The Characterization of Learning Environments and Program Structures of

Instructional Programs Produced Using Logo

Mei Chen

A Thesis Submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Arts

Department of Educational Psychology and Counselling
McGill University, Montreal
November 1992

© Mei Chen, 1992

Shor tened version of thesi1o title Mov (hen

The characterization of learnmning e@nvii onments tog
instructal solfware

ABSTRACT

A methodology was developed in this study for identifying the
cognitive, pedagogical, and computational characteristics of computer-based
lecarning environments. The characlerization of the cognitive and
pedagogical features was achieved by decomposing the learning
environments into episodes which were composed of sequences of "views".
Each "view" was described in terms of the different types of knowledge
presented, the pedagogical stralegies used to present the knowledge, and the
forms and functions of wuser-computer interactions elicited. The
computational characteristics were described in terms of modularity and
other programming properties. The methodology was applied to
characterizing the instructional programs produced by student teachers using
Logo.

The results showed that this methodology can successfully identify the
cognilive, pedagogical and computational characteristics of the learning
environments. It can also clarify what can be learned in a microworld,
especially the "powerful ideas" in Logo environments. In addition, the
usability and constraints of learning environments in meeting the learners'
cognitive needs during the learning process can be assessed. Several findings
are particular important in this study. First, student teachers represented
domain knowledge in a concrete and isolated manner. Second, some student
teachers developed clegant pedagogical strategies such as "modeling”,
"scaffolding”, and "exploration". However, the problematic representations
of operating knowledge indicate that student teachers often failed to consider

human lactors in designing computer interface for system operation. Finally,

this study indicated that the learning environments constructed by student
teachers lacked interactions. In particular, these envuoaments provided
insufficient interactions for learning domain knowledge and tor providing
learners with the flexibilities in chosing task activitics, task complexity, and
various assistance to meet the individual needs.

This methodology has implications for studies of instructional
software interface and instructional software evaluation. It also has
implications for Logo research and for expertise studies in developig,
instructional software and other teaching contexis. Suggestions ate made tor
further research in instructional software development and the expertise

related to such development.

it
Pt o

Résumé

Cette these présente une méthode qui a été développée afin didentifier
les caractéristiques cognitives et pédagogiques d'environnements
d'apprentissage informatisés. De plus, cette méthode permet d'identifier les
caractéristiques computationnelles de ces environnements. Les
caracléristiques cognitives et pédagogiques sont identifiées en décomposant
hicrarchiquement les environnements d'apprentissage en différentes "vues".
Chaque vue est analysée en terme des types de connaissances présentés, des
stratégies pédagogiques employées pour présenter ces connaissances, et des
interactions utilisateur-ordinateur qui sont favorisées. Les caractéristiques
computationnelles sont décrites en termes de modularité et de fonctions de
programmation. Cette méthodologie est appliquée a la description
d'environnements pédagogiques produits par des maitres en formation
utilisant Logo. Les résultats indiquent que la méthode résussit a identifier les
caractéristiques cognitives et pédagogiques des environnements
d'apprentissage. Les résultats indiquent également qu'il existe une relation
entre les caractéristiques pédagogiques et les caractéristiques
computationnelles des environnements étudiés. De plus, les avantages et les
inconvénients des environnements d'apprentissage pour rencontrer les
besoins cogintifs des utilisateurs peuvent étre diagnostiqués. Finalement,
cette méthode a des implications pour l'étude des interfaces des logiciels
pédagogiques et de l'expertise dans le développement de logiciels

pédagogiques. Les avenues de recherches ultérieures sont discutées.

iii

ACKNOWLEDGMENTS

I want to thank all people who showed me love, kindness and who
helped me in various ways.

I would like to express my deepest love and gratitude to my parents
and my sisters Chen Jie and Chen Tao for their unconditional love and
support. I also would like to thank FengShia FHsu and her children Melinda
Hall and Martin Hall for making their home as warm as my own.

In producing of this thesis, I would like to heartily thank my friends
David Kaufman, Soibhan Harty, and Andre Kushniruk for being my
proofreaders and providing invaluable editorial suggestion.

All wonderful teachers I have had deserve special recognition. [am
particularly grateful to Dr. Alain Breuleux and Dr. Glenn F. Cartwright who
spared no effort to help me complete this thesis after the tragic sudden death
of my supervisor Dr. Guy Groen.

I would like to specially thank Prof. Bruce Shore and Ms. Pat Grafton
for their care and help in solving the associated administrative problems
caused by this tragedy. I would like to thank Erika Franz and Marion Barfurth
for providing emotional support w aen it was much needed.

Also, I would like to thank all students who voluntarily participated in
this study in Faculty of Education, McGill University.

Finally, I wish to express the deepest gratitude and greatest respect to
my supervisor, Dr. Guy Groen, who inspired and supervised this study and
worked with me enthusiastically until his untimely death just prior to the
submission of this thesis. Itis to Dr. Groen I owe the greatest debt not only in

the production of this study, but also in my growth as a researcher

iv

Dr Groen was like an experienced ocean explorer who knew all the
secrets of the ocean However, he did not simply tell me what treasure he
had found nor how I might find it. Instead, he let me delve into the sea and
gave me the freedom to explore my interests. Whenever I became lost in the
exploration, he was always there to give me direction. When I made a
discovery, even if a tiny one, he always shared the excitement with me and
encouraged me to go further and deeper. Today, when I look back on the two
years of study supervised by Dr. Groen, I realize that he was practicing the
theory he stated as that the best way to teach is to give the learner the
opportunity to indulge in free problem-solving activities. The approach is to
follow the model of the learner as a researcher and the teacher as a research
director.

It was my great fortune to have Dr. Groen as my supervisor in his last
years. My life has been enriched by experiencing his outstanding expertise,
his serious attitude towards research, and his warmness, as well as the
enthusiasm, encouragement and confidence he inspired. It is with the

greatest respect and admiration that I dedicate this thesis to his memory.

TABLE OF CONTENTS

vi

CHAPTER 1. OVERVIEW OF THE STUDY.. i
CHAPTER 2. REVIEW OF THE LITERATURE.........ccccooiiiii v ceeie e 6
Instructional SOftware ..o+ i e 7
Formative Evaluation. ..ot i v v+ 8
Summative Evaluation........cooooeeen oo 8
Meta-analysis ... v s e e .9
Findings from Educational Software Evaluation........9
The Need for Developing a Methodology to Identify the
Cognitive and Pedagogical Characteristics of
Instructional SOftWarecccveviiiiiiivnes v, 12
Intelligent Tutoring SyStems..........covviiiieiiniiie i e oo .13
Human-Computer Interface.........oovvieriiviiiiiiiiins i e v e 14
Research Approaches to Human-Computer Interface.................. 15
The Methods for Evaluating the Usability of FHluman-
Computer Interface........cocooveeeeiiiiiin s e .18
Application of Human-Computer Interface Approaches to
Studying Instructional Software Interface...........ccccoeevviviinnn, 23
Logo Exploratory Learning Environments........c..cccoveiiiincinninnnn, 26
The Claims of LOZO0.....c.. wvoiiiiiiie s 27
The Tests of the Claims: Findings from Empirical Studies.......... 27
Limitations of Previous Logo Studies........o v ol 34
Empirical Studies on Programming Expertise ... o 35
Findings from Expert-Novice Studies in Programming....38

The Limitation of Previous Studies on Programming

R oT=3 of § OO 46
Summary of the Chapter.....cccviiien 48
CHAPTER 3. METHODOLOGY ...ttt st sisssise e e 51
SUDJCOES. it et ettt s s e s 51
MaterIAlS ciiiee e it et e e s 52
Computer HardWareo.oviniein v s e, 52
SOFEWATE ... i e e 52
ReadiNGS...covoviinini it et s e 53
Other Materials........cieiiiiiii s 53
Data SOUTCE. .oeviiiiie it e e 53
Working Samples and Sharing ..., 54
Midterm Project ..o 54
Final Project and Short Paper..........cooviiviiiiiieecneecs 55
Data ANalysis ... 55
Characterization of the Learning Environments.....c..ccccceeeevinnnen 57
Characterization of Program Structures..........cecceeveminenecenenenns 66
CHAPTER 4. RESULTS AND DISCUSSIONccooimimiiieceiee e, 71
Characteristics of the Learning Environmentscccccovvvmvieececicnnnns 71
Knowledge Presented to the Users..........coooviiiiennccinincninececenninnnen. 72
The Characteristics of Pedagogical Strategies.........c.covvervecrcrcinnnn 83
INEETACHONS ... cooeec e e e st 103

Summary of the Characteristics of the Learning

ENVIFONMENLES .ooiiiiiie it ee e ettt es e se v bens e s eeaorenes 113
Characteristics of the Program Structurescceeccvineeceneiennnss 114
Page StruCtUIeS oo e s 115
Procedure SUCHUTES....c.ccvivviiieireerr e e e nr e sesaenans 124

vii

Programming Properties..o
Manual Operators......... « oo
The Relationships between Program Structures and the Use ot

Pedagogical Strategies.........

CHAPTER 5. CONCLUSION.ccevnen

Summary of the Research Findings

Implications for Instructional Software Development
Implications for Studying Instructional Software Intertaces
Implications for Instructional Software Evaluation.

Implications for Studying Expertise in Instructional Software

Design and Human Teaching ... i v .

The Knowledge and Skills Reflected in the Final Products of
Programming.........cowi e e :

The Study of Teaching Expertise........... oo o

Implications for Logo studies.......cccccet oeviivivins + vt eieces s

A Learning Tool....ccoinniiiiiic s e e,
A Research Tool.....ooiinennis e e e .
Implications for Providing Instruction in the Development of
Instructional Software.....cove vivevnniiie v e e,

Limitations of This Study ... i s i+

FUTther ReSEAICH .. ittt ettt eree e e eeaet e e o e e

viii

128

120

132

139

139

43

145

154
154

Table 1.

Table 2

Table 3.

Table 4.
Table 5.

Table 6.

Table 7.
Table 8.

Table 9.

LIST OF TABLES

Frequencies of the codings representing the different types of

knowledge and pedagogical strategies used for all projects........

Frequencies of different types of knowledge presented in

CACK PIOJECE. ettt e e

Frequencies of tasks, working spaces and evaluation and

FOCADACK et vretiieteteessseesisisesstaeerssentaseseoresrteeiss senssrtonssonsassanssssrseesrnns

Frequencies of pedagogical strategies used in each project...........

Frequencies of different types of manual operators and their

functions designed for all projects.ceieinviviineieeeniinin,

Frequencies of different functional operators designed in

@ACK PrOjOCt...vviiiiiicic

Frequencies of automatic operators designed in all projects..

Page structures, procedure structures and programming

utilities designed in each project.......coniiiiiiniicniins

The distribution of the manual operators.........ccccovvnrevneriniinane.

Table 10. The program structures ana the use of pedagogical

SITALCEICS oottt e

ix

cese

..105

....133

LIST OF FIGURES

Figure 1. The hierarchical organization of a learning environment 50
Figure 2. The view space and the command space in a view. 57
Figure 3. A framework for characterizing the learning environments... .64
Figure 4. Symbols used in the diagrams. ... -, B

Figure 5. A combination of instruction and demonstration with

SCrOIlING effeCtS. ...ovcvcireiiiiicii e e 91
Figure 6. A combination of instructions and demonstrations user

controlled by pressing the enter key.ccooovviiiinn s e 94
Figure 7. A combination of demonstrations, explanations, and

instructions with clearing text and clearing graphics.. 99
Figure 8. A combination of task presentation, working spaces, and

evaluation and feedback...........c.ocoi i 102

Figure 9. An example of complex and crowded text with scrolling

EffECS. ..o s 111
Figure 10. A linear page structure linked by automatic operators. 118
Figure 11. A linear page structure linked by manual operators. 118

Figure 12. A linear page structure in which the direction of operation

is controlled by pressing a key.........ccoovviiiiniiiiiciiien s 119
Figure 13. A linear page structure combining automatic and manual

OPEIALOTS. tiviiiiieiiniiiii e s s b e 120
Figure 14. A modular page structure consisting of two main levels

with the bottom ones parallel.........cco.ooovnniiin 121
Figure 15. A modular page structure consisted of other modular and

HIN@Ar PAGES.c.uiiveiriiiiiiii s e s e o122

‘ lgure 16. Single-level procedures used to link a page, to answer a

question, or to choose an activity. ... v e o1, 125
Figure 17 A hnear procedure attached by single-level procedures. 126
Figure 18. A modular procedure structure with recursion.........c.ceoveerrnnnnn. 127

X1

Chapter1

OVERVIEW OF THE STUDY

The purpose of this thesis is to develop a methodology for
characterizing computer-based learning environments. Such a methodology
is required in order to describe the important features that determine the
effectiveness of instructional software and identify the characteristics of
instructional software that distinguish expert programmers from novice
programmers. Methods currently used in instructional software evaluation
and in studying programming expertise are inadequate to address the wide
range of cognitive and pedagogical issues involved. Therefore, this thesis
focuses on identifying the cognitive and pedagogical, as well as the
computational characteristics of instructional software.

The critical roles that computers play in modern school learning
necessitate a closer examination of computer-based learning environments.
It is equally important to assess whether such learning environments meet
the user's cognitive needs in the learning process, and to explain what
features of the learning environments promote success or failure. In
addition, the study of programming expertise requires a methodology that
enables us to look at the products, and not just the processes, of
programming.

In order to characterize effectively instructional software, it is necessary
to look at the programs from both the learning environment and program
structure perspectives. A learning environment refers to the display (e.g,
text, graphics, speech, and animation, etc.) and user-computer interactions

elicited by a program for a specific educational purpose (e.g., learning subject

Overview of the Study 2

matter knowledge, developing general problem-solving ability or motor
skills, etc.). Learning environments play critical roles in the acquisition of
knowledge and skills. This is because a user acquires knowledge and skills in
interacting with the information provided by a program. It is the learning
environment that a user comes into contact with and explores. Therefore,
the cognitive and pedagogical characteristics of the learning environments
determine the effectiveness of learning. In addition, in the domain of
instructional software design, expert programmers differ from novice
programmers not only in terms of the knowledge they possess, but also in
terms of the way they convey that knowledge to the user through the
medium of the computers, as well as the interactions they design to promote
learning. The differential knowledge a programmer possesses and skills for
conveying such knowledge will be reflected in the products of programming.
Therefore, the methodology for studying programming expertise should
allow one to examine the products of programming with respect to the types
of knowledge presented to the user, the ways that knowledge is presented in
terms of pedagogical strategies, and the kinds of interactions promoted in a
learning environment.

Program structures refer to the computational characteristics of
instructional software. The computational characteristics have a significant
impact on the allocation of resources, data storage, and execution time and
these factors constrain the efficiency of the instructional software. Program
structures are particularly important for large and complicated systems.
Furthermore, in the area of instructional software design, an expert
programmer may differ from a novice by the way in which a program is

structured. Therefore, the description of instructional software must include

a characterization of the program structures.

Overview of the Study 3

This study attempts to achieve four major goals. The f{irst goal is to
develop a methodology for characterizing the learning environments
provided by instructional software. This methodology is applied 1in the
context of characterizing the instructional programs produced by student
teachers using Logo. The second goal is to evaluate the usability and
constraints of the learning environments in meeting the user's cognitive
needs during the learning process. The third goal is to characterize the
program structures and examine whether there is any relationship between
the learning environments and the program structures. Finally, this study
investigates how the characteristics of products of programming reflect
programmers' differential knowledge and skills in instructional software
design, in addition to those suggested in previous programming studies.

The characterization of a learning environment 1s achieved by
decomposing a learning environment into episodes (i.e., sets of exercises or
lessons) which often consist of sequences of views. A view refers to a screen
display and the interactions associated with this particular screen display.
Each view is then characterized with respect to the types of knowledge
presented, the manner in which the knowledge is presented in terms of
pedagogical strategies, and the forms and functions of the interactions. The
usability and constraints of the learning environments are assessed in terms
of the supports needed for exploratory learning.

The characterization of program structures is conducted by depicting
the program structures as either linear or modular, with consideration of
other programming properties (e.g., reusable subprocedures, conditional
statements, variables, and recursion). This study also investigates if there is
any relationship between the learning environments and the program

structures of the programs produced by student teachers using a Logo-based

Overview of the Study 4

application called LogoWriter™.

The reason for using Logo rather than another programming language
as the context for characterizing the learning environments constructed by
student teachers is that Logo, a dialect of LISP, is often regarded as a novice-
oriented programming language. Logo has the {lexibility for designing and
expanding program structures. It can also be used to produce sophisticated
programs and to engage high-level programming skills. Programming is a
very complex and difficult activity and it takes lots of effort and time to
produce a program. For novice programmers, like student teachers, the task
is even more difficult. It is critical to choose a novice-oriented programming
language to minimize the difficulties of constructing an executable or
"runnable”" program so that novice programmers can devote greater effort to
“claborate” the learning environments that this study attempts to
characterize. Meanwhile, it is important to select a programming language
that has the potential for eliciting high-level programming skills and to
construct sophisticated programs. Logo is an appropriate programming
language that satisfies these preconditions for developing a methodology for
characterizing the learning environments constructed by programmers at
various levels of programming skills.

Logo learning environments create the conditions under which
powerful ideas can take root (Papert, 1980). The fact that the computer-based
learning environment, or the notion of a microworld, has never been
defined in a precise fashion, has hampered its usefulness (Groen, 1985).
Groen suggested that a more precise definition may clarify the notion of a
microworld and the powerful ideas that take place in such an environment.

In summary, developing a methodology to characterize the

instructional programs produced by student teachers using Logo can serve

Overview of the Study 5

several purposes. First, it can help us to understand the nature ot computer-
based learning environments and it can also help us to determine whether
the characteristics of a learning environment meet the users’' cognitive needs
in the learning processes. Second, the results from the assessment can
provide guidelines for developing instructional software. Third, the
identification of the important features of instructional programs can help us
to determine how the characteristics of final products of programming reflect
the cognitive skills of programmers at various levels of expertise in the
domain of instructional software design. Finally, the precise definition ot the
learning environment can provide a better understanding of the nature of
Logo, and can also contribute to the theoretical discussion of what is lcarned

in such an environment.

Chapter 2

REVIEW OF THE LITERATURE

The major goal of this study is to develop a methodology to identify
precisely the characteristics of instructional programs produced by student
teachers using Logo. In order to understand the characteristics of
instructional software, it is necessary to consider at least the following three
perspectives: a) the cognitive and pedagogical features, b) the human-
computer interface, and c) the computational structure of the program. These
three perspectives form the basic organization of the review of the literature
presented in this chapter.

First, this chapter reviews the studies on instructional software
evaluation. The issue is whether the current methods used are adequate for
identifying the cognitive and pedagogical features of instructional software
and determining its effectiveness. Second, the process of knowledge
communication between the user and the computer is examined from the
point of view of human-computer interaction research. This chapter presents
the methods for evaluating the usability of human-computer interface and
discusses whether the notion of human-computer interface needs to be
modified in order to account for the special properties of instructional
software. Third, this chapter summarizes the findings on Logo, and explains
why it is necessary to characterize learning environments in Logo. Finally,
this chapter reviews studies on programming expertise and argues that such
studies should integrate analyses of both the cognitive processes that a
programmer engages in when producing a program and the products that a

programmer produces as a result of the programming processes.

Review of the Literature 7

Instructional Software

This section presents a general introductory definition of instructional
software, reviews studies on instructional software evaluation, and argues
that the methods used in most of these studies do not take into account the
important features that contribute to the effectiveness of instructional
software.

Traditional instructional software includes four primary categories
(Criswell, 1989; Hannfin & Peck, 1988): a) tutorial; b) drill and practice; ¢)
exploratory environment; and d) games and simulation. In tutorial
environments, the computer provides instruction to teach the user new
knowledge, whereas in drill and practice environments the computer
provides exercises to the user as reinforcement so that the user can practice on
what he or she has already learned and receive feedback. Exploratory
environments allow the user to engage in relatively unconstrained problem-
solving activities, and the user learns by doing and exploring. Games and
simulations are computer environments that present attractive pictures,
animation, and even simulate complex concepts and events. The user can
play games or manipulate the simulation process by giving input.

The primary objective of using various educational techniques is to
improve the effectiveness of learning. To assess the effectiveness of
instructional software, formative and summative evaluations are often
conducted. In addition, meta-analysis method is used to summarize the
results of summative evaluations for different categories of instructional

software and then compare them.

Review of the Literature 8

Formative Evaluation

Formative evaluation is conducted to identify features that require
modification. Formative evaluation procedures are applied extensively in
the ongoing process of program development. Issues ranging from design
logic to selection of vocabulary, from clarity of graphics to branching
execution, from the judging of student input to the clarity of the lesson fext

should be all considered (Hannafin & Peck, 1988).

Summative Evaluation

Summative evaluation is conducted to determine whether an
educational product is effective after it has been built. The purpose of
summative evaluation is to validate performance rather than to locate areas
in need of improvement (Hannafin & Peck, 1988). Summative evaluation is
often used in experimental comparison studies. In this type of study,
typically, pretests and posttests on critical variables (e g., accuracy and latency
of students’ response) are conducted. The performance level achieved by the
treatment group which uses the software being evaluated is compared with
that of a comparison group which uses another instructional method or of a
control group which receives no treatment. The conclusion is based on the
statistical analysis of the results of the tests. If there 1s a significant difference
between the two groups and the treatment group performs better in the
posttest than the comparison group or the control group, then the software

being evaluated is considered effective.

Review of the Literature 9

Meta-analysis

Investigators have used meta-analysis to summarize various
summative evaluation studies on the effectiveness of educational sottware
(e.g., Kulik & Kulik, 1987; Roblyer, Castine & King, 1988). Meta-analysis
studies attempt to determine whether a particular category of educational
software is efficient, and with whom, how, and when. For example,
investigators often try to determine if educational software can improve
students' performance in basic skills, for specific grade levels, and n
particular content areas. In addition, they try to determine what kinds ot
students profit most from using computers to learn, and may also address
whether educational software improves students' attitudes toward school and
learning.

Meta-analysis uses "effect size" (ES) as a criterion to evaluate learning
effectiveness. Effect size is calculated by first subtracting the mean scores
(differences between pretests and posttests) achieved by the non-treatment
group from that achieved by the treatment group, and then dividing the
results by the pooled standard deviation of the two groups. Then the
individual studies in one area are compiled to determine overall effect size.
ES is often used to quantify the amount of effect due to a given treatment and

compare the effectiveness of different instructional software.

Findings from Educational Software Evaluation

The results from meta-analysis indicated that instructional software
generally has significant effects on all kinds of skills within all content arecas

at all grades, regardless of the sample of students and the types of

Review of the Literature 10

instructional software used (e.g., Kulik & Kulik, 1987). Such results are

presented in detail in the sections below.
* For whom is the instructional software effective?

Meta-analysis conducted by Roblyer, Castine, and King (1988) showed
significantly higher results for students using instructional software at
college/adults levels than at elementary and secondary levels. The effects
were fairly homogeneous in low-achiever and regular groups. Therefore,
instructional software seemed to benefit college students more than

elementary students and secondary students.

When types of instructional software were compared for different
student characteristics, investigators (Roblyer et al., 1988; Kulik, 1981) found
that tutorials scemed to benefit good students or older students, whereas drill
and practice produced highest effect sizes in elementary school. However,
other investigators (Burns & Bozeman, 1981) found that disadvantaged
students achieved significantly vetter gains in performance in comparisons
with advantaged students in tutorials, and achieved about as well as
advantaged students in most drill and practice studies. The overall results

concerning which students benefit most from different kinds of instructional

software 1s not clear.

¢ In what content areas is instructional software more effective?

By comparing the effectiveness of instructional software achieved in
different content areas, some researchers found that instructional software
was much rore effective for learning in science than either in mathematics,

language, or general problem-solving skills (Roblyer, et al., 1988). These

Review of the Literature 11

researchers suggested that science was an especially promising arca tor using
instructional software. The relative effectiveness achieved 1n the areas ot
mathematics, language and problem-solving skills was comparable (Roblyer,
et al,, 1988). However, there have been divergent tindings which indicated
that instructional software in mathematics was more effective than in

language areas (Vinsonhaler & Bass, 1972; Roblyer & King, 1983)
* What types of instructional software are more effective?

Some studies have indicated better results with tutorials than with
drill and practice in mathematics, reading (Roblver et al., 1988) and language
arts (Burns, et al. 1981; Samson, Niemiec, Weinstein & Walberg, 1985) In
contrast, other studies (Niemiec Samson, Weinstein & Walberg, 1987) have
found that drill and practice was more effective than tutorial at the
elementary level, and that it was particularly effective for mathematics

computation skills.
* How can instructional software be used effectively?

Investigators (Roblyer, et al,, 1988, Willett, Yamashita & Anderson,
1983) have found that simulated experiments in science were highly effective
only when students were provided with the opportunity to interpret results
and make decisions on the basis of the results.

In comparisons of supplement versus replacement roles for
instructional software, the findings suggest that instructional software is
more effective in supplemental than replacement uses (Roblyer et al., 1988),
which suggests that teacher participation is necessary for the successful

implementation of instructional software.

S

Review of the Literature 12

The Need for Developing a Methodology to Identify the Cognitive and

Pedagogical Characteristics of Instructional Software

There are several problems in the evaluation studies reported in the
previous section. First, ES used in meta-analysis is a comparative value and
it depends on not only the effect in the treatment group, but also in the non-
treatment group. The larger the effect in the non-treatment group, the lower
the ES will be. Therefere, ES cannot provide an estimate of the effectiveness
of a given software independent of the effectiveness of the comparison
group(s).

Second, the inconsistent findings in these studies suggested that the
cffectiveness of instructional software was confounded with a number of
factors such as students characteristics, teacher interventions, and the nature
of the subject areas in which software was used. Results from these studies
are tficult to interpret. According to Breuleux (1992) the difficulty is caused
mainly by the fact that most reports of instructional software: a) do not
present the assumptions that are implemented in the software; b) do not
(learly explain how the assumptions are actually implemented; and c) do not
systematically test alternative combinations of assumptions and
implementations.

