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Abstract

The understanding of the interaction of light with a scattering/absorbing medium
provides a foundation needed for developing many applications in diagnostic medicine
and industry. The objective of this research was to obtain quantitative depth-resolved
information about absorbing constituents in a scattering medium.

Initially, the project focussed on quantification in samples where scattering and
absorber concentration were variable. Using time resolved reflectance measurements, a
series of statistical descriptors of the photon time distributions were calculated. Stepwise
multilinear regression was used to formulate linear models from optimal linear
combinations of the descriptors. It was found that the scattering coefficient, absorption
coefficient and apparent particle diameter could be estimated to within 9, 10 and 7 % of
their reference values respectively.

An array of radial reflectance measurements on layered scattering/absorbing
samples was made to obtain information sensitive to sub-surface changes in absorption.
As an initial approach to depth-resolved quantification, classical tomographic
reconstruction techniques were used. However, due to the ambiguity of the
reconstruction, extremely poor estimates of the sub-surface absorption resulted.
Chemometric methods were then employed for enhanced quantification. By using
stepwise multilinear regression with time-resolved data, the absorption coefficient in the
top region of a sample could be estimated to within 2%. However, errors in the
absorption coefficient estimations deep within a sample remained high.

Further improvements in sample quantification were made by linearizing the

reconstruction problem. By using a priori information about sample composition in



upper regions, subsequent calibrations for lower regions were directed. Estimations of
the absorption coefficient deep within a sample with hierarchical locally weighted
calibration were obtainable at greater than 50% accuracy. This represented a 20%
improvement at all sample depths over stepwise multilinear regression.

Confocal illumination and detection optics was also used for discriminating highly
scattered photons from light, which follows a geometric path through a sample. When
confocal optics were used together with information from the rising edge of time
distribution, little enhancement in quantification was observed in comparison to an
integrated signal. This important finding demonstrates that the confocal optical detection

should be considered when imaging in scattering/absorbing media.
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Résumé

La compréhension des interactions entre la lumiére et un milieu diffractant fournit
les bases requises au developpement de nombreuses applications en médecine
diagnostique et en industrie. Le but de ce project était d’obtenir de !’information
quantitative sur la distribution en profondeur des composantes absorbantes d’un milieu
diffractant.

[nitialement, le project se penchait sur la quantification d’échantillons dans
lesquels les concentrations des éléments absorbants et diffractant variaient. En effectuant
des mesures par reflectance dans le domaine temporel, une série de descripteurs
statistiques des distributions temporelles photoniques a été calculée. La méthode de
stepwise multilinear regression a été utilisée pour formuler des modeles linéaires a partir
de combinaisons linéaires optimisée des descripteurs. II a été démontré que les
coefficients de diffraction, d’absorption, de méme que le diamétre apparent des particles,
pouvaient étre estimés a 9, 10 et 7 % preés de leur valeur de reference respective.

Un ensemble des mesures par reflectance radiale sur des échantillons
diffractant/absorbants superposés a été effectué pour obtenir de I'information sur les
variations de I’absorption en profondeur. Des techniques de reconstruction
tomographiques classiques furent utilisés comme approche initiale de quantification selon
une distribution en profondeur. Des trés faibles estimés de 1’absormption en profondeur
ont €té obtenus en raison de I’ambiguité de la reconstruction. La quantification a alors
été amélioré en utilisant des méthods de chimométrie. Apres avoir appliqué szepwise
multilinear regression aux données distribuées dans le temps, les coefficients

d’absorption dans la partie supérieure d’un échantillon ont pu étre estimés a 2% pres.
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Toutefois, les erreurs pour les coefficients d’absorption mesurés profondément dans
I’échantillon sont demeurées élevées.

Des améliorations subséquentes ont €té apportées a la quantification des
échantillons en linéarisant le probléme de reconstruction. En utilisant les informations
disponibles sur le composition de la partie supérieure des échantillons, des calibrations
subséquentes des parties infénieures ont €té. Des estimés de coefficients d’absorption
dans les parties profondes d’un échantillon ont été obtenus avec une exactitude de plus de
50%, grace a une calibration hiérarchique pondérée localement. Ceci se traduisit par une
amélioration de 20% sur les estimés a toutes profondeurs par rapport a la méthode de
stepwise multilinear regression.

La géométrie optique confocale a été également utilisée pour différencier les
photons tres diffractées de la lumiére qui suit un itinéraire géométrique au travers d’un
échantillon. Lorsque la géométrie optique confocale a été combinée a 1’'information
contenue dans la section ascendante de la distribution temporelle, des petites
améliorations furent observées par rapport a un signal intégré. Cette découverte
importante démontre que la détection utilisant la géométrie confocale devrait étre

considérée pour I'imagerie en milieux diffractants et/ou absorbants.
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A method for estimating the absorption and scattering properties ot coated granular
samples using statistical descriptors of the diffuse reflectance photon time-of-tlight
distribution was developed. In particular. changes in sample scattering and
absorption were found to be most correlated with statistical descriptors associated
with the rising and trailing portions of the time-of-flight distribution. respectively.
Several chemometric methods for quantitative depth-resolved imaging in scattering’
absorbing media were evaluated. In general, estimates of absorption In the surface
regions were better than those determined in lower regions. By incorporating u
priori knowledge into the overall reconstruction methodology. a 20% improvement
was obtained compared with estimates made independently in each region.

The autocorrelated photon time-of-flight distribution was evaluated as a means for
robust quantification of absorption in scattering media. The autocorrelation function
for the solution of the time-resolved diffusion equation was derived. Autocorrelated
data was determined to be sensitive to changes in sample composition both in theory
and experiment. In addition, by utilizing an optical correlator for detection or an
clectronic signal mixer. the complexity of instrumentation may be reduced.

A svstem for ume-resolved diffuse reflectance measurements using confocal optics
was developed for quantification in scattering/absorbing samples. Reasonable
estimates of the absorption coefficient were obtained in 3 mm thick samples. In
addition. confocal illumination and detection optics were shown to provide a
stmplified means for obtaining multi-perspective information from lavered samples

without the need for time-resolved measurements.
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Chapter 1 Introduction

1.1  Overview

The goal of this research was to investigate and develop methods for non-invasive
quantification of absorbing constituents in layered scattering media. Examples of such
layered scattering systems include human skin, composite coatings, many fruits and
grains and translucent product/container systems. Quantification of the absorbing species
in these examples may give measures of tissue health, subsurface corrosion, product
freshness and composition. In general, there are two approaches in which layered
samples may be quantified: invasively and non-invasively. With an invasive approach,
the sample requires modification prior to analysis. Although invasive methods allow for
direct analysis. the nature of the technique may be time-consuming, cost-ineffective or
produce biased results. With non-invasive techniques of analysis. such as that provided
by near infrared spectroscopy, there exists the possibility for rapid analysis with little or
no sample preparation. In this study, chemometric analysis of time resolved near-infrared
spectroscopic measurements were employed for quantification of scattering media.

The research was divided into three major phases. In the first phase, the scattering
and absorption properties of granular samples were quantified using time-resolved diffuse
reflectance signals. Sample calibrations were constructed using a series of descriptors
sensitive to changes in the photon time-of-flight distribution. This procedure allowed for
quantitative estimates of scattering and absorption in samples of unknown composition.

In the second phase of the research, quantification in layered scattering/absorbing

samples was done. Both steady-state and time-resolved reflectance measurements were



made to obtain information sensitive to sub-surface sample composition. Chemometric
approaches to sample calibration allowed depth-resolved estimates of absorption to be
made in samples of unknown composition. In addition, the chemometrical approach to
analysis provided a means to investigate the nature of photon propagation in layered
media.

In the final phase, time-resolved and steady-state confocal imaging was employed
for analysis. With this approach, quantification of absorbing constituents was done
without calibration. This method offers the advantage of simple, rapid analysis of
layered scattering/absorbing samples.

This dissertation is presented in seven chapters that develop the three phases of the
research. The introductory chapter provides an overview of near-infrared analysis of
scattering media.  The physics of light transport, imaging and quantification

methodologies are also presented.

1.2 Introduction to Near Infrared Sample Characterization

In 1800. William Herschel experimented with a prism and a thermometer to
determine which color in the visible spectrum was responsible for heat in sunlight. He
observed that when the thermometer was positioned past the red end of spectrum, a
marked temperature change occurred.! He named this invisible light infrared, meaning
‘below red’. Over the next eighty years, the infrared portion of the electromagnetic
spectrum (typically defined from 750 nm to 2500 nm) remained primarily a curiosity, as

it was difficult to make spectroscopic measurements in the region. With the development



of radiation dispersion and detection methods in the 1880s, the work of Abbey and
Festing’ and later by Coblentz’ led to the recording of infrared spectra of well over one
hundred organic compounds. However, it was not until World War II that the use of
infrared spectroscopy became more wide spread with the development of commercial
instruments for routine analysis.*

In the 1950s, further advances in infrared instrumentation provided a means for
spectroscopic analysis on a wider range of matenals. Spectroscopists primarily
concentrated on the mid-IR range from ~1500 to 6000 nm because it was found that
many compounds exhibited a unique spectrum or ‘fingerprint’ in this region.’ Near
infrared assessment of complex samples debuted in the late 1950s when the United States
Drug Administration required new methods for rapid analysis of agricultural
commodities. Work by Karl Norris demonstrated that diffuse reflectance spectra of
complex biological samples could be obtained using NIR light.® This important finding
led to a vast increase in the range of possible analyses. Currently, NIR spectroscopy is
used as an analysis tool in many fields from agriculture to medicine.

In industry, near infrared (NIR) spectroscopy is used in the analysis of latex

10-14

suspensions for paints,’ particle sizing®® and for quality control. It is also used for

* and determining moisture content in foods.'®'® The

pharmaceutical tablet analysis,'
success of the NIR techniques of analysis stem from its speed, ease of sample
preparation, multiplicity of analyses from a single spectrum and its non-consumption of
the sample."’

One of the most exciting applications of NIR spectroscopy is in the analysis of

living samples. In clinical medicine, tracking changes in the physiological or metabolic
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state of tissue is key in diagnosis. Using NIR light, hemoglobin,**** myoglobin and

cytochrome aa;*** levels may be determined in vivo. The development of pulse

. . . . . . . 26.27
oximetry systems has now revolutionized patient blood oxygenation monitoring.”
Using a pair of NIR wavelengths, the relative amount of oxygenated hemoglobin in blood
may be monitored. The success of this non-invasive technique has made pulse oximetry

33-35

a valuable tool in neonatal and intensive care units. Currently, NIR methods are

3639 Although controversy persists

being developed for non-invasive glucose monitoring.
about whether this goal has been attained, such a measurement will offer the possibility
for rapid analysis of blood sugar levels for diabetic patients. Another approach to critical
care monitoring is the determination of lactate levels in whole blood. This is has done
using a minimally invasive approach in vitro. 3%

In addition to patient monitoring, NIR tissue spectroscopy is being used to
diagnose disease. Through statistical analysis of NIR tissue spectra collected from a
population, spectroscopic markers of disease may be found.” Examples include in situ

4343

. . 4
measurements of pulmonary edema, myocardial disease’’ and pre-cancerous

tumours.**"’

The region between 600 and 1900 nm provides a ‘therapeutic window’ in which
absorption from water and tissue components are relatively weak. Overtone absorptions
arising from infrared transitions from non-adjacent energy levels are prevalent in the
region. In addition, combination bands due to the interaction of multiple vibrational
modes are common and are typically quite specific to certain tissue components. For

instance, the sum and differences of the fundamental vibrational frequencies composing a

combination band around 1020 nm arise from N-H bonds in protein. Overall, the



presence of weak O-H, C-H and N-H overtone and combination bands arising from
water, fats and proteins allow for quantification in tissue. Table 1.1 lists a few

components of tissue along with their corresponding NIR absorbance regions.

Table 1.1 Absorption regions of common tissue components.

Component NIR absorption region (nm) Vibration

water 760. 960 O-H str. overtone

fat 900, 913, 1037 C-H str. combination

glucose 2123,2272, 2325 C-H str. combination

protein 970 - 1020 N-H str. overtone

lactate 2166. 2254, 2292 C-H and N-H str, combination
ammonia 2132, 2232 N-H str. combination

starch 990 O-H str. overtone

hemoglobin 760 electronic transition
myoglobin 755 electronic transition

In tissues where scattering levels are low, NIR light may penetrate up to several
centimeters. However when scattering levels are high, a ray of NIR light will become
diffuse and follows less well defined paths through the medium. As the incident and
scattered light travels through the tissue, the dielectric constant of the medium will
influence the properties of the radiation. As such, light scattering in tissue arises from
abrupt changes in the refractive indices at cell membranes, mitochondria, collagen and
other extra-cellular components.*®  Although light scattering presents challenges for
monitoring chemical species with classical spectroscopic techniques, measures of
scattering can encode rich structural information about a sample. It is this challenge
which drives active research in the area.

Presently. intense research is also being done to image in turbid samples.
Tomographic or cross-sectional imaging becomes complicated because visible and NIR

light does not take a precise path through the sample. This ambiguity causes problems



for many reconstruction algorithms as they are typically based on the assumption that a
straight optical path exists between the radiation source and the detector. In spite of these
problems, classical imaging techniques like those found in X-ray Computer Aided
Tomography (CAT), have been adapted for NIR imaging in scattering media. Qualitative
images of hard and soft tissue in the mouth,*® oxygen profiles in the neonatal brain®® and
crude cross-section images of the human arm*® have been produced. Although much
progress has been made. it remains difficult to obtain quantitative images when scattering
levels are high. It is the subject of this project to tackle the problem of quantification in

layered tissue-like analogues.

1.3 The Interaction of Light in Turbid Media

Typically. two major processes occur when NIR radiation interacts with a turbid
medium: scattering and absorption. In this section, the physics of these processes is

discussed.

1.3.1  Scattering theory

When electromagnetic radiation traversing a medium of a given refractive index
crosses a boundary into another material of different refractive index several processes
may occur. The radiation may be reflected, refracted or scattered. In addition, a change
in polarization of the light may occur. These optical phenomena result in changes in
both the direction and properties of the incident light ray. Typically, however, these

“elastic” processes do not involve a change in the frequency of the incident ray.



Elastic scattering may be classified into two main types: Rayleigh scattering and
Mie scattering. Table 1.2 gives some approximate refractive index and size criteria for
these types of scattering. In Rayleigh scattering, the scatterer may be considered to be a
point source of secondary emission.’”® Rayleigh scattering is characteristic of scattering
from particles with dimensions much smaller than the incident wavelength. Scattering

from particles such as smoke and fog fall into this category.”

Table 1.2. Scattering types.

Scattering type Refractive index Size requirement
requirement

Rayleigh l(ns/Mm— 1) <<1 ds <0.05 &

Mie [(NsMm—1)|>>0 d; >~

“ns and Np, are the refractive indices of the scatterer and surrounding medium
d; is the major dimension of the scatterer
Lord Rayleigh was the first to investigate the dependence of scattered light intensity on
wavelength. He discovered that an incident unpolarized electromagnetic wave

interacting with a single particie produced a scattered beam irradiance in the form,

_ 8z(a')*(1+cos” O)E,

EB l.‘d:

(1.1)

where o' is the polarizability of the particle, A is the wavelength, @ is the angle between
the incident and scattered ray, £y is the incident beam irradiance, and d is the distance
from the scatterer to the detector. Equation 1.1 predicts that intensity of the scattering
radiation intensity is inversely proportional to the fourth power of the wavelength. This

wavelength dependence is commonly used to explain the blue color of the sky. During



the day. the short wavelengths of light are efficiently scattered by dust particles and water
vapor in the atmosphere at large angles relative to the light path.”

Unlike Rayleigh scattering, Mie scattering occurs from large particles of
relatively high refractive index. The particles involved are sufficiently large and cannot
be considered point sources of secondary emission. Examples of Mie scatterers include,
milk fat suspensions, blood cells and collagen fibers. When these particles scatter light,
different regions act as distinct scattering centers from which constructive and destructive
interference occurs between scattered rays.

Light rays which are scattered backward toward the incident source are very
susceptible to destructive interference. This results in a complex scattered intensity
distribution envelope which is anisotropic and predominately forward directed. Using
Mie theory, the exact form of the angular distribution of scatter intensity or phase
function may be computed numerically for many simple geometric shapes.*'”> However,
these computations are tedious and often a simple measure of the broad characteristics of
the angular intensity distribution around a scattering center is sufficient. To facilitate
such computations, Henyey and Greenstein developed a simple polynomial function
which characterizes the broad features of the phase function for a forward scattering
particle.” The shape of this function is controlled by a variable, g the average cosine of

the scattering angle. This variable is defined as,
g =(cosf) = L'f(Q., Q') cosl dQ’ (1.2)

where f1Q,(Y') is the phase function. (Q represents a space unit vector in the direction the
incident ray takes toward a scattering center and €' is the vector in the direction a

scattered ray takes away from the center.) In general, g describes the anisotropy of the



scattering. For a particle that scatters isotropically, g is 0. [f the particle scatters more
light toward the forward direction, g is positive (# - 0°). Likewise, if more light is
scattered back toward the source, g is negative (§ — 180°). Typical values of g for
human tissue and for milk fat range from 0.8 to 0.97 in the NIR region. >

When considering the optical properties of a collection of particles, as in a
suspension, it is convenient to consider each scatterer as an attenuator of light intensity.
In general. a light ray traversing through a suspension will experience more scattering
events when the density of scatterers is high than when it is low. A comparison between
the light attenuation in a bulk scattering medium with one in suspension may be made by
expressing the scattering cross section per unit volume. The result is a volume
attenuation coefficient or “scattering coefficient”, y and has units of reciprocal length.
The scattering coefficient may be seen approximately as the number of scattering events
that occur per unit pathlength. Conversely, the reciprocal of the scattering coefficient has
been termed the mean free path between scattering events (in the absence of light
absorption). In the literature, i, is stated in units of cm™ or mm™. In this work p; is
expressed in mm™. As an example, . is typically around 15 mm™ for skim milk (1%
milk fat) and 52 mm’' for whole milk (3.5% milk fat).*

In general. the scattering coefficient is proportional to the number of suspended
scatterers per unit volume. However, when the density is sufficiently high, the effect of
other nearby scatterers reduces the measured scattering coefficient. This effect suggests
that a more complex relationship exists between collections of scattering particles over a

broad range of concentrations.>®



1.3.2  Absorption theory
When light passes through a sample containing an absorbing species, a reduction
of intensity occurs. This attenuation is related to the incident light intensity /p, the
concentration of the absorbing species, ¢, and the pathlength through the sample, /. If the
absorber concentration is uniform throughout the sample, then the Beer-Lambert relation
may be used to calculate the exiting light intensity, /. This relation may be written as,
[=1e* (1.3)
where « is the proportionality coefficient. It can be seen that the intensity decreases
exponentially with optical pathlength and with absorber concentration. The Beer-

Lambert relation is also commonly expressed in terms of an absorbance, A as,

A = _10gm[L - ecl (1.4)

1]

where € is the molar absorption coefficient, e=a. /In 10 and /], is called the transmittance.
The coefficient € depends on both the absorber and the frequency of the light. The molar
absorption coefficient has units of (concentration x length)™' and is normally expressed in
Mem™.

When investigating an absorbing system where € and the molar concentration of
the absorber are not known, it is common to express the constant of proportionality
between the absorbance and the pathlength as the absorption coefficient, p, = 2.303 € c.

The Beer-Lambert relation may be then rewritten as / = [,e ™ or A = p,// 2.303. The

quantity p, is analogous to Hs, and may be seen as a measure of the number of
“absorption events” per unit pathlength. As with the scattering coefficient, values of p,

are listed in units of cm™ or mm™. In this work, units of mm™ are employed throughout.
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Typical values of the absorption coefficient range from 0.01 mm™ to 1 mm™ in human
tissue in the near infrared. In milk™> at 632 nm, the absorption coefficient is 0.0005 mm™.

One of the fundamental assumptions of the Beer-Lambert relation is that
absorption is a continuous process. However, in scattering media this assumption may
not hold. Examples of non-continuous absorbing systems include smoke and coated
powders. In these cases, scattering and absorption are not independent processes. It is
only when both the optical pathlength through the scatterers is small relative to the total
pathlength and the scatterers themselves are non-absorbing that the Beer-Lambert relation

may be used.

