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Preface

This manuscript-based thesis is comprised of six chapters: an introduction, a comprehensive

literature review, three chapters corresponding to individual manuscripts, and a conclusion.

At the end of the thesis, a single appendix is presented which is followed by a complete

bibliography. Chapters 3, 4, and 5 provide methodological contributions to both the late

phase randomized controlled trial literature and the early phase dose-finding trial literature.

Furthermore, they are united by the central theme of this thesis, which is concerned with

incorporating covariate information into Bayesian adaptive clinical trials. Each of these

chapters begins with a preamble that briefly introduces the context of the manuscript and

identifies the knowledge gap it seeks to fill. Each manuscript includes a real-world example

which demonstrates a realistic application of its corresponding proposed method.

The introduction and literature review (Chapters 1 and 2) were conceived and written by

James Willard (JW). These chapters were improved through revision following an insightful

discussion with, and helpful comments from, Shirin Golchi (SG) and Erica E.M. Moodie

(EEMM). The conceptualization of the work contained in Chapter 3 resulted from a series

of discussions with SG and EEMM. JW was responsible for deriving the methods, designing

and implementing the simulation study and application, and writing the draft manuscript.

SG and EEMM provided substantial guidance and assistance in deriving the methods and

additionally helped verify and interpret the results obtained from the simulations. SG and

EEMM also provided helpful edits for the chapter. The methods proposed in Chapter 4 were

conceptualized by JW, SG, EEMM, and Brad Carlin (BC). They were defined as part of JW’s

internship at a host partner from industry, where BC and Bruno Boulanger (BB) were the

industry contacts. JW derived the methods, designed and performed the simulation study

and application, and wrote the draft manuscript. BB provided valuable input regarding the

simulation study. The work was advised and edited by SG, EEMM, and BC. The ideas in
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Chapter 5 were conceptualized by JW, SG, and EEMM. JW derived the methods, designed

and performed the simulation study and application, and wrote the draft manuscript. SG

and EEMM advised and edited the work in the chapter. The conclusion of this thesis was

conceived and written by JW and was edited by SG and EEMM.
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Abstract

Bayesian adaptive clinical trials allow for predetermined changes to the trial design based

on evidence provided by the accumulating data. Early phase trials assess the safety and

efficacy profiles of first-in-human doses of an experimental intervention, whereas late phase

trials seek to confirm the efficacy of an experimental intervention. It is common in both

phases of trials to collect information on many covariates, though less common to utilize

this information within the trials. Through three manuscripts, this thesis investigates the

benefit of using this additional information in both early phase dose-finding trials for com-

bination therapies and late phase confirmatory trials. In the first manuscript, I focus on

late phase confirmatory trials, where I propose adjusting for covariates known to be at least

moderately associated with the outcome. Adjusted and unadjusted analyses are described

within the context of collapsibility and non-collapsibility of commonly used estimands in

clinical trials, and a tutorial for obtaining marginal treatment effect estimates from adjusted

analyses is provided. It is shown that covariate adjustment increases the power and proba-

bility of stopping trials early, and decreases expected sample sizes, demonstrating covariate

adjustment leads to trials which stop earlier and more often. This is followed by a second

manuscript which proposes using Bayesian optimization methods for early phase personal-

ized dose-finding trials with combination therapies, where individual patient characteristics

are used to recommend patient-specific optimal dose combinations. Focus is placed on a

minimal toxicity setting where formal dose escalation rules are not required. The approach

demonstrates the feasibility of a personalized approach for dose-finding trials despite the

limited sample sizes which are common in early phase trials. The third and final manuscript

generalizes this approach to the setting of higher-grade toxicities, where a formal dose es-

calation scheme is introduced and where toxicities are incorporated into the personalized

dose-finding strategy. In summary, this thesis showcases the benefit of utilizing additional

covariate information in the context of Bayesian adaptive clinical trials and seeks to promote

more widespread use of the methods proposed herein.
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Abrégé

Les essais cliniques adaptatifs bayésiens permettent d’apporter des modifications prédéter-

minées à leurs conceptions sur la base des preuves fournies par les données qui s’y accumu-

lent. Les essais de phase précoce évaluent les profils de sécurité et d’efficacité des premières

doses d’une intervention expérimentale administrées à l’homme. Les essais de phase tardive

cherchent quant à eux à confirmer l’efficacité d’une intervention expérimentale. Dans les

deux phases d’essais, il est courant de recueillir des informations sur de nombreuses vari-

ables, mais il est moins courant d’utiliser ces informations dans le cadre de ceux-ci. Au

travers de trois manuscrits, cette thèse étudie les avantages associés à l’utilisation de ces

informations supplémentaires à la fois dans la recherche de dose pour les thérapies com-

binées en phase précoce que dans les essais de confirmation en phase tardive. Le premier

manuscrit porte sur les essais de confirmation de phase tardive, où il est proposé de prendre

en compte des variables connues comme étant au moins modérément associées au résultat.

Des analyses ajustées et non ajustées sont décrites dans le contexte de la collapsibilité et

de la non-collapsibilité des estimateurs couramment utilisés dans les essais cliniques, et un

tutoriel pour l’obtention d’estimations de l’effet marginal du traitement à partir d’analyses

ajustées est fourni. Il y est démontré que l’ajustement augmente la puissance et la probabil-

ité d’arrêter les essais précocement et diminue les tailles d’échantillon attendues, démontrant

que l’ajustement conduit à des essais qui s’arrêtent plus tôt et plus souvent. Il est suivi d’un

second manuscrit qui propose d’utiliser des méthodes d’optimisation bayésienne lors de la

phase précoce de recherche de doses personnalisées pour des thérapies combinées, où les car-

actéristiques individuelles du patient sont utilisées pour recommander des combinaisons de

doses optimales spécifiques au patient. L’accent y est mis sur un cadre de toxicité minimale

où les règles formelles d’escalade des doses ne sont pas nécessaires. Cette méthode démontre

la faisabilité d’une approche personnalisée lors d’essais de détermination de la dose, malgré

la taille limitée des échantillons fréquente dans les essais de première phase. Le troisième et

dernier manuscrit généralise cette approche dans le cadre de toxicités plus importantes, où
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un schéma formel d’escalade de dose est introduit et où des toxicités sont incorporées dans

la stratégie personnalisée de recherche de dose. En résumé, cette thèse met en évidence les

avantages de l’utilisation d’informations supplémentaires dans le contexte d’essais cliniques

adaptatifs bayésiens et cherche à promouvoir une utilisation plus répandue des méthodes

proposées ici.
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Chapter 1

Introduction

This thesis is concerned with the incorporation of covariate information into Bayesian adap-

tive clinical trials. I focus on both late phase randomized controlled trials (RCTs) and early

phase dose-finding trials, and consider how utilizing covariate information might be beneficial

within each.

In any clinical trial, it is common to collect patient information which is not directly related to

treatment assignment or response. This thesis argues that utilizing this additional covariate

information within the scope of the trial is beneficial. In conventional, fixed size RCTs,

adjustment for variables known to be associated with the outcome has been shown to increase

statistical power (e.g., Benkeser et al. (2021)). These power increases have recently been

shown in more flexible frequentist designs, such as group sequential and information adaptive

designs (Van Lancker et al., 2022) as well as for adaptive multi-arm designs (Lee et al., 2022).

Despite this benefit, covariate adjustment has not been characterized within flexible Bayesian

designs which include adaptive stopping rules. Furthermore, the impact of combining prior

information with covariate adjustment has not been previously explored.

In early phase dose-finding trials, the additional covariate information may be used to tai-
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lor doses to individual patients. This personalized approach to dose-finding recognizes that

patient response heterogeneity may exist in the population, which stands in stark contrast

to standard dose-finding methods which assume a single dose applies equally well to all

patients. Extending many standard parametric dose-finding approaches to the personal-

ized setting is challenging, due to the limited sample sizes but potentially large number of

treatment-covariate interaction terms which must be estimated. These estimation challenges

are exacerbated in the combination therapy setting, where two or more dosing agents are

combined. Mozgunov et al. (2022) has considered dual-agent personalized dose-finding, but

where the patient-specific dose of one of the agents is selected externally by clinicians. The

literature for personalized dose-finding trials where tailoring is performed with respect to

multiple dosing agents remains underdeveloped.

In this thesis, I build upon the previous statistical literature investigating covariate adjust-

ment in late phase RCTs, and show how it improves the operating characteristics of Bayesian

designs which include adaptive stopping rules. I also propose adapting methods from the

Bayesian optimization literature to the setting of personalized dose-finding trials with com-

bination therapies, which permits multiple dosing agents to be tailored to individual patients

despite the small sample sizes in these trials. In Chapter 2, I review the most important

concepts which are required to understand the methods that are developed in the chapters

that follow. Specifically, I discuss conducting adaptive clinical trials under the Bayesian

paradigm, and describe key features of both late phase RCTs and early phase personalized

dose-finding trials.

In Chapter 3, I describe covariate adjustment in the context of late phase Bayesian adaptive

RCTs. I discuss the collapsibility and non-collapsibility of estimands for continuous, binary,

and time-to-event endpoints. As is common in RCTs, I focus on marginal estimands and pro-

vide a tutorial for obtaining marginal posterior estimates from adjusted analyses. Through

simulation, I compare the impact of covariate adjustment and the incorporation of different
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strengths of prior information for the covariate effects on the operating characteristics of

trials with different maximum sample sizes and endpoints. I then demonstrate the benefit of

covariate adjustment in a design which investigates the effectiveness of oral therapies against

mild to moderate COVID-19 infection in individuals discharged from Canadian Emergency

Departments.

In Chapter 4, I consider early phase Bayesian adaptive personalized dose-finding trials for

combination therapies under a minimal toxicity setting. The sequential dose-finding algo-

rithm proposed utilizes methods from the Bayesian optimization literature. Specifically, I

propose estimating the dose-efficacy surface using a Gaussian Process (GP) model, and then

define a sequential search policy using an acquisition function which is conditioned on pa-

tient covariate patterns. Through simulation, I investigate and contrast the performance of

both the personalized and standard dose-finding approaches under scenarios which either

include or exclude patient response heterogeneity. I then compare a set of proposed designs

for an industry-sponsored problem which is concerned with a design for the development of

an intraocular implant that combines two topical agents.

In Chapter 5, I generalize the personalized dose-finding approach of Chapter 4 to the set-

ting of higher-grade toxicities. Under this scenario, toxicity information must be formally

incorporated into the dose-finding. To do so, I assume the dose-efficacy and dose-toxicity

surfaces are conditionally independent given dose, and estimate them using independent GP

models. I define a sequential search policy through an acquisition function which includes

patient-specific toxicity constraints. Furthermore, I propose a dose-escalation scheme to col-

lect initial patient responses in the presence of potentially toxic doses. Through simulation,

I assess the performance of both the personalized and standard approaches in the presence

and absence of patient response heterogeneity, and compare a set of proposed designs for the

development of a dual-agent pharmacotherapy for obstructive sleep apnea.

Chapters 3 to 5 were written as individual manuscripts. Chapter 3 is published in Statistical
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Methods in Medical Research. Chapters 4 and 5 are currently under review in statistical

journals. An effort has been made to preserve the notation across chapters. I end this thesis

with a conclusion, which reviews the methodological contributions made by the thesis, dis-

cusses important limitations of the proposed methods, and describes extensions and possible

new directions for future work.
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Chapter 2

Literature review

In this chapter, I discuss the core ideas and concepts which are required to understand the

content of this thesis. First, I review clinical trials and illustrate some of the challenges asso-

ciated with modern day drug development. I then introduce Bayesian adaptive clinical trials,

a flexible class of trials on which this thesis focuses, and in which the posterior distribution

is the primary quantity of interest. I review the adaptive stopping rules used in these trials

and discuss how they satisfy the likelihood principle. In a third section, I focus on late phase

RCTs where I review how covariate adjustment has been used to improve trial operating

characteristics and to permit a personalized approach toward medicine. After this, I shift

focus to early phase designs and describe historical approaches toward dose-finding and the

challenges of evaluating combination therapies in a personalized medicine setting. A final

section discusses Bayesian optimization within the context of early phase dose-finding.

2.1 Clinical trials

Clinical trials help researchers address scientific questions about an experimental interven-

tion (hereafter referred to as a “treatment”, “therapy”, or “drug”) in human populations.

Clinical experimentation in human beings has a long history, with Bull (1959) tracing some

5



of the earliest recorded examples back to the medical practices of the ancient Egyptians

around 2,000 B.C.E. Many core principles now commonly used in clinical trials, e.g., use

of a control group and randomization, were only introduced within the past few hundred

years. For example, one of the earliest clinical trials which contained an untreated control

group is from 1747, where the surgeon James Lind compared several treatments for scurvy,

a disease that is caused by severe vitamin C deficiency and that was highly prevalent among

sailors at the time (Lind, 1753). While this trial did contain a control group, it was not

randomized. Randomization would be introduced to experimental design by Ronald Fisher

in 1923, through his work in agricultural field experiments (Fisher and Mackenzie, 1923).

Confirmatory clinical trials would eventually adopt these methods, with one of the earliest

examples of an RCT being performed by the Medical Research Council of the United King-

dom in 1948, where streptomycin was investigated as a potential treatment for pulmonary

tuberculosis, a potentially fatal infection that primarily affects the lungs (Medical Research

Council, 1948). One member of the trial’s committee, Sir Austin Bradford Hill, would be-

come a major leader in the development of modern day clinical trials, eventually producing

a highly influential text in the field, Statistical Methods in Clinical and Preventive Medicine

(Bradford Hill, 1962).

Over time, the continued development of clinical trials have led them to become consid-

ered as the “gold standard” method for evaluating experimental interventions. Modern day

clinical trials are typically performed through either the frequentist (e.g., Pocock (1983)) or

Bayesian (e.g., Spiegelhalter et al. (2004)) paradigm of statistics, though in this thesis, I

focus specifically on trials which utilize the latter. Adopting a Bayesian approach in clinical

trials is advantageous since it naturally accommodates the sequential nature of adaptive de-

signs, it provides valid statistical inference even in small sample sizes (Bernardo and Smith,

1994), and it facilitates the incorporation of prior information and/or historical controls into

a trial’s analysis (e.g., Ibrahim and Chen (2000)). Prior information may come in the form

of clinical experience, previous animal or clinical studies, and possibly from biology in the
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form of pharmacokinetic/pharmacodynamic information (e.g., Gelman et al. (1996)). The

United States Food and Drug Administration (FDA) often categorizes clinical trials into four

distinct phases, each of which has different objectives, is typically of a different size, and

has different success rates as described in the following. Trials in Phase 1 seek to discover

treatment dosages that are well tolerated (i.e., safe) and that may suggest some benefit for

further study. These trials are typically not randomized and enroll roughly 20-100 partici-

pants, with approximately 70% of interventions moving on to Phase 2 (United States Food

and Drug Administration, 2018b). Trials in Phase 2 continue to collect safety information

and investigate whether the experimental treatment suggests efficacy, though do not include

enough participants to determine this definitively. These trials may or may not be ran-

domized and enroll up to several hundred participants, with roughly 33% of interventions

moving on to Phase 3 (United States Food and Drug Administration, 2018b). Trials in Phase

3 are typically randomized and serve to confirm the efficacy of an experimental treatment.

These trials also permit a greater assessment of a treatment’s safety, as they typically range

from several hundred to tens of thousands of participants depending on the type of inter-

vention and outcome of interest, and often last for several years or more. Approximately

25-30% of treatments are approved at this stage and may be monitored over time in Phase

4 Post-Market Safety Monitoring studies (United States Food and Drug Administration,

2018b).

Requiring experimental treatments to undergo evaluation through the phases described above

makes drug development an expensive, time-consuming process (Avorn, 2015). As trials are

additionally plagued by high failure rates, there is growing interest in making this process

more efficient and successful overall (Kimko and Pinheiro, 2015). One proposed solution

toward this end is increasing the utilization of more flexible adaptive designs, which can

make trials more efficient while preserving the (frequentist) trial operating characteristics

commonly required by regulators (e.g., Type 1 error rate and statistical power; Pinheiro

et al. (2011)). Contrasted with fixed Bayesian designs where the trial plan and sample size

7



are specified in advance (Chaloner and Verdinelli, 1995), Bayesian adaptive designs permit

pre-defined trial changes based upon the accumulating data (Berry et al., 2010). In this

thesis, I specifically focus on Bayesian adaptive designs.

2.2 Bayesian adaptive clinical trials

Bayesian adaptive clinical trials are sequential in nature and utilize the accumulating data

to entertain a variety of adaptations, which follow pre-specified rules and may include adap-

tive allocation, adaptive sampling, adaptive stopping, and adaptive enrichment (Giovagnoli,

2021). Adaptive allocation rules change the randomization procedure over the course of the

trial. For example, response adaptive randomization updates the allocation probability to a

particular treatment arm based on previously observed responses, with the goal of assign-

ing more participants to better performing treatments (e.g., Berry and Eick (1995); Thall

and Wathen (2007)). Adaptive sampling rules may permit sample size re-estimation at an

interim analysis which can be useful for trials with long accrual periods and for which great

uncertainty exists regarding the parameter estimates used for trial design and planning (e.g.,

Uemura et al. (2017)). Adaptive stopping rules, to be reviewed in detail below, permit the

trial to stop early for any combination of safety, futility, or efficacy of treatment. Adaptive

enrichment designs may permit changes to eligibility criteria, add or drop treatments, or

assess the effectiveness of therapies within subgroups of the population that appear more

likely to benefit from them (see Thall (2021)).

To further improve efficiency, so-called “seamless” Bayesian adaptive designs have been pro-

posed which combine participant data across, and permit transitioning between, several trial

phases in a single, unified study. Seamless designs have been proposed to combine Phases

1 and 2 (see Yuan et al. (2016b)), Phases 2 and 3 (see Thall (2008)), and even Phases 1,

2, and 3 (e.g., Chapple and Thall (2019)). Unless explicitly required, I do not focus on the

specific distinctions between trial phases, but will instead use early phase to broadly refer

to Phases 1 or 2 and late phase to refer to Phase 3. I do not consider Phase 4 clinical trials

8



in this thesis. Recently, so-called Bayesian adaptive “master protocol” designs have been

proposed to assess one or more targeted therapies in one or more diseases or subtypes under

a single clinical trial protocol, and are generally divided into “umbrella”, “basket”, or “plat-

form” trials (Woodcock and LaVange, 2017). Trials of these types may facilitate advances

in the field of personalized medicine, to be reviewed in detail in the next section. A prime

example of the flexibility of adaptive designs is the I-SPY2 platform trial, which investigates

targeted therapies for early-stage breast cancer and is still ongoing at the time of writing

(Barker et al., 2009). The I-SPY2 protocol adds new treatments as they become available,

adaptively stops enrollment in treatments which are deemed to be ineffective, adaptively

randomizes participants to better performing treatment arms based on their tumor subtype,

and “graduates” (i.e., promotes to a later phase of study) treatments which are deemed likely

to be beneficial.

2.2.1 Posterior and posterior predictive distributions

The decision to perform a specific adaptation is governed by predefined decision criteria,

which are commonly defined as posterior or posterior predictive probability statements about

a parameter of interest. The posterior distribution is a central focus in Bayesian statistics

and represents one’s uncertain beliefs about unknown parameters of interest, θ, in light of

all data which have been previously observed, y. To obtain the posterior distribution, we

represent our initial beliefs about θ in the form of a prior distribution p(θ). These initial

beliefs are then updated by data through the likelihood function, p(y | θ). The updated

beliefs are represented by the posterior distribution, p(θ | y), which is obtained using Bayes’

Theorem (Gelman et al., 2014):

p(θ | y) = p(y | θ)p(θ)∫︁
θ
p(y | θ)p(θ)dθ

. (2.1)

The denominator to the right of the equality serves as a normalizing constant to ensure the

posterior is a properly scaled distribution. The posterior predictive distribution represents
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one’s uncertain beliefs about the value of a future observation y∗ given the previously ob-

served data. This distribution, denoted by p(y∗ | y), fully accounts for the uncertainty in θ

when predicting y∗ by marginalizing over the posterior distribution of θ:

p(y∗ | y) =
∫︂
p(y∗ | θ)p(θ | y)dθ. (2.2)

Since the decision criteria determining whether or not to execute a specific adaptation are

typically functionals of these distributions, the performance of a specific design often depends

on how well they are estimated. When these distributions are not known analytically, they

must be approximated, with one of the most commonly used approximation methods being

Markov chain Monte Carlo (e.g., Gelfand and Smith (1990)).

2.2.2 The likelihood principle

Early proponents of the Bayesian paradigm advocated for its use in sequential trials because it

is consistent with the likelihood principle (e.g., (Cornfield, 1966)). I denote the likelihood by

Ly(θ), viewed as a function of unknown parameter θ, with y representing the observed data.

The likelihood principle states that Ly(θ) contains all information from an experiment that is

relevant for performing inference on θ, and that two likelihood functions which differ only by

a scalar multiple should yield the same inference (Berger and Wolpert, 1988). This means

that the same conclusions should be reached from two samples which yield proportional

likelihood functions. If one accepts the likelihood principle, then inference should not depend

on the stopping rule used to collect the data. Bayesian adaptive clinical trials which employ

early stopping rules are consistent with this principle. To illustrate this idea, I consider the

following example adapted from Berry (1987).

Suppose there is a clinical trial which assigns two treatments, A and B, to each participant.

After undergoing both treatments, each participant selects a preferred one, where ties are

not permitted. Let θ denote the population proportion preferring treatment A and, given

θ, assume the participant responses are random and independent. Assume the following 10
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responses are observed: y = (A,B,A,A,A,A,A,B,A,A). The likelihood function is then

Ly(θ) ∝ θ8(1− θ)2. Now assume two different stopping rules were used to collect y: 1) stop

sampling after 10 participant responses and 2) stop sampling once the absolute difference

in the number of participant preferences for A and B is 6 (i.e., |A− B| = 6). Under either

stopping rule, the posterior distribution for θ will depend on the data y only through Ly(θ).

Thus, if the same prior distribution for θ is used, Bayesian adaptive trials will yield the

same posterior distribution regardless of the stopping rule used, remaining consistent with

the likelihood principle.

Contrast this with a frequentist analysis of the same sequential experiment, employing the

same stopping rules but analyzing the data using p-values. Recall the p-value is the prob-

ability under the null hypothesis of obtaining a result as extreme or more extreme than

what is observed. Consider null and alternative hypotheses of the form H0 : θ = 1/2 and

H1 : θ > 1/2 and let Yi be an indicator function for participant i preferring A. Under stop-

ping rule (1), the p-value is obtained as the tail probability of a Binomial(n = 10, θ = 1/2)

distribution:

p-value = P

(︄
10∑︂
i=1

Yi ≥ 8

)︄
=

[︃(︃
10

8

)︃
+

(︃
10

9

)︃
+

(︃
10

10

)︃]︃(︃
1

2

)︃10

=
56

1024
.

Under stopping rule (2), the p-value is the probability under the null of 8 A’s and 2 B’s (i.e.,

what is observed), 7 A’s and 1 B, or 6 A’s in a row:

p-value =

[︃(︃
6

1

)︃(︃
2

1

)︃
+

(︃
6

2

)︃]︃(︃
1

2

)︃10

+

(︃
6

1

)︃(︃
1

2

)︃8

+

(︃
6

0

)︃(︃
1

2

)︃6

=
67

1024
.

We see that different stopping rules lead to different inference under a frequentist p-value

approach, a clear violation of the likelihood principle.

2.2.3 Adaptive stopping rules

The desire for designs with improved efficiency but which remained consistent with the like-

lihood principle motivated early work in adaptive stopping rules for Bayesian clinical trials.
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Some of these designs were decision-theoretic in nature, and proposed determining the op-

timal (sequential) stopping rules as those which maximized the expected utility of the trial.

Anscombe (1963) describes a decision-theoretic futility stopping rule for normally distributed

data which explicitly considers the possibility of incorrectly treating future patients. Berry

(1987) asks if, in addition to the possibility of incorrectly treating future patients, the possi-

bility of incorrectly treating current patients in the trial should also be considered. Weighing

these two objectives could be accomplished using a different decision-theoretic futility stop-

ping rule. He notes, however, that determining optimal stopping rules for decision-theoretic

designs involves challenging computations which require backward induction. Backward in-

duction is an iterative procedure which infers an optimal sequence of decisions. It does so

by determining the optimal decision at each time point, starting from the final decision and

working backwards to the initial decision. An example of determining optimal stopping rules

in this manner is provided in Berry and Ho (1988) for a decision-theoretic design for normally

distributed data which includes a futility stopping rule and incorporates the profitability of

a drug-development program into the utility function. For designs permitting many interim

analyses (e.g., fully sequential designs), backward induction may be computationally in-

feasible. Thus, Carlin et al. (1998) proposed a computationally efficient forward sampling

algorithm which permits identification of optimal stopping rules in decision-theoretic designs

with a larger number of interim analyses.

For many designs which are not decision-theoretic in nature, the posterior distribution of

parameters of interest or the posterior predictive distribution of future outcomes may be uti-

lized to define adaptive stopping rules (Berry, 1987). Posterior predictive probabilities have

been used for sequential decision making for many years (e.g., Thatcher (1964)). Herson

(1979) proposed using them for futility stopping in a trial with dichotomous outcomes. He

derived analytic solutions for the posterior predictive probabilities under a binomial likeli-

hood and beta prior, and suggested stopping the trial once the probability of futility became

too high. In a similar spirit, Berry (1985) considered an example of normally distributed
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data where the posterior distribution of the mean parameter was used for early stopping.

He showed that the expected sample size decreased as the frequency of interim analyses

increased. In the following, I adapt the example he used to illustrate a stopping rule which

is a functional of the posterior distribution.

Consider a trial where we are interested in assessing whether an unknown mean θ is different

from 0. We thus have the following null and alternative hypotheses: H0 : θ = 0 and

H1 : θ ̸= 0. Assume the participant responses at an interim analysis performed at time

t are Yi
iid∼ N(θ, 1) for i = 1, ..., nt where Y t =

1
nt

∑︁nt

i=1 Yi. We assign the following prior,

θ ∼ N(0, τ 2), where τ 2 denotes the prior variance. After observing Y1, ..., Ynt , we have the

posterior distribution for θ as:

p(θ | ȳt) = N

(︃
nȳt

n+ τ−2
,

1

n+ τ−2

)︃
.

We must now decide whether to stop the trial or continue enrolling participants. Intuitively,

the trial should stop if there is sufficient evidence to suggest that θ is different from 0.

Formally, this occurs when p(θ < 0 | ȳt) > ut or when p(θ > 0 | ȳt) > ut, where ut is a

probability threshold that reflects the strength of evidence required to stop the trial and may

depend on t. Higher values of ut correspond to requiring stronger evidence before stopping

the trial. Thus, the trial stops if

p(θ < 0 | ȳt) = Φ

(︃
−nȳt√
n+ τ−2

)︃
> ut or p(θ > 0 | ȳt) = 1− Φ

(︃
−nȳt√
n+ τ−2

)︃
> ut

and continues otherwise. Selection of an appropriate value for ut depends on the objectives

of the trial. It may be specified by subject matter experts, or potentially optimized to satisfy

frequentist operating characteristics required by regulatory agencies. In this example, new

participants would continue to be enrolled until either the stopping rule is satisfied at a

future interim analysis, a maximum sample size is reached, or a summary of the posterior

distribution attains some value (e.g., reaching a specified level of posterior precision).
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More recent works have utilized posterior distribution-based early stopping to expand beyond

the normal endpoint case. For example, Thall and Simon (1994) consider this approach for

binary efficacy outcomes, Thall et al. (1995) consider it for multiple outcomes, such as efficacy

and toxicity, and Thall et al. (2005) extend the approach to handle time-to-event endpoints.

Indeed, adaptive stopping rules which are functionals of the posterior or posterior predictive

distributions have become quite common and are now routinely recommended in practice

(Berry et al., 2010).

2.3 Late phase Bayesian adaptive RCTs

The goal of late phase RCTs is to confirm whether or not an experimental treatment is effi-

cacious. Many late phase Bayesian adaptive RCTs are sequentially randomized and include

adaptive stopping rules (i.e., decision criteria), defined as posterior probability statements

about an estimand. An estimand is a target of inference, and in the RCT setting, the

estimand of interest is typically a marginal treatment effect. I denote the marginal esti-

mand by γ(θ), which is a function of model parameters θ from a correctly specified analysis

model. Without loss of generality, assume the alternative hypothesis of the trial specifies

the marginal treatment effect being greater than a clinically meaningful threshold, γ0:

H0 : γ(θ) ≤ γ0 vs HA : γ(θ) > γ0.

I use T (ynt) to denote the posterior probability that the alternative hypothesis is true given

the data, ynt , which is collected from the nt participants who are enrolled in the trial at an

interim or final analysis conducted at time t:

T (ynt) = P (HA|ynt) = P (γ(θ) > γ0|ynt). (2.3)

The decision criteria are defined based on this posterior probability to declare treatment

superiority or futility at any interim or final analysis. As described in the last section,

treatment superiority is declared if the posterior probability exceeds some upper probability
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threshold, ut, i.e., if T (ynt) > ut, or treatment futility is declared if the posterior probability

falls below some lower probability threshold, lt, i.e., if T (ynt) < lt. If a superiority or futility

declaration is made at an interim analysis, the trial stops early.

The most common approach in the design of late phase Bayesian adaptive RCTs is a hybrid

approach, where the upper and lower probability thresholds are set to ut = u and lt = l

for all t, and are then optimized so that the trial design has desirable values of frequentist

operating characteristics (e.g., Type 1 error rate and statistical power; Berry et al. (2010)).

As T (ynt) defined above is a functional of the posterior distribution of the marginal estimand

γ(θ), improving its estimation may yield better trial operating characteristics.

2.3.1 Estimands and collapsibility

The marginal estimand, γ(θ), that is used to specify T (ynt) in (2.3), can be defined as a

contrast f(·) between population averaged quantities, µ(θ;A), which are functions of un-

known parameters θ, and treatment assignments A. If we let A = 1 denote assignment

to the treatment arm and A = 0 denote assignment to the control arm, then the marginal

estimand can be defined as follows:

γ(θ) = f(µ(θ;A = 1), µ(θ;A = 0)). (2.4)

As an example, γ(θ) might represent the difference in means of a continuous endpoint when

comparing the treated to untreated populations. In that case, f(·) would be the difference

operator, and µ(θ;A = 1) and µ(θ;A = 0) would represent the mean of that endpoint

in those who are treated and untreated, respectively. We may also consider conditional

parameters µ(θ;A,X) which contain additional covariates X. Using the example above,

µ(θ;A = 1,X = x) would represent the mean of the continuous endpoint in those treated

individuals who have covariate pattern X = x.

An estimand is said to be collpasible when it can be represented as a contrast between either
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the marginal or conditional parameters µ for a fixed covariate pattern:

γ(θ) = f(µ(θ;A = 1), µ(θ;A = 0))

= f(µ(θ;A = 1,X = x), µ(θ;A = 0,X = x)).

(2.5)

When collapsibility holds, samples from the posterior distribution of γ(θ) may be obtained

using an analysis model which either includes or excludes X. I refer to a model which includes

X as an adjusted model, and one which excludes X as an unadjusted model. When the second

equality in (2.5) does not hold, and the marginal treatment effect cannot be represented as a

contrast of the conditional parameters, the estimand is said to be non-collpasible (e.g., Daniel

et al. (2021)). Under non-collapsibility, samples from the posterior distribution of γ(θ) may

still be obtained directly using an unadjusted model. However, posterior samples can no

longer be obtained directly from adjusted models. This is the case for many estimands

which are defined using non-linear endpoints, and which are commonly used within late

phase RCTs (e.g., relative risk, odds ratio, hazard ratio). To obtain samples from the

posterior of γ(θ), posterior samples from adjusted analyses must undergo a post-processing

marginalization step, such as regression-based standardization (Kalton, 1968).

2.3.2 Covariate adjustment

Covariate adjustment can be defined as adjustment for baseline values of variables known

to be associated with the outcome of interest (also referred to as “prognostic covariates”;

United States Food and Drug Administration (2021)). In this subsection, I review the use

of covariate adjustment for improving the estimation of treatment effects and the operating

characteristics of RCTs. In the next subsection, I review a historical approach toward per-

sonalized medicine, where covariates are used to identify treatment-respondent subgroups

(i.e., subgroup analysis). I focus on the case where adjustment is performed using linear

models and generalized linear models only.