The third problem is that, these evaluations were based on categories of
instructional software rather than on specific programs. The inconsistent
findings on the effectiveness of the same types of instructional software may
also indicate that one piece of instructional software is efficient whereas
another is inefficient within the same category. It might be the characteristics

of the individual software rather than the categories of instructional software

Review of the Literature 13

that determined the differential effectiveness. However, previous evaluation
of instructional software did not provide sufficient intormation regarding the
characteristics of individual instructional software. Without precise
identification and description of the cognitive and pedagogical characteristics
of individual programs, it is impossible to examine their strengths and
weaknesses. Consequently, it is difficult to determine what factors within the
individual software promote success or failure and provide (urther usetul

information for good instructional software .ign.

Intelligent Tutoring Systems

The promise of computer-assisted instruction is to provide learners
with a rich learning environment that is tailored to the user's individual
learning needs and objectives (Clancey & Soloway, 1990). IHowever,
traditional instructional software does not seem to have such capacity. Since
the 1970s, researchers have applied artificial intelligence (Al) methods to
create more sophisticated learning environments called 1ntelligent tutoring
systems (ITSs).

Intelligent Tutoring Systems (ITSs) are computer programs that use Al
techniques for presenting knowledge and carrying out complex interactions
with students (Sleeman & Brown, 1982). In current ITS research, many
different architectural components are proposed and used in unique
combinations and often with unique structures (Psotka, Masscy & Mutter,
1988). In spite of the variety, the standard architecture of an ITS consists of
three primary components: the student modeling module, the expert
module, and the tutorial module (Clancey & Soloway, 1990; Frye, Littman &

Soloway, 1988). Ideally, the student model involves a description of all

Review of the Literature 14

aspects of the students’ knowledge and behaviour pertinent to performance
(Wenger, 1987). In an ITS, the expert module contains a representation of the
domain knowledge to be communicated and also serves as a standard for
evaluating student performance. The tutorial module embodies specific
instructional! goals such as, the remediation of particular misconceptions or
the sequencing of material Much research effort goes into developing these
modules since they form the core of ITS (Frye et al., 1988). Until recently, the
idea that pedagogical knowledge could be explicitly represented in tutoring
systems has received less attention than the representation of the subject
matter (Wenger, 1987). The need for investigating interface design issues in
instructional software has been underlined only in the more recent field of
intelligent tutoring systems (e.g., Frye, Littman & Soloway, 1988) but there is a

lack of specific research findings. Significant effort will need to be directed

toward looking at interface design.

Human-Computer Interface

Research on human-computer interaction draws attention to the
importance of interface in the design of software systems. Since there has
been little research on the issues of instructional software interface, the area
of human-computer interface research will also be reviewed to provide a
better understanding of the interactive processes involved in computer-based
learning environments.

According to Card, Moran, and Newell (1983), the defining notion of
the human-computer interface is that the user and the computer engage in a

communicative dialogue because both have access to the stream of symbols

Review of the Literature 18

flowing back and forth to accomplish the communication; each can interrupt,
query, and correct the communication at various points in the process.

This statement emphasizes two agents — the user and the computer in
the communicative dialogue. Ravden and Johnson (1989) proposed a clear
definition of human-computer interface:

The user interface generally consists of information displayed to the
user and facilities which allow the user to enter information into the
computer, to manipulate information which is displayed, and to take
control actions. It enables the user to access and make use of the tasks
for which it has been designed. It provides the user with information
about the system, about what it does, and about what the user can and

should do. It enables the user to learn about the system and to build an
understanding of how it works (p. 15).

Researchers generally consider that the human-computer interface
consists of three components: the user, the computer, and the tasks. These
three principal components represent the three major topics in the research

on human-computer interface.

Research Approaches to Human-Computer Interface

Researchers in the fields of computer science and software engineering
generally agree that the human-computer interface should and can be
improved, although there is currently no consensus on exactly how to design
a better human-computer interface. The promising approaches are
dependent upon analyzing the dynamic interactions between computer

sysiems, tasks, and users (Bennett, 1984; Eason, 1981; Shackel, 1991).

Review of the Literature 16

Computer systems

The research on computer systems from the perspective of human-
computer has two foci. One focus is on the physical devices of computer
system, another focus is on the cognitive factors related to computer systems.

Physical devices. The studies on physical devices are mostly related to
display layout and input-output devices. Early studies of physical devices
considered the physical quality of display (eg., luminance, contrast,
regeneration rate, and resolution). More recently studies were concerned
with display layout and development of input-output devices (e.g., mouse,
light pen, handwriting input, touchscreen, voice synthesizer, picture
processing, and video display terminals) (e g., Balzert, 1988, Bullinger, 1988).

Cognitive factors. Naturalness, feedback, and consistency are the
cognitive factors generally investigated in human-computer interaction
research. In addition, simplicity and individualization are often studied. It is
frequently asserted that novices and unsophisticated users would find
computer systems more congenial and easy to use if they could communicate
with the computer using termii ology similar to natural language commands
and queries (e g., Ledgard, Whiterside, Singer & Seymour, 1980). However,
some researchers found that the use of an artificial data-base language
resulted in faster performance than when natural language was used (Smalil
& Welson, 1977). The effects of immediate or delayed feedback, and positive
or negative feedback in the human-computer interface have been
investigated (Corbett & Anderson, 1992; Shneiderman, 1980a). Consistency is
regarded as an important aspect of the quality of user interface. Consistency

refers to regularities in various aspects of the interactions or interface: the

Review of the Literature 17

actions that the user has to perform in order to achieve a task, the feedback
the system provides, the spatial layout of the screen, etc. (Schicle & Green,
1990). Consistent interfaces allow users to make generalizations on the basis
of their current knowledge. This facilitates the learning process and the
development of automated responses which can help reduce the user's

working memory load (Schiele & Green, 1990).

Tasks

Computers have been widely used to perform tasks such as word
processing, calculation, drawing, and accounting. Researchers in the field of
human-computer interactions have studied the tasks of programming
(Brooks, 1977), editing (Card, Moran & Newell, 1980), learning to use a word
processor (Carroll & Mack, 1984), and fault diagnosis (Rouse, Rouse &
Pellegrino, 1980). The typical approach is to decompose the task into
hierarchical branches and analyze the behaviour of the user with the

behaviour of the computer.

Users

The human factors considered in human-computer interactions are
working memory load, long-term memory (LTM), and mental models of
problem solving activities in the process of interacting with the computers
Working memory load is considered to be bow much immediate
information the user has to keep in working memory whereas LTM is
considered to be how easy is it for the user to recall information needed to
accomplish a task (Card, Moran & Newell, 1983). Mental model is a

theoretical construct that has been used to describe how individuals form

Review of the Literature 18

internal models of systems from interacting with these systems (Norman,
1983). Researchers have begun to consider the user's mental models in
human-computer interaction, investigating, for example, the user's mental
models of tasks, how different types of representations affect the user's
performance and how to apply what we know of the user's knowledge to

design interface and train users (Carroll & Olson, 1987).

The Methods for Evaluating the Usability of Human-Computer Interface

Measuring usability means measuring the behaviour of a user and the
system during the performance of a task. The usability of human-computer
interface is measured by how easily and how effectively the computer can be
used by a specific set of users, given particular kinds of training and user
support to fulfill the specified range of tasks in a defined set of environments
(Chapanis, 1991; Shackel, 1984, 1991).

There are three criteria usually suggested for evaluating usability
(Shackel, 1991). The first criterion is the success rate in meeting a specified
range of users, tasks, and environments. The second criterion is the ease of
use as judged by the users (e.g., convenience, comfort, effort, and satisfaction).
The last criterion is the effectiveness of human use in terms of performance
(e.g., time, errors, number, and sequence of activities, etc.) in learning,
relearning, and carrying out a representative range of operations.

Based on these criteria, the methods for evaluating the usability of an
interface include task analyses, questionnaires, comparisons of a program
against "standards" (e.g., checklists, specifications) and field tests or

experiments.

Review of the Literature 19

Task analysis

Investigators have argued that task analysis was potentially the most
powerful method in the field of human-computer interaction (HCI) either tor
evaluating systems or for producing requirement specifications (Card, Moran
& Newell, 1983). A task analysis allows one to describe the cognitive and
motor aspects of the tasks (Diaper, 1989).

According to Card, Moran, and Newell (1983), an assumption
underlying task analysis is that, humans behave in goal-oriented ways, and
within their limited perceptual and information-processing abilities, attempt
to adapt to the task environments to attain their goals (p. 10). A task analysis
models the behaviour of expert user performance by giving his or her goals,
operators, methods, and selection rules for choosing among method
alternatives.

The GOMS model (Goals-Operators-Methods-Selection rules) proposed
by Card, Moran, and Newell (1983) describes the behaviour of a computer-
user in a text editing task. In this model, the user's cognitive structure
consists of four components: a) a set of goals, b) a set of operators, ¢) a set of
methods for achieving the goals, and d) a set of selection rules for choosing
among competing methods for goals.

Card, Moran, and Newell (1983) suggested some basic performance
variables to be used as criteria for measure the ease and effectiveness of the
human-computer interface by other researchers. These variables include
functionality, time to learn to use the system, time to perform specific tasks,

as well as types and number of errors made. The GOMS model can be used to

Review of the Literature 20

predict the user behaviour sequence and the time required to perform

particular task.

Subjective measures of usability: questionnaires

Subjective measures of ease of use, often combined with task analysis
methods, are obtained by ratings on questionnaires that include questions on
attitude (Zoltan & Chapanis, 1982; Shneiderman, 1987), user's acceptance (i.e.,
how the user subjectively rates the system) and enjoyability of the system

(i.e., how much fun it is for the user).

Evaluating a program against a "standard"

Using a checklist is a practical method for evaluating the usability of
the human-computer interface. The evaluator carries out the tasks for which
the system is designed and evaluates the system according to the items listed
in the checklist reflecting conventions shared by the field of computer system
design or less frequently by the principles of human cognition. The checklist
usually includes visual clarity, consistency, compatibility, informative
feedback, explicitness, and appropriate functionality. Flexibility and control,
error prevention and correction, user guidance and support are also often
included in the checklist (Ravden & Johnson, 1989). For example, the
checklist may suggest that "X percent of typical users should be able to read
and understand the instruction in less than Y time", or "X percent of typical
users should be able to diagnose and correct their errors in less than Y

minutes."

Review of the Literature 21

Diagnostic evaluation

Diagnostic evaluation refers to the process of choosing a target user to
perform the tasks for which computers are designed, and observing and
analyzing the user's behaviour in great detail. Diagnostic evaluation is
something like a physician diagnosing a disease: using the errors, ditficulties,
help requests, response times, and complaints as symptoms for diagnosing
problems (Chapanis, 1981). By analyzing the user's performance frame by
frame, the experimenter probes to find out whether the instructions were
unclear, whether the information presented was inadequate, and whether the

vocabulary was too difficult (Chapanis, 1981).

Experimental evaluations

Experimental evaluations refer to the tests that involve comparing
particular features or functionality with more than one group of subjects or
comparing several different products with similar subjects (Chapanis, 1991).
When comparing some features with different subjects, the evaluator
measures the users' performance in terms of time, questions, and errors.
This method can answer whether the same features are easier for population
A than for population B, but does not answer why the same features are
easier for population A than for population B. When comparing different
products with similar subjects, the evaluator measures the difficulty of
different features of each program by mean percentages of "essentially correct”
scores. This method can answer the question whether program A is easier

than program B, but it does not answer why A is easier than B.

Review of the Literature 22

Most of the evaluation methods presented above are conducted after
the development of whole systems has been completed. A disadvantage of
such evaluations is that any problem detected will demand considerable

modification when it may be too late to effect the desired change.

A cognitive walkthrough method

Polson, Lewis, Rieman, and Wharton (1991) developed a cognitive
walkthrough meithod which was adapted from the design walkthrough
techniques that have been used for many years in the software community.
In a cognitive walkthrough evaluation, the author of a particular aspect of
design presents to a group of peers a proposed design solution. The method
involves hand simulation of the cognitive activities of a user. The peers
evaluate the solution using an explicit set of criteria appropriate to the
particular class of design issues. The criteria are focused on the cognitive
processes needed by the users to successfully complete the tasks for which the
system was designed. That is, first-time users can perform tasks with little or
no formal instruction or informal coaching. They must learn to operate the
system by using cues provided by the system rather than by using prior
knowledge acquired through instruction.

During the walkthrough process, the reviewers step through the
actions, considering the behaviour of the interface and its effect on the user,
and diagnosing whether a typical use will succeed or fail. In particular, the
reviewers must identify those actions that would be difficult for the average
member of the target population to choose or execute, and analyze the causes

of failures.

Review of the Literature 23

Application of Human-Computer Interface Approaches to Studying

Instructional Software Interface

Studies on the human-computer interface have made a great
contribution to understanding and improving the usability of computer
systems. These studies have captured the fundamental components of the
human-computer interface and have provided some theory-based or
convention-based methods to evaluate the easiness and effectiveness of a
human-computer interface. However, the study of human factors in human-
computer interaction is relatively new and has not focused on computer uses
for learning tasks (Frye et al., 1988). Therefore, the concepts and approaches
taken in the area of human-computer interfaces need to be clarified and
adapted in order to be used for studying instructional software interface.

The users in most studies of human-computer interfaces were ecither
experts who displayed error-free behaviour or novices who had subject
matter knowledge but did not know how to operate the computers. The
typical users of instructional software are novices who have neither subject
matter knowledge nor operating knowledge. Consequently, instructional
software needs to be evaluated both from the point of view of the subject
matter knowledge that is presented to the learner and the operating
knowledge that the learner must use to operate the system. In terms of the
operating knowledge, it is important to consider whether the computer
environment provides cues for operating the system and for learning to
operate the system by exploration. This kind of assessment can be used not

only to detect and diagnose problems but also to find the strengths of the

Review of the Literature 24

system so that a more complete picture of the instructional software can be
provided.

The evaluations of human-computer interfaces in general were
focused on "usability” which refers to easiness and effectiveness of
performing the tasks rather than "learnability" which refers to easiness and
effectiveness of learning subject matter knowledge. When the researchers in
the area of human-computer interfaces used words such as "learning” or
"learnability”, they referred to learning how to use the computer rather than
learning subject matter knowledge. In previous studies of human-computer
interfaces, most tasks did not involve the learning of subject matter
knowledge. Moreover, some studies only required the users to perform
routine tasks (Card, Moran & Newell, 1983). Therefore, the tasks involved
little learning about how to use computers. The evaluation of the
instructional software needs to be concerned with both the usability of

operating the system and the learnability of subject matter knowledge.

The validity of "standards"

Instructional software, particularly ITS, is a relatively new area of
research, so the attributes of good instructional software are not known.
Thus, there is no "standard” for good instructional software that is well
established. Furthermore, the requirements for the instructional software
interface may differ on the basis of the characteristics of learners, the nature of
subject areas, and teaching approaches. This complexity presents considerable

difficulty for establishing a "standard".

Review of the Literature 25

User's behaviour versus system's behaviour

Most methods for evaluating the usability of human-computer

interface focus on evaluating the user's behaviour rather than the system's
behaviour. For example, an evaluation conducted by Software Digest (1984)
presented the numbers of tasks that a user can pertorm with the system (e,
versatility), time of learning to operate the system, time of performing speciic
tasks, and error rate as measures of usability (Chapanis, 1991). The correlation
of the above variables indicated that all measures, except versatility, are
positively correlated. What this finding suggests is that the programs that
were easier to use, easier to start up, easier to learn to use, and allowed users
to perform tasks more quickly, were less versatile (Chapanis, 1991).

What can be learned from such evaluation? Does it mean that the
versatility has to be reduced if the programs are to be easier to use, casier to
start up, easier to learn to use, and allow the users to deal with errors more
easily? The results of these evaluations are difficult to interpret and do not
seem to provide sufficient information for improving the quality of the
programs. In order to evaluate and compare the quality of instructional
software, and provide further useful information for improving the system,
it is necessary to identify and describe the system's behaviour in conjunction

with the user's behaviour.

Computer-based environments

Studies of human-computer interfaces in the computer engineering
community often viewed the computer-based environments in terms of the

physical devices (i.e, input-output devices). It is more important to view a

Review of the Literature 26

computer-based learning environment in terms of cognitive and pedagogical
features (e.g., pedagogical strategies used to present various types of
knowledge, interactions promoted). It is the cognitive learning environment
that has the most significant effect on a user's learning when the user engages
in the activities of learning subject knowledge. This emphasis does not imply
that a cognitive environment is completely independent of physical devices.

However, a good set of computer devices does not guarantee a good cognitive

environment.
Logo Exploratory Learning Environments

The present study uses Logo as a tool for investigating the
development of instructional software. Logo was originally designed for
children and it is regarded as an exploratory learning environment in which
children can learn by discovery and doing. The underlying rationale is
adapted from Piagetian constructivism which asserts that learning takes place
through the construction of mental models developed in exploration. Papert
(1986) explained constructivist theory from two perspectives. First, from a
psychological perspective, learning is considered as a reconstruction rather
than a transmission of knowledge. Second, from an educational perspective,
learning is particularly effective when it is embedded in an activity that the
learners experience in constructing a meaningful product (such as a computer
program) rather than acquiring knowledge and facts without a context which
can be immediately used and understood. Logo programming requires the
explicit definition of ideas, the reconstruction of the ideas or the development

of computational models of the concepts, turning the children into

epistemologists.

Review of the Literature 27

The Claims of Logo

The five most important claims made by Papert and other Logo
advocates (Brooks, 1977; Nickerson, 1982) can be summarized as tollows:
First, Logo can serve as an object-to-think-with, a model for the notion of
assimilation. It can be used as a tool to construct learning environments n
which other learning can occur, and therefore it supports other school
learning. Second, it is hypothesized that, through the processes of
programming the computer to perform various tasks, Logo allows students to
acquire certain cognitive capabilities which can be transferred to problem
solving in many other contexts. Third, the experiences from Logo can bring
about a more positive mindset in students as intellectual agents, increasing
their self-esteem and making science and mathematics attractive to children.
Fourth, the flexibility of Logo allows children to display and develop their
creativity. Finally, Logo is claimed to be accessible with virtually no pre-
requisites and to offer potential for unlimited development; therefore, it can

be used by different populations with diverse characteristics.

The Tests of the Claims: Findings from Empirical Studies

Based on these claims, previous Logo research has focused on
understanding the cognitive and social effects of children's experiences with
Logo. Specifically, researchers tried to find out, first of all, what are the
cognitive outcomes for children of programming the computer to perform
various tasks? In particular, can Logo help students acquire certain cognitive
capabilities, and can these capabilities be transferred to problem solving in

other domains? Second, can Logo, as a programming language, be a general

Review of the Literature 28

educational tool for constructing learning environments in which other
learning can occur? In other words, does learning Logo facilitate learning
other subjects? The third question is, what is the effectiveness of Logo with
various instructional methods and for various target populations. In
addition, there are some concerns related to the social and motivational
impacts of learning Logo, such as on self-esteem and motivation to learn.
Recent research focused on exploring the constructive attributes of Logo for

mathematics learning These studies are discussed further on in this chapter.
* Logo is supportive of learning other subject knowledge

Programming is assumed to require the use of fundamental concepts
such as variables and recursve structures, which are important in
mathematics and physics. These concepts are difficult to learn in
conventional teaching and the use of variables and recursion in the
functional context of programming makes them more easily comprehended
(Papert, 1980; Nickerson, 1982). Studies have shown that, generally, Logo is
supportive of other school learning and is useful for communicating difficult
abstract concepts, such as in mathematics (Feurzig, Papert, Bloom, Grant &
Solomon, 1989; Howe, Ross, Johnson, Plane & Inglis 1982; Howe, O'Shea &
Plane, 1979; Kurland, Pea, Clement & Mawby, 1986; Sutherland, 1992; Statz,
1973) and in particular, geometry (Abelson & diSessa, 1980; Lehrer, Randle &
Sancilio, 1989).

Logo is best known for its applications in mathematics, but it has
become fairly widespread and its applications go beyond mathematics

(Wenger, 1987). Studies also indicate that Logo can be used as tools to learn

Review of the Literature 29

physics (Briskman, 1984; Dale, 1984), languages (Bouchard & Emirkanian,
1984; Bull, 1983), as well as logical reasoning (Gorman & Bourne, 1983).

¢ Can Logo programming develop certain cognitive abilities and can
these abilities be transferred to other domains?

Programming is a complex activity which demands various cognitive
abilities. It is hypothesized that in the process of programming these
cognitive abilities will develop. However, the answers to this question ditfer
with different implementing methods and school settings and hence are
controversial. Some studies showed that learning to program can have
positive effects on thinking and problem solving skills (Feurzig, Papert,
Bloom, Grant & Solomon, 1989; Kynigos, 1992; Mayer, Dyck & Vilberg, 1986),
and debugging skills (Howe, Ross, Johnson, Plane & Inglis 1982, Fowe,
O’shea & Plane, 1979; Statz, 1973). The debugging skills acquired in Logo
programming can be transferred to nonprogramming domains (Klahr &
Carver, 1988). Investigators also found that Logo had an important effect on
creativity (Clements & Gullo, 1984; Reimer, 1985).

Other studies, however, found little evidence that current approaches
to teaching programming bring students to the level of programming
competence needed to develop cognitive ability and the kinds of systematic,
analytic, and reflective thought that is characteristic of expert adult
programmers. These studies did not support that learning to program can
help children develop a model of computer functioning that would ¢nable
them to write useful programs (Kurland, Clement, Mawby & Pca, 1986; Pca &
Kurland, 1984; Rampy, 1984). Kurland, Pea, Clement and Mawby (1986)
found that students were doing so-called brute-force paragraph programming

in which they decided on sets of desired screen effects and then lined up

Review of the Literature 30

commands to cause the screen effects. In this process, students did not engage
in problem decomposition or use the powerful features of the language to
structure a solution to the programming problem. In addition, a study found
that very few children had a correct understanding of concepts such as flow of
control, conditionals, or recursion (Kurland & Pea, 1985). Children's
spontaneous projects often did not involve the use of variables and children
had to be initiated to it (Fhllel, 1992; Sutherland, 1992). As can be expected,
since students had not developed the programming competence and
cognitive abilities in the first place, the studies found little evidence of

transfer of cognitive skills to other domains.

* Logo can bring about positive effects on students’ self-esteem,
motivation, and attitudes towards learning

Most studies indicated that experience with Logo has positive effects on
students’ self-esteem, motivation, and attitudes toward learning. Especially,
Lego-Logo is highly motivational to young learners of both genders (Papert,
1986). However, Roblyer, Castine and King (1988) stated that no conclusions
could be drawn about the impact of Logo on students’ image of themselves on

the basis of evidence available.
¢ The effectiveness of Logo with various instructional methods

Learning by exploration is recommended by Papert as the best way to
use the Logo environment (1980). Papert strongly suggests to help children
learn how to develop and debug their own theories rather than to teach them
theories adults consider correct (Papert, 1972a, 1972b). Papert claimed that,

without the imposition of adult authority and adult ideas, children can come

Review of the Literature 31

to an understanding of the nature of fundamental programming concepts
such as recursion. Newman (1986) argued that this is not true for
programming because computer programming is seldom mastered by young

children.

From a problem solving perspective, Groen (1978) argued that:

The best way to use the Logo environment is to give the learner the
opportunity to indulge in free problem-solving activities (e g,
inventing computer programs that do interesting things) The child
selects a project and is free to do anything he or she wishes to
accomplish it, subject to quite explicit constraints imposed by the Logo
environment. The goal is to improve the learner's ability to articulate
the working of his or her own mind and particularly the interaction
between him/herself and reality in the course of learning and
thinking. The approach is to follow the model of the child as
researcher and the teacher as research director (p. 56-57).

Resuits from empirical studies showed that the effects of Logo differed
according to implementing methods and school settings. In contrast to other
views, certain studies found that a structured teaching method is more
effective than an unstructured, discovery-oriented method (lLittletield,
Delclos, Bransford, Clayton & Franks, 1989). Among various methods, asking
children to design instructional software with assistance from the teacher
seemed to be an effective method for learning both Logo and fractions (larel,
1988). Recent research tended to emphasize that teacher’s role is critical in
building the bridge between Logo and mathematical task activities (Gurtner,
1992) and providing problems and information relevant to the constraints on
programming context (Sutherland, 1992). Therefore, the resuits support that
children can learn efficiently by exploration in Logo environment when

being directed or assisted by the teacher.

Review of the Literature 32

e The nature of the Logo exploratory learning environments

Groen indicated that computer programs are structures that coordinate
other structures (1978). He explicitly articulates some of the properties of the
microworld and programming in the following quote:

First, a programming language..can provide an introduction to
mathematical formalism that is better coordinated with the natural
structures of the child. Second, the process of writing a computer
program encourages thinking about how one would perform the
actions that are being embodied in the program. Third, and most
importantly, the pupil may invent a grossly incorrect or "buggy"” theory
about the microworld. Computer-based microworlds are naturally self-
correcting... The nature of the errors may yield additional information.

If the cause is nontrivial, the task of debugging or discovering the cause
of the error may lead to major modifications in the theory (p. 371).

These concerns seem to be the topics of recent studies on Logo.
Researchers (Edwards, 1992; Hoyles and Noss, 1992; Loethe, 1992; Kynigos,
1992) attempted to determine the extent to which Logo provides a
mathematical environment and whether there are properties of the Logo
environment that are inherently mathematical. They also attempted to
sketch an understanding of how Logo operates as a medium for ~hildren to
express their mathematical ideas. The conclusions were that, first, the
mathematical nature of Logo programming allows children to express
geometrical ideas in a "natural" way (Loethe, 1992, Kynigos, 1992, Edwards,
1992). Second, Logo offers a means for students to accept and use abstract
symbols (Sutherland, 1992). Third, the most importantly, the microworld

provides meaningful, interpretable feedback that the learners can use to

Review of the Literature 33

refine their understanding of the structure of the new mathematical entities
they encounter.

Misconceptions can be corrected by students themselves through a
process of conceptual "debugging” (Edwards, 1992). Therefore, there is
considerable evidence that Logo provides a computational environment in
which mathematics can, at some level, take place and that it can provide
access to otherwise unattainable mathematical ideas (Hoyles and Noss, 1989).
The rationale was derived from the way in which the Logo environment can
provide pupils with an opportunity to engage in mathematical problem
posing and solving during which they develop control over their own
learning, and the use of computational tools which can potentially structure,
amplify, and reorganize thinking (Noss & Hoyles, 1992). However, Noss and
Hoyles (1992) suggested that the idea that Logo provides an "all purpose
learning environment” has raised a range of unrealistic expectations
concerning the development of general problem-solving skills.

