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ABSTRACT

A detailed review of the asymptotic matching procedures predicting the formation number of vortex rings is presented. The original studies
of Mohseni and Gharib [“A model for universal timescale of vortex ring formation,” Phys. Fluids 10(10), 2436–2438 (1998).], Shusser and
Gharib [“A new model for inviscid vortex rings,” in 30th AIAA Fluid Dynamical Conference (1999).], and Linden and Turner [“The
formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices,” J. Mech. Fluids, 427, 61–72 (2001).] are applied to the extended
slug-flow model for orifice starting jets and the Kaplanski model of isolated vortex rings. A predicted formation number of 3.5 in the modi-
fied non-dimensional time frame is found when the closure assumption in terms of the translational ring speed is chosen, which is consistent
with experimental evidence. In addition, particle image velocimetry was performed to assess the validity of the closure assumptions of
Mohseni and Gharib and Shusser and Gharib. First, it was further demonstrated that the modified slug-flow model provides an appropriate
scaling for the kinematics of orifice-generated vortex rings. Second, the measurements provide experimental support to the method of
Shusser and Gharib rather than the method of Mohseni and Gharib. This is further demonstrated by data extracted from the literature. To
summarize, in order to predict the formation number, it is recommended to use the extended slug-flow model and the Kaplanski model of
isolated vortex rings along with the closure assumption of Shusser and Gharib.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070542

I. INTRODUCTION

A starting jet is inevitably accompanied by the formation of a
vortex sheet at the lip of the exhaust, which then rolls up and detaches
in the form of a vortex ring. When a small amount of fluid is dis-
charged, a single isolated vortex ring is generated which then propa-
gates freely due to its self-induced velocity. When the quantity of fluid
expelled from the exhaust exceeds some threshold, the vortex ring is
followed by a trailing jet which either takes the form of a continuous
shear layer in the case of parallel and converging starting jets or a train
of discrete vortices in the case of orifice starting jets. Using a nozzle
geometry, Gharib et al.1 determined the transition between these two
states to occur at a limiting non-dimensional time of approximately 4,
termed the formation number. More precisely, the formation number
was measured to be the instant at which the circulation of the detached
vortex ring equals the total circulation discharged by the apparatus.
The non-dimensional time, often referred to as formation time, was
defined as t� ¼ U0t=D0, where U0 is the exhaust speed and D0 is the
exhaust diameter; this is also equivalent to the instantaneous stroke-
to-diameter ratio L0ðtÞ=D0, where L0ðtÞ is the length of the column of
fluid discharged at time t. As such, the formation number has been

used to refer to both the instant at which the leading vortex starts
exhibiting a trailing jet and the maximum stroke ratio allowing for an
isolated vortex ring to be formed.

An explanation of the phenomenon was provided invoking the
Kelvin-Benjamin variation principle which states, in layman’s word,
that for a given hydrodynamic impulse and circulation, there exists a
maximum energy state among all possible impulse-preserving vorticity
distribution.2–5 Because this variational principle entails the three invari-
ants of the motion, namely, the circulation C, the hydrodynamic
impulse I, and the kinetic energy E, Gharib et al.1 proposed a semi-
empirical model based on a non-dimensional quantity formed with the
aforementioned quantities, i.e., a � E=q1=2C3=2I1=2. On the one hand,
the total integrals of the motion generated by the apparatus were esti-
mated by the classic slug-flow model. On the other hand, the invariants
of the motion of the detached vortex ring were measured at a far down-
stream location. The intersection of these two curves was found to occur
at a non-dimensional time of 3.8, consistent with experimental evidence
of a formation number ranging from 3.6 to 4.5.1

In an attempt to provide a purely analytical estimate of the for-
mation number, studies have proposed an asymptotic matching
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procedure. First, following the theoretical framework of Gharib
et al.,1 the total invariants of the motion delivered by the generator
and estimated by the classic slug-flow model were matched to their
equivalent asymptotic quantities given by the Fraenkel–Norbury
family of vortex rings. Provided one additional assumption, a single
analytical value for the formation number could be found; Mohseni
and Gharib6 and Shusser and Gharib7 proposed to match the ring
speed of the isolated vortex ring to an estimated ring speed in the
close vicinity of the exhaust, whereas Linden and Turner8 argued
that, instead of the speed, the volume of the ring atmosphere should
be taken into account. Overall, the theoretical predictions of
Mohseni and Gharib,6 Shusser and Gharib,7 and Linden and
Turner8 were close to the experimentally obtained formation num-
ber, thus proving this asymptotic matching operation to be a prom-
ising methodology to estimate analytically the limiting stroke ratio
and the quantities of the detached vortex ring.

Nevertheless, this asymptotic matching procedure rests upon
two major assumptions. First, it assumes the classic slug-flow model
to be an accurate model for predicting the invariants of the motion
delivered by the apparatus. However, if the model provides adequate
estimates for parallel starting jets, it was proved to poorly predict the
production of the invariants of the motion emanating from orifice
geometries.9–13 An extension to the classic slug-flow model was
therefore proposed by Limbourg and Nedić12,13 to account for the
contraction the flow is experiencing when being pushed through an
orifice. Second, the asymptotic matching method assumes the
detached vortex ring to be a member of the Fraenkel–Norbury fam-
ily of isolated vortex ring.14–17 This model, however, assumes a trun-
cated linear vorticity distribution in the core of the vortex ring
which is far from physical. In fact, it was shown experimentally that
laminar vortex rings exhibit a self-similar Gaussian distribution18,19

and, recently, Kaplanski and collaborators20–27 proposed a model of
time-dependent viscous laminar vortex rings having a nearly
Gaussian distribution of vorticity.

The objective of the paper is twofold. First, the asymptotic match-
ing procedures of Mohseni and Gharib,6 Shusser and Gharib,7 and
Linden and Turner8 are revisited and extended to the Kaplanski family
of vortex rings in order to assess the influence of the vorticity distribu-
tion on these methods predicting the formation number. Although
this was first examined by Kaplanski and Rudi,24 careful examination
shows that their arguments rely upon the experimental conclusions of
Gharib et al.1 and therefore does not precisely follow the methodology
of Mohseni and Gharib6 and Linden and Turner.8 Fukumoto and
Kaplanski,25 however, applied successfully the methodology of Shusser
and Gharib7 to the Kaplanski family of vortex rings. In addition, the
extended slug-flow model of Limbourg and Nedić12,13 is applied to
estimate the formation number of orifice-generated vortex rings in the
exhaust-based non-dimensional time framework t� ¼ U0t=D0.
Second, the validity of the closure assumptions of Mohseni and
Gharib6 and Shusser and Gharib7 is critically reassessed using existing
data from the literature and new measurements. More precisely, the
kinematics of the leading vortex rings generated with the orifice geom-
etries by Limbourg and Nedić12,13 are presented in both the exhaust-
based non-dimensional time frame t� ¼ U0t=D0 and the modified
non-dimensional time frame T� ¼ U?t=D?. Detailed description of
the experimental set-up and conditions for the presented data can be
found in Limbourg and Nedić11 as well as in Limbourg.28

The outline of the present study is as follows. First, the slug-flow
model predicting the production of the invariants of the motion at an
exhaust, nozzle or orifice, is presented in Sec. II. Second, the theoretical
models of isolated vortex rings are presented in a succinct manner in
Sec. III. Then, the asymptotic matching procedure originally proposed
by Gharib et al.,1 Mohseni and Gharib,6 Shusser and Gharib,7 and
Linden and Turner8 is presented, regardless of the model of family of
vortex rings (Sec. IV). Finally, a critical discussion of the validity of the
results is proposed in Sec. V. In particular, the closure assumptions
suggested by Mohseni and Gharib6 and Shusser and Gharib7 are
assessed and compared with experimental data in Sec. VD.

