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ABSTRACT

This thesis presents a statistical learning framework for inferring geometric structures
from images. Specifically, the proposed framework computes dense range maps of lo-
cations in the environment using only intensity images and very limited amount of
range data as an input. This is achieved by integrating and analyzing the statisti-
cal relationships between the visual data and the available depth on terms of small
patches. The scientific issue is to represent this correlation such that it can be used
to recover range data where missing. Markov Random Fields are used as a model to
capture the local statistics of the intensity and range.

Experiments on real-world data are conducted under different configurations to
demonstrate the feasibility of the method. In particular, our application is in mobile
robotics, where inferring the 3D layout of indoor environments is a critical problem
for achieving exploration and navigation tasks. The modeling of a large-scale environ-
ment involves the acquisition of a huge amount of range data to extract the geometry
of the scene, and is often performed using sophisticated but costly hardware solutions.
This task is physically demanding and time consuming for many real systems. By
using the proposed framework, it is demonstrated that we can learn the geometric
characteristics of the environment from the incomplete sensory data to build a 3D
model of it.

The contributions of this thesis are mainly three: First, it demonstrates the
viability of the use of very limited range data together with intensity to recover

complete dense range maps. Second, it presents a complete framework for building a
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3D model of an indoor environment using a mobile robot. And third, it analyses and
outlines the advantages and limitations encountered when dealing with large indoor
environments.

An additional contribution is the use of the method we propose for range estima-
tion to an alternative problem: color correction and augmentation with the specific

application to underwater images.
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RESUME

Cette these présente une structure d’apprentissage statistique pour déduir les struc-
tures géométriques des images. Spécifiquement, la structure proposée calcule des
cartes de distance denses des emplacements dans l’environnement en utilisant seule-
ment des images d’intensité et une quantité tres limitée de données de distance comme
entrée. Ceci est réalisé en intégrant et en analysant les rapports statistiques entre
les données visuelles et de distance disponibles aux conditions de petites pieces. Le
point scientifique est de représenter cette corrélation de telle facon qu’elle puisse tre
employée pour récupérer des données de distance ol ce type d’information manque.
Des champs aléatoires de Markov sont employés comme un modeéle pour capturer les
statistiques locales d’intensité et de distance.

Des expériences sur des données réelles sont effectués sous différentes configura-
tions pour démontrer la praticalité de la méthode. En particulier, notre application
est en robotique mobile, ol impliquer la disposition 3D des environnements d’intérieur
est un probleme critique pour la réalisation des taches d’exploration et de navigation.
La modélisation d’un environnement & grande échelle comporte 'acquisition d’une
quantité énorme de données de distance pour obtenir la géométrie de la scéne, et
ceci est souvent effectué en utilisant des plateformes sophistiquées mais coiiteuses.
Cette tache est d'une demande physique exigeante et de longue durée pour beau-
coup de systemes réels. En employant la structure proposée, il est démontré que nous

pouvons apprendre les caractéristiques géométriques de I’environnement en employant
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des données incompleétes provenant des capteurs afin the construire une représentation
fidéle de ’environnement.

Les contributions de cette thése sont les suivanates : D’abord, elle démontre la
viabilité de 'utilisation des données tres limitées de distance ainsi que d’intensité pour
récupérer des cartes denses de distance completes. Deuxiémement, elle présente un
cadre complet pour établir un modeéle 3D d’un environnement de bureau 3 'aide d’'un
robot mobile. Et troisiemement, elle analyse et décrit les avantages et les limitations
rencontrées en traitant des grands environnements de bureau.

Une contribution additionnelle est I’utilisation de la méthode que nous pro-
posons pour l'estimation de distance dans un probléme alternatif: la correction et
Paugmentation de la couleur, particuliérement son application spécifique aux images

sous-marines.
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CHAPTER 1

Introduction

Surface depth recovery is a critical problem in robotics and computer vision. In the
vision community, solutions to such ”shape-from-X” problems are often based on
strong prior assumptions regarding the physical properties of the objects in the scene
(such as matte or Lambertian reflectance properties). In the robotics community, such
depth inference is often performed using sophisticated but costly hardware solutions.

While several elegant algorithms for depth recovery have been developed, the use
of laser range data in many applications has become commonplace due to their sim-
plicity and reliability (but not their elegance, cost or physical robustness). However,
it is often hampered by the fact that range sensors that provide complete (2%D) depth
maps with a resolution akin to that of a camera, are prohibitely costly or otherwise
impractical. Stereo cameras can produce volumetric scans that are economical, but
they often require calibration or produce range maps that are either incorﬁplete or of
limited resolution. Thus, when building 3D models or map representations of large
scenes, a desired characteristic is to simplify the way range sensor data is acquired
so that time and energy consumption can be minimized. This can be achieved by
acquiring only partial, but reliable, depth information.

In this thesis, we address the 3D scene recovery problem. Specifically, we inte-
grate visual information with very sparse depth information and demonstrate how

the underlying geometry of the scene can be characterized by the visual information,
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Visual information Partial depth map Synthesized dense -
depth map 3D model

Input sensor data

FIGURE 1.1. Building a 3D model by integrating visual and partial geomet-

ric information.
and the interaction of this visual information with the environment together with its
inter-relationships with the available depth. Figure 1.1 illustrates this idea by giving
an example of estimating a complete and dense range map to build a 3D model of a
scene from its intensity image and associated partial range map.

We explore and analyze the statistical relationships between intensity and range
data in terms of small image patches. Our goal is to demonstrate that the surround
(context) statistics on both the intensity and range image patches can provide infor-
mation to infer the complete 3D layout of space. It has been shown by Lee et al. [83]
that although there are clear differences between optical and range images, they do
have similar second-order statistics and scaling properties (i.e., they both have sim-
ilar structure when viewed as random variables). Our motivation in this thesis is
to exploit this fact and also that both video imaging and limited range sensing are
ubiquitous readily-available technologies while complete volume scanning is prohibi-
tive on most mobile platforms. Section 2 gives an overview of our method for range
synthesis which is covered in more detail in Chapter 5.

Our application is in mobile robotics. In particular, we investigate the au-
tonomous integration of incomplete sensory data to build a 3D model of an unknown
large-scale ! indoor environment. In addition, we believe this work has applications

in other domains, as we will demonstrate.

'Large-scale space is defined as a physical space that cannot be entirely perceived from a single
vantage point [79].
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FIGURE 1.2. Diagram showing the procedures to be followed for the 3D
environment modeling problem.

Despite the fact that robot environments are three-dimensional, much of the prior
work in robot mapping deals only with 2D map reconstruction due to its utility for
robot navigation, fast visibility computation and the fact that it is much easier to con-
struct. Only more recently many researches have been attracted to the idea of having
a 3D model of the environment. 3D models are much richer than 2D models and
facilitate the disambiguation of different places. Having a mobile robot able to build
a 3D map of the environment is particularly appealing as it can be used for several
important applications. For example, virtual exploration of remote locations, either
for safety, automatic rescue and inspection of hazardous or inhospitable environments
(e.g. the reactor of a nuclear power plant) or for efficiency reasons (museums’ tours).
All these applications depend on the transmission of meaningful visual and geometric
information.

Figure 1.2 shows our approach for the mobile robot environment modeling prob-
lem. A brief introduction to the stages involved in our approach is given in Section 3

and Chapter 7 covers them in detail.

1. Depth Recovery in Computer Vision

The idea of extracting shape or depth information from an image has been stud-
ied in the field of computer vision since the late 1960s. Computer vision scientists

were mainly interested in techniques that were supposed to reflect the way the human



1.1 DEPTH RECOVERY IN COMPUTER VISION

eye works. These techniques, known as shape-from-X techniques, extract depth infor-
mation from intensity images by using cues such as shading, texture, retinal disparity
and motion. This group of techniques are passive, i.e., they obtain image data without
emitting energy, and are typically performed by designing mathematical models of
image formation and inverting these models. These models are traditionally based on
physical principles of light interaction. However, due to the highly underconstrained
characteristic of the inverse problem of these principles, many assumptions about the
type of surface and albedo need to be made, which may not be all suitable for the
complex real scenes. A greater understanding of how real images are formed could
lead to substantial insight into how depth information may be inferred from single
images.

Depth information from an object or scene can also be acquired directly by using
active range sensors. These techniques are known as active sensing techniques. This
type of range sensors provide directly precise and accurate 3D points. In addition,
they are independent from external lighting conditions and do not need any texture
to perform well. Range sensors are commonly used to perform scene understanding
for indoor mobile robots. However, these sensors tend to be expensive, the data
acquisition process slow, and normally of limited spatial resolution. A picture of a
big expensive 3D laser scanner is given in Figure 1.3. On the other hand, intensity
images have high resolution that permits very accurate results on well-defined targets.

They are easy to acquire and provide texture-maps based on real color-photographs.

1.1. Fusing passive and active sensing techniques

The fundamental problem of obtaining accurate depth from traditionally ap-
proaches such as shading based shape analysis or binocular stereo, remains a difficult
task. Using 2D imagery alone will only provide sparse and unreliable geometric mea-
sures unless some underlying simple scene geometry is assumed. Consequently, the

field of active rangefinding has grown parallel to the area of computer vision and
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FIGURE 1.3. Commercial 3D Laser scanner, Trimble GS200. Dimensions:
34cm (D) x 27cm (W) x 42cm (H). Weight: 13.6 kg.

robotics, in an endeavor to find complementary techniques that overcome the limita-
tions of current camera technology. By fusing 2D vision with rangefinding sensors,
as first demonstrated in [74], a solution to 3D vision is realized -circumventing the
problem of inferring 3D from 2D.

A vast body of research on 3D modeling has been focused on the fusion of intensity
and range data. These works all consider the complete acquisition of 3D points from
the object or scene to be modeled, focusing mainly on the registration and integration
problems. One of the main problems in building (3D) map representations, is to
simplify the way sensor data is acquired, to minimize time and energy consumption,

yet accurately and reliably recover the 3D layout of an scene.

1.2. Image Statistics on Intensity and Range Images

Real scenes are constrained by many regularities in the environment, such as the
natural geometry of objects and their arrangements in space, natural distributions of
light, and regularities in the observerfs position. Statistical studies may be helpful
for understanding these regularities, which are not obvious from physical models.

Statistical methods have enjoyed a great deal of recent success in their applica-
tions to problems in computer vision. However, few studies have been made into the

statistical relationship between images and range images (depth images). Those few
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studies have uncovered meaningful and exploitable statistical trends in real scenes
which may be useful for designing new algorithms in surface inference, and also for
understanding how humans perceive depth in the real scenes. An overview of this

work is presented in Chapter 3.

2. Statistics on Visual and Partial Range Data

Our approach for range estimation is based on the assumption that the pixels
constituting both the range and intensity images acquired in an environment can be
regarded as the results of pseudo-random processes, but that these random processes
exhibit useful structure. In particular, the assumption that range and intensity im-
ages are correlated, albeit in potentially complicated ways, is exploited. A second
assumption made is that the variations of pixels in the range and intensity images
are related to the values elsewhere in the image(s) and that these variations can be
efficiently captured by the neighborhood system of a Markov Random Field. Both
these assumptions have been considered before [63, 45, 164, 44, 68], but they have
never been exploited in tandem. Texture synthesis [45, 164, 44] and digital in-
painting [13, 14, 31] (see Section 5 of Chapter 4), are quite similar to the range
estimation problem, although the domain and approach are quite different. In [4], a
learned representation of pixel variation for perform resolution enhancement of face
images is presented. The processes employed to interpolate new high-resolution pixel
data are quite similar in spirit to what is described in this research, although the ap-
plication and technical details differ significantly. The work in [153, 60] on learning
the relationships between intrinsic images is also related.

Markov Random Fields (MRF) provide a methodological framework which allows
the images from different sensors to be merged in a consistent way. In this thesis, we
demonstrate that a natural way to incorporating spatial correlations into the range
synthesis process is to use Markov random fields as a priori models.

The appeal of Markov random fields for range estimation comes from their explicit

attempt to model interactions and relationships between neighboring parts of the
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data space. By knowing the pixel intensity values of the scene, and only partial range
data coming from part of the objects and background, we can make an intelligent
guess to recover the rest of the object shape. Markov random fields let us model
the relationships between intensity and observed range directly and explicitly. These
relationships are made similar to or, when appropriate, different from, relationships
among other observed data. This feature also makes Markov random fields well suited

for modeling spatial data, i.e., data that come from different spatial locations.

3. Our application: Mobile Robot Environment Modeling

In order to successfully achieve its tasks, a mobile robot depends on the environ-
mental information gathered by its exteroceptive sensors, such as laser rangefinders,
ultrasonic sensors, CCD cameras, etc., either separately or in combination. However,
one of the greatest challenges to conventional mobile robotics is perception: mobile
robots can travel across much of earth’s man-made surfaces, but they cannot perceive
the world nearly as well as humans and other animals. Moreover, perception does
not just involve sensing, but also the interpretation of the sensed data in meaningful

ways.

FIGURE 1.4. A picture of our mobile robot with the 2D laser range finder
and the camera mounted on it.
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Data Acquisition and Registration

While there has been enormous progress on the automated acquisition of environ-
mental models, the process of acquiring information about the robot’s environment,
in particular 3D data, is often costly or labor intensive in practice. In our approach,
a mobile robot navigates its environment. At each pose, it collects a set of intensity
images and a small amount of 3D data. The intensity images are combined into
a panoramic mosaic. Since the intensity and range data are coming from different
types of sensors, they must be aligned or registered in order to be able to estimate
a complete and dense range map. In this thesis, we present a robust image-based
registration technique that takes advantage of the way sensors are arranged and how

sensor data is acquired.

Range synthesis

After registering the intensity and partial range information at every robot pose, we
apply our range synthesis method. A crucial aspect is the sampling strategy used
when the robot is at particular pose. The denser the sampling the easier the range
map estimation. However, since our goal is to minimize time and energy consumption
in the data acquisition process, we want to be strategic in sampling the 3D data. We
use a heuristic that is based on the distance the robot is from the objects in the
scene. Basically, the closer the robot is to the objects, the denser the sampling is,
and the further the robot is from the objects, the sparser the sampling of 3D data.

The advantages and limitations of this heuristic are analyzed.

Data Integration

In general, only partial and imperfect information can be obtained from real sensors,
thus integration of multiple observations of the same entity is required to compute an
estimate of the photometric and geometric characteristics of the scene. The output
from the previous stage is a set of panoramic mosaics with depth or 3D panora-

mas. These 3D panoramas are integrated in a common reference frame. We take
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input image Color corrected image

FIGURE 1.5. Color correction of underwater images. Left image depicts the
input color depleted image. Right image is the color corrected image.

a hybrid approach for data integration that is based on matching range scans while

simultaneously matching intensity features on the panorama mosaics.

4. Alternative Application: Color Correction

We apply the proposed method for range estimation to an alternative application:
color correction. In particular, we apply this to the color correction of underwater
images such as those collected by our swimming robot AQUA [64, 43]. For example,
images acquired in deep water tend to be almost achromatic. Figure 1.5 shows to
the left, an example of a color depleted image, and to the right, the color corrected
image after applying our method. For many aquatic robot tasks, the quality of the
images is crucial. Our method corrects the color of images by using a Markov Random
Field (MRF) to represent the relationship between color depleted and color images.
The parameters of the MRF model are learned from the training data and then the
most probable color assignment for each pixel in the given color depleted image is
inferred by using belief propagation (BP). This allows the system to adapt the color
restoration algorithm to the current environmental conditions and also to the task
requirements. Chapter 8 describes in detail our approach for color correction and

presents experimental results on a variety of underwater scenes.
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5. Problem Statement

This thesis answers three questions. First, how can the statistical nature of
visual (photometric) surround or context provide information about its geometric
properties? In particular, how can the statistical relationships between intensity
and range data be modeled reliably such that the inference of unknown range be as
accurate as possible? Second, how can the data collected at different robot poses in
a large-scale scene be fused and modeled such that the models we build are useful
for robotic navigation and localization? Third, based on the previous question, how
can such models be constructed automatically, particularly when very limited range
information is available with respect to intensity information and no prior information
concerning the position of the robot is known as it collects training data?

The research presented in this thesis focuses primarily on wheeled mobile robots
that navigate in indoor environments. The goals of this thesis are to answer the above
questions by exploiting assumptions about the world and about the robot that are as
general as possible.

A framework for computing solutions to the questions at hand will be developed,
with a discussion of the motivation for each component. The solutions will in turn

be validated experimentally.

6. Contributions
The following is a list of key contributions made in this dissertation.

e The first statistical model for the spatial structure of the surround of in-
tensity and partial range data using Markov Random Fields;

e The first two algorithms for estimating depth information where only inten-
sity is known, based on the above mentioned statistical model, that does
not rely on strong assumptions concerning specific surface geometries or

surface reflectance functions;

10
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e The application of this model to the mobile robot environment modeling
problem. A complete framework of data acquisition, registration and inte-
gration is described, and the viability of using a limited amount range data
together with intensity to build a 3D model or map of a large-scale indoor

environment is demonstrated.
Additional contributions are:

e The design of a physical framework to rapidly acquire visual and partial geo-
metric information is presented. This framework is composed of a camera
and a laser rangefinder mounted on a mobile robot. We demonstrate that
our framework to acquire the sensor data also facilitates the registration
process between the input data.

e A robust image-based algorithm to register intensity and partial range data
that does not require previous sensor calibration is developed. Since the
input data comes from different types of sensors, the registration algorithm
must account for the different resolutions and projections of the input data.
Also, the registration must be carried on a variety of data subsampling,
going from dense to very sparse.

e A demonstration and experimental validation of the feasibility of using the
proposed model for the spatial structure to a computer vision problem:
color correction of underwater images. To this end, we define an algorithm
for enhancing underwater images that suffer for degradation due to optical

scattering resulting in an image that is bluish, blurry and out of focus.

7. Statement of Originality

Portions of the results presented in this thesis work have appeared previously in,
or are currently in submission {158, 156, 160, 159, 157, 64, 43, 123]. In some
cases, I have co-authored papers with the team of the AQUA project, that employs

11
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the proposed method for color correction of underwater images. In those works, the
distinction of our individual contributions is explicit.

My published work also contains results that are not reported in this thesis.
In most cases, new results are presented here duplicating the original experiments
(Chapter 6), but using improvements to the original algorithms presented in the

published work.

8. Organization of the thesis

This thesis presents a statistical learning method that combines visual and partial
range information for the depth recovery problem. The previous sections of the
introduction provided the gist of what is to come in the thesis. In short, the thesis is
organized as follows:

Chapter 2 provides an overview of the state of the art on the depth or shape recovery
problem. Brief descriptions of relevant work to date, their main contributions and
limitations are given.

Chapter 3 is a review of statistical approaches that use images for depth recovery.
This includes a description of prior studies exploring the statistical distribution and
correlations between intensity and range images are given, in order to provide a solid
foundation for our image-based statistical approach for 3D inference.

Chapter 4 presents principles and concepts needed to adapt Markov Random Field
models to the method proposed for range synthesis in this dissertation. It also presents
some relevant applications of Markov Random Fields to computer vision problems
that are related to or serve as an inspiration of our proposed method.

Chapter 5 introduces the proposed statistical model to infer dense range maps of
man-made scenes using only intensity images and sparse partial depth information.
This chapter represents the main contribution of this thesis. In the first part of
the chapter, the Markov Random Field (MRF) model is described for the spatial

distribution of intensity and range data. The second part of the chapter presents

12
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the MRF-MAP approach using Belief propagation that greatly improves the range
synthesis results when using only the deterministic MRF-MAP approach.

Chapter 6 presents experimental results on real data of indoor scenes. A variety of
sampling strategies of the range data are experimented and analysis on the results
according to these samplings are given.

Chapter 7 presents an application of our range synthesis method. Specifically, the
3D modeling of an indoor environment under the context of mobile robotics. It
describes a complete framework of our approach for environment modeling: the data
acquisition setup used to gather the visual and partial geometric information and
the algorithm to register the intensity and partial range data. It also describes the
depth recovery process by using our range synthesis method. Finally, the process of
integrating the sensor data from multiple viewpoints to a common coordinate frame
is given. In other words, it describes the integration of each of the dense maps at
each robot pose to a global 3D dense map of the environment. Along with each stage,
experimental results on real data collected in a building from our own mobile robot
are shown.

Chapter 8 presents an alternative application of our proposed statistical learning
method, for the problem of color correction of underwater images. This chapter
can be read independently of the other chapters. It shows a formulation for color
recovery and more general enhancement as an energy minimization problem using
learned constraints.

Chapter 9 gives a summary and some conclusions on the research contained in this
disssertation. In the thesis, choices have been made regarding the topics of research.
Necessarily many other interesting topics have been left aside. This chapter provides

a list of topics for possible future research.
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CHAPTER 2

Passive and Active Sensing Methods
for Depth and Shape Recovery

As the main objective of this dissertation is to infer depth information by combining
passive and active sensing techniques, this chapter reviews several depth and shape
recovery methods that use these sensing techniques either individually or by fusing

them, highlighting their advantages and disadvantages.

1. Introduction

Surface depth recovery is one of the central problems of computer vision and
robotics research. Techniques for inferring the 3D layout of space are divided by
the type of sensor they use. In general, two types of sensors are commonly used to
infer the geometry of an object/scene: passive and active sensors. Passive sensors
do not emit energy for the purpose of sensing, only receive it. A passive sensor
relies on the environment to provide information. Most robot vision is done using
CCD cameras which detect visible light from the surrounding world. Methods that
infer depth from images include all the monocular shape-from-X methods, structure
from motion, hazing and focus/defocus. On the other hand, active sensors emit a

special source of energy such as laser or ultrasonic waves, and then receive once it has
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interacted with the object to digitize. Such active sensors include laser, sonar, radar
and structured light.
The techniques described in the following sections are not intended to be exhaus-

tive; we will mention briefly only the prominent approaches.

2. Passive Depth Estimation: Using Visual Cues

Depth estimation can be relative or absolute. Examples of techniques that re-
cover relative depth information are: shape from shading [70], from texture [147],
from edges and junctions [7], from symmetric patterns [137] and from other picto-
rial cues such as occlusions, relative size, and elevation with respect to the horizon
line [110]). Most of these techniques apply only to a limited set of scenes. Literature
on absolute depth estimation is also large but the proposed methods rely on a limited
number of sources of information (e.g., binocular vision, motion parallax, and defo-
cus). Human vision, under normal viewing conditions, can provide a rough estimate
of the absolute depth of a scene even in the absence of all these sources of information
(e.g., when looking at a photograph). We use one additional source of information
for absolute depth estimation: the size of known objects like faces, bodies, cars, etc.
In computer vision, however, this strategy requires segmenting the image. In general,
image segmentation and object recognition processes remain difficult and unreliable.
In the following, a subset of these techniques are described in more detail in order to
highlight their advantages and disadvantages compared to those of the active sensing

techniques.

2.1. Shape-from-Shading

Shape-from-shading (also known as photoclinometry) has attracted substantial
attention from the research community since the 1970s. The problem of estimating the
shape of an object from its shading was first introduced by Horn [70]. He defined the
mapping between the shading and surface shape in terms of the reflectance function

(surface albedo) I, = R(p, q), where I, , denotes image intensity, p = z, and q = 2y,
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z are the depth of the object, and (z,y) are projected spatial coordinates of the 3D
object. The standard approach to the problem involves modeling the behavior of
light as it travels through space and interacts with surfaces and then attempts to
invert the image formation processes. Unfortunately, inverting this process is highly
underconstrained, and various assumptions about image formation models and their
parameters such as Lambertian surface reflectance, upiform albedo, and shadow-free,
single-point-source illumination, have to be made for this approach to work. In the
classical formulation, it is assumed that surface radiance is determined entirely by
the surface orientation relative to a point light source at infinity. For a Lambertian
surface, in a scene with the same reflectivity and composed of a single smooth surface,

the surface shape can be recovered by inverting the following equation
Iy = N(z,y) - L

where L is the light source direction, and N(z,y) is the normal at the surface point

corresponding to an image point (z,y) (see Fig 2.1). A variety of methods have

FIGURE 2.1. Lambertian reflection geometry.

been developed for inverting the above model to obtain the depth map. However,
this model is not valid when the light source is diffuse [82]. The first algorithm
for solving the shape-from-shading problem under diffuse lighting was proposed by
Langer and Zucker [82]. In general, surface recovery from a single image is an ill-posed

problem, requiring strong assumptions (like those mentioned above) and sophisticated
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mathematical methods. Moreover, the results are usually not accurate and reliable

for real scenes.

2.1.1. Statistical Shape from Shading

Some exceptions to the classical shape-from-shading were presented by Lehky
and Sejnowski [84], Atick et al. [2] and more recently by Freeman et al. [59]. In their
work, shape-from-shading algorithms make use of a direct association between lumi-
nance images and the 3D models used to generate them. The image statistics were
derived from computer-generated images, that make the same assumptions made by
traditional shape-from-shading algorithms. These approaches suggest that a deeper
understanding of the joint statistics of natural images and their associated 3D struc-
tures might be important for the successful development of a statistical approach for
3D inference. Other methods that use similar insight include those of Torralba an
Oliva [154] and Freeman and Torralba [60]. In this thesis, we consider a similar
approach, thus a review of the field of image\ statistics with focus on these methods

for shape recovery is given in Chapter 3.

