaction research. This chapter presents

the methods for evaluating the usability of human-computer interface and

discusses whether the notion of human-computer interface needs to be

modified in order to account for the special properties of instructional

software. Third, this chapter summarizes the findings on Logo, and explains

why it is necessary to characterize learning environments in Logo. Finally,

this chapter reviews studies on programming expertise and argues that such

studies should integrate analyses of both the cognitive processes that a

programmer engages in when producing a program and the products that a

programmer produres as a result of the programming processes.

•

•

Review of the Literature 7

Instructional Software

This section presents il general introductory definition of instruction.l1

software, reviews studies on instructional software evaluation, and .ugues

that the methods used in most of these studies do not take into .1ccount the

important features that contribute to the effectiveness of lI1structioIlal

software.

Traditional instructional software includes four primary categories

CCriswell, 1989; Hannfin & Peck, 1988): a) tutorial; b) drill and practIce; c)

exploratory environrnent; and d) garnes and simulation. In tutorial

environments, the computer provides instruction to teach the l1~l'r new

knowledge, whereas in drill and practice environrnents the computer

provides exercises to the user as reinforcernent so that the user can practiCl' on

what he or she has already learned and receive feedback. Exploratory

environments allow the user ta engage in relatively unconstrained problem

solving activities, and the user learns by doing and exploring. Cames ,md

simulations are computer environments that present attractive pictures,

animation, and even sirnulate complex concepts and events. The user can

play games or manipulate the simulation process by giving input.

The primary objective of using variotls educational techniques i5 tü

improve the effectiveness of learning. To assess the effectiven('s5 of

instructional software, formative and surnmative l'valuations are often

conducted. In addition, meta-analysis method is used to 5urnmarizc the

results of surnmative evaluations for different categories of instructional

software and then compare them .

•

•

Review of the Literature 8

Forrndtive Evaluation

[oormative evaluation is conducted to identify features that require

modification. Formative cvaluation procedures are applied extensively in

the ongoing process of program development. Issues ranging from design

IUgIC to selection of vocabulary, from cIari ty of graphies to branching

exccution, {rom the judging of student Input to the clarity of the lesson text

should be aH considcred (Hannafin & Peck, 1988).

Summative Evaluation

Summative evaluation is conducted to de termine whether an

educational product is effective after it has been built. The purpose of

summative evaluation is to valida te performance rather than to locate are as

in necd of improvement (Hannafin & Peck, 1988). Summative evaluation is

often used in experimental comparison studies. In this type of study,

typically, pretests and posttests on critical variables (E: g., accuracy and latency

of students' response) are conducted. The performance level achieved by the

treatment group which uses the software being evaluated is compared with

that of a comparison group whieh uses another instructional method or of a

control group which receivcs no treatment. The conclusion is based on the

statistical analysis of the results of the tests. If there 1S a significant difference

bctween the two groups and the treatment group performs better in the

posttest than the comparison group or the control group, th en the software

bcing evaluated is considered effective .

•

•

Review of the Literature 9

Mela-anal ysis

Investigators have used meta-analysis to summ.1rtze v.Hious

summativE: evaluation studies on the effectiveness of education.ll soltW.He

(e.g., Kulik & Kulik, 1987; Roblyer, Castine & King, 1(88). Met.l-an.11ysis

studies attempt to determme whether a particular cat(\gory of Cduc.1tlon,ll

software is efficient, and \.Vith whom, how, and whcn. For e'\.lmple,

investigators often try to determine if educational software can impro"t'

students' performance in basic skills, for specifie grade levl'ls, .ll\d 111

particular content areas. In addItion, the y try to determine what kinds 01

students profit most from using computers to learn, and may al50 address

whether educational software improves students' attitudes toward 5choo\ ùnd

learning.

Meta-analysis uses "cHect size" (ES) as a criterion to evaluale Icarning

effectiveness. Effect size is calculated by first subtracting the mean scores

(differences between pretests and posttests) achieved by the non-trC.1tment

group from that achieved by the treatment group, and then dividing the

results by the pooled standard deviation of the lwo groups. Thcn the

individual studies in one area are compiled to determine ovcrall cffect size.

ES is often used to quantify the amount of effect due to a given trealment and

compare the effectiveness of different instructional software.

Findings from Educational Software Evaluation

The results from meta-anal ysis indicated that instruclional ~ofl ware

generally has significant effects on aU kinds of skills within aIl content areas

at a11 grades, regardless of the sample of students and the types of

•

•

Review of the Literature 10

instructional software used (e.g., Kulik & Kulik, 1987). Such results are

presented in detail in the sections below.

• For whom is the instructionai software effective?

Meta-analysis conducted by Roblyer, Castine, and King (1988) showed

significantly higher results for students using instructional software at

college/adults levels than at e1ernentary and secondary levels. The effects

were fairly homogeneous in low-achiever and regular groups. Therefore,

Instructional software seemed to benefit college students more than

elementary sludents and secondary students.

When types of instructional software were compared for different

student characteristics, investigators (Roblyer et aL, 1988; Kulik, 1981) found

that tutorials seemed to benefit good students or oider students, whereas drill

and practice produced highest effect sizes in elernentary schoo1. However,

other investigators (Burns & Bozeman, 1981) found that disadvantaged

students achieved significantly oetter gains in performance in comparisons

with advantaged students in tutorials, and achieved about as weIl as

advantaged students in most drill and practice studies. The overall results

concerning which students benefit most from different kinds of instructional

software 1$ not clear.

• In what content areas is instructional software more effective?

By comparing the effectiveness of instructional software achieved in

different content areas, sorne researchers found that instructional software

was much more effective for learning in science th an either in mathematics,

language, or general problem-solving skills (Roblyer, et aL, 1988). These

•

•

Review of the Literature 11

researchers suggested tpat science was an cspcdally promisin~ "reil lor lIS1l1g

instructional software. The relative effcctivcness achii'\'l'd 11\ the .Hl'.lS l)1

rnathernatics, language L1.nd problcm-solving sk.i!!.:; was comparable (RoblYl'r,

et al., 1988). However, there have been divergent tïndings whlch mdk.ltl'd

that instructional software in mathematics was more effective t han III

language areas (Vinsonhaler & Bass, 1972; Roblyer & King, 1983)

• What types of instructional software are more effective?

Sorne studies have indicated better results with tutorials thlln with

drill and practice in mathematics, reading (Roblver et aL, 1988) llnd lan~t1,1ge

arts (Burns, et al. 1981; Samson, Niemiec, Weinstein & Walberg, ILJH5) In

contras t, other studies (Niemiec Samson, Weinstein & Walberg, 1987) have

found that drill and practice was more effective than tutorial al the

elementary level, and that it was par~icularly effective for mathematics

computation skills.

• How can instructional software be used effectively?

Investigators (Roblyer, et al., 1988; Willett, Yamashi ta & Ander~on,

1983) have found that simulated experiments in science were highly effective

only when students were provlded with the opportunity to interpret results

and rnake decisions on the basis of thE' results.

In comparisons of supplement versus replacemen t roles for

instructional software, the findings suggest that instructional software is

more effective in supplemental than replacement uses (Roblyer et al., 1988),

which suggests that teacher participat:on is necessary for the 5ucces5ful

irnplementation of instructional software.

• ... 1

•

•

Review of the Literature

The Need for Developing a Methodology to Identify the Cognitive and

Pedagogical Characteristics of Instructional Software

12

Thcre are several problems in the evaluation studies reported in the

prevlOus sectIOn. First, ES used in meta-analysis is a comparative value and

it dl'pcnd~ on not only the ef[ect in the treatment group, but also in the non

lrl'alment group. The larger the effect in the non-treatment group, the lower

the ES will be. Therefore, ES cannot provide an estimate of the effectiveness

of a given soflware independent of the effectiveness of the comparison

group(s).

Second, the inconsistent findings in these studies suggested that the

cffecliveness of instructional software was confounded with a number of

factors such as students characteristics, teacher interventions, and the nature

of the subject areas in which software was used. Results from these studies

are .llifIcult to interpret. According to Breuleux (1992) the difficulty is caused

mainly by the faet that most reports of instruetional software: a) do not

present the assumptions that are implemented in the software; b) do not

dearly explam how the assumptions are actually implemented; and c) do not

systematlcally test alternative combinations of assumptions and

1 m plemen ta tions.

The third problem is that, these evaluations were based on categories of

mstructional software rather than on specifie programs. The inconsistent

findings on the effectiveness of the same types of instruetional software may

.11so indicate that one piece of instructional software is efficient whereas

another is inefficient within the same category. It might be the eharacteristics

of the individual software rather than the categories of instructional software

•

•

Review of the Literature 13

that determined the differential effectiveness. Howeyer, previolls l'\'tllu.ltlOll

of instructional software did not provide sufficicnt information rcg.uding tlw

characteristics of individual instructional software. Without precise

identification and description of the cognitive and pl'd.1gogÏC'.11 ch.1racteristlcs

of individu al programs, i t is impossible to examine thcir strcngths ,md

weaknesses. Consequently, it is difficult to determine what factors within the

individual software promote success or failure and provide further usel ul

information for good instructional software "ign.

Intelligent Tutoring Systems

The promise of computer-assisted instruction is to providc learncrs

with a rich learning environment that is tailored to the uscr's individual

learning needs and objectives (Clancey & Soloway, 1990). Ilowever,

traditional instructional software does not seem to have such capacity. Since

the 19705, researchers have applied artificial intelligence (AI) methods to

create more sophisticated learning environments called l1'ltcl/igcnt tlltorInS

systems (ITSs).

Intelligent Tutoring Systems (ITSs) arc computer programs that use AI

techniques for presenting knowledge and carrying out cornplex interactIOns

with students (Sleernan & Brown, 1982). In current ITS re~earch, many

different architectural componen ts are proposcd and u~ed in unique

cornbinations and often with unique structures (Psolka, Massey & Mutter,

1988). In spite of the variety, the standard architecture of an ITS consists of

three primary components: the student rnodeling module, the expert

module, and the tutorial module (Clancey & Soloway, 1990; Frye, Liltman &

Soloway, 1988). Ideally, the student model involves a description of all

•

•

Review of the Literature 14

aspects of the studen t5' knowledge and behaviour pertinent to performance

(Wenger, 1987). In an ITS, the expert module contains a representation of the

Jomain knowledge lo be communicated and aiso serves as a standard for

evaluating student performance. The tutorial module embodies specifie

instrucliona J goals such as, the remediation of particular misconceptions or

the sequencing of material Much research effort goes into developing these

modules since they form the core of ITS (Frye et al., 1988). Until recently, the

idea that pedagogical knowledge could be explicitly represented in tutoring

systems has received less attention than the representation of the subject

matter (Wenger, 1987). The need for investigating interface design issues in

instructional software has been underlined only in the more recent field of

intelligent tutonng systems (e.g., Frye, Littman & Soloway, 1988) but there is a

lack of specIfie research findings. Significant effort will need ta be directed

toward looking at interface design.

Human-Computer Interface

Research on human-computer interaction draws attention to the

importance of interface in the design of software systems. Sin ce there has

been little research on the issues of instructional software interface, the area

of human-computer interface resear,-h will also be reviewed ta provide a

better understanding of the interactive processes involved in computer-based

learning environmen t5.

According to Card, Moran, and Newell (1983), the defining notion of

the human-computer interface is that the user and the computer engage in a

communicative dialogue because both have access to the stream of svmbols
J

•

•

Review of the Literature 15

flowing back and forth to accomplish the communication; each can interrupt,

query, and correct the communication at variolls points in the process.

This statement emphasizes two agents - the user and the computer in

the communicative dialogue. Ravden and Johnson (1989) proposed il clear

definition of human-computer interface:

The user interface generally consists of information displayed to the

user and facilities which allow the user to enter information into the

computer, to manipulate information which is displayed, and lo take

control actions. It enables the user to access and make use of the tasks

for which it has been designed. It provides the user with information

about the system, about what il does, and about what lhe user ran and

should do. It enables the user to learn about the system and lo build an

understanding of how it works (p. 15).

Researchers generally consider that the human-computer llllerface

consists of three components: the user, the computer, and the tasks. These

three principal components represent the three major topies in the res('arch

on human-computer interface.

Research Approaches to Human-Computer Interface

Researchers in the fields of computer science and software engineering

generally agree that the human-computer interface should and can be

improved, although there is currently no consensus on exactly how to deSign

a better human-computer interface. The promising approaches are

dependent upon analyzing the dynamic interactions bctween computer

sysi.t:!ms, tasks, and users (Bennett, 1984; Eason, 1981; Shackcl, 1991) .

•

•

Review of the Literature 16

Computer systems

The research on computer systems From the perspective of human

computer has two foei. One focus is on the physical devices of computer

system, another focus is on the cognitive factors related to computer systems.

Physical devices. The studies on physical devices are mostly related to

display layout and input-output devices. Early studies of physical devices

considercd the physical quality of display (e g., luminance, contrast,

regeneration rate, and resolution). More recently studies were concerned

with display layout and development of input-output devices Ce.g., mouse,

ligh l pen, hand writing input, touchscreen, voice synthesizer, picture

processing, and video display terminaIs) (e g., Balzert, 1988, Bullinger, 1988).

Cognitive factors. Naturalness, feedback, and consistency are the

cognitive factors generally investigated in human-computer interaction

research. In addition, simplicity and individualization are often studied. It is

frequently asserted that novices and unsophisticated users would find

computer systems more congenial dnd easy to use if they could communicate

with the computer using termiI ology similar to natural language commands

and queries (e g., Ledgard, Whiterside, Singer & Seymour, 1980). However,

sorne researchers found that the use of an artificial data-base language

resulted in faster performance than when natural language was used (Small

& Welson, 1977). The eHects of immediate or delayed feedback, and positive

or negative feedback in the human-computer interface have been

investigated (Corbett & Anderson, 1992; Shneiderman, 1980a). Consistency is

regarded as an important aspect of the quality of user interface. Consistency

rcfers to regularities in various aspects of the interactions or interface: the

•

•

Review of the literature 17

actions that the user has to perform in order to achieve a task, the fel'dbL1ck

the system provides, the spatial layout of the screen, etc. (Schiele & Crl'en,

1990). Consistent interfaces allow users to rnolke generL11izatlons on the basis

of their current knowledge. This facilita tes the learning procl'ss and thl'

developrnent of automated responses which can help reduce thl' uscr's

working mernory load (Schiele & Green, 1990).

Tasks

Computers have been widely used to perforrn tasks such as word

processing, calculation, drawing, and accounting. Researchers in the fil'ld of

human-computer interactions have studied the tasks of pmgrarnrning

(Brooks, 1977), editing (Card, Moran & Newell, 1980), learning 10 use a word

proc~ssor (Carroll & Mack, 1984), and fault diagnosis (Rouse, Rouse &

Pellegrino, 1980). The typical approach is to dccompose the> task into

hierarchical branches and analyze the behaviour of the liser with the

behaviour of the computer.

Users

The hurnan factors considered in human-cornputer interactions are

wo:rking memory load, long-terrn rnernory (LTM), and mental models of

problem solving activities in the process of interacling with the c()mputcr~

Working mernory load is considered to be pow much immedlate

information the user has to keep in working memory whereas LTM is

considered to be how easy is it for the user ta recall information needed to

accomplish a task (Card, Moran & Newell, 1983). Mental model is a

theoretical construct that has been used to describe how individuals farm

•

•

Review of the Literature 18

internaI models of systems from interacting with these systems (Norman,

1983). Researchers have begun ta consider the user's mental models in

hurnan-cornputer interaction, investigating, for exampIe, the user's mental

models of tasks, how different types of representations affect the user's

performance and how to apply what we know of the user's knowledge ta

design interface and train users (Carroll & OIson, 1987).

The Methods for Evaluating the Usability of Human-Computer Interface

Measuring usability means measuring the behaviour of a user and the

system during the performance of a task. The usability of human-computer

interface is measured by !~ow easily and how effectively the computer can be

used by a specific set of users, gi ven particular kinds of training and user

support to fulfill the specified range of tasks in a defined set of environments

(Chapanis, 1991; Shackel, 1984, 1991).

There are three criteria usually suggested for evaluating usability

(ShackeI, 1991). The first criterion is the success rate in meeting a specified

range of users, tasks, and environments. The second criterion is the ease of

use as judged by the users (e.g., convenience, comfort, effort, and satisfaction).

The last criterion is the effectiveness of human use in terms of performance

(e.g., time, errors, number, and sequence of activities, etc.) in learning,

relearning, and carrying out a representative range of operations.

Based on these criteria, the methods for evaluating the usability of an

lIlterface include task analyses, questionnaires, comparisons of a program

against "standards" (e.g., checklists, specifications) and field tests or

experiments .

•

•

Review of the Literature 19

Task analysis

Investigators have argued that task analysis was potenti,llly the !11ost

powerful method in the field of human-computer interaction (Hel) either lor

evaluating systems ar for praducing requirement specifications (Clrd, Mnr.111

& Newell, 1983). A task analysis allows one to descrillP the cogniti Vl' tlnd

motor aspects of the tasks (Dlaper, 1989).

According ta Card, Moran, and Newell (1983), an tlsSumplion

underlying task analysis is that, humans behave in goal-oriented ways, ,1l1d

within their limited perceptual and informatian-processing abililies, atll'mpt

to adapt to the task environments to attain their goals (p. 10). A la~k analysis

models the behaviour of expert user performance by glving hb or her goals,

aperators, methods, and selection rules for choosing among ml'thod

al terna ti ves.

The GOMS modei (Goals-Opera tors-Methods-Selection ruIes) proposed

by Card, Moran, and Newell (1983) describes the behaviour of a computer

user in a text editing task. In this mode l, the user's cognitive structure

consists of four components: a) a set of goals, b) a set of opera tors, c) a set of

methods for achieving the goals, and d) a set of selection rules for choosing

among competing methods for goals.

Card, Moran, and Newell (1983) suggested sorne basic performance

variables to be used as criteria for measure the ease and effectiveness of the

human-computer in terface by other researchers. These variables include

functionality, time ta learn to use the system, time to perform specifie tasks,

as weIl as types and number of errors made. The GOMS model can be used ta

•

•

Review of the Literature 20

predict the user behaviour sequence and the time required to perform

particular task.

Subjective measures of usability: questionnaires

Subjective measures of ease of use, often combined with task analysis

methods, are obtamed by ratings on questionnaires that include questions on

attitude (Zoltan & Chapanis, 1982; Shneiderman, 1987), user's acceptance (i.e.,

how the user subjectively rates the system) and enjoyability of the system

(i.e., how much fun it is for the u~er).

Evaluating a program against a "standard"

Using a checklist is a practical method for evaluating the usability of

the human-computer interface. The evaluator carries out the tasks for which

the system is designed and evaluates the system according to the items listed

in the checklist reflecting conventions shared by the field of computer system

design or less frequently by the principles of human cognition. The checklist

usually includes visual clarity, consistency, compatibility, informative

feedback, explicitness, and appropriate functionality. Flexibility and control,

error prevention and correction, user guidance and support are aiso often

included in the checklist (Ravden & Johnson, 1989). For exampIe, the

checklist may suggest that "X percent of typical users should be able to read

and understand the instruction in less than y time", or "X percent of typicai

users should be able to diagnose and correct their errors in less than y

minutes. "

•

•

Review of the Literature 21

Diagnostic evaluation

Diagnostic evaluation refers to the process of choosing a target user lo

perform the tasks for which computers are designed, and observing and

analyzing the user's behaviour in great detail. Diagnostic evalu.ltlOl\ is

something like a physician diagnosing a disea~e: usmg the errors, difficultics,

help requests, response times, and complaints as symptoms for dl,lgnosing

problems (Chapanis, 1981). By analyzing the user's performance frame by

frame, the experimenter probes to find uut whether the instructions \Vt'fl\

unc1ear, whether the information presented was inadequate, and whethcr the

vocabulary was too difficult (Chapanis, 1981).

Experimental evaluations

Experimental evaluations refer to the tests that involve comparing

particular features or functionality with more than one group of subjects or

comparing several different products with sirnilar subjects (Chapanis, 1991).

Wh en comparing sorne features with different subJects, the evaluator

measures the users' performance in terms of time, questions, and errors.

This method can answer whether the same features are easier for populiltion

A than for population B, but does not answer why the same Eeatures are

easier for population A th an for population B. Whcn comparing different

products with similar subjects, the evaluator measures the difficulty of

different features of each program by mean percentages of "essentially correct"

scores. This method can answer the question whether program A is casier

than program B, but it dces not answer why Ais easier than B .

•

•

..

Revlew of the Literature 22

Most of the evaluation methods presented above are conducted after

the development of whole systems has been completed. A disadvantage of

such evaluations is that any problem detected will demand considerable

modification when it may be too late to effect the desired change.

A cognitive walkthrough method

PoIson, Lewis, Rieman, and Wharton (1~91) developed a cognitive

walkthrough meihod which was adapted from the design walkthrough

techniques that have been used for many years in the software community.

In a cognitive walkthrough evaluation, the author of a particular aspect of

design presents to a group of peers a proposed design solution. The method

involves hand simulation of the cognitive activities of a user. The peers

evaluate the solution using an explicit set of criteria appropriate to the

particular class of design issues. The criteria are focused on the cognitive

processes needed by the users to successfully complete the tasks for which the

system was designed. That is, first-time users can perform tasks with little or

no formaI instruction or informaI coaching. They must learn to operate the

system by using eues provided by the system rather than by using prior

knowledge acquired through instruction.

During the walkthrough process, the reviewers step through the

acti\.)ns, considering the behaviour of the interface and its effect on the user,

and diagnosing wltether a typical use will succeed or fail. In particular, the

reviewers must identify those actions that would be difficult for the average

member of the target population to choose or execute, and analyze the causes

of f ail ures .

•

•

--.
Review of the Literature

Application of Human-Computer Interface Approaches to Studying

Instructional Software Interface

23

Studies on the human-computer interface have made il grc.lt

contribution to understanding and improving the usability of computer

systems. These studies have captured the fundamental compolH'nts of thp

human-computer interface and have provided some thcory-b""ed or

conv€'ntion-based methods to evaluate the easiness and effcctiveness of <l

human-computer interface. However, the study of human factors in human

computer interaction is relatively new and has not focused on computer uscs

for learning tasks (Frye et aL, 1988). Therefore, the concepts and approaches

taken in the area of human-computer interfaces need ta be clarified and

adapted in order to be used for studying in::.tructional software interface.

The users in most studies of human-computer interfaces were either

experts who displayed error-free behaviour or novices who had subject

matter knowledge but did not know how to operate the computers. The

typical users of instructional software are novices who have neither 'iubJCct

matter knowledge nor operating knowledge. Consequently, instructional

software needs to be evaluated both from the point of VIeW of the subject

matter knowledge that is presented to the learncr and the operating

knowledge that the learner must use to operate the system. fn lerms of the

operating knowledge, it is important to consider whether the compu ter

environment provides eues for operating the system and for learning to

operate the system by exploration. This kind of assessment can be u~ed not

only to detect and diagnose problems but also to find the strengths of the

•

•

Review of the Literature 24

system 50 that a more complete picture of the instructional software can be

provided.

The evaluations of hum an-computer interfaces in general were

focused on "usability" which refers to easiness and effectiveness of

performing the tasks rather than "learnabili ty" which refers to easiness and

effectiveness of learning subject matter knowledge. When the researchers in

the area of human-computer interfaces used words such as "learning" or

"lcarnabihtY"1 they referred to learning how to use the computer rather than

learning subject matter knowledge. In previous studies of human-computer

interfaces, most tasks did not involve the learning of subject matter

knowledge. Morcover, sorne studies only required the users to perforrn

routine tasks (Card, Moran & Newell, 1983). Therefore, the tasks involved

little learning abou t how to use computers. The evaluation of the

instructional software needs to be concerned with both the usability of

operating the system and the learnability of subject matter knowledge.

The vaIidity of "standards"

Instructional softwarel particularly ITS, is a relatively new area of

research, so the attributes of good instructional software are not known.

Thus1 there is no "standard" for good instructional software that is weIl

established. Furthermore, the requirements for the instructional software

interface may differ on the basis of the characteristics of learners, the nature of

subject areas, and teaching approaches. This complexity presents considerable

difficulty for establishing a "standard" .

.---------_._--_. ---------_._----- ...

•

•

...

Review of the Literature 25

User's behaviour versus system's behaviour

Most methods for evaluùting the usability of hl1mùn-COmpull'r

interface focus on evaluating the user's behaviour rather than the system's

behaviour. For example, an evaluation conducted by Software D1gest 09R.t)

presented the numbers of tasks that a user can pertorm with the system Ü.l' ,

versatility), time of learning ta opera te the system, time of perform1l1g spl'cIfic

tasks, and error rate as measures of usabilily (Ch.1panis, 1991). The correlatiOn

of the above variables indicated that aIl measures, except versatility, are

positively correlated. What this finding suggests is that the programs that

were easier ta use, easier ta start up, easier ta learn ta use, ,md allowed users

to perform tasks more quickly, were less versatile (Chapams, 1991).

What can be learned from such evaluation? Does it mean that the

versatility has te be reduced if the programs are ta be casier to use, casier to

start up, easier te learn to use, and allow the users to deal wlth errors more

easily? The results of these evaluations are difficult tü interpret and do not

seem to provide sufficient information for improving the quality of the

prograrns. In order to evaluate and compare the quahty of instructlOnal

software, and provide further useful information for improving the system,

it is necessary te identify and describe the system's behaviol1r in conJunctïon

with the user's behaviour.

Computer-based environments

Studies of human-computer interfaces in the computer engineering

community often viewed the computer-based environment~ in terms of the

physical devices (i.e., input-output devices). It is more important to vicw a

•

•

Review of the Literature 26

computer-based learning environment in terms of cognitive and pedagogical

fcatures (e.g., pedagogical strategies used to present various types of

knowledge, interactions promoted). It is the cognitive learning environment

that has the most signifïcant effect on a user's learning when the user engages

in the activities of learning subject knowledge. This emphasis does not imply

that a cognitive environment is completely independent of physical devices.

1 Jowcvcr, il good set of computer devices does not guarantee a good cognitive

en vironmen t.

Logo Exploratory Learning Environments

The present study uses Logo as a tooi for investigating the

development of instructionai software. Logo was originally designed for

children and it is regarded as an exploratory learning environment in which

children can learn by discovery and doing. The underlying ration ale is

adapted from Piagetian constructivism which asserts that learning takes place

through the construction of mental models developed in exploration. Papert

(1986) explained constructivist theory from two perspectives. First, from a

psychological perspective, learning is considered as a reconstruction rather

than a transmission of knowledge. Second, from an educational perspective,

learning is particularly effective when it is embedded in an activity that the

learners experience in constructing a meaningful product (such as a computer

program) r,1ther than Jcquiring knowiedge and facts without a context which

can be immedlately used and understood. Logo programming requires the

exphcit defmition of ideas, the reconstruction of the ideas or the development

of computational models of the concepts, turning the children into

epis temologists.

•

•

Review of the Literature 27

The Clairns of Logo

The five most important daims made by Papert and other Logo

advocates (Brooks, 1977; Nkkerson, 1982) ('an be summarized as lollows:

First, Logo can serve as an object-to-think-with, a mode! for the notIOn 01

assimilation. It can be used as a tool to construct learning ènvironments III

which other learning can occur, and therefore it supports otl'H'r school

learning. Second, it is hypothesized that,. through the processes of

programming the computer to perform various tasks, Logo allows 5tudenLs Lo

acquire certain cognitive capabilities which can be transferred Lo problem

solving in many other contexts. Third, the experiences from Logo Cdn bring

about a more positive mindset in students as intellectual agents, increasing

their self-esteem and making science and rnathematics attractive to children.