II. THE SLUG-FLOW MODEL

The asymptotic matching operation proposed by Mohseni and
Gharib,6 Shusser and Gharib,7 and Linden and Turner8 rests upon
the prediction of the invariants of the motion by the classic slug-flow
model. For parallel starting jets in which the radial velocity at the
exhaust is negligible throughout the fluid ejection, the model was
proved to estimate adequately the rate of production of these invari-
ants of the motion. For an orifice starting jet, however, it was shown
that the slug-flow model underestimates drastically the invariants of
the motion. In particular, Limbourg and Nedić12,13 showed that the
rates of production of the circulation, the hydrodynamic impulse,
and the kinetic energy are functions of the orifice-to-tube diameter
ratio D0=Dp, and the discrepancy with the classic slug-flow model is
as pronounced as the orifice-to-tube diameter ratio is small. As such,
an extension to the classic slug-model was proposed to account for
the contraction of the flow at the exhaust of an orifice. The contrac-
tion coefficient obtained by Von Mises29 for a two-dimensional slit
in a channel is applied to the equivalent three-dimensional axisym-
metric problem and the modified slug-flow model reads

C? ¼
1
2
U?L?ðtÞ ¼

1
2
U0L0ðtÞ � 1=C2

c ; (1)

I? ¼
1
4
pqU?D

2
?L?ðtÞ ¼

1
4
pqU0D

2
0L0ðtÞ � 1=Cc; (2)

E? ¼
1
8
pqU2

?D
2
?L?ðtÞ ¼

1
8
pqU2

0D
2
0L0ðtÞ � 1=C2

c ; (3)

where L0?ðtÞ is the length of the column of fluid discharged at time t,
D0? is the diameter of the column, and U0? is the speed of the flow in
the slug of fluid. With reference to Fig. 1, the subscript 0 refers to the
geometrical exhaust-based quantities and the subscript ? refers to the
contracted quantities in the vena contracta, both linked by the conser-
vation of volume and the contraction coefficient Cc.

12,13,28 For
instance, the (geometrical) exhaust speed is written U0, whereas the
contracted exhaust speed in the vena contracta is written as U?.
Similarly, the volume of the discharged column of fluid at the exhaust
is written as �V0 � p=4L0D2

0 and the volume of the respective column
of fluid in the vena contracta is written as �V? � p=4L?D2

? although
the conservation of volume imposes�V? ¼ �V0.

In addition to the dimensional invariants of the motion, a set of
non-dimensional parameters can be defined based on the critical
quantities of the problem and estimated with the above extended slug-
flow model,

a � E

q1=2C3=2I1=2
¼

ffiffiffi
p
2

r
L?ðtÞ
D?

� ��1
¼

ffiffiffi
p
2

r
L0ðtÞ
D0

� ��1
� C3=2

c ; (4)
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b � C

q�1=3I1=3U2=3
¼ 1

ð2pÞ1=3
L?ðtÞ
D?

� �2=3

¼ 1

ð2pÞ1=3
L0ðtÞ
D0

� �2=3

� C�1c ; (5)

c � �V
q�3=2C�3=2I3=2

¼ 1ffiffiffiffiffi
2p
p L?ðtÞ

D?

� �
¼ 1ffiffiffiffiffi

2p
p L0ðtÞ

D0

� �
� C�3=2c ;

(6)

given that the b and c quantities are defined in terms of the contracted
quantities U? and �V?, although the conservation of volume enforces
�V? ¼ �V0. Note that in the publication of Limbourg and Nedić,12 it is
erroneously mentioned that the contraction coefficient cancels out in
the expressions of a, b, and c.

III. MODELS OF ISOLATED VORTEX RINGS

The asymptotic matching operation requires a model for describ-
ing the isolated vortex rings obtained far downstream from the gener-
ating apparatus. Two models exist to describe isolated vortex rings: the
original Fraenkel–Norbury model and the newer Kaplanski model.

A. The Fraenkel-Norbury family of vortex rings

The Fraenkel–Norbury model of vortex rings refers to the class
of steady vortex rings having a truncated linear distribution of vorticity
in the vortex core and is sometimes referred to as the standard model.
The vortex rings are parametrized by the mean core radius � defined
as �2 ¼ A=pR2, where A is the area of the vortex core and R ¼ D=2 is
the radius of the ring. For small values of �, one is left with a thin-core
vortex ring, and asymptotic expressions for the circulation, the hydro-
dynamic impulse, the kinetic energy, and the translational speed of the
vortex ring are furnished by Fraenkel.15 The mean core radius is
bounded on the other end by a value of

ffiffiffi
2
p

which corresponds to
Hill’s spherical vortex.30 For mean core radii between these two limits,
one must rely on approximate methods; Norbury17 computed numeri-
cally the resulting streamlines and the boundary of the vortex core for
mean core radii in the range of 0.1–1.3, in 0.1 increments. In addition,
the invariants of the motion were computed and presented in a table
for a set of mean core radii ranging from 0.2 to 1.2, in 0.2 increments,

the case � ¼
ffiffiffi
2
p
� 1:4 corresponding to Hill’s spherical vortex. One

can therefore write

CFN ¼ XR3�2ĈFNð�Þ; (7)

IFN ¼ qXR5�2 Î FNð�Þ; (8)

EFN ¼ qX2R7�4ÊFNð�Þ; (9)

UFN ¼ XR2�2Û FNð�Þ; (10)

where X is the constant of proportionality of the vorticity distribution
in the radial direction and where ĈFN ; Î FN ; ÊFN , and Û FN are either
the non-dimensional quantities tabulated in Norbury17 or the non-
dimensional functions determined analytically by Fraenkel14,15 for
small cross section vortex rings or by Norbury16,17 for thick Hill’s-like
vortex rings. In addition, Norbury17 computed the streamline defining
the vortex core, as well as the separating streamline delimiting the ring
atmosphere. As such, the volume of the ring atmosphere was com-
puted and tabulated as �VFN ¼ R3V̂�FN . Furthermore, Hill’s spherical
vortex, the thickest member of the Fraenkel–Norbury family, has ana-
lytical expressions for the invariants of the motion, translational speed,
and volume from which the non-dimensional parameters can be easily
computed: aH ¼ ð10pÞ1=2=35 � 0:160; bH ¼ 5=ð2pÞ1=3 � 2:71, and
cH ¼ 5=3 ð10=pÞ1=2 � 2:97.30

B. The Kaplanski family of vortex rings

Kaplanski and collaborators20–27 proposed a model of time-
dependent viscous laminar vortex rings having a nearly Gaussian dis-
tribution of vorticity,

x ¼ x0 exp
1
2

r2 þ g2 þ s2
� �� �

I1 rsð Þ; (11)

with

r ¼ r
‘

� ¼ x � x0ðtÞ
‘

s ¼ R
‘

and ‘ ¼
ffiffiffiffiffiffiffi
2�t
p

and

x0 ¼
2I0

qR 4p�tð Þ3=2
;

FIG. 1. Schematic of the slug-flow model made to scale for a unit impulse duration.
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where ‘ is the viscous core radius, I0 is the conserved hydrodynamic
impulse, and I1 is the modified Bessel function of the first kind. The
parameter s is essentially the inverse of the non-dimensional mean
core radius � defined for the Fraenkel–Norbury family, and one can
write for convenience that � ¼ 1=s.