2.2. Shape-from-Texture and Shape-from-Specularity

Texture is another cue that provides important source of information about the
3D structure of visible surfaces, particularly for stationary monocular views. Shape-
from-texture approaches have also been the focus of attention [169, 147]. When
a texture surface is projected onto an image plane, the texture pattern is distorted
systematically following laws of projective geometry. This provides a cue for 3D shape:
if the visual system can measure the compression of the texture at each image location,
it can recover local orientation and thus shape. This requires that assumptions must
be made about the isotropy properties of the texture, however, the unpredictability of
natural textures precludes the use of highly restrictive assumptions. Various methods
proposed in the literature intent to make minimal assumptions, yet it is difficult that

one model can cover all surface types and in particular, the huge variety of textures.
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Fleming et al. [56] proposed a new visual cue that allows the visual system to
estimate the shape of an object from monocular images. In their approach, specular
reflections are treated a bit like textures; the authors argue that this is because spec-
ular reflections also lead to stochastic image patterns with well-conserved statistics.
When the world is reflected in a specular surface, the reflection is distorted by the
shape of the object. The pattern of distortion is a function of the 3D shape, just as it
is with textures. Crucially, however, for specularities the compression is a function of
surface curvature as well as orientation. Hence, the mapping from images to 3D shape
follows different rules for specular versus textured surfaces. Tezture trajectories ! can
thus allow the visual system to distinguish specular reflections from textures, and to
estimate 3D shape for both textured and specular objects. The texture trajectory
cue is weakest for spheres and planes, and strongest for objects with small Gaussian

curvature but large mean curvature.

2.3. Stereo vision

One of the most remarkable properties of the human visual system is the ability to
reconstruct the 3D depth of a scene from the essentially 2D retinal fields. The small
positional differences, or disparities, of the images of objects on the two spatially
separated retinas is used to accurately reconstruct the depth of objects.

Formally, a point P in the scene, at a distance Z from the focal plane, projects
onto left and right retinas at positions z; and zgr. The difference between these
positions, or disparity and is related to the depth Z, of the point P as follows:

Bf

disparity = x; — Tp = Z

(2.1)

where B is the baseline distance and f, the focal length.

Dense stereo vision gained popularity in the early 1990’s due to the large amount
of range data that it could provide [89, 61]. In mobile robotics, a common setup is
the use of one or two cameras mounted on the robot to acquire depth information
as the robot moves through the environment [99]. The cameras must be precisely

1A texture trajectory is defined in [56] as the pattern of compressions across an image.
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calibrated for reasonably accurate results. The depth maps generated by stereo under
normal scene conditions (i.e., no special textures or structured lighting) suffer from
problems inherent in window-based correlation. These problems manifest as impre-
cisely localized surfaces in 3D space and as hallucinated surfaces that in fact do not
exist.

Other works have attempted to model 3D objects from image sequences [152,
55, 115], with the effort of reducing the amount of calibration and avoiding restric-
tion on the camera motion. Fitzgibbon and Zisserman [55] proposed a method that
sequentially retrieves the projective calibration of a complete image sequence based
on tracking corner and/or line features over two or more images, and reconstructs
each feature independently in 3D. Their method solves the feature correspondence
problem using methods based on the fundamental matrix and tri-focal tensor, which
encode precisely the geometric constraints available from two or more images of the
same scene from different viewpoints. A similar work is that of Pollefeys et. al. [115],
in which a 3D model of an object is obtained from image sequences acquired from
a freely moving camera. The camera motion and its settings are unknown. Their
method is based on a combination of the projective reconstruction, self calibration
and dense depth estimation techniques. In general, these methods derive the epipolar
geometry and the trifocal tensor from point correspondences. However, they assume
that it is possible to run an interest operator such as a corner detector to extract
from one of the images a sufficiently large number of points that can then be reli-
ably matched in the other images. It appears that if one uses information of only
one type, the reconstruction task becomes very difficult and works well only under

narrow constraints.

2.4. Structure from Motion

Structure from motion (SFM) is another widely recognized approach to the re-
trieval of 3D structure of a scene from optical flow resulting from unknown camera

motions. Ullman [161] summarizes earlier work in SFM, and Oliensis [105] gives a
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critique of recent techniques. Ideally, SFM allows arbitrary camera motion and only
requires that the scene is static. However, a serious drawback of this approach is
that it is often unstable and hard to exploit in practice. As a generalization of the
method, structure and motion is presented in [40, 114]; uncalibrated image sequences
acquired with a hand-held camera are mapped into visual models of 3D scenes, illus-
trated by examples showing a single building or a statue. Dick et al.’s method [40]
uses building primitives such as doors or windows within a recovery process. Zhu et
al. in [174], discuss the use of an uncalibrated sequence for panoramic images for 3D

scene reconstruction.

3. Active Sensing Techniques

The fundamental problem of obtaining depth from traditionally approaches such
as shading based shape analysis or binocular stereo remains a difficult task. Using 2D
imagery alone will only provide sparse and unreliable geometric measures unless some
underlying simple geometry is assumed. By fusing 2D vision with active rangefinding
sensors, as demonstrated in [74], a solution to 3D vision is realised, circumventing
the problem of inferring 3D from 2D.

The active sensing methods can be divided into two categories: contact and non-
contact methods. Coordinate Measure Machine (CMM) is a prime example of the
contact methods. CMMs consist of probe sensors which provide 3D measurements by
touching the surface of an object. Although CMMs generate very accurate and fine
measurements, they are very expensive and slow. Also, the types of objects that can
be used by CMMs are limited since physical contact is required. Furthermore, this
method is impractical when trying to model large environments containing numerous
objects. The non-contact methods project their own energy source onto an object
or scene, then observe either the transmitted or the reflected energy. Active stereo
uses the same idea of passive sensing stereo method, but a light pattern is projected
onto an object to solve the difficulty of finding corresponding points between two (or

more) camera images. Scanning the object with the light constructs 3-D information
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about the shape of the object. This is the basic principle behind depth perception
for machines, or 3D machine vision. In this case, structured lighting is sometimes
described as active triangulation.

Structured-light methods citeBesl89, Chen97 project a light pattern onto a scene,
then use a camera to observe how the pattern is illuminated on the object surface.
Broadly speaking, the structured-light methods can be divided into scanning and
non-scanning methods. The scanning methods consist of a moving stage and a laser
plane, so either the laser plane scans the object or the object moves through the laser
plane. A sequence of images is taking while scanning. Then, by detecting illuminated
points in the images, 3D positions of corresponding object points are computed by
the equations of camera calibration. The non-scanning methods project a spatially
or temporally varying light pattern onto an object or scene. An appropriate decoding
of the reflected pattern is then used to compute the 3D coordinates of an object.

With sonar sensors, sound is emitted, bounces off objects, and is reflected back to
the sensor. The difference from when the sound was emitted and when it returns, and
the speed of sound in that environment are used to calculate the distance to the object.
Relevant work using sonar sensing in robotic applications include those developed by
Elfes [48] and Crowley [32]. However, sonar sensors are less used nowadays due
to the fact that data measurements are often inaccurate and inconsistent. This is
because readings depend on the speed of sound, which varies according to atmospheric
conditions such as temperature and humidity. Another problem is that the ultrasonic
echoes might cause the sensor to measure totally incorrect values.

LIDAR-based laser radar systems are more accurate than sonar sensors and use
the information of emitted and received laser beam to compute the depth. There are
mainly two methods that are widely used: (1) using amplitude modulated continuous
wave (AM-CW) laser, and (2) using laser pulses.

In particular, for man-made environments the choice of the sensor type from
which precise raw range information from the scene is obtained is crucial. The Sys-

tem that acquired the 3D data presented in this dissertation is a LIDAR-based laser
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rangefinder. They are specially suitable for applications in 3D environment model-
ing because they acquire dense and accurate 3D data compared to passive sensing
methods.

There is a vast body of research work using laser rangefinders for different applica-
tions, particularly, in the 3D reconstruction problem [29, 26, 76, 94, 167, 104, 47,

134, 144]. In what follows, we will describe the basic concept of laser rangefinders.

3.1. LIDAR-based Laser Rangefinders

Laser rangefinders measures distance (depth) as a direct consequence of the prop-
agation delay of an electromagnetic wave, i.e., the laser rangefinder emits a modu-
lated, collimated beam of laser light, and detects the reflected echo beam. The time
taken for a laser beam to leave the sensor, strike a surface, and return is measured.
This technology is known as time of flight (TOF), and has been used for decades in
industrial and military applications, and more recently, for research purposes. There
are basically two techniques for measuring the TOF —the pulsed and the phase-shift
methods. Figure 2.2 shows how this technique can be used for range estimation by
measuring the phase shift between transmitted and received signals.

Laser rangefinders provide good distance precision with the possibility of increas-
ing accuracy by means of longer measurement integration times. The integration
time is related with the number of samples in each measurement. The final mea-
surement is normally an average of sample measures, decreasing therefore the noise
associated to each single measure. Spatial resolution (i.e., the ability to distinguish
two targets at different distances when placed side by side) is guaranteed by the small
aperture and low divergence of the laser beam. Laser rangefinders can also provide
a measure of the reflectance (amplitude) of the object being sensed. The amplitude
corresponds, however, to the reflectance of the target at the wavelength of the laser
beam (monochromatic, normally in the infrared), thus it hardly contains a textural

description of the scene.
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FIGURE 2.2. Schematic of laser rangefinding by phase-shift measurement.
Adapted from [140]

Laser range finders are not free from sources of error, distance measurements can
be affected by errors inherent to the sensor or to the scanning system. As a result,
the measured data is not certain, and this uncertainty must be incorporated in the
sensor fusion model. However, the completeness of coverage of these sensors is a more
important factor that have to be taking into account when dealing with large and
complex environments.

In general the following attributes must be considered carefully when choosing an

active sensor:

e Field of view and range: How much of the world it can reliably measure
—FOV refers to the degrees covering the horizontal and vertical axis, range
is how far into the distance the sensor can measure.

e Accuracy, repeatability and resolution: How correct is the measurement,
how often it reaches the same reading, how precisely we can measure.

e Speed of the device: How long will it take to get those measurements? Are

the measurements averaged? How many points are captured per second?
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There is a tradeoff between the number of points that are captured and
averaged, and the expected standard deviation in the measurement.

Easy to use: How heavy is the device? How big is it? Can it be trans-
ported as carry-on luggage on an airplane? The sensor size can affect the
design/mobility of the robot and conversely, it can be difficult to install
due to the robot’s design/size. How straightforward is it to calibrate the
instrument? How often do calibration procedures need to be performed?
What facilities are required for this? How often does it need to be factory-
serviced?

Responsiveness in the target domain: How well does the sensor work in the
environment in which the robot is supposed to navigate?

Physical robustness: How Will performance be affected by temperature,
humidity, dust, vibration? (e.g., on a moving shaking vehicle). Scanning in
environments where toxic chemicals, nuclear radiation or other agents can
degrade scanner performance is another level of consideration.

Power consumption: Sensors are a major drain of power, generally passive
sensors use less power than active. There is a trade off between locomotion
ability and sensor capability.

Hardware reliability: Sensors often work best (or with reasonable reliabil-
ity) within a certain range of physical conditions, such as temperature and
moisture.

Eye safety: Buyers need to consider the potential for workers or the public
to be exposed to the laser beam. The setting in which the laser scanner
will be used is a guide to what level of eye safety is appropriate.

Cost: Of course no one makes a purchase decision without considering this.
Scanner list prices start at about $30,000 and can be as much as $200,000

fully loaded with software, maintenance, training and support.
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3.1.1. Laser scanners

A large number of possible 3D scanners are available on the market. However,
cost is still the major concern. An overview of different systems available to 3D
shape of objects is presented by Blais [18], highlighting some of the advantages and
disadvantages of the different methods.

Laser Range Finders directly map the acquired data into a 3D volumetric model
thus having the ability to partly avoid the correspondence problem associated with
visual passive techniques. Indeed, scenes with no textural details can be easily mod-

elled. Moreover, laser range measurements do not depend on scene illumination.

3.1.2. Acquiring Data: Range Image

The sequence of images taken by the laser rangefinder during a scan can be
stored in a compact data structure called range image, also known as range map,
range data, depth map, or depth image. In most scanners, a range image is a set
of distance measurements arranged in a m x n grid. Typically, for the case of laser
scanners, m is the number of horizontal scan lines (rows) in the sequence, and n is the
total number of vertical scan lines (i.e., stripes). We can also represent a range image
in a parametric form r(3, j) where r is the column coordinate of the measured point
at the ith row in the jth stripe. Sometimes, the computed 3D coordinate (z,y,2) is

stored instead of the column coordinate of the measured point.

4. Fusing Active and Passive Sensing for Depth Recovery

Passive capture compared with active sensing exhibits some significant advan-
tages in terms of cost, practicality, complexity of use and integration to a larger
system. These are the characteristics that make cameras the more attractive sensor
in the market. For the case of stereo cameras, unless accurate calibration and precise
information on their pose are known, 3D measurements can only be recovered for a

sparse set of features. As these features correspond to discontinuities in the intensity
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of the images and are usually associated with ”significant” structure in the scene they
can be reliably matched and tracked along successive frames.

In the 90s, most existing approaches were based on a single sensor [35, 76,
141, 55]. In robotics, inter-robot communication [5, 125] is being used to overcome
the limitations of using single robot systems (which obtain sensor readings from one
position at a time). Depending on the application and the complexity of the object
or scene, achieving geometric correctness and realism may require data collection
from different sensors (passive and/or active) as well as the correct fusion of all these
observations. The idea of using more than one sensor to complement the data of one
sensor with that of another is not new [103]. However, methods for data fusion are
not as well developed as those for the design and analysis of individual sensors.

Independent of the level of representation used, a variety of popular mathemati-
cal techniques for sensor fusion appear in the literature: for example, probability and
Bayesian inference [34], Dempster-Shafer theory of evidence [135]. These established
techniques are then incorporated into a framework for transforming data into a com-
mon coordinate system, producing verdicts on the correctness of the various sources,
and allowing stable estimation of the parameters of a problem. An important aspect
of each technique is the way in which it models uncertainty in sensor information.

There has been substantial interest in fusing intensity and range information for
3D model building and virtual reality applications [121, 47, 134, 86, 144] with
promising results. Specifically, the use of dense intensity images to provide photo-
metric detail which can be registered and fused with range data to provide geometric
detail. However, there is one notable difference of our work in this dissertation with
those in the literature: the amount of range data acquired is very small compared
to the intensity data. There is no prior work that uses partial depth measurements

together with the intensity images, for complete and dense scene recovery.
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CHAPTER 3

Image Statistics for Shape Recovery

Natural images (including both natural landscapes and man-made environments !)
exhibit strong statistical regularities that are exploitable by biological and machine
vision systems. Only an infinitely small fraction of all possible pixel combinations have
interpretations as natural (realistic) images —the structure and content of a realistic
image deviates from those of random images in specific ways to form a sparse subset
of all randomly formed images. The fact that images exhibit great variability on the
patterns they represent has made it clear that exact mathematical models may not
be practical, and a statistical approach needs to be adopted.

Despite the growing success of statistical methods in vision, there has been rel-
atively little investigation into joint statistics of range and intensity images. This
chapter presents a brief background on the statistics of natural images, and describes
prior work that explore the statistical distribution and correlations between 2D im-
ages and 3D structures in order to provide a solid foundation for our image-based

statistical approach for 3D inference.

1The fact that images containing man-made structures are considered natural images may be a bit
confusing. Natural images are those that are taken from a natural environment, i.e., an environment
that is commonly encountered by a particular organism [130].



3.1 INTRODUCTION

1. Introduction

The statistics of natural images have been studied to understand how their prop-
erties influence the human visual system. Images’ statistical properties are usually
studied by collecting a number of such images in an ensemble and computing first or,
often, power spectrum statistics on them. One advantage of statistical approaches is
that they can provide a unified view of learning, classification and generation. The vi-
sual world offers a tremendous amount of data that the human visual system process
quickly and continuously. People can quickly infer low-level scene properties such as
shape, motion, lightness and occlusion boundaries. However, it has been shown that
images that do not behave statistically as natural images are harder for the human
visual system to interpret.

The computation of statistics of image space has a long history. The efforts of
finding explanations for the patterns exhibited by natural images through observing,
gave birth to the field of natural image statistics [51, 143).

Most images where objects lie are expected to be of relatively large-scale in prac-
tice. For that reason, many statistical approaches will need probability models that
capture essential image variability and yet are computationally tractable. Filter-
ing methods based on local neighborhood statistics such as median filtering can be
found throughout the literature. Image contrast enhancement techniques based on
histogram equalization have also been explored and are in use in medical as well
as other production environments [112]. There exist numerous methods for per-
forming segmentation and classification of images based on statistical pattern recog-
nition [42]. Statistically based relaxation filters founded on the theory of Markov
processes (Markov Random Fields) [63, 173], and expectation-minimization meth-

ods [36] also have a long history.
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2. Background

To quantitatively analyze the aspects of natural images that make them pre-
dictable (i.e., scene properties such as texture, shape and surface structure), a statis-
tical description needs to be adopted. An important property of a statistical descrip-
tion is that it does not apply to individual images, but only to a set of sample images.
Once having a well chosen and large sample set, one need to decide which image
statistics to calculate. Natural image statistics can be characterized by their order,
which describes the distribution of image values at a single position (first order), at
two separate positions (second order), or at three or more positions in images (high

order) [130]. A brief description of these order statistics is given next:

First order statistics treat each pixel in the image independently, so that, for ex- -
ample, the distribution of intensities encountered in natural images can be estimated.
The average intensity in an image is an example of the first-order statistics.
Second-order statistics measures the correlation between pairs of pixels. Natural
images have the property that the intensity at separate positions is not independent.
The most popular second order statistics are the autocorrelation function and the
power spectrum (described later).

Higher order statistics are used to extract properties of natural scenes which can
not be modeled using first and second order statistics. These properties include lines

and edges.

The power spectrum is one of the most well studied natural image statistics. It
is obtained by computing the Fourier transform of an image and multiplying each
element of the transform by its complex conjugate. Averaging over all directions
gives power as function of frequency. For most natural images, plots of this quantity
can be easily fitted by a straight line with a slope of around 1 /f2, where f is the
spatial frequency (usually measured in cycles per image) [21, 50, 81). This special
property of natural images can not generally be obtained from random images (e.g.,

random noise images would produce a flat power spectrum). The 1 / f? spectral slope
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of natural images means that equal power is encoded in each frequency band. It also
implies that natural images are statistically scale-invariant.

Torralba and Oliva [155] studied the statistics of natural images and concluded
that these statistics strongly vary as a function of the interaction between the ob-
server and the world. In particular, they show that second order statistics of images
are correlated with scene scale and scene category and provide information to perform
fast and reliable scene and object categorization. Statistical regularities might be a
relevant source for top-down and contextual priming, very early in the visual process-
ing chain. Their results show how visual categorization based directly on low-level
features, without grouping or segmentation stages, can benefit object localization and
identification and can be used to predict the presence and absence of objects in the
scene before exploring the image.

The global image statistics are correlated with the objects present in the scene.
Some studies show that the spectral slope for scenes containing man-made objects
is slightly different from that of images representing natural environments [155].
Figure 3.1 shows the average power spectra of natural landscapes and man-made
environments. It can be noted that vertical and horizontal orientations are more fre-
quent than obliques {3, 148, 130, 106]. The anisotropic distribution of orientations
is also compatible with neurophysiological data showing that the number of cells in
early cortical stages varies in regard to the spatial scale tuning and the orientation
(e.g. more vertical and horizontal tuned cells than oblique in the fovea [39]. Besides
the fact that object shapes have an impact on the global image statistics, there exists

strong correlation between the objects present and their context [155].

2.1. Scene scale and image scale

It has also been shown in [155], that image statistics also vary when considering
scenes at different scales. Close-up views on man-made objects tend to produce
images that are composed of flat and smooth surfaces. Consequently, the energy of

the power spectra for close-up views is concentrated mainly in low spatial frequencies.
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FIGURE 3.1. (a) Mean power spectrum averaged from 12000 images (verti-
cal axis is in logarithmic units). Mean power spectra computed with 6000
pictures of man-made scenes (b) and 6000 pictures of natural scenes (d);(c)
and (e) are their respective spectral signatures. The contour plots represent
50 and 80% of the energy of the spectral signature. The contour is selected
so that the sum of the components inside the section represents 50% (and
80%) of the total. Units are in cycles per pixel. From [155].

As distance between the observer and the scene background increases, the visual field
comprehends a large space, that is likely to encompass more objects. The images
of man-made scenes appear as a collection of surfaces that break down into smaller
pieces (objects, walls, windows etc). Thus, the spectral energy corresponding to high
spatial frequencies increases as the scene becomes more cluttered due to the increase,
with distance, in the area covered by the visual field. In contrast, spectral signatures
of natural environments behave differently while increasing depth. Figure 3.2 shows
that when the distance between the observer and the background grows, natural
structures become a single entity and smoother (small grain disappears due to the
spatial sampling of the image). Therefore, on average, with an increment of distance,
the level of clutter decreases, as does the energy in the high spatial frequencies. In
addition, the pattern of orientation varies with the scale. Close-up views on natural
structures have a tendency to be isotropic in orientations (and the point of view of
the observer is unconstrained). As distance grows, there is an increased bias towards

vertical and horizontal orientations, together with the point of view of the observer
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FIGURE 3.2. The effect of distance in natural image statistics. The first row
shows examples of the intensity images of each category and the averaged
spatial images are shown in the second row. The third row are the spectral
signatures as a function of scene scale. Scene scale refers to the mean distance
between the observer and the principal elements that compose the scene.
Each average image and spectral signature was calculated with 300 — 400
images. From [155]

becoming more constrained. As distance continues to increase, energy is concentrated
mainly in vertical spatial frequencies, as very large environmental scenes are organized
along horizontal layers. In order to recognize the scene or to navigate such panoramic
environments, faced with point of view limitations, an observer might consider looking

towards the horizon to visually embrace the whole scene.

2.2. Non-stationary statistics

Another important characteristic of natural images is how the image statistics
change with spatial location. When considering all the possible directions of the
eye or camera, statistics of natural images are usually scale invariant and stationary
(the features are equally distributed in regard to locations [52, 53]). This is the
case indeed with the statistics of images of close-up views of objects that are, on
average, stationary, as there is no preferred point of view for the camera. However,
for images of scenes that embrace a large volume, the probable points of view that

a human observer will adopt become much more constrained, because of his height
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FIGURE 3.3. Top-down effect on depth judgments. The left image is gener-
ally recognized as close-up view on bushes and maybe a spider’s web on top,
but it is actually a rotated version of the right image. The right image is
recognized as the inside of a forest, corresponding to a larger distance than
the image on the left (see text for explanation). From [155].

and his probable location (on the floor). If the task of the observer is to recognize
the identity of a large scale scene, most of the useful information will be given while
looking towards the horizon.

Therefore, different image statistics will characterize the top and bottom half of
the image (e.g., smooth texture of the sky, long vertical contours of skylines at the
top, cluttered forms at the bottom). Figure 3.3 shows an example of how image
inversion affects the perception of the absolute depth of a scene. The upside-down
inversion affects the perception of concavities and convexities due to the assumption
of light from above, and, therefore, modifies the perceived relative 3D structure of
the scene. But, moreover, the incorrect recognition affects the absolute scale of the
perceived space. The image on the left appears as a closer structure than the image

on the right for most observers.

3. Image-based Statistical Approaches for 3D Inference

Real scenes are complex and constrained by many regularities in the environment,
such as the natural geometry of objects and their arrangements in space, natural dis-

tributions of light, and regularities in the observer’s position. A greater understanding
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of how real images are formed could lead to substantial insight into how depth in-
formation may be inferred from single images. Statistical studies may be helpful for

understanding these regularities, which are not obvious from physical models.

3.1. Shape Recipes

Depth information obtained from other cues may be used to refine the shape-
from-shading inference process. Recently, a method that takes advantage of this idea
has been proposed by Freeman and Torralba [60]. In their work, new low-dimensional
representations, called scene recipes are used to learn the relationships between a low
resolution range image and a high resolution intensity image to infer a more accurate
high resolution range image. Such a problem may arise when range data is derived
through stereo algorithms. Stereo algorithms suffer from the lack of local surface
texture due to smoothness of depth constraint, or local missmatches in disparity
estimates. Thus, the stereo methods only provide a coarse depth map, which is
often accurate in the low frequency bands, but less accurate in the high frequency
bands. In order to compute a better depth map, their method integrates both the
high resolution image and the low resolution range image, which are decomposed into
a steerable wavelet filter pyramid. This filter breaks the image down according to
scale and orientation, with minimal aliasing between subbands [58]. The learning
phase involves the search for the best high range band from the image band, and it
is done using linear regression between the highest frequency band of the available
low-resolution range image and the corresponding band of the intensity image. The
hypothesis of the model is that this filter can then be used to predict high frequency
range bands from the high frequency image bands. Specifically, let Zno and i, , be
the n** highest resolution subband of the range and intensity images, respectively,
at orientation o (n = 0 is the highest resolution band of the intensity image). Then
the filter k,, is learned at the highest available resolution range band to give us

Zno R kno % ino, Where x denotes convolution. Higher resolution subbands of the
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range image are inferred by the equation
Zn-m,0 = c_m(kn,o * in—m,o)

where ¢ = 2. This model is motivated by the linear Lambertian shading model.

Since linear regression and convolution are both linear operations, it is expected
that the underlying model behind shape recipes has a natural consequence on the
second order statistical structure of the relation between images and range images. A
model of image/range statistics assumed by the shape recipe technique was derived
in [118] and their result is stated here. Let h; be the autocorrelation of the image,
and let h,; be the cross-correlation between the image and the range image. Then,
h.i(Az) is defined by (1/N) S i(&)2(Z+ Ax), where z(z, y) is the full resolution range
image, which is assumed to be centered (zeromean). Let IT and ZI be the Fourier
transforms of h;; and h,;. Then the shape recipe hypothesis implies that

B(6)

ZI(r,0) = II(r6) (3.1)

where v = loga ¢ = 1, and B(f) is some function that does not depend on r. Equa-
tion 3.1 shows that shape recipes assume that a particular form holds for the second
order statistics of images and range images. If the power spectrum of the image is
1/72, then the cross-correlation must fall off with 1/r3 in the Fourier domain. Figure

3.4, an example of using shape recipes in improving stereo is depicted.