1.4 The Propagation of Light in Turbid Media

An understanding of the transport properties of light in scattering media is
important for both quantitative and qualitative sample analysis. This knowledge gives
the analyst a means in which to interpret the results of an absorbing constituent assay. In
a turbid sample, ray path information is ambiguous due to the dispersion of light. This
problem complicates analysis as the Beer-Lambert relation may not be applicable for
estimating concentrations of absorbing constituents. However, such variations in
pathlength through a sample may provide valuable qualitative information for the
diagnosis or disease™™" or food freshness.'® The optical pathlength through a sample
changes with scattering and absorption levels, wavelength and detection geometry. As
shown in Figure 1.1, a photon may take several paths through a sample. Photons may

traverse ballistically through a specimen with littie or no scattering or take highly random
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Figure 1.1. The interactions of light in a scattering and absorbing sample.
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paths before exiting. Measures of the distribution in optical pathlengths through a
specimen may be resolved using photon time-of-flight or frequency domain techniques.
The results from these techniques have led researchers to a greater understanding of the
interactions of light in scattering media. In this section, theoretical models that describe

these time or distance variations are introduced.

1.4.1 Radiative transport theory

Over the last 60 years, many theoretical models have been developed to explain
the physics of diffusional transport processes. Models of neutron diffusion were
necessary in the development and control of nuclear reactors.”’ One of the fundamental

models for neutron diffusion is the Radiative Transport Equation given in Equation 1.5.

1 & _ - -~ . — , _
=2 1(Q.P) + Q-VI(Q.5) = ~(, + ) (Q.5) + 1, [[(R.Q)(R,5)dX + (2, )

c ot
[ I1 I v V (1.5)

This equation attempts to characterize the time dependent nature of particles which

traverse a scattering medium. The quantity of interest /(Q, p ) represents the intensity,

speed and direction of neutrons (or photons) at a given point in space. The quantity p is
a collective representation of the space (x,y,z) and time (¢) coordinates expressed together
as (x.y.z.cr), ¢ is the speed of the particle and Q is a directional unit vector. Other
quantities have been defined previously. For clarity, Equation 1.5 has been split into five
terms, (I - V) and a photon will represent the equivalent of the particle. Essentially the
equation states that the rate of change of light flux into and out of a given point (I and II)

is related to the rate at which light is being attenuated due to absorption and scattering
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processes (III), and to the rate at which it is transferred into a given point by
neighbouring scattering processes (IV) or by a source (V).

Although this differential equation has been solved analytically in special
cases,”™® it does not provide a practical model for investigating the nature of light
transport in scattering media. Work by Glasstone®’ and Ishimaru®®*® have reduced
Equation 1.5 to a diffusion type equation when the system contains quasi-isotropic

scatterers. The result, given in Equation 1.6 is the first order (P1) approximation.s7 The

time-dependent diffusion equation may be written as,

laid)(r,t)+DV2<D(r,t) = —u,d(r,t)+S(r,1) (1.6)
c ot

where D is the diffusion coefficient defined as [34, + 3u(1-g)]”', and ®(r,7) is the photon
flux at a position r, at time 7, and S(r,?) is a source term. The scattering anisotropy in the
diffusion coefficient arises in the form of a scalar factor, (l1-g), with the scattering
coefficient. This reduced scattering coefficient, ys' = u(1-g), may be regarded as an
effective isotropic scattering coefficient that represents the cumulative effect of several

forward scattering events.

1.4.2  Time dependent solution to the diffusion equation

The diffusion equation given in Equation 1.6 may be solved using Green’s
functions when the source term is a single, short pulse of light.%® If the light source is
directed into a semi-infinite slab of scatterers, the time-dependent solution for the photon

intensity out of the sample some lateral distance r, from the source is,
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rl
I(r,1)= (__FT"XP( Hact) XP(4 /D] (1.7)

where =, =[(1-g)u, |, c is the speed of light in the medium and D is the diffusion

coefficient. Equation 1.7 may be seen as the time-resolved remitted (reflected) light
intensity at a detector placed at a source/detector separation distance of r. Note that
Equation 1.7 is valid when ps>>p, and r is sufficiently large that many scattering
processes have occurred before light reaches the detector. The remitted light intensity is
controlled by three terms. The first term is a scaling factor dependent on the reduced
scattering and absorption coefficients, and the speed of light through the medium. The
second is a Beer-Lambert absorption term that relates the attenuation of light as a
function of distance traveled through an absorbing medium. The third term is analogous
to the exponential in Fick’s second law of diffusion. This term relates the diffusion of
light as a function of time and detector placement.

[f the time-resolved remitted light intensity given in Equation 1.7 is plotted as a
function of sample composition, the nature of light propagation through a turbid medium
may be better understood. Figure 1.2 demonstrates the effect of absorption and scattering
changes on the theoretical diffuse reflectance photon time-of-flight distribution as seen
by a point detector placed 15 mm away from the source. The sampie has a refractive
index of 1.33 and contains isotropic scatterers, i.e. g = 0. The initial absorption and
scattering coefficients are 0.05 mm™ and 40 mm’’ respectively. Changes in absorption
and scattering levels were made in +2% increments from the nominal values. It may be
seen that from Figure 1.2 that when either absorption or scattering is increased, the

overall detected light intensity decreases. When the scattering level is increased and the
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Figure 1.2. Effect of absorption (a) and scattering (b) changes on the theoretical photon

time-of-flight distribution. p, = 0.05 mm”, g, =40 mm’”, g=0, r=15
mm. Changes in absorption and scattering are made in +2 % increments
from their nominal values. Arrows point in the direction of the shifting peak
maximum as the sample absorption or scattering is varied.
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absorption level is held constant, the peak in the time distribution shifts toward longer
times and the distribution broadens. This is expected as the light must travel a longer
path from source to detector as it undergoes relatively more scattering events. Likewise,
the intensity decreases because it is less probable that any given photon will make it to
the detector. When absorption level is increased while the scattering is held constant, the
peak maximum shifts toward shorter times. This is due to the photons which have been
scattered many times having a greater probably of been absorbed before reaching the
detector. Thus, it can be seen that changes in scattering and absorption levels have a
marked influence of the average pathlength travels through a turbid sample.

The scattering and absorption properties of a turbid sample may be estimated by
comparing the measured diffuse reflectance or transmittance signals with those obtained

1.6 It has been shown that using the time-resolved diffusion

from the diffusion mode
model, estimates of absorption and scattering leveis in a homogeneous sample may be
made to within 10% of their reference values.®® The technique, however, is limited to
samples which contain high concentrations of scatterers. Estimates of the sample

absorption may be made by analyzing the slope of the edge of the photon time

distribution.®

[.4.3  Monte-Carlo photon modelling

A versatile means by which the interaction of light with a scattering medium may
be modeled is by Monte-Carlo simulation. Monte-Carlo simulations of this type involve

64,65

tracing individual photon histories through the medium. During a simulation,

photons are released into the system and statistics about the quantity of interest are
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determined. The advantage of the technique is that complex inhomogeneous samples of
arbitrary absorption, scattering and refractive index and shape may be handled. In
addition, the incident light source may be modelled either as a collimated beam® or one
that is focussed into the sample.®® For the simulation of light scattering, the Henyey-
Greenstein phase function is commonly used.”® This function is usually mapped such
that a pair of random numbers between 0 and 1 correspond to a given scattering angle in
space. The free path between scattering events is typically modeled according to a
distribution function.**?’ One of the major disadvantages of the technique is that a large
number of photon histories must be followed in order to obtain statistically meaningful
results. A computer program that models the time course of a bolus of photons through a
layered scattering/absorbing medium is listed in the Appendix.

1.57 In this method,

Another type of Monte-Carlo model is the Random-Walk mode
photon propagation is done over a set of discrete grid points. One of the key advantages
of the method is that only a few rules are needed to move the photons forward, to change

drrection or to simulate an absorption event. However, because this approach constrains

the movements of the photons, simulations of anisotropic scattering are not well handled.

1.4.4  Finite-element modelling

Finite Element Methods (FEM) have been increasingly employed for solving
photon propagation problems in complex samples.®®®® The basic concept of the finite
element approach is to sub-divide the sample into small elements or nodes and to soive a
set of simultaneous equations which describe the physics of each node. A numerical

solution of a differential equation is made which describes the photon flux into and out of
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each node during a small time interval. The nodes may be spaced regularly throughout
the sample or may be more concentrated in regions that are difficult to model. These
may be boundaries and regions where the photon flux is anticipated to be large.’® In
addition to handling complex sample geometries, finite element solutions are not
statistical in nature. However, the overall quality of the solution is dependent on the time
step and the node spacings chosen. Therefore, small time steps may be required to
accurately model the diffusion process. Because of this, finite element methods tend to

be slow and have not gained wide popularity.

1.4.5  Kubelka-Munk model

In 1931. Kubelka and Munk proposed a theory of light transport in which two
light fluxes travel forward and backward in the medium.”' A number of researchers have
since refined the theory and have made extensive comparisons with experimental data.”®
It was found that the K-M theory could describe the variations in remitted light intensity
if the source of illumination is diffuse and the medium diffusely scatters light.”® The
technique involves taking both a reflectance and transmission measurement, and by using
simple algebra, relative measures of absorption and scattering levels may be made.
Although this method is often used in the analysis of powders,*” its empirical nature and
the range of validity have not been well established.”® In addition, when both the

scattering and absorption levels vary, the K-M model is difficult to interpret.
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1.5 Imaging in Scattering Media

1.5.1 Classical tomography

Tomography, a branch of radiology concerned with the display of cross-section
information, has become an important tool in medicine. Today's computed tomography
(CT) systems allow for rapid 2D and 3D imaging of the human body from X-ray
shadowgrams. These instruments have been made possible in part due to the rapid
advancement of computer technology over the last 30 years. However, before the
existence of powerful computers and Fourier Transform (FT) based imaging processing
methods,”* ingenious opto- and electro-mechanical instruments were devised to collect

7374 Although many design approaches have

and process cross-sectional information.
been investigated, common to all X-ray tomographic systems are means for obtaining
multi-perspective information about the specimen.

Multi-perspective information may be obtained in two ways. Either the specimen
is precisely rotated between a fixed radiation source and detector, or, a mechanical gantry
is rotated around a fixed body. In either case, it is assumed that the radiation beam
travels in a known path through the specimen from source to detector. If deviations occur
in the radiation path, sample reconstruction becomes ambiguous and a degraded image
results.”

CT image reconstruction is typically viewed as an inversion problem. This may
be thought of as a mathematical approach to resolving the absorption properties of each
voxel from a set of multi-perspective intensity measurements. In 1917, Radon discovered

that an object may be reconstructed unambiguously using an infinite number of noiseless

projections.”®  Although Radon worked out the equations governing image
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reconstruction, it was not until 1956 that the first real image reconstructions were made in
the field of radio astronomy.”’

Using the specimen shown in Figure 1.3 as a example, a projection through the
sample is shown. This projection or shadowgram represented by g(x) is a line integral
along the )" axis at a fixed distance along x’. The quantity g(x’), proportional to the total

attenuation of the ray through the sample, may be written as,
g(x)= [ S,y (1.8)

where the function f{x',}’) represents a 2D sample. The integral may also be stated

relative to a fixed xy coordinate system at an angle 0 as:
g6,x") = _[_f(x'cosé —-y'sind, x'sinf + y'cosf ) dy' (1.9)

Given a series of projections, several approaches may be used to reconstruct a
cross-sectional image of the sample. One of the easiest approaches is by backprojection.
In this method, sample reconstruction is done by backprojecting each projection across
the image plane. After this is done for each projection, an approximation to the original
object is produced. The technique is attractive because it can be easily implemented
without the need for complicated mathematics. However, resulting images are only a
crude approximation to the original object.”

Another common approach to sample reconstruction is the Algebraic
Reconstruction Technique or ART. In the ART method developed by Gordon er al.,
sample reconstruction is done by iterative refinement of an arbitrary initial image.”® The
object is typically represented as a matrix of values. Projections of the object are

computed by summing along rows, columns and diagonals of the matrix.
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Figure 1.3. One dimensional projection g(6, x') of a two dimensional function f{x,y)
obtained by integrating along the y’ direction.



The algorithm applies successive corrections to the reconstructed object to minimize the
difference between the measured and calculated projections. The reconstructed object is
slowly refined until either convergence is achieved or satisfactory image quality is
obtained. ART methods are attractive because a priori information about the sample is
eastly incorporated into the reconstruction process. The inclusion of a priori sample
information is important to help constrain the image to meet certain criteria such as non-
negativity.  Although ART methods are widely used, the number of algebraic
computations required may be very large in order to achieve convergence. To avoid such
lengthy computations. analytic approaches to image reconstruction are used.

Founer image reconstruction techniques were first introduced by Bracewell in
1956. However, it was not until after the development of the Fast Fourier Transform and
large digital storage systems in the 1960s that this analytic approach to image
reconstruction became practical. The key to Fourier based image reconstruction is the
Central Section Theorem.™ This theorem states that a 1D Fourier transform of a
projection of a 2D object taken at an angle 6 is a radial slice through a 2D Fourier
transform of the object at the same angle. A visual description of this concept is given in
Figure 1.4. Therefore to reconstruct an image from a series of projections, a computer
would *fill" the 2D Fourier domain with 1D transforms of each projection, and take the
inverse 2D Fourier transform of the result.

One of the major problems with Fourier based reconstructions is that many
projections are needed to adequately fill the Fourier domain.”” If projections are not

taken at all angles. the Fourier domain will contain a missing cone of information.
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Figure 1.4. Illustration of the Central Section Theorem: The 1D Fourier transform of
g(6, x') equals the radial slice of F(k,4,) at the same angle 6.
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In the image domain, this is manifested as a lack of details in directions where
projections were not available. This effect is common to other reconstruction methods as
well.””  To reduce these deleterious effects, progress has been made to recover the

P . . . - . . .. 75.79
missing information by extrapolating from known information into the missing cone. 3

1.3.2 Imaging in scattering media using ballistic light

In general, the fundamental concepts of X-ray CT imaging may be applied for the
analysis of a wide variety of samples using NIR light®® However, the effects of
scattering complicate image reconstruction. The key problem to imaging in absorbing
and scattering media is to extract information regarding a given object embedded in the
medium. The object of interest, or phantom, often is distinguished by a small variation in
the scattering and absorption properties as compared to the surrounding medium.®' To
tackle this problem. great efforts have been made to isolate the component of light that
traverses through a sample in the most direct path from source to detector.

If a short pulse of light is transmitted through a scattering medium and is detected,
the component of light that arrives earliest will have undergone the fewest scattering
events. The ballistic component which has not undergone any scattering retains the
coherence properties of the original pulse.** Following this component is light which has
been scattered only a few times. For tomographic imaging applications, the use of
straight-path ballistic light is important. However, if the thickness of the sample exceeds
more than 5-10 scattering mean free paths (MFPs), the ballistic light intensity has been

estimated to fall below the photon shot noise limit.®® Therefore for imaging in highly
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scattering media, the problem to be solved is how to separate the ballistic or near ballistic
light component from the highly scattered light.

Over the last 20 years, various techniques have been employed to suppress
scattered light from imaging based on ballistic light. These include time gating,
frequency domain, polarization and spatial filtering techniques. In time-gating
techniques, the distribution of path lengths through a scattering sample is resolved
through the photon time-of-flight distribution. If a transmission measurement is made,
the ballistic light component has the shortest time of flight. Time gating the ballistic light
component may be achieved with the use of a Kerr gate,82 a streak camera®’, by photon

88587 Fach method has its own advantages

counting™ or by optical coherence detection.
and disadvantages, however, the most sensitive include photon counting and coherence
detection.

In optical coherence techniques, a Michelson type interferometer is employed.
Instruments for optical coherence tomography (OCT) are generally reflectance based. In
the system shown in Figure 1.5, a pulse of light travels down a bifurcated fiber optic into
a sample. on the illumination arm, and toward a reference mirror on the reference arm.
The back reflected light from the sample and reference mirror propagates back down the
fiber into a light coupler. A portion of this light is detected. To probe the sample axially,
the reference arm pathlength is varied by moving the mirror. As the mirror is moved,
interferences occur between light back reflected from the illumination and reference arms
and the detected intensity is modulated. The resulting amplitude of the heterodyned

signal may be plotted as a function of axial position producing an axial or A-scan.®® By

translating the sample arm traversely, a series of A-scans may be combined to create a
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Figure 1.5. Schematic of an Optical Coherence Tomography system.
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two dimensional intensity plot or B-scan. I[n a microscope OCT system, resolutions of
<20 pum in the axial and lateral directions can be obtained with a 10 um incident beam
spot size.*®

In the early 1990s, OCT was first demonstrated as a potentially powerful tool for
clinical medicine.?® Since then it has been used for the diagnosis of disease in the eye
and other transparent tissues such as in the intestines.*® However, imaging in scattering
media is difficult since the portion of backscattered photons that pass the interferometric
gate of the OCT decays exponentially with probe df:pth.87 [t has been demonstrated that
at even low levels of scatter (us = 6 mm’'), the maximum probing depth is on the order of
I to 1.5 mm.* Likewise, it remains difficult to obtain quantitative information from
OCT as the available models do not account for the complex interference effects of
backscattered light in tissue.®’

For imaging in highly scattering macroscopic systems other techniques such as
polarization gating and spatial filtering are better suited for suppressing the detection of
the scattered light component. In polarization gating methods, scattered lighted is
suppressed because of its random polarization state. Ballistic light, however, retains the
polarization of the original beam entering the specimen. The ballistic light component
may be selected by aligning the polarizer in the same direction as the incident light.
However, in this simple approach, the intensity of the scattered light component is
reduced by only one half. Using a polarization modulation technique, the rejection
efficiency may be vastly increased.®’ The method resolves the polarization state of the

light exiting the sample and uses this information to subtract the diffuse background.®
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This technique has been shown to be of considerable use when imaging in highly
anisotropic scattering media up to depths of 50 MFPs.%

In spatial filtering methods, the idea is to allow the ballistic light component to
pass through a pinhole while blocking a majority of the scattered light. This type of filter

91 . . . . .
%3 When imaging is done in this

is most efficiently applied to imaging a point object.
manner, a scanning system is used to reconstruct two and three dimensional images. The
confocal microscope developed in the 1960s is such an instrument. It may be operated in
either reflectance or transmission geometry. A diagram of a simple reflectance mode
confocal microscope is given in Figure 1.6. The ability of the confocal optic geometry
for depth discrimination in a sample is inherently related to the way scattered light is
rejected. When imaging in homogeneously scattering media, it has been demonstrated
that imaging in samples on the order of 20 MFPs in thickness may be made in
transmission mode and 10 MFPs reflectance mode.?' Typically, diffraction limited
imaging is the goal of using confocal optics. However it is not known to what depth a

sample may be imaged when this strict criteria is relaxed. This is one of the goals of this

thesis.

1.3.3 Diffuse light imaging

There are several approaches to sample reconstruction based on diffuse light
detection from the sample. Typically, tomographic reconstruction from diffuse light
measurements requires a theoretical knowledge of photon propagation in the medium. In
the ‘forward problem’ based approach, the optical properties from a sample are estimated

by modelling the experimental responses. Data may be derived from transmission
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% or with continuous wave

measurements either in fre:quency92 or time domain,”'
measurements from many spatially distributed detectors.”® The theoretical model that is
typically employed is either the classic diffusion model or one which simulates a defect
in an otherwise homogeneous sample.”® Although the diffusion model has been
demonstrated to be of considerable use for sample resolution, it fails when simulating
complex media of variable absorption, scattering and refractive index. Current research
is directed toward efficient and stable solutions to the forward problem that ideally work
without a priori knowledge of the sample.?’

Frequency domain techniques, however, have shown considerable promise for
imaging thick scattering samples. With frequency domain measurements, the incident
light source is modulated. This modulated light wave gives rise to the concept of photon

97.98

density waves. Photon density waves have wave-like properties and exhibit

refraction and interference effects.’®

The practical advantage of the technique is that an
inexpensive modulated continuous wave laser may be used in place of a pulsed source. A
measure of the detected modulation amplitude and phase properties allow for the
determination of the mean path length through the sample. This is typically done by
modeling the system using the diffusion approximation of the radiative transport equation
with a modulated light source. Based on amplitude and phase measurements of photon
density waves, images may be obtained by wave diffraction at inhomogeneities. With
this approach, the approximate position, absorption and scattering properties of the defect
may be determined.”

