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Abstract

Multil.hr""ded arehiter:t.ures lise the paralldism ill programs t.o t.olerat.e loug lat.endes for

c:omUlllllic:a.tiollS and synchrunizat.iolls. Ou encouuterillg ft long Ia.tency IJ1CmOfj' acccss,

t.he proeessor in ct lIIu:Lithrcaded system rapidly switches COlltcXt. t.o another computation

t.hr",,,I, t.herehy improving t.he perfor.~lnnee. Unlike t.radit.iollal single threaded execlltion

and tIlult.itasking in opcratiug systems, 1Il11ltithrcadillg allows acccsscs from one or morc

t.hreads of a liser program at. a proccssor t.o contend for system resources simultaneously.

Hen"", a performanee annlysis of mllitithreading shanId account for the elfect of multiple

"'lnellrrent ae<:esses on t.hroughput of subsyst.ems.

Modeling a realmultitbreaded system, like McGill's EARTH system, poses several prob­

lems. First, in realistic snbsystem interactions, more tban one sllbsyst.em may serve the

same aeeess simnltaneously, sa contentions arc dilficult ta predict.. Seeond, the thread char­

aeterist.ies like the nllmber of remote accesses ean dilfer with processing nodes. Thus, an

ac:curat.L! cmnputation of dclays al. suusystcms is cssential.

We propose analytica! perf'lrmance models, de',elop solution techniques, validate model

predictions, and mmlyze the performanee of mnltit.hreaded architectures. Our analytical

models, Imsed on doscd quelleing networks, account for the fccdback elfect of t.he load at

subsystems on the proeessor performance. Wc demonstrate the robustness of these closed

queueing network models over open system models for the performance prediction. With

the feedback elfect and the iterative nature of our solution technique, wc predict the per­

fornuLllcc of complex subsystem interactions in the EARTH system under a multithreaded

workload. Mensurements from actual program executions arc within 5% to 20% of model

predictions.

The model inpnts are the architectural parameters and program workload characteris-
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t.ics. rvlode1 predictions indud(! tllP procpssol' 1I1,ilizat.iol1. IIU'':'isag(! rat,t' to t.IH~ IlPt,work. aile!

lateney for remote a('cesses.

Given a. program workload. \\'P show t.lu! dft't'ti\'PlH'SS ()[ 1111l1t.ithrPiulillA tl) loi,'m/f ('1 JI ll­

l1l11uicatioll latellcics. \Ve show the sigllifiealln~ of t.he 71t'i.1lIork ('{llUlC;I!! t.u 1.1IIU' progl'alll

workloae! characteristics tn achieve hi,,;h p""fnrnmlll'''. Onr analysis of 1.1", \,A IlTIl syst"lIl

shows I.hat tlIuler a. 1I11l1tithreade(IIH·o~ra.m w()rklo:ul , SUilSyst,PIIl illt,pradÎtIlIH al. IH'()('('ssillg

Bades arc the bottlcnccks. Rcdudl1g access t.iIlWS for sllhsyst,mns in an r~ABTI-I 1l()(1(' It':uls

1.0 a performance improvmnent especially al. lin" thn,ae!,,;rannlarities. M\lIt,itlm'ae!in,,; 1'1'0­

vides nlorc robust perfOrUlfl.lH:e tn tlw dlèlllgCS in dat.a <iistrilmtiolls t.hall il singl(! threadccl

cxecutioll. Our rcsllits dcmullstratc t.he tradeoffH of reaiiHt,i«' Ct)st.s llf IlItllt.it.lln~a<lillJ,!;011 t.lw

performance of finL~,,;r:ün parallel pro,,;ram workloa<l.

Overall, our allalytieal lIlodels a.re tlseflll t(l system arehit.eets ami compilm' wril,PI'M 1.0

provide insight 1.0 the performanee rdal.ee! optimizat.ions.
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Résumé

Les arehitcd.l1TCS llmltipfogrammécs pWllncnt Cil compte le pa.rallélisme des prcgr:tmmcs

alin de tolérer de pins longnes latences dans les commnnications et les synchronisations. Lors

d'un éu~d!s mémoire aVec Ulle longne latence, le processeur d'un système multiprogrammé

eomnmtc rapidement de contexte vers un autre prograunIlc cIe calcul, cc qui améliore la

performance. Contrairement:i. l'exécution traditionnelle monoprogramméc ainsi que dans

les systèmes d'exploitation multitàchcs, la. multiprogrammation permet dcs accès coueur·

rents et de façon simultannée anx resonrces dn système global, à partir d'nn ou de plusienrs

I.hreads d'nn même programme usager. Une analyse de performance en multiprogram­

mation doit prendre en compte l'effet des accès concurrents ct multiples sur le débit des

sous-systèmes.

