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Abstract

The understanding of the interaction of light with a scattering/absorbing medium

provides a foundation needed for developing many applications in diagnostic medicine

and industry. The objective of this research was to obtain quantitative depth-resolved

infonnation about absorbing constituents in a scattering medium.

Initially, the project focussed on quantification in samples where scattering and

absorber concentration were variable. Using time resolved reflectance measurements, a

series of statisticaI descriptors of the photon time distributions were calculated. Stepwise

muitilinear regression \Vas used to formulate linear modeIs from optimal linear

combinations of the descriptors. It was found that the scattering coefficient, absorption

coefficient and apparent particle diameter could be estimated to within 9, 10 and 7 % of

their reference values respectively.

An array of radial reflectance measurements on layered scattering/absorbing

samples \Vas made to obtain information sensitive to sub-surface changes in absorption.

As an initial approach to depth-resolved quantification, classical tomographie

reconstruction techniques were used. However, due to the ambiguity of the

reconstruction, extremely poor estimates of the sub-surface absorption resulted.

Chemometric methods were then employed for enhanced quantification. By uSlng

stepwise muItilinear regression with time-resolved data, the absorption coefficient in the

top region of a sample could be estimated to within 20/0. However, errors in the

absorption coefficient estimations deep within a sample remained high.

Further improvements in sample quantification were made by linearizing the

reconstruction problem. By using a priori information about sample composition in
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upper regions, subsequent calibrations for lower regions were directed. Estimations of

the absorption coefficient deep within a sample with hierarchical locally weighted

calibration \Vere obtainable at greater than 50% accuracy. This represented a 200/0

improvement at aIl sample depths over stepwise multilinear regression.

Confocal illumination and detection optics was also used for discriminating highly

scattered photons from light, which fol1ows a geometric path through a sample. When

confocal optics were used together with information from the rising edge of time

distribution, little enhancement in quantification was observed in comparison to an

integrated signal. This important finding demonstrates that the confocal optical detection

should he considered when imaging in scatteringlabsorbing media.
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Résumé

La compréhension des interactions entre la lumière et un milieu diffractant fournit

les bases requises au developpement de nombreuses applications en médecine

diagnostique et en industrie. Le but de ce project était d'obtenir de l'infonnation

quantitative sur la distribution en profondeur des composantes absorbantes d'un milieu

di ffractant.

Initialement. le project se penchait sur la quantification d'échantillons dans

lesquels les concentrations des éléments absorbants et diffractant variaient. En effectuant

des mesures par reflectance dans le domaine temporel, une série de descripteurs

statistiques des distributions temporelles photoniques a été calculée. La méthode de

srep\',,'ise multilinear regressioll a été utilisée pour formuler des modèles linéaires à partir

de combinaisons linéaires optimisée des descripteurs. II a été démontré que les

coefficients de diffraction, d'absorption, de même que le diamètre apparent des particles.

pouvaient être estimés a 9, 10 et 7 % près de leur valeur de reference respective.

Un ensemble des mesures par reflectance radiale sur des échantillons

diffractant/absorbants superposés a été effectué pour obtenir de l'information sur les

variations de l'absorption en profondeur. Des techniques de reconstruction

tomographiques classiques furent utilisés comme approche initiale de quantification selon

une distribution en profondeur. Des très faibles estimés de l'absorption en profondeur

ont été obtenus en raison de l'ambiguité de la reconstruction. La quanti fication a alors

été amélioré en utilisant des méthods de chimométrie. Apres avoir appliqué slepwise

muflifinear regressioll aux données distribuées dans le temps, les coefficients

d'absorption dans la partie supérieure d'un échantillon ont pu être estimés a 2%) près.
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Toutefois. les erreurs pour les coefficients d'absorption mesurés profondément dans

l'échantillon sont demeurées élevées.

Des améliorations subséquentes ont été apportées à la quantification des

échantillons en linéarisant le problème de reconstruction. En utilisant les informations

disponibles sur le composition de la partie supérieure des échantillons, des calibrations

subséquentes des parties inférieures ont été. Des estimés de coefficients d'absorption

dans les parties profondes d'un échantillon ont été obtenus avec une exactitude de plus de

50%, grâce à une calibration hiérarchique pondérée localement. Ceci se traduisit par une

amélioration de 20% sur les estimés a toutes profondeurs par rapport à la méthode de

srepv.:ise multi/inear regressioll.

La géométrie optique confocale a été également utilisée pour différencier les

photons très diffractées de la lumière qui suit un itinéraire géométrique au travers d'un

échantillon. Lorsque la géométrie optique confocale a été combinée à l'information

contenue dans la section ascendante de la distribution temporelle, des petites

améliorations furent observées par rapport à un signal intégré. Cette découvene

importante démontre que la détection utilisant la géométrie confocale devrait être

considérée pour l'imagerie en milieux diffractants et/ou absorbants.

v



• Table of Contents

List of Tables viii

List of Figures ix

List of .-\bbreviations and Symbols xiii

Contribution of .-\uthors xv

Contributions to Original Knowledge xviii

.-\.ekno\\·ledgments ..............•.•.......................••.....••....•...........................•••....•................. xix

Ovenrie\v 1
Introduction to Near Infrared Sample Characterization 2
The Interaction of Light in Turbid Media 6
The Propagation of Light in Turbid Media Il
Imaging in Scanering Media 20
Research Objectives 37
References 39

1D troductioD..•..•.....•...••...•....•.•.••.••••......•••..•...•...••...••.•....•..•••.•.••.•....•....•....•••.. 1

") ..._.-'

2.4
") 
-.)

2.6
2.7
2.8

2.1
2.2

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Cbapter 2 Particle Sizing and Optical Constant Measurement in Granular
Samples using Statistical Descriptors of Photon Time-of-Flight
Distributions ................•.......•.•.....................•.......•........................................ 52
1~bstract 53
Introduction 54
Experimental Work 57
Sample Characterization 60
.-\.nalysis 62
Results and Discussion 66
Conclusion 80
References 81

•

•

Chapter 3

3.1
... ')
.).-

3.3
3.4
3.5
3.6
3.7
3.8
3.9

Optical Tomographie Reconstruction from Diffuse Remittance in
Scattering Media Using Partial Least Squares Estimation 84
.A..bstract 85
Introduction 86
Background 89
Reconstruction Methodology 90
Computer Simulations 93
Experimental Work 97
Results and Discussion 100
Conclusion 112
References 113

vi



•

•

•

Chapter'" Optical Tomography in Scattering Media from Pboton Time of
Flight Diffuse ReOectance Measurements: A Cbemometric
...\.pproacb IlS

4.1 Abstract ,. 116
4.2 [ntroduction 117
4.3 Theory ,. 120
4.4 Reconstruction Methodology 125
4.5 Computer Simulations 127
4.6 Data Sets And Pretreannent. 129
4.7 Experimental Work 129
4.8 Results and Discussion 133
4.9 Conclusion 146
4.1 0 References 148

Cbapter 5 A Hierarchical Local Weigbted Calibration and Classification
Approach to Deptb Resolved Quantification in Scattering Media
using Photon Time-of-Flight Measurements 152

5.1 Abstract 153
5.2 [ntroduction 154
5.3 Experimental 157
5.4 Reconstruction Methodologies 159
5.5 Results and Discussion , 165
5.6 Conclusion 173
5.7 References 175

Cbapter 6 Quantification in Righly Scatteringl Absorbing Layered Samples
using Photon Time-of-Flight Measurements and Confocal Optical
Geomet~· 177

6.1 Abstract 178
6.2 [ntroduction 179
6.3 Experimental 181
6.4 Data Analysis and Quantitative Image Reconstruction 186
6.5 Results and Discussion 188
6.6 Conclusion 200
6.7 References , 201

Cbapter 7 Conclusions....•.••.•.....•...........•.................•..............................•..•....•............ 204

.-\.ppendix 209

vu



•

•

•

List of Tables

Table 1.1 Absorption regions of cornmon tissue components 5

Table 1.2. Scattering t)'Pes 7

Table 2.1. Statistical descriptors computed from the diffuse reflectance time-of-
flight profiles 63

Table 2.2. PLS estimates of the absorption coefficient, apparent particle size and
scattering coefficient using descriptors from time distributions taken at
a single detector position 73

Table 2.3. SMLR estimates of the absorption coefficient, apparent particle size,
scattering coefficient using data obtained at a single detector position 73

Table 2.4. PLS estimates of the absorption coefficient, apparent particle size, and
scattering coefficient using descriptors from time distributions taken at
multiple detector positions 75

Table 2.5. SMLR Estimates of the absorption coefficient, apparent particle size,
and scattering coefficient using data obtained at multip;e detector
positions 75

Table 3.1. Back projection reconstruction results 108

Table 3.2. ILS reconstruction results 108

Table 3.3. PLS reconstruction results 110

Table 4.1. Reconstruction results with time resolved data 135

Table 4.2. Optimal points chosen by SMLR with experimental time resolved data...... 140

Table 4.3. Reconstruction results with autocorrelated data 142

Table 4.4. Optimal data points chosen with SMLR with autocorrelated data 146

Table 5.1. SMLR reconstruction results with time resolved data 166

Table 5.2. Comparison ofSMLR, HLRB, and HLKNN reconstruction results 167

Table 5.3. Comparison of reconstruction methods in the presence of added noise 173

Table 6.1. Absorption coefficient profiles of samples analyzed in confocal study 185

Table 6.2. Standard Error in the estimates of the absorption coefficient as a function
of sample depth 200

Vlll



•

•

•

List of Figures

Figure 1.1. The interactions of light in a scanering and absorbing sample 12

Figure 1.2. Effect of absorption (a) and scanering (b) changes on the theoretical
photon time-of-flight distribution. J..1a = 0.05 mm-l, /-ls = 40 mm-l, g =

0, r = 15 mm. Changes in absorption and scanering are made in +2 0/0

increments from their nominal values 16

Figure 1.3. One dimensional projectiong(e,.~)ofa two dimensional function
fT b' db' . 1 th ' d' . ., .,J\x,y) 0 talne y IntegratIng a ong e y lrectlon __

Figure 1.4. Illustration of the Central Section Theorem: The 1D Fourier transfonn
ofg(8. x') equaIs the radial slice of F(k:c,k.v) at the same angle e 24

Figure 1.5. Schematic ofan Optical Coherence Tomography system 27

Figure 1.6. ConfocaI optical geometry in reflectance mode 30

Figure 1.7. Schematic of (a) photoacoustic and (b) acousto-optic tomography
systems 33

Figure 2.1. Diffuse reflectance photon time-of-flight instrumentation 58

Figure 2.2. Photon time-of-flight profiles as a function of sample absorption at a
15mm source/detector separation. Legend: J.1a = 0.000 mm'( , solid; Jla =
0.033 mm-l, dashed; J.la = 0.236 mm-l, dash-dotted; J..1a = 0.472 mm-l,
dotted 67

Figure 2.3. Photon time-of-flight profiles as a function of scattering coefficient at a
15mm source/detector separation. Legend: J.1s = 1.86 mm-1, solid; J.1s =
3.25 mm- I

• dashed; J.ls = 20.01 mm-l, dotted 68

Figure 2.4. Experimental attenuation versus absorption coefficient at different
scattering levels. Legend: J.ls = 1.86 mm- I ~ solid; J.ls = 3.25 mm,l,
dashed; Jls = 10.52 mm,1, dash-dotted; /-ls = 20.01 mm,l, dotted 70

Figure 2.5. TheoreticaI attenuation versus absorption coefficient at different
scattering levels based on the diffusion model (5mm source/detector
separation, g=0.8). Legend: Ils = 1.86 mm-!, solid; J.1s = 3.25 mm,l,
dashed; jJ.s =10.52 mm-l, dash-dotted; J.1s = 20.01 mm,l, dotted 71

Figure 2.6. Descriptor estimates of the absorption coefficient using multiple time-
of-flight distributions 77

ix



•

•

•

Figure 2.7. Descriptor estimates of the apparent particle diameter using multiple
time-of-flight distributions. Horizontal error bars are drawn at ± 1
standard deviation about the mean particle diameters 78

Figure 2.8. Descriptor estimates of the scattering coefficient using multiple time-of
flight distributions. Horizontal error bars are drawn at ± 1 standard
deviation about the mean scattering coefficients 79

Figure 3.1. Backscattering experimental setup 99

Figure 3.2. Experimental and modeled laterai surface light attenuations for various
absorbers in a slab (J.1a = 9.4 mm-!, g = 0.85). AlI absorption
coeffIcients for layers 1 though 6 are either 0.00 or 0.50 mm· l

. a) no
absorber~ b) absorber layer 6; c) absorber layers 5,6; d) absorber
layers 3-6~ e) absorber layers 2-6. Subscripts m and e refer to modeled
and experimentaI data respectively 101

Figure 3.3. Light path distribution at the 90% contour through a muIti-Iayer
absorbing/ scattering medium where a source is located at position 0
and detectors are placed at 6 and 12 mm away 103

Figure 3.4. Depth profile ofphoton path distribution at various lateral detector
positions as secn equidistant between source and detector 105

Figure 3.5. Modeled weighted average distance that photons spend in each of the
six layers (labeled 1 through 6) as a function of lateral position (L
matrix in Equation 3.2) 106

Figure 3.6. Calibration coefficients of lateral detector responses as obtained by
PLS for both a surface layer (layer 1) and a deep layer (layer 6) III

Figure 4.1. Modeled time resolved photon flux at various absorption levels with a11
other constants held constant. (J.1s =40 mm-!, g =0.80, r = 15 mm). 1)
J.la =0.025 mm· l

; 2) fla =0.030 mm-!; 3) fla = 0.035 mm- I
; 4) J.1a =

0.040 mm· l 123

Figure 4.2. Modeled autocorrelated photon flux at various absorption levels with a11
other constants held constant. (J.1s =40 mm-l, g =0.80, r = 15 mm). 1)
fla = 0.025 mm-I

; 2) Ila = 0.030 mm-!; 3) f.1a = 0.035 mm-!; 4) f.1a =
0.040 mm- l 124

Figure 4.3. Opticallayout for the diffuse reflectance, time-resolved photûn-
counting system 130

Figure 4.4. Experimentally obtained time-resolved diffuse reflectance responses as
a function of source/detector separation. 1) r = 1.5 mm; 2) r = 6 mm;
3) r = 10.5 mm; 4) r = 15.0 mm 134

x



•

•

•

Figure 4.5. Calibration coefficients stacked as a function oftime and detector
position as detennined by PLS regression for region 1 with time
resolved data. l) r = 1.5 mm; 2) r = 6 mm; 3) r = 10.5 mm; 4) r = l5
mm 137

Figure 4.6. Calibration coefficients stacked as a function oftime and detector
position as detennined by PLS regression for region 6 with time
resolved data. 1) r = 1.5 mm; 2) r = 6 mm; 3) r = 10.5 mm; 4) r = 15
mm 138

Figure 4.7. Images ofreconstructed samples (dashed lines) as determined by the
SMLR technique. Solid lines represent actual composition 14l

Figure 4.8. Calibration coefficients stacked as a function of phase delay and
detector position as detennined by PLS regression for region 1 with
autocorrelated data. 1) r = 1.5 mm; 2) r = 6 mm; 3) r = 10.5 mm; 4) r
= 15 mm 144

Figure 4.9. Calibration coefficients stacked as a function ofphase delay and
detector position as detennined by PLS regression for region 6 with
autocorrelated data. 1) r = 1.5 mm; 2) r = 6 mm; 3) r = 10.5 mm; 4) r
= 15 mm 145

Figure 5.1. Diffuse retlectance photon time-of-flight instrumentation 158

Figure 5.2. Experimental obtained time-resolved diffuse reflectance responses as a
function of source/detector separation. 1) r = 2 mm; 2) r = 5 mm; 3) r
=8mm;4)r= Il mm 160

Figure 5.3. Pictorial diagram of the HLRB reconstruction methodology 163

Figure 5.4. Pictorial diagram of linear versus classification based calibration 164

Figure 5.5. Principal component analysis ofregion 1. Absorption coefficient
Iegend: 0.000 mm-l, open circ1es; 0.006 mm-l, solid circ1es; 0.Ol2
mm-l, open squares; 0.018 mm-l, solid squares; 0.024 mm-l, open
triangles; 0.030 mm-l, solid triangles 169

Figure 5.6. Principal component analysis ofregion 2. Absorption coefficient
legend: 0.000 mm-l, open circ1es; 0.006 mm-l, solid circ1es; 0.012
mm-l, open squares; 0.018 mm-l, solid squares; 0.024 mm-l, open
triangles; 0.030 mm-l, solid triangles l70

Figure 5.7. Images ofreconstructed samples as determined by the HCKNN
technique (dashed lines) and SMLR (dotted lines). Solid lines
represent actual composition 171

xi



•

•

•

Figure 6.1. Schematic diagram of the scanning slit confocal reflectance photon
time-of-flight instrument. 182

Figure 6.2. Normalized time profiles ofa scattering sample recorded at a focal
depth of 2.5 mm as a function of numerical aperture 189

Figure 6.3. Effect of numerical aperture on the time profile peak standard deviation
for a scattering sample and a blank (reflector). Solid line: 3.0 mm
focal depth into sample. Dashed line: 2.0 mm focal depth into sample..... 190

Figure 6.4. Difference between a time profile of a blank and a time profile ofa
scattering sample recorded at a focal depth of 3.0 mm. Each profile
was normalized to unit height before subtraction.. , 192

Figure 6.5. Effect of focal depth on the time profiles for two different samples.
Solid line: sample 1. Dashed line: sample 3 193

Figure 6.6. Effect of effective confocal pinhole size on sample absorbance linearity
at a focal depth of 2.5 mm. Diamonds: 100 J.1m. Circles: 1000 J.1m.
Triangles: 2500 J.1m 195

Figure 6.7. Effect ofchoice oftime \vindow on sample absorbance linearity at a
focal depth of 3.0 mm. Solid lines: 0 - 2940 ps. Dashed lines: 0 - 490
ps 196

Figure 6.8. Depth-resolved reconstruction ofthree samples. Salid line: Actual
sample absorbance profile. Dashed Hne: calculated absorption
coefficient relative to a measurement made at a focal depth of 0.5 mm..... 199

Figure A.l. Schematic diagram of layered specimen used in Monte-Carlo model. 211

xii



• List of Abbreviations and Symbols

CAT

HCKNN

HLRB

LWR

MF?

MLR

NA

NIR

OCT

00

• PLS

PRESS

SMLR

a

ar

ar

A

A(r;r)

c

g

• k

computer aided tomography

hierarchical classification with K nearest neighbour analysis

hierarchicallocally weighted regression and binning

local weighted regression

mean free path (mm)

multiple linear regression

numerical aperture

near infrared

optical coherence tomography

optical density

partial least squares regression

predicted residual error SUffi of squares

stepwise multilinear regression

logarithm of the area under time distribution

logarithm of the area under the trailing portion of the time distribution

logarithm of the area under the rising portion of the time distribution

absorption

autocorrelation function of the time distribution at a given radius

speed oflight in vacuum (0.299 mm pS~l)

mean cosine of the scattering angle

intensity

kurtosis

xiii



1 pathlength (mm)• mf rnean slope of the trailing portion of the time distribution

rnr mean slope of the rising portion of the time distribution

p peak maximum of the time distribution

r source detection separation (mm)

s skewness of the time distribution

t time (ps)

tf mean trailing time of the time distribution

tr mean rise time of the time distribution

Un nth moment of the time distribution

x direction parallel to sample surface

y direction parallel to sample surface and orthogonal to x• - depth into sample (axial direction)-

r/J solid volume fraction

et> relative longitudinal scattering angle

e relative azimuthal scattering angle

't time lag or lead (ps)

~ rnolar absorptivity (concentration x lengthr l

Î. wavelength (nm)

u p effective diameter (optical units)

Jla absorption coefficient (mm- I
)

Jls scattering coefficient (mm- I
)

•
xiv



•

•

•

Contribution of Authors

Listed below are the articles included as part of this dissertation and an outline of

the responsibility of each author. OveraIl, Dr. Burns was both thesis supervisor and

critical reviewer to Mr. Long.

Chapter 2

Long, W. F.; Burns, D. H. Particle Sizing and Optical Constant Measurement in Granular

Samples using Statistieal Descriptors of Photon Time-of-Flight Distributions. Anal.

Chim. Ac/a. submitted June 2000.

Mr. Long designed the experimental procedure, assembled the time-of-flight instrument,

and collected and analyzed ail experimental data. Dr. Burns suggested using statistical

descriptors for data analysis. The stepwise multi-linear regression routine and the

statistical descriptor algorithms originally written by Larry Leonardi were rewritten and

expanded upon by Mr. Long. The manuscript prepared for publication was written by

Mr. Long and edited by Dr. Burns.

Chapter 3

Long, W. F.; Burns. D. H. Optical Tomographie Reconstruction from Diffuse Remittance

in Scattering Media Using Partial Least Squares Estimation, Allal. C/zim. Acta 1997,348,

553-563.

xv



•

•

•

Mr. Long designed the experimental procedure, assembled the instrument, and collected

and analyzed the experimental data. Dr. Burns suggested methods for analyzing the data

and aided in the experimental setup. The manuscript prepared for publication was written

by Mr. Long and edited by Dr. Burns.

Chapter4

Long. w. F.~ Burns, D. H. Optical Tomography in Scattering Media from Photon Time

of-Flight Diffuse Reflectance Measurements: A Chemometric Approach, J. Chemom.

1999, 13, 251-264.

~1r. Long designed the experimental procedure, assembled the time-of-flight instrument,

and collected the experimental data. Larry Leonardi initially assisted Mr. Long with the

instrumentation. Dr. Burns suggested using different chemometric approaches for

analyzing the data. The manuscript prepared for publication was written by Mr. Long

and edited by Dr. Burns.

Chapter 5

Long, w. F.~ Burns, D. H. A Hierarchical Local Weighted Calibration and Classification

Approach to Depth Resolved Quantification in Scattering Media using Photon Time-of

Flight Measurements, Chemom. Intel/. Lab. SYS1., accepted June 2000.

Mr. Long designed the experimental procedure, and collected and analyzed aIl

experimental data. Mr. Long conceived and suggested using hierarchical local weighted

xvi



•

•

•

calibration for analyzing thc data. Dr. Burns further suggested usmg a classification

approach data analysis. The manuscript prepared for publication was written by ~1r.

Long and cdited by Dr. Burns.

Chapter 6

Long. \\'. F.: Gributs. C. E.: Burns. D. H. Quantification in Highly Scatlcring Absorbing

Lay~rcd Samples using Photon Timc-of-Flight \Ieasurem~nts and Confocal Optical

Gcomctry. l·ih. Specrrosc.. submittcd August 2000.

\1r. Long designed the expcrimental procedure. and set up the expcrimental cquipment.

Exp~rimental data was collected by N[S. Gributs. The imaging mcthodology \Vas

dc\"clopcd by ;vlr. Long. Subsequent data analysis \Vas done by both ~vlr. Long and ~ls.

Gributs. Dr. Burns suggested approaches for imerpreting the data. The manuscnpt

prcparcd lor publication was writtcn by \Ir. Long and edited by Dr. Burns.

X\'ll



•

•

•

Contributions to Original Kno\vledge

10 A mcthod for estimating the absorption and scattering properties of coated granular

samples using statistical descriptors of the diffuse retlectance photon time-of-tlight

distribution was de,'eloped, [n particular. changes in sanlple scattcring and

absorption were found to be most correlated with statistical descriptors associated

with the rising and trailing portions of the time-of-tlight distribution. rcspecti'°ely.

SC"cral chcmometric methods for quantitative depth-resolved imaging in scatlering '

absorbing media \Vere cvaluated. In generaI. estimates of absorption in the surface

rcgions werc betler than those detemlined in lo\\'cr rcgions. By incorporating a

priori kno\\"lerJge into the overall reconstruction mcthodology. a 20o
/1l impro"ement

was obtained compared with estimatcs made indepcndently in each region,

3. Thc autocorrelated photon time-of-flight distribution was evaluated as a means for

robllst quantification of absorption in scattering media. The alltocorrelation fllnction

lor the solution of the tilne-resolvcd di ffusion equation \'Oas deri ,'cd. Autocorrelatcd

data \\"as detcmlincd to be sensiti\'e to changes in sample composition both in theory

and cxpcrimcnt. In addition. by utilizing an optical correlator for detection or an

electronic signal mixer. the complexity of instrrlmcntation may be reduccd.

~o .-\ system lor time-resol\"(~d di l'fuse retlectance measurcments using confocal optics

\\'as dc\"clopcd for quanti fication in scattering/absorbing samples, Reasonable

cstÎmates of the absorption coefficient \Vere abtained in 3 mm thick samples. In

addition. confocal illumination and detection optics \Vere shawn ta pro\'ide a

simplified means for abtaining multi-perspective infomlation from layered samplcs

WÎthOllt the need for tinle-resalved mcasurements.

X\'11 1



•

•

•

Acknowledgments

This major project involved a lot of hard work and 1 have many people to thank for their

support, patience and assistance.

1 would like to thank my supervisor Professor David H. Burns, for his encouragement,

support and advice throughout my years at McGill. Dave has taught me that uif its not

fun its not worth doing" and to "make it so."

l thank the National Sciences and Engineering Research Council (NSERC) and Fonds

pour la Formation de Chercheurs et l'Aide à la Recherche (Fonds FCAR) whose financial

support have made this research possible.

[ also thank Larry Leonardi, Claudia Gributs, He Xiao, Ania Fafara, Mike Rybak and

Dan Williams who made my graduate schoollife interesting. They have been my loyal

partners in procrastination.

Finally, [ would especially like to thank Stéphane Kordahi, Shahul Nilar and my parents

for their support and encouragement.

XIX



•

•

•

Chapter 1 Introduction

1.1 Overview

The goal of this research was to investigate and develop methods for non-invasive

quantification of absorbing constituents in layered scattering media. Examples of such

Iayered scattering systems include human skin, composite coatings, many fruits and

grains and translucent productlcontainer systems. Quantification of the absorbing species

in these examples may give measures of tissue health, subsurface corrosion, product

freshness and composition. In general, there are two approaches in which Iayered

samples may be quantified: invasively and non-invasively. With an invasive approach,

the sample requires modification prior to analysis. Although invasive methods allow for

direct analysis. the nature of the technique may be time-consuming, cost-ineffective or

produce biased results. With non-invasive techniques of analysis. such as that provided

by near infrared spectroscopy, there exists the possibility for rapid analysis with little or

no sample preparation. In this study, chemometric analysis of time resolved near-infrared

spectroscopie measurements were employed for quantification of scattering media.

The research was divided inta three major phases. In the first phase, the scattering

and absorption properties of granular samples were quantified using time-resolved diffuse

reflectance signais. Sample calibrations were constructed using a series of descriptors

sensitive to changes in the photon time-of-flight distribution. This procedure allowed for

quantitative estimates of scattering and absorption in samples ofunknown composition.

In the second phase of the research, quantification in layered scattering/absorbing

sarnples was done. Both steady-state and time-resolved reflectance measurements were
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made to obtain information sensitive to sub-surface sample composition. Chemometric

approaches to sample calibration allowed depth-resolved estimates of absorption to be

made in samples of unknown composition. In addition, the chemometrical approach to

analysis provided a means ta investigate the nature of photon propagation in layered

media.

In the final phase, time-resolved and steady-state confocal imaging was employed

for analysis. With this approach, quantification of absorbing constituents was done

without calibration. This method offers the advantage of simple, rapid analysis of

layered scattering/absorbing samples.

This dissertation is presented in seven chapters that develop the three phases of the

research. The introductory chapter provides an overview of near-infrared analysis of

scattering media. The physics of light transport, imaging and quantification

methodologies are also presented.

1.2 Introduction to Near Infrared Sample Cbaracterization

In 1800. William Herschel experimented with a pnsm and a thennometer to

detennine which color in the visible spectrum was responsible for heat in sunlight. He

observed that when the thennometer was positioned past the red end of spectrum. a

marked temperature change occurred. 1 He named this invisible light infrared, meaning

"below red'. Over the next eighty years, the infrared portion of the electromagnetic

spectrum (typically defined from 750 nm to 2500 nm) remained primarily a curiosity, as

it was difficult ta make spectroscopie measurements in the region. With the development

2
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of radiation dispersion and detection methods in the 1880s, the work of Abbey and

Festing! and later by Cobientz3 led to the recording of infrared spectra of \vell over one

hundred organic compounds. However, it was not uotil World War II that the use of

infrared spectroscopy became more wide spread with the development of commercial

instruments for routine analysis. ~

[n the 1950s. further advances in infrared instrumentation provided a means for

spectroscopie analysis on a wider range of materials. Spectroscopists primarily

concentrated on the mid-IR range from -1500 to 6000 nm because it was found that

many compounds exhibited a unique spectrum or 'fingerprint' in this region.5 Near

infrared assessment of complex samples debuted in the late 1950s when the United States

Drug Administration required new methods for rapid analysis of agricultural

commodities. Work by Karl Noms demonstrated that diffuse reflectance spectra of

complex biological samples could be obtained using NIR light. 6 This important finding

led to a vast increase in the range of possible analyses. Currently, NIR spectroscopy is

used as an analysis tool in many fields from agriculture to medicine.

In industry, near infrared (NIR) spectroscopy is used in the analysis of latex

suspensions for paints,7 particle sizing8.9 and for quality control. lO
-

14 It is aiso used for

phannaceutical tablet analysis,15 and detennining moisture content in foods. 16
-
18 The

success of the NIR techniques of analysis stem from its speed, ease of sample

preparation, multiplicity of analyses from a single spectrum and its non-consumption of

the sample. 19

One of the most exciting applications of NIR spectroscopy is in the analysis of

living samples. In c1inical medicine, tracking changes in the physiological or metabolic

3
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state of tissue is key in diagnosis. Using NIR light, hemoglobin,::!o-2~ myoglobin25-27 and

cytochrome aa/S
-
32 levels may be determined in vivo. The development of pulse

oximetry systems has now revolutionized patient blood oxygenation monitoring.26.17

Using a pair ofNIR wavelengths, the relative amount ofoxygenated hemoglobin in blood

may be monitored. The success of this non-invasive technique has made pulse oximetry

a valuable tool in neonatal and intensive care unitS.33-35 Currently, NIR methods are

being developed for non-invasive glucose monitoring.36-39 Although controversy persists

about whether this goal has been attained, such a measurement will offer the possibility

for rapid analysis of blood sugar levels for diabetic patients. Another approach to critical

care monitoring is the determination of lactate levels in whole blood. This is has done

using a minimally invasive approach ill vitro.~0.41

In addition to patient monitoring, NIR tissue spectroscopy is being used to

diagnose disease. Through statistical analysis of NIR tissue spectra collected from a

population. spectroscopie markers of disease may be found:~2 Examples include ill situ

measurements of pulmonary edema,~3.~ myocardial disease~5 and pre-cancerous

.l6.litumours..

The region between 600 and 1900 nm provides a 'therapeutic window' in which

absorption From water and tissue components are relatively weak. Overtone absorptions

arising From infrared transitions from non-adjacent energy levels are prevalent in the

region. In addition, combination bands due to the interaction of multiple vibrational

modes are common and are typically quite specifie to certain tissue components. For

instance, the sum and differenees of the fundamental vibrational frequencies composing a

combination band around 1020 nm arise from N-H bonds in protein. Overall, the

4



• presence of weak O-H~ C-H and N-H overtone and combination bands arising from

water~ fats and proteins allow for quantification in tissue. Table 1.1 lists a few

components of tissue along with their corresponding NIR absorbance regions.

Table 1.1 Absorption regions of common tissue components.

Component
water
fat
glucose
protein
lactate
arnmoma
starch
hemoglobin
myoglobin

1\TJR absorption region (nm)
760.960
900,913,1037
2123~2272,2325

970 - 1020
2166.2254,2292
2132.2232
990
760
755

Vibration
O-H str. overtone
C-H str. combination
C-H str. combination
N-H str. overtone
C-H and N-H str, combination
N-H str. combination
O-H str. overtone
electronic transition
electronic transition

•

•

In tissues where scattering levels are low, NIR light may penetrate up to several

centimeters. However \vhen scanering levels are high, a ray of NIR light will become

diffuse and follows less weIl defined paths through the medium. As the incident and

scattered light travels through the tissue~ the dielectric constant of the medium will

influence the properties of the radiation. As such, light scattering in tissue arises from

abrupt changes in the refractive indices at cell membranes, mitoehondria, collagen and

~-

other extra-cellular components.) Although light scattering presents challenges for

monitoring chemical species with classical spectroscopie techniques, measures of

scattering can encode rich structural infonnation about a sample. It is this challenge

which drives active research in the area.