3.2. Depth Estimation from Global Image Structure

A method presented by Torralba and Oliva [154] emphasizes the drawbacks of
estimating depth from monocular information. Figure 3.5 illustrates the ambiguity
problem, in the absence of cues for absolute depth measurement, such as binocular
disparity, motion, or defocus. The same retinal image is produced by the three cubes
and, therefore, the absolute distance between the observer and each cube cannot be
measured. Relative depth between parts of the cube can be obtained by interpreting

the shading, edges and junctions, but it will not inform about its actual size. However,
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(a) Image (b) Stereo shape

P

(d) Stereo Shape (¢) Shape from recipes
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FIGURE 3.4. Example of real image and the improvement in the shape es-
timate using the shape recipes. (a) shows one image of the stereo pair and
(b) shows the shape obtained by the stereo algorithm. (c) shows the recipes
learned at the lowest resolution pyramids. Taken from [60)].

(b)

FIGURE 3.5. (a) Artificial stimulus: The monocular information cannot pro-
vide an absolute depth percept. (b) Real-world stimulus: The recognition
of image structures provides unambiguous monocular information about the
absolute depth between the observer and the scene. Adapted from [154].

when dealing with real-world stimuli (Fig. 3.5b), there is no ambiguity in depth. The
reason for this is that physical processes that shape natural structures are different at

each scale. Humans also build different types of structures at different scales, mainly
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due to functional constraints in relation with human size (e.g., chair, building, city).
As a result, different laws with respect to the building blocks, the way they are
organized in space and their shape, govern each spatial scale [75]. At each spatial
scale, image content is therefore what constraints the structure on a 3D scene. As the
observed scale directly depends on the depth of view, by recognizing the properties
of the image structure, the scale of the scene can be inferred, and therefore, the
absolute depth [154]. The global image structure approach is based on the claim
that recognition of the scene as a whole is a simpler problem that the one of general

object detection and recognition.

3.3. Studying the Correlations between Intensity and Range Images

One of the few investigations into the joint statistics of range and intensity images
was carried on by Howe and Purves [71]. In their study, they examine range and
coregistered intensity images to find how the length of a line segment on a blank
background depends on the orientation of the line. They found that this bias closely
matches the 3D length of the line segments when projected into a range image. This
result may help to explain how the brain computes depth.

In the analysis of the natural statistics of images it is common to work with
the logarithm of the light-intensity [52, 162]. One advantage of this is that image
contrast, rather than being a multiplicative factor, becomes an additive factor under
log intensity. This means that linear filters respond to contrast rather than raw
differences in amplitude, and therefore zero-sum linear filters are insensitive to the
total contrast of each patch. For the case of range data, as described by Huang
et al. [72], a large object and a small object of the same shape appear identical to
the eye when the large object is positioned appropriately far away and the small
object is close. However, the raw range measurements of the large, distant object will
differ from those of the small object by a constant multiplicative factor. In the log
range data, however, the two objects will differ by an additive constant. Therefore,

a zero-sum linear filter will respond identically to the two objects.
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In a more recent study, Potetz and Lee [117] measure the correlations between
linear properties of range images (e.g., curvature) and linear properties of image inten-
sity data, to explore the structure of the correlations that could usefully underlie 3D
judgments from intensity data in images of natural scenes (e.g., shape from shading).
By using linear regression, ridge regression, and canonical correlation techniques,
they extract simple but interesting statistical trends between both image domains.
In their study, they use a sophisticated long-range scanner (a Riegl LMS-Z360) that
collects coregistered range and color data by using an integrated color photosensor
and a time-of-flight laser scanner with a rotating mirror. The content of their images
include scans of trees and wooded areas, rocky areas, building exteriors, and sculp-
tures. The logarithm of the light-intensity values were used rather than intensity
itself. Range images were also transformed by applying a logarithmic transform, as
was done in previous studies of pure range data.

In their study, images patches of size 25 x 25 pixels of coregistered light intensity
and range data were used. A total of 15,577,472 patches of rural and urban images.
There were in total 15.6 million observations of 1250 random variables: 625 luminance
variables and 625 range variables. Correlational relationships between intensity and
range data were investigated. The covariance between each pair of pixels in the
set of image patches. Two important observations were concluded from
the results: i) neighboring range pixels are much more highly correlated than
neighboring luminance pixels and, ii) the luminance and range values are negatively
correlated. This is shown in Figure 3.6, where the correlation between a specific
pixel and other pixels in the patch are plotted. The correlation is obtained using the

following equation
cov[X,Y]

Vvar[X]var[Y]

The first observation suggests that the low-frequency components of range data

p=cor[X,Y]=

contain much more power than in luminance images and that the spatial Fourier
spectra for range images drops off more quickly than for luminance images, which

are known to have roughly 1/ f spatial Fourier amplitude spectra [128]. Because the
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FIGURE 3.6. (a) Correlation between intensity at pixel (13,13) and all the
pixels of the intensity patch. (b) Correlation between intensity at pixel
(13,13) and the pixels of the range patch. (c) Correlation between range at
pixel (13,13) and the pixels of the intensity patch. (d) Correlation between
range at pixel (13,13) and the pixels of the range patch. (e) Correlation
between intensity and range at pixel (3,¢). (f) Same figure as (e), except
measured over rural images only. (g) Same figure as (e), except measured
over urban images only. From [117].

physical measurement of each point or pixel is independent of the others, any reg-
ular distortion of the power spectrum of range images caused by the scanner must
be caused by the divergence of the laser beam measuring the distance. This finding
is reasonable because factors that cause high-frequency variation in range images,
such as texture or occlusion contours, tend also to cause variation in the luminance
image. However, much of the high-frequency variation found in luminance images,
such as shadow and surface markings, are not observed in range images. The sec-
ond observation suggests that brighter pixels in natural images tend to be closer to
the observer. This work is the first evidence that this relationship actually holds in
nature. Leonardo da Vinci had this intuition that humans perceive brighter objects
as closer [95], and in general, artists have made use of this fact to help create com-
pelling illusions of depth. Psychologists subsequently confirmed this fact in controlled
experiments [151, 46, 30]. In psychology literature, this effect is known as relative
brightness [100].

In general, the authors conclude that the relationship between the shape of ob-
jects and their images depends on the statistical trends that cannot be inferred from

physical models of lights. They found that this relationship is intimately related to
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the statistics of lighting directions, the statistics of camera or head orientation, and
the statistics of surface shapes in natural scenes. Some of these statistical trends have
already been suspected by psychologists and artists in the past.

There may be many factors that affect the statistics of natural images and that
cannot be inferred from simple physical models. For example, the statistical relation-
ship between images and their surfaces will be affected by the natural statistics of
illumination direction, a factor that is known to heavily influence human performance
on shape-from-shading problems [122]. Other factors that influence this relationship
may include the statistics of object size and shape in natural scenes as well as the
natural statistics of the surface properties of those objects. This opens up the pos-
sibility that there may be simple, exploitable statistical relationships between real
images and surface shapes that have been overlooked. Discovering these relationships
might further the development of vision algorithms that utilize shape-from-shading
information. It may also provide insight into how the human visual system is so adept
at solving these problems [146].

Reinhard et al. [124] applied second order image statistics in computer graphics
implications. They use the power spectrum and demonstrated its theoretical impor-
tance with reconstruction filters. They also mention their will to extend the concept
of image statistics to 3D geometry, that they would call 8D geometry statistics.

The concepts and ideas presented so far give the basis for our depth inference
approach for man-made indoor scenes based on the inherent statistics observed on

the intensity and partial range images, which is described in detail in Chapter 5.

4. Summary

We presented an overview of statistical modeling that relates to the topic of this
dissertation. Specifically, we looked at the literature related to the statistics methods
for depth inference. We noted, however, that there are few prior work on the study
of statistical relationships or correlations between intensity and range data. It is

now clear that when missing one part of the puzzle, i.e., intensity information when
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having only range or viceversa, the completion of missing information is not that easy.
However when considering both, at least as partial amounts, some fruitful results may
be obtained.

Evidence in prior work have shown that the correlational structure between im-
ages and range images may come from several sources. Lambertian shading represents
a significant portion of these correlations, but not all. Correlations caused by shadows
also contribute to this structure, which complicates potential models of the cross cor-
relation. Also, scenes that are dominated by a few objects may exhibit correlational
structures particular to their specific arrangement: a bright object in the foreground,
for example. These complications make it difficult to construct a simple model of the
image/ rangé image relationship that can be exploited by vision algorithms. However,
the assumption that the cross-correlation function varies smoothly has proven to be

robust and effective for inference applications.
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CHAPTER 4

Probabilistic Models for Images and
Markov Random Fields

Recent emphasis on explicit probability models for images may be due to the growing
appreciation for the variability exhibited by the images and the realization that exact
mathematical models may not be feasible. The key to a statistical approach is to have
probability models that capture the essential variability and yet are tractable. In this
chapter, we list existing probabilistic models for images and focus our attention to
Markov Random Field Models, which are used in this dissertation to solve the depth
inference problem. We present a brief review of the history of MRF models, give
the basic notions, fundamentals and background on the MRF theory. Also, existing
techniques for learning MRFs and the approaches for computing the maximum a
posteriori (MAP) are presented. Specifically, we describe the Belief Propagation
(BP) algorithm. In the last part of the chapter, relevant applications related to our

problem are presented. These are texture synthesis and image Inpainting.

1. Introduction

Classical statistics provide tools for model building and density estimation but

their application to image modeling is difficult due to the large dimensionality ! of the

!For example, an image of 128 x 128 pixels implies estimation of a density on the space R16K
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observation space. Thus, in addition to the model building, a dimension reduction
needs to be solved. A popular idea in the vision literature has been to first reduce
dimensions using purely numerical considerations and then impose probability mod-
els on the reduced data. By not involving any physical consideration on the imaged
objects, or any contextual knowledge, the images are treated as elements of a vec-
tor space and one seeks a low-dimensional vector subspace (or its basis) that best
represents those numbers (under some chosen criterion). Principal component (78],
independent components [28, 9], sparse coding [107], Fishers discriminant [8], Fourier
transforms, wavelet transforms [96], and many other representations are all instances
of this idea. The main advantage of such linear projections is that they are compu-
tationally cheap. However, a lack of physical or contextual information leads to a
limited performance, particularly in recognition of objects from their cluttered im-
ages. Furthermore, it seems likely that the space generated by real images is a curved
manifold and cannot be simply approzimated globally by a low-dimensional vector
space.

Earliest, and still widely used, probabilistic models for images were based on
Markov Random Field (MRF) models [168]. MRFs, in particular, define a class of
statistical models which enable to describe both the local and global properties of

structures in images.

2. Marvov Random Fields

Markov random fields are a type of stochastic processes. Originally motivated
from statistical physics, such processes are clearly a natural generalization of the well
‘known concept of Markov chain, in which a time index in 1D is replaced by a space
index in 2D.

A Markov chain can be seen as a chain graph of stochastic variables, where each
variable depends only on its two neighbors, and it is independent of all the other
nodes of the graph. Similarly, a Markov random field is a graph that can be of

any structure (as oppose to only a chain graph) to define the relationship between
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variables, so that each stochastic variable (node) only depends on its immediate
neighbors. Figure 4.1 shows at the top, the structure of a Markov chain as a graph
and at the bottom, some examples of Markov random field structures as graphs.
One can imagine Markov random fields having the same (or even more) wide variety

of applications that Markov chains have. The foundations of the theory of Markov

o}
(0]

FIGURE 4.1. (a) The structure of a Markov chain as a graph. (b) Examples
of graphs on which a Markov random field could be defined.

random fields may be found in the early 1970’s, by Preston [120] and Spitzer [142] .
Although, an example of an early attempt of developing a satisfactory methodology
for the analysis of spatial data can be found in [145).

MRF theory provides an efficient and powerful framework for modeling spatial
dependence by combining and organizing spatial information according to feature
interactions. These interactions are nonlinear and the features can be of the same
nature or of a different one.

MRF models have been successfully used to solve many fundamental problems
of image analysis and computer vision [87]. Most of these models are for low level
processing. These include image restoration, edge detection, image segmentation,
texture synthesis and analysis, image inpainting, surface reconstruction, stereovision,
motion analysis, and recently for high level vision, such as scene interpretation and
object matching and recognition. In this context, the fundamental idea of MRF
models relies on the fact that an image pixel cannot be based only on its own value,

but it must be influenced by the values and properties of its neighboring pixels.
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Moreover, it is very improbable that a pixel has a value different than all of its
neighbors, in fact we can affirm that certain configurations are indeed impossible.

MRF's are chosen to solve this type of problems since they can represent efficiently
the a priori information about an image, specifically, its spatial context such that
Bayesian decision theory can then be applied. A particular MRF model favors its own
class of patterns (e.g., textures or object features) by associating them with larger
probabilities than other pattern classes. Then objective functions are formulated
in terms of established optimality principles. One of the most popular statistical
criteria for optimality, that has been widely used for MRF vision modeling, is the
maximum a posteriori (MAP) probability. In this research, we adopt the MAP-
MREF framework. This framework, advocated by Geman and Geman [63] and others,
enables us to develop algorithms for a variety of vision problems systematically using
rational principles rather than relying on ad hoc heuristics. Section 4 gives a complete
description of this framework.

An unfortunate by product of this flexibility is that these models are usually ana-
lytically intractable. Having constrained the problem and defined the ”best” solution
(according to some performance measure), there is still the problem of computing
it, not to mention the issue of estimating model parameters. As we have seen, these
estimates are usually defined in terms of the conditional process given the data, which
is another Markov field whose joint distribution is too complex for direct sampling or
direct computation of global quantities such as means and modes. A partial answer
is provided by the equivalence between MRF's and Gibbs distributions established by
Hammersley and Clifford [66] and further developed by Besag [16]. The MRF-Gibbs
equivalence gives an explicit formula for the joint distributions for MRFs. This en-
ables us to model vision problems by a mathematically sound yet tractable means for

the image analysis in the Bayesian framework [63].
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3. MRF Theory

In this section, we give the basic notions, fundamentals and background on the

MREF theory in the context of computer vision.

3.1. Random field preliminaries

In the following definitions, we use the same notation as in Geman [62].

Definition 1. Let S = {s1,ss,...,sn} be a set of N sites of a lattice, with a
variable X at each site s € S, and let A be a finite set called the state space. A
random field on S is a collection of random variables X, with values in A, where

the complete set of variables for the whole lattice is denoted by X = {Xs,s € S}.

A particular configuration for the lattice is given as {X; = 21, Xo = zo, ..., Xy =
zn}, which is abbreviated to {X = x}, where x = (z1,%y,...,zx) or x = {z,} for
convenience. The configuration space for the variable z is denoted by €2, whereby,

Q=]JA, A CR (4.1)

seS

A dependence structure can be imposed on a random field in two ways. One is by
defining a joint distribution on X, treating a configuration x as a realization from that
field, and directly model the correlations using the variance-covariance matrix [16].
The second way, is to build Markovian dependence structures on the set 5. Our
interest is on the latter, for which, a neighborhood system (also called a topology) on
S is introduced by defining a symmetric relation ~ on .S and defining neighborhoods

as the relational sets:
N={(i,j)€8x8:i~j}. (4.2)

This generates the graph G = (S, N) as a topology on S, with neighborhoods, say

ds = N, associated with each element s as:

(i) s ¢ N;

(ii) s€ N; < t€N,
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FIGURE 4.2. Neighborhoods: (a) The first order neighborhood o = 1 or
nearest-neighbor neighborhod for the site s =’ o' and r =’ o/ € Nj; (b)
second order neighborhood o = 2; (c) eight order neighborhood o = 8.

This implies that the neighborhoods must be symmetrical and self similar for homo-
geneous MRFs. The symmetrical neighborhoods systems employed in this thesis are
the same as used in [63], for which the neighborhood system N° = {N? s € S} is
defined as

N={reS:0<|s—r]*<o, (4.3)

where |s—7| is the Euclidean distance between two points s, € S. The neighborhood
N? is defined by the neighborhood order o (but this does not refer to the statistical
order of the neighborhood). A first order neighborhood system o = 1 (also called the
nearest neighbor neighborhood system) is shown in Figure 4.2(a), which consists of
the four nearest adjacent pixels. The second and eight order neighborhood systems
for 0 =2 and o = 8 are shown in Figures 4.2(b) and (c), respectively.

An MRF [87] is a set of N random variables indexed over the vertices, or sites,
in an ordered lattice. The typical example is a 2D image, where the random variables
are the labels (e.g. color) associated with the pixels. The MRF variables are not
independent, but are mutually coupled; the key property of MRFs is that the distri-
bution of the random variable associated with a site s, given the values associated
with the sites in a (typically small) neighborhood of s, is independent of the rest of
the sites in the MRF. This is formalized in the following definition.
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Definition 2. An MRF with respect to a neighborhood system is a discrete
MREF 1f its probability density function satisfies the following conditions:

P(x) >0 Vx, (positivity). (4.4)

P(x; | Xs—{s}) = P(xs | Xr,7 € Nf), (Markovianity). (4.5)

where X5, denotes the random variable of site s and N is the set of random variables

associated with the sites that are in the neighborhood of site s.

When the positivity condition is satisfied, the joint probability P(x) of any ran-
dom field is uniquely determined by its local conditional probabilities [16]. An MRF
can be homogeneus if the Markovianity property of Equation 4.5 holds regardless of
the relative position of site s in S. The Markovianity depicts the local characteristics

of the random variables X.

3.2. Neighborhood System and Cliques

Given a neighbourhood system N, a clique is a set C C S if every pair of distinct
sites in C are neighbours. That is, given s,r € C, s # r implies s € N,. The
single site subset is also a clique. Let C denote the set of cliques defined on S with
respect to N, and let C; denote the local cligue set for a neighbourhood N, such
that C; = {C € C,s € C}. Cliques are important when considering the equivalence
between MRFs and the Gibbs distribution (see [16] for a proof of this equivalence).

Figures 4.3(a), (b), and (c) show the neighbourhood configurations for o = 1, 2
and 8 respectively. If we represent the lattice S on a rectangular grid Z,, = {(i,j) :
1 <i,57 < m} where S = Z,,, N = m?, then the first-order or nearest neighbor
system N; = {(,5 —1),(6,5 + 1), (6 — 1,7), (i + 1,5)}. The cliques associated with
this neighborhood system are then those subsets of S whereby {(4, 1)}, {(i,4), (3, j +
1)} and {(4,7),i + 1,5)} C Zn, as shown in Figure 4.3(e). The cliques contained
in the local clique set Cs of N}, are then those cliques {(3,5)}, {(i,7), (i,5 + 1)},
{G7), @+ 1,7}, {G,9), (6,5 — 1)} and {(3,4), (i — 1,5)}, as shown in Figure 4.3(d).
For the second-order neighbourhood N2, the set of cliques C are those of type shown
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FIGURE 4.3. Neighborhoods and cliques. (a) The first order neighbor-
hood o = 1 or nearest-neighbor neighborhod; (b) second order neighbor-
hood o = 2; (c) eight order neighborhood o = 8. (d) Local clique set for
nearest-neighborhood; (e) clique types for nearest-neighbor neighborhood:;
(f) additional clique types for second-order neighborhood.
in Figures 4.3(e) and (f). The number of clique types grows almost exponentially

with increasing order o.

3.3. Gibbs Random Fields
The distribution over the MRF variables, can be written as a Gibbs distribution,

P(x) = w (4.6)

where x is a N K —dimensional vector formed by concatenating the vectors xs(s =

1,..,N), U is an energy function and Z is a normalizer given by,
Z =Y exp(-U(x)). (4.7)

where the sum runs over all possible values of x. Note that, computing Z, which

is known as the partition function, is generally tractable only for very small MRFs,
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since the number of terms in the sum of Equation 4.7, increases exponentially with
the size of the MRF. This is due to the mutual coupling between the MRF variables.
Same problem emerges if we want o compute the marginal posterior distribution over
any of the individual MRF variables e.g., for the purpose of parameter fitting since
this requires summing over all remaining variables. The energy function U defines

the properties of the MRF model and can generally be written
Ulx,y,®,8) = U*"(x,y,0) + U™ (x, 8). (4.8)

where U®** denotes the energy (or potential) arising from external influence; in the
context of probabilistic image modeling, this typically comes from observed data y
via a model determined by parameters ©, and corresponds to a log-likelihood term.
U™t denotes the internal energy which, as suggested by the notation, only depends
on the MRF variables x and parameter 3, and corresponds to a prior distribution

over X.

3.4. Markov-Gibss Equivalence

An MRF is characterized by its local property (the Markovianity), whereas a GRF
is characterized by its global property (the Gibbs distribution). The Hammersley-
Cliffor theorem [66] establishes the equivalence of these two types of properties. The

following

Theorem 1. X is an MRF on S with respect to N if and only if X is a GRF
on S with respect to N.

Many proofs of the theorem exist (e.g. Besag [16], Kindermann and Snell [77]).
The practical value of the theorem is that it provides a simple way of specifying
the joint probability P(X = z) by defining the clique potential functions Ve(z) and
choosing appropriate potential functions for desired system behavior. In this way,
the a priori knowledge or preference about interactions between labels are encoded.
However, a major topic in MRF modeling is how to choose the forms and parameters

of the potential functions for a proper encoding of constraints.
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To calculate the joint probability of an MRF, which is a Gibbs distribution, the
partition function (Equation 4.7) needs to be evaluated. The reason for this is that the
sum over a combinatorial number of configuration in A is computational intractable.
The explicit evaluation can be avoided in maximum-probability based MRF vision
models when U(z) contains no unknown parameters. However, this is not true when
the parameter estimation is also a part of the problem. In the latter case, the energy

function U(z) = U(z | ) is also a function of parameters @ and so is the partition

function Z = Z(). Thus, one needs to evaluate Z(6).

4. MAP-MRF Framework

To address the computational difficulties associated with the computation of the
joint probability in MRF models, a number of approximate methods have been pro-
posed [87].

In the MAP-MRF framework, the posterior distribution of an MRF is defined by
P(x|d), where d is the observation. Its form and parameters are determined, in turn,
according to the Bayes formula, by those of the joint prior distribution of the labels
and the conditional probability of the observed data. It is this probability function
specified by the functional form and the parameters that defines the particular type of
a MRF model. Two major parts of the MAP-MRF modeling is to derive the form of
the posterior distribution and to determine the parameters in it, so as to completely
define the posterior probability. Another important part is to design optimization

algorithms for finding the maximum of the posterior distribution.

4.1. Pairwise MRF Model

A pairwise MRF model (shown in Figure 4.4, also known as Markov network,
is defined as a set of hidden nodes z; (white circles in the graph) representing local
patches in the output image C, and the observable nodes yi (shaded circles in the
graph) representing local patches in the input image B. Each local patch is centered

to pixel location 7 of the respective images.
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FIGURE 4.4. The pairwise Markov Random Field used to model the joint
probability distribution of the system. Observation nodes, y, represent an
image patch input image, and hidden nodes z, an image patch in the output
image to be inferred.

Denoting the pairwise potentials between variables z; and z; by 1;; and the local
evidence potentials associated with variables z; and y; by ¢; (see Figure 4.5), the
joint probability of the MRF model under variable instantiation x = (z, ...,z ~) and

y = (y1, ..., Yn), can be written [16, 63] as:
1
P(X’ y) = E H w":j(l‘h x]) H ¢’L (l'i, y’i), (49)
ij i

where Z is the normalization constant. We wish to maximize P(x, y), that is, we want
to find the most likely state for all hidden nodes z;, given all the evidence nodes Yi-

The compatibility functions allows to set high (or low) compatibilities to neighboring

FIGURE 4.5. The potential functions ¢ and 1 define the compatibilities
between nodes in the Markov network.

pixels according to the particular application. These potentials are used in messages
that are propagated between the pixels to indicate what combination of values each

image pixel should have.
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A pixel value in C is synthesized by estimating the maximum a posteriori (MAP)
solution of the MRF model using the training set. The MAP solution of the MRF
model is:

Xpap = arg max P(x|y), (4.10)

where
P(x|y) o P(y | x)P(x) o< [ [ ds(zs, ws) [ [ w5 (i, 25) (4.11)
i (i.9)

Calculating the conditional probabilities in an explicit form to infer the exact
MAP in MRF models is intractable. We cannot efficiently represent or determine all
the possible combinations between pixels with its associated neighborhoods. Various
techniques exist for approximating the MAP estimate, such as Markov Chain Monte
Carlo (MCMC), iterated conditional modes (ICM), maximizer of posterior marginals
(MPM), etc. See [41] for a comparison. In this research, we compute a MAP estimate,
by using a learning-based framework on pairwise MRFs, as proposed by [59], using

belief propagation (BP).

4.2. MRF-MAP inference using Belief Propagation

Belief propagation (BP) is a machine-learning method for sharing probabilistic
information from multiple connected sources. Seminal work by Freeman et al. [59]
demonstrates the usefulness of Bayesian belief propagation to quickly find approxi-
mate solutions to various two-dimensional vision problems modeled by Markov net-
works with loops. Using a common machinery, but with a representation and training
sets appropriate to each problem, they showed exceptional results for super-resolution,
image enhancement and motion estimation, which have inspired the use of belief prop-
agation in the computer vision community. In later work, Weiss and Freeman [166]
gives a theoretical understanding of the previously good performance of the BP al-
gorithm in networks with loops, by showing the formal connections between BP and
some well-understood approximations in statistical physics 2. They show how the
posterior probabilities calculated by belief propagation related to the true marginal

*Like those due to Bethe and Kikuchi [109]
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FIGURE 4.6. Computing messages in the belief propagation algorithm.

probabilities. This has led to the development of better inference algorithms (e.g., the
Generalized Belief Propagation (GBP) [172]), that give a new possibility for solving
vision problems that were previously computationally intractable.