In summary, studies showed that Logo supports other school learning
and that experience with Logo has positive effects on students’ sclf-esteem,
motivation, and attitudes toward learning. However, the data on whether
cognitive abilities can be developed from experience with Logo and further be
transferred to other domains is controversial. Moreover, the studies which
did not find positive cognitive effects in learning to program also indicated
that children did not progress very far in programming skills, or in depth of
understanding program concepts. More recent studies have confirmed the

constructive nature of Logo environment for mathematics learning.

Review of the Literature 34

Limitations of Previous Logo Studies

The limitations of the previous research are created by three major
factors: the research questions asked, the research methods, and the subjects
used.

First, the nature of the Logo learning environment was not studied
from the perspective of learning mathematics until recently by Noss and
Hoyles (1992) and other researchers (Edwards, 1992; Loethe, 1992; Kynigos,
1992). Noss and Hoyles concluded that Logo provides an exploratory
environment that is inherently mathematical rather than an all-purpose
learning environment. In order to examine whether the Logo environment
can provide a general computational representation for learning, it is
necessary to investigate the use of Logo for learning other knowledge rather
than mathematics. This study uses Logo as the medium for student teachers
to develop instructional programs for teaching.

Second, in past Logo research, researchers who conducted empirical
studies usually used either extensive observations or pretests and posttests to
measure the cognitive outcome from the interaction with Logo. However,
these methods cannot account for what the child learned in the Logo
environment, which is the way of establishing a correspondence between the
concrete world and one of abstract representations (Groen, 1984) and
intellectual structures (Papert, 1980). Groen (1984) further presumed that
more extensive use of empirical methods in cognitive science might be of
considerable value in research on Logo, because this use could result in the

emergence of a body of research in which theory and data are closely linked.

Review of the Literature 35

Therefore, this study uses a cognitive method to examine the structures
constructed in Logo environment.

Finally, mostly children were used as subjects in previous Logo studies
rather than university students or adults. Because children's maturity levels,
cognitive abilities, and intellectual experiences differ greatly from adults, it is
not surprising to find that children had not developed the kinds ot cognitive
skills or abilities in Logo programming that are the characteristics of expert
adult programmers. In order to determine whether learners can develop the
kinds of cognitive skills or abilities in Logo programming that are the
characteristics of expert adult programmers, this study will use university
students whose maturity levels, cognitive abilities, and intellectual
experiences are similar to those of professional programmers.

Children's programming is emphasized as a way of building
intellectual structures; professional adult programming, however, has been
extensively studied as a cognitive skill in the area of cognitive science. The

findings from empirical studies of programming are presented below.

Empirical Studies on Programming Expertise

In order to understand the characteristics of instructional software, it is
necessary to take into account the structure of the program, from a
computational perspective. Research relevant to this aspect of the description
comes from empirical studies on programming expertise. These studies have
also investigated the cognitive processes in which programmers engage, the
content and organization of programming knowledge, and related cognitive
abilities. These findings provide a basis for understanding what is required

from the designer in developing efficient software, including instructional

Review of the Literature 36

software. Because the products and processes in programming are closely
interrelated, they need to be studied in an integrated way. A second reason
for reviewing the research on programming expertise is to understand ‘he
methods used to compare experts and novices in programming and to
determine how these methods can be improved. The current methods used
in studies of programming expertise for describing program structures are
very few and incomplete.

Programming is a complex configuration of various activities oriented
toward developing a product consisting of a series of instructions that direct a
computer to accomplish some tasks (Pea & Kurland, 1984). Programming
consists of such activities as understanding the problem to be solved,
designing a solution, coding ine solution using a programming language,
comprehending the written program in order to debug, testing the program'’s
correctness, and evaluating usability for target population. These activities
require cognitive skills such as systematic planning, procedural, and
conditional reasoning (Brooks, 1977; Jeffries, Turner, Polson & Atwood, 1981;
Nickerson, 1982; Pea & Kurland, 1983; Pennington, 1982). Programming also
demands knowledge of subject matter and knowledge of programming
languages and computer architecture. In addition, knowledge of design
strategies is also required (Adelson & Soloway, 1988; Pennington, 1987).
Successful software design involves the coordination of the activities in
which goals and operators interact with various skills and knowledge.

The basic issue addressed in programming expertise studies is similar
to that asked in other areas. That is, what distinguishes outstanding
individuals in a domain from less outstanding individuals in that domain, as
well as from people in general (Ericsson & Smith, 1991). To capture the

essence of programming expertise and the related abilities of programming,

Review of the Literature 37

two types of tasks are often used: the representative programming task, such
as recursive programming and tasks that measure a related function or
ability, such as, recall of programming codes. Methods such as thinking-
aloud, observing task performance, and explanation are often used to gain
understanding of the cogunitive processes and the strategies employed in
performing some representative tasks, as well as the content and organization
of knowledge the subjects utilized in their problem solving. The measure ot
related functions and abilities, such as memory tests are often used to make
inferences regarding expertise.

Research on programming skills has focused on the programming
processes which coordinate and display the various knowledge and skills by
comparing experts and novices. Some findings from expertise studies are
similar to findings in other domains, whereas others are different. For
example, studies in other domains consistently show that experts use forward
reasoning (see Groen & Patel, 1988, 1990), but studies in programming
indicated both experts and novices use backward reasoning (Adelson,
Soloway, 1985; Jeffries, Turner & Polson, 1981). Also, research in other
domains showed that experts display better memory performance (deGroot,
1966; Chase & Ericsson, 1982), but the results in programming suggested that
this is not always true (Adelson, 1984). Therefore, the tindings from
programming provide a unique perspective to look at expertise. The
following section will present findings from programming expertise studies

that focused on the programming procesces and related cognitive factors.

Review of the Literature 38

Findings from Expert-Novice Studies in Programming

The studies of programming expertise have analyzed almost every
aspect of the programmer's behaviour displayed in the processes of
programming and related cognitive abilities using novice-experts
comparisons Results from expert-novice studies have revealed certain
characteristics of programming expertise. This section focuses on findings
concerning process, representations, memory performance, validation of

programs, and program structures.

1. Process

Decomposition of complex tasks into more manageable subtasks is
essential to successful software design. Researchers consistently found that
both novice and expert programmers use a top-down decomposition to
reduce the complexity of tasks in programming design (e.g, Jeffries, Turner &
Polson, 1981). That is, starting from a global statement of a problem, a
programmer decomposes the initial problem into subproblems, then further
into subproblems, until the problem is solved by implementation of
programming code. As decomposing proceeds from the top to the bottom the
abstract solution become more concrete, until the solution can be
implemented in program codes (Adelson & Soloway, 1985; Jeffries, Turner &
Polson, 1981).

The difference between novices and experts is that novice code the first
part of a solution until the first part can be implemented in program codes,
they then code the next part of the solution, and so on. This process is called

depth-first decomposition. In contrast, experts use a top-down, breadth-first

Review of the Literature 39

decomposition strategy. They develop the solutions for all elements at the
same level equally and all information about the current state of the design is
at the same level of abstraction so that all elements car interact with each
other. Therefore, both novices and experts use top-down decomposition
strategy, but novices decompose depth-first whereas experts decompose
breadth-first (e.g., Jeffries et al.,, 1981) However, when expert programmers
solve problems in an unfamiliar domain they create the partial solutions and
combine them to form a full solution (Adelson & Soloway, 1985). This

strategy is similar to the ones used by novices

¢ Expert programmers devote a great deal of effort to understanding a
problem and its constraints before breaking it into subproblems.

In addition to strategies used in the decomposition process, expert and
novice programmers also differ in other aspects of the decomposition
programming process. Similar to the findings of research in other domains
(Paige & Simon, 1966; deGroot, 1966), expert programmers are found to
devote a great deal of effort in understanding a problem before attempting to
break it into subproblems. They clarify constraints on the problem, derive
their implications, explore potential interactions, and relate this information
to real-world knowledge about the task. Novices, on the other hand, show
little inclination to explore aspects of subproblems before proposing a
solution. This has serious consequences for both the correctness and the

efficiency of their design (Jeffries et al., 1981).

Review of the Literature 40

» Experts tend to decompose the problem based on known solutions,
efficiency and aesthetics, whereas novice programmers do not show

such a tendency.

Experts decompose the problem into manageable, minimal, and
interacting parts in order to reach the point where the subproblems have
known solutions. In contrast, novices are much less effective in their use of
this iterative decomposition method. They seem to lack the more subtle
aspects of the decomposition. In addition, experts state alternative solutions
and select among them based on the hypothesized efficiency and aesthetics,
whereas novices seldom consider more than one possible solution to any
subproblem. Even in the few cases in which novices choose among
alternatives, they base their decisions on programming convenience rather

than on efficiency or aesthetics (Jeffries et al., 1981).

2. Representations

Research has shown that expert programmers have effective
representations of programming knowledge at both the abstract and concrete
levels (e.g., Adelson, 1985), whereas novice programmers only have concrete
representation (Jeffries et al., 1981; Linn, 1985; Sheiderman & Mayer, 1979;
Soloway, 1984). These studies indicated that expert programmers represent
programming problems in terms of the general concepts, the underlying
structures of broad classes of problems, the solution strategies which crosscut
many types of problems, and routirized plans (Soloway, 1984) or templates

(Linn, 1985). In addition, expert programmers' mental representations of

Review of the Literature 41

programs are based on procedural (flow control) rather than functional (goal
hierarchy) relations (Pennington, 1987).

In contrast, novice programmers have difficulties representing
knowledge effectively. Even if novice programimers begin to develop an
understanding of the programming language and write relatively
sophisticated programs, they may still represent problems in terms ot the
surface codes, format, and syntactic properties of the language (Samurcay,
1985). These findings mirror the results of expert-novice comparisons in
domains, such as physics (Chi, Feltovich, & Glaser, 1981), which found that
experts represent problems according to abstract principles, whereas novices

tend to rely on surface structures to organize their representation of problems.

e Experts have superior recognition abilities for identifying the class of
relevant solutions and the conditions of applicability.

Experts have templates which include the critical features of the
problem, relevant solutions and the conditions of the applicability. Expert
programmers simply retrieved the appropriate template from memory and
applied it when they solve problems in familiar domain. They are also able
to retrieve a known solution in a novel context and adapt the solution to the
particular context of a design problem (Adelson & Soloway, 1985; Jeffries et
al., 1981)

Novice programmers operated on the partial template which could be
retrieved from their memory or the texts (Anderson, Farrell & Sauers, 1984;
Pirolli, 1986; Pirolli & Anderson, 1985). They showed no evidence of
recognizing the applicability of information in a novel situation comparable
to situations they had learned previously. In addition, the information they

generated in the course of solving the problem was often not available when

Review of the Literature 42

it was most needed, and when it was available, they did not attempt to alter

the previous solution to the current problem (Jeffries et al, 1981).

s Expert and novice programmers interpret the same concepts

differently.

Novices have inadequate understanding of many of the basic concepts
of computer science. The same technical computer science terms do not have
the same meaning for the novices as they do for experts (Jeffries, et al.,, 1981).
Studies have consistently indicated that expert and novice programmers have
different understandings of recursion! (Jeffries, 1982; Kahney, 1982; Kahney

& Eisenstadt, 1982; Kurland & Pea, 1985).

e Expert programmers have a well developed design schema of

programming knowledge.

According to Jeffries et al. (1981), a design schema is a template for
developing programming structures that is independent of its content. This
has impact on almost on every facet of the programmer’s behaviour in
software design. It directs the programmer's behaviour in an efficient way. A
programming schema is complex and it is developed in stages as a result of
experience with software design. The mature design schema facilitates the
refinement of understanding, retrieval of known solutions, generation of
alternatives, and critical analysis of solution components. Experts are

assumed to possess such a design schema, whereas novices programmers

IRecursion refers to a process that 1s capable of triggering new instantiations of itself,
with control passing forward to successive instantiations and back from terminatied ones. This
is the model ot the recursive process that experts have, whereas novices have a "looping”
model of recursion. That 1s, novices view a recursive procedure as a single object instead of a
senal of new nstantiations.

Review of the Literature 43

have a less developed design schema. This explains why their behaviour 1s
less efficient.

Another idea related to the design schema is the plan schema proposed
by Rist (1986, 1989) and Spohrer, Soloway, and Pope (1985). A planis a set ot
stereotyped sequences of actions that expert programmers know and that can
be adapted to the current situation. Some researchers regard programming
plans as the most important characteristic of advanced programnung skills
(Adelson, 1981; Bonar & Soloway, 1985; Dalbey, Tourniaire & Linn, 1986;
Detiennne & Soloway, 1989; Kurland, Mawby & Cahir, 1984; Shneiderman,
1976; Soloway, Adelson & Ehrlich,'1988; Spohrer, Soloway & Pope, 1985;
Rist, 1986). It is assumed that experts do not only develop a greater range of
these plans than novices, but also know the “rules of programming
discourse” that govern the wvalid application of plans in particular

circumstances (Soloway & Ehrlich, 1984).

3. Memory performance

Experts possess chunks that represent functional units in their
respective domains, whereas novices do not possess such chunks as
demonstrated in performance on recall tasks (Adelson, 1981; McKeithen,
Reitman, Rueter & Hirtle, 1981; Shneiderman, 1980b). Results from
Shneiderman’s studies further showed that experts were able to chunk lines
of code together into meaningful configurations which allowed them to
achieve better memory performance, whereas less experienced users were less
able to form such chunks so they recalled fewer stimuli.

Adelson (1984) reported findings that contradict the notion that experts

have superior memory performance. She indicated that novices had better

Review of the Literature 44

memory for the details of code than did experts. The explanation appeared to
be that experts focused more on the overall goal structure of the
programming task ‘han on the actual code because it is easier for them to
solve a programmung task than to memorize a detailed solution whereas it

was the reverse for novices. Therefore, expert programmers do not always

display superior memory performance.

4. Validation of programs

Novices and experts differ in their skill in testing designs and
programs. Experts have well-developed knowledge of debugging strategies
associated with their programming templates and they are good at designing
tests for revealing potertial problems. In contrast, novices often test only the
obvious or usual forms of input and may systematically fail to test all of the

codes (Kurland et al., 1986; Mandinach & Linn, 1989).

5. Program structures

One of the differences between the study of cognitive skills in
computer programming and those in most domains is that the tasks in
programming often involve constructing products. It is reasonable to assume
that, besides the process of programming, expert programmers also differ
from novices in the ways they design the final products of programming.
Previous studies of programming skills did find differences between experts
and novices in terms of program structures, in particular in ways to construct

recursion.

Review of the Literature 45

e Expert programmers construct modular programs whereas novice
programmers construct linear ones.

Effective programs require modular structures so that large systems can
be divided "naturally” into coherent parts that can be separately developed
and maintained (Abelson, Sussman & Sussman, 1985) Most studies on
learning to program distinguish between a linear program and a modular
program. A linear program emphs .izes the generation of effects without any
consideration or understanding of the inner structure of the code (Soloway,
1984). A modular program, however, is considered as emphasizing elegant
and efficient programming, and is accompanied by a higher-level
understanding of programming (Carver, 1987; Kurland, Clenment, Mawby &
Pea, 1987). The cognitive demands for modular programming are different
from those for linear programming. Researchers indicated that expert
programmers tend to construct modular programs while novices tend to

construct linear ones.
* Experts and novices differ in the way they construct recursion.

An essential aspect of recursive programming is related lo how one
exits the recursive cycle. Novice programmers often construct a cycle which
permits them to exit from the middle of the cycle, whereas experts construct
exit points from the top or the bottom a cycle, a strategy that is believed to be
superior (Soloway, Bonar & Erihlich, 1983).

In summary, the results from studies of programming expertise
showed that, first, both experts and novices use top-down decomposition

strategy. The differences between experts and novices in decomposition are

Review of the Literature 46

that experts devote more effort to analyze the problem, and they decompose
the problem based on known solutions, efficiency, and aesthetics using
breadth-first strategy. In contrast, novices use depth-first strategy to solve
problems and they do not show a tendency to consider efficiency or aesthetics.
Expert programmers select a solution among alternatives based on the
hypothesized efficiency and aesthetics whereas novice programmers select a
solution based only on convenience.

Second, expert programmers have well developed representations of
programming knowledge whereas novice programmers only have low-level
representations of programming knowledge. The well developed knowledge
representation is often called as a design schema. This schema impacts
almost every aspect of the programmer's behaviour in software design and it
directs the programmer's behaviour in an efficient way. Expert programmers
have such a design schema so they are able to retrieve and modify a known
solution to fit a current problem whereas novices do not have such a design
schema so they are unable either to retrieve the solution or to adapt it to a
novel problem.

The results do suggest experts demonstrate an enhanced ability to
chunk meaningful stimuli but do not necessarily remember more details of
code than novices. Expert programmers also differ from novice programmers

in the ways they construct the program structures.

The Limitation of Previous Studies on Programming Expertise

Previous studies of programming have provided a great deal of
understanding of the content and organization of programming knowledge,

the general strategies for solving problems, and the related cognitive abilities.

Review of the Literature 47

However, a limitation of the these studies is that they only focused on the
programming process and did not examine the important teatures of the
products in order to see if and how they distinguish expert trom novice
programmers.

Programming is a complex configuration of activities oriented toward
developing a product. Different types of knd-vledge, skills and abilities
interact in a very intricate way in the programming process and it is very
difficult to assess the roles played by each factor in achieving outstanding
performance. For example, it is not convincing to say that the designer who
uses top-down and breadth-first strategies will definitely produce a better
program than the one who uses top-down and depth-first strategies. In fact,
just like an expert runner is distinguished from novice runner by how fast he
or she arrives the goal, an expert programmer may be distinguished from
novice programmers by how well he or she can produce a program.
Therefore, expertise or outstanding achievements in programming may be
identified by the products that a programmer produced However, in many
domains in which experts produce complex products as texts, it is difficulty to
analyze such products in order to identify the measurable aspects capturing
the superior quality of the product. Therefore, researchers focused on
systematic characteristics of the cognitive process in order to differentiate
experts from novices (Ericsson & Smith, 1991).

Similarly, the methods available in current expertise research are
unable to identify the measurable aspects capturing the expertise embedded in
the fina. products of programming. In addition, the previous studies of
programming expertise have not yet covered programming expertise in
designing instructional software. Therefore, to develop a methodology to

characterize instructional software will have considerable value.

Review of the Literature 48

The identification of programming expertise from the programming
product does not imply that it can replace the studies of the cognitive
processes of programming Instead, the emphasis is based on the assumption
that the different knowledge, skills, and abilities that the programmers
possess will be displayed not only in the processes, but also in the final
products of programming. The better understanding of programming
expertise can be achieved only when the components of the superior

performance displayed in both the processes and products can be described

and identified.
Summary of the Chapter

This chapter presented a review of literature to develop the rationale
underlying this study. The review considered perspectives of instructional
software evaluation, human-computer interaction, the Logo approach, and
the studies of programming expertise. This section presents the key points for
developing a methodology to identify the cognitive, pedagogical, and
compulational characteristics of instructional programs produced by student
teachers using Logo.

First, the previous evaluation of instructional software may indicate
only whether instructional software is efficient. However, it does not identify
the cognitive and pedagogical characteristics or give any other information
regarding the strengths and weaknesses of the instructional software that
determine the effectiveness of instructional software. Therefore, it is difficult
to distinguish one program from another and further to compare them.
Consequently, the results from these evaluations do not provide sufficient

guidelines for developing efficient instructional software. This study suggests

Review of the Literature 49

that previous evaluation methods should be complemented by the
characterization of the important features of instructional sottware that
determine effectiveness.

Second, the process of knowledge communication between a user and a
computer 1s studied as human-computer interface, without any consideration
of the instructional properties of the software. Therefore, the concepts and
approaches in the study of human-computer interface have to be moditied 1n
order to effectively study instructional software interface.

Third, the previous studies on Logo did not explore the nature of Logo
environment until recently. Recent studies have confirmed that Logo
provides a computational environment that is inherently mathematical. For
example, the mathematical nature of Logo programming allows children to
express geometrical ideas in a "natural" way. However, the computational
application of Logo is limited to learning mathematics. The present study
will explore whether the suitably constructed, computational nature of Logo
environment can be used for learning other knowledge that requires
computational representations, such as learning how to teach in a computer-
based medium.

Finally, previous studies of programming expertise have provided a
great deal of understanding of programming as a problem solving activity,
however, they did not, or were unable to account for the different
programming expertise embedded in the final products of programming.
Furthermore, the previous studies of programming have not yet considered
the expertise involved in designing instructional software interface.
Therefore, the development of a methodology to identify the cognitive,

pedagogical, and computational characteristics of instructional software

Review of the Literature 50

. produced by student teachers using Logo may prove to have significant

research value in several related areas of investigation.

Chapter 3

METHODOLOGY

The methods for characterizing computer-based learning environments
and program structures are developed in the context of student teachers using
Logo to produce instructional programs. This chapter describes the framework
and methods for characterizing the learning environments and program
structures.

To effectively characterize instructional software, it is necessary to
distinguish between the learning environment and the program structures,
which are two different aspects of a program. A primary goal of this research is
to characterize the learning environments constructed by student teachers in
developing instructional programs using Logo. The characteristics of the
learning environments constructed by student teachers are assessed in terms of
the usability and constraints in meeting the user’s cognitive needs during the
learning process.

As mentioned previously, LogoWriter™ is a Logo-based application
incorporating unique program structures and screen layouts. This study also
investigates how student teachers structure pages and procedures, as well as use

program properties.

Subjects

Subjects were 18 university students (14 females and 4 males), between 23
and 35 years of age, participating in a one semester, undergraduate, introductory

Logo course. All subjects were majoring in the elementary and secondary

Methodology 52

teaching programs in the Faculty of Education at McGill University. None had

any previous experience with computers.

Materials

Computer Hardware

A laboratory equipped with 24 Apple Macintosh LC microcomputers and
colour monitors, four Apple ImageWriter printers, and one Apple LaserWriter
laser printer was used during the classroom sessions for completing assignments
and projects. All microcomputers were connected to a local network server, and
all printers were connected to the microcomputers by AppleTalk links so that
student teachers could print from any of the computers.

Student teachers had free access to the laboratory for completing

assignments and projects during the period of the course.

Software

The software used in this course was LogoWriter™ produced by Logo
Computer Systems Inc., for Apple Macintosh computer systems. Four features
distinguish LogoWriter™ from Logo. The first feature is that LogoWriter™ has
the capacity to execute more than one page? easily in a program, with or without
the user’s interactions. The second feature is that, using a mouse, the user can

drag the turtle around and use it as a pen to draw pictures on the front page

2 A pagen LogoWriter™ has a front side and a flip side. The front side is divided into
two parts: front page and command center. The front page can display the screen effects of the
procedures, whereas the command center can be used to type the commands. The flip side is
used to write procedures or a program.

Methodology 53

. (screen). The third feature is that there is a word processor in LogoWriter'™. The
last feature is that LogoWriter™ has a special screen layout which divides the
screen into a front page and a command center so the user can see the procedures

and their effects at the same time.

Readings

Student teachers were required to use a reference book (Le Gallais,
Shapiro & van Gelder, 1988). This book explains some of the basic concepts and
skills used in Logowriter™, such as drawing graphics, writing procedures, using
variables, recursion, and structuring procedures. Each chapter provides an
explanation of specific concepts and primitives followed by a series of practice
examples and suggested activities. The chapters also discuss common problems
encountered by the learners and present suggestions for teaching IHandouts on
Macintosh computers and Logo programming were distributed to the students at
the beginning of some sessions. In addition, Papert’s Mindstorms (1980) was

recommended reading for the student teachers.

Other Materials

Student teachers also used paper and pencils in the class.

Data Source

The data used in the present study consisted of the final projects
completed by the student teachers at the end of the semester as part of the course
requirements. In order to situate these projects, it is necessary to describe briefly

. the overall structure of the course.

Methodology 54

The teaching method used in this course can be characterized as “project-
driven” learning in which students were required to produce a sequence of
working samples, two projects, and a term paper These requirements are
described in more detail below. There were 24 semi-weekly classroom sessions
of three-hour duration during which the students worked on the exercises or on
their projects individually and at their own pace. Meanwhile, the instructor and
an assistant observed the students’ learning and provided help when it was
needed In addition, explanations about Macintosh microcomputers and Logo

programming were given in 15 minute sessions at the beginning of

approximately 10 of the sessions

Working Samples and Sharing

Students were required to replicate the exercises in the reference book or
expand creatively on these exercises. They were instructed to submit these
working samples to their individual computer "folders” on the server so that they
could look at each other's work.

Students worked individually during this phase, but they could discuss
and help each other in class. It was clearly indicated that the working samples

would not be graded but that they had to be handed in to complete the course.

Midterm Project

After six weeks, students were required to complete a midterm project.
The objective was to show how creative students could be within the Logo
environment and grades were based on the extent to which students deviated
from the book. After the midterm projects were graded, the ten best projects

were put in a display folder in the server so that all students could look at them.

Methodology 55

Final Project and Short Paper

Toward the end of the term, all students were asked to plan and design a
final project individually or in groups. The students were required to use Logo
procedures to develop a program with which a user could interact in an
interesting way. In addition, students were encouraged to use a modular
programming style to break down a problem into small units as explained in the
reference book. The grade was based on the interest and effectiveness of the
instructional strategy developed.

At the same time, students were asked to write a short paper to indicate
how they would use Logo for instructional purposes. It was explained that the
paper should be an idea paper rather than a reading assignment or optionally,
students could combine the term paper with the project. Thus, the paper would
be a description and justification of the final project.

The thirteen projects were submitted at the end of the term included nine
individual projects and four group projects. These projects constituted the data

for this research.

Data Analysis

The present study distinguishes between learning environments and
program structures. A learning environment refers to the display (e.g, text,
graphics, animation, and speech) of instructional software and the user-computer
interactions the software promotes, which is characterized in terms of the types
of knowledge presented, the pedagogical strategies used to present this

knowledge, and the forms and functions of the interactions. Program structures

Methodology 56

refer to the computational construction of the program units, such as pages or
procedures, as well as other programming properties.

