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Abstract 

Identifying risk factors before psychiatric disorders manifest is essential for early interventions and 

has a broad societal impact, especially given that in Canada, nearly one-third of people will experience a 

mental health disorder in their lifetime. Despite the high prevalence, our current understanding of the 

biological basis and early indicators of vulnerability to these disorders is limited. Using the Research 

Domain Criteria (RDoC) framework as a guide, this thesis investigates possible neurobiological 

mechanisms affecting inhibitory control behaviors in mice and humans. These behaviors, characteristic 

of conditions such as attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder 

(OCD), and substance use disorder (SUD), rely on the interaction between corticolimbic brain regions. I 

hypothesized that measuring and estimating molecular processes at the tissue level can provide insights, 

across species, into the ongoing neurodevelopmental processes within brain substrates critical for the 

development of inhibitory control behaviors. 

The present thesis examines the role of the Netrin-1/DCC axon guidance cue signaling system in 

brain corticolimbic development, characterizing the net effect of variations in this highly-conserved 

molecular pathway on inhibitory control behaviors in both mice and humans. More specifically, my 

research is organized around three main objectives: 1) In mice, I examine the effects of therapeutic-like 

doses of amphetamine during critical neurodevelopmental periods. Our focus is on the Netrin-1/DCC 

signaling system, which guides brain corticolimbic development. I aim to understand how these doses 

affect inhibitory control behaviors in adulthood, a timely concern given the widespread use of 

amphetamine-based treatments; 2) Extending the insights to humans, I propose a new biological marker 

for inhibitory control in children. This marker is based on DCC gene co-expression networks, initially 

identified in mice but also evident in human brain samples during early life. I analyze its association with 

inhibitory control in children aged 6 and 10; and 3) I offer a thorough review of genetic risk assessment 
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approaches in psychiatry, emphasizing the shift from genotype-disease mapping to a more nuanced 

gene regulation-phenotype framework. 

In the rodent study, I discovered that administering therapeutic-like doses of amphetamine during 

sensitive neurodevelopmental periods positively influenced adult performance in the Go/No-Go task, an 

assay measuring inhibitory control. This behavioral outcome was notably different from the detrimental 

effects observed when rodents were administered recreational-like doses. Moreover, stereological 

assessments revealed no significant anatomical alterations in key mesocorticolimbic dopamine targets 

following therapeutic psychostimulant administration. In the human study, I identified a novel polygenic 

signal associated with impulsivity in children, which was rooted in corticolimbic-specific DCC gene co-

expression networks. This polygenic signal associated with increased motor and reflection impulsivity 

across three independent birth cohorts. Also, enrichment analyses supported the functional importance 

of these gene networks in the protracted maturation of both the prefrontal cortex and nucleus 

accumbens.  

Together, the results of my thesis suggest that 1) therapeutic doses of amphetamine do not disrupt 

corticolimbic development or inhibitory control in mice; 2) in humans, lower expression-based polygenic 

risk scores are associated with higher impulsivity levels in children. This work offers a new method for 

predicting genetic risk for psychiatric conditions and enhances our understanding of the molecular 

networks that govern brain development and function. It serves also as a framework for understanding 

the potential impact of pharmacological interventions during key neurodevelopmental stages. 
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Résumé 

L'identification de facteurs de risque en amont de troubles psychiatriques est essentielle pour une 

intervention précoce et a un impact sociétal ample, d'autant plus qu'au Canada, près d'un tiers des 

personnes connaîtront un trouble de la santé mentale au cours de leur vie. Malgré cette prévalence 

élevée, notre compréhension actuelle des fondements biologiques et des indicateurs précoces de 

vulnérabilité à ces troubles est limitée. En utilisant le schéma des Critères du Domaine de Recherche 

(RDoC) comme guide, cette thèse étudie les mécanismes neurobiologiques potentiels affectant le 

contrôle inhibiteur chez la souris et chez l'humain. Ce processus cognitif, caractéristique de troubles tels 

que trouble de déficit de l'attention/hyperactivité (TDAH), le trouble obsessionnel-compulsif (TOC) et le 

trouble lié à l'utilisation de substances psychoactives (TUS), repose sur l'interaction entre les régions 

corticolimbiques du cerveau. J'ai émis l'hypothèse que la mesure et l'estimation du processus moléculair 

au niveau des tissus du cerveau peuvent fournir des informations sur le neurodéveloppement essentiel 

du contrôle inhibiteur, au sein de plusieurs espèces. 

Cette thèse examine le rôle du système de signalisation Netrin-1/DCC dans le développement du 

système corticolimbique, en caractérisant l'effet des variations de cette voie moléculaire hautement 

conservée sur le contrôle inhibiteur chez la souris et l'humain. Plus précisément, ma recherche s'articule 

autour de trois objectifs principaux : 1) Chez la souris, j'examine les effets de doses thérapeutiques 

d'amphétamine pendant des périodes critiques du développement neurologique. Je me concentre sur le 

système de signalisation Netrin-1/DCC, qui guide le développement du système corticolimbique au sein 

du cerveau. Je cherche à saisir comment ces doses affectent le contrôle inhibiteur à l'âge adulte, une 

question d'actualité étant donné l'utilisation répandue des traitements à base d'amphétamines ; 2) En 

étendant ces connaissances à l'humain, je propose un nouveau marqueur biologique pour le contrôle 

inhibiteur chez les enfants. Ce marqueur est basé sur les réseaux de co-expression des gènes autour de 

DCC, initialement identifiés chez la souris mais également observés dans des échantillons de cerveau 
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humain au cours des premières années de la vie. J'analyse son association avec le contrôle inhibiteur 

chez des enfants âgés de 6 et 10 ans ; et 3) je propose de revisiter les méthodes d'évaluation du risque 

génétique en psychiatrie, en mettant en avant la transition de l'approche basée sur la cartographie 

génétique des maladies vers un modèle plus nuancé qui étudie la régulation génique des phénotypes. 

Dans l'étude sur les rongeurs, j'ai observé que l'administration de doses thérapeutiques 

d'amphétamine pendant une période critique du développement neurologique influençait positivement 

les performances de l'adulte dans la tâche Go/No-Go, un test mesurant le contrôle inhibiteur. Ces 

résultats comportementaux étaient sensiblement différents aux effets délétères observés lorsque les 

rongeurs recevaient des doses récréatives. En outre, les études stéréologiques n'ont révélé aucune 

altération anatomique significative dans les principales cibles dopaminergiques mésocorticolimbiques 

après l'administration de psychostimulants à des fins thérapeutiques. Dans l’étude chez l’humain, j'ai 

identifié un nouveau signal polygénique associé à l'impulsivité chez l'enfant, qui était ancré dans les 

réseaux de co-expression des gènes de DCC spécifiques au système corticolimbique. Ce signal 

polygénique est associé à une impulsivité motrice et cognitive accrue dans trois cohortes de naissance 

indépendantes. En outre, des analyses d'enrichissement ont confirmé l'importance fonctionnelle de ces 

réseaux de gènes dans la maturation progressive du cortex préfrontal et du noyau accumbens. 

Ensemble, les résultats de ma thèse suggèrent que 1) les doses thérapeutiques d'amphétamine ne 

perturbent pas le développement corticolimbique ou le contrôle inhibiteur chez la souris ; 2) chez 

l'humain, les risques polygéniques moins élevés sont associés à des niveaux d'impulsivité plus hauts chez 

l'enfant. Ces travaux offrent une nouvelle méthode pour prédire le risque génétique de troubles 

psychiatriques; enrichissant notre compréhension des réseaux moléculaires qui régissent le 

développement et le fonctionnement du cerveau. Ils servent également de cadre à la compréhension de 



 7 

l'impact potentiel des interventions pharmacologiques à des périodes clés du développement 

neurologique. 
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PREFACE TO THE THESIS 

Original contributions to Knowledge 

While it's widely accepted that gene disruptions linked to neural development are a common 

feature in neuropsychiatric disorders, there remains a significant knowledge gap regarding the 

molecular mechanisms by which genetic variants modify susceptibility to psychiatric phenotypes. Model 

organisms provide an important resource for understanding and identifying 1) biological mechanisms 

that mediate environmentally induced changes in neurodevelopment, and 2) tissue-specific gene co-

expression networks that are relevant in this context. The main hypothesis for this doctoral thesis 

argues that measuring and estimating molecular processes at the tissue level can ultimately associate to 

ongoing neurodevelopmental events within brain substrates critical for the development of inhibitory 

control behaviors. 

In Chapter I, I review background literature regarding the problem of psychiatric heterogeneity, the 

use of psychiatric endophenotypes to overcome this problem, and the use of such endophenotypes to 

map neurobiological dysfunctions to brain substrates. Next, I discuss the importance of sensitive periods 

during brain development and how early life experiences can permanently impact developmental 

trajectories. Then, I introduce inhibitory control behaviors, the main trait under study in this thesis, 

elaborating on its protracted maturational trajectories in mice and humans, and their striking temporal 

parallel with mesocorticolimbic dopamine development. Finally, I review the highly-conserved role of 

Netrin-1/DCC signaling system in mesocorticolimbic dopamine development, and how disruptions to its 

signaling during sensitive periods of development ultimately play a central role in adult corticolimbic 

structure and function in both mice and humans.   

In Chapter II, I describe the results of experiments that characterize, using rodents, the molecular, 

behavioral, and structural consequences of administering therapeutic-like doses of amphetamine during 
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sensitive neurodevelopmental windows. Previous research had characterized these same molecular, 

behavioral, and structural effects using recreational-like doses of amphetamine, and while important 

insights about the mechanisms responsible for changes in the maturation of corticolimbic networks had 

been gathered, I looked for a translational component lacking from this line of research. First, I measure 

peak plasma levels achieved by an intraperitoneal injection of 0.5 or 4.0 mg/kg of amphetamine, to 

compare the experimental setting in this study to human pharmacokinetic studies that monitor blood 

profiles following exposure to clinically relevant or recreational doses of amphetamine. I show that 

administration of therapeutic-like doses of amphetamine before the full maturation of the brain does 

not induce impairments in inhibitory control behaviors in adulthood, and instead it prompts an overall 

increase in the performance of mice in the Go/No-Go task, several weeks after treatment cessation. 

These results show that developmental consequences of exposure to therapeutic- versus abused-like 

doses of amphetamine early in life have opposite behavioral effects and dissimilar molecular 

consequences, evidenced by an increase and a decrease in DCC protein in dopamine neurons, 

respectively.  

Moving the focus from individual genes to gene co-expression networks, in Chapter III I show the 

identification and calculation of an expression-based polygenic score (ePRS) that consists of single-

nucleotide polymorphisms (SNPs) within genes that are co-expressed with DCC in specific corticolimbic 

regions of the brain (the prefrontal cortex and nucleus accumbens). Results from this study provide a 

new functional and corticolimbic-specific marker for individual variation in impulsivity-related 

phenotypes in three prospective birth cohorts. Intriguingly, as increased impulsivity reflects a lack of 

inhibitory control, this marker (which is based on a prioritized subset of genetic variants) could reflect in 

and of itself an endophenotype bridging genotypes and basic behavioral assays of impulsivity. 
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In Chapter IV, I present an in-depth review of currently emerging genomic risk assessment 

approaches in psychiatry, placing a particular emphasis on methodologies that explore the 

neurobiological mechanisms by which gene networks contribute to psychiatric endophenotypes. This is 

meant to serve the reader as a comprehensive review of the literature on polygenic signals in psychiatry, 

although it also builds upon the previous chapter by discussing prospective frameworks that can be 

applied, other than our specific genotype-gene regulation framework- the ePRS. 

In Chapter V, I integrate and discuss the main findings in Chapters II and III, and provide concluding 

remarks and future directions to the research presented in this thesis.  

Statement of Originality 

This thesis is presented in the manuscript-based format for a Doctoral Thesis, following the 

guidelines provided by the Department of Graduate and Postdoctoral Studies at McGill University. The 

studies described here were performed under the supervision of Dr. Cecilia Flores and Dr. Patricia Pelufo 

Silveira, and were discussed with my advisory committee members Dr. Frederic Charron and Dr. Andreas 

Arvanitogiannis. This thesis includes five chapters: Chapter I is a review of background concepts in 

developmental neurobiology relevant to this thesis. Chapters II and III are two original studies that have 

been published in Addiction Biology and Molecular Psychiatry, respectively. Chapter IV is an in-depth 

review of the emerging genomic risk assessment approaches in psychiatry published in Biological 

Psychiatry Global Open Science. Chapter V is a discussion of findings in Chapters II and III, concluding 

remarks, and future directions to the research presented in this thesis. Additionally, connecting 

statements from Chapter II to Chapter III, and from Chapter III to Chapter IV serve as a preface for each 

manuscript, to connect them into a single cohesive body of research presented herein.  

Contribution of Authors 
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Chapter I: INTRODUCTION 

1. The burden of neuropsychiatric conditions 

Recent estimates from the Canadian government indicate that, annually, close to 1 in 5 Canadians 

are diagnosed with a mental illness, with important consequences for the general population in the 

form of increased disability and mortality. Additionally, current estimates for lifetime prevalence 

indicate that 1 in 3 Canadians will be diagnosed with a mental illness during their lifetime 1. Despite the 

high prevalence and considerable burden2, our knowledge of the underlying neurobiological processes 

responsible for the development of psychiatric conditions, as well as the identification of early markers 

of vulnerability, remain limited. Traditional diagnostic systems like the DSM-5 and ICD-10, although 

historically valuable for guiding clinical communication and decision making, suffer from marked 

heterogeneity within diagnostic categories and high comorbidity rates3. This is primarily due to their 

reliance on symptomatic criteria, which often overlook the inherent biological and social complexity of 

psychopathologies4–6.  

The heterogeneity problem underscores an important need for a rigorous framework that allows 

psychiatric researchers and clinicians to study mental disorders embracing the complexity of 

psychopathologies, rather than attempting to reduce it to categorical diagnoses. Developed by the 

National Institute of Mental Health (NIMH), the Research Domain Criteria (RDoC) framework views 

mental disorders as extremes along functional dimensions of neurobiological systems7. The RDoC’s 

approach acknowledges that symptoms and psychological constructs often transcend traditional 

diagnostic boundaries, ultimately encouraging the discovery of endophenotypes that can ideally improve 

early detection and prevention strategies for neuropsychiatric disorders that share similarities across 

functional dimensions8,9. These dimensions integrate our knowledge in genetics, behavioral science, and 

neuroscience, with a constant strive to provide a biologically-based understanding of mental health and 
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disease10,11. In the context of this thesis, where the investigation of molecular networks involved in 

neuropsychiatric conditions takes a central place, the RDoC framework serves as an essential 

foundation, guiding the exploration and interpretation of the underlying endophenotypes associated 

with mental health disorders5. 

2. Sensitive Periods During Development 

Human development, as a biological process grounded on a genetic program, unfolds through a 

series of overlapping stages whereby internal and external signals are constantly integrated. This 

process results in a gradual and exquisitely specific spatiotemporal patterning of gene expression that 

ultimately guides the specialization of the different tissues in the body, including the brain12,13. 

Remarkably, brain development seems to extend well into our postnatal life as neurons form and adjust 

synaptic connections based on functional validation14, influenced by unique individual experiences like 

chronic stress15, exercise16 or exposure to drugs of abuse17. These experiences can weave themselves 

into our neural fabric if they occur during a period where the brain is responsive (or sensitive) to 

environmental influences. In sum, developmental experiences can cause permanent changes to brain 

structure and function, whereas adult experiences usually trigger temporary, compensatory responses 

that often revert to the baseline function over time18,19. 

3. Maturation of Inhibitory Control 

Inhibitory control involves the ability to suppress or inhibit prepotent or automatic responses to 

voluntarily choose a more context-appropriate goal-directed behavior. People with strong inhibitory 

control can resist impulses, delay gratification, and modulate their behavior according to situational 

demands. On the other hand, individuals with weak inhibitory control may struggle with impulsivity, 

have difficulties adhering to rules or social norms, and may be more prone to engaging in risky or 

maladaptive behaviors20. While rudimentary forms of inhibitory control are present relatively early in 
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life, its refinement and maturation continue throughout adolescence and early adulthood, mirroring the 

protracted maturation and refinement of brain structural and functional networks engaged in the 

behavior, most notably of the prefrontal cortex (PFC)21–23.  

3.1 Inhibitory Control Impairments in Neuropsychiatric Disorders 

Many studies have shown an association between inhibitory control impairments and 

neuropsychiatric disorders like attention-deficit/hyperactivity disorder (ADHD) 24,25, obsessive-

compulsive disorder (OCD) 26, and substance use disorder (SUD) 27, among others. This behavioral 

impairment can lead to problems such as lack of focus, impulsive behaviors, and invasive thoughts – 

symptoms frequently found in these disorders. SUDs, for example, often involve clear manifestations of 

deficient inhibitory control as individuals may struggle with resisting the impulse to use substances 

despite adverse consequences. In addition, impulsivity- as well as compulsivity- are central to many 

theoretical models of addiction, emphasizing the shift from impulsive drug use in the early stages to 

compulsive use in the later stages28. In ADHD, the inability to inhibit impulsive behaviors is one of the 

primary symptoms leading to issues with attention and hyperactivity. Similarly, OCD patients often 

grapple with inhibiting intrusive thoughts and compulsive behaviors.  

Impaired inhibitory control appears to be an important feature across several neuropsychiatric 

disorders, suggesting its potential consideration as an endophenotype that can help identify early in life 

individuals with a higher risk of developing these conditions29. In addition, the use of animal models has 

been an important tool for the identification of mechanisms involved in inhibitory control development, 

since the same tasks that are used for measuring these phenotypes across the human population30,31  

have been adapted for investigation using murine models, including the Go/No-Go task and the Stop-

Signal task32,33. 

3.2 Neuroanatomy of Inhibitory Control 
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Multiple lines of research have established the central role that the brain’s prefrontal and striatal 

regions play in our ability to inhibit impulsive or automatic responses34,35. The prefrontal cortex is 

involved in high-level cognitive processes while the striatum, a major component of the brain’s basal 

ganglia, is critically involved in the regulation of motor and action planning, among other functions. 

Importantly, altered connections and communication between these brain regions have been linked to 

deficits in inhibitory control23,36. On a neurobiological level, this altered communication may involve 

imbalances in neurotransmitter systems that modulate neural activity within these pathways37,38. 

Aberrant signaling between the PFC and striatum can disrupt the delicate balance between inhibition 

and activation, making it harder for individuals to exert control over their automatic or impulsive 

responses39. Thus, understanding the nature and causes of these altered prefrontal-striatal connections 

is essential for elucidating the neural underpinnings of Inhibitory control.  

4. The Mesocorticolimbic Dopamine System 

The mesocorticolimbic dopamine system originates in the ventral tegmental area (VTA) of the 

midbrain, with projections reaching to various forebrain regions including the PFC and the nucleus 

accumbens (NAcc) in the ventral striatum40. Dopamine, a central neurotransmitter in this pathway, plays 

an essential role in a variety of functions, including motivation and the regulation of motor control41. In 

the context of inhibitory control, dysregulation of dopamine transmission in this pathway has been 

shown to contribute to impulsive behavior and reduced control over automatic responses28,42,43. 

Indeed, alterations in the mesocorticolimbic dopamine pathway have been implicated in several 

neuropsychiatric disorders that exhibit deficits in inhibitory control44,45. Moreover, the cognitive capacity 

to control and override impulsive behaviors improves gradually from childhood to early adulthood, 

mirroring the protracted developmental trajectory of the PFC, and its gradual quantitative and 

qualitative changes in dopamine innervation14,46–48. 
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4.1 Segregation of mesolimbic and mesocortical dopamine axons during postnatal 

development 

Mesocorticolimbic dopamine axons grow from the VTA to reach the striatum early in development, 

and while mesolimbic dopamine axons arborize and establish local connections in the ventral striatum- 

mainly the NAcc, mesocortical dopamine axons gradually continue to grow to the PFC throughout 

adolescence, subsequently modifying the structure and function of local neurons in the PFC40,48. 

The development of mesolimbic and mesocortical dopamine inputs is characterized by distinct 

temporal timelines49,50, but they show a reciprocal functional connection throughout51–54. There's a 

dynamic interplay observed between these two systems during development: On one hand, it has been 

shown that changes in striatal dopamine regulation, such as a transient overexpression of dopamine D2 

receptors during adolescence, can affect the functionality of the PFC and contribute to cognitive deficits 

in adulthood55. This suggests that the events regulating striatal dopamine maturation interact closely 

with those directing mesocortical dopamine axon growth. On the other hand, 1) alterations in PFC 

dopamine neurotransmission have been linked to corresponding changes in NAcc dopamine 

function53,56, and 2) alterations in D1- or D2-expressing NAcc pathways, in turn, influence gene 

expression in the PFC57. Hence, the development of the PFC and cognitive control appears to involve the 

coordinated interplay of corticostriatal neuronal networks (also referred to as corticolimbic in some of 

our manuscripts, and frontostriatal in some areas of research), demonstrating the interconnectedness of 

these pathways and their collective influence on cognitive function58,59. 

5. Molecular processes guiding mesocorticolimbic dopamine development 

The mesocorticolimbic dopamine system plays a pivotal role in various neurological and 

psychological functions, including movement control, motivation, emotion regulation, and cognition60. 

This circuitry’s development stems from a complex interplay of genetic, epigenetic, and environmental 
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factors, including a highly orchestrated sequence of molecular events that involve several guidance-cue 

signaling pathways. Among them, the Netrin-1/DCC pathway has emerged as a particularly crucial 

mechanism regulating axonal guidance of dopaminergic neurons, as 1) ~99% of dopamine neurons in 

the rat VTA express DCC65, and 2) variations in both Netrin-1 and DCC function have been associated 

with consequent changes in dopamine connectivity and dopamine function43,61–64. Indeed, there is 

evidence from both human studies66 and model organisms43,62 demonstrating the importance of Netrin-

1/DCC signaling in mesocorticolimbic dopamine development and indicating that there is a high level of 

precision in the mechanisms guiding its development. 

5.1 Netrin-1/DCC signaling in axon guidance and synaptic plasticity 

Netrin-1, a laminin-related secreted protein, interacts with its receptor DCC, a member of the 

immunoglobulin superfamily of cell adhesion molecules, wherein upon their binding, DCC undergoes 

dimerization, triggering downstream signaling cascades including the activation of focal adhesion kinase 

(FAK) and small GTPases like Rac1 and Cdc42, all of which are instrumental in cytoskeletal 

rearrangements67,68. These downstream signaling cascades can lead to the reorganization of actin 

filaments and microtubules in the axonal growth cone, facilitating movement and steering. Netrin-1 has 

been proposed to be a bi-functional guidance cue, as its association to DCC can result in either attractive 

or repulsive axonal responses69,70. This dual function is determined by the presence of other co-

receptors (such as UNC5C), allowing the recognition of final axon targets and the formation of synaptic 

connections within local circuitry, in addition to preventing axons from innervating and connecting with 

inappropriate targets. More recently, another role for Netrin-1/DCC signaling has been demonstrated in 

fully mature brain networks, where it acts as an effector of synaptic plasticity, suggesting that the 

functionality of this pathway depends on the developmental stage of the organism71–73. 