The vorticity distribution of Eq. (11) is a solution to the Stokes
equations and satisfies the condition of invariance of the hydrody-
namic impulse. In fact, the invariants of the motion are

CK ¼
I0

qR2
ĈKð�Þ; (12)

IK ¼ I0 Î Kð�Þ; (13)

EK ¼
I20

qR3
ÊKð�Þ; (14)

UK ¼
I0

qR3
Û Kð�Þ; (15)

where ĈK ; Î K ¼ 1; ÊK , and Û K are functions of the parameter s
only, or equivalently � ¼ 1=s. Similarly to Hill’s spherical vortex for
the Fraenkel–Norbury family, it is possible to define a limiting mem-
ber of the Kaplanski family. This vortex ring, obtained for �!1, or
equivalently for s! 0, corresponds to the decaying asymptotic solu-
tion of Phillips.31 The non-dimensional numbers of this limiting vor-
tex are found to be 0.118, 3.32, and 3.49 for the a, b, and c quantities,
respectively.

Unlike the Fraenkel–Norbury family, the Kaplanski vortex rings
have a vorticity distribution close to what is observed experimentally.
More precisely, in the initial stage, the vorticity distribution has a

pronounced toroidal structure with a Gaussian vorticity distribution
which agrees well with measurements.25 Note that although this model
stems from the assumption of low Reynolds numbers, Gaussian vortic-
ity distribution in the core of vortex rings has also been observed at
moderate Reynolds numbers.18 For more information on the model,
the reader is referred to the original papers of Kaplanski or the review
textbook by Danaila et al.32

C. Comparison of the models

Figure 2 presents the streamlines of a Fraenkel–Norbury vortex
ring having a mean core radius of � ¼ 0:8, while Fig. 3 presents the
streamlines of a Kaplanski vortex ring having a mean core radius of
� ¼ 1=s ¼ 0:5. Interestingly, although the linear vorticity distribution
of the Frankel–Norbury ring is far from physical [Fig. 2(a)], the result-
ing streamlines resemble to experimental flow patterns. Besides, the
Kaplanski vortex ring of Fig. 3(a) presents a Gaussian-like distribution
of vorticity in the core and therefore extends to the centerline; the vor-
ticity distribution is therefore expected to be skewed as the vortex ring
grows in size. The streamlines of Figs. 3(b) and 3(c) are found to be
very close to the Fraenkel–Norbury ring of Figs. 2(b) and 2(c)
although the mean core radius is much smaller. Overall, as highlighted
by Danaila and H�elie,33 the Fraenkel–Norbury family and the
Kaplanski family display very similar streamline patterns. Critically,
the dividing streamlines, i.e., w ¼ 0, defining the bounds of the ring
atmosphere are found to be almost identical, which thus implies that
the volume of the ring can be estimated by fitting the experimental
data with either the Fraenkel–Norbury or Kaplanski family of vortex

FIG. 2. Fraenkel–Norbury family of vortex rings. (a) Vorticity distribution, (b) streamlines in a frame of reference following the ring, and (c) streamlines in a fixed frame of
reference—Streamlines of a vortex ring of mean core radius � ¼ 0:8 for equidistant values of w — - —. Extent of the vortex core – – – –. Separating streamline, i.e., w ¼ 0.
The cross corresponds to the center of vorticity.

FIG. 3. Kaplanski family of vortex rings. (a) Vorticity distribution, (b) streamlines in a frame of reference following the ring, and (c) streamlines in a fixed frame of reference
——–. Streamlines of a vortex ring of mean core radius � ¼ 0:5 for equidistant values of w — - —. Extent of the vortex core – – – –. Separating streamline, i.e., w ¼ 0. The
cross corresponds to the center of vorticity.
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rings with the corresponding value of �. Nonetheless, Danaila and
H�elie33 noted a 40% underestimation in the modeled volume com-
pared to the measured volume, hence highlighting an apparent bias in
the estimate. Finally, the Kaplanski family was shown to have a vortex
ring signature, as defined by Moffatt,34 closer to the numerical results
of Danaila and H�elie.33

In the remainder of the manuscript, the quantities are written
with a subscript i regardless of the family of vortex ring. For instance,
the dimensional translational speed of the ring will be written as Ui

and the shape function will be written as Û i.

IV. ANALYTICAL PREDICTION OF THE FORMATION
NUMBER
A. The asymptotic matching procedure originally
proposed by Gharib et al.1

The theoretical model of Gharib et al.1 is semi-empirical as it
requires the measurements of the circulation, the hydrodynamic
impulse, and the kinetic energy of the isolated vortex ring. Mohseni
and Gharib,6 however, offered a methodology to estimate analytically
the non-dimensional quantities of the detached isolated vortex rings.
The predicted invariants of the motion delivered by the nozzle genera-
tor and derived from the slug-flow model [Eqs. (1)–(3)] are equated to
their equivalent analytical expressions derived for the isolated of vortex
rings [Eqs. (7)–(9), or equivalently Eqs. (12)–(14)]. This matching pro-
cedure of the circulation, the hydrodynamic impulse, and the kinetic
energy ultimately results in the curve,

L?
D?
¼

ffiffiffi
p
2

r
q1=2C3=2

i I1=2i

Ei
¼

ffiffiffi
p
2

r
Ĉ

3=2
i Î

1=2
i

Ê i
¼

ffiffiffi
p
2

r
aið�Þ�1; (16)

where ai is the a quantity of the isolated vortex ring computed from
the non-dimensional invariants of the motion following the model of
Fraenkel–Norbury or Kaplanski. In short, Eq. (16) provides a corre-
spondence between the generating conditions, i.e., the maximum
stroke ratio L?=D?, and the resulting isolated vortex ring parametrized
by the mean core radius �.

Interestingly, there exists a maximum stroke ratio above which a
single vortex ring cannot be formed. For the Fraenkel–Norbury family
of vortex ring, this limiting stroke ratio is 7.83 and would form Hill’s

spherical vortex, whereas for the Kaplanski family, a limiting stroke
ratio of 10.63 is found24 (Fig. 4).

B. The closure assumption of Mohseni and Gharib6

In order to find a single limiting stroke ratio, i.e., a single forma-
tion number, and close the system of equations, one additional
assumption is required. In addition to the circulation, the hydrody-
namic impulse and the kinetic energy, Mohseni and Gharib6 proposed
to match the translational speed of the isolated vortex ring to a hypo-
thetical ring speed during formation. Mohseni and Gharib6 therefore
estimated the speed of the ring at the exhaust by @E=@I, as originally
proposed by Roberts35 following a Hamiltonian formalism, and
derived it from the slug-flow model; the translational speed of the ring
in the vicinity of the exhaust was therefore estimated to be
@E?=@I? ¼ U?=2. Finally, by matching this estimated ring speed to
the translational speed of the isolated vortex ring, one is left with

L?
D?
¼

ffiffiffi
p
2

r
C3=2
i

q�1=2I1=2i Ui

¼
ffiffiffi
p
2

r
Ĉ

3=2
i

Î
1=2
i Û i

¼
ffiffiffi
p
2

r
bið�Þ3=2; (17)

and the compatibility equation,

Ei ¼ UiIi or Ê i ¼ Û iÎ i: (18)

The limiting stroke ratio, or formation number, is then found to
be the intersection between Eqs. (16) and (17), as shown in Fig. 1 of
Mohseni and Gharib6 or in Fig. 4(a). It also corresponds to the mean
core radius at which Eq. (18) is satisfied. A limiting stroke ratio of 2.96
is found for a mean core radius of 0.317, and the resulting non-
dimensional numbers are a ¼ 0:442; b ¼ 1:76, and c ¼ 1:24 (see
summary Table I). Note that Mohseni and Gharib6 argued that experi-
mentally, the speed of the ring close to exhaust is larger than 0:5U?.
Repeating the calculations with a estimated ring speed of 0:6U?, which
was claimed to be closer to the speed observed experimentally, a limit-
ing stroke ratio of 4.51 was obtained.