Recently, methods that combine the use of light and acoustic waves have been

employed for tomographic reconstruction in thick samples. The basic concept is to use
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light to probe the contrast between the surrounding medium and the object of interest
while employing ultrasonic waves to transmit this information through the sample.®'
There are two approaches in which this may be done. In photoacoustic imaging, shown
in Figure 1.7a, the incident light beam penetrates the sample and is absorbed by the
embedded object. The process of light absorption creates a sound wave that propagates
through the sample where it is detected on the surface by an ultrasound transducer. In
this approach, first developed by Kruger, either pulsed or modulated light may be used.'®

In the second approach shown in Figure 1.7b, light is modulated by an ultrasound
beam focussed into the sample. The interaction of light with the compressed and rarefied
regions of the sample creates a modulation at the same frequency of the ultrasound pulse.
The light detected on the sample surface has a modulation amplitude dependent on the
efficiency of overlap between regions of high acoustic intensity and light intensity. This
acousto-optic technique, developed by Wang, has been used to image objects on the order
of ~2 mm using 1 MHz ultrasound waves.'"'

Typically, the embedded objects imaged are in sharp contrast from the
surrounding medium, in terms of absorption and density. Because of this, qualitative
images are usually reported. Although these acoustic methods may be employed for
imaging 5 cm thick liquid scattering samples with millimeter resolution, the transmission

2 In addition, the transducer

properties of ultrasound through many samples is poor.'°
must make intimate contact with the object being imaged. This severely limits the

possibilities for reproducible, quantitative, on-line analysis.
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Figure 1.7. Schematic of (a) photoacoustic and (b) acousto-optic tomography systems.
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1.5.4 Depth-resolved imaging

Many common materials consist of layers which have different optical properties.
Examples include, skin, coatings, thin films, and whole fruit. The layers in biological
specimens may be only a few micrometers or as thick as one centimeter in the case of the
skull tissue surrounding the brain. One of the early achievements for non-invasive
infrared monitoring was in the determination of blood oxygenation status in the brain.'®
Although measurements are possible, the influence of the surrounding skin, skull and
meninges is still not well understood.'™ Near-infrared measurements made around the
arachnoid (a filamented substructure of the meninges) have since demonstrated similar
measures of blood oxygenation state even though the structure is almost free from light
absorption and scattering.'® From this example, it is clear that an understanding of the
optical properties of the surrounding tissue is needed to test the accuracy of a bio-
diagnostic tool.

In the late 1970s, the photon propagation properties in two layered biological
systems were studied using diffuse reflectance signals.'” Since then, several groups have
studied the optical properties of layered samples in vivo.'®*'% Theoretical treatments the
light diffusion in two-layered media having different refractive indices'®’ or with
differing absorption coefficients'™'" have also been developed. An approximate
random walk model has provided valuable insight into the diffuse reflectance properties

"o The results from the random walk

of a two-layered scattering/absorbing sample.
model yielded a simple analytical approximation for the surface intensity profile when

the absorption coefficient of the upper layer was greater than that of the lower layer.'"’
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The approach however provides only semi-quantitative information of layer absorption in
a medium containing isotropic scatterers.

In another study, the influence of a two-layered scattering/absorbing system on
the quality of the estimated optical properties was determined.''* Using a least-squares
fitting algorithm, the optical properties of the layers were estimated from a simulation of
the diffuse reflectance. Both Monte-Carlo and diffusion models were investigated. In
general, the classic semi-infinite diffusion model provided a poor measure of absorption
and scattering. It was further demonstrated that the quality of the estimated scattering
and absorption coefficients was strongly dependent on the source/detector separation
distance. In this case. the diffuse reflectance signal at small lateral separations was more
dependent on the absorption properties of the upper layer than on the bottom layer. The
converse was found at large source/detector separations.

Recently, several groups have investigated time-resolved diffuse reflectance
measurements from layered simulated tissue samples. Experiments have been made in
gels with different concentrations of titanium dioxide and ink,'™ and in transparent
silicone containing polystyrene spheres and charcoal.''> Work by Hielsher et al. have
found that measurements of absorption in the lower layer were possible when the upper
layer contained a strong absorber.' Absorption estimates were made by fitting the
decaying portion of the measured time-of-flight profile to the time-dependent solution of
the semi-infinite slab diffusion model (Equation 1.7). The estimation was possible since
the highly-absorbing upper layer changed only the amplitude of the time-of-flight

distribution and not the shape of the decaying portion.'” However, when the technique

35



was applied to a multi-layered system, the estimation of absorption coefficients deep
within a sample was complex.

Kienle ez al. have also demonstrated that the scattering and absorption properties of
two-layered samples may be estimated over a narrow range from time-resolved and

3 Diffuse reflectance data was collected from three

frequency domain measurements."’
different source/detector separation distances. A solution of the diffusion equation for a
two-layered system allowed for optical property estimation in both layers by a fit to the
experimental data. The results demonstrated that the reduced scattering and absorption
coefficients in both layers may be estimated to within 10% in samples containing low
levels of scatterers. In addition, estimates of absorption in the lower layer could be made
more precisely in a sample containing a thick upper layer using frequency domain data.
In a related investigation, it was found that if the thickness of the top layer was known a
priori. then estimates of scattering and absorption in both layers were possible from a
single time-resolved measurement.

The choice of imaging geometry is also critical to the success of the measurement.
When analyzing layered samples, light collection is typically done in reflectance
geometry since the integrated signals from a transmission measurement are largely
redundant. However, the reflectance geometry presents other challenges when
quantifying layered samples. Detected light that penetrates into the deeper layers must
pass through the upper layers twice. This ill-conditions most classical approaches to

tomographic reconstruction. In this dissertation, methods to reduce the ambiguity in

sample quantification are investigated.
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Depth-resolved measurements of scattering and absorption are typically made
possible by using a theoretical model and a non-linear fitting procedure. Although the
radiative transport properties through layered scattering/absorbing samples may be
approximated either analytically or by Monte-Carlo simulation, these models are quite
limited. The refractive index, scattering coefficient and anisotropy of a real sample can
not be perfectly modelled. @ Without a sophisticated physical model, accurate
quantification in samples even of moderate complexity have not been possible. It is the
focus of this project to find new approaches for quantification in layered

scattering/absorbing media.

1.6 Research Objectives

The goal of this research is to make quantitative depth resolved measurements in
scattering/absorbing media. Towards this end, this work has been divided into a series of
chapters each which provide insight into the effect of scattering and absorbing
constituents on sample quantification.

In Chapter 2, quantificatiocn is done in granular samples. Estimates of scattering,
absorption and particle size are made using statistical descriptors of the photon time-of-
flight distribution from diffuse reflectance measurements. An analysis of the optimal
linear combinations of descriptors chosen by a stepwise multilinear regression routine
correlated to a particular sample property will allow insight into the nature of photon
propagation in granular media. The extent to which quantification may be made is

compared with similar work done in liquid samples.
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In Chapters 3 and 4, tomographic reconstruction of layered scattering/absorbing
specimens is investigated. Both steady state and time-resolved reflectance measurements
were done to obtain information sensitive of changing layer composition. Partial least
squares and stepwise multilinear regression techniques are then employed for
constructing linear models of absorption in a given sample region. Using this approach,
the extent to which estimates of absorption may be made in each layer independently is
determined.

Tomographic reconstruction of layered samples is further considered in Chapters 5
and 6. Using knowledge gained from work done in Chapters 3 and 4, more directed
approaches to sample quantification are done. In Chapter 5, tomographic reconstruction
is made by emploving a priori information to improve estimates of absorption deep
within a sample. In Chapter 6, confocal optics is used to suppress detection highly
scattered light. In addition to providing enhanced quantification, the work presented in
Chapters 5 and 6 demonstrate the limits to which subtle changes in absorption may be

determined deep in a highly scattering specimen.
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Chapter 2 Particle Sizing and Optical Constant
Measurement in Granular Samples using
Statistical Descriptors of Photon Time-of-
Flight Distributions

Quantitative analysis of granular samples is important to the pharmaceutical and
food industries. Solid granular samples are typically composed of loosely packed
scatterers of a high index of refraction. For finely divided solid materials, a significant
portion of the volume is air. If the particle absorbs light, the absorber may be present
inside of the granule itself or coating it. Due to the properties of granular samples,
absorption of light is not a continuous process as it traverses the sample. Referring to the
diffusion approximation solution given in Equation 1.7, the light intensity decays
exponentially as a function of distance traveled. In a medium where absorption is not
continuous, but instead associated with scattering events, the Beer-Lambert type
relationship assumed in Equation 1.7 may not be valid.

Estimates of the scattering and absorption coefficient in homogeneous milk
samples using time-of-flight diffuse reflectance measurement have been made previously
in this laboratory. Statistical descriptors of the broad features of the time distributions
were used for quantification. Stepwise multi-linear regression of the descriptors was
used to determine the optimal combination of descriptors correlated with changes in
absorption and scattering. Results demonstrated that descriptors associated with the
trailing edge of the time profile were most correlated with absorption changes in a

sample. Likewise, descriptors of the rising edge of the time distribution were correlated
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with changes in the scattering level. It is unclear whether similar descriptors are
appropriate for quantifying composition changes in granular media.

In this study, measurements are made in homogeneous granular samples. This
provides a fundamental basis for which many scattering samples need to be analyzed

such as those later used for tomographic analysis.

2.1 Abstract

A method is described for optical constant estimation and particle sizing in granular
samples using diffuse reflectance measurements. Statistical descriptors of the time-
resolved photon distributions were used to obtain information inherent to absorption and
scattering processes in a sample. Changes in a sample’s absorption and scattering
properties and apparent particle diameter were simultaneously estimated using stepwise
multi-linear regression (SMLR) and partial least squares regression (PLS). Models were
constructed using time distributions taken at both single and multiple radial
displacements between source and detector. SMLR estimates of absorption and particle
diameter required descriptors related to the trailing and rising edges of the time profiles
respectively. The inclusion of multiperspective information allowed for improved
estimates for all quantities. Using statistical descriptors, a robust means for simplifying
complex photon time distributions into measurable parameters was found. It was found
that the SMLR model gave slightly better results compared with the PLS model. The
absorption coefficient, scattering coefficient and apparent particle diameter were

estimated to within 10, 9 and 7% of their respective reference values with SMLR. In the
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future, this approach may be used as a means in which to develop practical

instrumentation for on-line, real-time characterization of absorbing granular media.

2.2 Introduction

Particle sizing of powders and granular samples are of great importance to many
areas such as in pharmaceutical formulation and abrasive manufacturing. Among the
range of particle sizing techniques commonly used, optical methods are particularly
attractive for remote or on-line analysis. Optical techniques provides a means for rapid
and precise measurement in a wide range of samples such as aerosols, dry powders, and
suspensions.'” For particle sizing in the range of 0.1 um to 1000 um, single scattering
techniques such as dynamic-light- or forward-angle-scattering may be used for particle
size determinations of dilute concentrations of scatterers.” With dense suspensions or
powders however, light is multiply scattered and the mathematical solution becomes
ambiguous.

Measurements of the diffusely backscattered light from a powder or suspensions
reflectance measurements have been used for particle size estimations.®’ In addition to
physical property assessment of a sample, diffuse reflectance methods offer an advantage
over other techniques by allowing the potential for concurrent chemical quantification.
For relative measures of absorption and scattering, Kubelka-Munk (K-M) theory was
developed to provide a simple model of two or more light fluxes in scattering media.®’
In this approach, the scattering and absorption processes are assumed to be independent
of each other. Although K-M theory oversimplifies the interactions of light with a

sample, this model has been successful for physical quantification of pharmaceutical
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powders of constant chemical composition.” However when both scattering and
absorption properties change simultaneously, the K-M approach has large error.

An alternative approach, diffusion approximation of the radiative transport
equation describes the time evolution of a short pulse of light as it propagates through a

191" The characteristics of the detected photon profile at a given

sample to the detector.
source to detector separation distance is a function of the optical constants, s and p,
which quantify the number of scattering and absorption events per unit length. When
used for a limited range of variation in scattering or absorption, the diffusion model
provides estimates to within 10% of the measured time distributions.'* Recently, Richter
et al. have used a diffusion theory for particle sizing of non-absorbing titanium dioxide
suspensions using frequency domain measurements.'> Estimates of the scattering
coefficient alone were made by modelling the response with diffusion theory. Mean
particle size was then derived from the scattering estimate using Mie theory. Their
results suggested that particle sizing of suspensions in the sub-micrometer range is
possible with this technique.

Currently, the application of diffusion theory has been limited to small particle
size ranges and changes in absorption. When used on large particle sizes or when particle
absorption also changes, the diffusion model produces large errors.'® In addition, it is not
clear whether the particle sizing technique based on the scattering coefficient and Mie
theory may be extended to a broader particle size range.

Using the diffusion approximation, it has been demonstrated that estimates of
scattering are possible when the sample has a homogeneous refractive index and

6

absorption occurs independent of scattering.s" In granular samples however, there is
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no optical uniformity and absorption events are linked with scattering and reflection
processes. For non-suspended media, this approximation may not hold and may present
difficulties for accurate quantification.

Recently, we have demonstrated that the absorption and scattering coefficients
may be accurately estimated using statistical descriptors of photon time-of-flight
distributions in liquid samples.'® Although the scattering and absorption coefficients
could be estimated in liquid samples containing sub-micrometer sized scatterers, it is not
clear whether estimates are possible in granular samples. The information gained from
the use of descriptors would be helpful for developing analytical models.

The goal of this work is to examine the use of statistical descriptors of diffuse
reflectance time-resolved photon migration as a means for optical constant estimation and
particle sizing of granular samples from 25 um to 500 um. Changes in sample absorption
and scattering properties, and apparent particle diameter are simultaneously estimated
using two regression techniques of the statistical descriptors: stepwise multi-linear
regression (SMLR) and partial least squares regression (PLS). The effect of light
collection geometry on obtaining optimal estimates is discussed. The accuracy of
absorption coefficient estimates and scattering estimates based on Mie theory is
compared with previous work on liquid samples. Results show similarities both in the
estimation accuracy and in the types of statistical descriptors chosen when compared to

liquid samples.
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2.3 Experimental Work

The experimental apparatus developed for time-resolved diffuse reflectance
measurements is shown in Figure 2.1. The heart of the system is a time-correlated single
photon counting instrument which is similar to devices found in fluorescence life-time
studies.'” A mode-locked Ti:Sapphire laser (Mira 900B, Coherent, Santa Clara, CA)
pumped by an Argon laser (Innova 310, Coherent) was used to produce laser pulses with
a repetition rate of 76 MHz. The pulse shape of the laser was measured using an optical
autocorrelator and was found to have a width of 170 fs. The laser was tuned to 780nm for
the experiment and the power was measured as 0.51 W corresponding to peak pulse
powers of 51 kW.

The output beam was split by a beamsplitter after which 4% of the light was
focused onto a fast photodiode (ET2000, Electro-Optics Technology Inc., Traverse City,
MI). The remaining portion of the pulse was attenuated by a neutral density filter and
directed onto the sample using a computer controlled mirror galvanometer (CX660.
General Scanning Inc., Watertown, MA). With the aid of a lens and a mirror, the light
was introduced into the sample perpendicular to its face. A pair of lenses focused the
light exiting the sample cell at a particular point onto a cooled microchannel plate
photomultiplier tube (MCP) (R3808U, Hamamatsu Corp., Bridgewater, NJ). This optical
arrangement allowed light onginating from other points on the surface of the cell to be
rejected. Output from the photodiode and MCP were each connected to separate constant
fraction discriminators (CFD) (Model 2126, Canberra Industries Inc., Meriden, CT).
Logic pulses from the CFDs were sent into a time-to-amplitude converter (TAC) (Model

2145, Canberra). The MCP response was used to start the TAC timing and the
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Figure 2.1. Diffuse reflectance photon time-of-flight instrumentation.
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photodiode response stopped the timing. The DC voltage output of the TAC was
proportional to the elapsed time between the start and stop pulses. The TAC output was
digitized using a 400 kHz 12-bit A/D converter (AT2000, National Instruments, Austin,
TX) resulting in time increments of 4.9 ps. The instrument response with no sample
present was measured to be 280 ps FWHM. Software running on a PC written in C was
used for data acquisition, beam positioning and time binning.

The 20mm deep sample container consisted of a black reservoir fitted with a
40 x 50 mm glass window, 0.15 mm in thickness. The window was designed with a
groove separating the source from the detector so that internal reflections in the glass did
not interfere with light collection.

Granular silica samples of four different sieve sizes (18-32, 32-63. 100-200.
200-500 pm) were used (ICN Biometerials, NJ). Each silica sample was poured into
methanol with the addition of dye (Dr. Ph. Martin's Transparent Water Color #33 Black.
Hollywood, FL). The solvent was removed in vacuo with agitation to reduce non-
uniformities in the coating process. Samples were stirred and dried at 110°C for two
hours prior to analysis.

Time distributions were recorded at three source/detector separations (5, 10 and
15 mm) and with varying sample composition. Each acquisition required 6 minutes with
total counts ranging from 1.8x10° to 9.6x10° in each distribution. High frequency
periodic noise due to the time-to-amplitude converter was reduced by smoothing the
measured time profiles.'” A Gaussian smoothing window (¢ = 25 ps) was used to reduce
the magnitude of the periodic noise by 94%. A series of 23 distinct samples were

analyzed with replicate measurements. The set was comprised of four different granular
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silica samples each with several different dye concentrations. Examples of the photon
time distributions after preprocessing are shown in Figures 2.2 and 2.3. Further data

preprocessing and sectioning into calibration and prediction sets is discussed in the

analysis section.

2.4 Sample Characterization

2.4.1 Particle size distribution
For particle sizing of ground or crushed materials. the normal distribution may be
used as a reasonable approximation of the particle size distribution after seiving.'®'® This

distribution of particle diameters x is written as,

p(x)= _¢ g teir 20’ 2.1

-

2no
where ¢ is the solid volume fraction, X is the mean particle size, and o the standard
deviation. This distribution was assumed to hold for the samples under investigation.
Using specific sieving efficiency data furnished by ICN Pharmaceuticals, Inc. (Costa
Mesa, CA.) the mean particle size and standard deviation were determined using
Equation 2.1. The solid volume fraction @, was calculated as the density ratio between
the powder and crystalline silica. For particle sizing, the “apparent particle size” given
by X/¢ was used. This quantity may be seen as an approximation to the average length

between scattering events (;.15'l ).
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2.4.2  Scattering coefficient determination

Given the sample’s particle size distribution, Mie theory was used to estimate the
weighted average scattering coefficient. To facilitate calculation of the scattering
coefficient. samples were assumed to be composed of spherical homogeneous particles,
as a reasonable first order approximation.'” This method was used to approximate the
scattering coefficients of the samples, however it is recognized that the particles are not

spherical and may not be well modeled. The mean scattering coefficient is written as,
3 x,n,A
U, = .[Q#M(——) p(x)dx 2.2)
o 2x

where Qsca(x,n.4) is the scattering efficiency for a given sphere diameter, x, relative
refractive index, n (Mgica/Mair) and wavelength, A (evaluated at 780 nm). Scattering

efficiencies were computed numerically using an algorithm by Bohren and Huffman.'®

2.4.3  Absorption properties

The silica samples were coated with a dye which absorbs strongly at the probe
wavelength (780 nm). The dye was assumed to homogeneously coat the silica. The
average absorption coefficient for each sample was calculated as p, = 2.303 € ¢ where € is
the extinction coefficient of the dye (1.28x107 ppm"mm'l) and c¢ is the average dye
concentration in ppm per unit mass of powder. The range of absorption coefficients

determined for the particles spanned between 0.00 mm™ to 0.50 mm"'.
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2.5 Analysis

2.5.1 Suatistical descriptors

To understand the relationship of the different portions of the time profiles,
statistical descriptors were used. Such an approach in the future, will allow for real-time
sample characterization by directly analyzing the time resolved signals with simple
electrical circuits. The statistical descriptor set included in this study is given in Table
2.1 with their mathematical representations. As in previous work with liquid samples'®,
photon time-of-flight distributions were decomposed into moments, rising and trailing
times, slopes, and peak maxima after logarithmic processing. Area descriptors (a,) were
also computed, however, the logarithm was taken after integrating. The area descriptors
are proportional to the steady state signal and are analogous to a classical reflectance
measurement. Contributions to the total signal from the initial (rising) and latter (trailing)
portions of the time distribution were measured. The area of the rising and trailing
portions (a and ay respectively) describe the portion of early and late photons that reach
the detector. Likewise, the mean rising and trailing times (t, and t;) describe average
times early and late photons respectively take to traverse the sample. Rising and trailing
slopes (m; and my) and peak maxima (p) were included as they are markedly affected by
changes in sample absorption and scattering.” Moments (u;-us) were also included as
they have been shown to be a good descriptor of the overall shape of time distribution.*
First and second moments (u; and u,) of the time distribution describe the mean time and
the variance of the distribution respectively. The mean time is known to relate the rate of
change of measured intensity to the change in absorption.”” The third moment (u3) was

included in the descriptor set as it related to the skewness (s) which measures the degree
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of the time-distribution symmetry. The fourth moment (u;) and kurtosis (k) strongly

weight the tailing edge of the time-distribution.