Fourth, the flexibility of Logo allows children to display and develop their

creativity. Finally, Logo is claimed to be accessible with virLually no pre

requisites and to offer potential for unlimited development; therefore, il can

be used by different populations with diverse charactcristics.

The Tests of the Claims: Findings from Empirical Studies

Based on these daims, previous Logo research has focused on

understanding the cognitive and social effects of children's experiences with

Logo. Specifically, researchers tried to find out, first of a11, what are Lhe

cognitive outcomes {or children of programming the compu ter to perform

various tasks? In particular, can Logo help studenLs acquir<? certain cognitive

capabilities, and can these capabilities be transferred to problem solving tn

other domains? Second, can Logo, as a programmtng language, be a general

•

•

Review of the Literature 28

educatlOnal tool for constructing learning environments in which other

learning can occur? In other words, does learning Logo facilitate learning

other subjects? The third question is, what is the effecti veness of Logo with

various instructional methods and for various target populations. In

addition, there are sorne concerns related to the social and motivational

impacts of Iearnmg Logo, such as on self-esteem and motivation ta learn.

Recent research focused on exploring the constructive attributes of Logo for

mathematlcs learning These studies are discussed further on in this chapter.

• Logo is supportive of learning other subject knowledge

Programming is a~sumed to require the use of fundamental concepts

such as variables and recur~ :ve structures, which are important in

mathematics and physics. These concepts are difficult to learn in

conventional teaching and the use of variables and recursion in the

functional context of programming makes them more easily comprehended

(Papert, 1980; Nickerson, 1982). Studies have shown that, generally, Logo is

supportive of other school learning and is useful for communicating difficult

abstract concepts, such as in mathematics (Feurzig, Papert, Bloom, Grant &

Solomon, 1989; Howe, Ross, Johnson, Plane & Inglis 1982; Howe, O'Shea &

Plane, 1979; Kurland, Pea, Clement & Mawby, 1986; Sutherland, 1992; Statz,

1973) and in particular, geometry (Abelson & diSessa, 1980; Lehrer, Randle &

Sancilio, 1989).

Logo is best known for its applications in mathematics, but it has

become fairly widespread and its applications go beyond mathematics

(Wcnger, 1987). Studies also indicate that Logo can be used as tools to learn

•

•

- -- ----------------

Review of the Literature 29

physics (Briskman, 1984; Dale, 1984), languages (Bouchard & Emirk.1nial\,

1984; Bull, 1983), as weIl as logical reasoning (Gorman & Bourne, 1983).

• Can Logo prograrnming develop certain cognitive abilitles and can

these abilities be transferred to other domains?

Programming is a complex activity which demands variolls cognitive

abilities. It is hypothesized that in the proccss of programming these

cognitive abilities will develop. However, the answers to this qUl'!->tion Littll'r

with different implementing rnethods and school settings and 11l'ncl' llrl'

controversial. Sorne studies showed that learning to program can have

positive effects on thinking and problem solving Skills (Fellr7lg, Papcrt,

Bloom, Grant & Solomon, 1989; Kynigos, 1992; Mayer, Dyck & Vilberg, !9H6),

and debugging skills (Howe, Ross, Johnson, Plane & Inglis 19H2, Howe,

Q'shea & Plane, 1979; Statz, 1973). The debugging skills acqllired in Logo

programming can be transferred to nonprograrnming domains (Klahr &

Carver, 1988). Investigators also found that Logo had an important effect on

creativity (Clements & Gullo, 1984; Reimer, 1985).

Other studies, however, found little evidence that current approaches

to teaching programming bring students to the level of programming

competence needed to develop cognitive abllity and the kinds of systematic,

analytic, and reflective thought that is characteristic of expert adult

programmers. These studies did not support that learmng to program can

help children develop a model of computer functlOning that would enable

them to write useful programs (Kurland, Clement, Mawby & Pea, 19R6; Pea &

Kurland, 1984; Rampy, 1984). Kurland, Pea, Clement and Mawby <19R6)

found that students were doing so-called brute-force paraxraph programmlng

in which they decided on sets of desired screen effects and then lined up

•

•

--
Review of the Literature 30

commands lo cause the screen effects. In this process, students did not engage

in problem decomposition or use the powerful features of the language to

structure a solution to the programming problem. In addition, a study found

that very few chlldren had a correct understanding of concepts such as flow of

control, conditionals, or recursion (Kurland & Pea, 1985). Children's

sponlaneous projecls often did not involve the use of variables and children

had lo be inlliatcd lo il (Hllle!, 1992; Sutherland, 1992). As can be expected,

since students had not developed the programming competence and

cognitive abilities in the first place, the studies found little evidence of

transfer of cognitive skills to other domains.

• Logo can bring about positive effects on students' self-esteem,

motivation, and attitudes towards learning

Most studies indicated that experience with Logo has positive effects on

students' self-esteem, motivation, and attitudes toward learning. Especially,

Lego-Logo is highly motivational to young learners of both genders (Papert,

1986). However, Roblyer, Castine and King (1988) stated that no conclusions

could be drawn about the impact of Logo on students' image of themselves on

the basis of evidence available.

• The effectiveness of Logo with various instructional rnethods

Learning by exploration is recornmended by Papert as the best way to

use the Logo environment (1980). Papert strongly suggests to help children

learn how to develop and debug their own theories rather than to teach thern

theories adults consider correct (Pa pert, 1972a, 1972b). Papert c1aimed that,

without the imposition of adult authority and adult ideas, children can corne

•

•

Review of the Literature 31

to an understanding of the nature of fundamental programming concppts

such as recursion. Newman (1986) argued that this is not truc for

programming because computer programming is sel dom mastered by young

children.

From a problem solving perspective, Groen (1978) argued that:

The best way to use the Logo environment is to give the learner the

opportunity to indulge ln fret! problwl-solvins ac/ruItIcs (e g ,

inventing computer programs that do interesting thing~) The child

selects a project and is free to do anything he or she wishes lo

accomplish it, subject to quite explicit constraints imposed by the Logo

environment. The goal is to improve the learner's ability lo artlcul.lte

the working of his or her own mind and particuiarly the Interaction

between him/herseH and reahty in the course of Iearning and

thinking. The approach is to follow the model of the child as

researcher and the teacher as research director (p. 56-57).

Results from empiricai studies showed that the eHects of Logo differed

according to implementing methods and schooi settings. In contrast to other

views, certain studies found that a structured teaching method is more

effective than an unstructured, discovery-oriented method (LI ttlcfIt.·Id,

Delelos, Bransford, Clay ton & Franks, 1989). Among vanous methods, asking

children to design instructional software with assistance from the tcach('r

seemed to be an effective rnethod for learning both Logo and fracti()n~ (1 lard,

1988). Recent research tended to emphasize that teacher's role is critical 111

building the bridge between Logo and mathematical task activities (Curtner,

1992) and providing problems and information relevant to the constraints on

programming context (Sutherland, 1992). Therefore, the results support that

children can learn efficiently by r:xploration in Logo environment when

being directed or assisted by the teacher.

•

•

Aeview of the Literature 32

• The nature of the Logo explora tory learning environments

Groen indicated that computer programs are structures that coordinate

other structures (1978). He explicitly articulates sorne of the properties of the

microworld and programming in the following quote:

First, a programming language ... can provide an introduction to

malhematical formalIsrn that is better coordinated with the natural

structures of the chlld. Second, the process of writing a computer

program encourages thinking about how one would perform the

actions that are bC'ing embodied in the program. Third, and most

irnportantIy, the pupi! rnay invent a grossly incorrect or "buggy" theory

about the microworld. Computer-based microworlds are naturally self

correcting ... The nature of the errors may yield additional information.

If the cause is nontrivial, the task of debugging or discovering the cause

of the error may lead to major modifications in the theory (p. 371).

These concerns seern to be the topics of recent studies on Logo.

Researchers (Edward s, 1992; Hoyles and Noss, 1992; Loethe, 1992; Kynigos,

1992) atternpted to determine the extent to which Logo provides a

mathematical environment and whether there are properties of the Logo

environment that are inherently mathematical. They also attempted to

sketch an understanding of how Logo opera tes as a medium for ~~ildren to

express their mathematical ideas. The conclusions were that, first, the

mathernatical nature of Logo prograrnming allows children to express

geometrical ideas in a "natural" way (Loethe, 1992, Kynigos, 1992, Edwards,

1992). Second, Logo offers a means for students to accept and use abstract

symbols (Sutherland, 1992). Third, the most importantly, the microworld

provides rneaningful, interpretable feedback that the learners can use to

•

•

Review of the Literature 33

refine their understanding of the structure of the new mathematic,11 entities

they encounter.

Misconceptions can be corrected by students themselvcs through .1

process of conceptual "debugging" (Edward s, 1(92). Thereforc, then'\ is

considerable evidence that Logo provides a computational ('Iwironment 111

which mathematics can, at sorne level, take place and that It ('L1I1 provldc

access to otherwise unattamable mathematical ideas (Iloyles and Noss, 1989).

The rationale was derived from the way in which the Logo envmmment can

provide pupils with an opportunity to engage in mathematical problem

posing and solving during which they develop control over their own

learning, and the use of computational lools which can potenl1ally structure,

amplify, and reorganize thinking (Noss & Hoyles, 19<)2). However, N oss and

Hoyles (1992) suggested that the idea that Logo provldes an "aIl purpose

learning environment" has raised a range of unrealistic expectalions

concerning the development of general problern-solving skills.

In summary, studies showed that Logo supports other school learning

and that experience with Logo has positive effects on students' sclf-csteem,

motivation, and attitudes toward learning. Howcver, the dala on whcther

cognitive abilities can be developed from experience with Logo and further be

transferred to other domains is controversial. Moreover, the studies which

did not find positive cognitive eff€cts in learning to program also indicaled

that children did not progress very far in programming skills, or in depth of

understanding program concepts. More recent studies have conflrmed the

constructive nature of Logo environ ment for mathematics learning .

•

•

Review of the Literature 34

Limitations of Previous Logo Studies

The limitations of the previous research are created by three major

factors: the research questions asked, the research methods, and the subjects

used.

First, the nature of the Logo learning environment was not studied

[rom the perspective of learning mathematics un Hl recently by Noss and

Hoyles (1992) and other researchers (Edwards, 1992; Loethe, 1992; Kynigos,

1992). Noss and Hoyles concluded that Logo provides an explora tory

environmcnt that is inherently mathematical rather than an all-purpose

learning environrnent. In order to examine whether the Logo environment

can provide a general computational representation for learning, it is

neccssary to invesligate the use of Logo for learning other knowledge rather

than mathematics. This study uses Logo as the medium for student teachers

to develop instructional prograrns for teaching.

Second, in past Logo research, researchers who conducted empirical

studies usually used either extensive observations or pretests and posttests to

rneasure the cognitive outcome from the interaction with Logo. However,

these methods cannot account for what the child learned in the Logo

environment, which is the way of establishing a correspondence between the

concrete world and one of abstract representations (Groen, 1984) and

intellectual structures (Papert, 1980). Groen (1984) further presumed that

more extensive use of empirical methods in cognitive science might be of

considerable value in research on Logo, because this use could result in the

emergence of a body of research in which theory and data are closely linked .

•

•

Review of the Literatu re 35

Therefore, this study uses a cognitive method to examine the structures

constructed in Logo environment.

Finally, mo~tly chlldren were used as subJects in previous Logo studil's

rather than university students or adults. Because childrcn's maturity lcveb,

cognitive abilities, and intellectual experiences differ greatly fr0111 Lldults, il is

not surprising to find that childrcn had not dcvcloped the kinds nt cognitive

skills or abilities in Logo programmmg that are the ch<Hacteristlc~ of l>'\.pl'rt

adult programmers. In order to determine whether lcarncrs can develop the

kinds of cognitive skills or abilities in Logo programmmg that are the

characteristics of expert adult programmers, this study WIll use university

students whose maturity levels, cogl1ltive abtlities, and intellectual

experiences are similar to those of professional programmers.

Children's programming is emphaslzed as a way of building

intellectual structures; professional adult programming, however, hJS bccn

extensively studied as a cognitive skill in the arca of cognitive science. The

findings from empirical studies of programming are presented below.

Empirical Studies on Programming Expertise

In order to understand the characteristics of instructional software, it is

necessary to take into account the structure of the program, from a

computational perspective. Research relevant to this aspect of the de~cription

cornes from empirical studies on programming expertise. These studiec:; have

also investigated the cognitive processes in which programmers engage, the

content and organization of programming knowlcdge, and related cognitive

abilities. These findings provide a basis for understanding what is reqUlred

from the designer in developing efficient software, mcluding instructional

•

•

Review of the Literature 36

software. Because the products and processes in programming are closely

interrelated, they need to be studied in an integrated way. A second reason

for reviewing the research on programming expertise is to undf>rstand ~he

rnethods used to compare experts and novices in programming and to

determine how these methods can be irnproved. The current methods used

in studies of programming expertise for describing program structures are

very few and incomplete.

Programming is a complex configuration of various activities oriented

loward devcloping a product consisting of a series of instructions that direct a

computer to accomplish sorne tasks (Pea & Kurland, 1984). Programmmg

consists of such activities as understanding the problem to be solved,

designing a solution, coding ü~p solution using a programming language,

comprehending the written program in order to debug, testing the program's

correctness, and evaluating usability for target population. These activities

require cognitive skills such as systematic planning, procedural, and

conditional reasoning (Brooks, 1977; Jeffries, Turner, PoIson & Atwood, 1981;

Nickerson, 1982; Pea & Kurland, 1983; Pennington, 1982). Programming aiso

demands knowledge of subject matter and knowledge of programming

languages and computer architecture. In addition, knowledge of design

strategies is also required (Adelson & Soloway, 1988; Pennington, 1987).

Successful software design involves the coordination of the activities in

which goals and opera tors interact with various skills and knowledge.

The basic issue addressed in programming expertise studies is similar

to that asked in other areas. That is, what distinguishes outstanding

individuals in a domain from less outstanding individuals in that domain, as

weIl as from people in general (Ericsson & Smith, 1991). To capture the

essence of programming expertise and the related abilities of programming,

•

•

Review of the Literature 37

two types of tasks are often used: the representative programmmg t.lsk, such

as recursive programming and tasks that measure a related functinn or

ability, such as, recall of programming codes. Methods such as thinklllg

aloud, observing task performance, and expIan.ltlOl1 are often llsed lo gain

understanding of the cognitive proccss('s and the strategies employC'd in

performing some representative tasks, as well as the contpnt and org.1l1iz.llion

of knowledge the subjects utilized in their problem solving. The me.lsure 01

related functions and abilities, su ch as memory tests are often used to make

inferences regarding expertise.

Research on programming skills has focused on the programming

processes which coordinate and display the various knowledge and skills by

comparing experts and novices. Sorne findings from expertise studies are

similar to findings in other domains, whereas others are dlfferent. For

ex ample, studies in other domains consistently show that experts use forward

reasoning (see Groen & Patel, 1988, 1990), but studies in programming

indicated both experts and novices use backward reasoning (Adelson,

Soloway, 1985; Jeffries, Turner & PoIson, 1981). Also, research !11 olher

domains showed that experts display bet~er memory performance (deGrool,

1966; Chase & Ericsson, 1982), but the results in programming suggested that

this is not al ways true (Adelson, 1984). Thereforc, the findmgs from

programming provide a unique perspective to look at expertbe. The

following section will present findings from programming expertise studies

that focused on the programming proces!:!?s and related cognitive factors .

•

•

Review of the Literature 38

Findings from Expert-Novice Studies in Programming

The studies of prograrnming expertise have analyzed almost every

aspect of the prograrnmèr's behaviour displayed in the processes of

programming and related cognitive abilities using novice-experts

comparisons Results from expert-novice studies have revealed certain

charactenstics of programming expertise. This section focuses on findings

concermng process, represen ta tions, memory performance, validation of

prograrns, and prograrn structures.

1. Process

Decomposition of complex tasks into more manageable subtasks is

essential to successful software design. Researchers consistently found that

both novice and expert programmers use a top-down decomposition to

reduce the complexity of tasks in programming design (e.g, Jeffries, Turner &

PoIson, 1981). That is, starting from a global statement of a problem, a

programmer de composes the initial problem into subproblems, then further

mto subproblerns, until the problem is solved by implementation of

programming code. As decomposing proceeds from the top to the bottom the

abstract solution become more concrete, until the solution can be

implemented in progranl codes (Adelson & Soloway, 1985; Jeffries, Turner &

PoIson, 1981).

The difference between novices and experts is that novice code the first

part of a solution until the first part can be implemented in program codes,

they th en code the next part of the solution, and so on. This process is called

depth-first decomposition. In contrast, experts use a top-down, breadth-first

•

•

Review of the Literature 39

decomposition strategy. They develop the solutions for aIl clements at the

same level equally and all information <lbout the current state of the design is

at the same level of abstraction so that <111 clements (.11' mteract wlth e.lch

other. Therefore, both novices and experts use top-down decomposi tion

strategy, but novices decompose depth-iirst whereas experts decompose

breadth-first (e.g., Jeffries et al., 1981) However, ",hen expert programmers

solve problems in an unfanuliar domain they create the partial solutions and

combine them to form a full solution (Adelson & Soloway, 19R5). Thb

strategy is similar to the ones used by novices

• Expert programmers devote a great deal of effort to understanding a

problem and its constraints before breaking it intI) subproblems.

In addition to strategies used in th€' df'composition process, expert and

novice programmers aiso differ in other aspects of the dccomposition

programming process. Sirnilar to the findings of research in other domains

(Paige & Simon, 1966; deGroot, 1966), expert programmers are found to

devote a great deal of effort ln understandmg a problem before atlempLing Lo

break it into subproblems. They clanfy con~trainls on the problern, derive

their implications, explore potential interactions, and relate thlS information

to real-world knowledge about the task. Novices, on the other hand, show

Httle inclination to explore aspects of subproblems before proposing a

solution. This has serious consequences for both the correctness and the

efficiency of their design (Jeffries et al., 1981) .

•

•

Revlew of the Literature

• Experts tend to decompose the problem based on known solutions,

efficiency and aesthetics, whereas novice programmers do nol show

su ch a tendency.

40

Experts decompose the problem into manageable, minimal, and

mteracting parts in order to reach the point where the subproblems have

known solutions. In contrast, novices are much less effective in their use of

thi~ itcrative decomposltion rnethod. They seem to lack the more subtle

aspects of the decomposition. In addition, experts state alternative solutions

and select arnong them based on the hypothesized efficiency and aesthetics,

whereas novices seldom consider more th an one possible solution to any

subproblem. Even in the few cases in which novices choose among

alternatives, they base their decisions on programming convenience rather

than on efficiency or aesthetics (Jeffries et al., 1981).

2. Representations

Rcsearch has shown that expert prograrnmers have effective

represcntations of programming knowledge at both the abstract and concrete

levels (e.g., Adelson, 1985), whereas novice programmers only have concrete

representation (Jeffries et al., 1981; Linn, 1985; Sheiderrnan & Mayer, 1979;

Soloway, 1984). These studies indicated that expert programmers represent

programming problems in terms of the general concepts, the underlying

structures of broad classes of problems, the solution strategies which crosscut

many types of problems. and routinized plans (Soloway, 1984) or templates

(Linn, 1985). In addition, expert programmers' mental representations of

•

•

Review of the Literature 41

programs are based on procedural (flO\v control) rather th.11\ function.ll (goal

hierarchy) relations (Pennington, 1987).

In contrast, novice programmers have difficulties r(~presl'nting

knowledge effectively. Even if novice prograrmners begin 10 dcvelop aIl

understanding of the programming language and wrile fl'Iatlvel \'

sophisticated programs, they may still represent problcms in tl"rms ot the

surface codes, format, and syntactic properties of the langu.lge (S.lIllurc,lY,

1985). These findings mirror the results of expert-novice comparisons in

domains, such as phyS1CS (Chi, Feltovich, & Glaser, 1980, which found th.lt

experts represent problems according to abstract principles, whereas novlce~

tend to rely on surface structures to organize their representation of problems.

• Experts have superior recognition abilities for idcntifying the di1~s of

relevant solutions and the conditions of applicability.

Experts have templates which include the critical fcatures of the

problem, relevant solutions and the conditions of the apphcability. Expert

programmers simply retrieved the appropria te templal() from memory and

applied it when they solve problems in [amiliar domain. They are also able

to retrieve a known solution in a novel conlext and adapt the solution to the

particular context of a design problem (Adelson & Soloway, 1985; Jcffrie~ ('t

al., 1981)

Novice prograrnmers operated on lhe partial template which could be

retrieved from their rnemory or the texts (Anderson, Farrell & Sa uers, 1 YH4;

Pirolli, 1986; Pirolli & Anderson, 1985). They showed no evidence of

recognizing the applicability of information in a novel situation comparable

to situations they had learned previously. In addilion, the information they

generated in the course of solving the problem was often nol ilvailable when

•

•

Review of the Literature 42

il wa~ most needed, and when it was available, they did not attempt to alter

the previous solution ta the current problem (Jeffries et al, 1981).

• Expert and novice programmers interpret the same concepts

differently.

Novices have inadequate understanding of many of the basic concepts

of computer science. The same technical computer science terrns do not have

the same meaning for the novices as they do for experts (Jeffries, et al., 1981).

Studies have consistently indicated that expert and novice programmers have

different understandings of recursion1 (Jeffries, 1982; Kahney, 1982; Kahney

& Eisenstadt, 1982; Kurland & Pea, 1985).

• Expert programmers have a weIl developed design schema of

programming knowledge.

According to Jeffries et al. (1981), a design schema is a template for

developing programming structures that is independent of its content. This

has impact on almost on every facet of the prograrnmer's behaviour in

software design. It directs the programmer's behaviour in an efficient way. A

programming schema is complex and it is developed in stages as a result of

experience with software design. The mature design schema facilitates the

refinement of understanding, retrieval of known solutions, generation of

alternatives, and critical analysis of solution components. Experts are

assumed to possess such a design schema, whereas novices programmers

1 Rl'curslOn rcfers ta cl proceS5 that 15 capable of triggering new mstantiahans of itself,
with control paS5mg forward to successIve Instanhations and back from tenninatied ones. This
is the model ot the recurSlve process that experts have, whereas novices have a "looping"
modcl of recurSlOn. That 15, novices vlew a rccursive procedure as a single abject instead of a
!>cn.ll of ne\\' m!>tantJatlOns.

•

•

Review of the Literature 43

have a less developed design schema. This explains why their behaviour 15

less efficient.

Another idea related to the design schema is the p/111/ schemll propo~cd

by Rist (1986, 1989) and Spohrer, Soloway, and Pope (1985). A plan IS .1 set nt

stereotyped sequences of actions that expert prograrnmcrs kno\\' and that C,ln

be adapted to the current situation. Sorne rescarchcrs regard pwgramming

plans as the most important characterislic of 'H.ivancl'd prngr.1mmlllg skllb

(Adelson, 1981; Bonar & Soloway, 1985; Dalbey, Tourniaire & Lill 11 , 19R6;

Detiennne & Soloway, 1989; Kurland, Mawby & Cahir, lYR4; Shneidermtll1,

1976; Soloway, Adelson & Ehrlich, 1988; Spohrer, Soloway & Pope, Il)RS;

Rist, 1986). It is assumed that experts do not only dcvclop a greater range of

these plans than novices, but also know the "rules of programrning

discourse" that govern the valid application of plans in particul.lr

circumstances (Soloway & Ehrlich, 1984).

3. Memory performance

Experts possess chunks that represent functional units in their

respective domains, whereas novices do not possess such chunks as

demonstrated in performance on recall tasks (Adelsün, 1981; McKeithen,

Reitman, Rueter & Hirtle, 1981; Shneiderman, 1980b). Resul ts from

Shneiderman's studies further showed that experts were able tü chunk lines

of code together into meaningful configurations which allowed them to

achieve better memory performance, whereas less experienccd users were less

able to farm such chunks 50 they recalled fewer stimuli.

Adelson (1984) reported findings that contradict the notion that experts

have superior memory performance. She indicated that novices had belter

•

•

Review of the Literature 44

memory for the details of code than did experts. The explanation appeared to

be that experts focused more on the overall goal structure of the

programmmg task Lhan on the actuai code because it is easier for them to

solve a programmmg task than to memorize a detailed solution whereas it

was the reverse for novices. Therefore, expert programmers do not always

display superior memory performance.

4. Validation of programs

Novices and experts differ in their skill in testing designs and

programs. Experts have well-developed knowledge of debugging strategies

associated with t~eir programmip g ternplates and they are good at designing

tests for revealing poter. Hal problems. In contrast, novices often test only the

obvious or usuai forms of input and may systematically fail to test aIl of the

codes (Kurland et aL, 1986; Mandinach & Linn, 1989).

5. Program structures

One of the differences between the study of cognitive skills in

computer programming and those in most domains is that the tasks in

programming often involve constructing products. It is reasonable to assume

that, besides the process of prograrnming, expert programmers a1so differ

from novices in the ways they design the final products of programming.

Previous studies of programming skills did find differences between experts

and novices in terms of program structures, in particular in ways to construct

recursion .

•

•

Review of the Literature

• Expert programmers construct modular programs whercas novice

prograrnmers construct linear ones.

45

Effective programs require modular structures sa that large systpms can

be divided "naturally" into coherent parts that can be separately dC\'l'loped

and maintained (Abelson, Sussman & Sussman, 1985) Most studies on

learning to prograrn distinguish between a linear program and a modular

program. A linear program empha ,izes the generation of effects withuut ,my

consideration or understanding of the inner structure of the code (Soloway,

1984). A modular program, however, is considered as emphasiLing deganl

and efficient programming, and is accompanied by a higlH>r-level

understanding of programming (Carver, 1987; Kurland, Clènment, M,HVby &

Pea, 1987). The cognitive dernands for modular programming ,1re dilferent

from those for linear programming. Researchers indica tcd th.1 l expert

programmers tend to construct modular programs while novices tend to

construct linear ones.

• Experts and novices differ in the way they construct recursion.

An essential aspect of recursi ve programming is related Lo how one

exits the recursive cycle. Novice prograrnmers often conslrucL il cycle which

permits them to exit from the middle of the cycle, whereas experts construcl

exit points from the top or the bottom a cycle, a strategy lhat is beheved ta be

superior (Soloway, Bonar & Erihlich, 1983).

In summary, the results from studies of prograrnming experti~e

showed that, first, both experts and novices use top-down decomposition

strategy. The differences between experts and novices in decomposition are

•

•

Review of the Literature 46

that experts devote more effort to analyze the problem, and they decompose

the problem based on known solutions, effieiency, and aesthetics using

breadth-first strategy. In contrasc, novices use depth-first strategy to solve

problems and they do not show a tendeney to consider efficiency or aesthetics.

Expert programmers select a solution among alternatives based on the

hypothesized efficiency and aesthetics whereas novice programmers select a

solution based only on convenlCnce.

Second, expert programmers have weIl developed representations of

programming knowledge whereas novice progr2.mmers only have low-Ievel

representations of programming knowledge. The well developed knowledge

representatlOn is often called as a design schema. This schema impacts

almost every aspect of the programmer's behaviour in software design and it

directs the programmer's behaviour in an efficient way. Expert programmers

have such a design schema 50 they are able to retrieve and modify a known

solution ta fit a current problem whereas novices do not have such a design

schema sa they are unable either to retrieve the solution or to adapt it to a

novcl problem.

