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ABSTRACT 

This thesis presents a statisticallearning framework for inferring geometric structures 

from images. Specifically, the proposed framework computes dense range maps of lo­

cations in the environment using only intensity images and very limited amount of 

range data as an input. This is achieved by integrating and analyzing the statisti­

cal relationships between the visual data and the available depth on terms of small 

patches. The scientific issue is to represent this correlation such that it can be used 

to recover range data where missing. Markov Random Fields are used as a model to 

capture the local statistics of the intensity and range. 

Experiments on real-world data are conducted under different configurations to 

demonstrate the feasibility of the method. In particular, our application is in mobile 

robotics, where inferring the 3D layout of indoor environments is a critical problem 

for achieving exploration and navigation tasks. The modeling of a large-scale environ­

ment involves the acquisition of a huge amount of range data to extract the geometry 

of the scene, and is often performed using sophisticated but costly hardware solutions. 

This task is physically demanding and time consuming for many real systems. By 

using the proposed framework, it is demonstrated that we can learn the geometric 

characteristics of the environment from the incomplete sensory data to build a 3D 

model of it. 

The contributions of this thesis are mainly three: First, it demonstrates the 

viability of the use of very limited range data together with intensity to recover 

complete dense range maps. Second, it presents a complete framework for building a 
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3D model of an indoor environment using a mobile robot. And third, it analyses and 

outlines the advantages and limitations encountered when dealing with large indoor 

environments. 

An additional contribution is the use of the method we propose for range estima­

tion to an alternative problem: color correction and augmentation with the specifie 

application to underwater images. 

iii 



RÉSUMÉ 

Cette thèse présente une structure d'apprentissage statistique pour déduir les struc­

tures géométriques des images. Spécifiquement, la structure proposée calcule des 

cartes de distance denses des emplacements dans l'environnement en utilisant seule­

ment des images d'intensité et une quantité très limitée de données de distance comme 

entrée. Ceci est réalisé en intégrant et en analysant les rapports statistiques entre 

les données visuelles et de distance disponibles aux conditions de petites pièces. Le 

point scientifique est de représenter cette corrélation de telle façon qu'elle puisse ètre 

employée pour récupérer des données de distance où ce type d'information manque. 

Des champs aléatoires de Markov sont employés comme un modèle pour capturer les 

statistiques locales d'intensité et de distance. 

Des expériences sur des données réelles sont effectués sous différentes configura­

tions pour démontrer la praticalité de la méthode. En particulier, notre application 

est en robotique mobile, où impliquer la disposition 3D des environnements d'intérieur 

est un problème critique pour la réalisation des tâches d'exploration et de navigation. 

La modélisation d'un environnement à grande échelle comporte l'acquisition d'une 

quantité énorme de données de distance pour obtenir la géométrie de la scène, et 

ceci est souvent effectué en utilisant des plateformes sophistiquées mais coûteuses. 

Cette tâche est d'une demande physique exigeante et de longue durée pour beau­

coup de systèmes réels. En employant la structure proposée, il est démontré que nous 

pouvons apprendre les caractéristiques géométriques de l'environnement en employant 
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des données incomplètes provenant des capteurs afin the construire une représentation 

fidéle de l'environnement. 

Les contributions de cette thèse sont les suivanates : D'abord, elle démontre la 

viabilité de l'utilisation des données très limitées de distance ainsi que d'intensité pour 

récupérer des cartes denses de distance complètes. Deuxièmement, elle présente un 

cadre complet pour établir un modèle 3D d'un environnement de bureau à l'aide d'un 

robot mobile. Et troisièmement, elle analyse et décrit les avantages et les limitations 

rencontrées en traitant des grands environnements de bureau. 

Une contribution additionnelle est l'utilisation de la méthode que nous pro­

posons pour l'estimation de distance dans un problème alternatif: la correction et 

l'augmentation de la couleur, particulièrement son application spécifique aux images 

sous-marines. 

v 
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CHAPTER 1 

Introduction 

Surface depth recovery is a critical problem in robotics and computer vision. In the 

vision community, solutions to such "shape-fram-X" problems are often based on 

strong prior assumptions regarding the physical properties of the objects in the scene 

(such as matte or Lambertian refiectance properties). In the robotics community, such 

depth inference is often performed using sophisticated but costly hardware solutions. 

While several elegant algorithms for depth recovery have been developed, the use 

of laser range data in many applications has become commonplace due to their sim­

plicity and reliability (but not their elegance, cost or physical robustness). However, 

it is often hampered by the fact that range sens ors that provide complete (2~D) depth 

maps with a resolution akin to that of a camera, are prohibitely costly or otherwise 

impractical. Stereo cameras can pro duce volumetrie scans that are economical, but 

they often require calibration or produce range maps that are either incomplete or of 

limited resolution. Thus, when building 3D models or map representations of large 

scenes, a desired characteristic is to simplify the way range sens or data is acquired 

so that time and energy consumption can be minimized. This can be achieved by 

acquiring only partial, but reliable, depth information. 

In this thesis, we address the 3D scene recovery problem. Specifically, we inte­

grate visual information with very sparse depth information and demonstrate how 

the underlying geometry of the scene can be characterized by the visual information, 



CHAPTER 1. INTRODUCTION 

• 
Visual information Partial depth map 

Input sensor data 

Synthesized dense 
depth map 

• 
3D model 

FIGURE 1.1. Building a 3D model by integrating visual and partial geomet­
ric information. 

and the interaction of this visual information with the environment together with its 

inter-relationships with the available depth. Figure 1.1 illustrates this idea by giving 

an example of estimating a complete and dense range map to build a 3D model of a 

scene from its intensity image and associated partial range map. 

We explore and analyze the statistical relationships between intensity and range 

data in terms of small image patches. Our goal is to demonstrate that the surround 

( context) statistics on both the intensity and range image patches can provide infor­

mation to infer the complete 3D layout of space. It has been shown by Lee et al. [83] 

that although there are clear differences between optical and range images, they do 

have similar second-order statistics and scaling properties (Le., they both have sim­

ilar structure when viewed as random variables). Our motivation in this thesis is 

to exploit this fact and also that both video imaging and limited range sensing are 

ubiquitous readily-available technologies while complete volume scanning is prohibi­

tive on most mobile platforms. Section 2 gives an overview of our method for range 

synthesis which is covered in more detail in Chapter 5. 

Our application is in mobile robotics. In particular, we investigate the au­

tonomous integration of incomplete sensory data to build a 3D model of an unknown 

large-scale 1 indoor environment. In addition, we believe this work has applications 

in other domains, as we will demonstrate. 

1 Large-scale space is defined as a physical space that cannot be entirely perceived from a single 
vantage point [79J. 
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1.1 DEPTH RECOVERY IN COMPUTER VISION 

Acquisition of 
Intensity Images 

and Partial Range 

Intensity and 
Partial Range 
Registration 

Integration to 
a Global Map 

3D Map 
Representation 

FIGURE 1.2. Diagram showing the procedures to be followed for the 3D 
enviromp.ent modeling problem. 

Despite the fact that robot environments are three-dimensional, much of the prior 

work in robot mapping deals only with 2D map reconstruction due to its utility for 

robot navigation, fast visibility computation and the fact that it is much easier to con­

struct. Only more recently many researches have been attracted to the ide a of having 

a 3D model of the environment. 3D models are much richer than 2D models and 

facilitate the disambiguation of different places. Having a mobile robot able to build 

a 3D map of the environment is particularly appealing as it can be used for several 

important applications. For example, virtual exploration of remote locations, either 

for safety, automatic rescue and inspection of hazardous or inhospitable environments 

(e.g. the reactor of a nuclear power plant) or for efficiency reasons (museums' tours). 

AU these applications depend on the transmission of meaningful visual and geometric 

information. 

Figure 1.2 shows our approach for the mobile robot environment modeling prob­

lem. A brief introduction to the stages involved in our approach is given in Section 3 

and Chapter 7 covers them in detail. 

1. Depth Recovery in Computer Vision 

The idea of extracting shape or depth information from an image has been stud­

ied in the field of computer vision since the late 1960s. Computer vision scientists 

were mainly interested in techniques that were supposed to reflect the way the human 
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1.1 DEPTH RECOVERY IN COMPUTER VISION 

eye works. These techniques, known as shape-from-X techniques, extract depth infor­

mation from intensity images by using cues such as shading, texture, retinal disparity 

and motion. This group oftechniques are passive, i.e., they obtain image data without 

emitting energy, and are typically performed by designing mathematical models of 

image formation and inverting these models. These models are traditionally based on 

physical principles of light interaction. However, due to the highly underconstrained 

characteristic of the inverse problem of these principles, many assumptions about the 

type of surface and albedo need to be made, which may not be an suit able for the 

complex real scenes. A greater understanding of how real images are formed could 

lead to substantial insight into how depth information may be inferred from single 

images. 

Depth information from an object or scene can also be acquired directly by using 

active range sensors. These techniques are known as active sensing techniques. This 

type of range sens ors provide directly precise and accurate 3D points. In addition, 

they are independent from external lighting conditions and do not need any texture 

to perform weIl. Range sensors are commonly used to perform scene understanding 

for indoor mobile robots. However, these sensors tend to be expensive, the data 

acquisition process slow, and normaIly of limited spatial resolution. A picture of a 

big expensive 3D laser scanner is given in Figure 1.3. On the other hand, intensity 

images have high resolution that permits very accurate results on well-defined targets. 

They are easy to acquire and provide texture-maps based on real color-photographs. 

1.1. Fusing passive and active sensing techniques 

The fundamental problem of obtaining accurate depth from traditionaIly ap­

proaches such as shading based shape analysis or binocular stereo, remains a difficult 

task. Using 2D imagery alone will only provide sparse and unreliable geometric mea­

sures unless sorne underlying simple scene geometry is assumed. Consequently, the 

field of active rangefinding has grown parallel to the area of computer vision and 

4 



1.1 DEPTH RECOVERY IN COMPUTER VISION 

FIGURE 1.3. Commercial 3D Laser scanner, Trimble GS200. Dimensions: 
34cm (D) x 27cm (W) x 42cm (H). Weight: 13.6 kg. 

robotics, in an endeavor to find complementary techniques that overcome the limita­

tions of current camera technology. By fusing 2D vision with rangefinding sensors, 

as first demonstrated in [74], a solution to 3D vision is realized -circumventing the 

problem of inferring 3D from 2D. 

A vast body of research on 3D modeling has been focused on the fusion of intensity 

and range data. These works an consider the complete acquisition of 3D points from 

the object or scene to be modeled, focusing mainly on the registration and integration 

problems. One of the main problems in building (3D) map representations, is to 

simplify the way sensor data is acquired, to minimize time and energy consumption, 

yet accurately and reliably recover the 3D layout of an scene. 

1.2. Image Statistics on Intensity and Range Images 

Real scenes are constrained by many regularities in the environment, such as the 

natural geometry of objects and their arrangements in space, natural distributions of 

light, and regularities in the observer's position. Statistical studies may be helpful 

for understanding these regularities, which are not obvious from physical models. 

Statistical methods have enjoyed a great deal of recent success in their applica­

tions to problems in computer vision. However, few studies have been made into the 

statistical relationshi p between images and range images (depth images). Those few 
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studies have uncovered meaningful and exploitable statistical trends in real scenes 

which may be use fui for designing new algorithms in surface inference, and also for 

understanding how humans perceive depth in the real scenes. An overview of this 

work is presented in Chapter 3. 

2. Statistics on Visual and Partial Range Data 

Our approach for range estimation is based on the assumption that the pixels 

constituting both the range and intensity images acquired in an environment can be 

regarded as the results of pseudo-random processes, but that these random processes 

exhibit useful structure. In particular, the assumption that range and intensity im­

ages are correlated, albeit in potentially complicated ways, is exploited. A second 

assumption made is that the variations of pixels in the range and intensity images 

are related to the values elsewhere in the image(s) and that these variations can be 

efficiently captured by the neighborhood system of a Markov Random Field. Both 

these assumptions have been considered before [63, 45, 164, 44, 68], but they have 

never been exploited in tandem. Texture synthesis [45, 164, 44] and digital in­

painting [13, 14, 31] (see Section 5 of Chapter 4), are quite similar to the range 

estimation problem, although the domain and approach are quite different. In [4], a 

learned representation of pixel variation for perform resolution enhancement of face 

images is presented. The processes employed to interpolate new high-resolution pixel 

data are quite similar in spirit to what is described in this research, although the ap­

plication and technical details differ significantly. The work in [153, 60] on learning 

the relationships between intrinsic images is also related. 

Markov Random Fields (MRF) provide a methodological framework which allows 

the images from different sensors to be merged in a consistent way. In this thesis, we 

demonstrate that a natural way to incorporating spatial correlations into the range 

synthesis pro cess is to use Markov random fields as a priori models. 

The appeal of Markov random fields for range estimation cornes from their explicit 

attempt to model interactions and relationships between neighboring parts of the 
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data space. By knowing the pixel intensity values of the scene, and only partial range 

data coming from part of the objects and background, we can make an intelligent 

guess to recover the rest of the object shape. Markov random fields let us model 

the relationships between intensity and observed range directly and explicitly. These 

relationships are made similar to or, when appropriate, different from, relationships 

among other observed data. This feature also makes Markov random fields well suited 

for modeling spatial data, i.e., data that come from different spatial locations. 

3. Our application: Mobile Robot Environment Modeling 

In order to successfully achieve its tasks, a mobile robot depends on the environ­

mental information gathered by its exteroceptive sensors, such as laser rangefinders, 

ultrasonic sensors, CCD cameras, etc., either separately or in combination. However, 

one of the greatest challenges to conventional mobile robotics is perception: mobile 

robots can travel across much of earth's man-made surfaces, but they cannot perceive 

the world nearly as well as humans and other animaIs. Moreover, perception do es 

not just involve sensing, but also the inierpreiaiion of the sensed data in meaningful 

ways. 

FIGURE 1.4. A picture of our mobile robot with the 2D laser range finder 
and the camera mounted on it. 
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Data Acquisition and Registration 

While there has been enormous progress on the automated acquisition of environ­

mental models, the process of acquiring information about the robot's environment, 

in particular 3D data, is often costly or labor intensive in practice. In our approach, 

a mobile robot navigates its environment. At each pose, it collects a set of intensity 

images and a small amount of 3D data. The intensity images are combined into 

a panoramic mosaic. Since the intensity and range data are coming from different 

types of sensors, they must be aligned or registered in order to be able to estimate 

a complete and dense range map. In this thesis, we present a robust image-based 

registration technique that takes advantage of the way sens ors are arranged and how 

sensor data is acquired. 

Range synthesis 

After registering the intensity and partial range information at every robot pose, we 

apply our range synthesis method. A crucial aspect is the sampling strategy used 

when the robot is at particular pose. The denser the sampling the easier the range 

map estimation. However, since our goal is to minimize time and energy consumption 

in the data acquisition process, we want to be strategic in sampling the 3D data. We 

use a heuristic that is based on the distance the robot is from the objects in the 

scene. Basically, the doser the robot is to the objects, the denser the sampling is, 

and the further the robot is from the objects, the sparser the sampling of 3D data. 

The advantages and limitations of this heuristic are analyzed. 

Data Integration 

In general, only partial and imperfect information can be obtained from real sens ors , 

thus integration of multiple observations of the same entity is required to compute an 

estimate of the photometric and geometric characteristics of the scene. The output 

from the previous stage is a set of panoramic mosaics with depth or 3D panora­

mas. These 3D panoramas are integrated in a common reference frame. We take 

8 



1.4 ALTERNATIVE APPLICATION: COLOR CORRECTION 

Input image Color corrected Image 

FIGURE 1.5. Color correction of underwater images. Left image depicts the 
input color depleted image. Right image is the color corrected image. 

a hybrid approach for data integration that is based on mat ching range scans while 

simultaneously matching intensity features on the panorama mosaics. 

4. Alternative Application: Color Correction 

We apply the proposed method for range estimation to an alternative application: 

color correction. In particular, we apply this to the color correction of underwater 

images such as those collected by our swimming robot AQUA [64, 43]. For example, 

images acquired in deep water tend to be almost achromatic. Figure 1.5 shows to 

the left, an example of a color depleted image, and to the right, the color corrected 

image after applying our method. For many aquatic robot tasks, the quality of the 

images is crucial. Our method corrects the color of images by using a Markov Random 

Field (MRF) to represent the relationship between color depleted and color images. 

The parameters of the MRF model are learned from the training data and then the 

most probable color assignment for each pixel in the given color depleted image is 

inferred by using belief propagation (BP). This allows the system to adapt the color 

restoration algorithm to the current environmental conditions and also to the task 

requirements. Chapter 8 describes in detail our approach for color correction and 

presents experimental results on a variety of underwater scenes. 
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1.6 CONTRlBUTIONS 

5. Problem Statement 

This thesis answers three questions. First, how can the statistical nature of 

visual (photometrie) surround or context provide information about its geometrie 

properties? In particular, how can the statistical relationships between intensity 

and range data be modeled reliably such that the inference of unknown range be as 

accurate as possible? Second, how can the data collected at different robot poses in 

a large-scale scene be fused and modeled such that the models we build are useful 

for robotic navigation and localization? Third, based on the previous question, how 

can such models be constructed automatically, particularly when very limited range 

information is available with respect to intensity information and no prior information 

concerning the position of the robot is known as it collects training data? 

The research presented in this thesis focuses primarily on wheeled mobile robots 

that navigate in indoor environments. The goals of this thesis are to answer the above 

questions by exploiting assumptions about the world and about the robot that are as 

general as possible. 

A framework for computing solutions to the questions at hand will be developed, 

with a discussion of the motivation for each component. The solutions will in turn 

be vaHdated experimentally. 

6. Contributions 

The following is a list of key contributions made in this dissertation . 

• The first statistieal model for the spatial structure of the surround of in­

tensity and partial range data using Markov Random Fields; 

• The first two algorithms for estimating depth information where only inten­

sity is known, based on the above mentioned statistical model, that does 

not rely on strong assumptions concerning specific surface geometries or 

surface reflectance functions; 
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1.7 STATEMENT OF ORlGINALITY 

• The application of this model to the mobile robot environment modeling 

problem. A complete framework of data acquisition, registration and inte­

gration is described, and the viability of using a limited amount range data 

together with intensity to build a 3D model or map of a large-scale indoor 

environment is demonstrated. 

Additional contributions are: 

• The design of a physical framework to rapidly acquire visual and partial geo­

met rie information is presented. This framework is composed of a camera 

and a laser rangefinder mounted on a mobile robot. We demonstrate that 

our framework to acquire the sens or data also facilitates the registration 

pro cess between the input data. 

• A robust image-based algorithm to register intensity and partial range data 

that does not require previous sensor calibration is developed. Since the 

input data cornes from different types of sensors, the registration algorithm 

must account for the different resolutions and projections of the input data. 

Also, the registration must be carried on a variety of data subsampling, 

going from dense to very sparse. 

• A demonstration and experimental validation of the feasibility of using the 

proposed model for the spatial structure to a computer vision problem: 

color correction of underwater images. To this end, we define an algorithm 

for enhancing underwater images that suffer for degradation due to optical 

scattering resulting in an image that is bluish, blurry and out of focus. 

7. Statement of Originality 

Portions of the results presented in this thesis work have appeared previously in, 

or are currently in submission [158, 156, 160, 159, 157, 64, 43, 123]. In sorne 

cases, 1 have co-authored papers with the team of the AQUA project, that employs 
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1.8 ORGANIZATION OF THE THESIS 

the proposed method for color correction of underwater images. In those works, the 

distinction of our individual contributions is explicit. 

My published work also contains results that are not reported in this thesis. 

In most cases, new results are presented here duplicating the original experiments 

(Chapter 6), but using improvements to the original algorithms presented in the 

published work. 

8. Organization of the thesis 

This thesis presents a statisticallearning method that combines visu al and partial 

range information for the depth recovery problem. The previous sections of the 

introduction provided the gist of what is to come in the thesis. In short, the thesis is 

organized as follows: 

Chapter 2provides an overview of the state of the art on the depth or shape recovery 

problem. Brief descriptions of relevant work to date, their main contributions and 

limitations are given. 

Chapter 3 is a review of statistical approaches that use images for depth recovery. 

This includes a description of prior studies exploring the statistical distribution and 

correlations between intensity and range images are given, in order to provide a solid 

foundation for our image-based statistical approach for 3D inference. 

Chapter 4 presents principles and concepts needed to adapt Markov Random Field 

models to the method proposed for range synthesis in this dissertation. It also presents 

sorne relevant applications of Markov Random Fields to computer vision problems 

that are related to or serve as an inspiration of our proposed method. 

Chapter 5 introduces the proposed statistical model to infer dense range maps of 

man-made scenes using only intensity images and sparse partial depth information. 

This chapter represents the main contribution of this thesis. In the first part of 

the chapter, the Markov Random Field (MRF) model is described for the spatial 

distribution of intensity and range data. The second part of the chapter presents 
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the MRF-MAP approach using Belief propagation that greatly improves the range 

synthesis results when using only the deterministic MRF-MAP approach. 

Chapter 6 presents experimental results on real data of indoor scenes. A variety of 

sampling strategies of the range data are experimented and analysis on the results 

according to these samplings are given. 

Chapter 7 presents an application of our range synthesis method. Specifically, the 

3D modeling of an indoor environment under the context of mobile robotics. It 

describes a complete framework of our approach for environment modeling: the data 

acquisition setup used to gather the visual and partial geometric information and 

the algorithm to register the intensity and partial range data. It also describes the 

depth recovery process by using our range synthesis method. Finally, the pro cess of 

integrating the sensor data from multiple viewpoints to a common coordinate frame 

is given. In other words, it describes the integration of each of the dense maps at 

each robot pose to a global 3D dense map of the environment. Along with each stage, 

experimental results on real data collected in a building from our own mobile robot 

are shown. 

Chapter 8 presents an alternative application of our proposed statistical learning 

method, for the problem of color correction of underwater images. This chapter 

can be read independently of the other chapters. It shows a formulation for color 

recovery and more general enhancement as an energy minimization problem using 

learned constraints. 

Chapter 9 gives a summary and sorne conclusions on the research contained in this 

disssertation. In the thesis, choices have been made regarding the topics of research. 

Necessarily many other interesting topics have been left aside. This chapter provides 

a list of topies for possible future research. 
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CHAPTER 2 

Passive and Active Sensing Methods 

for Depth and Shape Recovery 

As the main objective of this dissertation is to infer depth information by combining 

passive and active sensing techniques, this chapter reviews several depth and shape 

recovery methods that use these sensing techniques either individually or by fusing 

them, highlighting their advantages and disadvantages. 

1. Introduction 

Surface depth recovery is one of the central problems of computer vision and 

robotics research. Techniques for inferring the 3D layout of space are divided by 

the type of sensor they use. In general, two types of sensors are commonly used to 

infer the geometry of an object/scene: passive and active sensors. Passive sensors 

do not emit energy for the pur pose of sensing, only receive it. A passive sens or 

relies on the environment to provide information. Most robot vision is done using 

CCD cameras which detect visible light from the surrounding world. Methods that 

infer depth from images include aIl the monocular shape-from-X methods, structure 

from motion, hazing and focus/defocus. On the other hand, active sensors emit a 

special source of energy such as laser or ultrasonic waves, and then receive once it has 



2.2 PASSIVE DEPTH ESTIMATION: USING VISUAL eUES 

interacted with the object to digitize. Such active sens ors include laser, sonar, radar 

and structured light. 

The techniques described in the foUowing sections are not intended to be exhaus­

tive; we will mention briefly only the prominent approaches. 

2. Passive Depth Estimation: Using Visual Cues 

Depth estimation can be relative or absolute. Examples of techniques that re­

cover relative depth information are: shape from shading [70], from texture [147], 

from edges and junctions [7], from symmetric patterns [137] and from other picto­

rial cues such as occlusions, relative size, and elevation with respect to the horizon 

line [110]. Most of these techniques apply only to a limited set of scenes. Literature 

on absolute depth estimation is also large but the proposed methods rely on a limited 

number of sources of information (e.g., binocular vision, motion paraUax, and defo­

cus). Human vision, under normal viewing conditions, can provide a rough estimate 

of the absolute depth of a scene even in the absence of aU these sources of information 

(e.g., when looking at a photograph). We use one additional source of information 

for absolute depth estimation: the size of known objects like faces, bodies, cars, etc. 

In computer vision, however, this strategy requires segmenting the image. In general, 

image segmentation and object recognition pro cesses remain difficult and unreliable. 

In the foUowing, a subset of these techniques are described in more detail in order to 

highlight their advantages and disadvantages compared to those of the active sensing 

techniques. 

2.1. Shape-from-Shading 

Shape-from-shading (also known as photoclinometry) has attracted substantial 

attention from the research community since the 1970s. The problem of estimating the 

shape of an object from its shading was first introduced by Horn [70]. He defined the 

mapping between the shading and surface shape in terms of the reflectance function 

(surface albedo) Ix,y = R(p, q), where Ix,y denotes image intensity, p = Zx and q = Zy, 
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z are the depth of the object, and (x, y) are projected spatial coordinates of the 3D 

object. The standard approach to the problem involves modeling the behavior of 

light as it travels through space and interacts with surfaces and then attempts to 

invert the image formation processes. Unfortunately, inverting this process is highly 

underconstrained, and various assumptions about image formation models and their 

parameters such as Lambertian surface refiectance, uniform albedo, and shadow-free, 

single-point-source illumination, have to be made for this approach to work. In the 

classical formulation, it is assumed that surface radiance is determined entirely by 

the surface orientation relative to a point light source at infinity. For a Lambertian 

surface, in a scene with the same refiectivity and composed of a single smooth surface, 

the surface shape can be recovered by inverting the following equation 

Ix,y = N(x, y) . L 

where L is the light source direction, and N (x, y) is the normal at the surface point 

corresponding to an image point (x, y) (see Fig 2.1). A variety of methods have 

FIGURE 2.1. Lambertian reflection geometry. 

been developed for inverting the ab ove model to obtain the depth map. However, 

this model is not valid when the light source is diffuse [82]. The first algorithm 

for solving the shape-from-shading problem under diffuse lighting was proposed by 

Langer and Zucker [82]. In general, surface recovery from a single image is an ill-posed 

problem, requiring strong assumptions (like those mentioned above) and sophisticated 
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rnathernatical rnethods. Moreover, the results are usually not accurate and reliable 

for real scenes. 

2.1.1. Statistical Shape from Shading 

Sorne exceptions to the classical shape-frorn-shading were presented by Lehky 

and Sejnowski [84], Atick et al. [2] and more recently by Freeman et al. [59]. In their 

work, shape-from-shading algorithms make use of a direct association between lumi­

nance images and the 3D models used to generate them. The image statistics were 

derived from computer-generated images, that make the same assumptions made by 

traditional shape-from-shading algorithms. These approaches suggest that a deeper 

understanding of the joint statistics of natural images and their associated 3D struc­

tures might be important for the successful development of a statistical approach for 

3D inference. Other methods that use similar insight include those of Torralba an 

Oliva [154] and Freeman and Torralba [60]. In this thesis, we consider a similar 

approach, thus a review of the field of image statistics with focus on these methods 

for shape recovery is given in Chapter 3. 