The hierarchical organization of a learning environment is described
graphically in Figure 1 A learning environment in this study is characterized by
dividing 1t into episodes which are composed of sequences of views, with task
descriptions at each level An episode refers to a lesson or a set of exercises
developed by student teachers for specific instructional purposes, whereas a
view refers to the display on a screen and the interactions the screen display

elicits. A view is changed when there is a significant effect on the screen.

A Learning Environment
(Task Descriptions of a Program)
Episode 1 Episode2 Episode n
(Task description of episode 1) (Task descriptron of episode 2) (Task description of episode n)

AN NN

view 11— view 12 —Pp oy n—Ppview2] =P view22 —P view2 n —p view3! —p view33 —Jp view 3n

Figure 1. The hierarchical organization of a learning environment.

Each view consists of view space and command space . The view space refers to the
static attributes of a view — the types of knowledge presented and the pedagogical
strategies used to present the knowledge. The command space refers to the
dynamic attributes of a view which includes automatic operators and manual

operators (see Figure 2). Automatic operators refer to the cases in which a

Methodology 57

program does not require any input from the user to execute a procedure
whereas manual operators necessitate user input (e.g.,, user-computer

interactions). The manual operators are characterized in terms of the forms and

functions.

and

I View Space I I Command Space

/ presented or
by

Types of Knowlcdgc] [Pcdagoglcal Slralcglc] I Automatic Opcramrq] l Manual Operators

Figure 2. The view space and the command space in a view.

Program structures are characterized in terms of rmodularity that refers to
linear or modular structures. A linear structure refers to a unit (it can be a page or
a procedure) which employs subunits in a linear sequence. A modular structure
refers to a unit that can be divided “naturally” into coherent parts that can be
developed and maintained separately.

In characterizing program structures, some specific program properties are
considered, such as reusable procedures, conditional statements, variables, and

recursion. These properties are describyed in detail in a subsequent section.

Characterization of the Learning Environments

A learning environment is hierarchically decomposed into views and each

Methodology 58

conceptual unit (e.g., a statement, a question, or a configuration) and interactions
associated with a particular view is characterized with respect to the types of
knowledge presented, pedagogical strategies used to present this knowledge,

and the forms and functions of the interactions.

Types of knowledge

In order to have a clear picture of the types of knowledge presented in a
learning environment, the knowledge is categorized as domain knowledge,
operating knowledge, affective knowledge, or implementation knowledge.

Instructional software is always used for specific instructional purposes,
such as for teaching art or mathematics. Such knowledge that a program is
designed to teach is referred to as domain knowledge. Successful execution of a
program by the user requires knowledge of the features of the program (i.e,
what a program can do), as well as knowledge of how to manipulate the
program (e.g., how to retrieve a page). This type of knowledge is referred to as
operating knowledge. Both domain knowledge and operating knowledge are sub-
categonized as either declarative knowledge (describing facts, events, concepts,
principles or relationships) or procedural knowledge (explaining actions or
conditions under which the actions can be taken). In addition, studies on
learning have suggested several other subcategorical knowledge be important in
learning situations. These studies suggested that, first, learning and strategy
acquisition occurs at impasses (Siegler, 1989; VanLehn, 1988, 1990). Second,
learners have certain misconceptions and they exist in all kinds of learning, such
as physics (diSessa, 1988), chemistry (Albert, 1978; Erickson, 1979). In addition,
it is indicated that problem-solviry strategies and learning strategies can be

taught, and there are many methods for doing so (Collins, Brown & Newman,

Methodology 59

1989; Mason, Burton & Stacey, 1982; Schoenfeld, 1985)

Based on these research findings, it is reasonable to assume that etficient
teaching nrograms might present so called "bug problems" that the learners often
make mistakes on, indicate misconceptions and the origins ot the
misconceptions, as well as provide various strategies for problem solving or
learning, such as heuristic strategies, control strategies, and learming strategies
(Collins, Brown & Newman, 1989). Therefore, the characterization of the
learning environments should include these sub-categorical krowledge This is
particularly crucial for describing domain knowledge.

Because the program is manipulated by human beings rather than by
machines, the program might present the knowledge that has the social and
affective impacts on the users. All knowledge related to emotion, motivation, or
self-esteem is referred to as affective knowledge In addition, a program may
indicate what the program is designed for, who can use it, and how to use it.
This type of knowledge is referred to as knowledge for implementation about
content area, target populations and methods.

This study concerns the global nature of the knowledge presented in the
learning environments and the pedagogical strategies used lo present the
knowledge. Therefore, this study is not preoccupied with the questions of
whether the complexity of the domain knowledge is appropriate to the
characteristics of its target population, or whether the content of domain
knowledge is organized logically and systematically, or whether the affective
knowledge has positive effects on retaining the user’s motivation and self-

esteem.

Methodology 60

Pedagogical strategies

Conventional instruction usually involves pedagogical strategies such as
setting goals, providing instructions, explanations, demonstrations, and presenting
tasks as well as asking questions. Evaluation and feedback is also an important
pedagogical strategy. These categories are used to determine the ways that
student teachers present various types of knowledge in the learning
environments. However, in the process of interacting with a computer, a user
can only give input when a corresponding working space is provided by the
program. Therefore, pedagogical strategies for characterizing computer-based
learning environments should include the provision of working spaces. Brief
definitions of seven pedagogical strategies used in this study are presented
below.

1. Setting goals. An instructional designer informs a learner of the new
knowledge or skills he or she is expected to acquire when a program or a
learning episode (a lesson or a set of exercises) is finished. For example, a stated
goal can be to teach children geometry. Since human activities are goal-oriented,
the knowledge of goals or objectives can help a learner to organize and direct his
or her behaviour effectively. Therefore, the goals or objectives should be
specified at the beginning of a program or an episode.

2. Instructions. This refers to the uninterrupted presentation of any type of
knowledge. For example, the instruction can be that a rectangle requires two
inputs, length and width.

3. Explanations. This refers to any type of knowledge which is explicitly
provided to the user in anticipation of potential sources of confusion. For

example, following a demonstration, the program informs the user on how to

Methodology 61

generate the procedures used to perform the demonstrations.

4. Demonstrations. Demonstrations are the processes by which a program
shows a user how to perform a particular task by illustration. For example, a
program can exhibit the screen effects after displaying a set ot procedures

5. Presenting tasks. The tasks that users are demanded to perform are
presented through text or graphics. For example, a student is directed to tind
points in a grid.

6. Asking questions. The users are presented questions and they have to
give specific answers to these questions. For example, a user is asked: "Which
the correct answer? "

7. Providing working spaces. After a task is presented, a user is provided
the space to work on the screen. An example would be after the program asks a
question, the program waits for an input from the user.

8. Evaluation and feedback. A user’s performance 1s evaluated and the
feedback is provided accordingly. For instance, a user may be told “Very good!
You got theright answer! ”.

In characterizing learning environments, the concern is not only with what
types of knowledge are presented to the user and how they are presented, but
also what kind of interaction the user has with the program. In order to address

the latter, the dynamic attributes of a view must be considered.

Interactions

As mentioned above, the command space includes the operators required
to change a view or produce any effect on the screen. These operators are
categorized as automatic operators or manual operators

Automatic operators. Using automatic operators, a program does not

Methodology 62

require any input from the user to execute the program. There are several types
of automatic operators in Logo. One type is where the program uses the CT or
CG primitives in its procedures to clear the text or graphics from the screen
without any input. Another type of automatic operator is the scrolling effects
that are produced when a program uses the PRINT or TYPE primitive to print
more information than can be displayed on a screen. The last auton:atic operator
is when a program uses GETPAGE in a procedure so that the execution of
retrieving a page changes the view

Manual operators. In most cases, a program requires input from the user
to execute the program Such inputs are called manual operators and they are
grouped into seven categories in this study:

1. Pressing a letter or a number;

Pressing <enter> when a procedure appears on the screen;

. Typing a command;

2
3
4. Typing a command and a variable;
5. Using primitives;

6. Typing a word in response to a question;
7

. Typing a sentence.

These manual operators can accomplish several functions. These
functions are listed in the below:

1. To chose a type of tasks or activities (e.g., pressing a key to chose a type
of activities: "+" for addition, "-" for subtraction, "x" for multiplication, and "+"
for division).

2. To chose task complexity (e.g., pressing a key to chose a level of
multiplication: "1" for one-digit problems, "2" for two-digit problems, and "3" for
bug problems).

3. To answer questions (e.g., Question: how many provinces in Canada?

Methodology 63

Answer: ten).

4. To select answers for multiple choice questions (e.g. e.g, Question: how
many provinces in Canada? a)5, b) 10,and ¢’ 9. Answer: b).

5. To perform tasks (e.g., using the commands provided by the program
to find the points on a grid).

6. To chose various assistance (e.g., receiving a correct answer; receiving,
an explanation of the origins of a mistake; receiving a suggested strategy to solve
the current problem).

7. To operate the system (e.g , pressing the enter to continue).

In order to characterize the types of knowledge presented, the pedagogical
strategies used to present them, and the forms and functions of interactions, as
well as the relationship among them, a framework was developed. This

framework is described in the following section.

Procedures for characterizing the learning environments

Figure 3 shows the framework developed in this study for characterizing
the learning environments. This framework also consists of view space and
command space. View spaces include the different types of knowledge a
program provides and the pedagogical strategies used to present the knowledge.
Command spaces include the automatic and manual operators required by the
computer system. Notice that there are three dimensions in this framework and
each dimension is coded by two or three-character codings. Therefore,
conceptual units composed of the learning environments are described by seven-

character codings.

Methodology

Ay
’r)’"allc
Tay, C|
Org lcanng the screen

S crolling

Ex
Cuting 3 page automaucally

Pre
SSiNg a letyer OF 2 mumye,
;g <CNer> whep
u
e appears on the screer,

Pl’cﬂq;
proce,

g U\mgmg a commgyp,j
yping a Commany 4+ Variable(s)
Using prmitsves

T}’Plng a word
Tmeg sentence(s)

r & -
[acts 4 3 %
L9
Lvents m - —
Concepts _—
Relationshups]
—_—
Prnnciples pe——
¢/ Declarative knowledge p 4
Bug problems ———)
Misconceptions
Control strategics
Domain S Learming straiegies| o e——t—
[Adions| = N\Z
Conditions| € NF_
Bug Problems| - TEA%-3 e S

\
Procedural knowledge
Misconceptions

Heunstie strategies

Typeh 0 S
NENENENARENANNNENANNNEIRYE
NNENRENERENRNERENNANNNNR IS

NEENERRRRERNRREARNNNINNRS:

By
Control strategics -
—
. Learning strategies - T
: -]
“acts or Concepts
-\
Declarative knowlcd)‘ze[l Misconceptions . —
Operating Actions . =
Procedural knowledge - — |
Conditions
Misconceptions - |
4
e ——
Affecuve Knowledge . 1
—_—
Content Area -
Knowledge of Implementauon about | Target Populauon . [~
Methods . T
T
NN

Figure 3. A framework for characterizing the learning

environments.

Methodology 65

The rows on the left of the view space include four major types ot
knowledge, which include subcategories of knowledge. The different types ot
knowledge are often represented by one to three digits, which are placed at the
beginning of the seven-character codings. To the right of view space, the
columns include eight pedagogical strategies which are represented by
uppercase letters, and their necessary sequences are indicated by lowercase
letters such as a, b, and c and so on These two letters are located in the nuddle
of the codings. The dimension at the top of the view space is the command space
which represents the operators designed in a view. The forms and the functions
of the operators are represented by the last two-digit codings. The tformat ot the
codings for each conceptual unit is:
digit {(digit) digit} LETTER {(letter)} {digit (digit)}

Note that the letter or digit in braces indicating the subcategories of
knowledge, the necessary sequence for pedagogical strategies, and the operators
required for execution, respectively are optional. For example, presenting a task
for taking the action of operating the system is coded as 2(2)1En, and providing
working space and requiring the user to press a letter to operate the system is
ceded 2(2)1 Gn 4(7), while "n" indicating the sequence of pedagogical strategics
in a program.

All final projects produced by student teachers were executed using the
cognitive walkthrough method developed by Polson, lLewis, Ricman and
Wharton (1991). As mentioned previously, the learning environment was
divided into episodes, and these episodes often consist of sequences of views.
Each conceptual unit in a view was examined and coded by the framework
developed in this study which describes the types of knowledge a view presents,
the pedagogical strategies used to present the knowledge, and the forms and

functions of interactions. During the walkthrough process, similar to what

Methodology 66

Polson et al. (1991) did, the reviewer stopped at each action and considered the
strengths and weakness of the environment in terms of the effects on the typical
user, and diagnosed whether a user would succeed or fail in the exploratory
learning processes® Some descriptions and comments were made when each
view was examined. The coding for each conceptual unit and each operator was
recorded The codings for each project were summarized in terms of the types of
knowledge, pedagogical strategies, and the forms and functions of the operators.
The overall data for all projects were then analyzed to attain a global picture of
the learning environments constructed by all student teachers. Further, the data

in each project were compared in order to identify the characteristics of each

project.

Characterization of Program Structures

In LogoWriter™, the ways of structuring the pages and procedures are
very flexible and they may have an impact on the interactions of a program.
Therefore, it is necessary to take the interaction issue into consideration when
characterizing the program structures developed with LogoWriter™. In this
study, the program structures include page structures, procedure structures, and
other program properties.

The program structures are characterized in terms of single-level, linear,
modular or fragmented structures. Program properties such as reusable

procedures, conditional statements, variables, and recursion are also considered.

3 The exploratory learning here reters to the process by which the first-time user can
learn system operation using cues provided by the system and the novice learner can learn
subject matter knowledge using the supports provided by the system, rather than receiving
instruction or coaching from the teacher. This process can be called as guided exploratory
learming, whereas the term "exploratory learming” used 1in Logo can be called as open exploratory
learming in which learners can construct or mnvent products.

Methodology 67

In addition, the operators used to link pages and procedures were examined

The program structures

Traditionally, program structures are categorized as either linear ot
modular. However, there might be single-level and fragmented structures in the
programs produced by student teachers in LogoWriter'™ because the casy-
retrieval feature of LogoWriter'™ enables student teachers to design a shide-like
program (where a program consists of several pages and all pages are executed
automatically one after another) which does not necessarily involve etther linear
or modular structures. Therefore, the program structures refer to single-level,
linear, modular, and fragmented ones.

As mentioned earlier, a linear structure refers to a unit which employs
subunits in a linear sequence and a modular structure refers to a unit that can be
divided “naturally” into coherent parts that can each be separately developed
and maintained. A single-level structure, of course, has only a one level procedure.
What distinguishes a single-level structure from a fragmented structure is that a
single-level structure explicitly indicates how it should be used, while a
fragmented structure does not.

Program properties in this study refer to reusable procedures, conditional
statements, variables and recursion. They are listed below:

1. A reusable procedure refers to the procedure that is used as a
subprocedure by more than one superprocedure.

2. A conditional statement refers to a procedure that consists of a
conditional evaluation and is executed if a condition is met.

3. A variable has a name and a value. Using variables, it is possible for a

procedure to operate on different data each time it is invoked, but the pattern of

Methodology 68

what the procedure does with the data remains constant.

4. A recursion is a procedure which uses 1tself as a subprocedure.

The operators used to link pages and procedures

When more than one page is designed in a program or more than one
procedure is designed on a page, the execution requires operators. The
categories of operators used in characterizing program structures are the same as
those used 1n characterizing the learning environments. That is, the operators are
also categorized as automatic and manual operators. Automatic operators refer
to the cases in which all pages are retrieved by GETPAGE or GETTOOLS
primitives in a (STARTUP) procedure on the first page, or all procedures are
executed in one procedure. Manual operators refer to the cases in which a user’s
input are required in linking the pages or the procedures. Because interactions
depend on the manual operators rather than automatic operators, the

characterization of the program structures is only on the forms of manual

operators and their functions.

Procedures for characterizing program structures

In order to identify the program structures, all pages and procedures in
each project were drawn as diagrams using the symbols shown in Figure 4. The
page structures, procedure structures, and the program properties used by each
project were then summarized. To tind whether the ways that the student
teachers structure the pages and procedures have an impact on the interactions
in the learning environments, the distribution of the manual operators is
indicated as the manual operators between pages, between procedures, and

within procedures. The functions for the manual operators located in different

Methodology 69

. places are compared

In order to explore if there is any relationship between the pedagogical
strategies and the program structures, the projects which used appropriate
pedagogical strategies are separated from those which did not These two kinds

of projects are further compared with the characteristics of the program

structures.
Top level proceduros
Pages P P Subprocoduros
Conditions
A reusable procodure Rocursion procodures

Diract connections or paths

.................................. Indirect cannections or paths
----------- no cues ----..... No indication of the existing paths
var A varnable

Figure 4. Symbols used in the diagrams.

In summary, the methodology in this study consists of characlerization of

. the learning environments and program structures. A learning environment was

Methodology 70

broken down hierarchically into episodes and these were further broken down
into views. Each conceptual unit in a view was then examined and coded by the
framework developed in this study for characterizing the types of knowledge,
the pedagogical strategies used to present this knowledge, and the interactions
clicited in a view During the walkthrough process, the reviewers diagnosed
whether a typical user would succeed or fail in exploratory learning processes,
based on the strengths and weaknesses of the learning environment. The
program structures, however, were characterized by single-level, fragmented,
linear, and modular structures, and the operators used to link the structures, as
well as programming properties. Finally, the characteristics of program
structures were compared with the appropriateness of the pedagogical strategies

used in the projects.

Chapter 4

RESULTS AND DISCUSSION

The results from the characterization of the learning environments and
program structures are presented and discussed in three major sections. First,
this chapter presents the results from encoding the learning environments in
order to identify the characteristics of the learning environments constructed by
student teachers. The strengths and weaknesses of the learning environments
were assessed in the walkthrough processes. Second, this chapter presents the
results from characterizing the program structures of LogoWriter'™ and
discusses their attributes. Finally, this chapter examines the relationship between
the characteristics of the program structures and the learning environments (e.g.,

pedagogical strategies).

Characteristics of the Learning Environments

There are several major issues in characterizing a learning environment
provided by instructional software. The first concerns the types of knowledge
presented to the user and the consequences of lack of an important type of
knowledge, such as the knowledge required to operate the system. The second
issue is how the knowledge is presented to the user That is, what pedagogical
strategies does a designer use to convey the knowledge to the user, and whether
the pedagogical strategies support learning domain knowledge and system
operation. The third issue is whether the input required from the user facilitate
the user’s learning and whether the user has the freedom to choose activities and

task compiexities, and to seek various assistance according to his or her needs.

Results and Discussion 72

In order to address these issues, first, the frequencies of the codings
representing the different types of knowledge and pedagogical strategies were
categorized and summarized. Second, the tasks, questions, and working spaces,
as well as evaluation and feedback were matched for each action (e.g., each
manual operator); their sequence and appearance for each action was examined.
The frequencies of tasks, questions, and working spaces, as well as evaluation
and feedback for all actions were presented. Third, the different types of manual
operators and their functions were indicated. Finally, the overall results were
presented in tables identifying the different types of knowiedge, pedagogical
stratlegies used to present this knowledge, as well as the forms and the functions

of interactions. These data in each project were also presented and compared.

Knowledge Presented to the Users

Table 1 shows the frequencies of the codings representing the different
types of knowledge and the pedagogical strategies used to present such
knowledge in the learning environments constructed by student teachers. The
rows indicate four major categories of knowledge presented, whereas columns
indicate eight pedagogical strategies used to present the knowledge. Data from
this table show that domain knowledge represented the primary knowledge
(73%) and that operating knowledge was the second most important (18%). In
addition, affective knowledge (4%) and the knowledge for implementation about
content area, target population, and methods (5%) was also presented.
Currently, no conclusion can be drawn regarding a reasonable percentage of
various types of knowledge. However, from a qualitative view point, the
characterization of the four major categories of knowledge indicated some

incoherence in representing knowledge. For example, the codings from student

Table 1

Frequencies of different types of knowledge and pedagogical strategies for all projects.

Setting | Instructions | Explanations | Demonstrations | Prowiding | Asking | Providing | Evaluation Total Percent
Goals Tasks | Questions | Working and
Space | Feedback
Types of Knowledge
Declarative 15 17 25 45 57 28 37 44 368
Domain Knowlegdge 73%
Procedural 50 218 4 79 71 21 57 b 543
Knowledge
Declarative 17 2 19
Operating Knowledge 18%
Procedural 46 2 56 97 201
Knowledge
Affective Knowledge 38 17 55
4%
“Content Area 2 20 22
Implementizy | Target Populaton 5 5
Knowleoge of 5%
Teaching Methods 2 20 14 36
Total 69 481 70 124 198 49 191 67 1249
Percent 5% 3%% 6% 10% 16% 4% 15% 5%

Results and Discussion 74

teachers’ projects sometimes display sequences of codings like 1(2)Ea, 1(2)Ba,
2(2)Eb, 2(2)Gb, 1(2)Ga In these kinds of patterns, the second type of knowledge
1s prematurely introduced before the representation of the previous one is ended
appropriately So 1t seems that various types of knowledge were sometimes
represented incoherently in the learning environments constructed by student
teachers.

Further analysis about the subcategories of the knowledge indicated
several features of domain knowledge presented 1n the learning environments
constructed by student teachers. First, the knowledge about facts, events,
concepts, and actions forms the major parts of the environments whereas the
knowledge about principles, conditions under which the actions could be taken
was seldom mvolved. Second, most programs presented the isolated elements
such as facts, concepts, events, and actions. When the programs sometimes
presented the elements as a whole, only temporal, partial, or identical
relationships were involved. The programs usually did not present the more
critical relationships such as causal and conditional relationships. Third, the
programs did not employ so called "bug problems” that the learners often make
mislakes on; they did not indicate the learner's misconceptions, or any strategies
for efficient problem solving or le~rning. In short, the instructional programs
produced by student teachers only presented relatively simple knowledge such
as facts, events, concepts, and actions.

Frequencies of the codings representing the different types of knowledge
in cach project, shown in Table 2, indicate that all projects presented domain
knowledge in the learning environments, but only 62% of them presented
operating knowledge. Seventy-seven percent of the projects presented affective
knowledge and 62% of the projects presented the knowledge for implementation

about the content area, target population, and teaching methods.

Results and Discussion 75

Missing operating knowledge

As mentioned, successful execution of the programs by the users may
require knowledge of the program features and knowledge of how to operate the
program. However, the fact that 38% of the projects constructed by student
teachers did not present any operating knowledge motivates an examination ot
whether operating knowledge is necessary and of the consequences of this

absence.

» [s operating knowledge necessary in successful execution of an

instructional program?

Table 2 shows that Projects 1, 6, 9 and 11 did not present any operating
knowledge in the learning environments. In order to determine the consequence
of the absence of operating knowledge in these projects, as well as in other
projects which partially lack operating knowledge, the codings from these
projects were analyzed in detail.

The analysis reveals three findings. First, it was found that the execution
of a program did not demand any operating knowledge when all episodes or
views in a program were linked by automatic operators. For example, in Project
9, the first episode of a program (it is a page in most cases) linked the rest of the
episodes in a startup procedure with the result that all episodes could be
executed automatically without interaction of the user. Therefore, the program
required neither manual operators nor operating knowledge to link the episodes
or views.

Second, it was found that executing a program did not require any

operating knowledge when a manual operator for choosing activities, answerin
P

Table 2

Frequencies of different types of knowledge presented in each project.

Project No Domain Operating Affective Implementing Knowledge of

Declarative Procedural Declarative Procedural Knowledge Content Area |Target Populatio Teaching
Knowledge Knowledge Knowledge Knowledge Methods

1 28 6 10

2 2 23 5 1 1 2

3 5 12 1 3 3

4 97 20 i 68 20 2

5 6 17 17 3 2 5

6 5 108

7 56 2 8 9

8 22 58 1 3

9 40 1

10 2 6 1 9 1 1 1

11 27 5 3 1 2

12 48 14 22 10 1 2

13 57 248 1 45 1 3 3 21

Percent of the 100% 62% 77% 62%

Projects

Results and Discussion 77

‘ questions, or choosing assistance within domain knowledge plaved the role of
linking the next episode or view. For example, in Project 7, the program

presented the following question to a user:
Do you know what time it is® (Showing a clock)

Type in a letter and press RETURN.

A) 4: 30
B) 6: 00
C) 8: 15

The correct answer, which is represented by B, will change the view to a
happy face with feedback. After a few seconds, the happy face is replaced by a
new question. In this case, the manual operator plays the double roles ot
answering a question in a domain and linking the current view to the next one.
Despite the fact that operating knowledge is not required for 2xecuting the
program, the program must still indicate how the user is supposed to answer the
domain question. Otherwise, the user’s answer will be invalid for operating the
system.

Finally, it was found that a program must present operaling knowledge
for its successful execution when the program requires a manual operator to link
the episodes or views. Otherwise, the user would be unable to figure out what to
do next. For example, both Projects 1 and 11 consisted of fragmented pages and
required manual operators to link these pages during program execution.
However, the designers did not present any knowledge of how to hink these
episodes and views, and consequently the user did not know what to do when a
view or an episode was finished.

To summarize, a program does not need to present any operating
knowledge when the episodes or views are linked by automatic operators, or
when the manual operators for domain knowledge play the role of linking

. episodes or views. However, a program must present operating knowledge to

Results and Discussion 78

‘ the user when a manual operator is required to link to an episode or a view. In
this case, lack of operating knowledge in the learning environments will create
difficulties for the novice user to execute the programs. These difficulties will be

illustrated in detail in the following section.

e What is the consequence of lacking operating knowledge or incomplete
representation of operating knowledge?

The absence of operating knowledge when a manual operator is required
to link the current episode or view lo the next one is the most common problem
in the learning environments constructed by student teachers There are several
situations in which a learning environment lacks operating knowledge. The first
situation 1s that student teachers designed paths to the next episode or view, but
they did not always indicate these paths to the user so the path remained hidden.
For example, in Project 13, the designer designed one path to the next page by
pressing the N key and another path to the previous page by pressing the P key
in all lessons On the first view of episode 1, the designer indicated that the user
can always press N to see next page and press P to see previous page. The
designer assumed that the user would always be able to remember these two
simple, clear and casily-memorized commands, so she did not indicate that the
user needed to press N or P key in subsequent episodes and views. In the third
view of cpisode 2, the designer explained what the user was supposed to do in

the rest of the lesson. At the end of that view, the following text was presented:

When you are ready to colour, type “colour” into the
command center. All four turtles will appear. Assign
at least one very dark colour and another very light

one. HAVE FUN!