The results do suggest experts demonstrate an enhancerl ability to

chunk meaningful stimuli but do not necessarily remember more details of

code than novices. Expert programmers also differ from novice programmers

in the ways they construct the prograrn structures.

The Limitation of Previous Studies on Programming Expertise

Previous studies of programming have provided a great deal of

understanding of the content and organization of programming knowledge,

the general strategies for solving problems, and the related cognitive abilities.

•

•

Review of the Literature 47

However, a limitation of the these studies is that they only focused on the

programming process and did not examine the Important featmes of the

products in order to see if and how they distmguish expert Irom novice

programmers.

Programming is a complex configuration of activlties oriented tow,ud

developing a product. Different types of knl 'vledge, Skills ,1Ild il bilities

interact in a very intricate way in the programming proccss <1nd it is \'l'ry

difficult to assess the roles played by each factor in <lchieving outstanding

performance. For example, it is not convincmg to say that the designer who

uses top-down and breadth-first strategies will definilely produce .l bl'tler

program than the one who uses top-down and deplh-first strategll'~. In f.lct,

just like an expert runner is distinguished from novice runner by how Llst he

or she arrives the goal, an expert programmer may be dlstinguished from

novice programmers by how weIl he or she can produce a program.

Therefore, expertise or outstanding achievements in programmlng may be

identified by the products that a programmer produced Ilowevcr, in many

do mains in which experts produce complex products as texts, it is dlfficulty to

analyze such products in order to identify the measurable :tspects capturing

the superior quality of the product. Therefore, researchcrs focused on

systematic characteristics of the cognitive process in order to diffcrentiale

experts from novices (Ericsson & Smith, 1991).

Similarly, the methods available in current expertise re')carch are

unable to identify the measurable aspects capturing the expertise embedded in

the fina! products of programming. In addition, the previous studies of

programming expertise have not yet covered programming expertise in

designing instructional software. Therefore, to dcvelop a methodology to

characterize instructional software will have considerable value.

•

•

Review of the Literature 48

The identification of programming expertise from the programming

product does not imply that it can replace the studies of the cognitive

processes of programming Instead, the emphasis is based on the assumption

that the dlffcrent knowledge, skills, and abilities that the programmers

possess will be displayed not only in the processes, but also in the final

products of programming. The better understanding of programming

expertibc can be achieved only when the components of the superior

performance displayed in both the processes and products can be described

and identified.

Summary of the Chapter

This chapter presented a review of literature to develop the rationale

underlying this study. The review considered perspectives of instructional

software evaluation, human-computer in teraction, the Logo approach, and

the studies of programming expertise. This section presents the key points for

devcloping a methodology to identify the cognitive, pedagogical, and

compulational charactej:istics of instructional programs produced by student

tcachers using Logo.

First, the previous evaluation of instructional software may indicate

only whether in~tructional software is efficient. However, it does not identify

the cognitive and pedagogical characteristics or give any other information

regarding the strengths and weaknesses of the instructional software that

de termine the effectivcness of instructlOnal software. Therefore, it is difficult

to distinguish one program from another and further to compare them.

Consl'qucntly, the results from these evaluations do not provide sufficient

guidelines for developing efficient instructional software. This study suggests

•

•

Revi'3w of the Literature 49

that previous evaluation rnethods should be complernented by the

characterization of the important features of instructional so!tware th.1t

determine effectiveness.

Second, the process of knowledge communication betw('l~n .1 USl'r and .1

computer IS studied as human-computer interface, without any consideration

of the instructional properties of the software. Thprefore, the concepts .1I1d

approaches in the study of hurnan-computer interface have to be modl!ied III

order to effectively study instructional software interface.

Third, the previous studies on Logo did not explore the nature of I.ogo

environment until recently. Recent studies have confirmed that Logo

provides a cornputational environment that is inherently mathematic.1l. For

example, the mathematical nature of Logo programming allows children 10

express geometrical ideas in a "natural" way. However, the computation"l

application of Logo is limited to learnmg mathematics. The present study

will explore whether the suitably constructed, computational nature of Logo

environment can be used for learning other knowledge that requir(>s

computational representations, such as learning how to teach in a computer

based medium.

Finally, previous studies of programming expertise have provided a

great deal of understanding of programming as a problem solving activity,

however, they did not, or were unable to account for the diffcren t

programming expertise embedded in the final products of programming.

Furthermore, the previous studies of programming have not yet considered

the expertise involved in designing instructional software interface.

Therefore, the development of a methodology to identify the cognitive,

pedagogical, and cornputational characteristics of instructional ~oftware

•

•

Review of the Literature 50

produced by student teachers using Logo may prove to have significant

research value in several related areas of investigation .

•

•

Chapter 3

METHODOLOGY

The methods for characterizing computer-bilsed learning cnvironmenls

and program structures are developed in the context of student tcachers lIsing

Logo to produce instructional programs. This chapter dcscribcs the fr.11l1l'Work

and methods for characterizing the learning environments and progr.1m

structures.

To effectively characterize instructional software, it is necessary to

distinguish between the learning environment and the program structure!'>,

which are two different aspects of a program. A primary goal of thls resl'arch is

to characterize the learning environments constructed by student teclchcrs in

developing instructional programs using Logo. The charclcteristics of the

learning environments constructed by student teachers are assessed in tcrms of

the usability and constraints in meeting the user's cognitive nceds during the

learning process.

As mentioned previously, LogoWriter™ is a Logo-based application

incorporating unique program structures and screen layouts. This study also

investigates how student teachers structure pages and procedures, as weIl as use

program properties.

Subjects

Subjects were 18 university students (14 females and 4 males), between 23

and 35 years of age, participating in a one semes ter, undergraduate, lI1troductory

Logo course. AlI subjects were majoring in the elementary and secondary

•

•

Methodology 52

teaching programs in the Faculty of Education at McGill University. None had

any previous experience with computers.

Materials

Computer Hardware

A laboratory equipped with 24 Apple Macintosh Le microcomputers and

colour monitors, four Apple ImageWriter printers, and one Apple LaserWriter

laser prin ter was used during the cJassroom sessions for completing assignments

and projects. AlI rnicrocomputers were connected to a local network server, and

a1l printers were connected to the microcomputers by AppleTalk links 50 that

student teachers could print from any of the computers.

Student teachers had free access to the laboratory for completing

assignments and projects during the period of the course.

Software

The software used in this course was LogoWriterHf produced by Logo

Computer Systems Inc., for Apple Macintosh computer systems. Four features

distinguish LogoWriter™ from Logo. The first feature is that LogoWriter™ has

the c,lpacity to execute more than one page2 easily in a pro gram, with or without

the user's interactions. The second feature is that, using a mou se, the user can

drag the turtle around and use it as a pen to draw pictures on the front page

2 A page m LogoWnterT\I has a front sidc and a flip side. The front side is divlded into
two parts: front page and command center. The front page can display the screen cffects of the
procedures, whcrc.ls the command center can be used to type the commands. The flip side is
u!>cd to wri te proccd ures or a program.

•

•

Methodology 53

(screen). The third feature is that there is a word processor in Logo\Vriter 1 \1. The

last feature is that LogoWriterT\1 has a special screen byout which divides the

screen into a front page and a eomrnand center so the user can see the procedures

and their effeets at the same time.

Readings

Student teachers were required to use a reference book (Le Gallais,

Shapiro & van Gelder, 1988). This book explains sorne of the basic concepts and

skills used in Logowritern1, sueh as drawing graphies, writing procedures, tl~1I1g

variables, recursion, and structuring procedures. Eaeh chapter provides .111

explanation of specifie concepts and primitives followed by il series of prc.lctice

exarnples and suggested activities. The chapters aiso discuss common probleIns

encountered by the learners and present suggestions for teaching 1 randouts on

Macintosh computers and Logo programming were distributed to the t>tudents al

the beginning of sorne sessions. In addition, Papert's Mindstorms (19RO) was

recommended reading for the student teachers.

Other Materials

Student teachers aiso used paper and penciis in the class.

Data Source

The data used in the present study eonsisted of the final proJects

completed by the student teaehers at the end of the semes ter as part of the course

requirements. In arder to situate these projects, it is necessary to describe briefly

the overall structure of the course.

•

•

Method%gy 54

The teaching method used in this course can be characterized as "project

driven" learnmg in which students were required to produce a sequence of

working samples, two projects, and a terrn paper These requirements are

de~cnbed in more detail below. There were 24 semi-weekly classroorn sessions

of thn'c-hour duration during which the students worked on the exercises or on

thcIr proJects indlvidually and at their own pace. Meanwhile, the mstructor and

an a<,<;l~lant ob<;ervcd the students' learning and provlded help when it was

needcd In addItion, cxplanatIOns about Macintosh microcompulers and Logo

programming were given in 15 minute sessions at the beginning of

approximately 10 of the sessions

Working Samples and Sharing

Students were required to replicate the exercises in the reference book or

expand creatively on these exercises. They were instructed to sutmit these

working samples to their individual computer "folders" on the server so tha1 they

could look at each other's work.

Students worked individually during this phase, but they could discuss

and help each other in class. It was clearly indicated that the working samples

would 110t be graded but that they had to be handed in to complete the course.

Midterm Project

After six weeks, students were required to complete a midterm project.

The objective was ta show how creative students could be within the Logo

environment and grades were based on the extent ta which students deviated

from the book. After the midterm proJects were graded, the ten best projects

,vere put in a display foider in the server so that aIl students could look at them.

•

•

Methodology 55

Final Project and Short Paper

Toward the end of the term, an students were asked to plan and design a

final project individually or in groups. The students were required 10 use Logo

procedures to develop a program with which a us cr cou Id inter.lct in .ln

interesting way. In addition, students ,,,'cre encouraged to tise .l mndul.u

programming style to break down a problem into small units as explained in tlll'

reference book. The grade was based on the interest and effechveness 01 the

instructional strategy developed.

At the same time, students were asked to write a short paper to indicatl'

how they would use Logo for instructional purposes. Il was cxplained that the

paper should be an idea paper rather than a reading assignment or optionally,

students could combine the term paper with the project. Thus, the paper would

be a description and justification of the final project.

The thirteen projects were submitted at the cnd of the term included nine

individual projects and four group proJects. These projects constituted the data

for this research.

Data Analysis

The present study distinguishes between learning environments and

program structures. A learning enVlronment refers to the dIsplay (c.g, text,

graphies, animation, and speech) of instructional software and the user-compu ter

interactions the software promotes, which is charactenzed in tcrms of the types

of knowledge presented, the pedagogical strategies used to present thi~

knowledge, and the forms and functions of the interactions. Program structures

•

•

Methodology 56

refer to the computational construction of the program units, such as pages or

procedures, as weIl as other programming properties.

The hierarchical organization of a learmng environment is described

grllphically in Figure 1 A learning environment in this study is characterized by

dividing lt into episodes which are cornposed of sequences of v/cws, with task

descriptions at each level An episode refers to a lesson or a set of exercises

developed by sludent teachers for specifie instructional purposes, whereas a

view refers to the display on a screen and the interactions the screen display

elicits. A vicw is changed when there is a significant effect on the screen.

EpISOde 1
(Task dC5CnfXlon 01 ep1sodc 1)

A Lcammg Envlfonmcnt
ITask D&nfXlonsol a Program)

J
Ep1sode 2

ITask dcscriphon 01 eplsode 2)
Episode n

ITask desrnphon of eplsode n)

vicw 1 t -+ VlCW 12 --. vicwl. n -. view21 Vlew 2 2 -. view 2 n -+ VICW 31 VICW 3 3 -+ view 3 n

Figure 1. The hierarchical organization of a learning environment.

Each view consists of view space and command spaee. The view space refers to the

static attributes of a view - the typcs of knowledge presented and the pedagogical

strategies used to present the knowledge. The command space refers to the

dynamic attdbutes of a view which includes automatie operators and manual

0l'crators (see Figure 2). Automatic opera tors refer to the cases in which a

•

•

Methodology 57

program does not require any input from the user to execute a procedure

whereas manual opera tors necessitate user input (e.g., user-computer

interactions). The manual opera tors are characterized in terms of the forms and

functions.

Figure 2. The view space and the command space ln a view.

Program structures are characterized in terms of modulant y that rcfers to

linear or modular structures. A linear structure refers to a unit (it can be a page or

a procedure) which employs subunits in a linear sequence. A rnodular structure

refers to a unit that can be divided "naturally" into coherent parts that can be

developed and maintained separately.

In characterizing prograrn structures, sorne specifie program propcrties arc

considered, such as reusable procedun:s, conditional staternents, variables, and

recursion. These properties are described in detail in a subsequent section.

Charaderization of the Learning Environments

A learning environment is hierarchically decomposed into views and each

•

•

Methodo logy 58

conceptual unit (e.g., a statement, a question, or a configuration) and interactions

aSbociated with a partleular view is eharacterized with respect to the types of

knowledge presented, pedagogieal strategies used to present this knowledge,

and the forms and functions of the interactions.

Types of knowledge

In order to have a clear picture of the types of knowledge presented in a

lcarning environment, the knowledge is categorized as domain knowledge,

operating knowledge, affective knowledge, or implementation knowledge.

InstruetionaJ software is al ways used for specifie instructional purposes,

such as for teaching art or mathematics. Such knowledge that a program is

designed to teach is referred to as domain knowledge. Successful execution of a

program by the user requires knowledge of the features of the program (Le.,

what a program can do), as weIl as knowledge of how to manipulate the

program (e.g., how to retrieve a page). This type of knowledge is referred to as

operatillg knowlcdge. Both domain knowledge and operating knowledge are sub

categonzed as either declarative knowledge (describing facts, events, concepts,

prmciples or relationships) or procedural knowledge (explai,ting actions or

conditlOlls under which the actions can be taken). In addition, studies on

learning have suggested several other subcategorical knowledge be important in

learning situatIOns. These studies suggested that, first, learning and strategy

acquisition occurs at impasses (Siegler, 1989; VanLehn, 1988, 1990). Second,

Iearners have certain mIsconceptions and they exist in aIl kinds of learning, such

as physics (diSessa, 1988), chemistry (Albert, 1978; Erickson, 1979). In addition,

it is indicated that problem-solvir.,5 strategies and learning strategies can be

taught, and there are many methods for doing 50 (Collins, Brown & Newman,

1

•

•

Methodology 59

1989; Mason, Burton & Stacey, 1982; Schoenfeld,1985)

Based on these research findings, it is reasonable to <lssunw that efficient

teachinr orograms might present so called "bug problems" that th{' learners often

make mistakes on, indicate misconceptions and the origins ot the

misconceptions, as well as provide variolls strategies for problem solving or

learning, su ch as heuristic strategies, control strategies, and learnll1g stratl'gies

(Collins, Brown & Newman, 1989). Thercfore, the charactt'rizatlOI1 of the

learning environments should include these sub·categoncal kl'owll~dge This is

particularly crucial for describing domam knowledge.

Because the pro gram is manipulatcd by human beings rather than by

machines, the program might present the knowlcdge that has the social and

affective impacts on the users. AIl knowledge related to emotion, motivation, or

self-tsteem is referred to as affective knowlcdge In addition, a program may

indicate what the program is designed for, who can use it, and how to use it.

This type of knowledge is referred to as knowledge for implemnztatunI about

content area, target populations and methods.

This study concerns the global nature of the knowledgc presented in the

learning environments and the pedagogical strategies used to prc~ent the

knowledge. Therefore, this study is not preoccupied with the que~tions of

whether the complexity of the domain knowledge is approprirlte to the

characteristics of its target population, or whether the content of domain

knowledge is organized logically and systematically, or whether the affective

knowledge has positive effects on retaining the user's motivation and self

esteem .

•

•

Methodology 60

Pedagogical sttategies

Conventional instruction usually involves pedagogical strategies such as

settmg goals, providing instructions, explanations: demonstrations, and presenting

tasks as weIl as askmg questIons. Evaluation and feedback is aiso an important

pedagogical strate!7Y. These categories are used to determine the ways that

student lcachers present various types of knowledge in the learning

environments. However, in the process of interacting with a computer, a user

can only give input when a corresponding working space is provided by the

program. Therefore, pedagogical strategies for characterizing computer-based

learning enVlronments should mclude the provision of working spaces. Brief

definitions of seven pedagogical strategies used in this study are presented

below.

1. Settmg goals. An instructional designer informs a learner of the new

knowledge or skills he or she is expected to acquire when a program or a

learning episode (a lesson or a set of exercises) is finished. For ex ample, a stated

goal can be to teach children geometry. Since human activities are goal-oriented,

the knowledge of goals or objectives can help a learner to organize and direct his

or her bchaviour effectively. Therefore, the goals or objectives should be

spcClfied at the beginning of a program or an episode.

2. InstructIOns. This refers to the uninterrut ted presentation of any type of

knowledge. For exarnple, the instruction can be that a :ectangle requires two

inputs, length and width.

3. EtplallatlOns. This refers to any type of knowledge which is explicitly

provided to the user in anticipation of potential sources of confusion. For

example, following a dernonstration, the program informs the user on how to

•

•

Methodology 61

generate the procedures used to perfonn the demonstrations.

4. Demonstrations. Demonstrations are the proœsses by which .\ progrdtn

shows a user how to perform a particular task by illustration. For l''\.lmpll'f .1

program can exhibit the screen effects after displaying il set ot procrdun.'s

5. Presentmg tasks. The tasks that users are demanded lo pl'riorm Ml'

presented through text or graphies. For ex ample, a student is dirccted to tind

points in a grid.

6. Asking questions. The users are presented questions and they h,1VC to

give specifie answers ta these questions. For example, il user is askcd: "Which

the correct answer? "

7. Providing working spaces. After a task is presentcd, a user is provided

the space to work on the screen. An example would be after the program il~ks il

question, the program waits for an input from the user.

8. Evaluation and feedback. A user's performilnce 15 evaluated and the

feedback is provided accordingly. For instance, a user may be told "Very good!

You got the right answer! ".

In characterizing learning environments, the concern is not only with what

types of knowledge are presented to the user and how they arc prescn ted, IJtl t

aiso what kind of interaction the user has with the program. In arder to addrc~s

the latter, the dynamic attributes of a view must be considered.

In teracti or..s

As mentioned above, the command space incIudes the opera tors requireù

ta change a view or produce any effect on the screen. These operat()r~ arc

categorized as automatic opera tors or manual opera tors

Automatic opera tors. Using automatic opera tors, a program docs not

•

•

Methodology 62

require any input from the user to execute the program. There are several types

of automatic opera tors in Logo. One type is where the program uses the CT or

CG primitives in its procedures to clear the text or graphies from the screen

wilhout any input. Another type of automatic operator is the scrolling effects

that are produced when a program uses the PRL'\JT or TYPE primitive ta print

more information than can be displayed on a screen. The last auton:atic operator

is when a program uses GETPAGE in a procedure 50 that the execution of

retrieving a page changes the Vlew

Manual operators. In rnost cases, a program requires input from the user

ta execute the program Such inputs are called rnanual opera tors and theyare

grouped into seven categmies in this study:

1. Pressing a letter or a nurnber;

2 Pressing <enter> when a procedure appears on the screen;

3. Typing a command;

4. Typing a command and a variable;

5. Using primitives;

6. Typing a ward in response to a question;

7. Typing a sentence.

These manual opera tors can accomplish several functions. These

functions are lis ted in the below:

1. Ta chose a type of tasks or activities (e.g., pressing a key ta chose a type

of activities: "+" for addition, "_II for subtraction, "X" for multiplication, and "+"

for division).

2. To chose task complexity (e.g., pressing a key to chose a level of

multiplication: "1" for one-digit problems, "2" for two-digit problems, and "3" for

bug problems) .

3. Ta answer questions (e.g., Question: how many provinces in Canada?

•

•

Methodology 63

Answer: ten).

4. To select answers for multiple choice questions (e.g. e.g , QuestiOn: ho\\'

many provinces in Canada? a) S, b) 10, and c' 9. Answer: b).

5. To perform tasks (e.g., using the commands provided by the program

to find the points on a grid).

6. To chose various assistance (e.g., receiving a correct answer; receiving

an explanation of the origins of a mistake; receiving a suggested strL1tl'gy tn solvl'

the current problem).

7. To opera te the system (e.g , pressing the enter to continue).

In order to characterize the types of knowledge presented, the pedagoglc,ll

strategies used to present them, and the forms and functions of interactIOns, as

weIl as the relationship among them, a framework was developed. This

framework is described in the following section.

Procedures for characterizing the learning environmenls

Figure 3 shows the framework developed in this sludy for characlerizing

the learning environments. This framework also consists of view ~pace and

command space. View spaces include the different types of knowleJge a

program provides and the pedagogical strategies used to present l'le knowledge.

Command spaces include the automatic and manual operator~ requireJ by the

computer system. Notice that there are lhree dimensions in this framework and

each dimension is coded by two or three-character codings. Therefore,

conceptual units cornposed of the learning environments are described by seven

character codings .

•

•

Domam

Methodology 64

C/CiIl'ng rhe screet':-------________ _
Scrolling! -)

a page auromallca"z.IY LLC'" 7
l're~~l1lg a 1 ~

A, P C[[~r or a numh>ccL~:~"~=r~:;:::~_::_:__-__ -:1= 'Ù}/J.I/
O

rC~~lIlg <ciller:> ",hc ;:: ,
'J1t, proc<'dure ap'>Car~ n a _.... r '", ~~ -- ."

rotf()~ on v,c ÇCrccn / <::,- u.L.U.Urlll1'l1!/ :?~_, _
;r U\lnglng "1-. -"" ~Ial' ':'~

a comm4ntl/ '" 7

Declarauvc knowledge

l'rocedural knowlcdgc

TYP ln8 a Commana + Il 1-. ~ -- - tJ

U~lng pnm/[J dTl~"/C(Ç) S., -_ ",ft. :sq
IIcç '?l., " 0" il .s :F'

TYPIng a w C f:: 8 s -:fl --r-"'-~'!!I*~..l::L J
ord ~ ;;'::' ,~R. g li """!1"'-t

TYPlng çenrClICl'(l' ~ J t S $- /
')I ~ '" f::: ~ ~ .::7 r--:.:.._ 0$ ~..... ::fp - g

r dW ~ Il. Q..':t ~ J' 7 [vents c, -

S
r-t-- ~ 1°

Conccp~ =:::r:j=-i--I-.::.:t::J::1 RelauonShlPsl----::t:t-t-t=::J::t-:j
PnnclPlest---T-::Jt:t--t_+_~=:tj Bug problems;T-:~+::t:j--+.::t:~~:t:-j

Mlsconcepllons t-- -:::t:t-t-+-~=:t::1
Control strategIes GT ::Jt:t--t-+-==+::tj

Lcarmng str.!tcglesrr-.~iH+::t:t--+-=+:=t::t:-j
r ALtJOnS~:;o+-=::l~:~jt~;;t.~~~1;~:1~:::t~~~ ~ ondltlOn, L g -

~~::~Yjl~~~~W12~~n~~;~:t:j Bug l'roblcm, ~ .1'" "';!: -

\llsconccplJon\ ~~=Jt:-r-t-+--=+=:t=-j
IleunslJ~ ~lIateglC:\ ~~~:::.[::t=--t--t--+-~=Jtj
Control strategIe, r-t.::r~=j=-r--t--t-~+:Jt=-j

Learmng stratcglc~ ~ ~=J:-r-t--+--4.-J[=-l
r7acts or conleptsl---I--=I=-ï--l~-t--+":::J:-:J

[
DccJarauve knowlcdge \1lsconccpllons

Opcraung [ActIOns 1---r---=J-lr-t--+--4._J[]
Proccdural knowledge CondJlIOnS I---I----:J:-t--t--+_-+ __ [-J 1---1--

Ml~conccptlons -:J:-j-t--+--+-':[]
~r---Affective Knowledge --=J:--r-t--+--+-~[:J ~I--

[
Content Area ~ I--.:J:--t--t--+-4-:[:-1 Knowledge of Implementation about Targetl'opulauon -=J--r-1--+-4-'::[-:1

~lethods ~ ~=---=-=l:_ -JI'.--_ -_ iJ -_ -_ -_ +~ -_ -_ --~C_ -_ -!i:-=-~

Figure 3. A framework for characterizing the learning

environments .

------------------------.----- --------------------------

•

•

Methodology 65

The rows on the left of the view space include l'our mall)r types 01

knowledge, which include subcategories of knowledge. The differL'nt types ot

knowledge are often represented by one to three digits, which are pl.1ced ,1t the

begmning of the seven-character codmgs. To the nght of Vl('W spaCL', the

eolumns include eight pedagogleal strategies \-vhich are reprL'sentl'd by

upper case letters, and thelr necessary sequences are indlcated by lnwl'rcase

letters sueh as a, b, and c and sa on These two letlers are located in the mlddle

of the codings. The dimensIOn at the top of the view spLKe is the commL1l1d ~p,Kl'

which represents the opera tors deslgned 111 a vlew. The l'orms and tl1l' l'Ullctions

of the opera~ors are represented by the last two-digit codings. The lormat 01 111l'

codings for each eonceptual unit is:

digit {(digit) digit} LETTER {(letter)} {digit (digit)}

Note that the letter or digit in braces indica Ling the subcatl"'gories of

knowledge, the necessary sequence for pedagogical strategIes, and the opera tors

required for execution, respectively are optional. Por cxampll', presenting a task

for taking the action of operating the system is coded as 2(2)1 En, <md providing

working space and requiring the user to press a letter to opera te the system is

c:oded 2(2)1 Cn 4(7), while "n" indicating the sequence of pedagogical ~tratcgies

in a pro gram.

Ali final proJects produced by student teachers were executed using the

cognitive walkthrough method developed by PoIson, Lewis, Ri('man <l11d

Wharton (1991). As mentioned previously, the learning environment was

divided into episodes, and these episodes often consist of sequences of Vlews.

Each conceptual unit in a view was examined and coded by the framework

developed in this study which describes the types of knowlcdge a view pre<,ents,

the peùagogical strategies used to present the knowledge, and the forms and

functions of interactions. During the walkthrough process, similar to what

•

•

Method%gy 66

PoIson et al. (991) did, the reviewer stopped at each action and considered the

strengths and weakness of the environment in terrns of the effects on the typical

user, and diagnosed whether a user would succeed or fail in the explora tory

lcarmng processes3 Sorne descriptions and cornrnents were made when each

view was examined. The coding for each conceptual unit and each operator was

record cd The codings for each project were sumrnarized in terms of the types of

knowledge, pedagogical strategies, and the forms and functions of the operators.

The overall data for aU proJects v.'ere then analyzed to a ttain a global picture of

the learning environments constructed by a11 student teachers. Further, the data

in each project were compared in order to identify the characteristics of each

project.

Characterization of Program Structures

In LogoWriterTVI , the ways of structuring the pages and procedures are

very flexible and they ma y have an impact on the interactions of a program.

Therefore, it is necessary to take the interaction issue into consideration when

charactcrizing the prograrn structures developed with LogoWriter™. In this

study, the program structures include page structures, procedure structures, and

other program properties.

The prograrn structures are characterized in terms of single-level, linear,

rnodular or fragrnented structures. Program properties such as reusable

procedures, conditional staternents, variables, and recursion are also considered.