2.2. Shape-from-Texture and Shape-from-Specularity 

Texture is another cue that provides important source of information about the 

3D structure of visible surfaces, particularly for stationary monocular views. Shape­

from-texture approaches have also been the focus of attention [169, 147]. When 

a texture surface is projected onto an image plane, the texture pattern is distorted 

systematically following laws of projective geometry. This provides a cue for 3D shape: 

if the visu al system can me as ure the compression of the texture at each image location, 

it can recover local orientation and thus shape. This requires that assumptions must 

be made about the isotropy properties of the texture, however, the unpredictability of 

natural textures precludes the use of highly restrictive assumptions. Various methods 

proposed in the literature intent to make minimal assumptions, yet it is difficult that 

one model can coyer an surface types and in particular, the huge variety of textures. 
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Fleming et al. [56] proposed a new visual cue that allows the visual system to 

estimate the shape of an object from monocular images. In their approach, specular 

reflections are treated a bit like textures; the authors argue that this is because spec­

ular reflections also lead to stochastic image patterns with well-conserved statistics. 

When the world is reflected in a specular surface, the reflection is distorted by the 

shape of the object. The pattern of distortion is a function of the 3D shape, just as it 

is with textures. Crucially, however, for specularities the compression is a function of 

surface curvature as weIl as orientation. Hence, the mapping from images to 3D shape 

follows different rules for specular versus textured surfaces. Texture trajectories 1 can 

thus allow the visual system to distinguish specular reflections from textures, and to 

estimate 3D shape for both textured and specular objects. The texture trajectory 

cue is weakest for spheres and planes, and strongest for objects with small Gaussian 

curvature but large mean curvature. 

2.3. Stereo vision 

One of the most remarkable properties of the human visual system is the ability to 

reconstruct the 3D depth of a scene from the essentially 2D retinal fields. The small 

positional differences, or disparities, of the images of objects on the two spatially 

separated retinas is used to accurately reconstruct the depth of ob jects. 

Formally, a point P in the scene, at a distance Z from the focal plane, projects 

onto left and right retinas at positions XL and XR. The difference between these 

positions, or disparity and is related to the depth Z, of the point P as follows: 

d" Bf zsparzty = XL - XR = Z (2.1) 

where B is the baseline distance and f, the focal length. 

Dense stereo vision gained popularity in the early 1990's due to the large amount 

of range data that it could provide [89, 61]. In mobile robotics, a common setup is 

the use of one or two cameras mounted on the robot to acquire depth information 

as the robot moves through the environment [99]. The cameras must be precisely 

1 A texture trajectory is defined in [56] as the pattern of compressions across an image, 
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calibrated for reasonably accurate results. The depth maps generated by stereo under 

normal scene conditions (i.e., no special textures or structured lighting) suffer from 

problems inherent in window-based correlation. These problems manifest as impre­

cisely localized surfaces in 3D space and as hallucinated surfaces that in fact do not 

exist. 

Other works have attempted to model 3D objects from image sequences [152, 

55, 115], with the effort of reducing the amount of calibration and avoiding restric­

tion on the camera motion. Fitzgibbon and Zisserman [55] proposed a method that 

sequentially retrieves the projective calibration of a complete image sequence based 

on tracking corner and/or line features over two or more images, and reconstructs 

each feature independently in 3D. Their method solves the feature correspondence 

problem using methods based on the fundamental matrix and tri-focal tensor, which 

encode precisely the geometric constraints available from two or more images of the 

same scene from different viewpoints. A similar work is that of Pollefeys et. al. [115], 

in which a 3D model of an object is obtained from image sequences acquired from 

a freely moving camera. The camera motion and its settings are unknown. Their 

method is based on a combination of the projective reconstruction, self calibration 

and dense depth estimation techniques. In general, these methods derive the epipolar 

geometry and the trifocal tensor from point correspondences. However, they assume 

that it is possible to run an interest operator such as a corner detector to extract 

from one of the images a sufficiently large number of points that can then be reli­

ably matched in the other images. It appears that if one uses information of only 

one type, the reconstruction task becomes very difficult and works weIl only under 

narrow constraints. 

2.4. Structure from Motion 

Structure from motion (SFM) is another widely recognized approach to the re­

trieval of 3D structure of a scene from optical fiow resulting from unknown camera 

motions. Ullman [161] summarizes earlier work in SFM, and Oliensis [105] gives a 
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critique of recent techniques. Ideally, SFM allows arbitrary camera motion and only 

requires that the scene is static. However, a serious drawback of this approach is 

that it is often unstable and hard to exploit in practice. As a generalization of the 

method, structure and motion is presented in [40, 114]; uncalibrated image sequences 

acquired with a hand-held camera are mapped into visu al models of 3D scenes, illus­

trated by examples showing a single building or a statue. Dick et al. 's method [40] 

uses building primitives such as doors or windows within a recovery process. Zhu et 

al. in [174], discuss the use of an uncalibrated sequence for panoramic images for 3D 

scene reconstruction. 

3. Active Sensing Techniques 

The fundamental problem of obtaining depth from traditionally approaches such 

as shading based shape analysis or binocular stereo remains a difficult task. Using 2D 

imagery alone will only provide sparse and unreliable geometric measures unless sorne 

underlying simple geometry is assumed. By fusing 2D vision with active rangefinding 

sensors, as demonstrated in [74], a solution to 3D vision is realised, circumventing 

the problem of inferring 3D from 2D. 

The active sensing methods can be divided into two categories: contact and non­

contact methods. Coordinate Measure Machine (CMM) is a prime example of the 

contact methods. CMMs consist of probe sensors which provide 3D measurements by 

touching the surface of an object. Although CMMs generate very accurate and fine 

measurements, they are very expensive and slow. AIso, the types of objects that can 

be used by CMMs are limited since physical contact is required. Furthermore, this 

method is impractical when trying to modellarge environments containing numerous 

objects. The non-contact methods project their own energy source onto an object 

or scene, then observe either the transmitted or the refiected energy. Active stereo 

uses the same idea of passive sensing stereo method, but a light pattern is projected 

onto an object to solve the difficulty of finding corresponding points between two (or 

more) camera images. Scanning the object with the light constructs 3-D information 
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about the shape of the object. This is the basic principle behind depth perception 

for machines, or 3D machine vision. In this case, structured lighting is sometimes 

described as active triangulation. 

Structured-light methods citeBesl89, Chen97 project a light pattern onto a scene, 

then use a camera to observe how the pattern is illuminated on the object surface. 

Broadly speaking, the structured-light methods can be divided into scanning and 

non-scanning methods. The scanning methods consist of a moving stage and a laser 

plane, so either the laser plane scans the object or the object moves through the laser 

plane. A sequence of images is taking while scanning. Then, by detecting illuminated 

points in the images, 3D positions of corresponding object points are computed by 

the equations of camera calibration. The non-scanning methods project a spatially 

or temporally varying light pattern onto an object or scene. An appropriate decoding 

of the reflected pattern is then used to compute the 3D coordinates of an object. 

With sonar sensors, sound is emitted, bounces off objects, and is reflected back to 

the sensor. The difference from when the sound was emitted and when it returns, and 

the speed of sound in that environment are used to calculate the distance to the object. 

Relevant work using sonar sensing in robotic applications include those developed by 

Elfes [48] and Crowley [32]. However, sonar sensors are less used nowadays due 

to the fact that data measurements are often inaccurate and inconsistent. This is 

because readings depend on the speed of sound, which varies according to atmospheric 

conditions such as temperature and humidity. Another problem is that the ultrasonic 

echoes might cause the sensor to measure totally incorrect values. 

LIDAR-based laser radar systems are more accurate than sonar sensors and use 

the information of emitted and received laser beam to compute the depth. There are 

mainly two methods that are widely used: (1) using amplitude modulated continuous 

wave (AM-CW) laser, and (2) using laser pulses. 

In particular, for man-made environments the choice of the sens or type from 

which precise raw range information from the scene is obtained is crucial. The sys­

tem that acquired the 3D data presented in this dissertation is a LIDAR-based laser 
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rangefinder. They are specially suit able for applications in 3D environment model­

ing because they acquire dense and accurate 3D data compared to passive sensing 

methods. 

There is a vast body of research work using laser rangefinders for different applica­

tions, particularly, in the 3D reconstruction problem [29, 26, 76, 94, 167, 104, 47, 

134, 144]. In what follows, we will describe the basic concept of laser rangefinders. 

3.1. LIDAR-based Laser Rangefinders 

Laser rangefinders measures distance (depth) as a direct consequence of the prop­

agation delay of an electromagnetic wave, i.e., the laser rangefinder emits a modu­

lated, collimated beam of laser light, and detects the reflected echo beam. The time 

taken for a laser beam to leave the sensor, strike a surface, and return is measured. 

This technology is known as time of fiight (TOF), and has been used for decades in 

industrial and military applications, and more recently, for research purposes. There 

are basically two techniques for measuring the TOF -the pulsed and the phase-shift 

methods. Figure 2.2 shows how this technique can be used for range estimation by 

measuring the phase shi ft between transmitted and received signals. 

Laser rangefinders provide good distance precision with the possibility of increas­

ing accuracy by means of longer measurement integration times. The integration 

time is related with the number of samples in each measurement. The final mea­

sure ment is normally an average of sample measures, decreasing therefore the noise 

associated to each single measure. Spatial resolution (i.e., the ability to distinguish 

two targets at different distances when placed side by side) is guaranteed by the small 

aperture and low divergence of the laser beam. Laser rangefinders can also provide 

a measure of the reflectance (amplitude) of the object being sensed. The amplitude 

corresponds, however, to the reflectance of the target at the wavelength of the laser 

beam (monochromatic, normally in the infrared), thus it hardly contains a texturaI 

description of the scene. 
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FIGURE 2.2. Schematic of laser rangefinding by phase-shift measurement. 
Adapted from [140] 

Laser range finders are not free from sources of error, distance measurements can 

be atfected by errors inherent to the sensor or to the scanning system. As a result, 

the measured data is not certain, and this uncertainty must be incorporated in the 

sens or fusion model. However, the completeness of coverage of these sensors is a more 

important factor that have to be taking into account when dealing with large and 

complex environments. 

In general the following attributes must be considered carefully when choosing an 

active sensor: 

• Field of view and range: How much of the world it can reliably measure 

-FOV refers to the degrees covering the horizontal and vertical axis, range 

is how far into the distance the sens or can measure. 

• Accuracy, repeatability and resolution: How correct is the measurement, 

how often it reaches the same reading, how precisely we can measure. 

• Speed of the device: How long will it take to get those measurements? Are 

the measurements averaged? How many points are captured per second? 
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There is a tradeoff between the number of points that are captured and 

averaged, and the expected standard deviation in the measurement. 

• Easy to use: How heavy is the device? How big is it? Can it be trans­

ported as carry-on luggage on an airplane? The sensor size can affect the 

designjmobility of the robot and conversely, it can be difficult to install 

due to the robot's designjsize. How straightforward is it to calibrate the 

instrument? How often do calibration procedures need to be performed? 

What facilities are required for this? How often does it need to be factory­

serviced? 

• Responsiveness in the target domain: How weIl do es the sensor work in the 

environment in which the robot is supposed to navigate? 

• Physical robustness: How will performance be affected by temperature, 

humidity, dust, vibration? (e.g., on a moving shaking vehicle). Scanning in 

environments where toxic chemicals, nuclear radiation or other agents can 

degrade scanner performance is another level of consideration. 

• Power consumption: Sensors are a major drain of power, generally passive 

sensors use less power than active. There is a trade off between locomotion 

ability and sensor capability. 

• Hardware reliability: Sensors often work best (or with reasonable reliabil­

ity) within a certain range of physical conditions, such as temperature and 

moisture. 

• Eye safety: Buyers need to consider the potential for workers or the public 

to be exposed to the laser beam. The setting in which the laser scanner 

will be used is a guide to what level of eye safety is appropriate. 

• Cost: Of course no one makes a purchase decision without considering this. 

Scanner list prices st art at about $30,000 and can be as much as $200,000 

fully loaded with software, maintenance, training and support. 
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3.1.1. Laser scanners 

A large number of possible 3D scanners are available on the market. However, 

cost is still the major concern. An overview of different systems available to 3D 

shape of objects is presented by Blais [18], highlighting sorne of the advantages and 

disadvantages of the different methods. 

Laser Range Finders directly map the acquired data into a 3D volumetrie model 

thus having the ability to partly avoid the correspondence problem associated with 

visual passive techniques. Indeed, scenes with no texturaI details can be easily mod­

elled. Moreover, laser range measurements do not depend on scene illumination. 

3.1.2. Acquiring Data: Range Image 

The sequence of images taken by the laser ra:ngefinder during a scan can be 

stored in a compact data structure called range image, also known as range map, 

range data, depth map, or depth image. In most scanners, a range image is a set 

of distance measurements arranged in a m x n grid. Typieally, for the case of laser 

scanners, m is the number of horizontal scan lines (rows) in the sequence, and n is the 

total number of vertical scan lines (i.e., stripes). We can also represent a range image 

in a parametrie form r(i,j) where r is the column coordinate of the measured point 

at the ith row in the jth stripe. Sometimes, the computed 3D coordinate (x, y, z) is 

stored instead of the column coordinate of the measured point. 

4. Fusing Active and Passive Sensing for Depth Recovery 

Passive capture compared with active sensing exhibits sorne significant advan­

tages in terms of cost, practicality, complexity of use and integration to a larger 

system. These are the characteristics that make cameras the more attractive sens or 

in the market. For the case of stereo cameras, unless accurate calibration and precise 

information on their pose are known, 3D measurements can only be recovered for a 

sparse set of features. As these features correspond to discontinuities in the intensity 
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of the images and are usually associated with "significant" structure in the scene they 

can be reliably matched and tracked along successive frames. 

In the 90s, most existing approaches were based on a single sensor [35, 76, 

141, 55]. In robotics, inter-robot communication [5, 125] is being used to overcome 

the limitations of using single robot systems (which obtain sensor readings from one 

position at a time). Depending on the application and the complexity of the object 

or scene, achieving geometric correctness and realism may require data collection 

from different sensors (passive and/or active) as weIl as the correct fusion of aIl these 

observations. The ide a of using more than one sensor to complement the data of one 

sensor with that of another is not new [103]. However, methods for data fusion are 

not as well developed as those for the design and analysis of individual sensors. 

Independent of the level of representation used, a variety of popular mathemati­

cal techniques for sens or fusion appear in the literature: for example, probability and 

Bayesian inference [34], Dempster-Shafer theory of evidence [135]. These established 

techniques are then incorporated into a framework for transforming data into a com­

mon coordinate system, producing verdicts on the correctness of the various sources, 

and allowing stable estimation of the parameters of a problem. An important aspect 

of each technique is the way in which it models uncertainty in sensor information. 

There has been substantial interest in fusing intensity and range information for 

3D model building and virtual reality applications [121, 47, 134, 86, 144] with 

promising results. Specifically, the use of dense intensity images to provide photo­

metric detail which can be registered and fused with range data to provide geometric 

detail. However, there is one notable difference of our work in this dissertation with 

those in the literature: the amount of range data acquired is very small compared 

to the intensity data. There is no prior work that uses partial depth measurements 

together with the intensity images, for complete and dense scene recovery. 
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CHAPTER 3 

Image Statistics for Shape Recovery 

Natural images (including both natural landscapes and man-made environments 1) 

exhibit strong statistical regularities that are exploitable by biological and machine 

vision systems. Only an infinitely smaU fraction of aU possible pixel combinations have 

interpretations as natural (realistic) images -the structure and content of a realistic 

image deviates from those of random images in specific ways to form a sparse subset 

of aU randomly formed images. The fact that images exhibit great variability on the 

patterns they represent has made it clear that exact mathematical models may not 

be practical, and a statistical approach needs to be adopted. 

Despite the growing success of statistical methods in vision, there has been rel­

atively litt le investigation into joint statistics of range and intensity images. This 

chapter presents a brief background on the statistics of natural images, and describes 

prior work that explore the statistical distribution and correlations between 2D im­

ages and 3D structures in order to provide a solid foundation for our image-based 

statistical approach for 3D inference. 

IThe fact that images containing man-made structures are considered natural images may be a bit 
confusing. Natural images are those that are taken from a natural environment, i.e., an environment 
that is commonly encountered by a particular organism [130]. 



3.1 INTRODUCTION 

1. Introduction 

The statistics of natural images have been studied to understand how their prop­

erties influence the human visual system. Images' statistical properties are usually 

studied by collecting a number of such images in an ensemble and computing first or, 

often, power spectrum statistics on them. One advantage of statistical approaches is 

that they can provide a unified view of learning, classification and generation. The vi­

suai world offers a tremendous amount of data that the human visual system process 

quickly and continuously. People can quickly infer low-Ievel scene properties such as 

shape, motion, lightness and occlusion boundaries. However, it has been shown that 

images that do not behave statistically as natural images are harder for the human 

visual system to interpret. 

The computation of statistics of image space has a long history. The efforts of 

finding explanations for the patterns exhibited by natural images through observing, 

gave birth to the field of natural image statistics [51, 143]. 

Most images where objects lie are expected to be of relatively large-scale in prac­

tice. For that reason, many statistical approaches will need probability models that 

capture essential image variability and yet are computationally tractable. Filter­

ing methods based on local neighborhood statistics such as median filtering can be 

found throughout the literature. Image contrast enhancement techniques based on 

histogram equalization have also been explored and are in use in medical as weIl 

as other production environments [112]. There exist numerous methods for per­

forming segmentation and classification of images based on statistical pattern recog­

nition [42]. Statistically based relaxation filters founded on the theory of Markov 

pro cesses (Markov Random Fields) [63, 173], and expectation-minimization meth­

ods [36] also have a long history. 
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2. Background 

To quantitatively analyze the aspects of natural images that make them pre­

dictable (Le., scene properties such as texture, shape and surface structure), a statis­

tical description needs to be adopted. An important property of a statistical descrip­

tion is that it does not apply to individual images, but only to a set of sample images. 

Once having a weIl chosen and large sample set, one need to decide which image 

statistics to calculate. Natural image statistics can be characterized by their order, 

which describes the distribution of image values at a single position (first order), at 

two separate positions (second order), or at three or more positions in images (high 

order) [130]. A brief description of these order statistics is given next: 

First or der statistics treat each pixel in the image independently, so that, for ex­

ample, the distribution of intensities encountered in natural images can be estimated. 

The average intensity in an image is an example of the first-order statistics. 

Second-order statistics measures the correlation between pairs of pixels. Natural 

images have the property that the intensity at separate positions is not independent. 

The most popular second order statistics are the autocorrelation function and the 

power spectrum (described later). 

Higher or der statistics are used to extract properties of natural scenes which can 

not be modeled using first and second order statistics. These properties include lines 

and edges. 

The power spectrum is one of the most weIl studied natural image statistics. It 

is obtained by computing the Fourier transform of an image and multiplying each 

element of the transform by its complex conjugate. A veraging over aIl directions 

gives power as function of frequency. For most natural images, plots of this quantity 

can be easily fitted by a straight line with a slope of around 1/12 , where 1 is the 

spatial frequency (usually measured in cycles per image) [21, 50, 81]. This special 

property of natural images can not generally be obtained from random images (e.g., 

random noise images would pro duce a fiat power spectrum). The 1/12 spectral slope 
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of natural images means that equal power is encoded in each frequency band. It also 

implies that natural images are statistically scale-invariant. 

Torralba and Oliva [155] studied the statistics of natural images and concluded 

that these statistics strongly vary as a function of the interaction between the ob­

server and the world. In particular, they show that second order statistics of images 

are correlated with scene sc ale and scene category and provide information to perform 

fast and reliable scene and object categorization. Statistical regularities might be a 

relevant source for top-down and contextual priming, very early in the visual pro cess­

ing chain. Their results show how visual categorization based directly on low-Ievel 

features, without grouping or segmentation stages, can bene fit object localization and 

identification and can be used to predict the presence and absence of objects in the 

scene before exploring the image. 

The global image statistics are correlated with the objects present in the scene. 

Sorne studies show that the spectral slope for scenes containing man-made objects 

is slightly different from that of images representing natural environments [155]. 

Figure 3.1 shows the average power spectra of natural landscapes and man-made 

environments. It can be noted that vertical and horizontal orientations are more fre­

quent than obliques [3, 148, 130, 106]. The anisotropic distribution of orientations 

is also compatible with neurophysiological data showing that the number of cells in 

early cortical stages varies in regard to the spatial scale tuning and the orientation 

(e.g. more vertical and horizontal tuned cells than oblique in the fovea [39]. Besides 

the fact that object shapes have an impact on the global image statistics, there exists 

strong correlation between the objects present and their context [155]. 

2.1. Scene scale and image scale 

It has also been shown in [155], that image statistics also vary when considering 

scenes at different scales. Close-up views on man-made objects tend to produce 

images that are composed of fiat and smooth surfaces. Consequently, the energy of 

the power spectra for close-up views is concentrated mainly in low spatial frequencies. 
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Natuml scenes 
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41.1 
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FIGURE 3.1. (a) Mean power spectrum averaged from 12000 images (verti­
cal axis is in logarithmic units). Mean power spectra computed with 6000 
pictures of man-made scenes (b) and 6000 pictures of natural scenes (d);(c) 
and (e) are their respective spectral signatures. The contour plots represent 
50 and 80% of the energy of the spectral signature. The contour is selected 
so that the sum of the components inside the section represents 50% (and 
80%) of the total. Units are in cycles per pixel. From [155]. 

As distance between the observer and the scene background increases, the visual field 

comprehends a large space, that is likely to encompass more objects. The images 

of man-made scenes appear as a collection of surfaces that break down into smaller 

pieces (objects, walls, windows etc). Thus, the spectral energy corresponding to high 

spatial frequencies increases as the scene becomes more cluttered due to the increase, 

with distance, in the area covered by the visual field. In contrast, spectral signatures 

of natural environments behave differently while increasing depth. Figure 3.2 shows 

that when the distance between the observer and the background grows, natural 

structures become a single entity and smoother (small grain disappears due to the 

spatial sampling of the image). Therefore, on average, with an increment of distance, 

the level of clutter decreases, as do es the energy in the high spatial frequencies. In 

addition, the pattern of orientation varies with the scale. Close-up views on natural 

structures have a tendency to be isotropie in orientations (and the point of view of 

the observer is unconstrained). As distance grows, there is an increased bias towards 

vertical and horizontal orientations, together with the point of view of the observer 
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+++ 
FIGURE 3.2. The effect of distance in natural image statistics. The first row 
shows examples of the intensity images of each category and the averaged 
spatial images are shown in the second row. The third row are the spectral 
signatures as a function of scene scale. Scene scale refers to the mean distance 
between the observer and the principal elements that compose the scene. 
Each average image and spectral signature was calculated with 300 - 400 
images. From [155] 

becoming more constrained. As distance continues to increase, energy is concentrated 

mainly in vertical spatial frequencies, as very large environmental scenes are organized 

along horizontallayers. In or der to recognize the scene or to navigate such panoramic 

environments, faced with point of view limitations, an observer might consider looking 

towards the horizon to visuaUy embrace the whole scene. 

2.2. Non-stationary statistics 

Another important characteristic of natural images is how the image statistics 

change with spatial location. When considering aU the possible directions of the 

eye or camera, statistics of natural images are usuaUy scale invariant and stationary 

(the features are equaUy distributed in regard to locations [52, 53]). This is the 

case indeed with the statistics of images of close-up views of objects that are, on 

average, stationary, as there is no preferred point of view for the camera. However, 

for images of scenes that embrace a large volume, the probable points of view that 

a human observer will adopt become much more constrained, because of his height 
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FIGURE 3.3. Top-down effect on depth judgments. The 1eft image is gener­
ally recognized as close-up view on bushes and maybe a spider's web on top, 
but it is actually a rotated version of the right image. The right image is 
recognized as the inside of a forest, corresponding to a 1arger distance than 
the image on the 1eft (see text for exp1anation). From [155]. 

and his probable location (on the Roor). If the task of the observer is to recognize 

the identity of a large scale scene, most of the useful information will be given while 

looking towards the horizon. 

Therefore, different image statistics will characterize the top and bottom half of 

the image (e.g., smooth texture of the sky, long vertical contours of skylines at the 

top, duttered forms at the bottom). Figure 3.3 shows an example of how image 

inversion affects the perception of the absolute depth of a scene. The upside-down 

inversion affects the perception of concavities and convexities due to the assumption 

of light from ab ove , and, therefore, modifies the perceived relative 3D structure of 

the scene. But, moreover, the incorrect recognition affects the absolute scale of the 

perceived space. The image on the left appears as a doser structure than the image 

on the right for most observers. 

3. Image-based Statistical Approaches for 3D Inference 

Real scenes are complex and constrained by many regularities in the environment, 

such as the natural geometry of objects and their arrangements in space, natural dis­

tributions of light, and regularities in the observer's position. A greater understanding 
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of how real images are formed could lead to substantial insight into how depth in­

formation may be inferred from single images. Statistical studies may be helpful for 

understanding these regularities, which are not obvious from physical models. 

3.1. Shape Recipes 

Depth information obtained from other eues may be used to refine the shape­

from-shading inference process. Recently, a method that takes advantage of this idea 

has been proposed by Freeman and Torralba [60]. In their work, new low-dimensional 

representations, called scene recipes are used to learn the relationships between a low 

resolution range image and a high resolution intensity image to infer a more accurate 

high resolution range image. Such a problem may arise when range data is derived 

through stereo algorithms. Stereo algorithms suifer from the lack of local surface 

texture due to smoothness of depth constraint, or local missmatches in disparity 

estimates. Thus, the stereo methods only provide a coarse depth map, which is 

often accurate in the low frequency bands, but less accurate in the high frequency 

bands. In order to compute a better depth map, their method integrates both the 

high resolution image and the low resolution range image, which are decomposed into 

a steerable wavelet filter pyramid. This filter breaks the image down according to 

scale and orientation, with minimal aliasing between subbands [58]. The learning 

phase involves the search for the best high range band from the image band, and it 

is done using linear regression between the highest frequency band of the available 

low-resolution range image and the corresponding band of the intensity image. The 

hypothesis of the model is that this filter can then be used to predict high frequency 

range bands from the high frequency image bands. Specifically, let Zn,o and in,o be 

the nth highest resolution subband of the range and intensity images, respectively, 

at orientation 0 (n = 0 is the highest resolution band of the intensity image). Then 

the filter kn,o is learned at the highest available resolution range band to give us 

zn,o ~ kn,o * in,o, where * denotes convolution. Higher resolution subbands of the 
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range image are inferred by the equation 

~ -m(k·) Zn-m, 0 = C n,a * Zn-m,a 

where C = 2. This model is motivated by the linear Lambertian shading model. 