The designer assumed that the user would press N or P at that moment.

' However, it was more probable that the user would type “colour” at the current

Results and Discussion 79

view since there was no operating knowledge presented at the end of the view.
Unfortunately, the working space for the command “colour” was located in
another view so there was no corresponding working space available to pertorm
this task at the current view. As expected, a bug occurred when the user typed in
“colour”. Therefore, the absence of operating knowledge can result in difficulties
and even bugs for the user in executing the program This example also
illustrates that operating knowledge is not only required in a program, but also
in each view when a manual operator is required to link episodes or views The
lack of operating knowledge in an episode or a view when manual operators
were required for system operating were found in most ot the projects.

The second situation is where student teachers neither present operating
knowledge nor design the path to the next view when a manual operator is
required to link the current view to the next. For example, on the tenth view of
episode 10 in Project 4, the designer presented only an open-ended question
which was not accompanied with evaluation and feedback. There was neither
operating knowledge nor a path to the next episode when the user needed to
move on to the next episode. As a consequence, the user encountered an impasse
and had to quit the program and restart it in order to choose other branches.

A learning environment must present operating knowledge whenever a
manual operator is required to link an episode or a view Moreover, this
operating knowledge must correspond to each view in which a working space
for operating the system is provided. Otherwise, even if the program has
presented consistent, simple, meaningful and easily-memorized commands at
the beginning, the user may experience difficulty or encounter impasses during
the execution of the program.

In addition to lacking operating knowledge when manual operators are

required for operating the system, some other problems in presenting operating

Results and Discussion 80

knowledge were detected in the walkthrough and encoding processes. Codings
from student teachers’ projects indicate that in 85% of the projects there were
problems in presenting operating knowledge. The other 15% of the projects
which did not have any problem presenting operating knowledge were those
which needed neither manual operators nor operating knowledge to link the
episodes and views In other words, all projects which required manual
operators for linking episodes or views had problems with providing adequate
operating knowledge. Other problems, besides missing operating knowledge

encountered in the learning environments constructed by student teachers, are

presented below.

Mismatch between tasks and working spaces for operating knowledge

Sometimes the difficulty experienced in executing a program is caused by
a mismatch between tasks and working spaces for operating knowledge. Thatis,
the designer does present operating knowledge for linking one view to another
at a certain point, but does not present it at the right place. For example, in the
second episode of Project 2, the designer presented a task for operating
knowledge three views ahead of its working space. In other cases student
teachers presented the tasks for operating the system first, and then presented
the domain tasks for the user to perform; after the user had made a great deal of
effort to perform the domain tasks, the designer presented the working space for
operating the system without indicating the tasks for using that working space,
based on the assumption that the user would remember the task for operating
the system which was presented before the user performed the domain tasks.

The mismatch between tasks and working spaces for operating systems is

indicated by coding patterns like 2(2) Ea, 2(2) Ba, 1(2) Eb, 1(2) Gb, 2(2) Ga. Two

|

Results and Discussion 81

problems can be discovered in such patterns. One is that the indicators ot

o

necessary sequence "a" and "b" are not in alphabetical order; another is that the

types of knowledge are mixed up.

There are two consequences of such mismatch. The first consequence 1s
that it increases the users” working memory load when they are pertorming,
domain tasks or processing domain knowledge The second consequence is that
users will have difficulty in providing input to link the views it they cannot
remember the operating knowledge when they finally get to the working space

after performing the domain tasks.

Incomplete instruction for operating knowledge

Student teachers often skipped important components of the procedures
when they presented operating knowledge. For example, they might not
indicate the page name or show the required quotation mark when they asked
the user to use GETPAGE or GETTOOLS primitives, or they nught forget to
indicate that the user needs to press the enter key when instructling the user to
type a command. As a consequence, novice users would become confused and

frustrated because the procedures did not conform to the instruction.

Misconceptions of the operating knowledge

Two types of misconceptions of operating knowledge were found often in
student teachers’ instructions. One is misconception of key functions For
example, one student teacher instructed the user to use the return key, the arrow
keys, and/or the space bar to move the cursor from the command center to the
blanks on the front page for answerirg questions. However, no matter how hard

the user tried, it never worked becavse what the user needed to do was to hold

Results and Discussion 82

the command key and press U to move the cursor up, or click the mouse n the
appropriate place.
The second misconception concerns operating procedures. For example, a

student teacher presented the following instruction to the user:

If you need to see what you just read, TYPE stop

STARTUP.

The misconception in this instruction is that, "stop™ can only be used ina
procedure and it is not used as a command to be typed in. Furthermore, evenii
"stop" could be used as a command, the computer could not respond to
command “stop” when it was executing the program. When the computer had
finished its execution, there was no point 1n stopping the execution any more
When these misconceptions occur in instructions. a novice user may become
extremely confused and frustrated, and finally give up.

To summarize the above findings on operating knowledge, successful
execution of the program requires presenting sufficient operating knowledge in
the corresponding view when a manual operator is required to link an episode or
a view. Any problems of operating knowledge, such as lack of operating
knowledge, mismatch between operating tasks and working spaces, and
ignorance of important component of operating knowledge, as well as the
designer's misconceptions on operating knowledge will create difficulties for the
user to execute the program.

Besides domain knowledge and operating knowledge, other types of
knowledge, such as affective knowledge and knowledge for implementation on
content areas, target population and methods are also important in users'
learning. However, this study did not consider the characteristics of other
knowledge and their relative impacts on user's learning. Instead, this study

focussed on domain knowledge and operating knowledge which is more

Results and Discussion 83

important in determining the nature of the learning environments. Based on the
fact that the domain xnowledge presented by student teachers is relatively
simple, this thesis did not analyze the subcategories of domain knowledge and
pedagogical strategies used to presented them, in order to simplify the data
analysis. The following section presents pedagogical strategies used to convey
declarative and procedural knowledge for both domain knowledge and

operating knowledge, and analyzes their strengths and weakness.

The Characteristics of Pedagogical Strategies

Table 1 shows the overall pedagogical strategies used by student teachers,
and the knowledge that each strategy presents. These data indicate that
instruction was the major pedagogical strategy used by student teachers (39%),
providing task was second (16%), followed by providing working spaces (15%),
demonstrations (10%), and explanations (6%). The least-used strategies were
setting goals (5%), providing evaluation and feedback (5%), and asking questions
(4%).

Although it is difficult to draw general conclusions regarding the
reasonable expected proportions of different types of pedagogical strategies
without considering the types of CAI and the nature of the content areas, as well
as the learning approaches that the designer taken, it is necessary to match the
task, working space, and evaluation and feedback for each action and examine
their sequence and appearance. This is because the user cannot perform the tasks
or answer the questions if there are no working spaces to do so. In addition,
studies have indicated that immediate evaluation and feedback is critical in
user’s success in a computer-based learning environment (e.g., Corbett &

Anderson, 1991). Therefore, it is necessary to look at whether the tasks and

Results and Discusasion 84

questions are accompanied with corresponding working spaces and whether the
evaluation and /or feedback corresponds to the user's performance and answers
Because the codings are based on conceptual units of the text and graphics
of the display in each view and the operators the view promotes, rather than
actual numbers of tasks, working spaces, and evaluation and feedback, 1t 1s
possible that student teachers use several conceptual units to present the same
tasks. Therefore, the tasks, working spaces, and evaluation and/or feedback
were investigated in terms of each action. In addition, their sequence and
appearance for each action was indicated by the lowercase letters. The actual
frequencies of the tasks, working spaces and evaluation and feedback are shown

in Table 3.

The balance between providing working spaces, tasks and questions,

and evaluation and/or feedback

Results in Table 3 indicate that the total number of tasks and questions are
not equal to those of working spaces. The breakdown of types of knowledge
reveals that: a) for declarative domain knowledge, all tasks and questions are
provided with working spaces, b) for procedural domain knowledge, 10% of the
tasks and questions are not provided with working spaces, and ¢) (or operating
knowledge, all tasks have working spaces (in fact there are 1.7 times more
working spaces than there are tasks and questions).

Results presented in Table 3 also show that the evaluation and feedback is
much less than the tasks and questions. For declarative domain knowledge, 74%
of the task and questions are provided with evaluation and/or feedback,
whereas only 23% of the tasks and questions are provided with evaluation

and/or feedback for procedural domain knowledge. None of the tasks and

Results and Discussion 85

Table 3

Frequencies of tasks, working spaces and evaluation and feedback.

Presenting Tasks [Asking Questions Providing Evaluatonand
Working Spaces Feedback
Types of Knowledge

Domain | Declarative Knowlegdge 48 9 57 42
Procedural Knowledge 98 5 93 24

Operating | Declarative Knowledge 0 0 0 0
Procedural Knowledge 55 0 93 0

Total 201 14 243 66

questions is accompanied by feedback and/or evaluation for operating
knowledge.

The overall data on pedagogical strategies reveals several obvious
problems in the learning environments constructed by student teachers. First,
some learning environments constructed by student teachers provided
insufficient working spaces for performing the tasks and answering questions for
procedural knowledge. As a result, the user would fail to perform the tasks or
answer questions. Further examination of the working spaces designed for
performing tasks and answering questions for domain knowledge indicates that
student teachers often designed ill-structured working spaces. For example, they
designed spaces on the screen so that the users could type their answers in the
boxes, or type in answers for open-ended questions on the screen. However,
there was no interaction between the user and the program. As a consequence,

no evaluation and feedback could be provided in these cases.

Results and Discussion 86

Second, the fact that working spaces were 1 7 times more trequent than
tasks on operating knowledge indicates that the designers sometimes did not
present tasks for operating the system even if they had designed working spaces
for do so. Thus, a user often became unable to continue at the end of an episode
or a view due to his or her lack of understanding a task, even if there were a path
to the following episode or view. This finding corresponds to that emerging
from the charactenzation of types of knowledge in the previous section.

Finally, the results showed that only 74% of the task and questions were
provided with evaluation and/or feedback for domain declarative knowledge,
whereas only 23% of the tasks and questions were provided with evaluation
and/or feedback for domain procedural knowledge. This suggests that there
was a serious shortage of evaluation and feedback in the learning environments
constructed by student teachers. This shortage of evaluation and feedback may
be due to the lack of working spaces and the unreadable input in 1ll-structured
working spaces. On the other hand, the fact that no feedback and evaluation was
provided for operating knowledge is not regarded as a problem since the Logo

program itself can provide feedback on operating knowledge.

The coherence of pedagogical strategies

In addition to the above findings, the indicators of necessary sequences
from codings reveal two problems in the sequence of pedagogical strategies. The
first problem concerns the coherence of presenting tasks and providing working
spaces. Incoherences between providing tasks or instructions on how to perform
the tasks and working spaces were often found in the learning environments
constructed by student teachers. It occurad when, in the course of presenting

tasks and instructing the user on how to perform the tasks, the student teacher

Results and Discussion 87

interrupted one presentation with another irrelevant presentation, or when the
tasks or instructions were provided a few views ahead of the working spaces.
Such incoherence is indicated by the sequences of lowercase letters that are in
alphabetical disorder. The second problem in the sequence of pedagogical
strategies concerns the coherence of task representations An incoherent task
presentation occurs when the text and the pictures that present the same task are
separated indifferent views.

There are several consequences of incoherent pedagogical strategies. First,
they increase the user’s working memory load. Second, they increase the
difficulty for the user in understanding the instructions and tasks. The users
might even be unable to continue the execution if they forget the instructions or
the tasks by the time they get to the working spaces. Finally, the incoherence
between instructions, tasks, and working spaces would cause bugs when the user

performs tasks that do not have corresponding working spaces in the current

view.

The distribution of strategies across projects

In order to further investigate how student teachers used pedagogical
strategies in the learning environments they constructed, the pedagogical
strategies used in each project are shown in Table 4. Data in Table 4 indicate that
all projects used three pedagogical strategies: providing instructions, providing
tasks, and providing working spaces. Sixty-nine percent of the projects
employed setting goals as a strategy, and the same proportion of projects
employed the explanation strategy. In addition, 62% of the projects used
demonstration strategies, 54% of projects designed evaluation and/or feedback,

and 35% of projects used the strategy of asking questions.

Table 4

Frequencies of pedagogical strategies used in each project.

Project No. | Setting Goals instructions Explanations | Demonstrations {Presenting Tasks{Asking Questions| Providing Working| Evaluation and
spaces Feedback

1 7 10 10 10
2 2 27 2 6 7
3 2 22 1 5 6 8
4 64 58 5 20
5 3 26 2 2 10 7
b 2 45 2 20 14 1 29
7 17 8 1 16 8 8 17
8 9 19 36 13 3 1 2 1
9 20 19 1 1
10 1 8 1 5 4 2
11 1 29 5 2 1
12 5 39 3 3 18 8 12 9
13 44 158 13 61 46 18 49

ercent of the

Projects 6%% 100% 6%% 62% 100% 38% 100% %

Results and Discussion 89

What these data indicate is that instructions, providing tasks, and
providing working spaces are three basic strategies used by all student teachers.
In addition, demonstrations, explanations, arnd asking questions were also used
1n some projects as more advanced strategies. For example, in Project 13, the
designer first provided instructions on the content area in which the program
was supposed to be used, the target population, and implementation methods.
Later, the designer provided instructions on the structures of the lessons.
Through the first two views of instructions, it was clear to the user the purpose of
the program, who could use it, and how to use 1t. Furthermore, the designer set
the goals and objectives at the beginning of each lesson so that the user knew in
advance what he or she was supposed to do.

In the rest of the program, Project 13 used a combination of pedagogical
strategies similar to the one used in Projects 6, 8 and 9. These projects showed
consistent coding patterns. Such patterns are composed of instructions,
demonstrations, and explanations in an elegant way so that the user could see
the procedures needed for performing particular tasks, and the screen effects
these procedures produced, such as in Project 13 (See Figure 5) and Project 6 (See
Figure 6) Slightly different from Projects 6 and 13, Project 8 used
demonstrations, explanations, and instructions intensively to tutor the user on
the nature of a grid, how to make a grid, and how to find points on a grid (See
Figure 7) These combinations of pedagogical strategies helped the user visualize

abstract concepts so that the domain knowledge was efficiently conveyed to the

user.

Results and Discussion

L4

& File EdIt fearch Font Utllitles

2] R f g ure.S

This is a demonstration of the procedures thatyou

il have to wark with on

your blank page (the next page)

vl

The first one s "rectangle®. It requires twio u@t
Ex. rectangle 100 75
I

length and width,

=3

=

Figure 5a

& File Edit Search Font Utllitles

i e [\GUTe . A

The first oneis "rectangle”. It requirest
Ex. rectangle 100 75

A square is a special type of rectangle
Ex. rectangle YOU 100

The next Erocedure is "poly". It takes for input the number of sides that your

shape will have and its size.

Atriangle has 3 sides.
IEx. poly 3 100

uts, length and width.

iz

gth = width.

Figure 5b

(continued on next page)

90

Results and Discussion

" & file fdit Search Font Utllities

H Flgure.s

A .quare s a special type of rectangle wh
Ex rectangle 100100

The next procedure 1s “poly”. It takes f p@he npmber of sides that your
shape will have and its size.

Atriangle has Jsides
Ex poly 3100
Ahexagon has bsldes
Ex poly 6 75
| |
O
S
8
I
Figure 5 ¢

r

& Flle Edit Search Font Utilities

S e ——————— | lgure .S

Atriangle has 3Isides.
Ex. poly 3100

Ahexagon has 6 sides.

Ex. poly 6 75

The final procedure makes circles. Itis
the radius.
Ex. circle 100

Figure 5d

Figures 5 a-d. A combination of instruction and demonstration with

scrolling effects.

91

Resulits and Discussion

. % Flle EdIt Search Font Utilities Windows
0 Figure 6 S
Let's try making some squares. 7
After each command you press enter, okay.

fd 50

J e
S =

<

Figure6 a

:1‘ File Edit Search Font Utilities Windows

Hi| e = e Figure 6

Let's try a squares. Z
After each command you press enter, okay.

' T

fd 50

rt 9d X

Figure6 b

(continued on next page)

92

Results and Discussion

;,6 fFlla EdIt Search Font Utilitles Windows

e Figure 6

Let’s try making some squares. 73
After each command you press enter, okay. ity
l T
3
fd 50
190
4 50 I o
£s3

Figure 6 ¢

n ® File Edit Search Font Utilities Windows
=————————e==—== Figure 6
Let's try making some squares.

After each command you press enter, okay.

SN

fd 50
rt 90
fd 50
rt 90
fd 50 I

<l

Figure6 d

(continued on next page)

93

Results and Discussion

n ® File Edit Search Font Utihties Windows

0 Figure 6 = =

Let's try making some squares. F3

After each command you press enter, okay. AL
{8

fd 50 Q@

rt 90

1d 50 @

rt 90

1d S0

Figure 6 e

q % File Edit Search Font Utilities Windows
w————————— ek M
Let's try making some squares. Z
After each command you press enter, okay.

Figure 6 f

Figures 6 a-f. A combination of instructions and demonstration

user controlled by pressing the enter key.

94

Results and Discussion

q & Filile Edit Search font Utllitles Windows

== Figure 7

WELCOME TO THE WORLD GOF GRIDS! £4
Today, we are going to learn ﬁ
all about grids
Flrst, here is what a grid
looks |i1ke
Now, let's take a look at the
grid being put together
O
Figure 7 a

n & File Edit Search Font Utilities Windows

e fgure " B =

This 1s the first part of the
orid

MNotice how the 8 columns go
OVER|

Let's ses what comes next

HATCH CAREFULLY!

Figure 7 b

&

(@ f&

<

(continued on next page)

95

Results and Discussion

1 & File EdIt Search Font Utllitles Windows
=Dm Figure ? P

This 1s the second part of
the grid

Z
iy

Dld you see in which direction
—k the 8 rows went? They went UP!

up

[— 20 o TR TR i U, B - S . -]

< h@lﬁ

Figure 7 c

& File Edit Search Font Utilities Windows

L3

EL

g |

7

Hhen you putl the columns and
the rows together, you get a
complete grid

| HERE IT IS!

up

O k= uUWLnNnoOmJo

0123456718

OUVER
] il
i

A

Figure 7 d

(continued on next page)

96

Results and Discussion

3 & Flle Edit Search Font Utilities Windows
=l Figure 7

The POINTS on a grid are made
when the columns and the rows
neet

T Here are some points for you

DI

to look at

up

Watch as Tony the turtle visits
each point one at a time

Tony will ALUAYS leave from his
house, which 1s at the point
{0,0]

(010) There t1s Tony the Turtle's house

0123 4Y5¢6 18
OVER

Q*HI'UIH.:U'IG'!-IQ

)

Figure7 e

2

- & File Edit Search Font Utilities Windows

0 e Figure 7
7]
*] First, our turtle Tony i1s going
to visit the purple diamond AN
: LET'S WATCH!
The first thing Tony will do 1s
P 51— go OUER 3
y Now, to gat to tha purple diamond
3 Tony just has to go UP 2
a\
G @.2) Notice how {3,2] means that Tony
1 went OVER 3 and UP 2
0 #(0.0)
6123 456 18
OVER J

Figure 7 £

(continued on next page)

Results and Discussion

:16 File Edit Search Font Utillitles Windows
e . Figure 7

F4
e ALHAYS remember Tony always ‘-41
I beglins from his house jl
1 Tony goas OQUER and then
19 - ha goaes UP
UP S Icng w:H now go visit the green
riangle
Yy 2 o
3 Remenber, he's got to go OVER
first and then UP
3,8)
€ @.2) GO TONY GOl |
1
0 0,0)
1 2d 456 %8

DUER

< bb{ﬂ

Figure7 g

- & File Edit Search Font Utilities Windows

g Figure 7 P U S VS S R A
2]
8 This time, Tony 1s going to
visit the yellow rectangle
1 HATCH CAREFULLY because 1t s
b *C'-I.S your turn next!
s — -1,5] Tony Is at the point 14,61
uP 7
Y * Ha want OVER 4 and UP ©
3
2 1,2
1
#0.0)
0123 4Y5686 18
CUER]

Figure 7 h

(continued on next page)

Results and Discussion

n, ® File Edit Search Font Utilities Windows
. - ————————————————— [
P4
0 You have seen Tony visit three
shapes at three different
3 points
6 +(I~|,s) NOW TONY NEEDS YOUR HELPI
er— -5
up YOU must guide him to the twoe
Yy shapes that are left
3
I To help Tony gat to each, you
a END will have to type instructions
1 in the command center
I o0.9)
1 23456 % 6

QOUER

Figure 7 i
',1 & File E£dit Search Font Utilities Windows
&0 Figure 7 e
E
8 When you tel! Tony what to do, 3
type OVER or UP wi th the number
1 L right beside 1t - - ~
6 (Y 6)
i DO NOT LEAVE A SPACE
U P s—,-(1,5
Y # Hare is an example if you want
3 Tony to go over 5, type over3
N
e 3.2) Hhen you see the cursor flashing
1 in the command center you
(0 0,0) may begini
123 456 1680
OUER I

1 "

Figure 7 j

Figures 7 a-j. A combination of demonstrations, explanations, and

instructions with clearing text and clearing graphics.

99

Results and Discussion 100

Another common feature in these four projects was that tasks and
working spaces were provided for users to practice or explore what they had
learned right after the tutorial was finished. In addition, the designers provided
the users with important elements of the procedures required for pertorming
tasks, or the means to access these elements while the tasks are being performed.
Moreover, these projects enabled the users to control the flow ot execution. In
Project 6, users could control the speed of producing the screen effects of cach
procedure by pressing the enter key, while in Project 13, the designer allowed the
user to go back to the previous page or to move on to the next one by pressing
"n" or "p" key.

There was also a pattern of pedagogical strategies for drill and practice
programs. Projects 4 and 7 and some episodes of Project 1 used the combination

of presenting tasks, working spaces, and immediate evaluations and feedback

(see Figure 8a-8d).

B[I | qure 8 S
WHICH IS THE RIGHT ANSWER? 2
3x5=a)14
b)15
)17

Figure 8 a

(continued on next page)

Results and Discussion 101

w & File Edit Search Font Utlites Windows

w————————————— oy
E

I 4
TOO BAD! || i
MAYBE NEXT TIME!!!
TRY AGAIN.
TYPE #2.
G
a
n
I
(s
Figure 8 b

EEe—————————— fjgure § E=————————————
IWHICH IS THE RIGHT ANSWER? Z
3x5=a)14

b)15

)17

M
g
ks

Figure 8 ¢

(continued on next page)

Results and Discussion 102

;,‘ File Edit Seoarch Font Utilitles Windows

il:] right2

| A
VERY GOOD!! ! o
YOU GOT THE
RIGHT ANSWER! !!
TYPE #3.
T
b
| 2
is3

Figure 8 d

Figures 8 a-d. A combination of task presentation, working

spaces, and evaluation and feedback.

The findings from characterizing pedagogical strategies are that, on the
one hand, student teachers have developed some pedagogical strategies to
convey the knowledge efficiently. On the other hand, there were still some
problems with the pedagogical strategies used. First, the learning environments
provided insufficient working spaces, or ill-structured working spaces which did
not promote interactions for performing tasks and answering questions in
domains. The second problem was that the learning environments presented
working spaces for operating knowledge without any indication of these
working spaces. The third problem was that some sequences of pedagogical
strategies led to incoherent presentation of tasks and incoherent instructions,

tasks, and working spaces. Finally, there was a serious shortage of evaluation

Results and Discussion 103

and feedback in the learning environments constructed by student teachers.

The characterization of knowledge and pedagogical strategies has shown
both the advantages and limitations of the learning environments constructed by
student teachers. From a human-computer interaction perspective, the
knowledge presented ir. the learning environments 1s regarded as the output of
the computer whereas the manual operators from the user are regarded as the
input of the computer. It 1s necessary to determine what kind of input a
computer requires from the user within the context of interaction. From the
perspective of learning, the characterization of a learning environment should
consider whether a learning environment provides sufficient user-computer
interactions (i.e., learning activities) and whether such interactions facilitate
learning. Furthermore, it is necessary to investigate whether the learning
environment provides the freedom for the user to choose activities, task
complexities, and various types of assistance according to his or her individual
needs. The following section will attempt to discuss these issues by

characterizing the interactions.

Interactions

The interactions in the learning environments were characterized by the
attributes of the operators required to execute programs, which are either
automatic or manual. Automatic operators refer to the cases where the execution
of a program does not require any input from the user. In contrast, manual
operators refer to the cases when the execution of a program requires the user’s
input. Through manual operators, a user may be able to perform tasks, answer
questions, or operate the system. In addition, it is possible for the user to select

activities, choose task complexity, or choose various types of assistance according

Results and Discussion 104

to his or her needs.

Ratio of manual and automatic operators

Tables 5 and 6 show the overall operators and their functions designed in
the learning environments constructed by student teachers. Student teachers
designed 58% automatic operators and 42% manual operators The ratio ol
automatic operators suggests that the users did not have the treedom to control
the flow. It also suggests that these learning environments might not provide
sufficient interactions which are critical in the learning process and which enable
the user the flexibility to select activities or task complexity, as well as various
types of assistance. These results will be further examined by analyzing the

manual operators designed for different purposes.

Characteristics of manual operators

In the learning environment constructed by student teachers, data from
Table 5 indicate that 39% of the manual operators were designed for operating
the systems, and 55% of the manual operators were designed for performing
tasks and answering questions. Only three percent of the manual operators were
designed for choosing assistance, and the same percent of the manual operators
were designed for choosing activities. There were no manual operators for

choosing task complexity.

Table 5

Frequencies of different types of manual operators and their functions designed for all projects.

Choosing Tasks or[Choosing Task| Answering | Answerng Multple | Performing [Choosing | Operating the | Total | Percent
Activies Complexity Questions Choice Questions Tasks Assistance System
Pressing a letter or a
number
19 43 62 27%
Pressing enter after a
procedure 16 16 7%
Typing a command
6 2 4 8 41 61 26%
Typing a command + a
vanable
28 28 12%
Using the primibves
22 7 29 12%
Typing a word
according o a question,
17 13 1 31 13%
Typing sentence(s)
6 6 3%
Total
6 0 23 34 70 8 92 233
Percent
3% 0% 10% 15% 30% 3% 39% 100%

Results and Discussion 106

The ratio of manual operators for performing tasks and answering

questions vs. operating the system .

