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Aঋজঝছঊঌঝ

While being able to explain much of the observational data regarding giant planets, the core-accretion
formation model still contains a significant amount of uncertainty regarding the initial post-formation
properties of planets. The discovery of young planets implies that quantities such as the luminosity and
internal structure of a newly formed gas giantmust bewell understood in order to properly analyse obser-
vations. In this work we attempt to quantify these properties by using the MESA stellar evolution code
to calculate the formation of gas giants under a range of conditions. We study how factors such as the
accretion rate and thermodynamic properties of accreted material affect the final properties of the planet.

In the past core accretion models have been subdivided into ‘hot-start’ and ‘cold-start’ models based
on the luminosity of the formed planet. An implication of cold-start models is that they provide a higher
estimate for a planet’s mass based on its observed luminosity compared to hot-start models. We show
that in all but the most extreme cases onemay rule out cold-starts, finding hot-starts to be the most likely
formation method. Furthermore, by applying our models to directly imaged exoplanets we find only a
single peak in the posterior mass likelihood corresponding to the hot start prediction.

Aঋছ঎́ঐ঎́

Tout en pouvant expliquer plusieurs des observations qui concernent les planètes géantes, la théorie de
la formation par accrétion du noyau a encore des problèmes a expliquer les propriétés des planètes nou-
vellement formées. La découverte des jeunes planètes implique que des quantités telles que la luminosité
et la structure interne des planètes nouvellement formées doivent être bien comprises pour pouvoir anal-
yser correctement les observations. Dans ce travail, nous essayons de quantifier ces propriétés en utilisant
le code d’évolution stellaire MESA. Nous etudions comment des facteurs tels que le taux d’accrétion et
les propriétés thermodynamiques du matériel accrété affectent les propriétés finales de la planète.

Autrefois les modèles d’accrétion du noyau étaient subdivisés en des modèles de ‘départs froids’ et ‘dé-
parts chauds’ basés sur leur luminosité. En général les modèles de départs froids produisent une estima-
tion de la masse de la planète plus haute que les modèles chauds. Nous montrons que dans tous les cas
sauf les plus extrêmes les modèles chauds sont les plus probables. En plus, en appliquant nosmodèles aux
données des exoplanètes découvertes par imagerie directe, nous trouvons la masse la plus probable d’être
celle de modèles chauds.
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1
Introduction

1.1 Pকঊগ঎ঝ Fঘছখঊঝ঒ঘগ

Since the first confirmed detection of an extra solar planet in 1992 (Wolszczan & Frail, 1992) the field of

exoplanet astronomy has progressed in leaps and bounds, with the detection now of over 3500 confirmed

exoplanets 1. With the large sample of exoplanets available to us, we can begin to tackle big picture ques-

tions such as how likely a star is to host a planet, how likely such a planet is to have earth-like orbital

properties, and hopefully with the help of upcoming missions such as the James Webb Space Telescope,

how likely a planet is to have favourable conditions for life.

While the search for Earth 2.0 is of great interest, it can be seen that even within our own solar sys-

tem the Earth is only but a single piece of a larger ensemble. From Earth-like planets, through super-

Earths (not found in our solar system), and up to ice and gas giants, the planetary zoo is populated
1See the online “Exoplanet Encylopedia” (Schneider et al., 2011) at http://exoplanet.eu/
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with planets having masses from 0.02 �⊕(Wolszczan, 1994) to 10 ��2 (Marois et al., 2008), radii from

0.3 �⊕ (Barclay et al., 2013) to 2 �� (Hartman et al., 2011), and orbital periods from ∼2 hours (Bailes

et al., 2011) to ∼2000 yrs(Close et al., 2007) 3. Given such a sample of specimens, one may ask how they

could have formed, and more importantly how different types of planets could have co-evolved within

the same planetary system. Jupiter, for example, with a mass of 318 �⊕(in units of Earth masses where1 �⊕ � 5.�� × 102ൻ�) contains approximately 75% of the non-solar mass in our solar system and domi-

nates its dynamics. Thus, an understanding of the formation of gas giant planets (the classification that

Jupiter falls under) is critical to understanding the formation and evolution of the solar system as a whole.

There are two competing formation theories for gas giants known as “gravitational instability” and

“core accretion” which consider whatmight happenwithin a protoplanetary disk composed ofmm-sized

dust grains. In the gravitational instability scenario, a density perturbation forms in a region of the disk.

This causes the gravitational potential energy at that point to overcome the thermal energy of the par-

ticles, and the instability sets in causing the gas and dust to gravitationally collapse to form a solid and

stable clump, known as a proto-planetary object (Kuiper, 1951). This is more easily done in massive disks

far from the host star, where the disk is colder and rotating slower. One of the distinguishing features

of this scenario is that the proto-planetary object forms on a short time-scale of 103 years. There a few

shortcomings to this method however, such as the difficulty in forming the rocky cores of Jupiter and

Saturn (Stevenson, 1982) as well as explaining the observed metallicities of these planets which are higher

than solar values (Saumon et al., 1995).

Alternatively, in the core accretion scenario there is a more gradual build up of material in forming the

planet (Safronov 1972; Pollack et al. 1996). Instead of a quick gravitational collapse, dust particles in the

solar nebula collide and stick together to form planetesimals of typical radius ∼ 0.1 kmwhich are capable

of gravitationally attractingone another (Goldreich&Ward, 1973). A core formed fromplanetesimalswill
2Larger objects have been found, although it is not clear if they should be classified as planets or as brown dwarfs
3Throughout this work we shall use units of Earth masses (�⊕with 1 �⊕ � 5.�72 × 102൸ k�), Jupiter masses (��with1 �� � 1.��� × 102ൻ k�), Earth radii (�⊕ with 1 �⊕ � 6371 km) and Jupiter radii (��with 1 �� � 6.�� × 10൸ km).
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further accrete solid material at an accretion rate ਤ̇੊ which is initially much larger than the gas accretion

rate ਤ̇ . As the mass of the core increases so does the gas accretion rate, until a critical core mass on the

order of 10 ∼ 30�⊕is reached (Mizuno, 1980), at which point runaway gas accretion occurs. Gas accretes

onto the planet in free-fall, accumulating the rest of the planet’s mass in the form of a gaseous envelope.

Once the supply of gas has been depleted from the disk after ∼ 10 �yr, accretion stops and the planet

begins to cool. An important feature of this scenario is that it allows for the enriching of heavy elements

through the accretion of planetesimals, which is in agreement with our solar system gas giants (Mizuno,

1980).

1.2 Pঘজঝ Fঘছখঊঝ঒ঘগ Cঘঘক঒গঐ ঘএ Gঊজ G঒ঊগঝজ

Once a planet has formed, through eithermethod, onemay calculate its cooling in order to determine the

luminosity of the planet at a given age (Bodenheimer & Pollack, 1986). In particular, if it is sufficiently

far from its host star such that its equilibrium temperature ਫਸ਼ੁ given by (for a perfectly absorbing and

emitting planet)

ਫਸ਼ੁ � ਫ⊙( ਩⊙2ਛ)0.൹
(1.1)

is low compared to its intrinsic temperature (where ਫ⊙ and ਩⊙ are the temperature and radius of the host

star, and D is the orbital distance of the planet) then a gas giant will cool at a rate determined uniquely

by its mass, composition and luminosity. This implies that a measurement of a gas giant’s age and lumi-

nosity (assuming some standard composition) provides a measurement of its mass. For a planet whose

luminosity is supplied by gravitational contraction, cooling takes places over the Kelvin-Helmholtz (KH)

time-scale

੄ਢਟ � ਞਤ2਩ਣ (1.2)
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stellar evolution code, which is discussed in greater detail in chapter 2. The interior structure of the planet

consists of an outer radiative layer and an internal adiabatic convective zone, and it is the value of the en-

tropy of the adiabat which is used to measure how ‘hot’ or ‘cold’ the planet is (also to be discussed in

chapter 2). For entropy values ≳ 9 k�/mp (in units of Boltzmanns constant per baryon mass), the curves

converge to an equilibrium cooling track at ∼10ർ years for the 10 �� planet and ∼10ൻ years for the 2 ��
planet. For entropies below 9 k�/mp, the cooling is delayed because the KH timescale is much longer

(due to the fainter luminosity of the planets).

Early formationmodels typically assumed a hot start so that one could ignore specific initial conditions

andmodel the planet’s cooling solely on its mass Burrows et al. (1997); Baraffe et al. (2003). This provided

a direct and non-degenerate method for determining planet mass from age and luminosity. However,

beginning with the detection of 2M1207b in 2004 (Chauvin et al., 2004), which has an estimated age of

∼10Myrs, we have begun to find young objects which fall into the age range where initial conditions may

dominate the cooling behaviour. The implications of this are seen in figure 1.1, where black circles indicate

overlapof the 10 and 2�� planet’s cooling curves. This highlights a critical issuewhen attempting toderive

a planet’smass fromobservations, since a highmass planetwith a low initial luminosity is degeneratewith

a lower mass planet with a high initial luminosity.

1.3 Hঘঝ Sঝঊছঝ Vজ Cঘক঍ Sঝঊছঝ

Having stated the implications of cold and hot starts, the task at hand is now to understand the connec-

tion between the accretion process and the type of planet produced. It was first explicitly stated in Fort-

ney et al. (2005) andMarley et al. (2007) that core accretion could lead to cold start planets. While typical

hot start models produce planets with luminosities of 10−2 − 10−൸ �⊙ dependent on mass, they showed

that the core accretion model described in the series of papers Pollack et al. (1996), Bodenheimer et al.

(2000), and Hubickyj et al. (2005) produced planets with luminosities on the order of 10−ൺ �⊙, almost

completely independent ofmass. One of the key ingredients in a core accretionmodel is the isothermal ac-
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cretion shock, which occurs at the point where accreting material joins onto the planet’s atmosphere (the

material is initially in free-fall whereas the atmosphere is not, and so a shock will form at this boundary

where properties such as density and average velocity change abruptly) (Bodenheimer et al., 2000). It is

thought that the accreted material would radiate a significant amount of its kinetic energy when crossing

the shock, and thus be at a lower energy when it gets incorporated into the planet resulting in the planet

having a lower internal entropy. Since there is no accretion shock associated with the gravitational insta-

bility model of planet formation, this seemed to indicate a pairing of core accretion with cold starts, and

gravitational instability with hot starts. This idea has a significant impact for observations to distinguish

between formation scenarios, as well as providing direction for how observers should interpret the mass

of such planets.

Given uncertainties in planet formation models and the potential large range in luminosity of newly

formed gas giant planets, Spiegel & Burrows (2012) took the approach of treating the internal entropy

of the gas giant after formation as a free parameter, producing a range of “warm starts”. The predicted

cooling tracks then depend on the planet mass and initial entropy. Bonnefoy et al. (2013) and Marleau

& Cumming (2014) explored the joint constraint on these two parameters that can be inferred from a

directly imaged planet with a known luminosity and age. For hot initial conditions, the cooling tracks

depend only on the mass; cold initial conditions require a more massive planet to match the observed

luminosity. Fitting hot start cooling curves therefore gives a lower limit on the planet mass. Matching

the observed luminosity gives a lower limit on the initial entropy, because of the sensitive dependence of

luminosity on the internal entropy (e.g. fig. 2 of Marleau & Cumming 2014). Additional information

about the planet mass, such as an upper limit from dynamics, can break the degeneracy and reduce the

allowed range of initial entropy.

Mordasini (2013) also identified the planetesimal surface density in the disk as a key ingredient since it

sets the core mass. He simulated the growth of planets under cold- and hot-start conditions by changing

the outer boundary condition for the planet during the accretion phase. In the cold case, the final entropy

of the planet was found to depend sensitively on the resulting core mass through the feedback action of
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the accretion shock. Most recently, Owen&Menou (2016) pointed out the potential importance of non-

spherical accretion and studied the role of an accretion boundary layer in setting the thermal state of the

accreted matter.