Since linear regression and convolution are both linear operations, it is expected 

that the underlying model behind shape recipes has a natural consequence on the 

second order statistical structure of the relation between images and range images. A 

model of image/range statistics assumed by the shape recipe technique was derived 

in [118] and their result is stated here. Let hii be the autocorrelation of the image, 

and let hzi be the cross-correlation between the image and the range image. Then, 

hzi(LS.x) is defined by (l/N) L i(i)z(i+LS.x), where z(x, y) is the full resolution range 

image, which is assumed to be centered (zeromean). Let II and ZI be the Fourier 

transforms of hii and hzi . Then the shape recipe hypothesis implies that 

ZI(r, ()) = B(()) l I(r, ()) 
r'Y 

(3.1) 

where'"Y = IOg2 C = 1, and B(()) is sorne function that does not depend on r. Equa­

tion 3.1 shows that shape recipes assume that a particular form holds for the second 

order statistics of images and range images. If the power spectrum of the image is 

1/r2, then the cross-correlation must fall off with 1/r3 in the Fourier domain. Figure 

3.4, an example of using shape recipes in improving stereo is depicted. 

3.2. Depth Estimation from Global Image Structure 

A method presented by Torralba and Oliva [154] emphasizes the drawbacks of 

estimating depth from monocular information. Figure 3.5 illustrates the ambiguity 

problem, in the absence of eues for absolute depth measurement, such as binocular 

disparity, motion, or defocus. The same retinal image is produced by the three cubes 

and, therefore, the absolute distance between the observer and each cube cannot be 

measured. Relative depth between parts of the cube can be obtained by interpreting 

the shading, edges and junctions, but it will not inform about its actual size. However, 
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(a) Image (b) Stereo shape (c) Recipes 

(d) Stereo Shape 
(surface plot) 

(e) Shape from recipes 
(surface plot) 

FIGURE 3.4. Example of real image and the improvement in the shape es­
timate using the shape recipes. (a) shows one image of the stereo pair and 
(b) shows the shape obtained by the stereo algorithm. (c) shows the recipes 
learned at the lowest resolution pyramids. Taken from [60]. 

(a) 

(b) 

FIGURE 3.5. (a) Artificial stimulus: The monocular information cannot pro­
vide an absolute depth percept. (b) Real-world stimulus: The recognition 
of image structures provides unambiguous monocular information about the 
absolute depth between the observer and the scene. Adapted from [154]. 

when dealing with real-world stimuli (Fig. 3.5b), there is no ambiguity in depth. The 

reason for this is that physical pro cesses that shape natural structures are different at 

each scale. Humans also build different types of structures at different scales, mainly 
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due to functional constraints in relation with human size (e.g., chair, building, city). 

As a result, different laws with respect to the building blocks, the way they are 

organizeq in space and their shape, govern each spatial scale [75]. At each spatial 

scale, image content is therefore what constraints the structure on a 3D scene. As the 

observed scale directly depends on the depth of view, by recognizing the properties 

of the image structure, the scale of the scene can be inferred, and therefore, the 

absolute depth [154]. The global image structure approach is based on the daim 

that recognition of the scene as a whole is a simpler problem that the one of general 

object detection and recognition. 

3.3. Studying the Correlations between Intensity and Range Images 

One of the few investigations into the joint statistics of range and intensity images 

was carried on by Howe and Purves [71]. In their study, they examine range and 

coregistered intensity images to find how the length of a line segment on a blank 

background depends on the orientation of the line. They found that this bias dosely 

matches the 3D length of the line segments when projected into a range image. This 

result may help to explain how the brain computes depth. 

In the analysis of the natural statistics of images it is common to work with 

the logarithm of the light-intensity [52, 162]. One advantage of this is that image 

contrast, rather than being a multiplicative factor, becomes an additive factor under 

log intensity. This means that linear filters respond to contrast rather than raw 

differences in amplitude, and therefore zero-sum linear filters are insensitive to the 

total contrast of each patch. For the case of range data, as described by Huang 

et al. [72], a large object and a small object of the same shape appear identical to 

the eye when the large object is positioned appropriately far away and the small 

object is close. However, the raw range measurements of the large, distant object will 

differ from those of the small object by a constant multiplicative factor. In the log 

range data, however, the two objects will differ by an additive constant. Therefore, 

a zero-sum linear filter will respond identically to the two objects. 
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In a more recent study, Potetz and Lee [117] measure the correlations between 

linear properties of range images (e.g., curvature) and linear properties of image inten­

sity data, to explore the structure of the correlations that could usefully underlie 3D 

judgments from intensity data in images of natural scenes (e.g., shape from shading). 

By using linear regression, ridge regression, and canonical correlation techniques, 

they extract simple but interesting statistical trends between both image domains. 

In their study, they use a sophisticated long-range scanner (a Riegl LMS-Z360) that 

collects coregistered range and color data by using an integrated color photosensor 

and a time-of-flight laser scanner with a rotating mirror. The content of their images 

include scans of trees and wooded areas, rocky areas, building exteriors, and sculp­

tures. The logarithm of the light-intensity values were used rather than intensity 

itself. Range images were also transformed by applying a logarithmic transform, as 

was done in previous studies of pure range data. 

In their study, images patches of size 25 x 25 pixels of coregistered light intensity 

and range data were used. A total of 15,577,472 patches of rural and urban images. 

There were in total 15.6 million observations of 1250 random variables: 625 luminance 

variables and 625 range variables. Correlational relationships between intensity and 

range data were investigated. The covariance between each pair of pixels in the 

set of image patches. Two important observations were concluded from 

the results: i) neighboring range pixels are much more highly correlated than 

neighboring luminance pixels and, ii) the luminance and range values are negatively 

correlated. This is shown in Figure 3.6, where the correlation between a specific 

pixel and other pixels in the patch are plotted. The correlation is obtained using the 

following equation 

p = cor[X, Y] = cov[X, Y] 
Jvar [X] var [Y] 

The first observation suggests that the low-frequency components of range data 

contain much more power than in luminance images and that the spatial Fourier 

spectra for range images drops off more quickly than for luminance images, which 

are known to have roughly 1/ f spatial Fourier amplitude spectra [128]. Because the 
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(a) (b) (C) (cf) 
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FIGURE 3.6. (a) Correlation between intensity at pixel (13,13) and aH the 
pixels of the intensity patch. (b) Correlation between intensity at pixel 
(13,13) and the pixels of the range patch. (c) Correlation between range at 
pixel (13,13) and the pixels of the intensity patch. (d) Correlation between 
range at pixel (13,13) and the pixels of the range patch. (e) Correlation 
between intensity and range at pixel (i, i). (f) Same figure as (e), except 
measured over rural images only. (g) Same figure as (e), except measured 
over urban images only. From [117]. 

physical measurement of each point or pixel is independent of the others, any reg­

ular distortion of the power spectrum of range images caused by the scanner must 

be caused by the divergence of the laser beam measuring the distance. This finding 

is reasonable because factors that cause high-frequency variation in range images, 

such as texture or occlusion contours, tend also to cause variation in the luminance 

image. However, much of the high-frequency variation found in luminance images, 

such as shadow and surface markings, are not observed in range images. The sec­

ond observation suggests that brighter pixels in natural images tend to be closer to 

the observer. This work is the first evidence that this relationship actually holds in 

nature. Leonardo da Vinci had this intuition that humans perceive brighter objects 

as closer [95J, and in general, artists have made use of this fact to help create com­

pelling illusions of depth. Psychologists subsequently confirmed this fact in controlled 

experiments [151, 46, 30J. In psychology literature, this effect is known as relative 

brightness [100J. 

In general, the authors conclude that the relationship between the shape of ob­

jects and their images depends on the statistical trends that cannot be inferred from 

physical models of lights. They found that this relationship is intimately related to 
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the statistics of lighting directions, the statistics of camera or head orientation, and 

the statistics of surface shapes in natural scenes. Sorne of these statistical trends have 

already been suspected by psychologists and artists in the pasto 

There may be many factors that affect the statistics of natural images and that 

cannot be inferred from simple physical models. For example, the statistical relation­

ship between images and their surfaces will be affected by the natural statistics of 

illumination direction, a factor that is known to heavily influence human performance 

on shape-from-shading problems [122]. Other factors that influence this relationship 

may include the statistics of object size and shape in natural scenes as weU as the 

natural statistics of the surface properties of those objects. This opens up the pos­

sibility that there may be simple, exploitable statistical relationships between real 

images and surface shapes that have been overlooked. Discovering these relationships 

might further the development of vision algorithms that utilize shape-from-shading 

information. It may also provide insight into how the human visual system is so adept 

at solving these problems [146]. 

Reinhard et al. [124] applied second order image statistics in computer graphies 

implications. They use the power spectrum and demonstrated its theoretical impor­

tance with reconstruction filters. They also mention their will to extend the concept 

of image statistics to 3D geometry, that they would caU 3D geometry statistics. 

The concepts and ideas presented so far give the basis for our depth inference 

approach for man-made indoor scenes based on the inherent statistics observed on 

the intensity and partial range images, which is described in detail in Chapter 5. 

4. Summary 

We presented an overview of statistical modeling that relates to the topic of this 

dissertation. Specifically, we looked at the literature related to the statistics methods 

for depth inference. We noted, however, that there are few prior work on the study 

of statistical relationships or correlations between intensity and range data. It is 

now clear that when missing one part of the puzzle, i.e., intensity information when 
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having only range or viceversa, the complet ion of missing information is not that easy. 

However when considering both, at least as partial amounts, sorne fruitful results may 

be obtained. 

Evidence in prior work have shown that the correlational structure between im­

ages and range images may come from several sources. Lambertian shading represents 

a significant portion of these correlations, but not aH. Correlations caused by shadows 

also contribute to this structure, which complicates potential models of the cross cor­

relation. Also, scenes that are dominated by a few objects may exhibit correlational 

structures particular to their specific arrangement: a bright object in the foreground, 

for example. These complications make it difficult to construct a simple model of the 

image/range image relationship that can be exploited by vision algorithms. However, 

the assumption that the cross-correlation function varies smoothly has proven to be 

robust and effective for inference applications. 
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CHAPTER 4 

Probabilistic Models for Images and 

Markov Random Fields 

Recent emphasis on explicit probability models for images may be due to the growing 

appreciation for the variability exhibited by the images and the realization that exact 

mathematical models may not be feasible. The key to a statistical approach is to have 

probability models that capture the essential variability and yet are tractable. In this 

chapter, we list existing probabilistic models for images and focus our attention to 

Markov Random Field Models, which are used in this disserta~ion to solve the depth 

inference problem. We present a brief review of the history of MRF models, give 

the basic notions, fundamentals and background on the MRF theory. AIso, existing 

techniques for learning MRFs and the approaches for computing the maximum a 

posteriori (MAP) are presented. Specifically, we describe the Belief Propagation 

(BP) algorithm. In the last part of the chapter, relevant applications related to our 

problem are presented. These are texture synthesis and image inpainting. 

1. Introduction 

Classical statistics provide tools for model building and density estimation but 

their application to image modeling is difficult due to the large dimensionality 1 of the 

IFor example, an image of 128 x 128 pixels implies estimation of a density on the space ]R16K. 
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observation space. Thus, in addition to the model building, a dimension reduction 

needs to be solved. A popular idea in the vision literature has been to first reduce 

dimensions using purely numerical considerations and then impose probability mod­

els on the reduced data. By not involving any physical consideration on the imaged 

objects, or any contextual knowledge, the images are treated as elements of a vec­

tor space and one seeks a low-dimensional vector subspace (or its basis) that best 

represents those numbers (under sorne chosen criterion). Principal component [78], 

independent components [28, 9], sparse co ding [107], Fishers discriminant [8], Fourier 

transforms, wavelet transforms [96], and many other representations are aU instances 

of this idea. The main advantage of such linear projections is that they are compu­

tationaUy cheap. However, a lack of physical or contextual information leads to a 

limited performance, particularly in recognition of objects from their cluttered im­

ages. Furthermore, it seems likely that the space generated by real images is a curved 

manifold and cannot be simply approximated globaUy by a low-dimensional vector 

space. 

Earliest, and still widely used, probabilistic models for images were based on 

Markov Random Field (MRF) models [168]. MRFs, in particular, define a class of 

statistical models which enable to describe both the local and global properties of 

structures in images. 

2. Marvov Random Fields 

Markov random fields are a type of stochastic processes. OriginaUy motivated 

from statistical physics, such pro cesses are clearly a natural generalization of the weU 

known concept of Markov chain, in which a time index in ID is replaced by a space 

index in 2D. 

A Markov chain can be seen as a chain graph of stochastic variables, where each 

variable depends only on its two neighbors, and it is independent of aU the other 

nodes of the graph. Similarly, a Markov random field is a graph that can be of 

any structure (as oppose to only a chain graph) to define the relationship between 
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variables, so that each stochastic variable (node) only depends on its immediate 

neighbors. Figure 4.1 shows at the top, the structure of a Markov chain as a graph 

and at the bottom, sorne examples of Markov random field structures as graphs. 

One can imagine Markov random fields having the same (or even more) wide variety 

of applications that Markov chains have. The foundations of the theory of Markov 

-------------------
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----~:~·o • 0--: ----0·------0 
1 ~ ~ 1 
, 1 

(a) 

o 000 

t ~t/ 
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t /t~ 
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(b) 

FIGURE 4.1. (a) The structure of a Markov chain as a graph. (b) Examples 
of graphs on which a Markov random field could be defined. 

random fields may be found in the early 1970's, by Preston [120] and Spitzer [142] . 

Although, an example of an early attempt of developing a satisfactory methodology 

for the analysis of spatial data can be found in [145]. 

MRF theory provides an efficient and powerful framework for modeling spatial 

dependence by combining and organizing spatial information according to feature 

interactions. These interactions are nonlinear and the features can be of the same 

nature or of a different one. 

MRF models have been successfully used to solve many fundamental problems 

of image analysis and computer vision [87]. Most of these models are for low level 

processing. These include image restoration, edge detection, image segmentation, 

texture synthesis and analysis, image inpainting, surface reconstruction, stereovision, 

motion analysis, and recently for high level vision, such as scene interpretation and 

object matching and recognition. In this context, the fundamental idea of MRF 

models relies on the fact that an image pixel cannot be based only on its own value, 

but it must be influenced by the values and properties of its neighboring pixels. 
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Moreover, it is very improbable that a pixel has a value different than aU of its 

neighbors, in fact we can affirm that certain configurations are indeed impossible. 

MRFs are chosen to solve this type of problems since they can represent efficiently 

the a priori information about an image, specifically, its spatial context such that 

Bayesian decision theory can then be applied. A particular MRF model favors its own 

class of patterns (e.g., textures or object features) by associating them with larger 

probabilities than other pattern classes. Then objective functions are formulated 

in terms of established optimality principles. One of the most popular statistical 

criteria for optimality, that has been widely used for MRF vision modeling, is the 

maximum a posteriori (MAP) probability. In this research, we adopt the MAP­

MRF framework. This framework, advocated by Geman and Geman [63] and others, 

enables us to develop algorithms for a variety of vision problems systematically using 

rational principles rather than relying on ad hoc heuristics. Section 4 gives a complete 

description of this framework. 

An unfortunate by product of this flexibility is that these models are usually ana­

lytically intractable. Having constrained the problem and defined the "best" solution 

(according to sorne performance measure), there is still the problem of computing 

it, not to mention the issue of estimating model parameters. As we have seen, these 

estimates are usually defined in terms of the conditional pro cess given the data, which 

is another Markov field whose joint distribution is too complex for direct sampling or 

direct computation of global quantities such as means and modes. A partial answer 

is provided by the equivalence between MRFs and Gibbs distributions established by 

Hammersley and Clifford [66] and further developed by Besag [16]. The MRF-Gibbs 

equivalence gives an explicit formula for the joint distributions for MRFs. This en­

ables us to model vision problems by a mathematically sound yet tractable means for 

the image analysis in the Bayesian framework [63]. 
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4.3 MRF THEORY 

3. MRF Theory 

In this section, we give the basic notions, fundamentals and background on the 

MRF theory in the context of computer vision. 

3.1. Random field preliminaries 

In the following definitions, we use the same notation as in Geman [62]. 

Definition 1. Let S = {SI, S2, ... , SN} be a set of N sites of a lattice, with a 

variable Xs at each site sES, and let A be a finite set called the state space. A 

random field on S is a collection of random variables Xs with values in A, where 

the complete set of variables for the whole lattice is denoted by X = {Xs , SES}. 

A particular configuration for the lattice is given as {Xl = XI,X2 = X2, ... ,XN = 

XN}' which is abbreviated to {X = x}, where x = (X1,X2, ... ,XN) or x = {xs } for 

convenience. The configuration space for the variable x is denoted by st, whereby, 

( 4.1) 

A dependence structure can be imposed on a random field in two ways. One is by 

defining a joint distribution on X, treating a configuration x as a realization from that 

field, and directly model the correlations using the variance-covariance matrix [16]. 

The second way, is to build Markovian dependence structures on the set S. Our 

interest is on the latter, for which, a neighborhood system (also called a topology) on 

Sis introduced by defining a symmetric relation I"V on Sand defining neighborhoods 

as the relational sets: 

N = {(i, j) ES x S : i I"V j}. ( 4.2) 

This generates the graph ç; = (S, N) as a topology on S, with neighborhoods, say 

bs = N s associated with each element sas: 

(i) s tJ. N s 

(ii) SENt Ç:::::} t E N s 
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FIGURE 4.2. Neighborhoods: (a) The first order neighborhood 0 = 1 or 
nearest-neighbor neighborhod for the site s =' .' and r =' 0' E N s ; (b) 
second order neighborhood 0 = 2; (c) eight order neighborhood 0 = 8. 

This implies that the neighborhoods must be symmetrical and self similar for homo­

geneous MRFs. The symmetrical neighborhoods systems employed in this thesis are 

the same as used in [63], for which the neighborhood system N° = {N:s0, SES} is 

defined as 

N; = {r ES: 0 < 1 S - r 12 
::; 0, (4.3) 

where Is-rl is the Euclidean distance between two points s, r E S. The neighborhood 

N~ is defined by the neighborhood order 0 (but this does not refer to the statistical 

order of the neighborhood). A first order neighborhood system 0 = 1 (also called the 

nearest neighbor neighborhood system) is shown in Figure 4.2(a), which consists of 

the four nearest adjacent pixels. The second and eight order neighborhood systems 

for 0 = 2 and 0 = 8 are shown in Figures 4.2(b) and (c), respectively. 

An MRF [87J is a set of N random variables indexed over the vertices, or sites, 

in an ordered lattice. The typical example is a 2D image, where the random variables 

are the labels (e.g. color) associated with the pixels. The MRF variables are not 

independent, but are mutually coupled; the key property of MRFs is that the distri­

bution of the random variable associated with a site s, given the values associated 

with the sites in a (typically small) neighborhood of s, is independent of the rest of 

the sites in the MRF. This is formalized in the following definition. 
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Definition 2. An MRF with respect to a neighborhood system is a discrete 

MRF if its probability density function satisfies the following conditions: 

P(x) > 0 'ï/x, (positivity) . (4.4) 

(Markovianity). ( 4.5) 

where x s , denotes the random variable of site sand Ns is the set of random variables 

associated with the sites that are in the neighborhood of site s. 

When the positivity condition is satisfied, the joint probability P(x) of any ran­

dom field is uniquely determined by its local conditional probabili~ies [16]. An MRF 

can be homogeneus if the Markovianity property of Equation 4.5 holds regardless of 

the relative position of site s in S. The Markovianity depicts the local characteristics 

of the random variables X. 

3.2. Neighborhood System and Cliques 

Given a neighbourhood system N, a clique is a set C ç S if every pair of distinct 

sites in C are neighbours. That is, given s, r E C, s =1 r implies sENT. The 

single site subset is also a clique. Let C denote the set of cliques defined on S with 

respect to N, and let Cs denote the local clique set for a neighbourhood Ns such 

that Cs = {C E C, SEC}. Cliques are important when considering the equivalence 

between MRFs and the Gibbs distribution (see [16] for a proof of this equivalence). 

Figures 4.3(a), (b), and (c) show the neighbourhood configurations for 0 = 1, 2 

and 8 respectively. If we represent the lattice S on a rectangular grid Zm = {( i, j) : 

1 ::; i, j ::; m} where S = Zm, N = m 2
, then the first-order or nearest neighbor 

system Nlj = {(i,j - 1), (i,j + 1), (i - l,j), (i + l,j)}. The cliques associated with 

this neighborhood system are then those subsets of S whereby {(i,j)}, {(i,j), (i,j + 

l)} and {(i,j), (i + l,j)} C Zm, as shown in Figure 4.3(e). The cliques contained 

in the local clique set Cs of Ni~j are then those cliques {(i,j)}, {(i,j), (i,j + l)}, 

{(i,j), (i + l,j)}, {(i,j), (i,j - 1)} and {(i,j), (i - 1,j)}, as shown in Figure 4.3(d). 

For the second-order neighbourhood Ns2, the set of cliques C are those of type shown 
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FIGURE 4.3. Neighborhoods and cliques. (a) The first order neighbor­
hood 0 = 1 or nearest-neighbor neighborhod; (b) second order neighbor­
hood 0 = 2; (c) eight order neighborhood 0 = 8. (d) Local clique set for 
nearest-neighborhood; (e) clique types for nearest-neighbor neighborhood; 
(f) additional clique types for second-order neighborhood. 

in Figures 4.3(e) and (f). The number of clique types grows almost exponentially 

with increasing order o. 

3.3. Gibbs Random Fields 

The distribution over the MRF variables, can be written as a Gibbs distribution, 

P(x) = exp( -U(x)) 
Z 

(4.6) 

w here x is a N K - dimensional vector formed by concatenating the vectors Xs (s = 

1, ... , N), U is an energy function and Z is a normalizer given by, 

Z = Lexp(-U(x)). (4.7) 
x 

where the sum runs over aIl possible values of x. Note that, computing Z, which 

is known as the partition function, is generally tractable only for very small MRFs, 
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since the number of terms in the sum of Equation 4.7, increases exponentially with 

the size of the MRF. This is due to the mutual coupling between the MRF variables. 

Same problem emerges if we want 0 compute the marginal posterior distribution over 

any of the individual MRF variables e.g., for the purpose of parameter fitting since 

this requires summing over aIl remaining variables. The energy function U defines 

the properties of the MRF model and can generally be written 

U(x, y, e, f3) = Uext(x, y, 8) + Uint(x, f3). ( 4.8) 

where Uext denotes the energy (or potential) arising from external influence; in the 

context of probabilistic image modeling, this typically cornes from observed data y 

via a model determined by parameters e, and corresponds to a log-likelihood term. 

Uint denotes the internaI energy which, as suggested by the notation, only depends 

on the MRF variables x and parameter f3, and corresponds to a prior distribution 

over x. 

3.4. Markov-Gibss Equivalence 

An MRF is characterized by its local property (the Markovianity) , whereas a GRF 

is characterized by its global property (the Gibbs distribution). The Hammersley­

Cliffor theorem [66] establishes the equivalence of these two types of properties. The 

following 

Theorem 1. X is an MRF an S with respect ta N if and anly if X is a GRF 

an S with respect ta N. 

Many proofs of the theorem exist (e.g. Besag [16], Kindermann and Snell [77]). 

The practical value of the theorem is that it provides a simple way of specifying 

the joint probability P(X = x) by defining the clique potential functions Vc(x) and 

choosing appropriate potential functions for desired system behavior. In this way, 

the a priori knowledge or preference about interactions between labels are encoded. 

However, a major topic in MRF modeling is how to choose the forms and parameters 

of the potential functions for a proper encoding of constraints. 
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To calculate the joint probability of an MRF, which is a Gibbs distribution, the 

partition function (Equation 4.7) needs to be evaluated. The reason for this is that the 

sum over a combinatorial number of configuration in A is computational intractable. 

The explicit evaluation can be avoided in maximum-probability based MRF vision 

models when U(x) contains no unknown parameters. However, this is not true when 

the parameter estimation is also a part of the problem. In the latter case, the energy 

function U(x) = U(x 1 B) is also a function of parameters Band so is the partition 

function Z = Z(B). Thus, one needs to evaluate Z(B). 

4. MAP-MRF Framework 

To address the computational difficulties associated with the computation of the 

joint probability in MRF models, a number of approximate methods have been pro­

posed [87]. 

In the MAP-MRF framework, the posterior distribution of an MRF is defined by 

P(xld), where d is the observation. Its form and parameters are determined, in turn, 

according to the Bayes formula, by those of the joint prior distribution of the labels 

and the conditional probability of the observed data. It is this probability function 

specified by the functional form and the parameters that defines the particular type of 

a MRF mode!. Two major parts of the MAP-MRF modeling is to derive the form of 

the posterior distribution and to determine the parameters in it, so as to completely 

define the posterior probability. Another important part is to design optimization 

algorithms for finding the maximum of the posterior distribution. 

4.1. Pairwise MRF Model 

A pairwise MRF model (shown in Figure 4.4, also known as Markov network, 

is defined as a set of hidden nodes Xi (white circles in the graph) representing local 

patches in the output image C, and the observable nodes Yi (shaded circles in the 

graph) representing local patches in the input image B. Each local patch is centered 

to pixel location i of the respective images. 
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FIGURE 4.4. The pairwise Markov Random Field used to model the joint 
probability distribution of the system. Observation nodes, y, represent an 
image patch input image, and hidden nodes x, an image patch in the output 
image to be inferred. 

Denoting the pairwise potentials between variables Xi and X j by 'l/Jij and the local 

evidence potentials associated with variables Xi and Yi by <Pi (see Figure 4.5), the 

joint probability of the MRF model under variable instantiation x = (Xl, ... , X N) and 

y = (YI, ... , YN), can be written [16, 63] as: 

(4.9) 

where Z is the normalization constant. We wish to maximize P(x, y), that is, we want 

to find the most likely state for aU hidden nodes Xi, given aU the evidence nodes Yi. 

The compatibility functions aUows to set high (or low) compatibilities to neighboring 

FIGURE 4.5. The potential functions <p and 'IjJ define the compatibilities 
between nodes in the Markov network. 

pixels according to the particular application. These potentials are used in messages 

that are propagated between the pixels to indicate what combination of values each 

image pixel should have. 
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A pixel value in C is synthesized by estimating the maximum a posteriori (MAP) 

solution of the MRF model using the training set. The MAP solution of the MRF 

model is: 

where 

XMAP = arg max P(x 1 y), 
x 

P(x 1 y) ex P(y 1 x)P(x) ex II <Pi(Xi, Yi) II 'ljJij(Xi, Xj) 

(i,j) 

(4.10) 

(4.11) 

Calculating the conditional probabilities in an explicit form to infer the exact 

MAP in MRF models is intractable. We cannot efficiently represent or determine an 

the possible combinations between pixels with its associated neighborhoods. Various 

techniques exist for approximating the MAP estimate, such as Markov Chain Monte 

Carlo (MCMC), iterated conditional modes (ICM), maximizer of posterior marginaIs 

(MPM), etc. See [41] for a comparison. In this research, we compute a MAP estimate, 

by using a learning-based framework on pairwise MRFs, as proposed by [59], using 

belief propagation (BP). 