The numbers of manual operators for performing tasks and answering
questions for domain knowledge are only 138 times greater than those tor
operating the systems. This ratio suggests that the learning environments
constructed by student teachers lack the interactions that promote task
performance and learning. In addition, the fact that the manual operators were
rarely designed for choosing the activities, types of assistance, or task complexity
indicates that the learning environments provided the users with very limited
control over the system and that they did not have the flexibility to meet the

individual’s needs in the learning process.

The forms of manual operators for performing tasks, answering

questions, or operating the system.

In order to determine whether the input required from the user supported
the user in learning the domain knowledge and in operating the system, manual
operators were categorized further according to their forms. Data in Table 5
shows that there were four types of manual operators for performing tasks for
domain knowledge: typing a command, typing a command with a variable,
using the Logo primitives, and pressing the enter key when the procedures
appear on the screen. The manual operators for answering questions consisted of
typing a word or a sentence, or pressing a letter or a number for multiple choice
questions. The manual operators for operating the systems mainly included
typing a command, pressing a letter or a number, or using primitives

What was observed from these data was that the student teachers tended

to use pressing a letter or a number for operating the system and typing a

Results and Discussion 107

command or command with a variable to perform the tasks in domains. It
seemed that they tried to minimize the difficulty of operating the system by
simplifying the input required from the users. On the other hand, for performing
the tasks, they used the input which required more understanding and gave
users more flexibility. Therefore, the manual operators they designed for

performing tasks in domains could support learning the domain knowledge and

operating the systems.

Distribution of manual operators in projects.

The data in Table 6 indicate that 85% of the projects designed manual
operators for performing tasks or answering questions, 46% of the projects
designed the manual operators for operating the systems, and 31% of the projects
designed the manual operators for the users to choose the activities or tasks.
Only 15% of the projects designed the manual operators for choosing types of
assistance and none of the projects designed the manual operators for choosing
task complexity.

These data suggest that, even though only two percent of the manual
operators were used for choosing activities, one-third of the student teachers had
considered providing such flexibility to the users. However, the fact that 15% of
projects did not include any manual operators for performing tasks or answering
questions for domain knowledge further confirmed that the learning
environments constructed by some student teachers lacked the interactions that

promoted task performance and learning for domain knowledge.

Table 6

Frequencies of different functional operators in each project.

Project No | Choosing Tasksor{ Choosing Task | Answerng | Answenng Multiple Choice | Performing | Choosing Operating the
Activities Complexity Questions Questions Tasks Assistance System
1 7 3
2 2 4
3 1 6
4 1 6 16 31
5 1 3 4
6 1 20 8
7 9
8 20
9 10
10 1 3
1" 2
12 3 5 4
13 39 43
Percent of the
Projects 315 0% 2% 38% B1%: 15% 46%

Resuits and Discussion 109

Characteristics of automatic operators

The data in Table 7 show that the most frequently used automatic
operators in the learning environments constructed by student teachers were
scrolling effects (86%). The disadvantages of scrolling, including other automatic
operators are that, first, the user’s interactions which are critical in learning
processes are rarely involved in executing a program so the computers only
present movable text or pictures, and their unique potential for interacting with
users is not utilized. Second, the text and graphics are prearranged through
automatic operators so the user did not have any choice in the learning
processes. Finally, the user could not control the execution of the program, so it
becomes a serious problem when the text is difficult to understand, poorly
formatted, and presented at an inappropriate speed. One example of such
disadvantages of using automatic operators can be seen in Episode 1 of Project
12. This episode involved a high proportion of scrolling effects to present text

that was complex and crowded -0 it was difficult to read and understand (See

Figure9).

Table 7

Frequencies of automatic operators designed in all projects.

Automatic Operators General | Clearing Texts [Clearing Total Percent
Graphics
Clearing 9 19 3 31 9%
Scrofling 260 38 298 86%
Automatically Executing 19 19 5%
pages
Total 288 19 41 348 100%

Results and Discussion

o & Flle EdIt Search Font Utilities Windows

————————— Iy ————————

This particular Social Studles project is to help children jean about the
conpass and how to use directions |t contalns a page where chiidren can interact
by answering simple questions, a page which is informative and demonstrative, and
a pagae which intagrates all tha lIdeas together

The first exercise, Maps — finding places and things, is an introduction |t
storts with somathing the childran can relate to - thair own room They are
raquired to locate certain objects with directicns In the sompie room And then
the ch)lidren are oasked to drae a topogrophical view of thair own room, using what
they know of LOGO

The second page, Compass, s an informative and demostrat ve exercise IH givas
the children an exampie of what a compass looks | ike and how the needle of the
compass moves This page would only be used as a review rather than a first hand
lasson For axample, | would provide an opportunity for the chiidren to actually
handle a compass and have them use 1t by trave! ling around the school or

ne 1 ghbourhood

Figure 9 a

'EL‘ File Edit Search Ffont Utilities Window

===—=—=—————————————— figure 9

The first axercise, Maps — finding places and things, IS an introduction it
storts with something the children can relate to - their own room They are
required to locate certain objects with directions In the sample room And then
the children are asked to draw a topographical view of their own room, using what
thay know of LOGO

The saecond page, Compass, is an [nformative and demostrative axercise |t gives
the children an example of what a compass looks |ike and hou the needle of the
compass moves This page wouid only be usead as a review rather than a first hand
lasson For axample, | would provide an opportunity for the children to actually
handle a compass and have thea use 1t by trova! ling around the schoal or

ne i1 ghbourhood

The third page, Shopping, 15 to help integrate the ideas and concepts of a
neighbourhood and a communi ty, using directives, and some problem solving skilis
Due to the time limit | was not able to include all the i1deas that | would have
liked, therefore this last page Is Incoaplete For exampl!e as the children choosa

Figure 9 b

(continued on next page)

110

Results and Discussion

n € File Edit Search Font Ulilities Windows

W ——————————————————— R PR

The second page, Compass, is an informative and demostralive exercise 1t gives
the ch) Idren an example of what a compass looks | 1ke and how the needle of the
compass moves This page would onily be used as a review rather than a first hond
lasson For exonpiae, | would provide an opportuntty for tha children to actually
handle a conpass and have them use it by travelling around the school or
neighbourhood

The third page, Shopping, is to help integrate the idaas and concepts of a
neighbourhood and a coamunity, using directivas, and some problem solving skitts
Dua to the time limit | wos not able to include all the ideas that | would have
llked, theretory this last page IS |ncomplete For example ax the children choose
the particular gi ft they would |lke to purchase and are asked to travel, sounds
of valking feet could be added and as they arrive at their destination they could
be asked to solve a mathematical problem, how much change they would receive f
the gift cost so much and 1 f they had so much money, and | f the correct answer
was given they wou!d hear the sound of the cash register A HNathematical problem
could be asked esach time thay purchase a different 1tem And alsc as they move
from place to place, quastions on history and science con be integrtated For

El:

SRR

E

Figure9c

- & File Edit Search Font Utilities Windows

W ——————— gy

The third page, Shopping, is to help integrate the ideas and concepts of a
neighbourhood and @ community, using directives, and sone problem solving skiils
Due to the time [imit | was not abie to include all the ideas that | would have
liked, therefore this last page 1s incomplete For example as the children choose
the particular gift they would |1ka to purchase and are asked to travel, sounds
of walking feat could ba addad and as they arrive af their dastination they could
be asked to solve a mathematical problem, how much hange they would receive If
the gift cost so much and |f thay had so much money, and If tha correct answer
was glven they would hear the sound of tha cash register A Mathematical probliem
could be asked each time they purchase a different item And also as they move
from place to place, quastions on history and science coan be integrtated For
axanple as the chilidren make thair way from the woo!l store to the card store,
they may pass by a statue of a famous historian The in~cription would be
provided and the chl ldren would be asked to provide answer of "Who is 1t?" from a
choice of three namas

To sea my project type "Compass”

Figure9d

Figures 9 a-d. An example of complex and crowded text with

scrolling effects.

111

Results and Discussion 112

On the other hand, the appropriate use of automatic operators may reduce
the difficulty that the users confront in using manual operators due to
problematic representations of operating knowledge Also, the user’s working
memory load may be reduced because the program automatically presents the
texts or pictures and the user does not need to worry about how to operate the
system. Therefore, users may work more smoothly if the texts are easy to
understand, well formatted, and presented at a reasonable pace for the users

Project 13 also involved a high proportion of scrolling. Difterent from
Project 12, the texts in Project 13 were short, easy to understand, and well
formatted. In addition, the text on how to use procedures to draw various
shapes was combined with demonstrations of the screen etfects produced by
those procedures (See Figure 5). Not only could the user sce the procedures
needed to perform the tasks and their screen effects without any interruption, but
also the speed of the scrolling could be slowed down. Thus, the user could work
smoothly with automatic operators in this program.

To summarize the findings from characterizing the operators, the results
of this study suggest that the learning environments constructed by student
teachers lacked manual operators and overused automatic operators. The
learning environments particularly lacked manual operators which promoted
task performance and provided flexibility for users to meet their individual
needs. However, the types of manual operators designed by student teachers
seemed to support the user in learning domain knowledge and system operation.
In addition, the automatic operators sometimes displayed advantage when they
were used appropriately. Therefore, good instructional software should combine
the advantages of both automatic and manual operators so that users cannot only
execute the program smoothly, but also have the opportunity to interact with the

computer, as well as the freedom to choose the tasks or assistance to meet their

Results and Discussion 113

individual needs.

Summary of the Characteristics of the Learning Environments

There are three major findings which emerged from the overall
characterization of the learning environments constructed by student teachers.
First, the learning environments presented domain knowledge, operating
knowledge, affective knowledge, as well as knowledge for implementation about
content areas, target population, and methods. Domain knowledge was the first
major concern of all projects, whereas operating knowledge was the second
major concern Domain knowledge presented by student teachers was mostly
about facts, events, concepts, and actions and it was seldom involved principles
or conditions under which the actions can be taken. Scmetimes student teachers
presented temporal, partial, or identical relationships, but they did not present
causal and conditional relationships, or indicate "bug problems"”, the learner's
misconceptions, or efficient problem-solving strategies that might be employed
by advanced instructional programs. Further analysis of operating knowledge
indicated that a program did not need to present any operating knowledge when
the episodes or views were linked by automatic operators or when the domain
manual operators were ased to link episodes or views. However, a program
must present operating knowledge to the user when a manual operator is
required to link to an episode or a view. Lack of operating knowledge when a
manual operator is required to link an episode or a view is the main reason for a
user becoming stuck.

The second finding was that instructions, providing tasks, and providing
working spaces are three major pedagogical strategies used by all student

teachers. More advanced pedagogical strategies which integrated instructions,

Results and Discussion 114

‘ demonstrations, and explanations, as well as hinds for assisting task performance
were also designed by some student teachers Furthermore, a few student
teachers took the advantage of Logo exploratory learning environment and
enabled their target learners to learn domain knowledge by exploration On the
other hand, data also show that the learning environments constructed by the
student teachers lacked working spaces to perform tasks or answer questions,
and there was a serious shortage of evaluation and feedback on domain
knowledge. In addition, insufficient tasks were presented for operating the
system when relevant operating working spaces were designed The
consequences of these problems were that, first, the lack of working spaces in
domains led to failure to perform tasks, and second, insufficient indication of
operating working spaces created difficulties for the user or even resulted in
failure in program execution. The insufficient working spaces and the input to
which the computer did not respond were the sources that the learning
environments lacked evaluation and feedback, while the lack of evaluation and
feedback in turn indicated that the learning cavironments constructed by student
teachers were weak in assisting user’s learning.

The last finding was that the learning environments constructed by
student teachers lacked manual operators and overused automatic operators.
Moreover, the learning environments lacked manual operators for performing
tasks, for providing flexibility to meet the user's individual needs, and for

providing assistance in learning.

Characteristics of the Program Structures

LogoWriter™ has special features which can execute more than one page

‘ in a program and more than one procedure on a page with or without the user’s

Results and Discussion 115

interaction. The program structures in this study, therefore, refer to both page
structures and procedure structures. The program structures are also
characterized by the static attributes and dynamic attributes. Static attributes
here refer to single-level, linear, modular, or fragmented structures. In addition,
programmung utilities such as reusable procedures, conditional statements,
variables and recursion are also considered as static attributes. Dynamic
attributes of the program structure refer to the manual operators required in
linking procedures or pages. The categories and functions of manual operators
are the same as those used in characterizing the learning environments. Table 8
shows the program structures in each project produced by the student teachers,

including page structures, procedure structures, and programming utilities.

Page Structures

Data in Table 8 indicate that 69% of projects produced by student teachers
used linear page structure, 23 % of the projects used modular page structure and
23% used fragmented pages. It is clear that there is consistency in the way the
student teachers structure their pages, based on the fact that 85% of the projects

used only one page structure and only 15% used two page structures.

Table 8

Page structures, procedure structures and programming utilities used in each project.

Project No. Pages Structures Procedure Structures Programming Utilihes
Linear Modular | Fragmented { One Level Linear Modular | Fragmented | Reusable | Conditonai | Vanables | Recursions
Procedures | Statements
1 X X X X X X X
2 X X X
K| X X
4 X X X
5 X X X
6 X X X X X X X X
7 X X X X
8 X X X X X
9 X X X X X
10 X X X
11 X
12 X X X X X X
13 X X X X X X X
Percent of
the Projects;
69% 23% 23% 7% 4% 4% 46% 23% 3% 23% 23%

Results and Discussion 117

Linear page structures

The most common page structure in the programs produced by student
teachers was linear. There were several versions of linear page structures due to
different ways of linking the pages. The simplest version was that all pages are
retrieved by the GETPAGE primitive in the first page of the program so the
program did not require any inputs to link the pages, as shown in Figure 10.
Another version was that the user was instructed to use the GETPAGE primitive
and the page nametoret e the page when the previous page was finished, as
shown in Figure 11. The third version of linear structures was that the user could
press one key to move to the next page when the current page was finished.
Once the user was on the next page, then he or she could access the previous one
by pressing another key (see Figure 12). The final version of linear structure
combined an automatic operator with a manual operator so that the last
procedure in the previous page could automatically retrieve the following one
that presented a question. When the question was presented, the program
waited for a manual operator, which was a correct answer from the user. Once
the correct answer was typed in, the following page was linked and a new

question was presented (See Figure 13).

Results and Discussion

Bobert A Final

op
\ 4

Vocablaire

gp
4

Histoire 1

gp
A 4

Histoire2

ap

\ J

Motdcroises

Figure 10. Alinear page structure linked by automatic operators.

Final1
/,
“
Vd

P
</, type v

.,

s’
: "tinal2
" gp "fina

Final2

.
..,
v

-
ve

¢ gp "answer4

Answerd

Figure 11. Alinear page structure linked by manual operators.

118

/J contents

Results and Discussion

-

@ - /J L1-show

/,,..

ko | l | /Il L1-youtryt |

L2-youtry! /;Oxl'l 1.2-show 4-@-// 12 el 4,1@-9/ L1-youtry3 /4-"/ L1-youtry2
&

L2-youtry2 /,,'/ L2 youtry3 /4.@-7, L3 -tel /4-®.9J| L3-show //®¢ L&yo/utm
L4~srlw1 /4.7J 14 show //,®// L4 -tel //,®.'/J L3-youtry3 //@/ L&youtryzl
O
L4-youtryt 4.@.1] Lé-youtry2 //®/JI L4-youlryd ///®.7J L5-tell L@/J L5-show |
L&sfom 4;@39 16 -tell 4-@-’9 L5-youtry3 //,—@"9 L5-youtry2 //,®’/l L5-youtry! |
O
L&-show2 4.@.'7 LB-show3 (/@/J LE-showd (/,@,'7 LE-show$ &,-@'/J Lssiowe -1
L7-s’h0w /,@/J L7 -tell F@y L6-youtryd é:@; L6-youtry2 F@'//l L6-youlryt
i
L7-yo‘utry1 /,..®..7, L7-youtry2 4--@-'// L7-youtry3 /4.,®7/ final

operation is controlled by pressing a key.

<

Y/

119

Figure 12. Alinear page structure in which the direction of

Results and Discussion 120

1 ST story ST o win : 7 axil : man
: : 7 . : :
: : . : . ; !
: : ; : : :
’ . s, . - ’ r o, .
finsh : |hmsh| 4 typeans v finsh © 4 uypeans Tl Ihmsnl
: : ; : st : : et :
’ » ’ ’ cormect . ‘ : ¢ ¢
‘..gg.”,/ :,g.p H L., . gp.,,,/ correct “-- gp - 'gp
P
p12 p11 . pio | pe po p7
winks . haif : men ‘ hait : wink : oxli
A : Lot : © e
Iflmshl 4., 1pe ans » : |hmsh| < ¢, ypeans : Ihnshl + 7 ypoans
0 : ‘e. . ‘. 4 ‘ M . 7
» M o . ’ M o/ ‘ 4 M iy
: : : : : : : : : :
: : et o gp . : : oo : :
EQP Gagp st PR N M “gp -- comact fhranian J ‘ gp ‘ comoct
:
;
;
p.13 s 3T p1s Y e p1s
hatfil : mon ; quarter ;] wonk ; quarterl : mons
* » 4 .
; : . ” : . ? .
; : : ; : p . :
A, H . /'._ ’ M 7 .
s faane e A ; S e, - : S e,
,'_Sypeans/, : lmshl : /,'rypeans/ > finss| ‘ t,,"lypeans/ e Ihmshl
LV Vs . ’ » e, S A 0 4 *e, v 7
* . » ’ ’ ¢
; . 1gp , A : A . i’ . :
comeet : : D oma : : D ooma [:
‘Olgp!"‘ """" e .-gp,--— fvvgpr ‘. gp
pai p20 p19
ond ‘ wonks :| quarterk
: : :
: :
M ’
:
: finsh 1/ s, ,
: - 2o ypeans 7y
« . ‘e, V4
. ' ‘ o
: 9 ‘ :
. . ‘ .., comect

........ e

Figure 13. A linear page structure combining automatic and

manual operators.

Modular page structures

The modular page structure, which is supposed to have more ad vantages
than the linear one, had two versions in the programs produced by student

. teachers. In one version, the pages were structured at two main levels and the

Results and Discussion 121

bottom ones were parallel (See Figure 14). In the second version, the main frame

was modular, while the rest of the pages could be either modular or linear (See

Figure 15).

startup

7
/.,

./..yye,"/

§

' mstructions |4

gp mstructon
7

. NOCUBS + --evennien Vs /AR AR T TP TP PPy prosecnssssinsans passsssaseanais .
l | 7~ % 7~ :
. . ; ; : ;
‘ . * ’ ¢ - ’
v *’ ’ » ’
: % - : : ;
: 4., nstucten © o Cues N0 (ues no cues no cues
: s .., . : : : .
: “L e e g : : :
‘ or : . ; :
: : : : :
M hesrsssssss sressssasras R R PRy R Y YT P
; : : : : : ‘ ' : : ;
. » ¢ [»
: ap gp ap : 9 : 9P : g ’
. . . . 4 . v) ’) ’
. ’ v « 4 . . M . ’
: : : : : : : ; : :
: map + done ¢ lamiy : timetne | ! legend: : mypgs;
: Y 2 z 4 : % : % :
“ map whatnext family tree _JJ timeline : legend : mypage }.-
< % Z /)7
0 ’ 7/
: S NO CUBS « 2 2ssussnsassasass %
: : :)
feviss veree NOCUES wvovvvrerornvss R //:
L] +
; map P legend : ;
. ‘. ’ ‘
.................. ,/ ‘. trvevrrr i, PYPPSp ;
2 gp typj P gp :
7 " :
...................................... NMOCUBS - vvevvvovovsnsssevrcsvsssssrvcocsssnss

Figure 14. A modular page structure consisting of two main levels

with the bottom ones parallel.

c2

c3

gp
c2
{adventurs

7,

'/..fx?p«;'v
e

The cues
of Twse

pats are
not
INACA e

The cuws
for Thasa
pars are
not
na.caied

»

Z1ype

I3

o

N

L Gp

The cues
for these
pams are
not
indicalec

Figure15. A modular page structure

contnue

s
. ype ‘-
.

Results and Discussion 123

Two problems were frequently observed in the modular page structures
designed by student teachers. One problem was that some bottom branches did
not have paths leading to another branch, so that users had to quit the program
and restart it again in order to access other branches. Another problem was that
i many cases the designers did not indicate some important paths to the users
even though they had designed these paths. So it seemed that student teachers
experienced many problems in designing smooth modular page structures.
Nevertheless, the modular page structure did enable the user to choose

alternatives in execution and therefore still has some advantages over the linear

one.

Fragmented page structures

Not surprisingly, some programs designed by student teachers consisted
of fragmented pages in which there was no indication of how to link one page to
another. Hence, the user had difficulty in executing these pages as a program.

To sum up the findings from page structures, student teachers preferred
to design linear page structures and they encountered less difficulties in doing so
than in designing modular page struciures. Some of them have developed
consistent and systematic linear page structures which enabled users to answer
questions and control the direction of operations. In addition, some student
teachers developed modular page structures that promoted alternatives in
execution so that users could choose tasks or activities. However, student
teachers seemed to have trouble in designing the paths from one branch to
another and further in indicating these paths to the user. The fragmented pages
were either a result of uncooperative group work or an inability to design

alternative page structures.

Results and Discussion 124

Procedure Structures

There were four procedure structures designed by student teachers. These
procedure structures were single-level, linear, modular, and fragmented The
data in Table 8 show that 92% of the projects involved single-level procedure
structures and 54% of the projects involved either linear structures or modular
ones, or both. Forty-six percent of the projects had fragmented procadures at

some points.

Single-level procedure structures

The projects produced by student teachers made heavy use of single-level
procedures. The simplest single-level procedure is shown in Figure 16a, where
the procedure named “castle” would retrieve a page with the corresponding
name. However, student teachers used single-level procedures in flexible ways
with the result that several single-level procedures could accomplish complex
tasks. For example, they used single-level procedures for answering multiple
choice questions (Figure 16b), choosing activities (Figure 16¢), and performing
tasks. However, in most cases, the student teachers used more than one
procedure structure. Therefore, single-level procedures were sometimes only
loose-ends attached to another main procedure structure (See Figure 17), for the
purpose of performing tasks, providing feedback, or retrieving a page, or were

used as a tool to present the lesson.

Results and Discussion 125

»,

(=
(o)) ()«)
v W 7
S P P P
v 7
castle ' ran l stay ¢! ¢ ¢ ¢4

Figure 16 a Figure 16 b Figure 16 ¢

Figure 16. Single-level procedures used to link a page (16a), to

answer a question (16b), or to choose an activity (16c).

Linear procedure structures

Figure 17 shows a linear procedure structure used by a student teacher. In
this type of procedures, the subprocedures were structured in a linear way so
that the information was processed in sequences. Most linear procedures
structured by student teachers were combined with single-level procedures and

modular procedures. Some of them also involved fragmented procedures.

Results and Discussion 126

(wrong) [

1 :

. :

: 2 . 7, .

4 ‘e Answerwc V

..... ; b P
177 (nght)

[+
| win

Figure 17. A linear procedure attached by single-level procedures.

Modular procedure structures

In addition to linear procedures, student teachers constructed modular
procedure structures by decomposing procedures into parts, and further
decomposing these parts into other parts (See Figure 18). One command
phenomenon found in such a modular procedure structure is that student
teachers did not design alternatives in execution so that the execution of the the
was still in a sequence. For example, in Project 1 (See Figure 18), a startup
procedure consisted of three procedures: “hello”, “runstuff” and “goodbye”.
Runstuff can be decomposed into getanswerA, getanswerB, getanswerC and
getanswerD, but these procedures were executed in a sequence and there was no
alternative in execution. Furthermore, the modular structures constructed by
student teachers usually had only three levels. Therefore, even though student
teachers had developed the ability to use a decomposition technique to produce

modular procedures, these procedures were still linear in their exccution.

Results and Discussion 127

' startup ’
runstuff goodbye

The recur-sion I1s executed
-

if the answer is wrong
[thermo){-—— drawing pictures for the text

Figure 18. A modular procedure structure with recursion.

getanwserC getanwserD

Fragmented procedure structures

The fragmented procedures found in the programs constructed by student
teachers seemed to be some leftovers from other activities in the learning phase,
so the existence of fragmented procedures is not considered a problem.

To sum up, the procedure structures found in student teacher’s projects
were frequently single-level procedures which were used in a flexible way so
that they could accomplish complex tasks. In addition, these single-level
procedures were often attached to a linear or a modular procedure as loose-ends.
The modular procedures produced by student teachers showed that student
teachers developed decomposing techniques to produce modular procedures,
but that these modular procedures did not allow alternatives in execution and

that they are linear in logic.

Results and Discussion 128

Programming Properties

Even though all student teachers learned programming utilities such as
reusable procedures, conditional statements, variables and recursion in the
learning phase and were able to use them in their exercises, data in Table 8
showed that student teact >rs did not frequently use programmung utilities in
their final projects. Only 23% of the projects used either variables or recursion or
both in their final projects. In addition, another 23% of the projects used reusable
procedures and 31% of the projects used conditional statements. Since the
fragmented procedures were leftover from the exercises, even though 23% of the
projects used variables in fragmented procedures, these projects were not
regarded as using programming utilities. Therefore, 54% of the projects did not
use any programming utilities in their final projects It seemed that the designers
for these projects had not developed the ability to design programming utilities
in their final projects. In other words, they may have been able to use
programming utilities in their exercises, but they were unable to apply these
techniques in a flexible manner to their own projects.

As mentioned before, LogoWriter™ has the capacity to run more than one
page in a program and more than one procedure in a page, and the pages and
procedures require links in executing them as programs. Therefore, interaction
issues between pages and between procedures cannot be avoided. The following
section will present and discuss the results from characterizing the manual
operators used to link pages or procedures in terms of the types of manual

operators and their functions.