I begin by defining two correlated random variables, Y and Z, which are bivariate normally
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distributed according to the following:⎛⎜⎝Y
Z

⎞⎟⎠ ∼ N

⎛⎜⎝
⎛⎜⎝µy

µz

⎞⎟⎠ ,

⎛⎜⎝ σ2
y ρσyσz

ρσyσz σ2
z

⎞⎟⎠
⎞⎟⎠ . (2.6)

By standard results of the multivariate normal distribution, we have the following conditional

distribution for Y | Z = z:

Y | Z = z ∼ N

(︃
µy +

σy
σz
ρ(z − µz), (1− ρ2)σ2

y

)︃
. (2.7)

We can see that when we condition on the value of the correlated variable Z, there is

a reduction in the variability of Y , the magnitude of which depends on the strength of

correlation ρ. This result helps motivate the discussion below about covariate adjustment in

RCTs with normal endpoints.

The use of covariate adjustment to improve the precision of estimates from a linear model

dates back to at least the 1920’s (Fisher, 1925). Cox (1957) describes how performing a linear

regression on a single prognostic covariate improves the precision of an estimated treatment

effect. Letting V ar(Y ) = σ2
y above represent the residual variance from a fitted linear

regression which does not include Z, we see from (2.7) that including Z in the model reduces

this residual variance to V ar(Y | Z = z) = (1 − ρ2)σ2
y. Cox and McCullagh (1982) use

this result to state that for randomized experiments under the assumption of no treatment

covariate interactions, the primary purpose of covariate adjustment is to reduce the residual

variance by a factor (1−ρ2) so that the precision of the treatment contrasts is increased. This

increase in precision leads to increases in statistical power (Pocock et al., 2002). Senn (1989)

considers a parallel-group RCT with a normal outcome and known variance and considers

a single prognostic covariate, say Z. He focuses on testing the difference in means between

the treatment groups and shows that, conditioned on a particular standardized imbalance

between the treatment groups for Z, denoted by δz, an analysis adjusting for the covariate

yields the nominal significance level. However, conditioned on the same δz, an unadjusted
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analysis does not yield the nominal significance level. Rather, for an unadjusted analysis,

the conditional size of the test depends on the sign of δz and on the strength of correlation

between the outcome and Z. Pocock et al. (2002) elaborate on this example, showing in their

Figure 2 that even when Z is perfectly balanced across treatments (i.e., δz = 0), unadjusted

tests are conservative (i.e., less than the nominal significance level) when large correlations

between the outcome and Z exist. Thus, to increase precision and power, and to preserve

the conditional size of the statistical tests employed, Senn (1989) argues it is prudent to

adjust for covariates in trials with normal endpoints and that, as standardized imbalances

are independent of sample size, adjustment should be made regardless of the sample size of

the trial.

Covariate adjustment has also been considered for non-linear endpoints (see Hauck et al.

(1998)). When looking at the precision of the estimators for covariate-adjusted treatment

effects for these endpoints (e.g., the regression coefficient for a treatment indicator from

generalized linear models which include additional covariates), there is actually a decrease

in precision. Robinson and Jewell (1991) showed this for logistic regression models for bi-

nary endpoints, and Ford et al. (1995) showed this for Cox proportional hazards models

when considering time-to-event endpoints. Paradoxically, this decrease in precision from

covariate adjustment still results in increased power, as shown in Hernández et al. (2004) for

binary endpoints and in Hernández et al. (2006) for time-to-event endpoints. This paradox is

resolved, however, by noting that the standard error comparisons are being made between es-

timators of different estimands, which results from the non-collapsibility of treatment effects

for non-linear endpoints (Daniel et al., 2021). Specifically, unadjusted analyses yield esti-

mates of marginal estimands, and covariate-adjusted analyses yield estimates of conditional

estimands. The power increase results from the value of the conditional estimand moving

away from the null at a faster rate than the increase in the standard error of its estimator.

However, as mentioned in the previous subsection, to obtain estimates of marginal esti-

mands from adjusted analyses, marginalization (e.g., through standardization) is required.

18



Benkeser et al. (2021) show that when estimates obtained from covariate-adjusted anal-

yses are marginalized using standardization, the covariate-adjusted analyses lead to both

increased power and increased precision of the marginal treatment effect as compared to the

unadjusted analyses.

Given the benefits described above, along with the fact that it is common in RCTs to collect a

substantial amount of baseline covariate information (Friedman et al., 2015), both the FDA

and European Medicines Agency now recommend covariate adjustment be performed in

practice (United States Food and Drug Administration, 2021; European Medicines Agency,

2015). They emphasize that any covariates used for adjustment be pre-specificed and selected

based on a priori subject matter expertise, a practice which Ciolino et al. (2019) showed has

been increasing over time. Recent research has also demonstrated the benefits of covariate

adjustment in more flexible frequentist designs. Van Lancker et al. (2022) considered its use

in group sequential and information adaptive designs, showing increased statistical power

results from adjusting for covariates at interim analyses in addition to the final analysis.

Lee et al. (2022) investigated covariate adjustment in the context of adaptive multi-arm

designs for marginal treatment effects defined using continuous endpoints, showing that in

addition to increasing statistical power, covariate adjustment also increases the probability

of selecting effective treatments for continuation in the later stages of the trial. Despite this

recent interest, there has been no assessment of covariate adjustment in flexible Bayesian

adaptive designs.

2.3.3 Personalized medicine

The FDA states the goal of personalized medicine is “to target the right treatments to the

right patients at the right time” (United States Food and Drug Administration, 2018a). One

historical approach toward personalized medicine has included performing subgroup analy-

ses in late phase RCTs. This approach mainly consists of identifying significant treatment-

covariate interactions in a fitted statistical model. In the context of parametric survival
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models, Byar and Corle (1977) proposed identifying significant treatment-covariate interac-

tions through the use of likelihood ratio tests. The presence of significant interactions leads

to the possibility of a “treatment of choice”, where optimal treatments may be identified

based on patient characteristics. In their study, they defined a patient’s optimal treatment

as that which minimized the patient’s estimated hazard function.

Simon (1982) considers subgroup analysis in the context of logistic regression and Cox pro-

portional hazards models. He stresses the importance of pre-specifying a limited number of

subgroups of interest to be tested via formal interaction tests, and cautions against perform-

ing hypothesis tests within subgroups since repeated testing increases the chance of false

positive findings. He states that under a null hypothesis of no treatment effect, an upper

bound on the probability of finding at least one subgroup with a significant treatment effect is

1− (1−α)G, where α is the significance level of each test and G is the number of subgroup-

specific hypothesis tests performed. This quantity represents an upper bound since the

hypothesis tests are correlated, not independent. Despite this caution, Pocock et al. (2002)

report a case where 24 subgroup analyses were performed in a single clinical trial. If each

subgroup analysis was performed using a hypothesis test with significance level of α = 0.05

under the null hypothesis of no treatment difference, then an upper bound on the probability

of at least one subgroup displaying a significant treatment effect is 1 − (1 − 0.05)24 = 0.71.

Thus, under this scenario, it is likely that a significant treatment effect would have been

identified in at least one subgroup due to chance alone. Formal interaction tests attempt to

safeguard against this.

Gail and Simon (1985) describe different types of treatment-covariate interactions that may

exist in clinical trials. They define a qualitative (or crossover) interaction to be present

when the directions of the true treatment differences vary across subgroups, though they

state interactions of this type are thought to be rare in practice. If present, however, they

have important implications for ethical reasons. A qualitative interaction also includes the
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case of there being a response in some subgroups and no response in others (Russek-Cohen

and Simon, 1997). A non-crossover interaction is then defined to be present when the

directions of the treatment differences are the same for all subgroups, but the magnitudes

of the differences differ across subgroups. Finally, a quantitative interaction is defined to be

the existence of any heterogeneity of treatment differences across subgroups. Gail and Simon

(1985) then continue by proposing a likelihood ratio test to identify qualitative interactions

and also describe how to test for quantitative interactions.

It is important to note that clinical trials are often powered to detect marginal treatment

effects only, and so formal interaction tests are generally underpowered. While sometimes

this lack of power is used as an argument against formal interaction tests, Pocock et al.

(2002) argue this is actually a benefit of their usage, as interaction tests recognize the limits

inherent in the collected data and guard against exaggerated claims of subgroup differences.

To further guard against exaggerated claims of subgroup differences, Bayesian approaches

for subgroup analysis have been proposed. When no a priori differences are expected among

the patient subgroups with respect to treatment, Dixon and Simon (1991) show how an

assumption of exchangeable treatment-covariate interaction terms shrinks their posterior

distributions toward zero, thereby reducing the possibility of exaggerated subgroup differ-

ences. Additionally, Simon (2002) shows how a Bayesian approach for subgroup analysis can

incorporate the a priori belief that qualitative interactions are rare in practice. The goals

of personalized medicine may also be pursued within the context of early phase dose-finding

trials, which I review next.

2.4 Early phase Bayesian adaptive dose-finding

trials

The goal of early phase clinical trials is to assess the safety and efficacy of first-in-human

doses of experimental treatments and to identify doses which should be further investigated.
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Early phase Bayesian adaptive designs are commonly employed for these trials. These so-

called “dose-finding” designs can generally be divided into three major families according to

increasing model complexity: algorithmic, model-assisted, and model-based (Berry et al.,

2010; Yuan et al., 2019). Algorithmic designs require no statistical modeling and perform

dose-finding using a pre-defined algorithm. Perhaps the best known of these designs is the

“3+3” design, which uses cohorts of three patients at each iteration of the algorithm to find

a maximum tolerated dose (MTD), defined as the largest dose which produces a toxicity

response closest to a pre-defined threshold (Storer, 1989). Model-assisted designs are more

complex and use a statistical model to pre-compute decision boundaries which help define

the dose-finding procedure. These designs offer better statistical properties than algorithmic

designs while maintaining their simplicity. One of the better known model-assisted designs is

the “Bayesian optimal interval” design (Yuan et al., 2016a). At each iteration of dose-finding,

this design calculates a statistic using the accumulating trial data and compares it to pre-

defined decision boundaries to determine whether to maintain, escalate, or de-escalate the

current dose. As compared to the 3 + 3 design, it has been shown to select the MTD more

often and assign more patients to it as well. While algorithmic and model-assisted designs are

easy to implement, they are less flexible and can be less efficient than model-based designs,

and I do not consider them further in this thesis.

Among dose-finding methods, model-based designs offer the greatest flexibility and have

superior statistical properties, but they are also the most challenging to implement. They

require the specification of a full probability model for the dose-response surfaces of interest,

which permits inclusion of prior information if available. Incorporating prior information can

be especially beneficial in early phase designs since they typically have very small sample

sizes. As mentioned previously, prior information may come in the form of clinical experience,

previous animal or clinical studies, or from pharmacokinetic/pharmacodynamic models. For

these designs, the dose-finding procedure is defined with respect to the fitted model, with

designs being differentiated by the dose-response model they propose and by the procedure
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they use to select the next dose for evaluation. A large amount of historical research in early

phase model-based designs focused on the development of cytotoxic agents in oncology, where

interest was in identifying the MTD using toxicity responses only. Under the assumption of

monotonically increasing dose-efficacy and dose-toxicity surfaces, the MTD is also the most

efficacious dose. Many of these designs focused exclusively on binary toxicity endpoints for

monotherapy, where only a single cytotoxic agent is of interest. For example, O’Quigley et al.

(1990) proposed the Continual Reassessment Method which utilizes accumulating patient

responses to sequentially assign doses to new patients estimated to be closest to the MTD.

Babb et al. (1998) proposed the sequential Escalation with Overdose Control design, which

seeks to identify the MTD while also limiting the number of patients being assigned to overly

toxic doses.

2.4.1 Dose-finding for continuous endpoints

Interest in using continuous endpoints for early phase dose-finding trials has grown over time.

Le Tourneau et al. (2009) describe how there is increasing use of molecularly targeted agents

as treatments, e.g., immunotherapies, which may provide a therapeutic response at dosages

which are lower than the MTD. In trials investigating these compounds, toxicity responses

are replaced by measures of biological activity, e.g., plasma drug concentration or measures

of target inhibition in tissues of interest, which are often measured on the continuous scale

(Korn, 2004; Le Tourneau et al., 2009). Furthermore, some have proposed using continuous

toxicity scores (e.g., Chen et al. (2010); Lee et al. (2012)) in lieu of binary toxicity responses.

Le-Rademacher et al. (2020) propose a continuous Adverse Event (AE) burden score which

is defined using both frequency and severity of AEs experienced by a patient throughout the

trial. They argue it offers a richer and more nuanced understanding of patients’ total toxicity

burden in the trial than would using a binary toxicity response. Despite this increasing

interest, there have been fewer designs proposed for continuous responses than for binary

responses. The Continual Reassessment Method and the Escalation with Overdose Control
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designs have been extended to this setting through the use of quasi-likelihood approaches

(Yuan et al., 2007; Chen et al., 2012). Other designs have been proposed which assume

monotononically non-decreasing continuous dose-response surfaces (e.g., Eichhorn and Zacks

(1973); Wang and Ivanova (2015)).

2.4.2 Optimal biological dose combinations

With the increasing use of moleculary targeted agents where the MTD may not be the most

efficacious dose, focus is placed on identifying an optimal biological dose (OBD) by using

designs which incorporate both efficacy and toxicity (e.g., Thall and Cook (2004); Yuan et al.

(2016b)). These designs have been extended to the combination therapy setting, where two

or more agents are combined and determining an OBD combination is of interest. Wages

and Conaway (2014) proposed a design which seeks to identify the most efficacious dual-

agent dose combination which is below a specified toxicity level, under the assumption of

monotone dose-response surfaces when the levels of one agent is fixed. While the assumption

of monotonicity may be reasonable in some cases, it does not hold in general (Li et al.,

2017). To identify OBD combinations under possible non-monotonic dose-response surfaces,

flexible designs have been proposed (e.g., Mozgunov and Jaki (2019b)). Houede et al. (2010)

propose a flexible design to optimize a utility function over ordinal efficacy and toxicity

responses. They use a generalized Aranda-Ordaz model (Aranda-Ordaz, 1981) which is

extremely flexible. However, the model is highly parameterized and may introduce estimation

challenges given the small sample sizes in early phase trials. Flexible designs for continuous

dose-response surfaces have also been proposed for combination therapies (e.g., Mozgunov

and Jaki (2019a)).

2.4.3 Personalized dose-finding for combination therapies

Many dose-finding designs assume that the optimal dose is the same for every patient in the

population. This includes all designs previously described above. I refer to this approach as

standard dose-finding. Contrast this with personalized dose-finding, whose goal is to identify
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patient-specific optimal doses. This latter approach toward dose-finding better aligns with

the aim of personalized medicine, which was previously described as being “to target the

right treatments to the right patients at the right time” (United States Food and Drug Ad-

ministration, 2018a). Despite regulatory support for this aspiration, the field of personalized

dose-finding trials remains underdeveloped since it is difficult to extend many parametric

dose-finding methods to this setting, as potentially many dose-covariate interaction terms

must be estimated. These trials are even more challenging in the combination therapy set-

ting, where the additional dosing agents amplify the estimation challenges. One of the few

examples of personalized dose-finding for combination therapies is Mozgunov et al. (2022),

who proposed a dual-agent personalized dose-finding design which was motivated by an opi-

ate detoxification trial. However, only a single dosing agent was optimized in this design, as

the level of the other agent was pre-specified externally by clinicians.

Personalized dose-finding for combination therapies can be viewed as an optimization prob-

lem. Let Z = {Zp}Pp=1 be a set of discrete covariates used for tailoring, where K strata are

defined as the Cartesian product of their levels, and let d = (d1, ..., dJ) ∈ D ⊂ RJ be a dose

combination combining J dosing agents. Let f(d, z) be a continuous efficacy function of

interest and g(d, z) be a continuous toxicity function, where both are transformed such that

smaller values denote being more desirable. Then personalized dose-finding seeks to find an

OBD combination for each of the K strata. Specifically, the goal is to find, for each stratum

k, the d which minimizes f(d, zk), subject to being below a tolerable toxicity threshold g†k,

yielding the following constrained optimization problem:

argmin
d∈D

f(d, zk) subject to g(d, zk) ≤ g†k for k = 1, ..., K. (2.8)

Stratum-specific toxicity thresholds g†k allow tolerable toxicity levels to depend on specific

covariate profiles. This may be useful in settings where the clinical team permits greater

levels of toxicity for those patients with more severe variants of a disease, for example. Note

that the optimization problem above could be defined with respect to a utility function
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which considers both f(d, z) and g(d, z), though this approach is not considered further in

this thesis. When no drug-related adverse events are expected and a minimal toxicity setting

can be assumed, toxicity information does not need to be incorporated into the dose-finding.

Under this setting, g(d, zk) is dropped from the optimization problem in (2.8) creating an

unconstrained optimization problem over the efficacy function f(d, zk) only:

argmin
d∈D

f(d, zk) for k = 1, ..., K. (2.9)

Any strategy proposed to solve the optimization problems in (2.8) and (2.9) must accom-

modate the small sample sizes and high levels of observation noise which are characteristic

of early phase designs.

2.5 Bayesian optimization

Bayesian optimization is a derivative-free method which finds the global optima of expensive-

to-evaluate objective functions (Garnett, 2023). It utilizes stochastic surrogate models, com-

monly GPs, to estimate the objective function, and then defines a sequential search policy

through use of a so-called acquisition function. It is sample efficient, seeking to identify the

optima while at the same time minimizing the number of objective function evaluations re-

quired to do so. For these reasons, Bayesian optimization is a particularly attractive method

for dose-finding problems, where objective function evaluations require a patient to be given

an experimental therapy and potentially carry both a high financial and ethical cost. Other

global optimization methods exist (e.g., genetic algorithms and simulated annealing), but re-

quire many objective function evaluations or gradient information and so are not appropriate

for dose-finding (Bull, 2011; Tracey and Wolpert, 2018).

Bayesian optimization has long been used for global optimization problems in the engineer-

ing, machine learning, and computer experiments literature (e.g., Kushner (1964); Zhilinskas

(1975); Jones et al. (1998); Gramacy (2020)). Recently within the biostatistics literature,

some have proposed using it to efficiently find optimal dynamic treatment regimes (e.g.,
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Rodriguez Duque et al. (2022); Freeman et al. (2022)). Furthermore, it has received some

attention in the early phase Bayesian adaptive dose-finding literature. For example, Taka-

hashi and Suzuki (2021b) proposed using Bayesian optimization to find the MTD in early

phase clinical trials for monotherapies, focusing exclusively on binary toxicity responses.

Using a GP to estimate the logit transformed probability of toxicity at a particular dose,

they defined the dose-finding strategy using the Expected Improvement acquisition func-

tion (Jones et al., 1998), to be further described below. The same authors also proposed

using Bayesian optimization to identify monotherapy OBDs by considering both binary effi-

cacy and binary toxicity responses (Takahashi and Suzuki, 2021a). They optimized a utility

function which was defined using the efficacy and toxicity response probabilities, and em-

ployed the Lower Confidence Bound acquisition function (Srinivas et al., 2010) to perform

the dose-finding.

2.5.1 Gaussian process regression

A GP is a stochastic process, any finite subsample of which is distributed as multivariate

normal. A GP can be viewed as a prior distribution over the function space, yielding an

analytically tractable posterior distribution over functional forms which are explained by the

observed data (Williams and Rasmussen, 2006). To model the efficacy function, a GP prior

is used:

f(d, z) ∼ GP (m(d, z), νKη((d, z), (d
′, z′))) (2.10)

where m(d, z) is the mean function, and Kη((d, z), (d
′, z′)) is a correlation function (kernel)

parameterized by η and multiplied by scale parameter ν (Binois and Gramacy, 2021). The

scale parameter determines the variability of the efficacy function throughout the domain. It

is common to specify a constant mean function, m(d, z) = β, since the correlation function

is responsible for much of the method’s flexibility (Gramacy, 2020).

Using the GP prior as specified above induces a multivariate normal distribution on the

observations, y ∼ N(β1n, νKη), where Kη(i, j) = Kη((di, zi), (dj, zj)) + τ 21i=j and τ 2
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represents observation noise. While taking a fully Bayesian approach is possible by specifying

prior distributions for the kernel hyperparameters θ = {ν, τ 2,η} and sampling from their

joint posterior distribution, it is common to proceed in an empirical Bayes fashion since it is

less computationally demanding, an important consideration within the context of sequential

optimization (Gramacy, 2020). Thus, after data D = {(di, zi, yi)}ni=1 are observed, the

kernel hyperparameters are estimated via maximum likelihood and replaced by their point

estimates. This yields the posterior distribution of the therapeutic function at a new dose

combination ˜︁d in stratum k, denoted by ˜︁dk = (˜︁d,˜︁zk), as p(f | D, ˜︁dk) = N(µ(˜︁dk), σ
2(˜︁dk))

(Binois and Gramacy, 2021), such that

µ(˜︁dk) = ˆ︁β + kη(˜︁dk)
TK−1

η (y − ˆ︁β1)
σ2(˜︁dk) = νKη(˜︁dk, ˜︁dk)− νkη(˜︁dk)

TK−1
η kη(˜︁dk) +

(1− kη(˜︁dk)
TK−1

η 1)2

1TK−1
η 1

ˆ︁β =
1TK−1

η y

1TK−1
η 1

(2.11)

where Kη is n × n, kη(˜︁dk) = [Kη((d1, z1), ˜︁dk), ...,Kη((dn, zn), ˜︁dk)]
T is n × 1, and ˆ︁β is a

plug-in estimate for the mean. This posterior distribution is used to define the acquisition

functions which control the sequential search strategy of the dose-finding methods.

2.5.2 Acquisition functions

An acquisition function, denoted by α(˜︁dk | D), defines the search policy used within a

Bayesian optimization framework. After the initial data are collected for ck dose combina-

tions and an initial GP model fitted, the next dose combination for evaluation within stratum

k is selected as the maximizer of α(˜︁dk | D):

d
(ck+1)
k = argmax˜︁d∈D α(˜︁dk | D). (2.12)

Many commonly used acquisition functions have a basis in Bayesian decision theory and can

be viewed as performing one-step lookahead over an implicitly defined utility function for the

data. That is, if the next dose combination is the last to be collected, then many commonly
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used acquisition functions can be viewed as selecting that dose combination which maximizes

the expected marginal gain in utility of the dataset (see Table 7.1 in Garnett (2023)). Having

a basis in Bayesian decision theory provides many theoretical performance guarantees, such

as convergence to the global optima under certain conditions (Bull, 2011).

One of the major challenges in dose-finding is adequately exploring the dose-response surface

while at the same time identifying desirable regions where the OBD combination may lie. If

local optima exist, search policies may become stuck and never converge to the global optima.

The Expected Improvement, denoted by αEI(˜︁dk | D), is perhaps the most commonly em-

ployed acquisition function for unconstrained optimization problems like (2.9) and balances

this exploration-exploitation trade-off. Intuitively, αEI quantifies how much improvement

the dose combination ˜︁dk is expected to yield over the current best observation of f(d, zk),

denoted by f ∗
k , and is defined as the following expectation:

αEI(˜︁dk | D) = E
[︂
max(0, f ∗

k − f(˜︁dk)) | D, ˜︁dk

]︂
. (2.13)

Under a GP posterior, Jones et al. (1998) showed this expectation to be analytically tractable,

which is an important consideration given the computational demands of the overall opti-

mization scheme:

αEI(˜︁dk | D) = (f ∗
k − µ(˜︁dk))Φ

(︄
f ∗
k − µ(˜︁dk)

σ(˜︁dk)

)︄
+ σ(˜︁dk)ϕ

(︄
f ∗
k − µ(˜︁dk)

σ(˜︁dk)

)︄
. (2.14)

In this equation, Φ(·) and ϕ(·) denote the standard normal cumulative distribution function

and probability density function, respectively, and µ(˜︁dk) and σ(˜︁dk) are given by (2.11).

The second term gives large values to dose combinations for which f(d, zk) is imprecisely

estimated (i.e., exploration) and the first term gives large values to dose combinations for

which f(d, zk) is desirable (i.e., exploitation).

To consider dose-finding under higher-grade toxicities as in (2.8), αEI can be extended to the

constrained Expected Improvement, denoted by αcEI(˜︁dk | D), where toxicity information in
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the form of g(d, zk) is formally incorporated into the expectation:

αcEI(˜︁dk | D) = E
[︂
max(0, f ∗

k − f(˜︁dk))1{g(˜︁dk) ≤ g†k} | D, ˜︁dk

]︂
. (2.15)

In many contexts it may be reasonable to assume that the efficacy and toxicity functions are

conditionally independent given dose. If each response surface is modeled using independent

GPs, then αcEI is also available analytically (Gardner et al., 2014):

αcEI(˜︁dk | D) = αEI(˜︁dk | D)Φ

(︄
g†k − µg(˜︁dk)

σg(˜︁dk)

)︄
(2.16)

where µg(˜︁dk) and σg(˜︁dk) represent the posterior mean and standard deviation of the toxicity

function at ˜︁dk, taking the same functional forms as in (2.11). The exploration-exploitation

trade-off defined by αEI is now weighted by the posterior probability of satisfying the tox-

icity constraint g†k, giving higher weight to dose combinations which are more likely to be

safe.

2.6 Summary

In this literature review, I introduced the core themes which are present throughout this

thesis as well as reviewed the historical and related work which motivate it. I began by

introducing clinical trials, and then narrowed my focus to a subgroup of these which form

the main area of interest of this thesis, Bayesian adaptive clinical trials. I described how

the decision criteria which govern the adaptations in these trials are often functionals of the

posterior distribution, and how Bayesian trials which employ early stopping rules satisfy the

likelihood principle. I next reviewed how covariate adjustment has been used to improve

trial operating characteristics and to permit a personalized approach toward medicine in

late phase Bayesian adaptive RCTs. I then shifted focus to early phase designs, where I

described historical approaches toward dose-finding and the challenges of evaluating combi-

nation therapies in a personalized medicine setting. In a final section, I discussed Bayesian

optimization within the context of early phase dose-finding.

30



Chapter 3

Covariate adjustment in Bayesian

adaptive randomized controlled trials

Preamble to Manuscript 1. Covariate adjustment has been shown to increase statistical

power for fixed size, late phase RCTs (e.g., Benkeser et al. (2021)). Recently, its impact

in more flexible frequentist designs has been assessed. Van Lancker et al. (2022) showed

increases in statistical power for group sequential and information adaptive designs which

utilize covariate adjustment at interim analyses in addition to the final analysis. Lee et al.

(2022) noted similar power increases in adaptive multi-arm designs for marginal treatment

effects defined using continuous endpoints, noting that covariate adjustment also increases

the probability of selecting effective treatments. Despite this recent interest, there has been

no investigation of covariate adjustment in flexible Bayesian adaptive designs, including the

impact of combining it with prior information on the covariate effects.

In this manuscript, covariate adjustment is investigated for Bayesian adaptive designs which

permit early stopping for treatment superiority. The impact of adjustment is assessed for

several data generating mechanisms, which include continuous, binary, and time-to-event

outcomes, for trials of different maximum sample sizes. We consider several forms of ad-
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justment model misspecification and investigate the impact of using prior information of

varying strengths. Our interest is in marginal treatment effects, and we provide a tutorial

for obtaining marginal posterior samples from adjusted analyses. The original contributions

of this chapter are i) investigating the impact of covariate adjustment in Bayesian adaptive

clinical trials, ii) assessing its impact under a wider range of scenarios than previously re-

ported for flexible designs, and iii) combining covariate adjustment with prior information

on the covariate effects. The substantive contribution of this work is providing further the-

oretical support for the benefits of covariate adjustment and describing how adjustment can

be performed in practice for Bayesian adaptive clinical trials.

The corresponding manuscript was published in Statistical Methods in Medical Research

(Willard et al., 2024).
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Abstract

In conventional randomized controlled trials, adjustment for baseline values of covariates

known to be at least moderately associated with the outcome increases the power of the

trial. Recent work has shown particular benefit for more flexible frequentist designs, such

as information adaptive and adaptive multi-arm designs. However, covariate adjustment

has not been characterized within the more flexible Bayesian adaptive designs, despite their

growing popularity. We focus on a subclass of these which allow for early stopping at an

interim analysis given evidence of treatment superiority. We consider both collapsible and

non-collapsible estimands, and show how to obtain posterior samples of marginal estimands

from adjusted analyses. We describe several estimands for three common outcome types. We

perform a simulation study to assess the impact of covariate adjustment using a variety of

adjustment models in several different scenarios. This is followed by a real world application

of the compared approaches to a COVID-19 trial with a binary endpoint. For all scenarios, it

is shown that covariate adjustment increases power and the probability of stopping the trials

early, and decreases the expected sample sizes as compared to unadjusted analyses.
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3.1 Introduction

In conventional, fixed size randomized controlled trials (RCTs), adjustment for baseline val-

ues of covariates known to be at least moderately associated with the outcome has been shown

to increase the power of the trial (Hernández et al., 2004; Benkeser et al., 2021; Hernández

et al., 2006; Harrell and Slaughter, 2021). This is because covariate adjustment improves

the precision of the estimated treatment effect and accounts for the outcome heterogeneity

within each treatment arm that is explained by the adjustment variables (Lewis, 1999; Senn,

2013; Benkeser et al., 2021). Adjustment also corrects for any chance imbalance of important

baseline variables which may exist post-randomization (Kahan et al., 2014). Therefore, co-

variate adjustment in the primary analysis of clinical trials is now recommended by both the

US Food and Drug Administration (FDA) and European Medicines Agency (EMA) (United

States Food and Drug Administration, 2021; European Medicines Agency, 2015). Addition-

ally, systematic reviews have suggested its use in practice has grown over time (Austin et al.,

2010; Ciolino et al., 2019). Recently, these power increases have been demonstrated in more

flexible frequentist designs, such as information adaptive and adaptive multi-arm designs

(Van Lancker et al., 2022; Lee et al., 2022). However, the simulation scenarios investigated

in each of these designs contained at least one of the following: only continuous outcomes

with no treatment-covariate interactions where the marginal and conditional estimands are

the same; only a single sample size; a data generating process containing only a small number

of variables; or only a small number of covariate adjustment models. A more comprehensive

investigation is needed to better understand the benefits of covariate adjustment under a

broader array of flexible design scenarios.

While the impact of covariate adjustment has been demonstrated in the flexible frequentist

designs mentioned above, it has not been characterized within flexible Bayesian adaptive

designs, where early stopping at an interim analysis is permitted given evidence of treat-

ment superiority or futility. In these designs one may learn about a treatment effect while
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potentially requiring fewer participants than fixed designs. Additionally, Bayesian trials al-

low for seamless incorporation of prior information for model parameters including covariate

effects. The impact of combining prior information with covariate adjustment has not been

previously investigated. With the growing interest in Bayesian adaptive designs, a character-

ization of covariate adjustment for several commonly used sample sizes and outcome types

would be highly valuable for researchers.

In this work, we consider the impact of covariate adjustment in Bayesian adaptive designs

which allow for early stopping for superiority and provide a step-by-step tutorial for post

adjustment marginalization. We explore several data generating processes for continuous,

binary, and time-to-event outcomes, and consider adjustment models which include several

forms of misspecification while incorporating varying levels of prior information for the co-

variate effects. The covariate adjustment described herein is performed using generalized

linear models (GLMs). However, the methods, results, and recommendations discussed be-

low are not specific to these models, and are expected to generalize to other parametric and

nonparametric models.

The manuscript is organized in the following manner. We first introduce and describe

Bayesian adaptive designs which allow for early stopping, as well as the targets of infer-

ence (i.e., estimands), which are marginal treatment effects for each endpoint. We then

describe the specific collapsible and non-collapsible estimands used in this manuscript. For

the non-collapsible estimands, we describe their estimation and marginalization through a

Bayesian framework. This is followed by a simulation study which shows the impact of

covariate adjustment on design operating characteristics including power, the probability of

stopping the trial early, and expected sample size, for multiple sample sizes. We then show

a real-world application of covariate adjustment within a COVID-19 RCT and end with a

discussion.
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3.2 Bayesian adaptive designs with early stopping

Bayesian adaptive designs allow for predetermined changes to the trial design at interim

analyses based on evidence provided by the accumulating data (Berry et al., 2010; Giovagnoli,

2021). These designs include sequentially randomized trials which allow for early stopping

for superiority or futility at interim analyses. Interim analyses are performed to determine

whether to stop the trial early and declare treatment superiority or futility, or to continue

the trial. The decision to stop the trial early at an interim analysis is controlled by a

predefined decision rule. Decision criteria may be defined with respect to different functionals

of the posterior distribution of the parameter of interest or estimand. Posterior or posterior

predictive probability statements about the estimand are commonly used statistics. In the

RCT setting, estimands are typically defined as marginal treatment effects in a specified

population of interest. We adopt this convention throughout, but delay further discussion

of marginal estimands and their posterior estimation until the next section.

In the Bayesian adaptive designs described in this work, interim or final decisions are de-

fined with respect to posterior probability statements about a marginal treatment effect,

γ(θ), which is a function of model parameters θ. The alternative hypothesis of the trial

is formulated as this marginal treatment effect being greater than a clinically meaningful

threshold, γ0:

H0 : γ(θ) ≤ γ0 vs HA : γ(θ) > γ0.