4.2. MRF-MAP inference using Belief Propagation 

Belief propagation (BP) is a machine-Iearning method for sharing probabilistic 

information from multiple connected sources. Seminal work by Freeman et al. [59] 

demonstrates the usefulness of Bayesian belief propagation to quickly find approxi­

mate solutions to various two-dimensional vision problems modeled by Markov net­

works with loops. Using a corn mon machinery, but with a representation and training 

sets appropriate to each problem, they showed exceptional results for super-resolution, 

image enhancement and motion estimation, which have inspired the use of belief prop­

agation in the computer vision community. In later work, Weiss and Freeman [166] 

gives a theoretical understanding of the previously good performance of the BP al­

gorithm in networks with loops, by showing the formaI connections between BP and 

sorne well-understood approximations in statistical physics 2. They show how the 

posterior probabilities calculated by belief propagation related to the true marginal 

2Like those due to Bethe and Kikuchi [109J 
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FIGURE 4.6. Computing messages in the belief propagation algorithm. 

probabilities. This has led to the development of better inference algorithms (e.g., the 

Generalized Belief Propagation (GBP) [172]), that give a new possibility for solving 

vision problems that were previously computationally intractable. 

The BP algorithm solves graphical inference problems via a series of local message­

passing operations. For example (see Figure 4.6), to compute the outgoing (red) 

message at left, the central no de must combine aU incoming messages (blue) with 

its local observation. In tree structured graphs, BP is exact, and messages can be 

interpreted as sufficient statistics. In graphs with cycles, BP is approximate, but has 

reasonable theoretical justifications and pro duces excellent empirical results in many 

applications. BP may be applied to graphs with dis crete (messages are vectors) or 

Gaussian (messages are means and covariances) variables. 

For MRFs, BP is an inference method to efficiently estimate Bayesian beHefs in 

the network by the way of iteratively passing messages between neighboring nodes. 

The Markov assumption foUows a "message-passing" rule that involves only local 

computations, resulting in a maximum a posteriori estimate [63, 111, 59]. Formally, 

the message send from node i to any of its adjacent nodes j E N(i) is 

mij(Xj) = Z L 'ljJ(Xi, Xj)cfJ(Xi' Yi) II mki(Xi) (4.12) 
Xi kEN(i)\ {j} 
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where Z is the normalization constant (also known as the partition function). The 

maximum a posteriori scene patch for node i is: 

XiMAP = arg max c/J(Xi, Yi) II mji(Xi)' (4.13) 
Xi jEN(i) 

The BP algorithm is not guaranteed to converge, but if it does so, then it con­

verges to a local stationary point of the Bethe approximation to the free energy [171]. 

In our experiments, the BP algorithm usually converges in less than 10 iterations. And 

it is also notable that BP is faster than many traditional inference methods. 

5. Computer Vision Applications using MRFs 

Many computer vision applications have been extensively use MRFs. In his book, 

Li [87] gives several examples in the context of computer vision where MRFs are used. 

Here we describe three applications that are relevant to our research. 

5.1. Texture Synthesis 

The field of texture synthesis is concerned with synthesizing, from an input tex­

ture sample, an arbitrary amount of perceptually similar output texture in 2D image 

space or on surfaces of 3D models. The term perceptually similar in this context 

means that the user should recognize the result as the same texture, yet it must also 

contain sufficient variation of the input so it is not perceived as identical. 

Textures can be synthesized by different techniques such as fractals, random 

fields, reaction-diffusion, morphology, Gabor filters, Eigen-patterns, steerable pyra­

mids, wavelets, tiling and co-occurrence methods. Each method can generate only 

a particular subset of texture patterns and have their own advantages and disad­

vantages. Texture synthesis techniques can be broadly categorized into local region­

growing methods and global optimization-based methods. Local methods grow the 

texture one pixel or patch at a time with the goal of maintaining coherence of the 

grown region with nearby pixels [45, 164, 44]. In such approaches, small errors can 
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accumulate over large distances leading to inconsistencies in the synthesized texture. 

On the other hands, global methods evolve the entire texture as a whole, based on 

sorne criteria for evaluating similarity with the input. Most existing global approaches 

either model only pixel-to-pixel interactions that may be insufficient to capture large 

scale structures of the texture [108], or lead to complex formulations that are difficult 

to optimize [116, 60]. 

Markov Random Fields for image complet ion has also proven successful in texture 

synthesis [108, 45, 164]. In this context, MRF methods model a texture based on 

its local and stationary properties. A new texture is generated pixel by pixel in such 

a way that these two properties are preserved in a small set of spatially neighboring 

pixels which characterizes every pixel on the texture image. The MRF property of 

textures requires that localityand stationarity be satisfied. Locality implies that the 

color at a pixel's location is dependent only on a neighborhood of pixels around it, 

while stationarity means that this dependency is independent of the actual location 

of the pixel. 

Global synthesis methods have usually employed mat ching of statistical properties 

like histograms and wavelet coefficients between input and output textures [116]. 

There has also been previous work that makes use of optimization over MRFs for 

synthesis. Paget and Longstaff [108] use local annealing over a multi-scale MRF for 

texture synthesis. They consider only pixel-to-pixel interactions. Recently, Kwatra 

et al. [80] propose an approach that is based on optimization of texture quality with 

respect to a similarity metric. This similarity met rie is motivated by the MRF­

based similarity criterion used in most local pixel-based synthesis techniques. The 

authors merge these locally defined similarity measures into a global met rie that can 

be used to jointly optimize the entire texture. This global metric allows modeling 

of interactions between large neighborhoods; nevertheless, it can be optimized using 

a simple iterative algorithm with reasonable computational cost. Figure 4.7 shows 

comparisons of their technique with other existing techniques. 
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FIGURE 4.7. Comparison of various other texture synthesis from [80J 

5.2. Image Inpainting 

Inpainting, also referred as dis-occlusion and retouching (artistic synonym for 

"image interpolation"), is a well-known technique in the context of image and art 

restoration, where paint los ses are filled up to the level of the surrounding paint and 

then colored to match in an undetectable way. Figure 4.8 shows an example of man­

ual photo restoration. Bertalmio et al. [13], were the pioneers in digital inpainting. 

Since then, a wide number of applications emerge, including the scratch removal in 

FIGURE 4.8. Example of manual inpainting. Detail of " Cornelia, Mothe of 
the Gracchi" by J. Suvee (Louvre). Taken from Emile-Male " The Restorer's 
Handbook of easel painting." 
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digital photos and old films, object removal (superimposed text, logos, occluding ob­

jects), zooming and super-resolution, etc. Sorne examples of digital inpainting taken 

from [13], are shown in Figure 4.9. 

(a) 

(b) 

FIGURE 4.9. Examples of digital inpainting from [13]. 

The inpainting problem is clearly ill-posed. Any method must therefore use sorne 

prior assumptions about the unknown missing values and their relations with the 

known values near the hole. 

Most existing approaches (see e.g. [136] for a review) use a generic prior on images 

(e.g. high smoothness, low total variation or low curvature) and use an optimization to 

find the most probable completion given the prior model and the immediate boundary 

of the hole. Thus a hole is estimated as the most "smooth" continuation of the local 

structure of the image, where smoothness can be defined in different ways. Bertalmio 

et al. [13], inspired by professionals art restorators, propagate gradient direction and 

gray values from surrounding neighborhood into the hole. They formulate the process 

elegantly in a PDE framework, and solve it using fast iterative solvers. 

Chan and Shen [24] presented another way to define a smooth filling-in. Their 

method minimized the total variation in the result image. As mentioned in [6], 
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such approach handles noise very weIl, but tends to complete straight lines. Filling­

in of holes is also performed by texture synthesis algorithms where it is assumed 

that the missing data is part of a (usually homogeneous) texture. The region can 

be filled-in by a texture synthesis engine, e.g., [19, 45, 116, 44J. The texture­

synthesis approach can process large holes, and fill them with rich structures learned 

from similar regions in the image. Two applications of texture synthesis to image 

inpainting are shown in [69], there Hirani and Toksuka fill in a selected texture by 

combining spectral and spatial information, achieving impressive results. Criminisi 

et al. [31J ~sed an exampler-based approach, adapting the synthesis method of Efros 

and Leung [45J to image inpainting. Recent works combine texture synthesis with 

inpainting of structure [14]. 

As indicated in [85] , the above approaches can be seen as local inpainting al­

gorithms and despite their impressive results they must by definition give identical 

completions when the immediate boundary of the hole is identical. This issue is 

depicted in Figure 4.10, the first row shows two images, a square and a circle, each 

with a missing square region on the bottom-right part. Since the small neighborhoods 

around the holes are identical 3, local inpainting algorithms give similar results. How­

ever, we know that the two images are different. Figures 4.1O(c),(d) show the results 

of the local algorithm in [13]. While the completions are very reasonable given the 

local information, they do not appear perceptually correct. This gives evidence that 

our visual system is taking more global information into account. 

5.3. Surface Inpainting 

In 3D geometry processing, we can have an analogous inpainting tasks, as digital 

representations of real-world objects often contain holes, due to problems during 

data acquisition or as a consequence of interactive modeling operations. This is an 

area of ongoing research. For example, Verdera et al. [163] present an algorithm for 

filling-in surfaces holes based on geometric partial differential equations, derived from 

3Up to numerical error, the gradients and gray levels in the immediate boundary of the hole, are 
identical. 
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a b 

DO 
c d 

FIGURE 4.10. An example of the local inpainting problem from [85]. 
a-b) Two images with holes. In both cases the boundaries of the holes are 
identical thus local inpainting algorithms would complete them identically. 
c-d) The results of the algorithm in [13] run with a single resolution. As can 
be expected from a local algorithm, the completion is identical. 

inpainting algorithms, that smoothly continue the surface into the hole. Recently, 

Bendels et al. [11] propose a fragment-based surface inpainting method to fill holes in 

point set surfaces by extrapolating or restoring the basic and detail geometry. This 

is motivated by the fact that reallife objects often exhibit a high degree of coherence 

in the sense that for missing parts one can find similar regions On the object. The 

method analyzes the neighborhood of a hole, and identifies and copies into the hole 

region appropriate local neighborhood patches represented in local frames (the 3D 

analogue to what is called a fragment in image processing). By finding best matches 

hierarchically on several scales, the hole is filled in conformance with the context with 

respect to aIl considered scales. Figure 4.11 shows an example. 

FIGURE 4.11. An example of a reconstruction from [11]. The hole (indicated 
in red on the right) is filled hierarchically, leading to the visually plausible 
reconstruction (left). 
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CHAPTER 5 

Statistics on Visual and Partial Range 

Data for Scene Recovery 

When building a 3D model of a real environment, suit able sens ors to densely eover the 

environment are required. Visual sensors are the preferred alternative for eapturing 

the photometrie eharaeteristies of the scene and they are fast. Conversely, range 

sensors capture geometric data directly, but acquiring dense range maps is often 

impractical. 

This chapter details our statistical learning method for depth recovery. Specifi­

cally, we estimate dense or high resolution range maps of indoor environments using 

only intensity images and sparse partial depth information. Markov Random Field 

(MRF) models are proposed as a viable stochastic model for the spatial distribution 

of intensity and range data. This model is trained using the (local) relationships 

between the observed range data and the variations in the intensity images and then 

used to compute unknown depth values. Two techniques for the MAP-MRF estima­

tion are described, the first one based on a non-parametric sampling strategy and the 

second one by using the belief propagation (BP) algorithm. Their advantages as weIl 

as their limitations are highlighted. 



5.1 INTRODUCTION 

1. Introduction 

The appeal of Markov random field models for range estimation cornes from their 

explicit ability to model interactions and relationships between neighboring parts of 

the data space (a background on MRF models was given in Chapter 4). 

For the particular problem of estimating dense range maps from intensity images 

and partial range data, we first need to consider how the relationships between the 

intensity information and the partial range can give us knowledge about the total 

underlying geometry of the scene. To this end, we introduce a definition of augmenied 

voxels 1 which contain intensity (either from grayscale or color images) and range 

information (where the range can initially be unknown). We are interested only in 

the set of such augmented voxels in which one augmented voxel lies on each ray that 

intersects each intensity pixel of the input intensity image, thus giving us registered 

range and intensity images (see Figure 5.1). 

Augmented 
lIOxel Il Known intensity 

• Known range 

FIGURE 5.1. Definition of an augmented voxel. 

R 

Let us now illustrate how the modeling of the relationships between neighboring 

augmented voxels can help in the reconstruction process by using a very simple scene 

composed of only one object and a uniform background (see Figure 5.2.a). The 

associated (partial) range image is shown in Figure 5.2.b. By considering the known 

1 In this thesis, we define a voxel as a location containing only intensity information, whereas an 
augmented voxel is a location that may contain both intensity and range information. 
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FIGURE 5.2. A very simple (synthetic) example of the range estimation 
process. (a) The intensity image showing an object and a background, (b) 
the associated (incomplete) range map, and (c) how local relationships are 
helpful for range inference by considering the neighborhoods with the most 
similar content in range and intensity (squares). 

augmented voxels (i.e., intensity pixel locations with already assigned range) coming 

from part of the object and background, we can make an intelligent guess regarding 

the content of the rest of the object and background shapes. Markov random fields let 

us model the relationship between intensity and observed range explicitly, and make 

it similar to or, when appropriate, different from, relationships among other observed 

data (see Figure 5.2.c). This feature also makes Markov random fields well suited for 
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modeling spatial data, Le. data that come from different spatial locations. A key issue 

in modeling spatial data is determining how best to describe the relationship between 

several data points taken in close proximity to each other, and how it differs from the 

case in which data points are taken at a distance. In our example, Markov random 

fields could model the similarity between the intensity and range data at different 

positions and select those with a high probability (shown by the little squares in 

Figure 5.2.c) of being a good fit for the missing region to fill. 

1.1. On the statistics of image structure 

The complexity of natural images suggests the development of complex methods 

in vision science. However, it has been demonstrated (see related work on Chapter 

3) that the visual environment is constrained by a large number of statistical reg­

ularities in addition to the valuable information available in the images about the 

scene (e.g., shading, specularities, contour shape, color gradients, texture gradients, 

binocular disparity, optical flow, etc.). In this thesis, we go beyond image statistics 

to understand how the statistical relationships between image properties (intensity 

data) and range (3D data) can be used to make accurate inferences about the scene 

geometry. 

One of the most important constraints for recovering surface properties is that 

the physical pro cesses underlying image formation are typically smooth: depth and 

orientation of surfaces are mostly continuous and so are reflectance and illumination. 

The smoothness property is captured well by standard regularization [15]. Surfaces 

and their properties, however, are not always smooth: they are smooth almost ev­

erywhere, but not at discontinuities. Lines of discontinuity are themselves usually 

continuous, relatively smooth, nonintersecting curves. 

Thus the detection of discontinuities is a critical issue as they usually represent 

the most important locations in a scene; for instance, depth discontinuities often 

correspond to boundaries of an object or of a part. In this context, intensity values 

of pixel locations contained in a neighborhood, provide constraints on surface shape 
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that can be used as statistical relationships between the available range and intensity 

images in the range estimation process. 

The two main constraints provided by intensity values in an image are that: (1) 

the surface is smooth along the cluster of pixel locations that have intensity values 

that are smooth, and (2) a cluster containing pixel locations with different intensity 

values indicates a depth discontinuity. Figure 5.3 shows examples of these two types 

of constraints. The left image is the intensity image and the right, its corresponding 

range map. Areas indicated by the red or dark squares in the intensity image show 

no change in intensity. This contributes knowledge about surface smoothness in the 

range domain. On the other hand, when variations in intensity exist, as indicated by 

the areas in the blue or light squares, there is a high probability that there exist depth 

discontinuities. The change in depth within the objects in a scene is usually graduaI, 

and hence, depth can be said to exhibit a local dependency. However, detecting 

discontinuities directly using the intensity values of an image is often not sufficient. 

Fortunately, line (or edge) features, also known as intensity edges, which typically 

correspond to boundaries of homogeneous regions in an image, also provide important 

geometric information about the 3-D structure of objects in the scene. In the following 

(a) Intensity image (b) Range image 

FIGURE 5.3. Two examples of knowledge that intensity data provides 
about surfaces. The areas indicated by the red squares provides knowledge 
about surface smoothness and the areas in blue squares give knowledge about 
variations in depth. 
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section we will give a short taxonomy of the types of geometric phenomena that cause 

intensityedges. 

1.2. Central role of intensity edges 

Intensity edges can be used as the primary eue in guiding the search for discon­

tinuities in other physical pro cesses (for example surface depth, surface orientation, 

texture, shadows, color, specularities) [113]. The critical role of intensity edges in 

artificial -and probably also biological - vision is intuitively clear: changes in surface 

properties (depth, orientation, material, texture) usually pro duce large gradients in 

the image intensity. 

Assuming a simple imaging model (e.g., Lambertian), large intensity gradients in 

the image can be caused by six physical phenomena [113]: 

• Occluding edges (extremal edges and blades); 

• folds; 

• shadow edges; 

• surface markings and 

• specular edges. 

Intensity edges are detected quite reliably by the Canny edge detector [22]. 

Figure 5.4(a) shows the edges detected from the intensity image of Figure 5.3. In 

(b) the edges from the range image are depicted. It can be observed that the edges 

detected from the range image, which refiect depth discontinuities, are contained in 

the intensity edges. Because of the constraints of image formation discussed earlier, 

the correct depth discontinuities will, in almost all cases, correspond precisely to the 

locations of intensity edges. Our range synthesis method exploits this by restricting 

the range estimation pro cess according to intensity edges, thus assuring the smooth­

ness and continuity of discontinuities. This process will be described in detail later. 

There are sorne cases in which discontinuities will not occur at intensity edges, 

for instance, objects that blend in with their background. Although this situation 

occurs rarely in natural scenes, it is usually present due to camera underexposure or 
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(a) Intensityedges (b) Range edges 

FIGURE 5.4. Edges detected from intensity (a) and range (b) images. 
Edges help in detecting depth discontinuities, which is a critical step in the 
reconstruction proeess. 

saturation, where sorne locations of the objects may blend in with the background. 

Moreover, there may be faise edges (Le., edges that do not represent a discontinuity) , 

such as those coming from texture-like regions or even shadows. However, as will be 

demonstrated in our experiments, this is not critical for reconstruction since range 

data inside the neighborhoods that are very close to these texture-like edges represent 

the same type of smooth surface (see Figure 5.5). 

( a) Intensity image (b) Range image 

FIGURE 5.5. Figure shows that changes in intensity coming from texture­
like regions do not present a problem in the reconstruction proeess sinee very 
close neighborhoods represent the same type of smooth surface. 

AIso, edges coming from shadows play an important role in the perception of 3D 

surface geometry [23, 101, 33]. Our intuition tell us that it is the shapes of the 
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intrinsic shadow boundaries that directly provide information about surface shape 

and illumination. But the mathematical modeling of realistic shadows or any other 

shape-related clues is very complex. Work in the literature has to make assumptions 

regarding the type of surfaces in the scene and lighting conditions, so that simple 

mathematical models can be defined. When learning relationships between intensity 

and shape, special attention has to be paid to occlusions and boundaries. Not aIl 

intensity values in an image are directly related to shape variations. For example, 

an image can be decomposed into paint (refiectance) and shading variations (surface 

normal) [60]. Shading variations are directly produced by the shape, however, the 

paint will be related to changes in the refiectance function of the material and not 

directly related to the shape. 

However, the method we propose, learns the relationships from the intensity 

and range images directly without having to hypothesize surface smoothness or re­

fiectance properties, that may be inappropriate to a particular environment. Thus, 

our approach does not intent to implicitly obtain a general algorithm, but to use the 

local statistical relationships between the intensity and the input range directly from 

the observed data. 

2. The MRF Model for Range Synthesis 

We want to solve the following problem: How to infer a dense range map from 

an intensity image and a limited amount of initial range data. In the rest of this 

dissertation we refer to this problem as the range estimation or range synthesis prob­

lem. We made the following assumptions: (1) the initial range data and intensity 

data is already registered 2, and (2) the range data is clumped into at least sorne 

sets of mutually-adjacent voxels as opposed to scattered measurements far from one­

another (the range data sampling strategies with experimental results are discussed 

in Chapter 6.). 

2The registration process depends on the application, in our case, we are interested in the mobile 
robot environment modeling and the registration process is described in detail in Section 3.4 of 
Chapter 7. 
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The solution of the range estimation problem can be defined as the minimum of an 

energy function. The first ide a on which our approach is based, is that an image can be 

modeled as a sample function of a stochastic pro cess based on the Gibbs distribution, 

that is, as a Markov Random Field (MRF) [63]. We consider range estimation a 

task of assigning a depth value to each pixel of the input image that best describes 

its surrounding structure using the already available intensity and range data. The 

MRF model has the ability to capture the characteristics of this input data and then 

use them to learn a marginal probability distribution that is to be used to infer data 

in regions with missing range values. This model uses multi-scale representations of 

the intensity and range images to construct a probabilistic algorithm that efficiently 

estimate the missing range. Statistical relationships are learned directly from the 

input data, without having to make any assumptions regarding lighting conditions 

of specific nature, location or environment type that would be inappropiate to a 

particular scene. 

As was previously mentioned, we focus on our development of a set of augmented 

voxels V that contain intensity and range information. Thus, V = (l, R), where 1 is 

the matrix of known pixel intensities, and R denotes the matrix of pixel depths (see 

Figure 5.1). Let Zm = (x, y) : 1 ::; x, y::; m denote the m integer lattice (over which 

the images are described); then 1 = {Ix,y}, (x, y) E Zm, denotes the gray levels of the 

input image, and R = {Rx,y}, (x, y) E Zm denotes the depth values. 

2.1. The MRF Model 

The range estimation problem can be posed as a labeling problem. A labeling is 

specified in terms of a set of sites and a set of labels. In our case, sites represent the 

pixel intensities in the matrix l and the labels represent the depth values in R. Let S 

index a discrete set of M sites S = {SI, S2, ... , SM}, and.c be the set of corresponding 

labels L = {lI, l2, ... , lM}, where each li takes a depth value. The inter-relationship 

between sites and labels define the neighborhood system N = {Ns 1 Vs ES}, where 

N s is the set of neighbors of s (Le., the neighborhood of s), such that (1) sf/ N s , and 
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Ns 

Nr 

s 

r 

FIGURE 5.6. A neighborhood system definition. 

(2) S E Nr {:=:::}- r E Ns (see Figure 5.6). Each site Si is associated with a random 

variable Fi. Formally, let F = {FI, ... , FM} be a random field defined on S, in which 

a random variable Fi takes a value fi in C. A realization f = fI, ... , f M, is called a 

configuration of F, corresponding to a realization of the field. The random variables 

F defined on Sare related to one another via the neighborhood system N. 

F is said to be an MRF on S with respect to N if and only if the following two 

conditions are satisfied [66]: 

PU) > 0 (positivity) , and 

PUi 1 fS-{i}) = PUi 1 fNJ (Markovianity). 

where S - {i} is the set difference, fS-{i} denotes the set of labels at the sites in 

S - {i} and fNi = {fIl i' E Ni} stands for the set of labels at the sites neighboring i. 

The Markovianity condition describes the local characteristics of F. The depth value 

(label) at a site is dependent only on the augmented voxels (containing intensity 

and/ or range) at the neighboring sites. In other words, only neighboring augmented 

voxels have direct interactions on each other. 

The choice of N together with the conditional probability distribution of PUi 1 

fS-{i})' provides a powerful mechanism for modeling spatial continuity and other 

scene features. On one hand, we choose to model a neighborhood Ni as a square mask 
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of size n x n centered at pixel location i, where only those augmented voxels with 

already assigned intensity and range values are considered in the synthesis process. 

Thus, the neighborhood is in fact, of an arbitrary shape depending on the current 

available information on each of its augmented voxels. On the other hand, as it was 

already mentioned in Chapter 4, calculating the conditional probabilities in an explicit 

form to infer the exact maximum a posteriori (MAP) in MRF models is intractable. 

We cannot efficiently represent or determine all the po~sible combinations between 

pixels with its associated neighborhoods. Various techniques exist for approximating 

the MAP estimate, such as Markov Chain Monte Carlo (MCMC), iterated conditional 

modes (leM), maximizer of posterior marginals (MPM), etc. Refer to Chapter 4 for 

a more complete li st of the existing methods and their descriptions. 

ln our research, we avoid the computational expense of sampling from a probability 

distribution and take two different approaches for the MAP-MRF estimation. The 

first approach is based on a non-parametric sampling strategy that is easy to im­

plement, generates good results and is fast to execute. The second approach, which 

is an extension of the first, uses the belief propagation (BP) algorithm to compute 

marginal probabilities. This approach improves the synthesized results of those of 

the first approach, at the expense of additional computation. 

ln the following sections, we describe each of these approaches and compare their 

results in Chapter 6, where our experimental results are shown. 

3. N on-parametric Sampling and MAP-MRF estimation 

To compute the MAP estimate for a depth value Ri of the augmented voxel Vi, one 

first needs to construct an approximation to the conditional probability distribution 

PUi 1 iNi) and then sample from it. We could use the parameters themselves, 

estimated from the given input data or samples (neighborhoods from input intensity 

and range data), as an approximation to maximum likelihood sampling, however 

this is hindered by the need to compute the partition function Z which is usually 

computationally intractable (refer to Chapter 4, Section 3.3). Instead, for each new 
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depth value RER to estimate, the samples, which correspond to the neighborhood 

system for the voxellocation i, M, are queried and the distribution of Ri is constructed 

as a histogram of aIl possible values that occurred in the samples. M is a subset of 

the real infinite set of augmented voxels, denoted by Nreal . 

Based on our MRF model, we assume that the depth value R depends only of 

its immediate neighbors in intensity and range, i.e. of Ni. If we define a set 

f(R i ) = {N* c Nreal : Il Ni - N* 11= O} (5.1) 

containing aIl occurrences of Ni in Nreal , then the conditional probability distribu­

tion of Rean be estimated with a histogram based on the depth values of voxels 

representing each N* in f(R). 

Unfortunately, we are only given V, i.e., a finite sample from Meal. Thus, there 

might not be any neigbhorhood containing exactly the same characteristics in inten­

sity and range as Ni in V. Thus, we must use a heuristic which let us find a plausible 

f'(R) ~ f(R) to sample from. 

Let Av be a local neighborhood system for the augmented voxel p, that comprises 

nearby neighborhoods within a radius r, 

Av = {Aq ENI distance(p, q) ::; r} (5.2) 

where Rq is a known depth value. In other words, the local neighborhood system 

contains aIl the neighborhoods which center voxels have already assigned labels (depth 

values), located at a maximum distance r from the location of voxel p. This set will 

conform the trainingjsample data for that particular voxel p. 