Results and Discussion 129

Manual Operators

Table 9 shows the types and functions of manual operators located
between pages and between procedures, as well as within procedures. The data
in this table indicate that 47% of the manual operators designed by student
teachers were located between pages, 21 5% of the manual operators were
located between procedures, and only 31.5% of the manual operators were
located within procedures Such high proportion of manual operators located
between pages and between procedures indicate that the interactions in the
learning environments constructed by student teachers in LogoWriter™
depended heavily on the ways designers structured the pages or procedures. In
order to find out what these manual operators were, and for what they were
used, the following sections will analyze the types and functions of the operators

al different locations.

Manual operators between pages

The results in Table 9 show that 36% of the manual operators located
between pages were used for operating the systems, 10% were used for
answering questions, and only two percent were used for choosing activities or
tasks. None of the manual operators between pages was used to perform tasks
or choose assistance. The manual operators for operating the system were all
located between pages. In other words, operating knowledge was needed for
linking pages but not for linking procedures. In addition, most of the manual
operators for choosing tasks/activities and answering questions were also

located between pages.

Table 9

The distribution of the manual operators.

Distnbution Choosing tasks or | Choosing Task Performing Answering | Answering Multiple Choice | Choosing Operating the Percent
activities Complexity Tasks Questions Questions Assistance System
Between Pages 1 50% 0 0 3 50% 6% 0 36% 47%
Beteen Procedures 0 50% 0 1% 4% 2% 4% 0 21 50%
Within Procedures 0 0 25% 1 50% 5% 0% 0% 31 50%
Percent 2% 0% 36% 9% 13% 4% 36% 160%

Results and Discussion 131

Manual operators between procedures

Eleven percent of the manual operators located between procedures were
used for performing tasks, four percent were used for choosing assistance, and
six percent were used for answering questions, only 0.5% for choosing tasks or
activities. with respect to choosing assistance, all the manual operators for this

were located between procedures.

Manual operators within procedures

Twenty five percent of the manual operators within procedures were used
for performing the tasks and 6.5% were used for answering questions. None of
the operators within procedures were used for choosing activities or assistance,
or operating the system. The manual operators located within procedures were
mainly used for performing tasks and answering questions.

To sum up the findings from the characterization of the program
structures produced by student teachers, first, student teachers designed single-
level, linear, and modular structures at both the page level and the procedure
level. Among these structures, the most frequently used page structure was
linear and the most frequently used procedure structure was single-level.
Second, some student teachers developed consistent and systematic page
structures in which various procedure structures were combined and
functionally expanded. Third, student teachers often failed to build and later
indicate the paths from branches to branches in nodular page structures. When
modular procedure structures were designed, student teachers always failed to
design ones which would permit alternatives in execution. Finally, most student

teachers were unable to use the programming utilities in their project design,

Results and Discussion 132

even though they had all used them in the exerases.

Furthermore, the programs produced by student teachers usually had
more than one procedure on a page and more than one page 1n a program
When the manual operators were considered, most of them were located
between procedures and between pages Further analysis indicates that the
manual operators located at different places played different tunctional roles so
that the programs could accomplish more complex tasks that could not be
accomplished by a single procedure or a single page produced by student
teachers. Therefore, the functions in the programs produced by student teachers
in LogoWriter™ depended not only on the individual procedure structures and
programming utilities, but also on the way the pages and procedures were

structured.

The Relationships between Program Structures and the Use of Pedagogical
Strategies

The characteristics of the program structures of the projects which used
appropriate pedagogical strategies and those which did not were compared in
order to determine whether there was a relationship between the characteristics
of the program structures and the pedagogical strategies As mentioned before,
Projects 6, 8, 9 and 13 had integrated instructions, demonstrations, and
explanations, accompanied by tasks and working spaces and even assistance for
performing the tasks, whereas Projects 4 and 7, as well as some episodes in
Project 1 used a combination of providing tasks, working spaces, and immediate
evaluation and feedback. Among the final projects designed by student teachers,
50% of them employed appropnate pedagogical strategies. The results in Table 8

indicate that 77% of the projects which employed appropriate pedagogical

Results and Discussion 133

strategies used programming utilities at some points, whereas only 15% of the
projects which did not use appropriate pedagogical strategies used programming
utilities. Projects 6, 8 and 13 which employed appropriate pedagogical strategies
all had used conditional statements, and two of them used variables and
recursion. These three projects comprised 62% of the overall programming
utilities for all projects. Furthermore, the results in Table 10 indicate that the
projects which employed appropriate pedagogical strategies all used conditional
statements and recursion. In addition, they consisted of most modular procedure
structures (71%), variables (67%), and reusable procedures (67%), as well as
modular page structures. Therefore, well structured programs and the use of
programming utilities seemed to be associated with the use of appropriate
pedagogical strategies On the other hand, the appropriate pedagogical

strategies could be attained by using single-level procedures in a flexible way, as

in Project 4.

Table 10

The program structures and the use of pedagogical strategies.

Patterns No Patterns
Pedagogical Strategies
Linear 55% 45%
~Modular 67% 33%
Page Structures

Fragmented 50% 50%
Fragmented 33% 67%
Single-level 59% 41%
Procedure Structur n9 ° °
Linear 57% 43%
Moduiar VAR 39%
Reusable Procedures 67% 33%

Conditional Statements 100% o]

Programmng Utiliti

variables 0/ 7 33%

Hecursion T00% o]

Results and Discussion 134

To sum up, the characteristics of learning environments can be described
in terms of the types of knowledge presented, the pedagogical strategies used to
present the knowledge, and the forms and functions of interactions. The
pedagogical strategies and interactions are related to the ways that programs are
structured and to that programming utilities are used in the programs. When the
programs are well structured and employ the programming utilities, the
designers can provide more sophisticated learning environments. owever, the
designers can also construct a smooth program without using sophisticated
programming skills when the user’s cognitive learning needs in the learning
processes are considered. Without the consideration of human factors in the
design of the instructional programs, the designers may produce the program

with which the user encounters a lot of difficulty and even failure in interacting.

Chapter 5

CONCLUSION

This chapter first presents a summary of the findings from this study
and discusses the implications for instructional software development. Next,
the implications for studying expertise in the domains of instructional
software design and human teaching are presented and several issues
pertaining to studying Logo environments are raised. Finally, some possible

directions for future research are considered.

Summary of the Research Findings

This study was concerned with developing a methodology for
identifying the cognitive, pedagogical, and computational characteristics of
computer-based learning environments. The methodology developed
provides precise descriptions of these features of the learning environments.
By considering the features of the learning environments and their effects on
the user, a diagnostic evaluation can be made of the usability and constraints
of a given system.

The methodology developed in this study allows for the investigation
of different types of knowledge presented in learning environments, the
pedagogical strategics used to present this knowledge, and the forms and
functions of interactions that the learning environments elicit (e.g., the task
activities of the user). In addition, this study characterized the computational
characteristics of programs in terms of single-level, linear, and modular

structures, as well as other programming properties.

Conclusion 136

Three major types of problems were identified in creating
representations for knowledge. The first tvpe of problems was related to
domain knowledge. That is, the programs presented neither causal or
conditional relationships that are important components of propositions and
schemata of domain knowledge, nor principles that reflect the nature ot the
domains. In addition, these programs provided the user with neither the
difficult learning tasks that they often make mistakes on nor the cfficient
strategies for problem solving. Therefore, the domain knowledge conveyed
by student teachers was simple, concrete, and isolated. The second type of
problems related to operating knowledge. The results showed that certain
programs partially lacked operating knowledge, or contained incomplete or
inaccurate instructions. The problems in presenting operating knowledge
created impasses for the users to operate the system. The third type of
problems is that incoherent, long, and ambiguous text was sometimes used
in representing knowledge. When the text in a view was poorly tormat.ed
and linked by automatic operators without providing the user any control, it
was particularly problematic.

In terms of pedagogical strategies, the learning environments
constructed by student teachers employed three basic pedagogical strategies:
giving instructions, presenting tasks, and providing working spaces Some
student teachers often elegantly integrated instructions, demonstrations, and
explanations, showing the user not only the procedures needed to perform a
particular task, but also the screen effects produced by each procedure and
some potential problems. In addition, these programs sometimes provided
reminders to assist the learner to perform the tasks. Furthermore, a few
designers took the advantage of Logo exploratory learning environment and

enabled the learners to construct and invent new products for learning

Conclusion 137

domain knowledge. Such combinations are called modeling, scaffolding, and
exploration by Collins, Brown and Newman (1989), as characteristics of ideal
learming environments.

Several problems were detected in the pedagogical strategies used in
the learning environments developed by the student teachers. These
problems can be interpreted in terms of difficulties in representing the
perspective of the learner. The first problem was that some learning
environments lacked sufficient working spaces for performing tasks and
answering questions. Consequently, the user would not be able to perform
tasks or answer questions. The second problem was that insufficient tasks
were presented for using the working spaces for operating knowledge. In this
case, the user would often encounter an impasse in executing the program.
The third problem was that there was a serious shortage of evaluation and
feedback provided to the user. Finally, there was a lack of congruence in the
pedagogical strategies used in the learning environments constructed by
student teachers. This was reflected by the lack of continuity between tasks or
questions and working spaces, and inconsistencies between the instructions
about how to perform tasks and relevant working spaces. The consequences
of these problems in using pedagogical strategies are that they could increase
the user’s working memory load, and thus make it difficult for the user to
understand and remember the instructions or tasks. These problems greatly
reduced the efficiency of the learning environment.

In terms of interactions two findings are important. On the one hand,
there were insufficient user-computer interactions. In particular, the
programs lacked interactions which are used for learning domain knowledge,
or for providing the user with flexibility in controlling the learning process.

On the other hand, student teachers provided interactions that seemed to

Conclusion 138

support learning of domain knowledge and of the system operation. That is,
the types of manual operators designed by student teachers for operating the
system were easy to use, those for performing domain tasks provided
flexibility for task performance, and those for answering questions promoted
understanding.

In terms of program structures, student teachers did not construct
many complex structures (i.e.,, modular procedures or pages), or did not
construct them successfully. For example, when they designed modular page
structures, they often failed to design all the paths needed between branches
and further to indicate these paths to the user Student teachers preferred
simple structures (e.g., single-level procedures, linear pages), but achicved a
high level of consistency and systematicity. The single-level procedures were
used in a very flexible way, for example combining them with lincar or
modular procedures. Combined procedures appear to enhance greatly the
program’s fu-ction. Student teachers designed single-level, linear, and
modular procedure structures. Single-level was the most commonly
designed procedure.

Only a few subjects used the programming utilities, such as conditional
statements, recursion, variables in their project design even though they had
all learned how to use these utilities in the course. This study found that
modular program structures and use of programming utilities, in particular
recursion and conditional statements, are strongly related to the use of
effective pedagogical strategies. This phenomenon will be discussed in a later
section.

The findings from this study indicate that this methodology has the
potential to identify the cognitive, pedagogical, and computational

characteristics of the learning environment. The task activities (i.e., the

Conclusion 139

manual operators) can be analyzed in great detail in terms of the types and
functions of the operators, and the user's cognitive needs for performing
these tasks are also considered in the context of the dynamics of the learning
environments. Therefore, the individual evaluating the instructional
software can diagnose the strengths and weaknesses of a learning
environment and determine whether and why the system is well suited for

system operation and for promoting learning subject matter knowledge.

Implications for Instructional Software Development

The research presented in this thesis has implications in two areas of
instructional software development: the study of instructional software

interface and instructional software evaluation.

Implications for Studying Instructional Software Interfaces

This research is related to the study of human-computer interaction
because the method presented describes precisely the instructional software
interface and its effects on the learner for performing tasks elicited by the
system In particular, the method reveals the different types of interactions
promoted in a learning environment, as well as the functions of these
interactions.

The methodology developed in this research differs in two significant
ways from the methods that are used in research on human-computer
interaction. The first difference is that it puts more emphasis on the system
behaviour (for example the types and functions of different manual

operators) than on the user's behaviour (for example the process of selecting

Conclusion 140

among different manual operators). The second point of departure 1s that the
usability and constraints of the system are characterized in terms of cognitive
and pedagogical content rather than in terms of the measures such as time
required to perform tasks or number of errors made by the user.

In characterizing the cognitive, pedagogical and computational features
of computer-based learning environments, this study has proposed a
framework for precise description of instructional software interface This
interface consists of three principal components: learning environments,
tasks, and users. This approach adopted the idea that in order to investigate
human-computer interaction, one needs to analyze the dynamic interaction
among users, tasks and computer systems (Bennett, 1972, 1979; Card, Moran
& Newell, 1983; Chapanis, 1991; Eason, 1981; Shackel, 1991). Moreover, this
study has taken into consideration of the special properties of instructional

software.

Computer-based learning environments

The computer systems are regarded as physical devices used to provide
learning environments. This study proposed that computer-based learning
environments have three types of attributes: cognitive and pedagogical,
computational, and physical attributes. The cognitive and pedagogical
attributes are reflected by the display of a program (e.g, text, graphics, speech
and animation) and user-computer interactions promoted These attributes
were described in terms of different types of knowledge, pedagogical strategies
used to present the knowledge, and the forms and functions of interaction.
The cognitive and pedagogical attributes of a learning environment have the

most significant impact on learning subject matter knowledge.

Conclusion 141

Computational attributes refer to the characterization of structures in a
microworld in the sense proposed by Groen (1984). The structure consists of a
set of states and transformations between states. A well constructed
microworld has the following three properties: a) the transformations should
be modular; b) a transformation can be undone to go back to the previous
state; and c) the transformations and transformational structures have
representations analogous to operations and procedures in the real world.
The computational attribute in this study was described in terms of the
modularity of the program units (i e, structures of pages and procedures) and
the transformations between them (i.e, links between pages and procedures).
In addition, programming utilities were also considered. Computational
attributes d:termine the ease of constructing or inventing products, such as
producing a computer program

Physical attribute is reflected by physical devices such as input-output
devices (i.e., a light pen, handwriting input, a touchscreen, a voice
synthesizer, and video display terminals, etc). Physical attributes can be
described in terms of text, sound, pictures, colours, and so on. Physical
devices differ in their compacity in providing displays or accepting input,
thus the physical attribute may have also an impact on user's learning.

In terms of the hierarchical organization of a learning environment, a
learning environment consists of a set of episodes (i.e., a sequence of lessons
or a set of exercises) which are composed of sequences of views. Each view
consists of view space and command space. The view space refers to the static
attributes (i.e,, types of knowledge presented, the pedagogical strategies used to
present this knowledge) and the command space refers to the dynamic
attributes of the information (i.e., the interactions prompted). The

decomposition of a learning environment permits a fine-grained

Conclusion 142

characterization of important features of a learning environment and a

precise diagnosis of its usability and constraints.

Tasks

What differs a computer-learning environment from other computer
environments (e.g., using a wordprocessor, spreadsheet, or drawing program)
is that the tasks are strongly constrained by what is promoted by the learning
environment. The wuser's task activities in computer-based learning
environments involve learning of subject matter knowledge and system
operation, whereas in other computer environments the user needs only to
learn how to use the computer to perform tasks.

The learning activities or tasks were referred to the manual operators
promoted by the learning environment. There are three levels of task
descriptions for these activities: the top level refers to the global goal that the
user is supposed to achieve; the next level is the tasks that a user is supposed
to perform in a lesson or a set of exercises; the bottom level, which 1s referred
to the manual operators, corresponds to the sequence of task activities that
the user needs to perform. This study categorizes the types of the operators
and their functions and assesses whether the operators are casy to use in
operating the system and whether they are supportive in promoting learning
of subject matter knowledge and providing the learner flexibility to control

the learning process.

Learners

This study considered the users’ cognitive needs in terms of their basic

cognitive resources (e.g.,, working memory), the cues needed for system

Conclusion 143

operation (e.g., the information that the novice users need for executing the
program), and the supports required for learning domain knowledge (e.g.,
pedagogical strategies that facilitate learning; manual operators lhat promote
understanding and flexibility).

Instructional software interface needs to adapt to the following
conditions: the characteristics of the population (e g., children vs. adults), the
subject matter (e.g, arts, science, etc.), the subjects' stage of learning (i.e.,
novices, intermediates), and the types of the tasks (e.g., learning subject
knowledge or constructing products). Further studies are needed to identify

the kinds of interface required for these differential needs.

Implications for Instructional Software Evaluation

This research has implications for the evaluation of educational
software. The method presented allows one to identify the cognitive and
pedagogical characteristics of instructional software. Such descriptions are
required in order to evaluate instructional software from the point of view of
the knowledge that it implements, in particular by identifying the possible
factors that account for the effectiveness of a given learning environment.
The application of this method should allow researchers in the field to
provide evaluations of instructional environments that are more precise and,
therefore, can serve to improve the design of future environments.

The methodology developed in this research allows us to identify the
significant features of the learning environment that affect learning. This
provides a basis for determining the effectiveness of the learning
environment for performing a set of the tasks. Other methods such as

experiment comparisons and meta-analysis (e.g., Kulik & Kulik, 1987;

Conclusion 144

Roblyer, Castine, & King, 1988), are more limited because they only provide
information regarding whether the instructional software is effective but do
not identify the factors that determine the effectiveness.

This method direct one’s attention towards the educational properties
of instructional software that are not normally accounted for by most
measures of usability of human-computer ‘nterfaces. More importantly, this
method identifies the cognitive and pedagogical characteristics which are
important i improving instructional software. The resulls trom previous
research suggest that the typical measures of success rate, time, and error do
not present sufficient information for improving instructional software (e.g,
Chapanis, 1991; Shackel, 1981, 1991).

This study suggests that evaluation should look at not only the content
and the representation of the subject matter knowledge, but also the
appearance of the operating knowledge and pedagogical strategies used to
present various types of knowledge. The problems in operating knowledge
will create difficulty or even failure for the user executing the program.

Another important criterion for evaluating the wusability of
instructional software is the quantity and qualitv of the interactions.
Guidelines for instructional software design and evaluation usually suggest
that a good system should maximize the interactions, without indicating
what kind of interactions should be maximized. This study specifically
indicates that efficient instructional software should maximize the
interactions that promote the user's understanding and development of
conitive skills, as well as provide the user with flexibility to perform the
tasks and enable the user to choose activities, task complexity and various
types of assistance. However, the software should minimize the number and

complexity of interactions required for operating the system.

Conclusion 145

Implications for Studying Expertise in Instructional Software Design and

Human Teaching

In order to investigate the differences between experts and novices, it is
necessary to examine both the cognitive processes that a programmer goes
through in producing a program and the program that the programmer
devoted all his knowledge and skills to produce. The identification of the
cognitive and pedagogical characteristics of the instructional software
provides a means of studying expertise in the domain of instructional
software design. This method can also be modified for studying expertise and
for addressing a wide range cogrutive and pedagogical issues involved in
human teaching. Therefore, there are two major implications of this research
for instructional design the study of expertise in instructional software

design and, more generally, the study of instruction.

The Knowledge and Skills Reflected in the Final Products of Programming

Previous research has focused on the programming processes which
coordinate and display various knowledge and skills. These studies found
that novice programmers differ from expert programmers in various ways,
such as the representation of programming knowledge (Adelson, 1981, 1984;
Jeffries, Turner, & Polson, 1981; Linn, 1985; Samurcay, 1985, Schneiderman
& Mayer, 1979; Soloway, 1984), the strategies used in programming (Adelson
& Soloway, 1985; Jeffries, et al, 1981), and other cognitive abilities

(Schneiderman, 1976, 1980).

Conclusion 146

The present study found that there are cognitive, pedagogical, and
computational characteristics evident in the final products of programming,.

These characteristics can be summarized as below:

* Student teachers represented subject matter knowledge in a concrete
and isolated manner. The overall representation of various types of

knowledge was sometimes incoherent

Even student teacher had shown some knowledge in the domain they
were trying to teach through programming, most of them only presented
isolated facts, events, and concepts. Only a few student teachers introduced
temporal, partial and identical relationships, but they did not include causal
or conditional relationships that are more important in developing
propositions and schemata. In addition, the programs provided the learners
with neither the difficult learning tasks that the learners often make mistakes
on nor efficient strategies for problem solving. Therefore, the domain
knowledge found in the learning environments constructed by student
teachers was concrete and isolated.

In presenting various type of knowledge, student teachers often
prematurely introduced one type of knowledge before the previous one was
ended appropriately. Consequently, the overall knowledge sometimes lacked
coherence. Furthermore, this study indicates that student teachers had
considerable operating knowledge but could not effectively apply this
knowledge. For example, they sometime did not present the operating
knowledge in the view when the user needed to have the cues to operate the
system, although they were able to present cues in other views Such
inconsistency in presenting operating knowledge may be due to the failure in

representing the user's perspective.

Conclusion 147

e Some student teachers developed the skills to combine the pedagogical
strategies to convey domain knowledge efficiently whereas others still

lack such skills.

Certain student teachers have developed the skills to combine
pedagogical strategies to explicitly convey subject matter knowledge to the
user. These <kills might be a kind of characteristics of expert behaviour in
instructional software design. On the other hand, some student teachers
have not developeu the skills to use appropriate pedagogical strategies. For
example, they provided insufficient working spaces for performing domain
tasks or answering questions, and providing insufficient tasks for using
working spaces for system operation. In addition, there was a noticeable
incoherence between tasks or questions and working spaces, inconsistency
between the instructions about how to perform the tasks and the working
spaces, and a lack of continuity in the presentation of the tasks. There was
insufficient evaluation and feedback. The inability to use appropriate
pedagogical strategies greatly reduces the usability of the learning

environments.

e Not ali student teachers seemed aware of the ease and effectiveness of
the interactions.

Some student teachers have designed the types of interactions which
promote understanding of domain knowledge and which provide more
flexibility for the user to perform tasks. Several student teachers attempted to
reduce the complexity involved in operating the system. These findings
indicate that certain student teachers have developed knowledge about the

usability and learnability of human-computer interface.

Conclusion 148

Many of the problems found in the learning environments constructed
by student teachers are partially due to their lack of consideration ot the user's
task activities and the related cognitive needs in performing these tasks
Since LogoWriter™ is a relatively simple environment, the student teachers
may fail to consider the user’s needs for learning how to operate a system.
For example, programs frequently lacked cues for system operation although
student teachers indicated an ability to design such cues. These problems

reduced the efficiency of the program and were avoidable.

e The modular structures designed by student teachers lacked paths from
one branch to another or alternatives in program execution.

Previous studies (Carver, 1987; Kurland, Clement, Mawby & Pea, 1986;
Soloway, 1984) often indicated that students did not engage in problem
decomposition and only produced linear programs. This study showed that
student teachers designed a high ratio of single-level and linear structures but
some student teachers had also developed the ability of decomposing and
designing modular structures. However, the problem was that they often
failed to design all paths needed from one branch to ancther and to indicate
these paths to the user when modular page structures were implemented.
Similarly, they did not design alternatives in the execution when the
modular procedure structures were used. This finding indicated that
although student teachers have developed the ability for decomposing and
designing modular program structures, they were unable to interrelate the

decomposed parts as a whole.

Conclusion 149

s The inability to apply to their projects the programming utilities that
they used in exercise phases implies that student teachers possess inert

knowledge.

Although all student teachers used conditional statements, reusable
procedures, variables, and recursion in their exercises, only a few applied
them in their projects This suggests that student teachers might know how
to design these programming utilities, however, they did not learn the
conditions under which the programming utilities can be applied. Therefore,
the knowledge of the programming utilities still stays "inert" when the

conditions for applying such knowledge are provided.

¢ Is there a balanced development for student teachers in constructing
program structures and designing good pedagogical strategies?

This study also found that modular structures of programs and the use
of programming utilities, in particular recursion and conditional statements
were related to the use of good pedagogical strategies. The knowledge
required to design modular structures, recursion, and conditional statements
is programming knowledge, whereas the knowledge required for designing
good pedagogical strategies is teaching knowledge. How can we account for
this finding? There are three explanations that can be made. The first
explanation is that there i, a parallel development for student teachers in
constructing program structures and designing good pedagogical strategies.
Adelson and Soloway (1988) indicated that balanced development between
domain-specific knowledge in particular application and domain-
independent design model was frequently found in experts behaviour. If the

parallel development found in novice behaviour is what was called balanced

Conclusion 150

development by Adelson and Soloway, this finding implies that the novices
have begun to develop a kind of expert behaviour at a certain point. The
second explanation is that the design of superior pedagogical strategies
requires relevant program structures and this prompts student teachers to
apply a wider range of programming techniques. The last explanation 1s that
the transformations and transformational structures have natural
representations as operations and procedures in the real world (Groen, 1984).
Recursion and conditional statements have numerous analogs in the real
world. In the case of instructional design, the natural representations are

pedagogical strategies.

The Study of Teaching Expertise

The method presented in this research can be extended to the study of a
wider range of instructional environments or contexts, including human
teaching and more traditional materials.

The methodology developed in this study can be modified for
identifying the cognitive and pedagogical characteristics of human teaching
processes. The sharing of the same research method in studying expertise in
ITS and natural teaching could promote a promising collaboration in these
two areas. That is, the findings from the study of expertise in human
teaching can be directly applied to developing efficient ITSs, whereas the
design of ITSs provides a computational model to test and improve the

teaching theories developed in the contexts of human teaching.

Conclusion 151

Implications for Logo studies

The primary function of Logo is as a learning environment. Papert
argued that Logo is an instrument that can be used by teachers and learners. It
can be used in many different ways and it can have very different effects,
depending on how it is used (Papert, 1986). This study applied the primary
function of Logo to student teachers constructing other learning
environments in which children can learn subject matter knowledge, and
further characterized what was constructed by using this tool. The results
indicate that Logo is a unique learning tool by which student teachers can
develop teaching skills in the processes of designing instructional programs,

and that Logo can also be used as a research tool for testing theoretical

hypotheses.