Presently. intense research is aise being done to image in turbid samples.

Tomographie or cross-sectional imaging becomes complicated beeause visible and NIR

light does not take a precise path through the sample. This ambiguity causes problems

5
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for many reconstruction algorithms as they are typically based on the assumption that a

straight optical path exists between the radiation source and the detector. In spite ofthese

problems, cIassical imaging techniques like those found in X-ray Computer Aided

Tomography (CAT), have been adapted for NIR imaging in scattering media. Qualitative

images of hard and soft tissue in the mouth,48 oxygen profiles in the neonatal brain36 and

erude cross-section images of the human arm49 have been produced. AIthough much

progress has been made. it remains difficult to obtain quantitative images when scattering

levels are high. Il is the subject of this project to tackle the problem of quantification in

layered tissue-like analogues.

1.3 The Interaction of Light in Turbid Media

Typically. two major proeesses occur when NIR radiation interacts with a turbid

medium: scanering and absorption. In this section, the physics of these processes is

discussed.

/.3.1 SCQttering theory

\Vhen electromagnetic radiation traversing a medium of a given refractive index

crosses a boundary into another material of different refractive index several processes

may occur. The radiation may be reflected, refracted or scattered. In addition, a change

in polarization of the light may OCCUT. These optical phenomena result in changes in

both the direction and properties of the incident light ray. Typically, however, these

'elastic' processes do not involve a change in the frequency of the incident ray.

6



• Elastic scanering rnay be classified into two main types: Rayleigh scattering and

Mie scanering. Table 1.2 gives sorne approximate refractive index and size criteria for

these types of scanering. In Rayleigh scanering, the scatterer may be considered to be a

point source of secondary emission.50 Rayleigh scattering is characteristic of scattering

from particles with dimensions much smaller than the incident wavelength. Scattering

from particles such as smoke and fog faH into this category.50

Table 1.2. Scattering types.

Scatteringtype

Rayleigh
Mie

Refractive index
requirement•

!(llsillm - 1)1 « 1
I(lls/llm - 1)1 » 0

Size requirement"

ds < 0.05 Â.

ds > À.

•
'"115 and llm are the refractive indices of the scatterer and surrounding medium
..ds is the major dimension of the scatterer

Lord Rayleigh was the tirst to investigate the dependence of scattered light intensity on

wavelength. He discovered that an incident unpolarized electromagnetic wave

interacting with a single particle produced a scattered beam irradiance in the farro,

E = 8Jl"(a')~(1 +cos~ B)Eo
() ;..4d 1

(1.1 )

•

where a' is the polarizability of the particle, Â. is the wavelength, () is the angle between

the incident and scattered ray, Eo is the incident beam irradiance, and d is the distance

from the scatterer to the detector. Equation 1.1 predicts that intensity of the scanering

radiation intensity is inversely proportionaI to the fourth power of the wavelength. This

wavelength dependence is commonly used to expIain the bIue color of the skYe During

7
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the day. the short wavelengths of light are efficiently scattered by dust particles and waler

vapor in lhe atmosphere al large angles relative to the light path.50

Unlike Rayleigh scattering, Mie scattering occurs from large particles of

relatively high refractive index. The particles involved are sufficiently large and cannot

be considered point sources of secondary emission. Examples of Mie scatterers include,

milk fat suspensions, blood ceUs and collagen fibers. When these particles scatter light,

different regions act as distinct scattering centers from which constructive and destructive

intertèrenee occurs bet\veen scattered rays.

Light rays which are scattered backward toward the incident source are very

susceptible to destructive interference. This results in a complex scanered intensity

distribution envelope which is anisotropie and predominately forward directed. Using

Mie theory. the exact fonn of the angular distribution of scatter intensity or phase

function may he computed numerically for many simple geometric shapes.51
.52 However.

these computations are tedious and often a simple measure of the broad characteristics of

the angular intensity distribution around a scattering center is sufficient. To facilitate

such computations. Henyey and Greenstein developed a simple polynomial function

which characterizes the broad features of the phase function for a forward scattering

particle.53 The shape of this function is controlled by a variable. g the average cosine of

the scattering angle. This variable is defined as,

g = (cosB) = tr-!(u,n')cosB dU' (1.2)

•
where /(0.,0.') is the phase function. (0. represents a space unit vector in the direction the

incident ray takes toward a scattering center and n' is the vector in the direction a

scattered ray takes away from the center.) In general, g describes the anisotropy of the

8
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scattering. For a particle that scatters isotropically, g is O. If the particle scatters more

light to\vard the forward direction, g is positive «() ~ 0°). Likewise, if more light is

scattered back toward the source, g is negative «() ~ 180°). Typical values of g for

human tissue and for milk fat range from 0.8 to 0.97 in the NIR region. 54

When considering the optical properties of a collection of particles, as In a

suspension. it is convenient to consider each scatterer as an attenuator of light intensity.

ln generaI. a light ray traversing through a suspension will experience more scattering

events when the density of scatterers is high than when it is low. A comparison between

the light attenuation in a bulk scattering medium with one in suspension may he made by

expressing the scattering cross section per unit volume. The result is a volume

attenuation coefficient or "scattering coefficient", Ils and has units of reciprocal length.

The scattering coefficient may he seen approximately as the number of scattering events

that occur per unit pathlength. Conversely, the reciprocal of the scattering coefficient has

been tenned the mean free path between scattering events (in the absence of light

absorption). [n the literature, J.ls is stated in units of cm- I or mm- l
. In this work J.ls is

expressed in mm- I
. As an example, Ils is typically around 15 mm- l for skim milk (lOlO

milk fat) and 52 mm-' for whole milk (3.5% milk fat).55

[n general. the scattering coefficient is proportionaI to the number of suspended

scatterers per unit volume. However, when the density is sufficiently high, the effect of

other nearby scatterers reduces the measured scanering coefficient. This effect suggests

that a more complex relationship exists between collections of scattering particles over a

broad range of concentrations.56

9



• J.3.1 Absorption theory

When light passes through a sample containing an absorbing species, a reduction

of intensity occurs. This attenuation is related to the incident light intensity 10, the

concentration of the absorbing species, c, and the pathlength through the sample, 1. If the

absorber concentration is unifonn throughout the sample, then the Beer-Lambert relation

may be used to calculate the exiting light intensity, 1. This relation may be written as,

(1.3)

where a is the proportionality coefficient. It can be seen that the intensity decreases

exponentially \Vith optical pathlength and with absorber concentration. The Beer-

Lambert relation is also commonly expressed in tenns of an absorbance, A as,

where E is the molar absorption coefficient, E=a lIn 10 and ///0 is called the transmittance.•
1

A = -log - = ccl
10 1

o

(lA)

•

The coefficient E depends on both the absorber and the frequency of the light. The molar

absorption coefficient has units of (concentration x lengthr l and is normally expressed in

When investigating an absorbing system where E and the molar concentration of

the absorber are not knO\vn. it is common to express the constant of proportionality

between the absorbance and the pathlength as the absorption coefficient, J.1a = 2.303 E c.

The Beer-Lambert relation may be then rewritten as / = IDe-J'aI or A = J.1a 1/ 2.303. The

quantity fla is analogous to J.1s, and may be seen as a measure of the number of

"absorption events" per unit pathlength. As with the scattering coefficient, values of J.1a

are listed in units of cm- l or mm- l
. In this work, units of mm- l are employed throughout.

10
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Typical values of the absorption coefficient range from 0.01 rnm- 1 to 1 mm- I in human

tissue in the near infrared. In milk55 at 632 nm, the absorption coefficient is 0.0005 mm-I
.

One of the fundamental assumptions of the Beer-Lambert relation is that

absorption is a continuous process. However, in scattering media this assumption may

not hold. Examples of non-continuous absorbing systems include smoke and coated

powders. In these cases, scattering and absorption are not independent processes. It is

only when both the optical pathlength through the scatterers is small relative to the total

pathlength and the scatterers themselves are non-absorbing that the Beer-Lambert relation

may be used.

1.4 The Propagation of Light in Turbid Media

An understanding of the transport properties of light in scattering media is

important for both quantitative and qualitative sample analysis. This knowledge gives

the analyst a means in which to interpret the results of an absorbing constituent assay. In

a turbid sample, ray path information is ambiguous due to the dispersion of light. This

problem complicates analysis as the Beer-Lambert relation may not be applicable for

estimating concentrations of absorbing constituents. However, such variations in

pathlength through a sample may provide valuable qualitative information for the

diagnosis or disease43
-
n or food freshness. 16 The optical pathlength through a sample

changes with scanering and absorption levels, wavelength and detection geometry. As

shown in Figure 1.1, a photon may take several paths through a sample. Photons may

traverse ballistically through a specimen with linle or no scattering or take highly random

Il
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paths before exiting. Measures of the distribution in optical pathlengths through a

specimen may be resolved using photon time-of-flight or frequency domain techniques.

The results from these techniques have led researchers to a greater understanding of the

interactions of light in scattering media. [n this section, theoretical models that describe

these time or distance variations are introduced.

1.4.1 Radiative transport theory

Over the last 60 years, many theoretical models have been developed to explain

the physics of diffusional transport processes. Models of neutron diffusion were

necessary in the development and control of nuclear reactors. 57 One of the fundamental

models for neutron diffusion is the Radiative Transport Equation given in Equation 1.5.

.!. è f{n,p) + n· VI(n,p) = -(Ps + Pa)/(n,p) + P s ff(n,n')f(n,p)dO' +S(n,p)
c ot

l II III IV V (1.5)

This equation attempts to characterize the time dependent nature of particles which

traverse a scattering medium. The quantity of interest 1(0.,15) represents the intensity,

speed and direction of neutrons (or photons) at a given point in space. The quantity j5 is

a collective representation of the space (x,y,z) and time (t) coordinates expressed together

as (x,y..:,ct), c is the speed of the particle and 0. is a directional unit vector. Other

quantities have been defined previously. For c1arity, Equation 1.5 has been split into five

tenns, (1 - V) and a photon will represent the equivalent of the particle. Essentially the

equation states that the rate of change of light flux into and out of a given point (1 and II)

is related to the rate at which light is being attenuated due to absorption and scattering

13



• processes (III). and to the rate at which it is transferred into a glven point by

neighbouring scattering processes (IV) or by a source (V).

Although this differential equation has been solved analytically in special

cases,57.58 it does not provide a practical model for investigating the nature of light

transport in scattering media. Work by Glasstone57 and Ishimaru58
•
59 have reduced

Equation 1.5 to a diffusion type equation when the system contains quasi-isotropie

scatterers. The result, given in Equation 1.6 is the first order (Pl) approximation.57 The

time-dependent diffusion equation May be written as,

1 a ..
--C1>(r,l) + DV-et>(r,l) ::: - ,ua C1>(r,l) + S(r,t)
c al

(1.6)

•

•

where D is the diffusion coefficient defined as [3,ua + 3,us(l-g)r l
, and et>(r,t) is the photon

tlux at a position r. at time l, and S(r,t) is a source term. The scattering anisotropy in the

diffusion coefficient arises in the form of a scalar factor, (l-g), with the scattering

coefficient. This reduced scattering coefficient, ,us' = Ps( l-g), may be regarded as an

effective isotropie scattering coefficient that represents the cumulative effect of several

forward scattering events.

1.4.2 rime dependent solution to the diffusion equation

The diffusion equation given in Equation 1.6 may be solved using Green's

functions when the source term is a single, short pulse of light.6o If the light source is

directed into a semi-infinite slab of scatterers, the time-dependent solution for the photon

intensity out of the sample sorne lateral distance r, from the source is,

14
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4rrcD ,- t 51

- 4ct / D
(1.7)
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where =u = [(1 - g ),us t l
, c is the speed of light in the medium and D is the diffusion

coefficient. Equation 1.7 may be seen as the time-resolved remitted (reflected) light

intensity at a detector placed at a source/detector separation distance of r. Note that

Equation 1.7 is valid when Jls» J.la and r is sufficiently large that many scattering

processes have occurred before light reaches the detector. The remitted light intensity is

controlled by three tenns. The tirst tenn is a scaling factor dependent on the reduced

scattering and absorption coefficients, and the speed of light through the medium. The

second is a Beer-Lambert absorption teon that relates the attenuation of light as a

function of distance traveled through an absorbing medium. The third tenn is analogous

to the exponential in Fick's second law of diffusion. This tenn relates the diffusion of

light as a function of time and detector placement.

If the time-resolved remitted light intensity given in Equation 1.7 is plotted as a

function of sample composition, the nature of light propagation through a turbid medium

may be better understood. Figure 1.2 dcmonstrates the effect of absorption and scattering

changes on the theoretical diffuse reflectance photon time-of-tlight distribution as seen

by a point detector placed 15 mm away from the source. The sample has a refractive

index of 1.33 and contains isotropie scatterers, i.e. g = O. The initial absorption and

scattering coefficients are 0.05 mm-1 and 40 mm-I respectively. Changes in absorption

and scattering levels were made in +20/0 increments from the nominal values. Il may be

seen that from Figure 1.2 that when either absorption or scattering is increased, the

overall detected light intensity decreases. When the scattering level is increased and the

15
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absorption level is held constant, the peak in the time distribution shifts toward longer

times and the distribution broadens. This is expected as the light must travel a longer

path From source to detector as it undergoes relatively more scattering events. Likewise,

the intensity decreases because it is less probable that any given photon will make it to

the detector. When absorption level is increased while the scattering is held constant, the

peak maximum shifts to\vard shorter times. This is due to the photons which have been

scattered many times having a greater probably of been absorbed before reaching the

detector. Thus, it can be seen that changes in scattering and absorption levels have a

marked influence of the average pathlength travels through a turbid sample.

The scattering and absorption properties of a turbid sample may be estimated by

comparing the measured diffuse reflectance or transmittance signais with those obtained

from the diffusion model.60
-
62 It has been shown that using the time-resolved diffusion

mode1, estimates of absorption and scattering levels in a homogeneous sample may be

made to within 100/0 of their reference values.63 The technique, however, is limited to

samples which contain high concentrations of scatterers. Estimates of the sample

absorption may be made by analyzing the slope of the edge of the photon time

distribution.b3

1.4.3 Arfollte-Car/o photon modellillg

A versatile means by which the interaction of light with a scattering medium may

be modeled is by Monte-Carlo simulation. Monte-Carlo simulations of this type involve

tracing individual photon histories through the medium.64
•
65 During a simulation,

photons are released into the system and statistics about the quantity of interest are

17
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detennined. The advantage of the technique is that complex inhomogeneous samples of

arbitrary absorption, scattering and refractive index and shape may be handled. [n

addition, the incident light source may he modelled either as a collimated beam(H or one

that is focussed inta the sample.66 For the simulation of light scattering, the Henyey

Greenstein phase function is commonly used.S3 This function is usually mapped such

that a pair of random numbers between 0 and 1 correspond to a given scattering angle in

space. The free path between scattering events is typically modeled according to a

distribution function:~9.57 One of the major disadvantages of the technique is that a large

number of photon histories must be followed in order to obtain statistically meaningful

results. A computer program that models the time course of a bolus of photons through a

layered scatteringlabsorbing medium is listed in the Appendix.

Another type of Monte-Carlo model is the Random-Walk model. 67 In this method,

photon propagation is done over a set of discrete grid points. One of the key advantages

of the method is that only a few rules are needed to move the photons forward, to change

direction or to simulate an absorption event. However, because this approach constrains

the movements of the photons, simulations ofanisotropic scattering are not weIl handled.

1.4.4 Fillife-efemenl modelling

Finite Element Methods (FEM) have been increasingly employed for solving

photon propagation problems in complex samples.68
,69 The basic concept of the finite

element approach is to sub-divide the sample into smaIl elements or nodes and to solve a

set of simultaneous equations which describe the physics of each uode. A numerical

solution of a differential equation is made which describes the photon flux into and out of
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each node during a small time interval. The nodes may be spaced regularly throughout

the sample or may be more concentrated in regions that are difficult to model. These

may be boundaries and regions where the photon flux is anticipated to be large.70 [n

addition to handling complex sample geometries, finite element solutions are not

statistical in nature. However, the overall quality of the solution is dependent on the time

step and the node spacings chosen. Therefore, small time steps may be required to

accurately model the diffusion process. Because of this, finite element methoJs tend to

be slow and have not gained wide popularity.

/.4.5 Kube!ka-Alullk mode!

ln 1931. Kubelka and Munk proposed a theory of light transport in which two

light fluxes travel forward and back.~ard in the medium.71 A number ofresearchers have

since refined the theory and have made extensive comparisons with experimental data. 58

It was found that the K-M theory could describe the variations in remined light intensity

if the source of illumination is diffuse and the medium diffusely scatters light.58 The

technique involves taking both a reflectance and transmission measurement, and by using

simple algebra, relative measures of absorption and scattering levels may be made.

Although this method is often used in the analysis of powders,8.9 ils empirical nature and

the range of validity have not been weil established.58 ln addition, when both the

scattering and absorption levels vary, the K-M model is difficult to interpret.
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1.5 Imaging in Scattering Media

/.5./ Classical tomography

Tomography, a branch of radiology concemed with the display of cross-section

information, has become an important tool in medicine. Today's computed tomography

(CT) systems allow for rapid 2D and 3D imaging of the human body from X-ray

shadowgrams. These instruments have been made possible in part due to the rapid

advancement of computer technology over the last 30 years. However, before the

existence of powerful computers and Fourier Transfonn (FT) based imaging processing

methods,72 ingenious opto- and electro-mechanical instruments were devised to collect

and process cross-sectionaI infonnation.73
,74 Although many design approaches have

been investigated, common to aIl X-ray tomographie systems are means for obtaining

multi-perspective infonnation about the specimen.

Multi-perspective information may be obtained in two ways. Either the specimen

is precisely rotated between a fixed radiation source and detector, or, a mechanical gantry

is rotated around a fixed body. In either case, it is assumed that the radiation beam

travels in a known path through the specimen from source to detector. If deviations occur

in the radiation path, sample reconstruction becomes ambiguous and a degraded image

results.75

CT image reconstruction is typically viewed as an inversion problem. This may

be thought of as a mathematicaI approach to resolving the absorption properties of each

voxeI from a set ofmulti-perspective intensity measurements. In 1917, Radon discovered

that an object may be reconstructed unambiguously using an infinite number of noiseless

projections.76 Although Radon worked out the equations goveming image
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• reconstruction, it was not until 1956 that the first real image reconstructions were made in

the field of radio astronomy.77

Using the specimen shown in Figure 1.3 as a example, a projection through the

sample is sho\vn. This projection or shadowgram represented by g(x') is a line integral

along the y' axis at a fixed distance along x'. The quantity g(x' ), proportional to the total

attenuation of the ray through the sample, may be written as,

g(x') = lf(x',y')dy' (1.8)

where the function f(.t/,y') represents a 2D sample. The integral may also be stated

relative to a fixed .\')' coordinate system at an angle eas:

Given a series of projections, several approaches may be used to reconstruct a

cross-sectional image of the sample. One of the easiest approaches is by backprojection.

In this method. sample reconstruction is done by backprojecting each projection across

the image plane. After this is done for each projection, an approximation to the original

abject is produced. The technique is attractive because it can be easily implemented

without the need for complicated mathematics. However, resulting images are ooly a

crude approximation to the original object.7S

Another common approach to sample reconstruction is the Algebraic

Reconstruction Technique or ART. In the ART method developed by Gordon el al.,

sarnple reconstruction is done by iterative refinement of an arbitrary initial image.78 The

abject is typically represented as a matrix of values. Projections of the object are

computed by summing along rows, columns and diagonals of the matrix.

•

•

g(B,x') = J,/(x' cosO - y' sinO, x' sinO + y' cosO ) dy' ( 1.9)
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Figure 1.3. One dimensional projection g(8, x') of a two dimensional function fix,y)
obtained by integrating along the y' direction.
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The algorithm applies successive corrections to the reconstructed object to minimize the

difference between the measured and calculated projections. The reconstructed object is

slo\\i'ly refined until either convergence is achieved or satisfactory image quality is

obtained. ART methods are attractive because a priori information about the sample is

easily incorporated into the reconstruction process. The inclusion of a priori sample

information is important to help constrain the image to meel certain criteria such as non

negativity. Although ART methods are widely used. the number of algebraic

computations required may be very large in order to achieve convergence. To avoid such

lengthy computations. analytic approaches to image reconstruction are used.

Fourier image reconstruction techniques were first introduced by Bracewell 10

1956. However, it was not until after the development of the Fast Fourier Transform and

large digital storage systems in the 1960s that this analytic approach to image

reconstruction became practical. The key to Fourier based image reconstruction is the

Central Section Theorem.';! This theorem states that a ID Fourier transform of a

projection of a 20 object taken at an angle e is a radial slice through a 2D Fourier

transform of the object al the same angle. A visuaI description of this concept is given in

Figure 1.4. Therefore to reconstruct an image from a series of projections, a computer

would 'fUr the 2D Fourier domain with ID transforms of each projection, and take the

inverse 2D Fourier transform of the result.

One of the major problems with Fourier based reconstructions is that many

projections are needed to adequately fill the Fourier domain. 75 If projections are not

taken al aIl angles. the Fourier domain will contain a missing cone of information.
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Figure 1.4. Illustration of the Central Section Theoreln: The ID Fourier transform of
g(S, x') equals the radial slice of F(kx,ky) at the same angle S.
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In the image domain, this is manifested as a Iack of detaiIs in directions where

projections \Vere not avaiIabIe. This effect is common to other reconstruction methods as

welI. 79 Ta reduce these deIeterious effects, progress has been made to recover the

missing infonnation by extrapoIating from known information into the missing cone.75
•
79

1.5.l Imagillg in scatterùzg media using ballistic /ight

In general, the fundamentaI concepts of X-ray CT imaging may be applied for the

analysis of a \Vide variety of sampIes using NIR light.8o However, the effects of

scattering complicate image reconstruction. The key problem ta imaging in absorbing

and scattering media is to extract infonnation regarding a given object embedded in the

medium. The abject of interest, or phantom, often is distinguished by a small variation in

the scattering and absorption properties as compared ta the surrounding medium. 81 Ta

tackle this problem. great efforts have been made ta isolate the component of light that

traverses through a sample in the most direct path from source to detector.

If a short pulse of light is transmitted through a scattering medium and is detected,

the component of light that arrives earliest will have undergone the fewest scattering

events. The ballistic component which has not undergone any scattering retains the

coherence properties of the original pulse.82 Following this component is light which has

been scattered only a few times. For tomographie imaging applications, the use of

straight-path ballistic light is important. However, if the thickness of the sample exceeds

more than 5-10 scattering mean free paths (MFPs), the ballistic Iight intensity has been

estimated ta falI below the photon shot noise limit.81 Therefore for imaging in highly
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• scattering medi~ the problem to be solved is how to separate the ballistic or near ballistic

light component from the highly scanered light.

Over the last 20 years~ various techniques have been employed ta suppress

scattered light from imagjng based on ballistic light. These include time gating,

frequency domain. polarization and spatial filtering techniques. In time-gating

•

•

techniques. the distribution of path lengths through a scattering sample is resolved

through the photon time-of-flight distribution. If a transmission measurement is made,

the ballistic light component has the shortest time of flight. rime gating the ballistic light

component may be achieved with the use of a Kerr gate,82 a streak camera83 , by photon

. 84 b . 1 h d . 48 85·87 E h h d h' dcountmg or yoptlca co erence etectlon. . ac met 0 as ItS own avantages

and disadvantages, however, the most sensitive include photon counting and coherence

detection.

In optical coherence techniques~ a Michelson type interferometer is employed.

Instruments for optical coherence tomography (OCT) are generally reflectance based. [n

the system shawn in Figure 1.5. a pulse of light travels down a bifurcated fiber optic into

a sample. on the illumination arm, and toward a reference mirror on the reference arm.

The back reflected light from the sample and reference mirror propagates back down the

fiber into a light coupler. A portion ofthis light is detected. To probe the sample axially,

the reference arm pathlength is varied by moving the mirror. As the mirror is moved,

interferences occur between light back reflected from the illumination and reference arms

and the detected intensity is moduIated. The resulting amplitude of the heterodyned

signal may be plotted as a function of axial position producing an axial or A-scan..~8 By

translating the sample arm traversely, a series ofA-scans may be combined to create a
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Figure 1.5. Schematic of an Optical Coherence Tomography system.
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t\VO dimensional intensity plot or B-scan. [n a microscope OCT system, resolutions of

<20 }lm in the axial and lateral directions can he obtained with a 10 Jlm incident beam

• ~8spot size.

[n the early 1990s, OCT was tirst demonstrated as a potentially powerful tool for

clinicat medicine.85 Since then it has been used for the diagnosis of disease in the eye

and other transparent tissues such as in the intestines.86 However, imaging in scattering

media is difticult since the portion ofbackscattered photons that pass the interferometric

gate of the OCT decays exponentially with probe depth.87 [t has been demonstrated that

at even low levels ofscatter (Jls = 6 mm-I), the maximum prohing depth is on the arder of

1 to 1.5 mm.87 Likewise, it remains difficult to obtain quantitative infonnation from

OCT as the available models do not account for the complex interference effects of

backscattered light in tissue.87

For imaging in highly scattering macroscopic systems other techniques such as

polarization gating and spatial filtering are better suited for suppressing the detection of

the scattered light component. In polarization gating methods, scattered lighted is

suppressed because of ilS random polarization state. Ballistic light, however, retains the

polarization of the original beam entering the specimen. The ballistic light componenl

may be selected by aligning the polarizer in the same direction as the incident light.

However, in this simple approach, the intensity of the scattered light component is

reduced by only one half. Using a polarization modulation technique, the rejection

efficiency may be vastly increased. 81 The method resolves the polarization state of the

light exiting the sample and uses this infonnation to subtract the diffuse background.88
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This technique has been shown to be of considerable use when Imaglng 10 highly

anisotropie scattering media up to depths of 50 MFPS.89

In spatial filtering methods, the idea is to allow the ballistic light component to

pass through a pinhole while blocking a majority of the scattered light. This type of filter

is most efficiently applied to imaging a point object.90
•
91 When imaging is done in this

manner, a seanning system is used to reconstruct two and three dimensional images. The

confocal microscope developed in the 1960s is such an instrument. It may he operated in

either retlectance or transmission geometry. A diagram of a simple reflectance mode

confocal microscope is given in Figure 1.6. The ability of the confocal optic geometry

for depth discrimination in a sample is inherently related to the way scattered light is

rejected. When imaging in homogeneously scattering media, it has heen demonstrated

that imaging in samples on the arder of 20 MFPs in thickness may be made in

transmission mode and 10 MFPs reflectance mode. 81 Typically, diffraction limited

imaging is the goal of using confocal optics. However it is not known to what depth a

sample may be imaged when this strict criteria is relaxed. This is one of the goals of this

thesis.

1.5.3 Diffuse lighr imagillg

There are several approaches to sample reconstruction based on diffuse light

detection from the sample. Typically, tomographie reconstruction from diffuse light

measurements requires a theoretical knowledge ofphoton propagation in the medium. In

the 'forward problem' based approach, the optieal properties from a sample are estimated

by modelling the experimental responses. Data may be derived from transmission
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Figure 1.6. Confocal optical geometry in reilectance mode.
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• measurements either in frequency92 or time domain,93.94 or with continuous wave

measurements from many spatially distributed detectors.95 The theoretical model that is

typically employed is either the c1assic diffusion model or one which simulates a defect

. h' h 1 96ln an ot erwlse omogeneous samp e. Although the di ffusion model has been

•

•

demonstrated to be of considerable use for sample resolution, it fails when simulating

complex media of variable absorption, scattering and refractive index. CUITent research

is directed toward efficient and stable solutions to the forward problem that ideally work

without a priori knowledge of the sample.81

Frequency domain techniques, however, have shown considerable promise for

imaging thick scatterili.g samples. With frequency domain measurements, the incident

light source is modulated. This modulated light wave gives rise to the concept of photon

density waves. 97
•
98 Photon density waves have wave-like properties and exhibit

refraction and interference effects.98 The practical advantage of the technique is that an

inexpensive modulated continuous wave laser may be used in place of a pulsed source. A

measure of the detected modulation amplitude and phase properties al10w for the

determination of the mean path length through the sample. This is typically done by

modeling the system using the diffusion approximation of the radiative transport equation

with a modulated light source. Based on amplitude and phase measurements of photon

density waves, images may be obtained by wave diffraction at inhomogeneities. With

this approach, the approximate position, absorption and scattering properties of the defect

may be determined.99

Recently, methods that combine the use of light and acoustic waves have been

employed for tomographie reconstruction in thick samples. The basic concept is to use
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light to probe the contrast between the surrounding medium and the object of interest

while employing ultrasonic waves to transmit this information through the sample.81

There are two approaches in which this may be done. In photoacoustic imaging, shown

in Figure 1.7a, the incident light beam penetrates the sample and is absorbed by the

embedded object. The process of light absorption creates a sound wave that propagates

through the sample where it is detected on the surface by an ultrasound transducer. [n

this approach, tirst developed by Kruger, either pulsed or modulated light may be used. 100

[n the second approach shown in Figure 1.Th, light is modulated by an ultrasound

beam focussed into the sample. The interaction of light with the compressed and rarefied

regions of the sample creates a modulation at the same frequency of the ultrasound pulse.

The light detected on the sample surface has a modulation amplitude dependent on the

efficiency of overlap between regions of high acoustic intensity and light intensity. This

acousto-optic technique, developed by Wang, has been used to image objects on the order

of -2 mm using 1 MHz ultrasound waves. IOI

Typically, the embedded objects imaged are in sharp contrast from the

surrounding medium, in terms of absorption and density. Because of this, qualitative

images are usually reported. Although these acoustic methods may be employed for

imaging 5 cm thick liquid scattering samples with millimeter resolution, the transmission

properties of ultrasound through many samples is poor. 102 [n addition, the transducer

must make intimate contact with the object being imaged. This severely limits the

possibilities for reproducible, quantitative, on-line analysis.
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Figure 1.7. Schematic of(a) photoacoustic and (b) acousto-optic tomography systems.
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1.5.4 Depth-resolved imagillg

Many common materiais consist of Iayers which have different opticai properties.

Examples include, skin, coatings, thin films, and whole fruit. The layers in biological

specimens may be only a few micrometers or as thick as one centimeter in the case of the

skull tissue surrounding the brain. One of the early achievements for non-invasive

infrared monitoring was in the detennination of blood oxygenation status in the brain. [03

Although measurements are possible, the influence of the surrounding skin, skull and

meninges is still not weIl understood. 104 Near-infrared measurements made around the

arachnoid (a filamented substructure of the meninges) have since demonstrated similar

measures of blood oxygenation state even though the structure is almost free from light

absorption and scattering. [04 From this example, it is clear that an understanding of the

optical properties of the surrounding tissue is needed to test the accuracy of a bio

diagnostic tool.

In the late 1970s, the photon propagation properties in two layered biological

systems were studied using diffuse reflectance signaIs. lOS Since then, several groups have

studied the optical properties of Iayered sampies in viVO.lO~.I06 Theoretical treatments the

light diffusion in two-layered media having different refractive indices 107 or with

differing absorption coefficients 108
,[09 have also been developed. An approximate

random walk model has provided valuable insight into the diffuse reflectance properties

of a two-Iayered scattering/absorbing sample. 11O
,111 The results from the random walk

model yielded a simple analytical approximation for the surface intensity profile when

the absorption coefficient of the upper layer was greater than that of the lower layer. 1
10
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The approach however provides only semi-quantitative infonnation of layer absorption in

a medium containing isotropie scatterers.

In another study, the influence of a two-Iayered scatteringlabsorbing system on

the quality of the estimated optical properties was determined.' 12 Using a least-squares

fining algorithm. the optical properties of the layers were estimated from a simulation of

the diffuse reflectance. Both Monte-Carlo and diffusion models were investigated. In

general, the classic semi-infinite diffusion model provided a poor measure of absorption

and scattering. It was further demonstrated that the quality of the estimated scattering

and absorption coefficients was strongly dependent on the source/detector separation

distance. In this case. the diffuse reflectance signal at small lateral separations was more

dependent on the absorption properties of the upper layer than on the bottom layer. The

converse was round at large source/detector separations.