In the non-parametric approach, a depth value Hp from the augmented voxel V; 

with neighborhood Np, is synthesized by first selecting the most similar neighborhood 

(Nbest ) to Np, i.e., the closest match to the region being fiIled in, 

N best = argmm Il Np - Aq II, 
Aq E Av 

(5.3) 
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Second, aH the neighborhoods Aq in.Ap that are similar (within a threshold E) to this 

Nbest are included in r'(Rp), as follows 

Il Np - Aq 11< (1 + E) Il Np - Nbest Il (5.4) 

The similarity measure Il . Il between two generic neighborhoods Na and Nb is de­

scribed over the partial data in the two neighborhoods and is calculated as follows, 

Il Na - Nb 11= L G(cy, V - vo)J(I~ - ]~)2 + (R~ - R~)2, (5.5) 
vENa,Nb 

where Vo represents the augmented voxel located at the center of the neighborhoods 

Na and Nb, V is a neighboring voxel of vo. ]a and Ra are the intensity and range 

values of the neighboring augmented voxels of the depth value Rp E Vo to synthesize, 

and ]b and Rb are the intensity and range values to be compared with and in which, 

the center voxel Vo has already assigned a depth value. G is a 2-D Gaussian kernel 

applied to each neighborhood, such that those voxels near the center are given more 

weight than those at the edge of the window. 

We can now construct a histogram from the depth values Rp in the center of each 

neighborhood in r'(Rp), and randomly sample from it. Rq is then used to specify Rp. 

For each successive augmented voxel this approximates the maximum a posteriori 

estimate. 

Experimental results using this non-parametric sampling approach are shown 

in Chapter 6. While it seems sufficient to infer depth values by learning the local 

relationships among the nodes in a local neighborhood system around the voxel whose 

depth value is to be inferred, yet, there are sorne issues. In particular, when the local 

information does not capture correctly the global, smooth variations in depth, the 

reconstructions may le ad to piecewise constant (i.e., fronto-parallel) surfaces along 

surfaces like walls. Consider imaging a wall in which thick stripes of range data are 

missing. If we only observe the local neighborhoods on each side of the missing range, 

we will tend to get estimates of constant depth, because there were no observations 

of the wall sloping away at the desired depths. An example of this is shown in 
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(a) Input range image (b) Synthesized range (c) Ground thruth range 

FIGURE 5.7. An example illustrating the problem of using the non­
parametric sampling method. The synthesized range image (b) shows an 
artifact of sudden depth variation (indicated by the arrows). 

Figure 5.7: in (a) is the input range image, (b) is the synthesized range after using 

the non-parametric sampling approach, and (c) the ground truth range. In this 

prototypical case, we can see a difficulty': An artifact of sudden depth variation (the 

regions indicated by the arrows in (b)) is apparent (marked with an arrow). As the 

synthesis process advances from the borders to the interior, only local information 

is considered at each time, in consequence, when they get to the meeting point (the 

middle in this case), their depth values are not showing a smooth transition, instead a 

sudden change in their depth values is obtained. Therefore, a mechanism to propagate 

information from an sides of the area to be filled in is needed. Thus, we do not just 

need to model the relationships between local regions of images and scenes, but also 

between neighboring local scene regions. This can be done by propagating the current 

initial estimates by means of the belief propagation algorithm (introduced in Section 4 

of Chapter 4). 

4. MAP-MRF using Belief Propagation (BP) 

In order to propagate evidence, we use a pairwise Markov network (see Section 4.1 

of Chapter 4). In our case, observation nodes represent image patches where sorne 

of the voxels may contain both intensity and range information, or only intensity 

information; the hidden nodes are the depth values to be estimated of the center voxels 
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(a) Input intensity (b) Input range 

FIGURE 5.8. Input data used to illustrate the MAP-MRF using BP. 

of the image patches of the observable nodes. BP efficiently estimates Bayesian beliefs 

in the MRF network by iteratively passing messages between neighboring nodes. We 

illustrate this by using an example. Figure 5.8 shows the input intensity and range 

images, where white areas represent unknown range values. The pairwise Markov 

network for the range estimation problem is depicted in Figure 5.9(b), where the 

observation node Yi is a neighborhood in intensity centered at voxel location i (see 

(a)), and the hidden nodes Xi represent the depth values to be estimated (white areas 

in (c)), but also hidden nodes contain the already available range data (as image 

patches), whose beliefs remain fixed at an times; a subset of these available range is 
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FIGURE 5.9. Pairwise Markov network for the range estimation problem. 
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5.4 MAP-MRF USING BELIEF PROPAGATION (BP) 

used to locally train the network and compute compatibilities between observation 

and hidden nodes and the rest is used for propagating the beliefs in and out globaIly. 

4.1. Learning the Compatibility Functions 

The training pairs of intensity image patches with its corresponding range image 

patches are used to learn the compatibility functions. However, not aIl available 

(observed) pairs of intensity and range image patches are used as training pairs. We 

choose only a local set of image pairs that are located up to a distance d from the 

voxel location of the depth value to be estimated. This reflects our heuristics about 

how the intensity values locally provide knowledge about the type of surface that 

intensity value belongs to. 

As in the method described elegantly in [59], we use the overlapping information 

from the intensity image patches themselves, to estimate the compatibilities w(Xj, Xk) 

between neighbors. Let k and j be two neighboring intensity image patches. Let d;k 

be a vector of pixels of the lth possible candidate for image patch Xk which lie in 

the overlap region with patch j. Likewise, let rI'kj be the values of the pixels (in 

correspondence with those of d;k) of mth candidate for patch Xj which overlap patch 

k (see Figure 5.10). We say that image candidates x~ (candidate l at node k) and 

xj are compatible with each other if the pixels in their region of overlap agree. We 

assume that the image and training samples differ from the "ideal" training samples 

by Gaussian noise of covariance ai and as, respectively. Those covariance values are 

FIGURE 5.10. The compatibility between range image patch candidates. 
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parameters of the algorithm. Then, the compatibility matrix between range nodes k 

and j are defined as foUows: 

(5.6) 

The rows and columns of the compatibility matrix <I>(xL xj) are indexed by l and m, 

the range image candidates at each node, at nodes j and k. 

We say that a range image patch candidate x~ is compatible with an observed 

intensity image patch Yo if the intensity image patch y~, associated with the range 

image patch candidate x~ in the training database matches Yo. Sinee it will not exactly 

match, we must again assume" noisy" training data and define the compatibility 

(5.7) 

4.2. The MAP estimate 

The maximum a posteriori (MAP) range image patch for node i is: 

XiMAP = arg max <I>(Xi' Yi) II Mji(Xi). (5.8) 
Xi jEN(i) 

where N(i) are aU node neighbors of no de i, and Mji is the message from node j to 

node i and is computed as foUows: 

Mij(Xj) = Z L W(Xi, Xj)<I>(Xi' Yi) II Mki(Xi) (5.9) 
Xi kEN(i)\{j} 

where Z is the normalization constant. 

Resuming, the algorithm for the range estimation problem using the MRF-BP 

framework is as follows: 

Currently, the main drawback of using the BP-based method is the computational 

time. The BP-based algorithm runs in O(nk2T) time, where n is the number of 

pixels to be synthesized, k is the number of possible labels for each pixel and T is 

the number of iterations. It takes O(k2 ) time to compute each message and there 

are O(n) messages per iteration. The NP sampling method runs in O(Mpn) time, 
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i) Divide the input registered images, i.e., the intensity and the (incomplete) 
range images, into small patches, which form the sets of Xi'S and Yi'S. The 
areas of unknown depth values, Le., n, is divided in such a way that each 
voxel with missing depth has its own associated intensity image patch and 
available range patch. 

ii) For each intensity image patch Yi in n, find the k closest YXi 's from the lo­
cal training set located up to distance d from that voxel location. The co­
rresponding Xi 's are the candidates for that patch. 

iii) Calculate the compatibility function <I>(Xi, Yi) according to Eq. 5.7. 

iv) For each pair of neighboring input patches, calculate the k x k compatibi­
lit y function W(Xi, Xj) according to Eq. 5.6. 

v) Estimate the MRF-MAP solution using BP. 

vi) Assign the depth value of the center pixel of each estimated maximum pro­
bability patch XiMAP to the corresponding pixel in the range image patch. 

where M is the number of neighborhoods to be compared with, p is the number of 

pixels that conform the neighborhood of each pixel (e.g., 5 x 5 = 25 pixels). It usually 

takes around 30 seconds for an image of size 128 x 128 in a 3 GHz Pentium 4 with 1 

Gigabyte of RAM. 

Aq critical issue on the range estimation pro cess is the order in which the depth 

values are synthesized, we described our approach for the range synthesis ordering 

in the next section. Here, we just mention that as messages are propagated in the 

Markov network, we have set a message-passing rule that are essentially constrained 

on the edge information from the intensity images. 

5. Range Synthesis Ordering 

In standard MRF methods, the assumption is that the field is updated in either 

stochastically or in parallel according to an iterative schedule. In practice, several 

authors have considered more limited update schedules. In the presented work, a 

single update is done at each unknown measurement. Thus, a depth value R(x, y) is 

synthesized sequentially (although this does not preclude parallel implementations). 

78 



5.5 RANGE SYNTHESIS ORDERlNG 

Input Correct result 

Informatlon-driven ordering 

FIGURE 5.11. Comparing the onion-peel and information-based orderings. 

Critical to the quality of the reconstruction is the order in which a voxel, whose 

range value is to be synthesized, is selected. An ordering that is commonly used, 

is the well-known onion-peel ordering. This ordering uses a predetermined schedule 

over space, essentially walking a spiral from the boundary of a region towards the 

center. The main problem with this ordering is the strong dependence from the 

previous assigned voxel. A more suit able ordering is based on the amount of available 

information in the voxel's neighborhood, such that voxels containing the maximum 

number of neighboring augmented voxels are synthesized first. Figure 5.11 shows a 

simulated example that compares the onion-peel ordering with the information-driven 

ordering proposed in this thesis. 
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It was also observed that the reconstruction across depth discontinuities is of­

ten problematic as there is comparatively little constraint for probabilistic inference 

at these locations. Such regions are often identified with edges in the intensity im­

ages and with linear structures in the range maps. These linear structures are called 

isophotes, which in the range domain are defined as aIl normals forming same angle 

with direction to eye (see Figure 5.12). Thus, in the reconstruction sequence, syn-

n(u,v) 

FIGURE 5.12. Isophote on a surface. This linear structure is formed such 
that all normals on it, form the same angle with direction to the eye. 

thesis of voxels close to intensity discontinuities (indicated by edges) and/or depth 

discontinuities (indicatedby the isophotes) are deferred as much as possible. 

Summarizing, the reconstruction sequence synthesize first the depth values of 

those voxels for which we can make the most reliable inferences based on essentially 

two factors: 1) the number of neighboring augmented voxels (i.e. locations with al­

ready assigned range and intensity) and, 2) the existence of intensity and/or depth 

discontinuities (i.e. if an edge or a linear structure exists). Priority values are com­

puted based on these two factors and are assigned to each voxel for reconstruction, 

such that as we reconstruct, the voxel with the maximum priority value is selected. 

If more than one voxel shares the same priority value, then the selection is done 

randomly. 
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5.1. Computing the Priority Values 

The reconstruction sequence depends entirely on the priority values that are as­

signed to each voxel on the boundary of the region to be synthesized. The priority 

computation is biased toward those voxels that are surrounded by high-confidence 

voxels, that are not on an isophote line, and whose neighborhood do es not represent 

an intensity discontinuity, in other words, whose neighborhood does not have any 

edges on it. Furthermore, edge information is used to defer the synthesis of those 

voxels that are on an edge to the very end. When using the BP-based method, we 

essentially use the following message-passing rule: 

Edge-constraint rule: Anode can send a message to a neighboring node once 

it has received messages fram aU its other neighbors except those edge-labeled nodes. 

We st art by giving sorne basic notations to explain how the methods we present 

reconstruct the unknown depth values (notation similar to that used in the inpainting 

literature [31]). 

FIGURE 5.13. The notation diagram. 

Figure 5.13 shows the notation diagram. The region to be synthesized, i.e., the 

target region is indicated by n = {Wi 1 i E A}, where Wi = R(Xi, Yi) is the unknown 
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depth value at location (Xi, Yi) and A C Zm is the set of subscripts for the unknown 

range data. The contour of 0 is denoted by bO. The input intensity (1) and the 

known range values (Rk ) together form the source region, and is indicated by (. This 

region ( is used to calculate the statistics between the intensity and the input range 

for reconstruction, as it was described in Section 3. Let Vp be an augmented voxel 

with unknown range located at the boundary bO and Np be its neighborhood, which 

is a n x n square window centered at Vp. 

For all voxels Vp E bO, their priority value is computed (which is going to deter­

mine the order in which they are filled) as follows: 

P(Vp) = C(Vp)D(Vp) + 1/(1 + E). (5.10) 

where E is the number of edges found in the neighborhood or image patch Np; C(Vp) 

is the confidence term, and D(Vp) the data term. The confidence term is defined as 

follows: 

(5.11) 

where INp 1 is the total number of voxels (augmented or not) in Np. At the beginning, 

the confidence of each voxel is assigned 1 if its intensity and range values are filled 

and a if the range value is unknown. This confidence term C(Vp) may be thought 

of as a measurement of the amount of reliable information surrounding the voxel Vp. 

Thus, as we reconstruct, those voxels whose neighborhood has more of their voxels 

already filled, are synthesized first, with additional preference given to voxels that 

were synthesized early on. 

The data term D(Vp) is computed using the available range data in the neighborhood 

Np, as follows (see Figure 5.14): 

(5.12) 

where Œ is a normalization factor (e.g. Œ = 255, in a typical gray-Ievel image), np 

is a unit vector orthogonal to the boundary bO at voxel Vp. This term reduces the 

priority of a voxel in whose neighborhood an isophote "flows" into, thus altering the 
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Q 

VI~ 

FIGURE 5.14. The diagram shows how priority values are computed for 
each voxel Vp on 80. Given the neighboorhood of Vp , np is the normal to 
the contour 80 of the target region 0 and V* is the isophote (direction and 

p 

range) at voxel location p. 

sequencing of the extrapolation process. This term plays an important role in the 

algorithm because it prevents the synthesis of voxels lying near a depth discontinuity. 

Note, however, that it does not explicitly alter the probability distribution associated 

the voxel (except by deferring its evaluation), and thus has only limited risk for the 

theoretical correctness of the algorithm. 

Once aU priority values of each voxel on M1 have been computed, we find the 

voxel with the highest priority. We then use our MRF model to synthesize its depth 

value. After a voxel has been augmented (i.e. it has intensity and range data), the 

confidence of the C(Vp) = C(Vq), i.e. it is assigned the confidence of the augmented 

voxel which most resemble the neighborhood of Vp (see Eq. 5.11). 

6. Implementation Issues 

6.1. The searching space 

The searching space depends on the parameter d, i.e., the distance from the voxel 

to be synthesized p to the farthest neighboring voxel, which neighborhood is going 

to be compared to. Thus, if d is equal to the size of the image, then Np is compared 

with aH possible neighborhoods in the image, which would be a time consuming 

process. The exhaustive search takes O(n2
) for each voxel to be synthesized, where 
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n is the total number of known augmented voxels whose neighborhoods are being 

compared to. Therefore, d should be of a reasonable size, not to big not to small, 

so that appropriate candidates, which are similar enough in their neighborhoods, can 

be found. However, if the searching space must be large for whatever reason, the 

searching time can be reduced by indexing the n augmented voxels using a kd-tree 

structure [12], so that the new computational time is O(logn). 

6.2. Neighborhood size 

Neighborhoods should be as small as possible to minimize processing but should 

be large enough that features are not missed. Additionally, if neighborhoods are too 

large, small features are more easily missed in the processing phase. In other words, 

ideal neighborhoods would include enough voxels to easily distinguish variations in 

surface structure but be no larger. 

6.3. Similarity between neighborhoods 

There is also the question of how "similarity" between two neighborhoods is mea­

sured. This is partly determined by the model through neighborhood size. However, 

it is also determined by how we measure the classification probability. We determine 

a good fit probabilistically by comparing the set of statistics obtainable from the 

available data (see Section 3). The consequence of this, however, is that when the 

MRF model is under trained, the statistics will not change rapidly as the similarity 

between the neighborhood of the voxel to synthesize and the neighborhood from the 

training data diminishes. Therefore neighborhoods which are not aIl that similar 

could be given a high similarity measure. On the other hand, if the MRF model is 

overtrained, then the statistics obtainable from the training data would have a high 

entropy, and again dissimilar neighborhoods could be given a high similarity measure. 
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CHAPTER 6 

Experimental Results on Alternative 

Sampling Strategies 

In this chapter we show experimental results conducted on data acquired in a real 

environment to evaluate both the non-parametric (NP) sampling method and the 

belief propagation (BP) technique described in Chapter 5. We use ground truth data 

from two widely available databases containing sets of registered intensity and range 

data. Different sampling strategies on the range data were tested to evaluate our 

methods. We demonstrate the versatility of the methods as weIl as its limitations. 

1. Experimental Setup 

In our experimental setup, intensity images are input directly to our algorithm, 

while the complete range data provides ground truth and a limited subset, selected 

with different sampling strategies, is used to simulate sparse readings and to provide 

input to the algorithm. Having ground truth data allow us to compare the quality of 

the reconstruction with what is actually in the scene. 

Experiments are conducted on data acquired on a number of real environments. 

Both intensity (achromatic and color) images and real range data files, already regis­

tered, are obtained from two databases available on the web. The first database, the 



6.1 EXPERIMENTAL SETUP 

USF range image database 1 from the CESAR lab at Oak Ridge National Laboratory, 

provides real intensity (reflectance) and range images of indoor scenes acquired by an 

Odetics laser range finder mounted on a mobile platform. The second database, the 

Middlebury stereo database 2 [131], provides color images with complex geometry 

and pixel-accurate ground-truth disparity data. 

The first dabase contains images of size 128 x 128 pixels represented by 256 grey 

levels and the second database contains color images of size 450 x 375 pixels. The 

neighborhood systems used in aIl experiments were windows of 5 x 5 pixels, unless 

otherwise indicated. The Canny edge detector[22] is used to extract the edges of the 

input intensity images and the smoothing parameter is set to 0.8. The parameter d, 

i.e., the maximum distance between two neighborhoods' center voxels, which are to 

be compared to find the best matches, is set to 10 pixels. For the case of the BP-based 

method, the number of iterations were set to 50. We have conducted many experi­

ments on the number of iterations, and observed that below 50 iterations the results 

are poor, while iterations above this number do not reflect much of improvement. 

We consider several strategies for sampling the range data. In general, the sam­

pling of the range data is assumed to be clumped into at least sorne sets of mutuaIly­

adjacent voxels as opposed to scattered measurements far from one-another. The 

sampling strategies presented in the next sections are not necessarily identical to 

those provided by any particular sensor (except for those that are indicated). How­

ever, they are useful for analyzing and testing our methods for range synthesis so we 

can determine suit able samplings on the range data to have a good reconstruction. 

Sorne of these results have been already published [158, 156, 159, 157]. 

1.1. Evaluation Methodology 

Since we have ground truth range in an of the exp eriments, we can evaluate the 

performance of our method. There are different techniques to compute the errors in 

1 http:j jmarathon.csee.usf.edujrangejDataBase.html 
2http:j jwww.middlebury.edujstereo 
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the reconstruction. We choose to compute the mean absolute residual (MAR) error. 

The absolute value of each error is taken and the mean of those values is computed 

to arrive at the MAR error. The MAR error of the two range data matrices RI and 

R2 is defined as: 

MAR 
2:i,iIRI(i,j) - R2 (i,j)1 error = --:-:--':'~-=--,--'-""""'-------'--'-"";"";"~ 

# of unknown range pixels 
(6.1) 

In general, however, just computing MAR errors are not a good way of assessing 

the suc cess of our methods. For example, when there exists a few number of outliers 

with high MAR errors, the average MAR error is slightly high. We can visually 

appreciate a good or bad reconstruction by looking at a normalized differencejresidual 

image r, using the following equation: 

r' .)_IRI (i,j)-R2(i,j)I*255 
('t,) - k (6.2) 

where the value k is the maximum difference error value between the two range data 

images. For sorne of the experiments, we show the normalized residual images. 

2. Areas with unknown range data of arbitrary shapes 

The first type of experiment involves the range synthesis when the region spanning 

the missing range data is of irregular shape. In particular, we show how the shape 

that contains the unknown range influences their estimation. In Fig. 6.1a, two input 

range images (the two left images) are given. The percentage of the missing area 

(shown in white) of both range images is 47.6% (7800 pixels). Their perimeters and 

shape however are different. The first range image shows a compact shape whereas 

the second image represents a more distributed missing range. In the same Figure, 

the two right images depict the input intensity and its corresponding edge map, 

respectively. These data are given as an input to our algorithm. Fig. 6.1b shows 

in the left two columns, the synthesized range images. The first row are the results 

for the compact shape in Figure 6.1a and the second row for the distributed shape. 
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Corrpact missing range Dlstributed missîng range Intenslty image Edge map 

(a) Input (white regions are unknown data to be estimated). 

Compact 

Distributed 

Non-parametric 
sampling 

UsingBP 
(50 iterations) 

Synthesized range images 

(b) Synthesized range images. 

Ground truth range 

FIGURE 6.1. Results on two different shapes of unknown range with same 
area: 7800 pixels (47.6% of total image). 

The first column indicates the synthesized results when using the non-parametric 

(NP) sampling method described in Section 3 of Chapter 5. The second column gives 

the synthesized results when using the beHef propagation-based (BP) method (see 

Section 4 of Chapter 5) after 50 iterations. The ground truth range image (the right 

image) is also displayed for comparison purposes. 
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Although the synthesized results for both type of shapes reflect a poor approxi­

mation of the real range measurements in the depth map, it can be seen that when 

synthesizing big areas of unknown range data, our algorithm performs better if the 

area is not compact, since combinations of already known range and intensity give 

more information about the geometry of the scene. In other words, the sample spans 

a broader distribution of range-intensity combinations. This experiment gives us a 

good indication of what kind of sampling of the input range data we need to have 

a good reconstruction. In the same trend, we carried out a simple experiment on 5 

different scenes, where the percentage of the total area with unknown range varies 

from 10% to 90%. In Figure 6.2, the input intensity and associate edge map together 

with the ground truth range images for two of the scenes are shown. Figures 6.3(a) 

and (b) show in the first column the input range for sorne of the cases of study. The 

second and third columns are the synthesized range images using the NP-sampling 

and the BP-based methods, respectively. Figure 6.4 is a plot of the MAR errors 

averaged over the 5 scenes versus the size of the unknown range data. 

Intensity image Intensity edges Ground truth range 

FIGURE 6.2. The input intensity, edge map and ground truth range for 
two of the scenes to evaluate. 
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Input range Input range 

(a) (b) 

FIGURE 6.3. Results on two different scenes with varying input range. 

3. Range stripes along the x-axis and y-axis 

This type of experiment involves the range synthesis when the initial range data 

is a set of stripes with variable width along the x- and y-axis of the intensity image. 

In the following cases, we tested our methods with the same intensity image in order 

to compare the results. Figure 6.5a shows the input intensity image (left) of size 

128 x 128 pixels, the edge map (middle), and for purpose of comparison we show 

the ground truth range image (right) from which we omit using much of the data for 

input to simulate real sensing conditions. 

Four cases of sampling are shown in Figure 6.5b. The initial range data, shown 

in the left column, goes from dense to very sparse. The percentage of missing range 

data is indicated below each image. The parameters r w and Xw indicate the width of 

the stripes of known and uknown range, respectively. For example, the first case has 
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FIGURE 6.4. Plot of the averaged MAR errors over 5 different scenes. 

rw = 24 and Xw = 80. For the first three cases the size of the neighborhood is set 

to be 5 x 5 pixels and for the last case 3 x 3 pixels. The second and third columns 

show the synthesized range data obtained after running our algorithms using the NP 

sampling and when using the BP-based (after 50 iterations) methods, respectively. 

We also show the residual images for the BP-based synthesized results. 

The first two cases have the same amount of missing range (39%), however the 

synthesized range for the second case is much better. Intuitively and based on the re­

sults from the previous section, this is because the sample spans a broader distribution 

of range-intensity combinations. 

Table 6.1 shows the MAR errors (calculated only on the unknown areas) of the 

examples shown in Figure 6.5b for each of the two methods. 

% of area with MAR Errors (in pixels) 
rw Xw missing range NP sampling BP-based 
24 80 39 36.36 4.23 
10 20 39 5.76 1.33 
5 25 61 8.86 1.85 
3 28 76.5 9.99 2.76 

TABLE 6.1. MAR errors for the cases shown in Figure 6.5b. 
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Input intensily Edgemap Ground truth range 

(a) 

39% of range is missing 

-' 

61 % of range is missing 

76.5% of range is missing Non-parametrlc sampling 

(b) 

FIGURE 6.5. Results on real data. (a) From left to right, the input intensity 
image, the edge map and the associated ground truth range. (b) The left 
column shows the initial range data (the white squares represent unknown 
data to be estimated). The second and third columns show the synthesized 
results when using the NP sampling and BP-based methods, respectively. 
The last column are the residual images for the BP-based synthesized results. 
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From the data in the table, we can see that the BP-based method produces smaller 

errors than the NP sampling method. The reason for this is because the belief at 

each pixel is propagated through aIl its neighbors (except when edges are detected), 

so that it covers an the area of missing range. This allows for smooth transitions on 

the range values and the removal of inconsistencies to find the minimum energy of 

the overall system. Whereas the NP sampling method only consider one iteration per 

assignment of aIl the best matches of the already existing range values, which also 

induces order-dependant artefacts. 

We conducted experiments on 32 images from the USF database of common 

scenes found in a general indoor man-made environment. We choose the sampling 

case with Tw = 5 and Xw = 25, which corresponds to images with 61% of the range 

points unknown. The average MAR errors for the ensemble of images using both the 

NP sampling and BP methods are shown in Table 6.2. 

Mean MAR Errors (in pixels) 
NP sampling BP-based 

4.27 2.65 

TABLE 6.2. Average MAR errors for 32 images in the database. 

Four examples of these experiments are shown in Figures 6.6 and 6.7, which 

corresponds to the input and the synthesized range images, respectively. In order to 

confirm the importance of using edge information in the reconstruction pro cess , we 

display the synthesized results in the first column of Figure 6.7 when edge information 

is not considered. The second and third columns show the synthesized range images 

when considering edge information and using the NP sampling and belief propagation­

based methods, respectively. The last column displays the ground truth range images 

for comparison purposes. 
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Input intensity data Edges !rom intenSiIy Input range data 

FIGURE 6.6. Input data to our range synthesis algorithms. The first two 
columns are the input intensity and the associated edge map; the third 
column shows the input range images ( 61% of the range is unknown). 

The MAR errors in the grey-Ievel range (i.e. 0 for no error and 255 for maximum 

error) , from top to bottom are shown in Table 6.3. 

MAR Errors (in pixels) 
No edge-info NP sampling BP-based 

8.58 3.77 2.58 
13.48 3.03 1.63 
11.39 2.99 2.03 
7.12 2.20 1.36 

TABLE 6.3. MAR errors for the cases shown in Figure 6.7. 
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Synthesized results 
Without e<lge information Non-parametric sampling Using BP (50 fterations) Ground truth range 

FIGURE 6.7. The first three columns are the synthesized results for the 
input data shown in Figure 6.6 when no edge info is used and when using 
the NP sampling and BP-based methods, both with edge information. The 
last column shows the ground truth range for visual comparison. 