J The e"ploratory Icarmng hcre retcrs to the proccss by which the flrst-hme user can
Iearn system operatIOn usmg cu es provlded by the system and the novice learner can learn
SUb)l'Ct matter knowledge usmg the supports provldcd by the system, rather than receivmg
mstructlon or Cll.lchmg from the leacher. ThiS process !'an be cal!ed as gUided explora tory
learmng, where.ls the term "c"ploralory learnmg" used m Logo can he caUed as open exploratory
lt\lmmg \Il whlch leamers can construct or m\'ent produrts.

•

•

Methodology 67

In addition, the operators used to link pages and procedures were examined

The program structures

Traditionally, program structures are categorized as either \incar LH

modular. However, there might be single-Ievel and fragmcnted structures in tl1l'

programs produced by studel'.t teachers in LogoWriter 1 \t because thc t.'tl~y

retrieval feature of LogoWriter l \1 enables student teachers to design a shdt.'-lih'

program (where a program consists of several pages and aIl pages art' l'\.l'Luted

automatically one after another) WhlCh does not necessarily involve e1ther linetlf

or modular structures. Therefore, the program structures refer to single-leve1,

linear, modular, and fragmented ones.

As mentioned earlier, a lwear structure refers to a unit which emp\oys

subunits in a !inear sequence and a modlilar structllre refers Lo a unit thal can be

divided "naturally" into coherent parts that can each be separately devl'loped

and maintained. A single-Ic'vel structure, of course, has onl y a one level procedure.

What distinguishes a single-Ievel structure from a fragmented strllctllre is that él

single-Ievel structure explicitly indicates how it should be used, while él

fragmented structure does not.

Program properties in this study refer to reusable procedures, conditional

statements, variables and recursion. They are listed below:

1. A reusable procedure refers to the procedure that is user) as .1

subprocedure by more than one superprocedure.

2. A condztional statement refers to a procedure that consisLs of a

conditional evaluation and is executed if a condition is met.

3. A variable has a name and a value. Using variables, it i5 possible for a

procedure to opera te on different data each time it is invoked, but the pattern of

•

•

Methodology 68

what the procedure does with the data remains constant.

4. A recurSlOn is a proceèure which uses Itself as a subprocedure.

The operators used to link pages ahd proced ares

When more than one page is designed in a prograrn or more th an one

procedure is designed on a page, the execution requires opera tors. The

categori('s of opera tors used in characterizing prograrn structures are the same as

those used In c11dracterizing the learnmg environments. That is, the opera tors are

abo categorized as automatic and manual opera tors. AlltornatÏC opera tors refer

ln the cases in which aIl pages are retrieved by GETPAGE or GETTOOLS

primitives in a (ST ARTUP) procedure on the first page, or aIl procedures are

executed in one procedure. Manual operators refer to the cases in which a user's

input are reqUlred in linking the pages or the procedures. Because interactions

depend on the manual opera tors rather than automatic operôtors, the

characlerizallOn of the program structures is only on the forms of manual

operators and thcir functions.

Procedures for characterizing program structures

In order Lo identify the program structures, aIl pages and procedures in

each proJect were drawn as diagrams using the symbols shown in Figure 4. The

page structures, procedure structures, and the program properties used by each

prolect were then summarized. To tmd whether the ways that the student

Leachers structure the pages and procedures have an impact on the interactions

111 the learning environments, the distribution of the manual operators is

lI1dicated as the I11.1Illlal operators bctween pages, between procedures, and

\\'ithin procedures. The functions for the manual opera tors located in different

•

•

Methodology 69

places are compared

In order to explore if there is any relationship betwecn the pl'd.lgOglC.ll

strategies and the program structures, the projects which used ,lppropn.lte

pedagogical strategies are separated From those which did not Tl1l'Sl' t\\'o "lI1d~

of projects are further compared with the characteristics of the progr.1ll1

structures.

C ____) c_~
Pages

Top level procedures Subprocoduros

<> c ___ ?
Conditions

A reusable procodure Rocurslon procoduros

Direct connections or paths

Indlroct connections or paths

,,,,--,,,,. no cues --, , No indication of tho eX1sting paths

var A varlablo

Figure 4. Symbols used in the diagrams.

In summary, the methodology in this study consi~ts of charactenzation of

the learning environments and program structures. A learning cnvmmment wa~

•

•

Methodology 70

broken down hierarchically into episodes and these were further broken down

into views. Each conceptual unit in a view was th en examined and coded by the

framework developed in this study for charactenzing the types of knowledge,

the pedagogical strategies used to present this knowledge, and the mteractions

cliciled in a view During the walkthrough process, the reviewers didgnosed

whether a typical user would succeed or fail in explorat0ry learning processes,

bascd on the strengths and weaknesses of the learning environment. The

program structures, however, werc characterized by single-levet fragrnented,

linear, and modular structures, and the opera tors used ta link the structures, as

weil as prograrnming properties. Finally, the characteristics of prograrn

structures were compared with the apprapriateness of the pedagogical strategies

uscd in the prajects .

•

•

Chapter 4

RESULTS AND DISCUSSION

The results from the characterization of the learning environment~ Lll1d

program structures are presented and discussed in three m,lJor sectIOn..,. Fir~t,

this chapter presents the results From encoding the learning environnll'nt~ in

arder to identify the characteristics of the learning enVIn.1nmC'nts constructL'd by

student teachers. The strengths and weaknesses of the learning environnwnts

were assessed in the walkthrough processes. Second, this chapter presents the

results from characterizing the prograrn structures of LogoWriter 1 \-1 and

discusses their attributes. Finally, this chapter examines the relationship betwecn

the characteristics of the program structures and the learning environments «(l.g.,

pedagogical strategies).

Characteristics of the Leaming Environments

There are several major issues in characterizing a learning environment

provided by instructional software. The first concerns the types of knowledge

presented to the user and the consequences of lack of an important type of

knowledge, such as the knowledge required to opera te the sy~tem. The "'t'cond

issue is how the knowledge is presented to the user That is, what pedagogical

strategies does a designer use to convey the knowledge to the user, and whether

the pedagogical strategies support learning dornain knowledge and system

operation. The third issue is whether the input required [rom th(' u'>er facilitate

the user's learning and whether the user has the freedom to cho()c.;e actlvities and

task compiexities, and to seek various aSsistance according to his or her needs.

•

•

Results and Discussion 72

In arder ta address these issues, first, the frequencies of the codings

rcpre&enting the different types of knowledge and pedagogical strategies were

categorized and summanzed. Second, the tasks, questions, and working spaces,

as weil as evaluation and feedback were matched for each actIOn (e.g., each

manualoperator); theIr sequence and appearance for each action was examined.

The frequencies of tasks, questions, and working spaces, as weIl as evaluation

tlnd fct'dback for aIl actions were presented. Thrrd, the different types of manual

opernlors and their functions werc mdicated. Finally, the overall results were

presented in tables identifying the different types of knoY\'ledge, pedagogical

strategies used to present this knowledge, as weIl as the forms and the functions

of interactions. These data in each proJect were also presented and compared.

Knowledge Presented tD the Users

Table 1 shows the frequencies of the codings representing the different

types of knowlcdge and the pedagogical strategies used to present such

knowledge in the learning environments constructed by student teachers. The

rows indicate four major categories of knowledge presented, whereas colurnns

indicate eight pedagoglcal strategies used to present the knowledge. Data from

this table show that domain knowledge represented the primary knowledge

(73%) and that operatmg knowiedge was the second most important (18%). In

addition, affective knowledge (4%) and the knowledge for implementation about

content area, target population, and methods (5%) was aiso presented.

Currently, no conclusion can be drawn regarding a reasonable percentage of

various types of knowledge. Howe\'er, from a qualitative view point, the

cl1Llractcrization of the four major categories of knowledge indicated sorne

incohcrence in representing knowledge. For example, the codings from student

• •
Table 1

Frequencies of dlfferent types of knowledge and pedagogical strategies for ail projects.

Settmg InstructIons ExplanatlOns DemonstratIons Provldlng Askmg Provldmg EvaluatIon Total Percent
Goals Tasks Queshons Worklng and

Space Feedback
Types of Knowledge

DeclaratIVe 15 117 25 45 57 28 37 44 368
Domam Knowlegdge 73%

ProcejuraJ 50 218 41 79 71 21 57 6 543
Knowledge

Dedarahve 17 2 19
Operabng Knowledge 18%

ProceduraJ 46 2 56 97 201
Knowledge

Affective Knowledge 38 17 55
4%

Content Area 2 20 22

Implel1'entH '\J Target PopulaoJn 5 5
Knowleoge of 5%

T eachlng MethOds 2 20 14 36

IOIal 69 481 70 124 198 49 191 67 1249

Percent 5°' le 39"/0 6°' ,0 10% 16°/0 401
'0 15°'0 SClo

•

•

Results and Discussion 74

tcachers' projects sometimes display sequences of codings like 1(2)Ea, 1(2)Ba,

2(2)Eb, 2(2)Gb, 1 (2)Ga In these kinds of patterns, the second type of knowledge

IS prcmaturely introduccd before the representation of the previous one is ended

appropridtely 50 It seems that various types of knowledge were sometimes

reprcsented mcoherently in the learning environrnents constructed by student

tf'lehcrs.

Further analysis about the subcategories of the knowledge mdieated

s('veral [catures of domc.lin knowledge presented m the learning environrnents

constructed by stud<..'I1t teach~rs. First, the knowledge about facts, events,

concepts, and actions fonns the major parts of the environrnents whereas the

knowledge about principles, conditions undH which the actions could be taken

was seldom mvolwd. Second, most programs presented the isolated elements

such as faets, concepts, events, and actions. When the programs sometimes

presented the elements as a whole, only temporal, partial, or identical

relationships were involved. The programs usually did not present the more

criLical relationships such as causal and conditional relationships. Third, the

programs did not (lmploy so called "bug problems" that the learners often make

mistakes on; they did not indicate the learner's mlsconceptions, or any ::;trategies

for efficient problem solving or lerrning. In short, the instructional prograrns

produced by ~tudent teachers only presented relatively simple knowledge such

as f.1ets, events, concepts, and actions.

Frequencies of the codings representing the different types of knowledge

in each projeet, shown in Table 2, mdicate that aIl projects presented dornain

knowledge in the lC.lrnmg environments, but only 62% of them presQnted

opertlting knowledge. Seventy-seven percent of the projects presented affective

knowledge dnd b2% of the proJects presented the knowledge for implementation

about the content area, target population, and teachmg methods.

•

•

Results and Discussion 75

Missing operating knowledge

As rnentioned, successful execution of the programs by the lISl~rS m,1Y

require knowledge of the program features and knowledge of how to opera tl~ thl'

program. However, the fact that 38% of the projecb nm~tructed by studl'nl

teachers did not present any operatmg knowlcdge motlvall's Ml ex.1min,llio1\ 01

whether operating knowledge is necessary and of the consequences of thb

absence.

• Is operating knowledge necessary in successful execution of an

instructional program?

Table 2 shows that Projects 1,6, 9 and 11 did not present any operating

knowledge in the learning environments. In order to dctermine the consequcl\CP

of the absence of uperating knowledge in these pro]ects, as well as in other

projects which partially lack operating knowledge, the codmgs from thet>e

proJects were analyzed in detall.

The analysis reveais three findings. First, it was found that thl' execution

of a program did not demand any operating knowlcdge when aH cpisodes or

views in a program were linked by automatic operators. Por cxamplc, in ProJCcl

9, th'2 first episode of a program (it is a page in most cases) hnkcd the r('!,t of the

episode:; in a startup procedure with the rcsuit that a11 cpisode~ couJù be

executed automatically without interaction of the user. Thcrcfore, the pro gram

required nelther manual opera tors nor operating knowledge to link the cpisodes

or views.

Second, it was found that executing a program did not rcquiT(~ Jny

operating knowledge when a rnanual operator for choosing activities, Jn~wcnng

• •
Table 2

Frequencies of dlfferent types of knowledge presented ln each project.

ProJect No Domain Operatmg AHectlve Implementlng Knowledge of
DeclaratIve Procedura! Declarative Procedural Knowledge Content Area Target Population Teachlng
Knowledge Knowledge Knowledge Knowledge Methods

1 28 6 10
2 2 23 5 11 1 2
3 5 12 1 20 3 3

1-
4 97 20 , 68 20 2
5 6 17 17 3 2 5
6 5 108
7 56 2 8 9
8 22 58 1 3
9 40 1
10 2 6 1 9 1 1 1
11 27 5 3 , 2
12 48 14 22 10 1 2
13 57 248 11 45 1 3 3 21

Percent 01 the 100% 62% 77% 62'%
ProJects

•

•

Results and Discussion 77

questions, or choosing assistance wlthin dom.1Ïn knowlcdge pl.1ycd tIlt' rolL' ot

lin king the next episode or view. For eX:lmple, in Projeet 7, the progr,1111

presented the following question to a user:

Do you know what time it is? (Showing a clock)

Type in a letter and press RETURN.

A) 4: 30

B) 6: 00

C) 8: 15

The correct answer, which is represented by 13, wIll ch.1l1ge the VleW to ,\

happy face with feedback. After a few seconds, the happy face is replaced by "

new question. In this case, the manual operatar pl"ys the double roles 01

answering a question in a domain and linking the curr('nt vil'w 10 the next one.

Despite the faet that operating knowledge is not required for n,<ccuting the

program, the program must still mdicate how the user is supposcd 10 answer the

damain question. Otherwise, the user's answer will be invalid far operatmg the

system.

Finally, it was found that a program must present operalÏng knowledge

for its successful execution when the program requires a manual operator to link

the episodes or views. Othenvise, the user would be uT1ablc to figure out what to

do next. For example, bath Projects 1 and 11 eonsisted of fr.Jgmented pages and

required manual aperatars ta link these pages during program cxecution.

However, the designers did nat present any knowledge of how to hnk lh('se

episodes and views, and consequently the user did not know what to do wh('n <1

view or an episode was finished.

To summanze, a program does nut need to present any operating

knowledge when the episades ar views are linked by automatlc opera tors, or

when the manual operators far domain knowledge play the role of Iinkmg

episodes or views. However, a program must present opcrating knowledge to

•

•

Results and Discussion 78

the u,>er wnen a manual operator is required to link to an episode or a view. In

thb case, lack of operatmg knowledge in the learning environments will create

difficulties for the novice user to execute the programs. These difficulties will be

J1lustrated in detaIl m the following section.

• What is the consequence of lacking operating knowledge or incomplete

representation of opcrating kJlowledge?

The absence of operating knowledge when a manual operator is required

to link the current episode or view to the next one is the most common problem

in tbe learmng environments constructed by student teachers There are several

situations in which a learning environment lacks operating knowledge. The first

situation IS that student teachers designed paths to the next episode or view, but

they dld not ah",;1y~ mdicate these paths to the user 50 the path rernained hidden.

For example, in ProJect 13, the designer designed one path to the next page by

pressing the N key and another path to the previous page by pressing the P key

in alllessons On the fi~st view of episode 1, the deSigner indicated that the user

can always press N to s"!e next page and press P to see previous page. The

dL'signer assumed that the user would always be able to remember these two

simple, clear and casily-memorized commands, 50 she did not indicate that the

user needed to press N or P key in subsequent episodes and views. In the third

vicw of cpisode 2, the designer explained what the user was supposed to do in

the rest of the lesson. At the end of that view, the following text was presented:

When you are ready te colour, type UcolourH inte the

,'ommand center. AlI four turtles will appear. Assign

,lt least one very dark colour and another very light

0ne. HAVE FUN 1

The designer assumed that the user would press N or P at that moment .

Ilowcn:'r, It was more probable that the user would type "caJour" at the current

•

•

Results and Discussion 79

view since there "vas no operating knowledge pr~spntcd .lt tlll' l'nd nt tlll' \'IL'\\'.

Unfortunately, the working space for the command "colour" W.1S loc.ltl'Li in

another view sa there V\..lS no corresponding working space dvatlable to pC'rtorm

this task at the current Vlew. As expected, a bug occurrcd whe11 thl' user tn't.'Li in

"colour". Therefore, the absence of operating knowledgc l'an rL'sult 111 difficultÎl'~

and even bugs for the user in executing the program This l'x.lmple .llsn

illustrates that operating knowledge is not only reqmred in a progr.lll1, but .lbo

in each view when a manual operator is required to link episodes nr Vle\% The

lack of operating knowledge in an episode or a view when manual operator~

were required for system operating were found in most ot the projects.

The second situation is where student teachers neither present oper.üing

knowledge nor design the path to the next view when a manu.ll operalor is

required to link the current view to the next. For example, on the tl'nth vit.'w of

episode 10 in Project 4, the designer presented only an open-ended que~tion

which was not accornpanied with evaluation and feedback. There was nelther

operating knowledge nor a pa th 10 the next episode when the user needed to

move on ta the next episode. As a consequence, the user encounlen·d an imp<l~s(,

and had ta quit the program and restart it in order to choose other branche~.

A learning environment must present operating knowledge whenever cl

manual operator is required ta link an episode or a VlCW Moreovt.'f, this

operating knowledge must correspond to each view in which a working ~pdce

for operating the system is provided. Otherwise, l'ven If the program h.l<,

presented consistent, simple, mean111gful and easily-memorLœd command~ Jt

the beginning, the user may experience difficulty or encountcr lmpa%p<., during

the execu tian of the program.

In addition to lacking operating knowledge when manuaJ operator<, ,1re

required for operating the system, sorne other problcms in presenting opl'raling

•

•

Results and Discussion 80

knowlcdge were detc':tcd in the walltthrough and encoding processes. Codings

from student teachers' proJects indicate that m 85% of the projects there were

problcms in presenting operating knowledge. The other 15% of the projects

which did not have any problem presenting operating knowledge were thase

which nceded neither manual operators nor operating knowledge to link the

cpisodes and views In alher ward s, all proJects which required manu al

opC'rdtors for Iinkmg episades or Vlews had problems with providing adequate

opcrating knowlcdge. Other problems, besides missing operating knowledge

cncountered in the learning environments constructed by student teachers, are

prc~enled below.

M ismatch between tasks and working spaces for operating knowledge

Sometimes the dlfficulty experienced in executing a program is caused by

a mismalch between tasks and working spaces for operating knowledge. That is,

the designer does present operating knowledge for linking one view ta another

al a certain point, but does nat present it at lhe right place. For example, in the

second episode of Project 2, the designer presented a task for operating

knowlcdge three views ahead of its workll1g space. In other cases student

teachpr~ prcsented the tasks for operating the system first, and then presented

the domain tasks for the user to perform; after the user had made a great deal of

effort to perform the dlm1ain tasks, the designer presented the workmg space for

operatll1g the system without indicating the tasks for using that working space,

b,lseLÏ on the assumption that ~he user would remember the task for operating

the system \vhich was presented before the user performed the domain tasks.

The mlsmatch bet'ween tasks and working spaccs for operating systems is

indic.1led by coding patterns Iike 2(2) Ea, 2(2) Ba, 1(2) Eb, 1(2) Gb, 2(2) Ga. Two

•
Results and Discussion 81

problems can be discovered in such patterns. One is that the indk,ltors ot

necessary sequence "a" and "b" are not in alphabetical order; another is lh,lt tlH'

types of knowledge are mlxed up.

There are two consequences of such mismatch. The first ('onsL'qtH.'nCL~ l~

that it increases the users' working memory load wl1l'n they are pL'rlormmg

domain tasks or procesfJing domain knowledge The second consequence IS th.1t

users will have difficulty in providing input to link the vÎews Il tlH'Y C.1nnot

remember the operatillg kIlv,,"ledge when they finally gel to the work.1l1g ~p<lCl'

after performing the domain trtsks.

Incomplete instruction for operating knowledge

Student teachers often skipped important con1poncnts of the proCt'dure ...

when they presented operating knowledge. Por example, tlwy migh 1 Ilol

indicate the page narne or show the required quotation mark when they askel1

the user to use GETPAGE or GETTOOLS primitives, or they nllght forgf't to

indicate that the user needs ta press the enter key when instructing the user to

type a commando As a consequence, novice users would becornc c()nfll~('d iWe!

frustrated because the procedures did not conforrn to the instruction.

Misconceptions of the operating knowledge

Two types of rnisconceptions of operating knowledge werc found often in

student teachers' ll1structions. One is misconception of key functlon... For

example, one student teacher instructed the user to use the return key, the arrow

keys, and/or the space bar to move the cursor from the commilnd center tn the

blanks on the front page for answeriI'g questions. Howevcr, no maLLer how h,lrd

the user tried, it never worked becal'se what the user necded to do Wi1S to hol<..1

•

•

Results and Discussion 82

the command key and press U to move the cursor up, or click the mOllSl' III the

appropria te place.

The second misconception conccrns oper,lting proccdufl's. For t~\,lmpil\ ,\

student teacher presented the following instruction to LIll' user:

If you need to see what you just re,hl, TYPE st ,-'P

STARTUP.

The misconception in this instruction is tha t, "stop" l'an onl y be lIsl'd in .1

procedure and it is not used as cl command to be typed 111. Furlhermml', CVl'n il

"stop" could be used as a command, the computer could not fl'spond Lo

command "stop" when it was executing the program. When the computer had

fini shed its execution, therp was nl.") point In stopping the execution any mort'

When these misconceptions oecur in instructions. a novice user may bèCl>me

extremely confused and frustrated, and finally give up.

To summarize the above findmgs on operating knowledge, ~uccessflll

execution of the program requires presen ting sufficient opcratll1g knowlcdge in

the corresponding view when a manual operator is requircd to link an episode or

a view. Any problems of operating knowledge, such as lack of operating

knowledge, mismatch between operating tasks and working ~paces, and

ignorance of important component of operating knowledge, as weil as the

designer's misconceptions on operating knowledge will creale difficultics for the

user to execute the program.

Besides domain knowledge and operating knowledge, other types of

knowledge, sueh as affective knowledge and knowledge for implcmentation on

content areas, target population and methods arc <llso important in uscrs'

learning. However, this study did not consider the characteristlcs of other

knowledge and their relative impacts on user's learning. Inslead, lhls ~tudy

focussed on domain knowledge and operating knowledge which i~ more

•

•

Results and Discussion 83

Important in detcrmining the nature of the Iearning environments. Based on the

filct that the domain ~nowledge presented by student teachers is relatively

.,impIe, this thesis did not anaIyze the subcategories of domain knowiedge and

pedagogieal strategies used to prespnted them, In arder ta simplify the data

<111;:11 y~is. The following section presents pedagogieal strategies used to con vey

dl'clarative and procedural knowiedge for both domain knowiedge and

opl'rt.1ting knowledgc, and anaIyzes their strengths and weakness.

The Characteristics of Pedagogical Strategies

Table 1 shows the overall pedagogical strategies used by student teachers,

dnd the knowledge that each strategy presents. These data indicate that

instruction was the major pedagogieal strategy used by student teachers (39%),

providing task was second (16%), fol1owed by providing working spaces (15%),

demonstrations (10%), and explanations (6%). The least-used strategies were

seWng goals (5%), providing evaluation and feedback (5%), and asking questions

(4%).

Although it is diffieult to draw general conclusions regarding the

reasonable expected proportions of different types of pedagogical strategies

without considering the types of CAL and the nature of the content areas, as weIl

as the learning approaches that the designer taken, it is necessary ta match the

task, working space, and evaluation and feedback for each action and examine

their sequence and appearance. This is because the user cannat perform the tasks

or answer the questions if there are no workin.g spaces to do so. In addition,

studies have indicated that irnmediate evaluation and feedback is critical in

user's success in J computer-based learning environment (e.g., Corbett &

Anderson, 1991). Therefore, it is necessary ta look at whether the tasks and

•

•

Results and Discu5~lon 84

questions are accompanied \Vith corresponding worKmg SP,l((,S ,md WhL'tl1l'r thl'

evaluation <md/ or feedback corresponds to the USt'r's performl1IlCl' ,1I1d ,lI\s\wrs

Because the codings are based on conceptulli units l)f the text ,1lld gr,lphic ..

of the display in each view and the opera tors the \'ie\\' promotcs, r,lthL'I th,ll'

actual numbers of tasks, \\'orking spa ces, and evalua lion and fccd b.1CK, Il IS

possible that student leachers use several conccptual units to prèsent lIlt' sanH'

tasks. Therefore, the tasks, \ orking spaces, and l'valuation ,md/or fl'l'dback

were investigated in tenus of each action. In addition, their sl'queI1œ .1nd

appearance for each action was indlcated by the lowcrcase lcttl'rs. The clctUlll

frequencies of the tasks, working spaces and evaluation and feedback are ~hown

in Table 3.

The balance between providing working spaces, tasks and questions,

and evaluation and/or feedback

Results in Table 3 indicate that the talaI number of tasks and questions are

not equal to those of working spaces. The breakdown of types of knowledge

reveals that: a) for declarative domain knowledge, aIl tasks and questions are

provided with working spaces, b) for procedural domain know1edgl', 1 CY,V" of the

tasks and questions are not provided with working spa ces, and c) for operating

knowledge, aIl tasks have working 5paccs (in faet there are 1.7 times more

working spaces than there are tasks and questions).

Results presented in Table 3 a150 show that the evalualion and feedback i~

rnuch less than the tasks and questions. For declaratlve domain know1edge, 74%

of the task and questions are provided wi th evalua tion and/or feedback,

whereas only 23% of the tasks and questions are provided with eva1uation

and/or feedback for procedural domain knowledge. None of the tasks and

•

•

Results and Discussion 85

Table 3

Frequencles of tasks, worklng spaces and evaluation and feedback.

Presentlng Tasks Asklng QuestIOns Provldlng Evaluation and

Types of Kilowledge
Worklng Spaces Feedback

Domain Declarative Knowlegdge 4B 9 57 42

Procedural Knowledge 98 5 93 24

Operatlng Declarative Knowledge 0 0 0 0

Procedural Knowledge 55 0 93 0

Total 201 14 243 66

questions is accornpanied by feedback and/or evaluation for operating

knowledge.

The overall data on pedagogical strategies reveals several obvious

problerns in the learning environrnents constructed by student teachers. First,

sorne lcarning environrnents constructed by student teachers provided

insufficient working spaces for performing the tasks and answering questions for

procedural knowledge. As a result, the user would fail to perforrn the tasks or

answer questIons. Further exarnination of the working spaces designed for

performing tasks and answering questions for domain knowledge indicates that

student teachers often designed ill-structured working spaces. For exarnple, they

designed spaces on the screen so that the users could type their answers in the

bo'\l's, or type in answers for open-ended questions on the screen. However,

thcre was no mteraction between the user and the prograrn. As a consequence,

no l'valuation .md feedback could be provided in these cases .

•

•

Results and Discussion 86

Second, the fact that working spac('s wen' 1 7 times more t rcqul\l1 t 1 h,m

tasks on operating knowledge indicates that the designers sometin1l'~ did nnt

present tasks for operating the system even if tlley had dcsignl'd workmg sp.1ù'~

for do 50. Thus, a user often became unable to contmue al the end of an cpbodl'

or a view due to his or her lack of understandmg a lask, l'ven if thl'fl\ wl're a p,llh

to the following episode or view. This finding corresponds 10 thal l'merglllg

from the charactenzahon of types of knowll'dgc in the previous section.

Finally, the results showed that only 7.t% of the task and que~tions Wl'rl'

provided with evaluation and/or fcedback for domain declaralivc knowledgc,

whereas only 23% of the tasks and questions were provided with l'val uation

and/or feedback for domain procedural knowledge. This suggcsts that thcre

was a serious shortage of evaluation and feedback m tll<.' learning cnvironml\nts

constructed by student teachers. This shortage of l'valuation and fc(\dback may

be due to the lack of working spaces and the unrcadablc input m !ll-~tructur()d

working spaces. On the other hand, the fact that no fecdbclck and l'valuation was

provided for operating knowledge is not regarded as a problem sinet! the Logo

program itself can provide feedback on operating knowlcdge.