Recently, several groups have investigated time-resolved diffuse reflectance

measurements from layered simulated tissue samples. Experiments have been made in

gels \vith different concentrations of titanium dioxide and ink, '().l and in transparent

silicone containing polystyrene spheres and charcoa1. 113 Work by Hielsher el al. have

found that measurements of absorption in the lower layer were possible when the upper

layer contained a strong absorber. 104 Absorption estimates were made by fitting the

decaying portion of the measured time-of-flight profile to the time-dependent solution of

the semi-infinite slab diffusion model (Equation 1.7). The estimation was possible since

the highly-absorbing upper layer changed ooly the amplitude of the time-of-flight

distribution and not the shape of the decaying portion. 104 However, when the technique
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was applied to a multi-Iayered system~ the estimation of absorption coefficients deep

\vithin a sample was complex.

Kienle el al. have aiso demonstrated that the scattering and absorption properties of

two-Iayered samples may be estimated over a narrow range from time-resolved and

frequency domain measurements. I
13 Diffuse reflectance data was collected from three

different source/detector separation distances. A solution of the diffusion equation for a

two-Iayered system allowed for optical property estimation in both layers by a fit to the

experimental data. The results demonstrated that the reduced scattering and absorption

coefficients in both layers may be estimated to within 100
/0 in samples containing low

levels of scatterers. In addition~ estimates of absorption in the lower layer could be made

more precisely in a sample containing a thick upper layer using frequency domain data.

ln a related investigation~ it was found that if the thickness of the top layer was known a

priori. then estimates of scattering and absorption in both layers were possible from a

single time-resolved measurement.

The choice of imaging geometry is aIso critical to the success of the measurement.

When analyzing layered samples, light collection is typically done in reflectance

geometry since the integrated signaIs from a transmission measurement are largely

redundant. However. the reflectance geometry presents other challenges when

quantifying layered samples. Detected light that penetrates into the deeper layers must

pass through the upper layers twïce. This ill-conditions most classicai approaches to

tomographie reconstruction. In this dissertation~ methods to reduce the arnbiguity in

sample quantification are investigated.
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• Depth-resolved measurements of scattering and absorption are typically made

possible by using a theoreticaI model and a non-linear fitting procedure. Although the

radiative transport properties through layered scatteringlabsorbing samples may he

approximated either anaIytically or by Monte-Carlo simulation, these modeIs are quite

limited. The refractive index, scattering coefficient and anisotropy of a reaI sample can

not be perfectly modelIed. Without a sophisticated physical model, accurate

quantification in samples even of moderate complexity have not been possible. It is the

focus of this project to find new approaches for quantification in Iayered

scattering/absorbing media.

1.6 Research Objectives

• The goal of this research is to make quantitative depth resolved measurements in

scattering/absorbing media. Towards this end, this work has been divided ioto a series of

chapters each which provide insight ioto the effect of scattering and absorbing

constituents on sample quantification.

In Chapter 2, quantification is done in granular samples. Estimates of scauering,

absorption and particle size are made using statistical descriptors of the photon time-of

tlight distribution from diffuse reflectance measurements. An analysis of the optimal

linear combinations of descriptors chosen by a stepwise muItilinear regression routine

correIated to a particuIar sample property will allow insight into the nature of photon

propagation in granular media. The extent ta which quantification may be made is

compared \Vith similar work done in liquid samples.

•
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In Chapters 3 and 4~ tomographie reconstruction of layered scatteringlabsorbing

specimens is investigated. Both steady state and time-resolved reflectance measurements

were done to obtain infonnation sensitive of changing layer composition. Partial least

squares and stepwise f!1ultilinear regression techniques are then employed for

eonstrueting linear models of absorption in a given sample region. Using this approach,

the extent to whieh estimates of absorption may be made in each layer independently is

deterrnined.

Tomographie reconstruction of layered samples is further considered in Chapters 5

and 6. Using knowledge gained from work done in Chapters 3 and 4, more directed

approaches to sample quantification are done. In Chapter 5, tomographie reconstruction

is made by employing a priori infonnation to improve estimates of absorption deep

within a sample. In Chapter 6, confocal optics is used to suppress detection highly

scattered light. In addition to providing enhanced quantification, the work presented in

Chapters 5 and 6 demonstrate the Iimits to which subtle changes in absorption may be

deterrnined deep in a highly scattering specimen.
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Chapter 2 Particle Sizing and Optical Constant
Measurement in Granular Samples using
Statistical Descriptors of Photon Time-of
Flight Distributions

Quantitative analysis of granular samples is important to the pharmaceutical and

food industries. Solid granular samples are typically composed of loosely packed

scatterers of a high index of refraction. For finely divided solid materials, a significant

portion of the volume is air. If the particle absorbs Iight, the absorber may be present

inside of the granule itself or coating il. Due to the properties of granular sarnples,

absorption of light is not a continuous process as it traverses the sample. Referring to the

diffusion approximation solution given in Equation 1.7, the light intensity decays

exponentially as a function of distance traveled. In a medium where absorption is not

continuous, but instead associated with scattering events, the Beer-Lambert type

relationship assumed in Equation 1.7 may not be valid.

Estimates of the scattering and absorption coefficient 10 homogeneous milk

samples using time-of-flight diffuse reflectance measurement have been made previously

in this laboratory. StatisticaI descriptors of the broad features of the time distributions

were used for quantification. Stepwise multi-linear regression of the descriptors was

used to determine the optimal combination of descriptors correlated with changes in

absorption and scattering. Results demonstrated that descriptors associated with the

trailing edge of the time profile were mast carrelated with absorption changes in a

sample. Likewise, descriptors of the rising edge of the time distribution were correlated
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\vith changes in the scanering level. It is unclear whether similar descriptors are

appropriate for quantifying composition changes in granular media.

In this study. measurements are made in homogeneous granular samples. This

provides a fundamental basis for which many scattering samples need to be analyzed

such as those later used for tomographie analysis.

2.1 Abstract

A method is described for optical constant estimation and particle sizing in granular

samples using diffuse reflectance measurements. Statistical descriptors of the time

resolved photon distributions were used to obtain information inherent to absorption and

scattering processes in a sample. Changes in a sample's absorption and scattering

properties and apparent particle diameter were simultaneously estimated using stepwise

multi-linear regression (SMLR) and partial least squares regression (PLS). Models were

constructed using time distributions taken at both single and multiple radial

displacements between source and detector. SMLR estimates of absorption and particle

diameter required descriptors related to the trailing and rising edges of the time profiles

respectively. The inclusion of multiperspective information allowed for improved

estimates for aIl quantities. Using statistical descriptors, a robust means for simplifying

complex photon time distributions into measurable parameters was found. It was found

that the SMLR model gave slightly bener results compared with the PLS mode!. The

absorption coefficient~ scanering coefficient and apparent particle diameter were

estimated to within 10, 9 and 7°!<l of their respective reference values with SMLR. In the

53



•

•

•

future, this approach may be used as a means in which to develop practical

instrumentation for on-line, real-time characterization of absorbing granular media.

2.2 Introduction

Particle sizing of powders and granular samples are of great importance to many

areas such as in phannaceutical formulation and abrasive manufacturing. Among the

range of partic1e sizing techniques cornmonly used, optical methods are particularly

attractive for remote or on-line analysis. Optical techniques provides a means for rapid

and precise measurement in a wide range of samples such as aerosols, dry powders, and

suspensions. l
-
s For particle sizing in the range of 0.1 Jlm to 1000 flm, single scattering

techniques such as dynamic-light- or forward-angle-scattering may be used for particle

size detenninations of dilute concentrations of scatterers.2 With dense suspensions or

powders however, light is multiply scattered and the mathematical solution becomes

ambiguous.

Measurements of the diffusely backscattered light from a powder or suspensions

reflectance measurements have been used for particle size estimations.6
•
7 In addition to

physical property assessment of a sample, diffuse reflectance methods offer an advantage

over other techniques by allowing the potential for concurrent chemical quantification.

For relative measures of absorption and scattering, Kubelka-Munk (K-M) theory was

developed to provide a simple model of two or more light fluxes in scattering media.8
•
9

In this approach, the scattering and absorption processes are assumed to be independent

of each other. Although K-M theory oversimplifies the interactions of light with a

sample, this model has been successful for physical quantification of pharmaceutical
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powders of constant chemical composition.7 However when both scattering and

absorption properties change simultaneously, the K-M approach has large error.

An alternative approach, diffusion approximation of the radiative transport

equation describes the time evolution of a short pulse of light as it propagates through a

sample to the detector.lo-I~ The characteristics of the detected photon profile at a given

source to detector separation distance is a function of the optical constants, Ils and Ila

which quantify the number of scattering and absorption events per unit length. When

used for a limited range of variation in scattering or absorption, the diffusion model

provides estimates to within 10% of the measured time distributions. l
:! Recently, Richter

et al. have used a diffusion theory for particle sizing of non-absorbing titanium dioxide

suspensions using frequency domain measurements. IS Estimates of the scattering

coefficient alone were made by modelling the response with diffusion theory. Mean

particle size was then derived from the scattering estimate using Mie theory. Their

results suggested that particle sizing of suspensions in the sub-micrometer range is

possible \vith this technique.

Currently, the application of diffusion theory has been limited to small particle

size ranges and changes in absorption. When used on large particle sizes or when particle

absorption also changes, the diffusion model produces large errors. IO In addition, it is not

clear whether the particle sizing technique based on the scattering coefficient and Mie

theory may be extended to a broader particle size range.

Using the diffusion approximation, it has been demonstrated that estimates of

scattering are possible when the sample has a homogeneous refractive index and

absorption occurs independent of scattering.8
•
16 In granular samples however, there is
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no opticaI unifonnity and absorption events are linked with scanering and reflection

processes. For non-suspended media, this approximation may not hold and may present

di fficuIties for accurate quantification.

Recently, we have demonstrated that the absorption and scanering coefficients

may be accurately estimated using statistical descriptors of photon time-of-flight

distributions in liquid samples. 10 Although the scanering and absorption coefficients

could he estimated in liquid samples containing sub-micrometer sized scanerers, it is not

clear whether estimates are possible in granular samples. The infonnation gained from

the use of descriptors would he helpful for developing analytical models.

The goal of this work is to examine the use of statistical descriptors of diffuse

reflectance time-resolved photon migration as a means for optical constant estimation and

particle sizing of granular samples from 25 ~m to 500 JJm. Changes in sample absorption

and scattering properties, and apparent particle diameter are simultaneously estimated

using two regression techniques of the statistical descriptors: stepwise multi-linear

regression (SMLR) and partial least squares regression (PLS). The effect of light

collection geometry on obtaining optimal estimates is discussed. The accuracy of

absorption coefficient estimates and scattering estimates based on Mie theory is

compared \Vith previous work on liquid samples. Results show similarities both in the

estimation accuracy and in the types 0 f statistical descriptors chosen when compared to

liquid samples.
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2.3 Experimental Work

The experimental apparatus developed for time-resolved diffuse reflectance

measurements is shown in Figure 2.1. The heart of the system is a time-correlated single

photon counting instrument which is similar to devices found in fluorescence life-time

studies.l":' A mode-Iocked Ti:Sapphire laser (Mira 900B, Coherent, Santa Clar~ CA)

pumped by an Argon laser (Innova 310, Coherent) was used to produce laser pulses with

a repetîtion rate of 76 MHz. The pulse shape of the laser was measured using an optîcal

autocorrelator and was found to have a width of 170 fs. The laser was tuned to 780nm for

the experiment and the power was measured as 0.51 W corresponding to peak pulse

powers of51 kW.

The output beam was split by a beamsplitter after which 4% of the light was

focused onto a fast photodiode (ET2000, Electro-Optics Technology Inc., Traverse City,

MI). The remaining ponion of the pulse was attenuated by a neutral density tilter and

directed onto the sample using a computer controlled mirror galvanometer (CX660.

General Scanning Inc., Watertown, MA). With the aid of a lens and a mirror, the light

was introduced into the sample perpendicular to its face. A paîr of lenses focused the

light exîting the sample cell at a particular point onto a cooled microchannel plate

photomultiplier tube (MCP) (R38Ü8U, Hamamatsu Corp., Bridgewater, NJ). This optical

arrangement alloVw'ed light originating from other points on the surface of the celI to be

rejected. Output from the photodiode and MCP were each connected to separate constant

fraction discriminators (CFD) (Model 2126, Canberra Industries Inc., Meriden, CT).

Logic pulses from the CFDs were sent into a time-to-amplitude converter (TAC) (Model

2145. Canberra). The MCP response was used to start the TAC timing and the
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Figure 2.1. Diffuse reflectance photon time-of-flight instrumentation.
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photodiode response stopped the timing. The DC voltage output of the TAC was

proportional to the elapsed time between the stan and stop pulses. The TAC output was

digitized using a 400 kHz I2-bit A/D converter (AT2000, National Instruments, Austin,

TX) resulting in time increments of 4.9 ps. The instrument response with no sample

present was measured to be 280 ps FWHM. Software running on a PC written in C was

used for data acquisition, beam positioning and time binning.

The 20mm deep sample container consisted of a black reservoir fitted with a

40 x 50 mm glass window, 0.15 mm in thickness. The window was designed with a

groove separating the source from the detector so that internaI reflections in the glass did

not interfere \vith light collection.

Granular silica samples of four different sieve sizes (18-32, 32-63. 100-200.

200-500 ~m) \\'ere used (lCN BiometeriaIs, NJ). Each silica sample was poured into

methanol with the addition of dye (Dr. Ph. Martin's Transparent Water Color #33 Black.

Hollywood. FL). The solvent was removed in vacuo with agitation to reduce non

uniformities in the coating process. Samples were stirred and dried al 110°C for two

hours prior to analysis.

Time distributions were recorded at three source/detector separations (5, 10 and

15 mm) and with varying sample composition. Each acquisition required 6 minutes with

total counts ranging from 1.8xl0s to 9.6xl0s in each distribution. High frequency

periodic noise due to the time-ta-amplitude converter was reduced by smoothing the

measured time profiles. li A Gaussian smoothing window (cr = 25 ps) was used to reduce

the magnitude of the periodic noise by 94%. A series of 23 distinct samples were

analyzed with replicate measurements. The set was comprised of four different granular
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silica samples each with several different dye concentrations. Examples of the photon

time distributions after preprocessing are shawn in Figures 2.2 and 2.3. Further data

preprocessing and sectioning inta calibration and prediction sets is discussed in the

analysis section.

2.4 Sample CharacterizatioD

].4.1 Pm"tide si=e distribution

For particle sizing of ground or crushed materials. the nonnal distribution may be

used as a reasonable approximation of the particle size distribution after seiving.\8.19 This

distribution of particle diameters x is written as,

(2.1 )

where r/J is the solid volume fraction, x is the mean particle size, and cr the standard

deviatian. This distribution was assumed to hold for the samples under investigation.

Using specifie sieving efficiency data fumished by IeN Phannaceuticals, [ne. (Costa

~esa. CA.) the mean particle size and standard deviation were detennined using

Equation 2.1. The solid volume fraction t/J. was calculated as the density ratio between

the powder and crystalline silica. For particle sizing, the uapparent particle size" given

by .r /t/J was used. This quantity may be seen as an approximation ta the average length

bet\\'een scattering events (J.ls·\) .
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Given the sample's particle size distribution~ Mie theory was used to estimate the

weighted average scanering coefficient. To facilitate calculation of the scanering

coefficient. samples were assumed ta be composed of spherical homogeneous particles,

as a reasonable first order approximation. 1
.2 This method was used to approximate the

scattering coefficients of the samples, however it is recognized that the particles are not

sphericaI and may not be weIl modeled. The mean scattering coefficient is written as,

- :Cf3Qscar (x, n, À) ()d
f.J s - P x x

o 2x
(2.1)

•

•

where Qscat(x,Il.À) is the scattering efficiency for a given sphere diameter, x, relative

refractive index, Il (nsJlicalna1r) and wavelength, À (evaluated at 780 nm). Scattering

efficiencies \Vere computed numerically using an algorithm by Bohren and Huffinan. 16

~.4.3 Absorplioll properties

The silica samples \Vere coated \Vith a dye which absorbs strongly at the probe

\\Oavelength (780 nm). The dye was assumed to homogeneously coat the silica. The

average absorption coefficient for each sample was calculated as ~a = 2.303 f: c where f: is

the extinction coefficient of the dye (1.28x 10-3 ppm-1mm·l) and c is the average dye

concentration in ppm per unit mass of powder. The range of absorption coefficients

detennined for the particles spanned between 0.00 mm-1to 0.50 mm-le
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2.5 Analysis

2.5.1 Slalislical descriplors

To understand the relationship of the different portions of the lime profiles~

Slalistical descriptors were used. Such an approach in the future, will allow for real-lime

sample characterization by directly analyzing the time resolved signais with simple

electrical circuits. The statistical descriptor set included in this study is given in Table

1.1 with their mathematical representations. As in previous \vork with Iiquid samples 10,

photon time-of-flight distributions were decomposed into moments, rising and trailing

times. slopes, and peak maxima after logarithmic processing. Area descriptors (ax) were

also computed, however, the logarithm was taken after integrating. The area descriptors

are proportional to the steady state signal and are analogous to a classical reflectance

measurement. Contributions to the total signal from the initial (rising) and latter (trailing)

portions of the time distribution were measured. The area of the rising and trailing

portions (ar and ar respectively) describe the portion of early and late photons that reach

the detector. Likewise~ the mean rising and trailing times (tr and tr) describe average

times early and late photons respectively take to traverse the sample. Rising and trailing

slopes (mr and rnr) and peak maxima CP) were included as they are markedly affected by

changes in sample absorption and scattering. ll Moments (Uj-14) were also included as

they have been shown to be a good descriptor of the overall shape of time distribution.lo

First and second moments (Ul and uû of the time distribution describe the mean time and

the variance of the distribution respectively. The mean time is known to relate the rate of

change of measured intensity to the change in absorption.20 The third moment (U3) was

included in the descriptor set as it related to the skewness (s) which measures the degree
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of the time-distribution symmetry. The fourth moment (14) and kurtosis (k) strongly

weight the tailing edge of the time-distribution.

Table 2.1. Statistical descriptors computed from the diffuse reflectance time-of-flight
profiles.

Statistical Descriptor Expression
Log area, 'au>.

a log ff(t)dt
0

Log area of the rising portion, 1prut

ar log ff(t)dt
0

Log area of the trailing portion, llD~"

ar log ff(t)dt
Ip.mô.

Mean time of the rising portion, 1fWi.
tr ft log(j(t»)dt

0

Mean time of the trailing portion, 'aus
tî ft log(j(t) )dt

'pctJt

Mean slope of rising portion, 1 Ip.mô. d
mr f -logU(t))dt

t peak - t1hre.sh dt
'rltrrJJt

Mean slope oftrailing portion, 1 1,ItrrJJt d
mr f - log(j(t»)dt

tIhresh - t peak. 1prut dt
1S\ 200, 3ru , 4~1l moments, Un IllUJ.

n=I,2,3,4 ft n log(j(t»)dt
0

Peak maximum, p max[logf(t)]
Standard Deviation, cr M., *

Skewness, s M
J

/ M;'~

Kurtosis, k (M 4 / M; )-3
1tJU1

centered moment Mn == f(t -(t))" log(j(t»)dt
o
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2.5.1 Calibration and sample quantification

To understand the significance of the different statistical descriptors on the

analysis, both SMLR and PLS regression approaches were used for estimating the

absorption and scattering coefficients and apparent particle diameters. The set of samples

comprising the calibration set was chosen randomly from one of the two replicate

experimental measurements. The other portion of the samples comprised the prediction

set. Both sets contained equal numbers of samples with different particle size and

absorption levels. Fifteen descriptors listed in Table 2.1 were computed for each time

distribution collected in the calibration set. The resulting values were autoscaled to avoid

biasing the model due to the magnitude differences between descriptors.

To allow for practical on-lïne sample characterization, step multilinear regression

was investigated. The SMLR technique identifies a linear combination of a subset of

independent variables which optimally describe a dependent variable Y, (lxp) in the

form,

(m < n) (2.3)

•

where p is the number samples in the training set, X" X2, .•. , Xm are the independent

variables or channels, n is the total number of channels and bo, b
"

... , bm are the

coefficients detennined from the calibration. The SMLR method finds the optimal linear

combination of data channels correlated with Y. In constructing of the optimal set of m

descriptors, the routine evaluates a number of intennediate regression models.

Descriptors were selected based on the lowest standard error between Y and Yin the

training set. Descriptors were removed from the set if after the addition of others, the
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new combination of descriptors produced a significantly better estimates. Partial F-tests

at 95% significance were used for the evaluation of the models. The routine ended when

there \Vas no longer a statistical difference between two consecutive models. The SMLR

analysis routine was written in Matlab 10 (The MathWorks, Natick, MA) and is based on

algorithm by Draper and Smith.;!!

For a given sample property, four SMLR models were built using data collected at

single source/detector separations (5, 10, and 15 mm) and a combination of aIl three. The

relationship bet\veen the chosen descriptors (independent) and the absorption coefficient,

scattering coefficient or mean particle size (dependent) follows from Equation 2.3.

Using the prediction set, absorption, scattering and apparent particle slze

estimates for a each sample were made by processing the time distributions with the m

optimal descriptors and applying Equation 2.4 with the bi parameters detennined in the

calibration. Each model was assessed by measuring the correlation about the line of

identity between the estimated and reference values. Both r and coefficients of variation

(C.V.) between the reference and experimental values were computed. With each

optimal model, a cross validation calibration was done to determine if any biasing was

present by the inclusion of incorrectly characterized or prepared samples. A' leave one

sample-type out' approach was used. It was observed that in aIl cases a similar number

of descriptors was needed for each estimation. No improvements in the estimations were

obtained by removing samples from the original set at the 95% confidence level.

Analogously. models were constructed using Partial Least Squares regression. The

PLS method is related to both Principal Components Regression (PCR) and Multi-Linear

Regression (MLR). Il attempts to simultaneously capture the greatest amount of

65



•

•

•

covariance between the descriptors (like in peR) and to find a factor that best correlates

the descriptors with the dependent variable Y (as with MLR). The one component PLS

routine used in the analysis was based on the NIPALS algorithm. 22
•
23 For estimations of

absorption and scattering coefficients and apparent particle diameters, the optimal

number of factors was determined from the predicted residual error sum of squares

(PRESS) values. PRESS values were calculated as the SUffi of the squares of residuals

between the PLS estimates and reference values for each sample in the prediction set. An

F-test at 95~1o significance on the ratios of adjacent PRESS values were used for

detennining the optimal number of statistically significant factors.

2.6 Results and Discussion

Diffuse reflectance measurements were made on absorbing silica samples of

varying grain size. Typical diffuse reflectance time-of-flight profiles for a single sample

coated with different dye concentrations, shawn in Figure 2.2, demonstrate the sensitivity

of the profiles to changing absorbance. The integrated intensity (area under the profile)

decreases and the peak maximum shifts toward shorter times as sample absorption

increases. This trend is due to an increased probability of longer pathlength photons

being absorbed before they reach the detector. In addition, the slope of the trailing

portion of the curve is no longer constant. Figure 2.3 demonstrates the change in the

time-of-flight profile with changing sample grain size. As grain size is reduced, the

scattering level increases which decreases the peak maximum and shifis it toward longer

times. The increased number of scattering events the light experiences leads to
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broadening of the profile and longer transit times from source to detector. Although

photon transport theories have been developed for single scattering processes in coated

spheres~ multiple scattering models are not been fully developed for the range of grain

size considered. 16 Therefore the diffusion model approach is used for comparison

purposes only. The trends shown in Figures 2.2 and 2.3 are indeed in general agreement

with what diffusion theory would suggest. However, when both scattering and absorption

are simultaneously changed, marked differences are observed. This can be seen using the

integrated intensity of each sample as a function of absorption coefficient relative to a

similar sample with no added absorber as plotted in Figures 2.4 and 2.5. With both

experimental (Figure 2.4) and theoretical 11 diffusion equation results (Figure 2.5)~ a

general increase in attenuation is seen with the absorption coefficient. The difference

between the two is that they have a different rate of ehange of sample attenuation with

changing absorbance. AIso, the ordering of the curves is reversed when the seattering

coefficient is varied. One explanation of this effeet is that in eoated granular samples,

light traversing from source ta detector may spend relatively more time in non-absorbing

regions than in a sample which absorbs light continuously between seattering events.

This is because in a granular sample, light travels through the void spaces as weil as the

non-absorbing core. Another explanation is that the ehange in grain size affects not only

the scattering coefficient but the scattering phase function. It is weIl known that diffusion

theory does not characterize photon transport aceurately through non-isotropie scattering

media. A different approach should be taken when attempting to model the absorption,

scattering or apparent particle size in crushed granular samples.
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l.6.1 Escimates usillg cime profiles taken at a single detector position

Three models \Vere built for estimating absorption, scattering and mean particle

size using both the PLS and SMLR approaches. The models were developed using 15

descriptors from the time-of-flight distributions taken at a single source/detector

separation (either 5, 10 or 15 mm).

Results of the PLS estimates of the sample absorption are given in Table 2.2. In

aIl cases, one or two factors were determined to be optimal using aU 15 descriptors. In

generaI. the absorption coefficient estimates were more accurate when the source/detector

separation \Vas small (5mm). The coefficient of variation between the estimated and

reference values was 13.7 % (~= 0.962). A regression about the line ofidentity resulted

in a slope of 0.93 ± 0.09 and an intercept of(1.9 ± 0.9)x10-2 mm- I
. At larger separation

distances, i.e. 15 mm, increased error for the estimates was observed. Similar trends and

levels of accuracy were obtained with the SMLR model. As shown in Table 2.3, the best

absorption coefficient estimates were obtained with the smallest source/detector

separation [C.V. = 13.4 %; r2
= 0.964; regression slope = 0.95 ± 0.07; intercept = (2.2 ±

0.9)x 10-2 mm· l
]. The best linear combination of descriptors was the kurtosis, the area of

the rising portion and the time of the trailing portion. The tailing portion of the time-of

tlight profile is weil known to be strongly affected by sample absorption. 12 Since the

kurtosis is sensitive to changes in the extremities of a distribution, it is reasonable that it

would correlate well with changes in sample absorption. The average times of the

trailing and rising portions would also be affected in a similar manner.
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Table 2.1. PLS estimates of the absorption coefficient~ apparent particle size and
scattering coefficient using descriplors from lime distributions taken at a
single detector position.

Quantity Detector Position C.V. (0/0) r-

J.1a Smm 13.7 0.962
(mm'l) 10mm 20.6 0.917

ISmm 24.7 0.899
d Smm 10.7 0.963

(mm) 10mm 10.4 0.968
15mm 8.2 0.971

J.1s 5mm 14.9 0.930
(mm'I) 10mm 12.8 0.944

15mm 11.1 0.964

Table 2.3. SMLR estimates of the absorption coefficient, apparent particle size, scattering
coefficient using data obtained at a single detector position.

Quantity Detector Position Chosen Statistical Descriptors C.V. (%) r-

~a 5mm k ar tf 13.4 0.964
(mm'l) 10 mm k ar p 16.5 0.945

15 mm a a,- s k 24.8 0.895
d 5mm tr p mr 9.1 0.972

(mm) 10 mm tr P k mr 9.1 0.973
15 mm tr p mr 7.7 0.979

~s 5mm tr p mr 16.8 0.921
(mm-') 10 mm tr ar rnr 13.0 0.948

15 mm tr cr ar tf 11.3 0.960

For estimates of apparent particle size, better accuracies were abtained compared

ta estimates of absorption. The SMLR model produced more accurate estimates over

PLS at each of the three source/detectar positions. The best SMLR estimates were

obtained with a source/detector separation of 15mm [C.V. = 7.70/0; r = 0.979; regression

slope = 0.97 ± 0.06; intercept = (2.8 ± 2.1)x 10,1 mm]. Using a PLS approach the most
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accurate model had a C.V. of 8.2% [r = 0.971; regression slope = 0.98 ± 0.09; intercept

= (3.6 ± 1.8)xlO-1 mm]. With both models, larger errors were found in estimates of

particle size at small source/detector separations. At small separations, the bulk of the

detected photons have not penetrated deep into the sample and consequently, the pulse

has not had time to significantly broaden. With SMLR, the best set of descriptors was

identified to be the mean lime and slope of the rising portion, and the peak maximum.

The choice of descriptors is consistent with expected physical characteristics of the

measurements. As grain size and the scattering coefficient are related quantities, it is

reasonable that descriptors sensitive to the rising portion of the time-of-flight profile were

chosen.

The scattering coefficient was also estimated. Both the PLS and SMLR estimates

produced accurate estimates at large source/detector separations. However, there was no

statisticaI difference between the two most accurate models. [PLS: C.V. = Il. 1%; r2
=

0.964; regression slope = 1.02 ± 0.06; intercept = -(3.4 ± 1.5)xlO-1 mm-); SMLR: C.V.

11.3%, r2= 0.960; regression sIope = 1.03 ± 0.07; intercept = -(3.8 ± 2.9)xlO-1mm-I]. As

expected. the chosen statistical descriptors were similar to those chosen for particle size

estimates. The SMLR method included in the best fit linear combination, the mean lime

and area of the rising portion, the standard deviation, and mean of the trailing portion. [n

generaI. howe\'er. estimates of the scanering coefficient were worse than for the apparent

particle size as expected by Equation 2.2.
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~. 6.2 Estimales using lime profiles taken at multiple detector positions

Improved estimates were obtained when infonnation from aIl three detected

responses were incorporated inta either the PLS or SMLR models. Tables 2.4 and 2.5

show the coefficients of variation and r.:! values for estimating the absorption coefficient,

scattering coefficient and the apparent particle size with PLS and SMLR. Overall, linle

or no statistical differences were observed between the two approaches. However,

SMLR allows one to identify which features of the time distribution are the most

significant for quantification.

Table 2A. PLS estimates of the absorption coefficient, apparent particle size, and
scattering coefficient using descriptors from time distributions taken at
multiple detector positions.

Quantity C.V. (%) r-
Ila (mnf l

) Il.4 0.973
d (mm) 7.4 0.977

Ils (mm'I) 8.9 0.979

Table 2.5. SMLR Estimates of the absorption coefficient, apparent particle size, and
scattering coefficient using data obtained at multiple detector positions.

Quantity Chosen Statistical Descriptors C.V. (0/0) r-

Jla (mm'l) k(5) ar(5) k( 10) tf (5) 10.3 0.984
d (mm) tr(15) p(10) p(5) 6.7 0.983

Ils (mm- I
) tr( 15) are 10) mr(10) cr(15) 8.6 0.981

·bracketed values refer to detector position in mm

ln Figures 2.6, 2.7 and 2.8, the estimates provided by SMLR are ploned against

their assessed values. The soIid lioe represents the line of identity for ideal estimation.
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The slopes and intercepts of the regressions were calculated to be 0.97 ± 0.03 and (1.3 ±

0.6)x 10·2 mm~l respectively for the absorption estimate, 0.98 ± 0.03 and (1.7 ± 0.6)x 10-3

mm for the apparent particle size estimate, and 1.04 ± 0.04 and -(2.6 ± 1.3)xIO-1 mm-1 for

the scattering estimate. Using a combination of descriptors from aIl three detected time

of-flight responses, a linear combination of the kurtosis and the area of the rising portion

correlated the best with changes in sample absorption. For scattering coefficient

estimations. the mean time and slope and area of the rising portion and the peak standard

deviation were chosen.