The BP algorithm solves graphical inference problems via a series of local message-
passing operations. For example (see Figure 4.6), to compute the outgoing (red)
message at left, the central node must combine all incoming messages (blue) with
its local observation. In tree structured graphs, BP is exact, and messages can be
interpreted as sufficient statistics. In graphs with cycles, BP is approximate, but has
reasonable theoretical justifications and produces excellent empirical results in many
applications. BP may be applied to graphs with discrete (messages are vectors) or
Gaussian (messages are means and covariances) variables.

For MRFs, BP is an inference method to efficiently estimate Bayesian beliefs in
the network by the way of iteratively passing messages between neighboring nodes.
The Markov assumption follows a "message-passing” rule that involves only local
computations, resulting in a maximum a posteriori estimate (63, 111, 59]. Formally,

the message send from node i to any of its adjacent nodes j € N() is

mi(2;) = Z Y (i, ) $(zi, 10) 1(—)[\{ }mki(zi) (4.12)
z; kEN()\{j

o4



4.5 COMPUTER VISION APPLICATIONS USING MRFS

where Z is the normalization constant (also known as the partition function). The
maximum a postertor: scene patch for node i is:

Timap = arg max ¢(z;, y;) H m;i(T:)- (4.13)
X; JENG)

The BP algorithm is not guaranteed to converge, but if it does so, then it con-
verges to a local stationary point of the Bethe approximation to the free energy [171].
In our experiments, the BP algorithm usually converges in less than 10 iterations. And

it is also notable that BP is faster than many traditional inference methods.

5. Computer Vision Applications using MRFs

Many computer vision applications have been extensively use MRFs. In his book,
Li [87] gives several examples in the context of computer vision where MRF's are used.

Here we describe three applications that are relevant to our research.

5.1. Texture Synthesis

The field of texture synthesis is concerned with synthesizing, from an input tex-
ture sample, an arbitrary amount of perceptually similar output texture in 2D image
space or on surfaces of 3D models. The term perceptually similar in this context
means that the user should recognize the result as the same texture, yet it must also
contain sufficient variation of the input so it is not perceived as identical.

Textures can be synthesized by different techniques such as fractals, random
fields, reaction-diffusion, morphology, Gabor filters, Eigen-patterns, steerable pyra-
mids, wavelets, tiling and co-occurrence methods. Each method can generate only
a particular subset of texture patterns and have their own advantages and disad-
vantages. Texture synthesis techniques can be broadly categorized into local region-
growing methods and global optimization-based methods. Local methods grow the
texture one pixel or patch at a time with the goal of maintaining coherence of the

grown region with nearby pixels {45, 164, 44]. In such approaches, small errors can
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accumulate over large distances leading to inconsistencies in the synthesized texture.
On the other hands, global methods evolve the entire texture as a whole, based on
some criteria for evaluating similarity with the input. Most existing global approaches
either model only pixel-to-pixel interactions that may be insufficient to capture large
scale structures of the texture [108], or lead to complex formulations that are difficult
to optimize [116, 60].

Markov Random Fields for image completion has also proven successful in texture
synthesis [108, 45, 164]. In this context, MRF methods model a texture based on
its local and stationary properties. A new texture is generated pixel by pixel in such
a way that these two properties are preserved in a small set of spatially neighboring
pixels which characterizes every pixel on the texture image. The MRF property of
textures requires that locality and stationarity be satisfied. Locality implies that the
color at a pixel’s location is dependent only on a neighborhood of pixels around it,
while stationarity means that this dependency is independent of the actual location
of the pixel.

Global synthesis methods have usually employed matching of statistical properties
like histograms and wavelet coefficients between input and output textures [116].
There has also been previous work that makes use of optimization over MRFs fo;
synthesis. Paget and Longstaff [108] use local annealing over a multi-scale MRF for
texture synthesis. They consider only pixel-to-pixel interactions. Recently, Kwatra
et al. [80] propose an approach that is based on optimization of texture quality with
respect to a similarity metric. This similarity metric is motivated by the MRF-
based similarity criterion used in most local pixel-based synthesis techniques. The
authors merge these locally defined similarity measures into a global metric that can
be used to jointly optimize the entire texture. This global metric allows modeling
of interactions between large neighborhoods; nevertheless, it can be optimized using
a simple iterative algorithm with reasonable computational cost. Figure 4.7 shows

comparisons of their technique with other existing techniques.
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IMAGE QUILTING GRAPH-CUTS TEXTURE-QPTIMIZATION

FIGURE 4.7. Comparison of various other texture synthesis from [80]

5.2. Image Inpainting

Inpainting, also referred as dis-occlusion and retouching (artistic synonym for
”image interpolation”), is a well-known technique in the context of image and art
restoration, where paint losses are filled up to the level of the surrounding paint and
then colored to match in an undetectable way. Figure 4.8 shows an example of man-
ual photo restoration. Bertalmio et al. [13], were the pioneers in digital inpainting.

Since then, a wide number of applications emerge, including the scratch removal in

FIGURE 4.8. Example of manual inpainting. Detail of ”Cornelia, Mothe of
the Gracchi” by J. Suvee (Louvre). Taken from Emile-Male ” The Restorer’s
Handbook of easel painting.”
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4.5 COMPUTER VISION APPLICATIONS USING MRFS

digital photos and old films, object removal (superimposed text, logos, occluding ob-
jects), zooming and super-resolution, etc. Some examples of digital inpainting taken

from [13], are shown in Figure 4.9.

(b)

FIGURE 4.9. Examples of digital inpainting from [13].

The inpainting problem is clearly ill-posed. Any method must therefore use some
prior assumptions about the unknown missing values and their relations with the
known values near the hole.

Most existing approaches (see e.g. [136] for a review) use a generic prior on images
(e.g. high smoothness, low total variation or low curvature) and use an optimization to
find the most probable completion given the prior model and the immediate boundary
of the hole. Thus a hole is estimated as the most "smooth” continuation of the local
structure of the image, where smoothness can be defined in different ways. Bertalmio
et al. [13)], inspired by professionals art restorators, propagate gradient direction and
gray values from surrounding neighborhood into the hole. They formulate the process
elegantly in a PDE framework, and solve it using fast iterative solvers.

Chan and Shen [24] presented another way to define a smooth filling-in. Their

method minimized the total variation in the result image.. As mentioned in [6],
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4.5 COMPUTER VISION APPLICATIONS USING MRFS

such approach handles noise very well, but tends to complete straight lines. Filling-
in of holes is also performed by texture synthesis algorithms where it is assumed
that the missing data is part of a (usually homogeneous) texture. The region can
be filled-in by a texture synthesis engine, e.g., [19, 45, 116, 44]. The texture-
synthesis approach can process large holes, and fill them with rich structures learned
from similar regions in the image. Two applications of texture synthesis to image
inpainting are shown in [69], there Hirani and Toksuka fill in a selected texture by
combining spectral and spatial information, achieving impressive results. Criminisi
et al. [31] gsed an exampler-based approach, adapting the synthesis method of Efros
and Leung [45] to image inpainting. Recent works combine texture synthesis with
inpainting of structure [14].

As indicated in [85] , the above approaches can be seen as local inpainting al-
gorithms and despite their impressive results they must by definition give identical
completions when the immediate boundary of the hole is identical. This issue is
depicted in Figure 4.10, the first row shows two images, a square and a circle, each
with a missing square region on the bottom-right part. Since the small neighborhoods
around the holes are identical 3, local inpainting algorithms give similar results. How-
ever, we know that the two images are different. Figures 4.10(c),(d) show the results
of the local algorithm in [13]. While the completions are very reasonable given the
local information, they do not appear perceptually correct. This gives evidence that

our visual system is taking more global information into account.

5.3. Surface Inpainting

In 3D geometry processing, we can have an analogous inpainting tasks, as digital
representations of real-world objects often contain holes, due to problems during
data acquisition or as a consequence of interactive modeling operations. This is an
area of ongoing research. For example, Verdera et al. [163] present an algorithm for

filling-in surfaces holes based on geometric partial differential equations, derived from

3Up to numerical error, the gradients and gray levels in the immediate boundary of the hole, are
identical.
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D D
c d

FIGURE 4.10. An example of the local inpainting problem from [85].

a-b) Two images with holes. In both cases the boundaries of the holes are

identical thus local inpainting algorithms would complete them identically.

c-d) The results of the algorithm in [13] run with a single resolution. As can

be expected from a local algorithm, the completion is identical.
inpainting algorithms, that smoothly continue the surface into the hole. Recently,
Bendels et al. [11] propose a fragment-based surface inpainting method to fill holes in
point set surfaces by extrapolating or restoring the basic and detail geometry. This
is motivated by the fact that real life objects often exhibit a high degree of coherence
in the sense that for missing parts one can find similar regions on the object. The
method analyzes the neighborhood of a hole, and identifies and copies into the hole
region appropriate local neighborhood patches represented in local frames (the 3D
analogue to what is called a fragment in image processing). By finding best matches

hierarchically on several scales, the hole is filled in conformance with the context with

respect to all considered scales. Figure 4.11 shows an example.

original

“reconstruction
FIGURE 4.11. An example of a reconstruction from [11]. The hole (indicated

in red on the right) is filled hierarchically, leading to the visually plausible
reconstruction (left).
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CHAPTER 5

Statistics on Visual and Partial Range

Data for Scene Recovery

When building a 3D model of a real environment, suitable sensors to densely cover the
environment are required. Visual sensors are the preferred alternative for capturing
the photometric characteristics of the scene and they are fast. Conversely, range
sensors capture geometric data directly, but acquiring dense range maps is often
impractical.

This chapter details our statistical learning method for depth recovery. Specifi-
cally, we estimate dense or high resolution range maps of indoor environments using
only intensity images and sparse partial depth information. Markov Random Field
(MRF) models are proposed as a viable stochastic model for the spatial distribution
of intensity and range data. This model is trained using the (local) relationships
between the observed range data and the variations in the intensity images and then
used to compute unknown depth values. Two techniques for the MAP-MRF estima-
tion are described, the first one based on a non-parametric sampling strategy and the
second one by using the belief propagation (BP) algorithm. Their advantages as well
as their limitations are highlighted.



5.1 INTRODUCTION

1. Introduction

The appeal of Markov random field models for range estimation comes from their
explicit ability to model interactions and relationships between neighboring parts of
the data space (a background on MRF models was given in Chapter 4).

For the particular problem of estimating dense range maps from intensity images
and partial range data, we first need to consider how the relationships between the
intensity information and the partial range can give us knowledge about the total
underlying geometry of the scene. To this end, we introduce a definition of augmented
vozels ' which contain intensity (either from grayscale or color images) and range
information (where the range can initially be unknown). We are interested only in
the set of such augmented voxels in which one augmented voxel lies on each ray that
intersects each intensity pixel of the input intensity image, thus giving us registered

range and intensity images (see Figure 5.1).

Augmented
voxel

Known intensity
. Known range

FIGURE 5.1. Definition of an augmented voxel.

Let us now illustrate how the modeling of the relationships between neighboring
augmented voxels can help in the reconstruction process by using a very simple scene
composed of only one object and a uniform background (see Figure 5.2.a). The
associated (partial) range image is shown in Figure 5.2.b. By considering the known

n this thesis, we define a voxel as a location containing only intensity information, whereas an
augmented voxel is a location that may contain both intensity and range information.
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()

FIGURE 5.2. A very simple (synthetic) example of the range estimation
process. (a) The intensity image showing an object and a background, (b)
the associated (incomplete) range map, and (c) how local relationships are
helpful for range inference by considering the neighborhoods with the most
similar content in range and intensity (squares).

augmented voxels (i.e., intensity pixel locations with already assigned range) coming
from part of the object and background, we can make an intelligent guess regarding
the content of the rest of the object and background shapes. Markov random fields let
us mode] the relationship between intensity and observed range explicitly, and make
it similar to or, when appropriate, different from, relationships among other observed

data (see Figure 5.2.c). This feature also makes Markov random fields well suited for
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modeling spatial data, i.e. data that come from different spatial locations. A key issue
in modeling spatial data is determining how best to describe the relationship between
several data points taken in close proximity to each other, and how it differs from the
case in which data points are taken at a distance. In our example, Markov random
fields could model the similarity between the intensity and range data at different
positions and select those with a high probability (shown by the little squares in
Figure 5.2.c) of being a good fit for the missing region to fill. |

1.1. On the statistics of image structure

The complexity of natural images suggests the development of complex methods
in vision science. However, it has been demonstrated (see related work on Chapter
3) that the visual environment is constrained by a large number of statistical reg-
ularities in addition to the valuable information available in the images about the
scene (e.g., shading, specularities, contour shape, color gradients, texture gradients,
binocular disparity, optical flow, etc.). In this thesis, we go beyond image statistics
to understand how the statistical relationships between image properties (intensity
data) and range (3D data) can be used to make accurate inferences about the scene
geormetry.

One of the most important constraints for recovering surface properties is that
the physical processes underlying image formation are typically smooth: depth and
orientation of surfaces are mostly continuous and so are reflectance and illumination.
The smoothness property is captured well by standard regularization [15]. Surfaces
and their properties, however, are not always smooth: they are smooth almost ev-
erywhere, but not at discontinuities. Lines of discontinuity are themselves usually
continuous, relatively smooth, nonintersecting curves.

Thus the detection of discontinuities is a critical issue as they usually represent
the most important locations in a scene; for instance, depth discontinuities often
correspond to boundaries of an object or of a part. In this context, intensity values

of pixel locations contained in a neighborhood, provide constraints on surface shape
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that can be used as statistical relationships between the available range and intensity
images in the range estimation process.

The two main constraints provided by intensity values in an image are that: (1)
the surface is smooth along the cluster of pixel locations that have intensity values
that are smooth, and (2) a cluster containing pixel locations with different intensity
values indicates a depth discontinuity. Figure 5.3 shows examples of these two types
of constraints. The left image is the intensity image and the right, its corresponding
range map. Areas indicated by the red or dark squares in the intensity image show
no change in intensity. This contributes knowledge about surface smoothness in the
range domain. On the other hand, when variations in intensity exist, as indicated by
the areas in the blue or light squares, there is a high probability that there exist depth
discontinuities. The change in depth within the objects in a scene is usually gradual,
and hence, depth can be said to exhibit a local dependency. However, detecting
discontinuities directly using the intensity values of an image is often not sufficient.
Fortunately, line (or edge) features, also known as intensity edges, which typically
correspond to boundaries of homogeneous regions in an image, also provide important

geometric information about the 3-D structure of objects in the scene. In the following

(a) Intensity image (b) Range image

FIGURE 5.3. Two examples of knowledge that intensity data provides
about surfaces. The areas indicated by the red squares provides knowledge
about surface smoothness and the areas in blue squares give knowledge about
variations in depth.
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section we will give a short taxonomy of the types of geometric phenomena that cause

intensity edges.

1.2. Central role of intensity edges

Intensity edges can be used as the primary cue in guiding the search for discon-
tinuities in other physical processes (for example surface depth, surface orientation,
texture, shadows, color, specularities) [113]. The critical role of intensity edges in
artificial -and probably also biological - vision is intuitively clear: changes in surface
properties (depth, orientation, material, texture) usually produce large gradients in-
the image intensity.

Assuming a simple imaging model (e.g., Lambertian), large intensity gradients in

the image can be caused by six physical phenomena [113]:

e Occluding edges (extremal edges and blades);
e folds; |

e shadow edges;

e surface markings and

e specular edges.

Intensity edges are detected quite reliably by the Canny edge detector (22].
Figure 5.4(a) shows the edges detected from the intensity image of Figure 5.3. In
(b) the edges from the range image are depicted. It can be observed that the edges
detected from the range image, which reflect depth discontinuities, are contained in
the intensity edges. Because of the constraints of image formation discussed earlier,
the correct depth discontinuities will, in almost all cases, correspond precisely to the
locations of intensity edges. Our range synthesis method exploits this by restricting
the range estimation process according to intensity edges, thus assuring the smooth-
ness and continuity of discontinuities. This process will be described in detail later.

There are some cases in which discontinuities will not occur at intensity edges,
for instance, objects that blend in with their background. Although this situation

occurs rarely in natural scenes, it is usually present due to camera underexposure or
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(a) Intensity edges (b) Range edges

FIGURE 5.4. [Edges detected from intensity (a) and range (b) images.
Edges help in detecting depth discontinuities, which is a critical step in the
reconstruction process.

saturation, where some locations of the objects may blend in with the background.
Moreover, there may be false edges (i.e., edges that do not represent a discontinuity),
such as those coming from texture-like regions or even shadows. However, as will be
demonstrated in our experiments, this is not critical for reconstruction since range
data inside the neighborhoods that are very close to these texture-like edges represent

the same type of smooth surface (see Figure 5.5).

(a) Intensity image (b) Range image

FIGURE 5.5. Figure shows that changes in intensity coming from texture-
like regions do not present a problem in the reconstruction process since very
close neighborhoods represent the same type of smooth surface.

Also, edges coming from shadows play an important role in the perception of 3D

surface geometry [23, 101, 33]. Our intuition tell us that it is the shapes of the
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intrinsic shadow boundaries that directly provide information about surface shape
and illumination. But the mathematical modeling of realistic shadows or any other
shape-related clues is very complex. Work in the literature has to make assumptions
regarding the type of surfaces in the scene and lighting conditions, so that simple
mathematical models can be defined. When learning relationships between intensity
and shape, special attention has to be paid to occlusions and boundaries. Not all
intensity values in an image are directly related to shape variations. For example,
an image can be decomposed into paint (reflectance) and shading variations (surface
normal) [60]. Shading variations are directly produced by the shape, however, the
paint will be related to changes in the reflectance function of the material and not
directly related to the shape.

However, the method we propose, learns the relationships from the intensity
and range images directly without having to hypothesize surface smoothness or re-
flectance properties, that may be inappropriate to a particular environment. Thus,
our approach does not intent to implicitly obtain a general algorithm, but to use the
local statistical relationships between the intensity and the input range directly from

the observed data.

2. The MRF Model for Range Synthesis

We want to solve the following problem: How to infer a dense range map from
an intensity image and a limited amount of initial range data. In the rest of this
dissertation we refer to this problem as the range estimation or range synthesis prob-
lem. We made the following assumptions: (1) the initial range data and intensity
data is already registered 2, and (2) the range data is clumped into at least some
sets of mutually-adjacent voxels as opposed to scattered measurements far from one-
another (the range data sampling strategies with experimental results are discussed

in Chapter 6.).

2The registration process depends on the application, in our case, we are interested in the mobile
robot environment modeling and the registration process is described in detail in Section 3.4 of
Chapter 7.
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The solution of the range estimation problem can be defined as the minimum of an
energy function. The first idea on which our approach is based, is that an image can be
modeled as a sample function of a stochastic process based on the Gibbs distribution,
that is, as a Markov Random Field (MRF) [63]. We consider range estimation a
task of assigning a depth value to each pixel of the input image that best describes
its surrounding structure using the already available intensity and range data. The
MRF model has the ability to capture the characteristics of this input data and then
use them to learn a marginal probability distribution that is to be used to infer data
in regions with missing range values. This model uses multi-scale representations of
the intensity and range images to construct a probabilistic algorithm that efficiently
estimate the missing range. Statistical relationships are learned directly from the
input data, without having to make any assumptions regarding lighting conditions
of specific nature, location or environment type that would be inappropiate to a
particular scene.

As was previously mentioned, we focus on our development of a set of augmented
voxels V that contain intensity and range information. Thus, V = (I,R), where I is
the matrix of known pixel intensities, and R denotes the matrix of pixel depths (see
Figure 5.1). Let Z,, = (z,y) : 1 < z,y < m denote the m integer lattice (over which
the images are described); then I = {I,,,}, (z,y) € Z,,, denotes the gray levels of the
input image, and R = {R;,}, (z,y) € Z,, denotes the depth values.

2.1. The MRF Model

The range estimation problem can be posed as a labeling problem. A labeling is
specified in terms of a set of sites and a set of labels. In our case, sites represent the
pixel intensities in the matrix I and the labels represent the depth values in R. Let S
index a discrete set of M sites S = {5y, sy, ..., 5 M}, and L be the set of corresponding
labels L = {ly, 15, ...,Iar}, where each I; takes a depth value. The inter-relationship
between sites and labels define the neighborhood system N = {N, |Vs € S}, where
N is the set of neighbors of s (i.e., the neighborhood of s), such that (1) s& Ny, and
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N

FIGURE 5.6. A neighborhood system definition.

(2) s € N, <= r € N, (see Figure 5.6). Each site s; is associated with a random
variable F;. Formally, let F = {F, ..., i)y} be a random field defined on S, in which
a random variable F; takes a value f; in £. A realization f = fi, ..., far, is called a
configuration of F, corresponding to a realization of the field. The random variables
F defined on S are related to one another via the neighborhood system N

F is said to be an MRF on S with respect to N if and only if the following two

conditions are satisfied [66]:

P(f) > 0 (positivity), and
P(fi| fs—ty) = P(fi | fv,) (Markovianity).

where § — {i} is the set difference, fs_;} denotes the set of labels at the sites in
S —{i} and fy; = {f] | € N;} stands for the set of labels at the sites neighboring .
The Markovianity condition describes the local characteristics of F. The depth value
(label) at a site is dependent only on the augmented voxels (containing intensity
and/or range) at the neighboring sites. In other words, only neighboring augmented
voxels have direct interactions on each other.

The choice of N together with the conditional probability distribution of P(f; |
fs—gi}), provides a powerful mechanism for modeling spatial continuity and other

scene features. On one hand, we choose to model a neighborhood N; as a square mask
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of size n X n centered at pixel location i, where only those augmented voxels with
already assigned intensity and range values are considered in the synthesis process.
Thus, the neighborhood is in fact, of an arbitrary shape depending on the current
available information on each of its augmented voxels. On the other hand, as it was
already mentioned in Chapter 4, calculating the conditional probabilities in an explicit
form to infer the exact maximum a posteriori (MAP) in MRF models is intractable.
We cannot efficiently represent or determine all the possible combinations between
pixels with its associated neighborhoods. Various techniques exist for approximating
the MAP estimate, such as Markov Chain Monte Carlo (MCMC), iterated conditional
modes (ICM), maximizer of posterior marginals (MPM), etc. Refer to Chapter 4 for
a more complete list of the existing methods and their descriptions.

In our research, we avoid the computational expense of sampling from a, probability
distribution and take two different approaches for the MAP-MRF estimation. The
first approach is based on a non-parametric sampling strategy that is easy to im-
plement, generates good results and is fast to execute. The second approach, which
is an extension of the first, uses the belief propagation (BP) algorithm to compute
marginal probabilities. This approach improves the synthesized results of those of
the first approach, at the expense of additional computation.

In the following sections, we describe each of these approaches and compare their

results in Chapter 6, where our experimental results are shown.

3. Non-parametric Sampling and MAP-MRF estimation

To compute the MAP estimate for a depth value R; of the augmented voxel V;, one
first needs to construct an approximation to the conditional probability distribution
P(f; | fn,) and then sample from it. We could use the parameters themselves,
estimated from the given input data or samples (neighborhoods from input intensity
and range data), as an approximation to maximum likelihood sampling, however
this is hindered by the need to compute the partition function Z which is usually

computationally intractable (refer to Chapter 4, Section 3.3). Instead, for each new
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depth value R; € R to estimate, the samples, which correspond to the neighborhood
system for the voxel location 7, \;, are queried and the distribution of R; is constructed
as a histogram of all possible values that occurred in the samples. A is a subset of
the real infinite set of augmented voxels, denoted by N;eq.

Based on our MRF model, we assume that the depth value R; depends only of

its immediate neighbors in intensity and range, i.e. of N;. If we define a set
[(R;) = {N* C Nrear : || N; — N* ||= 0} (5.1)

containing all occurrences of IN; in N,.q, then the conditional probability distribu-
tion of R; can be estimated with a histogram based on the depth values of voxels
representing each N* in I'( R;).

Unfortunately, we are only given V, i.e., a finite sample from N,.,. Thus, there
might not be any neigbhorhood containing exactly the same characteristics in inten-
sity and range as N; in V. Thus, we must use a heuristic which let us find a plausible
I"(R;) =~ T'(R;) to sample from.

Let A, be a local neighborhood system for the augmented voxel p, that comprises

nearby neighborhoods within a radius r,
A, = {A, € N | distance(p, q) < r} (5.2)

where R, is a known depth value. In other words, the local neighborhood system
contains all the neighborhoods which center voxels have already assigned labels (depth
values), located at a maximum distance r from the location of voxel p. This set will
conform the training/sample data for that particular voxel p.

In the non-parametric approach, a depth value R, from the augmented voxel Ve
with neighborhood N, is synthesized by first selecting the most similar neighborhood
(Npest) to Ny, i.e., the closest match to the region being filled in,

Npest = argmin || N, — A4, |, (5.3)
Ag€ Ay
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Second, all the neighborhoods A, in A4, that are similar (within a threshold ) to this
Niess are included in IV(R,), as follows

I Np = Ag |< (1+€) || Ny = Nest || (5.4)

The similarity measure || . || between two generic neighborhoods N, and Nj is de-

scribed over the partial data in the two neighborhoods and is calculated as follows,

| Na=Nyll= > Glo,5—to)y/UIg — 122 + (RS — RY?,  (5.5)

VENa,Np

where ¥ represents the augmented voxel located at the center of the neighborhoods
N, and N, ¥ is a neighboring voxel of 7. I* and R® are the intensity and range
values of the neighboring augmented voxels of the depth value R, € @ to synthesize,
and I® and R’ are the intensity and range values to be compared with and in which,
the center voxel vy has already assigned a depth value. G is a 2-D Gaussian kernel
applied to each neighborhood, such that those voxels near the center are given more
weight than those at the edge of the window.