Table 2.1. Statistical descriptors computed from the diffuse reflectance time-of-flight

profiles.
Statistical Descriptor Expression
Log area, .
a log I f@)de
]
Log area of the rising portion, peas
a, log I f(2)dt
]
Log area of the trailing portion, Toas
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2.53.2 Calibration and sample quantification

To understand the significance of the different statistical descriptors on the
analysis, both SMLR and PLS regression approaches were used for estimating the
absorption and scattering coefficients and apparent particle diameters. The set of samples
comprising the calibration set was chosen randomly from one of the two replicate
expenmental measurements. The other portion of the samples comprised the prediction
set. Both sets contained equal numbers of samples with different particle size and
absorption levels. Fifteen descriptors listed in Table 2.1 were computed for each time
distribution collected in the calibration set. The resulting values were autoscaled to avoid

biasing the model due to the magnitude differences between descriptors.

To allow for practical on-line sample characterization, step multilinear regression
was investigated. The SMLR technique identifies a linear combination of a subset of
independent variables which optimally describe a dependent variable Y, (1xp) in the

form,

v=bo+ bix;+ ...+ buxy (m<n) (2.3)
where p is the number samples in the training set, x;, x3, ... , X, are the independent
variables or channels, n is the total number of channels and by, by, ... , b, are the
coefficients determined from the calibration. The SMLR method finds the optimal linear
combination of data channels correlated with Y. In constructing of the optimal set of m

descriptors, the routine evaluates a number of intermediate regression models.

Descriptors were selected based on the lowest standard error between Y and Y in the

training set. Descriptors were removed from the set if after the addition of others, the
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new combination of descriptors produced a significantly better estimates. Partial F-tests
at 95% significance were used for the evaluation of the models. The routine ended when
there was no longer a statistical difference between two consecutive models. The SMLR
analysis routine was written in Matlab'® (The MathWorks, Natick, MA) and is based on
algorithm by Draper and Smith.”’

For a given sample property, four SMLR models were built using data collected at
single source/detector separations (5, 10, and 15 mm) and a combination of all three. The
relationship between the chosen descriptors (independent) and the absorption coefficient,
scattering coefficient or mean particle size (dependent) follows from Equation 2.3.

Using the prediction set, absorption, scattering and apparent particle size
estimates for a each sample were made by processing the time distributions with the m
optimal descriptors and applying Equation 2.4 with the b; parameters determined in the
calibration. Each model was assessed by measuring the correlation about the line of
identity between the estimated and reference values. Both r* and coefficients of variation
(C.V.) between the reference and experimental values were computed. With each
optimal model, a cross validation calibration was done to determine if any biasing was
present by the inclusion of incorrectly characterized or prepared samples. A ‘leave one
sample-type out’ approach was used. It was observed that in all cases a similar number
of descriptors was needed for each estimation. No improvements in the estimations were
obtained by removing samples from the original set at the 95% confidence level.

Analogously, models were constructed using Partial Least Squares regression. The
PLS method is related to both Principal Components Regression (PCR) and Multi-Linear

Regression (MLR). It attempts to simultaneously capture the greatest amount of
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covariance between the descriptors (like in PCR) and to find a factor that best correlates
the descriptors with the dependent variable Y (as with MLR). The one component PLS
routine used in the analysis was based on the NIPALS algorithm.”*** For estimations of
absorption and scattering coefficients and apparent particle diameters, the optimal
number of factors was determined from the predicted residual error sum of squares
(PRESS) values. PRESS values were calculated as the sum of the squares of residuals
between the PLS estimates and reference values for each sample in the prediction set. An
F-test at 95% significance on the ratios of adjacent PRESS values were used for

determining the optimal number of statistically significant factors.

2.6 Results and Discussion

Diffuse reflectance measurements were made on absorbing silica samples of
varying grain size. Typical diffuse reflectance time-of-flight profiles for a single sample
coated with different dye concentrations, shown in Figure 2.2, demonstrate the sensitivity
of the profiles to changing absorbance. The integrated intensity (area under the profile)
decreases and the peak maximum shifts toward shorter times as sample absorption
increases. This trend is due to an increased probability of longer pathlength photons
being absorbed before they reach the detector. In addition, the slope of the trailing
portion of the curve is no longer constant. Figure 2.3 demonstrates the change in the
time-of-flight profile with changing sample grain size. As grain size is reduced, the
scattering level increases which decreases the peak maximum and shifts it toward longer

times. The increased number of scattering events the light experiences leads to
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Figure 2.2. Photon time-of-flight profiles as a function of sample absorption at a 15mm
source/detector separation. Legend: p, = 0.000 mm’', solid; p, = 0.033 mm',
dashed; p1, = 0.236 mm’, dash-dotted; p, = 0.472 mm"', dotted.
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Figure 2.3. Photon time-of-flight profiles as a function of scattering coefficient at a
15mm source/detector separation. Legend: p; = 1.86 mm™', solid; ps = 3.25
mm, dashed; ps = 20.01 mm’’, dotted.
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broadening of the profile and longer transit times from source to detector. Although
photon transport theories have been developed for single scattering processes in coated
spheres, multiple scattering models are not been fully developed for the range of grain
size considered.'® Therefore the diffusion model approach is used for comparison
purposes only. The trends shown in Figures 2.2 and 2.3 are indeed in general agreement
with what diffusion theory would suggest. However, when both scattering and absorption
are simultaneously changed, marked differences are observed. This can be seen using the
integrated intensity of each sample as a function of absorption coefficient relative to a
similar sample with no added absorber as plotted in Figures 2.4 and 2.5. With both
experimental (Figure 2.4) and theoretical'! diffusion equation results (Figure 2.5), a
general increase in attenuation is seen with the absorption coefficient. The difference
between the two is that they have a different rate of change of sample attenuation with
changing absorbance. Also, the ordering of the curves is reversed when the scattering
coefficient is varied. One explanation of this effect is that in coated granular samples,
light traversing from source to detector may spend relatively more time in non-absorbing
regions than in a sample which absorbs light continuously between scattering events.
This is because in a granular sample, light travels through the void spaces as well as the
non-absorbing core. Another explanation is that the change in grain size affects not only
the scattering coefficient but the scattering phase function. It is well known that diffusion
theory does not characterize photon transport accurately through non-isotropic scattering
media. A different approach should be taken when attempting to model the absorption,

scattering or apparent particle size in crushed granular samples.
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Figure 2.4. Experimental attenuation versus absorption coefficient at different scattering
levels. Legend: p; = 1.86 mm™', solid; Hs = 3.25 mm™', dashed; us = 10.52
mm™', dash-dotted; ps = 20.01 mm™', dotted.
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Figure 2.5. Theoretical attenuation versus absorption coefficient at different scattering
levels based on the diffusion model (Smm source/detector separation, g=0.8).
Legend: p, = 1.86 mm™, solid; ps = 3.25 mm™, dashed; ps =10.52 mm™',
dash-dotted; ps = 20.01 mm™, dotted.
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2.6.1 Estimates using time profiles taken at a single detector position

Three models were built for estimating absorption, scattering and mean particle
size using both the PLS and SMLR approaches. The models were developed using 15
descriptors from the time-of-flight distributions taken at a single source/detector
separation (either 5, 10 or 15 mm).

Results of the PLS estimates of the sample absorption are given in Table 2.2. In
all cases, one or two factors were determined to be optimal using all 15 descriptors. In
general, the absorption coefficient estimates were more accurate when the source/detector
separation was small (Smm). The coefficient of vanation between the estimated and
reference values was 13.7 % (r° = 0.962). A regression about the line of identity resulted
in a slope of 0.93 + 0.09 and an intercept of (1.9 + 0.9)x102 mm™. At larger separation
distances, i.e. 15 mm, increased error for the estimates was observed. Similar trends and
levels of accuracy were obtained with the SMLR model. As shown in Table 2.3, the best
absorption coefficient estimates were obtained with the smallest source/detector
separation [C.V. = 13.4 %; r’ = 0.964; regression slope = 0.95 + 0.07; intercept = (2.2 +
0.9)x10” mm™]. The best linear combination of descriptors was the kurtosis, the area of
the rising portion and the time of the trailing portion. The tailing portion of the time-of-
flight profile is well known to be strongly affected by sample absorption.'? Since the
kurtosis is sensitive to changes in the extremities of a distribution, it is reasonable that it
would correlate well with changes in sample absorption. The average times of the

trailing and rising portions would also be affected in a similar manner.
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Table 2.2. PLS estimates of the absorption coefficient, apparent particle size and
scattering coefficient using descriptors from time distributions taken at a
single detector position.

Quantity | Detector Position | C.V. (%) r
™ S mm 13.7 0.962
(mm™) 10 mm 20.6 0.917
15 mm 24.7 0.899
d 5 mm 10.7 0.963
(mm) 10 mm 10.4 0.968
15 mm 8.2 0.971
mn 5 mm 149 0.930
(mm™) 10 mm 12.8 0.944
[5S mm 11.1 0.964

Table 2.3. SMLR estimates of the absorption coefficient, apparent particle size, scattering
coefficient using data obtained at a single detector position.

Quantity | Detector Position | Chosen Statistical Descriptors | C.V. (%) r
n 5 mm kK a 13.4 0.964
(mm™) 10 mm k a p 16.5 0.945
15 mm a a s k 24.8 0.895

d 5 mm t: p mg 9.1 0.972
(mm) 10 mm tt p k m 9.1 0.973
15 mm tr p m 7.7 0.979

L S mm t- p m 16.8 0.921
(mm’™) 10 mm t a m, 13.0 0.948
15 mm Lo a 1.3 0.960

For estimates of apparent particle size, better accuracies were obtained compared
to estimates of absorption. The SMLR model produced more accurate estimates over
PLS at each of the three source/detector positions. The best SMLR estimates were

obtained with a source/detector separation of 15mm [C.V. = 7.7%; r* = 0.979; regression

slope = 0.97 + 0.06; intercept = (2.8 + 2.1)x10" mm]. Using a PLS approach the most
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accurate model had a C.V. of 8.2% [r* = 0.971; regression slope = 0.98 + 0.09; intercept
= (3.6 = 1.8)x10" mm]. With both models, larger errors were found in estimates of
particle size at small source/detector separations. At small separations, the bulk of the
detected photons have not penetrated deep into the sample and consequently, the pulse
has not had time to significantly broaden. With SMLR, the best set of descriptors was
identified to be the mean time and slope of the rising portion, and the peak maximum.
The choice of descriptors is consistent with expected physical characteristics of the
measurements. As grain size and the scattering coefficient are related quantities, it is
reasonable that descriptors sensitive to the rising portion of the time-of-flight profile were
chosen.

The scattering coefficient was also estimated. Both the PLS and SMLR estimates
produced accurate estimates at large source/detector separations. However, there was no
statistical difference between the two most accurate models. [PLS: C.V. = 11.1%; r" =
0.964; regression slope = 1.02 £ 0.06; intercept = (3.4 £ 1.5)x10" mm™'; SMLR: C.V.
11.3%, r* = 0.960; regression slope = 1.03 * 0.07; intercept = -(3.8 + 2.9)x10" mm™']. As
expected. the chosen statistical descriptors were similar to those chosen for particle size
estimates. The SMLR method included in the best fit linear combination, the mean time
and area of the rising portion, the standard deviation, and mean of the trailing portion. In
general, however, estimates of the scattering coefficient were worse than for the apparent

particle size as expected by Equation 2.2.
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2.6.2 Estimates using time profiles taken at multiple detector positions

Improved estimates were obtained when information from all three detected
responses were incorporated into either the PLS or SMLR models. Tables 2.4 and 2.5
show the coefficients of variation and r* values for estimating the absorption coefficient,
scattering coefficient and the apparent particle size with PLS and SMLR. Overall, hittle
or no statistical differences were observed between the two approaches. However,
SMLR allows one to identify which features of the time distribution are the most

significant for quantification.

Table 2.4. PLS estimates of the absorption coefficient, apparent particle size, and
scattering coefficient using descriptors from time distributions taken at
multiple detector positions.

. Quantity | C.V. (%) r
Ha (mm™) 11.4 0.973
d (mm) 7.4 0.977
i (mm™) 8.9 0.979

Table 2.5. SMLR Estimates of the absorption coefficient, apparent particle size, and
scattering coefficient using data obtained at multiple detector positions.

Quantity | Chosen Statistical Descriptors | C.V. (%) r
o (mm™) | k(5) ad5) k(10) t:(5) 10.3 0.984
d(mm) [ t(I15) p(10) p(5) 6.7 0.983
s (mm™) | t(15) a(10) mg(10) o(15) 8.6 0.981

“bracketed values refer to detector position in mm

In Figures 2.6, 2.7 and 2.8, the estimates provided by SMLR are plotted against

. their assessed values. The solid line represents the line of identity for ideal estimation.
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The slopes and intercepts of the regressions were calculated to be 0.97 + 0.03 and (1.3 £
0.6)x10™ mm’’ respectively for the absorption estimate, 0.98 = 0.03 and (1.7 O.6)><IO'3
mm for the apparent particle size estimate, and 1.04 + 0.04 and (2.6 + 1.3)x10" mm™ for
the scattering estimate. Using a combination of descriptors from all three detected time-
of-flight responses, a linear combination of the kurtosis and the area of the rising portion
correlated the best with changes in sample absorption. For scattering coefficient
estimations. the mean time and slope and area of the rising portion and the peak standard
deviation were chosen.

Comparing the best absorption estimation obtained in this study with previous
work using statistical descriptors with liquid scattering samples, similar errors were
obtained. For absorption coefficient estimates, both types of samples required descriptors
related to the trailing portion of the time-of-flight profile. The major difference between
the two optimal descriptor sets was that the mean rise time was replaced with the
kurtosis. Comparing scattering coefficient estimates for the two sample classes is more
difficult. Although the mean time of the rising portion was chosen in both studies, the
remaining descriptors were different. This may be expected as vastly different ranges in

the scattering coefficient were covered in the two studies.

76



o
o

o
N

o
o

Estimated
Absorption Coefficient (mm-1)
o
N

0.0 0.1 0.2 0.3 0.4 0.5
Reference Absorption Coefficient (mm-)

Figure 2.6. Descriptor estimates of the absorption coefficient using multiple time-of-
flight distributions.
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Figure 2.7. Descriptor estimates of the apparent particle diameter using multiple time-of-
flight distributions. Horizontal error bars are drawn at =1 standard deviation
about the mean particle diameters.
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distributions. Horizontal error bars are drawn at +1 standard deviation about
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2.7 Conclusion

A method for the quantification of absorption, scattering and apparent particle size
in a broad range of granular samples has been investigated. The approach employs the
use of statistical descriptors to characterize photon time-of-flight distributions in relation
to the optical parameters and particle size. Using SMLR, analytical descriptors
describing the trailing portion and kurtotic nature of the time profiles were optimal for
absorption estimates. When estimating either the scattering coefficient or apparent
particle diameter, descriptors associated with the rising portion of the time profile were
needed. Likewise, the choice of source/detector separation is important for optimal
quantification. For absorption coefficient estimation, small source/detector separations
were found to be optimal whereas larger separations were required for scattering and
particle size estimations. In addition, it was generally found that the analytical
descriptors used in each model were not highly dependent on choice of source/detector
separation. However., when data from a combination of three detector positions was
employed, the lowest errors in estimating the optical and physical characteristics in a
sample were obtained. The relatively large spread about the line of identity may be due
to variations in the sample packing density. Though attempts were made to ensure
reproducibility between measurements, the sample cell used limited the possibilities for
elaborate packing protocols. The results demonstrate that using statistical descnptors, a
robust means for simplifying complex photon time distributions into measurable
parameters is possible. In the future, descriptors may be used as a means in which to
develop practical instrumentation for on-line, real-time characterization of absorbing

granular media.
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Chapter 3 Optical Tomographic Reconstruction from
Diffuse Remittance in Scattering Media
Using Partial Least Squares Estimation

In the previous chapter, quantification of scattering and absorption levels was done
in uniform granular samples using statistical descriptors of the time-resolved diffuse
reflectance signals. When a sample’s absorption characteristics are varied, changes in the
trailing edge of the time distribution are most apparent. Typically, for homogeneous
scattering/absorbing samples, the trailing edge has a slope dependent on the absorption
coefficient. Although statistical descriptors may be used for describing broad changes in
the photon time distribution they are not easily applicable for quantifying more subtle
changes. This is was found to be true when Monte-Carlo simulations were used to
investigate both the time resolved and steady state diffuse reflectance photon intensity in
layered samples. [n order to capture these subtle changes, many more data channels are
required. It was therefore decided to use chemometric methods for analyzing layered
samples. As a initial approach to layer wise tomographic reconstruction, steady state
diffuse reflectance (remittance) measurements were made.

Because tomographic sample reconstructions require multi-perspective
information, remittance measurements were made as a function of source/detector
separation. From a geometric standpoint, it is difficult to obtain a series of unique ray
paths through a layered sample by employing transmission measurements. This is true
even if the incident beam is allowed to penetrate the sample obliquely; the integrated
intensity through the sample is simply a muitiple of one obtained normal to the sample

face.
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In this chapter, tomographic reconstruction is done using partial least squares and
inverse least squares methodologies. Estimates of the absorption coefficient are made
independently of others in six regions in a given sample. Comparisons are made between
this method and a classical backprojection approach to tomographic reconstruction. In
addition, reconstruction accuracies using experimental data are compared to those
obtained by Monte-Carlo simulation. The source code for the Monte-Carlo photon
propagation model is listed in the Appendix. Layer 1 (Region 1) 1s defined as the surface
region while Layer 6 (Region 6) is region at the bottom of the sample. Six regions were
chosen to satisfy the Nyquist criterion for resolving a top/middle/bottom split in the

specimen.

3.1 Abstract

The long term goal of this research is to develop a method for quantitative, three-
dimensional optical imaging in scattering media. Towards this end, a reconstruction
technique for depth-resolved absorption determinations based on diffuse reflectance
measurements was developed. The approach employs an array of radial measurements of
intensity to obtain multi-perspective information through a specimen. Both Monte Carlo
simulations and experimentally obtained reflectance measurements of known phantoms
were used to evaluate the sensitivity of the method to changing sample absorption.
Diffuse reflectance experiments were made using a collimated incident light source and
layered absorbing/scattering samples. A fiber optic detection system measured radial
responses for a series of different phantom compositions. Results demonstrate that a

well-defined ray path is obtained for light measured from each source and detector pair.
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For image reconstruction, a comparison to volume element estimation were made for
classical back projection, inverse least squares and partial ieast squares methodologies.
Overall, PLS gave significantly better results with a 50% reduction in the coefficient of
variation compared to the back projection method. This depth resolved tomographic
approach is a new tool to study spatial relationships of chromogenic constituents in

scattering media.

3.2 Introduction

In many scientific fields there is the need for quantitative observation of a
specimen in three dimensions. Examples include the non-destructive inspection of
materials to locate defects, measurement of atmospheric pollutants, or in vivo tissue
measurements of bio-energetic activity. These types of analyses commonly employ
optical measurements to determine concentration of analyte molecules.

Transmission and reflection measurements can be made conveniently using a
single point detector for one dimensional sampling or with the use of a scanning
arrangement for two dimensional concentration determinations. When the specimen is
imaged onto a detector, the measured response probes a defined region and the
information from the sample heterogeneity is integrated.