1.4 D঒ছ঎ঌঝ Iখঊঐ঒গঐ ঘএ Gঊজ G঒ঊগঝজ

As for anymodel, observations are required in order to confirm or deny the validity of a planet formation

theory. The data we consider in this work are exoplanets discovered using the direct imaging method in

which the intrinsic luminosity of a planet is directly observed as opposed to other methods which detect

planets through their effects on their host star. Since a planet’s luminosity is typically 10ൺ − 1010 times

fainter than its star, this method is biased towards finding bright planets at wide separations from their

star. These conditions provide the convenience of ignoring the stellar influence on the planet’s cooling.

The first directly imaged planet was the previously mentioned 2M1207b found in 2004 using the Very

Large Telescope (VLT). Since then, additional instruments such as the Gemini Planet Imager (GPI) have

continued to provide direct imaging data of exoplanets.

The current population of directly-imaged planets shows a wide range of luminosities (e.g. Neuhäuser

& Schmidt 2012; Bowler 2016), with most being too luminous to be cold starts. Examples are ட Pic b

with ਣ ≈ 2 × 10−൸ ਣ⊙ (Lagrange et al., 2009, 2010; Bonnefoy et al., 2013), or the HR8799 planets withਣ ≈ 2 × 10−൹ ਣ⊙ for HR8799c, d, and e, and � × 10−ൺ ਣ⊙ for HR8799b (Marois et al., 2008, 2010). The

inferred initial entropies in these cases are significantly larger than inMarley et al. (2007) (Bonnefoy et al.

2013; Bowler et al. 2013; Currie et al. 2013; Marleau &Cumming 2014). The best case for a cold start is the

young giant planet 51 Eri b, which has a projected separation of 13 au from its star and ਣ ≈ 1.4–4×10−ൺ ਣ⊙
(Macintosh et al., 2015). This luminosity is consistent with the value ≈ 2 × 10−ൺ ਣ⊙ predicted by (Marley

et al., 2007), but it also matches a hot start for a planet mass 2–3ਤਡ at the stellar age ≈ 20ਤ੉ੂ . Similarly,

the low effective temperature of �50ਢ forHD131399Ab corresponds to a hot startmass of 4ਤਡ at 16ਤ੉ੂ
(Wagner et al., 2016). Another cold object is GJ 504b, which has an effective temperature of only 510 ਢ
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(Kuzuhara et al., 2013), but indications that the star is Gyrs old imply that it may be a low-mass brown

dwarf rather than a planet (Fuhrmann & Chini, 2015; D’Orazi et al., 2017).

Interesting from the point of view of testing formation models has been the discovery of protoplan-

ets still embedded in a protoplanetary disk. For example, HD 100546 b is a directly-imaged object 50 au

from its Herbig Ae/Be host with a luminosity ∼ 10−൸ ਣ⊙ (Quanz et al., 2013; Currie et al., 2014a; Quanz

et al., 2015), and the star may host a second planet closer in (Currie et al., 2015; Garufi et al., 2016). Sallum

et al. (2015) identified two and perhaps three accreting protoplanets in the LkCa 15 transition disk. The

infrared and H ஞ luminosities were consistent with expected accretion rates: Sallum et al. (2015) reportਤਤ̇ ∼ 10−൹ਤ2ਡ ੉ੂ−1, whereਤ and ਤ̇ are respectively the planetarymass and accretion rate, which agrees

with typical accretion rates of ∼ 10−3–10−2 ਤ⊕ ੉ੂ−1 inmodels (e.g. Lissauer et al. 2009) forਤ ∼ ਤਡ . The

young ages of these stars ≲ 10 ਤ੉ੂ correspond to early times when there is greater potential for distin-

guishing formationmodels (e.g. fig. 4 ofMarley et al. 2007), especially since the planets could be substan-

tially younger than the star (Fortney et al., 2005). The interpretation of the observations is complicated,

however. Contributions from the environment around the protoplanet, which is likely still accreting,

need to be considered, and if accretion is ongoing the accretion luminosity ਣਲ਴਴ੂ ≈ ਞਤਤ̇/਩, where ਩ is

the planetary radius, may dominate the internal luminosity. Nevertheless, these effects can potentially

be distinguished by studying the spectral energy distribution or spatially resolving the emission. For ex-

ample, observations of HD 100546 b are able to make out a point-source component (surrounded by

spatially-resolved emission) with blackbody radius and luminosity consistent with those of a young gas

giant (Currie et al., 2014b; Quanz et al., 2015).

In order to determine the mass of a young directly imaged planet, it must be better understood how

the planet formed. While the cooling of an old (≳ 10ർyrs) planet may be safely modelled with a hot-

start (or even cold-start, since initial conditions will have been forgotten by then), for younger planets

this assumption may break down if the planet was formed through a cold-start, where applying a hot-

start model could incorrectly over estimate the mass by a factor of 2-5. Furthermore, planets which are

observed to be still forming pose a similar and even greater challenge, rendering the traditional method
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of matching a planet’s age and luminosity to a hot-start cooling track useless.

1.5 A জঌ঑঎খঊঝ঒ঌ এঘছ Cঘছ঎ Aঌঌছ঎ঝ঒ঘগ

We now review the progress that has been made in understanding how to model the effect of accreting

material in the core accretion scenario. In figure 1.2 we show a diagram of the flow of energy and mat-

ter both within and external to the planet, described in Stahler (1988). There have been a few different

approaches in the literature to modelling the unknown radiative efficiency of the accretion shock in ac-

creting protostars and planets, which results in different assumptions about the post-shock temperature

and entropy (ਪ0 and ਫ0 in Fig. 1.2).

Figure 1.2: Diagram of a spherically-symmetrically accreting gas giant. Shown are the last parts of the accretion flow (top), the radia-

tive envelope (middle), and the convective interior (bottom). Matter accretes onto the envelope with a rate ਤ̇ , where it shocks and

releases energy as an accretion luminosity ਣaccr. Immediately after the shock, the matter has temperatureਫ0, pressure ਧ0 equal

to the ram pressure (eq. [1.5]), and thus entropy ਪ0. As the material settles down through the envelope to the convective core with

a velocity ੆ � ਤ̇/4�ੂ2�, it releases an additional luminosityਣcomp from compressional heating and finally reaches the radiative-

convective boundary (RCB). The convective core has entropy ਪ਴ and supplies a luminosity ਣ��� to the base of the envelope.

As an outer boundary condition for the internal thermodynamic profile of the planet, we take the
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temperature ਫ0 and pressure ਧ0 of the newly accreted material after it has passed through the shock. Fol-

lowing Bodenheimer et al. (2000), we consider an isothermal shock with density jump �2/�1 � ੆2਷ ਷ /਴2੃ ,
where the matter arrives at the free fall velocity

੆਷ ਷ � (2ਞਤ/਩)1/2 � 42 km s−1 (ਤ/ਤਡ )1/2(2 ਩ਡ /਩)1/2 (1.3)

and ਴੃ is the isothermal sound speed. The post-shock pressure is the ram pressure

ਧਲ਴਴ੂ � �2਴2੃ � ਤ̇੆਷ ਷ /4�਩2 (1.4)

or ਧਲ਴਴ੂ � 3.1 × 103 �r� �m−3 ( ਤ̇10−2 ਤ⊕ ੉ੂ−1) (ਤਤਡ )1/2( ਩2 ਩ਡ )−൹/2
(1.5)

wherewehave scaled to a typical accretion rate during the runaway accretionphase of ਤ̇ ≲ 10−2ਤ⊕ ੉ੂ−1 �1.� × 101ർ ਸ ੃−1 (Pollack et al., 1996; Lissauer et al., 2009).

At the low densities near the surface of the planet, the equation of state is close to an ideal gas. In

appendix A we show that for a mixture of H2 and He with helium mass fraction ਰ � 0.243 (matching

the value used by Pollack et al. 1996) the entropy per baryon is

ਪ਻ਙ/਽ੀ ≈ 10.� + 3.4 lo�10 ਫ3 − 1.0 lo�10 ਧ൸, (1.6)

where ਻ਙ is Boltzmann’s constant,਽ੀ is the proton mass, and ਫ3 ≡ ਫ /(1000 K), ਧ൸ ≡ ਧ/(10൸ �r� �m−3).
Using the ram pressure (eq. [1.5]) and assuming the gas remains molecular post-shock4, the post-shock

entropy ਪ0 is therefore

ਪ0਻ਙ/਽ੀ ≈ 7.4 − lo�10( ਤ̇10−2 ਤ⊕ ੉ੂ−1) + 3.4 lo�10 ( ਫ0150 ਢ )
4this assumption breaks down deeper in the planet, however it was found to agree in the outermost layers and so is useful

in understanding the outer boundary of the entropy profile
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−0.51 lo�10 (ਤਤਡ ) + 2.5 lo�10( ਩2 ਩ਡ ) , (1.7)

where we have scaled to the lowest possible temperature expected for ਫ0, the nebula temperature in Hu-

bickyj et al. (2005). At higher temperatures, the hydrogen will be atomic post-shock, in which case the

entropy is (Appendix A)

ਪ਻ਙ/਽ੀ ≈ 17.2 + 4.7 lo�10 ਫ3 − 1.� lo�10 ਧ൸. (1.8)

Themaximal value of entropywe expect canbe estimated by considering the temperature derived from

the accretion luminosity which comes from the energy the accretedmaterial has gained during its free fall

onto the planet. If we consider the gravitational energy per mass that a parcel of accreted material carries

onto the planet Δਜ/Δ਽ � ਞਤ/਩, then the rate of energy gained will be

ਣਲ਴਴ੂ � ਵਜਵ੄ ≈ ΔਜΔ਽ Δ਽Δ੄ ≈ ਞਤਤ̇਩ (1.9)

From this luminosity we can estimate a maximal temperature ਫℎਿ੄ as
ਫℎਿ੄ � ( ਣਲ਴਴ੂ4��਩2)1/൸ ≈ 3300 ਢ ( ਤ̇10−2 ਤ⊕ ੉ੂ−1)

1/൸(ਤਤਡ )1/൸ ( ਩2 ਩ਡ )−3/൸
(1.10)

which can be substituted into equation 1.8 to give a maximal entropy of

ਪ0਻ਙ/਽ੀ ≈ 20.6 − 0.72 lo�10 ( ਤ̇10−2 ਤ⊕ ੉ੂ−1)+0.23 lo�10(ਤਤਡ ) + 1.17 lo�10 ( ਩2਩ਡ ) . (1.11)

We see that there is a large variation in ਪ0, the entropy of the material deposited at the planet surface,

depending on the shock temperature. These values can be larger or smaller than the internal entropy of

11



the planet at themoment runaway accretionbegins (which for example is ਪ ≈ 11 ਻ਙ/਽ੀ in the simulations

of Mordasini 2013). The context of these calculations are to show the range of possible outer boundary

conditions that may exist during accretion, and to motivate a study of how they will ultimately dictate

the properties of a fully formed planet.

1.6 Oঞঝক঒গ঎

The outline of the work presented in this thesis is as follows. In chapter 2, we look at how one can use

MESA tomodel a cooling gas giant. Thiswill involve a description of theMESAcode, aswell as an outline

of the basic theory of stellar interiors & energy transport. In chapter 3, we extend the use of MESA to

model the formation of gas giants in the core accretion scenario. The aim of this chapter will be to use

a simple description of the boundary conditions during formation in order to map out the parameter

space of formation conditions which lead to cold and hot starts. In particular, we try to relate the post

formation internal entropy of the planet ਪ਷ (which combined with mass can provide a luminosity), to

the temperature ਫ0 and pressure ਧ0 of material at the accretion shock (this work has been previously

published in section 4 of Berardo et al. 2017). In chapter 4 we alter our models to use more realistic and

fully time-dependant boundary conditions in order to compare our results to data of directly imaged

exoplanets (this work shall be published in an upcoming paper). We attempt to place constraints on

certain accretion parameters such as the accretion rate, as well as discuss the likelihood of the planets

forming as either cold or hot starts. Finally in chapter 5 we conclude with a discussion of themajor results

that we have obtained.
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2
MESA Models of Cooling Gas Giants

The goal of this chapter is to understand how the open-source 1D stellar evolution code Modules for

Experiments in Stellar Astrophysics (MESA1) (Paxton et al., 2011, 2013, 2015) may be used to study gas

giants. Before attempting to simulate the full core accretion process, we shall first describe how to make

a fully formed gas giant and follow its cooling in order to demonstrate the capabilities of MESA. As well,

we shall introduce certain theoretical concepts which will be useful in attempting to analyse and describe

the internal structure and transfer of energy within a gas giant.