Comparing the best absorption estimation obtained in this study with previous

work using statistical descriptors with liquid scattering samples, similar errors were

obtained. For absorption coefficient estimates, both types of samples required descriptors

related to the trailing portion of the time-of-flight profile. The major difference between

the two optimal descriptor sets was that the mean rise time was replaced with the

kurtosis. Comparing scanering coefficient estimates for the two sample classes is more

difficult. Ahhough the mean time of the rising portion was chosen in both studies, the

remaining descriptors were different. This may be expected as vastly different ranges in

the scattering coefficient were covered in the two studies.
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2.7 Conclusion

A method for the quantification of absorption, scattering and apparent particle size

in a broad range of granular samples has been investigated. The approach employs the

use of statistical descriptors to characterize photon time-of-flight distributions in relation

to the optical parameters and particle size. Using SMLR, analytical descriptors

describing the trailing portion and kurtotic nature of the time profiles were optimal for

absorption estimates. When estimating either the scattering coefficient or apparent

particle àiameter, descriptors associated with the rising portion of the time profile were

needed. Likewise, the choice of source/detector separation is important for optimal

quantification. For absorption coefficient estimation, small source/detector separations

were found to be optimal whereas larger separations were required for scattering and

particle size estinlations. In addition, it was generally found that the analytical

descriptors used in each model were not highly dependent on choice of source/detector

separation. However. when data from a combination of three detector positions was

employed. the lowest errors in estimating the optical and physical characteristics in a

sample were obtained. The relatively large spread about the line of identity may be due

to variations in the sample packing density. Though attempts were made to ensure

reproducibility bet\veen measurements, the sample cell used limited the possibilities for

elaborate packing protocols. The results demonstrate that using statistical descnptors, a

robust means for simplifying complex photon time distributions into measurable

parameters is possible. In the future, descriptors may be used as a means in which to

develop practical instrumentation for on-line, real-time characterization of absorbing

granular media.
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Chapter 3 Optical Tomographie Reconstruction from
Diffuse Remittance in Scattering Media
Using Partial Least Squares Estimation

In the previous chapter~ quantification of scattering and absorption levels was done

In unifonn granular samples using statistical descriptors of the time-resolved diffuse

reflectance signaIs. When a sample~s absorption characteristics are varied~ changes in the

trailing edge of the time distribution are most apparent. Typically, fûr homogeneous

scatteringlabsorbing samples~ the trailing edge has a sIope dependent on the absorption

coefficient. Although statistical descriptors may be llsed for describing broad changes in

the photon time distribution they are not easily applicable for quantifying more subtle

changes. This is was found to be true when Monte-Carlo simulations were used to

investigate both the time resolved and steady state diffuse reflectance photon intensity in

layered samples. [n arder to capture these subtle changes, many more data channels are

required. [t was therefore decided to use chemometric methods for analyzing layered

samples. As a initial approach to layer wise tomographie reconstruction, steady state

diffuse reflectance (remittance) measurements were made.

Because tomographie sampIe reconstructions require multi-perspective

information, remittance measurements were made as a function of source/detector

separation. From a geometric standpoint, it is difficult to obtain a series of unique ray

paths through a layered sample by employing transmission measurements. This is true

even if the incident beam is allowed to penetrate the sample obliquely; the integrated

intensity through the sample is simply a multiple of one obtained nonnal to the sample

face.
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[n this chapter, tomographie reconstruction is done using partial least squares and

inverse least squares methodologies. Estimates of the absorption coefficient are made

independently of others in six regions in a given sample. Comparisons are made between

this method and a classical backprojection approach to tomographic reconstruction. In

addition, reconstruction aceuracies using experimental data are compared to those

obtained by Monte-Carlo simulation. The source code for the Monte-Carlo photon

propagation model is listed in the Appendix. Layer 1 (Region 1) is defined as the surface

region while Layer 6 (Region 6) is region at the bottom of the sample. Six regions were

chosen to satisfy the Nyquist criterion for resolving a top/middlelbottom split in the

specImen.

3.1 Abstract

The long tenn goal of this research is to develop a method for quantitative, three

dimensional optical imaging in scattering media. Towards this end, a reconstruction

technique for depth-resolved absorption detenninations based on diffuse reflectance

measurements was developed. The approach employs an array of radial measurements of

intensity to obtain multi-perspective information through a specimen. Both Monte Carlo

simulations and experimentally obtained reflectance measurements of known phantoms

were used to evaluate the sensitivity of the method to changing sample absorption.

Diffuse reflectance experiments were made using a collimated incident light source and

layered absorbing/scattering samples. A fiber optic detection system measured radial

responses for a series of different phantom compositions. Results demonstrate that a

well-defined ray path is obtained for light measured from each source and detector pair.

85



•

•

•

For image reconstruction, a comparison to volume element estimation were made for

c1assical back projection, inverse least squares and partial ~east squares methodologies.

Overall, PLS gave significantly better results with a 50% reduction in the coefficient of

variation compared to the back projection method. This depth resolved tomographie

approach is a new tool to study spatial relationships of chromogenic constituents in

scattering media.

3.2 Introduction

In many scientific fields there is the need for quantitative observation of a

specimen in three dimensions. Examples include the non-destructive inspection of

materials to locate defects, measurement of atmospheric poIlutants, or in vivo tissue

measurements of bio-energetic activity. These types of analyses commonly employ

optical measurements to determine concentration of analyte molecules.

Transmission and reflection measurements can be made conveniently usmg a

single point detector for one dimensional sampling or with the use of a scanning

arrangement for two dimensional concentration determinations. When the specimen is

imaged onto a detector, the measured response probes a defined region and the

information from the sample heterogeneity is integrated.

A common method employed in the resolution of the integrated information is

tomographie reconstruction developed for x-ray Computer Aided Tomography (CAT)

analysis. One way in which this can be achieved is by rotating the sample with respect to

the imaging system and acquiring images at multiple perspectives. The multi-perspective
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responses are mathematically reconstructed to obtain a quantitative three-dimensional

estimate of the sample composition.

The concept of tomographie reconstruction was developed many years ago.

Radon demonstrated that using an infinite number of noiseless projections9 an object can

be unambiguously reconstructed. 1 However if either of these conditions are not met, an

exact reconstruction is not obtained. Many techniques have been developed in order to

minimize errors associated with the limitations of real world reconstructions. Samples

may be scanned using a variety of light projection geometries, however the chosen

technique must be compatible with both the sample nature and the desired accuracy in the

reconstruction.

A commonly used reconstruction algorithm is the Filtered Back Projection

method.2 The underlying concept of the method is to assign the measured intensity of the

axial projection to each element in the sample along the line with which the integration

\Vas made. For the first estimate, this assumes that the sarnple is unifonn along each

projection. By summing ail of the sample distributions from the projections, an

approximate reconstruction of the original sample can be made. In the case where there

is not a sufficient number of projections to describe the spatial character of an object

(limited view), reconstruction errors increase dramaticaIly. In order to obtain accurate

results. iterative techniques with the use of a priori sample information are commonly

employed.3

Recently, there has been significant interest in reconstructions from highly

scattering samples. Non-invasive optical tomography of specimens which contain

scatterers has many applications 10 fields such as diagnostic medicine, plastics
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manufacturing or phannaceutical analysis. For example, three-dimensional

reconstruction techniques could provide additional infonnation for measurements of

heterogeneity of plastic composites, in vivo metabolic processes or batch fennentation.

ln these applications, measurement of the diffuse reflectance is preferred and can provide

a practical means for non-invasive analysis of biological tissue samples, paints and ether

coatings. For diffuse reflectance measurements, a smaIl fraction of the light is scattered

such that it enters the detector located sorne lateral distance away from the source. In

general. the funher the detector is located from the source, the larger the depth of

penetration and the lower the light intensity measured.-l·5 This depth information has

been used to tomographically obtain three-dimensional reconstructions of the foreann.6

However no quantitative comparisons of the reconstructed volume absorption were

possible.

The goal of this paper is to investigate quantitative depth resolved estimations of

scattering samples using tomographie reconstruction. Specifically, the application to

depth resolved measurements in tissue is discussed. Both computer simulations and

experimental measurements of light propagation through a layered medium are made

using the diffuse reflectance measured at the surface of the sample. A comparison

benveen a least squares back projection, an inverse least squares, and a partial least

squares (PLS) reconstruction is presented. The results illustrate quantitative estimations

are possible.
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3.3 Background

The total attenuation of light through turbid materials can be described by two

basic processes, i.e. absorption and scattering. When light propagates through a sample,

a portion is absorbed by the constituents dispersed throughout the matrix. For many

types of samples, attenuation from absorption occurs between scattering events, where

the Beer-Lambert relation is assumed ta hold. Tissue absorption between 700 - 1300 nm

is small, \Vith typical/·8 absorption coefficients, fla, between 0.01 - 1 mm- l
. The major

cause 0 f absorption in the near infrared are due to low lying electronic transitions in

chromophores such as hemoglobin, myoglobin and cytochrome and from molecular

vibration overtone and combination bands due to OH, CH and NH stretching and bending

modes.

In the near infrared region (NIR), light scattering in tissue is the major contributor

to attenuation. Scattering can occur due to refractive index variations in the different

components in tissue or by elastic scattering such as in the case of light interaction with

collagen in the cell membranes. Typical scattering coefficients, J.1s for tissue in the NIR

lie in the range of 10-100 mm· l
. Likewise, the scattering is wavelength dependent. For

example, scattering coefficients such as those typical for dennal tissue are observed to

have a 1.15 x 109
À,-2.S5 mm- l dependence.9

A single photon will experience many scattering events as it travels through

tissue. At a scattering event, scattering can be quantitated statistically in tenns of a phase

function P(S), where e is the angle of the scattered photon with respect to the original

direction. The Henyey Greenstein phase function has found considerable use in tissue

scattering studies. 1o Anisotropy in the phase function is described by the mean cosine of
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the scattering angle. g. and typical9 values for tissue in the near infrared vary from 0.8

to 0.95. These g values irnply that even in relatively highly scattering tissue, the light is

to a great degree. fOI"\vard directed.

The high degree of forward scattering and low attenuation of light in tissue has

allowed diagnostic measurements deep within tissue. For exarnple, Cope and Delpy have

measured light transmission through the neonatal skull to continuously monitor cerebral

oxygenation in infants." Likewise in cIinical settings, transmittance measurements are

common where the pathlength is short such as in a finger and earlobe, or reflectance

measurements from the surface of the skin.

3.4 Reconstruction Methodology

3.4.1 Back projection

The back projection technique uses signal attenuation through a sample at various

perspecti\'es to detennine the contribution of each component to the overall absorption.

Signal attenuations are deterrnined by ratioing observed responses to the incident

intensity. Following a Beer-Lambert relationship, the expression for the total attenuation

Ar, at a radial distance r, can he written as a linear cornbination of aH components,

P

A ='/. Il.r L.. I.rrl

i=1

(3.1)

•

where the SUffi extends over p distinct component layers each of pathlength 1through that

layer, and for the layer absorption coefficient. J..L When multiple sarnples are considered,

the equations cao be conveniently rewritten in matrix fonn, where the m column vectors

correspond to various samples. For measurements made along the surface, each lateral
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• position will travel through each layer a different amounl. A set of attenuations made al

discrete positions can be expressed as

A=LM (3.2)

where A is the n x m response matrix of attenuations at n laIerai positions for m different

samples. L is an n x p distance weighting matrix for the 11 lateral positions and p

component layers. The matrix M (p x m) contains the absorption coefficients of the

individual layers in each sample. The computation of the L distance weighting matrix is

done prior to estimating unknown samples and is computed using a model of the light

propagation. An estimate ofM (M) is obtained by least squares where,

(3.3)

•

•

\vhere t denotes the matrix transpose and -1, the inverse. Several workers have applied

constraints on 1\1: or calculated the least squares in an iterative way.3.l1-13 Constraints can

be placed on M such that absorption coefficients can not become negative. For the most

general case the least squares estimate is made without these approaches.

3.4.] Inverse Least Squares

The ILS method. as the name implies, is based on an inverse model where the

absorption coefficients of the individual components are expressed as a function of the

responses. This approach has been used in a variety of spectroscopie calibrations. As

applied in this study, a calibration set is used to first build the model and a prediction set

is used to test it on unknowns. In matrix notation, a data set consisting of knO\\1"11
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• absorption coefficients for each of the component layers as related to the surface

attenuation can be written as,

(3.4)

3.4.3

•

where Mc is a matrix containing of m sample absorption coefficients for p layers (m x p),

.~ contains the laterai anenuations for m samples at n laterai positions (m x n) and the

subscript c refers to the calibration set. B comprises n x p calibration coefficients. The 8

matrix is obtained using the calibration data set using least squares estimation in a similar

manner as in Equation 3.3. The estimated coefficients M for unknown samples are then

computed by Equation 3.4.

Partial Leas! Squares

PLS analysis bas demonstrated significant success for constituent estimation in

complicated mixtures and in the analysis of data which spans large dYnamic ranges. As

in the inverse least squares approach, PLS is based on an inverse model. Both use

training and prediction sets. Details of the PLS aIgorithm are given in several

sources.I~-I(J The technique for the detennination of B involves decomposing A using an

iterative approach into three matrices,

A=UVW r

and then performing a pseudo-inverse to finally give,

8 = WV-1u r

(3.5)

(3.6)

•
The algorithm generates an ordered series of factors such that each describes decreasing

amounts of variance which correlates to M. The tirst factors describe the maximum non-
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random \'anance In the intensity responses that aIso correlates with the absorption

coefficients in M. The calibration coefficient vector B associated with the optimal

number of factors will thus yield the best possible estimate of the absorption coefficients.

PLS predictions of absorption coefficients can he obtained by a multiplication of the

intensity responses of test samples and the Bt vector which was detennined using the

optimal number of tàctors.

For each prediction set, the optimal number of factors was detennined from the

Predicted Residual Error Sum of Squares (PRESS) values computed. PRESS values

were calculated as the sum of the squares of residuals between the PLS estimates and

known absorption coefficients for each of the samples in the prediction set. An F-test at

95~/o significance on the ratios of adjacent PRESS values were used as a criterion to

detennine the optimal number of statistically significant factors. Reconstructions were

done by applying one component PLS ta obtain a calibration for each layer separately.

3.5 Computer Simulations

Computer simulations were done to determine the light paths through the sample

(L matrix). Likewise, the use of a light propagation model provided additional

infonnation not possible by simple experiment which greatly aided in interpreting

experimental results.

3.5.1 .Mollle-Cario simulations

Statistically based simulation methods have been used to describe neutron

propagation since the 1950's. To estimate the distribution of photons in a scattering
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media such as tissue, a Monte Carlo simulation of a photon migration in a slab of

varying absorption coefficient, ~a and a constant scattering coefficient~ fls, was

developed. This method detennines on the basis of random deviates, the distance a

photon travels between scattering events and the new direction of photon travel after

scattering. Intensity attenuation is computed by absorptive processes between scattering

events. The model is applied to many such photon packet trajectories until a statistical

distribution of the steady state photon distribution is obtained. At each scattering event,

the probability function, which approximates the Henyey-Greenstein phase distribution

was used to determine photon direction.6 With the use of the pseudo-random parameters

R J • Rz, and R3 distributed in [0,1], the equations used to determine a photon's path

through a scattering sample are given below. The scattering longitudinal and azimuthal

angles are receptively:

(3.7)

e =cos-1{_1[1 + gZ _( 1- gZ )Z]}
2g 1-g+2gR;!

(3.8)

as according to the Henyey-Greenstein phase function. A photon's free path, l, between

each scattering event was chosen randomly based on the expression,

1=_-_1n(~R--:...3)
!JI

(3.9)

•

These three ordinates (0,<1>,1) fonn the vector to the next scattering event. However this

coordinate is relative to the previous scattering event and must be expressed in tenns of

the global Cartesian coordinates of the simulation. The global rotation of the coordinates
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• can be accomplished with knowledge of the angles, () and (J of the previous scattering

event. The new photon positions are given by,

; = [sin8cos<1> ; = [sin E> sin <I> Tl = [cosE> (3.1 Oa,b~c)

dot =çcostPcosO - qsin, + ,!cos t/J sin {}

Lly =; sin t/Jcos(} - qcos, + ,!sin t/J sin {}

Llo: =; sin () + ,!cosO

(3.11 )

(3.12)

(3.13 )

x' = x + Lit J" =}' + Lly z' =z+dz (3.14a~b~c)

where primed values represent the new global coordinates. New global angles () and (J

after scattering are,

Attenuation due to absorption was treated as if each photon was a packet of• (LlzJ() = cos- I
-[- (3.15a~b)

photons of sorne initial intensity 10 and underwent exponential attenuation as it traversed.

For an absorbing medium that varies in a layered fashion in the z direction~ a general

expression for the final intensity of a remitted packet is

(3.16)

•

where the sum extends over m scattering events and 't is a generalized xyz coordinate.

Each contribution to attenuation was computed by integrating in a straight line path

between scattering events where Ij -1-.j is the length between the j-1 and jth scattering

events. This integral is easily computed for cases where the path between scattering

events does not extend through regions of different J.1a. For longer paths which extended
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• through two or more layers, the integral was determined as a weighted contribution of the

fla' S over the entire length.

Information obtained from each simulation included the steady state photon

distribution throughout the volume, radial functions of the back-scattered light intensity,

and photon path distributions. A lateral profile of the weighted average distance (L

matrix) that photons traverse through each layer was obtained by multiplying the average

total length traveled from source to a surface location at r, with the average fraction of

distance that photons extends through each layer. This relation is,

L ') (~/(i,r»)(~ l(i,r,j) )(r,j = ~-- L.,.-.---'--
;=1 n(r) ;=I/(l,r)·n(r)

(3.17)

•

•

where r is the radial distance from the source, j is the layer, n(r) is the number of photon

packets reaching a lateral distance r, and the functions /(i,r) and l(i,rj) are the total length

and length throughjth layer of the ith bolus reaching r.

3.5.2 A/ode! characteristics

The chosen medium for the model was comprised of 6 parallel layers with respect

to the surface with absorption coefficients typicaf to that found in tissue (0.00 -

0.50 mm- 1
). Likewise, the values of the scattering coefficient, ~s, and the anisotropy

factor, g, were chosen to be similar to human tissue and were set at 9.4 mm-l and 0.85

respectively.l7 The three dimensional domain of the problem was fixed to a maximum

1.5 cm lateral distance from the source and to a maximum depth of 1 cm. Simulations

were started with aIl photons coUimated and perpendicular to the surface with the light

injection equidistant from the boundaries approximating a laser illumination. The
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Usource" diameter was 1.0 mm. Photon packets were followed until they either escaped

the domain or \Vere detected. A total of 106 photon packets were released. The model,

\\Titten in C, \Vas run on a 166 MHz PC using the Linux operating system. Remitted

intensity data recorded at 0.1 mm intervals for 15 mm was averaged to simulate the

responses that would be typical of the resolution capable of the fiber optic positioning

system used in the experimental case.

3.5.3 Data sel pretreat11lent and sectioning

The modeled data was evaluated with added noise. To simulate the limitations of

a photomultiplier tube detection system, 0.001 % RMS Gaussian noise was added. The

89 different simulations were sectioned into two data sets for reconstruction purposes.

For reconstructions based on ILS or PLS, two data sets each containing sets for

calibration and prediction were chosen. The tirst prediction set encompassed 250/0 of the

89 simulations and \Vas chosen randomly (Data Set 1). The second prediction set \Vas

chosen to demonstrate the efficacy of the reconstruction method in distinguishing a single

layer with a different absorption coefficient from otherwise homogeneous surrounding

layers of low absorbance (Data Set II). Because of the limited number of samples

available, a third independent data set was not used for the evaluation of the method.

3.6 Experimental Work

Experimental diffuse reflectance measurements in layered media were made to

detennine multi-position lateral responses to evaluate the efficacy of the reconstruction
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methods with real data. AIso, comparisons could he made between the compiexities of

the real sample and simulation.

3.6.1 Equipmellt

The experimental apparatus used to ohtain the lateral steady-state diffusely

reflected light distribution is shown in Figure 3.1. A 5.8 mW HeNe laser attenuated by a

1.0 0.0. neutral density tilter served as the source. The detection system used was a

1.0 mm diameter fiber optic attached to a Hamamatsu He-050 photomultiplier detector.

Output signaIs \Vere recorded by computer using a 12 bit A/D converter. To increase the

dynamic range. scaling and offset electronics were used to pre-treat the signal prior to

A/D conversion. A 3: 1 solution of distilled water to 100/0 milk fat cream was chosen as

the scattering medium (J.ls = 9.4 rnrn-1
).17 Dr. Ph. Martin's transparent water color (l2A

juniper-green) \Vas used for the absorber because it was found to be highly water soluble

and not fat soluble as measured through the microscope.9 This ensures that absorption

occurs in the medium and not in the scatterers, to mimic tissue constituents which absorb

between scattering events. The six reservoirs were made of 40 x 50 x 0.15 mm glass

plates separated by 1.0 mm thick U shaped rubber gaskets and \Vere c1amped in position.

The incident laser source intensity was determined by focusing the beam directly into the

detector after attenuating with a suitable neutral density tilter.

3.6.2 Data collection

Detector responses were recorded as a function of the lateral position of the fiber

optic from the detector (l - 15 mm in 0.5 mm increments) and as a function of absorber
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Figure 3.1. Backscattering experimental setup.
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composition. The range of 63 measurements made \Vas designed to be similar to the

simulations and used the same absorption coefficient. The various data sets and

partitioning of the data into calibration and prediction components \Vas identical to that

done for the modeled data.

3.7 Results and Discussion

3.7.1 DiJJuse rejleclance measlirements

For remittance measurements, the sample was illuminated at one point on the

surface and the diffusely reflected light is collected sorne distance away. An estimate of

these measurements may be obtained using the modeled results in a scattering sample for

samples of different crossectional composition. As mentioned previously, samples with

six distinct absorption layers were studied. The modeled remittance as a function of

source/detector lateral distance for a series of multi-Iayer slab compositions is shown in

the lower series of graphs in Figure 3.2. The layer compositions were chosen to be

starkly contrasting so as to show a stepwise progression from ail six layers containing no

absorber to aIl six containing a strong absorber. To allow comparisons between the

separate experiments and simulations, the measured remittance at each lateral position is

referenced to the source intensity to obtain the attenuation. The general trend shown in

Figure 3.1 is that absorption deep within a sample has a greater effect on the attenuation

made at large lateral spacing of the source and detector as compared to measurements

made at smaIl lateral spacings.
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, g = 0.85). Ail absorption coefficients
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. a) no absorber; b)
absorber layer 6; c) absorber layers 5,6; d) absorber layers 3-6; e)
absorber layers 2-6. Subscripts m and e refer to modeled and experimentai
data respectively.
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To detennine if a similar relationship to the results obtained in a real scatterer

cornpared to the model~ experiments were made using the phantoms as described in the

experimental section. The results are plotted in the upper series in Figure 3.2. Like the

modeled remittances~ the presence of an absorber has a marked effect on the surface light

attenuation. Whereas the general trend is the same~ the experimental data has sorne

differences with regard to linearity. Also the simulated responses span over five orders

of magnitude where the real responses span over 3.5 orders. This lower dynamic range is

partly due to detector saturation when the reflections from the window of the sandwiched

backscattering apparatus are significant near the source.

For the lateral source/detector spacings of 5 and 10 mm~ considerable differences

in the effect of absorber placement is observed. A detector positioned at 5 mm exhibits

large changes in attenuation when the absorber is close to the surface (compared with no

absorber), whereas at 10 mm detector spacing~ changes in attenuation occur throughout

the absorber placement.

The depth through which the photon travel can be seen when the light paths

through the sample from a source to the detector are considered. The computation of the

photon path distribution for back-scattered light reaching the surface at a certain radial

distance from the source required severa! steps. The photon packet path was rotated

about sorne angle e about the z axis where e is the angle between positive x axis and the

point on the plane where the packet exited. Each rotated path was weighted with unit

value and projected onto the x axis. A distribution was built up over many trials. After

the simulation~ the distribution was nonnalized so that a slice through any region

containing the total photon flux integrated to unit value. This two dimensional Hflux
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nonnalized" distribution gives a measure of the path probabilities that a photon may take

from source to a detector. For the layered sample in Figure 3.3, light reflected into

detector positions at 6 mm and 12 mm show different average penetration depths.

Contours enclose the 90% probability that a photon reaching the detector has traversed

sorne path. The overall distribution of collected light is localized between the source and

detector with a "banana shaped" appearance. For a 12 mm separation, such paths cover

a much broader range of depths as compared to a detector placed at 6 mm. If the

probability distribution is sliced in the z direction centered equidistant between the source

and detector, as shown in Figure 3.4, the depth of penetration for a range of

source/detector pairs can be seen. Il is clear that there is a correlation between lateral

detector placement and the average depth sampled by the photons. If a 95% probability

envelope is considered, than it is observed that the maximum depth penetration through

the sample is 5.2 mm and 7.5 mm for detectors placed at 3 mm and 12 mm distances.

The increased diffuse nature of the distribution for photons reaching 12 mm is also

evident due the greater number of scattering events that occurs when photons penetrate

the sample deeper. These general findings agree weIl with other work5 which has

suggested that the average depth, z, for different separations between source and detector.

Lit', vary according to z = 0.22 L1x + 0.92. Although a similar trend is observed here it

should be pointed out that this relationship is strongly dependent on the scattering

anisotropy.

Because photons traversing from source to detector penetrate through many

layers, one can determine a weighted average pathlength for each layer. These

weightings detennined by simulation using Equation 3.17 are used in the back projection
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reconstruction (L matrix). A plot of the row values of the L matrix against lateral

detector displacement for each layer (columns) are shown in Figure 3.5. This plot

demonstrates that as the source/detector separation increases. more of the detected

photons have penetrated the sarnple deeper. The plateau observed for photons traversing

layer 1 suggests that most photons reaching the surface at these larger radii do not travel

in straight paths from the source to the surface. For a source/detector separation of 10

mm. a mean path length of 77 mm was measured. This value is in excellent agreement

with the result of80.6 mm reported by Patterson et a/. 18 for a similar sample.

3. 7.~ Back projection recollstrnclÏon resufts

Using the L matrix of pathlength weightings for each of the six layers, estimated

absorption coefficients were obtained. Coefficients of variation between the real and

experimental attenuations are tabulated for each of the six layers in Table 3.1. Similar

results are obtained in both cases except in the deeper layers where the reconstruction

using modeled data with the inclusion of noise produced significant errors. The estimates

of absorption were slightly better in Data Set II \\there five of the six layers contained

only small absorption coefficients. The general trend is that an increasing error in the

estimation is obtained \vith increased sample depth. This is due to the ill conditioned

nature of technique, even though the L matrix was not detennined to be rank deficient.

Light paths that penetrate deeply into the sample must go through upper layers twice and

this leads to an increased error in the absorption coefficient estimations at lower depths.

Estimations of absorbance in layers five and six are particularly bad for the simulated

data as attenuations obtained at the most extreme radial distances are too noisy.
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• 3.7.3 ILS reconstruction results

Results in Table 3.2 show the coefficients of variation between actual and

predicted absorption coefficients for modeled data for each of the six layers using the ILS

method. As seen in Table 3.2, reconstructions are very good for the tirst layer and then

degrade with depth. It is reasonable that the reconstruction can estimate absorption in the

first layer weIl since aIl of the measured signal travels through it.

Table 3.1. Back projection reconstruction results.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Modeled data

Data Set ( 54.46·· 76.71 129.38 254.32 637.92 1300.27
Data Set II 45.79 84.91 96.15 120.91 477.58 1975.58

Experimental data

• Data Set 1 53.32 99.56 69.48 103.34 80.67 193.16
Data Set II 47.26 93.83 72.78 92.71 73.28 117.28

·Data Sets 1and II contain 15 and Il samples respectively.
··Errors are given as coefficients ofvariation, 0/0

•

Table 3.2. ILS reconstruction results.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Modeled Data

Data Set ( 18.87·· 119.49 134.60 103.24 101.05 117.31
Data Set II 15.32 64.88 86.19 71.11 75.61 66.69

Experimental Data
Data Set 1 7.68 51.95 91.22 86.77 78.71 102.33
Data Set II 5.48 38.48 58.37 62.92 48.68 58.05

·Data Sets 1and II contain 15 and Il samples respectively.
.... Errors are given as coefficients ofvariation, %
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If differences in the reconstruction error between modeled Data Sets 1 and II are

considered~ we can see that there is approximately a two fold reduction in the error when

comparing absorbance estimation in the deeper layers. This is expected as the Data Set II

contains samples with only one differing absorbing layer in an otherwise small but

homogeneous absorption in the other layers. This data set is not unlike many of the types

ofphantoms used in other tomographie reconstructions in scattering media studies.

Absorption estimations using real data were worse than for the modeled data

especially for Data Set 1. For Data Set II, estimates in the deep layers are 15 - 20 °tla

worse using real data. To a certain extent, the increased error in the reconstruction was

due to non-reproducibilities that exist in the fiber positioning system.

3.7.4 PLS reconslnlcliol1 results

The coefficients of variation between actual and predicted absorption coefficients

for modeled data for each of the six layers using PLS in given in Table 3.3. For alllayers

except layer 1~ two or three factors were chosen as optimal (based on a 95%) confidence

level). However layer 1 required six factors. The reconstructions in general show a two

fold decrease in the error over the ILS approach for both Data Sets 1 and II. Variation in

the results obtained between modeled and experimental data used in the reconstructions

are minimal. For the tirst two layers, the error is worse than with the ILS reconstruction.

However in the lower layers there was a 27% error overall when using PLS as compared

to a 60% error when using ILS on experimental Data Set II.
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Table 3.3. PLS reconstruction results.• Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Modeled Data

Data Set r- 15.33-- 44.23 53.04 44.40 62.11 69.43
Data Set II 7.83 21.51 36.91 37.54 31.00 27.60

Experimental Data
Data Set [ 17.83 66.09 54.81 51.68 59.92 66.24
Data Set II Il.71 19.64 36.52 41.63 28.25 24.98

-Data Sets [ and II contain 15 and Il samples respectively.
--Errors are given as coefficients of variation, %

This significant improvement in deep layer reconstruction is inherent in the nature

of the PLS method. Figure 3.6 shows a plot of the weighting coefficients as a function of

lateral distance obtained using real data. Knowing that the majority of photons only

•

•

penetrate the fe\\' layers for a detector placed within close proximity to the source, it is

expected that the weightings of the detector responses would be higher at small lateral

distances from those further out. Indeed, the calibration coefficients weight the responses

from the smaller source/detection separations to a much greater extent than responses

further out. From Figure 3.6, il can be seen that for detector responses at large radial

distances the weightings are small. This is expected as photons reaching those extreme

points do not play a great role in the determination of absorbances for layer 1. The effect

of oppositely weighting coefficients between adjacent detector groupings suggests that

signal differencing leads to a cancellation of infonnation that is seen by bath detectors

leaving only the variations. Referring to Figure 3.4, if two closely spaced detector

responses are subtracted, it can be seen that the result would be a sampling of a deeper

region (i.e. the contribution from layer 1 would cancel). This is further evidenced by
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considering the weightings for layer 6 where an opposite effect is seen. The detector

responses at small lateral distances contribute very little in the determination of the

overall absorbance, whereas they contribute to a greater extent further out. Again the

weightings indicate a differencing in the signais for responses sensitive to changes in

absorbance in the deep layers. Therefore the PLS method suggests a powerful way in

which depth resolved absorption coefficient determinations can be made in a layered

medium.

3.8 Conclusion

A depth resolved tomographic reconstruction of a layered media was shawn.

Using a Monte Carlo model, the simulation of the weighted photon path distribution

through the composite Iayers demonstrated that a significant fraction of the photon paths

extended deep within the sample. For both real and simulated data, depth resolved

estimations of the layer absorption were made using least squares back projection,

inverse and partial least squares methodologies. For aIl the methods, absorbance was

better estimated in surface layers as compared to deeper layers. 80th the ILS and PLS

methods provided significantly better estimation of sample absorption as compared to the

back projection method. OveraIl, PLS gave distinctly better results \Vith a 50% reduction

in the coefficient of variation compared to the back projection method. However, it

should be noted that no constraints were made on the back projection method. Added

constraints nlay improve the estimation. Whereas better estimation is required for many

applications, the encouraging results indicate that with further improvement of

quantitative depth resolved measurernents may be possible. This depth resolved
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tomographie approaeh is a new tool to study spatial relationships of chromogenie

eonstituents in scattering media.
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Chapter 4 Optical Tomography in Scattering Media
from Photon Time of Flight Diffuse
Reflectance Measurements: A Chemometric
Approach

In Chapter 3, optical tomographie reconstructions of layered scatteringlabsorbing

samples \Vere made with steady state diffuse reflectance data. Although quantification is

possible when ail absorbing regions are varied simultaneously, significant errors in

estimating sub-surface absorption occurred. To better understand the effects of changing

layer absorption on the reflectance measurements, in this study the number of distinct

absorbing Iayers in a specimen is limited to two.