A Bayesian test statistic can be defined as the posterior probability of this alternative hy-

pothesis given the data, Dnt = {Ynt , Ant ,Xnt×p}, which may include any observed outcomes

(Ynt), treatment assignments (Ant), and p additional covariates (Xnt×p), for the nt partici-

pants who are enrolled in the trial at an interim or final analysis conducted at time t:

T (Dnt) = P (HA|Dnt) = P (γ(θ) > γ0|Dnt). (3.1)

This statistic is then used to define a decision rule, which declares treatment superiority at
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any interim or final analysis if the statistic exceeds some upper probability threshold, u, i.e.,

if

T (Dnt) > u.

If a superiority declaration is made at an interim analysis, the trial stops early. The com-

mon approach in the design of Bayesian adaptive trials is the “hybrid” approach, where the

upper probability threshold, u, is optimized so that the trial design has desirable values of

frequentist operating characteristics (Berry et al., 2010). For example, power (P) and the

Type 1 error rate (T1E) are defined as follows:

P = P (T (Dnt) > u | γ(θ) = γ∗ > γ0)

T1E = P (T (Dnt) > u | γ(θ) = γ0).

Since the sampling distribution of a Bayesian posterior probability is generally unknown,

calibration of the design to meet frequentist operating characteristics requires simulation

studies. Note that models that adjust for covariates under most settings result in analytically

intractable posterior distributions. Therefore, the evaluation of T (Dnt) within every trial

simulation requires posterior sampling or approximation techniques. In this paper we use

Markov chain Monte Carlo (MCMC) to sample from the posterior distribution when not

available in closed form.

3.3 Estimands and Bayesian estimation

In what follows, let Ai be defined as a binary treatment assignment for the ith participant,

where Ai = 1 represents being randomized to the treatment group and Ai = 0 to the control

group. Let ˜︁Xnt×d represent a matrix of j = 1, ..., d covariates measured at baseline for

i = 1, ..., nt participants in the study at an interim or final analysis conducted at time t.

Let x̃i = (x1, x2, ..., xd)i represent the row of this matrix corresponding to the full covariate

pattern of the ith participant, and let Yi be an arbitrary outcome of interest for the ith

participant. For notational simplicity, subscripts are dropped for the remainder of this article
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except when strictly necessary. Treatments are assigned through simple randomization and

are thus independent of all covariates measured at baseline (i.e., A ⊥⊥ x̃), but we allow for

the possibility of chance imbalance of covariates between treatment groups.

We use the term “unadjusted analysis” to refer to a model which includes only the treatment

assignment indicator (A), and the term “adjusted analysis” for a model which includes p ≤ d

additional covariates, X ⊆ ˜︁X, with xi = (x1, ..., xp)i representing the row of X corresponding

to the ith participant’s covariate pattern used for adjustment. For adjusted analyses, many

different covariate sets may be adjusted for in addition to the binary treatment indicator.

This includes any covariates Z ⊆ X where a treatment-covariate interaction exists. Let

ϕ be the regression coefficient for the treatment assignment indicator, β0 be the intercept,

β = {β1, ..., βp} be the vector of covariate main effects, and ω = {ω1, ..., ωm} be the vector

of treatment-covariate interaction effects for those covariates used in the adjustment model

within a GLM setting. Additionally, let ζ be a set of nuisance parameters not of direct

interest but which are required for model specification (e.g., baseline hazard parameters in

a time-to-event setting). Then let θ = {β0, ϕ,β,ω, ζ} be the set of model parameters with

prior p(θ), and define η(θ;Ai,Xi,Zi) to be the expected outcome for participant i on the

linear scale. Let p(Yi | Ai,Xi,θ) represent each participant’s contribution to the likelihood

function and g(·) be the link function. Assuming independence among participants, we

have the joint posterior distribution of the model parameters, π(θ | Dnt), under arbitrary

adjustment model specification, being proportional to the likelihood times the prior:

π(θ | Dnt) ∝
nt∏︂
i=1

p(Yi | Ai,Xi,θ)p(θ).

In this manuscript, the decision rule used at an interim or final analysis is defined with

respect to a posterior probability statement about a marginal estimand γ(θ), presented in

Equation 3.1, which is the average treatment effect in a population of interest. We note this

marginal estimand can be defined as a contrast of population average quantities, such as a

difference of means or a ratio of population-level event or survival probabilities. Let µ(θ;A)
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be the population level parameter for treatment group A used as input for contrast f(·).

Then γ(θ) can be represented by:

γ(θ) = f(µ(θ;A = 1), µ(θ;A = 0)).

Unadjusted analyses yield posterior samples from the marginal parameter µ(θ;A) directly:

µ(θ;A) = g−1(η(θ;A)).

Adjusted analyses, however, yield posterior samples from the conditional parameter µ(θ;A,X)

for fixed covariate pattern X:

µ(θ;A,X) = g−1(η(θ;A,X,Z)).

When a treatment effect is collapsible, it can be represented as a contrast between either the

marginal or conditional parameters for a fixed covariate pattern X:

γ(θ) = f(µ(θ;A = 1), µ(θ;A = 0))

= f(µ(θ;A = 1,X), µ(θ;A = 0,X)).

Thus, under collapsibility, samples from the posterior distribution of the marginal estimand

can be obtained from either an unadjusted or adjusted analysis. When a treatment effect is

non-collapsible, the marginal treatment effect cannot be represented as a contrast between

conditional parameters for a fixed covariate pattern X (Daniel et al., 2021). This is commonly

the case for treatment effects modeled by GLMs or in the presence of treatment-covariate

interactions. As an example, consider a hypothetical RCT with a binary endpoint which

follows the following logistic regression model with binary treatment assignment A and binary

covariate X, where P (X = 1) = P (A = 1) = 0.5 and where ϕ = log(5), β = log(10), and

θ = {ϕ, β}:

logit(P (Y = 1 | A,X)) = ϕA+ βX.

Define µ(θ;A,X) to be the treatment specific conditional risk. The conditional odds ratio for
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those who are treated versus untreated can be represented as a contrast of these conditional

risk parameters, and is 5 regardless of the value of X. To find the marginal odds ratio,

the treatment specific conditional risks must be averaged with respect to the distribution

of X before calculating the odds ratio, effectively collapsing over X in a stratified two-

by-two table. Doing so gives treatment specific marginal risks µ(θ;A) which are used to

obtain a marginal odds ratio of 4.1. This value is smaller than that for the conditional

odds ratio and shows the marginal odds ratio cannot be represented as a contrast of the

treatment specific conditional risks. Thus, the odds ratio is non-collapsible (see Section

A.7 of Appendix A for more details). Under non-collapsibility, samples from the posterior

distribution of the marginal estimand can still be obtained directly from unadjusted analyses,

but not from adjusted analyses. To obtain samples from the posterior distribution of the

marginal estimand using an adjusted analysis, the posterior samples of µ(θ;A,X) must be

marginalized with respect to the distribution of X, yielding samples of µ(θ;A) which are

then used in the contrast:

µ(θ;A) =

∫︂
X

µ(θ;A,X)p(X)dX.

This marginalization is commonly called standardization or Bayesian G-computation for

point treatments (Kalton, 1968; Freeman Jr and Holford, 1980; Lane and Nelder, 1982;

Saarela et al., 2015a; Remiro-Azócar et al., 2022; Keil et al., 2018; Daniel et al., 2021). The

integral over p(X) is approximated through summation where, for each of s = 1, ..., S Monte

Carlo samples θs from π(θ | Dnt), the following calculations is performed:

µ(θs;A) ≈
nt∑︂
i=1

wi,sµ(θs;A,xi). (3.2)

The xi are the covariate patterns used for adjustment and which are contained in the joint

empirical distribution of the collected sample data. The weights ws = (w1,s, ..., wnt,s) are

sampled as ws ∼ Dirichlet(1nt), corresponding to the Bayesian bootstrap, where 1nt is the

nt-dimensional vector of 1’s (Rubin, 1981; Oganisian and Roy, 2021; Linero and Antonelli,
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2023). This can then be used to obtain a single sample from the posterior of the marginal

treatment effect:

γ(θs) = f(µ(θs;A = 1), µ(θs;A = 0)).

Note that when any Xj for j = 1, ..., p is the propensity score being jointly modeled with the

outcome of interest, a different Bayesian bootstrap procedure should be utilized (Stephens

et al., 2023). For the remainder of the manuscript, it is assumed X does not contain a

propensity score estimated in this manner.

The procedure above enables S samples from the posterior distribution of the marginal es-

timand γ(θ) to be obtained using an arbitrary adjustment model. This allows for a direct

performance comparison between adjustment models within Bayesian adaptive designs. Be-

low we describe this procedure within the context of specific models that are most commonly

used for different outcome types in clinical trials.

3.3.1 Collapsible treatment effects

Difference in means: no treatment-covariate interactions

Consider the difference in means of a continuous endpoint under the assumption of no

treatment-covariate interactions (i.e., Z = ∅; homogeneity of the treatment effect),

γ(θ) := µ(θ;A = 1)− µ(θ;A = 0)

where µ(θ;A = a) = E[Y | A = a;θ]. This marginal estimand represents the difference

in expected outcomes between those assigned to treatment versus those assigned to control.

Estimation proceeds assuming independent outcomes and the following model:

p(Yi | Ai,Xi,θ) = Normal(µ(θ;Ai,Xi), σ
2)

µ(θ;Ai,Xi) = β0 + ϕAi +Xiβ

θ = {β0, ϕ,β, σ2}.
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Since this treatment effect is collapsible, posterior samples of the marginal estimand can be

obtained from either an unadjusted or adjusted analysis, and samples from the posterior

distribution of the treatment indicator coefficient ϕ are commonly used.

3.3.2 Non-collapsible treatment effects

Difference in means: treatment-covariate interactions

Consider again a continuous outcome, but under the assumption of at least one treatment-

covariate interaction (i.e., Z ̸= ∅; treatment effect heterogeneity). The difference in means

is non-collapsible. Estimation proceeds assuming independent outcomes and the following

model:
p(Yi | Ai,Xi,θ) = Normal(µ(θ;Ai,Xi), σ

2)

µ(θ;Ai,Xi) = β0 + ϕAi +Xiβ + (Ai · Zi)ω

θ = {β0, ϕ,β,ω, σ2}.

Since this estimand is non-collapsible, posterior samples of the conditional µ(θ;A,X) must

be marginalized using (3.2) before forming the contrast to obtain a posterior sample of the

marginal difference in means. An outline of this procedure is provided in Section A.1 in

Appendix A.

Relative risk and odds ratio

Consider a dichotomous outcome which is modelled as a Bernoulli random variable. Exam-

ples of commonly used marginal estimands include the relative risk

γ(θ) := µ(θ;A = 1)/µ(θ;A = 0)

and the odds ratio

γ(θ) :=
µ(θ;A = 1)/(1− µ(θ;A = 1))

µ(θ;A = 0)/(1− µ(θ;A = 0))

where µ(θ;A = a) = E[Y | A = a;θ]. The relative risk represents the ratio comparing the

risk of an event for those assigned to treatment versus those assigned to control. The odds
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ratio represents the ratio comparing the odds of an event for those assigned to treatment

versus those assigned to control. Estimation proceeds assuming independent outcomes and

the following model:

p(Yi | Ai,Xi,θ) = Bernoulli(µ(θ;Ai,Xi))

µ(θ;Ai,Xi) = logit−1(β0 + ϕAi +Xiβ + (Ai · Zi)ω)

θ = {β0, ϕ,β,ω}.

To obtain posterior samples of the marginal relative risk or odds ratio, posterior samples of

the conditional µ(θ;A,X) must be marginalized using (3.2) before forming the contrast, an

outline of which is provided in Section A.1 in Appendix A.

Hazard ratio

Let T denote the time to an event of interest. Let h(t | A) represent the hazard, the

instantaneous event rate at time t, for those assigned to treatment A:

h(t | A) = lim
∆t→0

P (t ≤ T < t+∆t | T > t,A)

∆t
.

Under the assumption of no competing risks, there is a one-to-one relationship between the

hazard and survival probability at time t:

S(t | A) = exp

(︃
−
∫︂ t

v=0

h(v | A)dv
)︃
.

Further assuming proportional hazards, an estimand of interest is the marginal hazard ra-

tio

γ(θ) := log{µ(θ;A = 1)}/ log{µ(θ;A = 0)}

where µ(θ;A = a) = S(t | A = a;θ). This estimand represents the ratio comparing

the hazard of those assigned to treatment versus those assigned to control. We note that

the estimation framework described below is general and may be utilized to target other

estimands of interest (e.g., the risk difference or risk ratio).
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Under an RCT framework which allows for right censoring only, the time from a participant’s

initial enrollment to an event of interest may occur after the trial has ended. Let Ti be the

ith participant’s observed event time or right censoring time. Let δi be the ith participant’s

observation indicator, where δi = 1 means the event time is observed before the end of the

trial and where δi = 0 means the event time is right censored. Let Yi = {Ti, δi} be the

observed data. On the hazard scale, the hazard of the event at time t for the ith participant

can be modeled as below, where h0(t) is the baseline hazard function:

hi(t | Ai,Xi) = h0(t) exp(ηi)

ηi = ϕAi +Xiβ + (Ai · Zi)ω.

This yields the corresponding survival probability:

Si(t | Ai,Xi) = exp

(︃
−
∫︂ t

v=0

hi(v | Ai,Xi)dv

)︃
= exp

(︃
−
∫︂ t

v=0

h0(v) exp(ηi)dv

)︃
.

The baseline hazard function may be flexibly modeled, with one possible choice being through

M-splines (Brilleman et al., 2020). Let M(t;ψ,k, δ) be an M-spline function:

M(t;ψ,k, δ) =
L∑︂
l=1

ψlMl(t;k, δ).

Here ψ is the vector of coefficients for the L M-spline basis terms, with degree δ and knot

locations k. Integrating this M-spline function yields the following I-spline function, which

is evaluated using the same coefficients, degree and knot locations:

I(t;ψ,k, δ) =
L∑︂
l=1

ψlIl(t;k, δ).

Both M-spline and I-spline functions can be evaluated analytically (Wang and Yan, 2021). By

flexibly modeling the baseline hazard with M-splines, the hazard and the survival probability
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become, respectively:

hi(t | Ai,Xi) =M(t;ψ,k, δ) exp(ηi)

Si(t | Ai,Xi) = exp

(︃
−
∫︂ t

v=0

M(v;ψ,k, δ) exp(ηi)dv

)︃
= exp (−I(t;ψ,k, δ) exp(ηi)) .

Estimation then proceeds by assuming independent outcomes and the following model:

p(Yi | Ai,Xi,θ) = Si(Ti | Ai,Xi)
1−δihi(Ti | Ai,Xi)

δi

θ = {ψ, ϕ,β,ω}.

Posterior samples of the marginal hazard ratio are obtained by first marginalizing samples

of µ(θ;A,X) = S(t | A = a,X;θ) using (3.2) and then forming the contrast (Daniels et al.,

2023; Stitelman et al., 2011; Remiro-Azócar et al., 2022). This procedure is outlined in

Section A.1 in Appendix A.

3.4 Simulation study

In this section we perform simulations for the design and models described in the previous

sections. We consider a design with a superiority stopping rule where superiority is declared

at any interim or final analysis performed at time t if T (Dnt) > 0.99. The same value of

u = 0.99 is selected for all maximum sample sizes to control the overall Type 1 error rate of

the unadjusted model (i.e., Type 1 error rate below 0.05). The unadjusted model is selected

as a conservative choice for trial planning purposes, since the true strength of any covariate

effects and adjustment benefit may not be known in practice at the trial planning stage

(Benkeser et al., 2021). Note that our interest is in comparing the performance of different

adjustment models, not optimizing u for each maximum sample size and model, so a single

conservative value of u above is chosen for all simulations. Our marginal treatment effects

of interest are the difference in means of a Normal endpoint under the assumption of no

treatment-covariate interactions, the relative risk under a binary endpoint, and the hazard
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ratio under a time-to-event endpoint. Data generating processes with five covariates and

a treatment assignment indicator are used for multiple sample sizes with each endpoint.

We consider adjustment models which include several forms of misspecification and which

incorporate varying levels of prior information for the covariate effects. To obtain marginal

estimates from the adjustment models, the procedures described in the previous section are

utilized. We follow a setup similar to that reported in a previous study which investigated

covariate adjustment for endpoints commonly used in COVID-19 RCTs (Benkeser et al.,

2021): for each maximum sample size with each endpoint, three treatment effect values are

chosen. The first is the null treatment effect, and the second and third are those where the

unadjusted model achieves roughly 50% and 80% power. This excludes the scenarios of a

maximum sample size of 100 under the binary and time-to-event endpoints, whose second

and third treatment effect sizes are chosen as those where the unadjusted model achieves

roughly 30% or 40% power. This ensures all simulations maintain realistic values for the

marginal treatment effects, and that the impact of covariate adjustment is compared at a

value of the treatment effect for which trials are commonly powered (i.e., 80%). For each

maximum sample size with each endpoint, the impact of covariate adjustment is quantified

through the values of the following design operating characteristics: power, Type 1 error

rate, expected sample size, probability of stopping early, bias and root mean squared error

(RMSE).

3.4.1 Data generating mechanisms

For each combination of endpoint and maximum sample size {100, 200, 500, 1000}, the data

generating mechanisms for the treatment assignment and covariate distributions measured

at baseline are shown below, where joint independence between all variables is assumed.

Letting η represent the linear predictor used in the data generating mechanisms, the set

{β, ϕ} represents the conditional covariate and treatment effects on the linear predictor
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scale:
η = β0 + ϕA+ β1X1 + β2X2 + β3X3 + β4X

2
3 + β5X5

{A,X1, X2, X6} ∼ Bernoulli(0.5)

{X3, X5, X7, X8} ∼ Normal(0, 1)

β = (β0, β1, β2, β3, β4, β5)

γmax ss = S(η)

Θ = {(γ100 × β), (γ200 × β), (γ500 × β), (γ1000 × β)}.

Note that the variables {X6, X7, X8} are noise and are not predictive of, or correlated with,

any other variables in the data generating mechanism. For the binary endpoint, β0 is

optimized to generate datasets which exhibit the correct marginal control event risk of

pctr = 0.3 (Section A.2 in Appendix A). For the continuous and time-to-event endpoints,

β0 = 0. For the time-to-event endpoint, an exponential baseline hazard with rate λ = 0.02

is used. For the non-collapsible treatment effects, the true values of the marginal esti-

mand γ = γ(θ) = f(µ(θ;A = 1), µ(θ;A = 0)) do not equal the conditional treatment

effects ϕ = f(µ(θ;A = 1,X), µ(θ;A = 0,X)) for fixed X. Thus, the reported values of the

marginal estimands are obtained through simulation (denoted by S(·); Section A.2 in Ap-

pendix A), and the values of γ and ϕ are reported together. For the continuous endpoint, β =

(0, 0.5,−0.25, 0.5,−0.05, 0.25). For the binary endpoint, β = (−1.26, 1,−0.5, 1,−0.1, 0.5).

For the time-to-event endpoint, β = (0, 1,−0.5, 1,−0.1, 0.5). For each maximum sample size

(max ss) within each outcome type, 1,000 treatment-covariate datasets are generated. These

are used to generate 1,000 different outcome vectors for each value of the marginal treatment

effect within the corresponding maximum sample size. The specific parameter values used

for all simulations are included in Table 3.1.

3.4.2 Adjustment models

Six adjustment models are considered for all endpoints:

1. correct: β0 + ϕA+ β1X1 + β2X2 + β3X3 + β4X
2
3 + β5X5
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Table 3.1: Simulation study parameter settings for the marginal estimand (γ) and conditional
treatment effect (ϕ) for each endpoint and maximum sample size (max ss). The marginal
estimands for the continuous, binary, and time-to-event are, respectively, the difference in
means under the assumption of no treatment-covariate interactions, the relative risk, and
the hazard ratio.

Endpoint Parameter Settings

Continuous

max ss γ max ss γ

100 0 500 0
100 -0.52 500 -0.22
100 -0.73 500 -0.32
200 0 1000 0
200 -0.36 1000 -0.16
200 -0.52 1000 -0.22

Binary

max ss γ ϕ max ss γ ϕ

100 1 0 500 1 0
100 0.53 -0.99 500 0.72 -0.56
100 0.46 -1.21 500 0.60 -0.82
200 1 0 1000 1 0
200 0.59 -0.86 1000 0.80 -0.39
200 0.41 -1.36 1000 0.72 -0.54

Time-to-event

max ss γ ϕ max ss γ ϕ

100 1 0 500 1 0
100 0.65 -0.68 500 0.78 -0.39
100 0.60 -0.79 500 0.71 -0.54
200 1 0 1000 1 0
200 0.69 -0.59 1000 0.85 -0.27
200 0.57 -0.86 1000 0.78 -0.39
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Figure 3.1: Continuous outcome. A) Power and B) probability of stopping early. Panels
correspond to various maximum sample sizes (max ss). Points are jittered horizontally.

2. no quad: β0 + ϕA+ β1X1 + β2X2 + β3X3 + β5X5

3. correct noise: β0 + ϕA+ β1X1 + β2X2 + β3X3 + β4X
2
3 + β5X5 + β6X6 + β7X7 + β8X8

4. correct prior: β0 + ϕA+ β†
1X1 + β†

2X2 + β†
3X3 + β†

4X
2
3 + β†

5X5

5. correct strong prior: β0 + ϕA+ β††
1 X1 + β††

2 X2 + β††
3 X3 + β††

4 X
2
3 + β††

5 X5

6. unadjusted: β0 + ϕA.

The correct model corresponds to an adjustment model which matches the data generating

mechanism. The no quad model drops the quadratic component of X3 from the correct

model. The correct noise model adds noise variables {X6, X7, X8} to the correct model.

These three models include priors for all parameters which are weakly informative only. The

correct prior model is the same as the correct model, but includes priors for the covariate

effects centered at the values used in the data generating mechanism. Similarly, the correct

strong prior model both centers and re-scales these priors to be more informative. Note that

the prior for the treatment indicator coefficient remains weakly informative in these models.

Finally, the unadjusted model includes only the binary treatment indicator and uses weakly

informative priors.
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Table 3.2: Continuous outcome. Type 1 error rate (T1E), bias under the null (Bias∗), and
expected sample size at three different values of the marginal difference in means (γ).

Maximum sample size = 100 Maximum sample size = 200

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 0 γ = −0.52 γ = −0.73 T1E Bias∗ γ = 0 γ = −0.36 γ = −0.52

correct 0.034 -0.013 98.3 78.6 62.5 0.039 -0.011 196.8 154.7 116.0
no quad 0.037 -0.015 98.2 78.0 62.5 0.032 -0.009 197.5 156.2 115.4
correct noise 0.031 -0.012 98.6 80.3 64.8 0.036 -0.012 196.9 156.2 118.7
correct prior 0.032 -0.012 98.5 78.3 62.9 0.043 -0.012 196.4 154.5 116.3
correct strong prior 0.033 -0.012 98.3 78.4 62.5 0.041 -0.012 196.6 155.0 116.8
unadjusted 0.028 -0.007 98.5 82.6 68.9 0.039 -0.017 196.5 163.1 130.7

Maximum sample size = 500 Maximum sample size = 1000

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 0 γ = −0.22 γ = −0.32 T1E Bias∗ γ = 0 γ = −0.16 γ = −0.22

correct 0.036 -0.008 491.1 389.1 290.4 0.031 -0.003 987.0 753.0 598.8
no quad 0.031 -0.007 493.0 388.8 291.4 0.028 -0.003 987.8 755.2 597.5
correct noise 0.032 -0.006 492.8 391.1 293.0 0.030 -0.003 987.8 753.2 599.0
correct prior 0.032 -0.007 492.8 388.5 293.8 0.031 -0.003 987.2 753.5 598.0
correct strong prior 0.032 -0.007 492.8 388.8 291.0 0.029 -0.003 986.8 754.8 599.0
unadjusted 0.032 -0.006 492.4 415.6 343.1 0.028 -0.002 989.0 817.8 690.2

All simulations are performed using R (version 4.2.1). All modeling is performed using the

GLM and survival functionality of the rstanarm package (version 2.21.2), a front-end to

the STAN probabilistic programming language (R Core Team, 2022; Goodrich et al., 2020;

Brilleman et al., 2020). For all coefficients other than {β†
j , β

††
j }, the package’s default weakly

informative priors are used (Gabry and Goodrich, 2022). These priors induce moderate

regularization and help improve computational stability. The prior for the intercept is placed

after all covariates have been internally centered by rstanarm. Under a Normal likelihood

for the continuous endpoint, this equates to the following priors, where β0,c represents the

intercept’s prior after covariate centering has been performed:

β0,c ∼ Normal(ȳ, 2.5sy)

ϕ ∼ Normal(0, 2.5(sy/sx))

βj ∼ Normal(0, 2.5(sy/sx))

β†
j ∼ Normal(βj, 2.5(sy/sx))

β††
j ∼ Normal(βj, sy/sx)

σ ∼ Exponential(1/sy).

Under the binary and time-to-event endpoints, the above priors for {ϕ,β} are used with

ȳ = 0 and sy = 1. For the time-to-event endpoint, the coefficients of the M-spline basis (ψ)
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are constrained to a simplex to ensure identifiability of both the basis and linear predictor

intercepts. Thus, the basis coefficients receive rstanarm’s default Dirichlet prior (Brilleman

et al., 2020). All models specify three Markov chains, each with 2,000 posterior samples.

Half of the samples within each chain are used during the warm-up period, so 3,000 posterior

samples in total are available for inference. Given the scale of the simulations performed,

visual diagnostics assessing convergence of the Markov chains are not performed. Rather,

for all simulations, values of STAN’s implementation of the Gelman-Rubin R̂ statistic are

assessed to ensure Markov chain convergence (Gelman and Rubin, 1992).

The following null and alternative hypotheses are specified for the continuous, binary and

time-to-event (TTE) endpoints, where γ(θ) is the marginal difference in means, marginal

relative risk, and marginal hazard ratio, respectively:

Continuous: H0 : γ(θ) ≥ 0 vs HA : γ(θ) < 0

Binary and TTE: H0 : γ(θ) ≥ 1 vs HA : γ(θ) < 1.

For the continuous and binary endpoints, all outcomes are assumed to be observed immedi-

ately upon participant enrollment. For the time-to-event endpoint, it is assumed all outcomes

are observed strictly after enrollment. For the continuous endpoint, interim analyses are per-

formed after every 25, 50, 125, and 250 participants are enrolled for maximum samples sizes

of 100, 200, 500, and 1,000, respectively. For the binary and time-to-event endpoints, interim

analyses are event driven. For the binary endpoint, interim analyses are performed after at

least 10, 20, 50, and 100 new events occur for maximum sample sizes 100, 200, 500, and

1,000, respectively. For the time-to-event endpoint, interim analyses are performed after at

least 20, 40, 100, and 200 new events occur for maximum sample sizes 100, 200, 500, and

1,000, respectively. These numbers are chosen for each endpoint to ensure that on average

the total number of analyses performed under the null treatment effect is less than four,

which helps control the Type 1 error rate. They are also large enough to ensure there is

a moderate chance of stopping at an early interim analysis under the non-null treatment
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Figure 3.2: Binary outcome. A) Power and B) probability of stopping early. Panels corre-
spond to various maximum sample sizes (max ss). Points are jittered horizontally.

effects. For the continuous and binary endpoints, interim analyses are performed until the

trial is stopped early for superiority or until the maximum sample size is reached, at which

time the final analysis is performed. For the time-to-event endpoint, interim analyses are

performed until the trial is stopped early for superiority or until 50 time units from the start

of the trial is reached, at which time the final analysis is performed. For this endpoint, par-

ticipant enrollment is permitted until 25 time units. This ensures that participants enrolled

at later time points are under follow-up long enough to have a moderately high probability of

experiencing the event before the end of the trial. It also ensures that the maximum number

of participants will be enrolled if there is not clear evidence of superiority at an early interim

analysis. No loss to follow-up is assumed and administrative censoring of those still at risk

is performed at 50 time units from the start of the trial.

3.4.3 Simulation study results

Within each outcome type and maximum sample size, the following design operating char-

acteristics are investigated: power, Type 1 error rate, probability of stopping early, expected

sample size, posterior median bias, and RMSE. Since the sampling distribution of the test

statistic T (Dnt) is unknown, power and the Type 1 error rate are estimated via Monte Carlo

using the 1,000 datasets. While this number is lower than that required by the FDA for
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Table 3.3: Binary outcome. Type 1 error rate (T1E), bias under the null (Bias∗), and
expected sample size at three different values of the marginal relative risk (γ).

Maximum sample size = 100 Maximum sample size = 200

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.53 γ = 0.46 T1E Bias∗ γ = 1 γ = 0.59 γ = 0.41

correct 0.063 0.031 97.0 86.3 83.6 0.036 0.021 196.8 162.5 138.3
no quad 0.053 0.035 97.4 86.9 83.7 0.031 0.023 197.6 164.0 138.6
correct noise 0.079 0.031 96.2 84.2 81.0 0.044 0.021 196.0 161.3 137.4
correct prior 0.060 0.033 97.2 86.3 82.9 0.036 0.021 196.5 162.9 138.0
correct strong prior 0.052 0.035 97.7 88.1 84.5 0.036 0.022 196.9 164.6 138.2
unadjusted 0.034 0.058 98.6 90.7 88.3 0.031 0.025 198.0 171.4 147.2

Maximum sample size = 500 Maximum sample size = 1000

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.72 γ = 0.60 T1E Bias∗ γ = 1 γ = 0.80 γ = 0.72

correct 0.028 0.010 493.7 404.9 334.9 0.022 0.008 992.0 823.2 681.5
no quad 0.028 0.009 494.0 406.1 335.2 0.022 0.007 991.3 816.9 683.8
correct noise 0.031 0.010 493.9 402.7 334.8 0.022 0.007 991.4 816.4 677.3
correct prior 0.028 0.010 494.3 405.0 336.1 0.021 0.007 991.9 817.8 680.7
correct strong prior 0.027 0.010 494.2 404.7 337.2 0.021 0.008 992.6 821.0 677.3
unadjusted 0.026 0.016 494.6 426.0 367.0 0.024 0.010 990.2 859.6 734.2

adaptive simulations used in RCTs (United States Food and Drug Administration, 2019),

our goal here is to compare model adjustment performance, not to obtain precise estimates

of operating characteristics. The probability of stopping early is estimated as the proportion

of times the trial stops before performing a final analysis. In the continuous and binary out-

comes, this is the proportion of times the trial stops before enrolling the maximum number

of participants. In the time-to-event outcome, this is the proportion of times the trial stops

before 50 time units. In Bayesian adaptive designs which allow for early stopping, sample

size is a random variable. Thus, expected sample size is estimated as the average of the 1,000

sample sizes at trial end. Posterior median bias is defined as the bias resulting from using

the posterior median γ̂ obtained from an adjustment model as an estimator for the value of

γ used in the simulation, and is estimated through Monte Carlo using the 1,000 datasets.

The Monte Carlo distribution of RMSE is displayed for each value of the marginal estimand.

Here the entire posterior distribution from an adjustment model is used as the estimator for

γ, so this is equivalent to the posterior expected squared error loss. For each of the 1,000
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simulations, a single value of RMSE is obtained using the 3,000 posterior draws γs for the

value of γ used in the simulation:

RMSE =

⌜⃓⃓⎷ 1

3000

3000∑︂
s=1

(γs − γ)2.

Results for the continuous, binary, and time-to-event endpoints are are displayed in Figures

3.1-3.3 and Tables 3.2-3.4. For all endpoints, adjusting for variables known to be associated

with the outcome increases the power of the trial and the probability of stopping the trial

early as compared to the unadjusted analysis (Figures 3.1-3.3). Additionally, failing to

correctly specify the functional form of a covariate (no quad) has only a minor impact on

power and the probability of stopping early. Under all scenarios, incorporating stronger prior

information appears to provide little to no benefit as compared to the weakly informative

priors used in the correct models. This results from the priors being dominated by the data

due to the high effective sample sizes. For the binary endpoint, this is induced by the control

event risk of 0.3, which ensures that a moderately large number of events occurs throughout

the trial. For the time-to-event endpoint, this is induced by the exponential baseline hazard

rate of λ = 0.02, which ensures there are a large number of events within the maximum time

limit of 50 time units.

Compared to other adjustment models, adjusting for noise (correct noise) has minimal im-

pact under most scenarios. However, for the smallest maximum sample size under the binary

endpoint (max ss = 100), adjustment for noise slightly increases power and the probability

of stopping early as compared to the correct model. This may result from non-negligible

correlation being induced between the outcome and noise variables under this setting, and

so adjustment provides a further power benefit. However, this comes at the cost of a strong

inflation in the Type 1 error rate as compared to the correct model (i.e., T1E = 0.079 versus

T1E = 0.063 in Table 3.3). This underscores the importance of adjusting only for variables

which are known to be associated with the outcome and in a pre-specified manner (Hauck
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et al., 1998; Committee for Proprietary Medicinal Products, 2004; Senn, 2013; European

Medicines Agency, 2015).