The coherence of pedagogical stra tegies

In addition to the above findings, the indicators of necessary sequences

from codings reveal two problems in the sequence of pedagogical strategies. The

first problem concerns the coherence of presenting tasks and providing working

spaces. Incoherences between providmg tasks or instructions on how to perform

the tasks and working spa ces were often found in the learmng envmmmenl~

constructed by student teachers. It occur2d when, in the course of presentmg

tasks and instructing the user on how to perform the tasks, the sludent teacher

•

•

Results and Discussion 87

interrupted one pre~entation with another irrelevant presentatlOn, or when the

tasks or instructions were provided a few views ahead of the working spaces.

Such incoherence is mdicated by the sequences of lowercase letters that are m

alphabetical disorder. The second problem in the sequence of pedagogical

strategies concerns the coherence of task representations An incoherent task

presentation occurs when the text and che pictures that present the same task are

scparated in different views.

There are several consequences of Incoherent pedagogical strategies. First,

they increase the user's working memory load. Second, they increase the

difficulty for the user in understanding the instructions and tasks. The users

might cven be un able to continue the execution if t!1ey forget the instructions or

the Lasks by the Lime they get to the working spaces. Finally, the incoherence

between mstruclions, tasks, and working spaces would cause bugs when the user

performs tasks that do not have corresponding working spaces in the current

view.

The distribution of strategies across projects

In order to further investigate how student teachers used pedagogical

strategies in the learning environments they constructed, che pedagogical

strategies used in each project are shown in Table 4. Data in Table 4 indicate that

aIl projects used three pedagogical strategies: providing instructions, providing

tasks, and providmg working spaces. Sixty-nine percent of the projects

employed settmg goals as a strategy, and the same proportion of projects

employed the explanation strategy. In addition, 62% of the projects used

demonstration strategies, 54% of projects designed evaluation and/ or feedback,

and 35% of proJects used the strategy of asking questions.

• •
Table 4

Frequencies of pedagogical strategies used in each project.

ProjeCt No. Setbng Goals Instructions ExplanaliOns Demonstrations Presentlng T asks Askmg Questions Provldlng Worklng Evaluation and
spaces Feedback

1 7 10 10 10
1

i 2 2 27 2 6 7

1 3 2 22 1
1

5 6 8

.. 64 58 53 20

5 3 26 2 2 10 7

6 2 45 2 20 14 1 29

7 17 8 1 16 8 8 17

8 9 19 36 13 3 1 2 1

9 20 19 1 1 -
10 1 8 1 5 4 2

11 1 29 5 2 1

12 5 39 3 3 18 8 12 9

13 44 158 13 61 46 18 49
Perœnt of the

Proj€Cts 69% 100% 69% 62% 100% 38~,: ~OO% 54~' 10
- ~-

1 ~~_ _ ----------------

•

•

Results and Discussion 89

What lhese data indicate is that instructions, providing tasks, and

providing working spaces are three basic strategies used by aU student teachers.

In addition, demonstrations, explanations, and askmg questwns were also used

ln sorne proJects as more advanced str;)teglE's. For example, ln ProJect 13, the

designer first provided instructions on the content area in which the program

was supposed to be used, the target population, and implementation methods.

Later, the designer provided instructions on the structures of the lessons.

Through the first two views of instructions, it was c1ear to the user the purpose of

the program, who could use It, and how ta use IL Furthermore, the designer set

the goals and objectives at the beginning of each les son so that the user knew in

advance what he or she was supposed to do.

In the rest of the prograrn, ProJect 13 used a combination of pedagogical

strategies simildr ta the one used in Projects 6, 8 and 9. These projects showed

consistent coding patterns. Such patterns are composed of instructions,

demonstrations, and explanations in an elegant way 50 that the user could see

the procedures needed for performing particular tasks, and the screen effects

these procedures produced, such as in Project 13 (See Figure 5) and Project 6 (Sec

Figure 6) Slightly different from Projects 6 and 13, Project 8 used

demonstrations, explanations, and instructions intensively ta tutor the user on

the nature of a grid, how to make il grid, and how ta find points on a grid (See

Figure 7) These combinations of pedagogical strategies helped the user visualize

abstract concepts 50 that the domain knowledge was effidently conveyed ta the

user .

•

•

Results and Discussion

r • rlle Edit !etlrch ront Utllities

-0 rlgure.S
This is a demonstratlon of the proceduroc: th.;>t }Jr\' JJIIl have ta work Wlth on f,.-~
your blank page (the next page) 12
Th. ftrst on. ~ • rectan gl.·. lt reqU\r.st~ 0t'otr.! ngth and wtd th.
Ex. rectangle 100 7S 'r!
1

Figure 5 a

,.. '* rlle Edit Search ront Utllltles

!!iD

The first one Is "rectangle". It requires t
Ex. rectangle 100 7S

A square is a speaal type of rectangle
Ex. rectangle 100 100

The next procedure is ·poly". It takss for input the number of sides that }'Our
shape wIll have and its SlZe.

A triangle has 3 sldes.

1

Ex. poly 3 100

Figure 5 b

(continued on next page)

90

•

•

. ------------------

Results and Discussion

r -' rlle Edit SelJrch ront Utllltles

10

1

A ;:.quare is a spe~lal type of rectangle wh
Ex rf'ctanglel00l00

The next procedure 15 "poly" , It takes f
shape will have and lts size,

A triangle has J sides
Ex paly 3100

A hexagon has 6 sides
Ex paly 675

l

Figure 5 c

dth

r -' Flle ldlt SelJfch Font Utllltles

1

A triangle has 3 sides.
Ex. paly 3100

A hexagon has 6 sides,
Ex, paly 6 75

fi ure.5

The final procedure makes c1rcles. It 15
the radius.
Ex,clrclelOO
Go on ta the next page (by typing n into t"'~~"è~~~~~
Remember yeu can cÙways arase bytyplng rlo.ch::I1·~"""'''''----

Figure 5 d

t,

Figures 5 a-do A combination of instruction and demonstration with

scrolling effects.

91

•

•

Results and Discussion

~. Flle Edit Se8rch font UtlIItles Windows
iD Figure 6

Lefs try making sorne squares,
After each command you press en ter, okay,
1

*

fd SO

Figure 6 a

~ • File Edit Sellrch Font Utilitles Windows
:0 figure 6
Let's try making sorne squares,
N'ter each command you press enter, okay.
1

fd 50
rt 9q r

i

Figure 6 b

(continued on next page)

92

•

•

Results and DIscussion

~ • flle EdIt Selu"ch font Utllltles WIndows

![] fI ure 6

et s try ma ing sorne squares.
After each command you press enter, okay.
1

rd 50
rt 90
fd 50 r

T

Figure 6 c

J] '* Flle Edit Sellrch font Utilitles Windows
=0 ~ Fi ure 6

Let's ft Y making sorne squares.
Nter each command you press enter, okay.

1 r

rd 50
rt 90
rd 50
rt 90
fd 50

1

Figure 6 d

o

o

(continued on next page)

93

•

•

Results and DIscussion

r'J • File Edit Setlrch Font Utlllties ~lndows

;0 Figure 6

Let's hy making sorne squares.
After each command you press enter, okay.
1

fd 50
r190
fd 50
r1 90
fd 5~

n

Figure 6 e

., • Flle Edit Seorch Font Utllltles Windows

iD Figure 6

Let's tl)' making sorne squares.
After each command you press enter, okay.

1 r=J .

~
~

fd 5~
rt 90
fd·lm
rt .:.JO
fd sa ~-~-------~

Figure 6 f

Figures 6 a·1. A combmation of mstructlons and demonstration

user control/ed by pressing the enter key.

94

•

•

Results and Discussion

'1 " Flle Edit Senrch Font Utllities Windows

:0 figure 7

-f- .-t-1f--+--+-f--t----i

UELCOME TO THE ~ORLD OF GRIDSI

Today. w. cr. go,ng to I.crn
ail abou t 91"" d.

Flrst. here Is ~hat a 9rld
look. l,ka

HOtI, 1 et' 5 take a look a l the
grld beln9 put together

Figure 7 a

9 .. Flle Edit Senr.:h Font Uttllties Windows

10 - - - - ----------

012:1'tS618
DUE R

y

Figure 1 -

Th 1. " th. f, ... t. pa .. t of tha
cr,d
Ho li ca how the 8 co 1 ns <;10
OUERI

IStTCH CAREFl.t.L 1

Figure 7b

(continued on next page)

95

•

•

Results and Discussion

0] " Flle Edit Senrch Font UtlIIties Windows
10 - Figure 7

8 ,
6

5
UP

't

:1
i!
1
0

r-~

This IS the second port of
the gr 1 d

Dld you see ln whlch direction
the 8 rows went? The~ •• nt UPI

Figme 7 c

JI .. File Edit Search font Utilities Windows
U Flgu~7

B ,
6

UP
5
'4
:1
i!
1

00

1

1 i! :1 't 5
o U E ft

r

6 1 B

~." you pu l lh. "01 UIV1. CII'Id
th. rolllS log_lh.,.. ."au <;je t a
compl.t. grld

I-ERE 1 T 1 S 1

Figme 7 d

--

(continued on next page)

96

•

•

il .. Flle Edit

:0

9

l
6

5 -
UP

'i

3
2
1
o (0-,0)
012

Senrch

,

3 If 5
o U E ft

r

Results and Discussion

Font Utllities Windows
FIgure 7

618

Tl'le PO 1 l'iTS on a gr 1 d are made
.l'len tl'le columns and tl'le rows
.eet

Here are some pOints for you
ta look ot

~atch os Tony tl'le turtle VISltS
eoch pOint one ot Q tlee

Ton~ will AL~AYS leove (ra. l'lIS
l'lause, whlch IS ot the pOint
[0,01

There IS Tony lhe Turlle's house

Figure 7 e

JI .. Flle Edit Senrch Font Utilities Windows
ID FI ure 7

9

1

6
5

U P 'i

3

i!
1

-
•

('12)

(0 0)
00 1 i! 3 If 5 6 l 8

o U E ft

Flrst, our turtle Tony IS gOIM9
ta VISlt tl'le purple dlamena

LET'S ~ATCHI

Th. flrst thlng Tony WI Il do IS
go OUER 3

No., la get to the purple dlamond
Tony Just l'las to go UP 2

Nallce how [3,21 lMIans \hat Tony
went OUER 3 and UP 2

Figure 7 f

(continued on next page)

97

•

•

Results and Discussion

• Flle Edit Senrch Font Utllltles Windows

9~r-T-~.-.-'--r~

lr-r-r-+-+-+-1-~~

61--+--+--+--.--+--+--+-1

5
UP ~r-r-r-~-+-+-~~~

3r-r-r-~+-+-4-~~

:1115619
o U E ft

Figure 7

AL~AYS r.member Tony alwaVs
b.Qlns rro. hls hous.

Ton~ Qoes OVER and then
he g085 UP

Tony will n08 go vlslt the green
tr. angle

Ae •• eber, he's Qot to go OVER
f.rst end then UP

GO TONY GOII

Figure 7 g

• • Flle Edit Senrch Font Utllltles Windows

!O Figure 7

B

l
6
5

U P Il

3

i!

1

- -(1,5

~(~1,6

..
1 {3 ,i!)

(0 0)
00 1 i! :1 't 5 & l 8

o U E ft

Th.s t.me, Tony .s goln9 lo
VIS.t the yel lo~ reclangle

~ATCH CAAEFULLV because It 5
\jour lurn nex t 1

Tony Is at the point 14,01

H" _nt OVER 4 and UP 0

Figure 7 h

(continued on next page)

98

•

•

Results and Discussion

* File Edit Senrch Font Utlllties Window~ --, - -

8.---.---.---.--..,---.--.--.---,

~~4-~~-4--r-+-~~

6 1--+-+-+--(", ,6)f---1f--i

5 - -(1,51-+--+--+--t--;
UP ... 1--+-+-+-+-4-~~~

:1 I---+-+--+-~--+-t-I----i
i! ~+-+-
11--4-4--4--4--+-4---,f---I

O~~~-L~--~L-~~

3 ... 5 6 ~ 8
o UER

l

Figure 7

You have ,.een Ton\j \,II sIl th .. ",,,,
lIhopeos al ttv-_ dl f fe ... nl
pOInts

N~ TONY l'EEDS YOIA'! HELP 1

YOU musl guld. hllll lo the two
shope,. lhal a ... I.ft

Ta help Tony oet to eac:h, \jou
w 1 1 1 ha\,le lo llJpeo 1 ns truc: tI ons
1 n the co and cen ler

Figure 7 i

J'I * rile Edit Senrch Font
;0

utihties Windows

Figure 7

8r-~'-'--r-.-.~-.

~~+--+-~-+-4--1~~

6 ~+-+-+--t. (~ ,Ii)1f--1--1

5 f- -(1,51-+-+-+-4--1
UP ",I--+--+-+--+--t-~-r~

3r-+--+--+--+~--1--r--1

" 1 i!

l

:1 '156 ~ 8
o U E III

ht1en yeu lei 1 TonlJ who l to do,
llJpe OVER 0" UP • 1 lh lhe nu.ber
",ghl beslde It - - -

DO NOT LE AUE A SPACE

H Is an .xa.ple If you .ant
Tony lo go 0\,1 ... ~, type O\,I.,,~

ht1",n 'JOu se. the curso.. flash 1 nv
1 n lhe cOllllland c.n te .. 'JOu
malJ bev,n'

Figure 7 j

~
~

Figures 7 a-j. A combination of demonstrations, explanations, and

instructions with clearing text and clearing graphies.

99

•

•

Results and Discussion 100

Another common feature in these four projects was th.1t task~ ,1lld

working spaces were provided for users to practice or explore wh.1t they h,1d

learned right after the tutorial was fmished. In addition, the designers pro\'idt.'d

the users with important elements of the procedures required for pprtorming

tasks, or the rneans to access these elements while the tasks are bemg pC'rtormed.

Moreover, these projects enabled the users to control the fIow of e'l.l'cution. In

Project 6, users could control the speed of producing the screen l'ifect~ of each

procedure by pressing the enter key, while in Project 13, tl1(' designer .lllowed the

user to go back to the previous page or to move on to the next one by pressing

"n" or "p" key.

There was also a pattern of pedagogical strategies for drill and pr.Ktice

programs. Projects 4 and 7 and sorne episodes of Project 1 used the Cllmbination

of presenting tasks, working spaces, and irnrnediate evaluations and feedback

(see Figure 8a-8d).

·0 Figure 8 -- - --, =-

WHICH 15 THE RIGHT ANSWER? ~ 3x5=a) 14
b) 15
c) 17

~

r:

~
~

Figure 8 a

(continued on next page)

•

•

Results and Discussion

, " File Edit Seerch Font Utliities Windows

10 wrong2

1
TOO BAD!!!

MAYBE NEXT TIME! Il

TRY AGAIN.
TYPE #2.

e

r

Figme 8 b

i Figure 8

HICH IS THE RIGHT ANSWER?
3x5=a) 14

b) 1 5
c) 1 7

Figme 8 c

(continued on next page)

101

•

•

Results and Discussion

~ • Flle Edit Sellrch font Utllities Windows

~ rlght2

1

1

VERY GOOD! ! !

Y~U GOT THE
RIGHT ANSWER 1 Il

TYPE #3.

b

Figure 8 d

Figures 8 a-do A combination of task presentation, working

spaces, and evaluatlon and feedback.

102

The findings from characterizing pedagogical strategies are that, on the

one hand, student teachers have developed sorne pedagogical strategies to

convey the knowledge efficiently. On th" other hand, there were still sorne

problems with the pedagogical strategies used. Flrst, the learning environments

provided insufficient working spaces, or ill-structured working spaces which did

not prornote interactions for performing tasks and answering questIOns in

domains. The second problem was that the learning environments presented

working spaces for operating knowledge without any indication of these

working spaces. The third problem was that sorne sequences of pcdagogical

strategies led to incoherent presentation of tasks and incoherent Instructions,

tasks, and working spaces. Finally, there was a serious shortage of cvaluation

•

•

Results and Discussion 103

and feedback in the Iearning environments constructed by student teachers .

The characterization of knowledge and pedagogicaI strategies has shown

both the advantages and lImitations of the learning environments constructed by

student teachers. From a human-computer interaction perspective, the

knowledgc presented ir, the Iearnmg environments IS regarded as the output of

the computer whereas the manual opera tors from the user are regarded as the

input of the computer. Il IS necessary to determine what kind of input a

computer requires from the user within the context of interaction. From the

perspective of learning, the characterization of a learning environment should

consider whether a Iearning environment provides sufficient user-computer

interactions (i.e., Iearning activities) and whether such mteractions facilitate

Iearning. Furthermore, it is necessary to investigate whether the learning

environment provldes the freedom for the user to choose activities, task

complexities, and various types of assistance according to his or her individual

needs. The following section will attempt to discuss these issues by

characterizing the interactions.

Interactions

The interactions in the learning environments were characterized by the

attributes of the opera tors required to execute prograrns, which are either

automatic or manual. Automatie operators refer to the cases where the execution

of a program does not require any input from the user. In contrast, rnanual

opera tors refer to the cases when the execution of a prograrn requires the user's

input. Through manual opera tors, a user may be able to perforrn tasks, answer

questions, or opera te the system. In addition, it is possible for the user to select

activities, choose task complexity, or choose various types of assistance according

•

•

Results and Discussion 104

to his or her needs.

Ratio of manual and automatic operators

Tables 5 and 6 show the overall opera tors and their functions desi~nl'd in

the learning environrnents constructed by student teachers. Studcnt tC<lchers

designed 58% autarnatic opera tors and .t2% rnanual opcrators The r.ltio ni

autornatic opera tors suggesls that the llsers did not h<we the Irecdom Lo control

the flow. It also suggests that these learning environrnents migh t not provlde

sufficient interactions which are critical in the learning proccss and wlllch l'nable

the user the flexibihty to select activities or lask cornplexily, as weIl as various

types of assistance. These results will be further exammcd by anJlyzing the

manual operators designed far different purpases.

Characteristics of manual opera tors

In the learning environment canstructed by student teachers, data from

Table 5 indicate that 39% af the manual opera tors were dC'signed for operaling

the systems, 3.nd 55% of the manual operalars were designed for performing

tasks and answering questions. Only three percent of the manual opera lors wcrc

designed for choosing assistance, and the same percent of the mil.nual opera lors

were designed for choosing activities. There were no manual opera tors for

choosing task complexity .

• --
Table 5

Frequencies of dlfferent types of manual operators and their functions designed for ail proJects.

Chooslng T asks or • ChooSlng Task Answenng Answenng Multiple Performlng Chooslna Operatmg the Total Percent
ActlVltJes CompleXlty Questions Cholee Questions Tasks Assistance System

Pressing a letter or a
number

19 43 62 27%
Pressing enter aher a

procedure
16 16 70 1. ,0

Typmg a command

6 2 4 8 41 61 26%
Typmg a command + a

vanable
28 28 12%

Usrng the pnmlbves

22 7 29 12%
T yprng a ward

accordlng 10 a quesbon

17 13 1 31 13%
T yprng sentence(s)

6 6 3%
Total

6 0 23 34 70 8 92 233
Percent

3% 0% 10% 15% 30% 3% 39% 100%
- ----- -L- ----- -1-

•

•

Results and Discussion

The ratio of rnanual operators for performing tasks and answering

questions vs. operating the system.

106

The numbers of manual opera tors for performing tasks and answering

questions for domain knowledge are only 1 38 times grf'aler th.ln lhose lm

operating the systems. This ratio suggests that the learning enVlf(.mmenls

constructed by student teachers lack the interactions that promole ta~k

performance and learning. In addition, the filet that the manu,lI operatnrs \\'I..'rl'

rarely deslgned for choosing the activtties, types of assistance, or task complexlly

indicates that the learning environments provided the users with very limi tl'd

control over the system and that they did not have the flexibility to meet tlw

individual's needs in the learning process.

The forms of manu al operators for performing tasks, answering

questions, or operating the system.

In order ta determine whether the input required from thc user supported

the user in learning the domain knowledge and in operatmg the system, manu.11

opera tors were categorized further according to theIr [orms. Data 111 Table 5

shows that there were four types of manual opera tors for performing ta~ks for

domain knowledge: typing a commànd, typing a eommand wIlh a viHiJblp,

using the Logo primitives, and pressing the enter key when the procedures

appear on the sereen. The manual opera tors for answcring questions consbted of

typing a word or a sentence, or pressing a lettcr or a number for multiple choice

questions. The manu al opera tors for operatmg the systems mamly mcluded

typing a command, pressing a letter or a number, or using primIllves

What was observed from these data was that the student tcachers tended

to use pressing a letter or a number for operating the system and typing a

•

•

Results and Discussion 107

command or command with a variable to perform the tasks in domains. Tt

seemed that they tried to minimize the difficulty of operating the system by

~implifying the input required from the users. On the other hand, for performing

the tasks, they used the input which required more understanding and gave

uscrs more flexibilily. Therefore, the manual opera tors the y designed for

performing tasks in domams could support learning the domain knowledge and

operating the systems.

Distribution of manual opera tors in projects.

The data in Table 6 indicate that 85% of the projects designed manual

opera tors for performing tasks or answering questions, 46% of the projects

designed the manual opera tors for operating the systems, and 31 % of the projects

designed the manual opera tors for the users to choose the activities or tasks.

Only 15% of the proJccts designed the manual operators for choosing types of

assistance and none of the projects designed the manual operatûrs for choosing

task complexity.

These data suggest that, even though only two percent of the manual

opera tors were used for choosing activities, one-thlrd of the student teachers had

considered providing such flexibility to the users. However, the fact that 15% of

projects did not include any manual opera tors for performing tasks or answering

questions for domain knowledge further confirmed that the learning

environments constructed by sorne student teachers lacked the interactions that

promoted task performance and learning for domain knowledge .

• •
Table 6

Frequencies of d,fferent functional operators ln each proJect.

ProJect No ChooSlng T asks or Chooslng T ask Answenng Answenng Mulbple Cholee Performmg Chooslng Operatmg the
Actlvrtles Complexlty Questions Questions Tasks ASSistance System

1 7 3

2 2 4

3 1 6

4 1 6 16 31

5
,

3 4 1

6 1 20 8

7 9 1

8 20

9 10

10 1 3

11 2

12 3 5 4

13 39 43
Percent ot the

ProjElCts 31:,~ 0% 23% 38% 61~~ 15% 46%

•

•

Results and Discussion 109

Characteristics of automatic operators

The data in Table 7 show that the most frequently used automatic

opera tors in the Jearning environments constructed by student teachers were

scrolling effects (86%). The disadvantages of scrolling, including other automatic

opera tors are that, first, the user's interactions which are critical in learning

processes are rarely involved in executing a program 50 the computer5 only

present movable text or pictures, and their unique potential for interacting with

users is not u tilized. Second, the text and graphies are prearranged through

automatic opera tors so the user did not have any choice in the learning

proccsses. Fmally, the user couid not control the execution of the program, 50 it

becomes a serious problem when the text is difficult to understand, poorly

formatted, and presented at an inappropriate speed. One example of such

disadvantages of using automatic opera tors can be seen in Episode 1 of Project

12. ThiS episode involved a high proportion of scrolling effects to present text

that was complex and crowded ;:,0 it was difficult ta read and understand (See

Figure 9).

Table 7

Frequencies of automatic operators designed in ail projects.

Automatlc Operators General Cleanng Texls Cleanng Total percent
Graphlcs

Cleanng 9 19 3 31 9%

Sàollmg 260 38 298 86%

Aulomallca,-iy Executmg 19 19 5%
pilges
Total 288 19 41 348 100%

•

•

Results and Discussion

Flle Edit Seluch Font Utllltlei Windows
Figure 9

This pcrtlcular Social Studlill5 proJillct 15 to halp chlldrtm Ilern about th.
COrllPQSs and MW to use directions 1\ contalns a pao- wNre chlldren can Interact
by ans_ring sillple questions, a paÇle whlch Is Informative and del1lOnstratlve, and
a page IIh 1 ch 1 n teÇlra las ail lh. 1 deas tOÇllther

Th. flrsl 8x..-cls., Maps - flndlng placlS and lhlngs, 15 an Introduction Il
liter l5 IIllh sOrTIe th 'ng lh. ch, 1 dr.n can l'II a te lo - th .. , r own 1'0011 Th.." arl
.. aCjU ,rad ta 1 oca l. car ta 'n ob J IC ls a 1 th dl rac l ,on,. 1 n lhe s,,",p 1. roa.! And lh..,
th. ch,ldran are a,.kad lo draa a topograph,cal v.lwof lh.,r own rOOIl, us,nç whal
lhey knoll of LOGO

The second pOÇle, COIIp<l55 , '5 an ,nforeallv. and dema.lrot,v. ex ... c, ... Ll \pv ...
lhe ch,ldren an eXOIIple of ehot a compas, looks I,ke and holl the needl. of lh.
canopass l'Klv.s Th,s p<lça llould anl\,l b. us.d as a r.v,IW ralher lhan a f,rsl l'land
I.sson For .xaonpl., 1 OIould prov,dl an opportun,ly for the ch, Id ... " to oc:tuoll..,
hand 1 e a cOIIpass and have lhee use 1 l by t .. ave 1 l 'ng around lh. schoo 1 or
ne 1 ohboumood

1

Figure 9 a

.. rlle Edit Search Font Utllltiei Windows
!D Fi ure 9 _ __:. - _ - t: _

Th. flrst Ix..-cls., Maps - flndlng plac ... and thln(lS, 1. an Int .. oductlon 1 \
slorts .,Ilh sOlllethlng lhe chlld ... n can ... Ial. ta - lh.lr O<IIn roOll Thl\j or •
.. equlr.d ta locate cer-lal" abjects al th dl .. ecUons ln lN s pl. roOtll And then
lh. c:h,ldr." are asked lo drae a topograph,cal v, ... of th.,r own roOtll, uSlng at
lhll\,j kno" of LOGO

Th. second page, COIIpaSS, Is an Inforeallv. and d.moslratlv. aXII"clsl Il Çllv.s
lha ch 1 1 <Iran an exOllp la 0 f wha t a COlllpass look$ 1 1 kl CI'Id ho" tha nead 1. 0 f the
C0rllPas. IIIOV'S Th 1 S page .,ou 1 d on 1 y b. und as a .. lvl.., ra lhe.. lhan a ",,"l h<rld
I.sson Fa ...)(aonpl., 1 .,ould pravld. an opporlunl ty for the chlldr.n la acluelly
hand 1 41 a cOflpa.s and have th.e us. 1 l by trave 1 l ,ng around thl schoa 1 or
ne Ighbourhood

The th, rd page, Shopp' ng, 1 S ta h.1 pin ta9ra t. the 1 dlas and concep ls 0 f a
ne Ighbourhood and a COI!llllI " ty, us 1 no dl rac li ves, and SOIII. prob la.. :so 1 v, n<;1 sk 1 1 1 ..
Due ta the t,"e ',m,li \II<IS nol able to Include ail the ,deas lhat 1 lIIOuld have
Ilked, therefor. thls last pao. Is Inco.plete For exampl. as the chlldr.n choos.