Analysis of the weighting coefficients obtained by partial least squares regression

of the steady state intensity signais demonstrated how absorption estimates deep within a

specimen \Vere possible. By oppositely weighting responses from adjacently spaced

detectors, subtle differences is sample absorption in a given layer were resolved. To

further improve sample reconstruction, photon pathlength information may he included in

the analysis. This may be obtained by recording the time-of-flight distribution that

photons take through a scattering sample. A similar analysis using the partial least

squares weighting coefficients on each data channel may be made using time resolved

intensity data. In this approach, ehemometrical methods may he used not only as a

means for tomographie reconstruction but as a tool for understanding the mode of action.

Stepwise multilinear regression may also employed for sample reconstruction. As

only a few data channels are retained in the optimal linear model estimating absorption
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• levels in given layer, noisy data channels are typically not included. Using a stepwise

muiti-linear regression approach, robust quantification may be possible.

One of the problems encountered in obtaining reproducible time-profiles is precise

positioning of the sample. In this chapter, a novel approach for helping to eliminate this

problem is investigated. This degree of freedom in the time distribution may be

eliminated by computing the autocorrelation function of time-of-flight distribution.

Sample reconstruction is then made using autocorrelated data. In addition, by utilizing an

optical correlator for detection or an electronic signal mixer, autocorrelated time

measurements may significantly reduce the complexity of instrumentation.

•

4.1 Abstract

• The goal of this project is to develop practical methods for quantitative, depth-

resolved optical imaging in scattering media. Toward this end, reconstruction techniques

based on photon time-of-flight and autocorrelation measurements of diffuse reflectance

are being studied. The approach employs an array of radial intensity measurements to

obtain infonnation sensitive to sub-surface changes in absorption. Both Monte-Carlo

simulations and experimentally obtained measurements of known phantoms were used in

the evaluation of reconstruction techniques. Time-gated single photon reflectance

measurements \Vere made using a puIsed laser illuminating a layered absorbing/

scattering sample.

For image reconstruction, stepwise multi-linear regression, inverse and partial least

squares methodologies were investigated. With ail methods, absorbance was better

estimated in the top regions as compared to deeper regions. Both PLS and SMLR

116



•

•

•

methods gave significantly better estimation ofsample absorption as compared to the ILS

technique. Reconstruction results using autocorrelated data were found to provide a

similar estimation of absorption in comparison with time domain data. The use of

autocorrelation measurements could significantly reduce the complexity of

instrumentation for obtaining time-resolved information to study spatial relationships of

absorbing constituents in scattering media.

..1.2 Introduction

In recent years considerable efforts have been made to observe and characterize a

sample in three dimensions. The analysis of turbid media commonly employs optical

measurements to determine the concentration of the desired analyte. Examples range

from non-destructive inspection of materials ta diagnostic in vivo measurements of bio

energetic activity. There is currently considerable interest in the analysis of multi-Iayered

samples. Multi-Iayer media are common in medicine such as study of the

skinJadipose/muscle system, or the bladder or the head. Likewise, industrial examples of

two-Iayered media include products such as capsules, polyethylene container/product

systems, or coated surfaces. Indeed, the ability to make a quantitative non-invasive

assessment of drug content in capsules would be invaluable to the phannaceutical

industry both in tenns of quality assurance and public safety. In complex layered media,

the analysis method is often based on a model, which assumes specimen homogeneity.

However this assumption is often not valid, and as a result, serious artifacts in the

measured optical properties are introduced. I
•
2 Therefore, it is necessary to consider the

measurement technique, sample structure and theoretical models in the interpretation of
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results since changes in the optical properties in a single layer will affect measurements

made on the bulk.

Many optical measurement techniques have been investigated to obtain depth

resolved information from a sample. Common approaches have used either several

source and detector separations or time gating of the detected signal.3,.; In a steady state

experiment, the specimen is imaged onto a detector, and the measured responses probe a

defined region in which absorption from the layer sample is integrated. For thick

samples with little scattering, the acquisition of multi-perspective responses is made in

the reflectance geometry where detectors are placed at a series of lateral distances away

from the source. With this source/detector geometry, samples may be probed non

invasively and depth-resolved information may be obtained using analysis techniques

similar to Computer Aided Tomography (CAT).5 However, in highly scattering samples,

the optical path from source to detector is ill-defined and the reconstruction becomes

ambiguous.

For generalized reconstruction procedures in highly scattering media, Many

researchers have approached the reconstruction as a linear problem.2
,6.7 However, for

reasonable estimation of subsurface information, the linear reconstruction techniques

require a priori information usually obtained though knowledge of the sarnple structure

together with computer simulation. Therefore, in layered media, efforts have been

mainly directed toward a qualitative interpretation of samples. Several investigators have

derived approximate formulas for the steady state8
•
9 and time resolved2

,1O.11 reflectance

from two layered samples based on the diffusion approximation of the radiative transport

equation. Likewise, random walk l2
, finite element l3 and Monte Carlo methods 14 have
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been employed to investigate changes in surface reflectance as a function of scattering,

absorption and layer thickness. Least squares estimation of the opticaI properties of the

sample has provided a qualitative interpretation of the simulated reflectance signais. ft is

weil established that the overall success of a reconstruction is strongly dependent on the

signal-ta-noise of acquired signaIs. This is especially pertinent with time resolved dat~

where rich information about sample composition is contained in the subtleties of the

time profile and can be affected by instrumental noise. 16

Previously, we have investigated depth resolved quantification in layered scattering

media from steady state measurements using chemometric reconstruction techniques. 15

Results indicate that although quantification is possible, the use of integrated information

from a sample limits the accuracy of the estimation. The goal ofthis paper is to examine

the use of time resolved measurements for quantitative depth resolved estimations of

layered turbid samples. In addition, to increase the signal-ta-noise and reduce the error in

the reconstruction, the use of the autocorrelation of the time-gated signal is investigated.

For sample estimation, a comparison between reconstructions based on inverse least

squares (ILS), partial least squares (PLS) and stepwise multi-linear regression (SMLR) is

shown. The SMLR technique, which utilizes only a small subset of total time-gated

signal, was investigated as it has been shown to provide both a means for robust

estimation and for simplified instrumentation. The accuracy of sample reconstruction

using time gated data is compared to the autocorrelated signal for both experimental and

computer-simulated measurements. The results show significant improvement in sample

layer estimation using the autocorrelation and either PLS or SMLR estimation as

compared to classical reconstruction methods.
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• 4.3 Theory

For homogeneous scatteringlabsorbing media irradiated with a short pulse of

light, the time response of the system may be approximated using the diffusion

approximation of the radiative transport equation. 17
-
19 The result for source and detector

positioned in a reflectance geometry is given as,

g(r,l) = ( ~)~". , exp(- ,Il.ct ) exp( - r
1

J
4treD - (JI - 4ct / D

(4.1 )

•

where r is the source-detector separation distance, Zo =[(1- g )Ps ]-1, c is the speed of

light and Dis the diffusion coefficient given as, D=3 [ua +{I-g).uJ. The diffusion

coefficient depends on the absorption coefficient fla, the scattering coefficient Ils, and g

the scattering anisotropy (mean cosine of the scattering angle). Note, that the first

exponential term relates light attenuation to a Beer's Law relation where light is absorbed

by the medium, and the second exponential is essentially a Fick's law diffusion tenn

where light is attenuated by scattering. When the logarithm of Equation 4.1 is considered

then for /-La « /-Ls, the time resolved response becomes linear in !-La, for any given time and

radial separation.

Autocorrelation of a signal has long been used to increase the signal-to-noise in

the response from time varying measurements. Likewise, the autocorrelation offers a

solution to the problem of imprecise measurements of the absolute time delay between a

pulse entering and exiting a sample. The autocorrelation of a function h(t) is defined as,

•
co

A{,)=h(t). h(- t) = Jh(t )h(t + r )dt
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where t is defined as the phase delay. The multiplication in the autocorrelation function

combines aIl parts of the time signal and provides an average which enhances repetitive

features and reduces the magnitude of random noise. Using the autocorrelated response,

information about the width and shape of a pulse can still be detennined. In fact, for laser

alignment applications, optical autocorrelation is a standard method to measure pulse

shapes.

To exanune the effect of the sample absorption on the autocorrelation, the

diffusion approximation in Equation 4.1 can he substituted into Equation 4.2. The

resulting function is given as,

(4.3)
-<C

where, a = Zo/(41tc/D)3/1 and ~ = r1D/4c. For f.la « J.!s, the bracketed tenn of the

integrand is the autocorrelation kernel of the lossless diffusion equation when /la =0 and

can be denoted by (j(r,t,t). Expanding the last exponential term in Equation 4.3 in a

MacLaurin series, the following expression is obtained,

Further, by examining the expansion, it can he shown that each integral tenn is

proportional the nth moment of (j(r,t,t), represented by (t"a(r,t,r)). Therefore,

Equation 4.4 can altemately be written as an expansion of moments where,
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[n general, the series will converge rapidly (for ~<l), as the second and subsequent tenns

are much less than one. The expansion of moments is very useful since it has been shown

that moments provide robust estimation ofabsorption from the lime of flight profiles.2o

To interpret the physical significance of autocorrelated time-of-flight data, the

relationship between g(r,t) and A(r;r) for a series of absorptions cao be considered. The

time distributions from the diffusion approximation are shown in Figure 4.1. The

corresponding autocorrelation of the time distributions for positive phase delay times are

shown in Figure 4.2. For both figures the logarithm of the intensity was taken. Overall,

it can be seen that A(r,t) has a similar shape to g(r,t) at longer delay times. [n Figure 4.1,

it can be seen that the light arriving at late times in the distribution are significantly more

affected by changes in absorption than light at early times in the distribution. The

difference in the sensitivity to absorption is caused by a Beer's law weighting of the

difference in pathlength through the sample. The relationship of A(r;r) with changing

absorption is markedly different than the time distributions. As absorption increases, the

signal al aIl values of L decrease and there is a change in slope of the signal. The decrease

in signal magnitude and shape is consistent with Equation 4.5 where A(r,t) decreases as

e-JlP:. Therefore, absorption estimates based on the autocorrelation signal should be

possible.
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4.4 Reconstruction Methodology

Three methods were used for sample reconstruction, inverse least squares (ILS),

partial least squares (PLS) and stepwise multi-linear regression (SMLR). Ali of these

techniques are based on an inverse model where the absorption coefficients of the

discrete regions are expressed as function of the responses. The ILS method is a base of

many reconstruction methods such as the Algebraic Reconstruction Technique

(A.RT).~l.2~ [n the ART method as with those presented here, image resolution is made

possible with the assumption that sample constituents are Iinearly additive in the acquired

signaIs. Both the ART and ILS methods estimate aIl of the constituent absorption

coefficients in a sample at once. The PLS method uses a more directed approach to the

reconstruction. providing less ambiguous estimates for each of the regions independent of

the others. 15 Similarly, the SMLR technique uses only a subset of the data ta eliminate

uncorrelated responses from the estimation.

In this study, a two layer system is considered with variable layer thickness and a

fixed total thickness. Sample layers varied within six discrete depth regions. From each

sample, time resolved distributions similar ta that shown in Figure 4.1 \Vere collected at

several lateral positions from the source. In the case of autocorrelated data, the

autocorrelation function was determined at each of the lateral positions. The time

resolved or autocorrelated responses from each lateral detector position was collapsed

inta a single response vector using lexiographic stacking of the data. The 1 by ns vector

\Vas formed for each sample as:

X m = [Xml (rI)" 'Xml (l$) xm;(tt)·· .xmi(ts) Xml! (lI)" 'Xmn (t$)]
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• where S is the number of time intervals, n is number of lateral positions and xm,{tj) denotes

the response at the ith position andjth time for the mth sample. The lateral position vector

was assumed to be linearly additive with the absorption from each region. The overall

relationship for the reconstruction is written in matrix notation as,

(4.7)

•

where Mc is a matrix containing m sample absorption coefficients for p regions (m x pl,

Xe contains ilS responses (time resolved or autocorrelated lateral responses) for m

samples (m x ilS) and the subscript c refers to the calibration set. B comprises ns x p

calibration coefficients relating the responses to the region absorption. The difference

bet\\'een the reconstruction methods is in the computation of the B matrix.

The ILS approach is commonly used in a variety of spectroscopie calibrations and

is closest in relation to the ART method. For ILS, the computation of the B matrix is

obtained using the calibration data set and least squares estimation where,

(4.8)

•

The estimated absorption coefficients for unknown sample are then computed usmg

Equation 4.7.

PLS analysis has demonstrated significant success for constituent estimation in

complicated mixtures. Details of the PLS algorithm are given in several sources.23
-
25

One component PLS was used to obtain a calibration vector for each of the six regions

separately. The algorithm generates a series of factors where each describes a decreasing

amount of the co-variance correlated to M and Xc. The calibration vector Bk associated

\vith the optimal number of factors yield the best estimate of the absorption coefficients.
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• PLS estimation of absorption coefficients in an unknown sample are obtained by

multiplying the responses by the optimal vectory Bk.

The SMLR method is used to identify a linear combination of a subset of

responses in X: which are most correlated with the sample absorption coefficients.

Similar to the PLS method y each iteration of the algorithm finds the response Xi that

describes the residual amounts of variance which improves estimation of M. A new

calibration vector Bi is generated al each iteration. Again y the calibration vector Bk

associated with the best estimation detennines the optimal number of responses. The

estimated sample absorption coefficients Mare computed by

(4.9)

•

•

where bo, b \. ... ,bk are the coefficients in Bk. The same region by region approach taken

\Vith the PLS calibration was also used in this method.

From the prediction set, the optimal number of factors for PLS or responses for

SMLR was detennined from the Predicted Residual Error SUffi of Squares (PRESS).

PRESS values \Vere calculated as the sum of the squares ofresiduals between the PLS or

SMLR estimates and known absorption coefficients for each of the samples in the

prediction set. An F-test at the 95% confidence level on the ratios of adjacent PRESS

values were used as a criterion to determine the optimal number of statistically significant

factors or responses.

4.5 Computer Simulations

Computer simulations were done to determine the theoretical time resolved

reflectance responses from layered scattering media. The simulation provided
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infonnation which greatly aided in interpreting both experimentally detennined time

profiles and the effect of varying sample composition on the reconstruction.

A Monte Carlo method was used to model the migration of photons in scattering

media. The specifies of the Monte-Carlo technique have been described previously.15

However, the algorithm was modified to incorporate a time resolved distribution at each

radial position. Photon time-of-flight was determined by ratioing the length of the photon

trajectory from the source to detector by speed of light in the medium. The time

resolution \Vas 1 ps.

The chosen medium for the model was comprised of 2 distinct parallel layers with

respect to the surface, with series of absorption coefficients typical to values found in

tissue and plastics (0.0 - 0.5 mm-1).26 Likewise, the scattering coefficient, f..ls, and the

anisotropy factor, g, were set at 9.4 mm- I and 0.85 respectively. The three dimensional

size of the model and source/detector geometry c10sely approximated the experimental

sample. For acceptable photon counting statistics, a total of 2x106 photon packet

histories were run. Remitted time resolved intensity data was recorded in 0.1 mm lateral

increments over a total of 15 mm. For each detector position, spatially adjacent time

distributions were averaged to simulate the responses that would be typical of the

resolution capable of the fiber optic detection system used in experiments. A data set

consisting of ten equally spaced lateral positions from 1.5 mm to 15.0 mm was

detennined.
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4.6 Data Sets And Pretreatment

A two layered system was modeled where the thickness of the absorbing Iayers

was partitioned in six evenly graduated regions. For each of the six thickness

combinations, six absorbing Ievels were pennutated. The resulting full factonal designed

set consisted of 156 distinct samples. The samples were sectioned into two sets tor

reconstruction purposes. Half of the 156 samples comprised the calibration set. The

remaining half of the data was further split into prediction and validation sets. Care was

taken to avoid biasing. The prediction and validation sets were chosen to demonstrate the

efficacy of the reconstruction method in distinguishing different absorbances throughout

the medium. Besides lexiographic data stacking, the log of the time responses were

taken. The autocorrelation was calculated using the square magnitude of the Fourier

transfonn for each of the individual time distributions. The logarithm of the

autocorrelation \Vas taken to linearize the result for absorption estimation. Due to the

symmetry of the autocorrelation function, only positive 't's were considered.

Because of limited processing speed for the Monte Carlo simulations. the

absorption levels were reduced by 70%. In arder to make comparisons between

experiment and simulation, absorption estimates from the Monte Carlo simulation were

rescaled using a single coefficient.

4.7 Experimental Work

Experimental time resolved reflectance measurements in layered media were

made to evaluate the efficacy of the reconstruction methods with real data. The

experimental apparatus developed for the reflectance measurements is shawn in
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Figure 4.3. The heart of the system is a time-correlated single photon counting

instrument which is similar to devices found in fluorescence life-time studies.27 A mode

locked Ti:Sapphire laser (Mira 9008, Coherent, Santa Clara, CA) pumped by an Argon

laser (Innova 310, Coherent) was used to produce laser pulses with a repetition rate of 76

MHz. The laser pulse shape was measured using a high-resolution autocorrelator and

was found to have a \vidth of 170 fs. The laser was tuned to 780nm for the experiment

and the power \Vas measured as 0.613 W corresponding to peak pulse powers of61 kW.

The output beam was split by a beamsplitter after which 4% of the light was focused onto

a fast photodiode (ET2000, Electro-Optics Technology Inc., Traverse City, MI). The

remaining portion of the pulse was attenuated by a neutral density tilter and was directed

onto the sample using a computer controlled mirror galvanometer (CX660, General

Scanning !nc., Watertown, MA). With the aid of a lens, the beam was swept across a

sample perpendicular to the face. To keep light levels entering the detector relatively

uniform. the pulsed beam was further attenuated by a linear graduated neutral density

tilter before entering the sample.

To detect the diffuse light from the sample a 0.6 mm diameter tiber optic was used

which guided light to a cooled microchannel plate photomultiplier tube (MCP) (R3808U,

Hamamatsu Corp., Bridgewater, NJ). Output from the photodiode and MCP were each

connected to separate constant fraction discriminators (CFD) (Model 2126, Canberra

Industries lnc., Meriden. CT). Logic pulses from the CFDs were sent into a time-to

amplitude converter (TAC) (Model 2145, Canberra). The MCP response was used to

start the TAC timing and the photodiode response stopped the timing. This 'reversed

timing' technique is commonly used when the start rate is higher than the stop rate and
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reduces dead time of the TAC.28 The output of the TAC was a DC voltage signal

proportional to the elapsed time between the start and stop pulses. The TAC output was

digitized using a high speed 400Khz 12-bit AID converter (AT2000, National

Instruments, Austin, TX). Time increments were sampled at 4.9 ps. The instrument

response with no sample present WéiS measured to be 300 ps FWHM. The significant

time blurring Was unavoidable and mainly due to the fiber optic. Software running on a

486/66 MHz PC written in C was used for data acquisition, beam positioning and time

binning.

The sample container consisted of two black reservoirs each fitted with 40 x 50

mm glass windows, 0.15 mm in thickness. The window of the outer reservoir was

designed with a groove separating the source from the detector so that internai reflections

in the glass did not couple into the collection fiber. Positioning of the inner reservoir was

adjusted \vith a micrometer. An opaque plastic black sheet was positioned in the inner

reservoir so that the total thickness of the sample was maintained at 12 mm. Al: 1

solution of dilute dye to 10% rnilk fat cream was used as the scanering/absorbing

medium for both reservoirs (J.ls = 18.8 mm-1
).26 A suitable water soluble dye (Dr. Ph.

Martin's transparent water color #33 Black, Hollywood, FL) was used for the absorber

because it \Vas round to be highly water soluble and not fat soluble as measured through

the microscope.19 Absorption between scattering events from the scattering media

approximates the assumptions of the Monte Carlo mode!. 15.29

Time distributions were recorded as a function of the source/detector separation

(1.5 - 15 mm in 1.5 mm increments) and with varying sample composition. Typically,

each acquisition required 5 minutes with total counts ranging between 1.5x1OS to 4x 105 in
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each distribution. A series of 130 samples were designed which provide a similar range

covered by the simulations. Five different dye concentrations were used in the two layers.

The top layer had Jla values of 0.0000, 0.0038, 0.0075, 0.0150 and 0.0300 mm- l
. The

lower layer had a series of absorption values of 0.030, 0.060, 0.090, 0.120 and

0.150 mm ,1.

To minimize temporal jiner in the time distributions and to make the distributions

comparable at alliaterai positions, each profile was shifted to a common rising edge time.

High frequency periodic artifacts caused by the TAC were reduced by smoothing the

measured time profiles. A Gaussian smoothing window (cr = 25 ps) was found to reduce

the artifact by 94%. An example of experimentally obtained lime distributions after

preprocessing is shown in Figure 4.4. The apparent non-linear progression of the time

distributions is due to the graduated linear density filter. Further data preprocessing and

sectioning into calibration, prediction and validation sets were done in a similar manner

as \Vith the simulated data.

4.8 Results and Discussion

4.8./ ReCOllstnlclioll resulls based on lime resolved data

The ILS~ PLS and SMLR approaches provide an inverse modeI where absorption

coefficients in each region of the sample couId be estimated from time resolved

reflectance data. Both experiment and modeled data were considered for the comparison.

Table 4.1 summarizes reconstruction results for each of the six regions. Both the

absolute standard eITors and the coefficients of variation for each region are given.
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Region 1 represents the upper most portion of the sample (0 - 2mm) whereas region 6

represents the deepest (10 - 12 mm).

The results indicate that reconstructions using the ILS method with both the

experimental and modeled data provided inaccurate estimations of sample absorption.

With the modeled data however~ absorption coefficients in both the tirst and second

layers were estimated to a reasonable degree before rapidly degrading with increased

depth. The large amount of error is not surprising due to the ill-conditioned nature of the

reconstruction. Due to the ambiguity of the reconstruction, the ILS method estimates

absorption coefficients considerably outside the range of physically possible values. To

obtain better quantification, constraints and a priori infonnation must be included as is

used in ART reconstruction methods.

Table 4.1. Reconstruction results with time resolved data.

Method Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
Experiment

ILS LI xl 0-2 I.lxlo-1 2.lx1O-1 6.3x 10-1 7.3xIO·1 6.9xl0-1

(94%( (471 %) (479 %) (1115%) (970 %) (784 %)
PLS 2.2x 10-3 2.5x 10-2 3.9x 10-2 4.3x 10-2 4.9x 10.2 4.3xl0-2

(19.1 %) (102.5%) (89.5 %) (75.7 %) (64.5 %) (48.2 %)
SMLR 1.5x 10.3 2.5x 10-2 3.9xlo·2 4.6x 10-2 5.0xl0-2 4.7xl0-2

(13.3 %) (103.6 %) (88.6 0/c,) (80.5 %) (65.7 %) (52.5 0/0)
Modeled

ILS 1.7x 10-2 3.1 xl 0-2 2.2xIO-1 6.2x 10-1 6.6x 10-1 7.IxIO-1

(22.9 %) (40.1 0/0) (3020/0) (831 %) (881 0/0) (958 °/0)
PLS 1.3 x10-2 1.6x 10-2 2.3x 10-2 2.9x 10.2 4.3x 10-2 4.3x 10.2

(17.5 %) (22.0 %
) (31.3 %) (39.60/0) (57.8 0!cl) (57.3 %)

SMLR 2.8x 10-4 1.5x 10-2 2.6x 10-2 4.1xI0-2 4.5x 10.2 4.5xI0·2

(0.3 0/0) (20.6 %) (34.7 %) (54.5 0/c,) (60.5 %) (60.1 %)

• ·Standard errors given mm· l
, coefficients of variation in (%)
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For less ambiguous quantification in each of the regions, the PLS method was

used to provide a more directed approach to the reconstruction. Estimates for all of the

regions required either four or five factors as optimal for both experimental and simulated

data sets. This higher number of factors is believed to be related to both the presence of

noise and to non-linearities in the time-of-flight response with absorber concentration.

Overall, absorption results indicate an order of magnitude decrease in the error over the

ILS technique. Similar trends are seen in comparing errors obtained in the simulated and

experimental data. However, a significant difference is seen between the two data sets in

regions 2 and 3, where the experimental results have large errors. The large error is

probably due to the nature of the sample cciI. When the inner compartment occupies

these regions, positioning variation of the glass window plays a significant role in the

observed results. The experimentally detennined time profiles were slightly different

when the glass divider was positioned close ta the surface with a sample containing

identical solutions in each compartment.

For the experimental data, significant improvement in the reconstruction in deeper

regions is inherent in the PLS method. Figures 4.5 and 4.6 show a plot of the calibration

vector B, for regions 1 and 6. Weighting coefficients are arranged to clearly see the

relative weighting as a function of time and detector position. For region l, the

weighting coefficients of the calibration vector for ail source/detector separations show

the same general trend. A strong weighting of peak maximum follows with

source/detector position (see Figure 4.4). Each profile is weighted positively at early

limes (around the peak maxima), and negatively al longer times. The effect of oppositely

weighting coefficients suggests that signal differencing leads to a cancellation of
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infonnation from deeper regions. By subtracting the contribution of the peak maximum

(mean photon paths) from that of the trailing edge (longer path photons which penetrate

deeper) a region in the sample may be selected. A slightly different profile is seen for the

calibration vector of region 6. Whereas the same form of differencing is seen at short

times, the peak maximum is less significant at larger source/detector separations than

before. Likewise, there is a shift to positive weighting at longer times which contain

information From light having longer pathlengths through the sample. Analyzing the

calibration vector as a function of source/detector position, however, has proved more

difficult. Although source/detector positioning has been previously demonstrated as a

means to discriminate between absorption changes within a sample using a continuous

source,15 the present role is complicated with time-resolved data. Nevertheless, the PLS

calibration vector provides both a means for tomographie reconstruction and a useful tool

in which information about the nature of the photon propagation in seattering media.

Reconstructions results using SMLR were similar to the PLS results. For

modeled data, ten individual time responses for region 1 were detennined. This number

decreased to two in region 6. Similar regions of the time distributions were chosen as the

most correlated with both experimental and simulated data. Referring to Table 4.2, in the

case of region l, the selected times and positions suggest that changes in the peak

maximum at small source/detector separations are important. For a deep region, the data

responses corresponding to long times at large source/detector separations were selected.

A similar differencing of the signal is seen as compared to the PLS results considering

the coefficients for each of the responses selected.
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Table 4.2. Optimal data points chosen by SMLR with experimental time resolved data.

Region Time (ps) Detector Weighting
Position (mm) Coefficient

1320 1.5 -0.1598
1510 4.5 -0.0330
870 1.5 -0.0159
1480 12.0 -0.00547
2900 1.5 +0.00092

6 2740 12.0 -0.3373
2755 13.5 +0.3246

Both SMLR and PLS provided similar results for regions 2 to 6 however a

marked improvement was found for the uppennost region using the SMLR technique. In

this case. almost a 50 foid improvement is found in the simulated data. Likewise, for

experimental data~ a two fold improvement over estimates by PLS was observed. This

improvement in absorption coefficient estimation in region 1 is understandable

considering that the most correlated time/position infonnation regarding region 1 is

contained in a tight bolus ofphotons that have traveled the shortest path. The use of only

a fe\v data responses allows for better estimations because unnecessaxy infonnation

which tends ta weight in noise is not included. This effect is weIl recognized with other

spectroscopic measurements.

Three images of reconstructed samples as determined by the SMLR technique are

shown in Figure 4.7. Images were chosen to illustrate the major cause of the error in the

estimation of the absorption coefficients in the vicinity of the discontinuous boundary

between the t\\'o layers. Instead of an abrupt change, only broad sloping changes are

produced. Regions with constant absorption coefficient are also poorly estimated and
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give an average over the range. This is not unlike other reconstruction techniques where

ambiguity and noise in the data produces ba..l'ldwidth-limited images. Estimation may be

improved for band\vidth limited images using a priori constraints.

4.8.1 Reconstruction resuits lvitlz autocorrelated data

Autocorrelated data was evaluated with the reconstruction methods in order to

make comparisons to normal time resolved data. As shown in Table 4.3, similar results

are seen when comparing reconstructions with a slight improvement in the top two

reglons.

The factor of two improvement in the estimation using PLS with simulated data was due

to the smoothing inherent to the autocorrelation technique. For the autocorrelation signal,

the optimal number of factors increased to five or six factors. This was observed for both

the modeled and experimental data. Though there errors decreased as compared to the
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time distribution estimates, the increased number of factors needed with autocorrelated

data suggests that there is an increase in the non-linearity of the absorptIon estimates.

From the calibration vectors shown in Figures 4.8 and 4.9, it is observed that the most of

the weightings are placed on both short and long phase delays. This corresponds to

maximal weightings placed on the mean and long photon paths respectively. For

intennediate values of phase delay, the two partially overlapped time distributions

produce the highest degree of non-linearity and as a consequence are the least significant.

From Figures 4.8 and 4.9 it can be seen that the weightings of the responses vary as a

function of source/detector separation. A change in sign is observed for low phase delay

values as source/detector is increased. The effect of oppositely weighting coefficients

bet\veen detector positions again suggests that differencing of the responses provide the

method to discriminate between regions. The trend of oppositely weighting coefficients

as a function of source/detector separation at low phase delay is analogous the results

observed with time distributions. The autocorrelation function for small phase delay is

approximately proportional to the steady state response (integrated square of the time

distribution). This is consistent with previous work where source/detector positioning

was demonstrated as the sole means to discriminate between absorption changes within a

sample. 15 Although a more complicated relation exists between A(r,t) and the absorption

coefficient for a two layer medium, the PLS method provides a similar error of the

estimate.

Reconstruction with SMLR of the autocorrelated response showed similar results

to the PLS estimates. An increased number of responses were required in the SMLR

model to yield a similar level of estimation as provided by the estimation made with the

143



•
4.------------------------~

2
...-..
~

1

0
~

0~

(/)...,
c
CIl.(3

-2b::
CIl
0
0
CJ) -4• c...,
~

.C>
CIl -6
~

-8 ""----- ..........-- ~ ~_____L _.J_____J

o 0.25 0.5 0.75

Tau (ns)

1.0 1.25 1.5

•

Figure 4.8. Calibration coefficients stacked as a function of phase delay and detector
position as detennined by PLS regression for region 1 with autocorrelated
data. 1) r = 1.5 mm; 2) r = 6 mm; 3) r = 10.5 mm; 4) r = 15 mm.

144



•

1.51.251.00.750.50.25

6,.---------------------------,

-6 "---- ........... .......-. --'- ~ ~ ___J

a

.-.. 4
C"),
0
T--(J) 2+ooJ

C
Cl,)

u
&::

0(1)
0
U
0)
c

-2:.;:;• ~

.0)
Q)

~ -4

Tau (ns)

Figure 4.9. Calibration coefficients stacked as a function of phase delay and detector
position as detennined by PLS regression for region 6 with autocorrelated
data. 1) r = 1.5 mm; 2) r= 6 mm; 3) r= 10.5 mm; 4) r = 15 mm.

•
145



• time distributions. The responses chosen by the method, shown in Table 4.4, heavily

weighted small phase delays at small source/detector separations for estimations of

absorption in region 1. For region 6, the opposite effect is observed where large

source/detector separations and large phase delays are the most correlated with changes

deep within the sample. These results are consistent with the interpretation of the

autocorrelation function where large phase delays are most sensitive to changes in the

trailing edge of the time distribution.

Table 4.4. Optimal data points chosen with SMLR with autocorrelated data.

Region t (ps) Detector Weighting
Position (mm) Coefficient

90 1.5 -2.6317
15 1.5 +2.3619

390 1.5 +0.1711• 380 15.0 -0.0770
245 7.5 +0.0752
305 12.0 -0.0677
230 6.0 -0.0283

6 1450 15.0 -0.3373
1100 1.5 +0.3323
1420 1.5 +0.0782

15 1.5 -0.0034

4.9 Conclusion

A depth resolved tomographie reconstruction of layered seanering/absorbing

media \Vas shown. Using both Monte-Carlo simulations and experimental data, a

•
comparison between reconstructions of samples was done using photon time-of-tlight

di ffuse retlectance and autoeorrelated data. With both real and simulated data, depth
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resolved quantification of the absorption in each region of a sample was made using

stepwise muIti-linear regression, inverse and partial least squares methodologies. For aIl

methods. absorbance was better estimated in the top regions as compared to deeper

regions within the sample. Likewise, reconstruction results using the autocorrelation of

the time responses were found to provide similar estimation in comparison with time

distribution data. Both PLS and SMLR methods gave significantly better estimation of

sample absorption as compared to the ILS technique. In comparing results from

simulated data. SMLR gave the best results with a 0.9% error in the top layer. However

in lower regions, no improvement was seen between SMLR and PLS. The results are

encouraging as new directed methods may be developed which include estimates

obtained in upper regions ta better approximate absorbance deep within a sample.