There is some suggestion that adjusted analyses tend to have slightly lower RMSE than

unadjusted analyses under all scenarios. However, no clear pattern emerges for posterior

median bias for the non-null treatment effects, where all adjustment models are compara-

ble for practical purposes (Figures A.4.1-A.4.3 in Appendix A). For all scenarios except the

smallest maximum sample size under the binary endpoint (max ss = 100), posterior median

bias for the non-null treatment effects is negative. This results from the estimated treat-

ment effect being further from the null than the true treatment effect (i.e., overestimation),

which is expected in trials which allow for early stopping for treatment superiority (i.e.,

truncated trials) (Mueller et al., 2007; Walter et al., 2019; Robertson et al., 2023). For the

null treatment effect, early stopping for superiority leads to non-zero but minimal bias under

all endpoints and maximum sample sizes (Tables 3.2-3.4). For the binary endpoint, it is

consistently larger in magnitude for the unadjusted model. We note that bias under the null

is negative for the continuous endpoint but positive for the binary and time-to-event end-

points. This results from the marginal difference in means being unbounded below, whereas

the marginal relative risk and marginal hazard ratio are bounded below by zero. When bias

under the null is evaluated for these latter estimands on the log scale, most values become

negative as in the continuous endpoint case. We elaborate further on this overestimation

induced bias in Section A.6 of Appendix A.

Under all scenarios except the smallest maximum sample size (max ss = 100) for the binary

endpoint, the Type 1 error rate is maintained below 0.05 for all adjustment models (Table

3.2-3.4). Under the smallest maximum sample size within the binary endpoint, however, all

adjustment models lead to increased Type 1 error rate as compared to the unadjusted model.

This results from using too many covariates in the adjustment model given the low effective

sample size, a phenomenon known as over-stratification (Kahan et al., 2014). We observe
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that as the maximum sample size, and thus effective sample size, increases, the inflation in the

Type 1 error rate disappears. Under the time-to-event endpoint, there is minimal inflation

in the Type 1 error rate for adjusted analyses as compared to the unadjusted analysis. This

may also result from over-stratification as described above. Future work should determine

the optimal number of covariates to include in an adjustment model under these scenarios

to avoid over-stratification. Considering the substantial power gains achieved by adjusting

under the time-to-event endpoint, and that the Type 1 error rate is maintained by selecting

a conservative value of the probability of superiority threshold u, this slight increase in the

Type 1 error rate is not likely to be problematic, however. Across all non-null treatment

effect scenarios, the adjusted models have lower expected sample sizes than the unadjusted

model. When combined with the probability of stopping early results, this implies that

adjusted analyses are stopping more often and at earlier interim analyses for all endpoints.

We note that the reduction in expected sample size is not as great for the time-to-event

endpoint as compared to the other endpoints. This results from the maximum sample size

being included for any interim analyses conducted past the halfway point of the trial, since

all trial participants are enrolled by this point. A final simulation (included in Section A.5 of

Appendix A) which incorporated varying degrees of prior information on the treatment effect

was performed for the binary endpoint. This resulted in increased power and probability of

stopping early for smaller maximum sample sizes, but at the cost of inflated type 1 error. A

more complete investigation of including informative priors on treatment effects remains as

future work.

3.5 Application: CCEDRRN-ADAPT

In this section we consider the design of a hypothetical platform trial which seeks to study the

effectiveness of oral therapies against mild to moderate COVID-19 infection in individuals

discharged from Canadian Emergency Departments. The trial design takes advantage of an

already established network of physicians and researchers called the Canadian COVID-19
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Emergency Department Rapid Response Network (CCEDRRN). We consider the first stage

only, where a single oral therapy is compared to the standard of care. The binary outcome of

interest is a composite endpoint of 28-day hospitalization or mortality. Realistic values used

in the trial simulation performed below are taken from a COVID-19 Emergency Department

risk model, developed by the CCEDRRN researchers (Hohl et al., 2022a). This risk model

was developed using data from a high quality, population-based registry, which was also

developed by the CCEDRRN researchers (Hohl et al., 2021,0). While the binary outcome

for the risk model is all cause emergency department and in-hospital mortality, this is very

likely to be highly correlated with the trial’s composite outcome. Thus, the simulation’s

results are expected to generalize to the composite endpoint as well.

The data generating mechanism for the trial simulation is shown below, where a single

maximum sample size of 3,000 is chosen due to the very low marginal control event risk

(pctr = 0.07) and reflects the sample size used in CCEDRRN-ADAPT. Letting Y = 1

represent 28-day hospital admission or mortality, the marginal estimand of interest is the

relative risk, γ(θ) = µ(θ;A = 1)/µ(θ;A = 0) where µ(θ;A = a) = E[Y |A = a;θ]. We

assume γ(θ) is intention-to-treat, that is, we compare the outcome distributions of those

who are assigned to treatment versus those who are assigned to control. As above, let

η represent the linear predictor used in the data generating mechanisms. The set {β, ϕ}

represents the conditional covariate and treatment effects on the log-odds scale. As in the

binary simulation case, the value of β0 is optimized to ensure the generated datasets exhibit

the correct marginal control event risk of pctr = 0.07. The values of ϕ are selected as those

where the unadjusted model achieves approximately 50% and 80% power. The value of

γ = γ(θ) corresponding to a specific value of ϕ is determined through simulation, described

in Section A.2 of Appendix A. Thus, the values of ϕ and γ are reported together. Let F

be a truncated normal distribution, parameterized by post-truncation values of its minimum

∧, maximum ∨, first quartile q1, third quartile q3, mean µ, and standard deviation σ. An

algorithm to simulate from this distribution is provided in Section A.3 of Appendix A.
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The covariate distributions are simulated using values of summary statistics for the deriva-

tion cohort from a previously reported risk model for individuals presenting to Canadian

Emergency Departments with COVID-19 symptoms (Hohl et al., 2022a). Covariates in-

cluded in the risk model and whose summary statistics were available are included in the

simulation. These include age in years (X1), respiratory rate upon arrival to the Emergency

Department and measured in breaths/minute (X2), female sex (X3), chest pain (X4), and

arrival from police or ambulance (X5). As the risk model was developed before COVID-19

vaccines were widely available, vaccination status is not included as a potential covariate.

The corresponding risk model coefficients are used as the conditional effects {β1, ..., β5} in

the simulation. Since the summary statistics did not include covariance information, joint

independence between all variables is assumed. Due to study inclusion criteria, the range

of the distribution of age is set to be [18, 90]. Due to biological contraints, the range of the

distribution of respiratory rate is set to be [12, 40]. Values for age and respiratory rate are

simulated from the truncated normal distribution F described above.

A total of 1,000 treatment-covariate datasets are generated, each containing 3,000 par-

ticipants. Using these same 1,000 datasets, different outcome vectors are generated for

each value of the marginal relative risk γ ∈ {1, 0.73, 0.63}, which corresponds to ϕ ∈

{0,−0.42,−0.60}. The outcome vectors are generated as follows:

Y ∼ Bernoulli(logit−1(η))

η = β0 + ϕA+ β1X1 + β2X2 + β3X3 + β4X4 + β5X5

X1 ∼ F (∧ = 18,∨ = 90, q1 = 39, q3 = 70, µ = 54.7, σ = 19.8)

X2 ∼ F (∧ = 12,∨ = 40, q1 = 18, q3 = 22, µ = 21, σ = 6.2)

pctr = 0.07

β = (−10.76, 0.092, 0.097,−0.61,−0.80, 0.63)

X3 ∼ Bernoulli(0.478)

X4 ∼ Bernoulli(0.216)

X5 ∼ Bernoulli(0.403)

Θ = {γ × β}.
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Figure 3.3: Time-to-event outcome. A) Power and B) probability of stopping early. Panels
correspond to various maximum sample sizes (max ss). Points are jittered horizontally.

Table 3.4: Time-to-event outcome. Type 1 error rate (T1E), bias under the null (Bias∗),
and expected sample size at three different values of the marginal hazard ratio (γ).

Maximum sample size = 100 Maximum sample size = 200

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.65 γ = 0.60 T1E Bias∗ γ = 1 γ = 0.69 γ = 0.57

correct 0.027 0.014 99.7 98.3 98.0 0.033 0.000 199.4 193.1 189.4
no quad 0.027 0.017 99.7 98.3 97.9 0.029 0.002 199.4 193.5 189.7
correct noise 0.036 0.013 99.6 98.1 97.8 0.030 -0.001 199.4 193.1 189.2
correct prior 0.029 0.013 99.6 98.3 97.9 0.031 0.000 199.4 193.1 189.3
correct strong prior 0.026 0.015 99.7 98.3 97.8 0.033 0.000 199.3 193.3 189.2
unadjusted 0.029 0.035 99.7 98.5 98.2 0.028 0.005 199.4 194.4 191.0

Maximum sample size = 500 Maximum sample size = 1000

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.78 γ = 0.71 T1E Bias∗ γ = 1 γ = 0.85 γ = 0.78

correct 0.026 0.003 498.4 477.9 464.8 0.026 0.001 996.9 955.4 912.4
no quad 0.025 0.003 498.6 478.6 463.5 0.027 0.001 997.2 953.8 913.1
correct noise 0.027 0.003 498.6 477.6 464.2 0.022 0.001 997.4 953.3 910.7
correct prior 0.027 0.003 498.5 478.1 463.6 0.024 0.001 997.4 954.4 912.9
correct strong prior 0.026 0.003 498.4 477.8 463.2 0.026 0.001 997.4 955.4 911.9
unadjusted 0.022 0.011 498.6 483.4 470.6 0.019 0.003 997.9 962.8 929.6
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The trial uses the same null and alternative hypotheses as those specified under the binary

endpoint simulation above and includes a probability of superiority threshold of u = 0.99.

Estimation for the marginal relative risk proceeds as previously described. Four adjustment

models are considered and mirror those used in the binary simulations: correct, correct prior,

correct strong prior, and unadjusted. All outcomes are assumed to be observed immediately

upon participant enrollment. Interim analyses are event driven, and 75 new events are

required to be observed before performing an interim analysis. This ensures a moderately

high probability of stopping at an earlier interim analysis given treatment superiority. Interim

analyses continue until the trial is stopped early for superiority or until 3,000 participants

are enrolled, at which time the final analysis is performed.

Results for the CEDRRN-ADAPT design simulation study are summarized in Figure 3.4

and Table 3.5. Adjusting for variables known to be associated with the outcome increases

the power of the trial and the probability of stopping the trial early as compared to the

unadjusted analysis (Figure 3.4). As in the binary simulations above, including stronger

priors on the covariate effects has minimal impact on power and the probability of stopping

early as compared to the weakly informative priors used in the correct models. While there is

some suggestion that adjusted analyses tend to have slightly lower RMSE than unadjusted

analyses, all adjustment models have comparable posterior median bias for the non-null

treatment effects (Figure A.4.4 in Appendix A). The Type 1 error rate is maintained below

0.05, and bias under the null is minimal, for all adjustment models (Table 3.5). As in the

binary simulations above, there is slight inflation in bias under the null for the unadjusted

model, however. The adjusted models have lower expected sample sizes than the unadjusted

model across both non-null values of the relative risk. Again, we see the adjusted analyses are

stopping more often and at earlier interim analyses as compared to the unadjusted analysis.

For example, under a relative risk of 0.63, the correct model stops at the first interim analysis

50% of the time whereas the unadjusted model stops at the first interim analysis only 40%

of the time.
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Figure 3.4: COVID-19 trial with bi-
nary outcome. A) Power and B)
probability of stopping early. Points
are jittered horizontally.

Table 3.5: COVID-19 trial with binary outcome.
Type 1 error rate (T1E), bias under the null (Bias∗),
and expected sample size at three different values of
the marginal relative risk (γ).

Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.73 γ = 0.63

correct 0.022 0.017 2969.7 2458.9 2047.3
correct prior 0.022 0.017 2968.9 2455.2 2051.8
correct strong prior 0.020 0.017 2971.5 2454.7 2056.0
unadjusted 0.024 0.022 2972.7 2561.7 2220.9

3.6 Discussion

The impact of covariate adjustment and incorporation of prior information on covariate

effects has not been previously investigated in Bayesian adaptive trials with early stopping

criteria. In this article, we assessed this impact using a variety of adjustment models and

incorporated varying levels of prior information or types of model misspecification. It was

shown that covariate adjustment increases power and the probability of stopping early, and

decreases expected sample size over all scenarios. Furthermore, adjusting for covariates leads

to trials which stop more often and at earlier interim analyses, and can decrease RMSE as

compared to unadjusted analyses. These findings are fairly robust to adjustment for noise

variables, but extra caution is needed for small sample size trials (max ss = 100) with binary

endpoints where noise adjustment may lead to inflated Type 1 error. This reinforces existing

best practice of only adjusting for covariates which have been pre-specified by subject matter

experts (Hauck et al., 1998; Committee for Proprietary Medicinal Products, 2004; Senn, 2013;

European Medicines Agency, 2015). For the scenarios explored here, which had moderate

effective sample sizes, weakly informative priors on the covariate effects perform well, with

stronger prior information providing little benefit. This included the CCEDRRN-ADAPT

COVID-19 RCT design. Although the control event risk (0.07) of this trial is small, the

maximum sample size was selected to be large enough to power the study for reasonable
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values of relative risk, which ensured moderately high effective sample sizes. Including

stronger prior information is expected to be helpful in trials which have small effective

sample sizes (e.g., oncology trials), so future work may consider covariate adjustment within

these contexts. Although we did not consider designs which also include futility stopping

rules, we expect that the conclusions can be generalized.

In our simulation study, all covariates were assumed to be jointly independent. The assump-

tion of independence may not hold in some cases and these should be investigated further.

Since they carry similar information, adjusting for covariates which are moderately or highly

correlated may yield smaller power increases than adjusting for approximately independent

covariates. Future work might perform a simulation study to assess how different strengths

of association between covariates impacts the results reported here. Another limitation of

the current work is that adjustment was shown under only a single set of covariate effects

within each endpoint. There is strong evidence in favor of covariate adjustment when the

covariate effects are known to be strong. However, previous simulations (not shown) showed

that adjustment under weaker covariate effects yielded only modest benefit. This finding

was especially pronounced in the case of the non-linear endpoints. Future work might in-

vestigate a wider range of covariate effects to ascertain the magnitude that is required for

covariate adjustment to be more than just modestly beneficial, though this may be context

dependent.

It is important to note that the marginalization procedure used in this work is sensitive to the

joint empirical distribution of the covariates with respect to which the conditional posterior

samples are being marginalized. That is, the marginalization procedure is sensitive to the

participants enrolled in the trial. While trialists work hard to obtain representative samples

for use in RCTs, the participants volunteer and consent to be enrolled in the trials. Thus they

are not a random sample from the population of interest (Lindsey and Lambert, 1998). If

the sample is not as representative of the population of interest as desired, indirect standard-
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ization could be performed. Here, conditional posterior samples would be marginalized with

respect to a set of covariate patterns which more closely resembles the population of interest.

Additionally, the participant covariate patterns could be augmented by pseudo-participant

covariate patterns until the sample is more representative. These could be acquired from

registry data or from participants in previous trials which contained a similar population

and target of interest.

This work focused on Bayesian adaptive designs which employed simple randomization,

where covariate adjustment takes place within an adaptive decision rule. Covariate ad-

justment may also occur within an adaptive allocation rule, such as in Covariate Adjusted

Response Adaptive (CARA) designs (Rosenberger and Sverdlov, 2008; Villar and Rosen-

berger, 2018). These designs estimate treatment arm allocation probabilities from models

which include covariates. While frequentist in nature, similar ideas can be applied within

Bayesian response adaptive randomization designs. Since adaptive randomization leads to

greater covariate imbalance across treatment arms, including covariate adjustment in both

the adaptive decision and adaptive allocation rules may provide greater benefit than either

do individually. This is an interesting direction for future work.

The simulation study above included variants of the correct adjustment model, which corre-

sponded to the data generating mechanism used. In reality, this will be unknown. Variable

selection and shrinkage methods might be employed to select covariates to be used in the

adjustment model. Particularly, Bayesian model averaging can be used where the decision

rules would use marginal posterior samples obtained from a consensus of plausible models

and might be less sensitive to any single adjustment model misspecification. However, this

approach is likely to be very computationally intense.

Another interesting direction of future research is exploration of Bayesian nonparametric

models, such as Gaussian Processes, to consider more flexible functional forms that adjust for

covariates. This approach might be especially advantageous in a setting where the underlying
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association between the adjustment covariates and outcome is complex and hard to correctly

specify, which might include a high degree of covariate non-linearity or interaction.

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this

study. The R scripts used for the simulations and graphics can be found on a public GitHub

repository at https://github.com/jjwillard/cov_adj_bact.
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Chapter 4

Bayesian optimization for personalized

dose-finding trials with combination

therapies

Preamble to Manuscript 2. I now shift focus to using covariate information in early

phase clinical trials, by considering personalized dose-finding trials for combination therapies.

Combination therapies combine two or more dosing agents. Personalized dose-finding seeks

to identify optimal dose combinations based on individual patient characteristics. Many

standard parametric dose-finding methods are difficult to extend to this setting since they

potentially require many dose-covariate interaction terms, which may be poorly estimated

given the small sample sizes in these trials. Thus, an important gap in the literature for

personalized dose-finding trials for combination therapies remains. Mozgunov et al. (2022)

considered dual-agent personalized dose-finding, but did not optimize the dose combination

with respect to both dosing agents. Rather, the value of one of the agents for each patient was

selected externally by clinicians based on patient-specific characteristics. The work in this

chapter proposes using Bayesian optimization for multi-agent personalized dose-finding trials
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where all dose dimensions are explored during the optimization and where early stopping is

permitted if warranted by the data. The efficacy surface is modeled using a Gaussian process.

After initial responses are collected, a sequential search policy is determined by optimizing

an acquisition function. The performance of the procedure is assessed via a simulation study

under multiple scenarios.

This work is motivated by an industry-sponsored problem, developed during an internship at

a host organization, where interest is in the development of an intraocular implant combin-

ing two topical agents which have been in use for a long time and are well tolerated. Thus,

no drug related AEs are expected and a minimal toxicity setting is assumed. Importantly,

this means that toxicity information is ignored during the dose-finding procedure, which is

viewed as an unconstrained optimization problem. Furthermore, response heterogeneity is

expected to exist with respect to a key binary covariate, a characteristic of the eye, which

motivates the personalized approach toward dose-finding. The methodological contributions

of this manuscript are i) to propose a personalized dose-finding method for combination

therapies which optimizes the dose combinations with respect to all dosing-agents, ii) to

perform stratum-specific optimization by defining the acquisition function as a conditional

expectation, and iii) to provide an early stopping rule which permits stratum-specific early

stopping and reduces the expected sample size of the trial. The substantive contribution of

this work is to demonstrate the feasibility of personalized dose-finding designs for combina-

tion therapies under a minimal toxicity setting despite the limited sample sizes used in early

phase designs.

The corresponding manuscript has been submitted for review to a statistical journal.
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Abstract

Identification of optimal dose combinations in early phase dose-finding trials is challenging,

due to the trade-off between precisely estimating the many parameters required to flexibly

model the possibly non-monotonic dose-response surface, and the small sample sizes in early

phase trials. This difficulty is even more pertinent in the context of personalized dose-finding,

where patient characteristics are used to identify tailored optimal dose combinations. To

overcome these challenges, we propose the use of Bayesian optimization for finding optimal

dose combinations in standard (“one size fits all") and personalized multi-agent dose-finding

trials. Bayesian optimization is a method for estimating the global optima of expensive-to-

evaluate objective functions. The objective function is approximated by a surrogate model,

commonly a Gaussian process, paired with a sequential design strategy to select the next

point via an acquisition function. This work is motivated by an industry-sponsored problem,

where focus is on optimizing a dual-agent therapy in a setting featuring minimal toxicity.

To compare the performance of the standard and personalized methods under this setting,

simulation studies are performed for a variety of scenarios. Our study concludes that taking

a personalized approach is highly beneficial in the presence of heterogeneity.
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4.1 Introduction

Early phase clinical trials are designed to assess the safety and efficacy profiles of first in

human doses of an experimental drug. Traditional adaptive dose-finding designs fall into

three major families: algorithmic designs (e.g., Storer 1989), model-assisted designs (e.g.,

Yuan et al. 2016a), and model-based designs (e.g., O’Quigley et al. 1990). Here, our interest

lies in model-based designs, which have been extended to the dual-agent dose combination

setting (e.g., Wang and Ivanova 2005; Wages and Conaway 2014). Some of these designs

(e.g., Houede et al. 2010; Wang et al. 2023) propose using flexible models to handle possible

non-monotonicities in the dose-efficacy/dose-toxicity surfaces, recognizing that monotonicity

depends on the type of drug being administered and may not hold in general (Li et al., 2017).

Additionally, existing methods often restrict dose-finding to a small set of pre-selected dose

combinations, which can fail to identify the optimal dose combination (Hirakawa et al., 2015).

Adaptive dose insertion designs have been proposed to allow for the evaluation of additional

dose combinations if warranted by the data (Cai et al., 2014; Lyu et al., 2019).

Most existing dose-finding designs, including those mentioned above, seek to find optimal

dose combinations without consideration of additional covariate information (we refer to

this as standard dose-finding). These designs ignore the possibility that patient responses

may be variable across different subgroups within the population. With recent advances

in molecular biology, specifically the identification of novel biomarkers, interest has grown

in personalized (or precision) medicine. Personalized dose-finding aims to find optimal dose

combinations based on individual patient characteristics. When utilizing parametric models,

as in many of the standard dose-finding methods described above, extension to the person-

alized setting is challenging due to the limited sample sizes and potentially large number of

dose-covariate interaction terms that are required to be estimated. Personalized dose-finding

for monotherapies has been investigated using a variety of methods, including dimension-

reduction techniques (e.g., Guo and Zang 2022), Bayesian hierarchical models (e.g., Morita

70



et al. 2017), and Bayesian model averaging (e.g. Psioda et al. 2021). The increased di-

mensionality in the combination therapy setting makes estimation even more challenging.

Mozgunov et al. (2022) has considered personalized dose-finding for a dual-agent combina-

tion therapy where the patient-specific dose of one of the agents is selected externally by

clinicians, but multi-agent personalized dose-finding designs where all dose dimensions are

explored during optimization are still needed.

Our work is motivated by a problem in industry, where a sponsor is interested in a design

for the development of an intraocular implant that combines two topical agents. Each agent

has been in use and is well tolerated. No drug-related adverse events are expected, and we

anticipate minimal toxicity, if any. Interest lies in obtaining the optimal dose combination

of these two agents using a continuous efficacy measure, which need not be monotonic with

the doses of each agent. Additionally, response heterogeneity is expected to exist with

respect to a key binary covariate, a particular characteristic of the lens of the eye, and

we seek a design which accommodates this feature. We allow for exploration of the dose

combination region, which has been defined using data from previous observational and

randomized studies, without consideration of formal dose escalation/de-escalation rules. As

each new dose combination investigated carries engineering costs, early stopping is desirable

if warranted by the data.

Considering this motivating example, we propose novel methodology for multi-agent dose-

finding which meets several criteria. First, the model estimating the response surface is par-

simonious, which is suitable for small sample sizes, yet remains flexible enough to model both

monotonic and non-monotonic dose-response surfaces. Next, the design sequentially explores

the entire dose combination space in a principled way, and allows for early stopping if war-

ranted. Finally, our methodology facilitates extension to personalized dose-finding. Specif-

ically, we propose modelling the response surface with a Gaussian process (GP) and using

Bayesian optimization for efficient standard and personalized multi-agent dose-finding, as-
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suming minimal toxicity. Bayesian optimization has been previously proposed for monother-

apy in a standard dose-finding setting (Takahashi and Suzuki 2021a; Takahashi and Suzuki

2021b). Our contributions here differ from this previous work by utilizing a different se-

quential search policy, by extending the approach to combination therapies and personalized

dose-finding setting, and by permitting early stopping.

The remainder of this manuscript is organized in the following manner. We first introduce

Bayesian optimization, propose methods for standard and personalized multi-agent dose-

finding, and describe an early stopping rule. A simulation study is then performed to compare

the standard and personalized dose-finding methods for a dual-agent therapy under a variety

of scenarios without early stopping. We then consider the development of the previously

described intraocular implant and compare several dose-finding designs which include early

stopping rules. We conclude with a discussion and possible directions for future work.

4.2 Bayesian optimization for dose-finding

Standard Dose-Finding. Let f(d) ∈ R be a continuous dose-response surface of interest,

defined as a function of dose combinations d = (d1, ..., dJ) which are comprised of J ∈ N

dosing agents and which lie in a continuous dose combination region D ⊂ RJ . In this setting,

f(d) may be the dose-efficacy surface or the dose-utility surface, where utility is defined using

both efficacy and toxicity outcomes. For the remainder of the manuscript, we assume f(d)

is the dose-efficacy surface, which has been transformed such that smaller values are more

desirable. We assume minimal toxicity over D. Thus, dose escalation/de-escalation rules are

not considered, and it is ethically permissible to select future dose combinations throughout

the design space. Our interest is in obtaining the optimal dose combination dopt ∈ D, defined

as that which minimizes f(d):

dopt = argmin
d∈D

f(d).

To do so, we use Bayesian optimization, which is a derivative-free optimization method that

estimates the global optima of expensive-to-evaluate objective functions (Garnett, 2023). It
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is a sequential design strategy that approximates the objective function with a stochastic

surrogate model (commonly a GP), and selects the next point by optimizing an acquisition

function. Bayesian optimization is commonly used in engineering, machine learning, and

computer experiments (Gramacy, 2020; Murphy, 2023), and has recently been employed to

efficiently find optimal dynamic treatment regimes (Rodriguez Duque et al., 2022; Freeman

et al., 2022). In this work, we model the efficacy function with a GP, and select the next

dose combination as that which maximizes an acquisition function. This process repeats

until optimality criteria are satisfied or sample size limits are reached.

To begin, a GP prior is placed on f(d) (Williams and Rasmussen, 2006):

f(d) ∼ GP (m(d), νK(d,d′)) .

The GP is defined by its mean function m(d) and correlation function (kernel) K(d,d′),

which is multiplied by scale parameter ν. The scale parameter determines the variability

of the efficacy function throughout the dose combination space, and K(d,d′) determines

the correlation between responses for two dose combinations, d and d′, where K(d,d′) = 1

when d = d′. Since the method’s flexibility is largely determined by the choice of kernel

function, constant mean GPs can be used, and in this work we set m(d) = β0. However,

information about the response surface (e.g., pharmacokinetic/pharmacodynamic models)

can be incorporated through the mean function if desired. Furthermore, we utilize a separable

anisotropic squared exponential kernel,

K(d,d′) = exp

{︄
−

J∑︂
j=1

(dj − d′j)2

2l2dj

}︄
. (4.1)

This kernel is parameterized by characteristic length-scales ldj , which control the rate of decay

in correlation between two dose combinations with respect to each dosing dimension and

which are estimated using available data. Additionally, it is an example of a stationary kernel,

which assumes that the degree of correlation between two dose combinations depends only on

their distance and not on their locations in the dose combination space. We assume stationary
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dose-response surfaces throughout this work, but comment on relaxing this assumption in

the discussion.

To optimize f(d), r patients are assigned to each of c initial dose combinations, yielding

n = r × c patient responses which are treated as noisy observations yi = f(di) + ϵi, where

ϵi ∼ N(0, σ2
y) for i = 1, ..., n. This yields the observed data D = {(di, yi)}ni=1, where

we denote the vector of observations by y = (y1, ..., yn)
T . Specifying the GP prior above

induces a multivariate normal distribution on the observations, y ∼ N(β01n, νK), where

K(i, j) = K(di,dj) + τ 21i=j and τ 2 is a noise parameter. After observing D, we adopt an

empirical Bayes approach toward the kernel hyperparameters θ = {ν, τ 2, ld1 , ld2}, replacing

them with their maximum likelihood estimates (Gramacy, 2020). The posterior distribution

of the efficacy function at a new dose combination, denoted by ˜︁d, is then p(f | D, ˜︁d) =

N(µ(˜︁d), σ2(˜︁d)) (Binois and Gramacy, 2021), such that

µ(˜︁d) = β̂0 + k(˜︁d)TK−1(y − β̂01)

σ2(˜︁d) = νK(˜︁d, ˜︁d)− νk(˜︁d)TK−1k(˜︁d) + (1− k(˜︁d)TK−11)2

1TK−11

β̂0 =
1TK−1y

1TK−11

(4.2)

where K is n× n, k(˜︁d) = (K(d1, ˜︁d), ...,K(dn, ˜︁d))T is n× 1, and β̂0 is a plug-in estimate for

the mean.

The next dose combination for evaluation, denoted by d(c+1), is then selected as that

candidate dose combination ˜︁d ∈ D which maximizes an acquisition function, denoted by

α(˜︁d | D):
d(c+1) = argmax˜︁d∈D α(˜︁d | D).

One acquisition function commonly paired with a GP is the Expected Improvement (EI),

defined as

αEI(˜︁d | D) = E[max(0, f ∗ − f(˜︁d)) | D, ˜︁d]
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and available in closed form (Jones et al., 1998),

αEI(˜︁d | D) = (f ∗ − µ(˜︁d))Φ(︄f ∗ − µ(˜︁d)
σ(˜︁d)

)︄
+ σ(˜︁d)ϕ(︄f ∗ − µ(˜︁d)

σ(˜︁d)
)︄
,

where f ∗ = mindi
f(di) denotes the value of the current observed optimum, Φ(·) and ϕ(·)

denote the cdf and pdf of a standard normal random variable, respectively, and where µ(˜︁d)
and σ(˜︁d) are the posterior mean and standard deviation of the efficacy function evaluated

at ˜︁d, respectively. The EI balances between exploiting regions that have desirable values

of f(d) (first term), and exploring regions in the dose combination space that are impre-

cisely estimated (second term). Under a noisy setting, f ∗ is not observed and so plug-in

estimates have been proposed, for example, by using the minimum of the posterior mean,ˆ︁f ∗ = min˜︁d∈D µ(˜︁d) (Gramacy and Lee, 2011; Picheny et al., 2013a). A different acquisition

function, called the Augmented Expected Improvement (AEI; Huang et al. (2006)), has been

shown to offer better performance than EI under higher noise settings (Picheny et al., 2013b).

The AEI defines ˆ︁f ∗ = µ(d∗), the posterior mean of f at the current “effective best solution",

d∗, which can be defined as the point which minimizes a posterior β-quantile. We follow

the recommendation in Huang et al. (2006) and define d∗ as that point which minimizes the

β = 0.84 posterior quantile, which is equivalent to setting d∗ = argmin˜︁d µ(˜︁d) + γσ(˜︁d) when

γ = 1. The AEI is then defined as:

αAEI(˜︁d | D) = αEI(˜︁d | D)
⎛⎝1− τ√︂

σ2(˜︁d) + τ 2

⎞⎠ . (4.3)

The multiplicative term serves to promote exploration by penalizing dose combinations which

have small posterior variance (Picheny et al., 2013b). In this work, we use AEI since we find

it offers moderate improvement over EI.

After evaluation of d(c+1) in r new patients, the data are updated, D = D∪{(d(c+1)
i , yi)}ri=1.

The GP model is refit to obtain a new posterior distribution p(f | D, ˜︁d). Then s = 1, ..., S

samples fs(˜︁d) from this posterior are obtained to yield S samples from the posterior of the
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optimal dose combination p(dopt | D) as:

dopt,s = argmin˜︁d∈D fs(˜︁d).
This procedure continues until the sample size limit is reached or an early stopping rule,

which we denote by 1STOP, is satisfied.

One possible early stopping rule proposed in Huang et al. (2006) is to allow stopping only

after max˜︁d∈D αAEI(˜︁d | D) < δ. In this case, the algorithm terminates only if there is little

improvement to be gained over f ∗ across the dose combination space. Under a noisy setting,

the authors suggest this be satisfied for (J + 1) consecutive algorithm iterations before

termination. This yields the following stopping rule:

1STOP =

⎧⎪⎪⎨⎪⎪⎩
TRUE max˜︁d∈D αAEI(˜︁d | D) < δ for (J + 1) iterations

FALSE otherwise.
(4.4)

We note that δ is a tuning parameter that controls performance of the algorithms. Its value

can be determined through sensitivity analysis using several values obtained through Monte

Carlo simulation. For example, the Monte Carlo distributions of αAEI can be obtained

at each iteration and different values of δ can be selected as summary statistics of these

distributions (e.g., the median). The performance of these values can then be compared,

with smaller values of δ implying more stringent stopping criteria, and larger values of δ

permitting earlier stopping.