Figure 9 b

(continued on next page)

110

•

•

Results and Discussion

Il " File Edit Senrch Font Utllities Wmdows
;0 Figure 9

Th. second paQe, Campa , Is on InfoMlatlve and d ostratlv .. e"erClse Il ç'VI!5
th. ch. Idren an example of ",hat a ca~ass looks I.k. and ho ... the needl. of th ..
composs moves Th 1 S pa~. lU""" 1 d on 1." be used as a ,.. .. v , ra th..... than of. rs t hand
1 ... "" For .Maropl., 1 1U0uid provld4> an oppor-lunl ty for- th. ch,ldr." to actually
hand 1. a coropass and have them us. 1 t by travel 1 1 n<;l around the schoo 1 or
n .. lghbou,..hood

Th. thlrd pag., Shapplng, Is to h.lp Int.grat. th. IdllOS and concepts of a
n.1 ~hbourhood and a co ... un 1 t.", us 1 nç dl r.c t 1 v.s, and so .. e prob l,,,. sa 1 VI nç sk 1 Ils
Oue ta th. li ... Il .. 1 t 1 .os: not obi. to Includ. 011 the Idaas that 1 llould have
Ilked, ther"'"",, thls last pOQe Is lneo.plete For ."<aple as the chlldreM choos ..
the par t 1 cu 1 al' ~ 1 ft th"l1 wou 1 d 1 1 ke to pure hase and ore ask .. d to trav .. l, sounds
of "alklnç feet could be add .. d and as th .. ." arrive at the.r d .. stonatoon the." could
be asked to solve a lIathematleal proble., 1'1"", mu.:h chan~e the<,! II/ould r .. ce.ve If
the ~. ft cos t 50 mueh and • f the." l'lod 50 .uch monl!\j, and 1 f th .. corr .. c t ans.er
.. os ç. ven the." ItOu 1 d hear th.. sound 0 f the cash r"';11 s ter A Ma thl!llla t. ca 1 prob le"
cou 1 d b. asked .ach t , •• Hl • ." purcho ... a dl ff,., t 1 t.. And al so as th • ." mov.
'r"", ploc. to ploc., quest.ons on h.stor and sc • ."c. can b. Int. rtated For

Figure 9 c

rlle Edit Selnch Font

paQe,
n.'Qhbourhood and a COINI\\Il.t.", US'MQ d.r .. ct.ves, and SOIMI problMl solv'n<;! ski Ils
DY. to the tI.,. I.m. 1. 1 IIIQS not able to .nclude 011 the .deas thot 1 lIIOuld hove
Ilked, ther.for. thl, la,t page .s .ncoapl.t. For exCllftpl. as the chlldr.n chao,e
th. part 1 cu 1 ar gl f l th"", .. ou 1 d 1 1 k. to purchas. and al". asked lo tr I, so..,ds
of .. alklng flMt could be add.d and a. th.y arrl aL th.l ... desllnatlon th..,. could
be asked to so 1 v. a th.at 1 ca 1 p,..ob I.a, ho", muc:h ,5,"'98 tn.y IIIOU 1 d c.1 v. l'
th. QI ft cos t so lIuch and " th.y had so auch mon , ..,d l' the cor c l al'\S_ ...
UlQS Qlven th8\j "ould nao ... th. sound of th. cam ... aglsl.r A Math""allcal probl.",
could be osked .och li"", the.., purchase a dl rr.,...,.,l 1 tM And also as th..., .. ov.
'rom ploc. lo ploc., q sllon. on hlsto ... y and sel."c. con ba Integrlal.d For
.. "ampl. as lhe chi Id ... n IIIOk. thelr wa!.l frolll lhe woel store lo the ccrd stor.,
lhel,l ma.., pass b\I a statu. of a faaous h.stor.an Th •• n~c,..pt.on lIOuld be
prov 1 ded and the ch 1 1 dren ItOU 1 d b. ask.d to prov 1 de ans ... r 0 f .. ""ols 1 t?.. (... 01\ a
cho. ce 0 f thre. no ... ,

Figure 9 d

Figures 9 a-de An example of complex and crowded text with

scrolling effects.

111

•

•

Results and Discussion 112

On the other hand, the appropria te use of aut0l11,1tic opC'fa tors may reduce

the difficulty that the users confront in using l11al1ual ope'ralors due to

problematic represenlations of operating knowledge Also, the' user's working

memory load may be reduced beeause the program automatlcally presents thl'

texts or pictures and the user does not need to worry about how lo opera te tht.'

system. Therefore, users l11ay work more smoothly if the lexts are ea~y 10

understand, well forrnatted, and presentcd at a reasonable paee for tlll' user'i

Project 13 also involved a hlgh proportion of scrolling. Dittt'rent trom

ProJect 12, the texts in Proje(:t 13 were short, easy to undersland, and weil

formatted. In addition, the text on how to use procedures to draw varIOUS

shapes was combined with demonstrations of the 5creen effccts prodUCl'd by

those procedures (See Figure 5). Not only could the user sec the procedures

needed to perforrn the tasks and thelr sere en effeets without any intenuption, but

also the speed of the scrolling could be slowed down. Thus, the user could work

smoothly with automatic opera tors in th15 program.

To summarize the findings from characterizing the opera tors, the results

of this study suggest that the learning environments construeted by student

teachers lacked manual operators and overused automatic opera tors. The

learning environments particularly lacked manual opera tors which promoted

task performance and provided flexibility for users to meet thcir individual

needs. However, the types of manual opera tors designed by student teachers

seemed to support the user in learning domain knowledgc and system operation.

In addition, the automatic opera tors sornetimes dlsplayed advantage whcn [he y

were used appropriately. Therefore, good instructlOnal software should combinp

the advantages of both automatic and manual opera tors ~o that uscrs cannot only

execute the program smoothly, but also have the opportunity to mlcracl with the

computer, as weIl as the freedom to cho05e the tasks or assistance to meet their

•

•

Results and Discussion 113

mJividual needs.

Summary of the Characteristics of the Leaming Environments

There are three major findings which emerged from the overall

characterization of the learning environments constructed by student teachers.

Flrst, the learning environments presented domain knowledge, operating

knowledge, affective knowledge, as weIl as knowledge for implementation about

content areas, target population, and methods. Domain knowledge was the first

major conC('rn of al! projects, whereas operating knowledge was the second

maJor concem Domain knowledge presented by student teachers was mostly

about facts, events, concepts, and actions and it was seldom involved principles

or conditions under which the actions can be taken. St metimes student teachers

presented tem poraI, partial, or identical relationships, but they did not present

causal and condilional relationships, or indicate "bug problems", the learner's

misconccptions, or efficient problem-solving strategies that might be employed

by advanced instructional programs. Further analysis of operating knowledge

indicated lhat a program did not need to present any operating knowledge when

the episodes or views were linked by automatic opera tors or when the domain

m,muaI opera tors were .lsed to link episodes or views. Ho ,,rever, a program

must present operating knowledge to the user when a manual operator is

required to link to an episode or a view. Lack of operating knowledge when a

manual operator is required to link an episode or a view is the main reason for a

user becoming stuck.

The second finding was that instructions, providing tasks, and providing

working spaces are three major pedagogical strategies used by aIl student

teachers. More advanced pedagogical strategies which integrated instructions,

•

•

Results and Discussion 114

demonstrations, and explanations, as weIl as hinds for assisting task performance

were also designed by sorne student teachers Furthcrmore, ,1 few student

teachers took the advantage of Logo c\.ploratory learnmg Cl1\'lwnnwnl and

enabled their target learners to learn domain knowledge by expJor.llwn On the

other hand, data also show that the learning enVlronrnents constructed by tilt'

student teachers lacked working spa ces to perforrn tasks or answer que3tions,

and there was a serious shortage of evaluation and fl'edb.1cJ.,. on dOl11.lin

knowledge. In addition, insufficient tasks were presl~nted for opcrating the

system when relevant operating working spaces were designcd The

consequences of these problems were that, first, the lack of working sp.lces in

domains led to failure to perforrn tasks, and second, insufficient indication of

operating working spaces created difficultles for the user or l'ven fl'~uJted in

failure in program execution. The insufficient working spaces .md the input to

which the computer did not respond were the sources that the lcarning

environments lacked evaluation and feedback, while the Jack of l'valuation and

feedback in turn indicated that the learning L.lVironments constructed by student

teachers were weak in assisting user' s learning.

The last finding was that the learning environmen ts constructed by

student teachers lacked rnanual opera tors and overused automalic opera tors.

Moreover, the learning environrnents lacked manual opera tors for perforrning

tasks, for providing flexibility to meet the user's individual needs, and for

providing assistance in learning.

Characteristics of the Program Structures

LogoWriter™ has special features which can execule more than one page

in a program and more than one procedure on a page with or without the user's

•

•

Results and Discussion 115

Inleraction. The program structures in this study, therefore, refer to both page

structures and procedure structures. The program structures are also

characterized by the statie attributes and dynamic attributes. Static attributes

here refer to single-Ievel, linear, modular, or fragmented structures. In addition,

programmmg utilities su ch as reusable procedures, conditional statements,

variables and recursion are also considered as static attributes. Dynamic

allributes of the program structure refer to the manual opera tors required in

linking procedures or pages. The categories and functions of manualoperators

are the same as lhose used in eharacterizing the learning environments. Table 8

shows the program structures in each project produced by the student teachers,

Including page structures, procedure structures, and programming utilities.

Page Structures

Data in Table 8 indicate that 69% of projects produced by student teachers

used linear page structure, 23% of the projects used modular page structure and

23% used fragmented pages. It is clear that there is consistency in the way the

student teachers structure their pages, based on the fact that 85% of the projects

llscd only one page structure and only 15% used two page structures .

- -
Table 8

Page structures, procedure structures and programming utilities used in each proJect.

1

ProJect No. Pages Structures Procedure Structures Programmlng Utllllles
Unear Modular Fragmented One Leve! lInear Modular Fragmented Reusable CondltlOnal Vanables Recurslons

Procedures Statements

1 x x x x x x x
2 x x x
3 x X

4 x)C x
5 x x x
6 x x x x x x x x
7 x x x x
8 x x x x x
9 x x x x x
10 x x x x
11 x x
12 x x x x x x
13 x x x x x x x

Percent Of

1

the PrOjects

77% 1_ 69% 23% 23% 54% 54% 46% 23% 31% 23% 23%
-- -- --- - --

•

•

Results and Discussion 117

Linear page structures

The most common page structure in the programs produced by student

teachers was !inear. There were severai versions of linear page structures due to

different ways of linking the pages. The simplest version was that aIl pages are

relrieved by the GETPAGE primitive in the first page of the program 50 the

program did not require any inputs to Iink the pages, as shown in Figure 10.

Anothcr version was that the user was instructed to use the GETPAGE primitive

and the page na me to ret 'e the page when the previous page was finished, as

shawn in Figure Il. The third version of !inear structures was that the user couid

press one key to move to the next page when the current page was finished.

Once the user was on the next page, then he or she couid access the previous one

by pressing another key (see Figure 12). The final version of !inear structure

combined an automatic operator with a manu al operator 50 that the last

procedure in the previous page could automatically retrieve the following one

that prcscnted a question. When the question was presented, the pro gram

walted for a manual operator, which was a correct answer from the user. Once

the correct answer was typed in, the following page was linked and a new

question was presented (See Figure 13) .

Results and Discussion 118

• Bobert A Final

gp

Figure 10. A linear page structure linked by automatic operators.

Flnal1

Answer4 1

Figure 11. A linear page structure linked by manu al operators .

•

•

•

Results and Discussion

Figure 12. A linear page structure in which the direction of

operation is controlled by pressing a key .

119

•

•

T
11 ;

, ,

,
finish : . . . ,

, ,
; 9P
, ,
,

r;.1'31
~ · · , · //"" <.1)p9 ans >~

#r." /

correct
; .. gp.,,;

; gp

' .. gp .. '

gp

Results and Discussion 120

.. .. CI] :'" L---r-...J

r-;5l
~ ... ~

.
/' /""~, ~ <. type ans ,,;" :
"',," :

COrred '" gp ,,:

gp :

//
/. t)!l8 ans'"·;.-

'<1. / ,/ .
COrred : , ',. gp.,.,'

1"Pil
~:

.

'. 9P •• corroct

gp

!Pi!
';~

gp • corroct

1",,~17rt ." ••
: ~.r1I ;
, , : --r-....

r-;21l
~.

. . · /".

,;,"iype an;" ;.- :
'_. ./ 1

'.,/ : · . carmel: :
.... gp ,,' :gp

1 ~r, '···1 ~
finISh : ././ ••••• '.

• : , .•.. ~Ins/ /
: --,/

gp : :
.......... "'gp'" COIT1lCf

Figure 13. A linear page structure combining automatic and

manu al operators.

Modular page structures

The modular page structure, which is supposed to have more advantages

th an the linear one, had two versions in the programs produced by sludenl

teachers. In one version, the pages were structured at two main levels and the

•

•

Results and Discussion 121

bottom on es were parallel (See Figure 14). In the second version, the main frame

was modular, while the rest of the pages couId be eilher moduIar or linear (See

Figure 15).

startup

";"/1/"" , '/.
'---___l' : ~ -7 //

. no eues.

· , '/, ,
/ ~,., InstructIOn : no c.'1Jes

/ '''. ':
'-'" type ;., .. 9' :

""1' / :

no ~1Jes no ~ues . no cues

· . · , , ,.
~ ,. • , • ,. , ,. " .; • " , ,. ,. '" " ,. ,. " " , ,. • ,',,, ,. " " ... " " " , • , of .. " .. ' '" " ,. " "" .. , ,. " '" " " .. JI .. • " , , " , " ",. , " " .# "" .. '" " " " " " ,

• 1 1 1 , 1 1 ,. 1

; ~ ~;':' = 1

~ @ @ ~ ~ ; @ ~ ~ . , , , , , ,. , '
, ' ,. 1 , , , •

• ' • 1 l " 1 1

, '/. map clone : famlty ; : lime fine: : legend: : my pgae :

:i'~ c!~ 1 ~,~;", Jj~~j~)1 my;. f.!
~ -7 ~ -7 ~ no eues •• ~ ~

' nocues .. • .. • ·~· • ·i
map ,F'o. legend : :

/ / "', l' h:...... gp , •. type /./............. gp ' :
1""/ ~

• ·•••• • nocues '

Figure 14. A modular page structure consisting of two main levels

with the bottom ones parallel.

•
[;~}P&J

cl c2

'l , ""'"
,,~.~pe·C85Ué':.'.

" .. -""
.~

''l'
/',

/ :%,.. 1
gp "~~' gp

1 ~ ~ 0 [';"1 1 $
gp 1 <,type :--

.-:L,I
~!

"./

/.. L '/ i /'.

éS,Iy~;'~' gp ~rt;,,~_ran 1 rrro-- gp gp , --. d r-::-l
dragon 9o,capa ~p il &eper ~ look 1 j -'l
'l''' 1 1 l".

/. " ~ /: : rtpe '.
"rtpe / ,/ty ". ____ /', , 1 l ' , /,P

'. ". pe./ gp' type .---' 1 ~ B' S'/ ~ gp' cheS! key
gp l.:lave Wd'"

roule '1'

/ j.. <ty;";;- 1 9a "tvptl T 11t:t c t:lS , (a P for ~ .. "'" recOuN gp

____ IL gp 1 tndJdan patrs ara J
.... \ ./' 1 ~o: ~ < type ,

,. Ino.catao! ~'J
.-: type" 1 - .E.. •• __

. / .
ThecUtl6 ~ :
k>f 1l1t)Stl .----------------.:

patns are
no!

ona.::ala.:l

ç 1 '. go 1

'. pa
",/

~
Ln

,/,

/." -=-,type ;.
".;

L gp

The ';uos
lor mas.;

patns at&

no!
Ind,caloo

Figure15. A modular page structure

i 110 .•

'l
/, ,

~i
~:

'/
/,

/ripe/
"'j 9

//
,/".

/, type ;,-
",/

~:
~;

•
c4

'l'
,(ry~>

°i ,-ol ~ 1
/, " '/

• ,~pe/ 1 bore /'." ~
1 9 r.!yp9./', gp

~ËJ"~ ~ wrong ~
'1' 'l l"" 'l .

"-"type / gp /'" ,1ype/ . ./ l' type / ",
gp *' .. ", gp

'Ou _5m"~ ; 1

! aore /., b
1 ~ typ6I"--:'';' gpl p " • ./

1 ~ /lgh12

1 ~ 'l' ! 'l ./ '"
./ •••• '. type / 1 " .rt.r: / ',/ #3

1 112 : t.. _______ •

•

•

Results and Discussion 123

Two problems were frequently observed in the modular page structures

deslgned by student teachers. One problem was that sorne bottom branches did

not have paths leading to another bran ch, 50 that users had to quit the program

and restart it again In order to access other branches. Another problem was that

\l1 many cases the deslgners did not indicate sorne important paths to the users

even though they had deslgned these paths. 50 it seemed that student teachers

l'xpenenced many problems m designing smooth modular page structures.

~evertheless, the modular page structure did enable the user to choose

allcrnatives in execution and therefore still has sorne advantages over the linear

one.

Fragmented page structures

Not surprisingly, sorne programs designed by student teachers consisted

of fragmented pages in which there was no indication of how ta link one page ta

.1l1nther. Bence, the user had difficulty in executing these pages as a program.

To sum up the fmdings from page structures, student teachers preferred

to design linear page structures and they encountered less difficulties in doing 50

than in designmg modular page structures. Sorne of them have developed

consistent and systematic linear page structures which enabled users ta answer

questlOns and control the direction of operations. In addition, sorne student

teachers developed modular page structures that promoted alternatives in

execution 50 that users could choose tasks or activities. However, student

teachers seemed tn have trouble in designing the paths from Olle branch ta

another and further in indicating these paths to the user. The fragmented pages

were eüher a result of uncooperative group work or an inability to design

alternative page structures.

•

•

Results and Discussion 124

Procedure Structures

There were four procedure structures designed by student teachers. These

procedure structures were single-level, linear, modular, and fragmented The

data in Table 8 show that 92% of the projects mvolved single-level procedure

structures and 54% of the projects involved either linear structures or modul,lI'

ones, or both. Fort y-six percent of the projects had fr,lgmented pnK.'(htrl':-' ,11

some points.

Single-Ievel procedure structures

The projects produced by student teachers made heavy use of single-lcvel

procedures. The simplest single-Ievel procedure is shown in Figure 16<1, where

the procedure named "castle" would retrieve a page with the corresponding

name. However, student teachers used smgle-level procedures in flexible ways

with the result that several single-Ievel procedures could accomphsh complex

tasks. For ex ample, they used single-Ievel procedures for answering multiple

choice questions (Figure 16b), choosing actIvlties (Figure 16c), and performîng

tasks. However, in most cases, the student teachers used more th an one

procedure structure. Therefore, single-level procedures were sometimes only

loose-ends attached to another main procedure structure (See Figure 17), for the

purpose of performing tasks, providing feedback, or retrieving a page, or were

used as a tocl ta present the lesson .

•

•

Results and Discussion

~
, "

(Slartup)

'/j • • g>

~, ,. ~ '1/ '1/

mtle 8 GJ c1 c2 c3

Figure 16 a Figure 16 b Figure 16 c

Figure 16. Single-Ievel procedures used to link a page (16a), to

answer a question (16b), or to choose an activity (16c).

Linear procedure structures

125

~

c4

Figure 17 shows a linear procedure structure used by a student teacher. In

this type of procedures, the subprocedures were structured in a linear way so

that the information was processed in sequences. Most linear procedures

structured by student teachers were combined with single-Ievei procedures and

modular procedures. Sorne of them also involved fragmented procedures .

•

•

Results and Discussion 126

Figure 17. A linear procedure attached by single-Ievel procedures.

Modular procedure structures

In addition to linear procedures, student teachers constructed modular

procedure structures by decomposing procedures into parts, and further

decomposing these parts into other parts (See Figure 18). One command

phenomenon found in such a modular procedure structure is thLlt student

teachers did not design alternatives in execution so that the execution of the the

was still in a sequence. For example, in ProJect 1 (See Figure 18), a ,>tartup

procedure consisted of three procedures: "hello", "runstuff" and "goodbye".

Runstuff can be decomposed into getanswerA, getanswerB, gelanswerC and

getanswerD, but these procedures were executed in a sequence and there was no

alternative in execution. Furthermore, the modulaT structures constructed by

student teachers usually had only three levels. Therefore, even though student

teachers had developed the ability to use a decomp05itlon technique to produce

modular procedures, these procedures were stilllinear in their execution.

•

•

Results and Discussion 127

runstuff ~OOdbY0

(thermo)liliiii4---- drawmg plctures for the text

Figure 18. A modular procedure structure with recursion.

Fragmented procedure structures

The fragmented procedures found in the programs constructed by student

teachers seemed to be sorne leftovers from other activities in the learning phase,

so the existence of fragmented procedures is not considered a problem.

To sum up, the procedure structures found in student teacher's projects

were frequently single-Ievel procedures which were used in a flexible way so

that they could accomplish complex tasks. In addition, these single-Ievel

procedures were often attached ta a linear or a modular procedure as loose-ends.

The modular procedures produced by student teachers showed that student

teachers developed decomposing techniques to produce modular procedures,

but that these modular procedures did not allow alternatives in execution and

tha t they are linear in logic .

•

•

Results and Discussion 128

Programming Properties

Even though aU student teachers learned programming utilitil's slIch as

reusable procedures, conditional statements, variables and n'cursion in the

learning phase and were able to use them in their e'<l'rrises, data in Table H

showed that student teacr !rs did not frequently use programmmg utilities in

their final pro)ects. Only 23% of the pro)ects llsed cither variables nr recllrsion or

both in their final pro)ects. In addition, another 23% of the proJccts used rcusabk'

procedures and 31 % of the projects used conditional statements. Since the

fragmented procedures were lefLover from the exercises, l'ven though 23(11) of the

projects used variables in fragmented procedures, these proJects were nol

regarded as using programming utilities. Therefore, 54% of the pro)ects ciid not

use any programming utihties in their fmal projects It seemed that the dt'~igners

for these projects had not developed the ability to design programming utilities

in their final projects. In other words, they ma y have been able Lo use

programming utilities in their exercises, but lhey were unable lo apply these

techniques in a flexible manner to their own projects.

As mentioned before, LogoWriter rM has the capacity to run more than one

page in a program and more than one procedure in a page, and the pages and

procedures require links in executing them as programs. Therefore, interaction

issues between pages and between procedures cannot be avoided. The following

section will present and discuss the results from characterizing the mélnual

opera tors used to link pages or procedures in terms of the types of manual

opera tors and their functions .

•

•

Aesults and Discussion 129

ManualOperators

Table 9 shows the types and functions of manual opera tors located

belween pages and between procedures, as weIl as within procedures. The data

in this lable indicate that 47% of the manual operators designed by student

teachers were 10ca ted bet.veen pages, 21 5% of the manual opera tors were

located between procedures, and only 31.5% of the manual operators were

located within procedures Such high proportion of manu al operators 10cated

betwcen pages and between procedures indicate that the interactions in the

learning environments constructed by sludent teachers in LogoWriterHf

dcpended heavily on the ways designers structured the pages or procedures. In

order to find out "'\That these manual operators were, and for what the y were

llsed, the following sections will analyze the types and functions of the opera tors

al different locations.

Manualoperators between pages

The results in Table 9 show that 36% of the manual opera tors located

betwecn pages were used for operating the systems, 10% were used for

answcring questions, and only two percent were used for chnosing activities or

tasks. None of the manual opera tors between pages was used to p~rform tasks

or choose assistance. The manual operators for operating the system were aIl

located between pages. In other words, operating knowledge was needed for

linking pages but not for linking procedures. In addition, most of the manual

opera tors for choosing tasks / activities and answering questions were also

Iocated between pages .

• •
Table 9

The distribution of the manual operators.

Dlstnbutlon Chooslng tasks or Chooslng T ask Performmg Answenng Answenng Multiple Cholce Choosmg Operatmg the Percent
actlvrtles Complexlty Tasks Questions Questions Assistance System

Between Pages 150% 0 0 350% 6% 0 36% 47%

Beteen Procedures 050% 0 11% 4% 2% 4% 0 21 50%

Wrthm Procedures 0 0 25% 150% 5% 0% 0% 31 50%

Percent 2% 0% 36% 9% 13% 4% 36% 100%

•

•

Results and Discussion 131

Manual opera tors between procedures

Eleven percent of the manual opera tors located between procedures were

used [or performing tasks, four percent were used for choosing assistance, and

six percent were used for Jn~wcring questions, only 0.5% for choosing tasks or

,1ctlVitics. vVIth respect ta choosing assistance, aIl the manual operators for this

were located between procedures.

Manual operators within procedures

Twenty five percent of the manual operators within procedures were used

for performmg the tasks and 6.5% were used for answering questions. None of

the opera tors within procedures were used for choosing activities or assistance,

or operating the system. The manual opera tors located within procedures were

mainly used for performing tasks and answering questions.

To sum up the findings from the characterization of the pro gram

structures produced by student leachers, first, student teachers designed single

level, !inear, and mod ltlar ~tructures at both the page level and the procedure

level. Among these structures, the most frequently used page structure was

linear and the most frequently used procedure structure was single-level.

Second, sorne student teachers developed consistent and systematic page

structures in which va nous procedure structures werE' combined and

functionally expanded. Third, student teachers often failed to build and later

indicate the paths from branches to branches in nodular page structures. When

modular procedure structures were designed, student teachers al ways failed to

design ones which would permit alternatives in execution. Finally, most student

tcachers \-vere un able to use the programming utilities in their project design,

•

•

Results and Discussion 132

even though the y had aU used them in the exerClses.

Furthermore, the programs produced by student teachers usuall\' h.ld

more than one procedure on a page and more than one page 1I1 a program

When the manual opera tors were considered, most of thcm were locatcd

between procedures and bet\veen pages Further analvsls indic.ltcs th.lt tlw

manualoperators located at different places played dlf[erent lunctional mlc~ ~o

that the programs could accomplish more complex tasks that could not bl'

accomplished by a single procedure or a single page produccd by sludl~nl

teachers. Therefore, the functions in the programs produced by ~tudent teadwrs

in LogoWriter™ depended not only on the individual procedure structures and

programming utilities, but also on the way the pages and procedures were

structured.

The Relationships between Program Structures and the Use of Pedagogical

Strategies

The characteristics of the program structures of the proJects which used

appropriate pedagogical strategies and those which did not were compared in

order to determine whether there was a relationship between the characteristics

of the program structures and the pedagogical strategies As ml'ntioned before,

Projects 6, 8, 9 and 13 had integrated instructiOns, demonslratIons, and

explanations, accompanied by tasks and work1l1g spaces and l'ven assistance for

performing the tasks, whereas Projects 4 and 7, as weIl as sorne epbodes in

Project 1 used a cornbination of providing tasks, working spaccs, and immediatl'

evaluation and feedback. Among the final proJects deslgned by studenttpachers,

50% of them employed appropnate pedagogtcal strategies. The rl'sulte, 111 Table 8

indicate that 77% of the proJects which employed appropnate pedagoglcal

•

•

Results and Discussion 133

strategies used programming utilities at sorne points, whereas only 15% of the

proJects which did not use appropria te pedagogical strategies used programming

utilities. Projects 6, 8 and 13 which employed appropria te pedagogical strategies

a11 hcld used conditional statements, and two of them used variables and

recurSlOn. These three projects comprised 62% of the overall programming

utilitles for aIl proJects. Furthermore, the results in Table 10 indicate that the

projects which employed appropriate pedagogical strategies aIl used conditional

stdtements and recursion. In addition, they consisted of most modular procedure

structures (71 %), variables (67%), and reusable procedures (67%), as well as

modular page structures. Therefore, well structured programs and the use of

programming utilities seemed to be associated with the use of appropriate

pedagogical strategies On the other hand, the appropria te pedagogical

strategies could be attained by using single-level procedures in a flexible way, as

in ProJect 4.