5.2 The role of the Netrin-1/DCC system across developmental stages 
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During the embryonic stage, the Netrin-1/DCC signaling pathway plays an essential role in guiding 

axonal growth by steering the growth cone of developing neurons toward their target locations. In 

humans, mutations in the DCC gene have been shown to result in dramatic neurodevelopmental 

alterations such as agenesis of the corpus callosum74,75, developmental split-brain syndrome74, and 

congenital mirror movements76. These disruptions are seen in both humans and mice77, emphasizing the 

fundamental importance of DCC-dependent signaling in neurodevelopmental wiring. However, as 

development progresses into more mature- or adult-like states, there’s a switch in the functional role of 

DCC78. Its expression shifts from high to low, correlating with a change from the broad organization of 

developing neuronal networks to the initiation of synapse assembly and the promotion of synaptic 

plasticity. In fact, both Netrin-1 and DCC are enriched at synapses in the mature mammalian brain71, 

which corresponds to its discovered role in mature circuits72, where DCC has been shown to be involved 

in synaptogenesis and synaptic plasticity, acting as a key regulator of neural complexity and 

connection73. Recent studies have also shown that many polymorphisms in DCC79, as well as altered 

levels of gene expression62 in the prefrontal cortex (for a review, see 78), are related to various 

neuropsychiatric conditions of developmental onset characterized by deficits in PFC function and 

impulse control, stressing the multifaceted roles of DCC signaling across different phases of neural 

development, and highlighting its broader implications in the understanding of psychiatric conditions. 

5.3 Environmentally-induced alterations to Netrin-1/DCC expression  

Proper DCC-mediated Netrin-1 signaling requires a degree of robustness that extends well beyond 

the wiring of the mesocorticolimbic dopamine system, indicating that if the Netrin-1/DCC system is 

highly sensitive to any environmental stimulus, it would not be reliable in guiding axonal targeting and 

connectivity, or at least not to the degree observed across individuals and across species, and therefore 

its expression levels are tightly regulated by strong genetic effects. There are exceptions to this 

statement, however. Evidence from rodent models have shown that exposure to recreational-like doses 
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of amphetamine can modify the expression of Dcc. Critically, these effects are manifested in a 

developmentally-sensitive manner80–83, as repeated exposure to recreational-like doses of amphetamine 

in adulthood exerts a diametrically opposite effect- compared to repeated exposure in the juvenile 

period- in the expression of Dcc in dopamine neurons. Consequently, repeated exposure to 

amphetamine leads to alterations in the organization of the mesocorticolimbic dopamine system, but 

only when the exposure occurs early in development.  

6. From individual genes to tissue-specific gene co-expression networks 

In principle, transcriptionally co-regulated genetic networks refer to a set of genes that are 

controlled together at the transcriptional level and are often associated with similar or connected 

biological functions84,85. These networks ensure that genes involved in specific molecular processes are 

turned on and off together, leading to a coordinated response by the cell or the specific tissue to its 

current environmental conditions.  

This concept has not yet been fully adopted by the psychiatric genetics community, as the main 

experiment to investigate genotype-phenotype associations (the Genome-Wide Association Study- 

GWAS) relies on an explicit agnosticism when it comes to the biological functions implicated in disease 

risk, scanning in an unbiased manner the entire genomic landscape and correcting for the vast number 

of multiple comparisons conducted simultaneously (typically in the order of millions)86,87. This can be 

problematic because genotype-disease effects are small for most common genetic variations. However, 

incorporating prior knowledge from molecular and cellular biology experiments can help shift the focus 

from genome-wide variant identification (genotype-disease model) to quantifying the contribution of a 

prioritized subset of variants to an endophenotype (gene regulation-phenotype model). The fact that a 

large proportion of psychiatric disease risk can be explained by variants that modulate gene expression 
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levels is intriguing and, I suggest, may provide clues for the cellular and biological mechanisms 

underlying disease risk88.  

7. Rationale and Objectives 

Understanding the biological and environmental factors that influence psychiatric conditions is 

critical for developing effective treatments and interventions. Although many studies have explored 

these aspects separately, combining genetic and environmental perspectives can provide a more 

comprehensive understanding. This thesis focuses on two primary aspects of this multidimensional 

puzzle: First, it delves into the consequences of environmentally-induced disruptions in Netrin-1/DCC 

signaling – a critical system in brain development - during sensitive neurodevelopmental periods. 

Specifically, it examines their impact on the organization of corticolimbic circuits, which are instrumental 

in regulating inhibitory control behaviors. Secondly, this thesis explores the association of co-expression 

based polygenic scores, grounded on corticolimbic-specific DCC-gene co-expression networks, with 

laboratory-based measurements of impulsivity-related phenotypes. This comprehensive approach aims 

to shed light on the intricate interplay between genetic and environmental factors in the development 

of psychiatric endophenotypes. 

The first study implemented a rodent model to characterize the molecular, behavioral, and 

structural outcomes of disturbing a DCC-mediated signaling system within corticolimbic networks, key 

brain hubs orchestrating inhibitory control behaviors. I exposed mice early in development to a non-

contingent regimen of a therapeutic-like dose of amphetamine, resulting in an environmentally-induced 

manipulation of the Netrin-1/DCC guidance cue system. This study allowed me to characterize the 

differential impact of therapeutic-like versus recreational-like doses of amphetamine on dopamine 

maturation and consequently on the development of inhibitory control behaviors. Results from this 
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work advanced our understanding of the consequences of psychostimulant administration during 

sensitive neurodevelopmental periods.  

Building upon the insights gained from the rodent study, the second study involved human subjects 

and the exploration of a novel type of polygenic signal based on corticolimbic-specific DCC-gene co-

expression networks across three ethnically diverse independent birth cohorts. This analysis aimed to 

create a biological marker for individual variations in impulsivity-related phenotypes, focusing 

particularly on our knowledge of the molecular processes involved in the maturation of corticolimbic 

substrates in the brain. By employing cutting-edge techniques in polygenic risk analysis and functional 

genomics, my research aims to shed light on potential genetic markers contributing to psychiatric 

susceptibility, within the complex landscape of human genetic interactions and influences that may 

predispose or protect against certain psychiatric conditions. 

Together, these investigations aim to advance our understanding of the intricate interplay between 

genetic risk factors and environmental influences in susceptibility to psychiatric conditions, contributing 

to a nuanced and enriched understanding of these complex disorders. This introductory chapter 

provides a background of the association between inhibitory control impairments and psychiatric 

conditions, and of the cellular and molecular mechanisms involved in the development of the 

mesocorticolimbic dopamine system. Subsequent sections will detail the specific methodologies 

employed in each study, followed by a comprehensive overview of the thesis structure. 
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1. Abstract 

The guidance cue receptor DCC controls mesocortical dopamine development in adolescence. 

Repeated exposure to an amphetamine regimen of 4 mg/kg during early adolescence induces, in male 

mice, downregulation of DCC expression in dopamine neurons by recruiting the Dcc microRNA 

repressor, miR-218. This adolescent amphetamine regimen also disrupts mesocortical dopamine 

connectivity and behavioral control in adulthood. Whether low doses of amphetamine in adolescence 

induce similar molecular and developmental effects needs to be established. Here we quantified plasma 

amphetamine concentrations in early adolescent mice following a 4 or 0.5 mg/kg dose and found peak 

levels corresponding to those seen in humans following recreational and therapeutic settings, 

respectively. In contrast to the high doses, the low amphetamine regimen does not alter Dcc mRNA or 

miR-218 expression, instead it upregulates DCC protein levels. Furthermore, high, but not low, drug 

doses downregulate the expression of the DCC receptor ligand, Netrin-1, in the nucleus accumbens and 

prefrontal cortex. Exposure to the low-dose regimen did not alter the expanse of mesocortical 

dopamine axons or their number/density of presynaptic sites in adulthood. Strikingly, adolescent 

exposure to the low-dose drug regimen does not impair behavioral inhibition in adulthood, instead it 

induces an overall increase in performance in a Go/No Go task. These results show that developmental 

consequences of exposure to therapeutic- versus abused-like doses of amphetamine in adolescence 

have dissimilar molecular signatures, and opposite behavioral effects. These findings have important 

clinical relevance since amphetamines are widely used for therapeutic purposes in youth. 
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2. Introduction 

Adolescence represents a key neurodevelopmental stage when environmental factors can have a 

strong influence over ongoing structural, molecular and neurochemical changes [1]. In rodents, the 

adolescent growth of dopamine axons to the prefrontal cortex (PFC) is a particularly important event 

because it affects the structural and functional maturation of PFC circuitry and, in turn, behavioral 

flexibility and cognitive control in adulthood [2-5]. We have shown that the guidance cue receptor DCC, 

which is highly expressed by mesolimbic dopamine axons [6], promotes targeting recognition events in 

the nucleus accumbens (NAcc) in adolescence, preventing them from continuing to grow ectopically to 

the PFC [4]. Subtle changes in DCC levels in adolescence impact the extent of the dopamine innervation 

to the PFC, leading to substantial modifications in PFC circuitry connectivity and in cognitive processing 

in adulthood [4-9]. 

Repeated non-contingent exposure to 4 mg/kg of amphetamine in early adolescence, but not in 

adulthood, downregulates Dcc mRNA and protein expression in the ventral tegmental area (VTA) in male 

mice [10, 11]. This effect is mediated by amphetamine-induced VTA upregulation of the microRNA-218 

(miR-218), which is a potent repressor of DCC in both human and rodent neurons and appears to control 

DCC expression in dopamine neurons across postnatal life [10, 12]. Notably, exposure to 4 mg/kg of 

amphetamine in early adolescence also results in disruption to the development of mesocorticolimbic 

dopamine connectivity, leading to an increase in the expanse of the dopamine input to the PFC, but to a 

significant reduction in the number of presynaptic sites of PFC dopamine axons in adulthood [5, 9]. 

These neuroanatomical alterations, which require downregulation of DCC receptors in dopamine 

neurons, are associated with deficits in PFC-dependent behaviors, including impaired behavioral 

inhibition [5, 9, 13-16]. 
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To date, we have explored the effects of amphetamine in adolescence on miR-218/Dcc expression, 

PFC dopamine development, and behavioral inhibition using a 4 mg/kg dose. In mice, approximately the 

same doses have been reported to achieve plasma amphetamine levels comparable to those reached by 

recreational doses used in humans, ranging from 500-2500 ng/mL [17-22]. However, the doses of 

amphetamine that are typically used for therapeutic purposes, have been shown to reach peak plasma 

levels ranging from 30-140 ng/mL [23-27]. Whether exposure to equivalent low doses of amphetamine 

in mice downregulates miR-218/Dcc expression in the VTA, altering PFC dopamine development and 

cognitive control in adulthood needs to be determined. Here we quantified plasma amphetamine levels 

achieved by exposing early adolescent male mice to a 0.5 or 4 mg/kg dose and then determined the 

impact that the low dose regimen has on the Dcc-dependent maturation of mesocortical dopamine 

connectivity and behavioral control. 
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3. Materials and methods 

Animals 

All experiments and procedures were performed according with the guidelines of the Canadian 

Council of Animal Care and the McGill University/Douglas Mental Health University Institute Animal Care 

Committee. C57BL/6 wild-type male mice were obtained from Charles River Canada and maintained in 

the colony room of the Douglas Mental Health University Institute Neurophenotyping center on a 12-h 

light–dark cycle (light on at 0800 h) with food and water available ad libitum. All the experiments were 

conducted during the light part of the cycle. 

Drugs 

d-Amphetamine sulfate (Sigma-Aldrich, Dorset, United Kingdom) was dissolved in 0.9% saline. All 

amphetamine injections were administered i.p. at a volume of 0.1ml/10g and doses of 0.5 or 4 mg/kg. 

Different routes of administration lead to significant differences in the bioavailability of different drugs, 

including methylphenidate and cocaine [28, 29]. In this study we chose the i.p. route to be able to 

compare our findings with those reported by our lab and other groups. 

Amphetamine plasma concentration 

Amphetamine regimen and plasma collection: Male C57BL/6 mice received a single injection of 

amphetamine (0.5 or 4 mg/kg) at postnatal day (PND) 28 and trunk blood was collected after different 

time points (5, 15, 25 and 35 minutes) in tubes containing EDTA as anticoagulant. Blood plasma was 

obtained by centrifuging at 3000g for 10 minutes, at 4°C. 

Bioanalysis of d-amphetamine in plasma samples: d-Amphetamine was extracted from plasma 

samples (25 μL) by protein precipitation with methanol (125 μL) containing 0.5 μM losartan (internal 

standard). Samples were vortexed and centrifuged (16,000 x g for 5 minutes) at 4°C and supernatants 
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were transferred to a 96 well plate. Separation of analytes was achieved on Ultimate 3000 UPLC system 

(Thermo Fisher Scientific, Waltham, MA, USA) with an Agilent Eclipse Plus C18 column (1.8 μm 2.1 X 

100mm) (Agilent, Santa Clara, CA, USA) using a gradient run of 2.5:97.5 - 5:95 (water:acetonitrile) with 

0.1% formic acid over 1.5 minutes and detected on a Thermo Q Exactive™ Focus orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The orbitrap was run in a positive ion PRM 

(product reaction monitoring) mode. The ions of 136.1121 m/z and 423.1695 m/z are selected with a 1 

m/z isolation window and fragmented with setting of 15 and 20 CE respectively. Transitions of 91.0563 

and 119.0867 (d-amphetamine) and 207.0915 and 377.1522 (losartan) were used and quantified for 

concentration determinations. Calibration curves over the range of 0.03 -100 nmol/mL were constructed 

from the peak area ratio of the analyte to the internal standard using quadratic regression with a 

weighting factor of 1/(nominal concentration). Correlation coefficient >0.99 was obtained in all 

analytical runs for the analytes. Non-compartmental-analysis module in Phoenix WinNonlin version 7.0 

(Certara USA, Inc., Princeton, NJ) was used to assess pharmacokinetic parameters. Peak plasma 

concentrations (Cmax) and time to Cmax (Tmax) were the observed values. Area under the curve (AUC) was 

calculated by log–linear trapezoidal rule to the end of sample collection (AUClast). 

Amphetamine Regimen 

Male C57BL/6 early adolescent mice were treated with saline or amphetamine injections from PND 

22±1 to PND 31±1. Consistent with our previous studies, different groups of mice received one injection 

of amphetamine (0.5 or 4 mg/kg i.p.) or saline, every other day, for a total of 5 days. Locomotor activity 

was measured 15 minutes prior and 90 minutes after each saline or amphetamine injection. 

In concordance with our and other studies, we define early adolescence in mice as the period 

between the day of weaning and PND 32 [3, 4, 8-11, 30, 31]. While this range is not an absolute margin, 

but an age during which mice exhibit distinct neurobehavioral characteristics, this definition seems now 
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to be a consensus in the rodent literature [1, 3, 32-34]. Indeed, early adolescence is the critical period 

when exposure to a high-dose amphetamine regimen leads to impaired behavioral inhibition, aberrant 

PFC dopamine connectivity, and reduced PFC dopamine function in adulthood [5, 9]. 

Western Blot analysis 

One week after completing the saline or amphetamine treatment regimens, different cohorts of 

mice were rapidly decapitated and their brains were flash-frozen in 2-methylbutane (Fisher Scientific, 

Hampton, NH, USA) chilled with dry ice. Bilateral punches of the VTA, NAcc and PFC, were excised from 

1-mm-thick coronal slices starting from sections corresponding to Plate 55 (-2.92mm, anterior/posterior 

relative to Bregma) and 15 (1.94mm, anterior/posterior relative to Bregma), respectively, of Paxinos and 

Franklin [35] and processed for western blot as before [10, 36]. Briefly, protein samples (15 μg) were 

separated on a 10% SDS-PAGE and transferred to a nitrocellulose membrane which was incubated 

overnight at 4°C with antibodies against DCC (1:1000, Cat#554223, BD Pharmingen, Mississauga, ON, 

Canada), Netrin-1 (1:750 dilution, Cat#NB100-1605, Novus Biologicals, Littleton, CO, USA) and β-actin 

(1:15000, Sigma-Aldrich, Oakville, ON, Canada). 

RNA extraction and quantitative real time PCR for mouse tissue 

One week after the saline or amphetamine treatment, bilateral punches of the VTA were taken from 

coronal sections obtained as described above. Total RNA and microRNA fractions were isolated using the 

miRNeasy Micro Kit protocol (Qiagen, Toronto, ON, Canada) as previously [10]. All RNA samples were 

determined to have 260/280 and 260/230 values ≥1.8, using the Nanodrop 1000 system (Thermo 

Scientific, Toronto, ON, Canada). RNA integrity was further assessed using the denaturing gel 

electrophoresis method proposed by Aranda et al [37]. The three well-defined 28S, 18S, and 5.8S/5S 

ribosomal bands were detected without any background. Reverse transcription for Dcc and 

Glyceraldehyde-3-phosphatedehydrogenase (Gapdh) mRNA was performed using a High-Capacity cDNA 
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Reverse Transcription Kit (Applied Biosystems, Foster City, CA) according to manufacturer’s instructions. 

Real time PCR, using TaqMan assay (Applied Biosystems, Foster City, CA) was carried out with an Applied 

Biosystems 7900HT RT PCR system. Data for Dcc mRNA expression were analyzed by using the relative 

quantification standard curve method and the level of these transcript was quantified relative to the 

expression of the reference gene Gapdh. Reverse transcription for miR-218 was performed using the 

TaqMan MicroRNA Reverse Transcription Kit together with the corresponding miRNA TaqMan probes 

(Applied Biosystems, Foster City, CA). Expression levels were calculated using the relative quantification 

standard curve method. The small nucleolar RNA (snoRNA) RNU6B was used as endogenous control to 

normalize the expression of miR-218. In all cases, the real-time PCR was run in technical triplicates. 

Neuroanatomical analysis 

Perfusion. Adult mice received an intraperitoneal overdose of ketamine 50 mg/kg, xylazine 5 mg/kg, 

and acepromazine 1 mg/kg and were perfused intracardially with 50ml of 0.9% saline followed by 75ml 

of chilled fixative solution (4% paraformaldehyde in phosphate-buffered saline). Brains were dissected 

and placed in the fixative solution overnight at 4ºC and were then transferred to phosphate-buffered 

saline and stored for a maximum of 2 days. Brains were sectioned using a vibratome (35-μm-thick 

coronal slices). 

Immunofluorescence. As we have done before, every second coronal section was processed (1:2 

series) [6, 8, 36]. A rabbit polyclonal anti-TH antibody (1:500 dilution, catalog #AB152; Millipore 

Bioscience Research Reagents) and an Alexa Fluor 555-conjugated secondary antibody raised in goat 

(1:500 dilution, 1 h incubation, Invitrogen) were used. 

Stereology. The TH antibody labels dopamine axons in the PFC with high specificity, and rarely labels 

norepinephrine axons [6, 8, 38]. As previously, and because of the lateralization of the dopamine 

system, we obtained counts only from the right hemisphere. To evaluate changes in mesocortical 
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dopamine connectivity in animals exposed to 0.5 mg/kg of amphetamine during adolescence, we 

performed stereological quantification of the span of TH-positive fibers in the cingulate 1, prelimbic, and 

infralimbic subregions of the pregenual medial PFC. The total volume of TH-positive fiber innervation (in 

cubic micrometers) was assessed using the Cavalieri method using Stereoinvestigator® 

(MicroBrightField) [4, 6, 8, 9]. Counts were performed blind. The coefficient of error was below 0.1 for 

all regions of interest in all sampled brains. 

The medial PFC subregions were delineated according to plates spanning 14–18 (1.98mm - 1.54mm 

anterior/posterior relative to Bregma) of the mouse brain atlas [35]. A 5X magnification was used to 

trace the contours of the dense TH-positive innervation of the subregions using a Leica DM400B 

microscope. An unbiased counting frame (25 x 25 μm) was superimposed on each contour and counts 

were made at regular predetermined intervals (x=175μm, y=175μm) from a random start point. 

Counting of varicosities was performed at X100 magnification on 6 of the 12 sections contained within 

the rostrocaudal borders of our region of interest (Plates 14–18; 1:4 series). A guard zone of 5 μm was 

used and the optical dissector height was set to 10 μm. 

Number of DA neurons. The total number of dopamine neurons in the VTA was assessed using the 

optical fractionator probe of Stereoinvestigator as previously [4, 7-9]. The counting scheme used a 60 x 

60 μm counting frame (x=150 μm, y=150 μm intervals) with a random start point. Counting was 

performed at 40X magnification in a 1:4 series. A 3 μm guard zone and a probe depth of 10 μm were 

used. 

Behavioral evaluations 

Go/No-Go. We modified and optimized a Go/No-Go task for use with mice [4, 5]. Briefly, mice were 

food restricted for the duration of the behavioral testing to maintain a body weight of 85% of the initial 

weight. The task took place in operant behavioral boxes (Med Associates, Inc., St Albans, VT, USA) 
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equipped with a house light, 2 illuminated nose poke holes, an adjustable sonalert tone generator, and a 

pellet dispenser. We used chocolate flavored dustless precision pellets (BioServ, Inc., Flemington, NJ, 

USA) as the operant reinforcer. The experimental procedure consisted of three stages: Conditioned 

Reinforcement Training, Reaction Time Training, and the Go/No-Go Task. Animals were subject to one 

training or testing session per day. 

Conditioned Reinforcement Training: At the start of each conditioned reinforcement training 

session, the house light turns on and remains on throughout the 20-minute session. Each trial within this 

session consists of the presentation of an illuminated nose poke hole for 9 seconds. If the mouse does 

not respond by nose-poking in the illuminated hole, the cue light is extinguished for a 10 second inter-

trial interval (ITI) before the next trial/cue presentation. Thus, the purpose of the house light in this 

session is to signal that there is a current ongoing session. 

If the mouse responds to the cue light by nose-poking in the illuminated hole, a chocolate food 

pellet is dispensed and the trial is counted as a “reward” trial. The location of the active (cued) nose 

poke hole (either Left or Right) is counterbalanced within groups and stays consistent for each individual 

mouse for the duration of the session and throughout each stage of the experiment. Responses to the 

active nose poke hole when the cue light is off, as well as responses to the non-active nose poke hole 

(where the cue light was never illuminated), do not result in a reward but are recorded and analyzed. 

Mice advanced to the next stage of training once they achieve a criterion of over 70% responses to cued 

trials. Mice received one 20-minute Conditioned Reinforcement training session per day. 

