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ABSTRACT

While being able to explain much of the observational data regarding giant planets, the core-accretion
formation model still contains a significant amount of uncertainty regarding the initial post-formation
properties of planets. The discovery of young planets implies that quantities such as the luminosity and
internal structure of a newly formed gas giant must be well understood in order to properly analyse obser-
vations. In this work we attempt to quantify these properties by using the MESA stellar evolution code
to calculate the formation of gas giants under a range of conditions. We study how factors such as the
accretion rate and thermodynamic properties of accreted material affect the final properties of the planet.

In the past core accretion models have been subdivided into ‘hot-start’ and ‘cold-start” models based
on the luminosity of the formed planet. An implication of cold-start models is that they provide a higher
estimate for a planet’s mass based on its observed luminosity compared to hot-start models. We show
that in all but the most extreme cases one may rule out cold-starts, finding hot-starts to be the most likely
formation method. Furthermore, by applying our models to directly imaged exoplanets we find only a
single peak in the posterior mass likelihood corresponding to the hot start prediction.

ABREGE

Tout en pouvant expliquer plusieurs des observations qui concernent les planétes géantes, la théorie de
la formation par accrétion du noyau a encore des problemes a expliquer les propriétés des planetes nou-
vellement formées. La découverte des jeunes planetes implique que des quantités telles que la luminosité
et la structure interne des planetes nouvellement formées doivent étre bien comprises pour pouvoir anal-
yser correctement les observations. Dans ce travail, nous essayons de quantifier ces propriétés en utilisant
le code d’évolution stellaire MESA. Nous etudions comment des facteurs tels que le taux d’accrétion et
les propriétés thermodynamiques du matériel accréeé affectent les propriétés finales de la planete.

Autrefois les modeles d’accrétion du noyau étaient subdivisés en des modeles de ‘départs froids’ et ‘dé-
parts chauds’ basés sur leur luminosité. En général les modeles de départs froids produisent une estima-
tion de la masse de la planete plus haute que les modeles chauds. Nous montrons que dans tous les cas
saufles plus extrémes les modeles chauds sont les plus probables. En plus, en appliquant nos modeles aux
données des exoplanetes découvertes par imagerie directe, nous trouvons la masse la plus probable d’étre
celle de modeles chauds.
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Introduction

1.1 PLANET FORMATION

Since the first confirmed detection of an extra solar planet in 1992 (Wolszczan & Frail, 1992) the field of
exoplanet astronomy has progressed in leaps and bounds, with the detection now of over 3500 confirmed
exoplanets . With the large sample of exoplanets available to us, we can begin to tackle big picture ques-
tions such as how likely a star is to host a planet, how likely such a planet is to have earth-like orbital
properties, and hopefully with the help of upcoming missions such as the James Webb Space Telescope,
how likely a planet is to have favourable conditions for life.

While the search for Earth 2.0 is of great interest, it can be seen that even within our own solar sys-
tem the Earth is only but a single piece of a larger ensemble. From Earth-like planets, through super-

Earths (not found in our solar system), and up to ice and gas giants, the planetary zoo is populated

'See the online “Exoplanet Encylopedia” (Schneider et al., 2011) at http://exoplanet.eu/
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with planets having masses from 0.02 M, (Wolszczan, 1994) to 10 My* (Marois et al., 2008), radii from
0.3 R, (Barclay et al,, 2013) to 2 Ry (Hartman et al,, 2011), and orbital periods from ~2 hours (Bailes
et al,, 2011) to ~2000 yrs(Close et al,, 2007) . Given such a sample of specimens, one may ask how they
could have formed, and more importantly how different types of planets could have co-evolved within
the same planetary system. Jupiter, for example, with a mass of 318 M, (in units of Earth masses where
1M, = 5.98 x 10*”g) contains approximately 75% of the non-solar mass in our solar system and domi-
nates its dynamics. Thus, an understanding of the formation of gas giant planets (the classification that
Jupiter falls under) is critical to understanding the formation and evolution of the solar system as a whole.

There are two competing formation theories for gas giants known as “gravitational instability” and
“core accretion” which consider what might happen within a protoplanetary disk composed of mm-sized
dust grains. In the gravitational instability scenario, a density perturbation forms in a region of the disk.
This causes the gravitational potential energy at that point to overcome the thermal energy of the par-
ticles, and the instability sets in causing the gas and dust to gravitationally collapse to form a solid and
stable clump, known as a proto-planetary object (Kuiper, 1951). This is more easily done in massive disks
far from the host star, where the disk is colder and rotating slower. One of the distinguishing features
of this scenario is that the proto-planetary object forms on a short time-scale of 10® years. There a few
shortcomings to this method however, such as the difficulty in forming the rocky cores of Jupiter and
Saturn (Stevenson, 1982) as well as explaining the observed metallicities of these planets which are higher
than solar values (Saumon et al., 1995).

Alternatively, in the core accretion scenario there is a more gradual build up of material in forming the
planet (Safronov 19725 Pollack et al. 1996). Instead of a quick gravitational collapse, dust particles in the
solar nebula collide and stick together to form planetesimals of typical radius ~ 0.1 km which are capable

of gravitationally attracting one another (Goldreich & Ward, 1973). A core formed from planetesimals will

“Larger objects have been found, although it is not clear if they should be classified as planets or as brown dwarfs
*Throughout this work we shall use units of Earth masses (Mgwith 1 Mg = 5.972 x 1024 kg), Jupiter masses (Mywith
1My = 1.898 x 1027 kg), Farth radii (R, with 1R, = 6371 km) and Jupiter radii (Rywith 1Ry = 6.99 x 10* km).



further accrete solid material at an accretion rate M, which is initially much larger than the gas accretion
rate M. As the mass of the core increases so does the gas accretion rate, until a critical core mass on the
order of 10 ~ 30 M, is reached (Mizuno, 1980), at which point runaway gas accretion occurs. Gas accretes
onto the planet in free-fall, accumulating the rest of the planet’s mass in the form of a gaseous envelope.
Once the supply of gas has been depleted from the disk after ~ 10 Myr, accretion stops and the planet
begins to cool. An important feature of this scenario is that it allows for the enriching of heavy elements
through the accretion of planetesimals, which is in agreement with our solar system gas giants (Mizuno,

1980).

1.2 PosT FORMATION COOLING OF GAS GIANTS

Once a planet has formed, through either method, one may calculate its cooling in order to determine the
luminosity of the planet at a given age (Bodenheimer & Pollack, 1986). In particular, if it is sufficiently
far from its host star such that its equilibrium temperature T,, given by (for a perfectly absorbing and

emitting planet)

R \°5
T, =T, (i) (r.1)

is low compared to its intrinsic temperature (where T, and R, are the temperature and radius of the host
star, and D is the orbital distance of the planet) then a gas giant will cool at a rate determined uniquely
by its mass, composition and luminosity. This implies that a measurement of a gas giant’s age and lumi-
nosity (assuming some standard composition) provides a measurement of its mass. For a planet whose
luminosity is supplied by gravitational contraction, cooling takes places over the Kelvin-Helmholtz (KH)

time-scale

GM?
txy = ——
KH RL
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Figure 1.1: Luminosity and effective temperature for 2 MJ and 10 MJ planets as a function of time calculated using MESA (see chapter
2). The entropy value indicates the entropy of the internal adiabat at the onset of cooling. The black circles indicate where the cold
starts of the 10 MJ planet intersect with the hot starts of the 2 MJ planet, showing the degeneracy of mass based on age and luminos-
ity.

where M, R and L refer to the planet’s mass, radius, and luminosity, and G is Newton’s constant. While
at late times a planet evolves as a thermally isolated ball of gas, at early times (relative to when accretion
ended) such assumptions break down since the properties of the planet, such as its internal temperature
profile or surface luminosity, may still be influenced by having been in thermodynamic contact with the
proto-planetary disk. In a case where a planet forms with a large luminosity and radius, its KH time-scale
is short and it quickly cools until it reaches thermodynamic equilibrium. For example, a 10 M; object with
aradius of 10 R; and luminosity of 1073 L, (in units of solar luminosity, where 1L, = 3.828 x 10%° W) will
cool over a period of ~ 107 years, after which it would be impossible to trace back its initial luminosity.
These objects which quickly achieve equilibrium are referred to as ‘hot starts’. In contrast, a 10 M; object
with a radius of 3 Rjand luminosity 107> L, will cool over a period of ~ 10 years. The planet takes
significantly longer to ‘forget’ its initial conditions (i.c. its low initial luminosity), and these objects are
referred to as ‘cold starts’.

An example of this is shown in figure 1.1, which shows how a 10 Mj and 2 M; planet would cool depend-

ing on their initial conditions. The cooling curves shown in this figure were created using the MESA 1-D



stellar evolution code, which is discussed in greater detail in chapter 2. The interior structure of the planet
consists of an outer radiative layer and an internal adiabatic convective zone, and it is the value of the en-
tropy of the adiabat which is used to measure how ‘hot’ or ‘cold’ the planet is (also to be discussed in
chapter 2). For entropy values 2 9 kg/mj, (in units of Boltzmanns constant per baryon mass), the curves
converge to an equilibrium cooling track at ~10® years for the 10 My planet and ~107 years for the 2 M
planet. For entropies below 9 kg/m,, the cooling is delayed because the KH timescale is much longer
(due to the fainter luminosity of the planets).

Early formation models typically assumed a hot start so that one could ignore specific initial conditions
and model the planet’s cooling solely on its mass Burrows et al. (1997); Baraffe et al. (2003). This provided
a direct and non-degenerate method for determining planet mass from age and luminosity. However,
beginning with the detection of 2M1207b in 2004 (Chauvin et al., 2004), which has an estimated age of
~10 Myrs, we have begun to find young objects which fall into the age range where initial conditions may
dominate the cooling behaviour. The implications of this are seen in figure 1.1, where black circles indicate
overlap of the 10 and 2 M; planet’s cooling curves. This highlights a critical issue when attempting to derive
a planet’s mass from observations, since a high mass planet with a low initial luminosity is degenerate with

a lower mass planet with a high initial luminosity.

1.3 HoT START Vs COLD START

Having stated the implications of cold and hot starts, the task at hand is now to understand the connec-
tion between the accretion process and the type of planet produced. It was first explicitly stated in Fort-
ney et al. (2005) and Marley et al. (2007) that core accretion could lead to cold start planets. While typical
hot start models produce planets with luminosities of 107 — 10™* L, dependent on mass, they showed
that the core accretion model described in the series of papers Pollack et al. (1996), Bodenheimer et al.
(2000), and Hubickyj et al. (2005) produced planets with luminosities on the order of 107® L,, almost

completely independent of mass. One of the key ingredients in a core accretion model is the isothermal ac-



cretion shock, which occurs at the point where accreting material joins onto the planet’s atmosphere (the
material is initially in free-fall whereas the atmosphere is not, and so a shock will form at this boundary
where properties such as density and average velocity change abruptly) (Bodenheimer et al., 2000). Itis
thought that the accreted material would radiate a significant amount of its kinetic energy when crossing
the shock, and thus be at a lower energy when it gets incorporated into the planet resulting in the planet
having a lower internal entropy. Since there is no accretion shock associated with the gravitational insta-
bility model of planet formation, this seemed to indicate a pairing of core accretion with cold starts, and
gravitational instability with hot starts. This idea has a significant impact for observations to distinguish
between formation scenarios, as well as providing direction for how observers should interpret the mass
of such planets.

Given uncertainties in planet formation models and the potential large range in luminosity of newly
formed gas giant planets, Spicgel & Burrows (2012) took the approach of treating the internal entropy
of the gas giant after formation as a free parameter, producing a range of “warm starts”. The predicted
cooling tracks then depend on the planet mass and initial entropy. Bonnefoy et al. (2013) and Marleau
& Cumming (2014) explored the joint constraint on these two parameters that can be inferred from a
directly imaged planet with a known luminosity and age. For hot initial conditions, the cooling tracks
depend only on the mass; cold initial conditions require a more massive planet to match the observed
luminosity. Fitting hot start cooling curves therefore gives a lower limit on the planet mass. Matching
the observed luminosity gives a lower limit on the initial entropy, because of the sensitive dependence of
luminosity on the internal entropy (e.g. fig. 2 of Marleau & Cumming 2014). Additional information
about the planet mass, such as an upper limit from dynamics, can break the degeneracy and reduce the
allowed range of initial entropy.