Table 10

The program structures and the use of pedagogical strategies.

Patterns 1\10 Patterns
Pedaqoqlcal Strateoies

Llnear 55% 45%

Modular 67% 33%
Page Structures

Fragmented 50% .50%

Fragmented 33% 67%

Procedure Structur
. Slngle-Ievel 59% 41%

Llnear 57% 43%

MOdUIar 71°/0 .39%

Reusable Procedures 67% 33%

Programmmg Utlhtl
Condltlonal Statements 100% 0

Varla0l8S ti/v/o 33°/0

HacurslOn l Uuv/o -rr

•

•

Results and Discussion 134

To sum up, the characteristics of learning environments can be descnbed

in terrns of the types of knowledge presented, the pcdagogical strategies used to

present the knowledge, and the forms and functions of interactions. The

pedagogical strategies and interactions are rc1ated to the ways that progr,1Ills ,ut:'

structured and to that prograrnming utilities are used in the progr,111\s. When the

programs are well structured and employ the programming utilities, the

designers can provide more sophisticatcd learning envlronments. IIowevcr, the

designers can also construct a smooth program without using sophistic.1ted

programming skills when the user's cognitive learning needs in the lcarning

processes are considered. Without the consideration of hurnan factors in the

design of the instructional programs, the designers may produce the program

with which the user encounters a lot of difficulty and l'ven failure in interacting .

•

•

Chapter 5

CONCLUSION

This chapter first presents a summary of the findings from this study

nnd discusses the implications for instructional software development. Next,

the ImplicatIOns for studying expertise in the domains of instructional

soft ware design and human teaching are presented dnd several issues

pertaining to studying Logo environrnents are raised. Finally, sorne posslble

directions for future research are considered.

Summary of the Research Findings

This study was concerned with developing a rnethodology for

identifying the cognitive, pedagogical, and computational characteristics of

computer-based learning environrnents. The methodology developed

provides precise descriptions of these features of the learning environments.

By consldering the features of the learning environments and their effects on

the user, a diagnostic evaluation can be made of the usability and constraints

of a given system.

The methodology developed in this study allaws far the investigation

of dlfferent types of knowlcdge presented in learning environments, the

pedagogical strategies used to present this knowledge, and the forms and

flwctions of illteractions that the learning environments elicit (e.g., the task

activities of the user). In addition, this study characterized the computational

characteristics of programs in terms of single-LeveL, lincar, and modular

structures, as weIl as other pragramming properties.

•

•

Conclusion 136

Three major types of problems were identified ln crl'<ltil\~

representations t'or knowledge. The first type of problems W<lS rel.Hl'd ln

domain knowledge. That is, the programs presented neither L'.lUS,ll or

conditional relationships that are important componen ts of propositions ,1I1d

schemata of domain knowledge, nor pnnClples that reflcet the nature ot tl1l'

domains. In addltion, these programs providcd the user \Vith 11l'ithl'r the

difficult learning tasks that they often make mislakes nn nor the dtIL'Ïl'nt

strategies for problem solving. Therefore, the ctomall1 knowledge L'onvl'yl.'d

by student teachers was simple, conerete, and isolatcd. The second tnw 01

problems related to operating knowledge. The rcsults showed that Cl'rt,lÎn

programs partially lacked operating knowledge, or contained mcomplete or

inaccurate instructions. The problems in presenting opcratlllg knnwll'dgl'

created impasses for the users ta operatc the system. The thlrd lype of

problems is that incoherent, long, and ambiguous text was sometime~ u~ed

in representing knowledge. When the text in a view was poorly tormatœd

and linked by automatic opera tors without providing the user any control, it

was particularly problematic.

In terms of pedagogical strategies, the lcarning en vlronmen ts

constructed by student teachers employed three basIc pcd;}gogical strategies:

giving instructions, presenting tasks, and providing working spaccs Sorne

student teachers often elegantly integrated instructions, dcmonstratioils, and

explanations, showing the user not only the procedures needcd ln periorm a

particular task, but also the screen eHects produced by CJch procpd ure and

sorne potential problems. In addition, these programs sometimes provided

reminders to assist the learner ta perform the tasks. f'urthermorc, a few

designers took the advantage of Logo explora tory learmng environment and

e!labled the learners to construct and invent new products for learning

•

•

Conclusion 137

domam knowledge. Such combinations are called modeling, scaffolding, and

exploration by CollIns, Brown and Newman (1989), as characteristics of ideal

learmng envlronments.

Several problems were detect'2d in the pedagagical strategies used in

the learning environments developed by the student teachers. These

problems can be interpreted In terms of difficulties in representing the

perspective of the learner. The first problem \Vas that sorne learning

environments lacked sufficient warkIng spaces far perforrning tasks and

answering questions. Consequently, the user would not be able to perforrn

tasks or answer questions. The second problem was that insufficient tasks

were presented for using the working spaces for operating knowledge. In this

case, the user would often encounter an impasse in executing the prograrn.

The third problem was that there was a serious shortage of evaluation and

feedback provided ta the user. Finally, there was a lack of congruence in the

pedagogical strategICs used in the learning environments constructed by

student teachers. This was reflected by the lack of cantinuity between tasks or

questions and working spaces, and inconsistencies between the instructions

about how to perform tasks and relevant working spaces. The consequences

of these problems in using pedagogical strategies are that they could increase

the user's workIng memory load, and thus rnake it difficult for the user to

understand and remember the instructions or tasks. These problems greatly

reduced the efficiency of the learning environment.

In terms of interactIOns two findings are important. On the one hand,

there were insufficient user-computer interactions. In particular, the

programs lacked interactions which are used far learning domain knowledge,

or for providing the user with flexibility in cantrolling the learning process .

On the other hand, student teachers provided interactions that seemed to

•

•

Conclusion 138

support learning of do main knowledge and of the system operation. Th.lt is,

the types of manual operators designed by student tcachers for oper.lting the

system were easy to use, those for performing domain tasks providcd

flexibility for task performance, and those for answering questions promoted

understanding.

In terms of program structures, student teachers did not L'onstruct

man y complex structures (Le., modular procedures or pages), or dld not

construct them successfully. For example, when they dcsigt1C'd modular page

structures, they often failed to design all the paths needed between branches

and further to indicate these pa ths to the user Student teachers prl'ferred

simple structures (e.g., single-level procedures, linear pages), but ilchil'ved il

high level of consistency and systematicity. The smgle-Icvel procedufl's were

used in a very flexible way, for example combining them WI th linear or

modular procedures. Combined procedures appear to enhance greatly th<.>

program's fu ïction. Student teachers designed single-level, lincar, and

modular procedure structures. Single-Ievel was the mast commonl y

designed procedure.

Only a few subjects used the programming utilities, such as conditional

statements, recursion, variables in their project design even thaugh they had

all learned how to use these utilities in the course. This study found that

modular program structures and use of programmmg utilities, in particular

recursion and conditional statements, are strongly relatcd ta the use of

effective pedagogical strategies. This phenomenon wIll be discus~ed in a latcr

section.

The findings from this study indicate that this methodology has the

potential to identify the cognitive, pedagogical, and computational

characteristics of the learning environment. The task activlties (i.e., the

•

•

Conclusion 139

manual opera tors) can be analyzed in great detail in terms of the types and

functions of the opera tors, and the user's cognitive needs for performing

these tasks are also considered in the context of the dynamics of the learning

environments. Therefore, the individual evaluating the instructional

software can diagnose the strengths and weaknesses of a learning

environment and determine whether and why the system is weIl suited for

system operation and for promoting learning subject matter knowledge.

Implications for Instructional Software Development

The research presented in this thesis has implications in two areas of

instructional software development: the study of instructional software

interface and instructional software evaluation.

Implications for Studying Instructional Software Interfaces

This research is related to the study of human-computer interaction

because the method presented describes precisely the instructional software

interface and i ts effects on the learner for performing tasks elicited by the

system In particular, the method reveals the different types of interactions

promoted in a learning environment, as weIl as the functions of these

interactions.

The methodology developed in this research differs in two significant

ways from the methods that are used in research on human-computer

interaction. The first difference is that it puts more emphasis on the system

behaviour (for example the types and functions of different manual

opera tors) than on the user's behaviour (for example the process of selecting

•

•

Conclusion 140

among different manual operators). The second point of drp,lrture lS that tlll'

usability and constraints of the system are characterized in tl'rms of cogmth'l'

and pedagogical content rather than in terms of the measures su ch as lime

required to perform tasks or number of l'rrors made by thc user.

In eharacterizing the cognitive, pedagogle,)l and compUI,llion,ll fcatures

of eomputer-based learning environml'nts, this stud y has proposed a

framework for precise description of instructional soft\-,'are interface This

interface consists of three principal components: learning l~nvlronments,

tasks, and users. This approaeh adopted the idea that in order 10 lI1vestlg,lle

human-eomputer interaction, one needs to analyze the dynamic interLlct10n

among users, tasks and computer systems (Bennett, 1972, 1979; Card, Moran

& Newell, 1983; Chapanis,1991; Eason,1981; Shackel,1991). Moreover, this

study has taken into consideration of the special properties of instructional

software.

Computer-based learning environments

The computer systems are regarded as physical devices used to provide

learning environments. This study proposed that computer-baseJ learmng

environments have three types of attributes: cognItive and pedagogical,

computational, and physical attnbutes. The cognltzve and pedasuglca/

attributes are reflected by the display of a program (c.g, text, graphies, speech

and animation) and user-computer interactions promoted These attributc~

were described in terms of different types of knowledge, pedagogical strategies

used to present the knowledge, and the forms and functions of interaction.

The cognitive and pedagogical attributes of a learning en vironmen t ha ve the

most significant impact on learning subJect matter knowledge.

•

•

Conclusion 141

Computational attributes refer to the characterization of structures in a

microworld in the sense proposed by Groen (1984). The structure consists of a

set of states and transformatIons between states. A weIl constructed

mkroworld has the following three properties: a) the transformations should

be modular; b) a transformatIOn can be undone to go back to the previous

state; and c) the transformations and transformational structures have

representations anaIogous to operations and procedures in the real world.

The computational attnbute in this study was described In terms of the

moduIarity of the program unils (i e, structures of pages and procedures) and

the transformations between them (i.e, links between pages and procedures).

r n addi tion, programming utili ties were aIso considered. Corn pu tational

attriblltes d:termine the ease of constructing or inventing products, such as

producing a computer program

Plzysical aétnbute is reflected by physical devices such as input-output

devices (i.e., a light pen, handwriting input, a touchscreen, a voice

synthesizer, and video display terminaIs, etc). Physical attributes can be

described in terms of text, sound, pictures, colours, and so on. Physical

devices differ in their compacity in providing displays or accepting input,

thus the physlcal attribllte rnay have aiso an impact on lIser's learning.

In terms of the hierarchical organz:::atIOn of a learning environment, a

Iearnmg environment consists of a set of episodes (Le., a sequence of Iessons

or a set of exercises) which are composed of sequences of views. Each view

consists of view space and command space. The view space refers to the static

attributes (i.e., types of knowledge presented, the pedagogical strategies used to

present this knowledge) and the command space refers ta the dynamic

attributes of the information (i.e., the interactions prompted). The

decompositian of a learning environment permits a fine-grained

•

•

Conclusion 142

characterization of important features of a learning en vironment and ,1

precise diagnosis of its usability and constraints.

Tasks

What differs a computer-Iearning environment from other cOmpull'r

environments (e.g., using a wordprocessor, spreadsheet, or drawmg progr,1m)

is that the tasks are strongly constrained by what is promoted by the lel'lrning

environment. The user':. task activities in computer-bascd lC.lrning

environments involve learning of subject matter knowledge and ~ystem

operation, whereas in other computer environments the user necds only to

learn how to use the computer to perform tasks.

The learning activities or tasks were referred to the manual oper.ltors

promoted by the learning environ ment. There are three levels of ta~k

descriptions for these activities: the top level rders to the global goal th,ll thl'

user is supposed to achieve; the next level is the tasks that a l1~er is supposcd

to perform in a lesson or a set of exercises; the boltom level, which IS rderred

to the manu al opera tors, corresponds to the sequence of task activltlCS that

the user needs to perform. This study categorizes the types of the opera tors

and their functions and assesses whether the opera tors are easy 10 use 111

operating the system and whether they are supportive 111 promoting learning

of subject matter knowledge and providing the learner flexibiltty to control

the learning process.

Learners

This study considered the users' cognitive needs in terms of their basic

cognitive resourees Ce.g., working memory), the eues needed for .,ystem

•

•

Conclusion 143

operation (e.g., the information that the novice users need for executing the

program), and the supports required for learning domain knowledge (e.g.,

pedagogical strategIes that facilitate learning; manual opera tors Lhat promo te

understanding and flexibIlity).

Instructional software interface needs to adapt to the following

conditions: the characteri!:>tics of the population (e g., children vs. adults), the

subJect matter (e.g, arts, science, etc.), the subjects' stage of learning (i.e.,

novices, intermediates), and the types of the tasks (e.g., learning subject

knowledge or constructing products). Further studies are needed to identify

the kinds of interface required for these differential needs.

Implications for Instructional Software Evaluation

This research has implications for the evaluation of educational

software. The method presented allows one to identify the cognitive and

pedagogical characteris tics of instructional software. Such descriptions are

reqmred in order to evaluate instructional software from the point of view of

the knowledge that it implements, in particular by identifying the possible

factors that account for the effectiveness of a given learning environment.

The application of this method should allow researchers in the field to

provide evaluations of instructional environments that are more precise and,

therefore, can serve to improve the design of future environments.

The methodology developed in this research allows us to identify the

significant features of the learning environment that affect learning. This

provides a basis for determining the effectiveness of the learning

envlronment for performing il set of the tasks. Other methods such as

experiment comparisons and meta-analysis (e.g., Kulik & Kulik, 1987;

•

•

Conclusion 1c!4

Roblyer, Castine, & King, 1988), .1re more limited because they only pnwide

information regarding whether the instructional software is effective but do

not identify the factors that de termine the effectiveness.

This method direct one's attentlon towards the educational properties

of instructional software that are not normally accounted for by mosl

measures of usability of human-computel interfaces. rv10re lmport.lntly, this

method identifies the cognitive and pedagogical characteristics which are

important 111 improving instructional s0ftware. The result~ from pre\'Îolls

research suggest that the typical rneasures of success rate, time, and error do

not present sufficient information for improving instructlOnal softwcHC (l',~,

Chapanis, 1991; Shackel, 1981, 1991).

This study suggests that cvaluation should look at not only thl' content

and the representation of the subJect matter knowledge, but also the

appearance of the operating knowledge and pedagogical stratcgies used 10

present various types of knowledge. The problems in operatmg knowl('dge

will create difficulty or even failure for the user executing the program.

Another important cri tenon for evaluilting the usabili t y of

instructional software is the qUJlItity and quah~y of the int('ractions.

Guidelines for instructional software design and l'valuation usually ~uggest

that a good system should maximize the interactions, without indicating

what kind of interactions should be maximized. This study specificdlly

indicates that efficient instructional ~oftware should maximize the

interactions that promote the user's understanding and development of

cOonitive skills, as weIl as provide the user wHh flexibilily to perform the

tasks and enable the user to choose activities, task cornplexity and various

types of assistance. However, the software should mmirnize the number and

complexity of interactions required for operatmg the system.

•

•

Conclusion 145

Implications for Studying Expertise in Instructional Software Design and

Human Teaching

In order to investigate the differences between experts and novices, it is

necessary to examine both the cognitive processes that a programmer goes

lhrough in producing a program and the program that the programmer

devoled aIl his knowledge and skills to produce. The identification of the

cognitive and pedagogical characteristics of the instructional software

provides a means of studying expertise in the domain of instructional

software design. This method can also be modified for studying expertise and

for addressing a wide range cognltive and pedagogical issues involved in

hum an teaching. Therefore, there are two major implications of this research

ior inslruclional design· the study of expertise in instructional software

design and, more generaIly, the study of instruction.

The Knowledge and Skills Reflected in the Final Products of Programming

Previous research has focused on the programming processes which

coordinale and display various knowiedge and skills. These studies found

that novice programmers differ from expert programmers in various ways,

such as the representation of programming knowiedge (Adeison, 1981, 1984;

Jeffries, Turner, & PoIson, 1981; Linn, 1985; Samurcay, 1985; Schneiderman

& Mayer, 1979; Soloway, 1984), the strategies used in programming (Adelson

& Soloway, 1985; Jeffries, et al., 1981), and other cognitive abilities

(Schneiderman, 1976, 1980) .

•

•

Conclusion 146

The present study found that there are cognitive, pedagogical, and

computational characteristics evident in the final products of programming.

These characteristics can be summarized as below:

• Student teachers represented subJect matter knowledge in a con crete

and isolated manner. The overall representation of vanous type~ ot

knowledge was sometimes incohercnt

Even student teacher had shown some knowledge in the domam thcy

were trying to teach through programming, most of them only presentcd

isolated facts, events, and concepts. Only a ftw student teachcrs introduccd

ttamporal, partial and identical relationships, but they did not include causal

or conditional relationships that are more important in dcvl'Ioping

propositions and schemata. In addition, the programs provided the Il'arners

with neither the difficult learning tasks that the learners often make mistakl's

on nor efficient strategies for problem solving. Therefore, the domain

knowledge found in the learning environments constructed by student

teachers was concrete and isolated.

In presenting various type of knowledge, studcnt leachers oftl'n

prematurely introduced one type of knowledge before the prevlOus one was

ended appropriately. Consequently, the overall knowledge somelimes lacked

coherence. Furthermore, this study indicatcs that student teaehers had

considerable operating knowledge but could not effcctively apply thls

knowledge. For example, they sometime dld not present the operatmg

knowledge in the view when the user needed to have the eues tn operate the

system, although they were able to present cues in other Vlews Such

inconsistency in presenting operating knowledge may be due to the failure in

representing the user's perspective.

•

•

Conclusion 147

• Sorne student teachers developed the skills to combine the pedagogical

strategies to convey domain knowledge efficiently whereas others still

lack such skills.

Certain student teachers have developed the skills to combine

pedagogical strategies to explicitly con vey subJect matter knowledge to the

user. These <;kills rnight be a kmd of characteristics of expert behaviour in

instructlOnal software design. On the other hand, sorne student teachers

have not develope~ the skills to use appropria te pedagogical strategies. For

examplc, they provided insufficient working spaces for performing domain

tasks or answering questions, and providing insufficient tasks for using

working spaces for system opera6on. In addition, there was a noticeable

incoherence between tasks or questions and working spaces, inconsistency

between the instructions about how to perforrn the tasks and the working

spaces, and a lack of continuity in the presentation of the tasks. There was

insufficient evaluation and feedback. The inability to use appropriate

pedagogical strategies greatly reduces the usability of the learning

environrnents.

• Not ali student teachers seemed aware of the ease and effectiveness of

the interactions.

Sorne student teachers have designed the types of interactions which

promote understanding of domain knowledge and which provide more

flexibility for the user to perform tasks. Several student teachers attempted to

reduce the complexity involved in operating the system. These findings

indicate that certain student teachers have developed knowledge about the

usability and learnability of human-computer interface.

•

•

Conclusion 148

Many of the problems found in the learning environments constructed

by student teachers are partially due to their lack of consideration ot the llS(lr'S

task activities and the related cognitive needs in performing thl~se tilsks

Since LogoWriterT\1 is a relatively simple environment, the student tetlChPT S

rnay fail to consider the user's needs for learning how to operate a system.

For example, programs frequently lacked eues for system operation <llthough

student teachers indicated an ability to design su ch cues. These problems

reduced the efficiency of the program and were avoidable.

• The modular structures designed by student teachers lacked paths from

one branch to another or alternatives in program execution.

Previous studies (Carver, 1987; Kurland, Clement, Mawby & Pea, 1986;

Soloway, 1984) often indicated that students did not engage in problem

decomposition and only produced linear programs. This study showed th,lt

student teachers designed a high ratio of single-level and linear structures but

sorne student teachers had aiso developed the ability of decomposing and

designing modular structures. However, the problern was that they often

failed to design all paths needed from one branch to another and to indicate

these paths to the user wh en modular page structures were implemented.

Similarly, they did not design alternatives in the execution when the

modular procedure structures were used. This finding indicated tha t

although student teachers have developed the ability for decomposing and

designing modular program structures, they were unable to interrelate the

decomposed parts as a whole .

•

•

Conclusion 149

• The inability to apply to their projects the programming utilities that

they used in exercise phases implies that student teachers possess inert

knowledge.

Al though ail student teachers USEd conditional statements, reusable

procedures, variables, and recursion in their exercises, only a few applied

them in their proJects This suggests that student teachers might know how

to design thcse programming utilities, however, they did not learn the

conditions under which the programming utilities can be applied. Therefore,

the knowledge of the programming utilities still stays "inert" when the

conditions for applying ~uch knowledge are provided.

• Is there a balanced development for student teachers in constructing

program structures and designing good pedagogical strategies?

This study also found that modular structures of programs and the use

of programming utllities, in particular recursion and conditional statements

were related lo lhe use of good pedagogical strategies. The knowledge

required to design modular structures, recursion, and conditional statements

is prograrnming knowledge, whereas the knowledge required for designing

good pedagoglcal strategies is teaching knowledge. How can we account for

this finding? There are three explana tions that can be made. The first

explanation is that there i" a parallel development for student teachers in

constructing program structures and designing good pedagogical strategies.

Adelson and Soloway (1988) indicated that balanced development between

domain-specifie knowledge in particular application and domain

independent design model was frequently found in experts behaviour. If the

parallel development found in novice behaviour is what was called balanced

•

•

Conclusion 150

development by Adelson and Soloway, this Hnding implics that the novices

have begun to develop a kind of expert behaviour at a certain point. Thl'

second explanation is that the design of superior pedagog1cal strategies

requîres relevant program structures and thlS prompts student teachers to

apply a wider range of prograrnming techniques. The last e'\planatlOn 1S that

the transformations and transformational structures havl' natural

representations as operations and procedures in the real world (Crol'Il, 1984).

Recursion and conditional statements have numerous analogs lI1 the rcal

world. In the case of instructional design, the natural representations are

pedagogical strategies.

The Study of Teaching Expertise

The method presented in this research can be extended to the study of il

wider range of instructional environments or contexts, including human

teaching and more traditional materials.

The methodology developed in this study can be modified for

identifying the cognitive and pedagogical characteristics of human ll'aching

processes. The sharing of the same research method in studying expertise in

ITS and natural teaching cauld promo te a promising collaboration in thesc

two areas. That is, the findings from the study of expertise in human

teaching can be directly applied to developing efficient ITSs, whercas the

design of ITSs pro vides a computational model ta test and improve the

teaching theories developed in the contexts of human teaching .

•

•

Conclusion 151

Implications for Logo studies

The primary function of Logo is as a learning environrnent. Papert

argucd that Logo is an instrument that can be used by teachers and learners. It

can be used in many different ways and it can have very different effects,

depending on how it is used (Papert, 1986). This study applied the primary

function of Logo tü student teachers constructing other learning

cnvironments in WhlCh chiidren can learn subject matter knowiedge, and

furthcr characterized what was constructed by using this tooI. The results

indicate that Logo is a unique Iearning tooi by which student teachers can

develop teaching skills in the processes of designing instructional programs,

and that Logo can aiso be used as a research tool for testing theoretical

hypothcses.

A Leaming Tooi

By characterizing the instructionai programs, this study identified

sorne relatively sophisticated pedagogical strategies developed by student

teachcrs using Logo. These pedagogicai strategies, WhlCh are called modeling,

scaffoiding, and exploration by Collins, Brown and Newman (1989) as

characteristics of ideal learning environments provide good supports for

children learning subject matter knowledge. For example, modeling strategy

(i e., the pedagogical strategies integrated instructions, demonstrations, and

explanations) can help the children visuaIize the abstract concepts and build

conceptual model. Scaffolding strategy (Le., the designer provides assistance

or access tü the assistance wh en children perform tasks) can rninimize the

•

•

Conclusion 152

dlfficulty that children might face in performing task, and the explOrl1tlon

facilities en able children to construct or Invent products (e g., computer

programs, drawing) Therefore, the characterizalion of the lc.1rnmg

environments does not only providl' a clear description of the cognitl\'l',

pedagogical, and computational features of instructional program prodllcl'd

by student teachers, but also clarifies what can be learned in Logo

environments. It provldes evidence that the users of Logo can deve10p tlll'

type of cognitive skills that mlght be the charactcristic of expt'rt bch.1VlOlIr 11\

instructional software design. Thereforc, the findings from this study do nol

support the conclusion that the subJects cannot develop the kmds 01

cognitive skills in Logo programming that are the characteristics of expert

programmers, or develop a model of computer function that would cnable

them to write useful programs (Kurland, Clement, Mawby, & Pea, 1986; Pea

& Kurland, 1984; Rampy, 1984). Instead, the fmdings support the daim lhlll

Logo environments create the context where other learnmg can take place

(Papert,1986)

Furthermore, this study indicates that Logo provides a computationdl

environment which is not only inhercntly mathemalical as Hoyles and Noss

(1992) indicated, but its easily-decomposing computational rl'presentations

and debugging fa ci li ties also enable studen t teachers to develop the skills of

teaching. Therefore, Logo is appropriate for a wider range of learning and

learners.

A Research TooI

In this study, Logo was not only used as a medium for learning

purposes, it was also used as a research tool for several research purposes. In

•

•

Conclusion 153

particular, it was used to develop a methodology for characterizing the

cognitive, pedagogical, and computational characteristics of the learning

environment. 1t was aIso used as a tool to build a framework for

understanding instructionaI software interface. In addition, it was used to test

the hypothesis that the final products of programming can provide insight

into the designer's knowledge and skills pertaining to the cognitive and

pedagogical characteristics in instructionaI software design. The results

showed that these expectations of Logo were achieved.

Implications for Providing Instruction in the Development of Instructional

Software

The characterization of learning environments and program structures

has revealed both strengths and weaknesses of the instructional programs

produced by student teachers. This has implications for providing instruction

in the development of educational software. Such instruction can take into

account the common problems that novices have Ce.g., not emphasizing

causal and conditional relationships; not taking into consideration of the

user's perspective), and support students in their efforts to focus on these

difticult aspects of instructional software development. Students should be

informed of both the typical problems and the elegant patterns found in

instructional programs. This could help students avoid the problems ln

presenting knowledge and develop the ability to design efficient instructional

programs .

•

•

Conclusion 154

Limitations of This Study

There are numbers of limitations to this research. The most signific<1nt

one is that the instructional programs used as data source in this sludy were

relatively simple. Such simplicity of the programs lImites this sludy ln

display the potential of the methodology developed for characlcnng ll'arnll1g

environments. Another deficieney IS related to the compositiOn 01 the

sample which limites a cornparison of the characteristics of the progrL1ms

produced by programmers at various levels; the group uspd wcl~

inexperienced in bath Logo and computers and lhere was no contrasling

alternative group (e.g., more advanced instructors or programmers). In

addition, the foeus of this research was exc1usively on the final products

developed by student teachers.