La modélisation d'nn système réel mnltiprogrammé, comme le système EARTH de

McGill, pose d'autres problèmes. Premièrement, lors des interactions réelles entre sous­

systimlcs, plus d'un sous-système pourrait émettre le même accès atl même moment, cc qui

reud la prédiction des conflits difficile. Oeuxièment, les caractéristiques des threads tel que

le nombre d'accès déportés peut changer selon les noeuds de traitement. Par conséquent,

un calcul exact des délais s'avère essentiel.

Nous proposons, dans cette thèse, des modèles de performance analytiques, nous dévelop­

pons des techniques de résolution, nous validons les prédictions du modèle et enfin nous

lumlysons la performance des architectures multiprogrammées. Nos models analytiques, qui

sout. blL~és snr des réseaux de file d'attente fermés, considèrent l'effet rétroactif de la charge

de traitement des sons-systèmes sur la performance du processeur. Nans démontrons la ro­

bnstesse de ces modèles de ,'éseaux de lile d'attente fermés par rapport aux models ouverts

ponr la prédiction de la performance. Etant donné l'effet rétroactif et la nature itérative de

iv



•

•

•

notre technique de ré~mlutioll. IlOllH pf(!dhmlls la IWrfol"lutl'lce dl's illt.<~radi()lls ('Ol1lpit'xPs ('11­

1re sous-Systi~1UCS dans ie système EARTH ponr une char~e (It' t.rait,ement. mtllt.il)rt}g:raI1l11lt~t'

donnée. Les mesures pf(~lev(~es ci partir des pXlkutions aduelll'~ de pl'ogralllllll'S :~l.~ sil.1H~nt.

entre 5% ct 20% des valeurs pf(!dites par le mudN(!,

Les entrées du modèle sout les paramHres de ra.t·t:hit.et:t.lIf(~ et la ('arad(~riHt.iqllt' dl~

la charge de traitement. elu progrannne. Lc!'î In'{~dietiolls ou sort,it~s dll mutiNe illd1Hmt

l'utilisation du processeur! le taux cie messages tranSmn!s sl1r It~ t'(~s(mll aillsi que la lat.(~tH·('

des accès déportés.

Pour une charge de t.raitement. donnée, nons mont.rolls l'dfieadt.(·! dl! la. t.pdUlil(IU~ (lt~

multiprogrammation ;\ supporter les latences de cOlllmunicat.ion. NOliS mOIlt.rOIlS aussi

l'importance de la capacité du r(~scatl à s'adapt.er aux eiLradt~risliclll(lS «It! la ehargl~ lit!

traitClllent du programme afin d'atteindre unc perrOrllliLll(~C "~lcvl~e. Notre iLlliLlYNe sur le

système EARTH montre qne ponr une charge <le traitement donn(" <l'uu prngrallln'" mul­

tiprogramtué, les interactions entre les sous-systèmes, a.u niveau des noeuds d«~ t.rait.cllwnt.,

constituent les goulots d'étranglement. Rédnire)e temps <l',u,,;ès des sous-syst"",,,,s <lalls UII

noeud du système EARTH permet d'améliorer la perform,ulI;e sllrtout, iL <1,," niv,,"ux fins <le

la granularité des programmes. La multiprogrammation pcrlllet d'al.tnilldre cIe IIwilhllll'l~s

performances, en présence des changements dans la c1ist.rihllt.ioll des ciolltuics, par ra.pport

il une exécution monoprogra.lIlllleé. Nos résultats montrent. ll~s (~nlllprOilliN possihles, av(~(:

des coûts réels d'ullc multiprogrammation, sur la pcrforlllanc:e (((lS prop;riLlIUIWS paralli~les h

grain fin.

Enfin, nos models analytiques sont d'nne grande ulilit(, IlUX eonenpleurs <l'Ilrd.il.eetur!l

de systèmes et aux concepteurs de compilateurs en lellr fOllrllissllnl, <I"s illdkes Sllr leH

optimisations reliées il la performllnce.
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Claim of Originality

This thesis contriblltcs to thc fo1lowing 'L'pcds of mllltithreaded architectures:

1I1l1l/ytim/ T",rfor",,,,,,:c 7Ilodclillg; TICrfonTlllllcc (l1I(ilY8i.•; and TICrfonTlllllCC optimizlltio1l8.

A1l1l/yti",,/ T,crfol7Tl"'wC 7Ilodeling:

• Wc propose analytical modcls to prcdir:t the performance of mnltithreaded architec­

tures. Wc model them a8 integrated systems, i.e. with proceSS0r, lnemory and net­

work sllhsystems, IIsing closed qllclling nctworks. Wc show the robnstness of closed

'1llel.eing networks for performance prediction over open system models.

• 1'0 ext"lld 0111' performancc model ta McGiIl's EARTH multithreaded system, wc

develop hellristies to the mean value analysis (MVA). First, wc model the simultaneous

possession of the bus at a processing node, when the memory or network interface is

accessed. Wc exploit the iterative nature of the MVA, and the feedback effect of a

closed system model, ta obtain the solution using only one queuing network mode!.