The sequential procedure and stopping rule described above suggest Algorithm 1, referred

to as the standard optimization algorithm. In many applications of Bayesian optimization,

it is standard to collect the initial data and then continue with r = 1 at each iteration of

the algorithm. This permits maximal exploration of the domain, as a novel input point from

the design space can be evaluated each time. In certain dose-finding applications, such as

the motivating example of this work, engineering costs may prohibit the creation of a novel

dose combination for each new patient, and some patients may necessarily be assigned to
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Algorithm 1 Standard Optimization Algorithm
Input: r patient responses at each of c initial dose combinations, D = {(di, yi)}n0

i=1

1: n← n0 = r × c
2: 1STOP ← FALSE
3: Obtain p(f | D, ˜︁d) and p(dopt | D) using fitted GP ▷ Obtain posteriors
4: d∗ ← argmin˜︁d µ(˜︁d) + σ(˜︁d) ▷ Obtain effective best point
5: f ∗ ← µ(d∗) ▷ Obtain best value of f
6: Calculate αAEI(˜︁d | D) for ˜︁d ∈ D ▷ Compute AEI
7: while n < N and 1STOP = FALSE do
8: d(c+1) ← argmax˜︁d∈D αAEI(˜︁d | D) ▷ Obtain next dose
9: for i = 1, ..., r do

10: Evaluate yi at d(c+1) ▷ Observe outcomes
11: end for
12: n← n+ r; c← c+ 1 ▷ Update n, c
13: D ← D ∪ {(d(c+1)

i , yi)}ri=1 ▷ Update data
14: Obtain p(f | D, ˜︁d) and p(dopt | D) using fitted GP ▷ Obtain posteriors
15: d∗ ← argmin˜︁d µ(˜︁d) + σ(˜︁d) ▷ Obtain effective best point
16: f ∗ ← µ(d∗) ▷ Obtain best value of f
17: Calculate αAEI(˜︁d | D) for ˜︁d ∈ D ▷ Compute AEI
18: Update 1STOP using (4.4) ▷ Update stopping rule
19: end while

the same dose.

Personalized Dose-Finding. Personalized medicine recognizes that response heterogene-

ity may exist within the population of interest; personalized dose-finding incorporates co-

variate information to account for this. Consider a set of P discrete covariates Z = {Zp}Pp=1.

The Cartesian product of the levels of these P covariates define K strata. Personalized dose

finding seeks to find the optimal dose combinations, denoted by dopt,k, across the continuous

dose combination space for each of the K strata:

dopt,k = argmin
d∈D

f(d, zk) for k = 1, ..., K.

The efficacy function f(d, z) is modeled using a single GP fit to the data D = {(di, zi, yi)}ni=1,

where yi = f(di, zi) + ϵi with ϵi ∼ N(0, σ2
y), which allows information to be borrowed across

strata. One possible method of incorporating the additional covariates into the GP model is

through the kernel function. We use a (stationary) separable anisotropic squared exponential
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kernel function that includes the additional covariates of interest:

K((d, z), (d, z)′) = exp

{︄
−

(︄
J∑︂

j=1

(dj − d′j)2

2l2dj
+

P∑︂
p=1

(zp − z′p)2

2l2p

)︄}︄
. (4.5)

As before, we use an empirical Bayes approach for estimating the hyperparameters. In the

case where Zp is a binary variable representing the levels of covariate p, the correlation

between two patient responses is reduced by a factor of exp(−1/(2l2p)) if they belong to

different strata with respect to covariate p.

Since the efficacy function may exhibit different behavior within each stratum, each stratum

may have a unique best efficacy function value f ∗
k . Similar to the standard case, f ∗

k is

estimated as the posterior mean at the effective best point within stratum k, f ∗
k = µ(d∗, zk).

To account for this heterogeneity, the sequential selection is performed within each stratum

but with the GP fit utilizing data from all strata. This proceeds by modifying the AEI

acquisition function to use f ∗
k when conditioned on being in stratum k, denoted by αAEI(˜︁d |

D,˜︁zk). The sequential procedure continues until sample size limits are reached or until an

early stopping rule is satisfied for each stratum. Since optimal doses in some strata may be

easier to identify than in others, stratum-specific early stopping should be employed. One

possible stratum specific stopping rule, which we denote by 1STOP,k, replaces αAEI(˜︁d | D)
in (4.4) with αAEI(˜︁d | D,˜︁zk). Throughout this work, we assume that once dose-finding is

stopped in a stratum, it is not re-started in that stratum. This, of course, can be changed

in practice if desired. Upon termination of the algorithm, the posterior distribution of the

optimal dose combination for each stratum is returned, denoted by p(dopt | D, zk), and uses

the final GP model fitted on all of the data. These modifications suggest Algorithm 2, the

personalized optimization algorithm.

4.3 Simulation study

Below we perform a simulation study to compare the performance of the standard and

personalized algorithms (Algorithms 1 and 2, respectively) under three scenarios with no
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Algorithm 2 Personalized Optimization Algorithm
Input: r patient responses at each of ck initial dose combinations per stratum,
D = {(di, zi, yi)}n0

i=1

1: n← n0 =
∑︁K

k=1 n0,k

2: Obtain p(f | D, ˜︁d,˜︁z) using fitted GP ▷ Obtain posterior of f
3: for k = 1, ..., K do
4: Obtain p(dopt | D, zk) ▷ Obtain posterior of dopt,k

5: d∗ ← argmin˜︁d µ(˜︁d, zk) + σ(˜︁d, zk) ▷ Obtain effective best point
6: f ∗

k ← µ(d∗, zk) ▷ Obtain best value f ∗
k

7: Calculate αAEI(˜︁d | D,˜︁zk) for ˜︁d ∈ D ▷ Compute AEI
8: 1STOP,k ← FALSE
9: end for

10: while n < N and 1STOP,k = FALSE for at least one stratum k do
11: for k = 1, ..., K do
12: nk ← 0
13: Dk = ∅
14: if 1STOP,k = FALSE then
15: d(ck+1) ← argmaxd̃∈D αAEI(d̃ | D,˜︁zk) ▷ Obtain next dose
16: for i = 1, ..., r do
17: Evaluate yi at (d(ck+1), zk) ▷ Observe outcomes
18: end for
19: nk ← r; ck ← ck + 1 ▷ Update nk, ck
20: Dk = {(d(ck+1)

i , zk, yi)}ri=1

21: end if
22: end for
23: n← n+

∑︁K
k=1 nk ▷ Update n

24: D = D
⋃︁K

k=1Dk ▷ Update data
25: Obtain p(f | D, ˜︁d,˜︁z) using fitted GP ▷ Obtain posterior of f
26: for k = 1, ..., K do
27: Obtain p(dopt | D, zk) ▷ Obtain posterior of dopt,k

28: if 1STOP,k = FALSE then
29: d∗ ← argmin˜︁d µ(˜︁d, zk) + σ(˜︁d, zk) ▷ Obtain effective best point
30: f ∗

k ← µ(d∗, zk) ▷ Obtain best value f ∗
k

31: Calculate αAEI(˜︁d | D,˜︁zk) for ˜︁d ∈ D ▷ Compute AEI
32: Update 1STOP,k using (4.4) ▷ Update stopping rule
33: end if
34: end for
35: end while

early stopping (i.e., δ = 0 in (4.4)). Early stopping will be investigated in the next section.

Scenarios 1 and 2 consider a single binary covariate Z1. We index the true optimal dose

combinations, dopt,k, and the true optimal values of the efficacy function, fopt,k, using the
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values of Z1. That is, when Z1 = 0 we use dopt,0 and fopt,0. Scenario 3 considers two binary

covariates, Z1 and Z2, and the dopt,k and fopt,k are indexed similarly. For example, when

Z1 = 0 and Z2 = 1, we use dopt,01 and fopt,01. To make the simulations in this manuscript

more computationally feasible, we modify Algorithms 1 and 2 to return a point estimate

of dopt,k rather than the entire posterior distribution. The point estimate is defined as the

minimizer of the posterior mean surface, ˆ︁dopt,k = argmin˜︁d µ(˜︁d,˜︁zk).
We utilize dose combinations d = (d1, d2) ∈ [0, 1]2, assumed to be standardized, where

d = (0, 0) corresponds to the combination using the lowest doses of interest for each agent

and where d = (1, 1) corresponds to the combination using the highest doses of interest

for each agent. The point estimates, ˆ︁dopt,k, and the next dose combinations for evaluation,

d(ck+1), are set, respectively, as the minimizers of µ(˜︁d,˜︁zk) and maximizers of αAEI(˜︁d |
D,˜︁zk). The αAEI(˜︁d | D,˜︁zk) is evaluated across an evenly spaced grid on [0, 1]2. The grid is

incremented by 0.25 in each dimension, reflecting the degree of precision to which the drug

maker can manufacture a particular dose combination. As a result, some dose combinations

may be suggested more than once in the algorithm. While the proposed method is capable

of optimizing over the continuous dose combination space, it is important to incorporate

any manufacturing constraints into the optimization procedures to avoid suggesting doses

which are not feasible to engineer. Additionally, the proposed method can be used for

unevenly spaced grids on the dose combination space, though we do not consider that scenario

here.

As before, we define f(d, z) to be a continuous efficacy surface and assume we are in a

minimal toxicity setting where it is ethically permissible to select future doses anywhere in

the dose combination space. Let gi be a bivariate normal density function, N(µi,Σi), which

is parameterized by mean vector µi and covariance matrix Σi, for i = 1, 2, 3. The efficacy

functions under the considered scenarios use the following densities evaluated at d, denoted
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Table 4.1: Simulation scenarios considered. The data generating mechanism for each scenario
is y = f(d, z)+ ϵ where ϵ ∼ N(0, σ2

y). The table columns contain the location of the optimal
dose combination (dopt), the optimal value of the efficacy function (fopt), the standardized
effect size (ses), and whether or not the dose-efficacy surface is monotonically increasing with
respect to each dosing dimension (monotone).

f(d, z) σy z1 z2 dopt fopt ses monotone

Si
m

ul
at

io
n

St
ud

y 1) −1{z1 = 0} × g1(d)−
1{z1 = 1} × g1(d)

2.015 0 (1, 1) -1.592 0.79 Yes
1 (1, 1) -1.592 0.79 Yes

2) −1{z1 = 0} × g2(d)−
1{z1 = 1} × g3(d)

0.319 0 (0.25, 0.75) -1.203 3.77 No
1 (0.75, 0.25) -1.203 3.77 No

3) −1{(z1 = 0, z2 = 0)} × 0−
1{(z1 = 0, z2 = 1)} × 0.831g2(d)−
1{(z1 = 1, z2 = 0)}×3.134g3(d)−
1{(z1 = 1, z2 = 1)} × 0.496g1(d)

1 0 0 None None 0 No
0 1 (0.25, 0.75) -1 1 No
1 0 (0.75, 0.25) -3.77 3.77 No
1 1 (1, 1) -0.79 0.79 Yes

Im
pl

an
t 1) −1(z1 = 0)× 2.49g2(d)−

1(z1 = 1)× 6.65g3(d)− 2
5 0 (0.25, 0.75) -5 1 No

1 (0.75, 0.25) -10 2 No

Note: The subtraction of 2 in f(d, z) under the Implant scenario corresponds to a base level of drug response
outside the regions of optimality.

by gi(d) in Table 4.1:

g1 = N

⎡⎢⎣
⎛⎜⎝1

1

⎞⎟⎠ ,

⎛⎜⎝0.1 0

0 0.1

⎞⎟⎠
⎤⎥⎦ g2 = N

⎡⎢⎣
⎛⎜⎝0.25

0.75

⎞⎟⎠ ,

⎛⎜⎝ 0.2 0.05

0.05 0.1

⎞⎟⎠
⎤⎥⎦ g3 = N

⎡⎢⎣
⎛⎜⎝0.75

0.25

⎞⎟⎠ ,

⎛⎜⎝ 0.2 0.05

0.05 0.1

⎞⎟⎠
⎤⎥⎦ .

The data generating mechanism for each scenario is y = f(d, z)+ ϵ where ϵ ∼ N(0, σ2
y), with

the specification of f(d, z) included in the first panel of Table 4.1 (rows labeled “Simulation

Study") and plotted in panel A of Figures 4.1-4.3. The values of σy are chosen to ensure

specific standardized effect sizes, defined as ses = |fopt|/σy. We consider several standard-

ized effect sizes drawn from a meta-analysis of dose-responses for a large drug development

portfolio at a pharmaceutical company (Thomas et al., 2014). We focus on standardized

effect sizes for drugs that had laboratory confirmed endpoints, which is the type of endpoint

used in our motivating example. The 25th/50th/75th percentiles of these standardized effect

sizes are 0.79/1/3.77, which we refer to as small/medium/large effect sizes.

Scenario 1 considers the case of no response heterogeneity across a binary covariate Z1 and
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includes a small standardized effect size with a dose-efficacy surface which is monotonically

increasing with respect to each dosing dimension. Both the locations of the optimal dose

combinations, and the optimal values of the efficacy function, are the same across the strata.

That is, dopt,0 = dopt,1 and fopt,0 = fopt,1. Scenario 2 considers response heterogeneity

across Z1, where the locations of the optimal dose combinations differ. Under this scenario,

dopt,0 ̸= dopt,1 but fopt,0 = fopt,1. This scenario considers large standardized effect sizes with

efficacy surfaces which are non-monotone with respect to each dosing dimension. Scenario 3

considers heterogeneity across two binary covariates, Z1 and Z2, where both the locations of

the optimal dose combinations and the optimal values of the efficacy function differ across

the strata. Thus, dopt,ij ̸= dopt,lm for ij ̸= lm and fopt,ij ̸= fopt,lm for ij ̸= lm. This scenario

includes a zero stratum, (z1 = 0, z2 = 0), which represents the covariate pattern of those who

do not respond to the drug. We note that in this stratum, dopt,00 and fopt,00 do not exist,

but we consider the standardized effect size to be 0. This scenario includes small, medium,

and large standardized effect sizes as well as both monotone and non-monotone dose-efficacy

surfaces.

For each scenario, the standard and personalized algorithms are run using a maximum sample

size of 80 participants. While this number is larger than many early phase trials might be in

practice, our goal is to investigate the algorithms’ performance characteristics as the sample

size increases. We defer the use of early stopping rules to the following section, but note that

these will permit a reduction in the expected sample size. We assign participants to dose

combinations such that the total sample size of each algorithm is equal at each iteration,

which allows a comparison of their performance. For the standard algorithm under scenarios

1 and 2, r = 4 participants are assigned to each dose combination on an initial dose matrix

comprised of c = 5 dose combinations, which are selected via a two-dimensional quasi-random

Sobol sequence (Morgan-Wall, 2022). This sequence serves as a space filling design and

seeks to spread out the initial dose combinations in a more uniform manner than is typically

accomplished via random sampling. More than one patient is assigned per dose combination
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to control the cost associated with producing novel dose-combinations, a financial constraint

from our motivating problem. This yields n0 = 20. At each iteration of the algorithm, r = 4

additional participants are assigned to each proposed dose combination. This yields a total

sample size of 80 after 15 iterations. We note that r is a tuning parameter, and that reducing

it will lead to more unique doses being explored for the same fixed sample size. We explore

this in the next section.

For the personalized algorithm, c = 5 initial dose combinations are selected in the same

manner as above. To achieve the same total sample size by iteration as the standard algo-

rithm, only r = 2 participants are assigned to each dose combination within each stratum.

This yields n0,0 = n0,1 = 10, and so n0 = 20, as in the standard algorithm. At each it-

eration within each stratum, r = 2 additional participants are assigned to each proposed

dose combination. This yields a total sample size of 80 after 15 iterations. We note that

this equal allocation of patients across strata represents an idealized trial which assumes

that both the prevalence and enrollment of the specific subgroups is the same throughout

the course of the trial. We consider departures from these assumptions in the discussion

section. The same setup is used for scenario 3. However, since the number of strata is

doubled, the number of participants evaluated at each dose combination is halved for the

personalized algorithm. Thus, the standard algorithm still evaluates r = 4 participants per

dose combination, but the personalized algorithm evaluates r = 1 participant per dose com-

bination, yielding a total sample size of 80 after 15 iterations. All computing is performed

in the statistical programming language R (R Core Team, 2022). The efficacy functions are

modeled using constant mean GP models which utilize the anisotropic separable squared

exponential kernels previously described, with the hyperparameters being jointly optimized

by maximizing the marginal log-likelihood of the data (i.e., empirical Bayes GP; Binois and

Gramacy 2021).

Algorithm performance is compared using several criteria which are estimated via m =
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1, ..., 1000 Monte Carlo simulations. The expected number of dosing units from the optimal

dose combination is used to assess how close the recommended dose combination ˆ︁dk is to dopt,k

at each iteration. This measure is defined as the expected value of the Euclidean distance

between ˆ︁dk and dopt,k divided by the precision to which the sponsor can manufacture doses,

which is 0.25 in our simulations:

Ey|zk [dose units] ≈ 1

1000

1000∑︂
m=1

√︂
(d̂

(m)

1 − d1,opt)2k + (d̂
(m)

2 − d2,opt)2k
0.25

. (4.6)

We utilize the average root posterior squared error loss (RPSEL) to assess how well the true

efficacy function value f(ˆ︁dk, zk) at the recommended dose is estimated by the pointwise pos-

terior distribution of the efficacy function at the recommended dose, p(fk | D, ˆ︁dk, zk), where

f (s)(ˆ︁dk, zk) denotes a single posterior sample out of s = 1, ..., 10000 posterior samples:

Average RPSEL ≈ 1

1000

1000∑︂
m=1

[︄
1

10000

10000∑︂
s=1

(f (s)(ˆ︁d(m)
k , zk)− f(ˆ︁dk, zk))

2

]︄ 1
2

. (4.7)

We employ f(ˆ︁dk, zk) here rather than fopt,k to understand how well the algorithms capture

f at the recommended dose combination even if the recommended dose combination is not

optimal. This is important for later phase studies which may utilize estimates of f obtained

at the recommended dose combination for sample size and power calculations. In a similar

manner, we present the average absolute deviation of the posterior mean point estimates

E[fk | D, ˆ︁dk, zk] from the true value of f(ˆ︁dk, zk) at each iteration. Note that the standard

algorithm ignores the strata and so yields only a single recommended dose ˆ︁dk = ˆ︁d, posterior

distribution p(fk | D, ˆ︁dk, zk) = p(f | D, ˆ︁d), and posterior mean E[fk | D, ˆ︁dk, zk] = E[f |

D, ˆ︁d] per iteration for k = 1, ..., K. See panels B-D of Figures 4.1-4.3 for these criteria by

iteration.

Scenario 1 considers the case of no response heterogeneity across a single binary covariate

Z1 for small standardized effect sizes with monotonically increasing dose-efficacy surfaces.

Under this scenario, both algorithms converge to the locations of dopt,k, coming within one
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Figure 4.1: Scenario 1. A) Efficacy function, white stars denote dopt,k, B) expected dose
units from the optimal dose combination as defined in (4.6) by iteration, C) average RPSEL
as defined in (4.7) by iteration, and D) average absolute deviation of the posterior mean
estimate by iteration.
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Figure 4.2: Scenario 2. A) Efficacy function, white stars denote dopt,k, B) expected dose
units from the optimal dose combination as defined in (4.6) by iteration, C) average RPSEL
as defined in (4.7) by iteration, and D) average absolute deviation of the posterior mean
estimate by iteration.
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Figure 4.3: Scenario 3. A) Efficacy function, white stars denote dopt,k, B) expected dose
units from the optimal dose combination as defined in (4.6) by iteration, C) average RPSEL
as defined in (4.7) by iteration, and D) average absolute deviation of the posterior mean
estimate by iteration. In (B), the plot for (z1 = 0, z2 = 0) is empty as no optimal dose
combination exists.
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dosing unit of the optimal (Panel B of Figure 4.1). Estimation of f is challenging for the

small standardized effect size (i.e., higher level of noise), but by termination, the algorithms

come within 0.4 units of the true f at the recommended dose combination (panels C-D of

Figure 4.1). The personalized algorithm is slightly less efficient than the standard algorithm,

however, and takes longer to converge. This is likely the result of the GP model used in

the personalized algorithm needing to estimate the additional length-scale parameter for Z1,

l1.

Scenario 2 considers response heterogeneity across Z1 for large standardized treatment ef-

fect sizes with non-monotonic dose-efficacy surfaces. Under this scenario, the personalized

algorithm converges to the locations of dopt,k and estimates the true value of f at the rec-

ommended dose combination well, whereas the standard algorithm does not (panels B-D of

Figure 4.2). The standard algorithm typically explores the area near only a single dopt,k

or attempts to explore both optima (not shown). This results from the marginal efficacy

function surface being bimodal, since it is a mixture distribution comprised of the equally

weighted strata of Z1, which are displayed in panel A of Figure 4.2. Note that even if the

bimodality of the marginal surface is properly identified and explored, patients cannot be

optimally treated without consideration of Z1. That is, without this additional covariate

information, the standard algorithm cannot determine which mode should be used to treat

patients with Z1 = 0 versus Z1 = 1. This is possible using the personalized approach,

however.

Scenario 3 considers heterogeneity across two binary covariates, Z1 and Z2, and includes zero,

small, medium, and large standardized effect sizes with both monotone and non-monotone

dose-efficacy surfaces. Recall that the stratum (z1 = 0, z2 = 0) corresponds to those patients

who do not respond to the drug. Thus there are no optima in this stratum and the corre-

sponding plot in panel B of Figure 4.3 is empty. Panels C and D of Figure 4.3 are not empty

for this stratum, however, since f = 0 everywhere, and so it is of interest to see how the
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algorithms estimate this value. Under this scenario, the personalized algorithm converges

to the locations of dopt,k, coming within 1-1.5 dosing units of the optimal depending on

the standardized effect size, whereas the standard algorithm does not (Panel B of Figure

4.3). Since the standard algorithm targets the global optimum, it performs best in stratum

(z1 = 1, z2 = 1) where the standardized effect is the largest. Accurate estimation of f is

challenging under this scenario (Panels C and D of Figure 4.3). The personalized algorithm

shows evidence of convergence toward the true values of f (i.e., RPSEL and absolute devia-

tion of the posterior mean estimates decreasing to 0) whereas the standard algorithm does

not. The standard algorithm yields only a single estimate of f and so must split the differ-

ence among the different efficacy function values across the strata. This scenario suggests

that as the number of strata grow, and thus also the likelihood for some degree of response

heterogeneity to be present, the performance of the standard algorithm will be further de-

graded. This will depend on the degree of response heterogeneity present, however, and we

would expect the standard algorithm to have reasonable performance under scenarios with

less extreme response heterogeneity.

In summary, when heterogeneity exists across the strata, the personalized algorithm is supe-

rior in both identifying the locations of the dopt,k and estimating f . When no heterogeneity

exists, the standard algorithm is slightly more efficient. Additionally, the proposed methods

have performed well for both monotonic and non-monotonic dose-efficacy surfaces, and have

done so without utilizing strong prior information.

4.4 Dose-finding design for an intraocular implant

In this section we focus on the intraocular implant example. The goal is to develop an

intraocular implant with an optimal dose combination of two agents which reduce intraocular

pressure (IOP), a laboratory confirmed measurement. The normal range of IOP is 12-21

mmHg, with 21-30 mmHg considered elevated IOP. Elevated IOP is a risk factor for ocular

hypertension and glaucoma, and is strongly associated with increased vision loss (Leske et al.,
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2003). The implant seeks to reduce elevated IOP by combining two agents, with doses d1

and d2, each of which has been in use individually in topical form for many years. The

agents are well tolerated and we do not expect any drug-related adverse events. We are

interested in obtaining the optimal dose combination of these two agents using reduction in

IOP from baseline as a continuous efficacy measure. It is hypothesized that higher doses

do not necessarily imply greater efficacy, which is expected to plateau or even decrease

at higher levels of agent concentration. Additionally, we expect response heterogeneity to

exist with respect to a particular characteristic of the lens of the eye, which we treat as a

binary covariate Z1, and are interested in a design which permits identification of potentially

different optimal dose combinations according to this patient characteristic.

We allow the dose-finding algorithm to explore the dose-combination region, assumed to be

standardized, subject to the manufacturing precision constraint of 0.25 standardized dosing

units and deem it ethically permissible to proceed without safety-related dose escalation/de-

escalation rules. It is hypothesized that the implant can reduce elevated IOP by 5 mmHg

in individuals with Z1 = 0, but may be even more effective in individuals with Z1 = 1,

leading to reductions as high as 10 mmHg. To assess the cost and size of a hypothetical

trial, we are interested in comparing the standard and personalized dosing approaches under

different stopping rule specifications for the scenario described above. The final design

is then selected as the one which balances good performance while controlling expected

cost. Costs are measured in terms of enrolled participants and also the number of unique

dose combinations, since there are engineering costs associated with production of novel

doses.

The goal is to minimize the efficacy function. The data generating mechanism is y = f(d, z)+

ϵ where ϵ ∼ N(0, σ2
y), with the specification of f(d, z) included in the second panel of Table

4.1 (row labeled “Implant") and plotted in panel A of Figure 4.4. We use the same indexing

for dopt,k and fopt,k as described previously. The value of σy = 5 ensures medium standardized
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effect sizes of 1 and 2 for Z1 = 0 and Z1 = 1, respectively, across non-monotonic dose-efficacy

surfaces.

Two settings of the algorithms are compared for a maximum sample size of 80: one setting

includes a higher number of replications at a smaller number of doses, and the other includes

a smaller number of replications at a larger number of doses. We denote the standard-

/personalized algorithms under the first setting as S1/P1 and under the second setting as

S2/P2. Under the first setting, S1/P1 are run under the same specifications described in

the previous section, where r = 4 and r = 2 for the standard versus personalized algorithms,

respectively. Under the second setting, S2/P2 are run with r = 2 and r = 1 for the standard

versus personalized algorithms, respectively, for c = 10 initial dose combinations selected via

Sobol sequences.

As the sponsor is concerned about cost and size of the trial, early stopping is permitted using

the rule defined in (4.4). Early stopping is investigated by choosing values of δ as previously

described such that there is a moderately high chance of stopping after roughly 40 or 60 total

participants are enrolled in the trial (denoted by the values of nstop in Figure 4.4). These

values are {0.00179, 0.000971} for S1, {0.00670, 0.00345} for P1, {0.00140, 0.000820} for S2,

and {0.00565, 0.00298} for P2. Since we are considering a dual-agent dose combination,

J = 2 and we thus require the stopping criteria in (4.4) to be satisfied J+1 = 3 times before

stopping early.

For the personalized algorithm, we permit stratum specific early stopping. Importantly,

should exploration of one stratum stop early, we allocate the remaining budget to recruit-

ment of participants in the other stratum. This assumes the sponsor can target recruitment

specifically for this group. This reallocation enables resources to be utilized in strata which

are harder to optimize, and so may increase performance. We compare this to no early stop-

ping (i.e., nstop = 80), where the numbers of participants enrolled in each stratum are equal.

When combined with the two settings for each algorithm, 12 unique designs are defined:
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Figure 4.4: Intraocular Implant Scenario: A) Efficacy function, white stars denote dopt,k,
B) expected sample size and expected number of unique doses evaluated, C) expected dose
units from the optimal dose combination as defined in (4.6) by iteration, D) average RPSEL
as defined in (4.7) by iteration, and E) average absolute deviation of the posterior mean
estimate by iteration. On the x-axis in (B), P stands for personalized and S for standard,
followed by the number referring to high replication for a smaller number of doses (1) or low
replication for a larger number of doses (2).

P1/P2/S1/S2 each of which has three stopping rules, denoted by nstop = {40, 60, 80}. All

computing and inference is performed as previously described. The performance of the de-

signs is compared using the previously defined criteria which are estimated via 1,000 Monte

Carlo replicates.

The expected sample size and expected number of unique doses evaluated by each design

for the scenario described above is included in panel B of Figure 4.4. The standard and

personalized designs have approximately equal expected samples sizes within each stopping

rule, but the personalized designs are expected to evaluate more unique doses on average.

The performance of the personalized designs with respect to expected dosing units from the

dopt,k (panel C of Figure 4.4) is comparable within each stopping rule, having differences of
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around 0.1 standardized dosing units, which are too small to be practically meaningful.

There is some suggestion of a possible increase in the expected number of dosing units from

dopt,k under no early stopping (i.e., nstop = 80) as compared to early stopping. To investigate

this, an additional simulation was performed and compared designs with maximum samples

sizes of 40 and 60 under no early stopping to those which permit early stopping at roughly

these same number of participants. The simulation suggests that the increase mentioned

above results from the equal allocation of participants across strata under no early stop-

ping. When early stopping is permitted, a larger proportion of evaluations is allocated to

the stratum which is more difficult to optimize, and so provides an improved model fit at

each iteration of the algorithm which improves the dose-finding overall. This difference in

proportions can be observed in panel B of Figure 4.4 by noting that higher proportions of

the expected sample sizes under early stopping rules come from stratum Z1 = 0, which has a

smaller standardized effect size and is thus harder to optimize. Regardless, under the current

scenario, the observed difference in expected dosing units from dopt,k between the stopping

rules nstop = 60 and nstop = 80 for the personalized designs is too small to be meaningful.

However, future work should more fully investigate how equal versus unequal allocation of

participants across the strata at each algorithm iteration impacts design performance.

Design P1 estimates f the best, supporting findings in the literature that suggest higher

degrees of replication can beneficial for estimation under noisy settings (Binois et al., 2018).

This difference is most apparent between designs P1 and P2 under stopping rule nstop = 40

(panels D-E of Figure 4.4). The standard algorithms perform poorly across all performance

metrics, recommending doses which are on average farther away from dopt,k, and poorly

estimating the efficacy function f at the recommended dose combinations (panels C-E of

Figure 4.4). This poor performance is expected since response heterogeneity is present in the

true data generating mechanism. If response heterogeneity were not present, we would expect

the standard algorithms to be slightly more efficient than their personalized counterparts as
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was observed in the simulation study from the last section.

To suggest a final design to the sponsor, we use Figure 4.4 as a visual aid. Since response

heterogeneity is expected a priori, the poor performance of the standard designs under this

scenario renders them inappropriate. Instead, we select the personalized P1 design with

nSTOP = 60. For roughly the same expected sample size but for fewer unique dose eval-

uations, this design yields final dose suggestions which are as close to dopt,k as design P2.

This design also offers a mild improvement in the estimation of f as compared to P1 with

nstop = 40. Choosing P1 with nstop = 60 over P1 with nstop = 40 does come with additional

cost, however: the design with nstop = 40 expects to evaluate 13 unique doses and enroll

approximately 44 participants, whereas the design with nstop = 60 expects to evaluate about

15 unique dose combinations (a 15% increase) and enroll approximately 58 participants (a

32% increase). The sponsor would need to weigh the increased engineering and enrollment

costs against the increase in performance.

4.5 Discussion

In this manuscript, we proposed the use of Bayesian optimization for early phase multi-

agent dose-finding trials in a tolerated toxicity setting. We showed the benefit of taking a

personalized approach for dual-agent trials when heterogeneity exists across a set of prespec-

ified subgroups. As expected, under no response heterogeneity the personalized approach is

slightly less efficient. As noted in the introduction, parametric models may suffer from the

curse of dimensionality when transitioning from standard to personalized dose-finding, as

they require terms for all higher order dose-covariate interactions. By using the anisotropic

squared exponential GP kernel in the Bayesian optimization methods proposed here, how-

ever, only a single additional parameter per covariate is required (the additional lengthscale

parameter corresponding to that covariate). Thus, the proposed methods highlight the

benefit and feasibility of adopting a personalized approach toward early phase multi-agent

dose-finding trials for both monotonic and non-monotonic dose-response surfaces.
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The proposed approach is not without limitations. First, the methods proposed in this work

assumed no meaningful toxicity across the dose combination space. Extension to higher-grade

toxicity settings through incorporation of dose escalation/de-escalation remains as future

work. Second, the personalized approach was demonstrated by considering dual-agent dose

combinations in predefined subgroups only. Extension to dose combinations with more than

two agents is trivial, but extension to continuous covariates without categorization is not,

and could be the subject of future investigations. Another direction for future development

is to extend the proposed approach to binary and ordinal outcomes where the proposed

response models may be defined over a latent continuous surface.