We can now construct a histogram from the depth values R, in the center of each
neighborhood in I''(R,), and randomly sample from it. R, is then used to specify R,.
For each successive augmented voxel this approximates the maximum a posteriori
estimate.

Experimental results using this non-parametric sampling approach are shown
in Chapter 6. While it seems sufficient to infer depth values by learning the local
relationships among the nodes in a local neighborhood system around the voxel whose
depth value is to be inferred, yet, there are some issues. In particular, when the local
information does not capture correctly the global, smooth variations in depth, the
reconstructions may lead to piecewise constant (i.e., fronto-parallel) surfaces along
surfaces like walls. Consider imaging a wall in which thick stripes of range data are
missing. If we only observe the local neighborhoods on each side of the missing range,
we will tend to get estimates of constant depth, because there were no observations

of the wall sloping away at the desired depths. An example of this is shown in
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I

(a) Input range image (b) Synthesized range (c) Ground thruth range

FIGURE 5.7. An example illustrating the problem of using the non-
parametric sampling method. The synthesized range image (b) shows an
artifact of sudden depth variation (indicated by the arrows).

Figure 5.7: in (a) is the input range image, (b) is the synthesized range after using
the non-parametric sampling approach, and (c) the ground truth range. In this
prototypical case, we can see a difficulty: An artifact of sudden depth variation (the
regions indicated by the arrows in (b)) is apparent (marked with an arrow). As the
synthesis process advances from the borders to the interior, only local information
is considered at each time, in consequence, when they get to the meeting point (the
middle in this case), their depth values are not showing a smooth transition, instead a
sudden change in their depth values is obtained. Therefore, a mechanism to propagate
information from all sides of the area to be filled in is needed. Thus, we do not just
need to model the relationships between local regions of images and scenes, but also
between neighboring local scene regions. This can be done by propagating the current

initial estimates by means of the belief propagation algorithm (introduced in Section 4
of Chapter 4).

4. MAP-MRF using Belief Propagation (BP)

In order to propagate evidence, we use a pairwise Markov network (see Section 4.1
of Chapter 4). In our case, observation nodes represent image patches where some
of the voxels may contain both intensity and range information, or only intensity

information; the hidden nodes are the depth values to be estimated of the center voxels
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(a) Input intensity (b) Input range

FIGURE 5.8. Input data used to illustrate the MAP-MRF using BP.

of the image patches of the observable nodes. BP efficiently estimates Bayesian beliefs
in the MRF network by iteratively passing messages between neighboring nodes. We
illustrate this by using an example. Figure 5.8 shows the input intensity and range
images, where white areas represent unknown range values. The pairwise Markov
network for the range estimation problem is depicted in Figure 5.9(b), where the
observation node y; is a neighborhood in intensity centered at voxel location 4 (see
(a)), and the hidden nodes z; represent the depth values to be estimated (white areas
in (c)), but also hidden nodes contain the already available range data (as image

patches), whose beliefs remain fixed at all times; a subset of these available range is
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FIGURE 5.9. Pairwise Markov network for the range estimation problem.
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5.4 MAP-MRF USING BELIEF PROPAGATION (BP)

used to locally train the network and compute compatibilities between observation

and hidden nodes and the rest is used for propagating the beliefs in and out globally.

4.1. Learning the Compatibility Functions

The training pairs of intensity image patches with its corresponding range image
patches are used to learn the compatibility functions. However, not all available
(observed) pairs of intensity and range image patches are used as training pairs. We
choose only a local set of image pairs that are located up to a distance d from the
voxel location of the depth value to be estimated. This reflects our heuristics about
how the intensity values locally provide knowledge about the type of surface that
intensity value belongs to.

As in the method described elegantly in [59], we use the overlapping information
from the intensity image patches themselves, to estimate the compatibilities U(z;, k)
between neighbors. Let k and j be two neighboring intensity image patches. Let, dé.k
be a vector of pixels of the lth possible candidate for image patch z, which lie in
the overlap region with patch j. Likewise, let di; be the values of the pixels (in
correspondence with those of dé. x) of mth candidate for patch z; which overlap patch
k (see Figure 5.10). We say that image candidates zi (candidate ! at node k) and
z7" are compatible with each other if the pixels in their region of overlap agree. We
assume that the image and training samples differ from the ”ideal” training samples

by Gaussian noise of covariance o; and o,, respectively. Those covariance values are

dy;

FIGURE 5.10. The compatibility between range image patch candidates.
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parameters of the algorithm. Then, the compatibility matrix between range nodes k

and j are defined as follows:
\Il(xi, J:;") = exp_ldék_dmlz/%g. (5.6)

The rows and columns of the compatibility matrix ®(z, ") are indexed by [ and m,
the range image candidates at each node, at nodes j and k.

We say that a range image patch candidate z! is compatible with an observed
intensity image patch yo if the intensity image patch y, associated with the range
image patch candidate z¢, in the training database matches yo. Since it will not exactly

match, we must again assume "noisy” training data and define the compatibility
B(ah, yi) = exp™hvel?/20%, (5.7)

4.2, The MAP estimate

The maximum a posteriori (MAP) range image patch for node 3 is:

TimMap = arg max q)(m,,yl) H Mji(zi)- (58)
X; JEN()

where N (i) are all node neighbors of node i, and Mj; is the message from node j to

node ¢ and is computed as follows:

M;j(z;) = qu’(xi,xj)@(wi, Vi) H Mii(z;) (5.9)
i keN()\{s}

where Z is the normalization constant.

Resuming, the algorithm for the range estimation problem using the MRF-BP
framework is as follows:

Currently, the main drawback of using the BP-based method is the computational
time. The BP-based algorithm runs in O(nk?T) time, where n is the number of
pixels to be synthesized, k is the number of possible labels for each pixel and T is
the number of iterations. It takes O(k?) time to compute each message and there

are O(n) messages per iteration. The NP sampling method runs in O(Mpn) time,
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5.5 RANGE SYNTHESIS ORDERING

i) Divide the input registered images, i.e., the intensity and the (incomplete)
range images, into small patches, which form the sets of z;’s and y;’s. The
areas of unknown depth values, i.e., €2, is divided in such a way that each
voxel with missing depth has its own associated intensity image patch and
available range patch.

ii) For each intensity image patch y; in €, find the & closest Yz; s from the lo-
cal training set located up to distance d from that voxel location. The co-
rresponding z;’s are the candidates for that patch.

iii) Calculate the compatibility function ®(z;,y;) according to Eq. 5.7.

iv) For each pair of neighboring input patches, calculate the k x k compatibi-
lity function ¥(z;, z;) according to Eq. 5.6.

v) Estimate the MRF-MAP solution using BP.

vi) Assign the depth value of the center pixel of each estimated maximum pro-
bability patch z;pap to the corresponding pixel in the range image patch.

where M is the number of neighborhoods to be compared with, p is the number of
pixels that conform the neighborhood of each pixel (e.g., 5 x 5 = 25 pixels). It usually
takes around 30 seconds for an image of size 128 x 128 in a 3 GHz Pentium 4 with 1

Gigabyte of RAM.

Aq critical issue on the range estimation process is the order in which the depth
values are synthesized, we described our approach for the range synthesis ordering
in the next section. Here, we just mention that as messages are propagated in the
Markov network, we have set a message-passing rule that are essentially constrained

on the edge information from the intensity images.

5. Range Synthesis Ordering

In standard MRF methods, the assumption is that the field is updated in either
stochastically or in parallel according to an iterative schedule. In practice, several
authors have considered more limited update schedules. In the presented work, a
single update is done at each unknown measurement. Thus, a depth value R(z,y) is

synthesized sequentially (although this does not preclude parallel implementations).
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Input Correct result

Information—driven ordering

FIGURE 5.11. Comparing the onion-peel and information-based orderings.

Critical to the quality of the reconstruction is the order in which a voxel, whose
range value is to be synthesized, is selected. An ordering that is commonly used,
is the well-known onion-peel ordering. This ordering uses a predetermined schedule
over space, essentially walking a spiral from the boundary of a region towards the
center. The main problem with this ordering is the strong dependence from the
previous assigned voxel. A more suitable ordering is based on the amount of available
information in the voxel’s neighborhood, such that voxels containing the maximum
number of neighboring augmented voxels are synthesized first. Figure 5.11 shows a
simulated example that compares the onion-peel ordering with the information-driven

ordering proposed in this thesis.
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5.5 RANGE SYNTHESIS ORDERING

It was also observed that the reconstruction across depth discontinuities is of-
ten problematic as there is comparatively little constraint for probabilistic inference
at these locations. Such regions are often identified with edges in the intensity im-
ages and with linear structures in the range maps. These linear structures are called
isophotes, which in the range domain are defined as all normals forming same angle

with direction to eye (see Figure 5.12). Thus, in the reconstruction sequence, syn-

n{u,v)

Isophote

x{u,v)

FIGURE 5.12. Isophote on a surface. This linear structure is formed such
that all normals on it, form the same angle with direction to the eye.

thesis of voxels close to intensity discontinuities (indicated by edges) and/or depth
discontinuities (indicated by the isophotes) are deferred as much as possible.
Summarizing, the reconstruction sequence synthesize first the depth values of
those voxels for which we can make the most reliable inferences based on essentially
two factors: 1) the number of neighboring augmented voxels (i.e. locations with al-
ready assigned range and intensity) and, 2) the existence of intensity and/or depth
discontinuities (i.e. if an edge or a linear structure exists). Priority values are com-
puted based on these two factors and are assigned to each voxel for reconstruction,
such that as we reconstruct, the voxel with the maximum priority value is selected.
If more than one voxel shares the same priority value, then the selection is done

randomly.
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5.5 RANGE SYNTHESIS ORDERING

5.1. Computing the Priority Values

The reconstruction sequence depends entirely on the priority values that are as-
signed to each voxel on the boundary of the region to be synthesized. The priority
computation is biased toward those voxels that are surrounded by high-confidence
voxels, that are not on an isophote line, and whose neighborhood does not represent
an intensity discontinuity, in other words, whose neighborhood does not have any
edges on it. Furthermore, edge information is used to defer the synthesis of those
voxels that are on an edge to the very end. When using the BP-based method, we

essentially use the following message-passing rule:

Edge-constraint rule: A node can send a message to a neighboring node once

it has received messages from all its other neighbors except those edge-labeled nodes.

We start by giving some basic notations to explain how the methods we present
reconstruct the unknown depth values (notation similar to that used in the inpainting

literature [31]).

Intensity

Aered intensity

and range data

=1+ Rk
FIGURE 5.13. The notation diagram.

Figure 5.13 shows the notation diagram. The region to be synthesized, i.e., the

target region is indicated by Q = {w; | ¢ € A}, where w; = R(z;,;) is the unknown
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5.5 RANGE SYNTHESIS ORDERING

depth value at location (z;,y;) and A C Z,, is the set of subscripts for the unknown
range data. The contour of {2 is denoted by 6Q. The input intensity (I) and the
known range values (Ry) together form the source region, and is indicated by ¢. This
region ¢ is used to calculate the statistics between the intensity and the input range
for reconstruction, as it was described in Section 3. Let Vp be an augmented voxel
with unknown range located at the boundary §§) and N, be its neighborhood, which
is a n X n square window centered at V.

For all voxels V;, € 62, their priority value is computed (which is going to deter-

mine the order in which they are filled) as follows:
P(V,) = C(V;)D(Vy) + 1/(1 + E). (5.10)

where £ is the number of edges found in the neighborhood or image patch Np; C(Vp)
is the confidence term, and D(V,) the data term. The confidence term is defined as

follows:
> ien,ne C(Vp)
| Ny ’

where | V| is the total number of voxels (augmented or not) in N,. At the beginning,

C(Vp) = (5.11)

the confidence of each voxel is assigned 1 if its intensity and range values are filled
and 0 if the range value is unknown. This confidence term C(V,) may be thought
of as a measurement of the amount of reliable information surrounding the voxel V},.
Thus, as we reconstruct, those voxels whose neighborhood has more of their voxels
already filled, are synthesized first, with additional preference given to voxels that
were synthesized early on.
The data term D(V}) is computed using the available range data in the neighborhood

N;, as follows (see Figure 5.14):

(67

PV =/t

(5.12)

where « is a normalization factor (e.g. a = 255, in a typical gray-level image), n,
is a unit vector orthogonal to the boundary 62 at voxel Vp. This term reduces the

priority of a voxel in whose neighborhood an isophote ”flows” into, thus altering the
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FIGURE 5.14. The diagram shows how priority values are computed for
each voxel V, on 6§2. Given the neighboorhood of Vp, mp is the normal to
the contour 452 of the target region € and Vt is the isophote (direction and
range) at voxel location p.

sequencing of the extrapolation process. This term plays an important role in the
algorithm because it prevents the synthesis of voxels lying near a depth discontinuity.
Note, however, that it does not explicitly alter the probability distribution associated
the voxel (except by deferring its evaluation), and thus has only limited risk for the
theoretical correctness of the algorithm.

Once all priority values of each voxel on 69 have been computed, we find the
voxel with the highest priority. We then use our MRF model to synthesize its depth
value. After a voxel has been augmented (i.e. it has intensity and range data), the
confidence of the C(V,) = C(V}), i.e. it is assigned the confidence of the augmented
voxel which most resemble the neighborhood of V, (see Eq. 5.11).

6. Implementation Issues

6.1. The searching space

The searching space depends on the parameter d, i.e., the distance from the voxel
to be synthesized p to the farthest neighboring voxel, which neighborhood is going
to be compared to. Thus, if d is equal to the size of the image, then N, is cbmpared
with all possible neighborhoods in the image, which would be a time consuming

'process. The exhaustive search takes O(n?) for each voxel to be synthesized, where
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n is the total number of known augmented voxels whose neighborhoods are being
compared to. Therefore, d should be of a reasonable size, not to big not to small,
so that appropriate candidates, which are similar enough in their neighborhoods, can
be found. However, if the searching space must be large for whatever reason, the
searching time can be reduced by indexing the n augmented voxels using a kd-tree

structure [12], so that the new computational time is O(logn).

6.2. Neighborhood size

Neighborhoods should be as small as possible to minimize processing but should
be large enough that features are not missed. Additionally, if neighborhoods are too
large, small features are more easily missed in the processing phase. In other words,
ideal neighborhoods would include enough voxels to easily distinguish variations in

surface structure but be no larger.

6.3. Similarity between neighborhoods

There is also the question of how ”similarity” between two neighborhoods is mea-
sured. This is partly determined by the model through neighborhood size. However,
it is also determined by how we measure the classification probability. We determine
a good fit probabilistically by comparing the set of statistics obtainable from the
available data (see Section 3). The consequence of this, however, is that when the
MRF model is under trained, the statistics will not change rapidly as the similarity
between the neighborhood of the voxel to synthesize and the neighborhood from the
training data diminishes. Therefore neighborhoods which are not all that similar
could be given a high similarity measure. On the other hand, if the MRF model is
overtrained, then the statistics obtainable from the training data would have a high

entropy, and again dissimilar neighborhoods could be given a high similarity measure.
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CHAPTER 6

Experimental Results on Alternative

Sampling Strategies

In this chapter we show experimental results conducted on data acquired in a real
environment to evaluate both the non-parametric (NP) sampling method and the
belief propagation (BP) technique described in Chapter 5. We use ground truth data
from two widely available databases containing sets of registered intensity and range
data. Different sampling strategies on the range data were tested to evaluate our

methods. We demonstrate the versatility of the methods as well as its limitations.

1. Experimental Setup

In our experimental setup, intensity images are input directly to our algorithm,
while the complete range data provides ground truth and a limited subset, selected
with different sampling strategies, is used to simulate sparse readings and to provide
input to the algorithm. Having ground truth data allow us to compare the quality of
the reconstruction with what is actually in the scene.

Experiments are conducted on data acquired on a number of real environments.
Both intensity (achromatic and color) images and real range data files, already regis-

tered, are obtained from two databases available on the web. The first database, the
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USF range image database ! from the CESAR lab at Oak Ridge National Laboratory,
provides real intensity (reflectance) and range images of indoor scenes acquired by an
Odetics laser range finder mounted on a mobile platform. The second database, the
Middlebury stereo database ? [131], provides color images with complex geometry
and pixel-accurate ground-truth disparity data.

The first dabase contains images of size 128 x 128 pixels represented by 256 grey
levels and the second database contains color images of size 450 x 375 pixels. The
neighborhood systems used in all experiments were windows of 5 x 5 pixels, unless
otherwise indicated. The Canny edge detector[22] is used to extract the edges of the
input intensity images and the smoothing parameter is set to 0.8. The parameter d,
i.e., the maximum distance between two neighborhoods’ center voxels, which are to
be compared to find the best matches, is set to 10 pixels. For the case of the BP-based
method, the number of iterations were set to 50. We have conducted many experi-
ments on the number of iterations, and observed that below 50 iterations the results
are poor, while iterations above this number do not reflect much of improvement.

We consider several strategies for sampling the range data. In general, the sam-
pling of the range data is assumed to be clumped into at least some sets of mutually-
adjacent voxels as opposed to scattered measurements far from one-another. The
sampling strategies presented in the next sections are not necessarily identical to
those provided by any particular sensor (except for those that are indicated). How-
ever, they are useful for analyzing and testing our methods for range synthesis so we
can determine suitable samplings on the range data to have a good reconstruction.

Some of these results have been already published [158, 156, 159, 157].

1.1. Evaluation Methodology

Since we have ground truth range in all of the experiments, we can evaluate the

performance of our method. There are different techniques to compute the errors in

http:/ /marathon.csee.usf.edu/range/DataBase.html
2http://www.middlebury.edu/stereo
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6.2 AREAS WITH UNKNOWN RANGE DATA OF ARBITRARY SHAPES

the reconstruction. We choose to compute the mean absolute residual (MAR) error.
The absolute value of each error is taken and the mean of those values is computed
to arrive at the MAR error. The MAR error of the two range data matrices R; and
R, is defined as:

iR, 5) — Ra(i, 7)|

MAR =
erer # of unknown range pixels

(6.1)

In general, however, just computing MAR errors are not a good way of assessing
the success of our methods. For example, when there exists a few number of outliers
with high MAR errors, the average MAR error is slightly high. We can visually
appreciate a good or bad reconstruction by looking at a normalized difference /residual
image I', using the following equation:

F(Z,]) — |R1(Z,j) 122(%.7)’ * 55 (6.2)

where the value k is the maximum difference error value between the two range data

images. For some of the experiments, we show the normalized residual images.

2. Areas with unknown range data of arbitrary shapes

The first type of experiment involves the range synthesis when the region spanning
the missing range data is of irregular shape. In particular, we show how the shape
that contains the unknown range influences their estimation. In Fig. 6.1a, two input
range images (the two left images) are given. The percentage of the missing area,
(shown in white) of both range images is 47.6% (7800 pixels). Their perimeters and
shape however are different. The first range image shows a compact shape whereas
the second image represents a more distributed missing range. In the same Figure,
the two right images depict the input intensity and its corresponding edge map,
respectively. These data are given as an input to our algorithm. Fig. 6.1b shows
in the left two columns, the synthesized range images. The first row are the results

for the compact shape in Figure 6.1a and the second row for the distributed shape.
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Compact missing range  Distributed missingrange ~ Intensity image Edge map

(a) Input (white regions are unknown data to be estimated).

Non-parametric Using BP
sampling (50 iterations)

Compact

d truth
Distributed Ground truth range

Synthesized range images

(b) Synthesized range images.

FIGURE 6.1. Results on two different shapes of unknown range with same
area: 7800 pixels (47.6% of total image).

The first column indicates the synthesized results when using the non-parametric

(NP) sampling method described in Section 3 of Chapter 5. The second column gives

the synthesized results when using the belief propagation-based (BP) method (see

Section 4 of Chapter 5) after 50 iterations. The ground truth range image (the right

image) is also displayed for comparison purposes.

88



6.2 AREAS WITH UNKNOWN RANGE DATA OF ARBITRARY SHAPES

Although the synthesized results for both type of shapes reflect a poor approxi-
mation of the real range measurements in the depth map, it can be seen that when
synthesizing big areas of unknown range data, our algorithm performs better if the
area is not compact, since combinations of already known range and intensity give
more information about the geometry of the scene. In other words, the sample spans
a broader distribution of range-intensity combinations. This experiment gives us a
good indication of what kind of sampling of the input range data we need to have
a good reconstruction. In the same trend, we carried out a simple experiment on 5
different scenes, where the percentage of the total area with unknown range varies
from 10% to 90%. In Figure 6.2, the input intensity and associate edge map together
with the ground truth range images for two of the scenes are shown. Figures 6.3(a)
and (b) show in the first column the input range for some of the cases of study. The
second and third columns are the synthesized range images using the NP-sampling
and the BP-based methods, respectively. Figure 6.4 is a plot of the MAR errors

averaged over the 5 scenes versus the size of the unknown range data.

Intensity image intensity edges  Ground truth range

FIGURE 6.2. The input intensity, edge map and ground truth range for
two of the scenes to evaluate.
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Synthesized results Synthesized resuits

Input range Using NP-sampiing  Using BP {50 terations) Input range Using NP-sampling  Using BP (50iterations)

(a) (b)

FIGURE 6.3. Results on two different scenes with varying input range.

3. Range stripes along the z—axis and y—axis

This type of experiment involves the range synthesis when the initial range data
is a set of stripes with variable width along the z— and y—axis of the intensity image.
In the following cases, we tested our methods with the same intensity image in order
to compare the results. Figure 6.5a shows the input intensity image (left) of size
128 x 128 pixels, the edge map (middle), and for purpose of comparison we show
the ground truth range image (right) from which we omit using much of the data for
input to simulate real sensing conditions.

Four cases of sampling are shown in Figure 6.5b. The initial range data, shown
in the left column, goes from dense to very sparse. The percentage of missing range
data is indicated below each image. The parameters r,, and z,, indicate the width of

the stripes of known and uknown range, respectively. For example, the first case has
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[ g

Averaged MAR errots

02

[ 04 08 [ ar ag 09

Parcentage of sknown range data

FIGURE 6.4. Plot of the averaged MAR errors over 5 different scenes.

Ty = 24 and z,, = 80. For the first three cases the size of the neighborhood is set

to be 5 x 5 pixels and for the last case 3 x 3 pixels. The second and third columns

show the synthesized range data obtained after running our algorithms using the NP

sampling and when using the BP-based (after 50 iterations) methods, respectively.

We also show the residual images for the BP-based synthesized results.

The first two cases have the same amount of missing range (39%), however the

synthesized range for the second case is much better. Intuitively and based on the re-

sults from the previous section, this is because the sample spans a broader distribution

of range-intensity combinations.

Table 6.1 shows the MAR errors (calculated only on the unknown areas) of the

examples shown in Figure 6.5b for each of the two methods.

% of area with | MAR Errors (in pixels)
ry X, | missing range | NP sampling BP-based
24 80 39 36.36 4.23
10 20 39 5.76 1.33
5 25 61 8.86 1.85
3 28 76.5 9.99 2.76

TABLE 6.1. MAR errors for the cases shown in Figure 6.5b.
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Ground truth range

39% of range is missing
Xy fw

39% of range is missing

61% of range is missing

76.5% of range is missing  Non-parametric sampling

(b)

FIGURE 6.5. Results on real data. (a) From left to right, the input intensity
image, the edge map and the associated ground truth range. (b) The left
column shows the initial range data (the white squares represent unknown
data to be estimated). The second and third columns show the synthesized
results when using the NP sampling and BP-based methods, respectively.
The last column are the residual images for the BP-based synthesized results.
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From the data in the table, we can see that the BP-based method produces smaller
errors than the NP sampling method. The reason for this is because the belief at
each pixel is propagated through all its neighbors (except when edges are detected),
so that it covers all the area of missing range. This allows for smooth transitions on
the range values and the removal of inconsistencies to find the minimum energy of
the overall system. Whereas the NP sampling method only consider one iteration per
assignment of all the best matches of the already existing range values, which also
induces order-dependant artefacts.

We conducted experiments on 32 images from the USF database of common
scenes found in a general indoor man-made environment. We choose the sampling
case with r,, = 5 and z,, = 25, which corresponds to images with 61% of the range
points unknown. The average MAR errors for the ensemble of images using both the

NP sampling and BP methods are shown in Table 6.2.

Mean MAR Errors (in pixels)
NP sampling BP-based
4.27 2.65

TABLE 6.2. Average MAR errors for 32 images in the database.

Four examples of these experiments are shown in Figures 6.6 and 6.7, which
corresponds to the input and the synthesized range images, respectively. In order to
confirm the importance of using edge information in the reconstruction process, we
display the synthesized results in the first column of Figure 6.7 when edge information
is not considered. The second and third columns show the synthesized range images
when considering edge information and using the NP sampling and belief propagation-
based methods, respectively. The last column displays the ground truth range images

for comparison purposes.
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Input intensity data

Edges from intensity Input range data

v

FIGURE 6.6. Input data to our range synthesis algorithms. The first two
columns are the input intensity and the associated edge map; the third
column shows the input range images ( 61% of the range is unknown).

The MAR errors in the grey-level range (i.e. 0 for no error and 255 for maximum
error), from top to bottom are shown in Table 6.3.

MAR Errors (in pixels)
No edge-info =~ NP sampling BP-based
8.58 3.77 2.58
13.48 3.03 1.63
11.39 2.99 2.03
7.12 2.20 1.36

TABLE 6.3. MAR errors for the cases shown in Figure 6.7.
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Synthesized resuits
Without edge information  Non-parametric sampling  Using BP (50 ferations) Ground truth range

FIGURE 6.7. The first three columns are the synthesized results for the
input data shown in Figure 6.6 when no edge info is used and when using
the NP sampling and BP-based methods, both with edge information. The
last column shows the ground truth range for visual comparison.