2.1 Bঊজ঒ঌজ ঘএ ঞজ঒গঐ MESA

At its core, MESA is solving the basic equations of hydrodynamics with the ability to extend to a vast

range of physical effects (by incorporating different physics modules, hence its name). In practice these
1version 7623
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equations take into account the grid structure of the model and are discretized, but written simply they

are the equations of mass conservation,

ਵਤੂ � 4��ੂ2ਵੂ (2.1)

where � and r represent density and radial distance from the center of the planet and ਤੂ represents the

total mass interior to the radius r; an equation for the conservation of momentum,

ਵਧਵਤੂ � −ਞਤੂ4�ੂ൸ − ਲ4�ੂ2 (2.2)

where P is the pressure and a is the Lagrangian acceleration. The first term on the right hand side repre-

sents hydrostatics, while the second term represents hydrodynamics (which can optionally be disabled).

There is also an equation for energy conservation written as

ਵਣਵਤੂ � �ਾ੅਴ − ��,੄ℎਸ਼ੂ਽ਲ਼ + �ਸੂਲ੆ (2.3)

where L is the luminosity and �ਾ੅਴ , ��,੄ℎਸ਼ੂ਽ਲ਼ , and �ਸੂਲ੆ are the nuclear reaction energy generation rate, the

specific thermal neutrino-loss rate, and the energy provided by gravitational contraction respectively.

While originally intended to study stars, it is also capable of extending down to the regime of gas giants,

which behave similar in many ways to stars (minus burning hydrogen, although deuterium burning can

occur for planets with masses ≳ 13��). While it is possible to include the effects of deuterium burning in

MESA as an extra term in the energy equation, for simplicity we choose to study planets with a mass of

at most 10�� and so these effects are ignored.

The default installation ofMESA comeswith test suites containing skeleton code to study different sce-

narios, such as high mass planets or neutron star envelopes. For our purposes, we use the make_planet

test suite which takes as input, among other things, an initial mass and radius. Aside from these we leave

all other initial parameters at their default setting, except for irradiation which we turn off. This parame-
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ter is used to simulate irradiation from a host star, however directly imaged planets are sufficiently distant

(≳ 10 AU, see table 1 of Bowler 2016) from their host star that this can be ignored, since they would have

equilibrium temperatures on the order of ∼ 100-200 K, which is much lower than temperatures derived

from typical internal luminosities (∼ 1300 K for a 2 ��planet with a luminosity of ਣ�ਾ੄ � 10−൸ਣ⊙). The hy-

drogen and helium mass fractions are ਯ � 0.73, and ਰ � 0.25 respectively, the low-temperature opacity

tables are those of Freedman et al. (2008), and the equation of state is given by Saumon et al. (1995).

WhileMESA is capable of extending down to large gaseous planets, it still lacks the capability tomodel

rocky objects. This limits the extent to which one can fully simulate accretion, not being able to simu-

late the initial phase of solid planetesimal accretion. It is however still possible to simulate a planet that

includes a rocky core, which is implemented inMESA through inner boundary conditions. Using a core

density and core radius specified by the user, MESAwill ‘cut out’ the center of themodel at the appropri-

ate radius. Further details such as energy emanating from the base of the core can be specified in order to

simulate, for example, energy deposition at the deep interior by accreted solid material.

2.2 Uগ঍঎ছজঝঊগ঍঒গঐ MESA Oঞঝঙঞঝ & Sঝ঎ককঊছ Iগঝ঎ছ঒ঘছজ

In order to understand howMESAmay be used to model core accretion, we first look at modelling fully

formed gas giants which are allowed to cool without any external influence (i.e. accretion, stellar irradia-

tion). For the following models shown, we include a rocky core with mass and radius 10 ਤ⊕ and 2.� ਩⊕
(i.e. a mean density of 10 � �m−3). We start by modelling a 1�� planet and in figure 2.1 visualize how its

luminosity and radius evolve in time, as well as what its internal thermodynamic profile looks like.

Since this object is not generating any internal energy through nuclear burning, as expected it gets less

luminous and smaller over time as it cools. We also see the internal entropy and temperature profile de-

crease over time. The internal entropy profile is roughly constant with depth during the planet’s cooling,

which is indicative of a convective interior (Hansen et al., 2012), denoted in the figure by the thicker lines.

In the outermost layers of the planet there is a slight rise in entropy, indicative of a radiative zone. Since
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heat transport by radiation, with a luminosity at radius rwithin the planet given by the radiative diffusion

equation:

ਣੂ � −16��ੂ2ਫ3�� ਵਫ 3ਵੂ � −64��ੂ2ਫ 33�� ਵਫਵੂ (2.4)

where � is the opacity, � is the density, � is the Stefan-Boltzmann constant, all of which are evaluated at

radius r from the center of the planet. Using the condition for hydrostatic equilibrium

ਵਧਵੂ � −ਞਤੂ�ੂ2 (2.5)

where ਤੂ is the mass enclosed within radius r, We can convert the derivative to a logarithmic one by

multiplying both sides by r/P to get

ਧੂ ਵਧਵੂ � ਵ ln ਧਵ ln ੂ � −ਞਤੂ�ੂਧ (2.6)

and then divide both sides by the logarithmic derivative of temperature with respect to radius to get

ਵ ln ਧ/ਵ ln ੂਵ ln ਫ /ਵ ln ੂ � ਵ ln ਧਵ ln ਫ � −ਞਤੂ�ੂਧ ਵ ln ੂਵ ln ਫ (2.7)

and we shall now define a quantity ‘del’ given by the symbol ∇ as

∇ ≡ ਵ ln ਫਵ ln ਧ . (2.8)

This quantity can be combined with equations 2.4 and 2.7 to give

ਣੂ � 64��ਞਫ ൸ਤੂ3ਧ� ∇ (2.9)

This equation is only valid in the case where radiation is the sole method of energy transportation,

which in general will not be the case. The ∇ in the above equation should more properly come with a
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figure 2.1. In the outer region where radiation dominates, there is a slight increase in entropy, but in the

inner region the entropy is roughly constant.

We now introduce a third temperature gradient ∇ਲਵ , describing a fluid element which is transported

adiabatically (i.e. remaining in pressure equilibrium with its surroundings and having an equation of

state ਧ ∼ �஠ where ஠ is the adiabatic index). In appendix B we derive the criteria for a fluid to be unstable

to convection

∇ � ∇ਲਵ (2.10)

which is known as the Schwarzchild criterion (Schwarzschild, 1906). If the above condition is met, then

convection will be the dominant form of energy transport. It should be noted that compositional gradi-

ents within the planet will add further terms to the above inequality, resulting in the Ledoux criterion for

convection (Ledoux, 1947), however we have neglected these terms by assuming a homogeneous compo-

sition. It is also shown in Appendix B that an equivalent description for a convective instability to form

is

ਵਪਵੂ � 0 (2.11)

which provides a way to determine whether a region will be convective based on its entropy profile. In

figure 2.1, we see that convection is indeed associatedwith slight negative slope in entropy, although a close

examination of the entropy profile shows regions where the radial derivative of the entropy changes sign

while remaining convective. This is likely due to an issue with the way that the equation of state tables

are interpolated (in order to calculate entropy as a continuous function of temperature and pressure),

however MESA uses equation 2.10 to determine if a region is convective. Since we see in the right hand

panel of figure 2.2 that∇ � ∇ਲਵ in regions of convection, these slight deviations in entropymaybe ignored.

Following the discussion in § 16.5 of Hubeny & Mihalas (2014) we are also able to calculate what the

convective luminosity might be, by considering the convective flux given by
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ਝ਴ਿਾ੆ � �਴ੀ⟨੆⟩Δਫ (2.12)

where ਴ੀ is the heat capacity at constant pressure and ⟨੆⟩ is the average convective velocity. This equation

is describing the transport of energy (਴ੀΔਫ ) carried by convected material (�⟨੆⟩) in the mixing length

theory (MLT) prescription of convection. Since the material is transported adiabatically there is no heat

loss, and so when calculating the energy transported one must take into account the difference between

the temperature of the convected material relative to its surroundings, i.e.

Δਫ � [(−ਵਫਵੂ )੃੅ੂੂਿ੅ਾਵ�ਾਸ − (−ਵਫਵੂ )਴ਿਾ੆] Δੂ (2.13)

noting the extra negative signs which take into account the fact that temperature decreases outward, and

so material convecting to the surface carries a positive energy flux. Considering a mixing length ਼ we can

take Δੂ � ਼/2 as an average over all fluid elements. Additionally, we consider the pressure scale height

defined by

ਟਧ ≡ − ਵੂਵ ln ਧ (2.14)

and use these to rewrite the temperature difference as

Δਫ � ਫ2 [ 1ਟਧ ( 1ਫ ਵਫਵ ln ਧ )੃੅ੂੂਿ੅ਾਵ�ਾਸ − 1ਟਧ ( 1ਫ ਵਫਵ ln ਧ )਴ਿਾ੆] ਼ (2.15)

Δਫ � 12ਫ (∇ − ∇ਲਵ ) (ਟ਼ਧ) (2.16)

To first order in MLT, one can take ਼/ਟਧ ∼ 1, and so the previous equation can be substituted back in

equation 2.12 in to write the convective luminosity inside the planet as
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ਣ਴ਿਾ੆ � 4�ੂ2 12�⟨੆⟩਴ਧਫ (∇ − ∇ਲਵ ) (2.17)

Since MESA provides all the parameters in the above equation we can calculate the convective lumi-

nosity and compare it to the actual luminosity of the planet, which is shown in the right hand panel of

figure 2.2. As expected, in the regions where ∇ � ∇ਲਵ there is a convective instability, and we can see that

the global luminosity is equal to the convective luminosity. It should also be noted that ∇ − ∇ਲਵ ∼ 10−൸
indicating only a slight departure from the background gradient is necessary for a convective instability

to form. This understanding of energy transport within the planet will be critical when attempting to

decipher the effects of accreting new material onto an existing planet structure.

2.3 Cঘখঙঊছ঒গঐ MESA ঝঘ Oঝ঑঎ছ Mঘ঍঎কজ

We now wish to generate multiple cooling models to compare them to previous results, which typically

label models by their internal entropy. InMESA one cannot directly set the entropy of a planet. Instead,

one must first create a planet with the desired mass and a large entropy (done by giving the planet a large

initial radius). The planet is then allowed to cool until the desired internal entropy is reached2, at which

point its age is reset to the age of the planet post-accretion (say for example ∼ 10൹ yrs for a 2 �� planet
accreting at a rate of 10−2 �⊕/yr. In this way we can ‘artificially’ construct cold and hot start planets

without explicitly studying the accretion process. An illustration of this is seen in figure 1.1, where we see

two planets of different masses with different initial entropies.

We now simulate cold and hot start planets withmasses ranging from 1 - 10�� and compare theMESA

models with those of Marleau & Cumming (2014). In that paper cooling curves were calculated by step-

ping through a pre-computed grid of planet models, parametrized by mass and entropy. Those models

were in turn compared to previous results found in Spiegel & Burrows (2012) and Burrows et al. (1997).