Mordasini (2013) also identified the planetesimal surface density in the disk as a key ingredient since it
sets the core mass. He simulated the growth of planets under cold- and hot-start conditions by changing
the outer boundary condition for the planet during the accretion phase. In the cold case, the final entropy

of the planet was found to depend sensitively on the resulting core mass through the feedback action of



the accretion shock. Most recently, Owen & Menou (2016) pointed out the potential importance of non-
spherical accretion and studied the role of an accretion boundary layer in setting the thermal state of the

accreted matter.

1.4 DIRECT IMAGING OF GAS GIANTS

As for any model, observations are required in order to confirm or deny the validity of a planet formation
theory. The data we consider in this work are exoplanets discovered using the direct imaging method in
which the intrinsic luminosity of a planet is directly observed as opposed to other methods which detect
planets through their effects on their host star. Since a planet’s luminosity is typically 10° — 10'° times
fainter than its star, this method is biased towards finding bright planets at wide separations from their
star. These conditions provide the convenience of ignoring the stellar influence on the planet’s cooling.
The first directly imaged planet was the previously mentioned 2Mr207b found in 2004 using the Very
Large Telescope (VLT). Since then, additional instruments such as the Gemini Planet Imager (GPI) have
continued to provide direct imaging data of exoplanets.

The current population of directly-imaged planets shows a wide range of luminosities (e.g. Neuhiuser
& Schmidrt 20125 Bowler 2016), with most being too luminous to be cold starts. Examples are 8 Pic b
with L ~ 2 x 107* L, (Lagrange et al., 2009, 20105 Bonnefoy et al., 2013), or the HR8799 planets with
L~ 2x107° L, for HR8799¢, d, and e, and 8 x 107® L_ for HR8799b (Marois et al., 2008, 2010). The
inferred initial entropies in these cases are significantly larger than in Marley et al. (2007) (Bonnefoy et al.
20135 Bowler et al. 20135 Currie et al. 20135 Marleau & Cumming 2014). The best case for a cold start is the
young giant planet 51 Eri b, which has a projected separation of 13 au fromits starand L ~ 1.4-4x 107 ° L
(Macintosh et al., 2015). This luminosity is consistent with the value 2 x 107° L, predicted by (Marley
etal,,2007), butitalso matches a hot start for a planet mass 2—3 M; at the stellar age ~ 20 Myr. Similarly,
the low effective temperature of 850 K for HD 131399 Ab corresponds to a hot start mass of 4 M; at 16 Myr

(Wagner et al., 2016). Another cold object is GJ s04b, which has an effective temperature of only 510 K



(Kuzuhara et al,, 2013), but indications that the star is Gyrs old imply that it may be a low-mass brown
dwarf rather than a planet (Fuhrmann & Chini, 20153 D’Orazi et al, 2017).

Interesting from the point of view of testing formation models has been the discovery of protoplan-
ets still embedded in a protoplanetary disk. For example, HD 100546 b is a directly-imaged object so au
from its Herbig Ae/Be host with a luminosity ~ 107* L, (Quanz et al., 2013; Currie et al., 20142; Quanz
etal., 2015), and the star may host a second planet closer in (Currie et al., 20155 Garufi et al,, 2016). Sallum
et al. (2015) identified two and perhaps three accreting protoplanets in the LkCa 15 transition disk. The
infrared and H a luminosities were consistent with expected accretion rates: Sallum et al. (2015) report
MM ~107°M ]2 yr~, where M and M are respectively the planetary mass and accretion rate, which agrees
with typical accretion rates of ~ 107-107% M, yr™* in models (e.g. Lissauer et al. 2009) for M ~ M;. The
young ages of these stars s 10 Myr correspond to early times when there is greater potential for distin-
guishing formation models (e.g. fig. 4 of Marley et al. 2007), especially since the planets could be substan-
tially younger than the star (Fortney et al,, 2005). The interpretation of the observations is complicated,
however. Contributions from the environment around the protoplanet, which is likely still accreting,

need to be considered, and if accretion is ongoing the accretion luminosity L., = GMM]/R, where R is

the planetary radius, may dominate the internal luminosity. Nevertheless, these effects can potentially
be distinguished by studying the spectral energy distribution or spatially resolving the emission. For ex-
ample, observations of HD 100546 b are able to make out a point-source component (surrounded by
spatially-resolved emission) with blackbody radius and luminosity consistent with those of a young gas
giant (Currie et al,, 2014b; Quanz et al., 2015).

In order to determine the mass of a young directly imaged planet, it must be better understood how
the planet formed. While the cooling of an old (z 10®yrs) planet may be safely modelled with a hot-
start (or even cold-start, since initial conditions will have been forgotten by then), for younger planets
this assumption may break down if the planet was formed through a cold-start, where applying a hot-

start model could incorrectly over estimate the mass by a factor of 2-5. Furthermore, planets which are

observed to be still forming pose a similar and even greater challenge, rendering the traditional method



of matching a planet’s age and luminosity to a hot-start cooling track useless.

1.5 A SCHEMATIC FOR CORE ACCRETION

We now review the progress that has been made in understanding how to model the effect of accreting
material in the core accretion scenario. In figure 1.2 we show a diagram of the flow of energy and mat-
ter both within and external to the planet, described in Stahler (1988). There have been a few different
approaches in the literature to modelling the unknown radiative efficiency of the accretion shock in ac-
creting protostars and planets, which results in different assumptions about the post-shock temperature

and entropy (S, and Tj in Fig. 1.2).

| Accretion Flow |

M .
{ Laccr = M

Shock i

% $

Figure 1.2: Diagram of a spherically-symmetrically accreting gas giant. Shown are the last parts of the accretion flow (top), the radia-
tive envelope (middle), and the convective interior (bottom). Matter accretes onto the envelope with a rate M, where it shocks and
releases energy as an accretion luminosity Ly ccr. Immediately after the shock, the matter has temperature Ty, pressure Py equal
to the ram pressure (eq.[1.5]), and thus entropy Sg. As the material settles down through the envelope to the convective core with
avelocity v = M/47zrzp, it releases an additional luminosity LComp from compressional heating and finally reaches the radiative-
convective boundary (RCB). The convective core has entropy S, and supplies a luminosity Lrcp to the base of the envelope.

As an outer boundary condition for the internal thermodynamic profile of the planet, we take the



temperature Ty and pressure Py of the newly accreted material after it has passed through the shock. Fol-
lowing Bodenheimer et al. (2000), we consider an isothermal shock with density jump p,/p; = vff/ 2,

where the matter arrives at the free fall velocity

vir = QGM/R)Y? = 42km s~ (M/M;)**(2 R;/R)"'? (1.3)

and c, is the isothermal sound speed. The post-shock pressure is the ram pressure

P

accr

, » 103 _3 M M 1/2 R -5/2
acer T v ergcm 10-2 M@ yr_l M] 2 R] (IS)

where we have scaled to a typical accretion rate during the runaway accretion phase of M s 1072 M, yr™! =

= pyc? = Mvy;/4nR? (1.4)

or

1.9 x 10'® g 571 (Pollack et al., 1996; Lissauer et al., 2009).
At the low densities near the surface of the planet, the equation of state is close to an ideal gas. In
appendix A we show that for a mixture of H, and He with helium mass fraction Y = 0.243 (matching

the value used by Pollack et al. 1996) the entropy per baryon is

S

kg/m,

~10.8 +3.4log T3 -1.0log, Py, (r.6)

where kj is Boltzmann’s constant, m,, is the proton mass, and T3 = T/(1000 K), P, = P/ (10* erg cm™).

Using the ram pressure (eq. [1.5]) and assuming the gas remains molecular post-shock*, the post-shock

entropy S is therefore

5o 7.4-1 M 341 fo
ky/m, 47 %0 \ Tz g, 1 ) T %80\ 150k

*this assumption breaks down deeper in the planet, however it was found to agree in the outermost layers and so is useful
in understanding the outer boundary of the entropy profile
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M R
-0.51 loglo M +2.5 loglo E s (1.7)
J J

where we have scaled to the lowest possible temperature expected for Ty, the nebula temperature in Hu-
bickyj et al. (2005). At higher temperatures, the hydrogen will be atomic post-shock, in which case the

entropy is (Appendix A)

S
kg/m,

~17.2+4.7log  T5 - 1.9log P, (1.8)

The maximal value of entropy we expect can be estimated by considering the temperature derived from
the accretion luminosity which comes from the energy the accreted material has gained during its free fall
onto the planet. If we consider the gravitational energy per mass that a parcel of accreted material carries
onto the planet AE/Am = GM/R, then the rate of energy gained will be

dE AE Am GMM

L = X .
accr dt Am At R (19)

From this luminosity we can estimate a maximal temperature T}, as

. Laccr 1/4 3300 K M M 1/4 R -3/4
rot =\ 4moR? ) 1072 M, yr=1 M; 2R, (1.10)

which can be substituted into equation 1.8 to give a maximal entropy of

1/4

S 20.6 - 0.72 1 M
kg/m, 7 0E %800 1072 M, yrt

M R
+0.23 logm (M) +1.17 10g10 (ﬁ) . (I.II)
J J

We see that there is a large variation in S, the entropy of the material deposited at the planet surface,

R

depending on the shock temperature. These values can be larger or smaller than the internal entropy of

II



the planet at the moment runaway accretion begins (which for exampleis S = 11 kg/m,, in the simulations
of Mordasini 2013). The context of these calculations are to show the range of possible outer boundary
conditions that may exist during accretion, and to motivate a study of how they will ultimately dictate

the properties of a fully formed planet.

1.6 OUTLINE

The outline of the work presented in this thesis is as follows. In chapter 2, we look at how one can use
MESA to model a cooling gas giant. This will involve a description of the MESA code, as well as an outline
of the basic theory of stellar interiors & energy transport. In chapter 3, we extend the use of MESA to
model the formation of gas giants in the core accretion scenario. The aim of this chapter will be to use
a simple description of the boundary conditions during formation in order to map out the parameter
space of formation conditions which lead to cold and hot starts. In particular, we try to relate the post
formation internal entropy of the planet Sy (which combined with mass can provide a luminosity), to
the temperature T, and pressure P, of material at the accretion shock (this work has been previously
published in section 4 of Berardo et al. 2017). In chapter 4 we alter our models to use more realistic and
fully time-dependant boundary conditions in order to compare our results to data of directly imaged
exoplanets (this work shall be published in an upcoming paper). We attempt to place constraints on
certain accretion parameters such as the accretion rate, as well as discuss the likelihood of the planets
forming as either cold or hot starts. Finally in chapter 5 we conclude with a discussion of the major results

that we have obtained.
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MESA Models of Cooling Gas Giants

The goal of this chapter is to understand how the open-source 1D stellar evolution code Modules for
Experiments in Stellar Astrophysics (MESA”) (Paxton et al., 2011, 2013, 2015) may be used to study gas
giants. Before attempting to simulate the full core accretion process, we shall first describe how to make
a fully formed gas giant and follow its cooling in order to demonstrate the capabilities of MESA. As well,
we shall introduce certain theoretical concepts which will be useful in attempting to analyse and describe

the internal structure and transfer of energy within a gas giant.

2.1 Basics orF usiNg MESA

At its core, MESA is solving the basic equations of hydrodynamics with the ability to extend to a vast

range of physical effects (by incorporating different physics modules, hence its name). In practice these
ge of phy y p g phy p

1 .
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equations take into account the grid structure of the model and are discretized, but written simply they

are the equations of mass conservation,

dM, = 4rpr’dr (2.1)

where p and r represent density and radial distance from the center of the planet and M, represents the

total mass interior to the radius r; an equation for the conservation of momentum,

dP GM, a
dM

= - (2.2)
. drrt  4mr?

where P is the pressure and a is the Lagrangian acceleration. The first term on the right hand side repre-
sents hydrostatics, while the second term represents hydrodynamics (which can optionally be disabled).