If one applies the same procedure to the Kaplanski family, the
formation number is found to be 3.50, which is larger than the original
value of 2.96 obtained with the Frankel–Norbury family but closer to
the values found experimentally for parallel starting jets. Additionally,

FIG. 4. Theoretical prediction of the limiting stroke-to-diameter ratio, or formation number, using (a) the Fraenkel–Norbury family and (b) the Kaplanski family.
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the predicted non-dimensional quantities of the detached vortex ring
are found to be a ¼ 0:358; b ¼ 1:98, and c ¼ 1:50. Note that the
value of 0.358 for the a quantity is much lower than the value 0.442
obtained using the Frankel–Norbury family, but, again, closer to the
value of 0.33 repeatedly found experimentally and numerically for
both orifice and nozzle geometries.

C. The closure assumption of Shusser and Gharib7,36

Similarly to Mohseni and Gharib,6 Shusser and Gharib7,36

hypothesized the detachment of the primary ring from the feeding jet
to occur when the speed of the steady isolated vortex ring equates the
velocity of the jet. More precisely, Shusser and Gharib7,36 argued that
when detachment occurs, the vortex ring is in the vicinity of the
exhaust which forces the diameter and speed of the feeding jet of fluid
to be prescribed by the kinematics of the ring. Applying the conserva-
tion of mass, along with the slug-flow model, the ring speed at the
exhaust is estimated by U?D2

?=4R
2, where R is the radius of the ring.

Matching the ring circulation, hydrodynamic impulse, and speed to
the exhaust quantities, as proposed by Mohseni and Gharib,6 one is
left with

L?
D?
¼ 1ffiffiffiffiffi

2p
p 1

R2q1=2

I1=2i C1=2
i

Ui
¼ 1ffiffiffiffiffi

2p
p Î

1=2
i Ĉ

1=2
i

Û i
; (19)

and the compatibility equations reads

Ei ¼ pqR2CiUi or Ê i ¼ pĈiÛ i: (20)

The derivations of Shusser and Gharib7 using the Fraenkel–
Norbury family are revisited here to make use of the numerical results
of Norbury17 instead of the asymptotic expressions of Fraenkel15

which are only valid in the thin-ring approximation, i.e., �� 1. In
combination with Eq. (16), Eq. (19) furnishes a formation number of
3.75 and non-dimensional numbers of a ¼ 0:339; b ¼ 1:93, and
c ¼ 1:48 (Table I). Note that these values are much larger than the
ones originally found by Shusser and Gharib7 for a thin-core vortex
ring.

Interestingly, if one repeats the calculations of Shusser and
Gharib7 with the Kaplanski family of vortex rings, a limiting stroke
ratio of 3.50 is obtained which is identical to the prediction obtained
with the methodology of Mohseni and Gharib.6 Naturally, the non-
dimensional quantities are also found to be the same (Table I). This

was first shown by Fukumoto and Kaplanski.25 Upon careful examina-
tions of Eqs. (17) and (19), it is found that these two curves approach
each other exponentially as � ¼ 1=s decreases. Therefore, at small
mean core radii of � < 0:3, the intersections of the latter two curves
with the curve given by Eq. (16) result in the same prediction of the
formation number and thus the same estimation of the non-
dimensional quantities of the detached vortex ring (Table I).

D. The closure assumption of Linden and Turner8

Rather than the ring speed, Linden and Turner8 argued that the
limiting constraint is the volume of the ring atmosphere. As such, after
estimating the volume of fluid discharged by the generator to that of a
cylinder, i.e., �V? ¼ �V0 ¼ p=4D0L0ðtÞ, and matching the circulation,
the hydrodynamic impulse and the volume, the following relations are
obtained:

L?
D?
¼

ffiffiffiffiffi
2p
p �Vi

q�3=2C�3=2i I3=2i

¼
ffiffiffiffiffi
2p
p V̂�i

Ĉ
�3=2
i Î

3=2
i

¼
ffiffiffiffiffi
2p
p

cið�Þ (21)

and

2Ei �Vi ¼ I2i or 2Ê iV̂�i ¼ Î
2
i (22)

When using the Fraenkel–Norbury family of vortex rings, the intersec-
tion of Eq. (16) with Eq. (21) gives a limiting stroke ratio of 3.51, and
the non-dimension quantities are found to be a ¼ 0:411; b ¼ 1:88,
and c ¼ 1:40 (Table I).

The methodology of Linden and Turner8 can be extended to the
Kaplanski family of vortex ring provided the volume of the isolated
ring. The extent of the ring atmosphere is defined by the separating
streamline of the propagating isolated vortex ring. Given the stream
function of the Kaplanski ring and the translational speed of the ring,
it is possible to find the dividing streamline defined by w ¼ 0. The vol-
ume of revolution of the ring atmosphere is then computed by the
disk method. From this, the limiting stroke ratio is found to be 5.05,
and the non-dimensional numbers are a ¼ 0:248; b ¼ 2:36, and
c ¼ 2:02 (Table I). These values differ significantly from the values
determined experimentally. In particular, the estimated formation
number is larger than the value of about 4 found by Gharib et al.1

Moreover, the non-dimensional quantity a is found to be relatively
small compared to the value of 0.33 found experimentally by Gharib,
Rambod, and Shariff,1 Dabiri and Gharib,37 and Limbourg and

TABLE I. Analytical predictions of the limiting stroke ratio, i.e., the formation number.

Family of vortex rings Method of L?=D? � a b ca

Fraenkel–Norbury Mohseni andGharib6 2.96 0.318 0.442 1.76 1.24
Shusser andGharib7,b 3.75 0.455 0.339 1.93 1.48
Linden and Turner8 3.51 0.411 0.359 1.88 1.40

Kaplanski Mohseni andGharib6,a 3.50 0.206 0.358 1.98 1.50
Shusser andGharib7,c 3.50 0.206 0.358 1.98 1.50
Linden andTurner8,a 5.05 0.314 0.248 2.36 2.02

aNew result.
bResult revisited making use of the numerical results of Norbury.17
cResult originally reported by Fukumoto andKaplanski.25

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 117103 (2021); doi: 10.1063/5.0070542 33, 117103-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Nedić,11 yet not so far from the values found by Krueger et al.,38

Rosenfeld et al.,39 or Krieg andMohseni.10

Note that, although Kaplanski and Rudi24 maintained that they
used the methodology of Mohseni and Gharib6 and Linden and
Turner8 to predict the value of the formation number, their deriva-
tions make use of the formation number of 3:6� 4:5 found experi-
mentally by Gharib et al.1 to compute the non-dimensional quantities
a and b that the Kaplanski vortex ring would have when separation
occurs.