In this manuscript, Bayesian optimization is utilized as a global optimizer. While other

global optimization methods exist (e.g., genetic algorithms and simulated annealing), they

require many function evaluations and are thus not appropriate for early phase dose-finding

trials where evaluations are expensive (Bull, 2011; Tracey and Wolpert, 2018). We employed

the AEI acquisition function under a GP surrogate model. Performance of the algorithms

under additional acquisition functions, surrogate models, and/or kernel functions should be

investigated. The (stationary) separable anisotropic kernel used in this work assumes that all

strata have the same correlation structure and that the covariance between points in different

strata are changed by a multiplicative factor only, which may not be true in general. Indeed,

under simulation scenario 3 which included two binary covariates, the efficacy function is

zero everywhere for stratum (z1 = 0, z2 = 0), so this assumption is not true in this case. The

efficacy function values in this stratum are perfectly correlated, whereas those corresponding

to dose combinations in other strata are not. Future work should investigate relaxing the

assumption of stationarity by using kernels that are non-separable (e.g., including dose-

covariate interaction terms in the kernel function (4.5)), or even non-stationary, or deep GPs

(Sauer et al., 2023). Finally, if the number of included covariates is large and there is reason

to believe that only low level interactions between the drug combinations and covariates

exist, different surrogate models could be employed, such as additive GPs (Duvenaud et al.,
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2011) or Bayesian additive regression trees (Chipman et al., 2010).

The simulations performed in this manuscript assumed that the subgroups represented by

each strata were equally prevalent and had the same enrollment rates throughout the trial.

This represents an idealized situation and may not be reasonable to assume in practice.

In the extreme scenario of one strata having zero patients, the algorithm would simply

base recommendations for this stratum on prior information only. Furthermore, due to

the borrowing of information across the strata, the estimation for sparse strata may be

dominated by strata with many patients. For these reasons, Zhang et al. (2024) suggest

subgroup-specific dose-optimization only be performed for pre-defined subgroups which have

large enough sample sizes in the trial, a recommendation which supports the simulation

scenarios evaluated in the present work.

Finally, we adopted an empirical Bayes approach toward the GP hyperparameter estimation

to decrease the computational burden of the simulations. Likelihood methods can yield

poor results when the sample sizes are small, as in early phase dose-finding trials, and so full

Bayesian inference may be preferred (Bull, 2011; Wang and de Freitas, 2014). Unfortunately,

the Markov chain Monte Carlo methods typically used to perform full Bayesian inference

are prohibitively expensive for the algorithms proposed here, and so a sequential Monte

Carlo approach may be a less computationally demanding alternative (Gramacy and Polson,

2011).

Data availability

No new data were created or analyzed in this study. The R scripts used for the simula-

tions and graphics can be found on a public GitHub repository at https://github.com/

jjwillard/bayesopt_pers_df.
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Chapter 5

Bayesian optimization for identification

of optimal biological dose combinations

in personalized dose-finding trials

Preamble to Manuscript 3. In this final manuscript, I generalize the Bayesian optimization-

based approach to personalized dose-finding for combination therapies proposed in the previ-

ous chapter to the setting of higher-grade toxicities. The goal is now to find patient-specific

optimal biological dose combinations, defined as safe dose combinations which maximize

therapeutic benefit for an individual patient. Under this setting, toxicity information must

be considered in the dose-finding procedure, which is viewed as a constrained optimization

problem. Separate Gaussian processes are used to model the efficacy and toxicity functions

under the assumption of their conditional independence given dose. To collect the initial re-

sponses while minimizing the number of toxic doses that are administered, a dose-escalation

scheme is proposed. A sequential search policy is then defined by optimizing a constrained

version of a commonly used acquisition function. The performance of the procedure is as-

sessed via a simulation study under multiple scenarios.

98



This work is motivated by a trial design for a combination therapy used to treat obstructive

sleep apnea, a highly prevelant disease for which no pharmacotherapy exists (Benjafield

et al., 2019). Response heterogeneity is expected to exist with respect to sleep apnea severity

and, to allow for a greater degree of benefit, a higher level of toxicity should be permitted

for the most severe subtype. The methodological contributions of this manuscript are i)

to generalize the personalized dose-finding approach for combination therapies proposed

in Chapter 4 to the setting of higher grade toxicities, ii) to accommodate patient-specific

heterogeneity with respect to both the efficacy and toxicity functions and to the permissible

levels of toxicity, and iii) to propose a dose-escalation scheme which reduces the number

of toxic doses administered to the initial patients. The substantive contribution of this

work is to demonstrate the feasibility of personalized dose-finding designs for combination

therapies under higher-grade toxicity settings despite the limited sample sizes in early phase

trials.

The corresponding manuscript has been submitted for review to a statistical journal.
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Abstract

Early phase, personalized dose-finding trials for combination therapies seek to identify patient-

specific optimal biological dose (OBD) combinations, which are defined as safe dose combi-

nations which maximize therapeutic benefit for a specific covariate pattern. Given the small

sample sizes which are typical of these trials, it is challenging for traditional parametric ap-

proaches to identify OBD combinations across multiple dosing agents and covariate patterns.

To address these challenges, we propose a Bayesian optimization approach to dose-finding

which formally incorporates toxicity information into both the initial data collection process

and the sequential search strategy. Independent Gaussian processes are used to model the

efficacy and toxicity surfaces, and an acquisition function is utilized to define the dose-finding

strategy and an early stopping rule. This work is motivated by a personalized dose-finding

trial which considers a dual-agent therapy for obstructive sleep apnea, where OBD com-

binations are tailored to obstructive sleep apnea severity. To compare the performance of

the personalized approach to a standard approach where covariate information is ignored,

a simulation study is performed. We conclude that personalized dose-finding is essential in

the presence of heterogeneity.
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5.1 Introduction

Early phase clinical trials assess the safety and efficacy of first-in human doses of experi-

mental therapies. Bayesian adaptive designs, which utilize posterior or posterior predictive

distributions for sequential decision making, are commonly employed for these trials, and can

be divided into three major families: algorithmic, model-assisted, and model-based (Berry

et al., 2010). Here, our focus is on model-based designs, which posit a full probability model

for the dose-response surface of interest. Additionally, they permit clinicians to formally

encode prior beliefs in the trial, which may be beneficial given the small sample sizes charac-

teristic of early phase trials. Much of the historical work in early phase designs is motivated

by the development of cytotoxic agents in oncology, where the goal is to find the maximum

tolerated dose (MTD) while typically assuming monotonic dose-response surfaces and binary

endpoints (O’Quigley et al., 1990; Babb et al., 1998).

Recently, interest has grown in molecularly targeted compounds which may display benefit

at dosages lower than those that induce toxicity or the MTD (Le Tourneau et al., 2009). In

these trials, traditional toxicity responses have been replaced by other drug-related biological

effects, which are often measured on a continuous scale, e.g., plasma drug concentration

and measures of target inhibition in tissues of interest (Korn, 2004; Le Tourneau et al.,

2009). Additionally, many binary toxicity responses arise from dichotomizing a continuous

measure, which is well known to lead to loss of information, decreased efficiency, increased

sample sizes, and may introduce bias (Farewell et al., 2004; Royston et al., 2006; Wason

et al., 2011). These developments have increased interest in continuous toxicity responses

(e.g., Chen et al. (2010); Lee et al. (2012); Le-Rademacher et al. (2020)). Despite this, the

literature for dose-finding using continuous responses remains less developed than that using

binary responses. With the development of novel therapies where it is possible that the

MTD is not the most efficacious dose, interest has grown in designs which incorporate both

efficacy and toxicity information to find an optimal biological dose (OBD; e.g., Thall and
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Cook (2004); Yuan et al. (2016b)). Furthermore, since monotonicity of the dose-response

surfaces depends on the type of therapy being investigated and may not hold in general (Li

et al., 2017), flexible designs have been proposed to identify OBD combinations under non-

monotonicity (e.g., Houede et al. (2010); Mozgunov and Jaki (2019b)) and for continuous

dose-response surfaces (Mozgunov and Jaki, 2019a).

All dose-finding designs mentioned above assume the same dose is optimal for every patient

in the population. We refer to this “one-size-fits-all” approach as standard dose-finding. With

the continued identification and development of novel biomarkers, interest has grown in more

personalized approaches to medicine. Personalized dose-finding seeks to find optimal doses

based on individual patient characteristics. Despite this growing interest, the literature for

personalized dose-finding trials remains underdeveloped as the limited sample sizes in these

trials make it challenging to extend many parametric dose-finding methods to the person-

alized setting, where potentially many dose-covariate interaction terms must be estimated.

Personalized dose-finding trials for monotherapy have been explored previously (e.g., Babb

and Rogatko (2001); Guo and Zang (2022)). Our focus in this manuscript is on personalized

dose-finding trials for combination therapies, where the additional dosing agents increase

the dimensionality and exacerbate the estimation challenges. Mozgunov et al. (2022) inves-

tigated dual-agent personalized dose-finding with an application to an opiate detoxification

trial, where the level of one of the agents was pre-specified externally by clinicians. Willard

et al. (2023) proposed a flexible personalized dose-finding design for continuous responses

which uses Bayesian optimization to explore all dosing dimensions under no monotonicity

assumptions. However, they assumed a minimal toxicity setting where every dose combi-

nation was assumed to be safe, and so formal dose escalation rules were not considered.

The present work extends this approach to the setting of higher-grade continuous toxicities

by proposing a dose escalation scheme to collect the initial data, and by formally incorpo-

rating the toxicities into the search strategy employed by the Bayesian optimization based

dose-finding method.

103



This work is motivated by a dose-finding design for a combination therapy which treats

obstructive sleep apnea (OSA). OSA is a common sleep disorder which is estimated to affect

over 930 million adults worldwide (Benjafield et al., 2019). Continuous positive airway

pressure (CPAP) is the standard treatment since it is very effective, but it is often poorly

tolerated and results in low patient adherence (Rotenberg et al., 2016). There is currently

no approved pharmacotherapy for OSA, though several recent studies have investigated the

combination of antimuscarinic agents (oxybutynin and aroxybutynin) and a norepinephrine

reuptake inhibitor (atomoxetine) as therapy (Schweitzer et al., 2023; Aishah et al., 2023;

Rosenberg et al., 2022). While these studies suggest that combination therapy is effective

in reducing a key continuous endpoint, they revealed that potential response heterogeneity

exists with respect to OSA severity and so a more targeted therapeutic approach would be

beneficial. The current work aims to develop a design that can identify OBD combinations

which are tailored to OSA severity.

The remainder of this manuscript is organized in the following manner. We first provide

a brief introduction to Bayesian optimization and review the dose-finding approaches es-

tablished for continuous responses in Willard et al. (2023). Next, we propose a formal

dose-escalation scheme for continuous toxicities, which generalizes these approaches to the

setting of higher-grade toxicities. This is followed by a simulation study where we compare

the performance of the proposed approaches under two scenarios. We then consider the

previously described dose-finding design for a dual-agent therapy to treat OSA. We conclude

with a discussion.

5.2 Bayesian optimization for dose-finding

Personalized dose-finding Consider a set of P discrete covariates Z = {Zp}Pp=1, and define

K strata as the Cartesian product of their levels. Personalized dose finding seeks to identify

optimal dose combinations for each of the K strata. We refer to the continuous therapeutic

function of interest (i.e., efficacy or utility) as the efficacy function, denoted by f(d, z) ∈ R,
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and define the continuous toxicity function as g(d, z) ∈ R, where both are assumed to have

been transformed such that smaller values denote being more desirable. Our goal is to find,

for each stratum k, the combination of J ∈ N dosing agents d = (d1, ..., dJ) ∈ D ⊂ RJ which

minimizes f(d, zk), subject to a tolerable level of toxicity g†k:

argmin
d∈D

f(d, zk) subject to g(d, zk) ≤ g†k for k = 1, ..., K.

Unique toxicity thresholds g†k allow permissible toxicity to be defined with respect to spe-

cific covariate profiles. This is useful in settings where higher levels of toxicity may be

permitted for more severe disease subtypes, for example. We solve the above minimization

problem using Bayesian optimization, a derivative-free method which finds the global optima

of expensive-to-evaluate objective functions (Garnett, 2023). Bayesian optimization relies

on stochastic surrogate models, commonly Gaussian Processes (GP), to estimate the efficacy

and toxicity functions, and then employs an acquisition function to define a sequential search

policy. It has been historically used for global optimization problems within the engineer-

ing, machine learning, and computer experiments literature (e.g., Kushner (1964); Zhilinskas

(1975); Jones et al. (1998); Gramacy (2020)), and has seen recent application in early phase

dose-finding trials (Takahashi and Suzuki, 2021b,0; Willard et al., 2023). Below, we general-

ize the approach proposed in Willard et al. (2023) to higher-grade toxicity settings, by using

Bayesian optimization for dose-finding in the presence of toxicity constraints.

To start, n =
∑︁K

k=1 rk × ck initial responses are collected, where for the kth stratum, rk

independent patients are evaluated at ck initial dose combinations. A proposed method for

collecting these initial responses under uncertain toxicity is described in detail further below.

These initial responses yield noisy observations of both the efficacy function, yf = f(d, z)+ϵf ,

and the toxicity function, yg = g(d, z)+ ϵg, where ϵf ∼ N(0, σ2
yf
), ϵg ∼ N(0, σ2

yg). We denote

the vector of responses for the patient i by yi = (yf , yg)
T
i , the vector of efficacy responses for

all patients by yf = (yf,1, ..., yf,n)
T , and the vector of toxicity responses for all patients by

yg = (yg,1, ..., yg,n)
T . In many contexts, it is reasonable to assume conditional independence
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between the efficacy and toxicity functions given dose, and so we do throughout. We describe

how to relax this assumption in the discussion section for scenarios where they are expected to

remain correlated after adjusting for dose. Independent GP priors are placed on the efficacy

and toxicity functions, the details of which are described below for the efficacy function only

since those for toxicity are similar. In cases where it is reasonable to assume the dose-toxicity

function is monotonically non-decreasing, GP models incorporating monotonicity constraints

(Lin and Dunson, 2014; Golchi et al., 2015) or less flexible models could be utilized, though

we do not consider these approaches here. The dose-toxicity function may be non-monotonic

in cases where a toxicity score is defined as an aggregate of adverse events (AEs; e.g., Le-

Rademacher et al. (2020)), where different dose combinations yield different distributions of

the individual AEs that, when aggregated, potentially yield a non-monotonic dose-toxicity

surface. We utilize the following unconstrained GP model for the efficacy function:

f(d, z) ∼ GP (mf (d, z), νfKf ((d, z), (d
′, z′)))

where mf (d, z) is the mean function, and Kf ((d, z), (d
′, z′)) is a correlation function (kernel)

multiplied by scale parameter νf (Binois and Gramacy, 2021). The scale parameter deter-

mines the variability of the efficacy function throughout the dose combination space. We

utilize GP models with a constant mean function, mf (d, z) = βf , though note that additional

information about the efficacy function (e.g., pharmacokinetic/pharmacodynamic models)

or toxicity function (e.g., quantitative systems toxicology models) can be incorporated into

the mean function. We employ a stationary anisotropic squared exponential kernel,

Kf ((d, z), (d
′, z′)) = exp

{︄
−

(︄
J∑︂

j=1

(dj − d′j)2

2l2f,j
+

P∑︂
p=1

(zp − z′p)2

2l2f,p

)︄}︄
(5.1)

parameterized by characteristic length-scales {lf,1, ..., lf,P}. These control how quickly the

correlation between two dose combinations decays with respect to each dosing agent and

across covariate patterns. Throughout this work, we assume stationary dose-response sur-

faces, where the degree of correlation between two dose combinations depends only on their
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distance from one another in the input space. We comment on relaxing this assumption in

the discussion.

Specifying this GP prior induces a multivariate normal distribution on the efficacy function

observations, yf ∼ N(βf1n, νfKf ), where Kf (i, j) = Kf ((di, zi), (dj, zj)) + τ 2f1i=j and τ 2f is

a noise parameter. After data D = {(di, zi,yi)}ni=1 are observed, the kernel hyperparameters

θ = {νf , τ 2f , lf,1, ..., lf,P} are estimated via maximum likelihood and replaced by their point

estimates, taking an empirical Bayes approach (Binois and Gramacy, 2021).

This yields the posterior distribution of the efficacy function at a new dose combination ˜︁d
in stratum k, denoted by ˜︁dk = (˜︁d,˜︁zk), as p(f | D, ˜︁dk) = N(µf (˜︁dk), σ

2
f (
˜︁dk)) (Binois and

Gramacy, 2021), such that

µf (˜︁dk) = β̂f + kf (˜︁dk)
TK−1

f (yf − β̂f1)

σ2
f (
˜︁dk) = νfKf (˜︁dk, ˜︁dk)− νfkf (˜︁dk)

TK−1
f kf (˜︁dk) +

(1− kf (˜︁dk)
TK−1

f 1)2

1TK−1
f 1

β̂f =
1TK−1

f yf

1TK−1
f 1

(5.2)

where Kf is n × n, kf (˜︁dk) = [Kf ((d1, z1), ˜︁dk), ...,Kf ((dn, zn), ˜︁dk)]
T is n × 1, and β̂f is

a plug-in estimate for the mean. The posterior distribution of the toxicity function at ˜︁d
within stratum k is obtained similarly and has the same functional form as above but where

f is replaced by g for all observations and kernel hyperparameters.

The next dose combination d
(ck+1)
k within stratum k, is then selected as that which maximizes

an acquisition function, denoted by α(˜︁dk | D):

d
(ck+1)
k = argmax˜︁d∈D α(˜︁dk | D).

One possible acquisition function which can be used in the presence of toxicity constraints

is a constrained version of the Expected Improvement (cEI), defined as

αcEI(˜︁dk | D) = E
[︂
max(0, f ∗

k − f(˜︁dk))1{g(˜︁dk) ≤ g†k} | D, ˜︁dk

]︂
,
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and available in closed form under the assumption of conditional independence between the

efficacy and toxicity functions given dose (Jones et al., 1998; Gardner et al., 2014):

αcEI(˜︁dk | D) =

[︄
(f ∗

k − µf (˜︁dk))Φ

(︄
f ∗
k − µf (˜︁dk)

σf (˜︁dk)

)︄
+ σf (˜︁dk)ϕ

(︄
f ∗
k − µf (˜︁dk)

σf (˜︁dk)

)︄]︄
Φ

(︄
g†k − µg(˜︁dk)

σg(˜︁dk)

)︄
.

Above, f ∗
k denotes the current optimum of the efficacy function in stratum k, g†k denotes the

stratum-specific toxicity constraint, Φ(·) and ϕ(·) denote the standard normal cumulative

distribution function and probability density function, respectively, and µ(˜︁dk) and σ(˜︁dk)

are given above in (5.2). The expression inside the brackets serves to balance the trade-

off between exploring regions of the dose combination space where the efficacy function is

imprecisely estimated, and exploiting regions which have desirable values of the efficacy

function. This trade-off is weighted by the posterior probability of satisfying the toxicity

constraint, giving higher weight to points which are more likely to be safe. Under a noisy

setting, we set f ∗
k = min˜︁d∈Ak

µf (˜︁dk), the minimum of the posterior mean of the efficacy

function in the set of safe doses, Ak, in stratum k. A dose combination is considered to be

safe if P (g(˜︁dk) ≤ g†k | D) > γk, where γk is a tuning parameter which can be specified through

a sensitivity analysis. Larger values of γk imply a more stringent definition of safety whereas

smaller values imply a more permissive definition. In the event where Ak = ∅ during a single

iteration, f ∗
k is set as the posterior mean of the maximizer of this probability statement

(i.e., the average efficacy at the dose predicted to be safest; Gelbart et al. (2014)). We note

that dose-finding in stratum k terminates before assigning d
(ck+1)
k if no dose combinations

are predicted to be safe for several consecutive iterations. Since observations of the toxicity

function are noisy, random variation in the data may cause incorrect early stopping if it is

permitted after only a single violation of this probability statement. Thus, we require the

probability statement to be violated for J + 1 iterations before termination, where J is the

number of dosing agents, following a recommendation for stopping rules under noise (Huang

et al., 2006).

After observing responses for rk new patients at d
(ck+1)
k , the data are updated and the GP
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models are refit to obtain new posterior distributions for f and g. Then s = 1, ..., S samples

f (s)(˜︁dk) and g(s)(˜︁dk) from these posteriors are obtained to yield S samples from the posterior

of the optimal dose combination p(dopt,k | D) as:

d
(s)
opt,k = argmin˜︁d∈A(s)

k

f (s)(˜︁dk)

where the admissible set of safe doses in stratum k is defined as A(s)
k = {˜︁d : P (g(s)(˜︁dk) ≤

g†k) > γk}. Dose-finding within each stratum continues until the sample size limit is reached

or a stratum-specific early stopping rule is satisfied. We permit early stopping in stratum

k when max˜︁d∈D αcEI(˜︁dk | D) < δk. Due to random variability in the data, we require this

statement to be satisfied for at least (J + 1) consecutive iterations, where δk is calibrated

through sensitivity analysis. For example, early stopping would occur at iteration 7 if δk =

0.11 and max˜︁d∈D αcEI(˜︁dk | D) is 0.12, 0.10, 0.09, 0.08 for iterations 4, 5, 6, 7, respectively. For

convenience below, we refer to this as early stopping for “efficacy”, noting that it is technically

early stopping due to minimal expected improvement over the current best observation,

which need not imply a significant therapeutic response. The sequential procedure described

above is referred to as the personalized optimization algorithm. Note that in the present

work and in contrast to the personalized optimization algorithm in Willard et al. (2023),

we explicitly model toxicity and incorporate it into the sequential search policy defined by

αcEI(˜︁dk | D). We note that the standard optimization algorithm is a special case of the

personalized approach, where covariate information is ignored (i.e., Z = ∅) and only the

dosing agents themselves are considered for optimization.

5.3 Initial data collection

Expansion of dose combination region It is important to limit to the extent possible

the number of patients who experience adverse events and who are assigned to toxic doses.

After the initial data are collected and the dose-finding algorithm described above begins, the

achievement of these objectives is controlled through the cEI acquisition function, which gives
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lower values to doses which are predicted to be toxic, making them less likely to be evaluated.

To limit toxicities among the initial patients, however, doses must be explored in a sequential

manner, where lower (i.e., less toxic) doses are evaluated before higher (i.e., more toxic)

doses. In a monotherapy setting, this is straightforward since there is a natural ordering

from lower to higher doses. In a combination therapy setting, this is more challenging

since many dose combinations may yield comparable toxicity and so there is no longer a

natural ordering. One challenge in designing a dose-escalation scheme under this setting is

in deciding which doses should be candidates for evaluation at each stage of the escalation.

For dual-agent combination therapies, Sweeting and Mander (2012) showed that the MTD

was more efficiently identified when, at each iteration of the dose escalation algorithm, the

levels of all dosing agents were permitted to be increased rather than the level of a single

agent only. This amounts to allowing dose escalation to proceed along the “diagonal” when

considering a two-dimensional dosing grid. We adopt a similar idea below by permitting our

continuous dose combination region of interest in stratum k, denoted by Dk, to be expanded

in all coordinate directions at each iteration of dose escalation. We note that expansion of Dk

does not control which doses within this region will be evaluated. That choice is controlled

separately using the cEI acquisition function as previously described. However, Dk serves

to restrict the choice of doses the cEI may consider at each iteration, thereby ensuring the

initial doses are explored in an escalating fashion.

Consider a continuous dose combination region within stratum k, which we assume to be

standardized and bounded, Dk ⊆ [0, 1]J . At the beginning of the dose escalation scheme,

we define Dk to be the lowest standardized dose only, denoted by d
(0)
k = 0. We start by

evaluating this dose, after which Dk is expanded. At each iteration of the dose escalation

scheme, the sequentially expanded Dk takes the form of a lower half-space intersected with

[0, 1]J . To define this intersection, we select a value ρk which represents the maximum

amount by which a single coordinate dosing dimension may be increased. Then at iteration

q, we set D(q)
k = {d ∈ [0, 1]J : wT

k d ≤ ρk × q,wk = 1J}. Smaller values of ρk imply a
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slower expansion of Dk whereas larger values imply a faster expansion of Dk. This rate

of expansion should depend on the potential severity of toxicities considered, with slower

expansion being necessary for contexts which are expected to contain more severe toxicities.

We choose wk to be the J-dimensional vector of ones to perform uniform expansion across all

dosing dimensions. This could be relaxed if prior information suggests non-uniform expansion

should be permitted, e.g., if one dosing agent is known to be much safer than the others. We

note that expansion of Dk will continue to eventually include the entire unit hypercube, even

if there are regions which are predicted to be overly toxic. Expansion is permitted because

exploration within the space is controlled by the cEI acquisition function, which avoids toxic

regions and will terminate the dose-finding algorithm in the event of there being no safe

doses. As mentioned above, the expansion of Dk serves only to restrict which doses the cEI

can explore at each iteration, ensuring doses are evaluated in an escalating manner.

As an example of this sequential expansion of Dk, consider a dual-agent dose combination

setting with standardized doses in [0, 1]2 and where d(0) = (0, 0) and ρk = 0.25. After

evaluating d
(0)
k , we consider the first iteration of expansion and set q = 1. Then we define

D(1)
k = {d ∈ [0, 1]J : wT

k d ≤ 0.25,wk = 1J}. That is, at the first iteration, Dk becomes

the triangle defined by vertices {(0, 0), (0, 0.25), (0.25, 0)} from which the cEI determines

d(1). At the second iteration of expansion, we set q = 2 and define D(2)
k = {d ∈ [0, 1]J :

wT
k d ≤ 0.5,wk = 1J}. Thus, at the second iteration, Dk becomes the triangle defined

by vertices {(0, 0), (0, 0.5), (0.5, 0)} from which the cEI determines d(2). This expansion

continues until Dk is defined as the entire unit hypercube, or until the dose-finding algorithm

terminates.

To further promote exploration of the dose combination region during the expansion of

Dk, regions which are close to previously evaluated doses may be removed. That is, until

Dk = [0, 1]J , a modified region can be defined at each iteration as D(q)∗
k = D(q)

k \ C
(q)
k , where

C(q)
k =

⋃︁q−1
i=0 N

(i)
k is the set of regions or neighbourhoods N (i)

k (e.g., hypercubes defined
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Table 5.1: Simulation scenarios considered. The data generating mechanism for each scenario
is yf = f(d, z1)+ϵf and yg = g(d, z1)+ϵg where ϵf ∼ N(0, σ2

yf
) and ϵg ∼ N(0, σ2

yg). The table
columns contain the location of the optimal dose combination (dopt), the value of the efficacy
and toxicity functions at dopt (fopt/gopt), and the standardized effect sizes (sesf/sesg).

f(d, z1) g(d, z1) σyf σyg z1 dopt fopt gopt sesf sesg

Si
m

ul
at

io
n

St
ud

y 1) −1{z1 = 0} × h(µ1)−
1{z1 = 1} × h(µ1)

1{z1 = 0}×h(µ2)+
1{z1 = 1} × h(µ2)

1.59 0.13 0 (0.5, 0.5) -1.59 0.13 1 1
1 (0.5, 0.5) -1.59 0.13 1 1

2) −1{z1 = 0} × h(µ3)−
1{z1 = 1} × h(µ4)

1{z1 = 0}×h(µ5)+
1{z1 = 1} × h(µ6)

1.59 0.13 0 (0.25, 0.75) -1.59 0.13 1 1
1 (0.75, 0.25) -1.59 0.13 1 1

O
SA

1) βz1,0+βz1,1d1+βz1,2d2+
βz1,3d1d2 + βz1,4d

2
1 +

βz1,5d
2
2 + βz1,6d

2
1d

2
2

θ0 + θ1d1 + θ2d2 +
θ3d1d2 + θ4d

2
1 +

θ5d
2
2 + θ6d

2
1d

2
2

7.68 1.29 0 (2.5, 75) -7.68 1.29 1 1
1 (5, 75) -13.20 1.63 1.72 1.26

by a small side length lk, where lk ≪ ρk) which surround the previously evaluated dose

combinations {d(i)
k }

q−1
i=0 . Using D(q)∗

k instead of D(q)
k promotes exploration of the input space

during the initial stages of dose-finding, and may prevent the algorithm from getting stuck

in certain regions. This can lead to improved GP model fits at early iterations which may

improve algorithm performance overall.

5.4 Simulation study

In this section, we perform a simulation study to compare the performance of the personalized

and standard approaches for a dual-agent (i.e., J = 2) therapy under two scenarios which

consider a single binary covariate Z1. The first scenario considers no response heterogeneity

across the strata with respect to the objective and toxicity surfaces, whereas the second

considers response heterogeneity with respect to both surfaces. The scenarios do not permit

early stopping for efficacy (i.e., δk = 0 in the stopping rule), which is investigated in the next

section. Early stopping for toxicity is still permitted, however, where we stop for toxicity

in stratum k if P (g(˜︁d) ≤ g†k | D) < 0.9 ∀ ˜︁d is satisfied J + 1 = 3 consecutive times. In

this event, the personalized algorithm permits dose-finding to continue in the other stratum

unless it has also stopped for toxicity. We use values of Z1 to index the true optimal dose

combinations, dopt,k, and the values of the objective and toxicity functions at the dopt,k,
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denoted by fopt,k and gopt,k, respectively. To make the simulations more computationally

feasible, we modify the algorithms to return a point estimate ˆ︁dopt,k = argmin˜︁d∈Ak
µ(˜︁d,˜︁zk)

rather than the entire posterior distribution of dopt,k. Performance is compared for two values

of the toxicity threshold g†k ∈ {0.2, 0.5} to assess how the distance of the dopt,k from the g†k

contour impacts the optimization. We do not consider a scenario where all dose combinations

are toxic, since the dose ranges investigated in combination therapies are expected to be

better targeted due to the previous early phase studies of each individual agent (Sweeting

and Mander, 2012).

We utilize standardized dose combinations d = (d1, d2) ∈ [0, 1]2 which are separated in

each coordinate direction by 0.25 units, creating a grid of 25 potential dose combinations in

total. While the proposed method can optimize over the continuous dose combination space,

engineering constraints may restrict the precision to which an agent can be manufactured.

Thus, any constraints should be incorporated into the optimization, as we have done here.

We set the point estimate of the recommended dose, ˆ︁dopt,k, as argmin˜︁d∈Ak
µ(˜︁d,˜︁zk) and the

next dose combination to be evaluated, d(ck+1), as the maximizer of αcEI(˜︁d | D,˜︁zk). For the

initial data collection, we set ρk = 0.25 and utilize the modified D(q)∗
k to promote exploration

at the earlier iterations of the algorithm. We define D(q)∗
k by setting C(q)

k = {d(i)
k }

q−1
i=0 . Doing

so prevents any previously evaluated dose combination from being selected as the next dose

until after iteration q = 8, which is the iteration at which Dk becomes the unit hypercube.

At each evaluated dose combination, the personalized algorithm uses rk = 2 participants

and the standard algorithm uses rk = 4 participants. This ensures that both algorithms use

the same number of total participants at each iteration, where the maximum sample size is

set to be 80 participants.

We define f(d, z1) and g(d, z1) to be the continuous objective and toxicity surfaces which

are defined using the multivariate normal density h(µ) = N(µ,Σ) with the same covari-

ance matrix Σ =
[︁
0.1 0
0 0.1

]︁
but with different mean vectors: µ1 = (0.5, 0.5)T , µ2 = (1, 1)T ,
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Figure 5.1: Scenario 1. A) Objective function, white stars denote dopt,k and white dashed
lines denote contours of toxicity function, B) expected number of truly toxic doses admin-
istered to participants as defined in (5.3), C) expected dose units from the optimal dose
combination as defined in (5.4) by iteration, D) average RPSEL as defined in (5.5) by iter-
ation. Vertical dashed lines in C and D represent iteration 8, after which the algorithm can
search the entire dose combination space.
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µ3 = (0.25, 0.75)T , µ4 = (0.75, 0.25)T , µ5 = (0.75, 1.25)T , and µ6 = (1.25, 0.75)T . For each

scenario, the data generating mechanism is yf = f(d, z1) + ϵf and yg = g(d, z1) + ϵg where

ϵf ∼ N(0, σ2
yf
) and ϵg ∼ N(0, σ2

yg). The specifications of f(d, z1) and g(d, z1) are included

in Table 5.1 (rows labeled “Simulation Study”) and are plotted in panel A of Figures 5.1

and 5.2. The values of σyf and σyg are chosen to ensure specific standardized effect sizes

(ses) at the optimal dose combination, defined as sesf = |fopt|/σyf and sesg = |gopt|/σyg .

Willard et al. (2023) considered several values for sesf , which were 0.79/1/3.77 and repre-

sented the 25th/50th/75th percentiles of ses from a meta-analysis of dose-responses for a large

drug development portfolio at a pharmaceutical company (Thomas et al., 2014), and showed

that a larger ses led to better performance of the algorithms. As we expect these results to

generalize to the current setting, we focus specifically on sesf = sesg = 1, which represents

the median ses we might expect for a new combination therapy. All computing is performed

in R (R Core Team, 2022). The efficacy and toxicity functions are modeled using constant

mean GP models with the anisotropic squared exponential kernel previously described. An

empirical Bayes approach is adopted toward the GP hyperparameters (Binois and Gramacy,

2021), where initial values are utilized until convergence of the maximum likelihood estima-

tion, which typically occurs within the first few iterations. For the lengthscale parameters,

these values are
√
J + P/2, which is the midpoint of the maximal distance between two

points on the unit cube defined by standardizing J dosing agents and P covariates. For the

noise parameters, these values are the observed sample variances σ̂2
f and σ̂2

g for the objective

and toxicity function models, respectively.