A common method employed in the resolution of the integrated information is
tomographic reconstruction developed for x-ray Computer Aided Tomography (CAT)
analysis. One way in which this can be achieved is by rotating the sample with respect to

the imaging system and acquiring images at muitiple perspectives. The multi-perspective
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responses are mathematically reconstructed to obtain a quantitative three-dimensional
estimate of the sample composition.

The concept of tomographic reconstruction was developed many years ago.
Radon demonstrated that using an infinite number of noiseless projections, an object can
be unambiguously reconstructed.! However if either of these conditions are not met, an
exact reconstruction is not obtained. Many techniques have been developed in order to
minimize errors associated with the limitations of real world reconstructions. Samples
may be scanned using a variety of light projection geometries, however the chosen
technique must be compatible with both the sample nature and the desired accuracy in the
reconstruction.

A commonly used reconstruction algorithm is the Filtered Back Projection
method.” The underlying concept of the method is to assign the measured intensity of the
axial projection to each element in the sample along the line with which the integration
was made. For the first estimate, this assumes that the sample is uniform along each
projection. By summing all of the sample distributions from the projections, an
approximate reconstruction of the original sample can be made. In the case where there
is not a sufficient number of projections to describe the spatial character of an object
(limited view), reconstruction errors increase dramatically. In order to obtain accurate
results, iterative techniques with the use of a priori sample information are commonly
employed.3

Recently, there has been significant interest in reconstructions from highly
scattering samples. Non-invasive optical tomography of specimens which contain

scatterers has many applications in fields such as diagnostic medicine, plastics
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manufacturing or pharmaceutical analysis. For example, three-dimensional
reconstruction techniques could provide additional information for measurements of
heterogeneity of plastic composites, in vivo metabolic processes or batch fermentation.
In these applications, measurement of the diffuse reflectance is preferred and can provide
a practical means for non-invasive analysis of biological tissue samples, paints and other
coatings. For diffuse reflectance measurements, a small fraction of the light s scattered
such that it enters the detector located some lateral distance away from the source. In
general, the further the detector is located from the source, the larger the depth of
penetration and the lower the light intensity measured.* This depth information has
been used to tomographically obtain three-dimensional reconstructions of the forearm.®
However no quantitative compansons of the reconstructed volume absorption were
possible.

The goal of this paper is to investigate quantitative depth resolved estimations of
scattering samples using tomographic reconstruction. Specifically, the application to
depth resolved measurements in tissue is discussed. Both computer simulations and
experimental measurements of light propagation through a layered medium are made
using the diffuse reflectance measured at the surface of the sample. A comparison
between a least squares back projection, an inverse least squares, and a partial least
squares {PLS) reconstruction is presented. The results illustrate quantitative estimations

are possible.
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3.3 Background

The total attenuation of light through turbid matenals can be described by two
basic processes, i.e. absorption and scattering. When light propagates through a sample,
a portion is absorbed by the constituents dispersed throughout the matrix. For many
types of samples, attenuation from absorption occurs between scattering events, where
the Beer-Lambert relation is assumed to hold. Tissue absorption between 700 — 1300 nm
is small, with typical’® absorption coefficients, ., between 0.01 — 1 mm™. The major
cause of absorption in the near infrared are due to low lying electronic transitions in
chromophores such as hemoglobin, myoglobin and cytochrome and from molecular
vibration overtone and combination bands due to OH, CH and NH stretching and bending
modes.

In the near infrared region (NIR), light scattering in tissue is the major contributor
to attenuation. Scattering can occur due to refractive index variations in the different
components in tissue or by elastic scattering such as in the case of light interaction with
collagen in the cell membranes. Typical scattering coefficients, ps for tissue in the NIR
lie in the range of 10-100 mm™'. Likewise, the scattering is wavelength dependent. For
example, scattering coefficients such as those typical for dermal tissue are observed to
have a 1.15 x 10’ A*** mm"' dependence.’

A single photon will experience many scattering events as it travels through
tissue. At a scattering event, scattering can be quantitated statistically in terms of a phase
function P(8), where 0 is the angle of the scattered photon with respect to the original
direction. The Henyey Greenstein phase function has found considerable use in tissue

scattering studies.'® Anisotropy in the phase function is described by the mean cosine of
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the scattering angle. g, and typical’® values for tissue in the near infrared vary from 0.8
to 0.95. These g values imply that even in relatively highly scattering tissue, the light is
to a great degree. forward directed.

The high degree of forward scattering and low attenuation of light in tissue has
allowed diagnostic measurements deep within tissue. For example, Cope and Delpy have
measured light transmission through the neonatal skull to continuously monitor cerebral
oxvgenation in infants.* Likewise in clinical settings, transmittance measurements are
common where the pathlength is short such as in a finger and earlobe, or reflectance

measurements from the surface of the skin.

3.4 Reconstruction Methodology

3.4.1 Back projection

The back projection technique uses signal attenuation through a sample at various
perspectives to determine the contribution of each component to the overall absorption.
Signal attenuations are determined by ratioing observed responses to the incident
intensity. Following a Beer-Lambert relationship, the expression for the total attenuation

A, at aradial distance r, can be written as a linear combination of all components,

P
A4,=) 1.4, (3.1)
=1

where the sum extends over p distinct component layers each of pathlength / through that
layer, and for the layer absorption coefficient, .2 When multiple samples are considered,
the equations can be conveniently rewritten in matrix form, where the m column vectors

correspond to various samples. For measurements made along the surface, each lateral
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position will travel through each layer a different amount. A set of attenuations made at
discrete positions can be expressed as
A=LM (3.2)
where A is the n x m response matrix of attenuations at » lateral positions for m different
samples. L is an n x p distance weighting matrix for the n lateral positions and p
component layers. The matrix M (p x m) contains the absorption coefficients of the
individual layers in each sample. The computation of the L distance weighting matrix is
done prior to estimating unknown samples and is computed using a model of the light
propagation. An estimate of M ( M ) is obtained by least squares where,
M=(LL)'L'A (3.3)
where t denotes the matrix transpose and -1, the inverse. Several workers have applied
constraints on M or calculated the least squares in an iterative way.>''"'> Constraints can

be placed on M such that absorption coefficients can not become negative. For the most

general case the least squares estimate is made without these approaches.

3.4.2  Inverse Least Squares

The ILS method. as the name implies, is based on an inverse model where the
absorption coefficients of the individual components are expressed as a function of the
responses. This approach has been used in a variety of spectroscopic calibrations. As
applied in this study, a calibration set is used to first build the model and a prediction set

is used to test it on unknowns. In matrix notation, a data set consisting of known

91



absorption coefficients for each of the component layers as related to the surface
attenuation can be written as,

M_=AB (3.4)
where M, is a matrix containing of m sample absorption coefficients for p layers (m x p),
A, contains the lateral attenuations for m samples at n lateral positions (m x n) and the

subscript ¢ refers to the calibration set. B comprises n x p calibration coefficients. The B

matrix is obtained using the calibration data set using least squares estimation in a similar

manner as in Equation 3.3. The estimated coefficients M for unknown samples are then

computed by Equation 3.4.

3.4.3  Partial Least Squares

PLS analysis has demonstrated significant success for constituent estimation in
complicated mixtures and in the analysis of data which spans large dynamic ranges. As
in the inverse least squares approach, PLS is based on an inverse model. Both use
training and prediction sets. Details of the PLS algorithm are given in several
sources.*'® The technique for the determination of B involves decomposing A using an
iterative approach into three matrices,

A =UVW’' (3.5)

and then performing a pseudo-inverse to finally give,

B=WV'U’' (3.6)
The algorithm generates an ordered series of factors such that each describes decreasing

amounts of variance which correlates to M. The first factors describe the maximum non-
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random variance in the intensity responses that also correlates with the absorption

-

coefficients in M. The calibration coefficient vector B associated with the optimal
number of factors will thus yield the best possible estimate of the absorption coefficients.

PLS predictions of absorption coefficients can be obtained by a multiplication of the

intensity responses of test samples and the B’ vector which was determined using the
optimal number of factors.

For each prediction set, the optimal number of factors was determined from the
Predicted Residual Error Sum of Squares (PRESS) values computed. PRESS values
were calculated as the sum of the squares of residuals between the PLS estimates and
known absorption coefficients for each of the samples in the prediction set. An F-test at
95% significance on the ratios of adjacent PRESS values were used as a criterion to
determine the optimal number of statistically significant factors. Reconstructions were

done by applying one component PLS to obtain a calibration for each layer separately.

3.5 Computer Simulations

Computer simulations were done to determine the light paths through the sample
(L matnx). Likewise, the use of a light propagation model provided additional
information not possible by simple experiment which greatly aided in interpreting

experimental results.

3.3.1 Monte-Carlo simulations

Statistically based simulation methods have been used to describe neutron

propagation since the 1950°s. To estimate the distribution of photons in a scattering
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media such as tissue, a Monte Carlo simulation of a photon migration in a slab of
varying absorption coefficient, y, and a constant scattering coefficient, ps, was
developed. This method determines on the basis of random deviates, the distance a
photon travels between scattering events and the new direction of photon travel after
scattering. [ntensity attenuation is computed by absorptive processes between scattering
events. The model is applied to many such photon packet trajectories until a statistical
distribution of the steady state photon distribution is obtained. At each scattering event,
the probability function, which approximates the Henyey-Greenstein phase distribution
was used to determine photon direction.® With the use of the pseudo-random parameters
R;. R;, and R; distributed in [0,1], the equations used to determine a photon’s path
through a scattering sample are given below. The scattering longitudinal and azimuthal
angles are receptively:

¢ = 27R, (3.7)
© =cos™ 71— 1+g:—(——1——g—.——) (3.8)

as according to the Henyey-Greenstein phase function. A photon’s free path, /, between

each scattering event was chosen randomly based on the expression,

| = _—_In_(R_3) (3.9)
H,

These three ordinates (@,®d,/) form the vector to the next scattering event. However this
coordinate is relative to the previous scattering event and must be expressed in terms of

the global Cartesian coordinates of the simulation. The global rotation of the coordinates
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can be accomplished with knowledge of the angles, ¢ and ¢ of the previous scattering

event. The new photon positions are given by,

S =1sin@cosd & =1sin®Osin® n=1cos® (3.10a,b,c)
Avx = cosgcosé - Ssing + ncos@gsinf 3.11)
Av = singcos@ — cosg + nsingsin@ (3.12)
Az = sinf + ncosf (3.13)
X' =x+Ax vi=y+Ay =+ Az (3.14a,b,c)

where primed values represent the new global coordinates. New global angles & and ¢

after scattering are,
9=cos"(£) ¢=tan“(é"i) (3.15a,b)
[ Ax

Attenuation due to absorption was treated as if each photon was a packet of
photons of some initial intensity [y and underwent exponential attenuation as it traversed.
For an absorbing medium that varies in a layered fashion in the z direction, a general

expression for the final intensity of a remitted packet is

=1, exp[—i J./Ja(r)dz'J (3.16)
s=1 lore,

where the sum extends over m scattering events and t is a generalized xyz coordinate.
Each contribution to attenuation was computed by integrating in a straight line path
between scattering events where /.1, is the length between the j-1 and jth scattering
events. This integral is easily computed for cases where the path between scattering

events does not extend through regions of different p,. For longer paths which extended
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through two or more layers, the integral was determined as a weighted contribution of the
u,’s over the entire length.

Information obtained from each simulation included the steady state photon
distribution throughout the volume, radial functions of the back-scattered light intensity,
and photon path distributions. A lateral profile of the weighted average distance (L
matrix) that photons traverse through each layer was obtained by multiplying the average
total length traveled from source to a surface location at r, with the average fraction of

distance that photons extends through each layer. This relation is,

nary 1oy a(r) : :
L(r,j)=(zl(l’r))[z a,r,j) J (3.17)

i n(r) T UG, r) - n(r)
where r is the radial distance from the source, j is the layer, n(r) is the number of photon
packets reaching a lateral distance r, and the functions /(i,r) and /(i,r ) are the total length

and length through jth layer of the /th bolus reaching r.

3.5.2 Model characteristics

The chosen medium for the model was comprised of 6 parallel layers with respect
to the surface with absorption coefficients typical’ to that found in tissue (0.00 -
0.50 mm™). Likewise, the values of the scattering coefficient, y;, and the anisotropy
factor, g, were chosen to be similar to human tissue and were set at 9.4 mm™ and 0.85
respectively.'” The three dimensional domain of the problem was fixed to a maximum
1.5 cm lateral distance from the source and to a maximum depth of 1 cm. Simulations
were started with all photons collimated and perpendicular to the surface with the light

injection equidistant from the boundaries approximating a laser illumination. The
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“source” diameter was 1.0 mm. Photon packets were followed until they either escaped
the domain or were detected. A total of 10° photon packets were released. The model,
written in C, was run on a 166 MHz PC using the Linux operating system. Remitted
intensity data recorded at 0. mm intervals for 15 mm was averaged to simulate the
responses that would be typical of the resolution capable of the fiber optic positioning

system used in the experimental case.

3.3.3 Datu set pretreatment and sectioning

The modeled data was evaluated with added noise. To simulate the limitations of
a photomultiplier tube detection system, 0.001% RMS Gaussian noise was added. The
89 different simulations were sectioned into two data sets for reconstruction purposes.
For reconstructions based on ILS or PLS, two data sets each containing sets for
calibration and prediction were chosen. The first prediction set encompassed 25% of the
89 simulations and was chosen randomly (Data Set ). The second prediction set was
chosen to demonstrate the efficacy of the reconstruction method in distinguishing a single
layer with a different absorption coefficient from otherwise homogeneous surrounding
layers of low absorbance (Data Set II). Because of the limited number of samples

available, a third independent data set was not used for the evaluation of the method.

3.6 Experimental Work

Experimental diffuse reflectance measurements in layered media were made to

determine multi-position lateral responses to evaluate the efficacy of the reconstruction
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methods with real data. Also, comparisons could be made between the complexities of

the real sample and simulation.

3.6.1 Equipment

The experimental apparatus used to obtain the lateral steady-state diffusely
reflected light distribution is shown in Figure 3.1. A 5.8 mW HeNe laser attenuated by a
1.0 O.D. neutral density filter served as the source. The detection system used was a
1.0 mm diameter fiber optic attached to a Hamamatsu HC-050 photomultiplier detector.
Output signals were recorded by computer using a 12 bit A/D converter. To increase the
dynamic range, scaling and offset electronics were used to pre-treat the signal prior to
A/D conversion. A 3:1 solution of distilled water to 10% milk fat cream was chosen as
the scattering medium (us = 9.4 mm™)."” Dr. Ph. Martin’s transparent water color (12A
juniper-green) was used for the absorber because it was found to be highly water soluble
and not fat soluble as measured through the microscope.” This ensures that absorption
occurs in the medium and not in the scatterers, to mimic tissue constituents which absorb
between scattering events. The six reservoirs were made of 40 x 50 x 0.15 mm glass
plates separated by 1.0 mm thick U shaped rubber gaskets and were clamped in position.
The incident laser source intensity was determined by focusing the beam directly into the

detector after attenuating with a suitable neutral density filter.

3.6.2 Data collection

Detector responses were recorded as a function of the lateral position of the fiber

optic from the detector (1 — 15 mm in 0.5 mm increments) and as a function of absorber
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Figure 3.1. Backscattering experimental setup.
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composition. The range of 63 measurements made was designed to be similar to the
simulations and used the same absorption coefficient. The various data sets and
partitioning of the data into calibration and prediction components was identical to that

done for the modeled data.

3.7 Results and Discussion

3.7.1 Diffuse reflectance measurements

For remittance measurements, the sample was illuminated at one point on the
surface and the diffusely reflected light is collected some distance away. An estimate of
these measurements may be obtained using the modeled results in a scattering sample for
samples of different crossectional composition. As mentioned previously, samples with
six distinct absorption layers were studied. The modeled remittance as a function of
source/detector lateral distance for a series of multi-layer slab compositions is shown in
the lower series of graphs in Figure 3.2. The layer compositions were chosen to be
starkly contrasting so as to show a stepwise progression from all six layers containing no
absorber to all six containing a strong absorber. To allow comparisons between the
separate experiments and simulations, the measured remittance at each lateral position is
referenced to the source intensity to obtain the attenuation. The general trend shown in
Figure 3.2 is that absorption deep within a sample has a greater effect on the attenuation
made at large lateral spacing of the source and detector as compared to measurements

made at small lateral spacings.
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Experimental and modeled lateral surface light attenuations for various
absorbers in a slab (u, = 9.4 mm’™', g = 0.85). All absorption coefficients
for layers 1 though 6 are either 0.00 or 0.50 mm™. a) no absorber; b)
absorber layer 6; c) absorber layers 5,6; d) absorber layers 3-6; e)
absorber layers 2-6. Subscripts m and e refer to modeled and experimental
data respectively.
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To determine if a similar relationship to the results obtained in a real scatterer
compared to the model, experiments were made using the phantoms as described in the
experimental section. The results are plotted in the upper series in Figure 3.2. Like the
modeled remittances, the presence of an absorber has a marked effect on the surface light
attenuation. Whereas the general trend is the same, the experimental data has some
differences with regard to linearity. Also the simulated responses span over five orders
of magnitude where the real responses span over 3.5 orders. This lower dynamic range is
partly due to detector saturation when the reflections from the window of the sandwiched
backscattering apparatus are significant near the source.

For the lateral source/detector spacings of 5 and 10 mm, considerable differences
in the effect of absorber placement is observed. A detector positioned at 5 mm exhibits
large changes in attenuation when the absorber is close to the surface (compared with no
absorber), whereas at 10 mm detector spacing, changes in attenuation occur throughout
the absorber placement.

The depth through which the photon travel can be seen when the light paths
through the sample from a source to the detector are considered. The computation of the
photon path distribution for back-scattered light reaching the surface at a certain radial
distance from the source required several steps. The photon packet path was rotated
about some angle 8 about the z axis where 8 is the angle between positive x axis and the
point on the plane where the packet exited. Each rotated path was weighted with unit
value and projected onto the x axis. A distribution was built up over many trials. After
the simulation, the distribution was normalized so that a slice through any region

containing the total photon flux integrated to unit value. This two dimensional “flux
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Figure 3.3. Light path distribution at the 90% contour through a multi-layer absorbing/
scattering medium where a source is located at position 0 and detectors are
placed at 6 and 12 mm away.
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normalized™ distribution gives a measure of the path probabilities that a photon may take
from source to a detector. For the layered sample in Figure 3.3, light reflected into
detector positions at 6 mm and 12 mm show different average penetration depths.
Contours enclose the 90% probability that a photon reaching the detector has traversed
some path. The overall distribution of collected light is localized between the source and
detector with a “*banana shaped™ appearance. For a 12 mm separation, such paths cover
a much broader range of depths as compared to a detector placed at 6 mm. If the
probability distribution is sliced in the z direction centered equidistant between the source
and detector, as shown in Figure 3.4, the depth of penetration for a range of
source/detector pairs can be seen. It is clear that there is a correlation between lateral
detector placement and the average depth sampled by the photons. If a 95% probability
envelope is considered, than it is observed that the maximum depth penetration through
the sample is 5.2 mm and 7.5 mm for detectors placed at 3 mm and 12 mm distances.
The increased diffuse nature of the distribution for photons reaching 12 mm is also
evident due the greater number of scattering events that occurs when photons penetrate
the sample deeper. These general findings agree well with other work® which has
suggested that the average depth, z, for different separations between source and detector,
Ax, vary according to = = 0.22 Ax + 0.92. Although a similar trend is observed here it
should be pointed out that this relationship is strongly dependent on the scattering
anisotropy.

Because photons traversing from source to detector penetrate through many
layers, one can determine a weighted average pathlength for each layer. These

weightings determined by simulation using Equation 3.17 are used in the back projection
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reconstruction (L matrix). A plot of the row values of the L matrix against lateral
detector displacement for each layer (columns) are shown in Figure 3.5. Ths plot
demonstrates that as the source/detector separation increases, more of the detected
photons have penetrated the sample deeper. The plateau observed for photons traversing
layer 1 suggests that most photons reaching the surface at these larger radii do not travel
in straight paths from the source to the surface. For a source/detector separation of 10
mm. a mean path length of 77 mm was measured. This value is in excellent agreement

with the result of 80.6 mm reported by Patterson et al. '® for a similar sample.