3.1. Using color images

We now show how color information may improve the range synthesis. Figure 6.8
displays in the first row, the grayscale and color images of the same scene, and to
their right the input range data. The synthesized results after running our algorithm
is shown below together with the ground truth data for comparison purposes.

It can be seen that there are some regions where color information may help in the
synthesis process. For example, the chimney in the center of the image is separated
from the background since they have different colors. This is hardly noticeable in the

grayscale image.
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atic image o Clr Input range data

Using achromatic data  Using colordata  Ground truth range

Synthesized range images

FIGURE 6.8. Results on achromatic and color images.

In general, when we use color images in the reconstruction process, it appears
that the fidelity of the reconstruction is somewhat improved over achromatic images.
This appears to be due to the fact that the color data provides tighter constraint over
where and how the interpolation process should be applied. At the same time, the
higher dimensionality of the Markov Random Field model for color images may make
the reconstruction problem more difficult in some cases as the RGB channels have to

be compared individually.

4. Stripes along the r—axis

Another type of experiments is where the initial range data is a set of stripes only
along the r—axis. This set of experiments is interesting because the subsampling
strategy resembles what is obtained by sweeping a two-dimensional LIDAR sensor
(see Chapter 7, Section 3.3.1). This sampling, however, presents a challenge for the
range synthesis process, since we have very limited range data available (just along
the y—axis). Thus, it is in this type of sampling where the isophote information (see

Chapter 5 Section 5) from the available range data, together with the edge map from
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the input intensity image, greatly help in the reconstruction process. As we will show
in the following experiments.

Figure 6.9 displays from left to right, the input color intensity image with its
corresponding edge map, and the ground truth range image from where we hold
back the data to simulate the samples. Two samplings on the same range image are
shown in order to compare the results. In Figure 6.10, the first column displays the

initial range data. The percentage of unknown range are 65% and 62%, respectively.

ange

Input color image

FIGURE 6.9. The input intensity image, the edge map and the associated
ground truth range.

Initial range data Results without isophotes constraint  Results with isophotes constraint

Case 1: 5% of range Is unknown

T82% of range i Unknown

FIGURE 6.10. The initial range images are in the first column with their
percentage of unknown range indicated below each. To compare results, the
middle column shows the synthesized range images without using isophote
information and the last column show the improved synthesized results with
the incorporation of isophote constraints.
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The two right columns show the synthesized range images without using isophote
constraints and when they are incorporated to our algorithm. The regions enclosed

by the red rectangles show where our algorithm performed poorly.

The mean absolute residual errors (MAR) are from top to bottom, 10.5 and 12.2,
when no using isophote constraints compared to 6.5 and 7.3, when using isophote
constraints. The algorithm was able to capture the underlying structure of the scene
by being able to reconstruct object boundaries efficiently, even with the small amount

of range data given as an input.

More experimental results are shown in Figure 6.11. The first row show the
input color intensity image, the edge map and its associated ground truth range (for
comparison purposes). Three cases of sampling are shown in the subsequent rows.
The first column is the input range. The percentages of unknown range (indicated
below each image) are 63%, 78% and 85%, respectively. The last two columns depicts
the synthesized results when using isophotes constraints in both the NP sampling and
BP-based methods, respectively. The MAR errors from top to bottom, are given in
Table 6.4.

Percentage of MAR  Errors
unknown range | NP sampling BP-based

63% 6.42 3.90

78% 6.45 3.90

85% 7.98 4.80

TABLE 6.4. MAR errors for the cases shown in Figure 6.11.

In general, the use of isophote information improves the reconstructions because
it helps to detect the continuation of linear structures from the available range. This

was clearly illustrated in the examples above.
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input color image Edge map |
Synthesized resulls
input range data NP samgling method BP-based method

Casa ¥: ange

Caga 2: 78.34% urknown range

—

Case 3:84.64% urknown range

FIGURE 6.11. Results on real data. In the first row are the input color
image and ground truth range. The subsequent rows show three cases, the
initial range images are in the left column (percentage of unknown range is
indicated below each). The two right columns show the synthesized results
using the NP sampling and BP-based (50 iterations) methods, respectively.
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5. Discussion

The initial range data given as an input plays a very important role in the quality
of the synthesis. As the percentage of known range data increases, and if this known
range data is distributed about the scene to be synthesized, our methods can produce
very good results in inferring the missing range data. There are however a notable
difference in the performancg: of both methods we presented. The synthesized result
from the NP sampling method are obtained faster than those when running our BP-
based algorithm. However, the results from the BP-based method are much more
better than those from the NP sampling method.

The synthesized results when using the belief propagation show that our method
can accomplish the propagation of geometric structure from the available neighborhood
information. However, there are some regions where this propagation was not effec-
tive, again, due to the amount of initial range and on the types of surfaces captured

by this initial range.
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CHAPTER 7

Mobile Robot Environment Modeling

This chapter presents an application of the range synthesis method described in Chap-
ter 5, specifically in modeling a large-scale indoor environment using a mobile robot.
When modeling large environments, sensor data from different viewpoints need to be
acquired. The acquisition of images is easy, however to acquire a complete and dense
range map of the environment is often done by using sophisticated but costly hard-
ware solutions. This task is time consuming for many real systems. Our approach
overcomes this problem by allowing a robot to rapidly collect a set of intensity im-
ages and a small amount of range information. Then, our range synthesis method
performs scene recovery, i.e., it estimates a dense range map at each location the
robot takes measurements while navigating the environment. We give a complete
description of the stages involved in our approach for the mobile robot environment
modeling. These stages are: data acquisition and registration of the intensity and
partial range data; the integration of these data at different views; and the estimation
of dense range maps locally and globally. Experimental results on data acquired on

our lab and building are given to illustrate the suitability of our approach.

1. Introduction

One of the major goals of mobile robot research is the creation of a 3D model

from local sensor data collected as the robot moves in an unknown environment. This
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3D model must contain geometric and photometric details as well as knowledge about
empty spaces. The final representation of this knowledge will reflect the ability of the
autonomous system to interact with its environment and accomplish its tasks.

In mobile robotics, it is common to combine information from many sensors, even
using the same sensors repeatedly, over time, with the goal of building a model of
the environment. Since all sensors are imperfect, sensor inputs must be used in a
way that enables the robot to interact with its environment successfully in spite of
measurement uncertainty. One way to cope with the accumulation of uncertainty
is through sensor fusion, as different types of sensors can have their data correlated
appropriately, strengthening the confidence of the resulting percepts well beyond that
of any individual sensor’s readings.

A typical 3D model acquisition pipeline is composed by a specialized 3D scanner
to acquire precise geometry, and a digital camera to capture appearance information.
Acquiring images is fast and easy, however, to acquire a complete and dense range map
is a time and energy consuming process, unless costly and/or sophisticated hardware
is used. Moreover, it is often difficult to achieve in practice, especially when dealing
with dynamic environments (such as offices and indoors).

We avoid the need to obtain dense distance measurements, and rely instead
on partial knowledge of the geometry of the scene. Our range synthesis method
(described in Chapter 5) can then be used to estimate a dense range image from the
sparse measurements at each robot pose. Thus, in modeling large environments, the
challenge becomes one of trying to extract, from the sparse sensory data, an overall

concept of shape and size of the structures within the environment.

2. Stages in the Mobile Robot Environment Modeling

3D environment modeling typically involves two main goals: 1) the detailed shape
of specific objects or targets within the scene; and 2) the spatial layout of objects
within the scene. The first goal involves the accurate reconstruction of the sensed

objects, perhaps for reprojection from novel viewpoints, or for higher level shape
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FIGURE 7.1. Diagram showing the procedures to be followed for the 3D
environment modeling problem.
analysis for a cultural exposition, for example. The second goal is important for the
purpose of navigation and localization.

If the model is required only for navigation purposes, which is one of the most
important problems in mobile robotics, then the second goal, i.e., the spatial relation-
ships between objects is important. If the model will be used for virtual walkthroughs,
example in a museum, then both goals must be fulfilled. In other words, the geo-
metric and photometric details from specific viewpoints must be captured in the final
representation.

Since we are dealing with incomplete range data, the above mentioned goals in-
volve an additional process: the synthesis of complete and dense range maps from
sparse partial distance measurements. Therefore, we divide the 3D environment
modeling in the following stages (see Figure 7.1):

e data acquisition of the intensity and partial range and their registration to
a common reference frame;
e range synthesis, which refers to the estimation of dense range maps locally
at each robot pose and globally when integrating data from different views;
e data integration to a global map; and
e 3D model representation.
The following sections describe each of these stages in detail, except for the range

synthesis stage, which was covered in Chapter 5.
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3. Data Acquisition and Registration

This section describes the data acquisition system used to capture the appearance
and geometry of large-scale indoor environments. It consists of a CCD camera and
a 2D laser rangefinder mounted on a mobile robot. The main aspect of our data
acquisition system relies on how the data is acquired, which provides two important
benefits: 4) it allows the robot to rapidly collect sparse range data and intensity
images while navigating the environment to be modeled, and ) it facilitates the
sensor-to-sensor registration. The first benefit is essential when dealing with large
environments, where the acquisition of huge amount of range data is a time consuming
and impractical task. The second benefit is related to the complexity of registering
different types of sensor data, which have different projections, resolutions and scaling
properties. To this end, an image-based technique is presented for registering the

range and intensity data that takes advantage of the way data is acquired.

3.1. Environment Analysis

Prior to the design of the system configuration, is the analysis of the environment
on which the system will be used. This analysis is based on the features, surfaces, and
general characteristics we expect to encounter in the areas comprising the environment
to be modeled. This is of particular importance since the features that can be obtained
from the sensors depend totally on the characteristics of the environment where they
are acquired.

This research work focuses on modeling man-made indoor environments. Man-
made indoor environments have inherent geometric and photometric characteristics

that can be exploited to help in the reconstruction.

3.1.1. Geometric Characteristics

Man-made indoor environments are structured environments, i.e., they are full of
structural regularities, such as the presence of sets of parallel and orthogonal lines and
planes aligned with the principal orthogonal directions of the world coordinate frame.

The two dominant orthogonal directions are: vertical (walls) and horizontal (floors).
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Due to gravitational forces, objects are attached to the floor and/or walls. The
geometric properties that are often present are: coplanarity, parallelism (alignment)
and orthogonality. Some of these properties may be shared by many points, and
those points can be put together into surfaces, reducing the complexity of the final
representation. We assume that objects are solid volumes bounded by colored surfaces
and they do not have holes. Another assumption made is that the surfaces of the
objects are composed of relative smooth planar surfaces with continuity among them.

This characteristic helps to assign belief values to decide if surfaces should be joined.

3.1.2. Photometric Characteristics

Different types of materials are used in man made scenes, including wood, con-
crete, plastics, metal, glass, etc. For environment modeling, the particular interest
is in how they reflect light. All materials absorb light, some are translucent al-
lowing light to penetrate, and all materials also reflect light. The surface texture
also contributes to the image, in that smoother surfaces produce specular reflections.
Moreover, lighting conditions in indoor environments may vary at different locations,
and almost any large-scale environment will have some areas that are much brighter
than others.

In general, the assumptions we made about the environment are:

e The environment is static.

¢ The environment is composed of smooth’ planar surfaces (e.g. floors, doors,
walls and furniture present large planar surfaces).

e Most of the regions contain low texture.

e The illumination of the environment is assumed to be constant, that is the
brightness or darkness in some places does not dependent on the time of

day that images are acquired.

In large-scale indoor environments (e.g., offices, labs, museums, etc.), all sur-
faces will rarely be visible from a single viewpoint, nor will data be acquired at

sufficient resolution to encompass the entire layout. We use a robot to navigate the
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FIGURE 7.2. A diagram showing how the sensors are arranged on the pan
unit on the mobile robot.

environment, and together with is sensors, captures the geometry and appearance of
" the environment in order to build a complete 3D model. The presented work does
not consider the problem of planning the robot’s trajectory, and we assume that a

planning strategy is given (see for example [65]).

3.2. The Data Acquisition System

The aim of our system configuration is to reduce the data acquisition time and
facilitate the registration process. On top of the robot, we have assembled a system
consisting of a 2D laser rangefinder (laser scanner) and a high-resolution digital cam-
era, both mounted on a pan unit. Figure 7.2 shows the arrangement of the sensors
on the pan unit. The (CCD) camera is attached to the laser rangefinder in such a
way that their center of projections (optical center for the camera and mirror center
for the laser) are aligned to the center of projection of the pan unit. This alignment
facilitates the sensor-to-sensor registration, that is, the registration between the in-
tensity and range data, as we only need to know their projection types in order to
do image mapping. The image-based registration algorithm is described in detail in

Section 3.4.

106



7.3 DATA ACQUISITION AND REGISTRATION

3.2.1. The 2D Laser Rangefinder

A 2D laser range finder or laser scanner, is composed by a laser rangefinder
and spinning mirror (please refer to Section 3.1.1 of Chapter 2 for definition and
mechanisms details). The spinning mirror and panning motor combine to allow the
laser to sweep out a longitude-latitude sphere to acquire complete range information !
(see Figure 7.3). The data returned for each rangefinder sample comprises a fixed
number of points, each point includes range r, a value representing the amplitude a of
the laser light reflected back to the scanner, and the angular position of the rotating
mirror 6 of the scanner. Since the pan angle ¢ of the pan unit is also known, each
sample is taken in polar coordinates, expressed as a quadruple (r,q, 6, ¢), and it can
be considered as two images sampled on a spherical surface: a range image R and an

amplitude image A.

Y
PR B
P ~
/ N
y P
/ ' N\
/ ! \
/ P [~ \
ro s
l// ~ — \/i o
—d 1/
\\ ~ - ____¢___\_\_‘JI,/ — - / z
\ -~ — e - /
\ /
\\ /
/
N s
x/ > L -
-

FIGURE 7.3. Laser coordinate system.

It is important to mention that the samples are not regular in longitude and

latitude, since the rangefinder and scanning mirror are not synchronized. As with

!Note that acquired range data (for one viewing position) provide (limited) 2.5D surface data only,
and full 3D surface acquisitions can only be obtained by merging of data from several viewpoints.
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any rangefinder, system calibration has taken considerable effort. Also, the shaft
encoder position of the horizon and the rotation of the pan unit caused by the weight
of the rangefinder required some calibration. Experiments were carried to calibrate
these factors and then correction were applied in the software.

With respect to the quality of the measurements, there are many factors that
influence laser reflectance, such as: target range, albedo, angle of incidence, surface
roughness, and specularity. It is unlikely that all of these parameters can be deter-
mined from a limited number of reflectance measurements from an unknown obstacle.
Our approach for range synthesis do not assume a particular surface type or scene
illumination, thus making it more appealing and robust. The key aspect of our ap-
proach is that a reference image (sampled under the same illumination conditions as
those at the time of scanning) can be used to capture the intrinsic relationships be-
tween the photometric characteristics of objects in the scene with their corresponding
geometric characteristics, and use these relationships to filter out outliers and more
importantly to infer missing range values.

When acquiring data from the laser rangefinder, raw data is streamed to disk and
then transformed into 3D points registered into a common coordinate system. Since
the mirror center of rotation and the pan unit center are aligned, we can directly
project these points into a spherical grid and filter the data to eliminate outliers and
produce a spherical amplitude and range image. In order to eliminate the outliers, we
look at the eight nearest neighbors of the range value r; on the spherical grid and, if
at least four are within a tolerance 7 from r;, the value is considered valid, otherwise
it is zeroed and then stored, to maintain proper order within the array.

Finally, a 3 X 3 median filter is applied over the neighboring samples to fill the
missing values and create a uniform grid. One way to improve the range data quality,
is to use a slower sampling rate and shorter maximum measurable range, since it
can find the proper interference frequency more quickly. The payoff is, however, an
additional acquisition time. Figure 7.4a shows, the 2D projection of a scaled spherical

range image R, and in the bottom the corresponding spherical amplitude image A,
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(b)

FIGURE 7.4. A 90°-view range and amplitude image output. (a) Spherical
range image. (b) Spherical amplitude image.

representing 90° scan of our navigation environment. In our scheme for representing
depth values, the close objects appear in darker shades than far objects. The total
time needed to acquire this complete range data was 20 minutes. Details about this
timing is given in the experimental results section (Section 5.1). From the range
data, we can note that there exists areas (shown in black) with missing range values,
which the laser scanner was not able to capture due to material properties (color,
shininess, transparency, etc.), lighting conditions and object dimensions. In some of
our experiments, a pre-processing step was needed in order to obtain dense range data
as our reference of ground truth. This pre-processing step was done either by using

our range synthesis algorithm or, manually, for those cases where no information at
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all about depth was captured. From this new ground truth range data we perform

our sampling strategies to obtain partial range data (see Section 3.3.1).

3.2.2. The Camera

Digital cameras return photometric information (intensity and color) of a partic-
ular scene. Their projective model can be approximated using a perspective model,
where the size of objects varies as a function of distance from the center of our per-
ceived world, such that close objects are encoded at a larger representational scale
that objects in the distance. The resolution of most cameras is higher than that of the
laser. Furthermore, taking pictures require far less effort and they are a convincing
rendition of the scene.

For the camera, we use a pinhole camera model which consists of a focal point
and a view plane. Each point in the scene is mapped onto the image plane (also
called view plane) by a ray passing from the focal point through the image plane and

contacting an imaged point in the scene (see Figure 7.5).

y‘}

View plane

-
Yy

FIGURE 7.5. Camera coordinate system.

A single photograph gives us a large amount of information about the scene’s
appearance and structure. However, since it is a 2D image, we have lost the ability

to look in different directions, to move about in the scene, to collide with its surfaces,
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Camera’s optical center

FIGURE 7.6. Mosaicking images taken from the same viewpoint but different
viewing angles.

to change the illumination, and to modify the scene itself. All the above would have
been possible if having a 3D model of the scene.

In attempting to build a 3D map of the environment, a mobile robot needs to
gather data from different viewpoints. Since a laser rangefinder usually captures data
in a wider field of view of that of a camera (from a single robot pose), by combining
or "stitching” two or more images, we yield a larger image of the same scene (see
Figure 7.6). This technique is called image mosaicking [97, 149, 150, 139], and
was developed long before digital computers. Image mosaics can be used for many
different applications like the construction of large aerial and satellite photographs,
and more recently for approximation of 3D scenes [149, 150, 138], video compression
[49], architectural walkthroughs, virtual museums, and telepresence. For a complete
description of image mosaics and techniques, see [150].

As an alternative, we could choose to use wide field of view lenses or imaging
devices, such as Columbia’s OmniCam [102, 133], as the whole scene can be captured
in a single image. However, the images acquired have substantial distortions, and
the image quality is low because of mapping an entire scene into a fixed resolution
video camera. Image mosaicking does not need special imaging devices and does not

compromise image quality. It basically involves following three major steps:

111



7.3 DATA ACQUISITION AND REGISTRATION

(i) Project the input images onto a cylindrical coordinate system.
(ii) Register the warped images into a common coordinate system.

(iii) Correct the resulting small errors from the registration process.

Before projecting the images, is necessary to correct the geometric deformations
caused by different types of lenses. It was already mentioned that the center of
projection of the pan unit is aligned to the optical center of the camera. Therefore,
images are taken from the same point of view (i.e., the camera undergoes a pure
rotation around the optical center) and there is no misregistration caused by motion
parallax. This mosaic is geometrically correct because the input images are related by
a 2D projective transformation (homography). Camera parameters are generally not
needed for image mosaics. But for cylindrical and spherical panoramas, in order to
warp the images correctly, we need to know the camera’s focal length. Section 3.3.2
describes the general procedure for constructing a cylindrical panorama.

Some advantages and disadvantages of the data acquisition setup need to be
considered at this point. On one hand, data acquired from the sensors will correspond
to scenes taken at the same height from the floor; we may take advantage of this fact
when estimating the relative viewpositions of the sensors. On the other hand, even
with a panoramic mosaic, some views can never be acquired, for example, the superior

views of objects located at elevated positions ( 1.5m from the floor).

3.3. Space and Time Data Sampling

In comparing measurements from different sensors, the comparison process itself
introduces uncertainty because of space and time sampling issues. Some of the sources
of these errors are small variations in the sensor position during data acquisition and
the type of the data taken.

We assume dense and uniformly sampled intensity images, and sparse but uni-
formly sampled range images. Since taking images from the camera is an effortless
task, sampling of intensity images occurs more often than that of range images. The

total sampling area of both intensity and range images remains fixed all the time,
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i.e., the area covered by the sampling data is equal at each robot pose. This area
covers approximately a view of 90°. However, the amount of range data may vary

depending essentially on the sampling strategy.

3.3.1. Acquiring Partial Range Data

The configuration of the sensors also plays an important role in the sampling
scheme. In our acquisition framework, the spinning mirror (y-axis) and panning
motor (x-axis) combine to allow the laser to sweep out a longitude-latitude sphere.
Since each step taken by the pan unit can be programmed (i.e., the stepping angle
can be different at each step) we can have different sampling strategies to acquire
sparse range data. Figure 7.7 shows a number of sampling strategies for the range

map shown in Figure 7.4a. Black regions indicate unknown range data.

(b)

FIGURE 7.7. Examples of sampling range data. The complete range map is
shown in Figure 7.4a.
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In obtaining partial range data, we need to consider two key factors which will
reflect the quality of the whole range map. These are: the sampling strategy used
and the amount of total range acquired. The sampling strategy will depend on how
far the objects/walls in the scene are from the robot. Thus, as the robot gets closer to
walls/objects, the subsampling can be sparser since no much details are lost, compared

to when the robot is located far away. Figure 7.8 shows this simple heuristic, which

FIGURE 7.8. Sampling strategy based on distance of the scene from the
robot. (a) The scene. (b) Robot is far from the objects on the scene, the
subsampling is dense. (c) Robot is close to the objects, thus the subsampling
is sparser.

is used in collecting our experimental data. It is essentially based on the relationship

between the size of the objects and the distance from where those objects are seen:
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the farther we are from an object, the smaller it looks, so dense sampling is needed
to accurately represent its shape. On the other hand, the closer we are to an object,
the larger it looks, so sparse subsampling is enough.

There are other strategies for sampling the range data. However, answering the
question of which sampling strategy is more suitable, is not the subject of this thesis.
A brief discussion on the subject and which are the possible trends are given in

Chapter 9, in the section for future work.

3.3.2. Acquiring the Cylindrical Panorama Mosaic

A cylindrical panorama is created by projecting images taken from the same
viewpoint, but with different viewing angles onto a cylindrical surface. Each scene

point P = (z,y, 2)7 is mapped to the cylindrical coordinate system (1, v) by
Y = arctan(z),
z
v=f—t (7.1)
A /.’E2 + 22
where f is the camera’s focal length. Figure 7.9 shows two warped images used in

constructing a panorama.

FIGURE 7.9. Two warped images used to construct the panorama mosaic.

The projected images are ”stitched” and correlated in order to precisely determine
the amount of rotation between two consecutive images, this process is called image

spatial aligment or image registration. In the cylindrical space, a translation becomes a
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rotation, so we can easily build the cylindrical image by translating each component
image with respect to the previous one. In practice, there is also small vertical
misalignment between images due to vertical jitter and optical twist. Therefore, both
a horizontal translation ¢, and a vertical translation t, are estimated for each input
image. To recover the translational motion, we estimate the incremental translation

ot = (dt,, 6t,) by minimizing the intensity error between two images,
E(8t) = > [Iy(x}+ 6t) — Io(x:)]?, (7.2)

where x; = (z;,;) and x} = (z},y}) = (%; + tz,y; + t,) are corresponding points in
the two images, and t = (t«, ty) is the global translational motion field which is the
same for all pixels.

After a first order Taylor series expansion, the above equation becomes
E(5t) ~ ) [glot + )7, (7.3)

where e; = I (z;) — Io(w;) is the current intensity or color error, and g7 = VI;(z}) is
the image gradient of I; at ;. This minimization problem has a simple least-squares

solution,
(9ot = ~(3 ). (7.4

The complexity of the registration lies on the amount of overlap between the images
to be aligned. In our experimental apparatus, we will typically have about 20 to 30
percentage of overlap between adjacent images. However, as the panning angles at
which images are taken is known, the overlap can be as small as 10 percent and still
be able to align the images.

When aligning the images, corresponding points often have different intensity
values for various reasons, including change in view angle of the camera, vignetting
(intensity decreases towards the edge of the image), parallax effects due to unwanted
motion of the optical centre, and change in scene lighting. To reduce discontinuities

in intensity between images, we weight each pixel in every image proportionally to
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their distance to the edge of the image (i.e., it varies linearly from 1 at the centre of
the image to 0 at the edge), so that intensities in the overlap area show a smooth
transition between intensities in one image to intensities of the other image. A natural
weighting function is the hat function,

h/2 — w/2—vy
wizn) = I = 152 (75)
where h and w are the height and the width of the image. Intuitively, this function

gives less weight to the pixels along the image edges.