A Leaming Tool

By characterizing the instructional programs, this study identified
some relatively sophisticated pedagogical strategies developed by student
teachers using Logo. These pedagogical strategies, which are called modeling,
scaffolding, and exploration by Collins, Brown and Newman (1989) as
characteristics of ideal learning environments provide good supports for
children learning subject matter knowledge. For example, modeling strategy
(ie., the pedagogical strategies integrated instructions, demonstrations, and
explanations) can help the children visualize the abstract concepts and build
conceptual model. Scaffolding strategy (i.e., the designer provides assistance

or access to the assistance when children perform tasks) can minimize the

Conclusion 152

difficulty that children might face in performing task, and the exploration
facilities enable children to construct or invent products (e g., computer
programs, drawing) Therefore, the characterization of the learning
environments does not only provide a clear description of the cognitive,
pedagogical, and computational features of instructional program produced
by student teachers, but also clarifies what can be learned in Logo
environments. It provides evidence that the users of Logo can develop the
type of cognitive skills that might be the characteristic of expert behaviour in
instructional software design. Therefore, the findings from this study do not
support the conclusion that the subjects cannot develop the kinds of
cognitive skills in Logo programming that are the characteristics of expert
programmers, or develop a model of computer function that would enable
them to write useful programs (Kurland, Clement, Mawby, & Pea, 1986; DPea
& Kurland, 1984; Rampy, 1984). Instead, the findings support the claim that
Logo environments create the context where other learning can take place
(Papert, 1986)

Furthermore, this study indicates that Logo provides a computational
environment which is not only inherently mathematical as Hoyles and Noss
(1992) indicated, but its easily-decomposing computational representations
and debugging facilities also enable student teachers to develop the skills of
teaching. Therefore, Logo is appropriate for a wider range of learning and

learners.

A Research Tool

In this study, Logo was not only used as a medium for learning

purposes, it was also used as a research tool for several research purposes. In

Conclusion 153

particular, it was used to develop a methodology for characterizing the
cognitive, pedagogical, and computational characteristics of the learning
environment. [t was also used as a tool to build a framework for
understanding instructional software interface. In addition, it was used to test
the hypothesis that the final products of programming can provide insight
into the designer's knowledge and skills pertaining to the cognitive and
pedagogical characteristics in instructional software design. The results

showed that these expectations of Logo were achieved.

Implications for Providing Instruction in the Development of Instructional

Software

The characterization of learning environments and program structures
has revealed both strengths and weaknesses of the instructional programs
produced by student teachers. This has implications for providing instruction
in the development of educational software. Such instruction can take into
account the common problems that novices have (e.g., not emphasizing
causal and conditional relationships; not taking into consideration of the
user's perspective), and support students in their efforts to focus on these
difticult aspects of instructional software development. Students should be
informed of both the typical problems and the elegant patterns found in
instructional programs. This could help students avoid the problems in
presenting knowledge and develop the ability to design efficient instructional

programs.

Conclusion 154

Limitations of This Study

There are numbers of limitations to this research. The most significant
one is that the instructional programs used as data source in this study were
relatively simple. Such simplicity of the programs limites this study to
display the potential of the methodology developed for charactering learning
environments. Another deficiency 1s related to the composition ot the
sample which limites a comparison of the characteristics of the programs
produced by programmers at various levels; the group used was
inexperienced in both Logo and computers and there was no contrasting
alternative group (e.g., more advanced instructors or programmers). In
addition, the focus of this research was exclusively on the final products

developed by student teachers.

Further Research

The methodology developed in this study is complementary to most
methods previously used in studies of instructional software effectiveness
and investigations of programming expertise Therefore, further research can
concentrate on integrating these different approaches to achieve different
objectives. For example, the further study on programming expertise can
examine both the cognitive processes and the products of programming. In
addition, the "good" patterns identified in the learning environments can be
tested by experimental studies. The patterns that are validated can then serve

as a basis for developing guidelines for evaluating and designing programs

Conclusion 155

There are several directions for this research. Briefly, this methodology
can be applied to evaluating various types of instructional software or to
conducting novice-expert studies in developing instructional software in
order to identify the cognitive and pedagogical characteristics of good
instructional software or expertise in instructional software design. This
method can also be applied to the study of expertise in human teaching. The
information regarding efficient human teaching or computer instructional
programs can be used for evaluating and improving CAI or ITS
environments. It is reasonable to assume that the refinements will be needed
to apply this methodology to the study of expertise and instructional software

evaluation.

REFERENCES

Ad-Ison, B. (1981). Problem solving and the development of abstract categories in

programming languages. Memory and Cognition, 9, 422-433,

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may increase
with expertise. Journal of Experimental Psychology: Leaning, Memory and
Cognition, 10, 484-495.

Adelson, B. (1985). Comparing natural and abstract categories: A case study from

computer science. Cognitive Science, 9, 417-430.

Adelson, B., & Soloway, E. (1985). The role of domain experience in software design,
IEEE Transactions on Software Engineering, 11 (11), 1351-1360.

Adelson, B., & Soloway, E. (1988). A model of software design. In M. T. H. Chi, R.
Glaser, & M. J. Farr (Eds.), The nature of expernse (pp. 185-128). Hillsdale, NJ:
Lawrence Erlbaum,

Abelson, H., Sussman, G. J., & Sussman, J. (1985). Structure and interpretation of

computer programs. Cambridge, MA: MIT Press.

Anderson, J. R., Farrell, R., & Surers, R., (1984). Learning to program in LISP.
Cognitive Science, 8, 87-129.

Balzert, H. (1988). Input-output devices for human-computer interaction. In H.J.
Bullinger, & R. Gunzenhauser (Eds.), Software ergonomics: Advances and
applications. Chichester, England: Ellis Horwood.

Bennett, J.(1972). The user interface in interactive systems. Annual Review of

Information Science and Technology, 7, 159-196.

Bennett, J. L. (1984). Managing to meet usability requirements: Establishing and meeting
software development goals. InJ. Bennett, D. Case, J. Sanelin, & M. Smith
(Eds.), Visual display terminals (pp. 164-184). Engelwood Cliffs, NJ: Prentice-
Hall.

157

Bonar, J, G., & Soloway, E. M. (1985). Programming knowledge: A major source of
misconceptions in novice programmers. Human-Comupter Interaction, 1 (2), 133-

161.

Bouchard, L. & Emirkanian, L. (1984). Use of Logo in the teaching of french. In R. J.
Sorkin (Ed.), Proceedings of the Logo 1984 National Conference (pp. 158-158).
Cambndge, MA: Massachusetts Institute of Technolog;,.

Breuleux, A. (1992). Educational and psychological assumptions in computer-based
learmng environments Unpublished manuscript. Montreal, McGull University,

Laboratory of Applied Cognitive Science.

Briskman, D. (1984). Logo and physics. In R.J. Sorkin (Ed.), Proceedings of the
Logo 1984 National Conference (pp. 158-158). Cambridge, MA: Massachusetts

Institute of Technology.

Brooks, R. (1977). Towards a theory of cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9, 737-751.

Bull, G. (1983). Talking with Logo: Logo in speech, hearing, and language. In R.J.
Sorkin (Ed.), Proceedings of the Logo 1984 National Conference (pp. 158-158).
Cambridge, MA: Massachusetts Institute of Technology.

Bullinger, H. J. (1988). Principles and illustrations of dialogue design. In H. J.
Bullinger, & R. Gunzenhauser (Eds.), Software ergonomics: Advances and
applications (pp. 13-25). Chichester, England: Ellis Horwood.

Burns P. K., & Bozeman, W. C. (1981). Computer-assisted instruction and mathematics
achievement: Is there a relationship? Educational Technology, 21 (10), 32-39.

Card, S. K., Moran, T. P., & Newell, A. (1980). Compu.°r text-editing: An information-
processing analysis of a routine cognitive skill. Cognitive Psychology, 12, 32-74.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum.

158

Carroll, J. M., & Mack, R. L. (1984). Learning to use a word processor: By doing, by
thinking, and by knowing. In M. Schneider (Ed.), Human factors in compraer
systems (pp. 13-52). Norwood, NJ: Ablex.

Carroll, J. M., & Olson, J. R. (Eds.) (1987). Mental models in human-computer
interaction: Research issues about what the user of software knows Washington,

DC: Natonal Academy Press.

Carver, S. M. (1987). Transfer of Logo debugging skill: Analvsis, instruction aned
assessment Unpublished doctoral dissertation, Carnegic-Mellon University,
Pittsburgh. PA.

Chapanis, A. (1981). Interactive human communication: Some lessons learned from
laboratory experiments. In B. Shackel (Ed.), Man-computer interaction Human
Sfactors aspects of computers and people. Rochville, Maryland: Syithoff and
Nordhoff.

Chapanis, A. (1991). Evaluating usability. In B.Shackel, & S.J. Richardson (Eds.),
Human-factors for informatics usabulity (pp. 21-38). Cambridge, England:
Cambridge University Press.

Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. Bower
(Ed.), The psychology of learning and motivation. (pp. 2-58). New York, NY:
Academic Press.

Chi, M. T. H,, Feltovich, P. & Glaser R. (1981). Categorisation and representation of
physics problems by experts and novices. Cogninve Science, 5, 121-152.

Clancey, W.], & Soloway, E. (1990). Artificial intelligence and learning environments:
Preface. Artificial Intelligence, 42, 1-6.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young
children’s cognition. Journal of Educational Psychology, 76, 1051-1058.

159

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship:
Teaching the craft of reading, writing, and mathemaucs. In L. B. Resnick (ed.),
Knowing, learning, and instruction. Hillsdale, NJ: Lawrence Erlbaum.

Corbett, A. T., & Anderson, J. R. (1991). LISP intelligent tutoring system: Research in
skill acquisinon. InJ H Larkin, & R W Chabay (Eds.), Computer-assisted
instruction and intelligent tutoring systems: Shared goals and complementary
approaches (pp 73-108). Hillsdale, NJ: Lawrence Erlbaum.

Criswell E. L. (1989) The design of computer-based instruction. New York, NY:

Macmuillan.

Dalbey, J., Tourmaire, F., & Linn M. C. (1986). Making programming instruction
cognitively den:anding: An intervening study. Journal of Research in Science

Teaching, 23.

Dale, E. (1984). Logo as a tool for studying physics. In R.J. Sorkin (Ed.), Proceedings
of the Logo 1984 National Conference (pp. 160-160). Cambridge, MA:

Massachusetts Institute of Technology.

deGroot, A. (1966). Perception and memory versus thought: Some old ideas and recent
findings. In B. Kleinmuntz (Ed.), Problem solving (pp. 19-50). New York, NY:

Wiley.

Detienne, F., & Soloway, D. (1989). Program understanding as an expectation driven
activity. In G. Salvendy & M. J. Smuth (Eds.), Designing and using human-
computer interfaces and knowledge-based systems. Amsterdam: Elsevier.

Diaper, D. (1989). Task analysis for knowledge descriptions (TAKD); the method and an
example. In D. Dwaper (Ed.). Task analysis for human-computer interaction (pp.
108-159). Chichester, England: Elhs Horwood.

Eason, K. D. (1981). A task-tool analysis of manager-computer interaction. In B.
Shackel (Ed.), Man-computer interaction: Human factors aspects of computer and
people (pp. 289-307). Rochville, Maryland: Sijithoff and Noordhoff.

160

Edwards, L. D. (1992). A Logo microworld for transformation geometry In C. Hovles,
& R. Noss (Eds.), Learnming mathematics and Logo (pp. 127-155). Cambndge,
MA: MIT Press.

Ericsson, K. A., & Smith, J. (1991). Prospects and limts of the emptncal study of
expertise: An introduction. In K. A. Ericsson, & J. Smuth (Eds.). Toward a
general theory of expertise (pp. 1-38). Cambridge, London: Cambridge

University Press.

Feuzeig, W., Papert, S., Bloom, M., Grant, R., & Soloman, C. (1989). Programming
languages as a framework for teaching mathemancs (Report, No., 1899).
Cambridge, MA: Bolt, Beranek, and Newman.

Frye, D., Littman, D. C., & Soloway, E. (1988). The nest wave of problems in ITS:
Confronting the “user issues" of interface design and system evaluation. In J.
Psotka, L. D. Massey, & S. A Mutter (Ed.), Intelligent tutoring systems (pp.
451-478). Hillsdale, NJ: Lawrence Erlbaum,

Gorman, H., & Bourne, L. E. (1983). Learning to think by learning LOGO: Rule
learning in third grade computer programmers. Bulletin of the Psychonomic
Sociery. 21, 165-167.

Gould, J. D. (1968). Visual factors in the design of computer controlled CRT displays.
Human Facrors, 10, 359-376.

Groen, G. (1978). The theoretical ideas of Piaget and educational nracuce. In P. Suppes
(Ed.), Impact of research on education: Some cases studies. Washinton, DC:

National Academy of Education.

Groen, G. (1984). The theories of Logo. In R. J. Sorkin (Ed.), Proceedings of the Logo
1984 National Conference (pp. 49-54). Cambridge, MA: Massachusetts Institute
of Technology.

Groen, G. (1985). The epistemics of computer based microworlds Paper presented at
2nd 1nternational conference on Artificial Intelhgence and Education University of

Exeter, England.

161

Groen, G., & Patel, V. (1988). The relationship between comprehension and reasoning in
medical expertise. In M. Chy, R. Glaser, & M. J. Farr (Eds), The nature of
expertise (pp. 287-310). Hillsdale, NJ: Lawrence Erlbaum.

Gurtner, J. L. (1992). Between Logo and mathematics. A road of tunnels and bridge. In
C. Hoyles, & R. Noss (Eds.), Learming mathematics and Logo (pp. 247-268).
Cambndge, MA MIT Press

Hannatin, M., & Peck, K. L. (1988). The design, development, and evaluation of
instructional software New York, NY: Macmillan.

Harel, . (1988). Software design for learning Chilren’s construction of meaning for
fractions and Logo programming. Unpublished doctoral dissertaton, Cambnidge,
MA: The Media Technology Laboratory, Massachusetts Institute of Technolegy.

Hayes, J. R., & Flower, L. S. (1980). Identifying the organization of writing proceses.
InL. W. Gregg, & E. R. Steinberg (Eds.), Cognitive processes in writing.
Iillsdale, NJ: Lawrence Erlbaum.

Hillel, J. (1992). The notion of varable in the context of turtle graphics. In C. Hoyles, &
R. Noss (Eds.), Learning mathematics and Logo (pp. 11-36). Cambridge, MA:
MIT Press.

Howe, J. A. M., O'Shea, T., & Plane, F. (1979). Teaching mathematics though Logo
programming: An evaluation study. In R. Lewis & E. D. Tagg (Eds.), Computer-
assisted learming—scope, progress and limits. Amsterdam: North-Holland.

Howe, J. A. M., Ross, P. M., Johnson, K. R, Plane, F., & Inglis, R. (1982). Teaching
mathematics through programming in the classroom. Computers in Education, 6,
85-91.

Hoyles, C. & Noss, R. (1989). The computer as a catalyst in children's proportion
strategies. Journal of Mathematical Behaviour, 8, 53-75.

162

Jeffries, R. (1982). A Comparison of debugging behaviour of expert and novice
programmers. Paper presented at the annual meeting of the American Educational

Research Association.

Jeffries, R., Turner, A. A. Polson, P. G. & Atwood. M. E. (1981). The processes
involved in designing software, In J. R. Anderson (Ed.), Cognitive skills and their
acquisinon (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading. From eyes fixations to
comprehension. Psychology Review, 87, 329-354.

Kahney, H. (1982). What do novices programmers know about recursion? (Technical

Report No. 5). Human Computer Research Laboratory.

Kahney, H., & Eisenstadt, M. (1982). Programmers' mental models of their
programming tasks: The interaction of real-world knowledge and programming
knowledge. Proceedings of the fourth annual conference of the Cogniive Science
Society, Ann Arbor, ML

Klahr D., & Carver, S. M. (1988). Cognitive objectives in Logo debugging curriculum.
Instruction, learming, and transfer. Cognitive Psychology, 20, 362-404.

Kulik, J. A. (1981). Integrating findings from different levels of instruction Paper
presented at the annual meeting of the Amenican Educational Research Association,
Los Angeles, CA.

Kulik, J. A., & Kulik, C. C. (1987). Review of recent research literature on computer-
based instruction, Contemporary Educational Psychology, 12, 222-23(),

Kurland, D. M., & Mawby., & Cahir, N. (1984). The development of programmung
expertise. Paper presented at the annual meeting of the American Educational
Research Association, New Orleans, LA.

163

Kurland, D. M., Clement, C. A., Mawby, R., & Pea, R. D. (1987). Mapping the
cogmtive demands of learning to program. In R. D.Pea, & K. Sheingold (Eds.),
Mirrors of munds Patterns of experience in educational computing (pp. 103-127).

Norwood, NJ* Ablex.

Kurland, D. M., Pea, R. D. (1985). Children’s mental models of recursive Logo
problems. Journal of Educational Computing Research, 1, (2), 235-243.

Kurland, D. M,, Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the
development of programming ability and thinking skills in high school students.
Journal of Educanonal Computing Research, 2, (4), 429-459.

Kynigos, C. (1992). The turtle metaphor as a tool for children's geometry. In C. Hoyles,
& R. Noss (Eds.), Learning mathematics and Logo (pp. 97-126). Cambridge,

MA: MIT Press.

Ledgard, H. F., Whiteside, J. A. Singer, A., & Seymour, W. (1980). The natural
language of interactive systems. Communications of the ACM., 23, 556-563.

Le Gallais, J., Shapiro, M., & van Gelder, S. (1988). A reacher’s tutorial for
LogoWriter ™, Unpublished manuscript, McGill University, Faculty of

Education, Montreal.

Lehrer, R., Randle, L., & Sancilio, L. (1989). Learning preproof geometry with Logo.
Cogmnition and Instruction, 6, 159-184.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classroom. Educational Researcher, 14, 9-16.

Luttlefield, J., Delclos, V. R., Bransford J. D., Calyton, K. N., & Franks, J. J. (1989).
Some prerequisites for teaching thinking: Methodological issues in the study of
Logo programmung. Cognition and Instruction, 6 (4), 331-366.

Loethe, H. (1992). Conceptually defined turtles. In C. Hoyles, & R. Noss (Eds.),
Learning mathematics and Logo (pp.55-95). Cambridge, MA: MIT Press.

164

Mandinach, E., & Linn, M C. (1989). Cognitive consequences of programmung
Achievements of experienced and talented students. Journal of Educanonal
Computing Research.

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Leaming to program and learning to
think: What’s the connection? Communications of the ACM, 29 (7), 605-610.

McKeithen, K. B., Reitman, J. S,, Rueter, H. H., & Hirtle, C. (1981). Knowledge
organization and skill deferences in computer programmers. Cogmitive
Psychology, 13, 305-325.

Newell, A. (1980). Reasoning, problem solving, and decision processes: The problem
space as a fundamental category Hillsdale, NJ: Lawrence Erlbaum.

Nickerson, R. S. (1982). Computer programming as a vehicle for teaching thinking skills.
Thinking: The Journal of Philosophy for Children, 4, 42-48.

Niemiec, R., Samson, G., Weinstein, T., & Walberg, H. J. (1987). The effects of
computer based instruction in elementary schools: A quantitative synthesis Journal
of Research on Computing in Education, 20 (2), 85-103

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A L.
Stevens (Eds.), Mental rnodels. (pp. 7-14). Hillsdale, NJ: Lawrence Erlbaum.

Noss, R., & Hoyles, C. (1992). Looking back and looking forward. In C. Hoyles, & R.
Noss (Eds.), Learning mathematics and Logo (pp.431-468). Cambridge, MA:
MIT Press.

Paige, J. M., & Simon, H. A. (1966). Cognitive processes tn solving algebra word
problems. In B. Kleinmuntz (Ed.), Problem solving (pp. 119-151). New York,
NY: Wiley.

Papert, S. (1972a). Teaching children thinking. Programmed Learning and Educational
Technology, 9 (5), 245-255.

165

Papert, S (1972b). Teaching children to be mathematicians versus teaching about
mathematics. /nternational Journal of Mathematical Education in Science and
Technology 3, 249-262. London: Taylor Francis.

Papert, S. (1980). Mindstorms children, computers, and powerful ideas. New York,
NY. Basic Books Inc.

Papert, S. (1986). Constructiontsm* A new opportunity for elementary science education.
A proposal to the national science foundation. Cambridge. MA: The Media

Technology Laboratory, MIT.

Pea, R. D, & Kurland, D. M. (1983). Logo programming and the development of
planning skills (Technical report No. 16). New York, NY: Bank Street College of

Education,

Pea, R. D, & Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2 (2), 137-168.

Pennington, N. (1982). Cognitive components of expertise in computer programming: A
review of the literature (Technical report No. 46). Ann Arbor, MI: University of
Michigan, Center for Cognitive Science.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs Cognitive Psychology, 19, 295-341.

Pirolli, P. L.(1986) A cogmtive model and computer tutoring for recursion. Human-

Computer Interaction, 2, 319-335.

Pirolli, P. L., & Anderson, J. R. (1985). Problem solving by analogy and skill acquisition
in the domain of programrung. Unpublished doctoral dissertation, Carnegie

Mellon University.

Polson, P G., Lews, C,, Rieman, J., & Wharton, C. (1991). Cognitive walkthroughs:
A method for theory-based evaluation of user interfaces (Technical report).

University of Colorado.

166

Psotka, J., Massey, D., & Mutter, S. A. (1988). Intelligent tutoring svstemy Lessony
learned Hillsdale, NJ: Lawrence Erlbaum.

Rampy, L. M. (1984). The problem solving style of fifth graders of using Logo. Papet
presented at the meeting of American Educational Research Association, New

Orleans.

Ravden, S. J,, & Johnson, G. I, (Eds.). (1989). Evaluanng usability of human-computer
interfaces. Chichester, England: Ellis Horwood.

Rist, S. R. (1986). Plans in programmng: Definition, demonstration, and development
In E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers.

Rist, S. R. (1989). Schema creation in programming. Cognitive Science, 1.3, 389-414

Roblyer, M. D., Casting, W. H,, & King, F. J. (1988). Assessing the impact of
computer-based instruction: A review of recent research. Computers in the
Schools, 5, (3/4), 1-149,

Roblyer, M. D., & King, F. J. (1983). Reasonable expectations for computer-based
instruction in basic reading skills Paper presented at the annual conference of the

Association for Educational Communicatons and Technology New Orleans, LA,

Rouse, W. B, Rouse, W. B., & Pellegrino, S.J (1980) A rule-based model of human-
problem solving performance in fault diagnosis tasks. /EEE Transactions on
System, Man, and Cybernetics, SMC-10, 366-376.

Samurcay, R. (1985). The concept of vanable in programming: Its meaning and use
program-solving by novice programmers. Educational Studies in Mathemaucs, 10,
(2), 143-161.

Samson, G. E., Niemiec, R. Weinstein, T., & Walberg, H. J. (1985). [ffects of
computer-based instruction on secondary school achievement A quantuative
synthesis. Paper presented at the annual meeting of the American Educational

Research Association.

167

Schiele, F., & Green, T. (1990). HCI formalisms and cognitive psychology: The case of
task-action grammar. In M. Harrison, & H. Thimbleby (Eds.), Formal methods in
human-compute interaction (pp. 9-62). Cambridge, UK: Cambridge University

Press.

Shackel, B. (1984). Designing for people in the information age. In B. Shackel (Ed.),
Human-compuiter interaction-INTERACT'84 (pp. 9-18). Amsterdam: North-

Holland.

Shackel, B. (1991). Usability-context, framework, definition, design and evaluation. In
B. Shackel, & S. J. Richardson (Eds), Human-factors for informatics usability
(pp. 21-38). Cambnidge, UK: Cambridge University Press.

Shneiderman, B. (1976). Exploratory expeniments in programmer behaviour.
International Journal of Computer and Information Science, 5, 123-143.

Shneiderman, B. (1980a). System message design guidelines and experimental results. In
A. Badre & B. Shneiderman (Eds.), Directions in human-computer interaction.

Norwood, NJ: Ablex.

Shneiderman, B. (1980b). Software psychology: Human factors in computer and
information systems Cambridge, MA: Winthrop.

Shneiderman, B (1987). Designing the user interfuce’ Strategies for effective human-
computer interaction Reading, MA: Addison-Wesley.

Shneiderman, B., & Mayer, R. (1976). Syntactic/semantic interactions in programmer
behaviour: A model and experimental results. /nternational Journal of Computer

and Information Science, 7, 219-239,

Swegler, R. S. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence

Erlbaum,.

Small, D. W., & Weldon, L. J. (1977). The efficiency of retrieving information from
computers using natural and structured query languages (Report SAI-78-655).
Arlington, VA: Science Applications.

168

Sleeman, D., & Brown J. S. (1982). Intelligent tutoring svstems. London: Acadenuc

Press.

Soloway, E (1984). From problems to problems via plans The content and structure of
knowledge for introductory LISP programming (Technical report No. 21).
Cognition and programming project, New Haven, Connecticut: Yale University,

Department of Computer Science.

Soloway, E., Adelson, B., & Ehrlich, K (1988) Knowledge and processes in the
comprehension of computer programs. In M. T. H. Chy, R. Glaser, & M. J Fan
(Eds.), The nature of expertise (pp. 185-128) Hillsdale, NJ: Lawrence Erlbaum.

Soloway, E. Bonar, J., Ehrlich, K. (1983). Cognitive strategies and looping constructs:
An empinical study. Communications of ACM, 26, (11),. 853-861.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. /EEE
Transactions on Software Engineering, 5, 595-609.

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A goal plan analysis of buggy Pascal
programs. Human-Computer Interaction, 1 (2), 163-207.

Statz, J. (1973). Problem solving and Logo (Final report of Syracuse Umversity Logo
project). Syracuse University, New York.

Sutherland, R. (1992). What is algebraic about programming in Logo” In C. Hoyles, &
R. Noss (Eds.), Learning mathematics and Logo (pp. 37-54). Cambndge, MA:
MIT Press.

VanLehn, K. (1988). Toward a theory of impasse-driven Learning. InH. Mandle & A.
Lesgold (Eds.), Learning issues for intelligent tutoring systems. New York, NY:

Springer Verlag.

VanLehn, K. (1990). Minds bugs: The origins of procedural misconceptions Cambridge,
MA: MIT Press.

169

Vinsonhaler, J. F., & Bass, R. K. (1972). A summary of ten major studies on CAI drill
and practice. Educational Technology, 29-32.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, CA: Morgan

Kaufmann.

Willett, J. B., Yamashita, J. M., & Anderson, R. D. (1983). A meta-analysis of
instructional systems applied in science teaching. Journal of Research in Science

Teaching, 20 (5), 405-417.

Zoltan, E., & Chapnis, A. (1982) What do professional persons think about computers?
Behaviour and Informanon Technology, 1, 55-68.