3.1. Using color images 

We now show how color information may improve the range synthesis. Figure 6.8 

displays in the first row, the grayscale and color images of the same scene, and to 

their right the input range data. The synthesized results after running our algorithm 

is shown below together with the ground truth data for comparison purposes. 

It can be seen that there are sorne regions where color information may help in the 

synthesis process. For example, the chimney in the center of the image is separated 

from the background since they have different colors. This is hardly notice able in the 

grayscale image. 
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Achromatic image Colorimage Input range data 

Using achromatic data Using color data Ground truth range 

Synthesized range images 

FIGURE 6.8. Results on achromatic and color images. 

In general, when we use color images in the reconstruction process, it appears 

that the fidelity of the reconstruction is somewhat improved over achromatic images. 

This appears to be due to the fact that the color data provides tighter constraint over 

where and how the interpolation process should be applied. At the same time, the 

higher dimensionality of the Markov Random Field model for color images may make 

the reconstruction problem more difficult in sorne cases as the RGB channels have to 

be compared individually. 

4. Stripes along the x-axis 

Another type of experiments is where the initial range data is a set of stripes only 

along the x-axis. This set of experiments is interesting because the subsampling 

strategy resembles what is obtained by sweeping a two-dimensional LIDAR sensor 

(see Chapter 7, Section 3.3.1). This sampling, however, presents a challenge for the 

range synthesis pro cess , sinee we have very limited range data available (just along 

the y-axis). Thus, it is in this type of sampling where the isophote information (see 

Chapter 5 Section 5) from the available range data, together with the edge map from 
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the input intensity image, greatly help in the reconstruction process. As we will show 

in the following experiments. 

Figure 6.9 displays from left to right, the input color intensity image with its 

corresponding edge map, and the ground truth range image from where we hold 

back the data to simulate the samples. Two samplings on the same range image are 

shown in order to compare the results. In Figure 6.10, the first column displays the 

initial range data. The percent age of unknown range are 65% and 62%, respectively. 

Input color image Edgemap Ground truth ranQe 

FIGURE 6.9. The input intensity image, the edge map and the associated 
ground truth range. 

Initial range data Rasulta without isophotea constraint Reeults wlth Isophotes constralnt 
__ ~-'r-~~-'r-~ 

Cas .. 1: 65% of rangels unknown 

Cas .. 2: 62% 01 range ia unknown 

FIGURE 6.10. The initial range images are in the first column with their 
percentage of unknown range indicated below each. To compare results, the 
middle column shows the synthesized range images without using isophote 
information and the last column show the improved synthesized results with 
the incorporation of isophote constraints. 
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The two right columns show the synthesized range images without using isophote 

constraints and when they are incorporated to our algorithm. The regions enc10sed 

by the red rectangles show where our algorithm performed poorly. 

The mean absolute residual errors (MAR) are from top to bottom, 10.5 and 12.2, 

when no using isophote constraints compared to 6.5 and 7.3, when using isophote 

constraints. The algorithm was able to capture the underlying structure of the scene 

by being able to reconstruct object boundaries efficiently, even with the small amount 

of range data given as an input. 

More experimental results are shown in Figure 6.11. The first row show the 

input color intensity image, the edge map and its associated ground truth range (for 

comparison purposes). Three cases of sampling are shown in the subsequent rows. 

The first column is the input range. The percent ages of unknown range (indicated 

below each image) are 63%, 78% and 85%, respectively. The last two columns depicts 

the synthesized results when using isophotes constraints in both the NP sampling and 

BP-based methods, respectively. The MAR errors from top to bottom, are given in 

Table 6.4. 

Percentage of MAR Errors 
unknown range NP sampling BP-based 

63% 6.42 3.90 
78% 6.45 3.90 
85% 7.98 4.80 

TABLE 6.4. MAR errors for the cases shown in Figure 6.11. 

In general, the use of isophote information improves the reconstructions because 

it helps to detect the continuation of linear structures from the available range. This 

was clearly illustrated in the examples above. 
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IfllUt 00101' image Edgemap Ground truth fanJe 

Synthesized results 
~nl'n'llllYJ method BP-based method 

Ca&e 1 : 63.12% UtMOM'I tallIe 

Case 2: 78.34% UtMOM'I tallIs 

Ca$é 3: 84.64% UtMOM'I tallIe 

FIGURE 6.11. Results on real data. In the first row are the input color 
image and ground truth range. The subsequent rows show three cases, the 
initial range images are in the left column (percentage of unknown range is 
indicated below each). The two right columns show the synthesized results 
using the NP sampling and BP-based (50 iterations) methods, respectively. 
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5. Discussion 

The initial range data given as an input plays a very important role in the quality 

of the synthesis. As the percent age of known range data increases, and if this known 

range data is distributed about the scene to be synthesized, our methods can produce 

very good results in inferring the missing range data. There are however a notable 

difference in the performanc~ of both methods we presented. The synthesized result 

from the NP sampling method are obtained faster than those when running our BP­

based algorithm. However, the results from the BP-based method are much more 

better than those from the NP sampling method. 

The synthesized results when using the belief propagation show that our method 

can accomplish the propagation of geometric structure from the available neighborhood 

information. However, there are sorne regions where this propagation was not effec­

tive, again, due to the amount of initial range and on the types of surfaces captured 

by this initial range. 
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CHAPTER 7 

Mobile Robot Environment Modeling 

This chapter presents an application of the range synthesis method described in Chap­

ter 5, specifically in modeling a large-scale indoor environment using a mobile robot. 

When modeling large environments, sensor data from different viewpoints need to be 

acquired. The acquisition of images is easy, however to acquire a complete and dense 

range map of the environment is often done by using sophisticated but costly hard­

ware solutions. This task is time consuming for many real systems. Our approach 

overcomes this problem by allowing a robot to rapidly collect a set of intensity im­

ages and a small amount of range information. Then, our range synthesis method 

performs scene recovery, i.e., it estimates a dense range map at each location the 

robot takes measurements while navigating the environment. We give a complete 

description of the stages involved in our approach for the mobile robot environment 

modeling. These stages are: data acquisition and registration of the intensity and 

partial range data; the integration of these data at different views; and the estimation 

of dense range maps locally and globally. Experimental results on data acquired on 

our lab and building are given to illustrate the suitability of our approach. 

1. Introduction 

One of the major goals of mobile robot research is the creation of a 3D model 

from local sensor data collected as the robot moves in an unknown environment. This 
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3D model must contain geometric and photometrie details as well as knowledge about 

empty spaces. The final representation of this knowledge will reflect the ability of the 

autonomous system to interact with its environment and accomplish its tasks. 

In mobile robotics, it is common to combine information from many sensors, even 

using the same sens ors repeatedly, over time, with the goal of building a model of 

the environment. Since an sensors are imperfect, sensor inputs must be used in a 

way that enables the robot to interact with its environment successfully in spite of 

measurement uncertainty. One way to cope with the accumulation of uncertainty 

is through sensor fusion, as different types of sens ors can have their data correlated 

appropriately, strengthening the confidence of the resulting percepts well beyond that 

of any individual sensor's readings. 

A typical 3D model acquisition pipeline is composed by a specialized 3D scanner 

to acquire precise geometry, and a digital camera to capture appearance information. 

Acquiring images is fast and easy, however, to acquire a complete and dense range map 

is a time and energy consuming process, unless costly and/or sophisticated hardware 

is used. Moreover, it is often difficult to achieve in practice, especially when dealing 

with dynamic environments (such as offices and indoors). 

We avoid the need to obtain dense distance measurements, and rely instead 

on partial knowledge of the geometry of the scene. Our range synthesis method 

(described in Chapter 5) can then be used to estimate a dense range image from the 

sparse measurements at each robot pose. Thus, in modeling large environments, the 

challenge becomes one of trying to extract, from the sparse sens ory data, an overall 

concept of shape and size of the structures within the environment. 

2. Stages in the Mobile Robot Environment Modeling 

3D environment modeling typically involves two main goals: 1) the detailed shape 

of specifie objects or targets within the scene; and 2) the spatial layout of objects 

within the scene. The first goal involves the accurate reconstruction of the sensed 

objects, perhaps for reprojection from novel viewpoints, or for higher level shape 
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Acquisition of 
Intensity Images 

and Partial Range 

Intensity and 
Partial Range 
Registration 

Integration to 
a Global Map 

3DMap 
Representation 

FIGURE 7.1. Diagram showing the procedures to be followed for the 3D 
environment modeling problem. 

analysis for a cultural exposition, for example. The second goal is important for the 

purpose of navigation and localization. 

If the model is required only for navigation purposes, which is one of the most 

important problems in mobile robotics, then the second goal, i.e., the spatial relation­

ships between objects is important. If the model will be used for virtual walkthroughs, 

example in a museum, then both goals must be fulfilled. In other words, the geo­

metric and photometrie details from specifie viewpoints must be captured in the final 

representation. 

Since we are dealing with incomplete range data, the above mentioned goals in­

volve an additional process: the synthesis of complete and dense range maps from 

sparse partial distance measurements. Therefore, we divide the 3D environment 

modeling in the following stages (see Figure 7.1): 

• data acquisition of the intensity and partial range and their registration to 

a common reference frame; 

• range' synthesis, which refers to the estimation of dense range maps locally 

at each robot pose and globally when integrating data from different views; 

• data integration to a global map; and 

• 3D model representation. 

The following sections describe each of these stages in detail, except for the range 

synthesis stage, which was covered in Chapter 5. 
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3. Data Acquisition and Registration 

This section describes the data acquisition system used to capture the appearance 

and geometry of large-seale indoor environments. It consists of a CCD camera and 

a 2D laser rangefinder mounted on a mobile robot. The main aspect of our data 

acquisition system relies on how the data is acquired, which provides two important 

benefits: i) it allows the robot to rapidly collect sparse range data and intensity 

images while navigating the environment to be modeled, and ii) it facilitates the 

sensor-to-sensor registration. The first benefit is essential when dealing with large 

environments, where the acquisition of huge amount of range data is a time consuming 

and impractical task. The second benefit is related to the complexity of registering 

different types of sensor data, which have different projections, resolutions and scaling 

properties. To this end, an image-based technique is presented for registering the 

range and intensity data that takes advantage of the way data is acquired. 

3.1. Environment Analysis 

Prior to the design of the system configuration, is the analysis of the environment 

on which the system will be used. This analysis is based on the features, surfaces, and 

general characteristics we expect to encounter in the areas comprising the environment 

to be modeled. This is of particular importance since the features that can be obtained 

from the sensors depend totally on the characteristics of the environment where they 

are acquired. 

This research work focuses on modeling man-made indoor environments. Man­

made indoor environments have inherent geometric and photometrie characteristics 

that can be exploited to help in the reconstruction. 

3.1.1. Geometrie Charaeteristics 

Man-made indoor environments are structured environments, i.e., they are full of 

structural regularities, such as the presence of sets of parallel and orthogonallines and 

planes aligned with the principal orthogonal directions of the world coordinate frame. 

The two dominant orthogonal directions are: vertical (walls) and horizontal (floors). 

104 



7.3 DATA ACQUISITION AND REGISTRATION 

Due to gravitational forces, objects are attached to thefloor and/or wans. The 

geometric properties that are often present are: coplanarity, paranelism (alignment) 

and orthogonality. Sorne of these properties may be shared by many points, and 

those points can be put together into surfaces, reducing the complexity of the final 

representation. We assume that objects are solid volumes bounded by colored surfaces 

and they do not have holes. Another assumption made is that the surfaces of the 

objects are composed of relative smooth planar surfaces with continuity among them. 

This characteristic helps to assign belief values to decide if surfaces should be joined. 

3.1.2. Photometrie Characteristies 

Different types of materials are used in man made scenes, including wood, con­

crete, plastics, metal, glass, etc. For environment modeling, the particular interest 

is in how they reflect light. An materials absorb light, sorne are translucent al­

lowing light to penetrate, and an materials also reflect light. The surface texture 

also contributes to the image, in that smoother surfaces pro duce specular reflections. 

Moreover, lighting conditions in indoor environments may vary at different locations, 

and almost any large-scale environment will have sorne areas that are much brighter 

than others. 

ln general, the assumptions we made about the environment are: 

• The environment is static. 

• The environment is composed of 'smooth' planar surfaces (e.g. floors, doors, 

wans and furniture present large planar surfaces). 

• Most of the regions contain low texture. 

• The illumination of the environment is assumed to be constant, that is the 

brightness or darkness in sorne places does not dependent on the time of 

day that images are acquired. 

In large-scale indoor environments (e.g., offices, labs, museums, etc.), an sur­

faces will rarely be visible from a single viewpoint, nor will data be acquired at 

sufficient resolution to encompass the entire layout. We use a robot to navigate the 
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FIGURE 7.2. A diagram showing how the sensors are arranged on the pan 
unit on the mobile robot. 

environment, and together with is sensors, captures the geometry and appearance of 

the environment in order to build a complete 3D model. The presented work does 

not consider the problem of planning the robot's trajectory, and we assume that a 

planning strategy is given (see for example [65]). 

3.2. The Data Acquisition System 

The aim of our system configuration is to reduce the data acquisition time and 

facilitate the registration process. On top of the robot, we have assembled a system 

consisting of a 2D laser rangefinder (laser scanner) and a high-resolution digital cam­

era, both mounted on a pan unit. Figure 7.2 shows the arrangement of the sensors 

on the pan unit. The (CCD) camera is attached to the laser rangefinder in such a 

way that their center of projections (optical center for the camera and mirror center 

for the laser) are aligned to the center of projection of the pan unit. This alignment 

facilitates the sensor-to-sensor registration, that is, the registration between the in­

tensity and range data, as we only need to know their projection types in order to 

do image mapping. The image-based registration algorithm is described in detail in 

Section 3.4. 
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3.2.1. The 2D Laser Rangefinder 

A 2D laser range finder or laser scanner, is composed by a laser rangefinder 

and spinning mirror (please refer to Section 3.1.1 of Chapter 2 for definition and 

mechanisms details). The spinning mirror and panning motor combine to allow the 

laser to sweep out a longitude-latitude sphere to acquire complete range information 1 

(see Figure 7.3). The data returned for each rangefinder sample comprises a fixed 

number of points, each point includes range T, a value representing the amplitude a of 

the laser light refiected back to the scanner, and the angular position of the rotating 

mirror () of the scanner. Since the pan angle rjJ of the pan unit is also known, each 

sample is taken in polar coordinat es , expressed as a quadruple (T, a, (), rjJ), and it can 

be considered as two images sampled on a spherical surface: a range image R and an 

amplitude image A. 
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FIGURE 7.3. Laser coordinate system. 

It is important to mention that the samples are not regular in longitude and 

latitude, since the rangefinder and scanning mirror are not synchronized. As with 

1 Note that acquired range data (for one viewing position) provide (limited) 2.5D surface data only, 
and full 3D surface acquisitions can only be obtained by merging of data from several viewpoints. 
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any rangefinder, system calibration has taken considerable effort. AIso, the shaft 

encoder position of the horizon and the rotation of the pan unit caused by the weight 

of the rangefinder required sorne calibration. Experiments were carried to calibrate 

these factors and then correction were applied in the software. 

With respect to the quality of the measurements, there are many factors that 

influence laser reflectance, such as: target range, albedo, angle of incidence, surface 

roughness, and specularity. It is unlikely that aIl of these parameters can be deter­

mined from a limited number of reflectance measurements from an unknown obstacle. 

Our approach for range synthesis do not assume a particular surface type or scene 

illumination, thus making it more appealing and robust. The key aspect of our ap­

proach is that a reference image (sampled under the same illumination conditions as 

those at the time of scanning) can be used to capture the intrinsic relationships be­

tween the photometrie characteristics of objects in the scene with their corresponding 

geometric characteristies, and use these relationships to filter out outliers and more 

importantly to infer missing range values. 

When acquiring data from the laser rangefinder, raw data is streamed to disk and 

then transformed into 3D points registered into a common coordinate system. Since 

the mirror center of rotation and the pan unit center are aligned, we can directly 

project these points into a spherical gr id and filter the data to eliminate outliers and 

produce a spherical amplitude and range image. In order to eliminate the outliers, we 

look at the eight nearest neighbors of the range value ri on the spherical grid and, if 

at least four are within a tolerance 1 from ri, the value is considered valid, otherwise 

it is zeroed and then stored, to maintain proper order within the array. 

FinaIly, a 3 x 3 median filter is applied over the neighboring samples to fill the 

missing values and create a uniform grid. One way to improve the range data quality, 

is to use a slower sampling rate and shorter maximum measurable range, since it 

can find the proper interference frequency more quiekly. The payoff is, however, an 

additional acquisition time. Figure 7.4a shows, the 2D projection of a scaled spherical 

range image R, and in the bottom the corresponding spherical amplitude image A, 
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(a) 

(b) 

FIGURE 7.4. A 900 -view range and amplitude image output. (a) Spherical 
range image. (b) Spherical amplitude image. 

representing 90° scan of our navigation environment. In our scheme for representing 

depth values, the close abjects appear in darker shades than far abjects. The total 

time needed to acquire this complete range data was 20 minutes. Details about this 

timing is given in the experimental results section (Section 5.1). From the range 

data, we can note that there exists areas (shown in black) with missing range values, 

which the laser scanner was not able to capture due to material properties (color, 

shininess, transparency, etc.), lighting conditions and object dimensions. In sorne of 

our experiments, a pre-processing step was needed in order to obtain dense range data 

as our reference of ground truth. This pre-processing step was done either by using 

our range synthesis algorithm or, manually, for those cases where no information at 
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all about depth was captured. From this new ground truth range data we perform 

our sampling strategies to obtain partial range data (see Section 3.3.1). 

3.2.2. The Camera 

Digital cameras return photometrie information (intensity and color) of a partic­

ular scene. Their projective model can be approximated using a perspective model, 

where the size of ob jects varies as a function of distance from the center of our per­

ceived world, such that close objects are encoded at a larger representational scale 

that objects in the distance. The resolution of most cameras is higher than that of the 

laser. Furthermore, taking pictures require far less effort and they are a convincing 

rendit ion of the scene. 

For the camera, we use a pinhole camera model which consists of a focal point 

and a view plane. Each point in the scene is mapped onto the image plane (also 

called view plane) by a ray passing from the focal point through the image plane and 

contacting an imaged point in the scene (see Figure 7.5). 

y 

p 

FIGURE 7.5. Camera coordinate system. 

A single photograph gives us a large amount of information about the scene's 

appearance and structure. However, since it is a 2D image, we have lost the ability 

to look in different directions, to move about in the scene, to collide with its surfaces, 
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Camera's opticaI center 

FIGURE 7.6. Mosaicking images taken from the same viewpoint but different 
viewing angles. 

to change the illumination, and to modify the scene itself. All the above would have 

been possible if having a 3D model of the scene. 

In attempting to build a 3D map of the environment, a mobile robot needs to 

gather data from different viewpoints. Since a laser rangefinder usually captures data 

in a wider field of view of that of a camera (from a single robot pose), by combining 

or "stitching" two or more images, we yield a larger image of the same scene (see 

Figure 7.6). This technique is called image mosaicking [97, 149, 150, 139], and 

was developed long before digital computers. Image mosaics can be used for many 

different applications like the construction of large aerial and satellite photographs, 

and more recently for approximation of 3D scenes [149, 150, 138], video compression 

[49], architectural walkthroughs, virtual museums, and telepresence. For a complete 

description of image mosaics and techniques, see [150]. 

As an alternative, we could choose to use wide field of view lenses or imaging 

devices, such as Columbia's OmniCam [102, 133], as the whole scene can be captured 

in a single image. However, the images acquired have substantial distortions, and 

the image quality is low because of mapping an entire scene into a fixed resolution 

video camera. Image mosaicking does not need special imaging devices and does not 

compromise image quality. It basically involves following three major steps: 
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(i) Project the input images onto a cylindrical coordinate system. 

(ii) Register the warped images into a common coordinate system. 

(iii) Correct the resulting small errors from the registration process. 

Before projecting the images, is necessary to correct the geometric deformations 

caused by different types of lenses. It was already mentioned that the center of 

projection of the pan unit is aligned to the optical center of the camera. Therefore, 

images are taken from the same point of view (i.e., the camera undergoes a pure 

rotation around the optical center) and there is no misregistration caused by motion 

parallax. This mosaic is geometrically correct because the input images are related by 

a 2D projective transformation (homography). Camera parameters are generally not 

needed for image mosaics. But for cylindrical and spherical panoramas, in order to 

warp the images correctly, we need to know the camera's focallength. Section 3.3.2 

describes the general procedure for constructing a cylindrical panorama. 

Sorne advantages and disadvantages of the data acquisition setup need to be 

considered at this point. On one hand, data acquired from the sensors will correspond 

to scenes taken at the same height from the Roor; we may take advantage of this fact 

when estimating the relative viewpositions of the sensors. On the other hand, even 

with a panoramic mosaic, sorne views can never be acquired, for example, the superior 

views of objects located at elevated positions ( 1.5m from the Roor). 

3.3. Space and Time Data Sampling 

In comparing measurements from different sensors, the comparison process itself 

introduces uncertainty because of space and time sampling issues. Sorne of the sources 

of these errors are small variations in the sensor position during data acquisition and 

the type of the data taken. 

We assume dense and uniformly sampled intensity images, and sparse but uni­

formly sam pIed range images. Since taking images from the camera is an effortless 

task, sampling of intensity images occurs more often than that of range images. The 

total sampling area of both intensity and range images remains fixed aIl the time, 
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l.e., the area eovered by the sampling data is equal at eaeh robot pose. This area 

eovers approximately a view of 90°. However, the amount of range data may vary 

depending essentially on the sampling strategy. 

3.3.1. Acquiring Partial Range Data 

The configuration of the sensors also plays an important role in the sampling 

scheme. In our acquisition framework, the spinning mirror (y-axis) and panning 

motor (x-axis) combine to allow the laser to sweep out a longitude-latitude sphere. 

Since each step taken by the pan unit can be programmed (i.e., the stepping angle 

can be different at eaeh step) we can have different sampling strategies to aequire 

sparse range data. Figure 7.7 shows a number of sampling strategies for the range 

map shown in Figure 7.4a. Black regions indicate unknown range data. 

(a) 

(b) 

FIGURE 7.7. Examples of sampling range data. The complete range map is 
shown in Figure 7.4a. 
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In obtaining partial range data, we need to con si der two key factors which will 

reflect the quality of the whole range map. These are: the sampling strategy used 

and the amount of total range acquired. The sampling strategy will depend on how 

far the objects/walls in the scene are from the robot. Thus, as the robot gets doser to 

walls/objects, the subsampling can be sparser since no much details are lost, compared 

to when the robot is located far away. Figure 7.8 shows this simple heuristic, which 

(a) 

(b) (c) 

FIGURE 7.8. Sampling strategy based on distance of the scene from the 
robot. (a) The scene. (b) Robot is far from the abjects on the scene, the 
subsampling is dense. (c) Robot is close ta the abjects, thus the subsampling 
is sparser. 

is used in collecting our experimental data. It is essentially based on the relationship 

between the size of the abjects and the distance from where those abjects are seen: 
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the farther we are from an object, the smaller it looks, so dense sampling is needed 

to accurately represent its shape. On the other hand, the doser we are to an object, 

the larger it looks, so sparse subsampling is enough. 

There are other strategies for sampling the range data. However, answering the 

question of which sampling strategy is more suitable, is not the subject of this thesis. 

A brief discussion on the subject and which are the possible trends are given in 

Chapter 9, in the section for future work. 

3.3.2. Acquiring the Cylindrical Panorama Mosaic 

A cylindrical panorama is created by projecting images taken from the same 

viewpoint, but with different viewing angles onto a cylindrical surface. Each scene 

point P = (x, y, z)T is mapped to the cylindrical coordinate system ('lj;, v) by 

x 
'lj; = arctan( -), 

z 

(7.1) 

where f is the camera's focallength. Figure 7.9 shows two warped images used in 

constructing a panorama. 

FIGURE 7.9. Two warped images used to construct the panorama mosaic. 

The projected images are "stitched" and correlated in order to precisely determine 

the amount of rotation between two consecutive images, this process is called image 

spatial aligment or image registration. In the cylindrical space, a translation becomes a 
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rotation, so we can easily build the cylindrical image by translating each component 

image with respect to the previous one. In practice, there is also small vertical 

misalignment between images due to vertical jitter and optical twist. Therefore, both 

a horizontal translation tx and a vertical translation ty are estimated for each input 

image. To recover the translational motion, we estimate the incremental translation 

8t = (Mx, My) by minimizing the intensity error between two images, 

(7.2) 

where Xi = (Xi, Yi) and x~ = (x~, yD = (Xi + tx, Yi + ty) are corresponding points in 

the two images, and t = (tx , ty) is the global translational motion field which is the 

same for aIl pixels. 

After a first or der Taylor series expansion, the above equation becomes 

(7.3) 

where ei = Il (xD - Io(xi) is the current intensity or color error, and gr = \711 (xD is 

the image gradient of h at x~. This minimization problem has a simple least-squares 

solution, 

(7.4) 

The complexity of the registration lies on the amount of overlap between the images 

to be aligned. In our experimental apparatus, we will typically have about 20 to 30 

percentage of overlap between adjacent images. However, as the panning angles at 

which images are taken is known, the overlap can be as small as 10 percent and still 

be able to align the images. 

When aligning the images, corresponding points often have different intensity 

values for various reasons, including change in view angle of the camera, vignetting 

(intensity decreases towards the edge of the image), parallax effects due to unwanted 

motion of the optical centre, and change in scene lighting. To reduce discontinuities 

in intensity between images, we weight each pixel in every image proportionally to 
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their distance to the edge of the image (i.e., it varies linearly from 1 at the centre of 

the image to 0 at the edge) , so that intensities in the overlap area show a smooth 

transition between intensities in one image to intensities of the other image. A natural 

weighting fun ct ion is the hat function, 

(7.5) 

where h and w are the height and the width of the image. Intuitively, this function 

gives less weight to the pixels along the image edges. 

3.4. Camera-Laser Data Registration: Panorama with depth 

To effectively use the panoramic image mosaic and the incomplete spherical range 

data for range synthesis, model building and rendering, both sensor inputs need to 

be registered with respect to a corn mon reference frame. Note that the problem 

is eliminated when the data is acquired using the same sensor, as in the case of 

range from stereo, structured light or range and radiance images acquired by a laser 

rangefinder, but it becomes complex when data come from two or more different types 

of sensors. Their projections, resolutions and scaling properties are different due to the 

fact that they capture different types of data representing different physical aspects 

of the environment (i.e., appearance and distance). Therefore, before any meaningful 

high-level interpretation of the acquired images can be made, the projective model 

for both sensing technologies must be understood. The laser scanner and the CCD 

camera work with different coordinate systems and they must be adjusted one to 

each other. The software of most laser scanner delivers spherical coordinates, whereas 

the camera puts out data in a typical image projection. Further, the limited range 

information do not permit the use of typical methods for registration, such as feature 

extraction. In this work, an image-based technique was devised for registering the 

range and intensity data, gathered from the scans described in Sections 3.3.1 and 3.3.2, 

respectively. This image-based registration algorithm is similar to that presented 

in [27]. 
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3.4.1. The Image-based Registration Algorithm 

Determining the relationship between the projective models of the camera and 

laser rangefinder can be done through calibration, and is the basis of many geometry­

based techniquesIt requires that both sensors, together with the pan unit, be fixed on 

the mobile robot once the relationship is calibrated. In our method, even though we 

also have a fixed sensor configuration, there is no calibration involved. Instead, an 

image-based technique is used that recovers the projective model transformation by 

computing a direct mapping between the points in the data sets. The accuracy of this 

method depends on the characteristics of the physical system and the assumptions 

made (e.g. affine camera or planar scene), but in general their performance is good 

for locally recovering a mapping between data sets. 