As pointed out in their work,minor constant offsets in entropy are often required in ordermake themod-
2this is done in MESA using the center_entropy_lower_limit control
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provided by MESA, we calculate the internal entropy taking a mass weighted average of the entropy of

the planet (ignoring larger entropy variations at the surface which account for only a small fraction of

the total mass). While it would seem in figure 2.1 that the planet is at roughly the same internal entropy,

even here there can be differences of up to 0.1 by comparing the innermost entropy value to the averaged

value which would already account for half of the required entropy offset. Finally, themodels inMarleau

& Cumming (2014) take into account deuterium burning, although since it only occurs for planets with

masses ≳ 13 ��this could not be the case for the offset with our models.
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3
Simulating Core accretion in MESA

Thework presented in this chapter has been previously published in theAstrophysical Journal, in section

4 of Berardo et al. (2017) which was written by the author of this thesis. It has been reproduced here with

the permission of both co-authors A. Cumming and G.-D. Marleau.

Having described the functionality of MESA as well as energy transport within a planet/star, we now

attempt to tackle the problem of simulating core accretion in MESA. As previously mentioned, the core

accretion scenario consists of several distinct steps. The first of these, in which solid planetesimals accrete

to form the rocky core, is beyond the reach of MESA’s capabilities and so this means that we can only

begin at the point when runaway gas accretion occurs, roughly when the envelope mass is equal to the

coremass (Mizuno, 1980). With this limitation inmind, we are able to define the specific questionswhich

we are capable of answering, which are as follows. As the planet accumulates new matter, how does its

internal profile change over time, and more importantly what does it like at the end of accretion as it
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begins to cool? During runaway gas accretionmaterial approaches the planet in free fall, passing through

an accretion shock before joining onto the planet’s atmosphere where it will have new thermodynamic

properties due to energy loss when crossing the shock. It is the properties of the gas post-shock which are

relevant for understanding how the interior of the planet will evolve. We describe the post-shock gas as

having a temperatureਫ0 and apressureਧ0, which shall beused as outer boundary conditionswhen solving

the fluid equations in order to determine the internal structure of the planet. The scenario described here

is appropriate for a 1-D model of accretion, however the geometry of disk fed-accretion may be such that

the accretion does not proceed in the same way over the entire planet. Studies such as Owen & Menou

(2016) indicate additional effects such as in increase of the planet’s radius due to accretion which we do

not include here.

While previous work has generally chosen some prescription for the outer boundary conditions (such

as choosing the temperature of the gas to be proportional to the accretion luminosity), we will instead

leave both ਫ0 and ਧ0 as parameters which shall be used to map the the parameter space of possible accre-

tion scenarios onto the parameter space of formed planets (i.e. the spectrum of cold to hot starts). Since

it is impossible to model solid accretion in our framework, we instead begin our models at a point just

past the end of that phase whichmeans that certain assumptionsmust bemade regardingwhat the planet

might look like at this point. In the core accretion models of Mordasini (2013), the entropy of the planet

at the onset of runaway accretion is ≈ 11 ਻ਙ/਽ੀ. To explore the sensitivity to the initial entropy ਪ� , we

consider values of ਪ� � �.5, 10.45 and 11.6 ਻ਙ/਽ੀ (recall that entropy cannot be directly set, only the

initial radius, hence the non uniform values of entropy). At these values of entropy, the make_planet

module has difficulty converging for masses as low as the crossover mass ≲ 0.1 ਤਡ because the planet is

greatly inflated. To alleviate this problem, we instead start with larger masses of 0.2, 0.5, and 1 ਤਡ forਪ� � �.5, 10.45 and 11.6 ਻ਙ/਽ੀ , respectively. For these three choices of initial mass, we set the radius in

make_planet to ਩ � 2, 5, and 10 ਩ਡ , which leads to the desired entropy at the onset of accretion.
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3.1 Aঌঌছ঎ঝ঒ঘগ ঊগ঍ ঝ঑঎ Oঞঝ঎ছ Bঘঞগ঍ঊছঢ Cঘগ঍঒ঝ঒ঘগজ

Wenow turn on accretionusing themass_change control to specify an accretion rate. By default,MESA

accretes material with the same thermodynamic properties (i.e. temperature, density and thus entropy)

as the outer layers of the model. This is a useful comparison case which we will refer to as ‘thermalized

accretion’. Tomodel a more general case of runaway gas accretion, we use the other_atmmodule of the

run_star_extras file in MESA in order to specify ਫ0 and ਧ0 (see Appendix C). They can be set for

example to constant values for the entire evolution, or adjusted depending on the state of the planet at

any given time (e.g. the mass- and radius-dependent ram pressure given by eq. [1.5]).

If the deviation from thermalized accretion is too large, MESA may fail to converge and not produce

a model. The reason for this is that MESA will first create the planet with the correct mass and radius,

which will be by set the outer boundary to some appropriate temperature and pressure by solving the

hydrostatic fluid equations. Once this is done, then MESA will take into account the new boundary

conditions, and so if the jump in say temperature is too large MESA will fail. To alleviate this, in the

scenario where the imposed surface temperature is too high, we slowly increase the temperature from a

lower value that does converge to the desired temperature over a timescale on the order of ∼ 1% of the

total accretion time to ensure that the final results are not significantly affected. For example, a model

accreting at a rate of 10−2 ਤ⊕ ੉ੂ−1 with a desired surface temperature of 2500 K will instead begin with

1500 K and linearly increase the temperature up to 2500 K over the course of 5000 yr.

We do not include any internal heating from planetesimal accretion. Planetesimals can deposit energy

deep inside the planet, withmaximal luminositywhen they penetrate to the rocky core (e.g. see discussion

in § 5.7 of Mordasini et al. 2015). The luminosity is ਣ਱ � (ਞਤ਴/਩਴)ਤ̇਱ ≈ 10−ൺ ਣ⊙ (ਤ̇਱ /10−൹ ਤ⊕ ੉ੂ−1),
where ਤ̇਱ is the accretion rate of planetesimals andwe take a coremassਤ਴ � 10�⊕ andmean core densitȳ�਴ � 5 � �m−3. Because it is deposited potentially deep inside the convection zone, this luminosity can

heat the convection zone frombelowand cause its entropy to increase. However, the internal luminosities

we find are all much greater than ਣ਱ , except for the coldest cases, and so we neglect this heat source.
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As a check that theMESA calculations are converging to a physical model, we increased and decreased

by a factor of two the mesh_delta_coeff parameter, which controls the length of the grid cells, and

find no discernible difference in the results. Similarly, we lowered by an order of magnitude the varcon-

trol_target parameter, which controls the size of the time step, and again found no difference.

3.2 I঍঎গঝ঒এ঒ঌঊঝ঒ঘগ ঘএ ঊঌঌছ঎ঝ঒ঘগ ছ঎ঐ঒খ঎জ

We first survey the final entropies and luminosities obtained by holding ਫ0 and ਧ0 fixed during accretion.

We construct a grid ofmodels withਫ0 and ਧ0 ranging from 100 to 2700K (roughly spanning from typical

nebula temperatures up to a planet heated by accretion luminosity) and 102.3 to 10൹.൹ �r� �m−3 (centered

around the ram pressure eq. [1.5]) respectively. For these values the surface entropy ਪ0 ranges from ≈ 6 to20 ਻ਙ/਽ੀ (see Appendix A). In this section, we use an accretion rate of 10−2 ਤ⊕ ੉ੂ−1, an initial mass of

0.5ਤਡ , and an initial entropy of 10.45 ਻ਙ/਽ੀ.
The results of this survey are shown in Figure 3.1. We find that the final entropies can be separated into

three different regimes. The black line on the right shows where the final entropy of the planet at the end

of accretion is equal to the initial entropy. In the region to the right of this line the final entropy is greater

than the initial entropy, hence the ‘heating’ regime. In the region to the left of this line, the final entropy

is lower than the initial entropy, and this can be further subdivided into two more regions.

The black line in the left of Figure 3.1 shows where the final entropy of the planet is equal to the value

it would reach under thermalized accretion, in which the accreted material has the same thermodynamic

properties as the planet. In a sense, this scenario allows the planet to cool while increasing its mass. The

final entropy reached under this conditions is referred to as ਪtherm. It can be seen that in most cases, ifਪ0 � ਪtherm then the final entropy of the planet will be between ਪ� and ਪtherm, in the ‘stalling’ regime,

since the planet has not cooled as much as it could have. To the left of the leftmost black line, we have the

region where ਪ਷ � ਪtherm, which is again characterized by having ਪ� � ਪtherm. In this ‘cooling’ regime,

the planet cools by a greater amount than it would have and thus ends up at a lower final entropy.
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aminimumsurface entropy ਪ਽�ਾ abovewhich the planet accretes in the heating regime (see § 3.3 inBerardo

et al. 20171). In such a case, the accretedmaterial accumulates to form a second convection zone above the

original convective core, at the higher entropy of the accreted material. Note that there is a temperature

inversion, shown in the bottom right panel, associatedwith the jumpbetween the original low convective

entropy zone and the new, higher-entropy convection zone; a similar temperature inversion was seen for

strongly-irradiated hot jupiters byWu&Lithwick (2013). The conduction timescale in the planet interior

is very long, so that the temperature inversion remains at the samemass coordinate as accretion proceeds.

As previously mentioned, the surface temperature is increased linearly from 1500 K to 2400 K over the

course of 5000 years to help convergence. This gives the initial rise of the surface entropy forਤ ≲ 0.7ਤਡ .
To see how the boundary conditions determine the post-accretion planet properties, Figure 3.3 shows

the final interior entropy ਪ਷ as a function of the surface entropy ਪ0 for a final planet mass of 10 ਤਡ . In

the hot models that develop two internal convection zones, we choose the higher internal entropy value

since most of the mass of the planet is at this higher entropy value. This in turn is due to the upper zone

appearing sufficiently early in the accretion history; for instance, in Fig. 3.2, only the inner ≈ 0.5 ਤਡ are

frozen in at ਪ ≈ ਪ� � 10.45 ਻ਙ/਽ੀ.
Models with ਪ0 � ਪtherm (to the left of the dashed vertical line in Figure 3.3) are in the cooling regime.

They show that the amount of cooling at a given value of surface entropy ਪ0 depends on the explicit

choice of ਧ0 and ਫ0. Also, in this regime there is a stronger dependence on pressure than on temperature.

For a fixed surface entropy, moving the surface to higher pressure means that the entropy must increase

at a faster rate tomatch onto the internal value, implying a larger value of∇−∇ਲਵ ∝ ਵਪ/ਵਧ and therefore

a larger convective luminosity (eq. [2.17]). A higher surface pressure therefore gives more rapid cooling,

resulting in a lower value of ਪ਷ at the end of accretion. It should be noted that cooling below � ਻ਙ/਽ੀ
requires high pressures (ਧ0 � 10൸.2 �r� �m−3) and low temperatures (ਫ0 � 450 K).

For ਪ0 � ਪtherm, we see the stalling and heating regimes. In the heating regime, the final entropy
1This was omitted from this thesis since it involved a significant amount of work done by the co-author of Berardo et al.

2017.
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this change, this figure is conceptually identical to figure 3.1, and we again see the separation into three

accretion regimes. The blue line is drawn such that the entropy along it is at the value that would be

reached by thermalized accretion at each accretion rate. The entropies to the left of the blue line are

smaller, indicating the cooling regime. The black line is drawn such that the entropy along it is equal to

the initial entropy. The entropy to the right of the black line are greater, indicating the heating regime.

Between the blue and black lines, where the entropy lies between the initial value and the value reached

by thermalized accretion, is the stalling regime. It is interesting to note that in this case, for large enough

accretion rates the boundaries for the cooling and heating regimes converging, implying the loss of the

stalling regime.