Reaction Time Training. Once mice stably respond to the cued nose poke hole to receive the 

reinforcer, they are trained to 1) respond only following the illumination of the cue light, and 2) to 

respond within 3 seconds of the cue illumination to receive the reinforcer. To train mice to respond only 

when the cue light is present, the structure of the session is changed to incorporate a pretrial period 
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prior to each trial. In this pretrial period, the house light is illuminated for a variable amount of time (3, 

6, or 9 seconds, distributed randomly) without the cue light. If the mouse nose pokes during this pretrial 

period, the house light is extinguished and a 10-second ITI is initiated. This is recorded as a ‘Premature 

Response’. If the mouse does not respond during the pretrial period, the cue light is then illuminated for 

3 seconds. Therefore, the purpose of the house light in this training phase is to signal the start of a 

pretrial period, and the purpose of this pretrial period is to train mice to respond specifically to the cue 

light. A response during the 3 second trial period results in the delivery of a reward pellet; if the mouse 

fails to respond within this window, the cue and house lights are extinguished and a 10-second ITI 

began. In order to advance to the Go/No-Go Task, mice have to end less than 25% of the pretrial periods 

with a premature response. Mice receive one 30-minute reaction time training session per day. 

Go/No-Go Task. Following successful completion of both training stages, mice undergo 10 sessions 

of the Go/No-Go Task. This task requires mice to respond to a lighted ‘Go’ cue, identical to the cue used 

in the training sessions, or inhibit their response to this cue when presented in tandem with an auditory 

‘No-Go’ cue. In the ‘Go’ trials, mice had to respond to the illuminated nose poke hole in the 3-second 

timeframe during which the cue light is on in order to receive a reward. This is counted as a ‘Hit’ in our 

analysis. In the ‘No-Go’ trials, an 85 dB tone is paired with the 3-second cue light to signal that the 

mouse should withhold from responding. If mice respond during the 3-second ‘No-Go’ trial, an ITI is 

initiated and no reward is dispensed. This is counted as a ‘Commission Error’ in our analysis. However, if 

mice withhold from responding for the 3 second duration of the tone/light ‘No-Go’ cue, a reward is 

dispensed. As in the Reaction Time training, a randomized, variable pretrial period of 3-9 seconds 

precedes each trial and the number of premature responses was recorded. The purpose of this is to 

mimic the setting used during the Reaction Time Training, where mice learn to withhold from 

nosepoking prior to the presentation of the cue light. Within each session, the number of ‘Go’ and ‘No-
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Go’ trials is given in an approximately 1:1 ratio and presented in a randomized order. Each session lasts 

30 minutes and consists of approximately 30-50 ‘Go’ and 30-50 ‘No-Go’ trials. 

Statistical Analysis 

All values are represented as means ± S.E.M. A significance threshold of α = 0.05 was used in all the 

experiments. Statistical differences between two groups were analyzed with Student’s t-tests and, when 

required, the significance level used to evaluate the comparisons was adjusted using the Holm–

Bonferroni sequentially rejective procedure [39]. All data are normally distributed and the variance is 

similar between groups. Statistical differences between more than two groups were analyzed with one 

or two-way ANOVAs. The sample size in all the experiment varied from 4-9 animals per group. 
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4. Results 

A low amphetamine dose leads to plasma levels seen in therapeutic settings 

The concentration of d-amphetamine in plasma of early adolescent mice was measured at multiple 

time points post i.p. administration of 0.5 or 4 mg/kg (Fig 1a). d-Amphetamine showed quick absorption 

with a maximum concentration (Cmax) of 97±21 ng/mL following administration of the 0.5 mg/kg dose 

(Fig 1b, 0.5 mg/kg: ANOVA with a main effect of time: F(3, 12)=5.58, p=0.0124). The 4 mg/kg dose, 

however, resulted in a concentration of 1300±79 ng/mL observed 5 minutes post injection (Fig 1c, 4 

mg/kg: ANOVA with a main effect of time: F(3, 12)=20.45, p<0.0001). The exposures based on area 

under the curve (AUClast) were 1928±305 for 0.5 mg/kg and 26349±1922 for 4 mg/kg. An eight-fold 

increase in the amphetamine dose resulted in almost a 14-fold increase in exposures. Thus, the increase 

in blood concentration of amphetamine was not simply proportional to the increase in the drug dose. 

These results demonstrate that while the 0.5 mg/kg amphetamine dose reaches peak plasma 

concentrations within the range of those observed in therapeutic settings (i.e. 30-140 ng/mL) [23-27], 

peak plasma levels following the 4 mg/kg dose are within those seen in recreational use (i.e. 500-2500 

ng/mL) [17-22]. 

Repeated exposure to a low dose of amphetamine in adolescence upregulates VTA 

DCC protein expression, without altering miR-218 or Dcc mRNA levels 

The expression levels of DCC protein, Dcc mRNA, and miR-218 in the VTA are regulated by non-

contingent exposure to 4 mg/kg of amphetamine during early adolescence [10]. To determine whether 

there is a threshold for these drug effects, we exposed early adolescent mice (PND 21±1 to PND 31±1; 

Fig. 2a) to 0.5 mg/kg of amphetamine. Injections of 0.5 mg/kg of amphetamine do not alter locomotor 

activity in comparison to saline treatment (Fig 2b, two-way ANOVA for repeated measures: significant 

main effect of the day, F(4,112)=16.72, p<0.0001; no significant effect of treatment, F(1,28)=0.09;  
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Figure 1 Peak plasma concentrations achieved by an intraperitoneal injection of 0.5 or 4.0 mg/kg of d-

amphetamine (AMPH) correspond to those measured in humans in therapeutic and recreational settings, 

respectively. A, Diagram describing AMPH regimen and the different time points for plasma collection. B, and 

C, Bioanalysis of d-amphetamine in plasma observed over time after a single intraperitoneal injection of 0.5 or 

4 mg/kg dose (n = 4 per time point). B, Plasma concentration of AMPH showed a maximum concentration of 

97 ± 21 ng/mL 5 minutes after low-dose injection. C, Plasma concentration of AMPH showed a maximum 

concentration of 1300 ± 79 ng/mL 5 minutes after high-dose injection  
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p=0.76; or treatment × day interaction, F(4,112)=0.49, p=0.74). However, we found a significant increase 

in DCC protein expression in the VTA one week later in amphetamine-treated mice versus saline controls 

(Fig. 2c; t(14)=3.51, p=0.0035). This contrasts the DCC downregulation we previously reported following 

exposure to a 4 mg/kg amphetamine treatment regimen (Fig 2c inset; [10]). Furthermore, Dcc mRNA 

and miR-218 expression in the VTA did not differ between mice treated with 0.5 mg/kg of amphetamine 

or with saline in adolescence (Fig 2d Dcc mRNA: t(12)=1.20, p=0.25; Fig. 2e miR-218: t(12)=1.60, p=0.14). 

These findings, which are also opposite to the effects seen with the 4 mg/kg dose (Fig. 2d and e insets, 

[10]), indicate that the changes in DCC protein expression are posttranslational in nature. 

Dose-dependent effects of amphetamine in adolescence on Netrin-1 expression 

The effects of DCC receptor on axonal targeting and synapse formation are mediated by its 

interaction with its ligand Netrin-1 [40, 41]. Thus, we next determined the effect of high and low doses 

of amphetamine in adolescence on Netrin-1 expression in target regions of dopamine neurons (Fig. 2f-

g). Exposure to 4 mg/kg of amphetamine significantly downregulated Netrin-1 expression in the NAcc 

one week later, in comparison to saline groups (Fig 2f, right panel, t(14)=0.89, p=0.019). Thus, high doses 

of amphetamine in adolescence not only downregulate DCC expression in mesolimbic dopamine 

neurons, but also reduce Netrin-1 levels in their target region. Intriguingly, this high-dose regimen also 

reduced Netrin-1 expression in the PFC (Fig 2g, right panel, t(14)=4.24, p=0.0008); an effect that may 

contribute to the reduced number of mesocortical dopamine varicosities in adulthood [5, 9]. 

In contrast, Netrin-1 expression in the NAcc and PFC did not differ between mice treated with the 

0.5 mg/kg dose and saline (Fig. 2f, left panel, NAcc: t(14)=1.03, p=0.32; Fig. 2g, left panel, PFC: 

t(14)=0.16, p=0.88). The effects of amphetamine in adolescence on both DCC and Netrin-1 expression 

are therefore dose-dependent. 
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Figure 2 Exposure to a therapeutic-like dose of amphetamine in adolescence upregulates DCC protein 

expression without altering miR-218 or Dcc mRNA levels in the ventral tegmental area (VTA) and does not 

change Netrin-1 in dopamine terminal regions. A, Timeline of treatment and experimental procedures. B, 

Locomotor activity during the 90-minute test performed after each treatment injection. C, DCC expression is 

significantly increased in the VTA 1 week after the treatment with 0.5 mg/kg of amphetamine in adolescence. 

Inset: levels of DCC protein expression in the VTA in animals treated with 4 mg/kg of amphetamine, using the 

exact same schedule. In contrast to animals exposed to 4 mg/kg (D and E insets), animals treated with 0.5 

mg/kg of amphetamine showed no changes in D, Dcc mRNA or E, miR-218 in the VTA compared with saline 

controls. F, and G, Netrin-1 expression in nucleus accumbens (NAcc) and prefrontal cortex (PFC) 1 week after 

termination of treatment with 0.5 or 4.0 mg/kg of amphetamine. No changes were observed in Netrin-1 
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expression levels in the F, NAcc or in the G, PFC in mice exposed to 0.5 mg/kg of amphetamines in comparison 

with saline-treated ones. Mice exposed to 4 mg/kg of amphetamine during adolescence showed a 

downregulation on Netrin-1 protein expression in the F, NAcc and the G, PFC compared with saline-treated 

controls. *Significantly different from saline group, P < .05. The data presented in the insets are reproduced 

from Cuesta et al.10 All data are shown as mean ± SEM  



 43 

Exposure to low doses of amphetamine in adolescence does not alter mesocortical 

dopamine connectivity in adulthood 

Next, we analyzed the extent of the mesocortical dopamine innervation to layers V and VI of the 

medial PFC in adult mice exposed to amphetamine (0.5 mg/kg) or saline during adolescence (Fig. 3a and 

b). We found no differences between groups in the span (i.e. volume) of TH-positive fibers (Fig 3c: two-

way ANOVA, no significant main effect of treatment, F(1, 8)=0.036, p=0.85; no significant treatment × 

medial PFC region interaction, F(2, 16)=0.078, p=0.93; significant main effect of medial PFC region, F(2, 

16)=111.2, p<0.0001). In the medial PFC nearly every dopamine varicosity forms a synapse with a 

dendritic spine or shaft [42], therefore, we measured the total number and the density of TH-positive 

varicosities. There were no group differences in the total number and density of medial PFC TH-positive 

varicosities in any of the three subregions analyzed (total number: Fig 3d: two-way ANOVA, no 

significant main effect of treatment, F(1, 8)=0.056, p=0.81; no significant treatment × medial PFC region 

interaction, F(2, 16)=1.01, p=0.37; significant main effect of medial PFC region, F(2, 16)=73.92, p<0.0001; 

density: Fig 3e: two-way ANOVA, no significant main effect of treatment, F(1, 8)=0.11, p=0.75; no 

significant treatment × medial PFC region interaction, F(2, 16)=1.59, p=0.24; significant main effect of 

medial PFC region, F(2, 16)=0.02, p=0.82). These results contrast the ones we observed in the PFC of 

mice exposed to 4 mg/kg of amphetamine during adolescence, namely an increase in the span of TH-

positive innervation, but a reduction in the total number and density of TH-positive varicosities [9]. 

It is important to note that the number of TH-positive neurons in the VTA is similar between the 

amphetamine- and saline-treated groups (Dopamine neuron number: mean ± s.e.m.: Saline=7204±1135, 

AMPH=5744±1005, t(8)=0.95, p=0.37; data not shown), similar to our findings using the 4 mg/kg dose 

[9]. 
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Figure 3 Low amphetamine doses in adolescence do not alter mesocortical dopamine connectivity in 

adulthood. A, Timeline of treatment and experimental procedures. B, Schematic representation of the regions 

of interest in the medial prefrontal cortex outlined according to the Mouse Brain Atlas (Paxinos and Franklin, 

2008). The cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subregions of the medial prefrontal cortex were 

analyzed. C, Volume, D, total number, and E, density of the TH-positive fiber innervation to the inner layers of 

the medial prefrontal cortex. Mice treated with 0.5 mg/kg of AMPH in adolescence do not show significant 

differences to their saline counterparts. All data are shown as mean ± SEM (n = 4-6 per group)  
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Exposure to low doses of amphetamine in adolescence does not induce behavioral 

inhibition deficits in adulthood 

We then assessed the effects of 0.5 mg/kg of amphetamine in adolescence on adult cognitive 

control using the Go/No-Go task [4, 5] (Fig 4a-b). There were no differences in the number of 

commission errors, “hits”, or omission errors between amphetamine and saline groups (Fig 4c, 

commission errors: two-way repeated measures ANOVA, no significant effect of treatment, F(1, 

15)=0.76, p=0.396 or time × treatment interaction, F(9, 135)=0.79, p=0.625, significant main effect of 

time, F(9, 135)=16.69, p<0.0001; Fig 4d, hits: two-way repeated measures ANOVA, no significant effect 

of treatment, F(1, 15)=1.42, p=0.251 or time × treatment interaction, F(9, 135)=0.47, p=0.895, significant 

main effect of time, F(9, 135)=11.26, p<0.0001; Fig 4e, omission errors: two-way repeated measures 

ANOVA, no significant effect of treatment, F(1,15)=1.875, p=0.1911 or time × treatment interaction 

F(9,135)=1.351, p=0.2167, significant main effect of time, F(9,135)=16.37, p<0.0001). 

We also calculated the total number of correct responses across the Go/No-Go task using the 

following formula modified from Gubner et al [43]:  

𝐺𝑜	𝑟𝑒𝑤𝑎𝑟𝑑𝑠
𝐺𝑜	𝑡𝑟𝑖𝑎𝑙𝑠 + 𝑁𝑜𝐺𝑜	𝑟𝑒𝑤𝑎𝑟𝑑𝑠𝑁𝑜𝐺𝑜	𝑡𝑟𝑖𝑎𝑙𝑠

2
 

Interestingly, the amphetamine-treated group had a higher number of correct responses in 

comparison to the saline group (Fig 4f: two-way repeated measures ANOVA, significant effect of 

treatment, F(1, 15)=5.78, p=0.0296; no significant time × treatment interaction, F(9, 135)=1.50, p=0.155, 

significant main effect of time, F(9, 135)=5.64, p<0.0001). These results indicate that exposure to low 

doses of amphetamine in adolescence do not lead to deficits in cognitive control in adulthood, but in 

fact improve performance across the overall task. 
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Figure 4 Low doses of amphetamine in adolescence improve overall cognitive performance in adulthood. A, 

Timeline of treatment and experimental procedures. B, Diagram of the go/no-go task adapted for mice. (C-E) 

There are no differences in the number of C, commission errors, D, omission errors, or E, “hits” between 

animals treated with 0.5 mg/kg or saline during adolescence. However, amphetamine exposure during 

adolescence induce a significant increase in the correct response rate across the test, when compared with 

saline-treated ones F. All data are shown as mean ± SEM (n = 8-9 per group)  
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5. Discussion 

In this study we show that there is a dose effect of amphetamine in early adolescent male mice on 

miR-218/DCC/Netrin-1 expression, mesocortical dopamine development, and cognitive control. The two 

doses used in the present study reached plasma levels within the range of those observed in humans 

using the drug in therapeutic and recreational settings. For adolescent and adult mice, plasma levels are 

a good proxy for drug brain levels [44]; thus, it is expected that the doses used for the present studies 

achieved brain levels of the drug that can have relevant molecular changes. 

First, while exposure to the high amphetamine dose regimen recruits miR-218 to downregulate DCC 

in the VTA [10, 11], the low drug dose increases DCC protein without altering Dcc mRNA or mir-218 

levels. Second, only the high dose amphetamine regimen reduces Netrin-1 expression in the NAcc and 

PFC. Third, while the high dose regimen leads to a reduction in adult mesocortical dopamine 

connectivity and function [5, 9] inducing in turn a reduction in inhibitory control [5], the low dose 

regimen does not disrupt behavioral inhibition and, in fact, leads to an overall improvement in adult 

cognitive performance, as measured by an increase in the total number of correct responses in the Go 

and No-Go trials. 

Exposure to 0.5 mg/kg of amphetamine increases DCC protein expression in the VTA, without 

altering Dcc mRNA levels or miR-218 expression in this region. This is in contrast to the downregulation 

of Dcc mRNA and protein expression induced by exposure to the 4 mg/kg dose regimen, which is 

actually mediated by drug-induced upregulation of miR-218 in the VTA [10]. Thus, DCC protein 

upregulation by the therapeutic-like treatment might be mediated by posttranslational mechanisms. 

The SIAH (seven in absentia homolog) protein family has been shown to ubiquitinate and regulate DCC 

protein levels in different organs, including rat brain [45, 46]. In future studies we will assess whether 

SIAH protein expression and/or activity is altered by amphetamine administration in adolescence. 
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Our previous work shows that DCC expression in mesolimbic dopamine axons determines where 

and when they recognize their final target and, accordingly, reduced DCC signaling in adolescence 

results in targeting errors and ectopic growth of mesolimbic dopamine axons from the NAcc to the PFC 

[3, 4, 9]. The fact that the high amphetamine regimen downregulates both DCC in dopamine neurons 

and Netrin-1 in the NAcc suggests that this experience potentiates the ectopic growth of mesolimbic 

dopamine axons to the PFC, causing disorganization of dopamine connectivity in this region. This in turn 

may lead to alterations in executive function [47], negatively impacting performance in tasks which 

require inhibition of a learned or ongoing behavior [5, 14, 15]. 

Recently, Netrin-1 has been demonstrated to promote synapse formation in the PFC [41] and to 

potentiate excitatory synaptic transmission via the insertion of GluA1 AMPA receptors in the 

hippocampus of adult mice [48]. Thus, the downregulation of Netrin-1 in the PFC induced by the high 

dose regimen may contribute to the reduction in the number and density of mesocortical dopamine 

synaptic sites observed in adulthood [5, 9]. Interestingly, a similar amphetamine regimen in adolescence 

has been shown to induce a reduction in the expression of D1 receptors in the PFC of adult male rats 

[49] suggesting also alterations in the electrophysiological properties at excitatory and/or inhibitory 

synapses in this region. In line with this idea, it has been reported that high, but not low, doses of the 

stimulant drug methylphenidate in adolescence reduces PFC long-term potentiation in adulthood [50]. 

These findings suggest that high doses of stimulant drugs in adolescence lead to functional 

reorganization of PFC synaptic circuitry and that local alterations in Netrin-1 signaling may contribute to 

this effect. 

We have reported that both improvements and deficits in behavioral inhibition during the No Go 

task are correlated with alterations in dopamine connectivity in the adult PFC. Specifically, we have 

observed improved inhibitory control in mice that have increased PFC dopamine synaptic connectivity 
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[4]. In contrast, adult mice that have reduced PFC dopamine connectivity and turnover show deficits in 

inhibitory control [5]. In this study, however, we do not find changes in the span (i.e. volume) of the 

dopamine input or in the number/density of dopamine varicosities in the PFC of mice treated with low 

amphetamine doses in adolescence. We are currently setting new methodologies to assess directly 

dopamine neurotransmission in the PFC as well as to investigate changes in connectivity in other 

dopamine terminal regions or in other neurotransmitter systems. 

Whether exposure to amphetamine in adolescence leads to changes in dopamine connectivity in the 

NAcc in adulthood remains to be addressed. The stereological methods used in this study are not 

sensitive enough to capture subtle changes in dopamine varicosity density and/or number in the NAcc 

[6, 8, 9]. Therefore, we are planning to use more sensitive methods (i.e. [4]) in future studies to address 

this issue. 

To date, we have conducted all our studies in male mice. However, there is evidence of sex 

differences in the enduring behavioral effects of amphetamine exposure during adolescence [51-53], 

emphasizing the importance of addressing this issue in our studies. We are now beginning to assess 

whether the effects of amphetamine (high and low doses) in adolescence on DCC receptor signaling, PFC 

dopamine maturation, and behavioral control are sexually dimorphic. In addition, we also plan to 

examine whether adolescent exposure to the other typically prescribed psychostimulant, 

methylphenidate, also increases DCC protein expression one week later and leads to improved cognitive 

performance in adulthood. Indeed, methylphenidate administration can alter DCC expression in the VTA 

in adulthood [54]. 

To our knowledge, this is the first study to compare the effects of amphetamine doses equivalent to 

those used by humans for recreational versus therapeutic purposes on the expression of developmental 

genes coordinating the adolescent maturation of PFC dopamine circuitry. Although it is important to 
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keep in mind the limitation of non-contingent drug administration models and that the duration of 

therapeutic treatment in humans may vary and sometimes last until adulthood, these and our previous 

findings [9, 10] show that therapeutic versus abused doses of amphetamine in adolescence have very 

different long-term consequences: while abused-like doses disrupt miR-218/DCC/Netrin-1-dependent 

dopamine development and behavioral control, therapeutic-like doses actually increase DCC expression 

and improve cognitive performance in adulthood. Our findings provide insight into the critical question 

of whether therapeutic exposure to stimulant drugs in adolescence induces detrimental effects on 

ongoing neurodevelopmental events. 
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Connecting statement to Chapter III 

Chapter 2 of this thesis has provided detailed insights into the dose-dependent effects of 

amphetamine on the molecular and behavioral aspects of mesocorticolimbic dopamine development in 

early adolescent male mice. Through a multidisciplinary investigation, we have discerned the significant 

effects of recreational- and therapeutic-like doses of amphetamine on miR-218/DCC/Netrin-1 

expression, mesocortical dopamine development, and inhibitory control. Our findings show that 

therapeutic-like doses increase DCC expression and enhance cognitive performance in adulthood, while 

recreational-like doses downregulate the expression of DCC in the tissue, disrupting axon guidance and 

inducing cognitive impairment.  

In Chapter 3, I embarked on a broader exploration of the developmental processes that underlie 

psychiatric disorders characterized by deficits in inhibitory control. The underlying neurobiological 

events and early markers of vulnerability remain areas of interest, reflecting a broader concern with the 

development of the prefrontal cortex (PFC) and its connections with the nucleus accumbens (NAcc). I 

delve into the pivotal role of the Netrin-1/DCC guidance cue system in corticolimbic development, and 

the dynamic relationship between mesocortical and mesolimbic dopamine inputs. I also explore a 

cutting-edge systems biology approach that moves beyond traditional genotype-disease associations to 

construct an expression-based polygenic score (ePRS). This new methodological approach allows for the 

identification of early vulnerability markers for impulsivity-related phenotypes and offers a fresh 

perspective on the genetic underpinnings of inhibitory control. 