3.7.2  Back projection reconstruction results

Using the L matrix of pathlength weightings for each of the six layers, estimated
absorption coefficients were obtained. Coefficients of varniation between the real and
experimental attenuations are tabulated for each of the six layers in Table 3.1. Similar
results are obtained in both cases except in the deeper layers where the reconstruction
using modeled data with the inclusion of noise produced significant errors. The estimates
of absorption were slightly better in Data Set II where five of the six layers contained
only small absorption coefficients. The general trend is that an increasing error in the
estimation 1s obtained with increased sample depth. This is due to the ill conditioned
nature of technique, even though the L matrix was not determined to be rank deficient.
Light paths that penetrate deeply into the sample must go through upper layers twice and
this leads to an increased error in the absorption coefficient estimations at lower depths.
Estimations of absorbance in layers five and six are particularly bad for the simulated

data as attenuations obtained at the most extreme radial distances are t0o noisy.
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3.7.3 ILS reconstruction results

Results in Table 3.2 show the coefficients of vanation between actual and
predicted absorption coefficients for modeled data for each of the six layers using the ILS
method. As seen in Table 3.2, reconstructions are very good for the first layer and then

degrade with depth. It is reasonable that the reconstruction can estimate absorption in the

first layer well since all of the measured signal travels through it.

Table 3.1. Back projection reconstruction results.

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6
Modeled data
Data Set I’ 5446 7671 12938 25432 637.92 1300.27
Data Set [i 45.79 8491 96.15 12091 47758 1975.58
Experimental data
Data Set | 53.32 99.56 69.48 103.34 80.67 193.16
Data Set II 47.26 93.83 72.78 92.71 73.28 117.28
“Data Sets [ and II contain 15 and 11 samples respectively.
""Errors are given as coefficients of variation, %
Table 3.2. ILS reconstruction results.
Layer1 Layer2 Layer3 Layer4 Layer$ Layer 6
Modeled Data
Data Set I’ 18.87° 119.49 13460 103.24 101.05 117.31
Data Set 1] 15.32 64.88 86.19 71.11 75.61 66.69
Experimental Data
Data Set ] 7.68 51.95 91.22 86.77 78.71 102.33
Data Set I] 5.48 38.48 58.37 62.92 48.68 58.05

"Data Sets I and IT contain 15 and 11 samples respectively.
""Errors are given as coefficients of variation, %
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If differences in the reconstruction error between modeled Data Sets [ and II are
considered, we can see that there is approximately a two fold reduction in the error when
comparing absorbance estimation in the deeper layers. This is expected as the Data Set II
contains samples with only one differing absorbing layer in an otherwise small but
homogeneous absorption in the other layers. This data set is not unlike many of the types
of phantoms used in other tomographic reconstructions in scattering media studies.

Absorption estimations using real data were worse than for the modeled data
especially for Data Set I. For Data Set II, estimates in the deep layers are 15 — 20 %
worse using real data. To a certain extent, the increased error in the reconstruction was

due to non-reproducibilities that exist in the fiber positioning system.

3.7.4 PLS reconstruction results

The coefficients of variation between actual and predicted absorption coefficients
for modeled data for each of the six layers using PLS in given in Table 3.3. For all layers
except layer 1. two or three factors were chosen as optimal (based on a 95% confidence
level). However layer 1 required six factors. The reconstructions in general show a two
fold decrease in the error over the ILS approach for both Data Sets I and II. Variation in
the results obtained between modeled and experimental data used in the reconstructions
are minimal. For the first two layers, the error is worse than with the ILS reconstruction.
However in the lower layers there was a 27% error overall when using PLS as compared

to a 60% error when using [LS on experimental Data Set II.
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Table 3.3. PLS reconstruction results.

Layer]1 Layer2 Layer3 Layer4 Layer5S Layer6

Modeled Data
Data Set [’ 15337 4423 53.04 44.40 62.11 69.43
Data Set II 7.83 21.51 36.91 37.54 31.00 27.60
Experimental Data
Data Set [ 17.83 66.09 54.81 51.68 59.92 66.24
Data Set I 11.71 19.64 36.52 41.63 28.25 24.98

"Data Sets [ and II contain 15 and 11 samples respectively.
Errors are given as coefficients of variation, %

This significant improvement in deep layer reconstruction is inherent in the nature
of the PLS method. Figure 3.6 shows a plot of the weighting coefficients as a function of
lateral distance obtained using real data. Knowing that the majority of photons only
penetrate the few layers for a detector placed within close proximity to the source, it is
expected that the weightings of the detector responses would be higher at small lateral
distances from those further out. Indeed, the calibration coefficients weight the responses
from the smaller source/detection separations to a much greater extent than responses
further out. From Figure 3.6, it can be seen that for detector responses at large radial
distances the weightings are small. This is expected as photons reaching those extreme
points do not play a great role in the determination of absorbances for layer 1. The effect
of oppositely weighting coefficients between adjacent detector groupings suggests that
signal differencing leads to a cancellation of information that is seen by both detectors
leaving only the variations. Referring to Figure 3.4, if two closely spaced detector
responses are subtracted, it can be seen that the result would be a sampling of a deeper

region (i.e. the contribution from layer 1 would cancel). This is further evidenced by
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Figure 3.6. Calibration coefficients of lateral detector responses as obtained by PLS for
both a surface layer (layer 1) and a deep layer (layer 6).
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considering the weightings for layer 6 where an opposite effect is seen. The detector
responses at small lateral distances contribute very little in the determination of the
overall absorbance, whereas they contribute to a greater extent further out. Again the
weightings indicate a differencing in the signals for responses sensitive to changes in
absorbance in the deep layers. Therefore the PLS method suggests a powerful way in
which depth resolved absorption coefficient determinations can be made in a layered

medium.

3.8 Conclusion

A depth resolved tomographic reconstruction of a layered media was shown.
Using 2 Monte Carlo model, the simulation of the weighted photon path distribution
through the composite layers demonstrated that a significant fraction of the photon paths
extended deep within the sample. For both real and simulated data, depth resolved
estimations of the layer absorption were made using least squares back projection,
inverse and partial least squares methodologies. For all the methods, absorbance was
better estimated in surface layers as compared to deeper layers. Both the ILS and PLS
methods provided significantly better estimation of sample absorption as compared to the
back projection method. Overall, PLS gave distinctly better results with a 50% reduction
in the coefficient of variation compared to the back projection method. However, it
should be noted that no constraints were made on the back projection method. Added
constraints may improve the estimation. Whereas better estimation is required for many
applications, the encouraging results indicate that with further improvement of

quantitative depth resolved measurements may be possible. This depth resolved
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tomographic approach is a new tool to study spatial relationships of chromogenic

constituents in scattering media.
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Chapter 4 Optical Tomography in Scattering Media
from Photon Time of Flight Diffuse
Reflectance Measurements: A Chemometric
Approach

In Chapter 3, optical tomographic reconstructions of layered scattering/absorbing
samples were made with steady state diffuse reflectance data. Although quantification is
possible when all absorbing regions are varied simultaneously, significant errors in
estimating sub-surface absorption occurred. To better understand the effects of changing
layer absorption on the reflectance measurements, in this study the number of distinct
absorbing layers in a specimen is limited to two.

Analysis of the weighting coefficients obtained by partial least squares regression
of the steady state intensity signals demonstrated how absorption estimates deep within a
specimen were possible. By oppositely weighting responses from adjacently spaced
detectors, subtle differences is sample absorption in a given layer were resolved. To
further improve sample reconstruction, photon pathlength information may be included in
the analysis. This may be obtained by recording the time-of-flight distribution that
photons take through a scattering sample. A similar analysis using the partial least
squares weighting coefficients on each data channel may be made using time resolved
intensity data. In this approach, chemometrical methods may be used not only as a
means for tomographic reconstruction but as a tool for understanding the mode of action.

Stepwise multilinear regression may also employed for sample reconstruction. As

only a few data channels are retained in the optimal linear model estimating absorption
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levels in given layer, noisy data channels are typically not included. Using a stepwise
multi-linear regression approach, robust quantification may be possible.

One of the problems encountered in obtaining reproducible time-profiles is precise
positioning of the sample. In this chapter, a novel approach for helping to eliminate this
problem 1s investigated. This degree of freedom in the time distribution may be
eliminated by computing the autocorrelation function of time-of-flight distribution.
Sample reconstruction is then made using autocorrelated data. In addition, by utilizing an
optical correlator for detection or an electronic signal mixer, autocorrelated time

measurements may significantly reduce the complexity of instrumentation.

4.1 Abstract

The goal of this project is to develop practical methods for quantitative, depth-
resolved optical imaging in scattering media. Toward this end, reconstruction techniques
based on photon time-of-flight and autocorrelation measurements of diffuse reflectance
are being studied. The approach employs an array of radial intensity measurements (o
obtain information sensitive to sub-surface changes in absorption. Both Monte-Carlo
simulations and experimentally obtained measurements of known phantoms were used in
the evaluation of reconstruction techniques. Time-gated single photon reflectance
measurements were made using a pulsed laser illuminating a layered absorbing/
scattering sample.

For image reconstruction, stepwise multi-linear regression, inverse and partial least
squares methodologies were investigated. With all methods, absorbance was better

estimated in the top regions as compared to deeper regions. Both PLS and SMLR
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methods gave significantly better estimation of sample absorption as compared to the ILS
technique. Reconstruction results using autocorrelated data were found to provide a
similar estimation of absorption in comparison with time domain data. The use of
autocorrelation measurements could significantly reduce the complexity of
instrumentation for obtaining time-resolved information to study spatial relationships of

absorbing constituents in scattering media.

4.2 Introduction

In recent years considerable efforts have been made to observe and characterize a
sample in three dimensions. The analysis of turbid media commonly employs optical
measurements to determine the concentration of the desired analyte. Examples range
from non-destructive inspection of matenals to diagnostic in vivo measurements of bio-
energetic activity. There is currently considerable interest in the analysis of multi-layered
samples. Multi-layer media are common in medicine such as study of the
skin/adipose/muscle system, or the bladder or the head. Likewise, industrial examples of
two-layered media include products such as capsules, polyethylene container/product
systems, or coated surfaces. Indeed, the ability to make a quantitative non-invasive
assessment of drug content in capsules would be invaluable to the pharmaceutical
industry both in terms of quality assurance and public safety. In complex layered media,
the analysis method is often based on a model, which assumes specimen homogeneity.
However this assumption is often not valid, and as a result, serious artifacts in the
measured optical properties are introduced.'? Therefore, it is necessary to consider the

measurement technique, sample structure and theoretical models in the interpretation of
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results since changes in the optical properties in a single layer will affect measurements
made on the bulk.

Many optical measurement techniques have been investigated to obtain depth
resolved information from a sample. Common approaches have used either several
source and detector separations or time gating of the detected signal.’* Ina steady state
experiment, the specimen is imaged onto a detector, and the measured responses probe a
defined region in which absorption from the layer sample is integrated. For thick
samples with little scattering, the acquisition of multi-perspective responses is made in
the reflectance geometry where detectors are placed at a series of lateral distances away
from the source. With this source/detector geometry, samples may be probed non-
invasively and depth-resolved information may be obtained using analysis techniques
similar to Computer Aided Tomography (CAT).” However, in highly scattering samples,
the optical path from source to detector is ill-defined and the reconstruction becomes
ambiguous.

For generalized reconstruction procedures in highly scattering media, many
researchers have approached the reconstruction as a linear problem.”®” However, for
reasonable estimation of subsurface information, the linear reconstruction techniques
require a priori information usually obtained though knowledge of the sample structure
together with computer simulation. Therefore, in layered media, efforts have been
mainly directed toward a qualitative interpretation of samples. Several investigators have
derived approximate formulas for the steady state®® and time resolved*'®!" reflectance
from two layered samples based on the diffusion approximation of the radiative transport

equation. Likewise, random walk'’, finite element"> and Monte Carlo methods'* have
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been employed to investigate changes in surface reflectance as a function of scattering,
absorption and layer thickness. Least squares estimation of the optical properties of the
sample has provided a qualitative interpretation of the simulated reflectance signals. It is
well established that the overall success of a reconstruction is strongly dependent on the
signal-to-noise of acquired signals. This is especially pertinent with time resolved data,
where rich information about sample composition is contained in the subtleties of the
time profile and can be affected by instrumental noise."®

Previously, we have investigated depth resolved quantification in layered scattering
media from steady state measurements using chemometric reconstruction techniques.'’
Results indicate that although quantification is possible, the use of integrated information
from a sample limits the accuracy of the estimation. The goal of this paper is to examine
the use of time resolved measurements for quantitative depth resolved estimations of
layered turbid samples. In addition, to increase the signal-to-noise and reduce the error in
the reconstruction, the use of the autocorrelation of the time-gated signal is investigated.
For sample estimation, a comparison between reconstructions based on inverse least
squares (ILS), partial least squares (PLS) and stepwise multi-linear regression (SMLR) is
shown. The SMLR technique, which utilizes only a small subset of total time-gated
signal, was investigated as it has been shown to provide both a means for robust
estimation and for simplified instrumentation. The accuracy of sample reconstruction
using time gated data is compared to the autocorrelated signal for both experimental and
computer-simulated measurements. The results show significant improvement in sample
layer estimation using the autocorrelation and either PLS or SMLR estimation as

compared to classical reconstruction methods.
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4.3 Theory

For homogeneous scattering/absorbing media irradiated with a short pulse of
light, the time response of the system may be approximated using the diffusion
approximation of the radiative transport equation.'”'® The result for source and detector

positioned in a reflectance geometry is given as,

Z, -r’
glr,t)= (—4——0),—_3/;-exP( #act)exp( e/ DJ (4.1

where r is the source-detector separation distance, z, = [(l -g)u, ]", c is the speed of
light and D is the diffusion coefficient given as, D=3 [, +(1-g)u,]. The diffusion

coefficient depends on the absorption coefficient y,, the scattering coefficient ps, and g
the scattering anisotropy (mean cosine of the scattering angle). Note, that the first
exponential term relates light attenuation to a Beer’s Law relation where light is absorbed
by the medium, and the second exponential is essentially a Fick’s law diffusion term
where light is attenuated by scattering. When the logarithm of Equation 4.1 is considered
then for p, << p,, the time resolved response becomes linear in p,, for any given time and
radial separation.

Autocorrelation of a signal has long been used to increase the signal-to-noise in
the response from time varying measurements. Likewise, the autocorrelation offers a
solution to the problem of imprecise measurements of the absolute time delay between a

pulse entering and exiting a sample. The autocorrelation of a function #(t) is defined as,

Alr)=he)*h(-1)= _[h (e + 7)de (4.2)
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where 1 is defined as the phase delay. The multiplication in the autocorrelation function
combines all parts of the time signal and provides an average which enhances repetitive
features and reduces the magnitude of random noise. Using the autocorrelated response,
information about the width and shape of a pulse can still be determined. In fact, for laser
alignment applications, optical autocorrelation is a standard method to measure pulse
shapes.

To examine the effect of the sample absorption on the autocorrelation, the
diffusion approximation in Equation 4.1 can be substituted into Equation 4.2. The

resulting function is given as,

A(l‘, Z") = e-#,::r: I[QZI_SIZ(I + r)~5:Ze-ﬂll-ﬂ,(r+r)]e—2yacrdt (43)

where, a = ZO/(47tC/D)3/: and B = r’D/dc. For Hz << U, the bracketed term of the
integrand is the autocorrelation kernel of the lossless diffusion equation when p, =0 and
can be denoted by o(r,r,t). Expanding the last exponential term in Equation 4.3 in a

MacLaurin series, the following expression is obtained,

I B’ 2u,c duic’ 7,
Alr.r)=e™ L[a(r,z,r)dz - ‘:! _i'zo-(r,r,r)dt+ ilz!—_jt*a(r,t,r)dt ~...| (4.4)

Further, by examining the expansion, it can be shown that each integral term is
proportional the snth moment of o(r.,1), represented by (t"a(r,r,r)>. Therefore,

Equation 4.4 can alternately be written as an expansion of moments where,

Alr,7)=e (o(r,e,7)) [1— 2u,c(to(r,t,7)) + 2,u,fcz<t2cr(r,t,r)> -.. (45)
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In general, the series will converge rapidly (for $<l1), as the second and subsequent terms
are much less than one. The expansion of moments is very useful since it has been shown
that moments provide robust estimation of absorption from the time of flight profiles.”
To interpret the physical significance of autocorrelated time-of-flight data, the
relationship between g(r,r) and A(r,t) for a series of absorptions can be considered. The
time distributions from the diffusion approximation are shown in Figure 4.1. The
corresponding autocorrelation of the time distributions for positive phase delay times are
shown in Figure 4.2. For both figures the logarithm of the intensity was taken. Overall,
it can be seen that A(r,t) has a similar shape to g(r,?) at longer delay times. In Figure 4.1,
it can be seen that the light arriving at late times in the distribution are significantly more
affected by changes in absorption than light at early times in the distnibution. The
difference in the sensitivity to absorption is caused by a Beer’s law weighting of the
difference in pathlength through the sample. The relationship of A(r,t) with changing
absorption is markedly different than the time distributions. As absorption increases, the
signal at all values of T decrease and there is a change in slope of the signal. The decrease
in signal magnitude and shape is consistent with Equation 4.5 where A(r,t) decreases as
e " . Therefore, absorption estimates based on the autocorrelation signal should be

possible.
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Figure 4.1. Modeled time resolved photon flux at various absorption levels with all other
constants held constant. (s = 40 mm", g=0.80,r=15 mm). 1) p,=0.025
mm™; 2) g =0.030 mm™; 3) w, =0.035 mm™*; 4) p, = 0.040 mm™

123



Log Autocorrelation

0 025 050 075 100 125 1.50
Tau (ns)

Figure 4.2. Modeled autocorrelated photon flux at various absorption levels with all other
constants held constant. (us = 40 mm’, g=0.80,r=15 mm). 1)y, =0.025
1

mm™'; 2) p, =0.030 mm™; 3) p, = 0.035 mm™; 4) p, = 0.040 mm™'.
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4.4 Reconstruction Methodology

Three methods were used for sample reconstruction, inverse least squares (ILS),
partial least squares (PLS) and stepwise multi-linear regression (SMLR). All of these
techniques are based on an inverse model where the absorption coefficients of the
discrete regions are expressed as function of the responses. The ILS method is a base of
many reconstruction methods such as the Algebraic Reconstruction Technique
(ART).™" In the ART method as with those presented here, image resolution is made
possible with the assumption that sample constituents are linearly additive in the acquired
signals. Both the ART and ILS methods estimate all of the constituent absorption
coefficients in a sample at once. The PLS method uses a more directed approach to the
reconstruction. providing less ambiguous estimates for each of the regions independent of
the others."”  Similarly, the SMLR technique uses only a subset of the data to eliminate
uncorrelated responses from the estimation.

In this study, a two layer system is considered with variable layer thickness and a
fixed total thickness. Sample layers varied within six discrete depth regions. From each
sample, time resolved distributions similar to that shown in Figure 4.1 were collected at
several lateral positions from the source. I[n the case of autocorrelated data, the
autocorrelation function was determined at each of the lateral positions. The time-
resolved or autocorrelated responses from each lateral detector position was collapsed
into a single response vector using lexiographic stacking of the data. The 1 by ns vector

was formed for each sample as:

xm = [‘rml ([I )‘ ‘ 'xml (t: )xmi(tl ) . 'xmi(t: ) ‘xmn (Il ) * 'xmn (I.r )] (46)
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where s is the number of time intervals, n is number of lateral positions and x,(t;) denotes
the response at the ith position and jth time for the mth sample. The lateral position vector
was assumed to be linearly additive with the absorption from each region. The overall
relationship for the reconstruction is written in matrix notation as,
M, =X_B 4.7)
where M, is a matrix containing m sample absorption coefficients for p regions (m x p),
X. contains ns responses (time resolved or autocorrelated lateral responses) for m
samples (m x ns) and the subscript c refers to the calibration set. B comprises ns x p
calibration coefficients relating the responses to the region absorption. The difference
between the reconstruction methods is in the computation of the B matrix.
The ILS approach is commonly used in a variety of spectroscopic calibrations and
is closest in relation to the ART method. For ILS, the computation of the B matrix is

obtained using the calibration data set and least squares estimation where,

B=(M/M,|'M_X.. 4.8)
The estimated absorption coefficients for unknown sample are then computed using
Equation 4.7.