Three criteria are used to quantify algorithm performance and are estimated using m =

1, ..., 1000 Monte Carlo simulations. The expected number of toxic dose combinations ad-

ministered to nk participants is defined as follows:

Ey|zk [toxic doses] ≈ 1

1000

1000∑︂
m=1

[︄
nk∑︂
i=1

1
{︂
g(d

(m)
i , zk) > g†k

}︂]︄
. (5.3)

To assess how close ˆ︁dk is to dopt,k at each iteration, the expected number of dosing units is
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Figure 5.2: Scenario 2. A) Objective function, white stars denote dopt,k and white dashed
lines denote contours of toxicity function, B) expected number of truly toxic doses admin-
istered to participants as defined in (5.3), C) expected dose units from the optimal dose
combination as defined in (5.4) by iteration, D) average RPSEL as defined in (5.5) by iter-
ation. Vertical dashed lines in C and D represent iteration 8, after which the algorithm can
search the entire dose combination space.
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defined as their Euclidean distance divided by the distance between each dose combination,

which is 0.25 in the simulations:

Ey|zk [dose units] ≈ 1

1000

1000∑︂
m=1

√︂
(d̂

(m)

1 − d1,opt)2k + (d̂
(m)

2 − d2,opt)2k
0.25

. (5.4)

To assess how well the pointwise posterior distribution of the objective function at ˆ︁dk esti-

mates the true value fopt,k, we use the expected root posterior squared error loss (RPSEL)

which is estimated using s = 1, ..., 10000 posterior samples f (s)(ˆ︁dk, zk):

Ey|zk [RPSEL] ≈
1

1000

1000∑︂
m=1

[︄
1

10000

10000∑︂
s=1

(f (s)(ˆ︁d(m)
k , zk)− fopt,k)2

]︄ 1
2

. (5.5)

Panels B-D of Figures 5.1 and 5.2 plot these criteria by iteration, showcasing the performance

of the algorithms throughout the optimization process.

Scenario 1 considers the case of no response heterogeneity. Under this scenario, the person-

alized and standard algorithms administer a comparable number of toxic doses, where the

number is higher when dopt,k is closer to the tolerable toxicity contour g†k (Panel B of Figure

5.1). Under the more stringent toxicity threshold g†k = 0.2, the personalized algorithm incor-

rectly stopped for toxicity in both strata 0.1% of the time, whereas the standard algorithm

incorrectly stopped 0.3% of the time (results not shown). Neither algorithm incorrectly

stopped under the more permissible toxicity threshold. A separate series of simulations was

performed which did not perform dose escalation for the initial doses, but rather randomly

selected the same number of initial doses as in the simulations described above (results not

shown). Under this setting, the expected number of toxic doses administered was 11.9/11.9

for g†k = 0.2 under the personalized/standard algorithm and 5.3/5.24 for g†k = 0.5 under

the personalized/standard algorithm. Thus, utilizing a dose escalation scheme results in a

decrease in the number of toxic doses administered of roughly 66% and 74% for g†k = 0.2 and

g†k = 0.5, respectively, underscoring the importance of dose escalation under higher-grade

toxicity settings. Both the personalized and standard algorithms converge to the dopt,k,
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with the optimization being more efficient when dopt,k is further from the permissible tox-

icity contour (i.e., g†k = 0.5 vs g†k = 0.2 in Panel C of Figure 5.1). Additionally, they each

yield a posterior distribution which estimates the fopt,k comparably (Panel D of Figure 5.1).

The sudden drop in RPSEL after iteration 8 results from the dose escalation scheme end-

ing. This permits the algorithms to explore any dose in the dose combination region which

leads to improved optimization. Overall, both algorithms yield acceptable performance un-

der no response heterogeneity, though, as expected, the standard algorithm is slightly more

efficient.

Scenario 2 considers the case of response heterogeneity with respect to both the efficacy

and toxicity surfaces. As in the previous scenario, the personalized and standard algorithms

administer a comparable number of toxic doses, where the number is higher when dopt,k is

closer to the tolerable toxicity contour g†k (Panel B of Figure 5.2). Under the more stringent

toxicity threshold g†k = 0.2, the personalized algorithm incorrectly stopped for toxicity in

both strata 0.1% of the time, whereas the standard algorithm incorrectly stopped more

frequently at 1% of the time (results not shown). This difference results from the personalized

algorithm permitting stratum-specific early stopping for toxicity, where the second stratum

continues to be explored in the event of the first being stopped. Neither algorithm incorrectly

stopped under the more permissible toxicity threshold. The personalized algorithm converges

to the dopt,k, with the optimization being more efficient when dopt,k is further from the

permissible toxicity level (Panel C of Figure 5.1). However, the standard algorithm does not

converge to dopt,k. As discussed in Willard et al. (2023), the marginal response surfaces are

bimodal mixture distributions whose components consist of the equally weighted strata. Even

though its use of the cEI may promote exploration of both modes during optimization, the

standard algorithm still cannot determine how to optimally assign doses with respect to Z1,

a major disadvantage as compared to the personalized approach. Finally, the personalized

algorithm yields posterior distributions which estimate the fopt,k well (Panel D of Figure 5.2),

whereas the standard algorithm does not. Overall, the personalized algorithm is capable of
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handling response heterogeneity with respect to the efficacy and toxicity surfaces, while the

standard algorithm cannot.

5.5 Dose-finding design for obstructive sleep apnea

therapy

Obstructive sleep apnea (OSA) is a common sleep disorder which affects over 930 million

adults worldwide (Benjafield et al., 2019) and for which no pharmacotherapy has been ap-

proved. One continuous measure used to quantify OSA severity is the apnea-hypopnea index

with 4% oxygen desaturation (AHI4), which is measured in the number of apnea/hypopnea

events per hour. Mild to moderate OSA is defined as 10-30 events per hour, and severe

OSA is defined as 30 or more events per hour (Schweitzer et al., 2023). Based on a recently

improved understanding of OSA’s pathophysiology, several studies have proposed a com-

bination of one of two antimuscarinic agents (oxybutynin and aroxybutynin) and a single

norepinephrine reuptake inhibitor (atomoxetine) to serve as a potential pharmacotherapy

(Schweitzer et al., 2023; Aishah et al., 2023; Rosenberg et al., 2022). These studies assessed

several combinations of the dosing agents on the reduction in AHI4 from baseline. The eval-

uation times ranged from a single night up to four weeks on treatment, and concluded that

the proposed drug combinations display potential as a therapy for OSA. Furthermore, it was

noted that a targeted therapeutic approach might prove beneficial in future studies to handle

possible response heterogeneity (Aishah et al., 2023). The dose-finding design proposed be-

low is inspired by findings from Schweitzer et al. (2023), which investigated the combination

of aroxybutynin (0/2.5/5 mg) and atomoxetine (75 mg). While results were not analyzed

separately by OSA severity subtype, Figure 2 of Schweitzer et al. (2023) suggests there is

potential response heterogeneity with respect to these subtypes. For the mild to moderate

subtype, the combinations (aroxybutynin/atomoxetine) 2.5mg/75mg and 5mg/75mg seem

to yield a similar reduction in AHI4, whereas for the severe subtype, the reduction under

5mg/75mg may be greater. However, it was observed that a larger number of AEs resulted
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from the 5mg/75mg combination, though none were serious. To achieve maximal reduction

in AHI4 in the severe subtype, we may be willing to tolerate a larger number of AEs than

for the mild to moderate subtype. In this case, the OBD combination would be 2.5mg/75mg

for the mild to moderate subtype, but would be the 5mg/75mg combination for the severe

subtype. Considering the above, we propose a personalized dose-finding design which tailors

the OBD combination to OSA subtype and which permits different toxicity thresholds g†k for

the severe versus mild to moderate subtypes.

To quantify the overall impact of AEs at each dose combination, we follow the approach in

Le-Rademacher et al. (2020), who define a non-negative AE burden score that considers both

the frequency and severity of the adverse events. Schweitzer et al. (2023) report the frequency

of the most commonly occurring AEs; unfortunately, the grade (severity) information was

not provided. However, since no severe adverse events were reported, we define the score by

restricting our focus to grades 1-3 only, which we assume to occur 10%/45%/45% of the time

independent of the type of AE, reflecting the belief that patients are more likely to remember

and report higher graded events. Let Yicg be the indicator that the ith patient experiences

an AE of type c which is of grade g, where g = 1, 2, 3 and where c = 1, ..., 8 corresponding to

one of the following types: 1) dry mouth, 2) insomnia, 3) urinary hesitation/flow decrease,

4) constipation, 5) nausea, 6) decreased appetite, 7) feeling jittery, and 8) somnolence. Then

patient i’s AE burden is Bi =
∑︁

c

∑︁
g wcgYicg. Specification of the weights wcg is subjective

and should be elicited from subject matter experts. We define wcg = wcwg and set grade

weights wg = g. Higher type weights wc may be given to more burdensome types of AEs if

desired. As was noted in (Schweitzer et al., 2023), the AEs which led to study discontinuation

included insomnia, nausea, and dry mouth. We assign these AEs weights which are 5 times

higher than the others and thus wc = (5, 5, 1, 1, 5, 1, 1, 1). Interestingly, this study suggested

that the 2.5mg/75mg combination decreased the frequency of AEs overall, as well as the

frequency of more burdensome AEs as compared to the 0mg/75mg combination. This non-

monotoniticy in the dose-toxicity relationship is captured in the simulations that follow.
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We define Z1 as OSA severity, where Z1 = 0 corresponds to the mild/moderate subtype

and Z1 = 1 corresponds to the severe subtype. We define f(d, z1) as the reduction in

AHI4 from baseline and g(d, z1) = log(B + 0.5) as the log-transformed AE burden score.

Using efficacy and adverse event results from (Schweitzer et al., 2023), we fit flexible lin-

ear models on standardized doses to determine the parameters used in the data gener-

ating mechanisms for f(d, z1) and g(d, z1), whose functional forms are included in Table

5.1 (rows labeled “OSA”) and which are plotted in Panel A of Figure 5.3 on the original

dosage scale. The f(d, z1) differ across the strata, where the parameter vector for Z1 = 0

is βZ1=0 = (−1.38,−4.08,−0.48,−4.23, 2.45,−7.51,−1.56) and the parameter vector for

Z1 = 1 is βZ1=1 = (1.05,−11.28,−8.32,−17.02, 8.17, 2.34, 4.61). The g(d, z1) is the same

across strata and has parameter vector θ = (−0.59, 1.83, 2.26,−4.05, 1.79, 0.47, 2.91). As

mentioned previously, under the personalized algorithm, we permit the tolerable toxicity

thresholds to vary by strata. For the severe subtype, we set g†1 = 2, which equates to ac-

cepting an average AE burden score of about 7. This may include, for example, a single

low-grade but high burden AE, or a couple moderate-grade but low burden AEs on average.

For the mild/moderate subtype, we set g†0 = 1.5, which equates to accepting an average AE

burden score of about 4. This may include, for example, a couple low-to-moderate-grade AEs

of low burden, but would exclude higher burden AEs on average. The standard algorithm

uses only a single value of the tolerable toxicity threshold, which we set equal to that of the

mild/moderate subgroup, g† = 1.5.

Below we compare 12 designs using a maximum sample size of 100. The 12 designs are

comprised of 6 personalized and 6 standard designs, where each uses a different combination

of algorithm setting and stopping rule. The two settings differ in the number of patients

assigned to each dose combination, where a larger number results in potentially fewer algo-

rithm iterations, and a smaller number results in potentially more algorithm iterations. For

the personalized algorithm, this is rk = 1 and rk = 2, and for the standard algorithm this

is rk = 2 and rk = 4, respectively. We refer to these designs by their algorithm type and
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the degree of replication: P1/P2 for the personalized designs, and S2/S4 for the standard

designs. The three stopping rules investigated permit early stopping at roughly 40, 60, or

80 patients, and are denoted by nSTOP = {40, 60, 80}. Recall that we permit early stop-

ping in stratum k when max˜︁d∈D αcEI(˜︁dk | D) < δk at least (J + 1) times, which, for the

dual-agent combination therapy being investigated, equates to 3 times. Within each design,

we use the same value of δk for each stratum, and so δk = δ. The values of δ are cali-

brated such that each design achieves an expected sample size which is approximately the

corresponding value of nSTOP . For P1/P2, δ = (0.1, 0.08, 0.065)/(0.137, 0.087, 0.07), and

for S2/S4, δ = (0.077, 0.06, 0.05)/(0.1, 0.073, 0.055). The personalized algorithm permits

stratum-specific early stopping, where the remaining budget is allocated to the other stra-

tum where dose-finding may continue in the event of one of the strata stopping early. Finally,

as there are no serious adverse events expected, we permit the modified dose combination

region D(q)∗
k to expand at a quicker rate using ρk = 0.5. All other modeling and inferential

details follow those previously described in the simulation study section. The performance of

the designs is assessed and compared via the previously defined criteria which are estimated

using 1,000 Monte Carlo replicates.

Under this scenario, we find that all designs yield expected sample sizes corresponding to their

respective values of nSTOP (Panel B of Figure 5.3). The personalized algorithms converge

to the dopt,k, with the optimization being more efficient in stratum Z1 = 0 which has the

larger sesf (Panel D of Figure 5.3). The standard algorithms are more efficient in converging

to dopt,0, but fail to converge to dopt,1. Similar results hold for estimation of fopt,k, where

the personalized algorithms can handle the heterogeneity across strata whereas the standard

algorithms cannot. We note that the personalized designs generally lead to a slightly larger

number of participants receiving toxic doses (Panel C of Figure 5.3), but this results from

these designs exploring more doses on average. For example, designs P1/P2 under nSTOP =

40 are expected to evaluate 11/9 unique doses whereas designs S2/S4 under nSTOP = 40 are

expected to evaluate 7/6 unique doses (results not shown). We find that a lower degree of
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Figure 5.3: A) Objective function, white stars denote dopt,k, white dashed lines denote
contours of toxicity function, B) expected sample size, C) expected number of truly toxic
doses administered to participants as defined in (5.3), D) expected dose units from the
optimal dose combination as defined in (5.4) by iteration, E) average RPSEL as defined in
(5.5) by iteration, and F) probability of incorrectly stopping for toxicity and declaring no
feasible doses. For OSA subtype, Z1 = 0 denotes mild/moderate and Z1 = 1 denotes severe.
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replication may lead to an increased probability of incorrectly determining that no feasible

doses exist (i.e., P1/S2 vs P2/S4 in Panel F of Figure 5.3), and that for the personalized

algorithm, this is more extreme in stratum Z1 = 0 which has the more stringent toxicity

threshold g†0 = 1.5. Note that the standard algorithm yields a single decision only, so this

probability is fixed across strata. Given the goal of the trial is to identify subtype-tailored

dose combinations, the standard designs would be unusable in practice. Furthermore, we

exclude design P1 from consideration as it yields a substantial increase in the probability of

declaring no feasible doses as compared to P2. Based upon the simulated scenario, we would

recommend P2 with either nSTOP = 60 or nSTOP = 80 given their improvements over P2

with nSTOP = 40. Design P2 with nSTOP = 60 is expected to evaluate 10 unique doses in

64 patients with 14 receiving toxic doses on average, whereas design P2 with nSTOP = 80 is

expected to evaluate 11 unique doses in 80 patients with 16 receiving toxic doses on average.

The study investigator could make a final decision by performing a cost-benefit analysis

using these estimates.

5.6 Discussion

In this work, we generalized the methods proposed in Willard et al. (2023) to the setting

of higher-grade continuous toxicities under no monotonicity assumptions. We showed how

these toxicities could be incorporated into the search strategy employed by the Bayesian

optimization methods, as well as proposed a dose-escalation scheme to collect the initial

data. A personalized approach is shown to be beneficial when response heterogeneity exists

in at least one of the efficacy and toxicity surfaces. Additionally, the personalized approach

permits tolerable levels of toxicity to be defined with respect to individual strata, providing an

additional level of tailoring which is not possible when utilizing the standard approach.

The proposed work is not without limitations. Firstly, all simulations were performed using

a single binary covariate under the setting of dual-agent dose combinations only. Under

the personalized approach, the use of additional categorical variables or dosing agents is
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straightforward, though would require larger sample sizes. Extension to continuous co-

variates remains as future work. While conceptually straightforward under the proposed

approach, the dangers and consequences of inadvertently extrapolating into regions of co-

variate combinations never before seen in the trial would need to be considered and assessed.

Secondly, future research should investigate the impact of a wider range of dose escalation

schemes on overall algorithm performance than those that are featured here. As this may

be applicable to a variety of constrained Bayesian optimization problems outside of dose-

finding, this is a particularly interesting research direction. Finally, we assumed conditional

independence between the efficacy and toxicity surfaces. In trials with binary efficacy and

toxicity responses, Cunanan and Koopmeiners (2014) showed that estimating correlations

can be challenging given the small sample sizes of early phase designs and that designs

which assumed independence between efficacy and toxicity can still perform well. Further

investigations for continuous responses are warranted, however. To relax the assumption of

conditional independence, the efficacy and toxicity responses could be jointly modeled using

a multivariate GP. The cEI acquisition function would need to be updated to incorporate

the correlation between the two responses. We leave this as a direction for future work.

Changes to the GP modeling and acquisition function may help improve performance of

the algorithms. Stationary, anisotropic squared exponential kernels were used but could be

replaced by non-stationary kernels which include dose-covariate interaction terms. These

would permit the correlation between two dose combinations to depend on the actual dosage

levels and strata in which they lie, rather than solely on their distance from one another in

the input space. Doing so, however, may greatly increase the dimensionality of the hyperpa-

rameter space, potentially leading to the same estimation challenges the proposed methods

sought to avoid. Additionally, an empirical Bayes approach was adopted toward the GP

hyperparameters, where initial values of the hyperparameters were used until the maximum

likelihood estimation routines converged. While convenient and practical, proceeding in a

fully Bayesian manner by placing priors on all hyperparameters may improve estimation at
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the earlier stages of optimization. However, this comes at the increased computational cost

of posterior sampling, which could be prohibitive depending on the number of scenarios of

interest and the expected number of algorithm iterations, each of which requires refitting

the GP models. Finally, the cEI acquisition function utilizes a point estimate of the current

best observation, f ∗
k = min˜︁d∈Ak

µf (˜︁dk), which ignores the uncertainty around this quantity.

Proceeding in a fully Bayesian manner by integrating over its posterior distribution may

yield efficiency gains. Two different acquisition functions adopt this approach (Gramacy

et al., 2016; Letham et al., 2019), but are not available analytically and require Monte Carlo

for evaluation. While utilization of these acquisition functions would greatly increase the

computational burden of the proposed dose-finding algorithm, they represent an exciting

direction for future work.

Data availability

No new data were created or analyzed in this study. The R scripts used for the simula-

tions and graphics can be found on a public GitHub repository at https://github.com/

jjwillard/bayesopt_obdc.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I demonstrated how utilizing covariate information benefits both early phase

and late phase Bayesian adaptive clinical trials. In the first manuscript introduced in Chapter

3, I described how covariate adjustment has been shown to increase the statistical power

of fixed size RCTs. I investigated the impact of combining covariate adjustment with prior

information on the covariate effects in Bayesian adaptive designs with early stopping criteria.

I showed how covariate adjustment leads to trials which have greater power, and which

stop earlier and more often. These findings hold for trials with a variety of endpoints and

sample sizes, as well as for both collapsible and non-collapsible estimands. I found there

to be no added benefit to using informative priors over weakly informative ones when the

effective sample sizes were moderate or larger, though I noted that informative priors may

be beneficial in situations where this is not the case (e.g., trials investigating rare diseases).

Furthermore, I found that inclusion of non-prognostic variables may have deleterious effects

in trials that use binary endpoints and have small maximum sample sizes, and so caution

must be exercised under this scenario. The work presented in Chapter 3 provides further

128



theoretical support for the FDA’s recently published draft guidance on covariate adjustment

in RCTs (United States Food and Drug Administration, 2021). Since it is already common

to collect a substantial amount of covariate information within the scope of a trial (Friedman

et al., 2015), covariate adjustment may provide great benefit for little additional cost.

Through the second and third manuscripts presented in Chapters 4 and 5, respectively, I

described the goal of personalized dose-finding trials for combination therapies as identi-

fying patient-specific optimal dose combinations. I emphasized the challenge of extending

many standard parametric methods to the personalized setting since they require poten-

tially many dose-covariate interaction terms which may be poorly estimated given the small

sample sizes in these trials. These estimation challenges are exacerbated in the combination

therapy setting. I showed how using Bayesian optimization makes personalized dose-finding

for combination therapies feasible. Furthermore, under response heterogeneity, I found the

personalized approach to be essential, since the standard “one-size-fits-all” approach recom-

mends only a single dose which may fail to be optimal for some, or even all, patients in the

population.

In Chapter 4, focus was placed on a minimal toxicity setting, where toxicity information

was not considered during the dose-finding. Estimating the efficacy function using a non-

parametric GP model achieved the flexibility required to model non-monotonicities and

avoided the estimation challenges that would potentially arise in similarly flexible, but highly

parameterized, models. By pairing this with an acquisition function which utilized stratum-

specific information, patient-specific optimal doses could be obtained. This approach was

generalized to the setting of higher-grade toxicities in Chapter 5, where toxicity information

was incorporated into the dose-optimization to identify patient-specific optimal biological

dose combinations. The sequential search strategy was defined using an acquisition function

which balanced the patient-specific exploration-exploitation trade-off for efficacy, while giving

higher weights to safe dose combinations. A dose escalation scheme was proposed to collect
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the initial responses while at the same time minimize the number of patients given toxic

dose combinations. This was shown to provide a large reduction in the number of toxic dose

combinations which were administered as compared to a standard space filling design which

employed random sampling. From a trial ethics perspective, this is an especially important

contribution. Finally, the personalized approach allowed for different levels of permissible

toxicity to be defined with respect to disease severity, providing an even greater degree

of tailoring over standard dose-finding approaches. Overall, the proposed methods provide

potential avenues toward achieving improved dose-optimization, a primary goal of the FDA’s

newly created Project Optimus (United States Food and Drug Administration, 2023).

6.2 Limitations and future work

The proposed methods are not without limitations. Below I discuss areas for improvement

and future research, focusing first on the work proposed for late phase Bayesian adaptive

RCTs and then proceeding to the methods proposed for early phase Bayesian adaptive

personalized dose-finding trials.

6.2.1 Late phase Bayesian adaptive RCTs

The covariate adjustment performed in Chapter 3 assumed joint independence between the

adjustment variables. This represents an ideal scenario which may not apply in all situ-

ations. If the variables were instead correlated, they would carry similar information and

we would expect that adjusting for them would result in smaller increases in power and

the probability of stopping early than what is observed under independence. Thus, fewer

independent covariates would be needed to obtain the same benefit as a set of correlated

covariates. This helps motivate the question of the appropriate number of covariates to

include for adjustment. A related issue is the required strength of association between a

covariate and outcome to consider it for adjustment. A limitation of the work proposed in

Chapter 3 is that only a single set of covariate strengths was assessed for each endpoint.

However, other simulations were performed (but not reported) which showed that covariates
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which were only weakly associated with the outcome yielded minimal benefit. This finding

agrees with observations from Cox and McCullagh (1982) where, for a normal endpoint and

single continuous adjustment covariate, they note that a correlation of less than 0.3 yields

minimal increase in treatment effect precision whereas a correlation greater than 0.9 yields

a substantial increase in precision. Furthermore, they add that when the number of degrees

of freedom in the trial is small, only one or two adjustment variables should be used.

The question of the appropriate number of covariates to adjust for is an important one

and should be addressed by future work. These investigations could be motivated by the

variable selection and shrinkage literature, or the model selection and averaging literature.

For example, non-parametric approaches, such as GP models, could be used for covariate

adjustment. While these may be more robust than parametric approaches in settings where

the functional relationship between the outcome and the adjustment covariates is difficult to

correctly specify, they are computationally intensive and so were not considered in this work.

Furthermore, if multiple adjustment models were under consideration, Bayesian model aver-

aging could be employed. Under this approach, parameter estimates are obtained by taking

a weighted average of model-specific parameter estimates, with the weights corresponding

to the posterior probability of each model being true given the data. This might guard

against model misspecification, but comes at an increased computational cost and so was

not investigated in the current work. While it is possible that employing more flexible or

data-driven approaches for covariate adjustment provides benefit, these approaches are of-

ten deleterious if not specified in an objective manner and so were not investigated in this

thesis. For example, if interim model selection procedures favor the alternative hypothesis,

an inflation of Type I error rate is expected (Pocock et al., 2002). The controlling and es-

timation of operating characteristics should therefore account for model selection as well as

for efficacy decisions. Future work could investigate the impact of data-driven approaches

toward covariate adjustment.
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The covariate adjustment performed in Chapter 3 was in the context of an adaptive stop-

ping rule, where simple randomization was performed. Additional benefit might be observed

in the same trial by also utilizing adjustment in an adaptive allocation rule. Recall that

adaptive allocation rules allow for changes to the randomization probabilities throughout

the course of the trial. Covariate-adjusted response adaptive randomization updates the

allocation probability to a particular treatment arm based on previously observed responses

for a particular covariate pattern (e.g., Rosenberger and Sverdlov (2008)). As this type of

adaptive randomization may lead to covariate imbalance across treatment arms, additionally

adjusting for the covariates in the adaptive stopping rule should be beneficial. In designs

which use response adaptive randomization, the allocation rules generally dictate randomiz-

ing a patient to a particular treatment arm in proportion to its posterior probability of being

the superior treatment arm, and often include additional tuning parameters (e.g., Thall and

Wathen (2007)). When covariates are included, the allocation rule has a greater chance of

randomizing patients to better performing treatment arms with respect to their covariate

pattern, which implicitly defines a goal of assigning patients to their patient-specific optimal

treatment. This goal is the same as that of the personalized dose-finding methods proposed

in Chapters 4 and 5, and so we might be interested in adapting these methods to define an

allocation rule. For example, optimizing an acquisition function defines a deterministic allo-

cation rule, where patients are assigned to the treatment arm which is the maximizer of the

patient-specific acquisition function. A randomized allocation scheme could be performed by

defining patient-specific treatment arm randomization probabilities as the normalized values

of a patient-specific acquisition function. As many acquisition functions naturally accom-

modate the trade-off between exploration and exploitation of the objective function and are

grounded in statistical decision theory, their use within randomized allocation rules could be

highly beneficial. This is a very interesting direction for future work and combines elements

from the methods proposed in Chapters 3-5.

Another limitation of the methods in Chapter 3 is that covariate adjustment was performed
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using outcome regression models only. Inverse probability of treatment weighting is another

method which is used to obtain estimates of marginal treatment effects and which has been

discussed within the frequentist clinical trial literature (see Morris et al. (2022)). Inverse

probability of treatment weighting uses estimates of patient-specific propensity scores to re-

weight the trial’s sample such that the distribution of covariates is balanced across treatment

arms. When the marginal treatment effect contrast is formed using the re-weighted samples

from each treatment arm, an unbiased estimate of the marginal treatment effect is obtained.

Saarela et al. (2015b) show how this weighting may be performed through the Bayesian

paradigm, which provides one potential avenue toward investigating its use in Bayesian

adaptive clinical trials. However, weighting can be less efficient, especially for smaller sample

sizes, so this approach was not investigated in this thesis though remains an exciting direction

for future work.

Finally, the methods utilized throughout Chapter 3 assumed the magnitudes of the covariate

effects were known. In practice, these are likely to be unknown and so basing power and

sample size calculations on them may be undesirable. Benkeser et al. (2021) suggest using

an unadjusted analysis to conservatively estimate power and required sample sizes, with any

estimates provided by a covariate adjusted analysis being reported as potential efficiency

gains under a best-case scenario only. This thesis sought only to show the potential benefit

of covariate adjustment and so did not investigate this practical limitation. Future work

should consider covariate adjustment approaches which do not rely upon assumed covariate

effect sizes.

6.2.2 Early phase Bayesian adaptive dose-finding trials

In this subsection, I discuss limitations of the personalized dose-finding approach proposed

in Chapters 4 and 5, noting that many of the same limitations apply under both the minimal

and higher-grade toxicity settings and so they will be discussed together. To begin, the per-

sonalized dose-finding approach was illustrated using discrete covariates only. Extension to
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continuous covariates would be highly valuable, since covariates which are thought to have

non-linear relationships with an outcome (e.g., age) should not be discretized. While in-

corporating continuous covariates into the proposed method is conceptually straightforward,

extrapolating into unobserved regions of the covariate space is an important concern. Recall

that the stratum-specific acquisition function conditions on a particular covariate pattern

and assigns the next dose combination as its maximizer. When using continuous covariates,

a dose assignment is likely to be made for a patient whose covariate pattern has never been

observed, even near the end of the trial. Under this scenario, the acquisition function is still

a well-defined functional of the posterior distribution at a specific input (i.e., dose combi-

nation and covariate pattern), but as a result of potentially sparse data in that region, the

posterior may be either very diffuse or simply maintain the features of the prior distribution.

Future work should investigate this and propose appropriate guidelines for recommending

OBD combinations in this context.

The proposed personalized dose-finding approach focuses on tailoring OBD combinations to

patient-specific covariate profiles. There may arise situations where interest lies in tailoring

with respect to a specific set of covariates while also adjusting for a different set of prognostic

covariates. We saw in Chapter 3 how adjusting for prognostic covariates can increase the

precision of the estimated treatment effect and the power of randomized controlled trials.

Following a similar line of reasoning for personalized dose-finding, we might hope to adjust

for variables known to be associated with the outcome but which are not of interest for

tailoring. This may increase the precision of the estimated dose response and improve dose-

finding overall. To accomplish this, a GP model using the full set of covariates could be fitted

after which standardization could be performed with respect to the adjustment variables

only. This would serve to marginalize over the adjustment variables, resulting in estimated

patient-specific responses (i.e., defined by the tailoring covariates) which may have greater

precision than their unadjusted counterparts. While the limited sample sizes in early phase

dose-finding trials might make it challenging to accommodate both tailoring and adjustment
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variables, this remains an interesting direction for future work and combines themes from

Chapters 3-5.

Another limitation of the proposed method is the assumption of conditional independence

between the efficacy and toxicity functions given dose. When this assumption does not

hold, the correlation between the responses must be modeled. This can be done via a

multivariate GP model. Under this scenario, a fully Bayesian scheme could be advantageous

as the small sample sizes might make the correlation parameter challenging to estimate,

and so using a more informative prior distribution for the correlation parameter could help

the model to converge. As previously mentioned, the work proposed in this thesis did not

perform personalized dose-finding in a fully Bayesian manner since many common posterior

approximation methods are too computationally demanding in this setting. For example,

Markov chain Monte Carlo is one such approximation method which requires expensive

posterior sampling to be performed at each iteration of the dose-finding. Furthermore,

it is inefficient in a sequential setting since it completely discards samples from previous

iterations. A sequential Monte Carlo approach may prove to be a better alternative here, as

it is able to update, rather than discard, information about the posterior distribution at each

iteration of dose-finding (e.g., Gramacy and Polson (2011); Golchi and Thorlund (2020)).

To facilitate fully Bayesian inference in the proposed dose-finding algorithms, future work

should investigate more efficient sequential computational schemes such as this.

The personalized dose-finding approaches proposed under the minimal and higher-grade tox-

icity settings each used a variant of the Expected Improvement acquisition function. Under

the minimal toxicity setting, the Augmented Expected Improvement (Huang et al., 2006) was

used, and under the higher-grade toxicity setting, the constrained Expected Improvement

(Gardner et al., 2014) was used. One limitation of having used these variants of Expected

Improvement is that the uncertainty around the best observed efficacy function value f ∗
k was

ignored. That is, a plug-in estimate for f ∗
k was used rather than considering its posterior
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distribution. To fully account for the uncertainty in f ∗
k in a constrained optimization context,

Letham et al. (2019) proposed the Noisy Expected Improvement. This acquisition function

handles uncertainty in a fully Bayesian way by integrating over the posterior distributions

of any parameters not of direct interest. Furthermore, it permits batch optimization, where

more than a single dose combination may be explored at each iteration. This may be useful

in contexts which have long delays between administration of the dose and observation of

the response. While incorporating the Noisy Expected Improvement into the dose-finding

procedure is an exciting direction for future work, the acquisition function must be evalu-

ated through Monte Carlo simulation. This will tremendously increase the computational

requirements of the dose-finding algorithm and requires development of efficient computa-

tional tools.