Likewise. adding constraints and a priori information about the sample may improve the

estimation. In the future, incarporating time resolved information together with advanced

reconstruction methods may provide new lools for solid sample analysis in clinical and

industrial environnlents.
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Chapter 5 A Hierarchical Local Weighted Calibration
and Classification Approach to Depth
Resolved Quantification in Scattering Media
using Photon Time-of-Flight Measurements

In Chapter 4 optieal tomographie reconstruction in layered liquid samples was

made using stepwise multi-linear regression and partial least squares regresslon.

Estimates of the absorption coefficient in each sample region were made independent of

other regions. Although sample quantification in the top region improved markedly over

those using steady state measurements, large errors in the estimates remain in the bottom

regions.

To further reduee the error in sample reconstruction, a priori infonnation and

constraints are needed. It was observed that aeeurate absorption estimates in the lower

regions may he made if the samples used for calibration contained a fixed level in the

upper regions. Layer absorption estimates may therefore be improved by narrowing the

range of samples used for calibration. By embedding this approaeh into an overaII

tomographie reconstruction methodology, better sample quantification at eaeh sample

depth rnay be possible. A priori information regarding sample composition in the upper

regions may therefore direct subsequent calibration for lower regions. This approach is

similar to locally weighted regression (LWR) methods whieh have been applied in NIR

diffuse refleetanee studies for estimating non-linear regression surfaces. Further, by

discretizing the possible outeomes with classification methods, enhancements in

quantification may he obtained. A classification based reconstruction will naturally

152



•

•

•

constrain absorption estimates to positive values or to a given range. In this chapter,

these concepts are explored for depth resolved quantification.

5.1 Abstract

Chemometric methods for quantitative analysis in layered scattering/absorbing

paper samples are described. A radial array of time-resolved diffuse reflectance

measurements have been made to obtain multi-perspective infonnation sensitive to

changing sample composition. For analysis, the stepwise multilinear regression (SMLR)

method was used a basis of a hierarchicallocally weighted sample calibration. Estimates

of the absorption coefficient in each sample region were made either by linear regressicn

following by binning of the result (HLRB) or by K-nearest neighbour classification

analysis (HCKNN). With these approaches, the tomographie reconstruction problem

may be linearized by utilizing a priori infonnation about sample composition in upper

regions to direct subsequent calibrations for lower regions. A comparison of different

reconstruction methodologies is made along with their efficacy in the presence of added

noise. Results demonstrate that estimations of the absorption coefficient deep within a

highly scatteringtabsorbing sample are obtainable at greater than 50% accuracy using the

HCKNN approach. This represents a 20% improvement at ail sample depths over the

SMLR approach. The use of locally weighted calibrations and sample classification to

constrain the solution of a tomographie reconstruction is shown as a powerful new tool

for quantification in layered scattering/absorbing media.
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5.2 Introduction

[n many fields there is a need to observe and characterize a specimen in three

dimensions. [n the analysis of turbid media, optical methods are commonly used to

detennine the concentration of the desired analyte. Recently, there is considerable

interest in the analysis of layered samples. Layered systems such as skinlbonelbrain

tissue in the head or the skin/adipose/muscle system are common in biology. Other

common examples of layered media include the gel capsule/drug system and paper/mylar

composites. Indeed, the ability to make a quantitative non-invasive assessment of

product freshness inside composite translucent packaging would be a valuable quality

assurance tool to the food industry. In complex media, the analysis method is often based

on an invalid model which assumes sample unifonnity. This assumption, introduces

artifacts into the measured properties. When analyzing turbid layered samples, it is

necessary to consider both the sample structure and measurement technique when

interpreting the results since changes in the optical properties in a single region affect the

measurements made on the bulk.

Several techniques have been developed ta obtain depth resolved infonnation from

a turbid sarnple. For thick samples where transmission measurements may be

impractical, reflectance based geometries cao be employed.\ Steady state opticaI signais

gathered from detectors situated at severaI lateral positions from an incident light source

may he used to obtain multi-perspective information from a sample. Using multiple

optical paths through the sample, depth resolved infonnation may be elucidated with

analysis techniques similar to Computer Aided Tomography (CAT).1.3 In highly

scattering samples, the optical path from source ta detector is poorly defined and
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reconstruction becomes ambiguous. To improve the accuracy of a reconstruction~ the

detected signal may be time-gated:t5 With time-resolved photon detection, the path

bet\veen source and detector may he more clearly defined by eliminating randomly

scattered photons which have an unknown geometry.

Using multi-perspective sample attenuation data, sample reconstruction is often

approached as a linear problem.6
.
7 However for reasonable estimates of sample

composition. linear reconstruction techniques typically require a priori structural

information together with finite element analysis methods. Several approximate methods

have been developed to model the time-resolved reflectance from two-Iayered samples

using the diffusion approximation of the radiative transport equation.6
.
8

•
9 Although more

general models have been developed, the success of any sample reconstruction is highly

dependent on the quality of the acquired signaIs. This is especially true for time-resolved

data where the subtle shapes in the time-profile contain rich information about sample

composition.

Previously, we have investigated depth resolved quantification in layered scattering

media \Vith time-resolved measurements using chemometric reconstruction methods. 1o

Estimates of sample composition were made independently at each sample depth using

partial least squares (PLS) and stepwise multiple regression (SMLR) calibrations.

Results demonstrated that reasonable reconstructions were obtained with the SMLR

method. As the SMLR technique only uses a few data channels from the total signal,

better estimations were possible because unnecessary information and noise was not

included. With the SMLR approach, the absorption coefficient in the top layer could he
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estimated to within 0.30/0. In lower regions however, errors in the absorption estimates

increased to 80%.

[t is known that the ambiguity in a reconstruction may be reduced by selecting a

narrow sample composition range. Il Two chemometric techniques, local1y weighted

regression (LWR) and hierarchical methods of analysis, may therefore aid in improving

quantification. For near-infrared diffuse reflectance analysis of samples, LWR has been

applied successfully as a means for estimating non-linear regression surfaces. l
:! [n LWR,

a new weighted calibration is made for each prediction sample based on the n calibration

points closest to il. Further, by discretizing the possible outcomes with classification

methods such as hierarchical or binary partition trees, enhancements in quantification

may be obtained. 13 Likewise, classification may naturally constrain absorption estimates

to positive values or to a given range.

In this study, our goal is to enhance quantification over that provided by SMLR by

employing hierarchical locally weighted calibration and classification methodologies for

samples with discretely variable composition. This method uses a priori information

about sample composition in upper regIons to direct subsequent locally weighted

calibrations for lower regions. Two classification methodologies are investigated: K

nearest neighbour classification and simple discrete binning of the estimated absorption

coefficients obtained from SMLR. A comparison of different reconstruction

methodologies is made along with their efficacy in the presence of added noise. Results

demonstrate a marked improvement in reconstruction accuracy compared to that obtained

by SMLR.
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5.3 Experimental

The experimental apparatus developed for time-resolved diffuse reflectance

measurements, shown in Figure 5.1, consists of a time-correlated single photon counting

instrument similar to devices found in fluorescence life-time studies.l~ Details of the

instrumental setup and basic signal post-processing has been described previously.1O

However. the photon time-of-flight profiles were digitized in 4.9 ps increments over a

3 ns \vindo\v and the instrument response with no sample present was measured to be

250 ps FWHM. Furthermore, the layered samples were heId in position with a black

metal clamp which allowed light to penetrate and exit the sample freely from the front

tàce.

Absorbing paper samples were made by soaking individual sheets of Whatrnan #1

tilter paper (Whatman Ltd., Maidstone, England) in an aqueous dye solution (Dr. Ph.

Martin's Transparent Water Color #33 Black, Hollywood, FL) for 20 seconds followed

by air drying. A 1.0 mm stack of homogeneously dyed filler paper eut to 50 mm x

80 mm were glued around the edges. Care was taken to ensure that the illuminated

portion of the sample was free from adhesives. Paper stacks prepared in this manner

\Vere calculated to have corresponding relative absorption coefficients, ~a, of 0.000,

0.006, 0.012, 0.018, 0.024, and 0.030 mm- I
. From the Beer-Lambert relation, A = abc,

the absorption coefficient, fla = 2.303 ac (absorptivity X concentration), is the constant of

proportionality between the absorbance, A and the pathlength, b. Each sample of a

specifie dye concentration profile was comprised of six paper stacks pressed together !o

form a 6 mm thick specimen.
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Figure 5.1. Diffuse reflectance photon time-of-flight instrumentation.
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A set of 196 distinct samples of varying dye concentration in each layer were made

to generate a calibration set which spanned the measured absorption range. Six samples

were of a homogeneous absorption coefficient, 150 samples contained two different

contiguous absorption regions and 40 samples contained three contiguous absorption

regions. Half of the 196 samples comprised the complete calibration sample set. The

remaining half of the samples were used for the prediction and validation sets.

Replicate time distributions were recorded at five laterai source/detector

separations (2. 5. 8, Il and 14 mm) for each sample. Each acquisition required 5 minutes

\vith total counts ranging from 4.5x 105 to 1.2x 106 in each distribution. To minimize

temporal jitter in the time distributions and to make the distributions comparable at aIl

lateral positions, time profiles were shifted to a cornrnon incident time of the laser pulse

at the detector. Examples of the photon lime distributions after smoothing and

Iogarithmic preprocessing are shown in Figure 5.2. It may seen that the intensity and

breadth of the distribution vary with source/detector separation.

5.4 Reconstruction Methodologies

The methods used for sample reconstruction were divided into three different

categories. First. using the full time distribution, a standard muitilinear regression

(SMLR) model was developed. Next, to localize the regression according to the sample,

a hierarchical Iocally weighted calibration followed by linear regression with discrete

binning (HLRB) \vas used. This approach allows for a linearization of the reconstruction.

FinaIly, the Iocally weighted calibration was extended using a non-parametric approach
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• by using K-nearest neighbour classification analysis (HCKNN). Common to ail of these

is the general background of the fonnation of the reconstruction problem.

For ail reconstruction methods~ mathematical analysis of the time/position data

was facilitated by tirst lexicographically stacking the total response into a 1 x ns vector,

X m = [Xml (t 1 ) ••• Xml (t s ) X mi (t 1 ) ••• X mi (t s ) X nrn (t 1 ) ••• X mn ( t s ) ] (5.1 )

where s is the number of time intervals, Il is number of lateral positions and Xmi(tj) denotes

the response at the ith position andlth time for the mth sample. This vector is assumed to

be linearly additive \Vith the absorption trom each region. For a linear reconstruction such

as SMLR~ the overall relationship can be written in matrix notation as,

(5.2)

•

•

where Mc is a matrix containing m sample absorption coefficients for p regions (m x pl,

Xe contains /1 data channels for m sampIes (m x n) and the subscript c refers to the

calibration set. B comprises n x p calibration coefficients relating the responses to the

region absorption level.

5.4.1 SAILR reC0/1s!J1Icti0/1 method

The linear SMLR method was used to identify an optimal linear combination of

data channels, Xf, X2, •.• , Xk (k < n) correlated with the sample absorption coefficients M.

Details of the particular SMLR algorithm used in this study has been described

previously.IO·11 However it should be mentioned that estimates of the m absorption

coefficients for a given sample region in the validation set are computed by

(5.3)
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where bo, b" ...• bk are the coefficients detennined by linear regression.

5.4.] HLRE reconstruction method

The hierarchical locally weighted regresslon and classification (HLRB)

reconstruction technique pictured in Figure 5.3 is based on the LWR approach12 foIlowed

by discrete classification. For absorption estimates in the top surface region (region 1),

SMLR \Vas applied to the complete calibration set. The optimal subset of time/position

data channels, x" X2, ••• , XI.: most correlated to changes in the absorption coefficient in

region 1 was found. After applying Equation 5.2 with the bl.: parameters on the validation

set, the absorption level in region 1 was classified as belonging to one of six possible

discrete levels. Classification was done by binning the estimated absorption coefficients

into one of six discrete levels as shown with the dashed-line in Figure 5.4. The solid line

demonstrates an idealized reconstruction with data points distributed evenly about the

line of identity between the actual absorption coefficients and the estimated values. With

this infonnation. unique calibration sets for estimation of the absorption coefficient in

region 2 \Vere selected for each sample in the validation set such that it contained samples

which best matched the absorption levels determined for region 1. Next, SMLR was

applied to each new calibration subset for absorption coefficient estimations in region 2.

By this method, the optimal data channels for region 2 given a priori knowledge of

region 1 were determined. The process was applied repeatedly in each successive region

of the sample for aIl validation set members.
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Figure 5.3. Pictorial diagram of the HLRB reconstruction methodology.
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5.4.3 HCKNN reCOllstroction method

The HCKNN method operates in a similar manner to the HLRB technique except

that no linear regression models are constructed from the optimal time/position channels.

Instead, the optimal data channels of the local weighted calibration set are decomposed

into their principal components. Similarly, corresponding time/position channels of each

member in the validation set are projected into the same principal component space for

comparison to the calibration set. Absorption levels are detennined by k-nearest

neighbour (K.!'JN) classification analysis. The KNN technique finds the k spatially

c10sest neighbours in calibration set and detennines which group a test point belongs.

Once the algorithrn deeides on the closest absorption level, the method is applied again

in each region for aIl validation set members. In both the HLRB and HCKNN

approaches to sample reconstruction, the methods seek to identify those samples in the

calibration set whieh closely match the absorption properties above the one of interest for

each member of the validation set in order to optimize the calibration.

5.5 Results and Discussion

5.5.1 SA1LR reconstnlction results

As an initial approach to tomographie reconstruction, the SMLR approach was

used. For aIl depth regions in the sample five time/position data channels were

detennined ta be optimal. Considering only the sample surface layer, region 1 (0 - 1

mm), the selected limes and positions are centered around the peak maxima of the
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detected time distributions recorded at small lateral source/detector separations. For a

deep region. i.e. region 5 (4 - 5 mm)~ longer times in distributions recorded al large

lateral source/detector separations were chosen. These trends are consistent \Vith

observations in previous work with layered scatteringlabsorbing systems. JO

Reconstruction results using SMLR for the uppennost five regions in the sample

are summarized in Table 5.1. Errors in the reconstruction are listed both as coefficients

of variation (~'o) and in absolute units of mm- l
. These values quantify the error between

the actual and estimated absorption coefficients. A third quantity, the classification rate,

is the percentage of samples \Vith correctly classified absorption levels in each region.

Results indicate that absorption coefficient may be estimated to within 1% of the actual

value in region 1. A 100% accuracy is obtained if the estimated absorption coefficients

are categorized into six discrete levels. When the SMLR technique is applied to deeper

layers the error in the estimate increases to 32% in region 5. This translates into only

30.So;() of samples being classified with the correct absorption level. The large amount of

error is not surprising due to the way light traverses from source to detector. The

reconstruction problem becomes ill-conditioned since light detected from the deeper

regions of the sample must always travel through the upper regions at least nvice. To

reduce ambiguities in the reconstruction, a more directed approach may be useful.

Table S.l. SMLR reconstruction results with time resolved data.

•
Coeff. ofVariatien (0!<J)
Standard Errer (mm- l

)

Classification Rate (%)

Region 1
0.8

0.0002
100.0

Region 2
13.4

0.0018
66.7
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20.9

0.0031
58.3

Region 4
22.1

0.0033
47.2

Region 5
32.0

0.0048
30.5
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5.5.1 HLRE reCOllstnlctioll results

The HLRB rnethod was used to provide an enhanced means of linear calibration

for each sample region. Using absorption coefficient estimates in upper regions~ a better

Iinear calibration may be obtained by eliminating samples from the calibration set which

strongly ill-condition the model. The locally weighted calibration selects only those

samples \vith absorption coefficients in the upper layers which best resemble those

estimated in a given validation sample. For each sample region, similar sections of the

data vector were chosen \vhen compared to those determined using the SMLR approach.

A 11% improvement in the classification rate in region 2 (l - 2 mm depth) was found

with the HLRB method as shown in Table 5.2.

Table 5.2. Comparison of SMLR, HLRB, and HLKNN reconstruction results listed as the
percentage of samples correctly c1assified.

However, no significant improvements are seen in regions 3 to 5. Integral ta absorption

coefficient estimations of a sample region is the development of the calibration set. The

importance of this was detennined by excluding 10% of the calibration data for region 4.

When this \Vas done~ is was found that the classification rate dropped on average from

51.8 % to 44.1 ~Io. It is clear that the results are not independent of the number of

calibration points. This is supported by previous work where the number of calibration

sampIes necessary to improve classification dramatically increases. 13
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5.5.3 HCKNN reCO/lstnlctÎon results

Building on the calibration concept llsed in HLRB, KNN classification analysis

\vas used for discrete estimates of the absorption coefficients. As the HCKNN method

does not use linear models, better classification rates ShOllld be achieved. As a tirst step,

the optimal time/position data channels selected from locally weighted calibration set

were decomposed into their principal components. In aIl cases, three principal

cornponents. capturing -980/0 of the data variance, were retained. Corresponding

validation set data was projected onto each of the principal components. Figure 5.5

shows a plot of the first t\vo principal components of the optimal calibration data for

absorption estimates in region 1. A linear relationship between the absorption coefficient

and principal component 1 is clearly seen. However when a similar analysis is made

using optimal calibration data for absorption estimates in region 2, a non-lïnear trend is

observed as shown in Figure 5.6. Calibration set members having the same absorption

coefficient in region 2 are nevertheless clllstered together. A k-nearest neighbour

classification algorithm with k = 1, applied to members of the validation set for each

region yielded much improved classification rates. As shown in Table 5.2, a 20%

improvement in the classification rate is observed for ail regions using the HC~l\IN

method compared \Vith SMLR. Likewise, estimations of the absorption coefficient deep

within a highly scanering/absorbing sample are obtainable at greater than 50% accuracy.

Three representative images ofreconstructed samples determined by the HCKNN

technique are shawn by the dashed lines in Figure 5.7. In general, improved absorption

estimates in the vicinity of discontinuous boundaries between different absorbing regions

were round in comparing corresponding SMLR reconstructions (dotted lines). The broad
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squares; 0.018 mm-!, solid squares; 0.024 mm-!, open triangles; 0.030 mm-!,
solid triangles.
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sloping changes produced with the SMLR are 'sharpened' when the HCKNN approach

\Vas applied. Reconstructions of samples containing regions with a constant absorption

coefficient produced images which were within one absorption level of the actual value.

This classification based technique markedly improves reconstruction accuracies over

linear methods which tend to produce blurred images in highly scattering media.

5.5.4 Effect a/nOise Oll the reconstructions

To investigate the effeet of noise on tomographie reconstruction, 0.0%, 0.5% and

1.0% RMS Gaussian noise was added to the validation set data. Table 5.3 shows

reconstruction results as a percentage of samples correctly c1assified for each

reconstruction method in regions l, 2 and S. In general, absorption coefficient estimates

were good in region 1 for aIl methods even with the addition of 1% noise. However,

classification rates in region 5 with 1% noise were decreased by half. The rate (-20%)

corresponds approximately to what wouId be obtained by ehoosing one of the six

absorption levels at random. The results are not surprising as the subtle shapes in the

time-profile which contain infonnation about sample sub-surface regions are obscured by

nOise. Considering absorption classification rates in region 2, the SMLR method

performed very poorly in the presence of noise. In contrast, classification rates were

better with the HCKNN technique. This is to be expected due to the nature of the KNN

classification method which provides robust classification in the presence of noise.
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• Table 5.3. Comparison of the reconstruction methods in the presence of added noise
listed as the percentage of samples correctly classified.

% Noise Added Region 1 Region 2 Region 5
SMLR 0.0 100± 0 67±O 31 ± 0

0.5 99± 1 42±4 22 ± 3
1.0 96± 1 28±4 18 ± 5

HLRB 0.0 100± 0 74±0 34±0
0.5 99 ± 1 48 ± 3 21 ± 3
1.0 96 ± 1 46±4 17 ± 5

HCKNN 0.0 100± 0 86±O 53 ± 0
0.5 95 ± 1 77± 3 37 ± 3
1.0 93 ± 1 69±4 23 ± 4

5.6 Conclusion

•

•

In this study, three chemometric approaches for depth-resolved quantification in

scattering/absorbing media have been investigated. Stepwise multilinear regression

(SMLR), a hierarchical locally weighted SMLR calibration followed by a linear

regressive estimation and binning (HLRB), and a hierarchical locally weighted

calibration followed by K-nearest neighbour classification analysis (HCKNN) were used

in the analysis of photon time-of-flight measurements of layered samples with discretely

variable composition. With these methods, the tomographie reconstruction problem is

linearized by utilizing a priori infonnation about sample composition in upper regions to

direct subsequent locally weighted calibrations for lower regions. Results indicate that

the HLRB method demonstrates an 8% improvement in the classification rate of the

absorption coefficient for a region 1-2 mm below the surface of a sample compared to

stepwise multilinear regression (SMLR). However no improvement was seen for deep

regions where only 34% of the samples' absorption coefficients were correctly c1assified.
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Using the HCK1\TN reconstruction method~ a 20% improvement in the classification rate

was observed for all regions compared to SMLR. Estimations of the absorption

coefficient deep within a highly scattering/absorbing sample were obtainable al greater

than 50°,.10 accuracy. In addition~ the HCKNN technique performed better than the other

methods in the presence of 1.0% RMS noise added to the validation set time-profiles.

These encouraging results may be attributed in part to the k-nearest neighbour

classification method integral to the HCKNN technique. The non-parametric K.NN

method provides robust classification both in the presence of noise and with few

calibration points. This is especially important for absorption coefficient estimation deep

within a sample where only subtle changes in the time-of-flight distribution are present.

The combination of loeally weighted calibrations and classification techniques to

constrain the solution of a tomographie reconstruction provide a powerful new tool for

quantification in layered scattering/absorbing media.
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Chapter 6 Quantification in Highly Scattering/
Absorbing Layered Samples using Photon
Time-of-Flight Measurements and Confocal
Optical Geometry

In Chapter 5, a priori information about sample composition was employed to

improve quantification in layered specimens. In each of the previous chapters,

quantification was done using the properties of the diffusely reflected detected light.

Depth-resolved measurements in layered samples were possible, in part, by varying the

detector position relative to the source. However, as discussed in Chapter 1, Many

approaches to optical imaging in scattering media employ ballistic light. In this chapter,

spatial filtering of the backscattered light is investigated in order to enhance the detection

of light which follows a geometric path through the sample.

Beginning in the 1970s, confocal optical systems have revolutionized the

microscopy of living systems. In a confocal optical approach to imaging, a precise

volumetrie region in a specimen May be probed. Typically, confocal optics are employed

for making luminescence measurements in minimally scattering samples. In specimens

which can not be made ta luminesce, transmission or reflection measurements are made.

The application of confocal illumination and light collection optics for quantitative

analysis in highly scattering media to date, has not been thoroughly investigated. Since

the path that light takes though a scattering system is not clearly defined, it is unclear as

ta the potential of confocal imaging in the presence of scatterers.

One of the goals in this chapter is to gain a better understanding of the advantages

and limitations of confocal optical geometry for quantification, in dense scattering media.
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The infonnation gained in this study will aid in the design of optimal illumination and

detection geometries which maximize the information from absorbing constituents deep

within a specimen. In addition, infonnation conceming the use of confocal optics for

quantification in highly scattering media is important in the fields of optical microscopy

and spectroscopy.

6.1 Abstract

A method for depth-resolved quantification in layered scatteringlabsorbing samples

15 described. Confocal optical geometry was used in conjunction with time gated

detection for non-InvasIve quantification of subsurface absorbing constituents. For

analysis. the time-resolved remittance intensities from a series of layered absorbing

samples were ratioed to that of a similar, non-absorbing specimen. Using this approach,

absorbance infonnation sensitive to changing sample composition was obtained. The

effect of confocal optical geometry focussing on depth resolved quantification was

characterized using different portions of the time profile. In addition, imaging

perfonnance is assessed with varying focal depth, numerical aperture and effective

pinhole size. Results indicate that the effect of multiple scattering on the detected signal

may be reduced by using a larger nurnerical aperture objective and smaIl effective

pinhole size. AIso, the sample absorbance was found ta be more Iinear over a wider

concentration range when compared with a large pinhole. When time information was

included, the initial rising portion of the time profile was found to enhance sample

absorbance linearity when a large pinhole is used. However Iittle enhancement was

observed when the imaging pinhole size was small. Similar effects were seen at each
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focal depth in the sample. This finding suggests that although including time information

may be beneficial~ it is not needed when confocal light collection is employed in the

analysis of macroscopic scattering samples.

6.2 Introduction

Depth resolved quantification in highly scattering nledia is an active area of

research because of its relevance to the analysis of many biological and industrial

samples. Examples include, sub-surface vibrational spectroscopy of coatings and thin

films~ diagnostic medical imaging of turnors, and remote hyperspectral imaging of

geographical features. For reroote sensing applications such as synthetic aperture

infrared imaging, new tools are necessary to reduce the effects of atmospheric scattering. 1

ln the Iaboratory, however~ two approaches for optical assessment of complex~ scattering

samples are typically used: diffuse reflectanceltransmission measurements and

microscopie imaging.

In a classical diffuse reflectance measurement~ the incident source and detector

are separated by sorne distance. This distance may need to be large so that the sensitivity

of a measurement to an analyte deep within a specimen may be maximized.2 This large

source/detector separation however. tends ta favour the detection of light which has

undergone many scattering events. Unfortunately~ the presence of a highly scattered light

component in the signal creates problems for sample quantification. A significant

amount of research has been done to reduce the highly scattered component of light.3.~

Typically, time resolved measurements are used as a means to discriminate between

those photons which have taken the shortest path toward the detector (ballistic photons),
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and those which have taken longer, more random paths. By retaining only the initial

rising portion of the photon time-of-flight distribution, the light path between the source

and detector may be more clearly defined. Using this approach, the effects of scattering

on the measurement may reduced.

The effect of optical illumination and light collection geometry is not weil

understood for the analysis of highly scattering media. One approach for analyzing such

materials is with the use of reflectance confocal optics. Confocal optical illumination and

detection offers the advantage over other imaging methods in scattering media in that

multiply scattered light arising out of the focal plane may be rejected. However in

highly scattering samples where the mean free path {MFP} between scattering events is

< 100 J-lm. a significant portion of the detected signal may be due to highly scattered light.

As a consequence, many imaging applications using confocal optics are made on

microscopie samples where the thickness is on the same order as the optical mean free

path.6
-
g

If measurements are extended into thicker samples, it has shown that image

. 9-1 )contrast 15 poor.

Recently. il has been shown that by combining time-gating methods with confocal

light collection, enhancements in spatial resolution in the axial direction may be made. l
:!

lt has been demonstrated that confocal optics in combination with time gating provide

two mechanisms for selecting light from the in-focus layer: the time-gate and the pinhole

spatial filter.! 1.1.3 Although this dual approach to photon discrimination has been

employed for microscopie analysis, it has not been widely applied in highly scattering

macroscopic systems. Il has been suggested that when imaging in turbid media, 3 to 9

MFPs through the sample represent the limit to which diffraction limited confocal
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imaging may he done. 9 However, this limit is strongly dependent on the object size as

seen at the detector. This may be adjusted by varying the pinhole diameter. Typical1y, a

fairly large pinhole is used when imaging deep into a scattering sample so that enough

backscattered light from the sample volume of ioterest may he collected. 10 When such a

large spot in the object plane is imaged, the resolution and maximum image contrast

range are diminished.9
.1o Although the pinhole size is critical for diffraction limited

imaging of microscopie samples, it is not known how it may affect quantification of

regions within macroscopic objects. A relaxation of strict image quality criteria may

therefore extend confocal illumination and light detection in the analysis of macroscopic

specimens.

In this study the goal is to examine the relationship of photon path with optical

detection geometry for quantification of absorbing constituents in layered paper samples.

The effect of numerical aperture on the time profile is investigated to provide optimal

imaging conditions. Measurements made over a range of effective pinhole sizes, uP' are

used to demonstrate the effect of multiple scattering on depth discrimination. In addition,

the efficacy of using time resolved measurements with confocal detection on sample

quantification is investigated.

6.3 Experimental

6.3.1 Confocal photon time-of-flight instrumentation

The scanning mirrorlslit confocal microscope for this experiment utilizes a

divided aperture and slit illumination as shown in Figure 6.1. The geometry of the system
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Figure 6.1. Schematic diagram of the scanning slit confocal reflectance photon time-of
flight instrument.
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is a variant of a similar microscope developed by Koester. 14 At the core of the system is

a time-correlated. single photon instrument similar to devices found in fluorescence life

time studies. 15 Specifie details of the hardware used has been discussed previously.16 In

general. a mode-locked Ti:Sapphire laser pumped by an argon ion laser was used to

produee 780 nro laser pulses with a full width of 170 fs. The output beam was split by a

beamsplitter after which 4C% of the light was focussed onto a fast photodiode. The

remaining portion of the light was attenuated by a neutraI density filter before being

direeted to\vard the sample. With the use of a controlled mirror galvanometer, the beam

was rapidly swept back in forth in the saggital plane of a camera lens (Fujinon TV 1:0.85

:25, Fuji Corp., Japan) and focussed into the sample. This lens was used because of the

panicularly long working distance (7 mm). By changing the oscillation amplitude of the

mirror galvanometer, the effective numerical aperture of the light of the illumination

optics was controlled. The range of possible numerical apertures spanned from 0.07

(zero beam detleetion) to 0.25 (beam deflection equal to the half of the camera lens

diameter). The focal depth of light incident on the sample was controlled by moving the

sample on a micrometer stage. The focal depth couId be adjusted from 0 to 4 mm. For

the detection optics, the numerical aperture was fixed at 0.25.

The light pulse reflected back from the sample was focussed with a half-covered

lens onto a pinhole of a specific diameter before entering a cooled microchannel plate

photomultiplier tube (MCP). Output from the photodiode and MCP were each connected

to a separate constant fraction discriminators (CFD). Logic pulses from the CFDs were

sent into time-to-amplitude converter (TAC). The output of the TAC was a DC voltage
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proportional to the time difference between the two logic pulses. The signaIs were

digitized into 4.9 ps time windows and binned in a computer.

Absorbing paper samples were made by soaking individual sheets of Whatman # 1

filter paper in an aqueous dye solution (Dr. Ph. Marten's Transparent Water Color #33

Black, Holl}'\vood, FL) for 20 seconds followed by air drying. One millimeter stacks of

dyed filter paper \Vere glued so that the illuminated portion of the sample \Vas free From

adhesives. The paper stacks were calculated to have corresponding absorption

coefficients. /la, of 0.000, 0.006, 0.018 and 0.030 mm-1 referenced to the stock paper.

The absorption coefficient, fla arises from the Beer-Lambert relation (A = ccl) as a

combination of the concentration (c) and molar absorptivity (c) tenus. Each sample had a

specifie dye concentration profile \Vas comprised of four paper stacks pressed together

forming a 4 mm thick specimen.

6.3.': Afeasurements

Time distributions \Vere recorded with the light focussed into the sample at seven

different focal depths ranging from 0.5 mm to 3.5 mm in 0.5 mm intervals. Each

acquisition required three minutes. Replicate time profile measurements \Vere made on

aIl samples. ln addition, time profiles \Vere recorded \Vith a mirror positioned in the focal

plane in the absence of a sample (blank). Ali time profiles \Vere then shifted such that

they had a common rising edge with the blank. This minimized the effect of temporal

jitter in the time distributions and allowed for comparison between samples. The time

profiles \Vere smoothed using a Gaussian window (cr = 25 ps) to reduce the high

frequency periodic noise due to the timing electronics.
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• Four series of measurements were made using the above procedure. The purpose

of the first series of measurements was to study the effect of the numerical aperture on

the width of the time-distribution. For this series, sample 4 (see Table 6.1) was analyzed

using five different numerical apertures: 0.03,0.12,0.15,0.18 and 0.24. The pinhole

diameter was fixed at 1000 ~m.