PLS analysis has demonstrated significant success for constituent estimation in
complicated mixtures. Details of the PLS algorithm are given in several sources.” ™
One component PLS was used to obtain a calibration vector for each of the six regions
separately. The algorithm generates a series of factors where each describes a decreasing

amount of the co-variance correlated to M and X.. The calibration vector By associated

with the optimal number of factors yield the best estimate of the absorption coefficients.
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PLS estimation of absorption coefficients in an unknown sample are obtained by
multiplying the responses by the optimal vector, B;.

The SMLR method is used to identify a linear combination of a subset of
responses in X. which are most correlated with the sample absorption coefficients.
Similar to the PLS method, each iteration of the algorithm finds the response x; that
descnibes the residual amounts of variance which improves estimation of M. A new
calibration vector B; is generated at each iteration. Again, the calibration vector By
associated with the best estimation determines the optimal number of responses. The
estimated sample absorption coefficients M are computed by

M= b, +bx, +b,x, +...+b,x, (4.9)
where by, bi. ....bx are the coefficients in B;. The same region by region approach taken
with the PLS calibration was also used in this method.

From the prediction set, the optimal number of factors for PLS or responses for
SMLR was determined from the Predicted Residual Error Sum of Squares (PRESS).
PRESS values were calculated as the sum of the squares of residuals between the PLS or
SMLR estimates and known absorption coefficients for each of the samples in the
prediction set. An F-test at the 95% confidence level on the ratios of adjacent PRESS
values were used as a criterion to determine the optimal number of statistically significant

factors or responses.

4.5 Computer Simulations

Computer simulations were done to determine the theoretical time resolved

reflectance responses from layered scattering media. The simulation provided
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information which greatly aided in interpreting both experimentally determined time
profiles and the effect of varying sample composition on the reconstruction.

A Monte Carlo method was used to model the migration of photons in scattering
media. The specifics of the Monte-Carlo technique have been described previously.'
However, the algorithm was modified to incorporate a time resolved distribution at each
radial position. Photon time-of-flight was determined by ratioing the length of the photon
trajectory from the source to detector by speed of light in the medium. The time
resolution was 1 ps.

The chosen medium for the model was comprised of 2 distinct parallel layers with
respect to the surface, with series of absorption coefficients typical to values found in
tissue and plastics (0.0 — 0.5 mm™)."® Likewise, the scattering coefficient, p,, and the
anisotropy factor, g, were set at 9.4 mm’™' and 0.85 respectively. The three dimensional
size of the model and source/detector geometry closely approximated the experimental
sample. For acceptable photon counting statistics, a total of 2x10° photon packet
histories were run. Remitted time resolved intensity data was recorded in 0.1 mm lateral
increments over a total of 15 mm. For each detector position, spatially adjacent time
distnibutions were averaged to simulate the responses that would be typical of the
resolution capable of the fiber optic detection system used in experiments. A data set
consisting of ten equally spaced lateral positions from 1.5 mm to 15.0 mm was

determined.
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4.6 Data Sets And Pretreatment

A two layered system was modeled where the thickness of the absorbing layers
was partitioned in six evenly graduated regions. For each of the six thickness
combinations, six absorbing levels were permutated. The resulting full factorial designed
set consisted of 156 distinct samples. The samples were sectioned into two sets for
reconstruction purposes. Half of the 156 samples comprised the calibration set. The
remaining half of the data was further split into prediction and validation sets. Care was
taken to avoid biasing. The prediction and validation sets were chosen to demonstrate the
efficacy of the reconstruction method in distinguishing different absorbances throughout
the medium. Besides lexiographic data stacking, the log of the time responses were
taken. The autocorrelation was calculated using the square magnitude of the Fourer
transform for each of the individual time distributions. The logarithm of the
autocorrelation was taken to linearize the result for absorption estimation. Due to the
svmmetry of the autocorrelation function, only positive T’s were considered.

Because of limited processing speed for the Monte Carlo simulations, the
absorption levels were reduced by 70%. In order to make comparisons between
experiment and simulation, absorption estimates from the Monte Carlo simulation were

rescaled using a single coefficient.

4.7 Experimental Work

Experimental time resolved reflectance measurements in layered media were
made to evaluate the efficacy of the reconstruction methods with real data. The

experimental apparatus developed for the reflectance measurements is shown in
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Figure 4.3. Optical layout for the diffuse reflectance, time-resolved photon-counting
system.

130



Figure 4.3. The heart of the system is a time-correlated single photon counting
instrument which is similar to devices found in fluorescence life-time studies.”” A mode-
locked Ti:Sapphire laser (Mira 900B, Coherent, Santa Clara, CA) pumped by an Argon
laser (Innova 310, Coherent) was used to produce laser pulses with a repetition rate of 76
MHz. The laser pulse shape was measured using a high-resolution autocorrelator and
was found to have a width of 170 fs. The laser was tuned to 780nm for the experiment
and the power was measured as 0.613 W corresponding to peak pulse powers of 61 kW.
The output beam was split by a beamsplitter after which 4% of the light was focused onto
a fast photodiode (ET2000, Electro-Optics Technology Inc., Traverse City, MI). The
remaining portion of the pulse was attenuated by a neutral density filter and was directed
onto the sample using a computer controlled mirror galvanometer (CX660, General
Scanning Inc., Watertown, MA). With the aid of a lens, the beam was swept across a
sample perpendicular to the face. To keep light levels entering the detector relatively
uniform, the pulsed beam was further attenuated by a linear graduated neutral density
filter before entering the sample.

To detect the diffuse light from the sample a 0.6 mm diameter fiber optic was used
which guided light to a cooled microchannel plate photomultiplier tube (MCP) (R3808U,
Hamamatsu Corp., Bridgewater, NJ). Output from the photodiode and MCP were each
connected to separate constant fraction discriminators (CFD) (Model 2126, Canberra
Industries Inc., Meniden. CT). Logic pulses from the CFDs were sent into a time-to-
amplitude converter (TAC) (Model 2145, Canberra). The MCP response was used to
start the TAC timing and the photodiode response stopped the timing. This ‘reversed

timing’ technique is commonly used when the start rate is higher than the stop rate and
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reduces dead time of the TAC.® The output of the TAC was a DC voltage signal
proportional to the elapsed time between the start and stop pulses. The TAC output was
digitized using a high speed 400Khz 12-bit A/D converter (AT2000, National
Instruments, Austin, TX). Time increments were sampled at 4.9 ps. The instrument
response with no sample present was measured to be 300 ps FWHM. The significant
time blurring was unavoidable and mainly due to the fiber optic. Software running on a
486/66 MHz PC written in C was used for data acquisition, beam positioning and time
binning.

The sample container consisted of two black reservoirs each fitted with 40 x 50
mm glass windows, 0.15 mm in thickness. The window of the outer reservoir was
designed with a groove separating the source from the detector so that internal reflections
in the glass did not couple into the collection fiber. Positioning of the inner reservoir was
adjusted with a micrometer. An opaque plastic black sheet was positioned in the inner
reservoir so that the total thickness of the sample was maintained at 12 mm. A 1:1
solution of dilute dye to 10% milk fat cream was used as the scattering/absorbing

1).2® A suitable water soluble dye (Dr. Ph.

medium for both reservoirs (4s = 18.8 mm
Martin’s transparent water color #33 Black, Hollywood, FL) was used for the absorber
because it was found to be highly water soluble and not fat soluble as measured through
the microscope.” Absorption between scattering events from the scattering media
approximates the assumptions of the Monte Carlo model. '**°

Time distributions were recorded as a function of the source/detector separation

(1.5 - 15 mm in 1.5 mm increments) and with varying sample composition. Typically,

each acquisition required 5 minutes with total counts ranging between 1.5x10° to 4x10° in
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each distribution. A series of 130 samples were designed which provide a similar range
covered by the simulations. Five different dye concentrations were used in the two layers.
The top layer had p, values of 0.0000, 0.0038, 0.0075, 0.0150 and 0.0300 mm™. The
lower layer had a series of absorption values of 0.030, 0.060, 0.090, 0.120 and
0.150 mm ™.

To minimize temporal jitter in the time distributions and to make the distributions
comparable at all lateral positions, each profile was shifted to a commeon rising edge time.
High frequency periodic artifacts caused by the TAC were reduced by smoothing the
measured time profiles. A Gaussian smoothing window (¢ = 25 ps) was found to reduce
the artifact by 94%. An example of experimentally obtained time distributions after
preprocessing is shown in Figure 4.4. The apparent non-linear progression of the time
distributions is due to the graduated linear density filter. Further data preprocessing and

sectioning into calibration, prediction and validation sets were done in a similar manner

as with the simulated data.

4.8 Results and Discussion

4.8.1 Reconstruction results based on time resolved data

The ILS, PLS and SMLR approaches provide an inverse model where absorption
coefficients in each region of the sample could be estimated from time resolved
reflectance data. Both experiment and modeled data were considered for the comparison.
Table 4.1 summarizes reconstruction results for each of the six regions. Both the

absolute standard errors and the coefficients of varation for each region are given.
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Figure 4.4. Experimentally obtained time-resolved diffuse reflectance responses as a
function of source/detector separation. 1) r=1.5mm; 2)r= 6 mm; 3) r =
10.5 mm; 4) r=15.0 mm.
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Region 1 represents the upper most portion of the sample (0 - 2mm) whereas region 6
represents the deepest (10 - 12 mm).

The results indicate that reconstructions using the ILS method with both the
experimental and modeled data provided inaccurate estimations of sample absorption.
With the modeled data however, absorption coefficients in both the first and second
layers were estimated to a reasonable degree before rapidly degrading with increased
depth. The large amount of error is not surprising due to the ill-conditioned nature of the
reconstruction. Due to the ambiguity of the reconstruction, the ILS method estimates
absorption coefficients considerably outside the range of physically possible values. To
obtain better quantification, constraints and a priori information must be included as is

used in ART reconstruction methods.

Table 4.1. Reconstruction results with time resolved data.

Method Region! Region2 Region3 Region4 Region5 Region6

Expeniment
ILS LI1x102  1Ix10"  2.1x10"  6.3x10"  7.3x107  6.9x10"
(94%)° (4711 %) (479%) (1115%) (970%) (784 %)
PLS 22x10°  25x10°  39x102  4.3x10°  4.9x107  4.3x10°

(19.1%) (102.5%) (89.5%) (75.7%) (64.5%) (48.2%)
SMLR 1.5x107  2.5x107  3.9x102%  4.6x107  5.0x10%  4.7x107
(13.3%) (103.6%) (88.6%) (80.5%) (65.7%) (52.5%)

Modeled
ILS 1.7x102%  3.1x10%  2.2x10"  6.2x107  6.6x10"  7.1x10"
(229%) (40.1%) (302%) (831%) (881 %) (958 %)
PLS 1.3x107  1.6x102  23x10%  29x10%2  4.3x10%  4.3x10>

(175%) (220%) (31.3%) (396%) (57.8%) (57.3%)
SMLR 2.8x10%  1.5x107%  2.6x10°  4.1x10°  4.5x10%  4.5x107
(03%) (206%) (34.7%) (545%) (60.5%) (60.1%)

"Standard errors given mm', coefficients of variation in (%
g
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For less ambiguous quantification in each of the regions, the PLS method was
used to provide a more directed approach to the reconstruction. Estimates for all of the
regions required either four or five factors as optimal for both experimental and simulated
data sets. This higher number of factors is believed to be related to both the presence of
noise and to non-linearities in the time-of-flight response with absorber concentration.
Overall, absorption results indicate an order of magnitude decrease in the error over the
ILS technique. Similar trends are seen in comparing errors obtained in the simulated and
experimental data. However, a significant difference is seen between the two data sets in
regions 2 and 3, where the experimental results have large errors. The large error is
probably due to the nature of the sample cell. When the inner compartment occupies
these regions, positioning variation of the glass window plays a significant role in the
observed results. The experimentally determined time profiles were slightly different
when the glass divider was positioned close to the surface with a sample containing
identical solutions in each compartment.

For the experimental data, significant improvement in the reconstruction in deeper
regions is inherent in the PLS method. Figures 4.5 and 4.6 show a plot of the calibration
vector B, for regions 1 and 6. Weighting coefficients are arranged to clearly see the
relative weighting as a function of time and detector position. For region 1, the
weighting coefficients of the calibration vector for all source/detector separations show
the same general trend. A strong weighting of peak maximum follows with
source/detector position (see Figure 4.4). Each profile is weighted positively at early
times (around the peak maxima), and negatively at longer times. The effect of oppositely

weighting coefficients suggests that signal differencing leads to a cancellation of
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Figure 4.5. Calibration coefficients stacked as a function of time and detector position as

determined by PLS regression for region 1 with time-resolved data. 1)r=1.5
mm; 2)r= 6 mm; 3)r=10.5mm;4)r=15 mm.
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Figure 4.6. Calibration coefficients stacked as a function of time and detector position as
determined by PLS regression for region 6 with time-resolved data. 1)r=1.5
mm; 2)r= 6 mm; 3)r=10.5mm; 4)r=15 mm.
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information from deeper regions. By subtracting the contribution of the peak maximum
(mean photon paths) from that of the trailing edge (longer path photons which penetrate
deeper) a region in the sample may be selected. A slightly different profile is seen for the
calibration vector of region 6. Whereas the same form of differencing is seen at short
times, the peak maximum is less significant at larger source/detector separations than
before. Likewise, there is a shift to positive weighting at longer times which contain
information from light having longer pathlengths through the sample. Analyzing the
calibration vector as a function of source/detector position, however, has proved more
difficult. Although source/detector positioning has been previously demonstrated as a
means to discriminate between absorption changes within a sample using a continuous
source,'” the present role is complicated with time-resolved data. Nevertheless, the PLS
calibration vector provides both a means for tomographic reconstruction and a useful tool
in which information about the nature of the photon propagation in scattering media.
Reconstructions results using SMLR were similar to the PLS results. For
modeled data, ten individual time responses for region 1 were determined. This number
decreased to two in region 6. Similar regions of the time distributions were chosen as the
most correlated with both experimental and simulated data. Referring to Table 4.2, in the
case of region 1, the selected times and positions suggest that changes in the peak
maximum at small source/detector separations are important. For a deep region, the data
responses corresponding to long times at large source/detector separations were selected.
A similar differencing of the signal is seen as compared to the PLS results considering

the coefficients for each of the responses selected.
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Table 4.2. Optimal data points chosen by SMLR with experimental time resolved data.

Region Time (ps) Detector Weighting
Position (mm) Coefficient
1 1320 1.5 -0.1598
1510 4.5 -0.0330
870 1.5 -0.0159
1480 12.0 -0.00547
2900 1.5 +0.00092
6 2740 12.0 -0.3373
2755 13.5 +0.3246

Both SMLR and PLS provided similar results for regions 2 to 6 however a
marked improvement was found for the uppermost region using the SMLR technique. In
this case. almost a 50 fold improvement is found in the simulated data. Likewise, for
experimental data, a two fold improvement over estimates by PLS was observed. This
improvement in absorption coefficient estimation in region 1 is understandable
considering that the most correlated time/position information regarding region 1 is
contained in a tight bolus of photons that have traveled the shortest path. The use of only
a few data responses allows for better estimations because unnecessary information
which tends to weight in noise is not included. This effect is well recognized with other
spectroscopic measurements.

Three images of reconstructed samples as determined by the SMLR technique are
shown in Figure 4.7. Images were chosen to illustrate the major cause of the error in the
estimation of the absorption coefficients in the vicinity of the discontinuous boundary
between the two layers. Instead of an abrupt change, only broad sloping changes are

produced. Regions with constant absorption coefficient are also poorly estimated and
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Figure 4.7. Images of reconstructed samples (dashed lines) as determined by the SMLR
technique. Solid lines represent actual composition.
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give an average over the range. This is not unlike other reconstruction techniques where
ambiguity and noise in the data produces bandwidth-limited images. Estimation may be

improved for bandwidth limited images using a priori constraints.

4.8.2 Reconstruction results with autocorrelated data

Autocorrelated data was evaluated with the reconstruction methods in order to
make comparisons to normal time resolved data. As shown in Table 4.3, similar results
are seen when comparing reconstructions with a slight improvement in the top two

regions.

Table 4.3. Reconstruction results with autocorrelated data.

Method Region1 Region2 Region3 Region4 Region5 Region6

Experiment
PLS 1.7x10°  23x107  3.6x10%  39x10%  4.6x10° 4.2x10>

(150%) (94.1%) (824%) (68.4%) (60.6%) (47.6%)

SMLR 1.0x10°  1.8x107  3.5x10%  4.1x10°  4.8x10% 3.7x107
(9.0%) (73.8%) (80.7%) (72.6%) (634%) (413 %)

Modeled

PLS 5.1x10°  9.6x10°  2.2x10% 2.8x107  4.1x10%  4.2x107
(6.8%) (128%) (30.1%) (37.1%) (55.0%) (55.7 %)

SMLR 6.6x107  5.7x10°  2.7x107  32x107  4.4x10°  4.2x107
(09%) (7.6%) (363%) (42.7%) (58.3%) (56.4 %)

"Standard errors given mm’', coefficients of variation in (%)

The factor of two improvement in the estimation using PLS with simulated data was due
to the smoothing inherent to the autocorrelation technique. For the autocorrelation signal,
the optimal number of factors increased to five or six factors. This was observed for both

the modeled and experimental data. Though there errors decreased as compared to the
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time distribution estimates, the increased number of factors needed with autocorrelated
data suggests that there is an increase in the non-linearity of the absorption estimates.
From the calibration vectors shown in Figures 4.8 and 4.9, it is observed that the most of
the weightings are placed on both short and long phase delays. This corresponds to
maximal weightings placed on the mean and long photon paths respectively. For
intermediate values of phase delay, the two partially overlapped time distributions
produce the highest degree of non-linearity and as a consequence are the least significant.
From Figures 4.8 and 4.9 it can be seen that the weightings of the responses vary as a
function of source/detector separation. A change in sign is observed for low phase delay
values as source/detector is increased. The effect of oppositely weighting coefficients
between detector positions again suggests that differencing of the responses provide the
method to discriminate between regions. The trend of oppositely weighting coefficients
as a function of source/detector separation at low phase delay is analogous the results
observed with time distributions. The autocorrelation function for small phase delay is
approximately proportional to the steady state response (integrated square of the time
distribution). This is consistent with previous work where source/detector positioning
was demonstrated as the sole means to discriminate between absorption changes within a
sample.'” Although a more complicated relation exists between A(r,t) and the absorption
coefficient for a two layer medium, the PLS method provides a similar error of the
estimate.

Reconstruction with SMLR of the autocorrelated response showed similar results
to the PLS estimates. An increased number of responses were required in the SMLR

model to yield a similar level of estimation as provided by the estimation made with the
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Figure 4.8. Calibration coefficients stacked as a function of phase delay and detector
position as determined by PLS regression for region 1 with autocorrelated
data. 1)r=1.5mm; 2)r= 6 mm; 3)r=105mm;4)r=15 mm.

144



6
~ 4+t
?
2 3
2 2
8 4
9
% o/~
Q 2
@)
g
2 2
=) !
)]
2 Ll
_6 1 — — 1 1
0 0.25 0.5 0.75 1.0 1.25 1.5

Tau (ns)

Figure 4.9. Calibration coefficients stacked as a function of phase delay and detector

position as determined by PLS regression for region 6 with autocorrelated
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time distributions. The responses chosen by the method, shown in Table 4.4, heavily
weighted small phase delays at small source/detector separations for estimations of
absorption in region 1. For region 6, the opposite effect is observed where large
source/detector separations and large phase delays are the most correlated with changes
deep within the sample. These results are consistent with the interpretation of the
autocorrelation function where large phase delays are most sensitive to changes in the

trailing edge of the time distribution.

Table 4.4. Optimal data points chosen with SMLR with autocorrelated data.