Chapter 3 is a translational study that builds upon the molecular and behavioral insights uncovered 

in Chapter 2 and extends the inquiry into gene co-expression networks and developmental trajectories 

that shape cognitive control. By integrating novel approaches like ePRS and focusing on corticolimbic-

specific DCC gene co-expression networks, I aim to help better understand the quantifiable relationships 
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between genomics, brain development, and behavior. This chapter represents a step towards 

understanding the multifaceted nature of psychiatric disorders of developmental origin and opens new 

avenues for future research. 
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1. Abstract 

Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- 

as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting 

inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be 

discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical 

dopamine innervation, mirrors the protracted development of inhibitory control; both are present early 

on in life, but they reach full maturation by early adulthood. Evidence suggests the involvement of the 

Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here 

we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific 

DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples 

of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 

6-year-old children tested in the Information Sampling Task- and impulsive action in 6- and 10-year-old 

children tested in the Stop Signal Reaction Time Task. We also found the ePRS to be a better overall 

predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS 

(4515 SNPs in our discovery cohort) derived from the latest GWAS for ADHD. We propose that the 

corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in 

children. By adopting a systems biology approach based on gene co-expression networks and genotype-

gene expression (rather than genotype-disease) associations, these results further validate our 

methodology to construct polygenic scores linked to the overall biological function of tissue-specific 

gene networks. 

  



 62 

2. Introduction 

Several psychiatric disorders of developmental origin are characterized by deficits in cognitive 

control – a compromised ability to voluntarily choose a context-appropriate goal-directed response. 

Altered connections and communication between prefrontal and striatal regions appear to be at the 

core of this behavioral trait [1], but the underlying neurobiological processes, as well as early markers of 

vulnerability, are yet to be discovered [2-4]. The cognitive capacity to control and override impulsive 

behaviors improves gradually from childhood to early adulthood, mirroring the protracted 

developmental trajectory of the prefrontal cortex (PFC) [5-9], and its gradual quantitative and 

qualitative changes in dopamine innervation [10-12]. While dopamine axons establish local connections 

in the nucleus accumbens (NAcc) in adolescence, mesocortical dopamine axons are still growing from 

the NAcc to the PFC across this period [13-18]. The extent and organization of mesocortical dopamine 

axon growth in adolescence determines the organization of local PFC circuitry and cognitive function in 

adulthood [19-21]. 

The developmental trajectories of mesocortical and mesolimbic dopamine inputs are temporally 

different but have a reciprocal functional connection [21-24]. Transient postnatal developmental 

overexpression of dopamine D2 receptor in the striatum leads to adult mesocortical dopamine PFC 

dysfunction and cognitive deficits, indicating that striatal dopamine maturational events interact with 

those controlling mesocortical dopamine axon growth [25]. Changes in PFC dopamine 

neurotransmission are associated with opposite changes in NAcc dopamine function [23, 26], and 

alterations in D1- or D2-expressing NAcc pathways impact gene expression in the PFC [27]. Clearly, PFC 

and cognitive control development involve the recruitment of corticostriatal neuronal networks [28, 29]. 

A rapidly increasing number of studies show a strong association between genetic variability within 

the Netrin-1 guidance cue receptor gene, DCC, and several psychiatric disorders of developmental onset, 
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most notably those emerging in adolescence. These disorders are characterized by PFC and NAcc 

dysfunction and deficits in impulse control [30-33]. Early postnatal expression of the DCC gene network 

in the PFC associates with total brain volume in children [34], emphasizing that the Netrin-1/DCC 

guidance cue system is tightly linked to overall early neurodevelopment. In adolescent rodents, DCC-

mediated Netrin-1 signaling organizes the maturation of dopamine networks by promoting mesolimbic 

dopamine axon targeting in the NAcc and controlling the growth of dopamine axons to the PFC [12, 17]. 

Changes in DCC receptor levels in adolescent mice lead to mistargeting of mesolimbic dopamine axons 

in the NAcc and to their ectopic growth to PFC, altering PFC function and cognitive control in adulthood 

[17, 35]. Similar anatomical and behavioral changes occur in humans that are DCC mutation carriers [36, 

37], indicating that the Netrin-1/DCC pathway is part of a gene network closely involved in corticolimbic 

development.  

To date, most human genetic studies have focused on associations between genetic variants and 

phenotypes, and the estimated effects of a given number of variants can be aggregated into a score that 

represents individual genetic risk (called polygenic risk score; PRS). This association between genetic 

variation and behavior/disease ultimately results in relatively few genome-wide significant variants (e.g. 

[38]), most of which belong to noncoding portions of the genome and whose effect is diminished by the 

polygenic nature of complex phenotypes [39, 40]. Several of these non-coding variants are regulatory in 

nature, likely affecting the expression of nearby genes [40], ultimately placing gene expression as an 

intermediate molecular phenotype between genetics and disease [41]. Our approach exploits the facts 

that genes operate within complex networks, code with remarkable tissue-specificity for precise 

biological functions, and the likelihood of identifying relevant biological markers increases by relying on 

genotype-gene expression rather than genotype-disease associations (see [42, 43]). We use a systems 

biology approach to create a genetic score based on genes co-expressed with a gene of interest in a 

specific brain region. We gather all SNPs from the co-expressed genes and assign for each SNP the effect 
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size estimated by the Genome-Tissue Expression (GTEx) project [44], which quantifies the influence of 

variants on tissue-specific gene expression. We aggregate genotypes weighted by the GTEx across all 

SNPs within the co-expression network into an expression-based polygenic score (ePRS), according to 

the individual’s genotype [42, 43]. 

The relationship between genes and behavior is highly indirect, regardless of how strong the 

relationship may be. Here, we forgo direct genotype-disease associations to construct an ePRS based on 

genes co-expressed with DCC in the PFC and the NAcc. Our goal is to create a marker that captures 

individual variation in the processes involved in the maturation of corticolimbic substrates supporting 

inhibitory control. By modifying the approach to genomic profiling, we generated a biological marker 

that can help identify early vulnerability for impulsivity-related phenotypes. We tested the association of 

the biologically-informed genetic score with measurements of impulsivity in three ethnically different 

community samples of 6- and 10-year-old children. 
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3. Materials and Methods 

Detailed description is provided in the Supplemental Materials and Methods. 

Participants 

We used genomic and phenotypic data from three prospective birth cohorts: 1) Maternal Adversity, 

Vulnerability and Neurodevelopment (MAVAN, [45]), 2) Growing Up in Singapore Towards Healthy 

Outcomes (GUSTO, [46]), and 3) Avon Longitudinal Study on Parents and Children (ALSPAC, detailed 

block diagram in Figure S1, [47, 48]). Informed consent was obtained from each participant, and the use 

of these data has been approved by: 1) McGill University, Université de Montréal, Royal Victoria 

Hospital, Jewish General Hospital, Centre hospitalier de l’Université de Montréal, Hôpital Maisonneuve-

Rosemount, St Joseph’s Hospital, and McMaster University for MAVAN; 2) The National Healthcare 

Group Domain Specific Review Board and the Sing Health Centralized Institutional Review Board for 

GUSTO; and 3) the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. See 

supplementary table S6 for a summary of the genotyping information for each cohort. 

 

Identification of corticolimbic DCC gene co-expression networks and ePRS calculation 

Figure 1 shows the steps involved in the identification of the gene networks and the ePRS score. The 

ePRS was calculated considering genes co-expressed with DCC in the PFC and NAcc. We aimed to 

capture DCC co-expression networks within each brain region, with the final ePRS being a joint 

representation of the functional co-expression networks in these two corticolimbic regions. As described 

previously [42, 43, 49], the score was created using the data from: 1) GeneNetwork 

(http://genenetwork.org), 2) BrainSpan (http://www.brainspan.org), 3) the NCBI Variation Viewer, U.S. 

National Library of Medicine, (NCBI) [50], 4) the GTEx project [44], and 5) genotype data in the three 

cohorts. We used GeneNetwork to generate a list of genes co-expressed with DCC in the PFC and in the 

http://genenetwork.org/
http://www.brainspan.org/
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NAcc in mice (absolute value of co-expression correlation greater or equal to 0.5). We used gene 

expression datasets from mice (see supplementary data file) because our study is guided by our 

previous findings in rodents linking variations in Dcc expression to changes in impulse control and in 

mesocorticolimbic dopamine axon targeting [13, 17, 52, 52]. To retain genes that are more active when 

the brain is still undergoing core maturational processes in humans, we used BrainSpan to select 

autosomal transcripts expressed at least 1.5-fold more during the early postnatal development (0-18 

months after birth) than in adulthood (20-40 years of age), with the final networks consisting of 154 

genes in the PFC (see Table S4) and 72 genes in the NAcc (see Table S5). For annotations, we used 

GRCh37.p13 assembly of the NCBI to source chromosome and start/end position for the co-expressed 

genes, which, in turn, were used to gather all the gene-SNP pairs from the GTEx dataset in human PFC 

and NAcc (PFC: 41,053 SNPs, NAcc: 66,428 SNPs). These lists were merged with the genotyping data in 

each of the three cohorts, keeping only the common SNPs and subjecting the final genotyping data sets 

to linkage disequilibrium clumping (r2<0.2) to eliminate highly correlated SNPs. 

To calculate the ePRS, number of effect alleles at a given cis-SNP were weighted by the estimated 

brain-region-specific effect of the genotype on gene expression from the GTEx data. The ePRS was 

obtained by adding the weighted SNPs, accounting for the sign of the correlation between each gene’s 

expression and DCC gene expression. The sum of the estimated effects resulted in ePRS scores for the 

DCC co-expression networks in the PFC and NAcc, which were then aggregated (by summation of the 

two scores) into a single global genetic score termed “corticolimbic DCC-ePRS”. 

Finally, an enrichment analysis was conducted to characterize the functional and biological 

properties of the gene networks that comprise the corticolimbic DCC-ePRS score. A description of the 

tools and datasets used throughout the study can be found in the supplemental material, Table S7. 
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Behavioral Outcomes 

We tested whether the ePRS associates with two aspects of impulsivity: (i) impulsive choice, 

reflecting proneness to make risky choices, as measured by the Information Sampling Task; (ii) impulsive 

action, reflecting the ability to inhibit motor responses, as measured by the Stop-Signal Task. In both 

cases, the ability to self-regulate behavior is required for interrupting or inhibiting competing inputs or 

actions in order to accomplish a specific goal-directed response [1]. A description of the behavioral data 

obtained from each cohort is described in the supplemental material. 

 

Statistical Analysis 

Data were analyzed using R v3.6 [53] and Python v3.7 (https://www.python.org/), and polygenic 

scores were generated using the PRSoS pipeline (https://github.com/MeaneyLab/PRSoS). We 

considered two-tailed hypothesis tests, and significance levels for all tests were set at α < 0.05. For each 

cohort we categorized the ePRS into high- and low-ePRS groups using a median split of the genetic 

score. Analysis of baseline characteristics was performed using Student’s t-test for continuous data (in 

case of unequal variances, Welch’s t-test was used) and	Χ! for categorical variables. Linear regression 

analysis was used to examine the association of the ePRS with the behavioral outcomes, adjusting for 

sex and population stratification. Adjustment for multiple comparisons was applied using Bonferroni 

method, independently for each behavioral construct/cohort. All data were inspected to ensure that the 

assumptions for the tests and the linear regression analyses were met. Power analysis was conducted 

for linear multiple regression, considering the effect of the ePRS on the different outcomes: for α = 0.05, 

sample size of 202, 398, and 4392, and a small effect size f2 = 0.02, the achieved power will be .64, .88, 

and >.95 in MAVAN, GUSTO, and ALSPAC respectively.   

https://www.python.org/
https://github.com/MeaneyLab/PRSoS
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4. Results 

We found no differences in baseline characteristics between ePRS groups in MAVAN, GUSTO, and 

ALSPAC cohorts (Table 1). 

Behavioral Outcomes 

Lower Corticolimbic DCC-ePRS Scores Associate with Higher Measurements of Impulsivity in 

Children 

Information Sampling Task: In MAVAN, the ePRS was associated with meanP-correct values (Figure 

2A: 𝛽 = -0.04, p = .045); the low-ePRS group had lower meanP-correct values (less information sampled, 

lowering the probability of making a correct choice at the point of decision) indicating higher levels of 

impulsive choice in comparison to the high-ePRS group. 

Stop-Signal Task: In GUSTO, the ePRS was associated with the proportion of successfully inhibited 

responses (Figure 2B: 𝛽 = -0.03, p = .027; Figure S3 for complete results); low-ePRS group has a lower 

proportion of successful stops compared to the high-ePRS group, indicating higher levels of impulsive 

action. In ALSPAC, the ePRS was associated with measurements of impulsive action (Figure 2C: 𝛽 = -

10.368, p = .019; Figure S4 for complete results), with the low-ePRS group showing a shorter mean 

reaction time in unsuccessful stop trials- indicating higher levels of impulsive action- compared to the 

high-ePRS group. Also in ALSPAC, there are no differences between ePRS groups when comparing the 

proportion of successful stops, but methodological differences (full details in supplementary methods; 

see Figure S2) in the way the task was conducted in CANTAB ("stop” signal delay was adjusted to 

subject’s performance in MAVAN and GUSTO) versus ALSPAC (fixed delay of 250ms was applied 

irrespective of subject’s performance) prevent the direct comparison of successfully inhibited responses 

between these cohorts. In MAVAN, we found no association between the ePRS and performance in this 

task (Proportion of successful stops: 𝛽 = -0.03, p = .10; Estimated SSRT: 𝛽 = -10.07, p = .57; see Table S2  



 69 

MAVAN 

Sample description Total 
(n = 202) 

Low ePRS 
(n = 96) 

High ePRS 
(n = 106) p-value 

Sex – male (n) 49.5% (100) 56.3% (54) 43.4% (46) 0.09 
Maternal age at birth (years) 30.72 (4.90) 31.42 (5.07) 30.08 (4.67) 0.053 
Gestational age (weeks) 39.03 (1.23) 38.89 (1.30) 39.16 (1.15) 0.11 
Birth weight (g) 3313 (452) 3300 (450) 3224 (456) 0.71 
Maternal education – University degree or above 55.7% (108) 54.3% (50) 56.9% (58) 0.47 
Low family income 20.6% (50) 25.8% (23) 27.3% (27) 0.96 

GUSTO 

Sample description Total 
(n = 398) 

Low ePRS 
(n=202) 

High ePRS 
(n=196) p-value 

Sex – male (n) 53.3% (212) 49.5% (100) 57.1% (112) 0.15 
Maternal age at birth (years) 31.55 (5.04) 31.81 (5.34) 31.28 (4.73) 0.37 
Gestational age (weeks) 38.49 (1.28) 38.47 (1.33) 38.50 (1.23) 0.87 
Birth weight (g) 3137 (416) 3127 (441) 3147 (391) 0.39 
Maternal education – University degree or above 35.64% (103) 38.36% (56) 32.88% (47) 0.39 
Household income < $2000 SGD per month 12.11% (35) 15.75% (23) 8.39% (12) 0.08 

ALSPAC 

Sample description Total 
(n = 4392) 

Low ePRS 
(n=2210) 

High ePRS 
(n=2182) p-value 

Sex – male (n) 49.2% (2159) 48.6% (1075) 49.7% (1084) 0.51 
Maternal age at birth (years) 29.31 (4.47) 29.31 (4.47) 29.31 (4.47) 0.97 
Gestational age (weeks) 39.76 (1.27) 39.79 (1.26) 39.73 (1.28) 0.11 
Birth weight (g) 3499 (465) 3503 (458) 3496 (471) 0.61 
Maternal education – University degree or above 18.9% (786) 19.7% (411) 18.2% (375) 0.25 
Low SES a 35.0% (1537) 34.5% (762) 35.5% (775) 0.49 

 

Table 1. Description of baseline characteristics of the 3 cohort samples. Continuous variables are expressed as 

mean (SD); categorical variables are expressed as percentage (number of subjects). a We used “crowding index” 

as a proxy measure for SES. This index was calculated by dividing the number of individuals living in the family’s 

residence, by the number of rooms in the residence, and we considered low SES when crowding index > 0.75, 

and high SES when crowding index <= 0.75.  
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Figure 1. Flowchart depicting the steps involved in the creation of the corticolimbic DCC-ePRS score. (A) The 

GeneNetwork database was used to generate a Dcc gene co-expression matrix in the PFC and NAcc in mice. 

Genes with a correlation of co-expression ≥  |0.5| were retained. Brainspan was used to identify human 

homologous transcripts and to filter each gene list by selecting the transcripts enriched during the first 18 

months of life, as compared to adulthood, defined by a differential expression ≥ 1.5, within the same brain 

area. Each resulting gene list comprised the DCC co-expression network for their respective brain area. (B) 

Based on their annotation in the NCBI library, using GRCh37.p13 assembly, common SNPs within each co-

expression network, GTEx data base, and genotyping cohort were subjected to linkage disequilibrium clumping 

to remove highly correlated SNPs (r2 ≥ 0.2). Using data from the GTEx project, alleles at a given cis-SNP were 

weighted by the estimated brain-region-specific effect of the genotype on gene expression. The sum of these 

estimated effects resulted in ePRS scores for the DCC co-expression networks in the PFC and NAcc, which we 

aggregated into a single global ePRS score.  
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for complete results). After adjustments for multiple comparisons, the association between the ePRS 

and the proportion of successful stops in GUSTO cohort is no longer significant (p = .054). 

These results show that an ePRS score reflecting variability in the expression of corticolimbic DCC 

gene co-expression networks is associated with the levels of inhibitory control in children from 

ethnically diverse backgrounds. 

Corticolimbic DCC Gene Co-expression Networks: Enrichment Analysis  

Protein-Protein Interaction (PPI) 

We used STRING [54] and Cytoscape [55] to visualize catalogued PPIs in protein products of genes 

within each co-expression network (networks were analyzed separately; only proteins with interactions 

are depicted in Figure 3A). PFC: This network contains 152 nodes (one for each protein with at least 1 

connection with another protein in the network) and 151 edges, corresponding to the mapped 

interactions among the nodes. The PPI enrichment (p = 0.004) indicates that this network contains more 

interactions than expected, compared to a network of equal size composed of a random set of proteins, 

and that the proteins are involved in common biological functions. NAcc: Contains 74 nodes and 50 

edges, and the PPI enrichment (p = 5.1e-11) also suggests a strong biological connection among the 

proteins (see the corresponding gene networks, created using GeneMANIA [56], in Figure S5).  

Tissue-Specific Gene Expression 

We used FUMA [57] to visualize the expression levels of the genes from the co-expression networks 

across the 54 tissue-types included in GTEx. The PFC (comprising BA24 and BA9) and the NAcc are the 1st 

and 4th most enriched tissues for the gene networks’ expression (Figure 3B).  



 72 

 

Figure 2. Association between the corticolimbic DCC-ePRS score and measurements of impulsivity, in (A) 

MAVAN kids (n=197) at 6 years of age (Information Sampling Task: β = -0.04, p = .045), (B) GUSTO kids (n=398) 

at 6 years of age (Proportion of successful stops: β = -0.03, p = .027), and (C) ALSPAC kids (n=4392) at 10 years 

of age (Mean RT – Incorrect stop trials: β = -10.36, p = .019). A lower DCC-ePRS score was associated with higher 

impulsive action and choice in the 3 ethnically-diverse cohorts. The Y-axis represents the predicted values of 

the measurements of impulsivity, the middle of the box is the median, the edges are the lowest and highest 

quartiles, and the error bars (whiskers) represent 1.5 x IQR (interquartile range).  *p<.05.  
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Functional Ontologies 

Using MetacoreTM, we explored the biological context in which the gene networks operate, by 

mapping the genes from each network onto functional categories (Figure 3C, Table S1 for more detailed 

results). The networks are enriched in synaptic components, predominantly in cell junction and plasma 

membrane regions (strongest enrichment for cell junction in PFC: p<3.3e-8, and for synapse in NAcc: 

p<1.3e-19). Enrichment for biological processes showed the involvement of the network in 

neurodevelopmental processes including neuronal differentiation and development (PFC: p<2.1e-4; 

NAcc: p<1e-19), neuron projection guidance (PFC: p<1e-3; NAcc: p<1e-16) and regulation of trans-

synaptic signaling (PFC: p<2.9e-5; NAcc: p<3.09e-17). Enrichment for molecular functions showed a role 

of the networks in protein binding and cell adhesion (PFC: p<2.72e-8; NAcc: p<5.6e-6). These functions 

are fundamental to the establishment of brain connectivity, mainly via axon guidance (e.g. [58]) and 

synaptogenesis (e.g. [59]).  

Developmental Gene expression 

We assessed the enrichment of gene expression for each network across brain regions and 

developmental periods in humans, using the CSEA tool [60, 61]. Both networks are enriched across the 

brain during perinatal periods. Notably, the expression of the NAcc network in the PFC is enriched again 

during adolescence (Figure 3D: p=3.679e-04), in line with previous descriptions of the developmental 

trajectory mediating adolescent corticolimbic maturation [17, 25].  

To explore the ability of the PFC and NAcc networks, and ultimately the ePRS itself, to capture 

transcriptionally co-regulated biological processes, we analyzed the networks’ co-expression patterns in 

their corresponding brain regions during childhood and adulthood using the Brainspan dataset ([62]; 

Figure 4). PFC: In the heatmap representing correlation of gene expression during childhood, there are 3 

main clusters of high co-expression, but only 1 cluster is maintained in adulthood. Finding that  



 74 

 



 75 

Figure 2. Validation of the PFC and NAcc DCC co-expression networks. (A) Protein-Protein interaction (PPI) 

networks constructed from the gene co-expression networks in PFC and NAcc, using the Cytoscape software. 

The edges between the nodes indicate both functional and physical associations, and the size of the sphere is 

proportional to the degree of connectivity with other nodes. The protein networks represent known functional 

interactions between the protein products of the genes that make up the corticolimbic DCC gene networks; 

Significant PPI enrichment in the PFC (p = 0.004) and the NAcc (p = 5.1e-11). Tissue-specific gene expression 

analysis performed in FUMA (B) confirms that the genes that comprise both networks are highly upregulated 

in the PFC and NAcc, according to GTEx dataset v8. (C) A combined enrichment analysis for the co-expression 

networks performed in Metacore TM shows enrichment for diverse neurodevelopmental processes, suggesting 

a common brain maturational role for the networks (full results with FDR adjusted values in Table S3). (D) Cell-

type Specific Expression Analysis (CSEA) analysis reveals that the NAcc and PFC DCC co-expression networks 

are highly enriched throughout the brain during embryonic life and early infancy. However, the NAcc network 

is enriched again in the cortex during late childhood and adolescence (p = 0.0004 for Fisher’s exact test, p = 

0.002 after Benjamini-Hochberg correction). The hexagon levels mark the different degrees of stringency 

applied in the identification of selectively enriched transcripts for that brain region/developmental period. In 

each hexagon there are 4 levels, with the outer level representing the least stringent pSI value (0.05) and the 

inner-most level consisting of the most stringent pSI value (0.0001). The 2 hexagons in between represent a 

pSI = 0.01 and a pSI = 0.001. The size of the hexagon is proportional to the number of genes selectively enriched, 

and the color represents the FDR-adjusted p-values of the expected overlap between the genes in the network 

and the list of selectively enriched genes.  
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correlations of expression of genes in the PFC in childhood are not maintained in adulthood is in line 

with the marked developmental changes in the PFC transcriptome landscape previously described in 

humans and mice [63]. NAcc: The heatmap for childhood gene co-expression shows a large main cluster, 

containing several highly correlated smaller clusters. Many of the smaller NAcc clusters perdure into 

adulthood, indicating that the NAcc network is more stable than the PFC network. 