3.4. Camera-Laser Data Registration: Panorama with depth

To effectively use the panoramic image mosaic and the incomplete spherical range
data for range synthesis, model building and rendering, both sensor inputs need to
be registered with respect to a common reference frame. Note that the problem
is eliminated when the data is acquired using the same sensor, as in the case of
range from stereo, structured light or range and radiance images acquired by a laser
rangefinder, but it becomes complex when data come from two or more different types
of sensors. Their projections, resolutions and scaling properties are different due to the
fact that they capture different types of data representing different physical aspects
of the environment (i.e., appearance and distance). Therefore, before any meaningful
high-level interpretation of the acquired images can be made, the projective model
for both sensing technologies must be understood. The laser scanner and the CCD
camera work with different coordinate systems and they must be adjusted one to
each other. The software of most laser scanner delivers spherical coordinates, whereas
the camera puts out data in a typical image projection. Further, the limited range
information do not permit the use of typical methods for registration, such as feature
extraction. In this work, an image-based technique was devised for registering the
range and intensity data, gathered from the scans described in Sections 3.3.1 and 3.3.2,

respectively. This image-based registration algorithm is similar to that presented

in [27].
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3.4.1. The Image-based Registration Algorithm

Determining the relationship between the projective models of the camera and
laser rangefinder can be done through calibration, and is the basis of many geometry-
based techniquesIt requires that both sensors, together with the pan unit, be fixed on
the mobile robot once the relationship is calibrated. In our method, even though we
also have a fixed sensor configuration, there is no calibration involved. Instead, an
image-based technique is used that recovers the projective model transformation by
computing a direct mapping between the points in the data sets. The accuracy of this
method depends on the characteristics of the physical system and the assumptions
made (e.g. affine camera or planar scene), but in general their performance is good
for locally recovering a mapping between data sets.

The approach we take assumes that the optical center of the camera and the
mirror center of the laser scanner are vertically aligned and that the orientation

of both rotation axes coincide (see Figure 7.10). Thus, we only need to transform

y-axis
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FIGURE 7.10. Camera and laser scanner orientation and world coordinate system.

the panoramic camera data into the laser coordinate system. The following section

describes the geometric relationship between the range and intensity data acquired
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from the sensors, in other words, the relation between laser points and image pixels

with respect to their coordinate systems.

3.4.2. Coordinate systems

Range and intensity data are in different independent coordinate systems. To fuse
both systems it is necessary to transform the data into one common reference system.
We choose to use a world coordinate system. Figure 7.10 shows the mapping of a 3D
point P in the scene to a 2D image point p'(z,y), when observed by the camera, and
onto spherical coordinates (r,8, ¢), when observed by the laser scanner. Calibration
of the laser with respect to the camera involves determining the transformation that
will map 3D points in the laser coordinate system (LCS) to 2D image points in the
camera coordinate system (CCS) given a set of corresponding features in the two
Sensors.

The first step in the registration process is to map both type of data to a cylindri-
cal coordinate system. After that, the two data sets are registered under a common
coordinate system. In the setup presented here, the two sensors are very close to each
other, and an image-to-image warp is suitable for aligning the two data sets.

Section 3.3.2 already described how the acquired intensity images are stitched
together to form a cylindrical panorama. To convert the spherical range image (Sec-
tion 3.2.1) to a cylindrical representation similar to that of the panoramic image
mosaic, the radius of the cylindrical range image must be equal to the camera’s focal
length. This mapping is given by
f

P(T‘, 07 ¢) = P(T1 ¢’ m

) — P(r, ¢, h) (7.6)

where r represents the distance from the center of the cylinder to the point, & is the
height of the point projected on the cylinder, ¢ is the azimuth angle and f the focal
length of the camera (see Fig. 7.11). Again, this data is sampled on a cylindrical grid
(¢, h) and represented as a cylindrical image. The same procedure is applied to the

amplitude data to obtain the cylindrical amplitude image.
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Ay

FIGURE 7.11. Projection of the 3D point P onto cylindrical coordinates:
(¢, h) for the range data and (u,v) for the panoramic mosaic.

Once having the intensity and range data in similar cylindrical image represen-
tations, a global mapping between them is computed. The physical configuration of
the sensors is approximated, as in Figure 7.11, assuming only a vertical translation
AY and a pan rotation between the two reference coordinate systems LCS (laser
coordinate system) and CCS (camera coordinate system). For a point 2;(¢, h) in the

cylindrical laser image, its corresponding point in the panoramic mosaic zc(u,v) is

u=ap+a,

e L (.7
T T T

where a and b are two warp parameters that will account for difference in resolution
between the two images, o aligns the pan rotation, and Y = rh/\/f2 + h? is the
height of the 3D point X(r, ¢, h). Since f, AY, and the r remain fixed through the

experimental setup, the term f AT—Y can be approximated to a constant 3. Thus, the
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7.3 DATA ACQUISITION AND REGISTRATION

general warp equations are:
u=ap+oao, v=>bh+p[ (7.8)

The warp parameters (a,b, o, ) are computed by minimizing the sum of the
squared error of two or more corresponding points ? in the two images. In the case of
a good (i.e., what we hope to be normal) initial estimate, a reasonable convergence to a
nearly correct ? solution is obtained. The initial estimate places the panorama mosaic
nearly aligned with the range data, with a moderate translation or misalignment
typically of about 5 to 7 pixels. To correct this, a local alignment is performed
using the set of corresponding control points. Since these control points are typically
obtained by matching the 2D edges on the intensity image to the 3D edges on the range
image, after calculating the misalignment with the warp parameters, we can locally
"stretch” the range data to fit the intensity data by using cubic interpolation. After
that, each range data point acquired by the laser rangefinder has a corresponding pixel
value in the panoramic image. Since the resolution of the depth data is sparser than
the resolution of the image data, the inverse mapping cannot be computed because
the function is not one-to-one.

Summarizing, the image-based registration algorithm consists of the following steps:
(i) Manually find +y corresponding points from the complete augmented panorama
(ii) Compute the global mapping parameter by using a least squares linear fit.
(iii) For each pixel (¢, h) in the cylindrical depth map, compute its correspond-
ing pixel in the cylindrical panorama by using Equation 7.8.
(iv) Form a composite (augmented) image from the above warped images.
(v) Locally align the images by matching 2D edges with 3D edges.
Steps ¢ and 4 are carried for only once, thus subsequent registrations are fully

automatic and there is no need for user intervention.

2Since the computation of the warp parameters is done only once, the actual number of corresponding
points must be a large number, ideally 20, to obtain a good linear fit.

3The term ”correct” simply means that the final solution ”looks good.” There is not recorded ground
truth for this purpose.
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4. Data Integration

In order to produce a complete 3D model or representation of a large environment,
we need to integrate dense panoramas with depth from multiple viewpoints. Our
approach is based on a hybrid method, similar to that proposed in [10]. This hybrid
method combines two different techniques, one is for matching two 3D range scans
and the other for matching intensity features on the panorama mosaic. Since dense
panoramas with depth are given as an input, their integration to a common reference
frame is easier than having only intensity or range data separately. To this end a

simple method that combines the two previous techniques is presented.

4.1. Matching of Two Range Data Sets

The common approach to register two range data sets from different viewpoints
is to derive an initial transformation by aligning a small set of corresponding feature
points in the range images. These feature points are either found as local geometric
features on the surface of the objects or by placing additional markers in the scene.
In the former case, robustness of the feature detection is of vital importance, whereas
in the latter, besides the inconvenience of taking special care in the placement of the
markers, it is often infeasible to do when the environment to be digitalized must not
be touched at all, e.g., cultural heritage in museums [10].

State-of-the-art systems often require manual specification of initial pose esti-
mates or rely on external pose measurement systems *, making the pre-registration a
tedious and time-consuming task. Recently, methods for automatically registrating
multiple range images have been proposed. One of thg most popular registration
methods in the literature, is the Iterative Closest Point (ICP) algorithm. As we use

a variant of the ICP algorithm, the next section describe the ICP algorithm briefly.

4For instance, the relative viewpoint position might be known, e.g., from tracking the scanner
position. Although direct and convenient, this is not always feasible due to the characteristics of the
environment and inherent errors in the robot’s odometry.
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4.1.1. The ICP algorithm

The name ICP was introduced in the seminal paper by Besl and McKay [17], but
similar ideas were developed independently at the same time by Chen and Medioni [25].
The ICP algorithm iteratively searches for closest point pairs in two surface patches
and optimizes the transformation to minimize the distances between these points.
Although the role of the two point pairs to be matched is exchangeable, we speak of
data points which are to be registered with a model or model points.

Let z; be a data point and assume that an initial estimate of the parameters is
given. Then map each z; according to these parameters into the coordinate frame of
the model.

The ICP algorithm now iterates two subsequent steps:

(i) Correspondence: For each z;, find the closest point m; of the model.
(ii) Estimation of new parameters, such as the sum of squared distances between
each z; and m; pair is minimized. Update the z; according to the new

parameters.

Several researchers noted that the convergence properties of this point-to-point
approach is poor. The algorithm only converges toward a reasonable solution if the
patches are roughly prealigned. To overcome this problem, variants of the original
ICP were proposed basically by considering additional attributes, like color or surface
normal, in the verification of closest point pairs. In the field of mobile robotics,
Lu and Milios [92] estimated normals from the 2D range scans and incorporated a
point-to-line metric. More sophisticated optimization schemes were proposed, as for
example simulated annealing or evolutionary algorithms. Good surveys about these
ICP variants can be found in {126, 129]. Although these measures improve the
convergence properties of the original ICP algorithms and achieve high registration
accuracy, they still do not allow for a registration of several completely unaligned

surface patches in reasonable time.
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Detecting special surface features points on the surface patches, and constrain-
ing the search for correspondences to these features, can accelarate and automatize
the registration process. Feature-based approaches primarily differ in their defini-
tion of feature points and in the way they are matched. An approach presented by
DePiero [37], detects KLT features [93] in range images and maintains these fea-
tures together with a graph structures in a database. A common drawback of these
approaches is that they rely on a sufficient number of prominent or salient features
in the geometry. Especially in the presence of noise or missing values, this is often
problematic.

The fact that we capture not only range data but also intensity at each robot
pose, can help to alleviate the problems feature-based range matching approaches
have. Intensity images are far less subject to noise. As a consequence, features points
extracted from these images are more robust than those extracted from range images,
making them more suitable for correspondence computation.

The idea of exploiting 2D features for 3D registration problem is not new. For
instance, Roth [127] uses the popular Harris feature detector to extract features from

an intensity image that is aligned with a range image.

4.2. Feature Detection and Matching

Extraction of geometric features from real-life range images is a difficult task as
only parts of the objects’ surface are visible due to occlusion and limited field-of-
view. In the particular (common) situation, when the surfaces of neighboring objects
are geometrically similar, distinguishing them as surfaces of independent objects is
practically impossible.

On the other hand, feature detection and matching in 2D images is a well-
researched topic, and algorithms robustly detecting features that are insensitive to
brightness changes, scaling or local occlusions exist. In this research, we select to use
the Scale Invariant Feature Transform (SIFT), developed by Lowe [90] (see also [91])
based on earlier work by Lindeberg [88]). This algorithm was found to perform best
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in a recent comparison study among several local feature descriptors [98]. The study
compared their robustness with respect to noise, lighting and viewpoint changes up
to 60 degrees.

The SIFT algorithm detects features with a scale parameter that reflects the
spatial extension of its defining image neighborhood. This scale property is of vital
importance for our method since it allows to robustly estimate a 3D position for each
detected image feature. Figure 7.12 shows the SIFT features and their association

from two panoramic mosaics to be registered.

&

FIGURE 7.12. The SIFT features and their associations from two panoramic
mosaics acquired in our lab.

We can directly derive a 3D feature position from a 2D feature using the one-to-
one correspondence between pixels in the intensity image and the depth values in the
range image. However, as pointed out in [10], this is not advisable, as the resulting
3D point is sensitive to noise and small feature deviations. Therefore, instead of

using a single 3D point (the direct corresponding point to the 2D feature point) as
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feature, we use a set of 2D-image features with intrinsic scale information for finding
corresponding points on the 3D views. These derived features are called feature
sﬂrface elements [10] to accent that they are indeed a surface realization of the scale-
equipped feature points 5. Thus, a feature point can be defined as the center of gravity
of the respective feature surface element. The set of corresponding feature points is

denoted by Cy for any pair (I, k) of range images (see Figure 7.13).

Non-
corre sponding\

Cormresponding
Feature Point

Wall or object
surfaces

FIGURE 7.13. Two range images with matching feature point and scale. For
the given corresponding feature point, only inside the scale-induced feature
surface element (the dotted circle) the two range images can robustly be
expected to contain corresponding parts of the scene.

The SIFT algorithm provides good matching results, however false positive matches
are possible. Since the subsequent registration steps are sensitive to such false corre-
spondences, an additional filtering to the matches based on the RANSAC method [54]
is applied. First, the 3D positions of the features are determined by checking their

5The definition of these feature surface elements is taken from the notion of surfels, i.e., surface points
equipped with normals. Surfels implicitly store a local first-order approximation of the neighboring
surface. Analogously, feature surface elements represent a sampling of the neighborhood. Unlike
surfels though, the feature surface elements represent a region on the surface with a well-defined size
known from the 2D image features [10].
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conformity with respect to rigid transformations. Then, the set of matching features
in pair of images are validated. Since it is computationally expensive to actually com-
pute the largest conformal set of matching features (maximum clique), the RANSAC
method selects a set of three features pairs randomly and computes its support, i.e.
the set of all features pairs conforming to the implied transformation. A support set is
rejected if it is below a certain size . This allows us to remove unreliable correspon-
dences, since large sets of false, yet conforming matches are extremely improbable.
At this point, slight deviations in the 3D positions may occur because the sam-
pling of a feature surface element in different images is usually not consistent. While
such deviated features can be filtered out using the RANSAC approach to improve
the registration accuracy, we tolerate these deviations to a certain extent to increase

the number of conformal matches.

4.3. Hybrid 2D and 3D Feature Matching Approach

Our integration algorithm is incremental in the sense that additional 3D panora-
mas (i.e., panoramas with depth) can be incorporated into a set of already integrated
3D panoramas very efficiently. The feature detection is performed unilaterally (con-
stant time), whereas the feature matching has to be done with respect to each of
the intensity information in the panoramas in the given set (linear). Results from

previous 3D panorama integration can nonetheless be exploited.

4.4. Pairwise Registration

Let P = {p! | i = 1,..,m} be a set of scale-equipped feature points of the
range image [. For any pair ([, k) of range images we have a (possible empty) set of

correspondences

Ci = {(i,5) | p € P" and p;? € P* corresponding }. (7.9)

In the following sections, we describe the two-stage registration procedure for a

pair (I, k) with non-empty correspondence set C.
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4.4.1. Coarse registration

The coarse registration step consists of aligning the point sets P' and P* in a
least square sense, i.e., among the set of all rigid transformations we are looking for

the solution to the local minimization problem

Ty = arg min (T - 1, k), (7.10)
T

where the registration error ¢ is defined as

e(l,k)= Y d*(pph). (7.11)

(4,9)ECik

This is a non-iterative procedure since correspondences are known and fixed. The
result is a fast and efficient initial registration for [ and k. However, the alignment
based solely on the feature points accounts only for a fraction of the information
available in the range images 5. To compensate for the errors induced in the feature
point computation as described in the previous section a second registration step is

performed.

4.4.2. Fine registration

After the coarse registration, the pre-aligned pair of range images can be regis-
tered by applying one of the many variants of the ICP algorithm. Although, they have
proven to lead to excellent registration results for good starting positions, they are,
unfortunately, computationally non-trivial and susceptible to false correspondences,
which might lead to slow convergence and, more importantly, to run into a local
minima. Therefore, we solve these problems by restricting the domain for the corre-
spondence computation to regions of the object that are known to correspond (from
the feature detection in the 2D images, we know that the feature surfa(;e elements

constitute corresponding parts of the surface).

6Typically, the number of feature points is in the order of dozens compared to the several hundred
thousands of data points.
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Thus, for all pairs (4, 5) € Ci, we find new correspondences at closest point pairs
in the according sets of 3D points. These enhanced correspondence sets are then
aligned using standard ICP techniques.

It is important to note, however, that the 2D feature matching procedure does
not take into account the distribution of the feature points over the range images.
Thus, substantial registration errors may occur in regions far from the feature surface
elements for cases where the bounding box of the feature surface elements is very
small compared to the bounding box of the range image itself. One solution to
resolve the remaining inconsistency could be to perform a final ICP stage on the
full data. However, in our experiments, the two-step registration process by feature

surface elements alignment proved to be sufficient.

5. Experimental Results

In order to validate our approach for 3D environment modeling, we carried out
experiments into two environments. The environments are different in size and the
type of objects they contain. The first environment is a medium-size room (approx-
imately 9.5m x 6m x 3m, which corresponds to our Mobile Robotics laboratory. It
contains the usual objects in offices and labs (e.g., chairs, tables, computers, tools,
windows, etc.) The second environment is larger (approximately 2m x 20m x 3m)
and corresponds to the corridors of the CIM floor ”. This environment is mostly
composed of walls, doors, windows.

In the following sections, we will give details about the hardware setup, imple-
mentation and show the experimental results for the environments described above

for each of the stages involved in the 3D environment modeling.

5.1. Acquiring Intensity and Range Data

The mobile robot used in our experiments is a Nomad Super Scout II, manufac-
tured by Nomadics, Inc., retrofitted and customized for this work. It has a mobile
"The Center for Intelligent Machines (CIM) floor is the 4** floor of the McConnell Engineering
Building at McGill University.
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FIGURE 7.14. Our mobile robot. Nomad Super Scout II with the 2D laser
range finder and the camera mounted on it.

base equipped with two driven by servo motors. Mounted on the robot are the 2D
laser range finder and the CCD camera (Figure 7.14). At each robot pose, the in-
tensity and range information is acquired and then the robot moves approximately
1m from the previous pose (this rough odometry is consider to integrate the multiple
views, as explained in Section 5.5). Intensity images are acquired by using a Drag-
onfly camera from Point Grey Research, with a resolution of 1024 x 768 at 15 frames
per second. The camera, attached to the laser, is mounted on the pan unit, allowing
for panoramic image acquisition. In Figure 7.15, two intensity images acquired from
the two environments are depicted. Figure 7.15(a) is an image from our lab and (b)

an image from the corridors of the CIM floor.

(a) An image from our lab. (b) Image from CIM floor.

FIGURE 7.15. Intensity images from the environments to model.
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To acquire the range images, we use an infrared 8mW AccuRange 4000-LIR, from
Accuity Research, Inc. The scanning range of the laser allows distance measurements
between 0 to 15 meters at up to 50,000 range readings per second, with precision
better than lem. A mirror, 45° off-axis, rotates about a shaft with a 2000-position
encoder to sweep out a plane. The mirror center of projection of the laser rangefinder
is attached to the center of rotation of the pan unit. The pan unit was built in our
lab, and has a very clean interface, making programming very simple. The panning
angle (the horizontal angle) covers an area of 180° with one step of 0.36°. Since we
are looking at having quality range values, each (2D) slice is an average of 10 samples,
taking around 0.5 sec. per sample with a slower sampling resolution. The acquisition
time of complete range scans covering a 180° area (500 slices) is about 20 minutes.
Figure 7.16 shows two examples of the complete range scans acquired from the two

environments (black areas represent missing range values).

(a) A range scan from our lab.

(b) A range scan from the CIM floor.

FIGURE 7.16. Complete range scans from the environments to be modeled.
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5.1.1. Acquiring Partial Range

In practice, we will acquire partial range data by sampling a small amount of
range data (approximately 30 to 50% of total range) at each robot pose, thus reduc-
ing significantly the acquisition time. However, in order to be able to estimate the
performance of our method for estimating dense range maps, complete range scans

were acquired through all the experiments presented in this chapter.

5.2. Acquiring the Panorama

As the pan unit rotates, at every 18 degrees our CCD camera takes a picture. All
the images are then projected onto a cylindrical representation to obtain a cylindrical
panorama mosaic. Figure 7.17 presents two 180° cylindrical panoramas (from the

respective environments) constructed using the technique described in Section 3.3.2.

(a) From images taken in our lab

(b) From images taken in the hall

FIGURE 7.17. Two cylindrical panoramas.
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5.3. Camera-Laser Data Registration

As described in Section 3.4, both the range and intensity data must be in similar
cylindrical representations. For the arrangement used in these experiments, f =
300 pixels, AY = 5 cm and the range of the points is 7 = 5—8 meters, and 3 is between
6 to 10 pixel units. Figures 7.18 shows samples of the registered panorama mosaic

(top) and range image (bottom). It is important to note, that the registration was

(b)

FIGURE 7.18. Samples of the registered intensity (top) and range data (bot-
tom) collected (a) from our lab and (b) from the CIM floor.
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computed using only the partial range data as an input. Since we are using a mapping
between intensity and range image coordinates, the quality of the registration in the
coarse registration step, does not depend on the amount of range data given as an
input. In the fine registration step, i.e., the local alignment of 2D and 3D edges, the

features captured by the input range data are crucial.

5.4. Estimating Dense Range Maps

In this section, we use our BP-based method for range synthesis (described in
Section 5 of Chapter 5), so we can have dense panorama mosaics with depth. We
present experiments with different samplings on the range data and compute our
performance by comparing the synthesized results with the ground truth range data.

Figure 7.19 shows an example of data collected in our lab. (a) is the input

intensity, (b) the intensity edges and (c) the input partial range data, where 50% of

(a) Input intensity data (b) Intensity edges

(c) Input range (50% of total range is uknown) (d) Synthesized range image

(e) Ground truth range

FIGURE 7.19. Results on dense range map estimation. (a)-(c) Input data
to our range synthesis algorithm. (b) The synthesized range image and (e)
the ground truth range.
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the total range is unknown. The resulted synthesized range image is shown in (d),
and the ground truth range image in (e), for comparison purposes. The MAR error
for this example is 7.85 centimeters.

A second example, from the data acquired on the CIM floor, is shown in Figure 7.20.

(a)-(c) is the input data: the intensity image, intensity edges and the partial range,

(c) Input range (50% of total range is unknown) (d) Synthesized range image

(e} Ground truth range

FIGURE 7.20. Results on dense range map estimation. (a)-(c) Input data
to our range synthesis algorithm. (b) The synthesized range image and (e)
the ground truth range.

respectively. The synthesized range image after running our algorithm is shown in

(d), and (e) shows the ground truth range for comparison purposes. The MAR error

is 5.76 centimeters.
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5.5. Integration of Multiple Panoramas with Depth

In this stage, we integrate all the panoramas with depth taken at different robot
poses. We first show results for the environment that corresponds to our lab. The first
step is to find the corresponding 2D feature points among the intensity panoramas.

Figure 7.21 shows the SIFT features and their association from two panoramas.

FIGURE 7.21. The SIFT features and their associations from two panoramic
mosaics acquired in our lab.

The second step is to establish a set of 3D points from these 2D feature points
to define the surface feature elements, and apply the registration steps described in
Section 4.4. We set a window of 5 x 5 pixels to the corresponding 3D points in each
view. It is important however, to mention at this point, that using only the partial
range maps to perform a global alignment may not generate good results, especially
for highly unstructured environments and the lack of distinctive features, like the one
we are dealing with here. The reason for this is that there may not be enough surface
feature elements to perform the alignment if the 2D feature points correspond to areas
with missing range. To demonstrate this, we show in Figure 7.23, the alignment of
the two range scans (displayed in Figure 7.22) using only the incomplete range scans

(a) and when using the synthesized dense range scans (b).

136



7.5 EXPERIMENTAL RESULTS

s 0o g om g o ey o
- -
- 3 L
% & & - -
. % - s L.
- 4 3
e 1 t ]o., I
» = ™ =
d “r‘ d . <’[ ,‘”‘»
~ ?" = e ':‘& IR et “
““vﬂf‘“ Y ' LS & [o
Tow | Iz
S en o ? L-
e - 20
(a) Partial range data
m wm g m w om e o g m my wy am wy e om

(b) Synthesized (dense) range data

FIGURE 7.22. Top views of the two 3D range scans to be registered. (a)
The input (partial) range scans and (b) the synthesized (dense) range scans.

FIGURE 7.23. Top views of the alignments of the range scans of Figure 7.22,
(a) when using only the partial range data and (b) using the synthesized

dense range.

From the images, we observe that the alignment using only partial range data

is not accurate. The total length obtained is approximately 1 meter bigger than the

actual size of the room, with an averaged missalignment of individual readings of

about 12 centimeters. On the other hand, when the synthesized dense range data is
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used together with the 2D feature points there is an error of 12 centimeters in the
actual length and an average missalignment of 7 centimeters.

We now show results for the environment corresponding to the data acquired in
the corridors of CIM. As in the previous environment, we first find the SIFT features.
We show the SIFT features and their associations for two pairs of panoramas in

Figure 7.24.

(b)

FIGURE 7.24. The SIFT features and their associations from two pairs of
panoramic mosaics acquired in the CIM floor.
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After defining the surface feature elements, we register each of the synthesized
range scans. In this experiment, we set a window of 9 x 9 pixels to the corresponding
3D points in each view. Figure 7.25 shows four synthesized dense range scans (some of

them also show parts of the ceiling). We then perform the global alignment of all the
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FIGURE 7.25. Top views of the four synthesized (dense) range scans taken

in the CIM floor.
synthesized range scans incrementally, i.e., every time we integrate two range scans,
we run our range synthesis method to fill in the missing range data, and continue
with the next range scan. We also update real readings when available and discard
the synthesized ones if they differ in more than 3 centimeters. A top view of the final
aligment is displayed in Figure 7.26.

As we can see, the use of intensity information dramatically improves the inte-

gration of range scans. In general, the accuracy of the results depends on having a

good intensity feature detector.
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FIGURE 7.26. Top view of the global alignment of the synthesized range scans.
6. Summary

The ability to reconstruct a 3D model of an object or scene greatly depends on the
type, quality and amount of information available. The data acquisition framework
described in this chapter was designed to speed up the acquisition of range data by ob-
taining a relatively small amount of range information from the scene to be modeled.
By doing so, we compromise the accuracy of our final representation. However, since
we are dealing with man-made environments, we can take into account the coherence
of surfaces and their causal inter-relationships with the photometric information, to
estimate complete range maps from the partial range data. The experimental results
shown in this chapter for two different indoor scenes demonstrate the feasibility of
our method.