In the cooling regime, the entropy reaches a minimum of ∼ 9 ਻ਙ/਽ੀ , whereas we found much lower

values in § 3.2. The difference is due to the fact that the ram pressure never gets high enough to decrease

the surface entropy significantly. For example with ਤ̇ � 10−2 ਤ⊕ ੉ੂ−1 and a final radius ਩ ≈ 1 ਩ਡ and

mass ਤ � 10 ਤਡ , the ram pressure is always ਧaccr ≲ 10൸ �r� �m−3 since ਧaccr ∝ ਤ1/2਩−൹/2 (eq. [1.5]);

comparing to Figure 3.3, this does not lead to significant cooling.

The internal entropy in the cooling regime depends in a non-monotonic way on the accretion rate.

Increasing the accretion rate from 10−2 to 10−1 ਤ⊕ yr−1 yields a lower entropy because the ram pressure

is higher for a higher accretion rate, leading to a larger luminosity (Fig. 3.3). At lower accretion ratesਤ̇ ≳ 10−3 ਤ⊕ yr−1, the luminosity is smaller than at ਤ̇ ≳ 10−2 ਤ⊕ yr−1, but the accretion timescale

is much longer so that more cooling can occur and the final entropy decreases with decreasing ਤ̇ . Forਤ̇ ≳ 10−2 ਤ⊕ yr−1, the boundary between the cooling and stalling regimes is at larger temperature for

larger accretion rate. This is because the ram pressure is larger, and a higher temperature is needed to have

a large enough entropy to be in the stalling regime. For ਤ̇ ≲ 10−2 ਤ⊕ yr−1, the boundary temperature is

almost independent of accretion rate, because the boundary moves to low pressure (horizontal parts of

the curves in the top panel of Fig. 3.3).

In the stalling regime, the final entropy increases with accretion rate because there is less time available

to cool, and increases with temperature because a hotter envelope reduces the cooling luminosity. In the
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heating regime, the final entropy is set by ਪ਽�ਾ, which increases with temperature and accretion rate. The

boundary between the stalling and heating regimes can be understood by finding the temperature for

which ਪ਽�ਾ ≈ ਪ� at each ਤ̇ .

Figure 3.6 shows, for different values of ਪ� , ਤ̇ , andਫ0, the dependence of the internal entropy onplanet

mass, i.e. the post-formation, initial entropy (‘initial’ in terms of the pure cooling phase; e.g.Marley et al.,

2007). In each panel, the blue dot shows the initial mass and entropy. For the cooling cases, the curves

drop rapidlywith increasingmass at first but then flatten at largermasses. Most of the cooling happens by

the time that they have reached ≈ 4ਤਡ (as can also be seen in the entropy profiles in Fig. 3.2). Themodels

in the heating regime show a final entropy that depends only slightly on total mass (Δਪ ≈ 0.2 ਻ਙ/਽ੀ
from 1 to 10ਤਡ at a given ਫ0). In these cases, immediately after accretion starts the hot envelope deposits

matter with entropy ਪ਽�ਾ in a second convection zone as described in the § 3.2. In § 3 of Berardo et al.

(2017), it is shown that ਪ਽�ਾ decreases with planet mass, so that very quickly the planet enters the stalling

regime where the accreting envelope joins smoothly onto the high-entropy outer convection zone. This

lets internal entropy decrease slightly with planet mass after the initial rise. This result differs from the

hot-start accretion models of Mordasini (2013), which show an increasing entropy with mass and thus

yield with the cold starts a tuning-fork shape.

A larger initial entropy acts to shift the final entropy upwards. If the shift is large enough it can push

a model that was once in the stalling regime into the cooling regime. An example of this is the case ofਤ̇ � 10−3 ਤ⊕ ੉ੂ−1 and ਫ0 � 2000 K, which is in the stalling regime for ਪ� � �.5 ਻ਙ/਽ੀ and in the cooling

regime for ਪ� � 11.5 ਻ਙ/਽ੀ.
3.4 Cঘক঍ ঘছ Hঘঝ Sঝঊছঝজ?

The luminosity of the planet after formation ਣੀ is shown in Figure 3.7. We calculate this luminosity by

taking the internal entropy at the end of accretion (for the hot cases, this is the entropy in the hotter, outer

convection zone) and constructing a new planet with the samemass and internal entropy inMESA. This
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Figure 3.6: Final entropy as a function of mass for accretion models. Each panel shows a particular choice of ਤ̇ and ਪ� indicated by

the labels along the top and right of the figure. The blue dots and dashed lines indicate the initial entropy and mass, which are (9.5,

0.2), (10.4, 0.5), and (11.6, 1.0) (਻ਙ/਽ੀ ,ਤਡ ) from the left column to the right column. The lines correspond to accretion with different

surface temperatureਫ0 (see legend). Not all temperatures are shown in some panels because of convergence issues at lower values ofਪ� and larger values of ਤ̇ orਫ0.
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avoids convergence issues that arisewhen changing fromaccreting to cooling surface boundary conditions

at the end of accretion.

Figure 3.7: Luminosity at the onset of post-accretion cooling as a function of surface temperature during accretion for ਤ̇ �10−2ਤ⊕ ੉ੂ−1 (left panel) or ਤ̇ � 10−3ਤ⊕ ੉ੂ−1 (right panel). The colors indicate the final planet mass, while the different symbols

indicate the initial entropy of the object at the beginning of accretion (see legend). For visual clarity, the markers are given a tempera-

ture offset of−25, 0, and+25K for a respective final mass of 2, 5, and 10ਤਡ .

Figure 3.7 shows that cold starts require that we choose the lowest values of boundary temperatureਫ0 � 300 K (comparable to typical nebula temperatures ਫਾਸ਼ਲ਼), accretion rate ਤ̇ � 10−3 ਤ⊕ yr−1, and
initial entropy ਪ� � �.5 ਻ਙ/਽ੀ. In these cases we find luminosities that are comparable to and even lower

than the cold-start luminosities of Marley et al. (2007), who found 2–3 × 10−ൺ ਣ⊙ forਤ � 4–10 ਤਡ and≈ 6×10−ൺ ਣ⊙ forਤ � 2ਤਡ . However, increasing any of these parameters beyond these lowest values gives

luminosities larger thanMarley et al. (2007). For example, ਤ̇ � 10−2 ਤ⊕ yr−1 (the limiting accretion rate

assumed by Marley et al. 2007) gives ਣੀ ≳ 5 × 10−ൺ ਣ⊙, even for ਫ0 � 100 K. Increasing ਫ0 beyond 300 K
gives ਣੀ ≳ 5 × 10−ൺ ਣ⊙ even for ਤ̇ � 10−3 ਤ⊕ yr−1.

Temperatures as low as ਫ0 ∼ ਫਾਸ਼ਲ਼ are possible within the boundary prescription of Bodenheimer et al.

(2000), in the case where the flow remains optically thin throughout the growth of the planet. How-

ever, the situation in the literature regarding the outer boundary conditions for cold accretion is some-
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what confused. The boundary conditions often used in energy approaches to cold accretion, namely thatਣ ≈ 4�਩2�ਫ ൸ਸ਼਷ ਷ and ਧ0 � (2/3)(ਸ/�) (e.g. Hartmann et al. 1997; Mordasini 2013, see § 1.5), where ਫਸ਼਷ ਷
is the effective temperature, i.e. the usual boundary conditions for a cooling planet, give temperatures

significantly larger than ਫਾਸ਼ਲ਼ and in our models these conditions do not lead to cold starts. The cooling

time of the planet is generally longer than the accretion timescale (see figure 5 in Berardo et al. 2017), so

that this cooling boundary condition leads to only a small change in entropy during accretion (see the

difference between the horizontal solid and dashed lines in Fig. 3.3). Only by holding the boundary tem-

perature to a low value are we able to drive a large enough luminosity to accelerate the cooling and reduce

the internal entropy significantly on the accretion timescale.

However, as discussed in §1.5, shock models developed in the context of star formation (Stahler et al.,

1980; Commerçon et al., 2011) and planet accretion (Marleau et al., 2017) suggest that the surface temper-

ature is likely to be significantly larger than either of these prescriptions for cold starts. In these models,

the gas at the surface of the planet is heated by some fraction of the accretion luminosity generated at the

shock to a temperature ਫℎਿ੄ given by 4�਩2�ਫ ൸ℎਿ੄ ∼ ਣਲ਴਴ੂ ≈ ਞਤਤ̇/਩. In that case our results suggest

that core accretion will produce hot starts, with high entropy ਪ਴ ∼ 12 ਻ਙ/਽ੀ set by ਪ਽�ਾ and luminosityਣੀ ≳ 10−൸ ਣ⊙.
3.5 Cঘখঙঊছ঒জঘগ ঘএ ঌঘঘক঒গঐ ঌঞছট঎জ ঝঘ ঍ঊঝঊ

The subsequent cooling of the planets is shown in Figure 3.8 and compared to measured luminosities of

directly-imaged planets. We include those planetary-mass companions listed in Table 1 of Bowler (2016)

that are consistent with a hot-start mass ≲ 10 ਤਡ (the maximum mass in our models) with ages ≲ 10ർ yr,
as well as the protoplanet HD 100546 b which has a bolometric luminosity given by Quanz et al. (2015).

The four points numbered 5–8 refer to planetary companions orbiting at � 100 �u, and so are perhaps

most likely to have formed by core accretion. The cooling curves depend on both ਪ� andਫ0 (which set the

post-formation entropy), and the planet mass, so that determining the formation conditions is difficult
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without an independent measurement of the planet mass (e.g. Marleau & Cumming 2014). Even then,

Figure 3.8 shows that, at the age of these planets (≈ 20–40 Myr), the variation in luminosity with shock

temperature ਫ0 is less than a factor of a few and can bemuch smaller for low planet masses and hotter ini-

tial conditions. Younger planets (with ages ∼ 10ൺ–10ൻ ੉ੂ) have a better memory of their post-formation

state. However, of the other low-mass objects shown, 2M0441 b and 2M 1207 b orbit brown dwarfs, and

ROXs 42Bb and HD 106906 are both seen at wide separations (140 and 650 au respectively), so it is not

clear whether they formed by core accretion. The remaining data points are HD 100546 b and 51 Eri b,

both of which shall be discussed in the next chapter.
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Figure 3.8: Post-accretion cooling compared with directly-imaged exoplanets. The curves show the evolution of the luminosity after

accretion ends for final massesਤ਷ � 2, 5, and 10ਤਡ in MESA (line style) and surface temperature during accretionਫ0 � 100–2500 K

(line color). The entropy at the beginning of accretion (the accretion rate) is constant along columns (rows); see top (right) titles. Be-

cause these are post-accretion luminosities, the curves begin at different ages based on the total accretion time, which depends on ਤ̇
and the final mass. The data points are for objects with hot-start mass≲ 10ਤਡ from the compilation of Bowler (2016) as well as the

protoplanet HD 100546 b, and use the age of the host star: 1: ROXs 42B b (Currie et al., 2014a), 2: 2M0441+2301B b (Todorov et al.,

2014), 3: HD 106906 b (Bailey et al., 2014), 4: 2M1207 3932 b (Chauvin et al., 2004), 5: HD 95086 b (Rameau et al., 2013), 6: HR 8799

d (Marois et al., 2008), 7: HR 8799 b (Marois et al., 2008), 8: 51 Eri b (Macintosh et al., 2015), A: HD100546 b (Quanz et al., 2015). The

symbol type indicates objects around brown dwarfs (open squares), objects at� 100 �u (open triangles), planets at� 100 �u orbiting

stars (closed circles), and protoplanets (open circle).
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4
Time Dependent Accretion Conditions

The models of the previous chapter in which the temperature ਫ0 at the boundary of the accretion shock

is held constant are not likely to represent what is actually found in nature. It is much more likely that as

the planet grows, the boundary conditions will change as well since quantities such as the ram pressure or

the kinetic energy of the material (which is accreted in free-fall) are dependent on the mass and radius of

the planet. This does notmean that the results of the previous section are withoutmerit, as they allow an

understanding of how the thermodynamic properties of accreted material will influence the formation

of a planet. A shortfall of these models is that they lack predictive power when attempting to model

the accretion history of an actual directly imaged exoplanet, which would have accreted under different

conditions. In order for a such a thing to be done, we shall update ourmodels by using a time-dependent

temperature boundary condition.
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4.1 T঑঎ Aঌঌছ঎ঝ঒ঘগ S঑ঘঌঔ

As discussed in § 1.3 (see figure 1.2), the accretion shock plays a key role in determining the properties of the

accreted material by dictating the amount of energy that gets incorporated into the planet (Fortney et al.,

2005). An understanding of how the excess energy (which is radiated away from the planet) interacts

with the accretion flow is also required. In the case of an optically thin flow, the radiated energy will leave

the system and can be ignored. However if the flow is optically thick, this energy will be re-absorbed by

the stream of accreting material and be advected back into the shock region.