Table 6.1. Absorption coefficient profiles of samples analyzed in confocal study.

•

Sample'
1
2
3
4
5
6
7
8
9

0-1 mm
o
3
o
o
o
3
o
o
3

1-2 mm
o
3
3
o
o
o
3
1
2

2-3mm
o
3
3
3
o
o
o
2

3-4mm
o
3
3
3
3
o
o
3
o

•

·Replicate samples 10 - 18 have the same composition as 1 - 9.
--Absorption coefficients (0) 0.000 mm-1

; (1) 0.006 mm- l
; (2) 0.018 mm-1

;

(3) 0.030 mm- l
.

To study the effect of the pinhole size on the time-of-flight distribution, three

other series of measurements were made by varying the pinhole diameter. For

comparative purposes, the effective pinhole diameter in optical units is used. It is defined

as up = rrdpa/ï...f where dp is the physical diameter of the pinhole, a and f are the radius

and focal length of the lens focussing onto the pinhole and À is the wavelength of the

light. The numerical aperture was fixed al an optimal value of 0.15. Three different

pinhole sizes were used: 100 J,lm, 1000J,lm and 2500 J..1.m. These sizes correspond to up's

of 12~ 125 and 300 which are much greater than l, the value typically required for true
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• diffraction limited confocal optical light collection.9 A total of nine samples of specifie

dye concentration profiles, shown in Table 6.1, were analyzed. The profiles ranged from

completely unifonn to one with four different contiguous absorbing regions.

6.4 Data Analysis and Quantitative Image Reconstruction

For each time-of-flight profile recorded at a given focal depth, the time of the peak

maximum (tma.x) and the peak standard deviation were calculated along with measures of

the sample's relative absorbance. Both partial and full temporally integrated absorbances

were calculated. The fully integrated absorbance gjven in Equation 6.1 follows from the

c1assical Beer-Lambert law,

• (6.1 )

•

where l = 00, and R=(t) and Ro.=(t) are the time distributions of the test and reference

samples respectively. The steady state absorbance at a given focal depth, Z was measured

relative to a sample with no absorber present (sample 1). This technique is widely used

when the relative absorbance difference between two similar samples is required. 17 In a

similar manner, the partial temporally integrated absorbance Aerp(Z,I), was calculated by

integrating to a cutoff time, l. If the cutoff time is close to the shortest time-of-flight

through the sample, the absorbance quantity Ae:cp(z,t) excludes the scattered light which

does not travel along a geometric path from source to detector. 17

In addition to experimental absorbance values, theoretical steady state sample

absorbances, Arheo(z,oo), were computed al each focal depth. For this calculation, it was

assumed that the detected light followed an oblique geometric path through the sample to
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• the focal point and \Vas reflected back. Aithough not all of the detected light from a

scattering sample would follow such a path, this quantity is usefuI for making

compansons. The theoretical absorbance can be given as,

2 =
Atheo(z,co)::: --- f,ua(z)dz

cos(} 0

(6.2)

•

•

where fla(.:) is the absorption coefficient protile as a function of depth, z. The cosine

factor is needed because the light obliquely enters and exits the sample at an average

angle S. The factor of 2 is necessary because the light reflected back to the detector must

traverse t\Vice the focal depth.

Equation 6.2 may also be used for depth resoived sample quantification. By

differentiating Equation 6.2 with respect to depth and rearranging, the absorption

coefficient profile as a function ofdepth may be \Vritten as,

(6.3)

\vhere { is either (max or the cutofftime and i is the ith measurement made along the z axis.

Equation 6.3. ho\vever, only provides a relative measure of f.la(z), because one degree of

freedom is gained with the differentiation of Equation 6.2. Since the constant offset

value is not known a priori, aIl measures of Ila(z) may be simply shifted such that

lla(O.5) ::::; 0 where the first measurement was taken.
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6.5 Results and Discussion

6.5.1 Determination ofthe optimalnumerical aperture

Initially, measurements were made to determine the best numerical aperture for

focussing light on a sample. Photon time-of-flight distributions \Vere recorded at seven

focal depths over a range of numerical apertures. This range spanned from -0.07 with a

collimated incident 1 mm beam to 0.24. The numericaI aperture was controlled by

changing the oscillation amplitude of the mirror galvanometer. Although higher

numerical apertures were possible, the quality of focal point was degraded due to

aberrations from the camera lens. In addition, unavoidable reflections from other optical

components interfered with the image formed at the detector. The effect of numerical

aperture on the time distribution is shown in Figure 6.2. To facilitate comparison, the

time profiles have been nonnalized ta the same height. With the lowest NA, the time

distribution is quite broad in comparison to profiles collected at higher numerical

apertures. The large width suggests that the detected light has been highly scattered.

This resuit is not surprising because at such a low NA, the Iight is essentially unfocussed

on the sample. For a NA of 0.15 however, the time distribution is skewed toward shorter

times containing a significant portion of geometric photons. These photons have

undergone fe\\! scattering events and more likely have penetrated ta the apparent focal

point. If higher numerical apertures are used, the time distribution broadens again, due to

aberrations in the camera lens. The effect of numerical aperture on the time distribution

nlay be further demonstrated by plotting the standard deviation of the time distribution as

a function of numerical aperture as shown in Figure 6.3. The solid line for the scattering

sample demonstrates that the optimal numerical aperture is centered around 0.15 when
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Figure 6.2. Normalized time profiles of a scattering sample recorded at a focal depth of
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the focal depth is 3 mm. A similar trend is shown by the dashed line when the focal

depth into the scattering sample was decreased. In addition, it is seen that as the focal

depth is decreased, the peak widths also deerease. This is due to a greater proportion 0 f

shorter pathlength geometrie photons being deteeted. When a similar plot is made using

data taken from measurements of a refleetor (blank), it becomes clear that optical

aberrations or reflections are responsible for peak broadening at higher numerical

apertures. A numerieal aperture of 0.15 was therefore ehosen as optimal even though

higher NAs may further enhance optical seetioning in the sample.

6.5.2 Effect ofeffective pinhole size 011 absorbance linearity

A series of sample measurements were made to assess the effeet of the pinhole

size, up at the deteetor on both the photon time-of-flight profiles and sample absorbanee

linearity. The value of up was controlled by varying the pinhole diameter. Three

pinholes \Vere used: 2500 )lm (up -300), 1000 Jlrn (up -125) and 100 )lm (up -12).

Results shown in Figure 6.4 demonstrate the effeet of vatying up on the width of

the time distribution. This figure, produeed by differencing a time-of-flight distribution of

a scattering sample and the blank, gives a relative measure of the scattering in the sample.

Figure 6.4 demonstrates that as the effective pinhole size is increased, more seattered

light is detected. This trend is expected as fewer longer pathlength photons which have

undergone multiple scattering are blocked.

To illustrate how changes in sample composition affect the time-of-flight

distribution, two samples are compared in Figure 6.5. Samples 1 (solid lines) and 3

(dashed lines) have similar lime profiles al a focal deplh of0.5 mm. This is expected
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because the absorption coefficients in the top 0.5 mm of the two samples are the same.

However, at a focal depth of 3.5 mm, the focused incident light is attenuated quite

differently due to the difference in sample composition. ln addition, it may he seen that

sample 3 will have a steady state absorbance, A(O.5,oo), close to zero when compared to

the reference. Likewise, A(2.5, 00) will be large.

A quantitative measure of this effect is shown in Figure 6.6 for a range of

effective pinhole sizes. At a focal depth of 2.5 mm, the most linear changes in the steady

state response were found when up was small. The spread in the data about the

calibration line is less severe with a small up than with a large up where the coincidence

focussing is weak. This spread is caused from unknown ray paths through the sample. In

addition, strong deviations from linearity are observed when up > 125. This is observed

even when light was focussed into the sample at shallower depths. Comparing responses

obtained when u p > 125 to a line of unit slope, it is seen that relatively less light is being

delecled in a highly absorbing medium than is expected. This presents difficulties for

accurate sample quantification over a large range of absorption.

6.5.3 Effect a/tinle window size on absorbance linearity

Using the same series ofmeasurements made to assess the effect ofpinhole size, a

set of partiaily integrated absorbances Aexp(z,t), were calculated. The time-of-flight

distributions were integrated to at most, the peak maximum (0 - 490 ps). By integrating

only the rising edge of the distribution, significant amounts of the highly scattered light

may be eliminated. 17
•
18 Experimentally determined sample absorbances as function of

time window and light collection geometry are shawn in Figure 6.7. The depth at which
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the light was focussed was 3.0 mm. In general, a better linear response to changing

sample absorption was found using partially integrated lime profiles as compared to the

steady state absorbance. Ho\vever, results suggest little improvement in the linearity by

time windowing when up is small. This result may be expected as many of the highly

scattered photons have been removed prior to detection by the pinhole. In contrast, time

windowing is seen to markedly improve absorption linearity when up > 125.

If a similar plot is made using measurements made at a focal depth of 3.5 mm, the

response curves stan to plateau and with the smallest up, faH below the line of identity.

This suggests a limit to how deep into this type of sample, light may penetrate. Results

by Kempe et al. 9 demonstrate that even at a relatively low scattering level of 1.9 mm-1,

very poor contrast results \vhen imaging a mirror grating structure positioned 3.8 mm

below the surface of a scattering sarnple. However, the results in this study have shown

that quantitication at this depth is still possible in the presence of much higher scattering

levels. One explanation for this is the difference in the geometric configuration of the

confocal illumination and collection optics used. In the Kempe study, a microscope

objective \Vas employed in a classic confocal reflectance arrangement and in the present

study, a camera lens in an scanning mirrorlslit confocal arrangement. This arrangement

allows for significant variations in the mean positions where the source light enters, and

the detected light exits the sample. Over a 3.5 mm focal depth range, the change in mean

source/detector separation distance is -5.5 mm. As shown in previous work, this

source/detector separation distance is adequate for observing sub-changes in absorption. 19
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6.5.4 Samp/e reconstruction

To demonstrate the application of Equation 6.3 for depth-resolved reconstruction of

the absorption profile in the layered specimens, three representative images are sho\vn in

Figure 6.8. In each case Equation 6.3 was applied to Aexp detennined at each depth

integrated over a 490 ps time window. The solid lines represent the sample's actual

absorption profile while the dashed lines represent the estimates. Since each sample

attenuation \vas made relative to measurements taken at == 0.5 mm, the absorption

coefficient. J.la( 0.5) was set at 0 mm-\ . It can be seen that at the discontinuous

boundaries. the computed ~a(.:) is doser to the absorption coefficient above the boundary,

than below it. This effect is expected due ta the nature of the reconstruction method.

\Vith each calculation. the errors in the estimation propagate.

As sho\VTI in Table 6.2, the errors in the reconstruction generally increase with

sample depth. The error is listed as the standard error between the estimated and

reference absorption coefficients at a given sample depth. Although the average error

was calculated \vith only 17 samples, a cIear trend is observed. Roughly a two fold

decrease in the reconstruction error was observed when effective pinhole size, u p is

small. Furthennore. only small improvements in sample reconstruction are seen when

time-\vindo\ving is used in conjunction with the confocaI opticaI arrangement. This

demonstrates that confocal collection optics aid in blocking significant numbers of longer

pathlength photons from reaching the detector.

Overall. the results are encouraging when a small effective pinhole size is used.

The absorption coefficient deep within a sample may be estimated to within

± 0.006 mm-I. This represents 20% of the absorption coefficient range used in this
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Figure 6.8. Depth-resolved reconstruction of three samples. Solid line: Actual sample
absorbance profile. Dashed !ine: calculated absorption coefficient relative to
a measurement made at a focal depth of 0.5 mm.
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study. The result demonstrates that the optical geometry plays a important role in the

collection of photons and should be considered when making photon time-of-tlight

measurements.

Table 6.2. Standard Error in the estimates of the absorption coefficient as a function of
sample depth (units are in mm-I x 104

).

Sample Depth (mm)
up Time Window (ps) 1.0 1.5 2.0 2.5 3.0
125 0-2940 109- 136 151 152 164
125 0-490 97 122 134 140 151
12 0-2940 53 55 69 63 74
12 0-490 49 47 58 59 66

•Absorbances were calculated relative to measurements taken at z = 0.5 mm.

6.6 Conclusion

In this study. a method for depth-resolved quantification ln layered

scattering;absorbing samples using confocaI optical geometry in conjunction with time

gated detection was investigated. A series of time-resolved confocal reflectance

measurements were made using the instrument as various focal depths in a sample. The

numerical aperture of the light focussed inta the sample was optimized to decrease

pathIength variation and enhance optical sectioning in the scattering sample.

Measurements were made to assess the effective pinhole size, up on the time-of-flight

distribution and absorbance Iinearity. ResuIts indicate that when u p is small, the best

sample absorbance linearity and the Iowest errors in sample quantification were obtained.

By incorporating a small pinhole, enhancements were obtainable because non geometric
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photons may rejected. When confocal light collection was used together with time

infonnation from the initial rising edge of time-of-flight distribution~ little image

enhancement was observed in comparison to an integrated signal. This important finding

demonstrates that confocal illumination and collection optics can play an information role

and should be considered when imaging in scattering media.
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Chapter 7 Conclusions

This dissertation has demonstrated the application of NIR spectroscopy in the

determination of absorbing constituents in scanering media. The project began with the

investigation of the scattering and absorption properties of granular samples using time

resolved diffuse reflectance measurements. Statistical descriptors of the photon time-of

tlight distributions \Vere used to simplify analysis. The set of descriptors was developed

to be sensitive to broad changes in the time-of-flight profile as particle size and sample

absorption were varied. Using stepwise multi-linear regression~ combinations of

descriptors were chosen which best correlate with changes in sample composition. ft was

found that the absorption and scattering coefficients and apparent particle size could be

estimated to within 1O~ 9 and 7% of their respective reference values. Statistical

descriptors which describe the trailing portion of the time profile were found to be

optimal for absorption estimation. Likewise, descriptors of the rising edge of the lime

distribution \Vere needed for scanering and apparent particle size estimates. Using

separate calibrations for each physical property, quantification was possible when sample

particle size and absorption characteristics were varied simultaneously. Recent

developments in high speed switching~ diode laser and deteetor technologies are now

beginning to provide inexpensive components useful for compact instrumentation. In the

future, simple electrieal circuits may be constructed for real-time, on-line analysis of

scattering media.

By understanding the effeet of absorption on the time-resolved reflectance

measurement in unifonn samples, depth-resolved quantification in layered media was

then investigated. Although statistical descriptors were shawn to be useful in quantifying
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• broad changes in the time-of-flight distribution~ there are not entirely suitable for

describing subtle changes. This is especially true of the time-of-flight distributions from

layered absorbing samples. Instead~ a series of steady-state reflectance measurements at

different source/detector separation distances were made in layered liquid samples to

obtain multi-perspective infonnation sensitive to sample composition. The reflectance

geometry was used because of its suitability for non-invasive analysis of thick samples

and for obtaining unique ray paths through a sample not obtainable with transmission

based measurements. Sample reconstruction was done using least squares

•

•

backprojection. inverse least squares (ILS) and partial least squares (PLS) regression.

Overall. the PLS method provided a 50% decrease in the error of the estimated

absorption compared that obtained using the back projection approach. In general~

however~ the absorbance coefficients were best estimated in the surface layers as

compared to deeper layers in aIl reconstruction approaches.

To gain a better understanding of the effect of sample heterogeneity, time-resolved

measurements were made in a series of two-Iayered absorbing samples. Autocorrelated

rime data \vas also investigated because it may provide for simplified instrumentation.

For tomographie reconstruction, stepwise multi-linear regression and partial least squares

regression were employed. Results demonstrated that better estimates of layer absorption

\Vere made using time-resolved data as compared to that obtained using steady state

measurements. Again~ errors in the estimated absorption coefficients were significantly

lower in surface layers «1 %) than in deeper regions (-50 %). One of the reasons for

this is due of the ill-conditioned nature of the reconstruction. This is caused because

incident light travelling through a specimen towards a detector placed on the surface must
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penetrate through the upper regions twice. To reduce ambiguities in the tomographie

reconstruction~ constraints and a priori information must be included.

For improved quantification in the lower regions of a sample, hierarchicallocally

weighted calibration and classification approaches were developed. The tomographie

reconstruction problem was linearized by utilizing a priori information about sample

composition in the upper regions to direct subsequent calibrations in the lower regions.

With the classification approach~ a further 20°/0 improvement in the estimated absorption

coefficient tor aIl sample regions sample was realized. Correct classification of the

estimated absorption coefficient deep within a highly scattering/absorbing sample were

obtainable al greater than 500JO accuracy. The approach also was found to be robust in the

presence of added noise.

In addition to using chemometric methods for obtaining depth-resolved

information from layered sarnples, confocal reflectance measurements were also made.

Photon time-of-flight profiles collected from each sample were integrated and ratioed ta

those obtained from a similar, non-absorbing specimen. The confocai illumination and

light collection arrangement enhances detection ofphotons which follow geometric paths

into and out of a sample. In this way, the detection of highly scattered light is

suppressed. Results indicated that confocai light detection provided superior sample

absorbance linearity and the lowest errors in tomographie reconstruction over non

confocal detection. When sarnple reconstruction was perfonned using only the rising

edge of the time distribution, little improvement was seen over using integrated intensity

information. Confocal light collection used in conjunction with time information from

the initial rising edge of time-of-flight distribution showed little enhancement in
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quantification compared to that obtained using a fully integrated signal. This important

finding demonstrates that confocal illumination and collection optics can play an

infonnation role and should be considered when imaging in scattering media.

The approaches to tomographie reconstruction in layered scattering media

presented in this work were significant advances for two reasons. First, the use of

chemometric techniques for depth-resolved quantification in turbid media has enabled the

construction of calibration models. Such approaches are advantageous in that they are

not restricted to quantification in unifonn, isotropie scattering media. Second, the

chemometric methods developed allow for quantification over a wide range of absorption

even in thick, highly scattering samples. To date, competing methods such as optical

coherence, photoacoustic and acousto-optic tomographies have been successful in

producing qualitative images in scattering media. Although these methods may, in the

future, provide more quantitative information about a sample, they either rely on physical

models or are only applicable in certain media. This severely limits the possibilities for

developing and implementing new approaches to quantification in complex samples.

There are several future directions for this research. The interactions between the

three variables (time, source/detector separation, and sample composition) explored in

this work may be further investigated by multi-way decomposition methods. Techniques

such as PARAFAC generalize principal component analysis to higher order arrays. In

such an analysis the 'pure components' of the photon time-of-flight profile at each

source/detector separation may be estimated. Using this technique, the 'inverse'

approach to sample reconstruction may be considered in greater detail.
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The hierarchical locally weighted calibration method developed in Chapter 5

demonstrated that information about sample composition in the upper regions may be

used to improve quantification in lower regions. When both scattering and absorption

vary in a sample~ the method could he used with statistical descriptors of the time

distribution. The relative insensitivity of the descriptors to subtle variations in the time

distribution arising from absorbers deep in specimen may be exploited for robust of

estimations of scattering. Using this general hierarchical approach, bath the scattering

and absorption properties in each sample region may be characterized. Although many

different samples may be required for calibration~ a greater range of samples would be

amenable to analysis. This approach would especially be of use in two layered systems

where the scattering levels vary between layers. Exarnples of such systems include of

skin and muscle, and fruit peel and pulp.

The trend in modem analytical instrumentation is for miniaturization~ portability

and ease of use. Although many of the measurements made in this project required great

care and elaborate calibrations, these findings will provide a framework for future work.

As advanced optic-electronic devices become available~ practical instruments for routine

measurements in scattering media will be developed. The results of this research suggest

promising new approaches for depth-resolved quantification of chromogenic constituents

in scatteringlabsorption systems.
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Appendix

A Monte-Carlo program for simulating photon propagation in layered scatteringl

absorbing media is listed below. The source code, written in C, is spread over 2 files:

main.c and var.c. Main.c contains the program and var.c contains the global variable

definitions. The program relies on an ASCII parameter file which provides aIl

infonnation required for running a simulation. An example of one is listed below.

The number of photons to release, sample size and resolution, layer composition,

and source and detector geometries are set in the parameter file. In addition, the

filenames of the output files are specified. Program output is saved to four ASCII files:

run.xxx - steady state light intensity exiting the top or bottom sample surface

vol.xxx - steady state light intensity in the sample projected onto the x plane

tofxxx - time resolved light intensity exiting the top or bottom sample surface

mov.xxx - a series of20 instantaneous light intensities in the sample projected onto

the x plane taken every 25 ps

If the extension .000 is used then no file will be written and the particular quantity will

not be calculated.

A model of the layered scattering/absorbing sample simulated in the program is

shown in Figure A.I. Top and bottom surfaces of the sample are square and are

separated by a distance, z, the sample thickness. Each layer may be chosen to have

arbitrary scattering, absorption and refractive index properties. A each scattering event,
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the Henyey-Greenstein phase function is used for computing the direction of the scattered

light. Further computational details of the photon trajectory and light attenuation are

discussed in Chapter 3.

Light reflection and refraction which occurs at a boundary between two regions of

differing refractive index are also handled. When light crosses a boundary, the intensity

and trajectory of the refracted ray are adjusted according to Fresnel's law. After the

refracted ray exits the sample or has undergone more than the maximum number of

scattering events. the trajectory of the reflected ray is detennined.

The simulated incident light source is focussed ioto the sample through the top

face. The aperture size and focal length of the lens may he set arbitrarily. ln this manner.

sample illumination may be done with either focussed or collimated light. Light exiting

the sample may be detected either from the top or bottom surfaces allowing for

simulation of diffuse reflectance or transmission. ln addition, reflectance mode confocal

light collection may be simulated. To enhance photon counting statistics, photons exiting

the sample at a given radial distance away from the z axis may be binned. This technique

is possible due ta the assumed radial symmetry of the sample. After simulation, a

mathematical correction is applied 50 that the radial light intensity appears to be

emanating from a point on the surface.
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Ils' n, 9 may be variable in each region

Figure A.l. Schematic diagram of Iayered specimen used in Monte-Carlo mode!.
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• A typical parameter file:

=~:pu: :::'es 'xxx.JOO :0 xxx.999 use 000 for no output)

=~n.8ûO Jutpu: _ lename for scattered intensity
~ç:.OO: Output ~ lename for XZ projection
:=:.:00 Qu:put : lename for rime of flight profile
~ç~.~OC Output _ lename for rime lapsed photon dis:ribu:ior. sequence
~p:.OGC Output f lename for confocal intensity
Sê~ç:e :::~~~nat:cn ?arameters

:cl:i~ated (0), confocal (1), or isotropie ~2) illumination
':JCGOCO ~lt..:rnber of photons to release
_0 Source cr lens àiameter (~~)

:·JC .. C :ens :acal length (nun)
~ens j~stance from sample (mm)

:e:ec::=n ?:=a~e:e=s

:ntegrate over an annulus?
:=ace pr.ctons anywhere (0) upper surface (li lower surface (2)
:etec:cr position for movies or XZ projection (mm from source)
:e:ecto= si=e (for movies or XZ projection) cr conf. aper.si=e

g RI

0.85 1. 00
0.85 1. 00
0.85 1. 00
0.85 1. 00
J.85 l.OO
j.8S l.OO

•

•

5 a::".;:: le

. ::. :.:y range from source (mm)
Sample depth (mm)
~lumber of layers (max 20)
~aximum number of scattering Events per photon (max 8000)
~eterogeneous lntra-layer scattering?
:ompute :resnel reflections at surfaces?
~rUl1'ÙJer cf pixels per millimeter

'..:s :./~~)
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• .. ::"..a..:.:: .. _

~c~:e :a=~= P~CL~r. sca:Lering model :hrough absorbing med~a based
en He~;e;-Gree~s:ei~ phase func:ions

~:~=:~de <s~i~c.~>

;.:.~c~uce <xa:~.~>

::~=:~de <s:=:~g.~>

.. ;

..;

.. ;

.. !

r;

~: ;

~a~en tram Numerical ~ec:pes in C

s:a:.:.:
s:a:.:..::

• ij'..:..-:,. <=

.:.. C ~",,2 =: 2 :3 4 5 67 8 9;
_: _ .... t

.:. ... : NT.=-.3;

•
"idt,;.:r-" < ].) Yidum=l;

e~se "idlli~ = - "idum);

::r ==~r:'lB-"7;j>=O;:--)

:-:=: ' • :"dt.:!::; / IQ1;
-:.d'":,,,,:,.=I.:'.:'O' ("idu:n-k"IQ1) -I~l"k;

.. idwr. < :J) .. idt:.m -= IM1;
< ~r!';..B; i -; ~ j' = Y.:.dum;

..~= .. ~ ....... -

~: = ... :: '-:"'-:-.-
: .::: .....:.~~- =_.-.....

:·j~...:..!:".2 -= :~"!2:

•

...,;,-,,; .. " .
-_,: ._J r

= .. :.:::i:.:.-n;
, i~' < :. :i~' - = :::~ l ;

_______________________________________________________________________ r/

:~is ~rcced~re geLS .ariables fram disk fram the file specified at the r/
cc~~a~d prcmp: .. /

/- ---------------------------------~------------------------------------- -/

:~ca: 5g;.;
FI:"=:- :::::::'le;
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• " -
::\:,,:"

~~~S p~og~am ~equi~es an ini~ializa~ion file argument.

e:-:.:..:.

:r.i :.~~':'e ::~pe:: 1 argument._array ["argumen~_=oun~ -1), "r'" ;
:::i:.:i':'e == NULL;

;=i:::.f "\n The i~itialization file, %s, was not found.\~\n",

a=g~"'.e:::'_ array [ .. argumen~_count -Il

ex~:

: s ca:-.::
:scar'.:

::,.i:.~i':'e, "%"s ~"s %"s %.. s %.. s '''5 %"S %.. s i"s ~"s"

::: r. ~ :.: i :. e , " %.. s ", J u.'TImy )

:- s :.=.:-.. :

=:-.. :-:::.':'e, rt~sn, &Filel)
:r..:.:::':'e, "'!"5 % .. s %.. s %"5 %'*s", Dummy)
=:-.. .:.:::':'e, "~5", &F':'le2i

:5.::a:-.. : : :-.. : :. =:.:. e, ,,~ ... s ~ ... s ~ .. s %... s %.. 5 u, Cu..~y);

=:-.:.:.E":':'e, "~sn, &File3)

Durnmy)

%·s",

.. /

&IGeom)

::ol:'imateè geom .

"~s", &File41
,,% .. s i·s %·s %'*5 %·s '·s '·s '·s",
"%s", &File51
" %.. 5 ! '* s ! .. s %'* 5 %. s ", Dmnmy)

n%:1t
.. ~ .. s ~ ... s !·s

:::::~:.:i~e, "~"5 %"s ~"s", Ju.m.my)
::::::':'':''e, n~ .. s", :Jummj-);

::::,. .:. :.:i':'e,
:::r.i:.:i:'e,

::-.: :Fi::'e,

::-'.i:~i:'e,

:r.i ::::'e,
. :::::i :::.:'e,

:'::--.. : ~ca':'

:sca:-'.:

:sca:-'.:

:scan:
:sca.:::

:5ca:::
:sca:-.:

•
.. /

::-.. :.::':":'e, n!::.,., ~s,~

:5::a:-.: :~::F::e, ··~·s ~ ... s %·5 %·S ~.s '1

:r.::E"'-:':'e, 'Ii:", &SourceSize)
Dummyl

E".:ca':' :"e:-.g::-. :n.r:1.1 .. /

::-.:::':"':'e, "~"5 ~·s ~·s ~ ... s ~·slt, !Ju.rrA1nY~

&: )

:sca:-.: ::-.'-:',:~ile, "'!:"s %·5 %'*s %"s", DU1'nmy)
:sca::: ::::--.'-:'~~i':'e, "%f", id);

•
:sca~.:

:sca:-.:
::-.::File, "%"s ~"s", Dummy)

::-. .:.:.E"i.::'e, "%"5", Dummy);
:r:itFi2.e, "~i", &IntOverAnnulus)

~e:. placement .. /
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• ::s(:a:-.::::~o.:=~:'e, "~·s ~·5 %*s %*S", Dummy)
:sc:ar.. : ::::'~=:'':e, "~i", &Detect?lace);

::sca:-.:: .::::o.:=:':'e, "%f", &Deteco.:?osi

• :eo.:ec-.:c =- S:::e (pl.xels) r /

:::.:.o.:F"~le, "%*s %*s %.. s %*s %·s %*s %.. S %*5 %*S %·S", Jurnmy)
::-.:..o.:F":':'e, "'%:", &De-.:ectSizei i

:sca:::,::-.':":~i:e,·'~"s ! .. S %.. S %"5 !-S %·5 ~ .. S %'llrS !WS ! .. S %·5 %·sr',Durn...T1l1~j

: :: :. : -= : .: e , ., ~ YS", :fumm}' ;

• ~ax:~a: ?ad~al 3c~~dary .. !

:5:::::-.:
'::-.::.:F"::.':'e, "~:..", &RSi::e)
.:::: 0.: F".:. .:. e, "!. s %r S %r 5 %.. 5 %. S", Dummy)

• :1ax.:ma':' Jept!1 */

: SCâ:'.:

::sca:::
::::'tF"~':'e, "'!:i", &ZSiZe)i
:r.:':F"':':'e, ,,% .. S ,! .. S %·s", DumIny)

'::-.:':.F"':':'e, "%i", &NumLa:ler)
::-.:':.=~':'e, ,,% .. s %"5 %r5 %"5 %"5", Dummy)

./~:'. Samp:'e

:sca.r.. :• .• ~ax':~um # :f scat. ever.t5 .. /

&r'1axScat) i

::-.: ': =-:. :. e, ,.! .. s ~. s ! .... 5 %.. s %. s ~ .. 5 ~ ... 5 %.. 5 ~ .. 5 ft, :Jurnrny;

:s::a~.:: ::-.:.:.::":'e, l'~i.'', &HetercScat.~

::-. .::F"':'':'e, "%·5 %.. s !·s", Durnrny)

• :':::lp'-.:o.:e ?-eflections? • /

::s(:a:::: '::-. .:.:F"i:'e, "%i", &Comp'.lte?-eflec);
::sca:-.f .::-;::=':':'e, "%"5 %.. s %·5 %.. s %·s", Jummy)

?: i:-.:'5 pe:- ? ixe:

:s::a:"'.. : ::-.~~F:"~e, "~iu, &Ppu);
::sca::f I,::-,:':.F":':'e, "%*5 %*s ~ .. s %"5 %*s", Dur.uny);

fsca:1f l!r::':File, "'%"5 %*S ~·s %*s %*5 %"s", Dwnmy)
:scar:f (:::i:File, "%"5 %*S %rs %·s", Dummy);

• ~ca~ i:: ~a, ~s, g, RI */

•
:~~ - - ; :<=N\.l.rr;I..ayer; i.,..+} (

: 5·=a~.: ::--. .:. tF: le, n% ftr, &A[i] ) ;

===·:a:--.f ::",.i tFi ~e, "% f", &U5 [i 1) ;

fs=a:-.. : : Ir.. :'t.File, n! fU 1 &g [i 1) ;
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• ::-.:.t::1e, "%f", &nu[ij)

::~':"cse ::". .:.:~.:':e \

• :e::~e so~e de:a~lts

Sa".-e3~a.~::::.en

?::-c~ = :;

y ~a~e :~:'ens~t:es at su~:ace? -;

&& ~=:lel~5] =='O'~ o.o. (Fi1e1[6) ==','",

" ..... 1 && ,=i l.e 2 [5 j ==' 0 ' ) && (File2 [6J ~_'r-' ,
-- '>.J J ?rOl 0;

_.::_=·..:':'a:e ':'0: ==-o:':"les -;

"J') o.& '=i1e3[5] =='0') o.& (File3[6~ =='0': DeTOF 0;

:~~~u:e :OF phe:c~ dis: seq y;

'rJ') 50. I,::.le4[5; =='0': &o. (F':"1.e4:6~ =='~"\ DoMovie=C;

'IJ'1 && '.File5[5j =='0') &o. (File5[6j =='0')) DoCo~f=O;

-,.

• ~.::ndoffi seed :c~ ~andom number generator *1
y e':'a~sed seconès = ; of s sinee 1970 y;•

=.:::~:.:.::'e?:.==:cpe:-. '. "seee", ......~:"\ )==NULL)
;=.:.~:~ ~ ~r=-c= cpe~l~g Ou:put data File \n");
-==.: :.. :

:!=:--~:-::: :a:a=:'':'e?~=-, "~2.dn, :àurn};
:=~=se :ê:a.F":':"e?~~.1 ;

pixel units

:Si::e .=;:~:...:;

Y=~p:...:;

j Y=PPL:;
Detec:?os *=ppu;
JetectS:~e .=pp~;

• ::c~ve=-: '...:s :'0 Ipixels"-l) -;

•
::= :=~; ~<=r\L:!r'..:"aye::-; ~ ... ,

~S:.:.: = ·..:s::.~/~,pl~;
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• ~ 2eed =ar.dore ~lli~e= gen~1

~ ~~~~~ =ar.ge of Sou=ce Size ~I

• ~ = ~~~ckr.ess of each :aye= .;
• aDS o~ts~de ~eèi~~ = 0·1

.• :.:sec: :0= .. ~ pa::hs that. c=css bOL:nèa=ies "';

~o:.:=ceS~=e > RSi:e) SOL:=ceSize
~ = ::oa~: ZSi:e/N~~aye=;

RSize;

,.., . - ~..-' .. _. = J.u;

: =:: -.. ; .: < = 1 !~ :.l::"..:"â ye ~ - ::; .:.. ~ - !

.. ,- -. = ;'.::~-. ;JPL:;
" . _ _. >= .:.. [ :. :; Sgn = :'.0; ;'" find co==ect s:gn -,

..:..;:
Sgn = -l.O;

: =5g::" abs,.~ ~ _ .

•
Se: :n:::a: ~ho:cn eve=y ;Joint. and di=ec~ion based on Sou=ceSi:e and -;
~~e,e:. Re:u=ns a value :0= x(O), j(Oi and z(O) and a theta and phi ~;

----------------------------------------------------------------------- ~I

~~ -- ~__ '-'e ....

::--.e:a

r"'cos (phi!nimel ;
r"'sin(phiprime;;

RSize
?S i:e
: . c;

..... -.. ...... .,... -; ~ ..... ~-----l'- ... -

:o:-.:oca:

: Georr. == l J t
~~i = -\?:-phiprimel;
:~eta = at.an(=/f);
= =~:: . .: d/f);

/'" initial phi pointed towa=d focus -;

/'" focused beam positions at. surface ~/

=o~pu~e time when photon stikes "'/•
::::r=::: .:>:

-- ............ ....; ~ .- .____ ~ .. ....J.

RSi:e· ="'cos(phiprime);
RSi:e ="'sin(phiprine);
_ . 'J;
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• :

:x

_,;:cw,
;:cw,CGcré 0 .X - RSize 2) ...
=cw,Ccc~= C .Y - RSize ,2)
cew~:Gor= C i~-d) ,2) ,0.5

- s~r~ace ... 33.35 ps -;

;r-cos(ph~prime))-~ + RSize;
,=-si~iphipr~me)j-t + RSize;
'8.':;-1:-0))-: I:-è);

pCW '
~C~ :oc~d:C:.X - :X ,2)
pcw CQC~dl:j.Y - CY ,2: •

33.35 - =:7 33.35 + =:T;

::--.. e:a s .::--.. i: < ? accs{pOW(:.O - sinb-sinb, G.Si '2I/2.0:

::-'..e~a = Ranciom ( & id~'l1} • PI./.2;
_ ..:e-:~. == -. \

• : :: c =:: :s : . ":"

::::'~:- .. :-2= =;

Ranoom(&ièum)*?I~2) );
~~~~p ... =*cos(phiprime)
RSize • r*sintphiprime);
J .. 2;
: .. 'J;

----------------------------------------------------------------------- */
:=::~:a:es :~e ::~rec:ic~ 0: the scattering event based en the g value *j

?e:~r~s = theta and phi ~or the new global direction, ~eturr.s values -/
~G~ :~e ~ew global ix,y,:) position, time of flight a~d path length *j

.;:-.ç:"e:c:-..:er-.tic:-.: theta: Q along "'ve z axis, Pi along -ve z axis • /
phi: C a:o~g ·ve x axis, Pi/2 along +ve y axis, -Pi/2 along -ve y axis ./
-------------------~--------------------------------------------------- -f

• :~,:a:

• ~~~d ~a~~e 0: phase function */

.... -- ~_ ..-, ~, -- ,
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• :'.: - ;~:"aye!:]"'g(layer) - pow( (1.0 - g(layer]·g[layer)J
:'.: - ;[:'ayer] ... 2.0·g[layer]·r) ,2.0)) /(2.0·g[layer])

.q ~= 0: ? accs(q) : PI/2;
e~.se .