Finally, the personalized dose-finding methods were assessed under simulation scenarios de-

termined by the authors of the manuscripts included in Chapters 4 and 5. While all efforts

were made to include a broad and realistic set of scenarios under which the proposed meth-

ods were assessed, there may exist some scenarios which were not considered. Additionally,

the simulations assumed that the covariate patterns represented by each strata were equally

prevalent and had the same enrollment rates throughout the trials, and so an equal number

of participants per strata were enrolled at each iteration of the personalized dose-finding

algorithm. This represents a best-case scenario in terms of power and the ability to enroll,

but in practice it is improbable that all subgroups are equally represented in the target popu-

lation. In the extreme scenario where one strata has zero patients, personalized dose-finding

for this stratum could not proceed, as any recommendation made by the algorithm would

simply reflect the prior information used at the start of the trial. Furthermore, due to infor-

mation borrowing across strata, the estimation for sparse strata may be dominated by strata

which have many patients. For this reason, Zhang et al. (2024) suggest subgroup-specific

dose-optimization should only be performed when pre-defined subgroups enroll enough pa-

tients in the trial, a recommendation which supports the simulation scenarios evaluated in
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the present work.

6.3 Concluding remarks

In this thesis, I demonstrated that covariate adjustment improves the operating characteris-

tics of late-phase Bayesian adaptive randomized controlled trials. Additionally, I developed

methods for personalized adaptive dose-finding trials for combination therapies under min-

imal and higher-grade toxicity settings. Through three manuscripts, I showed that incor-

porating additional covariate information into the decision making process used throughout

Bayesian adaptive clinical trials offers great benefit and does so for potentially little cost.

Furthermore, a tutorial on posterior marginalization and algorithms for dose-finding were

provided in an effort to make the methods easier to implement in practice. Therefore, this

thesis promotes adoption of advanced methodology in clinical trials to improve their effi-

ciency and probability of success.

137



Appendices

138



APPENDIX A

Appendix to Manuscript 1

A.1 Marginalization procedures

A.1.1 Continuous outcome: difference in means

Let Y be a Normally distributed outcome with the target of inference being the marginal

difference in means:

γ(θ) := µ(θ;A = 1)− µ(θ;A = 0)

where µ(θ;A = a) = E[Y | A = a;θ]. Under the assumption of at least one treatment-

covariate interaction (i.e., Z ̸= ∅; treatment effect heterogeneity), the difference in means

is non-collapsible. Estimation proceeds assuming independent outcomes and the following

model:

p(Yi | Ai,Xi,θ) = Normal(µ(θ;Ai,Xi), σ
2)

µ(θ;Ai,Xi) = β0 + ϕAi +Xiβ + (Ai · Zi)ω

θ = {β0, ϕ,β,ω, σ2}

L =
nt∏︂
i=1

p(Yi | Ai,Xi,θ)

π(θ | Dnt) ∝
nt∏︂
i=1

p(Yi | Ai,Xi,θ)p(θ).
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Samples from the posterior distribution of γ(θ) are obtained from adjusted analyses by

marginalizing s = 1, ..., S samples of the conditional µ(θ;A,X) before forming the con-

trast:
γ(θs) = µ(θs;A = 1)− µ(θs;A = 0)

=

∫︂
X

µ(θs;A = 1,X)p(X)dX−
∫︂
X

µ(θs;A = 0,X)p(X)dX

=

∫︂
X

(β0,s + ϕs +Xβs + Zωs)p(X)dX−
∫︂
X

(β0,s +Xβs)p(X)dX.

The integrals are approximated using the Bayesian bootstrap procedure described in Section

3.3 of the manuscript. After fitting the linear model, s = 1, ..., S samples are obtained from

the joint posterior distribution of the model parameters, π(θ | Dnt). Let θs represent the

sth draw from this joint posterior distribution. For every row i = 1, ..., nt in the sample

data, a value of Ai = 1 is assigned. Then for each θs the following procedure is performed.

The nt values of the linear predictor µ(θs;Ai = 1,Xi = xi) are calculated. A vector ws =

(w1,s, ..., wnt,s) is drawn from a Dirichlet(1nt) distribution. Using ws, the nt values are then

averaged,
∑︁nt

i=1wi,sµ(θs;Ai = 1,Xi = xi), which marginalizes them with respect to the

observed X = x, yielding a single sample µ(θs;A = 1). This occurs for all θs to yield S

samples from the posterior distribution of µ(θ;A = 1). This entire process is then repeated

for Ai = 0, to yield S samples from the posterior distribution of µ(θ;A = 0). These posterior

samples are then subtracted to yield samples from the posterior distribution of γ(θ). A brief

summary outline is included below.

1. Fit the linear regression model with identity link.

2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parame-

ters, π(θ | Dnt).

3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.

4. For each θs, perform the following:

(a) For each i = 1, ..., nt, calculate µ(θs;Ai = 1,Xi = xi).
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(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt) distribution.

(c) Average these nt values to marginalize with respect to the observed X = x:

µ(θs;Ai = 1) =
∑︁nt

i=1wi,sµ(θs;Ai = 1,Xi = Xi).

5. The s = 1, ..., S values of µ(θs;A = 1) are samples from the posterior of µ(θ;A = 1).

6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior of µ(θ;A = 0).

7. Subtract to obtain S samples from the posterior of γ(θ).

A.1.2 Binary outcome: relative risk

Letting Y be distributed as a Bernoulli random variable, where Y = 1 indicates an event

occurs and Y = 0 indicates no event occurs, a marginal estimand of interest is the relative

risk:

γ(θ) := µ(θ;A = 1)/µ(θ;A = 0)

where µ(θ;A = a) = E[Y | A = a;θ]. Estimation proceeds assuming independent outcomes

and the following model:

p(Yi | Ai,Xi,θ) = Bernoulli(µ(θ;Ai,Xi))

µ(θ;Ai,Xi) = logit−1(β0 + ϕAi +Xiβ + (Ai · Zi)ω)

θ = {β0, ϕ,β,ω}

L =
nt∏︂
i=1

p(Yi | Ai,Xi,θ)

π(θ | Dnt) ∝
nt∏︂
i=1

p(Yi | Ai,Xi,θ)p(θ).

To obtain posterior samples of the marginal estimand from adjusted analyses, s = 1, ..., S

posterior samples from the inverse logit link function applied to the linear predictors under

treatment and no treatment are marginalized and then divided:

γ(θs) =
µ(θs;A = 1)

µ(θs;A = 0)

=

∫︁
X
µ(θs;A = 1,X)p(X)d(X)∫︁

X
µ(θs;A = 0,X)p(X)d(X)

=

∫︁
X

logit−1{β0,s + ϕs +Xβs + Zωs}p(X)d(X)∫︁
X

logit−1{β0,s +Xβs}p(X)d(X)
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The integrals are approximated using the Bayesian bootstrap procedure described in Section

3.3 of the manuscript. After fitting the generalized linear model with logit link function

corresponding to η, s = 1, ..., S samples are obtained from the joint posterior distribution

of the model parameters, π(θ | Dnt). Let θs represent the sth draw from this joint pos-

terior distribution. For every row i = 1, ..., nt in the sample data, a value of Ai = 1 is

assigned. Then for each θs the following procedure is performed. The nt values of the

indexed linear predictors are calculated and transformed by the inverse logit to yield sam-

ples from µ(θs;Ai = 1,Xi = xi) = logit−1(β0,s + ϕsAi + Xiβs + (Ai · Zi)ωs). A vector

ws = (w1,s, ..., wnt,s) is drawn from a Dirichlet(1nt) distribution. Using ws, the nt values

are then averaged,
∑︁nt

i=1wi,sµ(θs;Ai = 1,Xi = xi), which marginalizes them with respect to

the observed X = x, yielding a single sample µ(θs;A = 1) from the posterior distribution

of µ(θ;A = 1). This occurs for all θs to yield S samples from the posterior distribution of

µ(θ;A = 1). This entire process is then repeated for Ai = 0, to yield S samples from the

posterior distribution of µ(θ;A = 0). These are then divided to yield S samples from the

posterior distribution of γ(θ). A brief summary outline is included below.

1. Fit the logistic regression model.

2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parame-

ters, π(θ | Dnt).

3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.

4. For each θs, perform the following:

(a) For each i = 1, ..., nt, calculate µ(θs;Ai = 1,Xi = xi) = logit−1(β0,s + ϕsAi +

Xiβs + (Ai · Zi)ωs).

(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt) distribution.

(c) Average these nt values to marginalize with respect to the observed X = x:

µ(θs;A = 1) =
∑︁nt

i=1wi,sµ(θs;Ai = 1,Xi = xi).
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5. The s = 1, ..., S values of µ(θs;A = 1) are samples from the posterior distribution of

µ(θ;A = 1).

6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior distribution of

µ(θ;A = 0).

7. Divide µ(θs;A = 1)/µ(θs;A = 0) for each s to obtain S samples from the posterior

distribution of γ(θ).

A.1.3 Time-to-event outcome: hazard ratio

Let Y = {T, δ} be defined as in the section for hazard ratios in the manuscript, where the

target of inference is the marginal hazard ratio:

γ(θ) = h(t | A = 1)/h(t | A = 0)

= log{µ(θ;A = 1)}/ log{µ(θ;A = 0)}

where µ(θ;A = a) = S(t | A = a;θ). Estimation proceeds assuming independent outcomes,

no competing risks, and the following model:

hi(t | Ai,Xi) = h0(t) exp(ηi)

ηi = ϕAi +Xiβ + (Ai · Zi)ω

Si(t | Ai,Xi) = exp (−I(t;ψ,k, δ) exp(ηi))

θ = {ψ, ϕ,β,ω}

p(Yi | Ai,Xi,θ) = Si(Ti | Ai,Xi)
1−δihi(Ti | Ai,Xi)

δi

L =
nt∏︂
i=1

p(Yi | Ai,Xi,θ)

π(θ | Dnt) ∝
nt∏︂
i=1

p(Yi | Ai,Xi,θ)p(θ).

As the hazard ratio is non-collapsible, s = 1, ..., S marginal posterior samples from adjusted

analyses are obtained through marginalization of the log transformed survival probabili-
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ties:
γ(θs) =

hs(t | A = 1)

hs(t | A = 0)

=
log{µ(θs;A = 1)}
log{µ(θs;A = 0)}

=
log{

∫︁
X
µ(θs;A = 1,X)p(X)dX}

log{
∫︁
X
µ(θs;A = 0,X)p(X)dX}

=
log{

∫︁
X
exp [−I(t;ψs,k, δ) exp(ϕs +Xβs + Zωs)] p(X)dX}
log{

∫︁
X
exp [−I(t;ψs,k, δ) exp(Xβs)] p(X)dX}

.

Dividing log-transformed survival probabilities can be numerically unstable and is undefined

for all t such that S(t|A = a) ∈ {0, 1}. Thus we use a more numerically stable identity

(Stitelman et al., 2011; Remiro-Azócar et al., 2022):

log(γ(θs)) = log

(︃
hs(t|A = 1)

hs(t|A = 0)

)︃
= log

(︃
− log[µ(θs;A = 1)]

− log[µ(θs;A = 0)]

)︃
= log{− log[µ(θs;A = 1)]} − log{− log[µ(θs;A = 0)]}.

The integrals are approximated using the Bayesian bootstrap procedure described in Sec-

tion 3.3 of the manuscript. After fitting the flexible, semi-parametric proportional hazards

model, s = 1, ..., S samples are obtained from the joint posterior distribution of the model

parameters, π(θ | Dnt). Let θs represent the sth draw from this joint posterior distribution.

For every row i = 1, ..., nt in the sample data, a value of Ai = 1 is assigned. Then for

each θs the following procedure is performed. For the t corresponding to the time from

the start of the trial to the current analysis, the nt values of the indexed conditional sur-

vival probabilities, µ(θs;Ai = 1,Xi = xi) are calculated. A vector ws = (w1,s, ..., wnt,s)

is drawn from a Dirichlet(1nt) distribution. Using ws, the nt values are then averaged,∑︁nt

i=1wi,sµ(θs;Ai = 1,Xi = xi), which marginalizes them with respect to the observed

X = x, yielding a single sample µ(θs;A = 1) from the posterior distribution of µ(θ;A = 1).

For numerical stability, a log{− log[·]} transformation is applied to yield a single sample

from the posterior distribution of log{h(t | A = 1)}. This occurs for all θs to yield S draws

from the posterior distribution of log{h(t | A = 1)}. This entire process is then repeated

144



for Ai = 0, to yield S draws from the posterior distribution of log{h(t | A = 0)}. These

posterior draws are subtracted and then exponentiated to yield samples from the posterior

distribution of the marginal hazard ratio γ(θ). A brief summary is below.

1. Fit a flexible semi-parametric proportional hazards model.

2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parame-

ters, π(θ | Dnt).

3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.

4. For each θs, perform the following:

(a) For each i = 1, ..., nt, calculate the conditional survival probabilities at time t

corresponding to the time from the start of the trial to the current analysis,

µ(θs;Ai = 1,Xi = xi).

(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt) distribution.

(c) Average these nt values to marginalize with respect to the observed X = x:

µ(θs;A = 1) =
∑︁nt

i=1wiµ(θs;Ai = 1,Xi = xi).

(d) Apply a log{− log[·]} transformation to yield a single sample from the posterior

distribution of log{h(t | A = 1)}.

5. This yields S samples from the posterior distribution of log{h(t | A = 1)}.

6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior distribution of

log{h(t | A = 0)}.

7. Subtract and then exponentiate to obtain S samples from the posterior distribution of

the marginal hazard ratio, γ(θ).
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A.2 Ascertainment of marginal estimand values

A.2.1 Ascertainment of marginal relative risk (binary

outcome)

We first select a value of β0 on the log-odds scale in the adjusted data generating models,

such that the simulated datasets have a specific marginal control event risk (pctr). We then

use β0 and the obtained values of ϕ (i.e., those where the unadjusted model achieves 50% and

80% power, also on the log-odds scale) to select the reported value of the marginal relative

risk.

To find β0, let Y be a binary outcome. As a reminder, we define A as the treatment

assignment indicator, where A = 1 means being assigned to the treatment group and A = 0

means being assigned to the control group. Let l be the number of participants assigned to

control, k be the number of participants assigned to treatment, and l + k = n be the total

number of participants potentially enrolled in the trial. Let Xn×p be the set of covariates

used in the adjusted data generating model, and Xi be the row vector corresponding to the

values of the covariates for the ith participant. Recall the marginal control event risk, pctr,

is the risk of having an event in those assigned to control. Then pctr can be defined with

respect to an adjusted data generating model as follows:

pctr = E[Y |A = 0]

≈ 1

l

l∑︂
i=1

Ê[Yi|Ai = 0,Xi]

=
1

l

l∑︂
i=1

logit−1{β0 + ϕ(Ai = 0) +Xiβ}

=
1

l

l∑︂
i=1

logit−1{β0 +Xiβ}

0 =

[︄
l∑︂

i=1

logit−1{β0 +Xiβ}

]︄
− l × pctr
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Given a fixed value of pctr, conditional covariate effects β on the log-odds scale, and ini-

tial simulation of the treatment assignment and covariate distributions, {A,X}, β0 can be

optimized using the last line above (i.e., using uniroot() in R).

In the simulations for each relative risk value within each maximum sample size, 5,000

datasets (each with 5,000 participants) were generated using {β, A,X} as described under

the binary outcome data generating mechanism. From these, 5,000 values for β0 were found

and the mean of this distribution was selected as the value of β0. Using this and the value

of ϕ, 5,000 values for the marginal relative risk were obtained by dividing the proportion

of events in those assigned to treatment (Ê[Y |A = 1]) by the proportion of events in those

assigned to control (Ê[Y |A = 0]). The mean of this distribution was then reported as the

value of the marginal relative risk corresponding to β0 and ϕ.

A.2.2 Ascertainment of marginal hazard ratio (time-to-event

outcome)

Our goal is specify a value of the reported marginal hazard ratio which corresponds to the

value of ϕ (on the log-hazard scale) used in the adjusted data generating models. Recall our

assumption of proportional hazards, where the marginal hazard ratio is not time-dependent.

Let Y = {T, δ} be defined as in the section for hazard ratios in the manuscript. Define A

as the treatment assignment indicator, where A = 1 means being assigned to the treatment

group and A = 0 means being assigned to the control group. Let t be the maximum

duration of the trial and P (T > t|A = 1) = S(t|A = 1) and P (T > t|A = 0) = S(t|A = 0) be

the survival probabilities at time t for those assigned to treatment and control, respectively.

In the simulations for each hazard ratio value within each maximum sample size, 5,000

datasets (each with 5,000 participants) were generated using {β, A,X, t = 50} as described

under the time-to-event outcome data generating mechanism. For each dataset, the value of
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the marginal hazard ratio was calculated as:

γ = exp{log(− log[P̂ (T > 50|A = 1)])− log(− log[P̂ (T > 50|A = 0)])}

The mean of this distribution was then reported as the value of the marginal hazard ratio

corresponding to ϕ.
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A.3 CCEDRN COVID-19 RCT truncated covariate

distributions

The following algorithm yields datasets from truncated Normal distribution F with correct

post-truncation minimum ∧, maximum ∨, q1, and q3 values and approximately correct

post-truncation µ and σ values.

1. Determine maximum sample size of trial, max_ss.

2. Obtain reported summary statistics {q1, q3, µ, σ} and range [∧,∨].

3. Set plausible value of median q2 if not reported.

4. Set n = 250×max_ss.

5. Select starting values for {ξ, τ 2}.

6. Until µ∗ ≈ µ and σ∗ ≈ σ:

(a) Generate i = 1, ..., n values of Xi from N(ξ, τ 2).

(b) Discard Xi ̸∈ [min,max].

(c) Sample n
4

values of Xi ∈ [∧, q1].

(d) Sample n
4

values of Xi ∈ [q1, q2].

(e) Sample n
4

values of Xi ∈ [q2, q3].

(f) Sample n
4

values of Xi ∈ [q3,∨].

(g) Collect all and set µ∗ and σ∗ as the mean and standard deviation of the sampled

values.

(h) Update {ξ, τ 2} or break if µ∗ ≈ µ and σ∗ ≈ σ.

7. To generate one dataset from F , use final values of {ξ, τ 2} to repeat process above,
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but sample max_ss values from the n collected values.

For age, the following summary statistics and simulation parameter values were used:

{∧ = 18, q1 = 39, q2 = 55, q3 = 70,∨ = 90, µ = 54.7, σ = 19.8, ξ = 62, τ = 40}.

For respiratory rate, the following summary statistics and simulation parameter values were

used:

{∧ = 12, q1 = 18, q2 = 20, q3 = 22,∨ = 40, µ = 21.0, σ = 6.2, ξ = 30, τ = 6}.
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A.4 Summary graphics for bias and RMSE
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Figure A.4.1: Continuous outcome. A) Posterior median bias and B) root mean squared
error. Panels correspond to various maximum sample sizes (max ss). Points are jittered
horizontally.

max ss = 500 max ss = 1000

max ss = 100 max ss = 200

0.60 0.72 0.72 0.80

0.46 0.53 0.41 0.59

−0.026

−0.024

−0.022

−0.020

−0.016

−0.014

−0.012

−0.006
−0.003

0.000
0.003
0.006

−0.0200

−0.0175

−0.0150

relative risk

p
o
s
te

ri
o
r 

m
e
d
ia

n
 b

ia
s

correct

no quad

correct noise

correct prior

correct strong prior

unadjusted

A

max ss = 500 max ss = 1000

max ss = 100 max ss = 200

0.60 0.72 1.00 0.72 0.80 1.00

0.46 0.53 1.00 0.41 0.59 1.00
0.1
0.2
0.3
0.4
0.5

0.10

0.15

0.20

0.25

0.25

0.50

0.75

0.1

0.2

0.3

relative risk

ro
o
t 
m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

correct

no quad

correct noise

correct prior

correct strong prior

unadjusted

B

Figure A.4.2: Binary outcome. A) Posterior median bias and B) root mean squared error.
Panels correspond to various maximum sample sizes (max ss). Points are jittered horizon-
tally.

151



max ss = 500 max ss = 1000

max ss = 100 max ss = 200

0.71 0.78 0.78 0.85

0.60 0.65 0.57 0.69
−0.070
−0.065
−0.060
−0.055
−0.050

−0.050

−0.045

−0.040

−0.035

−0.030

−0.025

−0.020

−0.055

−0.050

−0.045

−0.040

hazard ratio

p
o
s
te

ri
o
r 

m
e
d
ia

n
 b

ia
s

correct

no quad

correct noise

correct prior

correct strong prior

unadjusted

A

max ss = 500 max ss = 1000

max ss = 100 max ss = 200

0.71 0.78 1.00 0.78 0.85 1.00

0.60 0.65 1.00 0.57 0.69 1.00

0.25

0.50

0.75

0.1

0.2

0.3

0.25

0.50

0.75

0.1

0.2

0.3

0.4

0.5

hazard ratio

ro
o
t 
m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

correct

no quad

correct noise

correct prior

correct strong prior

unadjusted

B

Figure A.4.3: Time-to-event outcome. A) Posterior median bias and B) root mean squared
error. Panels correspond to various maximum sample sizes (max ss). Points are jittered
horizontally.
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Figure A.4.4: CCEDRN-ADAPT COVID-19 trial with binary outcome. A) Posterior median
bias and B) root mean squared error. Panels correspond to a maximum sample size (max
ss) of 3,000. Points are jittered horizontally.
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A.5 Simulation for informative prior on treatment

effect
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Figure A.5.1: Binary outcome. A) Power and B) probability of stopping early. Panels
correspond to various maximum sample sizes (max ss). Points are jittered horizontally.

In this section, we consider the impact of incorporating informative prior information on the

treatment effect for trials with binary endpoints. Six adjustment models are considered:

1. correct: β0 + ϕA+ β1X1 + β2X2 + β3X3 + β4X
2
3 + β5X5

2. correct prior: β0 + ϕA+ β†
1X1 + β†

2X2 + β†
3X3 + β†

4X
2
3 + β†

5X5

3. correct strong prior: β0 + ϕA+ β††
1 X1 + β††

2 X2 + β††
3 X3 + β††

4 X
2
3 + β††

5 X5

4. unadjusted: β0 + ϕA

5. unadjusted prior: β0 + ϕ†A

6. unadjusted strong prior: β0 + ϕ††A

The regression coefficients {ϕ,β,β†,β††} and the functional forms of the correct, correct

prior, correct strong prior, and unadjusted models are defined as previously described for the

binary trials in the simulation study section of the manuscript. The unadjusted prior model

includes a prior on the treatment indicator coefficient centered at the value used in the data
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generating mechanism where the unadjusted model achieves approximately 80% power (50%

power for max ss = 100). The unadjusted strong prior model both centers and re-scales this

prior to be more informative. The following priors are then used for the treatment indicator

coefficients in the unadjusted prior and unadjusted strong prior models:

ϕ† ∼ Normal(c, 2.5/sa)

ϕ†† ∼ Normal(c, 1/sa)

where c = {−1.21,−1.36,−0.82,−0.54} for max ss = {100, 200, 500, 1000}. All other com-

ponents for the binary trials remain as described in the simulation study section of the

manuscript.

Results for power and the probability of stopping early are displayed in Figure A.5.1. In-

cluding stronger priors on the treatment effect may increase the power and probability of

stopping early as compared to weakly informative priors. This hold for both the correct and

unadjusted model variants and is most beneficial for smaller sample sizes. However, this

comes at the cost of inflated type 1 error (T1E), with the greatest inflation occurring for the

smaller maximum sample sizes (Table A.5.1). Both the type 1 error inflation and increase

in power become less pronounced in the trials with larger maximum sample sizes where the

priors are dominated by the data.
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Table A.5.1: Binary outcome. Type 1 error rate (T1E), bias under the null (Bias∗), and
expected sample size at three different values of the marginal relative risk (γ).

Maximum sample size = 100 Maximum sample size = 200

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.53 γ = 0.46 T1E Bias∗ γ = 1 γ = 0.59 γ = 0.41

correct 0.063 0.031 97.0 86.3 83.6 0.036 0.021 196.8 162.5 138.3
correct prior 0.071 0.021 96.5 85.7 82.2 0.038 0.017 196.5 161.9 136.5
correct strong prior 0.063 -0.014 97.3 86.6 83.8 0.046 -0.006 195.7 159.2 134.9
unadjusted 0.034 0.058 98.6 90.7 88.3 0.031 0.025 198.0 171.4 147.2
unadjusted prior 0.034 0.051 98.6 90.0 87.4 0.032 0.021 197.9 170.8 146.2
unadjusted strong prior 0.041 0.009 98.4 89.6 86.8 0.034 0.001 197.6 167.6 142.8

Maximum sample size = 500 Maximum sample size = 1000

Expected sample size Expected sample size

Adjustment model T1E Bias∗ γ = 1 γ = 0.72 γ = 0.60 T1E Bias∗ γ = 1 γ = 0.80 γ = 0.72

correct 0.028 0.010 493.7 404.9 334.9 0.022 0.008 992.0 823.2 681.5
correct prior 0.028 0.009 494.1 402.9 334.9 0.021 0.007 991.7 818.9 680.3
correct strong prior 0.028 0.004 493.7 401.2 329.9 0.023 0.005 990.5 813.9 675.7
unadjusted 0.026 0.016 494.6 426.0 367.0 0.024 0.010 990.2 859.6 734.2
unadjusted prior 0.029 0.015 493.4 426.7 364.9 0.024 0.009 989.5 858.6 733.7
unadjusted strong prior 0.031 0.009 492.6 423.0 362.7 0.023 0.007 989.5 858.1 733.9
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A.6 Bias from overestimation in trials which stop early

for superiority
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Figure A.6.1: 100 posterior distributions of the relative risk (top) and log-relative risk (bot-
tom) for a trial with a binary endpoint and maximum sample size of 100. Vertical line
represents the null treatment effect.

Walter et al. (2019) shows that overestimation is to be expected when trials permit early

stopping for superiority. They consider the case of frequentist group-sequential designs

and compare three different stopping rules which differ in how the overall α is divided

among the interim and final analyses. The Pocock, O’Brien, and Fleming (PCK) stopping

rule evenly divides α across all analyses (interim and final) keeping the stringency of the

stopping criteria constant. This is the frequentist group sequential stopping rule most like

the Bayesian stopping rule employed in the current manuscript, where a single value for the

upper probability threshold u is used (u=0.99), thereby also keeping the stringency of the

stopping rule constant across all interim and final analyses. It is shown that overestimation

is expected for the PCK stopping rule, and so we conclude it should also be expected for

the Bayesian stopping rule employed here, thus inducing the observed bias in the treatment
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effect under the simulation scenarios. In Section 3.1 of Walter et al. (2019), the authors

discuss observing greater over-estimation for the Haybittle and Peto (HP) stopping rule

as compared to the PCK stopping rule. They state “rules (such as HP) that have a more

stringent threshold for stopping involve a greater risk of over-estimation if the rule is actually

invoked.” This suggests that Bayesian stopping rules which have more stringent initial

stopping criteria may lead to increased bias as compared to the stopping rules employed in

the current manuscript, though we do not explore this further here.

Considering bias under the null, the difference in signs between the continuous endpoint

versus the binary and time-to-event endpoints reflects the lower bounds of the estimands.

The difference in means under the continuous endpoint is unbounded below, whereas the

relative risk and hazard ratios are bounded below by zero. When bias is calculated on the

log-relative risk and log-hazard ratio scales, most values for bias under the null for both the

binary and time-to-event endpoints become negative as well, with greater bias for smaller

sample sizes as in the continuous endpoint. This is explained visually in Figure A.6.1 and

A.6.2, where 100 posterior distributions (Figure A.6.1) and posterior medians (Figure A.6.2)

have been plotted for the null treatment effect for a trial with a binary endpoint under a

maximum sample size of 100. The vertical lines represent the null values used for calculation

of bias.

In the top panel of Figure A.6.1 on the relative risk scale, we see many right-skewed posteriors

which lead to some posterior median estimates which are much greater than the null (Figure

A.6.2, top panel). This induces positive bias under the null. When we move to the log scale,

the right-skewed distributions become more normal in shape and are more centered around

the null, but some of the posteriors which were closer to the lower boundary of 0 on the

relative risk scale become left-skewed (Figure A.6.1, bottom panel). This results in some

posterior medians becoming much less than the null (Figure A.6.2, bottom panel) which

leads to negative bias under the null as in the continuous endpoint case. When calculating
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Figure A.6.2: 100 posterior medians of the relative risk (top) and log-relative risk (bottom)
for a trial with a binary endpoint and maximum sample size of 100. Vertical line represents
the null treatment effect.

bias for non-null treatment effects on the relative risk and hazard ratio scales, the posteriors

are pushed further toward 0 than in the figures included in this section which is why they

can still attain negative values and clearly exhibit overestimation in these cases.
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A.7 Example of the non-collapsibility of the odds

ratio
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Figure A.7.1: Example of non-collapsibility of the odds ratio. Colored circles and triangles
correspond to values of risk under treatment or control for different values of X.

We consider a slightly modified version of the example provided in Daniel et al. (2021).

Consider a RCT with a binary endpoint following the logistic regression model below which

contains a binary covariate X and binary treatment indicator A, and where P (X = 1) =

P (A = 1) = 0.5. Define ϕ = log(5), β = log(10), and θ = {ϕ, β}. We assume the following

model:

logit(P (Y = 1 | A,X)) = ϕA+ βX.

In this example, the conditional odds ratio for those who are treated versus untreated is

5, regardless of the value of X. To see this, define µ(θ;A,X) = P (Y = 1 | A,X) =

logit−1(ϕA + βX). For X = 0, we have µ(θ;A = 1, X = 0) = 0.833 and that 1 − µ(θ;A =

1, X = 0) = 0.167 yielding the odds for the event in those who are treated to be µ(θ;A =

1, X = 0)/1 − µ(θ;A = 1, X = 0) = 0.833/0.167 = 5. For those who are untreated,

we have µ(θ;A = 0, X = 0) = 0.5 and that 1 − µ(θ;A = 0, X = 0) = 0.5 yielding odds of

µ(θ;A = 0, X = 0)/1−µ(θ;A = 0, X = 0) = 0.5/0.5 = 1. Dividing these yields a conditional
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odds ratio for those who are treated versus untreated under X = 0 to be 5/1 = 5. Similar

calculations for X = 1 yield µ(θ;A = 1, X = 1) = 0.9804, 1− µ(θ;A = 1, X = 1) = 0.0196

yielding the odds for the event in those who are treated to be 0.9804/0.0196 = 50. For

those who are untreated, we have µ(θ;A = 0, X = 1) = 0.9091 and that 1 − µ(θ;A =

0, X = 1) = 0.0909 yielding odds of 0.9091/0.0909 = 10. Dividing these yields a conditional

odds ratio for those who are treated versus untreated under X = 1 to be 50/10 = 5. In

Figure A.7.1, we that these conditional odds ratios correspond to a vertical comparison of

the risks under the treatment assignments A for either value of X (dotted vertical lines). To

obtain the marginal odds ratio, we must average these risks with respect to the distribution

of X. This yields the horizontal dashed lines (colored by value of A) where µ(θ;A = 1) =

0.5(0.833) + 0.5(0.980) = 0.907 and µ(θ;A = 0) = 0.5(0.5) + 0.5(0.909) = 0.705. The

marginal odds ratio then corresponds to a vertical comparison of these horizontal lines.

Doing so yields a marginal odds ratio of γ(θ) = (0.907/0.093)/(0.705/0.295) = 4.1. We see

that the marginal odds ratio is not equal to the conditional odds ratio, and thus the odds

ratio is non-collapsible.

This same example can be viewed using two-by-two tables, where the cells contain the propor-

tions expected under each combination of treatment assignment and covariate value.

X = 0
A = 1 A = 0 P (Y = y)

Y = 1 0.8333333 0.5 0.667
Y = 0 0.16666667 0.5 0.333

P (A = a) 0.5 0.5 1
X = 1

A = 1 A = 0 P (Y = y)
Y = 1 0.9803922 0.9090909 0.945
Y = 0 0.01960784 0.09090909 0.055

P (A = a) 0.5 0.5 1

The conditional odds ratio from each table is 5. Below, we consider the marginal table

with proportions expected under each combination of treatment assignment and covariate

value. This is found by averaging the risk values in the conditional tables with respect to
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the distribution of X, where we recall that P (X = 1) = 0.5.

A = 1 A = 0 P (Y = y)
Y = 1 0.90686275 0.70454545 0.806
Y = 0 0.09313725 0.29545455 0.194

P (A = a) 0.5 0.5 1

The marginal odds ratio from the table above is 4.1. We observe that the true conditional and

marginal odds ratios are not equal, thus showing the odds ratio is non-collapsible.
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