There is also an equation for energy conservation written as

dL
dM,

€nuc ~ €vthermal T Egrav (2'3)

where Lis the luminosity and €, €, thermai» and €, are the nuclear reaction energy generation rate, the
specific thermal neutrino-loss rate, and the energy provided by gravitational contraction respectively.

While originally intended to study stars, it is also capable of extending down to the regime of gas giants,
which behave similar in many ways to stars (minus burning hydrogen, although deuterium burning can
occur for planets with masses 2 13 My). While it is possible to include the effects of deuterium burning in
MESA as an extra term in the energy equation, for simplicity we choose to study planets with a mass of
at most 10 M and so these effects are ignored.

The defaultinstallation of MESA comes with test suites containing skeleton code to study different sce-
narios, such as high mass planets or neutron star envelopes. For our purposes, we use the make_planet

test suite which takes as input, among other things, an initial mass and radius. Aside from these we leave

all other initial parameters at their default setting, except for irradiation which we turn off. This parame-
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ter is used to simulate irradiation from a host star, however directly imaged planets are sufficiently distant
(2 10 AU, sce table 1 of Bowler 2016) from their host star that this can be ignored, since they would have
equilibrium temperatures on the order of ~ 100-200 K, which is much lower than temperatures derived
from typical internal luminosities (~ 1300 K for a 2 Ryplanet with a luminosity of L;,, = 107%L,). The hy-
drogen and helium mass fractions are X = 0.73,and Y = 0.25 respectively, the low-temperature opacity
tables are those of Freedman et al. (2008), and the equation of state is given by Saumon et al. (199s).
While MESA is capable of extending down to large gaseous planets, it still lacks the capability to model
rocky objects. This limits the extent to which one can fully simulate accretion, not being able to simu-
late the initial phase of solid planetesimal accretion. It is however still possible to simulate a planet that
includes a rocky core, which is implemented in MESA through inner boundary conditions. Using a core
density and core radius specified by the user, MESA will ‘cut out’ the center of the model at the appropri-
ate radius. Further details such as energy emanating from the base of the core can be specified in order to

simulate, for example, energy deposition at the deep interior by accreted solid material.

2.2 UNDERSTANDING MESA OUTPUT & STELLAR INTERIORS

In order to understand how MESA may be used to model core accretion, we first look at modelling fully
formed gas giants which are allowed to cool without any external influence (i.e. accretion, stellar irradia-
tion). For the following models shown, we include a rocky core with mass and radius 10 M, and 2.8 R,
(i.e. 2 mean density of 10 g cm™>). We start by modelling a 1 My planet and in figure 2.1 visualize how its
luminosity and radius evolve in time, as well as what its internal thermodynamic profile looks like.

Since this object is not generating any internal energy through nuclear burning, as expected it gets less
luminous and smaller over time as it cools. We also see the internal entropy and temperature profile de-
crease over time. The internal entropy profile is roughly constant with depth during the planet’s cooling,
which is indicative of a convective interior (Hansen et al., 2012), denoted in the figure by the thicker lines.

In the outermost layers of the planet there is a slight rise in entropy, indicative of a radiative zone. Since
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Figure 2.1: The evolutionof a 1 MJobject in thermal equilibrium with its surroundings in MESA. The top left and top right panels show
the evolution of the luminosity and radius of the planet over time (purple curves). The bottom left and bottom right panels show the
internal temperature and entropy profiles at three different stages during the planets lifetime. The thicker section of the profiles show
where convection dominates energy transport, as opposed to radiation. The points in the upper panels correspond (by color) to the
times at which the profiles were taken.

the planet is at constant mass (there is no accretion or mass loss here) we see that entropy can be used
to track the planets radius/temperature/luminosity (assuming a convective interior). This is important
as entropy will be used a marker for hot and cold starts in the next section. It should be noted that the
parameters shown in figure 2.1 are only a small subset of the parameters kept track of by MESA.

In order to better understand the evolution of such an object, it is important to understand how energy

is transported within the planet which we shall do following § 4.2 of Hansen et al. (2012). First we consider
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heat transport by radiation, with a luminosity at radius r within the planet given by the radiative diffusion

equation:

-16710r?T dT? 64wor’T3 dT

r

3kp  dr 3kp  dr (4)

where  is the opacity, p is the density, o is the Stefan-Boltzmann constant, all of which are evaluated at

radius r from the center of the planet. Using the condition for hydrostatic equilibrium

dP GM,p
dr 12 (2:5)

where M, is the mass enclosed within radius r, We can convert the derivative to a logarithmic one by
multiplying both sides by r/P to get
rdP dlnP GM,p

__ _ — .6
Pdr dlnr rP (2.6)

and then divide both sides by the logarithmic derivative of temperature with respect to radius to get

dIinP/dlnr dInP GM,p dInr

dinT/dlnr dInT _ rP dInT (27)
and we shall now define a quantity ‘del’ given by the symbol V as
. dinT g
~ dlnP 28)
This quantity can be combined with equations 2.4 and 2.7 to give
64nocGT*M,
L =—V (2.9)

' 3Pk
This equation is only valid in the case where radiation is the sole method of energy transportation,

which in general will not be the case. The V in the above equation should more properly come with a
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subscript and be written as V, to denote the radiative temperature gradient. Given the actual luminosity
at a point within the planet, one can invert the above equation to solve for V,, which is the temperature
gradient that would be required for radiation to be the sole energy transport method. If the actual tem-
perature gradient V is less than V,, then it can be concluded that there must some other form of energy

transport present.
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Figure 2.2: Left: A comparison of the radiative temperature gradient V, to the actual temperature gradient V for the same 1 Mj cool-
ing object as was shown in figure 2.1. The profile here is when the planet was at an age of ~ 10° yrs, as it was for the orange profiles
in the bottom two panels of that same figure. Right: The luminosity inside the planet compared to the convective luminosity as calcu-
lated by equation 2.17. Additionally, the green line shows the difference between the actual temperature gradient V and the adiabatic
oneV .

A comparison of these two gradients can be seen in figure 2.2, which is an interior snapshot of the same
1 M planet that was shown in figure 2.1 at an age of ~ 10® yrs. In the outermost portion of the planet for
pressures of P < 10° erg cm™3, the two values are very close and it can be concluded that in this region
the planet is radiative. However the majority of the interior of the planet, which contains >>99% of the
mass, has V, > V, indicating that radiation is not the source of energy transport. It can further be seen

that these two regions are correlated with the internal entropy profile, seen in the bottom right panel of
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figure 2.1. In the outer region where radiation dominates, there is a slight increase in entropy, but in the
inner region the entropy is roughly constant.

We now introduce a third temperature gradient V ;, describing a fluid element which is transported
adiabatically (i.e. remaining in pressure equilibrium with its surroundings and having an equation of
state P ~ p¥ where y is the adiabatic index). In appendix B we derive the criteria for a fluid to be unstable

to convection

V>V, (2.10)

which is known as the Schwarzchild criterion (Schwarzschild, 1906). If the above condition is met, then
convection will be the dominant form of energy transport. It should be noted that compositional gradi-
ents within the planet will add further terms to the above inequality, resulting in the Ledoux criterion for
convection (Ledousx, 1947), however we have neglected these terms by assuming a homogeneous compo-
sition. It is also shown in Appendix B that an equivalent description for a convective instability to form
is

dS

Fr 0 (2.11)

which provides a way to determine whether a region will be convective based on its entropy profile. In
figure 2.1, we see that convection is indeed associated with slight negative slope in entropy, although a close
examination of the entropy profile shows regions where the radial derivative of the entropy changes sign
while remaining convective. This is likely due to an issue with the way that the equation of state tables
are interpolated (in order to calculate entropy as a continuous function of temperature and pressure),
however MESA uses equation 2.10 to determine if a region is convective. Since we see in the right hand
panel of figure 2.2 thatV > V; in regions of convection, these slight deviations in entropy may be ignored.

Following the discussion in § 16.5 of Hubeny & Mihalas (2014) we are also able to calculate what the

convective luminosity might be, by considering the convective flux given by
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Fconv = pCp<V>AT (2"12')

where ¢, is the heat capacity at constant pressure and {v) is the average convective velocity. This equation
is describing the transport of energy (c,AT) carried by convected material (p{v)) in the mixing length
theory (MLT) prescription of convection. Since the material is transported adiabatically there is no heat
loss, and so when calculating the energy transported one must take into account the difference between

the temperature of the convected material relative to its surroundings, i.e.

< dT) ( dT)
dr surrounding dr conv

noting the extra negative signs which take into account the fact that temperature decreases outward, and

AT = Ar (2.13)

so material convecting to the surface carries a positive energy flux. Considering a mixing length [ we can

take Ar = 1/2 as an average over all fluid elements. Additionally, we consider the pressure scale height

defined by

o dr
P dlnP (214)
and use these to rewrite the temperature difference as
AT T] 1 1 dT 1 1 dT ]
) 2 HP T d ln P surruunding ) HP T d ln P conv (Z'IS)
AT ! T(V-V,) : 6
- 2 ~ Vad HP (2“1 )

To first order in MLT, one can take I[/Hp ~ 1, and so the previous equation can be substituted back in

equation 2.12 in to write the convective luminosity inside the planet as
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1

Since MESA provides all the parameters in the above equation we can calculate the convective lumi-
nosity and compare it to the actual luminosity of the planet, which is shown in the right hand panel of
figure 2.2. As expected, in the regions where V > V; there is a convective instability, and we can see that
the global luminosity is equal to the convective luminosity. It should also be noted that V - V,; ~ 107*
indicating only a slight departure from the background gradient is necessary for a convective instability
to form. This understanding of energy transport within the planet will be critical when attempting to

decipher the effects of accreting new material onto an existing planet structure.

2.3 CoMPARING MESA 1o OTHER MODELS

We now wish to generate multiple cooling models to compare them to previous results, which typically
label models by their internal entropy. In MESA one cannot directly set the entropy of a planet. Instead,
one must first create a planet with the desired mass and a large entropy (done by giving the planet a large
initial radius). The planet is then allowed to cool until the desired internal entropy is reached?, at which
point its age is reset to the age of the planet post-accretion (say for example ~ 10> yrs for a 2 M; planet
accreting at a rate of 107 M,/yr. In this way we can ‘artificially’ construct cold and hot start planets
without explicitly studying the accretion process. An illustration of this is seen in figure 1.1, where we see
two planets of different masses with different initial entropies.

We now simulate cold and hot start planets with masses ranging from 1 - ro My and compare the MESA
models with those of Marleau & Cumming (2014). In that paper cooling curves were calculated by step-
ping through a pre-computed grid of planet models, parametrized by mass and entropy. Those models
were in turn compared to previous results found in Spicgel & Burrows (2012) and Burrows et al. (1997).

As pointed out in their work, minor constant offsets in entropy are often required in order make the mod-

*this is done in MESA using the center_entropy_lower_1limit control
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Figure 2.3: Comparison between results from MESA (solid lines) and from those of Marleau & Cumming 2014 (dashed lines). On

the left is shown the cooling curves for planets with massesM =1, 2,5, 10 MJincreasing from bottom to top, in the case of hot start
(red curves) and cold starts (blue curves). The cold start models all initially had an entropy of 9 kB/mp. On the right is shown the
radius of the planets as a function of internal convective entropy, for different masses. For all MESA models, entropy values have been
increased by a constant offset of 0.2 kB/mp (see text).

els agree, and indeed here as well an offset of ~ 0.2 kp/my, is required for the models to agree. This offset
does not represent a physical difference, since it is only differences in entropy between models which has
meaning. However it can be seen in figure 2.3 that even with a constant offset there is still a difference
between the different methods. In their paper they point out differences in equation of state tables as a
likely cause of differences with previous work. For the cooling curves on the left plot, a constant shift in
entropy would be degenerate with an offset in time, since a younger object with a lower entropy could
have the same luminosity as an older object with a higher entropy. Such timing issues could arise for ex-
ample from the data show in figure 2 of Marley et al. (2007) where the value of entropy is shown 1 Myr
after the end of the accretion, allowing the planet a chance to cool.