The approach we take assumes that the optical center of the camera and the 

mirror center of the laser scanner are vertically aligned and that the orientation 

of both rotation axes coincide (see Figure 7.10). Thus, we only need to transform 

y-axÎs 

p 

Camera 

, 
________ w ____ ~ ___ ~ _____ ~ _____ _______ ::~%~J 

x-ax.Îs 

FIGURE 7.10. Camera and laser scanner orientation and world coordinate system. 

the panoramic camera data into the laser coordinate system. The following section 

describes the geometric relationship between the range and intensity data acquired 
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fram the sensors, in other words, the relation between laser points and image pixels 

with respect to their coordinate systems. 

3.4.2. Coordinate systems 

Range and intensity data are in different independent coordinate systems. To fuse 

both systems it is necessary to transform the data into one common reference system. 

We choose to use a world coordinate system. Figure 7.10 shows the mapping of a 3D 

point P in the scene to a 2D image point p'(x, y), when observed by the camera, and 

onto spherical coordinates (r, (), cp), when observed by the laser scanner. Calibration 

of the laser with respect to the camera involves determining the transformation that 

will map 3D points in the laser coordinate system (LCS) to 2D image points in the 

camera coordinate system (CCS) given a set of corresponding features in the two 

sensors. 

The first step in the registration pro cess is to map both type of data to a cylindri­

cal coordinate system. After that, the two data sets are registered under a common 

coordinate system. In the setup presented here, the two sensors are very close to each 

other, and an image-to-image warp is suit able for aligning the two data sets. 

Section 3.3.2 already described how the acquired intensity images are stitched 

together to form a cylindrical panorama. To convert the spherical range image (Sec­

tion 3.2.1) to a cylindrical representation similar to that of the panoramic image 

mosaic, the radius of the cylindrical range image must be equal to the camera's focal 

length. This mapping is given by 

f P(r, (), cp) ~ P(r, cp, -()) ~ P(r, cp, h) 
tan 

(7.6) 

where r represents the distance from the center of the cylinder to the point, h is the 

height of the point projected on the cylinder, cp is the azimuth angle and f the focal 

length of the camera (see Fig. 7.11). Again, this data is sampled on a cylindrical grid 

( cp, h) and represented as a cylindrical image. The same procedure is applied to the 

amplitude data to obtain the cylindrical amplitude image. 
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FIGURE 7.11. Projection of the 3D point P onto cylindrical coordinates: 
(cp, h) for the range data and (u, v) for the panoramic mosaic. 

Once having the intensity and range data in similar cylindrical image represen­

tations, a global mapping between them is computed. The physical configuration of 

the sensors is approximated, as in Figure 7.11, assuming only a vertical translation 

D.Y and a pan rotation between the two reference coordinate systems LCS (laser 

coordinate system) and CCS (camera coordinate system). For a point Xl (cp, h) in the 

cylindrical laser image, its corresponding point in the panoramic mosaic x c ( u, v) is 

u = acp + a, 

y -D.Y 
v=j--­

r 
(7.7) = jY _jD.Y = bh_jD.Y 

r r r 

where a and b are two warp parameters that will account for difference in resolution 

between the two images, a aligns the pan rotation, and Y = rh/ V J2 + h2 is the 

height of the 3D point X(r, cp, h). Since j, D.Y, and the r remain fixed through the 

experimental setup, the term j~Y can be approximated to a constant /3. Thus, the 
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general warp equations are: 

u = a<p + a, v = bh + f3 (7.8) 

The warp parameters (a, b, a, f3) are computed by minimizing the sum of the 

squared error of two or more corresponding points 2 in the two images. In the case of 

a good (i.e., what we hope to be normal) initial estimate, a reasonable convergence to a 

nearly correct 3 solution is obtained. The initial estimate places the panorama mosaic 

nearly aligned with the range data, with a moderate translation or misalignment 

typically of about 5 to 7 pixels. To correct this, a local alignment is performed 

using the set of corresponding control points. Since these control points are typically 

obtained by mat ching the 2D edges on the intensity image to the 3D edges on the range 

image, after calculating the misalignment with the warp parameters, we can locally 

"stretch" the range data to fit the intensity data by using cubic interpolation. After 

that, each range data point acquired by the laser rangefinder has a corresponding pixel 

value in the panoramic image. Since the resolution of the depth data is sparser than 

the resolution of the image data, the inverse mapping cannot be computed because 

the function is not one-to-one. 

Summarizing, the image-based registration algorithm consists of the following steps: 

(i) Manually find 1 corresponding points from the complete augmented panorama 

(ii) Compute the global mapping parameter by using a least squares linear fit. 

(iii) For each pixel (<p, h) in the cylindrical depth map, compute its correspond­

ing pixel in the cylindrical panorama by using Equation 7.8. 

(iv) Form a composite (augmented) image from the above warped images. 

(v) Locally align the images by matching 2D edges with 3D edges. 

Steps i and ii are carried for only once, thus subsequent registrations are fully 

automatic and there is no need for user intervention. 

2Since the computation of the warp parameters is done only once, the actual number of corresponding 
points must be a large number, ideally 20, to obtain a good linear fit. 
3The term "correct" simply means that the final solution " looks good." There is not recorded ground 
truth for this purpose. 
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4. Data Integration 

ln order to pro duce a complete 3D model or representation of a large environment, 

we need to integrate dense panoramas with depth from multiple viewpoints. Our 

approach is based on a hybrid method, similar to that proposed in [10]. This hybrid 

method combines two different techniques, one is for matching two 3D range scans 

and the other for matching intensity features on the panorama mosaic. Since dense 

panoramas with depth are given as an input, their integration to a common reference 

frame is easier than having only intensity or range data separately. To this end a 

simple method that combines the two previous techniques is presented. 

4.1. Matching of Two Range Data Sets 

The corn mon approach to register two range data sets from different viewpoints 

is to derive an initial transformation by aligning a smaH set of corresponding feature 

points in the range images. These feature points are either found as local geometric 

features on the surface of the objects or by placing additional markers in the scene. 

ln the former case, robustness of the feature detection is of vital importance, whereas 

in the latter, besides the inconvenience of taking special care in the placement of the 

markers, it is often infeasible to do when the environment to be digitalized must not 

be touched at aH, e.g., cultural heritage in museums [10]. 

State-of-the-art systems often require manual specification of initial pose esti­

mates or rely on external pose measurement systems 4, making the pre-registration a 

tedious and time-consuming task. Recently, methods for automaticaHy registrating 

multiple range images have been proposed. One of the most popular registration 

methods in the literature, is the Iterative Closest Point (lep) algorithm. As we use 

a variant of the lep algorithm, the next section describe the lep algorithm briefiy. 

4For instance, the relative viewpoint position might he known, e.g., from tracking the scanner 
position. Although direct and convenient, this is not always feasihle due to the characteristics of the 
environment and inherent errors in the rohot's odometry. 
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4.1.1. The lep algorithm 

The name ICP was introduced in the seminal paper by Besl and McKay [17], but 

similar ide as were developed independently at the same time by Chen and Medioni [25]. 

The ICP algorithm iteratively searches for closest point pairs in two surface patches 

and optimizes the transformation to minimize the distances between these points. 

Although the role of the two point pairs to be matched is exchangeable, we speak of 

data points which are to be registered with a model or model points. 

Let Xi be a data point and assume that an initial estimate of the parameters is 

given. Then map each Xi according to these parameters into the coordinate frame of 

the model. 

The ICP algorithm now iterates two subsequent steps: 

(i) Correspondence: For each Xi, find the closest point mi of the model. 

(ii) Estimation of new parameters, such as the sum of squared distances between 

each Xi and mi pair is minimized. U pdate the Xi according to the new 

parameters. 

Several researchers noted that the convergence properties of this point-to-point 

approach is poor. The algorithm only converges toward a reasonable solution if the 

patches are roughly prealigned. To overcome this problem, variants of the original 

ICP were proposed basically by cons ide ring additional attributes, like color or surface 

normal, in the verification of close st point pairs. In the field of mobile robotics, 

Lu and Milios [92] estimated normals from the 2D range scans and incorporated a 

point-to-Hne metric. More sophisticated optimization schemes were proposed, as for 

example simulated annealing or evolutionary algorithms. Good surveys about these 

ICP variants can be found in [126, 129]. Although these measures improve the 

convergence properties of the original ICP algorithms and achieve high registration 

accuracy, they still do not allow for a registration of several completely unaligned 

surface patches in reasonable time. 
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Detecting special surface features points on the surface patches, and constrain­

ing the search for correspondences to these features, can accelarate and automatize 

the registration process. Feature-based approaches primarily differ in their defini­

tion of feature points and in the way they are matched. An approach presented by 

DePiero [37], detects KLT features [93] in range images and maintains these fea­

tures together with a graph structures in a database. A common drawback of these 

approaches is that they rely on a sufficient number of prominent or salient features 

in the geometry. Especially in the presence of noise or missing values, this is often 

problematic. 

The fact that we capture not only range data but also intensity at each robot 

pose, can help to alleviate the problems feature-based range matching approaches 

have. Intensity images are far less subject to noise. As a consequence, features points 

extracted from these images are more robust than those extracted from range images, 

making them more suit able for correspondence computation. 

The idea of exploiting 2D features for 3D registration problem is not new. For 

instance, Roth [127] uses the popular Harris feature detector to extract features from 

an intensity image that is aligned with a range image. 

4.2. Feature Detection and Matching 

Extraction of geometric features from real-life range images is a difficult task as 

only parts of the objects' surface are visible due to occlusion and limited field-of­

view. In the particular (common) situation, when the surfaces of neighboring objects 

are geometrically similar, distinguishing them as surfaces of independent objects is 

practically impossible. 

On the other hand, feature detection and matching in 2D images is a well­

researched topic, and algorithms robustly detecting features that are insensitive to 

brightness changes, scaling or local occlusions exist. In this research, we select to use 

the 8cale Invariant Feature Transform (81FT), developed by Lowe [90] (see also [91]) 

based on earlier work by Lindeberg [88]). This algorithm was found to perform best 
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in a recent eomparison study among severalloeal feature deseriptors [98]. The study 

compared their robustness with respect to noise, lighting and viewpoint changes up 

to 60 degrees. 

The 81FT algorithm deteets features with a seale parameter that refiects the 

spatial extension of its defining image neighborhood. This seale property is of vital 

importance for our method since it allows to robustly estimate a 3D position for eaeh 

detected image feature. Figure 7.12 shows the 81FT features and their association 

from two panoramic mosaics to be registered. 

FIGURE 7.12. The S1FT features and their associations from two panoramic 
mosaics acquired in our labo 

We can directly derive a 3D feature position from a 2D feature using the one-to­

one correspondence between pixels in the intensity image and the depth values in the 

range image. However, as pointed out in [10], this is not advisable, as the resulting 

3D point is sensitive to noise and small feature deviations. Therefore, instead of 

using a single 3D point (the direct corresponding point to the 2D feature point) as 
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feature, we use a set of 2D-image features with intrinsic scale information for finding 

corresponding points on the 3D views. These derived features are called feature 

surface elements [10] to accent that they are indeed a surface realization of the scale­

equipped feature points 5. Thus, a feature point can be defined as the center of gravit y 

of the respective feature surface element. The set of corresponding feature points is 

denoted by C1k for any pair (l, k) of range images (see Figure 7.13). 

Wall or object 
surfaces 

\ 
FIGURE 7.13. Two range images with matehing feature point and seale. For 
the given eorresponding feature point, only inside the seale-induced feature 
surface element (the dotted eircle) the two range images ean robustly be 
expeeted to eontain eorresponding parts of the scene. 

The SIFT algorithm provides good matching results, however false positive matches 

are possible. Since the subsequent registration steps are sensitive to such false corre­

spondences, an additional filtering to the matches based on the RANSAC method [54] 

is applied. First, the 3D positions of the features are determined by checking their 

5The definition of these feature surface elements is taken from the notion of surJels, i.e., surface points 
equipped with normals. Surfels implicitly store a local first-order approximation of the neighboring 
surface. Analogously, feature surface elements represent a sampling of the neighborhood. Unlike 
surfels though, the feature surface elements represent a region on the surface with a well-defined size 
known from the 2D image features [10]. 
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conformity with respect to rigid transformations. Then, the set of mat ching features 

in pair of images are validated. Since it is computationally expensive to actually com­

pute the large st conformaI set of matching features (maximum clique), the RANSAC 

method selects a set of three features pairs randomly and computes its support, i.e. 

the set of aU features pairs conforming to the implied transformation. A support set is 

rejected if it is below a certain size D:. This aUows us to remove unreliable correspon­

dences, since large sets of false, yet conforming matches are extremely improbable. 

At this point, slight deviations in the 3D positions may occur because the sam­

pling of a feature surface element in different images is usually not consistent. While 

such deviated features can be filtered out using the RANSAC approach to improve 

the registration accuracy, we tolerate these deviations to a certain extent to increase 

the number of conformaI matches. 

4.3. Hybrid 2D and 3D Feature Matching Approach 

Our integration algorithm is incremental in the sense that additional 3D panora­

mas (i.e., panoramas with depth) can be incorporated into a set of already integrated 

3D panoramas very efficiently. The feature detection is performed unilateraUy (con­

stant time) , whereas the feature matching has to be done with respect to each of 

the intensity information in the panoramas in the given set (linear). Results from 

previous 3D panorama integration can nonetheless be exploited. 

4.4. Pairwise Registration 

Let pl = {p~ 1 i = 1, ... , ni} be a set of scale-equipped feature points of the 

range image l. For any pair (l, k) of range images we have a (possible empty) set of 

correspondences 

Clk = {(i,j) 1 p~ E pl and pJ E pk corresponding}. (7.9) 

In the foUowing sections, we describe the two-stage registration procedure for a 

pair (l, k) with non-empty correspondence set Clk . 
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4.4.1. Coarse registration 

The coarse registration step consists of aligning the point sets pl and pk in a 

least square sense, i.e., among the set of all rigid transformations we are looking for 

the solution to the local minimization problem 

Tlk = arg min é(T ·Z, k), 

T 

where the registration error é is defined as 

(i,j)EClk 

(7.10) 

(7.11) 

This is a non-iterative procedure since correspondences are known and fixed. The 

result is a fast and efficient initial registration for Z and k. However, the alignment 

based solely on the feature points accounts çmly for a fraction of the information 

available in the range images 6. To compensate for the errors induced in the feature 

point computation as described in the previous section a second registration step is 

performed. 

4.4.2. Fine registration 

After the coarse registration, the pre-aligned pair of range images can be regis­

tered by applying one of the many variants of the lep algorithm. Although, they have 

proven to lead to excellent registration results for good starting positions, they are, 

unfortunately, computationally non-trivial and susceptible to false correspondences, 

which might lead to slow convergence and, more importantly, to fUn into a local 

minima. Therefore, we solve these problems by restricting the domain for the corre­

spondence computation to regions of the object that are known to correspond (from 

the feature detection in the 2D images, we know that the feature surface elements 

constitute corresponding parts of the surface). 

6Typically, the number of feature points is in the order of dozens compared to the sever al hundred 
thousands of data points. 

128 



7.5 EXPERIMENTAL RESULTS 

Thus, for aH pairs (i,j) E CZk , we find new correspondences at close st point pairs 

in the according sets of 3D points. These enhanced correspondence sets are then 

aligned using standard ICP techniques. 

It is important to note, however, that the 2D feature matching procedure do es 

not take into account the distribution of the feature points over the range images. 

Thus, substantial registration errors may occur in regions far from the feature surface 

elements for cases where the bounding box of the feature surface elements is very 

small compared to the bounding box of the range image itself. One solution to 

resolve the remaining inconsistency could be to perform a final ICP stage on the 

full data. However, in our experiments, the two-step registration pro cess by feature 

surface elements alignment proved to be sufficient. 

5. Experimental Results 

In order to validate our approach for 3D environment modeling, we carried out 

experiments into two environments. The environments are different in size and the 

type of objects they contain. The first environment is a medium-size room (approx­

imately 9.5m x 6m x 3m, which corresponds to our Mobile Robotics laboratory. It 

contains the usual objects in offices and labs (e.g., chairs, tables, comput ers , tools, 

windows, etc.) The second environment is larger (approximately 2m x 20m x 3m) 

and corresponds to the corridors of the CIM Hoor 7. This environment is mostly 

composed of walls, doors, windows. 

In the following sections, we will give details about the hardware setup, imple­

mentation and show the experimental results for the environments described above 

for each of the stages involved in the 3D environment modeling. 

5.1. Acquiring Intensity and Range Data 

The mobile robot used in our experiments is a Nomad Super Scout II, manufac­

tured by Nomadics, Inc., retrofitted and customized for this work. It has a mobile 

7The Center for Intelligent Machines (CIM) Hoor is the 4th Hoor of the McConnell Engineering 
Building at McGill University. 
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FIGURE 7.14. Our mobile robot. Nomad Super Scout II with the 2D laser 
range finder and the camera mounted on it. 

base equipped with two driven by servo motors. Mounted on the robot are the 2D 

laser range finder and the CCD camera (Figure 7.14). At each robot pose, the in­

tensity and range information is acquired and then the robot moves approximately 

lm from the previous pose (this rough odometry is consider to integrate the multiple 

views, as explained in Section 5.5). Intensity images are acquired by using a Drag­

onfly camera from Point Grey Research, with a resolution of 1024 x 768 at 15 frames 

per second. The camera, attached to the laser, is mounted on the pan unit, allowing 

for panoramic image acquisition. In Figure 7.15, two intensity images acquired from 

the two environments are depicted. Figure 7.15(a) is an image from our lab and (b) 

an image from the corridors of the CIM floor. 

(a) An image from our labo (b) Image from CIM Ho or . 

FIGURE 7.15. Intensity images from the environments ta model. 
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To acquire the range images, we use an infrared 8mW AccuRange 4000-LIR, from 

Accuity Research, Inc. The scanning range of the laser allows distance measurements 

between 0 to 15 met ers at up to 50,000 range readings per second, with precision 

better than 1cm. A mirror, 45° off-axis, rotates about a shaft with a 2000-position 

encoder to sweep out a plane. The mirror center of projection of the laser rangefinder 

is attached to the center of rotation of the pan unit. The pan unit was built in our 

lab, and has a very clean interface, making programming very simple. The panning 

angle (the horizontal angle) covers an area of 180° with one step of 0.36°. Since we 

are looking at having quality range values, each (2D) slice is an average of 10 samples, 

taking around 0.5 sec. per sample with a slower sampling resolution. The acquisition 

time of complete range scans covering a 180° area (500 slices) is about 20 minutes. 

Figure 7.16 shows two examples of the complete range scans acquired from the two 

environments (black areas represent missing range values). 

(a) A range scan from our labo 

(b) A range scan from the CIM Haar. 

FIGURE 7.16. Complete range scans from the environments to be modeled. 
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5.1.1. Acquiring Partial Range 

In practice, we will acquire partial range data by sampling a small amount of 

range data (approximately 30 to 50% of total range) at each robot pose, thus reduc­

ing significantly the acquisition time. However, in order to be able to estimate the 

performance of our method for estimating dense range maps, complete range scans 

were acquired through aIl the experiments presented in this chapter. 

5.2. Acquiring the Panorama 

As the pan unit rotates, at every 18 degrees our CCD camera takes a picture. AlI 

the images are then projected onto a cylindrical representation to obtain a cylindrical 

panorama mosaic. Figure 7.17 presents two 1800 cylindrical panoramas (from the 

respective environments) constructed using the technique described in Section 3.3.2. 

(a) From images taken in our lah 

(h) From images taken in the hall 

FIGURE 7.17. Two cylindrical panoramas. 
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5.3. Camera-Laser Data Registration 

As described in Section 3.4, both the range and intensity data must be in similar 

cylindrical representations. For the arrangement used in these experiments, f = 

300 pixels, boY = 5 cm and the range of the points is r = 5-8 meters, and f3 is between 

6 to 10 pixel units. Figures 7.18 shows samples of the registered panorama mosaic 

(top) and range image (bottom). It is important to note, that the registration was 

(a) 

(b) 

FIGURE 7.18. Samples of the registered intensity (top) and range data (bot­
tom) collected (a) from our lab and (b) from the CIM fioor. 
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computed using only the partial range data as an input. Since we are using a mapping 

between intensity and range image coordinates, the quality of the registration in the 

coarse registration step, does not de pend on the amount of range data given as an 

input. In the fine registration step, i.e., the local alignment of 2D and 3D edges, the 

features captured by the input range data are crucial. 

5.4. Estimating Dense Range Maps 

In this section, we use our BP-based method for range synthesis (described in 

Section 5 of Chapter 5), so we can have dense panorama mosaics with depth. We 

present experiments with different samplings on the range data and compute our 

performance by comparing the synthesized results with the ground truth range data. 

Figure 7.19 shows an example of data collected in our labo (a) is the input 

intensity, (b) the intensity edges and (c) the input partial range data, where 50% of 

(a) Input intensity data (b) Intensity edges 

(c) Input range (50% of total range is uknown) (d) Synthesized range image 

(e) Ground truth range 

FIGURE 7.19. Results on dense range map estimation. (a)-(c) Input data 
to our range synthesis algorithm. (b) The synthesized range image and (e) 
the ground truth range. 
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the total range is unknowno The resulted synthesized range image is shown in (d), 

and the ground truth range image in (e), for comparison purposeso The MAR error 

for this example is 7.85 centimeters. 

A second example, from the data acquired on the CIM floor, is shown in Figure 7.20. 

(a)-(c) is the input data: the intensity image, intensity edges and the partial range, 

(a) Intensity data (b) Intensity edges 

(c) Input range (50% oftotal range is unknown) (d) Synthesized range image 

(e) Ground truth range 

FIGURE 7.20. Results on dense range map estimation. (a)-(c) Input data 
to our range synthesis algorithm. (b) The synthesized range image and (e) 
the ground truth range. 

respectively. The synthesized range image after running our algorithm is shown in 

(d), and (e) shows the ground truth range for comparison purposes. The MAR error 

is 5.76 centimeters. 
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5.5. Integration of Multiple Panoramas with Depth 

ln this stage, we integrate all the panoramas with depth taken at different robot 

poses. We first show results for the environment that corresponds to our labo The first 

step is to find the corresponding 2D feature points among the intensity panoramas. 

Figure 7.21 shows the SIFT features and their association from two panoramas. 

FIGURE 7.21. The S1FT features and their associations from two panoramic 
mosaics acquired in our labo 

The second step is to establish a set of 3D points from these 2D feature points 

to define the surface feature elements, and apply the registration steps described in 

Section 4.4. We set a window of 5 x 5 pixels to the corresponding 3D points in each 

view. It is important however, to mention at this point, that using only the partial 

range maps to perform a global alignment may not generate good results, especially 

for highly unstructured environments and the lack of distinctive features, like the one 

we are dealing with here. The reason for this is that there may not be enough surface 

feature elements to perform the alignment if the 2D feature points correspond to areas 

with missing range. To demonstrate this, we show in Figure 7.23, the alignment of 

the two range scans (displayed in Figure 7.22) using only the incomplete range scans 

(a) and when using the synthesized dense range scans (b). 
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(a) Partial range data 

-

(b) Synthesized (dense) range data 

FIGURE 7.22. Top views of the two 3D range scans to be registered. (a) 
The input (partial) range scans and (b) the synthesized (dense) range scans. 

'00 

(a) (b) 

FIGURE 7.23. Top views of the alignments ofthe range scans of Figure 7.22, 
(a) when using only the partial range data and (b) using the synthesized 
dense range. 

From the images, we observe that the alignment using only partial range data 

is not accurate. The total length obtained is approximately 1 meter bigger than the 

actual size of the room, with an averaged missalignment of individual readings of 

about 12 centimeters. On the other hand, when the synthesized dense range data is 
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used together with the 2D feature points there is an error of 12 centimeters in the 

actual length and an average missalignment of 7 centimeters. 

We now show results for the environment corresponding to the data acquired in 

the corridors of CIM. As in the previous environment, we first find the 81FT features. 

We show the 81FT features and their associations for two pairs of panoramas in 

Figure 7.24. 

(a) 

(b) 

FIGURE 7.24. The 81FT features and their associations from two pairs of 
panoramic mosaÏcs acquired in the CIM fiOOf. 
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After defining the surface feature elements, we register each of the synthesized 

range scans. In this experiment, we set a window of 9 x 9 pixels to the corresponding 

3D points in each view. Figure 7.25 shows four synthesized dense range scans (sorne of 

them also show parts of the ceiling). We then perform the global alignment of aIl the 

'" 

'00 

500 .tIOO 300 200 100 0 -100 ·300 -400 -500 

(a) (b) 

-'00 

600 500 «XI Dl 200 100 0 -100 '200-200 

(c) (cl) 

FIGURE 7.25. Top views of the four synthesized (dense) range scans taken 
in the CIM floar. 

synthesized range scans incrementaIly, Le., every time we integrate two range scans, 

we run our range synthesis method to fill in the missing range data, and continue 

with the next range scan. We also update real readings when available and discard 

the synthesized ones if they differ in more than 3 centimeters. A top view of the final 

aligment is displayed in Figure 7.26. 

As we can see, the use of intensity information dramatically improves the inte­

gration of range scans. In general, the accuracy of the results depends on having a 

good intensity feature detector. 
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FIGURE 7.26. Top view of the global alignment of the synthesized range scans. 

6. Summary 

The ability to reconstruct a 3D model of an object or scene greatly depends on the 

type, quality and amount of information available. The data acquisition framework 

described in this chapter was designed to speed up the acquisition of range data by ob­

taining a relatively small amount of range information from the scene to be modeled. 

By doing so, we compromise the accuracy of our final representation. However, since 

we are dealing with man-made environments, we can take into account the coherence 

of surfaces and their causal inter-relationships with the photometrie information, to 

estimate complete range maps from the partial range data. The experimental results 

shown in this chapter for two different indoor scenes demonstrate the feasibility of 

our method. 