Comparison between polygenic scores 

We compared our ePRS to a traditional PRS for ADHD on the capacity to predict the same behavioral 

outcomes. For that, we selected the top 4515 most significant SNPs identified in the latest ADHD GWAS 

[64], which corresponds to the GWAS p-value threshold 4.912e-5, and created a score comparable in 

size to the ePRS in terms of number of SNPs. There was no association between the PRS and the main 

outcomes for MAVAN (meanP-correct: 𝛽=-0.01, p=0.48), GUSTO (proportion of successful inhibitions: 

𝛽=-0.009, p=0.52; Figure S3) or ALSPAC (mean reaction time – incorrect stop trials: 	𝛽=-3.248, p=0.46; 

Figure S4) cohorts. We also performed an enrichment analysis to characterize the functional/biological 

properties of the PRS genes and found that they are upregulated across the brain, but not as selectively- 

and to a lesser extent- than the genes from the ePRS. Finally, results from the CSEA show no selective 

spatiotemporal enrichment in the human brain (Figure S6).  
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Figure 4. Heat map of the co-expression for the genes included in the corticolimbic DCC-ePRS, in human PFC 

(top panels) and NAcc (bottom panels). PFC: The heatmap of the co-expression in childhood (left) shows several 

clusters, while for the co-expression patterns in adulthood (right) most of the clusters are not maintained, 

suggesting that genes that are co-expressed during childhood in the PFC are rarely co-expressed in adulthood. 

NAcc: The heatmap in childhood (left) shows many clusters with a very high correlation of expression. 

Interestingly, a larger proportion of these clusters are maintained in adulthood (right) compared to the 

transition between childhood and adulthood in the PFC, indicating a more stable gene network. We retained 

the same order for the genes as in childhood, to be able to compare if the clusters that we observe in childhood 

are maintained in adulthood.  
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5. Discussion 

Impulse control deficits are a common trait of numerous neurodevelopmental psychiatric disorders. 

Discovering their neurobiological underpinnings and early biomarkers will help identifying at risk 

individuals and improving/implementing early prevention and intervention strategies. Here, we 

generated an expression-based polygenic score (ePRS) consisting of SNPs within genes co-expressed 

with the axon guidance cue receptor gene, DCC, in the PFC and NAcc, to create a functional and 

corticolimbic-specific marker of vulnerability to heightened impulsivity. Our results show that the ePRS 

is significantly associated with different measures of impulsive behaviors in children from three 

ethnically diverse independent birth cohorts. Across all cohorts, the low-ePRS groups show higher 

impulsivity-related phenotypes. Detailed characterization of the gene networks comprising the 

corticolimbic DCC-ePRS show significant functional interactions, contribution to core 

neurodevelopmental processes, and enriched expression in cortical neurons, particularly from 

embryonic life to adolescence. 

Most PRSs are characterized by a limited generalizability due to a marked disparity in prediction 

accuracy across different populations [65, 66]. This limitation, partially explained by the biased ancestry 

representation in most well-powered discovery GWASs, does not affect the ability of the ePRS to predict 

impulsive phenotypes across 3 independent birth cohorts from Canada, Singapore, and UK. Other 

studies that have implemented a similar approach to polygenic risk analysis by using the ePRS 

methodology reported a high predictive value of their genetic scores applied across diverse populations 

[42, 67]. To understand how the ePRS compares to a traditionally derived PRS, in this study we 

constructed a score based on the latest GWAS for ADHD and found that, even though the PRS score 

predicts impulsive behavior in one cohort (Figure S3), our ePRS predicts a larger number of outcomes, 

across all three cohorts. This is consistent with other studies that have observed a higher prediction 

accuracy of their ePRS compared to conventional PRSs [34, 42]. Since the ePRS methodology relies on 
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identifying tissue-specific gene networks and their function, instead of identifying scattered genetic 

variants across the genome, we are able to create a more biologically meaningful score compared to 

conventional PRSs. Finally, the associated phenotype to weigh the SNPs in our ePRS is gene expression, 

which, given the current state of technology, is a highly quantitative trait measurable with high 

precision, across different tissues and conditions, by high-throughput sequencing, and thus yielding a 

score that globally represents transcriptionally co-regulated biological processes. These results suggest 

that our genetic profiling approach increases the likelihood of identifying trait-relevant biological 

markers. 

We identified co-expression networks for the guidance cue receptor, DCC, specifically in the NAcc 

and the PFC, to create a biological marker related to neurodevelopmental processes occurring in these 

regions, that could predict levels of impulsivity in children. In addition to establishing the ePRS’ 

predictive power of impulsivity across 3 different cohorts, we found the co-expression networks to be 

highly enriched for protein-protein interactions, suggesting their involvement in common biological 

functions. Since DCC receptors are master organizers of neuronal circuits, and since variations in its 

expression in early life result not only in functional and anatomical alterations of neural pathways 

involved in inhibitory control, but also in alterations of inhibitory control itself [17, 36, 51], it is not 

surprising that DCC co-expression networks in these corticolimbic hubs associate with behavioral traits 

implicated in psychopathology. Indeed, proper establishment of neuronal circuits is essential to mental 

health [68]. The genes that make up the networks are highly upregulated in the PFC and the NAcc and 

are involved in a wide range of neurodevelopmental processes. This enrichment suggests a prominent 

role of the gene networks in the maturation of both PFC and NAcc circuits, validating the use of these 

networks as the basis for the ePRS calculation and their potential use as a functional biomarker to 

predict reflection and motor impulsivity in children. 
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Results from several studies in humans show that mutations in the DCC gene lead to dramatic 

neurodevelopmental changes, including agenesis of the corpus callosum [36, 69, 70], developmental 

split-brain syndrome [69], and congenital mirror movements [37, 70, 71]. Similar noticeable changes 

have been described in Dcc homozygous or haploinsufficient mice [72], highlighting the core role of DCC 

in neurodevelopmental wiring. As DCC expression shifts from high to low in adolescence, its functional 

role also shifts from broad organization of developing neuronal networks to the refinement of neuronal 

architecture, synaptogenesis and synaptic plasticity of established matured circuits [30, 31, 73]. Recent 

human studies have also shown that many polymorphisms in DCC, as well as altered levels of gene 

expression, are related to numerous neuropsychiatric conditions of developmental onset, some of which 

are characterized by deficits in PFC function and impulse control [30, 31]. Individual genes do not 

operate in isolation and cannot explain the entire spectrum of mental disorders, as it has been well 

established by a wealth of data from recent GWAS studies showing massive polygenicity among 

neuropsychiatric disorders. Therefore, DCC receptors act as a master organizer of specific synaptic 

circuits, as a part of a gene network, and we have shown that a PFC gene network for DCC is associated 

with overall brain structure [34]. Our functional analyses of the corticolimbic DCC gene networks suggest 

their implication in the development of the neural substrates underlying inhibitory control behaviors. 

The genes that comprise the networks are co-expressed in crucial brain regions (see Figure 3B, Figure 4), 

suggesting their spatial convergence. Furthermore, the expression of genes known to increase risk for 

neuropsychiatric disorders converge temporally, especially before and during the onset of the disorder 

[68]. Here we observed that gene expression for both networks is enriched during specific pre- and post-

natal periods, including an enriched expression of the NAcc network in cortical neurons during late 

childhood and adolescence. As noted previously, the neurodevelopmental role that DCC plays changes 

as a function of developmental stage, and the fact that a DCC co-expression network is enriched again 
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during late childhood and adolescence suggest that alterations in its function/expression can impact the 

adolescent development of synaptic connectivity and function in the PFC later in life.  

We propose a novel type of marker for impulsivity-related phenotypes in children. Our biologically-

informed approach to polygenic risk analysis aims to capture variation in the function/expression of 

gene networks predominantly associated with PFC and NAcc maturation, two regions subserving 

inhibitory control. Whether integrating relevant SNPs associated with other forms of gene expression 

regulation beyond cis (e.g., transcription factors, promoter regions, and chromatin modifications) in 

non-coding regions changes the performance of the scores, will be investigated in future studies. 

Exploring the association between the ePRS and inhibitory control behaviors later in life is needed in 

order to investigate the possible use of this genetic marker as a probabilistic risk score for vulnerability 

phenotypes linked to psychopathologies of adolescent onset. Our results are an example of the utility of 

understanding the molecular processes that govern the development of a neural circuit, and how this 

knowledge can be applied to predict genetic susceptibility to endophenotypes linked to psychiatric 

conditions. 
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6. Supplementary Information 

Supplemental Materials and Methods 

Participants 

We used genomic and phenotypic data from three prospective birth cohorts: 1) Maternal Adversity, 

Vulnerability and Neurodevelopment (MAVAN), 2) Growing Up in Singapore Towards Healthy Outcomes 

(GUSTO), and 3) Avon Longitudinal Study on Parents and Children (ALSPAC). 

The MAVAN cohort consisted of children recruited from Montreal (Quebec) and Hamilton (Ontario), 

in Canada. Eligibility criteria for mothers specified being 18 years of age or older, with singleton 

pregnancies, and fluency in English or French. Approval for the MAVAN project was obtained from 

McGill University, Université de Montréal, Royal Victoria Hospital, Jewish General Hospital, Centre 

hospitalier de l’Université de Montréal, Hôpital Maisonneuve-Rosemount, St Joseph’s Hospital, and 

McMaster University. Informed consent was obtained from each participant (for more information see 

[]). Extensive phenotyping was carried out from birth, including measures of reflection impulsivity 

assessed with the Information Sampling Task (IST) at 6 years of age. After verification of complete 

genotypic and phenotypic data, we retained 202 children for the current study. 

The GUSTO cohort involved children born at the National University Hospital (NUH) or KK Women’s 

and Children’s Hospital (KKH) in Singapore, between November 2009 and May 2011. The eligibility 

criteria for mothers specified being of Chinese, Malay or Indian ethnicity with homogeneous parental 

ethnic background, as well as being aged 18 years and above at the time of recruitment. The study was 

approved by the National Healthcare Group Domain Specific Review Board and the Sing Health 

Centralized Institutional Review Board. Informed written consent was obtained from each participant 

(for detailed information see [], or https://sicsdatavault.sg/gusto/). Extensive phenotyping was carried 

https://sicsdatavault.sg/gusto/
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out from birth, including measures of impulsivity in the offspring assessed with the Stop Signal Reaction 

Time Task (SSRT) at 6 years of age. After verification of complete genotypic and phenotypic data, we 

retained 398 children in the current study. 

The ALSPAC cohort consisted of children with an expected delivery date between April 1 1991, and 

December 31 1992, from a geographically defined area in the Southwest of England. For data collected 

after the age of seven, the total sample size was 15,454 pregnancies, resulting in 15,589 fetuses, of 

whom, 14,901 were alive at 1 year of age (for complete description see []). Phenotypic data from 

subjects were collected in order to assess neurodevelopment, including measures of impulsivity 

assessed with the SSRT task at 10 years of age. After verification of complete genotypic and phenotypic 

data, we retained 4392 children in the current study (detailed block diagram in Figure S1). Please note 

that the study website contains details of all the data that is available through a fully searchable data 

dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 

Ethics Committees. A full list of the ethics committees that approved different aspects of the ALSPAC 

studies is available at http://www.bristol.ac.uk/alspac/researchers/research-ethics/. Informed consent 

for the use of data collected via questionnaires and clinics was obtained from participants following the 

recommendations of the ALSPAC Ethics and Law Committee at the time. 

Genotyping 

MAVAN: Autosomal SNPs were genotyped using genome-wide platforms (PsychArray/PsychChip, 

Illumina) according to manufacturer’s guidelines, with genomic DNA derived from buccal epithelial cells. 

Quality control procedure was carried out using PLINK 1.951 (Purcell et al., 2007). Samples with a call 

rate less than 90% were removed. SNPs with a low call rate (< 95%), minor allele frequency (MAF) < 5%, 

and low p-values on Hardy-Weinberg Equilibrium exact test (p < 1e-40) were removed, which resulted in 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
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a total of 242,211 SNPs. Imputation using the Sanger Imputation Service (McCarthy et al., 2016) and the 

Haplotype Reference Consortium (HRC) as the reference panel (release 1.1) was performed, resulting in 

20,790,893 autosomal SNPs with an info score > 0.80 []. 

GUSTO: Genotyping was performed using Illumina OmniExpressExome array and split by ethnicity 

for quality checks. Non-autosomal SNPs, SNPs with low call rates (< 95%), MAF < 5%, and failed Hardy-

Weinberg equilibrium p-value < 1e-6 were removed. Variants discordant with their respective 

subpopulation in the 1000 Genomes Project [] reference panel were removed (Chinese: EAS with a 

threshold of 0.20; Malays: EAS with a threshold of 0.30; Indian: SAS with a threshold of 0.20). Samples 

with call rate < 99%, cryptic relatedness and sex/ ethnic discrepancies were excluded. The resulting data 

were pre-phased using SHAPEIT v2.837 with family trio information. We then used Sanger Imputation 

Service for imputation, choosing 1000 Genomes Project Phase 3 as reference panel and imputed “with 

PBWT, no pre-phasing” (the Positional Burrows Wheeler Transform algorithm) as the pipeline. Imputed 

data that were non-monomorphic, had biallelic SNPs and an INFO score > 0.80 were retained. Imputed 

genotyping data that were common in all three ethnicities (5,771,259 SNPs) were used for further 

analyses. 

ALSPAC. Children were genotyped using the Illumina HumanHap550-quad chip genotyping platforms 

by 23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory 

Corporation of America, Burlington, NC, US. DNA was extracted from blood, cell line, and mouthwash 

samples, then the resulting raw genome-wide data were subjected to standard quality control 

methods. Participants with inconsistent self-reported and genotyped sex, minimal or excessive 

heterozygosity, high levels of individual missingness (>3%) and insufficient sample replication (IBD < 0.8) 

were excluded. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for violations 

of Hardy-Weinberg equilibrium (p < 5e-7) were removed. Cryptic relatedness was measured as 
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proportion of identity by descent (IBD > 0.1). Related subjects that passed all other quality control 

thresholds were retained during subsequent phasing and imputation. For all the subjects that were 

retained (N = 9115), a total of 500,527 SNPs passed these quality control filters, and after imputation 

with Impute v3 and Haplotype Reference Consortium (HRC) imputation reference panel (release 1.1), 

total genotyping data resulted in 38,898,739 SNPs. Consent for biological samples has been collected in 

accordance with the Human Tissue Act (2004). Informed consent for the use of data collected via 

questionnaires and clinics was obtained from participants following the recommendations of the 

ALSPAC Ethics and Law Committee at the time. 

See Table S6 for a summary of the genotyping information for each cohort. See Table S7 for a brief 

description of the tools and datasets used throughout the study. 

Identification of corticolimbic DCC gene co-expression networks and ePRS calculation 

The dataset for the PFC network was generated from 29 male mice, between 10-12 weeks of age. 

The large-scale gene expression analysis was performed across recombinant inbred (RI) strains that 

were derived from the C57BL6/J x DBA/2J (BXD) genetic mapping panel, resulting in the profiling of PFC 

tissue from 27 BXD strains and the 2 progenitor strains (N=29). The Affymetrix Mouse Genome 430 type 

2.0 microarray platform was used, and the results were normalized using the robust multi-array average 

(RMA) expression measure. Correlations for Dcc gene co-expression were calculated using the Pearson 

correlation coefficient, using the trait ID 1440487_at. This dataset can be downloaded from the Gene 

Expression Omnibus repository (GSE28515) and can be queried on GeneNetwork (GN Accession GN135). 

 

The dataset for the nucleus accumbens network was generated from 75 mice, 54 from the BXD 

panel and 21 mice reported in GeneNetwork as “other” strains. The Illumina Mouse WG-6 v1.1 
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Expression BeadChip platform was used, and the results were normalized using the rank invariant set 

normalization. Correlations for gene expression were calculated using the Pearson correlation 

coefficient, using the trait IDILM100460270. This dataset (GeneNetwork accession GN285) does not 

contain information to further inspect the details of the experiment.  

Behavioral Outcomes 

We explored whether the corticolimbic DCC-ePRS score associates with two different aspects of 

impulsivity: (i) impulsive choice, reflecting a proneness to make risky choices, as measured by the 

Information Sampling Task (IST); (ii) impulsive action, reflecting a compromised faculty to inhibit motor 

responses, as measured by the stop-signal reaction time task (SSRT). In both cases, the ability to self-

regulate behavior is required for interrupting or inhibiting competing inputs or actions in order to 

accomplish a specific goal-directed response [] (See Figure S2).  

Information Sampling Task (IST).  The IST is part of the CANTAB battery of neuropsychological tests 

and is designed to measure impulsive decision making. For each trial, a 5x5 matrix of gray boxes is 

presented on a computer screen, with two additional colored boxes centered below, indicating the two 

possible colors hidden underneath the gray boxes. Children are told that this is a game for points and 

that by correctly choosing the color appearing more frequently under the gray boxes they can win 

points. Once a grey box is selected, it immediately opens the box to reveal which of the two colors is 

underneath. Subjects are told that they can open as many boxes as they want, without time limitation, 

before making a decision. Once the subject decides and indicates which of the 2 colors appears more 

frequently, the color under the remaining gray boxes is revealed, along with a message stating whether 

the subject chose the correct response or not. The main outcome from this task is the mean probability 

of being correct (meanP-correct) when the response is made. Lower scores indicate more impulsivity 

because they are obtained when less information is gathered before deciding which color is the most 
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prevalent (this score is a measure of impulsive choice). This task was performed by children in the 

MAVAN cohort at 72 months of age.  

Stop-Signal Task (SST). The SST is designed to measure inhibitory control of a motor response, a 

construct of impulsive action. Participants in this task are required to respond as fast as possible to a 

“go” signal across many trials. On a subset of these trials, a “stop” signal is presented shortly after the 

“go” signal, and subjects must try to inhibit an already initiated response. We studied 2 variants of the 

SST:  

SST – Standard: By presenting the “stop” signal with varying delays after the “go” signal, an estimate 

of the time required by each subject to successfully inhibit an ongoing response can be calculated. This 

outcome is called the Stop-signal Reaction Time or SSRT. Following each incorrect response, the 

subsequent presentation of the “stop” signal is delayed 50ms, while for each correctly inhibited 

response, the subsequent presentation of the “stop” signal is shortened by 50ms. This process serves to 

estimate the latency for the “stop” signal at which the participant responded correctly 50% of the time, 

which ultimately provides the basis for SSRT estimation. Additionally, we investigated the proportion of 

successfully inhibited responses when presented with the “stop” signal, which serves as another main 

outcome in the SST (see []). This task was performed by children in MAVAN and GUSTO cohorts at 6 

years of age. 

SST – Modified: In the modified version of the task, the “stop” signal is presented with a fixed delay 

after the “go” signal (see Figure S2). This modification prevents SSRT estimation, but the ability to 

actively suppress the response when presented with the “stop” signal is still required. Therefore, other 

components of the task serve as the main outcomes to study. Here, we investigated the mean reaction 

time of responses during unsuccessful stop trials and the proportion of unsuccessful stops. This task was 

performed by children in ALSPAC cohort at 10 years of age.  
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Note: While several measures can be calculated for the SST, we only studied estimated SSRT (for 

MAVAN and GUSTO), accuracy on stop trials (all 3 cohorts), and mean reaction time in incorrect stop 

trials (for ALSPAC). 

Validation of the PFC and NAcc DCC co-expression networks 

To characterize the functional and biological properties of the gene networks that comprise the 

corticolimbic DCC-ePRS score, we used 5 bioinformatic resources: 1) the STRING database ([] 

https://string-db.org/) to construct the protein-protein interaction networks and analyze functional 

interactions between gene products; 2) the Cytoscape software to design and visualize the final PPI 

networks [], https://cytoscape.org/; 3) Functional Mapping and Annotation (FUMA, [], 

https://fuma.ctglab.nl/) to explore the expression of the genes from the co-expression networks across 

the 54 tissue types reported in GTEx v8; 4) MetaCoreTM (Clarivate Analytics) to perform enrichment 

analysis by mapping genes in the co-expression networks onto functional ontologies; and 5) the Cell-

type Specific Expression Analysis (CSEA, [] http://genetics.wustl.edu/jdlab/csea-tool-2/) to analyze 

selective enrichment of transcripts in particular brain regions and across different developmental 

periods (for a complete description on how to use this resource, see [], and see CSEA explanation below 

in the supplemental methods). These different bioinformatic resources allowed us to explore the 

biological context in which the genes within the co-expression networks operate. 

Finally, we used the human post-mortem brain samples BrainSpan dataset to evaluate expression 

levels of the genes comprising the PFC and the NAcc co-expression networks in childhood (n=6 for NAcc, 

n=12 for PFC, ages from 4 months to 11 years) and adulthood (n=7 for NAcc and PFC, ages from 19 to 40 

years). This allows us to investigate whether the networks originally identified in mice are also observed 

in humans and the extent to which the pattern of co-expression in childhood is maintained across the 

lifespan. To simplify the visualization of the clustered genes and their consistency across development, 

https://string-db.org/
https://cytoscape.org/
https://fuma.ctglab.nl/
http://genetics.wustl.edu/jdlab/csea-tool-2/
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we kept the same order for the genes for both time points, for each brain region. This analysis was 

performed using the R-based package heatmaply []. 

Cell-type Specific Expression Analysis 

Results presented in Figure 3 (panel 3D) show the enrichment in gene expression in the human 

brain, according to region and age. The “cell-type specific expression analysis” (CSEA) tool was 

developed by the laboratory of Joseph Dougherty in NY (Howard Hughes Medical Institute, the 

Rockefeller University; see []) to investigate, among its many applications, the selective expression of 

genes to particular brain regions and across different developmental periods. This selective expression 

(termed specificity index in the tool) is calculated by comparing 60 different gene expression profiles – 

one profile for each brain region at each developmental period. For each profile, the identification of 

selectively enriched genes is determined at different levels of stringency (specificity index probability- 

pSI from 0.05 to 0.0001). A more stringent analysis results in a smaller list of enriched genes that are 

highly unique to that profile. Using a Fisher’s exact test (with Benjamini-Hochberg correction), this CSEA 

tool calculates the expected overlap between an input gene list and the previously calculated enriched 

lists for each of the 60 profiles, at 4 varying degrees of stringency (pSI = {0.05, 0.01, 0.001, 0.0001}). 