Another possible explanation comes from MESA’s definition of central entropy, which it takes to be
the entropy value of the innermost grid point at the center of the model. Using this value to label the
entire planet is only correct if the central point is at the same entropy as a large majority of the mass of the

planet, which will be seen in the next section is not always the case. In place of the default central entropy
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provided by MESA, we calculate the internal entropy taking a mass weighted average of the entropy of
the planet (ignoring larger entropy variations at the surface which account for only a small fraction of
the total mass). While it would seem in figure 2.1 that the planet is at roughly the same internal entropy,
even here there can be differences of up to 0.1 by comparing the innermost entropy value to the averaged
value which would already account for half of the required entropy offset. Finally, the models in Marleau
& Cumming (2014) take into account deuterium burning, although since it only occurs for planets with

masses z 13 Mjthis could not be the case for the offset with our models.
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Simulating Core accretion in MESA

The work presented in this chapter has been previously published in the Astrophysical Journal, in section
4 of Berardo et al. (2017) which was written by the author of this thesis. It has been reproduced here with
the permission of both co-authors A. Cumming and G.-D. Marleau.

Having described the functionality of MESA as well as energy transport within a planet/star, we now
attempt to tackle the problem of simulating core accretion in MESA. As previously mentioned, the core
accretion scenario consists of several distinct steps. The first of these, in which solid planetesimals accrete
to form the rocky core, is beyond the reach of MESA’s capabilities and so this means that we can only
begin at the point when runaway gas accretion occurs, roughly when the envelope mass is equal to the
core mass (Mizuno, 1980). With this limitation in mind, we are able to define the specific questions which
we are capable of answering, which are as follows. As the planet accumulates new matter, how does its

internal profile change over time, and more importantly what does it like at the end of accretion as it
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begins to cool? During runaway gas accretion material approaches the planet in free fall, passing through
an accretion shock before joining onto the planet’s atmosphere where it will have new thermodynamic
properties due to energy loss when crossing the shock. Itis the properties of the gas post-shock which are
relevant for understanding how the interior of the planet will evolve. We describe the post-shock gas as
having a temperature T and a pressure Py, which shall be used as outer boundary conditions when solving
the fluid equations in order to determine the internal structure of the planet. The scenario described here
is appropriate for a 1-D model of accretion, however the geometry of disk fed-accretion may be such that
the accretion does not proceed in the same way over the entire planet. Studies such as Owen & Menou
(2016) indicate additional effects such as in increase of the planet’s radius due to accretion which we do
not include here.

While previous work has generally chosen some prescription for the outer boundary conditions (such
as choosing the temperature of the gas to be proportional to the accretion luminosity), we will instead
leave both T, and P, as parameters which shall be used to map the the parameter space of possible accre-
tion scenarios onto the parameter space of formed planets (i.e. the spectrum of cold to hot starts). Since
it is impossible to model solid accretion in our framework, we instead begin our models at a point just
past the end of that phase which means that certain assumptions must be made regarding what the planet
might look like at this point. In the core accretion models of Mordasini (2013), the entropy of the planet
at the onset of runaway accretion is » 11 k/m,,. To explore the sensitivity to the initial entropy S;, we
consider values of S; = 9.5, 10.45 and 11.6 kg/m,, (recall that entropy cannot be directly set, only the
initial radius, hence the non uniform values of entropy). At these values of entropy, the make_planet
module has difficulty converging for masses as low as the crossover mass < 0.1 M; because the planet is
greatly inflated. To alleviate this problem, we instead start with larger masses of 0.2, 0.5, and 1 M; for
S; = 9.5,10.45 and 11.6 kg/m,), respectively. For these three choices of initial mass, we set the radius in

make_planet to R = 2, 5, and 10 Ry, which leads to the desired entropy at the onset of accretion.
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3.1 ACCRETION AND THE OUTER BOUNDARY CONDITIONS

We now turn on accretion using the mass_change control to specify an accretion rate. By default, MESA
accretes material with the same thermodynamic properties (i.e. temperature, density and thus entropy)
as the outer layers of the model. This is a useful comparison case which we will refer to as ‘thermalized
accretion’. To model a more general case of runaway gas accretion, we use the other_atm module of the
run_star_extras file in MESA in order to specify T, and P, (see Appendix C). They can be set for
example to constant values for the entire evolution, or adjusted depending on the state of the planet at
any given time (e.g. the mass- and radius-dependent ram pressure given by eq. [1.5]).

If the deviation from thermalized accretion is too large, MESA may fail to converge and not produce
a model. The reason for this is that MESA will first create the planet with the correct mass and radius,
which will be by set the outer boundary to some appropriate temperature and pressure by solving the
hydrostatic fluid equations. Once this is done, then MESA will take into account the new boundary
conditions, and so if the jump in say temperature is too large MESA will fail. To alleviate this, in the
scenario where the imposed surface temperature is too high, we slowly increase the temperature from a
lower value that does converge to the desired temperature over a timescale on the order of ~ 1% of the
total accretion time to ensure that the final results are not significantly affected. For example, a model

! with a desired surface temperature of 2500 K will instead begin with

accreting at a rate of 1072 M, yr~
1500 K and linearly increase the temperature up to 2500 K over the course of 5000 yr.

We do not include any internal heating from planetesimal accretion. Planetesimals can deposit energy
deep inside the planet, with maximal luminosity when they penetrate to the rocky core (e.g. see discussion
in § 5.7 of Mordasini et al. 2015). The luminosity is L, = (GM,/R)M, ~ 107 L, (M,/10™> M, yr™?),
where M, is the accretion rate of planetesimals and we take a core mass M, = 10 M, and mean core density
p. = 5gem™>. Because it is deposited potentially deep inside the convection zone, this luminosity can

heat the convection zone from below and cause its entropy to increase. However, the internal luminosities

we find are all much greater than Ly, except for the coldest cases, and so we neglect this heat source.
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As a check that the MESA calculations are converging to a physical model, we increased and decreased
by a factor of two the mesh_delta_coeff parameter, which controls the length of the grid cells, and
find no discernible difference in the results. Similarly, we lowered by an order of magnitude the varcon-

trol_target parameter, which controls the size of the time step, and again found no difference.

3.2 IDENTIFICATION OF ACCRETION REGIMES

We first survey the final entropies and luminosities obtained by holding T, and P, fixed during accretion.
We construct a grid of models with T, and P, ranging from 100 to 2700 K (roughly spanning from typical
nebula temperatures up to a planet heated by accretion luminosity) and 10 to 10> erg cm™> (centered
around the ram pressure eq. [1.5]) respectively. For these values the surface entropy S, ranges from = 6 to

20 kg/m,, (see Appendix A). In this section, we use an accretion rate of 1072 M, yr?

, an initial mass of
0.5 M;, and an initial entropy of 10.45 kz/m,,.

The results of this survey are shown in Figure 3.1. We find that the final entropies can be separated into
three different regimes. The black line on the right shows where the final entropy of the planet at the end
of accretion is equal to the initial entropy. In the region to the right of this line the final entropy is greater
than the initial entropy, hence the ‘heating’ regime. In the region to the left of this line, the final entropy
is lower than the initial entropy, and this can be further subdivided into two more regions.

The black line in the left of Figure 3.1 shows where the final entropy of the planet is equal to the value
it would reach under thermalized accretion, in which the accreted material has the same thermodynamic
properties as the planet. In a sense, this scenario allows the planet to cool while increasing its mass. The
final entropy reached under this conditions is referred to as Sgperm. It can be seen that in most cases, if
So > Stherm then the final entropy of the planet will be between S; and Syerm, in the ‘stalling’ regime,
since the planet has not cooled as much as it could have. To the left of the leftmost black line, we have the
region where Sy < Siyerm, Which is again characterized by having S; < Siperm. In this ‘cooling’ regime,

the planet cools by a greater amount than it would have and thus ends up at a lower final entropy.
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Figure 3.1: Final entropy (colorscale) of a 10 M] planet accreting at 1072 M, yr_1 as a function of surface temperature T and pres-
sure Py, held constant. Every model begins with a mass of 0.5 M] and an initial entropy of S; = 10.4 kB/mp. The black line on the
right indicates where the final entropy Sf is equal to S;. The black line on the left indicates where the final entropy is equal to the en-
tropy reached by thermalized accretion Stperm = 10.1 kB/mp- The blue dashed line indicates where the surface entropy S is
equal to the initial entropy. The three accretion regimes (“cooling”, “stalling”, and “heating”) are discussed in the text. The colors and
contours were obtained by smoothing an appropriately-distributed set of 989 independent models.

In Figure 3.2, we look at the internal profiles for planets accreting in each regime at different points
throughout their accretion, in order to understand what drives their evolution. The top left panel shows
the evolution under ‘cooling’ accretion conditions, where the surface entropyis atavalue of Sy ~ 8.7 kg/m,,
which is below Siherm = 10.1 kg/m,,. We see the internal entropy decreases rapidly, approaching the sur-
face entropy Sy after accretion of about one Jupiter mass or about 30,000 years.

The bottom left panel of Figure 3.2 shows the szalling regime, in which the surface entropy is higher
than Siperm, butstill low enough to smoothly attach to the interior of the model. A radiative region forms
in the outer layers, which pushes the radiative convective boundary (RCB) to higher pressures, reducing
the luminosity from the convective core. The internal entropy still decreases, but at a slower rate than

in the cooling scenario or thermalized accretion (a similar effect as the irradiation of hot jupiters by their
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Figure 3.2: Internal entropy profiles for a planet with initial entropy S; = 10.45 kg/ my undergoing accretion with boundary con-
ditions (T and Pg). They are chosen to correspond to the three accretion regimes identified in Figure 3.1 (see panel titles), with en-
tropies for the accreted material of respectively Sg = 8.7, 10.6,and 13 kg/ mp for the cooling, stalling, and heating regimes. The
dashed black line indicates Syprm, = 10.1 kB/mp. The total mass (labels next to curves) is used to track the time evolution of the mod-
els from 0.5 to 10.5 MJ. Convective regions in the profiles, according to the Schwarzschild criterion, are shown by thick lines. Note
that each panel uses a different scale on the vertical axis. For the heating regime, in the bottom right panel the internal temperature
profile is shown in addition to the entropy profile in the top right.

host star).
The top right panel of Figure 3.2 shows the heating regime, in which the difference in entropy between

the surface and interior is too large for the envelope to accommodate. For these models, there appears to be
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aminimum surface entropy S,,;, above which the planet accretes in the heating regime (see § 3.3 in Berardo
etal. 2017"). In such a case, the accreted material accumulates to form a second convection zone above the
original convective core, at the higher entropy of the accreted material. Note that there is a temperature
inversion, shown in the bottom right panel, associated with the jump between the original low convective
entropy zone and the new, higher-entropy convection zone; a similar temperature inversion was seen for
strongly-irradiated hotjupiters by Wu & Lithwick (2013). The conduction timescale in the planet interior
is very long, so that the temperature inversion remains at the same mass coordinate as accretion proceeds.
As previously mentioned, the surface temperature is increased linearly from 1500 K to 2400 K over the
course of 5000 years to help convergence. This gives the initial rise of the surface entropy for M < 0.7 M;.

To see how the boundary conditions determine the post-accretion planet properties, Figure 3.3 shows
the final interior entropy S; as a function of the surface entropy S, for a final planet mass of 10 M;. In
the hot models that develop two internal convection zones, we choose the higher internal entropy value
since most of the mass of the planet is at this higher entropy value. This in turn is due to the upper zone
appearing sufficiently early in the accretion history; for instance, in Fig. 3.2, only the inner ~ 0.5 M; are
frozeninat S ~ §; = 10.45 kg/m,,.

Models with Sy < Stperm (to the left of the dashed vertical line in Figure 3.3) are in the cooling regime.
They show that the amount of cooling at a given value of surface entropy S, depends on the explicit
choice of Py and Tj. Also, in this regime there is a stronger dependence on pressure than on temperature.
For a fixed surface entropy, moving the surface to higher pressure means that the entropy must increase
at a faster rate to match onto the internal value, implying a larger value of V-V 4 o< dS/dP and therefore
a larger convective luminosity (eq. [2.17]). A higher surface pressure therefore gives more rapid cooling,
resulting in a lower value of S; at the end of accretion. It should be noted that cooling below 9 kg/m,

04.2

requires high pressures (Py > 10*? erg cm™2) and low temperatures (T, < 450 K).