Further Research

The methodology developed in this study is complementary to most

methods previously used in studies of mstructional software effcctlveness

and investigations of prograrnrning expertise Therefore, further research can

concentra te on integrating these different approaches to achlcve different

objectives. For exarnple, the further study on programming expertise can

examine bath the cognitive processes and the products of programmlng. In

addition, the "good" patterns identified in the learning environmcnts can be

tested by experimental studies. The patterns that are va!idated can th en ~crv()

as a basis for developing gUldelines for evaluating and designmg programs

•

•

Conclusion 155

There are several directions for this research. Briefly, this methodology

can be applied to evaluating various types of instructional software or to

conducting novice-expert studies in developing instructional software in

order to identify the cognitive and pedagogical characteristics of good

instructional software or expertise in instructional software design. This

method can also be applied to the study of expertise in human teaching. The

information regarding efficient human teaching or computer instructional

programs can be used for evaluating and improving CAl or ITS

en vironments. It is reasonable to assume that the refinements will be needed

to apply this methodology to the study of expertise and instructional software

evaluation .

•

•

REFERENCES

Aè .. 1son, B. (1981). Problem solvmg and the development of abstract categones III

programming languages. Memory and CO~flition, 9, o422-o4~.3.

Adelson, B. (1984). When nOVIces surpass experts: The difficulty of a task may inrrease

with expertIse. Journal of E\penmental Ps)'cholo~n': Leanlfl~, Memory llnd

CognitIOn, JO, 484-0495.

Adelson, B. (1985). Comparing natural .md abstract categories: A case study from

computer science. Cognltlve Science, 9, 417-430.

Adelson, B., & Soloway, E. (1985). The role of domain cxpenence in software de~lgn,

IEEE Transactions on Software Engineering, Il (] 1), 1351-1360.

Adelson, B., & Soloway, E. (1988). A model of software desIgn. In M. T. H. Chi, R.

Glaser,&M.J. Farr(Eds.), Thenatureofexpemse (pp. 185-128). Hillsdalc, NJ:

Lawrence Erlbaum.

Abelson, H., Sussman, G. 1., & Sussman, J. (1985). Structure and interpretation of'
computer programs. Cambridge, MA: MIT Press.

Anderson, J. R., Farrell, R., & Surers, R., (1984). Learning to program in LISP.

Cognitive SCIence, 8,87-129.

Balzen, H. (1988). Input-output devices for human-computer interaction. In H.1.

Bullinger, & R. Gunzenhauser (Eds.), Software ergonomies: Advances and

applications. ChIchester, England: Ellis Horwood.

Bennett, 1.(1972). The user interface 10 interactIve systems. Annual Revlew of

Information SCience and Technology, 7, 159-196.

Bennett, 1. L. (1984). Managing to meet usability requirement~: E~tablishlOg and meeting

software de';elopment goals. In J. Bennett, D. Case, J. Sanelin, & M. Smith

(Eds.), V/suai display terminais (pp. 164-184). Engelwood Cliffs, NJ: PrcnlJ<;e

Hall.

•

•

157

Bonar, J, G., & Soloway, E. M. (1985). Programming knowledge: A major source of

ml~com:eptions in novice programmers. Human-Comupter Interaction, 1 (2), 133-

161.

Bouchard, L. & Emlrkanian, L. (1984). Use of Logo in the teaching of french. In R. J.

Sorklll (Ed.), ProceedinRs of the Logo 1984 NatIOnal Conference (pp. 158-158).

Cambndge, MA: Ma)~achusctts Institute of Technologj'.

Breulcux, A. (1992). EducatÎona! and psycho!oglca! assumptions ln computer-based

learmng envmmment.\ Unpubh~hed manuscript. Montreal, McGIlI University,

La bora tory of Apphed CognitIve Science.

Briskman, D. (1984). Logo and physics. In R. 1. Sorkin (Ed.), Proceedings of the

Logo /9R4 National Conference (pp. 158-158). Cambridge, MA: Massachusetts

Instltute of Technology.

Brooks, R. (1977). Towards a theory of cognitive processes in computer programming.

Internarional Journal nf Man-Machine Studies, 9, 737-751.

Bull, G. (1983). Talking with Logo: Logo in speech, hearing, and language. In R. J.

Sorkm (Ed.), Proceedings of the Logo /984 National Conference (pp. 158-158).

Cambridge, MA: Massachusetts Institute of Technology.

Bullmger, H. J. (1988). Principles and IllustratIOns of dialogue design. In H. J.

Bullinger, & R. Gunzenhauser (Eds.), Software ergonomlcs: Advances and

applications (pp. 13-25). Chichester, England: Ellis Horwood.

Burns P. K., & Bozeman, W. C. (1981). Computer-asslsted instruction and mathematics

achievement: 1s there a relationshlp? Educational Technology, 21 (l0), 32-39.

Card, S. K., Moran, T. P., & Newell, A. (1980). CompulG>r text-editmg: An information

processll1g analysls of a routine cognitive skil!. Cognitive Psychology, 12, 32-74.

Card, S. K., Moran, T. P., & Newell t A. (1983). The psychology of human-computer

interactIOn. Hillsdale, NJ: Lawrence Erlbaum .

•

•

158

Carroll, J. M., & Mack, R. L. (1984). Leaming to use a word processor: By doing, by

thinking, and by knowmg. In M. Schneider (Ed.), Hlimwlfactors in computer

systems (pp. 13-52). Norwood, NJ: Ablex.

Carroll, J. M., & OIson. J. R. (Eus.) (1987). Mental models in hl/man-computer

interaction: Research issues about wlzat tlze user of softlvare knows Washll1gton.

DC: National Academy Press.

Carver, S. M. (1987). Transfer of Logo debugging skif[: Aflll(VSIS. lfIstructioll mul

assessment Unpublished doctoral dissertatIOn. Carncgic-Mdlon Ulllvcr~ity.

Pittsburgh. PA.

Chapanis, A. (1981). Interactive human communicatlon: Sorne le~sons learned from

laboratory experiments. In B. Shackel (Ed.), Man-compweT lfIteractlOll HumaI!

factors aspects of computers and people. Rochville, Maryland: S IJithoff and

Nordhoff.

Chapanis, A. (1991). Evaluating usabihty. In B.Shackel. & S.1. Rlchard~on (Eds.),

Humanjactorsfor informattcs usabllity (pp. 21-38). Cambridge, England:

Cambridge University Press.

Chase, W. G., & Encsson, K. A. (1982). Skill and working memory. In G. Bower

(Ed.), The psychology of learning and motivation. (pp. 2-58). New York, NY:

Academic Press.

Chi, M. T. H., Feltovlch, P. & Glaser R. (1981). Categonsation and reprcsentation of

physics problems by experts and noviœs. Cogniuve Science, 5, 121-152.

Clancey, W. 1., & Soloway, E. (1990). Anificial intelligence and lcarning cnvironments:

Preface. Artificiall ntelllgence, 42, 1-6.

Clements, D. H., & GuIlo, D. F. (1984). Effects of computer programming on young

children 's cognition. Journal of Educational Psych%gy, 76, 1051-1058 .

•

•

159

Collin'i, A., Brown, 1. S., & Newman, S. E. (1989). Cognitive apprenticeship:

Teaching the craft of readIng, wriung, and mathemaucs. In L. B. Resnick (ed.),

Knowtng, learnlng, and Instruction. Hllhdale, NJ: Lawrence Erlbaum.

Corbett, A. T., & Anderson, J. R. (1991). LISP mtellIgent tutonng system: Research In

,>klll acquISItIOn. In J H Larkm, & R W f'habay (Eds.), Computer-asslsted

Ifl.\truct/On and IntelltRent tU/of/ng systems' Shared goals and complementary

approaches (pp 73- IOR). Ihllsdale, NJ: Lawrence Erlbaum.

Cn ,>well E. L. (1989) The de.\ign of compurer-hased instructIOn. New York, NY:

MacmIllan.

Dalbey, J., TOllffllalre, F., & LInn M. C. (1986). Making programming instruction

cognitively den:1ndmg: An intervening study. Journal of Research in Science

Teachi.'lg, 23.

Dale, E. (1984). Logo as a too1 for studymg physic~. rn R. J. Sorkin (Ed.), Proceedings

of the LoW) 19R4 NatIOnal Conference (pp. 160-160). Cambridge, MA:

Massachll~etts Instaute of Technology.

deGroot, A. (1966). PerceptIon and memory versus thought: Sorne old ideas and recent

fmdings. In B. Klemmuntz (Ed.), Prohlem solving (pp. 19-50). New York, NY:

Wiley.

Detienne, F.. & Soloway, D. (1989). Program understanding as an expectation driven

activity. In G. Salvendy & M. J. SmIth (Eds.), Designmg and using human

computer uzterfaces and knowledge-hased systems. Amsterdam: Elsevier.

Diaper, D. (1989). Task analysis for knowledge descnptions (TAKD); the method and an

example. In D. Dlaper (Ed.). Task analysisfor human-computer interaction (pp.

108-159). Chichester, England: Ellis Horwood.

Eason, K. D. (1981). A task.-tool analysls of manager-compllter interaction. In B.

Shackel (Ed.), Man-computer Interaction: Humallfactors aspect:: of computer and

people (pp. 289-3(7). RochvIlle, Maryland: Sijithoff and Noordhoff .

•

•

160

Edwards. L. D. (1992). A Logo microworld for transfonnatlOn geomctry In C. Hoyks.

& R. Noss (Eds.), Learnmg mathemacics and Logo (pp. 127-155). Camhndgc.

MA: MIT Press.

Ericsson, K. A., & Smith, J. (1991). Prospects and hrmts of the e01pmcal \tudy of

expertise: An introduction. In K. A. Ericsson. & J. SmIth (Elis.). Towllrd a

genera/ theory (1 etpertlse (pp. 1-38). Cambridge, London: Cambndge

University Press.

Feuzelg, W., Papen, S., Bloo01, M., Grant, R., & Soloman. C. (19X9). Progmmmulg

languages as aframeworkfor teacJllng mathcmallcs (Report. No .. 1899).

Cambridge, MA: Boit, Beranek. and Newman.

Frye, D., Littman, D. c., & Soloway. E. (1988). The ncst wavc of problcms in ITS:

Confrontmg the "user issues" of interface deSign and 'iystc01 Cvalll<ltIon. In J.

Psotka, L. D. Ma~sey, & S. A Mutter (Ed.), Intelligent tlltOflllg .\ystcms (pp.

451-478). HIllsdale. NJ: Lawrence ErlballI11.

Gorman, H., & Boume, L. E. (1983). Learmng to thlllk by learning LOGO: Rule

learning in third grade computer programmer<;. Bulletm of the psyc!uJr!omic

Society. 21, 165-167.

Gould, J. D. (1968). Visual factors in the deSign of computer controlled CRT display

Human Factors, 10, 359-376.

Groen, G. (1978). The theoretical ideas of Piaget and educational !1ractlce. In P. Suppcs

(Ed.), Impact ofresearch on education: Some cases swdies. Wa~hinton. DC:

National Academy of Education.

Groen, G. (1984). The theories of Logo. In R. J. Sorkm (Ed.), ProceedUllts oj the Lolto

1984 National Conference (pp. 49-54). Cambndge, MA: Ma~!-.achu ... ett~ ImUtUle

of Technology.

Groen, G. (1985). The epistemics of computer based microworlds Paper prcsentcd at

2nd International conference on Artlficial Intelligence and Education Umver<;Ityof

Exeter, England.

•

•

161

Grocn, G., & Patel, V. (1988). The relationship between comprehenSIon and reasoning In

medlcal expertlse. In M. Chi, R. Glaser, & M. J. Farr (Eds), The nature of

expertlse (pp. 287-310). HIIIc;dale, NJ: Lawrence Erlbaum.

Gurtner, J. L. (lY92). Between Logo and mathemaucs. A road of tunnels and bridge. In

C. Hoyle,>, & R. No~s (Eds.), Learmng mathematics and Logo (pp. 247-268).

Cambndge, MA MIT Pre~s

IIannalÏn, M., & Peck, K. L. (1988). The design, development, and evaluation of

in.\tructLOnal wftware New York, NY: Macmillan.

1 lard, 1. (1988). SoJnvare desig rI for learmng' C hllren's construction of meamng for

fractums and Logo programnllng. Unpublished doctoral dissertatIOn, Cambndge,

MA: The Media Technology Laboratory, Massachusetts Institute of TechnolC'gy.

Hayes, J. R., & Flower, L. S. (1980). Identifying the organization of writing proce~~es.

In L. W. Gregg, & E. R. Steinberg (Edc;.), Cognitive processes in writing.

r hllsdale, NJ: Lawrence ErIbaum.

Hillel, 1. (1992). The notion of vanable in the context of turtle graphies. In C. Hoyles, &

R. No~s (Eds.), Learmng mathematics and Logo (pp. 11-36). Cambridge, MA:

MIT Press.

Howe, J. A. M., O'Shea, T., & Plane, F. (1979). Teaching mathematics though Logo

programming: An evaluation study. In R. Lewis & E. D. Tagg (Eds.), Computer

a.\.\lsted learnmg-scope, progress and limits. Amsterdam: North-Holland.

Howe,1. A. M .. Ross, P. M., Johnson, K. R., Plane, F., & Inglis, R. (1982). Teaching

mathematlcs through programming in the classroom. Computers in Education, 6,

85-91.

Hoyles, C. & Noss, R. (1989). The computer as a catalyst in children's proportion

strategies. Jounuzl of Mathematical Behaviour, 8,53-75 .

•

•

162

Jeffries, R. (1982), A Comparjson of dcbugglfl?, be}Ulvùmr of expert and novice

programmers. Paper presented at the annll.ù meeting of the American Educational

Research Association.

Jeffries, R, Turner, A. A. Poison, P. G. & Atwood. M. E. (19X 1). The processt's

involved in designing software. In J. R. Anderson (Ed.). CO?,flitive skills mu! ["t'Ir

acquisitIOn (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum.

Just, M. A, & Carpenter, P. A. (1980). A thcory of readlllg. From eye~ fixations to

comprehension. Psychology Revlew, 87, 329-354.

Kahney, H. (1982). What do novices programmers know about rccursion? (Tcd1l1lcal

Report No. 5). Human Computer Research Laboratory.

Kahney, H., & Eisenstadt, M. (1982). Programmers' mental models of thclr

programming tasks: 'The Interaction of real-world knowledge and prograrm11lng

knowledge. ProceedLn?,s of thefourrh allllual conference oJ the CO).:fIltlve Scit'Ilce

Society, Ann Arb0r, MI.

Klahr D., & Carver, S. M. (1988). Cogllltive objectIves in Logo debllgging curncullllll.

Instruction, leammg, and transfer. Cognitive PSycllOJogy, 20, 362-404.

Kulik, J. A (1981). lntegratingfindingsfrom tfifferent levels o!wstruction Paper

presented at the annuai meeting of the Amcncan Educational Research Association,

Los Angeles, CA.

Kulik, J. A, & Kulik, C. C. (1987). Revlew of rcccnt research litcrature on cornputcr

based instruction, Contemporary Educational P.\ycho[ogy, /2,222-210.

Kurland, D. M., & Mawby., & Cahir, N. (1984). The deve/opment of programnllng

expertise. Paper presented at the annual mceung of the Amencan ['~ucatlOnal

Research ASSocIatIOn, New Orleans, LA

•

•

163

Kurland, D. M., CIcnent, C. A., Mawby, R., & Pea, R. D. (1987). Mapping the

cogllltive demands of learning to program. In R. D.Pea, & K. Sheingold (Eds.),

Mirrors of m/nds Patterns of experience in educational computing (pp. 103-127).

Norwood, NJ' Ablex.

KlIrland, D. M., Pea, R. D. (1985). ChIldren's mental models ofrecursive Logo

problems. Journal of Educarional Computing Research, 1, (2),235-243.

KlIrland, D. M., Pca, R. D., Clement, C., & Mawby, R. (1986). A study of the

devclopment of programming ability and thinking skilIs in hIgh school students.

Journal of EducatlOnal Compwinf? Research, 2, (4),429-459.

Kynigos, C. (1992). The tunle metaphor as a tool for children's geometry. In C. Hoyles,

& R. Noss (Eds.), Learning mathematics and Logo (pp. 97-126). Cambridge,

MA: MIT Press.

Ledgard, H. F., Whiteside, J. A. Singer, A., & Seymour, W. (1980). The natural

language of interactive systems. Communications of the ACM., 23, 556-563.

Le GallaIs, J., Shapiro, M., & van Gelder, S. (1988). A teacher's tutorialfor

LogoWriter™. Unpubhshed manuscript, McGill University, Faculty of

Education, Montreal.

Lehrer, R., Randle, L., & Sanciho, L. (1989). Learning preproof geometry with Logo.

Cogmtiofi and Instruction, 6, 159-184.

LInn, M. C. (1985). The cognitive consequences of programming instruction in

classrooI11. Educationa/ Researcher, 14,9-16.

LIttlefield, J., Delclos, V. R., Bransford J. D., Calyton, K. N., & Franks, 1. J. (1989).

Sorne prerequisites for teaching thinkmg: Methodological issues in the study of

Logo prorrammtng. Cognition and Instruction, 6 (4), 331-366.

Loethe, H. (1992). Conceptually defined tunies. In C. HoyIes, & R. Noss (Eds.),

LearnillR mathematics and Logo (pp.55-95). r.ambridge, MA: MIT Press .

•

•

164

Mandinach, E., & Linn, M C. (1989). Cognitive consequences of prograr11lmng .

Achievements of experienced and talented students. Journal of EducatWlIl1/

Computing Research.

Mayer, R. E., Dyck, J. L. t & Vllberg, W. (1986). Leaming to program and lcarning 10

think: What's the connection? Communications (ftile ACM. 29 (7), 60S-AlO.

McKeithen, K. B., Reitman, J. S., Rùeter, H. H., & Hmle, C. (1981). Knowledge

organization and skill deferences 10 computer programmers. Co~mtlve

Psych%gy, 13, 305-325.

Newell, A. (1980). Reasoning, problem so/ving, and declsiofl [Jrocesses: The [Jroh/NII

spa ce as afundamental category Hillsdale, NJ: Lawrence Erlbaum.

Nickerson, R. S. (1982). Computer programming as a vehide for teach1l1g thlllkmg ~kllls.

Thinking: The Journal of Philoso[Jhyfor C/u/dren, 4, 42-48.

Niemiec, R., Samson, G., Weinstein, T., & Walberg, H. J. (1987). The cffecIs of

computer based instruction in elementary schoob: A quantitative ~ynthesls Journal

of Research on Com[Jwing in Education, 20 (2), 85- 103

Norman, D. A. (1983). Sorne observation~ on mental models. In D. Gcntner & A. L.

Stevens (Eds.), Mental mode/s. (pp. 7-14). Hillsdale. NJ: Lawrence Erlbaum.

Noss, R., & Hoyles, C. (1992). Looking back and looklllg forward. In C. Hoyles, & R.

Noss (Eds.), Learning mathematics and Logo (pp.431-468). Cambndge, MA:

MIT Press.

Paige, J. M., & Simon, H. A. (1966). Cognitive processes In ~olvIng algebra word

problems. In B. Kleinmuntz (Ed.), Problem so/ving (pp. 119-151). New York.

NY: Wiley.

Papert, S. (1972a). Teachmg children thinking. Programmed Learmng aruJ Educationa/

Technology, 9 (5), 245-255 .

•

•

165

Papert, S (1972b). Teachmg chlldren to be mathematicians versus teaching about

mathcmatics. InternatiOnal Journal of Mathematical EducatLOn in SCience and

Techn%/:y 3, 249-262. London: Taylor Francis.

Pdpert, S. (] 9RO). MmdHorms ch tldren , computas, and powerfu/ ideas. New York,

NY. Ba!->Ic Booh Inc.

Parert, S. (19R6). COflstructiomsm' A new opporcumty for elementary science educatLOn.

A propO!->allO the natiortal science foundation. Cambridge. MA: The Media

Technology Laboratory, MIT.

Pra. R. D., & Kurland. D. M. (1983). Logo programming and the developmenc of

plannmg .\kllls (Technicai report No. 16). New York, NY: Bank Street College of

Education.

Pra, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

pragrammmg. NewldeasinPsychology,2 (2),137-168.

Pennlllgton, N. (1982). Cogmtive components of expertise in computer programming: A

review of the licerature (Technical report No. 46). Ann Arbor, MI: University of

Michigan, Center for Cognitive Science.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehensIOn of computer pragrams Cognitive Psychology, 19, 295-341.

Pirolli, P. L.(1986) A cogl1ltive model and computer tutoring for recursion. Human

Computer InreraC!LOn, 2,319-335.

Plralli, P. L., & Anderson, J. R. (1985). Problem solving by ana/ogy and skil/ acquisition

if! tlze dOflllllf! ofprngrammtng. Unpubhshed doctoral dissertation, Camegie

Mellon UniversIty.

Pol~on. P G., LeWIS, c., Rieman, 1., & Wharton, C. (1991). Cognitive walkthroughs:

A mt'r!zod for rlzeory-hased eva/uation of user interfaces (Technical report).

UllIversity of Colorado .

•

•

166

Psotka, J., Massey, D., & Mutter, S. A. (1988). 1Iltelll~e1!t tlltorlllg system.\ Lt'sscHl.\

learned Hillsdale, NJ: Lawrence Erlbaum.

Rarnpy, L. M. (1984). The problem solvlIlg style offtfth p,mdl'TS (!(IlSlflg L~)g(l. Papl'I

presented at the meeting of Amcrican Educauonal Research AssocIation, New

Orleans.

Ravden, S. J., & Johnson, G. I. (Eds.). (1989). Eva/ummp, /l.Sllbtllty of IWtnll1l-com[>/Ilt'r

interfaces. Chichester, Engla.nd: Ellis Horwood.

Rist, S. R. (1986). Plans in programmmg: Definition, demonstration. and developll1l'1l1

In E. Soloway & S. Iyengar (Eds.), Emplrica/ studies of pro;vammers.

Rist, S. R. (1989). Schema creation in prob'Tamming. Cognuivc Snencc, 13. 3~9-414

Roblyer, M. D., Casting, W. H., & Kmg, F. J. (1988). Assessing the Impact of

cornputer-based instruction: A review of recent re~earch. Computers III tlu'

Schools, 5, (3/4), 1-149.

Roblyer, M. D., & King. F. J. (1983). Reasonahle expectlllions for compwer-hased

instruction ln basic reading skills Paper presented at the annual conference of the

AssocIauon for Educational Communications and Tcchnnlogy New Orlcan-;. LA.

Rouse, W. B., Rouse, W. B., & Pellegrino, S. J (1980) A rule-ba~ed model of human

problem solving performance in fault diagnosis ta~ks. IEEE Tran.\Qcllon.\" Of!

System, Man, and Cybernetlcs, SMC-IO, 366-376.

Sarnurcay, R. (1985). The concept of vanable in programming: Ils meaning and l1\C III

prograrn-solving by novice prograrnmers. Educationa! Studie.\ in Mathcmatu's, Ir),

(2), 143-161.

Samson, G. E., Niemiec, R. Wemstem, T., & Walberg, H. J. (19H5). hffcct,\' 01

computer-ba'ied Instruction on secondary ,\cJU)()! achU!lIemenl A quantltative

synthesis. Paper presented at the annual meeting of the American EducatlOnaJ

Research ASSOCiation .

•

•

167

Schiele, F., & Grecn, T. (1990). Hel fonnahsms and cognitive psychology: The case of

task-acuon grammar. In M. Harn<;on, & H. Thlmbleby (Eds.), Formai methods in

human-compute lnteractLOn (pp. 9-62). Cambridge, UK: Cambndge University

Pre~~.

Shackel, B. (19H4). Deslgning for people in the infonnation age. In B. Shackel (Ed.),

lIuman-computer lntcractlOn-INTERACT'84 (pp. 9-18). Amsterdam: Nonh

Holland.

Shackel, B. (1991). U:-.abIlay-context, framework, defimtlon, design and evaluation. In

B. Shackel, & S. J. Richardson (Eds), Humanjactorsfor tnformatics usability

(pp. 21-38). Cambndge, UK: Cambridge University Press.

Shnciderman, B. (1976). Exploratory expenments in programmer behaviour.

InternatIOnal Journal of Computer and Information Science, 5,123-143.

Shnciderman, B. (1980a). System message design guidelines and experimental results. In

A. Badre & B. Shneldennan (Eds.), Directions ln human-compurer interaction.

Norwood, NJ: Ablex.

Shneidennan, B. (1980b). Software psychology' Humanfactors in computer and

uiformatwll .\')'stems Cambridge, MA: Winthrop.

Shn<:lderman, B (1987). Designing the user interface' Strategies for effective human

computer interacllon Readmg, MA: Addison-Wesley.

Shneidennan, B., & Mayer, R. (1976). Syntactic/semantis interactions in programmer

behaviour: A model and experimental results. International Journal of Computer

and Information Science, 7, 219-239.

Slegler, R. S. (1989). /-Iow chi/dren discover new strategies. Hillsdale, NJ: Lawrence

Erlbaum.

Small, D. W., & Weldon, L. J. (1977). The efficiency of retrieving informationfrom

computers u.\l!lg flaturallltld structured query languages (Report SAI-78-655) .

Arlington, V A: SCience Applications.

•

•

168

Sleeman, D., & Brown 1. S. (1982). IntellIgent tworing systems. London: Academie

Press.

Soloway, E (1984). From problems to problems via plans The contellt mut structure 0/

knowledgefor introductory US? programml1lg (Techlllcai report No. 21).

CognitIon and programming project, New Haven, Connecticut: Yale lJllIvcrslly,

Department of Computer Science.

Soloway, E., Adelson, B., & EhrlIch, K (1988) Knowledge and procc!'.!'.e'\ III the

comprehenslOn of computer programs. In M. T. H. Chi, R. Cilaser, 8.: M. J Fan

Œds.), The nature of expertise (pp. 185-128) f-hllsdalc, NJ: Lawrence Erlhaull1.

Soloway, E. Bonar, J., Ehrlich, K. (1983). Cognitive strategle~ and loopmg comtruct:-.:

An empincal study. Communications of ACM, 26, (II),.853-861.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering, 5,595-609.

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A goal plan analysis of buggy Pascal

programs. Human-Computer Interaction, 1 (2), 163-207.

Statz, J. (1973). Problem solving and Logo (Final report of Syracuse UnIversity Logo

project). Syracuse University, New York.

Sutherland, R. (1992). What is algebraic about programmtng 111 Logo" In C. Hoylcs. &

R. Noss (Eds.). Learning mathematics and Logo (pp. 37-54). Cambndgc. MA:

MIT Press.

VanLehn, K. (1988). Toward a theory of impasse-driven Leammg. In H. Mandle & A.

Lesgold (Eds.), Learmng issues for intelligent tutoring systems. New York, NY:

Spnnger Verlag.

VanLehn, K. (1990). Minds bugs: The origins uf procedural mlsconception~ Cambridge,

MA: MIT Press .

•

•

169

Vin~onhaler, J. F., & Bass, R. K. (1972). A summary of ten major studies on CAl drill

and pracüce. Educational Technology, 29-32.

Wenger, E. (1987). Artificla/ int<!lilgence and tutoring systems. Los Altos, CA: Morgan

Kaufmann.

Willett, J. B., Yamashaa, J. M., & Anderson, R. D. (1983). A meta-analysis of

instrucuonal systems applied in science teaching. Journal of Research in Science

TeachùI/{, 20 (5), 405-417.

Zoltan, E., & Chapnis, A. (1982) What do professional persons thmk about computers?

BehavlVur and InformatIOn Teehn%gy, l, 55-68 .