Comparison between the corticolimbic DCC-ePRS and other polygenic scores 

We generated other polygenic scores using our accelerated pipeline 

(https://github.com/MeaneyLab/PRSoS, []), for each subject. To test and compare the predictive power 

and functional cohesiveness of similarly large networks derived from different approaches, we 

calculated other polygenic scores. First, we calculated a traditional polygenic score comparable in size to 

the ePRS in terms of number of SNPs, considering the top 4515 SNPs from the latest ADHD GWAS, which 

corresponds to the GWAS p-value threshold 4.912e-5 []. We investigated whether the PRS for ADHD 

would associate with impulsivity measurements in the same three cohorts, and then carried out a 

https://github.com/MeaneyLab/PRSoS
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functional enrichment analysis to characterize the biological properties of the resulting group of genes 

that, based on genomic location, were mapped from the SNPs included in the score. We also calculated 

a polygenic score based on a random subset of 4515 SNPs, where we matched the proportion of SNPs 

from each brain region to the corticolimbic DCC-ePRS (2040 SNPs in the PFC and 2475 SNPs in the NAcc) 

and weighted the SNPs by the corresponding brain-region-specific effect from GTEx. We tested the 

association of this random ePRS with impulsivity measurements.  

Statistical Analysis 

We generated polygenic scores for all subjects with available genotypic data, with the final genetic 

scores categorized into low or high PRS/ePRS using a median split. All subsequent analyses, which 

included the comparison of baseline characteristics and the linear regressions used to examine the 

association of the genetic scores with the behavioral outcomes, were ran using subjects with complete 

genotypic and phenotypic data. Based on our inspection for influential observations, we excluded 5 

datapoints from the MAVAN dataset. The population structure of the MAVAN, GUSTO, and ALSPAC 

cohorts were evaluated using principal component analysis of all genotyped SNPs that passed the 

quality control with low allele frequency (MAF > 5%) and with the following pruning parameters: not in 

high linkage disequilibrium (r2 > 0.2) across 50 kb regions [] and a sliding window of 5 SNPs for MAVAN 

and GUSTO cohorts, and not in high linkage disequilibrium across 100 kb region, increment of 5 SNPs 

and variance inflation factor threshold of 1.01 for ALSPAC cohort. Based on the inspection of the scree 

plot, the first three principal components in MAVAN and GUSTO, and the first 10 principal components 

in ALSPAC, were the most informative of population structure and were included in all subsequent 

analyses. 
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Supplemental Figures and Tables 

Supplementary Table 1 

Enrichment Analysis (MetacoreTM) 
  PFC Network  NAcc Network 
  p-value FDR  p-value FDR 
Cellular Localizations    
Synapse  0.000004 0.00024  1.301e-19 4.461e-17 
Cell junction  3.304e-8 0.000005  1.623e-18 2.799e-16 
Postsynapse  0.00016 0.00301  3.781e-17 3.542e-15 
Synaptic membrane  0.00001 0.00051  4.131e-17 3.542e-15 
Asymmetric synapse  0.0039 0.034  1.231e-15 8.455e-14 
Neuron to neuron synapse  0.0059 0.041  3.906e-15 2.233e-13 
Postsynaptic density  0.0036 0.032  1.448e-14 7.095e-13 
Postsynaptic specialization  0.00012 0.0024  5.222e-14 2.239e-12 
Plasma membrane region  0.00014 0.0024  1.307e-13 4.983e-12 
Cell periphery  0.000087 0.00204  8.018e-13 2.750e-11 
Molecular Functions       
Protein binding  2.723e-8 0.0000056  2.210e-7 0.000092 
Binding  0.000217 0.0148  0.000016 0.0015 
Voltage-gated ion channel activity  0.482 0.634  0.000017 0.0015 
Voltage-gated channel activity  0.487 0.643  0.000018 0.0015 
Voltage-gated cation channel activity  0.675 0.781  0.000021 0.0015 
Protein domain specific binding  0.224 0.403  0.000027 0.0016 
Cation channel activity  0.76 0.83  0.000076 0.0038 
Gated channel activity  0.15 0.32  0.000083 0.0038 
Ion channel activity  0.30 0.48  0.000096 0.0040 
Glycosaminoglycan binding  0.023 0.15  0.00012 0.0043 
Biological Processes       
Modulation of chemical synaptic transmission  0.0025 0.016  2.199e-18 3.724e-15 
Regulation of trans-synaptic signaling  0.0026 0.016  2.349e-18 3.724e-15 
Neuron differentiation  0.00021 0.0028  1.171e-17 1.138e-14 
Neuron development  0.00093 0.0078  1.574e-17 1.138e-14 
Generation of neurons   0.0000058 0.00025  1.795e-17 1.138e-14 
Trans-synaptic signaling  0.000029 0.00075  3.090e-17 1.633e-14 
Chemical synaptic transmission  0.000064 0.0012  1.464e-16 5.803e-14 
Anterograde trans-synaptic signaling  0.000064 0.0012  1.464e-16 5.802e-14 
Synaptic signaling  0.000091 0.0016  2.627e-16 9.256e-14 
Neurogenesis  0.000015 0.00048  3.390e-16 1.075e-13 

 
Table S1. Gene ontology categories related to genes included in the DCC gene co-expression networks in 

the PFC and the NAcc. 
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Table S2. Estimated effects of the ePRS on different impulsivity measures across cohorts. All models were 

adjusted for population stratification and sex.   
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Table S3. Correlations between the continuous ePRS scores and the behavioral measures investigated in 

each cohort.  
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Supplementary Table 4. Co-expression network in PFC 

Gene name Ensembl ID Description 
BTG3 ENSG00000281484 BTG anti-proliferation factor 3 
HSPA1L ENSG00000236251 heat shock protein family A (Hsp70) member 1 like 
CXADR ENSG00000154639 CXADR Ig-like cell adhesion molecule 
SURF2 ENSG00000281024 surfeit 2 
GRIK1 ENSG00000171189 glutamate ionotropic receptor kainate type subunit 1 
SPRY2 ENSG00000136158 sprouty RTK signaling antagonist 2 
UFM1 ENSG00000120686 ubiquitin fold modifier 1 
GNG4 ENSG00000282972 G protein subunit gamma 4 
SNRPB2 ENSG00000125870 small nuclear ribonucleoprotein polypeptide B2 
METTL9 ENSG00000284548 methyltransferase like 9 
RNF152 ENSG00000176641 ring finger protein 152 
COL6A2 ENSG00000142173 collagen type VI alpha 2 chain 
EEF1B2 ENSG00000283391 eukaryotic translation elongation factor 1 beta 2 
TMEM47 ENSG00000147027 transmembrane protein 47 
GLRA2 ENSG00000101958 glycine receptor alpha 2 
SLC2A10 ENSG00000197496 solute carrier family 2 member 10 
TIMM17B ENSG00000126768 translocase of inner mitochondrial membrane 17B 
BACE2 ENSG00000182240 beta-secretase 2 
NXPH1 ENSG00000122584 neurexophilin 1 
NRP1 ENSG00000099250 neuropilin 1 
RSU1 ENSG00000148484 Ras suppressor protein 1 
EFNB1 ENSG00000090776 ephrin B1 
RPS4X ENSG00000198034 ribosomal protein S4 X-linked 
FJX1 ENSG00000179431 four-jointed box kinase 1 
COMMD6 ENSG00000188243 COMM domain containing 6 
ABHD3 ENSG00000158201 abhydrolase domain containing 3, phospholipase 
GABRA5 ENSG00000186297 gamma-aminobutyric acid type A receptor subunit alpha5 
PKIG ENSG00000168734 cAMP-dependent protein kinase inhibitor gamma 
FTH1 ENSG00000167996 ferritin heavy chain 1 
IGSF1 ENSG00000147255 immunoglobulin superfamily member 1 
HS6ST2 ENSG00000171004 heparan sulfate 6-O-sulfotransferase 2 
LRRN1 ENSG00000175928 leucine rich repeat neuronal 1 
GPC3 ENSG00000147257 glypican 3 
TRIP13 ENSG00000071539 thyroid hormone receptor interactor 13 
SEMA5A ENSG00000112902 semaphorin 5A 
MAPRE1 ENSG00000101367 microtubule associated protein RP/EB family member 1 
ITPA ENSG00000125877 inosine triphosphatase 
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TAC1 ENSG00000006128 tachykinin precursor 1 
CYP26A1 ENSG00000095596 cytochrome P450 family 26 subfamily A member 1 
LAPTM5 ENSG00000162511 lysosomal protein transmembrane 5 
RPL23 ENSG00000125691 ribosomal protein L23 
SDC3 ENSG00000162512 syndecan 3 
CHST8 ENSG00000124302 carbohydrate sulfotransferase 8 
KRT17 ENSG00000128422 keratin 17 
MYCN ENSG00000134323 MYCN proto-oncogene, bHLH transcription factor 
EVL ENSG00000196405 Enah/Vasp-like 
ROMO1 ENSG00000125995 reactive oxygen species modulator 1 
ETV4 ENSG00000175832 ETS variant transcription factor 4 
ITGA5 ENSG00000161638 integrin subunit alpha 5 
PDZRN3 ENSG00000121440 PDZ domain containing ring finger 3 
TBC1D10A ENSG00000099992 TBC1 domain family member 10A 
BUD31 ENSG00000106245 BUD31 homolog 
EHBP1L1 ENSG00000173442 EH domain binding protein 1 like 1 
NFKBIE ENSG00000146232 NFKB inhibitor epsilon 
MAF ENSG00000178573 MAF bZIP transcription factor 
RHPN2 ENSG00000131941 rhophilin Rho GTPase binding protein 2 
SLN ENSG00000170290 sarcolipin 
DAB2 ENSG00000153071 DAB adaptor protein 2 
FHL3 ENSG00000183386 four and a half LIM domains 3 
CHST11 ENSG00000171310 carbohydrate sulfotransferase 11 
DCK ENSG00000156136 deoxycytidine kinase 
RPL30 ENSG00000156482 ribosomal protein L30 
RPL12 ENSG00000197958 ribosomal protein L12 
LOXL1 ENSG00000129038 lysyl oxidase like 1 
NDUFB11 ENSG00000147123 NADH:ubiquinone oxidoreductase subunit B11 
WFIKKN2 ENSG00000173714 WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2 
SOX12 ENSG00000177732 SRY-box transcription factor 12 
TSPAN6 ENSG00000000003 tetraspanin 6 
BARX2 ENSG00000043039 BARX homeobox 2 
COTL1 ENSG00000103187 coactosin like F-actin binding protein 1 
MARCKS ENSG00000277443 myristoylated alanine rich protein kinase C substrate 
PRICKLE2 ENSG00000163637 prickle planar cell polarity protein 2 
HMGCS1 ENSG00000112972 3-hydroxy-3-methylglutaryl-CoA synthase 1 
UST ENSG00000111962 uronyl 2-sulfotransferase 
RGS20 ENSG00000147509 regulator of G protein signaling 20 
RNF180 ENSG00000164197 ring finger protein 180 
RGS9 ENSG00000108370 regulator of G protein signaling 9 
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SOCS2 ENSG00000120833 suppressor of cytokine signaling 2 
CKAP4 ENSG00000136026 cytoskeleton associated protein 4 
RPS3 ENSG00000149273 ribosomal protein S3 
GABRG1 ENSG00000163285 gamma-aminobutyric acid type A receptor subunit gamma1 
PPP1R14B ENSG00000173457 protein phosphatase 1 regulatory inhibitor subunit 14B 
CHRDL1 ENSG00000101938 chordin like 1 
CHCHD3 ENSG00000106554 coiled-coil-helix-coiled-coil-helix domain containing 3 
ZNHIT1 ENSG00000106400 zinc finger HIT-type containing 1 
TNNI3 ENSG00000129991 troponin I3, cardiac type 
CASK ENSG00000147044 calcium/calmodulin dependent serine protein kinase 
LRRC17 ENSG00000128606 leucine rich repeat containing 17 
VIPR2 ENSG00000106018 vasoactive intestinal peptide receptor 2 
SOX2 ENSG00000181449 SRY-box transcription factor 2 
PRDX4 ENSG00000123131 peroxiredoxin 4 
CRH ENSG00000147571 corticotropin releasing hormone 
SNX7 ENSG00000162627 sorting nexin 7 
DACT1 ENSG00000165617 dishevelled binding antagonist of beta catenin 1 
MSI1 ENSG00000135097 musashi RNA binding protein 1 
VEGFC ENSG00000150630 vascular endothelial growth factor C 
DCAF12 ENSG00000198876 DDB1 and CUL4 associated factor 12 
RALA ENSG00000006451 RAS like proto-oncogene A 
HNMT ENSG00000150540 histamine N-methyltransferase 
TTL ENSG00000114999 tubulin tyrosine ligase 
IGFBP5 ENSG00000115461 insulin like growth factor binding protein 5 
CD248 ENSG00000174807 CD248 molecule 
CYC1 ENSG00000179091 cytochrome c1 
EZR ENSG00000092820 ezrin 
DLX1 ENSG00000144355 distal-less homeobox 1 
SDHAF1 ENSG00000205138 succinate dehydrogenase complex assembly factor 1 
ENDOG ENSG00000167136 endonuclease G 
ELN ENSG00000049540 elastin 
POU3F3 ENSG00000198914 POU class 3 homeobox 3 
MPZL1 ENSG00000197965 myelin protein zero like 1 
PCOLCE ENSG00000106333 procollagen C-endopeptidase enhancer 
DNAJB1 ENSG00000132002 DnaJ heat shock protein family (Hsp40) member B1 
RNF2 ENSG00000121481 ring finger protein 2 
POLR2G ENSG00000168002 RNA polymerase II subunit G 
NPNT ENSG00000168743 nephronectin 
RPL27 ENSG00000131469 ribosomal protein L27 
DTYMK ENSG00000168393 deoxythymidylate kinase 
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KCNIP1 ENSG00000182132 potassium voltage-gated channel interacting protein 1 
WWTR1 ENSG00000018408 WW domain containing transcription regulator 1 
TGFB2 ENSG00000092969 transforming growth factor beta 2 
TGFB1 ENSG00000105329 transforming growth factor beta 1 
DPP3 ENSG00000254986 dipeptidyl peptidase 3 
WSB2 ENSG00000176871 WD repeat and SOCS box containing 2 
G0S2 ENSG00000123689 G0/G1 switch 2 
UNC13C ENSG00000137766 unc-13 homolog C 
GCK ENSG00000106633 glucokinase 
CD244 ENSG00000122223 CD244 molecule 
PDE6D ENSG00000156973 phosphodiesterase 6D 
TLCD1 ENSG00000160606 TLC domain containing 1 
MASP1 ENSG00000127241 mannan binding lectin serine peptidase 1 
SSR2 ENSG00000163479 signal sequence receptor subunit 2 
NT5E ENSG00000135318 5'-nucleotidase ecto 
RND1 ENSG00000172602 Rho family GTPase 1 
FADS2 ENSG00000134824 fatty acid desaturase 2 
FMNL1 ENSG00000184922 formin like 1 
RBM4 ENSG00000173933 RNA binding motif protein 4 
ANAPC11 ENSG00000141552 anaphase promoting complex subunit 11 
MGLL ENSG00000074416 monoglyceride lipase 
ODC1 ENSG00000115758 ornithine decarboxylase 1 
HEYL ENSG00000163909 hes related family bHLH transcription factor with YRPW motif like 
LRRTM1 ENSG00000162951 leucine rich repeat transmembrane neuronal 1 
SERBP1 ENSG00000142864 SERPINE1 mRNA binding protein 1 
CCDC28B ENSG00000160050 coiled-coil domain containing 28B 
TRIB2 ENSG00000071575 tribbles pseudokinase 2 
LIMS2 ENSG00000072163 LIM zinc finger domain containing 2 
H2AW ENSG00000284841 H2A.W histone 
TENM1 ENSG00000009694 teneurin transmembrane protein 1 
TAFA1 ENSG00000183662 TAFA chemokine like family member 1 
NECTIN3 ENSG00000177707 nectin cell adhesion molecule 3 
SELENOW ENSG00000178980 selenoprotein W 
MACROH2A2 ENSG00000099284 macroH2A.2 histone 
NT5C3A ENSG00000122643 5'-nucleotidase, cytosolic IIIA 

 

Table S4. Genes co-expressed with DCC in the PFC 
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Supplementary Table 5. Co-expression network in NAcc 

Gene name Ensembl ID Description 
NEU4 ENSG00000277926 neuraminidase 4 
PPP4R4 ENSG00000278326 protein phosphatase 4 regulatory subunit 4 
MAGI1 ENSG00000282956 membrane associated guanylate kinase, WW and PDZ domain containing 1 
PRKAR2B ENSG00000284096 protein kinase cAMP-dependent type II regulatory subunit beta 
FLRT3 ENSG00000125848 fibronectin leucine rich transmembrane protein 3 
DCC ENSG00000187323 DCC netrin 1 receptor 
RAB27B ENSG00000041353 RAB27B, member RAS oncogene family 
SCRT1 ENSG00000284923 scratch family transcriptional repressor 1 
PDGFB ENSG00000100311 platelet derived growth factor subunit B 
EFNB2 ENSG00000125266 ephrin B2 
MAP1LC3A ENSG00000101460 microtubule associated protein 1 light chain 3 alpha 
KCNA6 ENSG00000151079 potassium voltage-gated channel subfamily A member 6 
ARHGDIG ENSG00000242173 Rho GDP dissociation inhibitor gamma 
PGRMC1 ENSG00000101856 progesterone receptor membrane component 1 
SOX4 ENSG00000124766 SRY-box transcription factor 4 
KLHL13 ENSG00000003096 kelch like family member 13 
GRM7 ENSG00000196277 glutamate metabotropic receptor 7 
NETO2 ENSG00000171208 neuropilin and tolloid like 2 
ISL1 ENSG00000016082 ISL LIM homeobox 1 
ROBO2 ENSG00000185008 roundabout guidance receptor 2 
KCNK3 ENSG00000171303 potassium two pore domain channel subfamily K member 3 
ADAMTSL2 ENSG00000197859 ADAMTS like 2 
LASP1 ENSG00000002834 LIM and SH3 protein 1 
CNTN5 ENSG00000149972 contactin 5 
COL5A1 ENSG00000130635 collagen type V alpha 1 chain 
DPYSL4 ENSG00000151640 dihydropyrimidinase like 4 
MAP3K10 ENSG00000130758 mitogen-activated protein kinase kinase kinase 10 
GPR158 ENSG00000151025 G protein-coupled receptor 158 
KCND2 ENSG00000184408 potassium voltage-gated channel subfamily D member 2 
ADAMTS3 ENSG00000156140 ADAM metallopeptidase with thrombospondin type 1 motif 3 
KCNS2 ENSG00000156486 potassium voltage-gated channel modifier subfamily S member 2 
SYP ENSG00000102003 synaptophysin 
GRID2 ENSG00000152208 glutamate ionotropic receptor delta type subunit 2 
BCL11A ENSG00000119866 BAF chromatin remodeling complex subunit BCL11A 
HOMER1 ENSG00000152413 homer scaffold protein 1 
PODXL2 ENSG00000114631 podocalyxin like 2 
BASP1 ENSG00000176788 brain abundant membrane attached signal protein 1 
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GRIN1 ENSG00000176884 glutamate ionotropic receptor NMDA type subunit 1 
IGSF21 ENSG00000117154 immunoglobin superfamily member 21 
SKIL ENSG00000136603 SKI like proto-oncogene 
SLC6A17 ENSG00000197106 solute carrier family 6 member 17 
NRXN3 ENSG00000021645 neurexin 3 
DRD1 ENSG00000184845 dopamine receptor D1 
DHDH ENSG00000104808 dihydrodiol dehydrogenase 
TMEM163 ENSG00000152128 transmembrane protein 163 
LRFN5 ENSG00000165379 leucine rich repeat and fibronectin type III domain containing 5 
MEF2C ENSG00000081189 myocyte enhancer factor 2C 
SLIT3 ENSG00000184347 slit guidance ligand 3 
DGKB ENSG00000136267 diacylglycerol kinase beta 
NELL2 ENSG00000184613 neural EGFL like 2 
MPP7 ENSG00000150054 membrane palmitoylated protein 7 
RPRM ENSG00000177519 reprimo, TP53 dependent G2 arrest mediator homolog 
CMIP ENSG00000153815 c-Maf inducing protein 
GPRIN1 ENSG00000169258 G protein regulated inducer of neurite outgrowth 1 
WIZ ENSG00000011451 WIZ zinc finger 
PIP5K1C ENSG00000186111 phosphatidylinositol-4-phosphate 5-kinase type 1 gamma 
LRRC40 ENSG00000066557 leucine rich repeat containing 40 
TMEM108 ENSG00000144868 transmembrane protein 108 
MYT1L ENSG00000186487 myelin transcription factor 1 like 
SCN8A ENSG00000196876 sodium voltage-gated channel alpha subunit 8 
OLFM2 ENSG00000105088 olfactomedin 2 
LIN7A ENSG00000111052 lin-7 homolog A, crumbs cell polarity complex component 
PCP4L1 ENSG00000248485 Purkinje cell protein 4 like 1 
SERPINE2 ENSG00000135919 serpin family E member 2 
TUBG1 ENSG00000131462 tubulin gamma 1 
SEMA6C ENSG00000143434 semaphorin 6C 
ARHGAP20 ENSG00000137727 Rho GTPase activating protein 20 
PRMT6 ENSG00000198890 protein arginine methyltransferase 6 
DAB1 ENSG00000173406 DAB adaptor protein 1 
RALGPS2 ENSG00000116191 Ral GEF with PH domain and SH3 binding motif 2 
PLPPR5 ENSG00000117598 phospholipid phosphatase related 5 
TENM3 ENSG00000218336 teneurin transmembrane protein 3 
PLAAT1 ENSG00000127252 phospholipase A and acyltransferase 1 
ATP5F1D ENSG00000099624 ATP synthase F1 subunit delta 

 

Table S5. Genes co-expressed with DCC in the NAcc 
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Table S6. Genotyping information for the 3 cohorts 
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Table S7. Description of the datasets and tools used throughout the study  
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Figure S1. Block scheme depicting the steps involved in sample selection for ALSPAC cohort. Panel A shows 

a detailed scheme for the exclusion/inclusion criteria, together with the total number of participants, 

starting at the projected initial cohort (N=15,645) to the selection of participants that completed the SSRT 

task (n=4,392). Panel B shows the total number of participants for which we have proportion of successful 

stops and mean reaction time.  
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Figure S2. Depiction of the behavioral tasks conducted for each cohort and the main outcomes studied 

for each task. 