In the context of gas giant formation, the core accretion models of Pollack et al. (1996), Bodenheimer

et al. (2000), and Hubickyj et al. (2005) are based on the assumption that the shock is isothermal, with a

temperature set by integrating the radiative diffusion equation inwards through the spherical accretion

flow from the nebula (i.e. the local circumstellar disk) to the shock. In the limit where the flow is optically

thin, the shock temperature is then the nebula temperature, but could be much larger if the flow is opti-

cally thick (see discussion in § 2 of Bodenheimer et al. 2000). The cold accretion limit of these models is

therefore that the post-shock temperature of the gas isਫ0 � ਫਾਸ਼ਲ਼, or 150ਢ in the calculations ofHubickyj

et al. (2005) (although whether the temperatures in the models corresponding to the Marley et al. 2007

cold starts were that low was not explicitly reported).

An alternative approach that has been used in a variety of contexts is to model the shock efficiency by

the fraction of the specific accretion energy ਞਤ/਩ that is incorporated into the star or planet. This is

implemented either by adding an amount �ਞਤ/਩ to the specific internal energy of the accreted matter

if following the detailed structure with a stellar evolution code (Prialnik & Livio 1985; Siess et al. 1997;

Baraffe et al. 2009), or by adding a contribution �ਞਤਤ̇/਩ to the planet’s luminosity if following the

global energetics (Hartmann et al. 1997). For gas giant accretion, Mordasini et al. (2012) and Mordasini

(2013) step through sequences of detailed planet models in thermal steady state by tracking the global

energetics, andmodel cold or hot accretion by not including or including the accretion luminosity in the

internal luminosity of the planet. Owen & Menou (2016) recently applied the approach of Hartmann
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et al. (1997) to disk-fed planetary growth, calculating � as set by the disk boundary layer.

In these approaches, the cold limit corresponds to setting � � 0, which means that the accreting ma-

terial adjusts its temperature to match the gas already at the surface. With this boundary condition, the

cooling history of the accreting object is affected by accretion only through the fact that its mass is grow-

ing, which changes its thermal timescale. Even for� � 0, the temperature at the surface can bemuch larger

than ਫਾਸ਼ਲ਼, and so this is a different cold limit than in Bodenheimer et al. (2000). For example, taking a

typical internal luminosity ਣ�ਾ੄ ∼ 10−൸ ਣ⊙ and planet radius 2 ਩ਡ gives ਫ0 � ਫ੄ℎਸ਼ੂ਽ ≈ (ਣ�ਾ੄/4�਩2�)1/൸ ≈1300 ਢ , where � is the Stefan–Boltzmann constant.

In the hot limit with � � 1, the surface temperature is given by ਫ0 � ਫℎਿ੄ ≈ (ਣਲ਴਴ੂ /4�਩2�)1/൸ whereਣਲ਴਴ੂ ≈ ਞਤਤ̇/਩ is the accretion luminosity which when scaled to typical values of ਤ̇ , ਤ , and ਩ can be

written as ਣਲ਴਴ੂ ≈ 4.4 × 10−3 ਣ⊙ ( ਤ̇10−2 ਤ⊕ ੉ੂ−1)(ਤਤਡ )( ਩2 ਩ਡ )−1 . (4.1)

Shock models suggest that the post-shock temperature is more likely to be close to ਫℎਿ੄ than ਫਾਸ਼ਲ਼.
Stahler et al. (1980) argued that, even if the accretion flow is optically thin, the outer layers of the protostar

(or here the planet) will be heated because some of the energy released in the shock is radiated inwards

(see fig. 5 of Stahler et al. 1980 and associated discussion; see also the discussion inCalvet&Gullbring 1998

and Commerçon et al. 2011). For an optically thin accretion flow, Stahler et al. (1980) derived the relation4�਩2�ਫ ൸ ≈ (3/4)ਣਲ਴਴ੂ for the post-shock temperature (see their eq. [24]), which is (3/4)1/൸ਫℎਿ੄ ≈ 3100ਢ .

The factor of 3/4 relies on an approximate estimate of the outwards radiation that is reprocessed and trav-

els back inwards towards the surface, but the temperature is only weakly affected (for example a factor

1/4 would still give 2300 ਢ ). This suggests that the temperature in the post-shock layers is ਫ0 ≫ ਫਾਸ਼ਲ਼ and
even ਫ0 ≫ ਫ੄ℎਸ਼ੂ਽.
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4.2 MESA Aঌঌছ঎ঝ঒ঘগ Mঘ঍঎কজ

In order to simulate accretion inMESA,wemustmake a choice for the outer boundary conditions. Since

detailed calculations of the radiative transfer associated with the shock are in the early stages (e.g.Marleau

et al. 2017), we shall continue the trend ofmodelling the efficiency of the accretion shockwith a parameter0 ≤ � ≤ 1. We shall use this parameter to measure the amount of the accretion luminosity that gets

incorporated into the planet through the surface temperature as:

ਫ0 � (� ਣਲ਴਴ੂ4�਩2� + ਣ�ਾ੄4�਩2� ) 1൸
(4.2)

where � � 0 implies that all of the accretion luminosity has been re-radiated outwards (a perfectly efficient

shock) and � � 1 implies that all of the luminosity has been incorporated into the planet (a completely in-

efficient shock). For the pressure ਧ0 we shall continue to use the rampressure given by eq. [1.5]. Through-

out a simulation, MESAwill calculate the values of mass, radius, and the luminosity of the planet and so

the input parameters which we are free to tune for a given simulation are the accretion rate ਤ̇ and the

shock efficiency �. The accretion rate will be taken to vary between 10−2 − 10−൸ਤ⊕ yr−1 betweenmodels,

although it is held constant for a particular model.

We run a grid of accretion models in order to see how the final internal entropy of the planet is depen-

dent upon these two parameters, and we show the results of this in figure 4.1. For these models, during a

single simulation we record the internal entropy at various masses which allows themodelling of a planet

with final masses from 1��up to 13��, although some models become numerically divergent before this

final mass. The shapes we see in these figures are the ubiquitous ‘tuning-forks’ shown comparing hot and

cold start models such as inMarley et al. (2007) andMordasini (2013). Some of the curves exhibit jitter or

sharp changes due to numerical stability issues as MESA attempts to smoothly join the existing planet to

the imposed boundary conditions, although in all cases this is over a small entropy range of ≲ 0.2 k�/mp.
It is seen that for a given accretion rate, as � varies from 0 to 1, the models transition from cold-start
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to hot-start. We may understand this in the context of the accretion regimes from the previous chapter,

where here any curve which increases from its starting point is in the heating regime, and any curve which

decreases is in the cooling/stalling regime. Only for very low values of � ≲ 0.2 and ਤ̇ � 10−3ਤ⊕ yr−1
that a cold-start planet is produced, which is in agreement with the conclusions of the previous chapter.

Indeed, many of the panels show only one branch of the tuning fork, such as for ਤ̇ � 10−2.2 ਤ⊕ yr−1
where all models are heating except for � � 0. Additionally we see certain cases where the planet initially

was cooling and then transitioned into heating, such as for � � 1 and ਤ̇ � 10−3.ൺ�⊕yr−1. In the previous

chapter, a planetwould accrete in either the cooling, stalling, or heating regime exclusively. However since

the accretion regime is dictated by boundary conditions which are now taken to be fully time dependent,

we see planets which go through multiple regimes during accretion.

4.3 Cঊকঌঞকঊঝ঒গঐ Cঘঘক঒গঐ ঌঞছট঎জ ঘএ ঊঌঌছ঎ঝ঒ঘগ খঘ঍঎কজ

We shall use thesemodels to estimate accretion parameters for two directly imaged exoplanets. The first is

HD 100546 b, which is thought to be a protoplanet that is currently undergoing accretion in a circumstel-

lar disk. The evidence for core accretion, along with its younger age of ∼ 5×10ൺ yr, puts it in the range of

planets thatwill be themost useful in understanding the properties of planets produced by core accretion.

Additionally, as previously mentioned in § 1.4, it appears that the intrinsic luminosity of the planet can

be distinguished from the fraction of the accretion luminosity which has not been absorbed, which is an

important point to consider when discussing accreting objects. Figures 3.7 and 3.8 show that using the

methods of the previous chapter, a luminosity of � 10−൸ ਣ⊙ is obtained only for hot outer boundariesਫ0 ≳ 2000 K or higher entropies at the onset of runaway accretion ਪ� ≳ 10 ਻ਙ/਽ੀ.
The other planet of interest is 51 Eri b. With a bolometric luminosity of 1.6–4 × 10−ൺ ਣ⊙ (Macintosh

et al., 2015), it is perhaps themost likely observed candidate for a cold start. Figure 3.8 shows that themass

of 51 Eri b could be 10 ਤਡ if ਫ0 � 100 K, but even a small increase to ਫ0 � 300 K requires a lower massਤ ≲ 3ਤਡ . Therefore it seems likely that the mass of 51 Eri b is close to the hot-start mass, which we shall
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further confirm in this chapter.

The two pieces of observational data which will be used are the estimated ages and luminosities of

both planets. In order to compare the data to our models, we need to calculate cooling curves for all

the accretion models that were made. It proved difficult in MESA to follow a single model completely

from formation through to cooling, due to the sharp change in parameters when accretion is turned off.

In order to alleviate this, we use the technique described in § 2.1. The mass and internal entropy of the

planet are recorded at the end of accretion and then a new MESA simulation is set-up which does not

include accretion effects, allowing the planet to cool.

We show a selection of these cooling curves in figure 4.2. Any given value of � and ਤ̇ will correspond

to a single curve from one panel of figure 4.1. Along this curve at mass intervals of ∼0.2 �� the entropy

is recorded, and a cooling curve is made. In this way, a single panel in figure 4.2 corresponds to a single

curve in figure 4.1. In addition to these cooling curves, we also show the observational data for 51 Eri b and

HD 100546. This figure illustrates several points about how the two free parameters influence formation.

As expected, a higher value of �will lead tomore luminous planets post accretion, since the planet retains

a higher fraction of the accretion luminosity during formation. For the accretion rate, we note that it in-

fluences the evolution in twoways. First through the ram pressure, which in turn sets the surface entropy.

As seen in Appendix A, the entropy depends inversely on the pressure, which by equation 1.5 depends

linearly on ਤ̇ . Thus a lower accretion rate would imply a higher value of surface entropy, leading to a

higher luminosity. However the accretion rate also dictates the time-scale of accretion. As the accretion

rate tends to zero, accretion effectively shuts off and the planet will just cool. In this way, a lower accretion

rate allows the planet a chance to cool during accretion and so results in a lower luminosity (as is seen by

comparing the top and bottom rows in figure 4.2.
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��k�l��oo�(੄, ਣ) � �xp(−(੄ − ੄ਲ਴੄੅ਲ਼2�੄ )2) × �xp(−(ਣ − ਣਲ਴੄੅ਲ਼2�ਣ )2) (4.3)

where in the above equation the luminosity L is the 3 dimensional function

ਣ � ਣ(�, ਤ̇ , ਤ) (4.4)

which is calculated by MESA and t is the age of the planet.