For Sy > Stherm> we see the stalling and heating regimes. In the heating regime, the final entropy

“This was omitted from this thesis since it involved a significant amount of work done by the co-author of Berardo et al.
2017.
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Figure 3.3: Top panel: Final internal entropy of the planet as a function of the entropy of the accreted surface material. The models
are as in Figures 3.1 and 3.2. For structures with two convective zones, the entropy of the upper zone is used, as discussed in the text.
The colored lines correspond to constant values of the shock temperature Ty = 100, 150, 300, 450, 1350, 1750, 2100 K (bottom left
to top right). Along each constant- T curve, the surface pressure P decreases from left to right. Displayed are also the value of the
initial entropy of the model (S; = 10.46 kB/mp; solid gray line) and the final entropy reached with thermalized accretion (S;perm =
10.10 kg/ myp; dashed black line). The diagonal dotted line shows where the final and surface entropy are equal. Bottom panel: Same

results as in the top panel but plotted as curves of constant shock pressure P, for loglo(Pg/erg cm_3) = 2.3,3.2,4.1,4.8,5.5 (top
right to bottom left); along each curve, the shock temperature T, increases from left to right.

lies above the initial entropy, and increases with Ty, having almost no dependence on P,. In the stalling
regime, the final entropy lies between the initial value S; and Sye . As Ty increases in the stalling regime,
the RCB is pushed to higher pressure, reducing the luminosity at the RCB and delaying the cooling fur-
ther so that the final entropy of the planet is approximately equal to the initial entropy S;. This is a similar
effect to the delayed cooling of irradiated or Ohmically-heated hot jupiters (e.g. Arras & Bildsten 20065
Huang & Cumming 2012; Wu & Lithwick 2013). In this regime, the degree of cooling is insensitive to P,
because the envelope is close to isothermal (e.g. see Fig. 3.2), so that it is the temperature of the envelope
set by T, that determines the RCB location. Another way to understand this is that if the outer radiative
envelope were to be truncated at some pressure point, the RCB would still be in the same location and the

cooling would be unaffected, whereas changing the temperature has the more drastic effect of changing
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the temperature profile.
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Figure 3.4: The final internal entropy two planets accreted up to a mass of 10 MJ as a function of surface temperature during accretion
Ty. The left and right panels indicate planets which had an initial internal entropy of S; = 10.4 kB/mp and 11.6 kB/mp respectively.

For both cases, the solid lines represent values of constant surface pressure Py for loglO(Po/erg cm_3) = 3.7,40,44,48,5.1,
5.5 decreasing from the bottom most curve upward. The lower dashed lines in both panels show the value of S}, ¢, While the upper
dashed lines represent the initial entropies S;.

Additionally, the same grid of Ty and P, was run for an initial entropy S; = 11.5 ky/ m,,. The difference
in outcomes between the two values of initial entropy are shown in figure 3.4. The final entropy reached
under thermalized accretion was similar in both cases, since for high initial entropies this value will be set
by the amount of time available to cool (which also explains why for the higher value of initial entropy

S is slightly higher). Since the heating/stalling boundary is located at the initial entropy, this only

therm
increased the ‘height’ of the stalling regime, i.e. the distance between the horizontal lines in Figure 3.3.
An important effect of this, however, is that the stalling regime occurs for a larger temperature range for

the planet with a higher initial entropy. In both cases, once they have entered the heating regime the loss

of dependence on pressure can be seen by the lines of constant pressure collapsing onto a single track.
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3.3 THE OUTCOME OF RUNAWAY ACCRETION WITH CONSTANT TEMPERATURE

In order to model runaway accretion, we now use the ram pressure P,.,, given by equation (1.5), as the
outer boundary pressure Py. The ram pressure evolves with time as the mass and radius of the planet
change. We hold the outer temperature T, constant. In reality the shock temperature will also depend
on mass and radius and change with time, but without a specific model for now we leave it as a constant
parameter describing the post-shock conditions (a time dependent boundary temperature shall be con-

sidered in the following chapter).
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Figure 3.5: Final internal entropy (colorscale) of the planet as a function of shock temperature Ty and accretion rate M. The solid black
line indicates the initial entropy of the models (here S; = 10.45 kg/ mp), thus delineating the stalling and heating regimes. The solid
blue line indicates the final internal entropy reached under thermalized accretion, separating the cooling and stalling regimes. This
value depends on the accretion rate, so that along the blue line the entropy value changes.

Figure 3.5 shows the final internal entropy of the planet as a function of T, and M, having started with
entropy S; = 10.45 kg/m,,. Due to the ram pressure being dependent on the accretion rate M, we now

switch to M and Ty, as the free parameters which we use to label different accretion scenarios. Regarding
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this change, this figure is conceptually identical to figure 3.1, and we again see the separation into three
accretion regimes. The blue line is drawn such that the entropy along it is at the value that would be
reached by thermalized accretion at each accretion rate. The entropies to the left of the blue line are
smaller, indicating the cooling regime. The black line is drawn such that the entropy along it is equal to
the initial entropy. The entropy to the right of the black line are greater, indicating the heating regime.
Between the blue and black lines, where the entropy lies between the initial value and the value reached
by thermalized accretion, is the stalling regime. It is interesting to note that in this case, for large enough
accretion rates the boundaries for the cooling and heating regimes converging, implying the loss of the
stalling regime.

In the cooling regime, the entropy reaches a minimum of ~ 9 kp/ m,, whereas we found much lower
values in § 3.2. The difference is due to the fact that the ram pressure never gets high enough to decrease
the surface entropy significantly. For example with M = 107 M, yr™* and a final radius R ~ 1 R; and
mass M = 10 M;, the ram pressure is always Pyeer s 10* erg em™ since Pyeer & MY2R™2 (eq. [15]);
comparing to Figure 3.3, this does not lead to significant cooling.

The internal entropy in the cooling regime depends in a non-monotonic way on the accretion rate.
Increasing the accretion rate from 1072 to 107! M, yr™! yields a lower entropy because the ram pressure
is higher for a higher accretion rate, leading to a larger luminosity (Fig. 3.3). At lower accretion rates
M 2z 107* M, yr™?, the luminosity is smaller than at M z 107% M, yr?, but the accretion timescale
is much longer so that more cooling can occur and the final entropy decreases with decreasing M. For
M 2 1072 M, yr™?, the boundary between the cooling and stalling regimes is at larger temperature for
larger accretion rate. This is because the ram pressure is larger, and a higher temperature is needed to have
a large enough entropy to be in the stalling regime. For M 5 1072 M, yr™*, the boundary temperature is
almost independent of accretion rate, because the boundary moves to low pressure (horizontal parts of
the curves in the top panel of Fig. 3.3).

In the stalling regime, the final entropy increases with accretion rate because there is less time available

to cool, and increases with temperature because a hotter envelope reduces the cooling luminosity. In the
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heating regime, the final entropy is set by S,,;,,, which increases with temperature and accretion rate. The
boundary between the stalling and heating regimes can be understood by finding the temperature for
which S,,;,  S; at each M.

Figure 3.6 shows, for different values of S;, M, and T, the dependence of the internal entropy on planet
mass, i.e. the post-formation, initial entropy (‘initial’ in terms of the pure cooling phase; e.g. Marley et al.,
2007). In each panel, the blue dot shows the initial mass and entropy. For the cooling cases, the curves
drop rapidly with increasing mass at first but then flatten at larger masses. Most of the cooling happens by
the time that they have reached ~ 4 M; (as can also be seen in the entropy profiles in Fig. 3.2). The models
in the heating regime show a final entropy that depends only slightly on total mass (AS ~ 0.2 kyz/m,
from 1 to 10 M; at a given Tj). In these cases, immediately after accretion starts the hot envelope deposits

matter with entropy S,,;, in a second convection zone as described in the § 3.2. In § 3 of Berardo et al.

min
(2017), itis shown that S,,;, decreases with planet mass, so that very quickly the planet enters the stalling
regime where the accreting envelope joins smoothly onto the high-entropy outer convection zone. This
lets internal entropy decrease slightly with planet mass after the initial rise. This result differs from the
hot-start accretion models of Mordasini (2013), which show an increasing entropy with mass and thus
yield with the cold starts a tuning-fork shape.

A larger initial entropy acts to shift the final entropy upwards. If the shift is large enough it can push
a model that was once in the stalling regime into the cooling regime. An example of this is the case of

M =107 M, yr *and T, = 2000 K, which is in the stalling regime for S; = 9.5 ky/ m,, and in the cooling

regime for S; = 11.5 kg/m,,.

3.4 CoLDp orR HoT STARTS?

The luminosity of the planet after formation L,, is shown in Figure 3.7. We calculate this luminosity by
taking the internal entropy at the end of accretion (for the hot cases, this is the entropy in the hotter, outer

convection zone) and constructing a new planet with the same mass and internal entropy in MESA. This
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Figure 3.6: Final entropy as a function of mass for accretion models. Each panel shows a particular choice of M and S; indicated by
the labels along the top and right of the figure. The blue dots and dashed lines indicate the initial entropy and mass, which are (9.5,
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S; and larger values of Mor Ty.
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avoids convergence issues thatarise when changing from accreting to cooling surface boundary conditions

at the end of accretion.
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Figure 3.7: Luminosity at the onset of post-accretion cooling as a function of surface temperature during accretion for M =

1072 M, yr_1 (left panel) or M =103 M, yr_1 (right panel). The colors indicate the final planet mass, while the different symbols
indicate the initial entropy of the object at the beginning of accretion (see legend). For visual clarity, the markers are given a tempera-
ture offset of —25, 0, and +25 K for a respective final mass of 2, 5,and 10 M].

Figure 3.7 shows that cold starts require that we choose the lowest values of boundary temperature
T, < 300 K (comparable to typical nebula temperatures T,,;), accretion rate M = 107> M, yr™?, and
initial entropy S; = 9.5 kz/m,,. In these cases we find luminosities that are comparable to and even lower
than the cold-start luminosities of Marley et al. (2007), who found 2-3 x 107° L, for M = 4-10 M; and
~ 6x107° L, for M = 2 M;. However, increasing any of these parameters beyond these lowest values gives
luminosities larger than Marley et al. (2007). For example, M = 1072 M, yr™* (the limiting accretion rate
assumed by Marley et al. 2007) gives L, 2 5 x 107° L,, even for Ty = 100 K. Increasing T, beyond 300 K
gives L, 2 5 x 107° L, even for M = 1073 M, yr™1.

Temperatures as low as Ty ~ T,,; are possible within the boundary prescription of Bodenheimer et al.
(2000), in the case where the flow remains optically thin throughout the growth of the planet. How-

ever, the situation in the literature regarding the outer boundary conditions for cold accretion is some-
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what confused. The boundary conditions often used in energy approaches to cold accretion, namely that
L~ 4JTR20'Te‘}f and Py = (2/3)(g/x) (e.g. Hartmann et al. 1997; Mordasini 2013, see § 1.5), where T,
is the effective temperature, i.e. the usual boundary conditions for a cooling planet, give temperatures
significantly larger than T,,, and in our models these conditions do not lead to cold starts. The cooling
time of the planet is generally longer than the accretion timescale (see figure 5 in Berardo et al. 2017), so
that this cooling boundary condition leads to only a small change in entropy during accretion (see the
difference between the horizontal solid and dashed lines in Fig. 3.3). Only by holding the boundary tem-
perature to a low value are we able to drive a large enough luminosity to accelerate the cooling and reduce
the internal entropy significantly on the accretion timescale.

However, as discussed in §1.5, shock models developed in the context of star formation (Stahler et al,,
1980; Commercon et al,, 2011) and planet accretion (Marleau et al., 2017) suggest that the surface temper-
ature is likely to be significantly larger than either of these prescriptions for cold starts. In these models,
the gas at the surface of the planet is heated by some fraction of the accretion luminosity generated at the

shock to a temperature Tj,,, given by 47R?0 T2, ~ Ly, * GMM/R. In that case our results suggest

accr

that core accretion will produce hot starts, with high entropy S, ~ 12 kg/m,, set by S,,,;, and luminosity

min

L,2107*L,.