  



 104 

 

Figure S3. Associations between the computed genetic score for the GUSTO cohort and different 

components of the SSRT task, represented as boxplots. (A) Low-ePRS score group has a significantly lower 

proportion of successful stops when presented with the “go” signal, compared to the high-ePRS group (𝛽 

= -0.03, p = .027). We didn’t find a significant association between the PRS for ADHD and the proportion 

of successful stops (𝛽 = -0.009, p = .522). (B) There is no significant association between the corticolimbic 

DCC-ePRS (𝛽 = -19.152, p = .07) and SSRT measure, but we found that subjects with a low-PRS for ADHD 

had lower SSRT estimate compared to high-PRS subjects (𝛽 = -23.865, p = .026). *p<.05.   
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Figure S4. Associations between the computed genetic scores for the ALSPAC cohort and different 

measures of the SSRT task. (A) Low-ePRS score group has significantly shorter mean latency of response 

when presented with the “stop” signal, compared to the high-ePRS group (𝛽 = -10.368, p = .019), thus 

showing higher levels of impulsive action. We didn’t find a significant association between the PRS for 

ADHD and the same outcome (𝛽 = -3.248, p = .463). (B) There is no significant association between the 

genetic scores and the proportion of successful stops (ePRS: 𝛽 = -0.005, p = .299; PRS-ADHD: 𝛽 = 0.002, p 

= .657). *p<.05  
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Figure S5. Gene networks for the PFC and the NAcc, created with GeneMANIA. While each gene is 

represented by a node, the figures clearly demonstrate the cohesiveness of both gene networks. The lines 

represent co-expression between genes, based on available databases on GeneMANIA.  
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Figure S6. Enrichment analysis of the list of genes that make up the conventional PRS score comparable 

in size to the ePRS in terms of number of SNPs (n=4515, corresponding to the GWAS p-value threshold of 

4.912e-5). (A) Protein-Protein interaction networks constructed from the PRS network. The protein 

network represents known functional interactions between the protein products of the genes (significant 

PPI enrichment). Tissue-specific gene expression analysis (B) shows that the genes that comprise the PRS 

are upregulated across the brain, albeit not as selectively and to a much lesser extent than the genes from 

the corticolimbic DCC-ePRS. (C) An enrichment analysis for the cellular localization, molecular functions, 

and biological processes of the genes in the PRS. Interestingly, these genes are enriched for similar 

categories across the 3 ontologies, compared to the genes in the corticolimbic DCC networks, indicating 

an enrichment for neurodevelopmental processes. (D) CSEA shows no selective spatiotemporal 

enrichment for the genes that comprise the PRS. (E) A depiction of the PRS gene network, created with 

GeneMANIA, where it’s possible to observe a highly cohesive co-expression network.   
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Connecting statement to Chapter IV 

As detailed in Chapter 3, our exploration of gene co-expression networks, including the 

implementation of expression-based polygenic scores (ePRS) specific to cognitive control and 

impulsivity-related phenotypes, has laid the groundwork for a more nuanced understanding of 

psychiatric conditions. One that is much more in line with the well-known description of psychiatric 

conditions as being highly polygenic. With the advent of modern genomic profiling methodologies, the 

need to move beyond traditional gene-disease models has become clear. In Chapter 4, I transition from 

the prior focus on genotype-phenotype associations to an in-depth review of cutting-edge genotype-

gene regulation frameworks. These frameworks are transformative, incorporating functional molecular 

phenotypes closer to genetic variation and more resilient to the multiple testing required in genome-

wide association studies. This chapter will enumerate various functional genomics tools and innovative 

methodologies that may serve as potential biomarkers of psychiatric disease susceptibility, and how 

they can be used and integrated to enhance both research and clinical care. In doing so, I pave the way 

for generating biologically driven hypotheses and optimizing current approaches to genetic risk 

assessment, aligning our understanding of genetic factors with the broader biological processes involved 

in psychopathology. 
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Abstract 

The possibility of establishing a metric of individual genetic risk for a particular disease or trait has 

sparked the interest of the clinical and research communities, with many groups developing and 

validating genomic profiling methodologies for their potential application in clinical care. Current 

approaches for calculating genetic risk to specific psychiatric conditions consist of aggregating genome-

wide association studies–derived estimates into polygenic risk scores, which broadly represent the 

number of inherited risk alleles for an individual. While the traditional approach for polygenic risk score 

calculation aggregates estimates of gene-disease associations, novel alternative approaches have 

started to consider functional molecular phenotypes that are closer to genetic variation and are less 

penalized by the multiple testing required in genome-wide association studies. Moving the focus from 

genotype-disease to genotype-gene regulation frameworks, these novel approaches incorporate prior 

knowledge regarding biological processes involved in disease and aggregate estimates for the 

association of genotypes and phenotypes using multiomics data modalities. In this review, we discuss 

and list different functional genomics tools that can be used and integrated to inform researchers and 

clinicians for a better understanding and diagnosis of psychopathology. We suggest that these novel 

approaches can help generate biologically driven hypotheses for polygenic signals that can ultimately 

serve the clinical community as potential biomarkers of psychiatric disease susceptibility. 
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Introduction 

Establishing potential high-risk scenarios prior to the onset of neuropsychiatric conditions could 

profoundly improve mental health trajectories worldwide by presenting an opportunity for timely 

interventions, especially during sensitive neurodevelopmental windows. Although the well-established 

practice of inquiring about an individual’s family history when diagnosing physical and psychiatric 

conditions is a useful tool to indirectly assess potential heritable risk (1–3), an individual’s genomic 

profile could provide information to guide overall health management. However, the true value of 

genomic data relies on our understanding of the complex interaction between genes, environments, and 

lifestyle choices over time (4–6), and efforts to elucidate this complex interplay have the potential to 

help develop tools to assess disease susceptibility prior to symptom onset, informing preventive and 

therapeutic decisions. 

Current genotyping technology allows the identification of inherited DNA differences in the order of 

millions, mostly in the form of single nucleotide polymorphisms (SNPs), across a given population and in 

a rapid and affordable manner (7). As a result, studying genotype-phenotype associations changed from 

interrogating a few carefully selected candidate genes at a time to unbiased genome-wide surveys, with 

constant increases in sample sizes leading to the identification of an increasing number of genetic loci 

that could modify risk for a given disease (8). Although this systematic interrogation of genomes yielded 

several loci reliably associated with an increased risk for psychiatric phenotypes, linking such loci to 

specific biological functions remains a challenge, primarily because most identified genome-wide 

significant associations lie in noncoding portions of the genome and require fine-mapping resolution to 

determine the real causal variants implicated (8–10). Establishing a neurobiological framework 

underlying psychiatric risk will require a multi-omics data integration approach, with the purpose of 

mapping the molecular processes linking genomes and disease-relevant phenotypes (11). Such 

frameworks may ultimately help improve models of disease risk prediction based on genomic profiles 
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and provide actionable insights for clinical decision making. In this review, we discuss emerging genomic 

risk assessment approaches in psychiatry, emphasizing methods that explore the neurobiological 

mechanisms by which gene networks contribute to psychiatric phenotypes. 

Genome-Wide Association Studies as the Basis for Mapping Genetic 

Susceptibility to Psychiatric Phenotypes 

To date, the most common population-based method to find genotype-phenotype associations is 

the performance of genome-wide association studies (GWASs) [see (12,13)], which has successfully 

helped identify genomic variants associated with increased risk of developing different psychiatric 

conditions (9,14–16). Essentially, GWASs entail the assessment of millions of variants across many 

individuals to detect those statistically associated with a specific phenotype. The primary outcome of 

GWASs typically includes a list of tested variants together with their respective effect sizes. Then, after 

identifying the relationship between the phenotypic variance and each genotype by means of a linear 

(for continuous) or logistic (for binary outcomes) regression, significant loci can be functionally 

annotated for post-GWAS analyses (Figure 1A). Psychiatric genomics studies for conditions such as 

schizophrenia (17) and depression (18) have yielded .100 robustly associated risk loci, with w43.7% and 

w8.9% of heritability explained by common SNPs, respectively. The remarkable collaborative effort from 

the Psychiatric Genomics Consortium (PGC) has helped generate important discoveries in the 

identification of risk-conferring variants as well as in advancing our understanding of the genetic 

architecture across 11 psychiatric disorders (17–27). 

GWAS-derived quantified effects of common human variation have translated into different clinical 

applications. For example, using data derived from human genetics studies has improved the successful 

development of novel drugs (28,29). Another application central to this review is the calculation of 

polygenic risk scores (PRSs), which aim to predict the contribution of an individual’s genomic profile to a 
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given trait or disease (16,30–35). The possibility of establishing a metric of individual genetic risk for a 

particular disease or trait has sparked the interest of the clinical community, with many researchers now 

investigating and exploiting the utility of PRS profiling in clinical care [e.g., (34) or (36)]. 

Aggregating GWAS-Derived Signals Into PRSs: A Proxy for Genetic Liability to 

Psychiatric Traits 

For many years, studies in psychiatric genetics used a candidate gene approach, investigating the 

role of SNPs in particular phenotypes [e.g., (37), where a specific mutation in the HTR2B gene was 

associated with increased impulsivity]. However, this approach to study the contribution of common 

variants to psychiatric phenotypes required a previously defined SNP target that was arbitrarily selected, 

albeit with very few exceptions. Indeed, conditions such as Huntington’s disease (38) are caused by large 

effect variants, and there is a marked increase in risk for Alzheimer’s disease (AD) (although not a 

determinant of the disease itself) in people with the isoform e4 of the APOE gene (39). However, 

Huntington’s disease and AD are neurologic conditions with a more defined clinical phenotype 

compared with psychiatric conditions such as mood disorders, where the degree of polygenicity is even 

more evident. The candidate gene approach is now considered outdated because it has failed to yield 

useful insights for psychiatry [see (8) for a perspective on how GWASs made candidate gene studies 

obsolete]. Current psychiatric genetics studies use an unbiased examination of the genome, as a 

continuously growing body of evidence established the highly polygenic architecture across disorders, 

with many small-effect risk loci distributed across the entire genome (40–43). As psychiatry gradually 

adopted a more probabilistic and risk-oriented mindset, evidence for a concept that could explain a 

significant proportion of heritability in independent target samples, based entirely on inherited DNA 

differences, began to emerge (44,45). 
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Figure 1. Overview of the steps involved when conducting a GWAS and creating a PRS. (A) Genotypic data from 

cases and controls or from a population-based sample are gathered to compare the proportion of specific 

alleles from each SNP among cases and controls or to determine the linear relationship between genotypes 

and a continuous trait. After proper quality control of the genotype data and determination of the underlying 

population structure in the sample, a statistical analysis is conducted to investigate whether the observed allele 

proportions (for case-control studies) or relationships (for continuous traits) deviate significantly from 

expected values at each SNP, correcting for the number of tests applied. When an allele is found in the cases 

more frequently than it would be expected by chance, it is reported as a candidate SNP for the entire haplotype 

block, together with its estimated effect size which quantifies the increased odds of having the disease per risk 
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allele count. For continuous traits, the regression coefficient will determine the effect size attributed to the 

“effect” allele. Ideally, the observed GWAS signal should be replicated in an independent cohort to minimize 

false positives and to calibrate the effect sizes attributed to all SNPs. Genome-wide signals (shown in a 

Manhattan plot) that have been replicated are typically further investigated during post-GWAS work, which 

consists of 1) fine-mapping the genomic region to find the true causal variant, 2) investigating the tissues/cell 

types where the variant is known to be active, 3) determining the genes that are affected by the variant, and 

4) identifying the molecular pathways implicated. (B) Using a base and a target dataset, the GWAS-derived 

estimated effects can be applied to a target sample for which genotype data are available. The calculated PRS 

is an aggregated score of the individual-level genotype weighted by the SNP effect sizes described in a discovery 

GWAS, resulting in a normally distributed score in the target sample. The distributions depicted in panel (B) 

reflect raw standardized values of real PRSs, which could be associated with a particular trait of interest. GWAS, 

genome-wide association study; OR, odds ratio; PRS, polygenic risk score; QC, quality control; SNP, single 

nucleotide polymorphism.  
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Current Methodologies for PRS Calculation in Psychiatry and Important Considerations 

to Obtain Meaningful Genetic Signals 

In principle, all methods of PRS calculation provide an estimate of an individual’s genetic 

susceptibility to a trait by aggregating the GWAS-derived effect size estimates into an indexed score, as 

shown in Figure 1B [for a detailed PRS tutorial, see (32); for a detailed PRS review, see (46)]. The classic 

method of PRS calculation uses clumping or pruning and thresholding (C/P-T method) to prune out SNPs 

in high linkage disequilibrium and apply varying stringencies to p-value thresholds that can be higher 

than genome-wide significance to calibrate and maximize predictability (30,46,47). Essentially, SNPs 

with p values below an established threshold will keep the original estimate of their effect size, while 

SNPs with higher p values are excluded from the PRS, shrinking their effect sizes to 0. This process can 

be carried out iteratively, using a range of p-value thresholds, with the resulting PRSs tested for an 

association with the target trait in a test sample, determining the optimal p value in a forward selection 

method (48,49). Other methods for PRS calculation are based on Bayesian frameworks in which the 

shrinkage of all SNPs is based on a prior distribution specification [for more details, see (50,51)]. One 

example that seems to be particularly suited to calculate PRSs for psychiatric disorders (52) is the 

Bayesian multiple regression summary statistic (SBayesR) (53), which can use publicly available GWAS 

summary statistics while using prior distributions of alternative genetic effects and analyzing all SNPs 

together, accounting for their pattern of coinheritance. 

Ideally, a PRS can serve as a tool to stratify the population in terms of disease risk, as this can help 

decide on potential follow-up actionable measures such as therapeutic interventions, more in-depth 

screening, or lifestyle modifications. One of the earliest examples of a successful PRS came in 2009 when 

the International Schizophrenia Consortium (ISC) published an aggregated polygenic signal derived from 

a GWAS that could predict risk for both schizophrenia and bipolar disorder (44). As the sample size for 

the schizophrenia GWASs increased, the phenotypic variance explained by the aggregated polygenic 
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signal also increased. Current estimates indicate that individuals with PRS in the top 10% and top 1% of 

the population have an approximate 3-fold and 6-fold increase in their risk of developing schizophrenia, 

respectively, compared with 1% baseline risk when selecting someone randomly from the population 

(17,54). Another example comes from the study of Desikan et al. (55), wherein the researchers 

calculated a PRS based on a large AD GWAS meta-analysis (56) to investigate the PRS predictability of 

age-specific risk of developing the disease. By combining epidemiological data on population-based 

incidence rates and PRSs, they found that individuals in the highest PRS quartile developed AD at a 

lower age and showed the highest yearly AD incidence rate. This finding was then replicated in other 

independent cohorts, where the PRS was associated with known neurodegenerative markers and with 

the age of disease onset (55). 

It is important to note that existing GWASs are predominantly performed using individuals of 

European ancestry. Missing genetic effects present in other populations and genetic variants with very 

low frequency may dramatically decrease the accuracy of a PRS. This is especially true when the 

ancestry of the target sample does not match the population of the original GWAS (57,58). In addition, it 

has been shown that PRSs work better when considered in combination with other clinical risk factors, 

with a joint model improving overall disease risk calculation, the identification of individuals that can 

benefit from early diagnosis, and predictive accuracy (55,59–62). Prediction is a difficult task, and most 

GWASs necessitate many millions of individuals to allow PRSs to achieve higher discriminatory power 

and reach the upper bound of their predictive performance (i.e., heritability estimates) (33). Some 

groups have started to propose alternatives to investigate polygenic signals in psychiatry, considering 

phenotypes closely linked to genetic variation and therefore more directly affected by it. 
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Table 1. Overview of the different Methodologies for Post-GWAS Analysis. eQTL, expression quantitative 

trait locus; GWAS, genome-wide association study; LD, linkage disequilibrium; LDSC, linkage 

disequilibrium score regression; PRS, polygenic risk score; PTRS, polygenic transcriptome risk score; SNP, 

single nucleotide polymorphism.  
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From Genetics to Functional Genomics: PRS Methodologies That Go Beyond the 

Link Between Genetic Variability and Psychiatric Traits by Addressing Biological 

Mechanisms/Functions 

The PRS methodologies described so far have been useful tools for clinicians and researchers, but 

one common characteristic is the agnosticism when it comes to the biological functions implicated in 

disease risk. In the classic GWAS-PRS methods, the first step consists of identifying statistically 

significant genetic associations such that afterward, while conducting post-GWAS work, the biological 

functions implicated in those gene-disease associations can be dissected (Figure 1A) and further 

explored as potential therapeutic avenues. However, another way to investigate the role that genes play 

in disease (together with their associated transcripts, proteins, and epigenomes) is to first identify 

disease-relevant biological processes and functions to create PRSs that somehow capture and quantify 

those functions and to then test their association with disease (see Table 1). Moving the focus from 

genotype-disease toward genotype-gene regulation frameworks, below we review these novel 

methodologies and resources used by some groups to guide the selection of variants and phenotypes, 

emphasizing those that take into consideration 1) meaningful networks of genes coregulated (or 

coexpressed) with spatiotemporal specificity and 2) highly quantifiable phenotypes, such as 

transcriptomic or epigenomic data. We suggest that these approaches can help generate biologically 

driven hypotheses for polygenic signals that can ultimately serve the clinical community as potential 

biomarkers for disease susceptibility. 

Genotype-disease effects are small for most common genetic variations, but the fact that a large 

proportion of disease risk can be explained by variants that modulate gene expression levels (9,63,64) is 

intriguing and may provide clues for the cellular and biological mechanisms underlying disease (65,66). 

The transcriptome-wide association study methodology was developed with the goal of detecting 

associations between measured or predicted levels of gene expression and particular traits (Figure 2A) 
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(67). For example, in the study of Girgenti et al. (68), researchers used the Million Veteran Program 

posttraumatic stress disorder GWAS dataset to impute gene expression and identify genes significantly 

associated with posttraumatic stress disorder risk and illness state, uncovering novel functional signals 

that confer genetic liability for posttraumatic stress disorder. This method provides key advantages with 

respect to GWAS. First, using a gene-based approach reduces the burden of multiple testing prevalent in 

other SNP-based approaches. There are approximately 20,000 genes for which one can impute 

transcript levels. Although large, this number is considerably smaller compared with several million SNPs 

in a typical GWAS that are individually tested for an association with a given trait. By incorporating 

functional information about the regulation of gene expression, this method can help uncover the 

underlying biological mechanisms affecting a trait. Another advantage of this method is that it facilitates 

the interpretation of the direction of the effect. A gene-based signal that includes the direction of the 

effect is highly amenable to systems biology approaches because if the increased (or decreased) 

expression of a gene is associated with a particular trait, the information can be easily incorporated into 

pathway or network analyses, making the interpretation of results more straightforward, especially 

when compared with SNP-based signals. This approach is nonetheless limited regarding tissue 

accessibility in study participants, in particular if the tissue of interest is a specific brain region. To this 

end, a more novel computational framework such as the probabilistic transcriptome-wide association 

study can be of help because it can predict gene expression from genotypes and investigate causal 

relationships between tissue- or cell-type–specific gene expression and complex traits (69). 

Genotype-Based Prediction of Gene Expression in Specific Tissues 

Many research groups are actively developing tools to predict the transcriptional effects of genetic 

variation [see (70–72) for some examples], most likely driven by similar motivations: a unidirectional 

effect (from genes to gene expression) that ultimately narrows the gap between genetic variation and 

disease. One of the most prominent examples of this type of work is the PrediXcan methodology, which 
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developed a machine learning algorithm to predict tissue-specific gene expression based on genomic 

profiles (73). Using genotype and gene expression data from the Genotype-Tissue Expression (GTEx) 

project (74) and other similar datasets, this method generates a database wherein, in a tissue-specific 

manner, transcript levels can be predicted using as input the genotypic data from any target sample 

(Figure 2B). PrediXcan serves to calculate an endophenotype (genetically regulated gene expression) 

that is known to drive biological processes to test for associations with a particular trait [for the entire 

data repository and the PrediXcan family of methods, see (75)]. The more novel version, MultiXcan, can 

help investigate the mediating role of gene expression on many complex traits, using only summary 

statistics from publicly available GWASs (76). 

The predicted gene expression approach has been applied to existing GWASs for bipolar disorder to 

identify novel risk-conferring genes PTPRE and BBX, whose predicted transcript levels in whole blood 

and in the anterior cingulate cortex, respectively, were found to be associated with increased bipolar 

disorder risk (77). This study highlights the importance of gene expression to help understand the 

potential underlying mechanisms driving disease risk. However, this approach fails to simultaneously 

consider genes that are coregulated as part of common biological processes, bypassing the established 

polygenicity of most psychiatric phenotypes. 

Gene Coexpression Networks to Inform Polygenic Metrics 

As discussed previously, most identified genome-wide significant associations are devoid of a clear 

functional interpretation because they lie in noncoding portions of the genome, requiring fine-mapping 

resolution to determine the real causal variants implicated (9,10). Many of these noncoding disease-

associated variants are regulatory in nature (a high proportion of these variants have been determined 

to be cis and/or trans–expression quantitative trait loci [eQTLs]) (9), suggesting that they likely affect the 

expression of their associated genes, ultimately placing gene expression as an imminent molecular 
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phenotype linking genetics and disease. More crucially, however, disease-associated genes do not 

operate in isolation, but as part of complex networks that function with an exquisite degree of 

spatiotemporal specificity for precise biological processes. By operating under the assumption that 

functional groups of genes are coregulated as part of specific molecular pathways, the identification of 

disease-relevant and tissue-specific gene networks provides a framework for mapping transcriptionally 

coregulated processes into a type of polygenic score. This approach can potentially increase the 

likelihood of discovering psychiatrically relevant markers of disease [see (78)]. 

A study that aimed to determine genetic susceptibility to cognitive disability used an unsupervised 

genome-wide coexpression network analysis leveraging measurements of gene expression in human 

hippocampal tissue, with the goal of capturing modules of covarying genes, which can ultimately provide 

clues for the molecular mechanisms driving the susceptibility (79). The study identified a module of 150 

genes with significant enrichment for 1) genes associated with relevant cognitive phenotypes, 2) genes 

related to neural activity and synaptic processes, and 3) genes intolerant to mutations and that, when 

mutated, are associated with intellectual disability (80,81). Another group followed a similar approach, 

but instead of using an unsupervised analysis, they hypothesized that genes conferring risk to disease 

must translate into biological risk by acting as part of a coregulated gene network on a measurable 

molecular phenotype, which could then be associated with the disease (82). They were interested in 

elucidating the genetic architecture of the D2 receptor molecular pathway because genetic variation 

within the DRD2 gene has been linked with schizophrenia-related phenotypes, including response to 

treatment (17). Starting with human postmortem tissue, the authors identified a prefrontal DRD2 

coexpression network using weighted gene coexpression network analysis, and then defined potential 

SNPs in the form of eQTLs affecting the expression of the genes within the network. Combining these 

regulatory SNPs into a particular PRS (referred to as polygenic coexpression index), the study captured 

the genetic component (eQTLs) of the expression of the network and associated the PRS with brain 
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activity measurements during working memory tasks. Finally, they found that individuals with a higher 

prefrontal cortex DRD2 coexpression PRS are predisposed to a less efficient working memory, which is a 

known risk-associated phenotype for schizophrenia. This study is an example of how identifying a 

disease or trait-relevant gene network can help generate hypotheses for novel types of PRSs based on 

biological frameworks. 