Region T (ps) Detector Weighting
Position (mm) Coefficient

1 90 1.5 -2.6317

15 1.5 +2.3619

390 1.5 +0.1711

380 15.0 -0.0770

245 7.5 +0.0752

305 12.0 -0.0677

230 6.0 -0.0283

6 1450 15.0 -0.3373

1100 1.5 +0.3323

1420 1.5 +0.0782

15 1.5 -0.0034

4.9 Conclusion

A depth resolved tomographic reconstruction of layered scattering/absorbing
media was shown. Using both Monte-Carlo simulations and experimental data, a
comparison between reconstructions of samples was done using photon time-of-flight

diffuse reflectance and autocorrelated data. With both real and simulated data, depth

146



resolved quantification of the absorption in each region of a sample was made using
stepwise multi-linear regression, inverse and partial least squares methodologies. For all
methods, absorbance was better estimated in the top regions as compared to deeper
regions within the sample. Likewise, reconstruction results using the autocorrelation of
the time responses were found to provide similar estimation in comparison with time
distribution data. Both PLS and SMLR methods gave significantly better estimation of
sample absorption as compared to the ILS technique. In comparing results from
simulated data, SMLR gave the best results with a 0.9% error in the top layer. However
in lower regions, no improvement was seen between SMLR and PLS. The results are
encouraging as new directed methods may be developed which include estimates
obtained in upper regions to better approximate absorbance deep within a sample.
Likewise, adding constraints and a priori information about the sample may improve the
estimation. In the future, incorporating time resolved information together with advanced
reconstruction methods may provide new tools for solid sample analysis in clinical and

industrial environments.

147



4,10 References

3]

W

Farrell, T. J.; Patterson, M. S.; Essenpreis, M. Influence of Layered Tissue
Architecture on Estimates of Tissue Optical Properties Obtained from Spatially
Resolved Diffuse Reflectometry; Appl. Opt. 1998, 37, 1958-1972.

Kienle, A.; Patterson, M. S.; Dognitz, N.; Bays, R.; Wagnieres, G.; van den Burgh, H.
Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media;
Appl. Opt. 1998, 37, 779-791.

Nichols, M. G.; Gutsche, A. S.; Schwartz, J.; Wang, L.; Tittel, F. K. App/. Opt. 1996,
35,2304-2314.

Patterson, M. S.; Chance, B.; Wilson, B. C. Time Resolved Reflectance and
Transmittance for the Non-Invasive Measurement of Tissue Optical Properties; Appl.
Opt. 1989, 28, 2331-2336.

Cui, W.; Kumar, C.; Chance, B. Experimental Study of Migration Depth for the
Photons Measured at Sample Surface; Proc. SPIE 1991, 14317, 180-191.

Chang, J.; Graber, H. L.; Barbour, R. L. OSA4 Proc. On Advances in Optical Imaging
and Photon Migration, Alfano, R. R. Ed.; OSA: New York, 1994; Vol 21, pp 193-
220.

Yao, Y.; Wang, Y.; Pei, Y.; Zhu, W_; Barbour, R. L. Frequency-Domain Optical
Imaging of Absorption and Scattering Distributions by a Bom Iterative Method; J.
Opt. Soc. Am. A 1997, 14, 325-342.

Takatani, S.; Graham, M. D. Theoretical Analysis of Diffuse Reflectance from a

Two-Layer Tissue Model; /IEEE Trans. Biomed. Eng. 1979, BME-26, 656-664.

148



10.

11.

14.

16.

17.

18.

Schmitt, J. M.; Zhou, G. X.; Walker, E. D.; Wall, R. T. Multilayer Model of Photon
Diffusion in Skin; J. Opt. Soc. Am. A 1990, 7, 2141-2153.

Dayan, L.: Havlin, S.; Weiss, G. H. Photon Migration in a Two-Layer Turbid
Medium; J. Mod. Opt. 1992, 39, 1567-1582.

Hielsher, A. H.; Lui, H.; Chance, B.; Tittel, F. K.; Jacques, S. L. Time-Resolved

Photon Emission from Layered Turbid Media; Appl. Opt. 1996, 33, 719-728.

. Nossal. R.; Kiefer, J.; Weiss, G. H.; Bonner, R.; Taitelbaum, H.; Havlin, S. Photon

Migration in Layered Media; Appl. Opt. 1988, 27, 3382-3391.

. Keijzer. M.; Star, W. M_; Storchi, P. R. M. Optical Diffusion in Layered Media; App!.

Opt. 1988, 27, 1820-1824.
Groenhuis, R. A. J.; Ferwerda, H. A.; Ten Bosch, J. J. Scattering and Absorption of
Turbid Matenals Determined from Reflection Measurements. 1| Theory; Appl. Op:.

1983, 22.2456-2462.

.Long. W. F.; Bums, D. H. Optical Tomographic Reconstruction from Diffuse

Remittance in Scattering Media using Partial Least Squares Estimation; Anal. Chim.
Acta 1997, 348, 553-563.

Hebden. J. C.; Armdge, S. R.; Delpy, D. T. Optical Imaging in Medicine: [
Experimental Techniques; Phys. Med. Biol. 1997, 42, 825-840.

Ishimaru. A. Diffusion of a Pulse in Densely Distributed Scatterers; J. Opt. Soc. Am.
1978, 68, 1045-1052.

Patterson, M. S.; Chance B.; Wilson, B. C. Time Resolved Reflectance and
Transmittance for the Non-invasive Measurement of Tissue Optical Properties; Appl.

Opr. 1989, 28, 2331-2336.

149



19.

I
o

12
(Y]

t
W

26.

Arridge, S. R; Cope, M.; Delpy, D. T. The Theoretical Basis for the Determination of
Optical Pathlengths in Tissue: Temporal and Frequency Analysis; Phys. Med. Biol.

1992, 37.1531-1560.

. Arridge, S. R.; Schweiger, M. The use of Multiple Data Types in Time-resolved

Optical Absorption and Scattering Tomography (TOAST) in Mathematical Methods
in Medical Imaging [I; Wilson, B. C.; Wilson N. J.,, Eds.; Proc. Soc. Photo-Opt.

Instrum. Eng. Wiley: New York, 1993; Vol. 2035, pp 218-229.

. Gordon. R. A Tutorial on ART; IEEE Trans. Nucl. Sci. 1974, NS-21, 78-93.

. Gordon. R.; Bender R.; Herman, G. T. Algebraic Reconstruction Technique (ART)

for Three Dimensional Electron Microscopy and X-ray Photography; J. Theor. Biol.

1970, 29. 471-481.

. Lorber. A.; Wangen L. E.; Kowalski, B. R. A Theoretical Foundation for the PLS

Algorithm; J. Chemom. 1997, 1, 19-34.

. Haaland, D. M.: Thomas, E. V. Partial Least-Squares Methods for Spectral Analyses.

1 Relation to Other Quantitative Calibration Methods and the Extraction of

Quantitative Information; Anal. Chem. 1988, 60, 1193-2001.

. Beebe, R.; Kowalski, B. R. An Introduction to Multivanate Calibration and Analysis;

Anal. Chem. 1987, 39. 1007-1016.
Arakaki. L. S. L.; Kushmerik, M. J.; Burns, D. H. Myoglobin Oxygen Saturation
Measured Independently of Hemoglobin in Scattering Media by Optical Reflectance

Spectroscopy; Appl. Spectrosc. 1996, 50, 697-705.

150



27. Small, E. W. Laser Sources and Microchannel Plate Detectors for Pulse Fluorometry;
In Topics in Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Plenum Press: New
York, 1991, Vol. 1.

28. Canberra Model 2145 TAC User Manual, Canberra Inc.: Meriden, Connecticut,
1990, pp. 7-8.

29. Marble, D. R.; Bums, D. H.; Cheung, P. W. Diffusion-Based Model of Pulse

Oximetry: In Vitro and in Vivo Comparisons; Appl. Opt. 1994, 33, 1279-1285.

151



Chapter 5 A Hierarchical Local Weighted Calibration
and Classification Approach to Depth
Resolved Quantification in Scattering Media
using Photon Time-of-Flight Measurements

In Chapter 4 optical tomographic reconstruction in layered liquid samples was
made using stepwise multi-linear regression and partial least squares regression.
Estimates of the absorption coefficient in each sample region were made independent of
other regions. Although sample quantification in the top region improved markedly over
those using steady state measurements, large errors in the estimates remain in the bottom
regions.

To further reduce the error in sample reconstruction, a priori information and
constraints are needed. It was observed that accurate absorption estimates in the lower
regions may be made if the samples used for calibration contained a fixed level in the
upper regions. Layer absorption estimates may therefore be improved by narrowing the
range of samples used for calibration. By embedding this approach into an overall
tomographic reconstruction methodology, better sample quantification at each sample
depth may be possible. A priori information regarding sample composition in the upper
regions may therefore direct subsequent calibration for lower regions. This approach is
similar to locally weighted regression (LWR) methods which have been applied in NIR
diffuse reflectance studies for estimating non-linear regression surfaces. Further, by
discretizing the possible outcomes with classification methods, enhancements in

quantification may be obtained. A classification based reconstruction will naturally
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constrain absorption estimates to positive values or to a given range. In this chapter,

these concepts are explored for depth resolved quantification.

S.1 Abstract

Chemometric methods for quantitative analysis in layered scattering/absorbing
paper samples are described. A radial array of time-resolved diffuse reflectance
measurements have been made to obtain multi-perspective information sensitive to
changing sample composition. For analysis, the stepwise multilinear regression (SMLR)
method was used a basis of a hierarchical locally weighted sample calibration. Estimates
of the absorption coefficient in each sample region were made either by linear regressicn
following by binning of the result (HLRB) or by K-nearest neighbour classification
analysis (HCKNN). With these approaches, the tomographic reconstruction problem
may be linearized by utilizing a priori information about sample composition in upper
regions to direct subsequent calibrations for lower regions. A comparison of different
reconstruction methodologies is made along with their efficacy in the presence of added
noise. Results demonstrate that estimations of the absorption coefficient deep within a
highly scattering/absorbing sample are obtainable at greater than 50% accuracy using the
HCKNN approach. This represents a 20% improvement at all sample depths over the
SMLR approach. The use of locally weighted calibrations and sample classification to
constrain the solution of a tomographic reconstruction is shown as a powerful new tool

for quantification in layered scattering/absorbing media.

153



5.2 Introduction

[n many fields there is a need to observe and characterize a specimen in three
dimensions. [n the analysis of turbid media, optical methods are commonly used to
determine the concentration of the desired analyte. Recently, there is considerable
interest in the analysis of layered samples. Layered systems such as skin/bone/brain
tissue in the head or the skin/adipose/muscle system are common in biology. Other
common examples of layered media include the gel capsule/drug system and paper/mylar
composites. Indeed, the ability to make a quantitative non-invasive assessment of
product freshness inside composite translucent packaging would be a valuable quality
assurance tool to the food industry. In complex media, the analysis method is often based
on an invalid model which assumes sample uniformity. This assumption, introduces
artifacts into the measured properties. When analyzing turbid layered samples, it is
necessary to consider both the sample structure and measurement technique when
interpreting the results since changes in the optical properties in a single region affect the
measurements made on the bulk.

Several techniques have been developed to obtain depth resolved information from
a turbid sample. For thick samples where transmission measurements may be
impractical, reflectance based geometries can be employed.' Steady state optical signals
gathered from detectors situated at several lateral positions from an incident light source
may be used to obtain multi-perspective information from a sample. Using multiple
optical paths through the sample, depth resolved information may be elucidated with
analysis techniques similar to Computer Aided Tomography (CAT).*® In highly

scattering samples, the optical path from source to detector is poorly defined and
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reconstruction becomes ambiguous. To improve the accuracy of a reconstruction, the
detected signal may be time-gated.** With time-resolved photon detection, the path
between source and detector may be more clearly defined by eliminating randomly
scattered photons which have an unknown geometry.

Using multi-perspective sample attenuation data, sample reconstruction is often
approached as a linear problem.®*” However for reasonable estimates of sample
composition, linear reconstruction techniques typically require a priori structural
information together with finite element analysis methods. Several approximate methods
have been developed to model the time-resolved reflectance from two-layered samples
using the diffusion approximation of the radiative transport equation.®®*? Although more
general models have been developed, the success of any sample reconstruction is highly
dependent on the quality of the acquired signals. This is especially true for time-resolved
data where the subtle shapes in the time-profile contain rich information about sample
composition.

Previously, we have investigated depth resolved quantification in layered scattering
media with time-resolved measurements using chemometric reconstruction methods.'®
Estimates of sample composition were made independently at each sample depth using
partial least squares (PLS) and stepwise multiple regression (SMLR) calibrations.
Results demonstrated that reasonable reconstructions were obtained with the SMLR
method. As the SMLR technique only uses a few data channels from the total signal,
better estimations were possible because unnecessary information and noise was not

included. With the SMLR approach, the absorption coefficient in the top layer could be
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estimated to within 0.3%. In lower regions however, errors in the absorption estimates
increased to 80%.

It is known that the ambiguity in a reconstruction may be reduced by selecting a
narrow sample composition range.!'! Two chemometric techniques, locally weighted
regression (LWR) and hierarchical methods of analysis, may therefore aid in improving
quantification. For near-infrared diffuse reflectance analysis of samples, LWR has been
applied successfully as a means for estimating non-linear regression surfaces.'”” In LWR,
a new weighted calibration is made for each prediction sample based on the » calibration
points closest to it. Further, by discretizing the possible outcomes with classification
methods such as hierarchical or binary partition trees, enhancements in quantification
may be obtained.'’ Likewise, classification may naturally constrain absorption estimates
to positive values or to a given range.

In this study, our goal is to enhance quantification over that provided by SMLR by
employing hierarchical locally weighted calibration and classification methodologies for
samples with discretely vanable composition. This method uses a priori information
about sample composition in upper regions to direct subsequent locally weighted
calibrations for lower regions. Two classification methodologies are investigated: K-
nearest neighbour classification and simple discrete binning of the estimated absorption
coefficients obtained from SMLR. A comparison of different reconstruction
methodologies is made along with their efficacy in the presence of added noise. Resulits
demonstrate a marked improvement in reconstruction accuracy compared to that obtained

by SMLR.
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5.3 Experimental

The experimental apparatus developed for time-resolved diffuse reflectance
measurements, shown in Figure 5.1, consists of a time-correlated single photon counting
instrument similar to devices found in fluorescence life-time studies.'* Details of the
instrumental setup and basic signal post-processing has been described previously.'
However, the photon time-of-flight profiles were digitized in 4.9 ps increments over a
3 ns window and the instrument response with no sample present was measured to be
250 ps FWHM. Furthermore, the layered samples were held in position with a black
metal clamp which allowed light to penetrate and exit the sample freely from the front
face.

Absorbing paper samples were made by soaking individual sheets of Whatman #1
filter paper (Whatman Ltd., Maidstone, England) in an aqueous dye solution (Dr. Ph.
Martin's Transparent Water Color #33 Black, Hollywood, FL) for 20 seconds followed
by air drying. A 1.0 mm stack of homogeneously dyed filter paper cut to 50 mm x
80 mm were glued around the edges. Care was taken to ensure that the illuminated
portion of the sample was free from adhesives. Paper stacks prepared in this manner
were calculated to have corresponding relative absorption coefficients, p,, of 0.000,
0.006, 0.012, 0.018, 0.024, and 0.030 mm™'. From the Beer-Lambert relation, A = abc,
the absorption coefficient, p, =2.303 ac (absorptivity x concentration), is the constant of
proportionality between the absorbance, A and the pathlength, b. Each sample of a
specific dye concentration profile was comprised of six paper stacks pressed together ‘o

form a 6 mm thick specimen.
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Figure 5.1. Diffuse reflectance photon time-of-flight instrumentation.
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A set of 196 distinct samples of varying dye concentration in each layer were made
to generate a calibration set which spanned the measured absorption range. Six samples
were of a homogeneous absorption coefficient, 150 samples contained two different
contiguous absorption regions and 40 samples contained three contiguous absorption
regions. Half of the 196 samples comprised the complete calibration sample set. The
remaining half of the samples were used for the prediction and validation sets.

Replicate time distributions were recorded at five lateral source/detector
separations (2. 5. 8, 11 and 14 mm) for each sample. Each acquisition required 5 minutes
with total counts ranging from 4.5x10° to 1.2x10° in each distribution. To minimize
temporal jitter in the time distributions and to make the distributions comparable at ali
lateral positions, time profiles were shifted to a common incident time of the laser pulse
at the detector. Examples of the photon time distributions after smoothing and
logarithmic preprocessing are shown in Figure 5.2. It may seen that the intensity and

breadth of the distribution vary with source/detector separation.

5.4 Reconstruction Methodologies

The methods used for sample reconstruction were divided into three different
categories. First, using the full time distribution, a standard multilinear regression
(SMLR) model was developed. Next, to localize the regression according to the sample,
a hierarchical locally weighted calibration followed by linear regression with discrete
binning (HLRB) was used. This approach allows for a linearization of the reconstruction.

Finally, the locally weighted calibration was extended using a non-parametric approach
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by using K-nearest neighbour classification analysis (HCKNN). Common to all of these
is the general background of the formation of the reconstruction problem.
For all reconstruction methods, mathematical analysis of the time/position data
was facilitated by first lexicographically stacking the total response into a 1 x ns vector,
X, =[x, (6,) X, (€,) X0 () X, (2,) X 1)) X0 (2,)] (5.1
where s is the number of time intervals, » is number of lateral positions and x,(t;} denotes
the response at the ith position and jth time for the mth sample. This vector is assumed to
be linearly additive with the absorption from each region. For a linear reconstruction such
as SMLR. the overall relationship can be written in matrix notation as,
M, =X,B (5.2)
where M. is a matrix containing m sample absorption coefficients for p regions (m x p),
X. contains n data channels for m samples (m x n) and the subscript ¢ refers to the
calibration set. B comprises n x p calibration coefficients relating the responses to the

region absorption level.

3.4.1 SMLR reconstruction method

The linear SMLR method was used to identify an optimal linear combination of
data channels, x;, x>, ..., x; (k < n) correlated with the sample absorption coefficients M.
Details of the particular SMLR algorithm used in this study has been described

10,11

previously. However it should be mentioned that estimates of the m absorption

coefficients for a given sample region in the validation set are computed by

M =b, +b,x, +b,x, +..4+ by x, (5.3)
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where by, b, ... . by are the coefficients determined by linear regression.

3.4.2 HLRB reconstruction method

The hierarchical locally weighted regression and classification (HLRB)
reconstruction technique pictured in Figure 5.3 is based on the LWR approach'” followed
by discrete classification. For absorption estimates in the top surface region (region 1),
SMLR was applied to the complete calibration set. The optimal subset of time/position
data channels, x;, x>, ... , xx most correlated to changes in the absorption coefficient in
region | was found. After applying Equation 5.2 with the b; parameters on the validation
set, the absorption level in region | was classified as belonging to one of six possible
discrete levels. Classification was done by binning the estimated absorption coefficients
into one of six discrete levels as shown with the dashed-line in Figure 5.4. The solid line
demonstrates an idealized reconstruction with data points distributed evenly about the
line of identity between the actual absorption coefficients and the estimated values. With
this information. unique calibration sets for estimation of the absorption coefficient in
region 2 were selected for each sample in the validation set such that it contained samples
which best matched the absorption levels determined for region 1. Next, SMLR was
applied to each new calibration subset for absorption coefficient estimations in region 2.
By this method, the optimal data channels for region 2 given a priori knowledge of
region | were determined. The process was applied repeatedly in each successive region

of the sample for all validation set members.
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Figure 5.3. Pictorial diagram of the HLRB reconstruction methodology.
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Figure 5.4. Pictorial diagram of linear versus classification based calibration.
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5.4.3 HCKNN reconstruction method

The HCKNN method operates in a similar manner to the HLRB technique except
that no linear regression models are constructed from the optimal time/position channels.
Instead, the optimal data channels of the local weighted calibration set are decomposed
into their principal components. Similarly, corresponding time/position channels of each
member in the validation set are projected into the same principal component space for
comparison to the calibration set. Absorption levels are determined by 4-nearest
neighbour (KNN) classification analysis. The KNN technique finds the & spatially
closest neighbours in calibration set and determines which group a test point belongs.
Once the algorithm decides on the closest absorption level, the method is applied again
in each region for all validation set members. In both the HLRB and HCKNN
approaches to sample reconstruction, the methods seek to identify those samples in the
calibration set which closely match the absorption properties above the one of interest for

each member of the validation set in order to optimize the calibration.

5.5 Results and Discussion

5.5.1 SMLR reconstruction results

As an initial approach to tomographic reconstruction, the SMLR approach was
used. For a