3.5 COMPARISON OF COOLING CURVES TO DATA

The subsequent cooling of the planets is shown in Figure 3.8 and compared to measured luminosities of
directly-imaged planets. We include those planetary-mass companions listed in Table 1 of Bowler (2016)
that are consistent with a hot-start mass s 10 M; (the maximum mass in our models) with ages s 10® yr,
as well as the protoplanet HD 100546 b which has a bolometric luminosity given by Quanz et al. (2015).
The four points numbered s-8 refer to planetary companions orbiting at < 100 au, and so are perhaps
most likely to have formed by core accretion. The cooling curves depend on both S; and T, (which set the

post-formation entropy), and the planet mass, so that determining the formation conditions is difficult
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without an independent measurement of the planet mass (e.g. Marleau & Cumming 2014). Even then,
Figure 3.8 shows that, at the age of these planets (* 20—40 Myr), the variation in luminosity with shock
temperature Ty is less than a factor of a few and can be much smaller for low planet masses and hotter ini-
tial conditions. Younger planets (with ages ~ 10°~10” yr) have a better memory of their post-formation
state. However, of the other low-mass objects shown, 2M 0441 b and 2M 1207 b orbit brown dwarfs, and
ROXs 42Bb and HD 106906 are both seen at wide separations (140 and 650 au respectively), so it is not

clear whether they formed by core accretion. The remaining data points are HD 100546 b and s1 Eri b,

both of which shall be discussed in the next chapter.
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Figure 3.8: Post-accretion cooling compared with directly-imaged exoplanets. The curves show the evolution of the luminosity after
accretion ends for final masses Mf =2,5,and 10 M] in MESA (line style) and surface temperature during accretion Ty = 100-2500 K
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and the final mass. The data points are for objects with hot-start mass s 10 M] from the compilation of Bowler (2016) as well as the
protoplanet HD 100546 b, and use the age of the host star: 1: ROXs 42B b (Currie et al., 2014a), 2: 2M0441+2301B b (Todorov et al,,
2014), 3: HD 106906 b (Bailey et al., 2014),4: 2M1207 3932 b (Chauvin et al., 2004), 5: HD 95086 b (Rameau et al., 2013), 6: HR 8799
d (Marois et al.,, 2008), 7: HR 8799 b (Marois et al., 2008), 8: 51 Eri b (Macintosh et al., 2015), A: HD100546 b (Quanz et al., 2015). The
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stars (closed circles), and protoplanets (open circle).
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Time Dependent Accretion Conditions

The models of the previous chapter in which the temperature T at the boundary of the accretion shock
is held constant are not likely to represent what is actually found in nature. It is much more likely that as
the planet grows, the boundary conditions will change as well since quantities such as the ram pressure or
the kinetic energy of the material (which is accreted in free-fall) are dependent on the mass and radius of
the planet. This does not mean that the results of the previous section are without merit, as they allow an
understanding of how the thermodynamic properties of accreted material will influence the formation
of a planet. A shortfall of these models is that they lack predictive power when attempting to model
the accretion history of an actual directly imaged exoplanet, which would have accreted under different
conditions. In order for a such a thing to be done, we shall update our models by using a time-dependent

temperature boundary condition.
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4.1 THE ACCRETION SHOCK

Asdiscussed in § 1.3 (see figure 1.2), the accretion shock plays a key role in determining the properties of the
accreted material by dictating the amount of energy that gets incorporated into the planet (Fortney et al.,
2005). An understanding of how the excess energy (which is radiated away from the planet) interacts
with the accretion flow is also required. In the case of an optically thin flow, the radiated energy will leave
the system and can be ignored. However if the flow is optically thick, this energy will be re-absorbed by
the stream of accreting material and be advected back into the shock region.

In the context of gas giant formation, the core accretion models of Pollack et al. (1996), Bodenheimer
et al. (2000), and Hubickyj et al. (2005) are based on the assumption that the shock is isothermal, with a
temperature set by integrating the radiative diffusion equation inwards through the spherical accretion
flow from the nebula (i.e. the local circumstellar disk) to the shock. In the limit where the flow is optically
thin, the shock temperature is then the nebula temperature, but could be much larger if the flow is opti-
cally thick (see discussion in § 2 of Bodenheimer et al. 2000). The cold accretion limit of these models is
therefore that the post-shock temperature of the gasis T, = T, or 150 K in the calculations of Hubickyj
et al. (2005) (although whether the temperatures in the models corresponding to the Marley et al. 2007
cold starts were that low was not explicitly reported).

An alternative approach that has been used in a variety of contexts is to model the shock efficiency by
the fraction of the specific accretion energy GM/R that is incorporated into the star or planet. This is
implemented either by adding an amount nGM/R to the specific internal energy of the accreted matter
if following the detailed structure with a stellar evolution code (Prialnik & Livio 198s; Siess et al. 19973
Baraffe et al. 2009), or by adding a contribution nGMM]/R to the planet’s luminosity if following the
global energetics (Hartmann et al. 1997). For gas giant accretion, Mordasini et al. (2012) and Mordasini
(2013) step through sequences of detailed planet models in thermal steady state by tracking the global
energetics, and model cold or hot accretion by not including or including the accretion luminosity in the

internal luminosity of the planet. Owen & Menou (2016) recently applied the approach of Hartmann
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et al. (1997) to disk-fed planetary growth, calculating 1 as set by the disk boundary layer.

In these approaches, the cold limit corresponds to setting n = 0, which means that the accreting ma-
terial adjusts its temperature to match the gas already at the surface. With this boundary condition, the
cooling history of the accreting object is affected by accretion only through the fact that its mass is grow-
ing, which changes its thermal timescale. Even for n = 0, the temperature at the surface can be much larger
than T, and so this is a different cold limit than in Bodenheimer et al. (2000). For example, taking a
typical internal luminosity L;,, ~ 10™* L, and planet radius 2 R; gives Ty = Typerm ~ (Lin/47R?0)"* =
1300 K, where o is the Stefan-Boltzmann constant.

In the hot limit with = 1, the surface temperature is given by Ty = T, * (Lyeer/4mR?0)"* where

L.~ GMM/R is the accretion luminosity which when scaled to typical values of M, M, and R can be

M M R\7!
Ly ~44x103%L, | ——— ) (— ) —) . (4.1)
1072 M, yr? M;) \2R,

Shock models suggest that the post-shock temperature is more likely to be close to Ty, than T,

accr

written as

Stahler etal. (1980) argued that, even if the accretion flow is optically thin, the outer layers of the protostar
(or here the planet) will be heated because some of the energy released in the shock is radiated inwards
(seefig. s of Stahler eral. 1980 and associated discussion; see also the discussion in Calver & Gullbring 1998
and Commercon et al. 2011). For an optically thin accretion flow, Stahler et al. (1980) derived the relation
47R*0T* ~ (3/4) L4, for the post-shock temperature (see their eq. [24]), which is (3/4)Y*T},,, ~ 3100 K.
The factor of 3/4 relies on an approximate estimate of the outwards radiation that is reprocessed and trav-
els back inwards towards the surface, but the temperature is only weakly affected (for example a factor
1/4 would still give 2300 K). This suggests that the temperature in the post-shock layers is Ty » T,,, and

even Ty » T,

herm*
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Figure 4.1: The internal entropy of a planet as it accretes from 0.5 MJ through to 15MJ. Each panel corresponds to a different value
for the accretion rate, which decreases from the top left to the bottom right. Within a panel, different curves correspond to different
values of which are shown in the legend in the bottom right panel. Note the differing scales for entropy for each panel.
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4.2 MESA ACCRETION MODELS

In order to simulate accretion in MESA, we must make a choice for the outer boundary conditions. Since
detailed calculations of the radiative transfer associated with the shock are in the early stages (e.g. Marleau
etal. 2017), we shall continue the trend of modelling the efficiency of the accretion shock with a parameter
0 < 1 =< 1. We shall use this parameter to measure the amount of the accretion luminosity that gets

incorporated into the planet through the surface temperature as:

L L, 1

To = (’7471326;0 * 4%1121;0) (+2)
where 1 = 0 implies that all of the accretion luminosity has been re-radiated outwards (a perfectly efficient
shock) and = 1implies that all of the luminosity has been incorporated into the planet (a completely in-
efficient shock). For the pressure P we shall continue to use the ram pressure given by eq. [1.5]. Through-
out a simulation, MESA will calculate the values of mass, radius, and the luminosity of the planet and so
the input parameters which we are free to tune for a given simulation are the accretion rate M and the
shock efficiency 7. The accretion rate will be taken to vary between 1072 - 107™* M, yr™* between models,
although it is held constant for a particular model.

We run a grid of accretion models in order to see how the final internal entropy of the planet is depen-
dent upon these two parameters, and we show the results of this in figure 4.1. For these models, during a
single simulation we record the internal entropy at various masses which allows the modelling of a planet
with final masses from 1 Mjup to 13M;, although some models become numerically divergent before this
final mass. The shapes we see in these figures are the ubiquitous ‘tuning-forks’ shown comparing hot and
cold start models such as in Marley et al. (2007) and Mordasini (2013). Some of the curves exhibit jitter or
sharp changes due to numerical stability issues as MESA attempts to smoothly join the existing planet to
the imposed boundary conditions, although in all cases this is over a small entropy range of < 0.2 kg/ my,.

It is seen that for a given accretion rate, as 7 varies from o to 1, the models transition from cold-start
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to hot-start. We may understand this in the context of the accretion regimes from the previous chapter,
where here any curve which increases from its starting point is in the heating regime, and any curve which
decreases is in the cooling/stalling regime. Only for very low values of 7 < 0.2and M < 107*M, yr™*
that a cold-start planet is produced, which is in agreement with the conclusions of the previous chapter.
Indeed, many of the panels show only one branch of the tuning fork, such as for M = 10722 M, yr?
where all models are heating except for = 0. Additionally we see certain cases where the planet initially
was cooling and then transitioned into heating, such as for 7 = 1and M = 107¢ M, yr™*. In the previous
chapter, a planet would accrete in either the cooling, stalling, or heating regime exclusively. However since
the accretion regime is dictated by boundary conditions which are now taken to be fully time dependent,

we see planets which go through multiple regimes during accretion.

4.3 CALCULATING COOLING CURVES OF ACCRETION MODELS

We shall use these models to estimate accretion parameters for two directly imaged exoplanets. The firstis
HD 100546 b, which is thought to be a protoplanet that is currently undergoing accretion in a circumstel-
lar disk. The evidence for core accretion, along with its younger age of ~ 5 x 106 yr, putsitin the range of
planets that will be the most useful in understanding the properties of planets produced by core accretion.
Additionally, as previously mentioned in § 1.4, it appears that the intrinsic luminosity of the planet can
be distinguished from the fraction of the accretion luminosity which has not been absorbed, which is an
important point to consider when discussing accreting objects. Figures 3.7 and 3.8 show that using the
methods of the previous chapter, a luminosity of > 10™* L, is obtained only for hot outer boundaries
Ty = 2000 K or higher entropies at the onset of runaway accretion S; z 10 k/m,,.

The other planet of interest is s1 Eri b. With a bolometric luminosity of 1.6-4 x 107° L, (Macintosh
etal,, 2015), itis perhaps the most likely observed candidate for a cold start. Figure 3.8 shows that the mass
of s1 Eri b could be 10 M; if T, = 100 K, but even a small increase to T, = 300 K requires a lower mass

M s 3 M;. Therefore it seems likely that the mass of 51 Eri b is close to the hot-start mass, which we shall
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further confirm in this chapter.

The two pieces of observational data which will be used are the estimated ages and luminosities of
both planets. In order to compare the data to our models, we need to calculate cooling curves for all
the accretion models that were made. It proved difficult in MESA to follow a single model completely
from formation through to cooling, due to the sharp change in parameters when accretion is turned off.
In order to alleviate this, we use the technique described in § 2.1. The mass and internal entropy of the
planet are recorded at the end of accretion and then a new MESA simulation is set-up which does not
include accretion effects, allowing the planet to cool.