Another innovative way to identify coregulated biological processes underlying the genetic 

susceptibility to psychiatric conditions leverages data from the GTEx to quantify the genotypic effect 

linked to gene expression across several tissues. One such example is the method eMAGMA, which 

integrates both genetic and transcriptomic data to identify disease-specific risk genes and test for their 

enrichment across different gene modules (83). This method can exploit a systems biology approach to 

generate polygenic signals that are essentially based on tissue-specific gene coexpression networks. A 

similar approach from our group has generated tissue-specific polygenic signals associated with traits or 

diseases (Figure 2C). We first identify coexpression networks using genome-wide gene expression data 

from a specific tissue, then map all SNPs within the coexpressed genes and eliminate those in linkage 

disequilibrium. We then assign to each SNP the weight of the association between alleles and gene 

expression estimated by GTEx (84), ultimately obtaining a set of SNPs that lie within a tissue-specific 

coexpression network, where each SNP is weighted by its estimated influence on gene expression. We 

can then identify all SNPs from the coexpressed genes in a test sample of subjects with available 

genotype data and weight the SNPs according to the GTEx. The derived expression-based polygenic 

signal (or expression-based PRS) reflects variation in the expression of the gene network and can be 

calculated in target samples with available genotype data (85–89). 

In a recent study, we investigated whether an expression-based PRS based on corticolimbic-specific 

gene coexpression networks associates with impulsive phenotypes in children (90). We aimed at 
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capturing individual variation in the molecular processes involved in the maturation of corticolimbic 

substrates, which are known to support inhibitory control. Similar to most studies using functional 

polygenic signals, we compared the predictive ability of the score against a conventional PRS derived 

from the latest GWAS for attention-deficit/hyperactivity disorder and found the expression-based PRS to 

be a better overall predictor of impulsivity. This type of polygenic signal did not have generalizability 

problems seen in other polygenic score methodologies, as the experiment was conducted in 3 ethnically 

diverse cohorts, all showing similar effects. This approach exploits the fact that genes engage within 

complex networks for precise biological functions, and they do so with a remarkable tissue specificity. 

Based on knowledge of the neurobiological processes of brain development, this score aimed to predict 

psychiatric-relevant phenotypes. 

Gene-by-Environment Interplay: Quantifying Environmental Influences and Their 

Interaction With Multi-omics Data 

One of the biggest challenges faced by researchers studying models of disease risk prediction is to 

develop a methodology to accurately represent an individual’s environment in a quantitative metric. 

Similar to how a functional PRS can represent a restricted set of phenotype-relevant biological 

processes, some studies have narrowed down the environment variable to a composite score made up 

of clearly defined constructs [see (48,49,85,86,88,89,91) for examples]. By doing so, researchers can 

start investigating the interplay between genes and environments while also assessing the potential 

ways in which genetic and environmental effects interact (Figure 2D). Although not in psychiatry, the 

study by Belsky et al. (92) is a good example of how an individual’s environment can exert a powerful 

influence on his or her socioeconomic attainment. In this study, the authors tested whether a PRS based 

on a GWAS for educational attainment (which is currently one of the PRSs with highest predictive value) 

[see (35)] could predict socioeconomic mobility (i.e., any shift in a person’s social class relative to that of 

their parents). While higher PRSs did predict more socioeconomic success than parents and siblings, 
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additional analyses revealed that the maternal polygenic score is associated with children’s educational 

attainment even when adjusting for the children’s own polygenic scores. This suggests an 

environmentally mediated genetic effect. 

Some studies have started to integrate epigenetic data into genome-wide scores with the goal of 

identifying individuals who might be at an increased risk of psychiatric phenotypes. For example, given 

the association between early-life stress and behavioral and psychiatric problems later in life (93), the 

study of Provençal et al. (94) assessed differentially methylated sites following exposure to 

glucocorticoids in a human hippocampal progenitor cell line and in human blood cells. In addition, a 

subsequent glucocorticoid exposure induced important transcriptional changes. The overlapping 

differentially methylated sites were then used to calculate a weighted polyepigenetic score, which was 

proposed as a potential biomarker for conditions associated with prenatal glucocorticoid exposure in 

newborns. The calculated score was applied to newborns’ cord blood DNA (n = 817), with the 

glucocorticoid-responsive score significantly associated with levels of maternal anxiety and depression, 

suggesting that early-life stress induces lasting epigenetic changes that can ultimately modify the 

vulnerability to stress exposure in later years. 
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Figure 1. Novel approaches to functional genomics. (A) The TWAS consists of associating measured (or 

predicted) gene expression data with a disease or trait, making this a gene-based rather than a SNP-based 

association study, considerably reducing the number of multiple comparisons while also providing insight into 

the potential biological mechanisms driving disease risk. (B) Models that predict gene expression based on 

genotype data. These models can be tissue- or cell type–specific, allowing testing for the association of the cell- 
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or tissue-specific imputed transcriptome and a given disease or trait. (C) The ePRS model starts with the 

identification of a gene coexpression network from RNA sequencing data to identify coregulated disease-

relevant biological processes in specific tissues. Once a gene network is identified, it maps the genetic variation 

within the coexpression network in an independent target sample to weigh the SNPs according to a GWAS 

(typically a GWAS of gene expression, e.g., GTEx). The resulting ePRS, which aims to capture individual variation 

in the expression of the gene network, can then be associated with a disease or trait, mapping the association 

between functional biological processes and the target phenotype. (D) A global model that incorporates all the 

potential intermediate phenotypes that can occur between genetic variation and disease, considering the 

feedback from the environment and lived experiences across all levels. This model, similar to the ones 

discussed earlier, generates a unidirectional effect that starts from individual genetic variability and provides 

alternative approaches to assess the effects of inherited DNA polymorphisms on particular traits. All these 

approaches can help generate biologically informed predictors of susceptibility to psychiatric-relevant 

phenotypes. ePRS, expression-based polygenic risk score; GTEx, Genotype-Tissue Expression project; GWAS, 

genome-wide association study; SNP, single nucleotide polymorphism; TWAS, transcriptome-wide association 

study.  



 138 

Conclusions 

As the field of psychiatric genomics continues to evolve, so will the models of disease risk prediction 

based on strong biological foundations. Advances in big data availability and complexity (e.g., 

longitudinal studies such as the ABCD [Adolescent Brain Cognitive Development] cohort, deep 

phenotyping as in the UK Biobank), mapping the developmental trajectories, and including a wealth of 

data in large numbers of individuals will benefit the understanding of factors that ultimately play an 

important role in determining mental health. Polygenic scores and polyepigenetic scores by themselves, 

like any other marker, have a limited capacity to predict with perfect accuracy the condition for which 

they were generated. It should be noted, however, that the optimal selection of genetic variants and 

other genomic markers and the aggregation of their associated weights are active areas of research 

(50,51,53). The continued improvement of the technology (increases in GWAS sample size and 

incorporation of different ancestries, higher genotyping resolution, etc.) entails continued revision of 

the guidelines for their calculation and interpretation. Owing to the recency of the appearance of 

several methods discussed in this review, evidence of their clinical utility is still lacking, but as the 

technology driving functional genomics approaches continues to improve, we expect researchers and 

clinicians to be encouraged to investigate or test their clinical utility in psychiatry. One can assume that 

some of the methods highlighted here will be replaced by newer approaches. However, incorporating 

functional aspects rather than being informed exclusively by data-driven approaches is our core 

message. 

Although it is highlighted that functional PRS can focus on a particular network or system, efforts 

should be made to maintain a genome-wide platform for unbiased querying of the relevant signals (e.g., 

genome-wide RNA sequencing). Moreover, one of the advantages of the functional methods is to 

provide tissue-specific information, but this can be challenging for certain research questions (e.g., 

epigenetics markers collected from peripheral studies inferring brain mechanisms). Finally, brain gene 
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expression data in humans is postmortem and is limited in numbers, ancestry, and developmental stage 

representation. These features can influence gene expression and therefore can bias the generation of 

functional PRS. 

Training of the clinical workforce to handle and communicate genome-wide information is an issue 

that is becoming more pressing with time. Commercially available and direct-to-consumer genotyping 

services, which allow users to download their genotype data, are already reporting PRSs for some traits, 

and users can upload their data into other online PRS calculators (95). It is important to clearly 

communicate to the public the utility and, most importantly, the limitations of PRS profiling, in particular 

driving away the idea that genetic testing can accurately predict every aspect of a person’s health, as it 

has inherent limitations similar to those of other tests commonly used in clinical settings (96). 

Future efforts in disease risk prediction should aim at integrating data at multiple levels, aggregating 

genomics, epigenomics, transcriptomics, proteomics, and metabolomics data into predictive models. 

Some of the examples presented in this review highlight the significant contribution from each of these 

data to disease liability. In addition, models should be able to assess the role of the environment at 

multiple levels (person, family, community) because all biological processes occurring within an 

individual are physically contained processes functioning together as part of society, including 

household, neighborhood, school, and work, and so on (4). The technological advance should occur in 

parallel to societal progress in overcoming the menace of racism and structural inequalities, which still 

are an unfortunate reality that has a major impact on mental and physical health. The ability to combine 

multilevel biological information with the constant changes in a person’s environment for overall health 

risk assessment in trusted clinician-patient relationships with joint decision making can revolutionize the 

diagnosis and early prevention of psychopathology. 
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Chapter V: DISCUSSION AND CONCLUSIONS 

The purpose of my doctoral thesis was to venture into an exploration of molecular networks that 

contribute to brain corticolimbic development, and how variations in these neurodevelopmental 

processes can ultimately modify the development of inhibitory control behaviors in both mice and 

humans. I conducted two main studies: The first study, using mice, sought to dissect the molecular, 

behavioral, and structural consequences of environmentally-induced disturbances to the Netrin-1/DCC 

signaling system, which has been shown to be important for the development of inhibitory control 

behaviors and for brain corticolimbic maturation. In the second study, a targeted analysis of a novel 

functional genomic signal- based on corticolimbic-specific DCC gene co-expression networks- was 

carried out across independent and ethnically-diverse human birth cohorts, mapping the association 

between this novel biological marker and measurements of inhibitory control behaviors.  

In the first phase of this research, by examining the long-term structural and behavioral effects of 

early-life exposure to therapeutic-like and recreational-like doses of amphetamine in mice, I found 

significant insights into how this experience can modify, in a remarkable dose-dependent fashion, 

mesocorticolimbic dopamine development and inhibitory control behaviors in adulthood. This study also 

elucidates the molecular signatures induced by the different amphetamine doses, mainly showing that 

while therapeutic-like doses increase DCC expression, recreational-like doses induce a downregulation 

of DCC and Netrin-1.  

Stimulant medications, notably including amphetamines, represent one of the most prescribed 

pharmaceutical compounds for Canadian adolescents. Data from the Canadian Centre on Substance Use 

and Addiction (2019) showed that approximately 5% of Canadians aged 15-19 utilized prescription 

stimulants, while an additional 3% engaged in recreational usage of these substances. Given this well-

known exposure, it is important to delineate- and in some sense, to better understand- what are the 
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long-term implications of exposure to stimulants during childhood and adolescence, on 

neurodevelopmental and cognitive trajectories. Notably, pharmacological treatments are currently 

designed with a focus to mitigate symptomatic manifestations rather than address underlying 

pathophysiology. This could be the results of a gap in our understanding of the early indicators and 

etiology of psychiatric conditions and their development. A recent investigation attempted to link 

polygenic signals from Genome-Wide Association Studies (GWASs) for psychiatric conditions with the 

corresponding molecular pathways targeted by different pharmacological interventions 89, including the 

use of amphetamines and other related phenethylamine-derived compounds. Employing a multi-modal 

analytical approach—encompassing protein-protein interactions, gene activity levels, and chromatin 

interactions—this study highlighted a noticeable incongruity between genetic factors implicated in 

psychiatric disorders and the biological pathways targeted by current drug treatments. More precisely, 

risk-conferring genes identified in GWASs predominantly relate to neurodevelopmental processes, in 

contrast to the synaptic signaling pathways that current pharmacological treatments primarily target.  

In this context, mapping behavioral constructs into a set of neurobiological functions allowed me to 

explore and characterize the developmental consequences of psychostimulant-induced alterations to 

the Netrin-1/DCC system and corticolimbic function. Ironically, this molecular signaling pathway has 

been notoriously important in GWASs for psychiatric phenotypes 79 and perhaps it plays a critical role in 

mental health trajectories across the lifespan. I discovered that amphetamines have a dose-dependent 

effect on the Netrin-1/DCC signaling pathway in rodents, and that this effect is accompanied by a 

consequent behavioral effect in the Go/No-Go task, showing that therapeutic-like doses of 

amphetamine during sensitive neurodevelopmental periods ameliorate the overall performance of mice 

in the task, long after treatment cessation, when tested in adulthood. Furthermore, the analysis 

implemented for the description of neuroanatomical features in corticolimbic development revealed no 

apparent changes following early therapeutic psychostimulant treatment, measured by the volume and 
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the density of dopamine pre-synaptic sites observed in mesocorticolimbic dopamine targets in 

adulthood. The absence of evidence for structural alterations was initially puzzling, given the observed 

changes in inhibitory control. More refined investigations are needed to understand precisely if and how 

early-life amphetamine exposure changes dopamine dynamics in mesocorticolimbic dopamine targets.  

Growing computational and genetic evidence underscores the role of DCC and Netrin-1 in the onset 

of adolescent psychiatric disorders, many of which are also marked by deficits in inhibitory control 61,78. 

Our rodent studies demonstrate that disruptions in corticolimbic networks during critical 

neurodevelopmental periods associate with later-life changes in cognitive control capacity 90. We 

observed that repeated, dose-sensitive adolescent exposure to psychostimulants can modulate Dcc 

gene expression in VTA dopamine neurons, influencing a cascade of neurodevelopmental processes that 

play an important role in adult corticolimbic structure and function. So far, VTA dopamine inputs to the 

PFC, the OFC, and the NAcc, have shown sensitivity to amphetamine-induced modulations in Netrin-

1/DCC-mediated signaling, ultimately altering adult inhibitory control behaviors in mice. This empirical 

evidence aligns with clinical data suggesting that individuals with ADHD who have been medicated 

exhibit a regression to baseline risk levels for developing substance use disorders (SUDs), in contrast to 

their non-medicated ADHD counterparts. Importantly, it still needs to be addressed whether this effect 

is particular to amphetamines or if it generalizes to other psychostimulant substances like 

methylphenidate or cocaine. 

In the second phase of my thesis, I shifted the focus to human subjects while still relying on mouse 

models for the generation of co-expression networks to investigate a novel type of polygenic signal. I 

calculated an expression-based polygenic score (ePRS) built upon corticolimbic-specific DCC gene co-

expression networks (identified first in mice, and then enriched for human brain expression in early 

developmental stages), identifying unique associations with impulsivity-related phenotypes in children 
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This effort has not only further validated the methodology used to construct expression-based polygenic 

scores but also presented a pioneering approach to recognizing early markers of vulnerability in 

inhibitory control deficits. By going back and forth between rodents and humans, I gather mechanistic 

insight that corroborates the potential role of DCC in mesocorticolimbic dopamine terminals for the 

development of impulsivity in humans.  

These results not only solidify the role of the corticolimbic DCC-gene networks for proper brain 

corticolimbic development and inhibitory control capacity, but also pave the way for implementing this 

approach in other investigations, considering that initially I rely on a highly sensitive and context-specific 

measurement of transcript abundance in mouse tissue. As this study was guided by the previous 

findings in rodents linking variations in Dcc expression to changes in impulse control and in 

mesocorticolimbic dopamine axon targeting, it seemed logical to begin using mice and move on to 

humans by applying a filter for genes that are overexpressed in humans in early life when compared to 

adulthood, to reflect time-sensitive maturational processes in the human brain. This process narrowed 

down and identified networks that contain 152 and 74 genes for the PFC and NAcc networks, 

respectively.  

The enrichment analyses that followed allowed me to establish the biological context in which the 

genes within the co-expression networks operate, but it was still important to assess the co-expression 

of the genes in human data. I used the BrainSpan dataset containing postmortem PFC and NAcc to 

confirm that the genes in the PFC and NAcc networks do co-express (see Chapter III, Figure 4). These 

analyses, in combination with the functional enrichment analyses (shown in Chapter III, Figure 3) 

support the conclusion that the resulting groups of genes are in fact coherent and tissue-specific 

functional networks.  
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The temporal convergence of gene expression, particularly those genes implicated in 

neuropsychiatric disorders, has been shown to be especially salient before and during the onset of these 

disorders91. Our results align, to an interesting degree, with these findings, revealing distinct periods of 

enrichment for gene expression within both corticolimbic-specific gene networks, notably during specific 

pre-natal and post-natal phases. This includes the high specificity in spatiotemporal expression of the 

NAcc network in cortical neurons during late childhood and adolescence, which indicates that those 

genes (specifically: KCNS2, GRIN1, SYP, SCN8A, DGKB, PPP4R4, SLC6A17, HOMER1, ARHGDIG, and 

RAB27B) are expressed and enriched in the cortex during later developmental periods. As previously 

acknowledged, the functional role of DCC varies depending on the developmental stage. The re-

emergence of an enriched DCC-related group of genes during late childhood and adolescence suggests 

that any perturbations in DCC function or expression could have significant ramifications on the 

development of synaptic connectivity and function within the PFC. Finally, a brief overview of the 

cellular components where the above-mentioned genes are found indicates enrichment in excitatory 

synapses, terminal boutons, and exocytic versicles, which may explain why these processes occur earlier 

in the NAcc compared to the PFC, as this aligns well with current knowledge about the temporal 

differences between mesolimbic and mesocortical development.  

A limitation from this study is the lack of integration of SNPs outside the genomic regions (± 500 KB) 

of the corticolimbic-specific DCC-gene co-expression networks, in particular of variants that are 

associated with other forms of gene expression regulation (e.g., transcription factors, promoter regions, 

chromatin modifications and trans-eQTLs), and it would be both interesting and informative whether 

the integration of such signals can change the performance of the scores. This will be investigated in 

future studies, and is discussed in the review paper presented in Chapter 4. 
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Finally, I consider important to point out that "deleted in colorectal cancer" (DCC) gets its name 

from its initial discovery. It was identified as a gene that is frequently absent or deleted in colorectal 

cancer tissues. The deletion of specific regions of DNA is a common event in the development of many 

cancers. When researchers identified this gene, they observed that it was often deleted in tumor 

samples from patients with colorectal cancer, hence they named it "deleted in colorectal cancer". 

However, DCC was subsequently found to encode a netrin-1 receptor and that their interaction played a 

crucial role in axon guidance during neural development. This discovery indicated that DCC might have 

functions beyond its role in colorectal cancer, at least in the nervous system. The naming convention of 

such genes often stems from their initial discovery or the context in which they were first identified, 

even if subsequent research reveals more about their broader biological roles. Making sense of these 

overlapping sets of molecules interacting in different tissues is a task that can only be understood via 

systematic probing of the molecular networks, and how disrupting the cellular milieu can have 

consequences observable at different levels of analysis.  

Concluding remarks and future directions 

Genome-wide association studies (GWAS) on human behavioral traits have become increasingly 

sophisticated, yielding numerous polygenic signals that not only hold substantial predictive power but, 

following functional post-GWAS analyses, also offer valuable biological insights. However, interpreting 

these genetic associations for behavioral traits is complex because, unlike physical traits which are more 

proximally influenced by biology, behavioral traits are more distal and subjected to multiple layers of 

regulation, making their genetic underpinnings less straightforward to decipher. The outcome of GWAS 

in the domain of human behavior is likely a composite of aggregated signals from diverse origins. As the 

sample sizes in these studies continue to expand, thereby increasing the power to detect weaker 

polygenic signals, methodological advancements such as the one presented in this work aim to delineate 
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the sources of these signals more precisely. Notably, the major contributory elements to the polygenic 

landscape include not only direct genetic influences on the trait under investigation but also genetic 

associations with correlated traits and environmental interactions.  

In the realm of psychiatric genetics, to my knowledge and understanding, the convention of 

modeling SNPs through additive models has proven practical for deconstructing the complex 

architecture of mental disorders. While this approach has enabled important strides in identifying risk 

variants, it can also inadvertently obscure the potential richness of epistatic interactions—instances 

where the combined effect of multiple loci diverges from the sum of their individual effects. Therefore, 

in the current body of work, by weighing SNPs within an additive-only context, we could be 

inadvertently pruning the full spectrum of complex biological interactions that may contribute to 

inhibitory control behaviors, as the specific combination of variants would be what matter most. This 

methodological limitation hinders our understanding of the intricacies of gene-gene interactions and 

their subsequent impact on phenotypic expression. Such interactions, potentially important for better 

predictive models, remain largely unexplored, mainly because of the computational requirements for 

the deployment of such models. Consequently, a more nuanced approach that incorporates epistatic 

models alongside additive effects could help us further advance our current understanding of the 

genetic mechanisms underpinning complex traits92. 

Finally, the development of frameworks that link genotypes to cellular programs represents a 

paradigmatic shift in psychiatric research, potentially revolutionizing our capacity for early identification 

of vulnerability markers for psychiatric disorders. Traditional genomic analyses often operate in a 

manner that is somewhat disconnected from the underlying biological processes, offering us statistical 

associations but not mechanistic understanding. By contrast, a genotype-to-cellular-program framework 

integrates data across multiple biological layers—from genetic variants to gene expression profiles to 
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cellular pathways—thereby providing a more coherent and biologically informed landscape. This 

enriched viewpoint can help identify novel markers or sets of markers that are indicative of 

predisposition to psychiatric conditions at a cellular or system-level, rather than merely at the level of 

isolated genetic variants. Such markers could be invaluable for early interventions, allowing for timely 

and targeted therapeutic strategies that are rooted in a deeper understanding of disease 

pathophysiology. Consequently, this multi-layered approach, similar to the one presented in this work, 

could be instrumental in bridging the extant gap between genetic risk and the clinical manifestation of 

psychiatric disorders, offering a more predictive and preventative model of mental health care. 
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