Since the statistical relationship between the two types of data reveal which values
are to be assigned to the missing regions, the quality of the registration process, which

aligns the range with the visual data, is a crucial factor in the range synthesis process.
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CHAPTER 8

Color Correction of Underwater Images

In this chapter we apply the proposed method for range estimation to a different prob-
lem: color correction and augmentation, with the specific application to underwater
images. Underwater images present a challenge when trying to correct the blue-green
monochrome shift to bring out the color visible under full spectrum illumination in a
transparent medium. For aquatic robot tasks, the quality of the images is crucial and
may even be needed in real-time. Our method enhances the color of the images by
a Markov Random Field (MRF) to represent the relationship between color depleted
and color images. The parameters of the MRF model are learned from the training
data and then the most probable color assignment for each pixel in the given color
depleted image is inferred by using belief propagation (BP). This allows the system
to adapt the color restoration algorithm to the current environmental conditions and
also to the task requirements. Experimental results on a variety of underwater scenes

demonstrate the feasibility of our method.

1. Introduction

High quality image data is desirable for many underwater inspection and obser-
vation tasks. Particularly, vision systems for aquatic robots [20, 57, 64] must cope
with a host of geometrical distortions: colour distortions, dynamic lighting conditions

and suspended particles (known as 'marine snow’) that are due to inherent physical
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properties of the marine environment. All these distortions cause poor visibility and
hinder computer vision tasks, e.g., those based on stereo triangulation or on structure
from motion.

Image restoration in general, involves the correction of several types of degrada-
tion in an image. Traditionally, the most common sources of degradation are due
to imperfections of the sensors, or in transmission. Underwater vision is plagued
by poor visibility [73, 67] (even in the cleanest water). Additional factors are the
ambient light, and frequency-dependent scattering and absorption, both between the
camera and the environment, and also between the light source (the sun) and the
local environment (i.e. this varies with both depth and local water conditions). The
light undergoes scattering along the line of sight. The result is an image that is color
depleted (typically appearing bluish), blurry and out of focus. In this paper, we focus
on the specific problem of restoring/enhancing the color of underwater images. The
term color refers to the red, green and blue values (often called the color channels)
for each pixel in an image. Prominent blue color of clear ocean water, apart from sky
reflection, is due to selective absorption by water molecules. The quality of the water
determines its filtering properties. The greater the dissolved and suspended matter,
the greener (or browner) the water becomes. The time of day and cloudiness of the
sky also have a great effect on the nature of the light available. Another factor is
depth, once at sufficient depth, no amount of simple linear filtration can effectively
restore color loss. Due to the nature of underwater optics, red light diminishes when
the depth increases, thus producing blue to grey like images. By 3m in depth there
is almost no red light left from the sun. By 5m, orange light is gone, by 10m most
yellow is also gone. By the time one reaches 25m only blue light remains [38]. Since
many (if not all) of the above factors are constantly changing, we cannot really know
all the effects of water.

Color recovery is not a simple linear transform since it depends on distance and
it is also affected by sensor quantization and even light source variations. We propose

a learning based Markov Random Field model for color correction based on training
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from examples. This allows the system to adapt the algorithm to the current envi-
ronmental conditions and also to the task requirements. As proposed in [59], our
approach is based on learning the statistics from training image pairs. Specifically,
our MRF model learns the relationships between each of the color training images
with its corresponding color depleted image. This model uses multi-scale representa-
tions of the color corrected (enhanced) and original images to construct a probabilistic
enhancement algorithm that improves the observed video. This improvement is based
on a combination of color matching correspondences from the training data, and lo-
cal context via belief propagation (BP), all embodied in the Markov Random Field.
Training images are small patches of regions of interest that capture the maximum

of the intensity variations from the image to be restored.

2. Related Work

There are numerous image retouching programs available that have easy-to-use,
semi-automated image enhancement features. But since they are directed at land-
based photography, these features do not always work with underwater images. Learn-
ing to manipulate the colors in underwater images with computer editing programs
requires patience. Automated methods are essential, specially for real-time applica-
tions (such as aquatic inspection). Most prior work on image enhancement tend to
approximate the lighting and color processes by idealized mathematical models. Such
approaches are often elegant, but may not be well suited to the particular phenomena
in any specific real environment. Color restoration is an ill-posed problem since there
is not enough information in the poor colored image alone to determine the original
image without ambiguity. In their work, Ahlen et al. [1] estimate a diffuse attenuation
coefficient for three wavelengths using known reflectance values of a reference gray
target that is present on all tested images. To calculate new intensity values they use
Beer’s Law, where the depth parameter is derived from images that are taken at dif-
ferent depths. Additional parameters needed are the image enhancements functions

built into the camera. In general, their results are good, but the method’s efficiency
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depends highly on the previously noted parameters. In [132] a method that elimi-
nates the backscatter effect and improves the acquisition of underwater images with
very good results is presented. Their method combines a mathematical formula with
a physical filter normally used for land photography. Although the method does not
perform color correction, the clarity achieved on the underwater images may allow

for color correction.

3. Our MRF-BP Approach for Color Correction

The solution of the color correction problem can be defined as the minimum of
an energy function. The first idea on which our approach is based, is that an image
can be modeled as a sample function of a stochastic process based on the Gibbs
distribution, that is, as a Markov Random Field (MRF) [63]. We consider the color
correction a task of assigning a color value to each pixel of the input image that
best describes its surrounding structure using the training image patches. The MRF
model has the ability to capture the characteristics between the training sets and
then used them to learn a marginal probability distribution that is to be used on the
input images. This model uses multi-scale representations of the color corrected and
color depleted (bluish) images to construct a probabilistic algorithm that improves
the color of underwater images. The power of our technique is evident in that only
a small set of training patches is required to color correct representative examples
of color depleted underwater images, even when the image contains literally no color
information. Each pair of the training set is composed by a color-corrected image
patch with its corresponding color-depleted image patch. Statistical relationships
are learned directly from the training data, without having to consider any lighting
conditions of specific nature, location or environment type that would be inappropiate
to a particular underwater scene. We use a pairwise MRF model, which is of particular

interest in many low-level vision problems.

144



8.3 OUR MRF-BP APPROACH FOR COLOR CORRECTION

3.1. The Pairwise MRF Model

Denote the input color depleted image by B = {b;},7 = 1,..., N, where N € Z
is the total number of pixels in the image and b; is a triplet containing the RGB
channels of pixel location i. We wish to estimate the color-corrected image C =
{c:i},i=1,..., N, where ¢; replaces the value of pixel b; with a color value.

A pairwise MRF model (also known as Markov network) is defined as a set of
hidden nodes z; (white circles in the graph) representing local patches in the output
image C, and the observable nodes y; (shaded circles in the graph) representing local
patches in the input bluish image B. Each local patch is centered to pixel location i

of the respective images. Figure 8.1 shows the MRF model for color correction.

(a)

FIGURE 8.1. (b) Pairwise Markov Random Field used to model the joint
probability distribution of the system. Observation nodes, y, represent an
image patch in the bluish image (a), and hidden nodes z, an image patch in
the color image (b) to be inferred.

Denoting the pairwise potentials between variables z; and z; by ;; and the local
evidence potentials associated with variables z; and y; by ¢; (see Figure 8.2), the
joint probability of the MRF model under variable instantiation x = (1, ..., zx) and

y = (Y1, ..., Yn), can be written [16, 63] as:

P(x,y) = %Hd’z’j(xi;xj) H@(wi,yi), (8.1)
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FIGURE 8.2. The potential functions ¢ and 9 define the compatibilities
between nodes in the Markov network.

where Z is the normalization constant. We wish to maximize P(x,y), that is, we
want to find the most likely state for all hidden nodes z;, given all the evidence nodes
Yi-

The compatibility functions allows to set high (or low) compatibilities to neigh-
boring pixels according to the particular application. In our case, we wish to preserve
discontinuities (edges) in the input (color depleted) image to avoid over smoothing
the color corrected image. Thus, we set high compatibility between neighboring pix-

-els that have similar colors, and low compatibility between neighboring pixels with
abrupt change in color values. These potentials are used in messages that are prop-
agated between the pixels to indicate what color or combination of intensities each
image pixel should have.

A color pixel value in C is synthesized by estimating the maximum a posteriori
(MAP) solution of the MRF model using the training set. The MAP solution of the
MRF model is:

Xmap = arg max P(x | y), (8.2)
where
P(x|y) o< P(y | x)P(x) o H¢i(wi,yi) H%j(%;%) (8.3)
i (4,5)

Calculating the conditional probabilities in an explicit form to infer the exact MAP
in MRF models is intractable. We cannot efficiently represent or determine all the
possible combinations between pixels with its associated neighborhoods. Various
techniques exist for approximating the MAP estimate, such as Markov Chain Monte

Carlo (MCMC), iterated conditional modes (ICM), maximizer of posterior marginals
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(MPM), etc. (refer to Chapter 4). In this work, we compute a MAP estimate, by
using a learning-based framework on pairwise MRF's, as proposed by [59], using belief
propagation (BP). The compatibility functions ¢(z;, y;) and ¥(z;, z;) are learned from
the training set using the patch-based method in [59]. They are usually assumed to
obey a Gaussian distribution to model Gaussian noise. The ¢;(z;,y;) compatibility

function is defined as follows
Pi(s, y;) = e Wivail/207 (8.4)

where z; is a color-corrected patch candidate, y,, is the corresponding bluish patch
of z;, and y; is the bluish patch in the input image.

The image is divided so that the corresponding color-corrected patches overlap.
If the overlapping pixels of two node states match, the compatibility between those

states is high. We define ¥(z;, z;) as:
d}ij (.’Di, .'ZI]) = e—dij(mi’zj)/2a"2 (85)

where d;; is the difference between neighborhoods i and j (Section 3.3 defines the
precise similarity measure we use). Images in the training set are pairs of small image
regions of the bluish image with its corresponding color-corrected image, thus the

compatibility functions depend on each particular input image.

3.2. MRF-MAP inference using BP

Belief propagation (BP) was originally introduced as an exact algorithm for tree-
structured models [111], but it can also be applied for graphs with loops, in which
case it becomes an approximate algorithm, leading often to good approximate and
tractable solutions [165). For MRF's, BP is an inference method to efficiently estimate
Bayesian beliefs in the network by the way of iteratively passing messages between

neighboring nodes.
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The message send from node 4 to any of its adjacent nodes j € N(7) is

ms;(z;) ZZ'(/J (@i, ;) (s, yi) H M (2;) (8.6)

keN()\ {7}
where Z is the normalization constant. The maximum a posteriori scene patch for
node 1 is:
TiMAp = arg H}I{?X &, ys) H m;i(2s)- (8.7)
JEN()
The BP algorithm is not guaranteed to converge, but if it does so, then it converges
to a local stationary point of the Bethe approximation to the free energy [171]. In
our experiments, the BP algorithm usually converges in less than 10 iterations. And
it is also notable that BP is faster than many traditional inference methods.
Candidate states for each patch are taken from the training set. Fore each bluish
patch in the image, we search the training set for patches that best resemble the
input. The color-corrected patches corresponding the best k& patches are used as

possible states for the hidden nodes.

The algorithm for color correction can be summarized as follows:

(i) Divide the training images (both the bluish and color images) into small
overlapping patches, which form the sets of z;’s and y;’s.

(ii) For each input patch y;, find the k closest y,,’s. The corresponding z;’s
are the candidates for that patch. Calculate the compatibility function
¢(z;,y;) according to Eq. 8.4.

(iii) For each pair of neighboring input patches, calculate the k x k compati-
bility function 9(z;, z;) according to Eq. 8.5.

(iv) Estimate the MRF-MAP solution using BP.

(v) Assign the color value of the center pixel of each estimated maximum

probability patch z;p4p to the corresponding pixel in output image C.
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3.3. Implementation issues

Measuring the dissimilarity between image patches is of crucial for obtaining qual-
ity results, especially when there is a prominent color (blue or green) as in underwater
images. Color information can be specified, created and visualized by different color
spaces (see [170] for more information about color spaces). For example, the RGB

color space, can be visualized as a cube with red, green and blue axes.

Color distance is a metric of proximity between colors (e.g., Euclidean distance)
measured in a color space. However, color distance does not necessarily correlate
with perceived color similarity. Different applications have different needs which can
be handled better with certain types of color spaces. For our needs it is important
to be able to measure differences between colors in a way that matches perceptual
similarity as good as possible. This task is simplified by the use of perceptually

uniform color spaces.

A color space is perceptually uniform if a small change of a color will produce
roughly the same change in perception anywhere in the color space. Neither RGB,
HLS or CIE XYZ color spaces are perceptually uniform. We use the CIE Lab metric
to measure the dissimilarity between image patches. Instead of red, green and blue,
the Lab channels are L (luminosity or lightness), which carries the information about
the darkness or lightness of each pixel, it’s basically a black-and-white version of the
image. All color information is carried in the other two channels. The a channel
values represents the relative redness or greenness of each pixel. Shifting the curve
upwards builds up reds and weakens greens. The b channel does the same for yellow
versus blue. Altering the slope of these curves changes color contrast, while adjusting

parts of the curve selectively changes different ranges of colors.

The (nonlinear) conversions from RGB to CIE Lab are given by: !

1Following ITU-R Recommendation BT.709, we use Dg; as the reference white point so that
(Xn,Yn, Zy) = [0.9504511.088754] (see [119])
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X 0.412453 0.357580  0.180423 R
Y | =] 0.212671 0.715160 0.072169 G
Z 0.019334 0.119193  0.950227 B

116(Y/Y,)3 —16  if Y/Y, > 0.008856
903.3(Y/Y,) otherwise

a* = 500[f(X/Xn)3 — f(Y/Y,)?
b* = 200(f (Y/Y,)Y3 — f(Z/Z,)"?]
where

t1/3 if Y/Y,, > 0.008856

ft) = _
7.787t +16/116  otherwise

We use the CIE Lab space which was designed such that the equal distances in
the color space represent equal perceived differences in appearance. Color difference

is defined as the Euclidean distance between two colors in this color space:

AEY = \/(AL*)?2 + (Aa*)? + (Ab*)2 (8.8)

where AL*, Aa*, and Ab* are the differences between two color pixel values.

This is the similarity measure used to select possible candidates to define the
compatibility functions and also to evaluate the performance of our method. Our
algorithm uses a pixel-based synthesis, i.e.. one pixel (color) value c; is estimated at

a time.
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4. Experimental results

We test the proposed approach in two different scenarios. In the first scenario,
we use color underwater images available on the web 2 as our ground truth data.
These images were taken with a professional camera and in most of the cases they
were also enhanced by using a commercial software. The second scenario, involves the
acquisition of underwater video by our aquatic robot. Sections 4.1 and 4.2 describe

these scenarios with the experimental results.

4.1. Scenario 1

In order to simulate the effects of water, an attenuation filter were applied to
each of the color underwater image. Figure 8.3a shows the ground truth (color) image
and Figure 8.3b, the simulated (color depleted) image after applying the attenuation

filter. Since we have ground truth information, we can compute the performance

(b)

FIGURE 8.3. (a) The ground truth (color) image. (b) The simulated bluish
image (this is the test image to be color corrected by our algorithm).

of our algorithm. The images in the training set correspond to small image regions
extracted from the ground truth image and the color depleted image (see Figure
8.4). These images correspond to regions of interest in terms of the variations in
pixel color values , thus the intention is that they capture the intrinsic statistical
dependencies between the color depleted and ground truth pixel values. The size of
the neighborhoods in all experiments were 5 x 5 pixels, and the number of possible

2http://www.pbase.com/imagine
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Training 4|:|~—/I:I
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o

FIGURE 8.4. Diagram showing how the training image pairs are acquired
for the Scenario 1.

candidates k, was fixed to be 10. Figure 8.5a shows the training image patches from

where our algorithm learns the compatibility functions and Figure 8.5b shows the

resulted image after running our learning-based method. The color-corrected image

(3)

(b)

FIGURE 8.5. (a) The training image patches (labeled from (1) to (3)) used
to learn the compatibility functions. (b) The color corrected image.

looks good, the discontinuities and edges are preserved since our method assign colors
pixel by pixel, thus avoiding over-smoothing. Also, there are no sudden changes in
color which are typically both unrealistic and perceptually unappealing. To evaluate
the performance of our algorithm, we compute the mean absolute residual (MAR)
error between the ground truth and the color corrected images. As mentioned in

Section 3.3, the CIE Lab metric was used to calculate the similarities between pixels

152



8.4 EXPERIMENTAL RESULTS

in the images. For this case, the MAR error is 6.5. Note that while our objective is
perceptual similarity, this is difficult to evaluate and we use this objective measure
to obtain quantitative performance data. For comparison purposes, we calculate the
MAR error between the input (color depleted) image and the ground truth image,
this is 22.03.

Using the same input image (Figure 8.5b), we now show how the final result varies
depending on the training data. In Figure 8.6, we show 4 examples with alternative
training sets. For example, Figure 8.6a shows a color-corrected image when using
training pairs (1) and (3) (see Figure 8.5a). The MAR errors are 9.43, 9.65, 9.82,
and 12.20, respectively. It can be seen that the resulting images are limited to the

statistical dependencies captured by the training pairs.

(a) ) ©) (@)

FIGURE 8.6. Color correction results using different training sets. The input
image is shown in Figure 8.3b. The labeled training pairs are shown in
Figure 8.5a. (a) Results using the training pairs (1) and (3); (b) using (2)
and (3); (c) using (1) and (2), and (d) using training pair (1).

Three more examples of underwater scenes are shown in Figure 8.7. Each row
shows from left to right, the ground truth color image, the input bluish image and
the color corrected image after running our algorithm. The training image regions
are shown by squares in the corresponding color and bluish images. In general the
results look very good. For the last two examples, the size of the image patches in
the training set is very small and enough to capture all the statistical dependencies
between bluish and color information, as a result, the number of total comparisons

in our algorithm is reduced and speed is achieved.
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FIGURE 8.7. The training pairs are indicated by the squares in the original
and input images respectively.
It was previously mentioned, that underwater images also contain some blurriness.
In Figure 8.8, we show an example of applying our algorithm to a blurry and color
depleted image at the same time. From left to right are, the ground truth image, the
input image given to our algorithm and the color-corrected and deblurred image after

running our algorithm.

FIGURE 8.8. An example of color correcting and deblurring at the same
time. The training pairs are indicated by the boxes in the original (a) and
input images (b) respectively. (c) is the color-corrected and deblurred image.
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4.2. Scenario 2: The aquatic robot in action

As our aquatic robot [64] swims through the ocean, it takes video images. Figure 8.9

shows a picture of our aquatic robot in action.

FIGURE 8.9. The aquatic robot.

In order to be able to correct the color of the images, training data from the
environment that the robot is currently seeing needs to be gathered. How can better
images be acquired? As light is absorbed selectively by water, not only does it get
darker as you go deeper, but there is a marked shift in the light source color. In
addition, there are non-uniformities in the source amplitude. Therefore, the aquatic
robot needs to bring its own source of white light on it. However, due to power
consumption, the light cannot be left turned on. Therefore, only at certain time
intervals, the robot stops, turns its light on and take an image. These images are
certainly much better, in terms of color and clarity, than the previous ones, and they
can be used to train our algorithm to color correct neighboring frames (under the
assumption that neighboring frames are similar). Figure 8.10 shows this scenario, here

frame t3 represents the image pair to be used to train our model for color correction.
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FIGURE 8.10. The scenario 2.

Now we show an example. Figures 8.11a,b show the training image pair cap-
tured at time ¢. The robot moves around and then at time ¢ + ¢ takes an image
(Figure 8.11c), which is input to our algorithm. The resulting color-corrected image
is shown in Figure 8.11d. Since we do not have ground truth data for this scenario,
we cannot objectively measure the performance of our algorithm, however it can be

seen that the resulting image look good.

()

FIGURE 8.11. (a)-(b) The training image pair captured at frame t. (c) Image
taken at frame ¢t + 6 and input to our algorithm. (d) The color corrected
image.
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5. Summary

Color restoration and image enhancement are ubiquitous problems. In particular,
underwater images contain distortions that arise from multiple factors making them
difficult to correct using simple methods. In this chapter, we show how to formulate
color recovery and more general enhancement as an energy minimization problem
using learned constraints. This approach’s novelty lies in using a pair of images to
constrain the reconstruction. There are some factors that influence the quality of
the results, such as the adequate amount of reliable information as an input and the

statistical consistency of the images in the training set.
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CHAPTER 9

Conclusions and Future Work

This thesis has considered the problem of automatically recovering the 3D structure
of man-made scenes from incomplete sensor data under the context of mobile robot-
ics. Specifically, we integrate visual information with very limited depth information.
The central idea is to learn the inter-relationships between the visual information
and the available depth to probabilistically infer the geometry in the missing areas.
To this end, we have presented two novel statistical learning-based techniques for
range synthesis. The general methodology is related to extrapolation and interpo-
lation methods, and is based on the use of learned Markov models. Both of the
presented techniques analyze the statistical relationships between intensity and range
data on terms of small image patches. They differ in the way the mazimum a pos-
teriori (MAP) estimate is computed. The first technique, the non-parametric (NP)
sampling, computes the MAP estimate by obtaining the samples directly from the
near neighborhoods to the voxel to be synthesized its range value, while the second
technique is an increment of the first technique that is based on using the belief prop-
agation (BP) algorithm. For general cases, both of these techniques allow for good
quality scene reconstruction in real environments. Although the second technique
gives much better results when dealing with more complex environments.

In Chapter 6 we examined a variety of sampling strategies on the input range

data, demonstrating the versatility of our method. From the experiments we conclude
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that the input range measurements are most effective if they are provided in the form
of clusters of measurements scattered about the image. This form of sampling is best
since it allows local statistics to be computed, but also provides boundary conditions
at various locations in the image. While clumps per se are not available from most
laser range scanners, swaths of data can be readily and efficiently extracted using
standard laser scanners.

We demonstrated that when applied to more complex indoor environments, i.e.,
containing a variety of objects with varying surfaces and slopes, the BP-based method
outperforms the NP-sampling method. The reason for this is that the the BP-based
method propagates the beliefs at every location with unknown range and constraining
only on those locations where a boundary is reached. This allows for smoothness in
surfaces that change its slope between the sparse known range data. This approach
offers a method for capturing a wide range of image structure with a sparse range
data while making minimal a priori assumptions. ’

Critical to the performance of our method is the statistical similarity of the regions
being reconstructed and the portions of the image used to define the Markov model.
An open question is how to validate this statistical similarity which could be useful
both to control and to validate the reconstruction process. A more detailed description
of this problem and possible solutions are given later

We have also evaluated the performance of our reconstruction method in a mobile
robotics application. In Chapter 7, we consider the mobile robot enviroment modeling
problem. Specifically, the autonomous integration of incomplete sensory data to build
a 3D model of an unknown large-scale environment. The main objective was to speed
up the data acquisition process by obtaining a very small amount of range information
from the scene to be modeled. To this end, a complete description of the physical
setup and the stages involved along with their techniques was given. The experimental
results on data obtained from our own building demonstrated the feasibility of our

approach.
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Finally, we also apply our method for range synthesis to an alternative problem.
In Chapter 8, the color correction and augmentation, with the specific application to

underwater images was addressed.

1. Future Work

While a broad variety of problems have been covered with respect to the auto-
matic 3D reconstruction of unknown environments, there remain several open prob-
lems and unanswered questions. These are divided primarily between the problem of

data collection and the final 3D model representation and visualization.

1.1. Optimal Range Data Collection

With respect to the data collection, a key issue in our method is the quality of the
observable range data. In particular, the type of the geometric characteristics that
can be extracted in relation to the objects or scene that the range data represent.
If the range data do not capture the inherent geometry of the scene to be modeled,
then the range synthesis process on the missing range values will be poor.

The experiments presented in this thesis were based on sampling strategies of
the range data that were determined beforehand and remained fixed during the data
acquisition process. Future directions to solve this problem may be to add an initial
stage that optimally select the regions where the range data reflect important changes
in the geometry as well as the selection among these regions of the minimum number
of range data to be acquired, thus avoiding the measure of redundant range data.

The use of visual techniques and methodologies that automatically extract the
most informative features related to geometry from intensity images must be investi-
gated, as well as development of hardware tools for the acquisition of optimal range
data.

The principal scientific questions posed by this research are how features that
represent changes in geometry can be extracted from a small set of intensity images

(the training set) and how the information from those features can be integrated into
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a learning model to select regions of interest in future intensity images taken from
the environment. One would require that, once trained, such a model would be able

to rapidly extract highly stable geometric features of the scene.

1.2. 3D Model Representation and Visualization

With respect to the final 3D model representation, which was not covered in this
dissertation, an open question is that of generating a realistic, visually convincing
representation of very large environments with large amounts of visual and range
data. For example, it is possible to represent the environment only by the acquired
raw data, but this is not efficient. First of all, not all 3D points are representative
due to noise during the acquisition and the synthesis phase. Secondly, there is a
great amount of redundancy in the data acquired, considering geometric structure
and consistency of most environment. The last fact will result in an overload of the
mMemory resources.

In general, the final representation must be a low-complexity 3D structural and
texture model. Most of the existing approaches for 3D modeling are limited to flat
surfaces, as they are mainly directed to man-made indoor environments. The geom-
etry of those 3D models consists essentially of single planes that model the floor and
walls. Visualization of these models (using a virtual reality package o language) can
be used as walk-throughs. However, improving the quality of these 3D models so
that they include additional details with respect to the objects in the environment
is a crucial aspect. By using dense depth maps, as proposed in this thesis, these

representations can be easily enriched.

The main problem addressed in this thesis (3D Environment Modeling) is central
in the field of Mobile Robotics. Our approach takes advantage of acquiring only
visual and very small amount of range data in order to reconstruct a 3D model of
an unknown large-scale environment. The results produced by this thesis clearly

demonstrate the advantage of using such approach.
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