E. The influence of the contraction coefficient

In the above derivations, the extended slug-flow model was used
to derive the relationships linking the generator conditions, i.e., the
stroke ratio L?=D?, to the characteristic quantities of the isolated vor-
tex rings parametrized by the mean core radius �. The expressions are
therefore equally valid for both nozzle geometries and orifice geome-
tries. If instead of the contracted quantities, the stroke ratio is defined
in terms of the geometrical exhaust quantities, subscript 0, or equiva-
lently, if instead of the corrected non-dimensional time T� ¼ U?t=D?

defined by Limbourg and Nedić,12 one uses the exhaust-based non-
dimensional time t� ¼ U0t=D0, i.e., the so-called formation time, then
the predicted formation number is multiplied by C3=2

c , where Cc is the
contraction coefficient depending on the orifice-to-tube diameter ratio
D0=Dp. For instance, for an orifice geometry having an orifice-to-tube
diameter ratio of 0.5, and following the methodology of Mohseni
and Gharib6 (or Shusser and Gharib7) in combination with the
Kaplanski model, one would obtain a limiting formation number of
3:50� C3=2

c ¼ 3:50� 0:6443=2 ¼ 1:81 in the exhaust-based non-
dimensional time frame, which is consistent with the measurements of
Limbourg and Nedić.11 Again, the contraction coefficient Cc was
obtained using the results of Von Mises29 who found the free stream-
line of the flow exiting a two-dimensional 90� slit in a channel. For
nozzle geometries, however, the contraction coefficient is theoretically
identically equal to 1, and the classic slug-flow model is returned, as
well as the usual definition of the non-dimensional time. Figure 5
presents the dependency of the predicted limiting stroke ratio as a

function of the orifice-to-tube diameter ratio when the former is
defined in terms of the geometrical exhaust parameters, denoted by a
subscript 0. Note that using the Kaplanski model in combination with
the methodologies of Mohseni and Gharib6 (red solid line in Fig. 5) or
Shusser and Gharib7 (blue solid line in Fig. 5), as well as using the
Fraenkel–Norbury family with the closure assumption of Linden and
Turner8 (green dashed line in Fig. 5), all produce the same result. This
is in line with the values reported in Table I.

Interestingly, using the modified slug-flow model instead of the
classic model does not modify the estimated non-dimensional quanti-
ties of the isolated vortex rings, provided that the contracted quantities
are used in the definition of b (and c). Because the modified stroke
ratio L?=D? is related to the exhaust-based stroke ratio L0=D0 by a
simple factor of Cc, the limiting mean core radius � remains the same,
and the non-dimensional quantities presented in Table I are the same
whether one uses a nozzle geometry or an orifice geometry. This is
also in line with the measurements of Limbourg and Nedić11 who
reported non-dimensional quantities of isolated orifice-generated vor-
tex rings close to the values found by Gharib et al.1 for nozzle-
generated vortex rings.

Finally, it was shown by Krieg and Mohseni9 and Limbourg and
Nedić12,13 that the classic slug-flow slightly underestimates the rate of
production of the invariants of the motion discharged by a nozzle geom-
etries. As such, Limbourg and Nedić12 proposed to use the modified
slug-flow model with a contraction coefficient of 0.90 which was shown
to better estimate the evolution of the non-dimensional quantities.12

Therefore, although theoretically there should be no contraction of the
flow in the case of a parallel starting jet, a contraction coefficient of 0.90
is applied here. For the Fraenkel-Norbury family, the estimated exhaust-
based formation numbers are 2:96� 0:903=2 ¼ 2:52 when using the
closure of Mohseni and Gharib,6 3:75� 0:903=2 ¼ 3:20 for the closure
of Shusser and Gharib7 and 3:51� 0:903=2 ¼ 2:99 for the closure of
Linden and Turner.8 Similarly, for the Kaplanski family of vortex rings,
the values are 3:50� 0:903=2 ¼ 2:99; 3:50� 0:903=2 ¼ 2:99, and
5:05� 0:903=2 ¼ 4:31 for the closure assumptions of Mohseni and
Gharib,6 Shusser and Gharib,7 and Linden and Turner,8 respectively.

V. ASSESSMENT OF THE ASSUMPTIONS AND
DISCUSSION

As outlined in Sec. IV, the asymptotic matching methods rest
upon the validity of the extended slug-flow model, the theoretical
models of isolated vortex rings, and the closure assumptions, which
involve either the exhaust ring speed or the volume of the ring. In the
present section, each assumption is reviewed in detail.

A. Validity of the extended slug-flow model

The validity of the extended slug-flow model has previously been
assessed by Limbourg and Nedić12,13 who showed that for orifice start-
ing jets and converging nozzles, the extended slug-flow model accu-
rately estimates the production of the invariants of the motion
(circulation, hydrodynamic impulse, and kinetic energy). An aspect
that was overlooked in the previous work, but plays a pivotal role in
validating the closure assumptions, is the scaling of the kinematics of
the leading vortex ring in the vicinity of the exhaust.

Figure 6 presents the time history of the axial position of the lead-
ing vortex ring for orifice-to-tube diameter ratios ranging from 0.375
to 1.000, in 0.125 increments, and obtained for a fixed exhaust speed

FIG. 5. Evolution of the limiting exhaust-based stroke ratio as a function of the
orifice-to-tube diameter ratio using – – – – the Fraenkel-Norbury family and ——–
the Kaplanski family.
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of U0¼ 100mm s�1 and a tube diameter of Dp¼ 101.6mm.With the
present normalization, the slope of the curve corresponds to the nor-
malized translational speed of the ring. The asymptotic translational
speed is in fact measured at non-dimensional times between t� ¼ 3
and 5 in Fig. 6(a). For more information on the experimental proce-
dure, the reader is referred to Limbourg and Nedić11–13 or
Limbourg.28

With a translational speed of approximately ð0:506 0:02ÞU0,
the nozzle-generated vortex ring propagates slower than the orifice-
generated rings, all of which have a propagation speed of about
ð0:706 0:02ÞU0. For an orifice-to-tube diameter ratio of
D0=Dp ¼ 0:875, however, the ring has a translational speed in
between with a value of about ð0:616 0:02ÞU0. However, when scaled
by the contracted diameter D? and when shown as a function of the
corrected non-dimensional time T� ¼ U?t=D?, all curves collapse and
the speed of the leading vortex ring is found to be ð0:476 0:02ÞU? for
all cases, nozzle and orifices [Fig. 6(b)]. Note that a contraction coeffi-
cient of 0.90 was used on the nozzle case to model the contraction
effect of the vortex ring on the discharged slug of fluid.12,13

The influence of the orifice-to-tube diameter ratio on the kine-
matics of the leading vortex ring is also visible in Fig. 7(a), which

presents the evolution of the ring diameter in the exhaust-based non-
dimensional time frame. The nozzle-generated vortex ring is observed
to grow larger in diameter compared to the orifice-generated vortex
ring. However, similarly to the axial position in Fig. 6(b), all curves col-
lapse when the ring diameter is normalized by the contracted diameter
D? and presented as a function of the modified non-dimensional
time T� ¼ U?t=D? [Fig. 7(b)]. Again, a contraction coefficient of
Cc ¼ 0:90 was used for the nozzle case.

To summarize, the extended slug-flow model introduced in
Sec. II not only accurately predicts the production of the invariants of
the motion, as shown by Limbourg and Nedić,12,13 but also appropri-
ately scales the kinematics of the leading vortex ring; this was claimed
without justification by Limbourg and Nedić,12 but now rigorously
presented. Finally, note that measurements were also taken for a fixed
diameter-based Reynolds number, and identical results were found.28

B. Validity of the models of isolated vortex rings

A comparison between the two families of vortex rings is also
required. In Sec. IV, the Kaplanski family of isolated vortex ring was
used to estimate the limiting stroke ratio, or formation number, using
the closure assumptions of Mohseni and Gharib,6 Shusser and

FIG. 6. Time history of the normalized axial position of the core centroid in (a) the geometrical quantities framework and (b) the contracted quantities framework.