This luminosity can be read off the corresponding cooling curve such as one seen in figure 4.2. The

age used in the calculation of the likelihood is dealt with in a different manner. In reality, since the age of

the planet comes from association with the host star, it is at best an upper limit. Due to this uncertainty,

when calculating the value of a likelihood for a given choice of (�, ਤ̇ , ਤ), we shallmarginalize over the age

by randomly sampling 100 ages with a Gaussian spread of width �੄ around the observed value. In figure

4.3 we show the calculated likelihoods for both 51 Eri b and HD 100546 for selected values of accretion

rate, where the likelihood has been scaled so that the highest value is one.

For 51 Eri b, the likelihoodhasnodependenceon the shock efficiency for accretion rates ਤ̇ ≳ 10−3ਤ⊕ yr−1.
The reason for this is that regardless of the value of �, all planets form with a sufficiently high luminosity

such that they have joined on to their respective hot start cooling curve (defined by their mass) by the

time they reach the age of 51 Eri b. Another way of saying this is that by the age of 51 Eri b, all traces of

formation conditions have been removed, such that the value of � won’t alter the estimated mass. This

result is contrary to that of Marley et al. (2007), where high mass planets are formed with low enough

luminosities to explain 51 Eri b. In our models this is only seen to some degree for the lowest value of

accretion rate. For ਤ̇ � 10−൸ ਤ⊕ yr−1, the likely mass range widens to 2 − � ਤਡ at � � 0, and in fact

the mass range does increase between each panel as the accretion rate drops, although the effect is more

subtle for higher accretion rates.

In the case of HD 100546 b, at an accretion rate of ਤ̇ ≲ 10−2.ൺ ਤ⊕ yr−1 there is an increase in the mass
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5
Conclusion

The primary goal of this work has been to describe the physics of core accretion in greater detail than has

been done in the past. We have attempted to quantify the conditions required for both hot and cold start

models in order to estimate the likelihood of one versus the other, and we now provide an overview of

our results.

5.1 T঑঎ Aঌঌছ঎ঝ঒ঘগ Pছঘঌ঎জজ

We have first shown that the choice of boundary conditionsਫ0 and ਧ0 during core accretion leads to three

different accretion regimes (§ 3.2 and Fig. 3.2), which depends on the difference between the entropy of

the material deposited by the accretion shock ਪ0(ਫ0, ਧ0) and the initial internal entropy ਪ�:
• The cooling regime. For ਪ0 ≲ ਪ� , the planet becomes fully convective, and the superadiabatic gra-

dient drives a large luminosity that leads to rapid cooling. The cooling luminosity is sensitive to
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the boundary pressure ਧ0, with larger ਧ0 leading to faster cooling. If the cooling is rapid enough

compared to the accretion timescale, the end state of this regime is that the internal entropy be-

comes equal to the surface entropy ਪ਷ ≈ ਪ0. This regime occurs for low boundary temperaturesਫ0 ≲ 500–1000 ਢ .

• The stalling regime. For ਪ0 ≳ ਪ� , the entropy decreases inwards in a radiative envelope. Provided

the entropy contrast is not too great, the envelope joins smoothly onto the interior convection zone.

The hot envelope causes the radiative-convective boundary (RCB) to lie at higher pressure than in

an isolated cooling planet with the same internal entropy, lowering the luminosity at the RCB and

slowing the cooling. In this regime, the final entropy lies close to the initial value of entropy at the

onset of accretion ਪ਷ ≲ ਪ� , depending on how much the cooling is slowed. This regime occurs at

intermediate temperatures ਫ0 ≈ 1000–2000 ਢ .

• The heating regime. For boundary temperatures ਫ0 ≳ 2000 ਢ , the entropy difference Δਪ �ਪ0 −ਪ� cannot be accommodated by the radiative envelope. Instead, the entropy decreases inwards

through the envelope to a value ਪ਽�ਾ � ਪ� and a second convection zone with entropy ਪ਽�ਾ accu-

mulates above the original convective core.

Furthermore,wehave shown that the luminosity of a younggas giant formedby core accretiondepends

not only on the outer boundary conditions (e.g. the shock temperature ਫ0) and accretion rate, but also

the initial entropy ਪ� when runaway accretion begins, since it determines whether accretion occurs in

the cooling, stalling, or heating regimes. Therefore the thermal state of the young planet in principle

provides a link to the structure of the accreting core soon after the crossover mass is reached. This point

was also made by Mordasini (2013), who found that the final entropy depended sensitively on the core

mass because it sets the entropy of the envelope at detachment. We see here that for a wide range of

intermediate temperatures for which accretion is in the stalling regime (ਫ0 ≈ 1000–2000 ਢ , see Fig. 3.5),

the final entropy is close to the entropy at the start of runaway accretion.
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In chapter 4, using a more specific form of the outer boundary conditions (i.e. time dependent tem-

perature) it was also shown that a high mass ≳ 6 ਤਡ may be ruled out for 51 Eri b. When considering

a model which tracks the accretion luminosity by considering the efficiency of the accretion shock it is

found that, excluding very low accretion rates, high mass planets cannot be formed with a low enough

luminosity to explain the observations of 51 Eri b. The collective results of this work suggest that only

the most extreme boundary conditions (low ਫ0) can produce traditional cold start planets, and that such

extreme conditions themselves are difficult to produce. The implications of this is that hot-start models

are appropriate to use when attempting to estimate themass of a directly imaged exoplanet, and the issue

of degeneracy between mass and luminosity through cold-starts is not an issue.

5.2 Fঞঝঞছ঎ Wঘছঔ

The focus of this work has been onunderstanding the internal entropy and luminosity of a core-accretion

planet, with little regard to the details of the internal structure of the planet. For models in which the

surface temperature is held constant, itwas seen that for heatingmodels an outer convective zonemade up

of thehotter accretedmaterial forms above the initial, lower-entropy core. Onemay ask about the internal

structure of a planet in the case where the surface temperature is changing over time, particularly a case

where it increases during the evolution. As the planet gets moremassive and contracts gravitationally, the

accretion luminosity which goes like ਣਲ਴਴ ∼ ਤ/਩ will increase over time, implying a larger and larger ਫ0.
Preliminary results not shown here suggest that in such a case instead of a sharp jump in internal entropy,

the entropy profile gradually increases towards the surface of the planet. The interior of the planet is

thus no longer convective, which has implications regarding the distribution of heavy elements within

the planet (Leconte & Chabrier, 2012; Helled & Stevenson, 2017). The Ledoux criterion for convection,

discussed in § 2.2, includes a term for compositional gradients when calculating the convective instability.

It is thus possible that a non-homogeneous composition could shut down convection, which would alter

the luminosity of the planet. Thiswoulddelay the cooling of the planet, changing the shape of the cooling
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curve and requiring further study in order to assign observed luminosities and ages to mass values. As an

example, the observed luminosity of Saturn is larger than models currently predict (Pollack et al., 1977).

If an inhomogeneous composition were present which altered Saturn’s cooling, this could help explain

the observed discrepancy.

One of the other goals of this work has been to develop MESA as a tool to study planet formation;

wemake our inlist and run_star_extras files available at http://cococubed.asu.edu/mesa_market/

add-ons.html. It would be interesting to explore further modelling of gas giant formation inMESA, and

overcome some of the limitations of ourmodels. This will require taking into account energy deposition

by planetesimals (see review in § 5.7 ofMordasini et al., 2015), modelling the contribution of dust grains to

the envelope opacity (e.g. Ormel 2014; Mordasini et al. 2014), including possible composition effects on

convection (e.g. Nettelmann et al. 2015), and extending to lower masses than considered here (see Chen

& Rogers 2016).
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A
The entropy in the envelope

This appendix has been taken fromBerardo et al. (2017), written by the author and reproduced here with

the permission of both co-authors A. Cumming and G.-D. Marleau.

In this appendixwe calculate the entropy in the envelope of gas giantswhere it is a good approximation

to assume an ideal gas consisting of molecular and atomic hydrogen as well as helium. In this case we can

derive a simple formula for the entropy as a function of pressure and temperature. The ideal gas equation

of state is ਧ � �਻ਙਫ /�਽ੀ where the mean molecular weight � is given by

�−1 � 1 − ਰ1 + �ਟ2 + ਰ4 ,
the molecular fraction �ਟ2 � ਾਟ2/(ਾਟ2 + ਾਟ ) (i.e. �ਟ2 = 1 (0) is purely molecular (atomic) hydrogen),

and ਰ is the helium mass fraction. The number densities of H and ਟ2 can be computed from the Saha
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equation ਾਟ2(ਾਟ )2 � ਾਨ,ਟ2੊ੂ(ਾਨ,ਟ )2 ਸ਼Δ�/਻ਙਫ (A.1)

where ਾਨ,� � (2���਽ੀ਻ਙਫ )3/2/ℎ3 and ਽ੀ�� is the mass of species �. We also consider that for hydrogen

gas ਾਟ2 + ਾਟ � ਧ/਻ਙਫ . The ionization energy Δ� is 4.4� ਸ਼ਭ � 7.24 × 10−12 ਸ਼ੂਸ (Blanksby & Ellison,

2003) and the rotational partition function forਟ2 is given by

੊ੂ � 12 ∞∑਼=0 (2਼ + 1)ਸ਼−਼(਼+1)Θੂਿ੄ /ਫ , (A.2)

which in the limit of ਫ ≫ Θੂਿ੄ can be approximated as ੊ੂ � ਫ /(2Θੂਿ੄ ), whereΘੂਿ੄ � �5.4K (Hill, 1986).

The pressure at which a given value of �ਟ2 is reached at temperature ਫ is

ਧ (�ਟ2 , ਫ ) � 1.6 × 10ൺ ਸ਼ੂਸ ਴਽−3 �ਟ2(1 − �ਟ2)2ਫ 3/2 �xp(−5.4 × 10൸ ਢਫ ) . (A.3)

Contours of�ਟ2 in the temperature–pressure plane are shown inFigureA.1. Forਫ ≲ 2000ਢ the envelope

(pressure range ≈ 103–10ർ ਸ਼ੂਸ ਴਽−3) is molecular, but for higher temperatures atomic hydrogen must

be included.

The entropy per particle of hydrogen and helium is

੃ਟ2਻ਙ � 72 + ln(ਾਨ,ਟ2ਾਟ2 ) + ln( ਫ2Θੂਿ੄) (A.4)੃�਻ਙ � 52 + ln(ਾਨ,�ਾ� ) , � � ਟ , ਟਸ਼. (A.5)

Weuse the fact that the temperature is low enough so that the vibrational degrees of freedomofmolecular

hydrogen, which has a vibrational temperatureΘ੆�ਲ਼ � 6210 K (Hill, 1986), are not excited. The entropy
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per baryon ਪ� � ੃�/�� is then
ਪਟ2/਻ਙ � 12 (20.� + 52 ln ਫ3 − ln �−൹) , (A.6)

ਪਟ /਻ਙ � (16.3 + 32 ln ਫ3 − ln �−൹) , (A.7)

ਪਟਸ਼/਻ਙ � 14 (1�.� + 32 ln ਫ3 − ln �−൹) , (A.8)

where ਫ3 ≡ ਫ /1000K and �−൹ ≡ �/(10−൹ ਸ ਴਽−3). The total entropy per baryon is

ਪ/਻ਙ � (1 − ਰ )(1 + �ਟ2) [2�ਟ2ਪਟ2 + (1 − �ਟ2)ਪਟ] + ਰਪਟਸ਼ + ਪ਽�ੈ (A.9)

where ਪ਽�ੈ is the entropy of mixing (Saumon et al., 1995) given by

ਪ਽�ੈ � 1� (−ੈਟ ln ੈਟ − ੈਟ2 ln ੈਟ2 − ੈਟਸ਼ ln ੈਟਸ਼) (A.10)

and the number fractions are

ੈਟ � (1 − ਰ )(1 − �ਟ2)(1 + �ਟ2) �, ੈਟ2 � (1 − ਰ )(2�ਟ2)(1 + �ਟ2) �2 , ੈਟਸ਼ � ਰ �4 . (A.11)

Considering the limit of purely molecular hydrogen (�ਟ2 � 1) we find � � 2.2�, ਪ਽�ੈ � 0.1� and the

entropy is given by

ਪ਻ਙ/਽ੀ � �.�0 + 3.3� lo�10 ਫ3 − 1.01 lo�10 ( ਧ10ൺ ਸ਼ੂਸ ਴਽−3) , (A.12)

having used the ideal gas equation of state to rewrite the density in terms of the temperature and pressure.
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Figure A.1: Comparison between the entropy calculated using equation (A.9) and that of Saumon et al. (1995), ਪ��v�. The black

and red lines indicate values of constant �ਟ2 (ਧ , ਫ ) obtained using equation (A.1) and from Saumon et al. (1995), respectively, for�ਟ2 � 0.01, 0.1, 0.5, 0.9, 0.99. The thick blue and green lines show envelope models from Figure 2 of Berardo et al. (2017) with

surface temperatures of 2000 K and 150 K respectively. There is no SCvH entropy data in the upper-left, yellow region.