We show a selection of these cooling curves in figure 4.2. Any given value of 77 and M will correspond
to a single curve from one panel of figure 4.1. Along this curve at mass intervals of ~0.2 M; the entropy
is recorded, and a cooling curve is made. In this way, a single panel in figure 4.2 corresponds to a single
curve in figure 4.1. In addition to these cooling curves, we also show the observational data for s1 Erib and
HD 100546. This figure illustrates several points about how the two free parameters influence formation.
As expected, a higher value of 7 will lead to more luminous planets post accretion, since the planet retains
a higher fraction of the accretion luminosity during formation. For the accretion rate, we note that it in-
fluences the evolution in two ways. First through the ram pressure, which in turn sets the surface entropy.
As seen in Appendix A, the entropy depends inversely on the pressure, which by equation 1.5 depends
linearly on M. Thus a lower accretion rate would imply a higher value of surface entropy, leading to a
higher luminosity. However the accretion rate also dictates the time-scale of accretion. As the accretion
rate tends to zero, accretion effectively shuts oft and the planet will just cool. In this way, alower accretion
rate allows the planet a chance to cool during accretion and so results in a lower luminosity (as is seen by

comparing the top and bottom rows in figure 4.2.
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Figure 4.2: Cooling curves for core accretion models with varying values of nand M, indicated along the top and right side of the
panels. Within a panel, curves are shown for masses ranging from 1 MJ- 15 MJ(increasing from lower to higher luminosity). The red
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and green points show observational data for HD100546 and 51 Eri b.

4.4 ApPPLYING MODELS TO 51 ERI B AND HD 100546 B
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One can see from figure 4.2 that choosing for example 1 = 0, it is impossible to make a model that agrees

observationally with HD 100546 (for the mass range we consider). We attempt to quantify this statement

in order to constrain the possible values of 17 and M, as well as to calculate the mass likelihood function

for the two planets based on our models. Assuming a uniform prior on the mass for both planets, and

given their observed ages t,

corresponding error o7, the likelihood is calculated as
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where in the above equation the luminosity L is the 3 dimensional function

L= L(p, M, M) (4.4)

which is calculated by MESA and t is the age of the planet.

This luminosity can be read off the corresponding cooling curve such as one seen in figure 4.2. The
age used in the calculation of the likelihood is dealt with in a different manner. In reality, since the age of
the planet comes from association with the host star, it is at best an upper limit. Due to this uncertainty,
when calculating the value of a likelihood for a given choice of (7, M, M), we shall marginalize over the age
by randomly sampling 100 ages with a Gaussian spread of width o, around the observed value. In figure
4.3 we show the calculated likelihoods for both s1 Eri b and HD 100546 for selected values of accretion

rate, where the likelihood has been scaled so that the highest value is one.

For s1 Erib, the likelihood has no dependence on the shock efficiency for accretion rates M z 107> M, yr™2.

The reason for this is that regardless of the value of 7, all planets form with a sufficiently high luminosity
such that they have joined on to their respective hot start cooling curve (defined by their mass) by the
time they reach the age of s1 Eri b. Another way of saying this is that by the age of s1 Eri b, all traces of
formation conditions have been removed, such that the value of  won’t alter the estimated mass. This
result is contrary to that of Marley et al. (2007), where high mass planets are formed with low enough
luminosities to explain st Eri b. In our models this is only seen to some degree for the lowest value of

accretion rate. For M = 107* M, yr™*

, the likely mass range widens to 2 — 9 M; at = 0, and in fact
the mass range does increase between each panel as the accretion rate drops, although the effect is more
subtle for higher accretion rates.

In the case of HD 100546 b, at an accretion rate of M < 1072 M, yr* there is an increase in the mass
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Figure 4.3: Heat maps showing scaled likelihoods calculated as a function of mass, accretion rate, and shock efficiency parameter for
51 Erib (top row) and HD 100546 b (bottom row). Note the differing scales for the efficiency parameter (see text for discussion). The
white and black lines show contours of one and two o respectively.

for lower values of 1, where the mass likelihood shifts upwards since for lower values of 1, a higher mass
is required to match the observed luminosity of HD 100546 b. However as with s1 Eri b, at high enough
values of the accretion rate 77 has no effect on the likelihood, indicating again that all models produce
planets which immediately join the hot start cooling track.

Due to the lack of a strong dependence on 77, we now marginalize over it by calculating

Likelihood(M, M) = Z Likelihood(M, M, 1) (4.5)
n

and show the results of this in figure 4.4. We see a similar trend for s1 Eri b, where there is a rise in possible
mass only for the lowest accretion rates (which as mentioned facilitate cold starts). With regards to HD
100546 b, we see a sharp cutoff in accretion rate where the luminosity of the planets produced is too low

to match observations. Note that this cutoft is very likely due to the cutoff in mass considered in our
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Figure 4.4: Heat maps showing the calculated likelihood for 51 Eri b (left panel) and HD 100546 b(right panel) after having marginal-
ized over the accretion shock efficiency 7.

models, and it is possible that a higher mass planet with M > 13 Mj could provide a sufficient luminosity.

We now marginalize over the accretion rate (in addition to #) in order to obtain the probability distri-
butions for the masses of the two planets, the results of which are shown in figure 4.5. We once again see
that based on our models, high masses for s1 Eri b are not likely. For comparison we plot the literature
masses from table 1 of Bowler (2016), and while there appears to be a good agreement for HD 100546 b
there is a discrepancy for s1 Eri b. A possible cause of this comes from the way the cooling curves were
calculated. Recall that the cooling curve is calculated by accreting the planet up to a certain mass value,
recording the internal entropy, and then creating a new, non-accreting model with the correct entropy
and mass which is allowed to cool. If the cooling models were formed with a luminosity offset compared
to the accreted model, this would translate to a mass offset in the likelihood, since the cooling curve for
a given mass would appear to be that of a higher/lower mass. We show one example of this in figure 4.6,

comparing the final luminosities of the accretion models with the initial luminosities of the cooling mod-
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Figure 4.5: Mass likelihoods for 51 Eri b (left panel) and HD 100546 b(right panel) after having marginalized over both the accretion

shock efficiency n and the accretion rate M. The orange line shows the literature value for the masses, and the green line shows the
error bar on the mass.

els. While there is a minor shift in luminosity, this is to be expected since the hot outer boundary of the
planet will quickly cool post accretion. Furthermore, we see an offset at high masses as well, although our
model predicts the correct mass for HD 100546 b, so this minor luminosity offset is not likely to be the
cause of the mass offset. Nonetheless, we may conclude that a low mass (corresponding to a hot start) is

the most likely scenario for s1 Eri b.
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Conclusion

The primary goal of this work has been to describe the physics of core accretion in greater detail than has
been done in the past. We have attempted to quantify the conditions required for both hot and cold start
models in order to estimate the likelihood of one versus the other, and we now provide an overview of

our results.

5.1 THE ACCRETION PROCESS

We have first shown that the choice of boundary conditions Ty and Py, during core accretion leads to three
different accretion regimes (§ 3.2 and Fig. 3.2), which depends on the difference between the entropy of

the material deposited by the accretion shock Sy(Tj, P,) and the initial internal entropy S;:

* The cooling regime. For Sy < S;, the planet becomes fully convective, and the superadiabatic gra-

dient drives a large luminosity that leads to rapid cooling. The cooling luminosity is sensitive to
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the boundary pressure Py, with larger P, leading to faster cooling. If the cooling is rapid enough
compared to the accretion timescale, the end state of this regime is that the internal entropy be-
comes equal to the surface entropy S; = S,. This regime occurs for low boundary temperatures

T, < 500-1000 K.

* The stalling regime. For Sy 2 S;, the entropy decreases inwards in a radiative envelope. Provided
the entropy contrastis not too great, the envelope joins smoothly onto the interior convection zone.
The hot envelope causes the radiative-convective boundary (RCB) to lie at higher pressure than in
an isolated cooling planet with the same internal entropy, lowering the luminosity at the RCB and
slowing the cooling. In this regime, the final entropy lies close to the initial value of entropy at the
onset of accretion Sy < S;, depending on how much the cooling is slowed. This regime occurs at

intermediate temperatures Ty, = 1000-2000 K.

* The heating regime. For boundary temperatures T, 2z 2000 K, the entropy difference AS =
So — S; cannot be accommodated by the radiative envelope. Instead, the entropy decreases inwards
accu-

through the envelope to a value S,,;, > S; and a second convection zone with entropy S

min min

mulates above the original convective core.

Furthermore, we have shown that the luminosity of a young gas giant formed by core accretion depends
not only on the outer boundary conditions (e.g. the shock temperature T)) and accretion rate, but also
the initial entropy S; when runaway accretion begins, since it determines whether accretion occurs in
the cooling, stalling, or heating regimes. Therefore the thermal state of the young planet in principle
provides a link to the structure of the accreting core soon after the crossover mass is reached. This point
was also made by Mordasini (2013), who found that the final entropy depended sensitively on the core
mass because it sets the entropy of the envelope at detachment. We see here that for a wide range of
intermediate temperatures for which accretion is in the stalling regime (T, » 1000-2000 K, see Fig. 3.5),

the final entropy is close to the entropy at the start of runaway accretion.
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In chapter 4, using a more specific form of the outer boundary conditions (i.e. time dependent tem-
perature) it was also shown that a high mass > 6 M; may be ruled out for st Eri b. When considering
a model which tracks the accretion luminosity by considering the efficiency of the accretion shock it is
found that, excluding very low accretion rates, high mass planets cannot be formed with a low enough
luminosity to explain the observations of s1 Eri b. The collective results of this work suggest that only
the most extreme boundary conditions (low T) can produce traditional cold start planets, and that such
extreme conditions themselves are difficult to produce. The implications of this is that hot-start models
are appropriate to use when attempting to estimate the mass of a directly imaged exoplanet, and the issue

of degeneracy between mass and luminosity through cold-starts is not an issue.

5.2 FUTURE WORK

The focus of this work has been on understanding the internal entropy and luminosity of a core-accretion
planet, with little regard to the details of the internal structure of the planet. For models in which the
surface temperature is held constant, it was seen that for heating models an outer convective zone made up
of the hotter accreted material forms above the initial, lower-entropy core. One may ask about the internal
structure of a planet in the case where the surface temperature is changing over time, particularly a case
where it increases during the evolution. As the planet gets more massive and contracts gravitationally, the
accretion luminosity which goes like L,.. ~ M/R will increase over time, implying a larger and larger T;.
Preliminary results not shown here suggest that in such a case instead of a sharp jump in internal entropy,
the entropy profile gradually increases towards the surface of the planet. The interior of the planet is
thus no longer convective, which has implications regarding the distribution of heavy elements within
the planet (Leconte & Chabrier, 20125 Helled & Stevenson, 2017). The Ledoux criterion for convection,
discussed in § 2.2, includes a term for compositional gradients when calculating the convective instability.
Itis thus possible that a non-homogeneous composition could shut down convection, which would alter

the luminosity of the planet. This would delay the cooling of the planet, changing the shape of the cooling

56



curve and requiring further study in order to assign observed luminosities and ages to mass values. As an
example, the observed luminosity of Saturn is larger than models currently predict (Pollack et al., 1977).
If an inhomogeneous composition were present which altered Saturn’s cooling, this could help explain
the observed discrepancy.

One of the other goals of this work has been to develop MESA as a tool to study planet formation;
we make our inlistand run_star_extras files available at http://cococubed.asu.edu/mesa_market/
add-ons.html. It would be interesting to explore further modelling of gas giant formation in MESA, and
overcome some of the limitations of our models. This will require taking into account energy deposition
by planetesimals (see review in § 5.7 of Mordasini et al., 2015), modelling the contribution of dust grains to
the envelope opacity (e.g. Ormel 2014; Mordasini et al. 2014), including possible composition effects on
convection (e.g. Nettelmann et al. 2015), and extending to lower masses than considered here (see Chen

& Rogers 2016).
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The entropy in the envelope

This appendix has been taken from Berardo et al. (2017), written by the author and reproduced here with
the permission of both co-authors A. Cumming and G.-D. Marleau.