Since the statistical relationship between the two types of data reveal which values 

are to be assigned to the missing regions, the quality of the registration process, which 

aligns the range with the visual data, is a crucial factor in the range synthesis process. 
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CHAPTER 8 

Color Correction of U nderwater Images 

In this chapter we apply the proposed method for range estimation to a different prob­

lem: color correction and augmentation, with the specifie application to underwater 

images. Underwater images present a challenge when trying to correct the blue-green 

monochrome shift to bring out the color visible under full spectrum illumination in a 

transparent medium. For aquatic robot tasks, the quality of the images is crucial and 

may even be needed in real-time. Our method enhances the color of the images by 

a Markov Random Field (MRF) to represent the relationship between color depleted 

and color images. The parameters of the MRF model are learned from the training 

data and then the most probable color assignment for each pixel in the given color 

depleted image is inferred by using belief propagation (BP). This allows the system 

to adapt the color restoration algorithm to the current environmental conditions and 

also to the task requirements. Experimental results on a variety of underwater scenes 

demonstrate the feasibility of our method. 

1. Introduction 

High quality image data is desirable for many underwater inspection and obser­

vation tasks. Particularly, vision systems for aquatic robots [20, 57, 64] must cope 

with a host of geometrical distortions: colour distortions, dynamic lighting conditions 

and suspended particles (known as 'marine snow') that are due to inherent physical 
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properties of the marine environment. AH these distortions cause poor visibility and 

hinder computer vision tasks, e.g., those based on stereo triangulation or on structure 

from motion. 

Image restoration in general, involves the correction of several types of degrada­

tion in an image. TraditionaHy, the most common sources of degradation are due 

to imperfections of the sensors, or in transmission. Underwater vision is plagued 

by poor visibility [73, 67] (even in the cleanest water). Additional factors are the 

ambient light, and frequency-dependent scattering and absorption, both between the 

camera and the environment, and also between the light source (the sun) and the 

local environment (i.e. this varies with both depth and local water conditions). The 

light undergoes scattering along the line of sight. The result is an image that is color 

depleted (typically appearing bluish), blurry and out of focus. In this paper, we focus 

on the specifie problem of restoringj enhancing the color of underwater images. The 

term color refers to the red, green and blue values (often called the color channels) 

for each pixel in an image. Prominent blue color of clear ocean water, apart from sky 

reflection, is due to selective absorption by water molecules. The quality of the water 

determines its filtering properties. The greater the dissolved and suspended matter, 

the greener (or browner) the water becomes. The time of day and cloudiness of the 

sky also have a great effect on the nature of the light available. Another factor is 

depth, once at sufficient depth, no amount of simple linear filtration can effectively 

restore color loss. Due to the nature of underwater optics, red light diminishes when 

the depth increases, thus producing blue to grey like images. By 3m in depth there 

is almost no red light left from the sun. By 5m, orange light is gone, by lOm most 

yellow is also gone. By the time one reaches 25m only blue light remains [38]. Since 

many (if not aIl) of the ab ove factors are constantly changing, we cannot really know 

aIl the effects of water. 

Color recovery is not a simple linear transform since it depends on distance and 

it is also affected by sensor quantization and even light source variations. We propose 

a learning based Markov Random Field model for color correction based on training 
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from examples. This allows the system to adapt the algorithm to the current envi­

ronmental conditions and also to the task requirements. As proposed in [59], our 

approach is based on learning the statistics from training image pairs. SpecificaIly, 

our MRF model learns the relationships between each of the color training images 

with its corresponding color depleted image. This model uses multi-scale representa­

tions of the color corrected (enhanced) and original images to construct a probabilistic 

enhancement algorithm that improves the observed video. This improvement is based 

on a combination of color mat ching correspondences from the training data, and lo­

cal context via belief propagation (BP), aIl embodied in the Markov Random Field. 

Training images are small patches of regions of interest that capture the maximum 

of the intensity variations from the image to be restored. 

2. Related Work 

There are numerous image retouching programs available that have easy-to-use, 

semi-automated image enhancement features. But since they are directed at land­

based photography, these features do not always work with underwater images. Learn­

ing to manipulate the colors in underwater images with computer editing programs 

requires patience. Automated methods are essential, specially for real-time applica­

tions (such as aquatic inspection). Most prior work on image enhancement tend to 

approximate the lighting and color pro cesses by idealized mathematical models. Such 

approaches are often elegant, but may not be well suited to the particular phenomena 

in any specific real environment. Color restoration is an ill-posed problem since there 

is not enough information in the poor colored image alone to determine the original 

image without ambiguity. In their work, Ahlen et al. [1] estimate a diffuse attenuation 

coefficient for three wavelengths using known reflectance values of a reference gray 

target that is present on aIl tested images. To calculate new intensity values they use 

Beer's Law, where the depth parameter is derived from images that are taken at dif­

ferent depths. Additional parameters needed are the image enhancements functions 

built into the camera. In general, their results are good, but the method's efficiency 
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depends highly on the previously noted parameters. In [132] a method that elimi­

nates the backscatter effect and improves the acquisition of underwater images with 

very good results is presented. Their method combines a mathematical formula with 

a physical filter normally used for land photography. Although the method does not 

perform color correction, the clarity achieved on the underwater images may allow 

for color correction. 

3. Our MRF-BP Approach for Color Correction 

The solution of the color correction problem can be defined as the minimum of 

an energy function. The first ide a on which our approach is based, is that an image 

can be modeled as a sample function of a stochastic pro cess based on the Gibbs 

distribution, that is, as a Markov Random Field (MRF) [63]. We consider the color 

correction a task of assigning a color value to each pixel of the input image that 

best describes its surrounding structure using the training image patches. The MRF 

model has the ability to capture the characteristics between the training sets and 

then used them to learn a marginal probability distribution that is to be used on the 

input images. This model uses multi-scale representations of the color corrected and 

color depleted (bluish) images to construct a probabilistic algorithm that improves 

the color of underwater images. The power of our technique is evident in that only 

a small set of training patches is required to color correct representative examples 

of color depleted underwater images, even when the image contains literally no color 

information. Each pair of the training set is composed by a color-corrected image 

patch with its corresponding color-depleted image patch. Statistical relationships 

are learned directly from the training data, without having to consider any lighting 

conditions of specifie nature, location or environment type that would be inappropiate 

to a particular underwater scene. We use a pairwise MRF model, which is of particular 

interest in many low-Ievel vision problems. 
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3.1. The Pairwise MRF Model 

Denote the input color depleted image by B = {b i }, i = 1, ... , N, where NEZ 

is the total number of pixels in the image and bi is a triplet containing the RG B 

channels of pixel location i. We wish to estimate the color-corrected image C = 

{cd, i = 1, ... , N, where Ci replaces the value of pixel bi with a col or value. 

A pairwise MRF model (also known as Markov network) is defined as a set of 

hidden nodes Xi (white circles in the graph) representing local patches in the output 

image C, and the observable nodes Yi (shaded circles in the graph) representing local 

patches in the input bluish image B. Each local patch is centered to pixel location i 

of the respective images. Figure 8.1 shows the MRF model for color correction. 

(a) (h) (c) 

FIGURE 8.1. (b) Pairwise Markov Random Field used to model the joint 
probability distribution of the system. Observation nodes, y, represent an 
image patch in the bluish image (a), and hidden nodes X, an image patch in 
the color image (b) to be inferred. 

Denoting the pairwise potentials between variables Xi and Xj by'l/Jij and the local 

evidence potentials associated with variables Xi and Yi by <Pi (see Figure 8.2), the 

joint probability of the MRF model under variable instantiation x = (Xl, ... , XN) and 

y = (YI, ... , YN), can be written [16, 63] as: 

(8.1) 
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FIGURE 8.2. The potential functions cp and 'ljJ define the compatibilities 
between nodes in the Markov network. 

where Z is the normalization constant. We wish to maximize P(x, y), that is, we 

want to find the most likely state for all hidden nodes Xi, given all the evidence nodes 

The compatibility functions allows to set high (or low) compatibilities to neigh­

boring pixels according to the particular application. In our case, we wish to preserve 

discontinuities (edges) in the input (color depleted) image to avoid over smoothing 

the color corrected image. Thus, we set high compatibility between neighboring pix­

els that have similar colors, and low compatibility between neighboring pixels with 

abrupt change in color values. These potentials are used in messages that are prop­

agated between the pixels to indicate what color or combination of intensities each 

image pixel should have. 

A color pixel value in C is synthesized by estimating the maximum a posteriori 

(MAP) solution of the MRF model using the training set. The MAP solution of the 

MRF model is: 

where 

XMAP = arg max P(x 1 y), 
x 

P(x 1 y) ex P(y 1 x)P(x) ex II CPi(Xi, Yi) II 'l/Jij(Xi' Xj) 

(i,j) 

(8.2) 

(8.3) 

Calculating the conditional probabilities in an explicit form to infer the exact MAP 

in MRF models is intractable. We cannot efficiently represent or determine an the 

possible combinat ions between pixels with its associated neighborhoods. Various 

techniques exist for approximating the MAP estimate, such as Markov Chain Monte 

Carlo (MeMC), iterated conditional modes (ICM), maximizer of posterior marginaIs 
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(MPM), etc. (refer to Chapter 4). In this work, we compute a MAP estimate, by 

using a learning-based framework on pairwise MRFs, as proposed by [59], using belief 

propagation (BP). The compatibility functions CP(Xi' Yi) and 'ljJ(Xi, Xj) are learned from 

the training set using the patch-based method in [59]. They are usually assumed to 

obey a Gaussian distribution to model Gaussian noise. The CPi(Xi, Yi) compatibility 

function is defined as follows 

(8.4) 

where Xi is a color-corrected patch candidate, YXi is the corresponding bluish patch 

of Xi, and Yi is the bluish patch in the input image. 

The image is divided so that the corresponding color-corrected patches overlap. 

If the overlapping pixels of two node states match, the compatibility between those 

states is high. We define 'ljJ(Xi, Xj) as: 

(8.5) 

where dij is the difference between neighborhoods i and j (Section 3.3 defines the 

precise similarity measure we use). Images in the training set are pairs of small image 

regions of the bluish image with its corresponding color-corrected image, thus the 

compatibility functions depend on each particular input image. 

3.2. MRF-MAP inference using BP 

Belief propagation (BP) was originally introduced as an exact algorithm for tree­

structured models [111], but it can also be applied for graphs with loops, in which 

case it becomes an approximate algorithm, leading often to good approximate and 

tractable solutions [165]. For MRFs, BP is an inference method to efficiently estimate 

Bayesian beliefs in the network by the way of iteratively passing messages between 

neighboring nodes. 
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The message send from node i to any of its adjacent nodes j E N(i) is 

mij(Xj) = Z L 'ljJ(Xi, Xj)cjJ(Xi, Yi) II mki(Xi) (8.6) 
Xi kEN(i)\{j} 

where Z is the normalization constant. The maximum a posteriori scene patch for 

node i is: 

XiMAP = arg max cjJ(Xi, Yi) II mji(Xi). (8.7) 
Xi jEN(i) 

The BP algorithm is not guaranteed to converge, but if it do es so, then it converges 

to a local stationary point of the Bethe approximation to the free energy [171]. In 

our experiments, the BP algorithm usually converges in less than 10 iterations. And 

it is also notable that BP is faster than many traditional inference methods. 

Candidate states for each patch are taken from the training set. Fore each bluish 

patch in the image, we search the training set for patches that best resemble the 

input. The color-corrected patches corresponding the best k patches are used as 

possible states for the hidden nodes. 

The algorithm for color correction can be summarized as follows: 

(i) Divide the training images (both the bluish and color images) into small 

overlapping patches, which form the sets of Xi'S and Yi'S. 

(ii) For each input patch Yi, find the k closest YXi 's. The corresponding Xi'S 

are the candidates for that patch. Calculate the compatibility function 

<jJ(Xi' Yi) according to Eq. 8.4. 

(iii) For each pair of neighboring input patches, calculate the k X k compati­

bility function 'ljJ(Xi, Xj) according to Eq. 8.5. 

(iv) Estimate the MRF-MAP solution using BP. 

(v) Assign the color value of the center pixel of each estimated maximum 

probability patch XiM AP to the corresponding pixel in output image C. 
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3.3. Implementation issues 

Measuring the dissimilarity between image patches is of crucial for obtaining qual­

ity results, especially when there is a prominent color (blue or green) as in underwater 

images. Color information can be specified, created and visualized by different color 

spaces (see [170] for more information about color spaces). For example, the RGB 

color space, can be visualized as a cube with red, green and blue axes. 

Color distance is a metric of proximity between colors (e.g., Euclidean distance) 

measured in a color space. However, color distance does not necessarily correlate 

with perceived color similarity. Different applications have different needs which can 

be handled better with certain types of color spaces. For our needs it is important 

to be able to measure differences between colors in a way that matches perceptual 

similarity as good as possible. This task is simplified by the use of perceptually 

uniform color spaces. 

A color space is perceptually uniform if a small change of a color will pro duce 

roughly the same change in perception anywhere in the color space. Neither RGB, 

HLS or CIE XYZ color spaces are perceptually uniform. We use the CIE Lab metric 

to measure the dissimilarity between image patches. Instead of red, green and blue, 

the Lab channels are L (luminosity or lightness), which car ries the information about 

the darkness or lightness of each pixel, it's basically a black-and-white version of the 

image. AlI color information is carried in the other two channels. The a channel 

values represents the relative redness or greenness of each pixel. Shifting the curve 

upwards builds up reds and weakens greens. The b channel does the same for yellow 

versus blue. Altering the slope of these curves changes color contrast, while adjusting 

parts of the curve selectively changes different ranges of colors. 

The (nonlinear) conversions from RGB to CIE Lab are given by: 1 

IFollowing ITU-R Recommendation BT.709, we use D65 as the reference white point so that 
[Xn, Yn, Zn] = [0.9504511.088754] (see [119]) 
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x 
y 

Z 

0.412453 0.357580 0.180423 

0.212671 0.715160 0.072169 

0.019334 0.119193 0.950227 

R 

G 

B 

L* = { 116(Y/Yn)1/3 - 16 

903.3(Y /Yn ) 

if Y /Yn > 0.008856 

a* = 500 [J (X/ Xn)1/3 - f(Y/Yn)1/3] 

b* = 200[j(Y/Yn)1/3 - f(Z/Zn)1/3] 

where 

f(t) = 
{ 

tl/3 

7.787t + 16/116 

otherwise 

if Y/Yn > 0.008856 

otherwise 

We use the CIE Lab space which was designed such that the equal distances in 

the color space represent equal perceived differences in appearance. Color difference 

is defined as the Euclidean distance between two colors in this color space: 

(8.8) 

where !:1L *, !:1a*, and !:1b* are the differences between two color pixel values. 

This is the similarity measure used to select possible candidates to define the 

compatibility functions and also to evaluate the performance of our method. Our 

algorithm uses a pixel-based synthesis, i.e.. one pixel (color) value Ci is estimated at 

a time. 
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4. Experimental results 

We test the proposed approach in two different scenarios. In the first scenario, 

we use color underwater images available on the web 2 as our ground truth data. 

These images were taken with a professional camera and in most of the cases they 

were also enhanced by using a commercial software. The second scenario, involves the 

acquisition of underwater video by our aquatic robot. Sections 4.1 and 4.2 describe 

these scenarios with the experimental results. 

4.1. Scenario 1 

In order to simulate the effects of water, an attenuation filter were applied to 

each of the color underwater image. Figure 8.3a shows the ground truth (color) image 

and Figure 8.3b, the simulated (color depleted) image after applying the attenuation 

filter. Since we have ground truth information, we can compute the performance 

(a) (b) 

FIGURE 8.3. (a) The ground truth (color) image. (b) The simulated bluish 
image (this is the test image to be color corrected by our algorithm). 

of our algorithm. The images in the training set correspond to small image regions 

extracted from the ground truth image and the color depleted image (see Figure 

8.4). These images correspond to regions of interest in terms of the variations in 

pixel color values , thus the intention is that they capture the intrinsic statistical 

dependencies between the color depleted and ground truth pixel values. The siz~ of 

the neighborhoods in all experiments were 5 x 5 pixels, and the number of possible 

2http:j jwww.pbase.comjimagine 
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....... ----1--=:::::::::: .... Training 
image 

Colorimage 
(ground truth) 

patches 

Rluish Image 
(given input) 

FIGURE 8.4. Diagram showing how the training image pairs are acquired 
for the Scenario 1. 

candidates k, was fixed to be 10. Figure 8.5a shows the training image patches from 

where our algorithm learns the compatibility functions and Figure 8.5b shows the 

resulted image after running our learning-based method. The color-corrected image 

(1) 

(2) 

(3) 

(a) (b) 

FIGURE 8.5. (a) The training image patches (labeled from (1) to (3)) used 
to learn the compatibility functions. (b) The color corrected image. 

looks good, the discontinuities and edges are preserved sinee our method assign colors 

pixel by pixel, thus avoiding over-smoothing. AIso, there are no sudden changes in 

col or which are typically both unrealistic and pereeptually unappealing. To evaluate 

the performance of our algorithm, we compute the mean absolute residual (MAR) 

error between the ground truth and the color corrected images. As mentioned in 

Section 3.3, the CIE Lab metric was used to calculate the similarities between pixels 
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in the images. For this case, the MAR error is 6.5. Note that while our objective is 

perceptual similarity, this is difficult to evaluate and we use this objective measure 

to obtain quantitative performance data. For comparison purposes, we calculate the 

MAR error between the input (color depleted) image and the ground truth image, 

this is 22.03. 

Using the same input image (Figure 8.5b), we now show how the final result varies 

depending on the training data. In Figure 8.6, we show 4 examples with alternative 

training sets. For example, Figure 8.6a shows a color-corrected image when using 

training pairs (1) and (3) (see Figure 8.5a). The MAR errors are 9.43, 9.65, 9.82, 

and 12.20, respectively. It can be seen that the resulting images are limited ta the 

statistical dependencies captured by the training pairs. 

(a) (b) (c) (d) 

FIGURE 8.6. Color correction results using different training sets. The input 
image is shawn in Figure 8.3b. The labeled training pairs are shawn in 
Figure 8.5a. (a) Results using the training pairs (1) and (3); (b) using (2) 
and (3); (c) using (1) and (2), and (d) using training pair (1). 

Three more examples of underwater scenes are shown in Figure 8.7. Each row 

shows from left ta right, the ground truth color image, the input bluish image and 

the color corrected image after running our algorithm. The training image regions 

are shown by squares in the corresponding color and bluish images. In general the 

results look very good. For the last two examples, the size of the image patches in 

the training set is very small and enough ta capture aIl the statistical dependencies 

between bluish and color information, as a result, the number of total comparisons 

in our algorithm is reduced and speed is achieved. 
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FIGURE 8.7. The training pairs are indicated by the squares in the original 
and input images respectively. 

It was previously mentioned, that underwater images also contain sorne blurriness. 

In Figure 8.8, we show an example of applying our algorithm to a blurry and color 

depleted image at the same time. From left to right are, the ground truth image, the 

input image given to our algorithm and the color-corrected and deblurred image after 

running our algorithm. 

(a) (h) (c) 

FIGURE 8.8. An example of color correcting and deblurring at the same 
time. The training pairs are indicated by the boxes in the original (a) and 
input images (b) respectively. (c) is the color-corrected and deblurred image. 
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4.2. Scenario 2: The aquatic robot in action 

As our aquatic robot [64] swims through the ocean, it takes video images. Figure 8.9 

shows a picture of our aquatic robot in action. 

FIGURE 8.9. The aquatic robot. 

In order to be able to correct the color of the images, training data from the 

environment that the robot is currently seeing needs to be gathered. How can better 

images be acquired? As light is absorbed selectively by water, not only does it get 

darker as you go deeper, but there is a marked shift in the light source color. In 

addition, there are non-uniformities in the source amplitude. Therefore, the aquatic 

robot needs to bring its own source of white light on it. However, due to power 

consumption, the light cannot be left turned on. Therefore, only at certain time 

intervals, the robot stops, turns its light on and take an image. These images are 

certainly much better, in terms of color and clarity, than the previous ones, and they 

can be used to train our algorithm to color correct neighboring frames (under the 

assumption that neighboring frames are similar). Figure 8.10 shows this scenario, here 

frame t 3 represents the image pair to be used to train our model for color correction. 
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DD iOt:1iD D , , 
Input frame t 1 Input frame t 2 ~ _ 9~~i~~ ~n!'~t __ ~i!h_ ~o~~c: ~i~~ Input frame t 4 Input frame t n 

Frame t 3 
(training set) 

FIGURE 8.10. The scenario 2. 

Now we show an example. Figures 8.11a,b show the training image pair cap­

tured at time t. The robot moves around and then at time t + 8 takes an image 

(Figure 8.11c), which is input to our algorithm. The resulting color-corrected image 

is shown in Figure 8.11d. Since we do not have ground truth data for this scenario, 

we cannot objectively measure the performance of our algorithm, however it can be 

seen that 'the resulting image look good. 

(a) (b) 

(c) (d) 

FIGURE 8.11. (a)-(b) The training image pair captured at frame t. (c) Image 
taken at frame t + 8 and input to our algorithm. (d) The color corrected 
image. 
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5. Summary 

Color restoration and image enhancement are ubiquitous problems. In particular, 

underwater images contain distortions that arise from multiple factors making them 

difficult to correct using simple methods. In this chapter, we show how to formulate 

color recovery and more general enhancement as an energy minimization problem 

using learned constraints. This approach's novelty lies in using a pair of images to 

constrain the reconstruction. There are sorne factors that influence the quality of 

the results, such as the adequate amount of reliable information as an input and the 

statistical consistency of the images in the training set. 
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CHAPTER 9 

Conclusions and Future Work 

This thesis has considered the problem of automatically recovering the 3D structure 

of man-made scenes from incomplete sensor data under the context of mobile robot­

ics. Specifically, we integrate visual information with very limited depth information. 

The central ide a is to learn the inter-relationships between the visual information 

and the available depth to probabilistically infer the geometry in the missing areas. 

To this end, we have presented two novel statistical learning-based techniques for 

range synthesis. The general methodology is related to extrapolation and interpo­

lation methods, and is based on the use of learned Markov models. Both of the 

presented techniques analyze the statistical relationships between intensity and range 

data on terms of small image patches. They differ in the way the maximum a pos­

teriori (MAP) estimate is computed. The first technique, the non-parametric (NP) 

sampling, computes the MAP estimate by obtaining the samples directly from the 

near neighborhoods to the voxel to be synthesized its range value, while the second 

technique is an increment of the first technique that is based on using the belief prop­

agation (BP) algorithm. For general cases, both of these techniques allow for good 

quality scene reconstruction in real environments. Although the second technique 

gives much better results when dealing with more complex environments. 

In Chapter 6 we examined a variety of sampling strategies on the input range 

data, demonstrating the versatility of our method. From the experiments we conclude 
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that the input range measurements are most effective if they are provided in the form 

of clusters of measurements scattered about the image. This form of sampling is best 

since it allows local statistics to be computed, but also provides boundary conditions 

at various locations in the image. While clumps per se are not available from most 

laser range scanners, swaths of data can be readily and efficiently extracted using 

standard laser scanners. 

We demonstrated that when applied to more complex indoor environments, i.e., 

containing a variety of objects with varying surfaces and slopes, the BP-based method 

outperforms the NP-sampling method. The reason for this is that the the BP-based 

method propagates the beliefs at every location with unknown range and constraining 

only on those locations where a boundary is reached. This allows for smoothness in 

surfaces that change its slope between the sparse known range data. This approach 

offers a method for capturing a wide range of image structure with a sparse range 

data while making minimal a priori assumptions. 

Critical to the performance of our method is the statistical similarity of the regions 

being reconstructed and the portions of the image used to define the Markov model. 

An open question is how to validate this statistical similarity which could be useful 

both to control and to validate the reconstruction process. A more detailed description 

of this problem and possible solutions are given later 

We have also evaluated the performance of our reconstruction method in a mobile 

robotics application. In Chapter 7, we consider the mobile robot enviroment modeling 

problem. Specifically, the autonomous integration of incomplete sensory data to build 

a 3D model of an unknown large-sc ale environment. The main objective was to speed 

up the data acquisition pro cess by obtaining a very small amount of range information 

from the scene to be modeled. To this end, a complete description of the physical 

setup and the stages involved along with their techniques was given. The experimental 

results on data obtained from our own building demonstrated the feasibility of our 

approach. 
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Finally, we also apply our method for range synthesis to an alternative problem. 

In Chapter 8, the color correction and augmentation, with the specific application to 

underwater images was addressed. 

1. Future Work 

While a broad variety of problems have been covered with respect to the auto­

matic 3D reconstruction of unknown environments, there remain several open prob­

lems and unanswered questions. These are divided primarily between the problem of 

data collection and the final 3D model representation and visualization. 

1.1. Optimal Range Data Collection 

With respect to the data collection, a key issue in our method is the quality of the 

observable range data. In particular, the type of the geometric characteristics that 

can be extracted in relation to the objects or scene that the range data represent. 

If the range data do not capture the inherent geometry of the scene to be modeled, 

then the range synthesis process on the missing range values will be poor. 

The experiments presented in this thesis were based on sampling strategies of 

the range data that were determined beforehand and remained fixed during the data 

acquisition process. Future directions to solve this problem may be to add an initial 

stage that optimally select the regions where the range data refiect important changes 

in the geometry as well as the selection among these regions of the minimum number 

of range data to be acquired, thus avoiding the measure of redundant range data. 

The use of visual techniques and methodologies that automatically extract the 

most informative features related to geometry from intensity images must be investi­

gated, as well as development of hardware tools for the acquisition of optimal range 

data. 

The principal scientific questions posed by this research are how features that 

represent changes in geometry can be extracted from a small set of intensity images 

(the training set) and how the information from those features can be integrated into 
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a learning model to select regions of interest in future intensity images taken from 

the environment. One would require that, once trained, sueh a model would be able 

to rapidly extract highly stable geometric features of the scene. 

1.2. 3D Model Representation and Visualization 

With respect to the final 3D model representation, which was not covered in this 

dissertation, an open question is that of generating a realistic, visually convincing 

representation of very large environments with large amounts of visual and range 

data. For example, it is possible to represent the environment only by the acquired 

raw data, but this is not efficient. First of aIl, not aIl 3D points are representative 

due to noise during the acquisition and the synthesis phase. Secondly, there is a 

great amount of redundancy in the data acquired, considering geometric structure 

and consistency of most environment. The last fact will result in an overload of the 

memory resources. 

In general, the final representation must be a low-complexity 3D structural and 

texture model. Most of the existing approaches for 3D modeling are limited to fiat 

surfaces, as they are mainly directed to man-made indoor environments. The geom­

etry of those 3D models consists essentially of single planes that model the fioor and 

walls. Visualization of these models (using a virtual reality package 0 language) can 

be used as walk-throughs. However, improving the quality of these 3D models so 

that they include additional details with respect to the objects in the environment 

is a crucial aspect. By using dense depth maps, as proposed in this thesis, these 

representations can be easily enriched. 

The main problem addressed in this thesis (3D Environment Modeling) is central 

in the field of Mobile Robotics. Our approach takes advantage of acquiring only 

visual and very small amount of range data in order to reconstruct a 3D model of 

an unknown large-seale environment. The results produeed by this thesis clearly 

demonstrate the advantage of using such approach. 
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