FIG. 7. Time history of the normalized diameter of the vortex ring in (a) the geometrical quantities framework and (b) the contracted quantities framework.
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Gharib,7 and Linden and Turner.8 Kaplanski vortex rings possess a
nearly Gaussian distribution of vorticity inside the vortex core, which
is more physical than the linearly distributed vorticity of the
Fraenkel–Norbury vortex rings. Although the streamlines of the latter
model look physical and somewhat validate the use of this model for
estimating the quantities of isolated vortex rings, the Kaplanski family
offers the possibility of modeling the vortex core accurately, thus
allowing a comparison to the experimental data of Weigand and
Gharib40 or Cater et al.,19 for instance. Nevertheless, this does not nec-
essarily translate into a better estimation of the volume of the ring
atmosphere, as shown by Danaila and H�elie.33 Moreover, the
Kaplanski model allows one to incorporate a time-dependent viscous
effect and study the entire life-cycle of the vortex ring. For this reason,
the Kaplanski family seems to be the most appropriate model for
studying the propagation of isolated vortex ring, as opposed to the
Fraenkel–Norbury family.

C. Compatibility of the extended slug-flow model
with the closure assumptions

Now, given the modified slug-flow model to predict the produc-
tion of the invariants of the motion for any exhaust (nozzle or orifice)
and given the Kaplanski model to describe self-propagating vortex
rings, one is left with the three closure assumptions of Mohseni and
Gharib,6 Shusser and Gharib,7 and Linden and Turner.8 Whereas
Linden and Turner8 assume the volume of the ring to be the limiting
factor on the ring growth, both Mohseni and Gharib6 and Shusser and
Gharib7 assume the ring speed to be the determining constraint, and
the separation, or pinch-off, of the vortex ring occurs when the ring
translational speed reaches a limiting value.

Mohseni and Gharib6 estimated the ring speed at the exhaust by
@E=@I and assumed the ring energy and ring impulse during forma-
tion to be given by the slug-flow model, hence finding
@E?=@I? ¼ U?=2. Mohseni and Gharib6 made the observation that in
practice the translational velocity of the vortex ring is larger than
0:5U? and they proposed instead to use a value of 0:6U? which ulti-
mately gives a larger predicted formation number of 4.51 with the
Fraenkel–Norbury family and 6.78 with the Kaplanski family. For a
straight nozzle, Limbourg and Nedić12,13 observed that using a con-
traction coefficient of 0.90 leads to an improved estimation of the

invariants of the motion. As such, the estimated ring speed at the
exhaust would be U?=2 ¼ U0=2Cc ¼ 0:56U0, in line with the argu-
ment of Mohseni and Gharib.6 Nevertheless, as shown in Fig. 5 and
discussed in Sec. IVE, this would lead to a reduced predicted forma-
tion number if one uses the modified slug-flow model, or equivalently
the corrected non-dimensional time T� ¼ U?t=D?. Moreover, as
shown in Fig. 6(b), the measured translational speed of nozzle-
generated vortex rings seems to be closer to 0:45U? ¼ 0:50U0, which
is consistent with the orifice geometry measurements, and provided
that a contraction coefficient of 0.90 is used. As such, the latter argu-
ment of Mohseni and Gharib6 does not seem validated by experimen-
tal evidence.

On the other hand, Shusser and Gharib7 argued that the leading
vortex ring detaches when the speed of the ring equates the speed of
the jet estimated by an assumption of conservation of mass; it is stated
that the entire flow rate discharged by the generator is accumulated by
the vortex ring when it is forming. Because the extended slug-flow
model assumes a conservation of mass (or volume) from the exhaust
plane to the vena contracta, the closure equation proposed by Shusser
and Gharib7 is identical whether one uses the contracted tube of fluid
or the geometrical slug of fluid at the exhaust.

To summarize, the closure assumptions of Mohseni and Gharib6

and Shusser and Gharib7 are applicable to the extended slug-flow
model, as well as volume argument of Linden and Turner8 and the
asymptotic matching procedure is equally valid for orifice-generated
vortex rings.

D. Validity of the translational speed closure
assumption of Mohseni and Gharib6

and Shusser and Gharib7

Given the data found in the literature and the measurements pre-
sented in Figs. 6 and 7, it is possible to assess the validity of the closure
arguments of Mohseni and Gharib6 and Shusser and Gharib.7

Figure 8 presents the normalized axial position of the leading
vortex ring as a function of the exhaust-based non-dimensional time
t� ¼ U0t=D0 obtained by several studies; the slope of the curves thus
corresponds to the speed of the ring normalized by the exhaust
speed U0. For a straight nozzle, the experimental results of Didden,41

FIG. 8. Axial position of the leading vortex ring for several cases found in the literature.
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Gharib et al.,1 Schram and Riethmuller,42 Dabiri and Gharib43 and
Krueger et al.,44 are presented, as well as the numerical result of Zhao
et al.,45 Krueger,46 and Domenichini.47 Note that the experiment of
Didden41 was reproduced numerically by Nitsche and Krasny,48 James
and Madnia,49 Heeg and Riley,50 and Hettel et al.,51 and identical
results were found. In addition, the particle image velocimetry mea-
surements of Pawlak et al.52 obtained for a converging nozzle of 13

�

conical angle are reported. Pawlak et al.52 also performed simulations
and found very close agreement with the experiments. Finally, the
numerical results obtained by Krueger46 for an orifice-generated vor-
tex ring are presented. It is worth noting that Krueger’s46,53 simula-
tions confirm that orifice-generated vortex rings propagate faster than
nozzle-generated vortex rings, provided that one places themselves in
the exhaust-based non-dimensional time frame t� ¼ U0t=D0.

Interestingly, all straight nozzle curves, except perhaps the one of
Krueger et al.,44 collapse together close to the measurements shown in
Fig. 6. In particular, the nozzle case of Gharib et al.,1 for which a for-
mation number of about 4.0 was found, presents a maximum asymp-
totic translational speed of 0:45U0, and thus an even lower speed at
t� ¼ 4:0� 4:5, the instant at which pinch-off occurs. Similarly,
Pawlak et al.52 reported a measured formation number of 3:5� 5:0
although the vortex ring speed was observed to be about 0:45U0.
Furthermore, Schram and Riethmuller42 reported a ring speed linearly
increasing from 0:36U0 at t� ¼ 1:4 to 0:59U0 at t� ¼ 11:1; the ring
speed is therefore estimated to be 0:44U0 at the instant of expected
pinch-off of t� ¼ 4:0. These results are in line with the measurements
shown in Fig. 6 where orifice and nozzle-generated vortex rings were
shown to possess a translational velocity between 0:45U? and 0:49U?.
As a consequence, the assumption of Mohseni and Gharib6 of having
a translational ring velocity larger than 0:50U? in the vicinity of the
exhaust does not seem to be valid. Critically, the methodology of
Mohseni and Gharib6 is strongly dependent to the ring speed at the
exhaust. For instance, a reduced exhaust ring speed of 0:40U? instead
of the theoretical speed of @E?=@I? ¼ 0:50U? would lead to an esti-
mated formation number of 1.82 when using the Kaplanski family, far
from the well-accepted value of 4.