In this appendix we calculate the entropy in the envelope of gas giants where it is a good approximation
to assume an ideal gas consisting of molecular and atomic hydrogen as well as helium. In this case we can
derive a simple formula for the entropy as a function of pressure and temperature. The ideal gas equation

of state is P = pkyT/um, where the mean molecular weight y1 is given by

1-Y Y
4

H = +
1+)(HZ

3

the molecular fraction yy, = ny, /(ny, + ny) (i.e. yy, =1(0) is purely molecular (atomic) hydrogen),

and Y is the helium mass fraction. The number densities of H and H, can be computed from the Saha
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equation

", no.H,%r AelkgT (AI)

(nH)2 B (nQ,H)2

where ng; = (27p;m, kg T)*?%/h*® and myu; is the mass of species i. We also consider that for hydrogen

gas ny + ny = P/kyT. The ionization energy A€ is 4.48 eV = 7.24 x 107'? erg (Blanksby & Ellison,

2003) and the rotational partition function for H, is given by

DN | =

z, = Z(zl +1)e [+ DO T (A2)
1=0
which in the limit of T » ©,,, can be approximated as z, = T/(20,,,), where ©,,, = 85.4 K (Hill, 1986).

The pressure at which a given value of yy, is reached at temperature T is

5.4 x 10* K
). (A3)

p ()(Hz, T) = 1.6 x 10° erg cm™3 LZTM2 exp (— T

(1= xu,)

Contours of y;; in the temperature—pressure plane are shown in Figure A.1. For T 5 2000 K the envelope
(pressure range ~ 10°-10% erg cm™2) is molecular, but for higher temperatures atomic hydrogen must
be included.

The entropy per particle of hydrogen and helium is

S 7 n T
T (22 ) 4 (A.4)
kg 2 ny, 20,,,

i > n (e = H,H A
k. = 3 +1n m , 1=H,He. (Ass)

We use the fact that the temperature is low enough so that the vibrational degrees of freedom of molecular

hydrogen, which has a vibrational temperature ©,,;;, = 6210 K (Hill, 1986), are not excited. The entropy
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per baryon S; = s,/p; is then

1 5
Sy, kg = 2 <20.8 + Eln T; - lnp_5> , (A.6)
3
Sylky = (163+51n T3—lnp_5> , (A7)
1 3
Syelky = " (19.8 + Eln T; - lnp_5> , (A.8)

where Ty = T/1000 K and p_5 = p/(107> g cm™3). The total entropy per baryon is

(1-7Y)
(1 "‘)(Hz)

Slkg = [ZXHZ Su, + (1- XHZ)SH] + YSye + Spix (A.9)

where S, is the entropy of mixing (Saumon et al,, 1995) given by

1
Spix = — (—xH In xy - xy, Inxy, - xp,In xHe) (A.10)
JT;
and the number fractions are
1-Y)1 - 1-Y)(2
Xy = ( X XHZ)#’ X, = ( X XHZ)E’ Xy, = Yﬁ. (A.xr)
(1 + xu,) (1+xu,) 2 4
Considering the limit of purely molecular hydrogen (yy, = 1) we find = 2.28, S,,;, = 0.18 and the
entropy is given by
S P
kB/mp = 8.80 + 3.38 logw T3 -1.01 logw W s (A.IZ)

having used the ideal gas equation of state to rewrite the density in terms of the temperature and pressure.
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Figure A.1: Comparison between the entropy calculated using equation (A.9) and that of Saumon et al. (1995), Sscyy. The black
and red lines indicate values of constant XH, (P, T) obtained using equation (A.1) and from Saumon et al. (1995), respectively, for
XH, = 0.01,0.1,0.5,0.9,0.99. The thick blue and green lines show envelope models from Figure 2 of Berardo et al. (2017) with
surface temperatures of 2000 K and 150 K respectively. There is no SCvH entropy data in the upper-left, yellow region.

In the other limit of purely atomic hydrogen (yy, = 0) we find u = 1.23, S,,,;,, = 0.22 and

P
= 13.47 + 4.68log T, - 1.87log (—) . (A.13)

kg/m 10% erg cm™3

P

From equations (A.12) & (A.13) we can read off the adiabatic index V4 = (d1n T/9In P)s = 0.30 for the
molecular case and V,; = 0.40 for the atomic case.

In Figure A.1 we see how the results of the above equations compare to the values found in Saumon
etal. (1995) (SCvH). The blue and green curves, which show envelope models calculated in § 3.2 of Berardo
et al. (2017), are mostly in a region where the deviation from SCvH is only |AS|/Ssc,y = 2-5%. However,
turther into the envelope at higher pressures, the error increases to ~ 10% and so the more detailed equa-
tion of state tables from SCvH are required. Large deviations are seen for T x 10* K, where atomic
hydrogen is ionized, but this region is not relevant for our envelope models. At lower temperatures, the

largest deviations from SCvH occur where y, is transitioning from o to 1. Even though our calculation
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of xy, agrees well with that of SCvH (black and red contours in Fig. A.1), the small differences in y;, are
amplified in the total entropy because atomic hydrogen gives a much larger contribution to entropy than

molecular.
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Derivation of Convective Instability Criterion

In this appendix we derive the Schwarzschild criterion for convection in terms of temperature and pres-

sure gradients. We then show how it may be re-written as an entropy derivative.

B ScawarzscHILD CRITERION

By following the discussion of § 10.4 of Carroll & Ostlie (2007), we observe what happens to a fluid
element that is displaced from its surroundings adiabatically by an amount ér. Initially the fluid element
is in thermal equilibrium with its surroundings, and is transported slowly enough so that it remains in
pressure equilibrium but quickly enough that it does not remain in temperature equilibrium. In order
for a fluid to be unstable to convection, a fluid parcel which is displaced upward must have a lower density
than the surrounding gas (so that it continues to rise) which for small radial perturbations can be written

as
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dp\® dp®
pr:PiJfE d”<Pz’+Z d”:Psf (B.r)

where p and s refer to the parcel and surroundings, and f and i refer to final and initial quantities. Since

initially the densities are equal, this can more succinctly be written as

do®  dp®
R (B.2)
dr dr
and we assume an ideal gas with constant composition which allows us to write
dp d (um,P pdP pdT .
dr dr\ kT ) Pdr Tdr (B:3)
which we substitute both of back in to equation B.2
pdP pdT)\ |« pdP pdT)\ jecd 3
Pdr Tdr “\pdr Tuar (B4)

with the ‘act’ referring to the true temperature derivative and ’ad’ referring to derivatives for the parcel,
which is transported adiabatically. We may cancel out the pressure derivatives since the parcel is always
in pressure equilibrium with the surroundings and use hydrostatic equilibrium (eq. [2.5]) to convert the

radial derivative to a pressure derivative, which carries with it a negative sign

PdTpd P dT act B
Tdpl = Tdp (Bs)
Finally, recalling the definition of V = % and dropping the ‘act’ subscript this can be written as
V > Vad (B.6)

which at last provides the criteria for determining if the fluid will be unstable to convection.

64



B.2 ENTROPY FORMULATION OF SCHWARZSCHILD CRITERION

ds
dr

ds aS dT aS dpP B
o \or) @ \ap) ar (B7)
as

and we shall rewrite the partial derivative <5 using the triple product rule

2 as\ [T
(), (). (5) o
P ) aT ) ,\oP )

which we substitute into equation B.7 to write

We now consider the radial entropy derivative within the planet 2= which we may write as

ds 2S dT oT\ dP
@ (E) @ (5)55 ()
and for the temperature derivative in the above equation we write
dT oT dp
o (5> . - (B.10)

where ‘star’ denotes the actual gradient in the star/planet. This is substituted back into equation B.g

to give
dS T [dS P /oT P /oT dp
— === - = -=|= — (B.m)
dr P \oT » T \ oP star T \ oP s dr
: o - . _ oS _ PaT
this can first be simplified by recognizing the heat capacity C = TS—T and V= = Z—P (where the second set
of derivatives is at constant entropy, i.e. adiabatic) giving
ds ¢C V- dP B
dr P “dr (B.12)

We now observe that the entropy gradient s a product of the pressure gradient which is negative (pressure
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decreases radially outward from the planet) % < 0, the heat capacity C and the pressure P which are

both positive. Finally, the Schwarzchild criterion is the statement that V > V_; and so we arrive at the
conclusion that an equivalent description of convective instability is
ds

— <0 B.
r (B.13)
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MESA Code

In this appendix, we present the code found in the ‘run_star_extras’ file in MESA, which is used to
set custom boundary conditions for temperature and pressure during accretion. The full directory of
all MESA code used to construct the models can be found at http://cococubed.asu.edu/mesa_market/

add-ons.html

subroutine shock_other_atm( &

id, M, R, L, X, Z, kap, Teff, &
InT, dlnT_dL, dlnT_dlnR, dlnT_dlnM, dlnT_dlnkap, &
lnP, dlnP_dL, dlnP_dlnR, dlnP_dlnM, dlnP_dlnkap, &

which_atm_option, switch_to_grey_as_backup, ierr)


http://cococubed.asu.edu/mesa_market/add-ons.html
http://cococubed.asu.edu/mesa_market/add-ons.html

! The values for Tflag and Pflag determine which set of boundary conditions
to use for temperature and pressure at the photosphere
SELECT CASE(Tflag)
CASE(1)
!constant surface temp
Teff = 900 !set value for constant surface temperature here

InT = log(Teff)

dlnT_dL = 0
dlnT_dlnR = 0
dlnT_dlnM = 0

dlnT_dlnkap

1]
(o}

CASE(2)
! Tluminosity temp
Teff=(L/(4*pi*Rx*2%sigma))**x(1./4)
InT=1log(Teff)
dlnT_dL=Teffx*x(-4)/(16*xpi*xRx*2xsigma)
1dInT_dlnR=-Teffx*x(-4)/(8*pi*sigmaxRx*2)
dlnT_dlnR = -0.5
dlnT_d1nM=0
dlnT_dlnkap=0
CASE(3)
Ishock temp, from eq. 32 in Stahler 1980, which considers the thermal
equilibrium between
!the shock, the dincoming material, and the planetary luminosity
Teff = (3*c_gravxM*mdot/(16*pixsigma*R*x3))*x(1./4)

InT=log(Teff)
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dlnT_dL = ©

dlnT_d1lnR

-0.75

0.25

dlnT_d1lnM
dlnT_dlnkap = 0
CASE(5)
!Planet + accretion luminosity
Teff=((L + (c_grav*Mxmdot) /R)/(4*pi*R**2xsigma))*x(1./4)
InT=log(Teff)
dlnT_dL=Teffxx(-4)/(16%pi*Rx*2xsigma)
dlnT_dlnR = -0.75 + Teffx*(-4)*L/(16%pi*Rx*2*xsigma)
dlnT_dlnM=Teff**x (-4)*(c_gravxMxmdot) / (16xpi*Rx*x3*xsigma)
dlnT_dlnkap=0
END SELECT
SELECT CASE(Pflag)
CASE(1)
'ram plus photospheric pressure
InP = log(mdot/ (4xpi*Rx*x2)x(2*c_gravxM/R)xx(1./2) +
(2.0/3.0)*(grav) /kap)

dlnP_dL = 0

dlnP_d1nR -2.5-(1.0/3.0)*(grav/kap)*(1/EXP(1lnP))
dlnP_dlnM = 0.5+(1.0/3.0)*(grav/kap)*(1/EXP(lnP))
dlnP_dlnkap = -(2.0/3.0)*(grav/kap)*(1/EXP(1lnP))
CASE(2)
lonly photospheric pressure
lnP=1log((2.0/3.0)*(grav) /kap)
dlnP_dL=0

dlnP_dlnR= -2.0
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dlnP_dlnM= 1.0
dlnP_dlnkap=-1.0

CASE(3)
!'ram only, obviously never used post accretion
InP = log(mdot/ (4xpi*Rx*x2)x(2*c_gravxM/R)*x*(1./2))
dlnP_dL = 0

dlnP_d1lnR

1
|
N
(6)]

dlnP_dlnM = 0.5
dlnP_dlnkap = 0
END SELECT

end subroutine shock_other_atm
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