• :~~c~:e ~cs and si~ cf old angles ./

':~5 ph':';,;
= ':::S', t1"'.et.a) ;
.;:.; -;... ~ ..
- _ ~ .... _ 1 ~

5::: ,; t::e:.a) ;

::ext. scat.tering Event ./

__ .. ·~:a ::" /i..:s[~ayer~;

.. :=~~~:e ~cc :ar:es. coera baseà on newtheta, newph~ :-1ewtneta .. /

s:~ ~e~:~et.a)·cos(newph~)·length;

s:~,~ew:~etal "s~n\ne~~hi)·length;

:::s'new:teta;·le~gthi

•
;.:;.:

.. :c::ver: local :xp,yp,:::pJ coo!:d ta global (XX'1'y,::Z; ./

:osp~:·ccsthet.a·xp - si~phi·1~ ~ cosphi·sint.het.a·:::p;
s::-.p:-.':'''ccs::-.e-ca'':<p ... cosphi·~ ... sinphi·sinthe:a·:::p;
-s:::t~e:a·xp ... c05tteta"::p;
pcwxx·y.x-YY"yy+:::z·:::::,û.5) ;

• ::~p~:e ~lctal theta and phi values ./

:~..e:a ;:;;: acos (:::::/rT) o. ()

:ccrd~scat:er-l].X ... XXi
:ccrdtscat:er-l).Y'" yy;

- --..--,:::c:~:i:scat.ter-11 .. Z
:ccrd:sca::er-l] .7

: :: : =.-:: : 5 =.:: : : oS ::-: .. :.:

----------------------------------------------------------------------- -;
• !~es:s :~e ~ew ç~crdinates ~: :he pho-con ra see lf it ~s 5:i~: wi:hin

::-:e ::::'..:.:::iaries ;r :'ayer cha::ge has accured or if numbe= 0: scattering
e~e~:s ~as reached irs maximum value

· !
·/

----------------------------------------------------------------------- .. ;

':':-.t k,ë,t;
k ~ sca:.~e~;

II (Coord(k].X< 0)) do ne
Il (Coord(k].Y < 0) J done

(Coord(k].Z <= 0)) surface

•
; ç

.0:

:2crd:~:.X > ~2·RSi:e))

:ccrd:~:.Y > '2·RSize))
:.: c r =:< .: > ZSi::e ) i i

~ >= ~axSçatj done ~ 1;
.5~=:ace == :) && (ComputeReflec 0) ) cione 1;
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• a = lco::-;Ccord(k-l] .Z/h + 1);

b = lcorlCcord(k) .Z/h + 1);
if i a ~= b) && ((b >= 1) && (b <= NumLayer))) crosslayer 1;

----------------------------------------------------------------------- -;
~crce scattering event ta occur at a boundary and change direction and -;
speec of propagation with an index of refraction change -1

----------------------------------------------------------------------- -1
~orceScatter()

int k,a,i:;
Eloac t,::!ayer,sina,sinb;
crosslaye::- = ü;
~ sca::e!:';
a ::cc::- :Coorè(i<-l.J .Z/h T 1);

b ::cc::-:Coord(k] .Z/h ~ 1);

'. ~ew layer chat photon is entering -1

l.a,'er = 'a > b) ? a-l : a+li
b ia ye~;

angle of incidence, ai angle of refraction, b -1
/. change direction of photon propagation if necessary -1

•
if ,nu[al != nu[b]) {

sina = (a < b) ? sin(PI-theta) : sin(theta);
sinb = sina-(nu[a)/nu[b]);
theta (sinb < 1) ? acos(pow{l.O - sinb"sinb, 0.5))
:heta = (a > bl ? PI-theta : theta;

PI/2.0;

Reca:culates where exactly the photon emerges from the surface and
adjusts the Coord[i) array and distance appropriately.

•

• compute fraction of distance spent in layer a -/
• and compute (x,y,Z) based on point where photon eXits layer a -/

•• a~d if necessary, force scattering event at boundary -1

;: l. a ~'e:- ,a < b! ? .3. - h : (a -1) - h;
: =:.:0: ~ ::la·;ler-Coord[k-l).Z)/(Coord[k].Z - Coord(k-l].Z);
Coorci:k].:-: :Cocrd[k].X - Coord(k-l] .X) -t + Coord[k-l].:<;
Cocri:k:.: ICoord[k].Y - Coord[k-l] .Y)"t + Coord[k-l] .Y;
Coord[k;.Z (Coord[k].Z - Coord(k-l] .Z) -t + Coord(k-l] .Z;
Coord[kj.~ Coord(k-l].T T length-t"nu(a]/c;
::-etu::-n;

.. ----------------------------------------------------------------------- -/
-;
"1

----------------------------------------------------------------------- -1
.:'.djustPath(l

fioat t;
int k;
k = scatter;

/- compute fraction of path inside sarnpie "1

;; iCcçrd~kJ.X > (2"RSi~e))

: = ((2-RSize)-Coord[k-l].X)/(Coord[kl.X - Coord(k-l] .X);
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• if \CGo~d[k].Y > (2-RSize))
~ = ((2-RSize)-Coord[k-l) .Y)/(Coord[k].Y - Coord[k-1I .Y);

if (Coord[k].X < 0)
~ = -Coo~d[k-l].X /(Coord[k].X - Coord[k-l] .Xl;

if (Coo~d[kl.Y < 0)
~ = -Coord[k-l].Y I(Coord[k].Y - Coord[k-l] .Y};

:.f ,Ccorà(k].Z < 0)
: = -Coord[k-l).Z /(Coord[k].Z - Coord[k-l] .Z);
Coorà[k].Z > ZSize)
: ~ (ZSize-Coord[k-l] .Zl/(Coord[k].Z - Coord[k-l] .Z);

;- compute (x,y,z) based on point where photon exits surface -/
!. and correct TOF */

Coord [k j .:-:

Coord [k 1."::
:ocrd [k J • Z
-:::>c:-::::[%; .:

\Cocrd[k].X Coord[k-l) .Xl -t + Coord[k-l] .X;
(C::>ord[k].Y Coord[k-ll .Yl -t + Coord[k-l) .Y;
:Ccord[k].Z Coord[k-l).Z)-t ... Coord[k-lj .Z;

-= ~e~gth·nu[layerl -(l.O-t)/c;

'r i~ :ase that 2 or more coord at out of range artificially. set ri
se: flags done = l and surface = 0 r;

; ~ ·.Coord[k].X > (2"RSizel)
Coo~d[kl .X 2·RSize;
dcne = 1;
surface = 0;

; ~ :Coord[k).X < 0)
C:oord[k] .X Q;
jone = l;
su~face = Q;

•
,~ ~Ccord[k]. '{ >

Coord(k) .Y
jone = 1;
surface = 0;

(2"RSizeJ)
2"RSize;

/ .

•

"~ Cccrct:kl.Y < al
::cor ct [ k] . "{ C) ;

::iene = l;
s'~r-:ace ',];

/r r;

Computes the ~eflected and refraction ray intensities at the boundary O'/

~he~e the photon enters into another region of varying refractive index";
Adjusts theta and phi for the exiting ray and stores the coordinates r;
che ~aï chat remains in the volume. ../

----------------------------------------------------------------------- "1
~eFresnel ()

float t,sina,sinb,beta,casa;
int k;
k= scatter;

JO' angle of incedence, refrac. & beta factor in Fresnel fannula"/

if 'n'...:[layerl != 1.0 ) && (ComputeReflec 1)) {
si~a (Coord[k].Z == 0) ? sin(PI-theta) : sin(theta);
oeta: 1.C - pow(nu[layer]*sina, 2);
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• :::::e:a > :
ccsa ~ew(l.O - sina·s~na, 0.5);
te::a ~ew(be~a,O.5l;

• :ransmiss:on :n~en (beth reflec. 1 refrac. occuring; -/

: :·n~:layer]·be~a-cosa-(1.O/(pow(cosa+nu[layer]·be~a,2))

:.J! :pow!nu[layer]-cosa-beca,2)))

e:SE : :; .:; ;- ::ransmission in~ensity (refract:cn cnly)
_ /

/

1 •
,1 (Compu~eReflec == 0)) ~ 1;

te :"ce--;
?e :-ac:02::: :t::...::-.:o2: ?eflec::edI (bounce-:"] -~;

?e _e=:e::: :tc:...:nce. ?ef:ec:edI(bounce-l]-11.0-t);
?e~:e=:e::::tc:...:n=e: < O.Jll :icne; 1;

~~r.:::":'=-.. .:e. = 5::a::e:,,;

• =~an~e :~e:a cf reflected ray if necessary -/

:::e:a ~ocr::[~J.2 >= ZSize) ? eheta + PI/2.0 theta - ?I/2.0;

•
• ~es::s ex~::~ng raï :e see whether cr not ies erajectory ~hrough a lens -/
• rad::...:s Sc:...:rceSize ~culd ~ocus in~o an aperature cf size DetectSize -;
• ?e::...:rns -?S~.J :~ i: fails otherwise returns the ex~ra T:me of -;
· =::g~: :~rc:...:g~ t~e air :lens) assuming a spherical wave~ront plus 33.35 -/
• ~s ccrrespcnding ::0 : cm pas: lens -/

----------------------------------------------------------------------- .,

f::a: s:na,s~nt,?7~eta,fdis:,CX,CY,CZ,t,LensR,CenterC:s:,E7;

5::-.â = :::.:r::":".:;=:;: ? sir:I?I-t.heta) : sin(tr,e'Ca);
~ . - - = :--.'~. _.a ~.·e:: : .. s .:::a. ;

ac~s(pow(l.O - sinb·sinb, 0.5))

:i':5: = :acs -_-. l, •

_.. :::cr::::.:.X ~dist-:an(RThe~a) ·COS (phi);
:~ ; =~crj:::.~ - :dis:-'CanIRThetal-sin(phi);
:: ~ :::1.5:;
:e~ter:ist = ~cw\poW( :RSize-CX),2) ~ pow( (RSize-CY),2),Q.Si;

~e~:er~ist <= DetectSize)
: :;pcw:pcwICoord(i].X - CX ,2) - pow(Coordli:.Y - CX ,2)

::,cw \Coord (i 1 .2 - CZ ,2),0.5)

'::X ,Coord[i].X - CX) -'C ~ CX;
:Y .Cocrd(i].Y - CY)-t • CY;

fCoord[i].Z - CZ)-t • CZ;
~ensR = powlpow(RSize - CX,2) + pow(RSize - CY,2;,0.5);

(~ensR <= So~rceSize) (
ST = Pow(Pow(Coord(ij.X CX ,2) + pow(Coord[i:.Y - CY ,2) •

Pcw(Coord[il.Z - CZ ,2),O.5,/c

• ::etec:Place==:) && (CZ < 0.0))
&& ,CZ > ZSize))) ? 33.35 + ET :
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•
----------------------------------------------------------------------- -/

,:a:~~:ates t~e attenuation af the photon from Beer's Law and considers -/
~~e i~::e~en~ absorptio~s based on the abs. properties of :he layers .;
Save absorptions in array also. If desired the TOF dist is computed. -/
çom~~tes a~d stores Time of Flight information based on the placement -/
of a jetectcr and its physical size (Integrates over a ring of sorne -/
-:~ic;::'.ess' 5ui2.ds:.1p a distribution with l ps resolutior. -/

- se: :~:t:a: absorbance level */

acsor:: - <J- .. .,.JI

dcne == :: && :bcunce 0))

:~:~ = s::a::er;

•
;- :~tegra=e aes over photon path

- by computing layer # for start & end z values
,. a~d :~e :ength betwee~ scattering events

fer ~=~; ~<=ibc~nce-l); m++}
i =,;: ~::". ~; i <= 1 Q [m- l ] - 1); i - + ) t

::ecr,Cccrd[i).Z Ih + 1);
- ~ :::. =.:::- ,:co rd [ i -1 l .. Z / r.l ~ 1) ;

of the 2 vertices -/
-/

_02:-. = ;c',.; ,pc,.; (Coord[i-l} .X - Coord[i] .X,2) - pC'''; C,:ora[:.-~: .':'
:ccr:::i: ,':',2'-powlCoord[i ... lj .Z-Coord[iJ .2,2, ,J.::;

pc:.~ts in same layer abs is easy -/

aesarb ... = A[a]-Len;

•

• :: :Joints are ir;. different layers * /

.:. i:ni : 2.; . 0 ;
:i:nit2 = 0,0;

j- integrate over aIl layers which hv traverses -/

:cr lj=l; j<=NumLayer; j++)

W = (j-l) -h;
~. (Coard[i~lj.2 > w) limitl += Ap[j]" (Coar-d[i+l].2 - w);

if (Coord[i).Z > w) limit2 += Ap[j]* (Coord[i].Z - w);

: (Ccord[i+l] .Z-Coord[i].Z) != 0) t
aesorb -= Len-fabs( (limit2-1imitll/(Coord[i·l].Z 

Coord[il.Z) }

~ else
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•

•

absorb += Len-A(a];

;- calculate absorbance at the ith event -(

Coord[i~l].A = exp(-absorbl-ReflectedI[m];

(1 iDetectPlace == 1) && (Coord(ij.Z <= 0.01) Il ((OetectPlace 2)
&& lCoord(il.Z >= ZSize))} {

(y if integrating over an annulus -1

; ~ I~tOverAnnulus == 1 ) (
?ad = floor(pow(powIIRSize-Coord[ij .X) ,2) ~ POW( (RSize 

:20 rd [ i ] . y) ,2) ,0.5) )

3ackI~ten[RSize~Rad] (RSize] += exp (-absorbl YRefractedI[m+l];

/Y _~ ~ot integrating over an annulus Yi

:f (IntOverAnnulus == 0 ) (
indl = floor(Coord(ij.X);
ind2 = floor(Coord(i] .YI;
3ackInten[indl] [ind2] += exp(-absorb)*RefractedI(m+l];

j* Do Time of Flight computation *1

if (DoTOF == 1) (

/. compute r from center to exit point -/

?ad = ceil(pow(pow((RSize-Coord[il .X),2)+pow( (RSize
Cao rd Li] . y) ,2) ,0.5) )

:CF ~ ~eil(Coard(i].T);
:~dex = ceil(TOF);
~f (TOF > 500 ) index =
:.f (TOF < 1) index = 1;
TOFArray[index] (Rad] +=

/. Time of Flight :n ps .. /
1· convert TOF ta integer y/

500;

exp(-absorb) *RefractedI[m+lj;

•

lOaCanf == 1) (

ËxtTime = Confocal(i);
if (Ex t T ime ! = - 9 9 9. 0) (

Clnten += exp(-absorb)*RefractedI(m+l];
TOF = ceil(Coard[i].T + ExtTime); I·TOF thru med & air -/
printf("%f %f %f If \n",Coord(O] .T,Coord[i] .T-Coord[O] .T,

ExtTime,Coord(i].T + ExtTime)

index = ceil(TOF);
if (TOF > 500 ) index = 500;
if (TOF < 1) index = 1;
CTOF(index] +=exp(-absorb)*RefractedI[m+l];
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;. --------------------~------~--~~---------------------------------------

Calcula~es a the projection of the paths onto the positive x plane
photons =eaching the Detector position when integrated over an annulus
there paths are rotated in the positive x plane and then tha
path projection is taken

•
,. .

----------------------------------------------------------------------- .;
./
.;
././

./

::>:?roj()

:lcat Rad,Dx,Dy,Tt;
i nt i, k, :< l , Z l ;

k = scatter;
if (IntOve~Annulus == 1) && (ComputeReflec =~ 0))

. :f :~tegating over an annulus then compute path .;

DetectP1ace
,:::;etectP1ace

1) & & (Coo rd [k) • Z <= 0)) 1 1
2) && (Coord[k].Z >= ZSize)))

•

•

Rad=pow(pOW((RSize-Coord[kj .X),2)+pow{(RSize Coord[k] .Y),2) ,0.5);

/. compute r from source ta exit point ./
/- on surface. If r is at a detector pos */

if ((Rad >= DetectPos) && (Rad <= (DetectPos+DetectSize)))
Dy Coord[k].Y - RSize;
Dx Coord[kJ.X - RSize;
Tt atan2(Dy,Dx);

;- compute angles Tt from +ve x axis to point */
;- compute delta x and y for each vertex .;
;. rotate point about angle Tt anà project ./
/. Z stays the same but convert ta int .;

for (i=1; i<=k; i++) (
Dx Coord[i).X - RSize;
Dy Coord[i].Y - RSize;
Xl floor(Dx*cos{Tt) + Dy*sin(Tt) + RSize);
21 floor(Coord[iJ .Z);
Depthlnten(Xl] [ZlJ += Coord[i] .A;

/. ~: not int. over an annulus compute proj -/

~~ (IntOverAnnulus == 01
for (i=l; i<=k; i++) (

Xl = floor(Coord[i] .X);
21 = floor(Coord[i] .Z);
Depthlnten[Xl] (Z11 += Coord(i].A;

return;

/. ----------------------------------------------------------------------- ./
Calculates several projections of the photon distributions taken at ./
vario~s times onto the x plane .(
Photons reaching the Detector position when integrated over an annulus *(
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• wi~l ~ave ~~eir paths rotated in the positive x plane before the
pat~ projec~ion 1s taken.

:::r;tputeFrames l )

:~cat Rad,Sx,Dy,Tt,c;
int i,k,~,Xl,Zl,frame;

if ((!ntOver~nnulus ;; 1) && (ComputeReflec ;; 0)) {

'* i: int. over an annulus and compute path ~I

sca::er';

*1
*1

.Setect.Place
::etectPlace

li && (Coord(kJ.Z <; 0)) Il
2) && (Coord[k).Z >; ZSize l ))

•

•

~aj=pow(POW( (RSize-Coord[k] .X),2)+pow«RSize-Coord[k) .Y),2),O.5);

;* compute r from source to exit point */
jr on surface. If r is at a detector pas r/

(Rad >; DetectPos) && (Rad <= (DetectPos+DecectSize)))
Dy Coord(k] .Y - RSize;
Jv = Coord[k].X - RSize;
Tt = atan2(Oy,Dx);
:or (frame=l; frame<;19; frame++)

Ir do for aIl frames (times) *1

for (i;l; (Coord[i].T«frame*S») && (i<;(j.:-l))); i++)
if (i<k)

Ir interpolace path to cime; frame r 25 ~I

/r compute delta x and y ri
Ir rotate point about angle Tt and project ri
Ir Z stays the same but convert to int */

t=(frarne*S-Coord[i-lJ .T)/(Coord[i] .T-Coord[i-l] .T);
Dx (Coord(il .X-Coord(i-1J .X)*t+Coord[i-1J .X-RSize;
Dy :Coord[i] .Y-Coord[i-l] .Y)*t+Coord[i-l] .Y-RSize;
Xl floor (Ox"'cos (Tt) + Oy"'sin(Tt) ... ?Sizel;
Z:' floor( (Coord(i] .Z-Coord[i-l] .Z) rt-Coord[i-1) .Z);
MovieFrarne[frame] [Xl] (ZIJ +; Coord[ij .A;

Ir .~ ~ot int. over an annulus compute proj *1

if (IntOve rAnnul us =; 0) (
:or frame=l; frame<=19; frame++) {

cr li=l; «Coord(i].T«frame*5)) && (i<={scatter-l) 1); i++)
f (i<scatter) {

/r interpolate path to time = frame"'25 *1

t = (frame"'S - Coord[i-l] .T)/(Coord[i].T - Coord[i-lJ .T);
Xl = floor( (Coord[i].X - Coord[i-lJ .X)*t + Coord[i-l).X);
Zl = floor( (Coord[i].Z - Coord[i-l] .Z)*t + Coord[i-l] .Z);
MovieFrame[frame] [Xl] [ZIJ += Coord[i] .A;
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•
----------------------------------------------------------------------- -;

::.:a: ::.~e~;

SaveS~a~:~~e~ == :;

:ataFile?=r=fopenIFilel,"w+t"l )==NULL) {
;r i:,.::::: " "'. ~ ~rror opening Output da ta Fi le \n")
e;-:: ': : Co;

"' 1

:::'. tOver.:'.n~ul us == l 1 (

==r :=8; :<=RSize; : ... +)
::pr:~t:(DataFilePtr,

i
"~f\n", Backlnten[i+RSi::e] [RSize));

•
e':'se

i=l; :<=(2-RSize); i++) (
:::r:=l; j<=(2-RSize); j++)

:~r~~::::(DataFilePtr, "%f Backlnter:[:~

:a:aFile?tr=fcper:tFile2,"w+t"1 )==NULL!
;r~=-.:::::,"\~ E:rrcr open~ng Out.put dat.a File \r:'"
~:.:~ ~ ':'

::::::- :=1; :<=i2"'RS:ze); i+..-)
~r'" \:=1; j<=ZSize; j+"')

:pri~tf(Dat.aFilePt.r,

(

"%f , Dept.hInte:1[ij [jj);

•

:;:r:r:t: ::a:aFilePt.r, "\n");

::a::aFile?t.r=fcpen (File4, "w+t") ) ==NULL) (
=r~r:t.f("\n E:rror opening Output data File \n");
exit. (0) ;

fer iframe=l; frame<=19; frame++) {
for (i=l; i<=(2"RSize); i++) {
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• :or (j=l; j<=ZSize; jTT)

:prin~f:DacaFilePtr, "%f

:printf(DataFilePtr, "\n");

• :~:=~t ~OF orefile -/

::::2: == ::

MovieFrame[frame] [il [jj);

•

•

:a:aF::e?:r=fopenlFile3,"w+t") )==NULL)
F:::-.:: 11\:-. :::rror opening Output data File \n lt );
~:.::: ,'... ;

:2r :=:; i<=:OO; i++) (

:crj=l; j<=RSize; j.+)
::pri:1tfWataFilePtr, "'!f It, TOFArray[i] [j]l;

:;::ri:ltfèùataFilePtr, "\n");

• J~:cut Confocal Intensity and TOF profile ./

:JeCo;-.: == :)
.:a:aFile?tr=fopen (FileS, ..·.... +t") ) ==NULL) i
::r::'::: f ': .. \ n E:rror opening Output data Fi le \n It) ;

-=:-:.:.: O~;

:;:r::-.:: :a:aF':"le?t:::-, "~f\n\n", Clnten);

:;::::-.:: :ataFilePtr, "%f\n", CTOF[i]);

:e:-..:r:--.;

----------------------------------------------------------------------- .;
-rl'- in: arg~~ent count, c~ar ·-argument array)

;' ?r8ces5 corrmand 1ine init. file */

:::i:iali~el&argw~ent_co~nt,argument_array);
:e:::-':"=:.; :<=s; i+"')

!- Sca::er :he photons -;

j' orint status out to file -;

:DataFileP~:::-=fapenlltstatuslt,ltw+t"))==NULL) 1
printf("\n Errar opening Output data File \n lt );
exi~(O) ;

fprintfIDataFilePtr,"\n Percent done: %f \n", (float) i*100/s );
fprintf (DataFilePtr, Il Program will write ta: %s, %s, %s, %s, %s
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•

•

•

":".\:"'.", :ilel, t"ile2, File3, File4, FileS)

Se:. ::-.:: " 1 ;

• ~CO~ until out of domain or maxscatter < #scattering events *;

dc ~

" - Find Scattering Distance - /
/- :ncrement ~ of scat. events & find new coord of photon */
;- Test to see if photon is still in domain ./

sca~:'erTT;

::':-.dDirect.ion () ;
~es~Coerd();

;- Ferce scattering event at boundary */

r ::rossla'ler == 1) && (HeteroScat==l)) ForceScat.ter () ;

,. Adjust. path length after photon exits medium .;

'S'..lr-::ace == 1) Il ldone == 1)) AdjustPath();

:. Calculace reflected photon/refracted trajector'l */

S'..lr::ace == Il DoFresnel{);

while (done == 0);

j. Calculate Absorption of Photon and Time of :light */
1· Calcula~e time lasped photon distribution sequence */
/. Compute Depth Resolved Projection .;

?hoto~AbsAndTOF();

if (~cMovie 1) CamputeFrames();
(?roj == :;.) DOProj () ;

;. ~ri:e dat.a :0 disk -;
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• -;
-;

.*

• ~c~:e Ca=:= phctc~ scat~ering model through abscrbing med~a based -;
* en He~~ey-G=eens=e~n phase functions

~!a;·~?:-.::~::Sca::er 9000 Maximum array size -/
Needed for ~a~dom ~~~~er ge~ ./

:;·::e: :..::e
"..~. - -,..
_~ ••-...:;, ~ L.

. "M''''''· l'''~''' - ._- ._1 .>i ...-~J

:~e::~e ~?S :.:e--

s photons ta be released -/
indexing variable .;
nurnber of photons i.n dist. • /
Randorn Number initia':' i:1t: -/
scattering coeff~c:e~t -;
max .• of scatterlng Events -/
hv reacheà surface once? ./
Henyey-Greenstein g :actcr -/
Output filename ,1 ./
Output filename #2 ./
Out.put filename #3 .;
O~tput filename #4 .;
Output filename #5 -/
~adial Boundary :e~stants -;
Noise Level ./
Size cf Be~~ -/
Dummy s~ring ~ar.:.able ./
~engt~ of Photon Pat~ ./
Number of scatter~ng Even~s ./
Save steady state aistrib. -;
~hings -/
hv reacheà surface? / aone? ~/

Reflecteà intensity of ~7 ./

In tensi ty 0 f exit i:,.g ',,;a-le - /
Distance of hv t:-ave':' (pm.' • /
Polar coord ang':'e ?~.:. ~/

Polar coord angle T~eta • 1

Temp Polar coora angle Phi - /
Temp_ Polar coord ang':'e Theta-;
Time of Flight of Photon -;
Refractive index -;
pixels per unit (pixel/mm) - /
speed of light -;
dummy variable -;
focal length of lens .;
lens/surface distance .;
Photon intensity -/
Number of Layers -/
Finished simulation flag -/
Compute depth projection -/

/-

,.
1

/.

?e~:'ec:e:i:::'JO~;

?,e::-a·::.ed:: :'OC: ;

:::e:a;

:: :e: ::..: : ;

_c~g
~ .. t 5 ;

:'cng :.:-~: .:. ;

_cne; ~ -": .. ,
__ c ::,q _.. ": --_... ,

: :. _e_ . __ . ;

:':".:a.:. '':5;

:.:.-_-= ... --

Nu..••Laye= ;
F:'::isheè;
?roj;

::~e : e:a~sed seconds;

:~.a:-

:::a::-

:':":a: ..... e:-.:;::-.;

:':-.": ~!a:·;'::=.:::;

:.r:: ~e.::=r:e~5~=~.::=e;

:':'~at

~:'cat _,

:_::a":
:_ca:
:_:a":

".-- ~,....., ...
.- ... - .t""t-' - r

: ..... 2a:.

-: :'oa t ;.

:loa= aoserb:

•

•
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• :: ~~..::.::- ~ ;

:~~p~~e ::=e c: =::~~:

:~~~~~~ ex:~as ~:~~ ~C= ~~S2 w

Je-:ec:c: ::". --r"" - _ __ ....... _- -- _ -... .

::: ...::-. =-:=;

_:-. : ~ ..~-= =- .:....~.. =-. - .. ....:~ ;

- .-_ ... --=.::_ ... _.. _'"= ..... --- .

.. _:- .-.~::- ~ ..

- ::-. .: -.. - :: : : : ~ ~ : - -

:~ .:.. - .= - :.:; -- --_ .......... -,

>: -= ..... :..~ .. r.:,._..:::..::

"-":;-== ::= .~.=,.s:~::a:-.=~ :'''::'".=:':'_ ...
_:-.:: ..::-.. -e.s~

:::a: .:.... ;.;

•

•
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