A potential flaw of the closure assumption of Mohseni and
Gharib6 could be the estimation of the translational speed of the ring
during formation and the use of the Hamiltonian formalism to express
the ring speed in terms of the variations of kinetic energy and hydro-
dynamic impulse. In particular, the formula of Roberts35 is obtained
for freely propagating isolated vortex ring. However, during formation,
the primary vortex ring strongly interacts with the feeding jet, and the
presence of the generator imposes a wall boundary condition.
Estimating the ring kinetic energy and the ring hydrodynamic impulse
by the slug-flow model, however, seems to be a reasonable assumption
as all the fluid discharged is entrained in the rolling motion of the
structure at the very first instants. In order to assess the validity of the
expression provided by Roberts,35 the rates of change of the hydrody-
namic impulse and the kinetic energy are measured to form the ratio
@E=@I. It is then compared to the translational speed presented in
Fig. 6 which was measured by tracking the center of vorticity; Fig. 9
presents the measured ring speed and the estimated ring speed before
and after the correction for the contraction of the flow is applied. First,
as previously shown in Fig. 6(b), the modified slug-flow model, and
more precisely the normalization by the contracted exhaust speed U?,
allows one to bring all ring speeds close to the theoretical value given

by the slug-flow model of 0:50U? (hollow symbols in Fig. 9). Now,
comparing the measured ring speed with the ratio @E=@I, a close
agreement between the two is found, with values ranging between
0:42U? and 0:49U?. Note that the estimated ring speed obtained by
means of the Hamiltonian formalism is observed to underestimate
slightly the ring speed for D0=Dp ¼ 0:375 and D0=Dp ¼ 0:875.
Nonetheless, overall, the ratio @E=@I adequately estimates the transla-
tional speed of the vortex ring, and this even in the close vicinity of the
exhaust. Therefore, rather than the Hamiltonian formalism and the
equation of Roberts,35 this is the closure assumption of Mohseni and
Gharib6 itself that is put into question. Identical results were obtained
at a fixed diameter-based Reynolds number which is not a surprise as
the exhaust speed was shown to have a minimal impact on the latter
ratio [see Fig. 5.4(d) of Limbourg28].

Shusser and Gharib7,36 made the assumption that the vortex ring
completes its formation process when it reaches the jet flow velocity;
at early times, the presence of the vortex in the close vicinity of the
exhaust prevents one from using the exhaust speed U? prescribed by
the slug-flow model. However, the mass flow rate discharged by the
generator is fully accumulated by the forming vortex ring until the
speed of the self-propagating isolated vortex ring is reached. In other
words, the vortex ring separates from the feeding jet once the condi-
tion UD2 ¼ U?D2

? is met. Figure 10(a) presents this ratio UD2=U?D2
?

as a function of the modified non-dimensional time T� ¼ U?t=D? for
the experimental cases shown in Figs. 6 and 7. The ratio increases and
reaches a value of 1 at a corrected non-dimensional time between 3.5
and 4.5, consistent with the formation number found experimentally
by Limbourg and Nedić11 and Krieg and Mohseni10 for orifice geome-
tries in the corrected non-dimensional time and with the formation
number found by Gharib et al.,1 and others for nozzle-generated vor-
tex rings. Additionally, Fig. 10(b) presents this same ratio for nozzle
cases inferred from the literature. Again, the ratio reaches a value of 1
at a corrected non-dimensional time, or an exhaust-based non-dimen-
sional time, of 4–5, which is consistent with the formation number
reported by these studies of approximately 4. As such, in consideration
of the latter experimental and numerical evidence, the closure assump-
tion of Shusser and Gharib7 is met when the leading vortex ring
detaches from the feeding starting jet, and it is therefore reasonable to

FIG. 9. Measured and estimated translational speed of the leading vortex ring as a
function of the orifice-to-tube diameter ratio.
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select this closure assumption over the one of Mohseni and Gharib6 as
it is better supported by experimental evidence.

VI. CONCLUSIONS

To conclude, a critical review of the asymptotic matching proce-
dure of Mohseni and Gharib,6 Shusser and Gharib,7 and Linden and
Turner8 to predict the formation number was proposed. First, the
extended slug-flow model of Limbourg and Nedić12,13 was presented,
as well as the Fraenkel–Norbury and the Kaplanski models of isolated
vortex rings. Then, the asymptotic matching methodologies were
reviewed and extended upon the Kaplanski family of vortex ring
although the methodology of Shusser and Gharib7,36 had already been
applied to the Kaplanski family by Fukumoto and Kaplanski.25 It was
also proved that the extended slug-flow model can be used to predict
the formation number of orifice-generated vortex rings in the exhaust-
based non-dimensional time frame t� ¼ U0t=D0. Moreover, it is
encouraged to use the Kaplanski family instead of Fraenkel–Norbury
family as it better models time-evolving vortex rings observed experi-
mentally. Finally, a critical discussion of the validity of the closure
assumptions of Mohseni and Gharib6 and Shusser and Gharib7 was
proposed. Particle image velocimetry measurements obtained for dif-
ferent orifice-to-tube diameter ratios, including the nozzle case, were
performed. The time histories of the axial position and the ring diame-
ter of the leading vortex rings were presented. Not only do these fig-
ures further validate the extended slug-flow model of Limbourg and
Nedić,12,13 but they also show that estimating the ring speed to be half
the exhaust speed for all cases is too coarse of an approach, and the
asymptotic ring speed is in fact closer to 0:47U?. This is also corrobo-
rated by data gathered from the literature. This therefore questions the
validity of the closure assumption of Mohseni and Gharib.6 Besides,
the closure assumption of Shusser and Gharib7,36 which stipulates that
the separation of the vortex ring from the feeding jet stops when the
translational speed of the ring reaches the one of the jet, however, was
corroborated by experimental and numerical evidence. In fact, the
measurements show that the flow rate accumulated by the leading vor-
tex ring matches the flow rate discharged by the generator at a non-
dimensional time of about 3:5� 4:5. To summarize, the closure
assumption of Shusser and Gharib7 finds more experimental support

than the methodology of Mohseni and Gharib.6 The validation of the
method of Linden and Turner8 is left for future study as the measure-
ment of the volume of the ring atmosphere during formation remains
a challenging study on its own.43,54
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13R. Limbourg and J. Nedić, “An extended model for orifice starting jets,” Phys.
Fluids 33, 067109 (2021).

14L. E. Fraenkel, “On steady vortex rings of small cross-section in an ideal fluid,”
Proc. R. Soc. London, Ser. A 316, 29–62 (1970).

15L. E. Fraenkel, “Examples of steady vortex rings of small cross-section in an
ideal fluid,” J. Fluid Mech. 51, 119–135 (1972).

16J. Norbury, “A steady vortex ring close to Hill’s spherical vortex,” Math. Proc.
Cambridge Philos. Soc. 72, 253–284 (1972).

17J. Norbury, “A family of steady vortex rings,” J. Fluid Mech. 57, 417–431
(1973).

18A. Weigand and M. Gharib, “On the evolution of laminar vortex rings,” Exp.
Fluids 22, 447–457 (1997).

19J. E. Cater, J. Soria, and T. T. Lim, “The interaction of the piston vortex with a
piston-generated vortex ring,” J. Fluid Mech. 499, 327–343 (2004).

20A. Berezovski and F. Kaplanski, “Diffusion of a ring vortex,” Fluid Dyn. 22,
832–837 (1988).

21A. Berezovski and F. Kaplanski, “Dynamics of thin vortex rings a low-viscosity
fluid,” Fluid Dyn. 27, 643–649 (1992).

22A. Berezovski and F. Kaplanski, “Vorticity distributions for thick and thin vis-
cous vortex pairs and rings,” Arch. Mech. 47, 1015–1026 (1995).

23F. Kaplanski and Y. Rudi, “Dynamics of a viscous vortex ring,” Int. J. Fluid
Mech. Res. 26, 618–630 (1999).

24F. Kaplanski and Y. Rudi, “A model for the formation of ‘optimal’ vortex rings
taking into account viscosity,” Phys. Fluids 17, 087101 (2005).

25Y. Fukumoto and F. Kaplanski, “Global time evolution of an axisymmetric vor-
tex ring at low Reynolds numbers,” Phys. Fluids 20, 053103 (2008).

26F. Kaplanski, S. S. Sazhin, Y. Fukumoto, S. Begg, and M. Heikal, “A generalized
vortex ring model,” J. Fluid Mech. 622, 233–258 (2009).