In the other limit of purely atomic hydrogen (�ਟ2 � 0) we find � � 1.23, ਪ਽�ੈ � 0.22 and

ਪ਻ਙ/਽ੀ � 13.47 + 4.6� lo�10 ਫ3 − 1.�7 lo�10( ਧ10ൺ ਸ਼ੂਸ ਴਽−3) . (A.13)

From equations (A.12) & (A.13) we can read off the adiabatic index ∇ਲਵ � (� ln ਫ /� ln ਧ)ਪ � 0.30 for the

molecular case and ∇ਲਵ � 0.40 for the atomic case.

In Figure A.1 we see how the results of the above equations compare to the values found in Saumon

et al. (1995) (SCvH).Theblue and green curves, which showenvelopemodels calculated in § 3.2 ofBerardo

et al. (2017), are mostly in a region where the deviation from SCvH is only |Δਪ|/ਪਪਚ੆ਟ ≈ 2–5%. However,

further into the envelope at higher pressures, the error increases to ∼ 10% and so the more detailed equa-

tion of state tables from SCvH are required. Large deviations are seen for ਫ ≳ 10൸ ਢ , where atomic

hydrogen is ionized, but this region is not relevant for our envelope models. At lower temperatures, the

largest deviations from SCvH occur where �ਟ2 is transitioning from 0 to 1. Even though our calculation
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of �ਟ2 agrees well with that of SCvH (black and red contours in Fig. A.1), the small differences in �ਟ2 are

amplified in the total entropy because atomic hydrogen gives a much larger contribution to entropy than

molecular.
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B
Derivation of Convective Instability Criterion

In this appendix we derive the Schwarzschild criterion for convection in terms of temperature and pres-

sure gradients. We then show how it may be re-written as an entropy derivative.

B.1 Sঌ঑ঠঊছণজঌ঑঒ক঍ Cছ঒ঝ঎ছ঒ঘগ

By following the discussion of § 10.4 of Carroll & Ostlie (2007), we observe what happens to a fluid

element that is displaced from its surroundings adiabatically by an amount ஡ੂ . Initially the fluid element

is in thermal equilibrium with its surroundings, and is transported slowly enough so that it remains in

pressure equilibrium but quickly enough that it does not remain in temperature equilibrium. In order

for a fluid to be unstable to convection, a fluid parcel which is displaced upwardmust have a lower density

than the surrounding gas (so that it continues to rise) which for small radial perturbations can be written

as
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�ੀ਷ � �� + ਵ�ਵੂ ||(ੀ)ਵੂ � �� + ਵ�ਵੂ ||(੃)ਵੂ � �੃਷ (B.1)

where p and s refer to the parcel and surroundings, and f and i refer to final and initial quantities. Since

initially the densities are equal, this can more succinctly be written as

ਵ�ਵੂ ||(ੀ) � ਵ�ਵੂ ||(੃) (B.2)

and we assume an ideal gas with constant composition which allows us to write

ਵ�ਵੂ � ਵਵੂ (�਽੅ਧ਻ਙਫ ) � �ਧ ਵਧਵੂ − �ਫ ਵਫਵੂ (B.3)

which we substitute both of back in to equation B.2

(�ਧ ਵਧਵੂ − �ਫ ਵਫਵੂ ) ||ਲਵ � (�ਧ ਵਧਵੂ − �ਫ ਵਫਵੂ ) ||ਲ਴ਵ (B.4)

with the ‘act’ referring to the true temperature derivative and ’ad’ referring to derivatives for the parcel,

which is transported adiabatically. We may cancel out the pressure derivatives since the parcel is always

in pressure equilibriumwith the surroundings and use hydrostatic equilibrium (eq. [2.5]) to convert the

radial derivative to a pressure derivative, which carries with it a negative sign

ਧਫ ਵਫਵਧ ||ਲਵ � ਧਫ ਵਫਵਧ ||ਲ਴੄ (B.5)

Finally, recalling the definition of ∇ � ਵ਼ਾਫਵ਼ਾ� and dropping the ‘act’ subscript this can be written as

∇ � ∇ਲਵ (B.6)

which at last provides the criteria for determining if the fluid will be unstable to convection.
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B.2 Eগঝছঘঙঢ এঘছখঞকঊঝ঒ঘগ ঘএ Sঌ঑ঠঊছণজঌ঑঒ক঍ Cছ঒ঝ঎ছ঒ঘগ

We now consider the radial entropy derivative within the planet ਵਪਵੂ which we may write as

ਵਪਵੂ � ( �ਪ�ਫ )ਧ
ਵਫਵੂ + (�ਪ�ਧ )ਫ

ਵਧਵੂ (B.7)

and we shall rewrite the partial derivative �ਪ�ਧ using the triple product rule

(�ਪ�ਧ )ਫ � −( �ਪ�ਫ )ਧ (�ਫ�ਧ )ਪ (B.8)

which we substitute into equation B.7 to write

ਵਪਵੂ � ( �ਪ�ਫ )ਧ [ਵਫਵੂ − (�ਫ�ਧ )ਪ
ਵਧਵੂ ] (B.9)

and for the temperature derivative in the above equation we write

ਵਫਵੂ � (�ਫ�ਧ )੃੄ਲੂ
ਵਧਵੂ (B.10)

where ‘star’ denotes the actual gradient in the star/planet. This is substituted back into equation B.9

to give

ਵਪਵੂ � ਫਧ ( �ਪ�ਫ )ਧ [ਧਫ (�ਫ�ਧ )੃੄ਲੂ − ਧਫ (�ਫ�ਧ )ਪ] ਵਧਵੂ (B.11)

this can first be simplified by recognizing the heat capacity ਚ � ਫ �ਪ�ਫ and ∇ � ਧਫ �ਫ�ਧ (where the second set

of derivatives is at constant entropy, i.e. adiabatic) giving

ਵਪਵੂ � ਚਧ (∇ − ∇ਲਵ ) ਵਧਵੂ (B.12)

Wenowobserve that the entropy gradient is a product of the pressure gradientwhich is negative (pressure

65



decreases radially outward from the planet) ਵਧਵੂ � 0, the heat capacity C and the pressure P which are

both positive. Finally, the Schwarzchild criterion is the statement that ∇ � ∇ਲਵ and so we arrive at the

conclusion that an equivalent description of convective instability is

ਵਪਵੂ � 0 (B.13)
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C
MESA Code

In this appendix, we present the code found in the ‘run_star_extras’ file in MESA, which is used to

set custom boundary conditions for temperature and pressure during accretion. The full directory of

all MESA code used to construct the models can be found at http://cococubed.asu.edu/mesa_market/

add-ons.html

subroutine shock_other_atm( &

id, M, R, L, X, Z, kap, Teff, &

lnT, dlnT_dL, dlnT_dlnR, dlnT_dlnM, dlnT_dlnkap, &

lnP, dlnP_dL, dlnP_dlnR, dlnP_dlnM, dlnP_dlnkap, &

which_atm_option, switch_to_grey_as_backup, ierr)

{...}
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! The values for Tflag and Pflag determine which set of boundary conditions

to use for temperature and pressure at the photosphere

SELECT CASE(Tflag)

CASE(ǐ)

!constant surface temp

Teff = ǘǏǏ !set value for constant surface temperature here

lnT = log(Teff)

dlnT_dL = Ǐ

dlnT_dlnR = Ǐ

dlnT_dlnM = Ǐ

dlnT_dlnkap = Ǐ

CASE(Ǒ)

! luminosity temp

Teff=(L/(Ǔ*pi*R**Ǒ*sigma))**(ǐ./Ǔ)

lnT=log(Teff)

dlnT_dL=Teff**(-Ǔ)/(ǐǕ*pi*R**Ǒ*sigma)

!dlnT_dlnR=-Teff**(-Ǔ)/(Ǘ*pi*sigma*R**Ǒ)

dlnT_dlnR = -Ǐ.ǔ

dlnT_dlnM=Ǐ

dlnT_dlnkap=Ǐ

CASE(ǒ)

!shock temp, from eq. ǒǑ in Stahler ǐǘǗǏ, which considers the thermal

equilibrium between

!the shock, the incoming material, and the planetary luminosity

Teff = (ǒ*c_grav*M*mdot/(ǐǕ*pi*sigma*R**ǒ))**(ǐ./Ǔ)

lnT=log(Teff)
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dlnT_dL = Ǐ

dlnT_dlnR = -Ǐ.ǖǔ

dlnT_dlnM = Ǐ.Ǒǔ

dlnT_dlnkap = Ǐ

CASE(ǔ)

!Planet + accretion luminosity

Teff=((L + (c_grav*M*mdot)/R)/(Ǔ*pi*R**Ǒ*sigma))**(ǐ./Ǔ)

lnT=log(Teff)

dlnT_dL=Teff**(-Ǔ)/(ǐǕ*pi*R**Ǒ*sigma)

dlnT_dlnR = -Ǐ.ǖǔ + Teff**(-Ǔ)*L/(ǐǕ*pi*R**Ǒ*sigma)

dlnT_dlnM=Teff**(-Ǔ)*(c_grav*M*mdot)/(ǐǕ*pi*R**ǒ*sigma)

dlnT_dlnkap=Ǐ

END SELECT

SELECT CASE(Pflag)

CASE(ǐ)

!ram plus photospheric pressure

lnP = log(mdot/(Ǔ*pi*R**Ǒ)*(Ǒ*c_grav*M/R)**(ǐ./Ǒ) +

(Ǒ.Ǐ/ǒ.Ǐ)*(grav)/kap)

dlnP_dL = Ǐ

dlnP_dlnR = -Ǒ.ǔ-(ǐ.Ǐ/ǒ.Ǐ)*(grav/kap)*(ǐ/EXP(lnP))

dlnP_dlnM = Ǐ.ǔ+(ǐ.Ǐ/ǒ.Ǐ)*(grav/kap)*(ǐ/EXP(lnP))

dlnP_dlnkap = -(Ǒ.Ǐ/ǒ.Ǐ)*(grav/kap)*(ǐ/EXP(lnP))

CASE(Ǒ)

!only photospheric pressure

lnP=log((Ǒ.Ǐ/ǒ.Ǐ)*(grav)/kap)

dlnP_dL=Ǐ

dlnP_dlnR= -Ǒ.Ǐ
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dlnP_dlnM= ǐ.Ǐ

dlnP_dlnkap=-ǐ.Ǐ

CASE(ǒ)

!ram only, obviously never used post accretion

lnP = log(mdot/(Ǔ*pi*R**Ǒ)*(Ǒ*c_grav*M/R)**(ǐ./Ǒ))

dlnP_dL = Ǐ

dlnP_dlnR = -Ǒ.ǔ

dlnP_dlnM = Ǐ.ǔ

dlnP_dlnkap = Ǐ

END SELECT

end subroutine shock_other_atm
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