27F. Kaplanski, Y. Fukumoto, and Y. Rudi, “Reynolds-number effect on vortex
ring evolution in a viscous fluid,” Phys. Fluids 24, 033101 (2012).

28R. Limbourg, “Formation of orifice-generated vortex rings,” Ph.D. thesis
(McGill University 2021).

29R. Von Mises, “Berechnung von ausfluß und ueberfallzahlen,” Z. Ver. Dtsch.
Ing. 21, 493–498 (1917).

30M. J. M. Hill, VI, “On a spherical vortex,” Philos. Trans. R. Soc. London, Ser. A
185, 213–245 (1894).

31O. Phillips, “The final period of decay of non-homogeneous turbulence,” Math.
Proc. Cambridge Philos. Soc. 52, 135–151 (1956).

32I. Danaila, F. Kaplanski, and S. S. Sazhin, Vortex Ring Models, Mathematical
Engineering (Springer International Publishing, 2021).

33I. Danaila and J. H�elie, “Numerical simulation of the postformation evolution
of a laminar vortex ring,” Phys. Fluids 20, 073602 (2008).

34H. K. Moffatt, “Generalised vortex rings with and without swirl,” Fluid Dyn.
Res. 3, 22–30 (1988).

35P. H. Roberts, “A Hamiltonian theory for weakly interacting vortices,”
Mathematika 19, 169–179 (1972).

36M. Shusser and M. Gharib, “Energy and velocity of a forming vortex ring,”
Phys. Fluids 12, 618–621 (2000).

37J. O. Dabiri and M. Gharib, “The role of optimal vortex formation in biological
fluid transport,” Proc. R. Soc. B 272, 1557–1560 (2005).

38P. S. Krueger, J. O. Dabiri, and M. Gharib, “Vortex ring pinchoff in the pres-
ence of simultaneously initiated uniform background co-flow,” Phys. Fluids 15,
L49 (2003).

39M. Rosenfeld, K. Katija, and J. O. Dabiri, “Circulation generation and vortex
ring formation by conic nozzles,” J. Fluids Eng. 131, 091204 (2009).

40A. Weigand and M. Gharib, “On the decay of a turbulent vortex ring,” Phys.
Fluids 6, 3806–3808 (1994).

41N. Didden, “On the formation of vortex rings: Rolling-up and production of
circulation,” J. Appl. Math. Phys. 30, 101–116 (1979).

42C. Schram and M. L. Riethmuller, “Vortex ring evolution in an impulsively
started jet using digital particle image velocimetry and continous wavelet analy-
sis,” Meas. Sci. Technol. 12, 1413–1421 (2001).

43J. O. Dabiri and M. Gharib, “Fluid entrainment by isolated vortex rings,”
J. Fluid Mech. 511, 311–331 (2004).

44P. S. Krueger, J. O. Dabiri, and M. Gharib, “The formation number of vortex
rings formed in uniform background co-flow,” J. Fluid Mech. 556, 147–166
(2006).

45W. Zhao, S. H. Frankel, and L. G. Mongeau, “Effects of trailing jet instability
on vortex ring formation,” Phys. Fluids 12, 589–596 (2000).

46P. S. Krueger, “Circulation and trajectories of vortex rings formed from tube
and orifice openings,” Physica D 237, 2218–2222 (2008).

47F. Domenichini, “Three-dimensional impulsive vortex formation from slender
orifices,” J. Fluid Mech. 666, 506–520 (2011).

48M. Nitsche and R. Krasny, “A numerical study of vortex ring formation at the
edge of a circular tube,” J. Fluid Mech. 276, 139–161 (1994).

49S. James and C. K. Madnia, “Direct numerical simulation of a laminar vortex
ring,” Phys. Fluids 8, 2400–2414 (1996).

50R. S. Heeg and N. Riley, “Simulations of the formation of an axisymmetric vor-
tex ring,” J. Fluid Mech. 339, 199–211 (1997).

51M. Hettel, F. Wetzel, P. Habisreuther, and H. Bockhorn, “Numerical verifica-
tion of the similarity laws for the formation of laminar vortex rings,” J. Fluid
Mech. 590, 35–60 (2007).

52G. Pawlak, C. Marugan Cruz, C. Mart�ınez Baz�an, and P. Garc�ıa Hrdy,
“Experimental characterization of starting jet dynamics,” Fluid Dyn. Res. 39,
711–730 (2007).

53P. S. Krueger, “Circulation of vortex rings formed from tube and orifice openings,”
in Fluids Engineering Division Summer Meeting (ASME, 2006), pp. 97–104.

54A. B. Olcay and P. S. Krueger, “Measurement of ambient fluid entrainment
during laminar vortex ring formation,” Exp. Fluids 44, 235–247 (2008).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 117103 (2021); doi: 10.1063/5.0070542 33, 117103-12

Published under an exclusive license by AIP Publishing

https://doi.org/10.1017/jfm.2013.9
https://doi.org/10.1063/5.0033719
https://doi.org/10.1017/jfm.2021.36
https://doi.org/10.1017/jfm.2021.141
https://doi.org/10.1063/5.0048813
https://doi.org/10.1063/5.0048813
https://doi.org/10.1098/rspa.1970.0065
https://doi.org/10.1017/S0022112072001107
https://doi.org/10.1017/S0305004100047083
https://doi.org/10.1017/S0305004100047083
https://doi.org/10.1017/S0022112073001266
https://doi.org/10.1007/s003480050071
https://doi.org/10.1007/s003480050071
https://doi.org/10.1017/S0022112003006980
https://doi.org/10.1007/BF01050718
https://doi.org/10.1007/BF01051604
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1063/1.1996928
https://doi.org/10.1063/1.2925682
https://doi.org/10.1017/S0022112008005168
https://doi.org/10.1063/1.3693276
https://doi.org/10.1098/rsta.1894.0006
https://doi.org/10.1017/S0305004100031066
https://doi.org/10.1017/S0305004100031066
https://doi.org/10.1063/1.2949286
https://doi.org/10.1016/0169-5983(88)90040-8
https://doi.org/10.1016/0169-5983(88)90040-8
https://doi.org/10.1112/S0025579300005611
https://doi.org/10.1063/1.870268
https://doi.org/10.1098/rspb.2005.3109
https://doi.org/10.1063/1.1584436
https://doi.org/10.1115/1.3203207
https://doi.org/10.1063/1.868371
https://doi.org/10.1063/1.868371
https://doi.org/10.1007/BF01597484
https://doi.org/10.1088/0957-0233/12/9/306
https://doi.org/10.1017/S0022112004009784
https://doi.org/10.1017/S0022112006009347
https://doi.org/10.1063/1.870264
https://doi.org/10.1016/j.physd.2008.01.004
https://doi.org/10.1017/S0022112010004994
https://doi.org/10.1017/S0022112094002508
https://doi.org/10.1063/1.869041
https://doi.org/10.1017/S002211209700517X
https://doi.org/10.1017/S0022112007007677
https://doi.org/10.1017/S0022112007007677
https://doi.org/10.1016/j.fluiddyn.2007.06.003
https://doi.org/10.1115/FEDSM2006-98268
https://doi.org/10.1007/s00348-007-0397-9
https://scitation.org/journal/phf

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	s3
	s3A
	d7
	d8
	d9
	d10
	d11
	s3B
	f1
	d12
	d13
	d14
	d15
	s3C
	f2
	f3
	s4
	s4A
	d16
	s4B
	d17
	d18
	f4
	s4C
	d19
	d20
	s4D
	d21
	d22
	t1
	t1n1
	t1n2
	t1n3
	s4E
	s5
	s5A
	f5
	s5B
	f6
	f7
	s5C
	s5D
	f8
	f9
	s6
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	f10
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54