SCl:ond, wc model a realistic multithreaded workload, i.e. thrèad characteristics at

different processing nodes may differ. 1'0 compute the queueing delays accurately, our

hellristic uses the service demaud for each access iu the queue at a subsystem.

PcrfOnll/lllcc Il,,,z!y.•i.<:

• Wc show, under a mnltithreaded program execution model, how to derive the perfor­

mance measures like processor utilization, message rate to the network, and latency

for remote accesses with split-phase operations. We analyze the variation in these

performance measures with architectural and workload parameters. Simulation re­

sults from the petri net models and measurements from program executions on the

EARTH system validate model predictions.
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• \\Te propm:e il metTie. tolt'7nn("(' intit'J. t.u qllallt.if~· t 1H' ('ffl'd i\'PIH'sS of mt1ltit.hr,·.ulill~

tu tolcrat.e latcm:ies al. il sllhsy~tl'lIl. Tht' t.oll'raw'(' illtit·x. say for tht' Ilt'twork l'ltt'w'""

shùws ho\\' dos(! is t.he system perfflfllI'uU'P h, t.hat. of an idnJl s,\'sh'lll \ ...·hit'h lll('III'S no

lIetwork ddays.

• W(~ show the feedhark df(!d ahollt. ho", siAt1ilkant. are tilt' l,hrOH~hpllts of sllbsyslmlll'O

in tlluing tlw I1mlt.ithreadecl progréUll wl>rkload dmracl(!rist.il'S. Firs'" Wt' sllll\\' I.hat

the thread rnulengths la.rger thall t.lu~ valUt, of dTt-dit,!: mt'mm'y lalcucu yiPld iL )ü~h

pcrforlua.ncc al il prucessill~ BOcll'. The elfedivl' 1IIl'lIIor)' latl'Ilcy is t.lw a\'(~ral!.(~ t.illlt'

betwccn successive UlCIIIOI'Y l'espOlises. S(!('Olld. Wl' l'iho\\' t.hat. the proceSl'îor lll;lizalioll

incrca•."ics \Vith an illermL"iing: 1lI1lllher of t.hrmuls. ;L"i long: ëL"i tllt~ l1Iessag:(~ l'ah! is Ilot

close to the 7letwork clJl'tu:ily" The lletwork eapadty is tlw lIliL.xillltllll Illessa~(~ ratl!

pcr proccssor c1clivercc1 hy t.he Ilet\'w"ork !.1JIc1t~r a g:iven atTI!SS patt.t~rll. Tlw Înere;L"iI! ill

the proccssor performance is in spile or illt:rt!;L"it~S in Iwtwork latelldes and lIlessa~t.!

rate to the network.

• Multithreaded operatiolls 011 the EARTH system are cOII.posed of" s'''llIell<:e of simple

operations snch ;L."; mcmory ac:ccsscs ami lIelwork lIIessag:t~. Wp prnvide tht~ lirsL

detailed eharaeterizatioll of " mnltithreaded prnJ;ram wnrklnad with rml msts (1111

the EARTH system) alld lIumbers nf IIll1ltithreadinJ; n,,,,ratinns and l",:al ac""sses.

Perfol7TlUllce oI,timizatioll..:

• Through model prcdietiolls and <!IlIpirieal Il''''L,urellnmts lin li", BARTH syslem, we

dcmollstrate the tradeofr., of realistie <:osts of IlInltithreadillJ; 011 lhe perforrm",,:e for

finc-graill paralle! program workloads. We also show that the performallce of a IImlti­

threaded program exccutioll is more rllbust to the challJ;es in data distrihntiolls than

a siligie threaded exeentioll.

• We show that perforrllllllce bnttlmweks 011 the EARTH system are the suhsysb'llI

illteraetions at processillg nodes. 13y redueing ac:""ss tin",s of tI"Olc suhsyst<!lIlS, the

performane'! improvcs at filler thread grallularitics. Sueh ardlitc':tural c:onfigurations

ean be studied through our allalytieal modds .
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Chapter 1

Introduction

Multiproccssor a.rchitectnres present ail att,radivc approaeh tu ft t:()st-dfed,ivl! IliJ.!;h IWrfIJl·.

lIIance cornputing. tvI 1l1tiproccssor systems (~OIlsist. or proecssillf!; IHHI<!S ()JI ail Îut.en:01luediOlI

nctwork. A typical proccssing Bode is composcd of, a. prm:05:;O", a local mmuory, ilud IL lU!t­

work interface. On current distributed shared memory systems, ""sts of a<:<:essilll; <lata fl'Om

a remote memory arc an order of magnitude higher thall l.he cost or acœssiul; rwm the \lIca\

memory [57, 70, 5, 46]. A good decompositioll of the <:Dmplltatioll ill a parallel pWl;ram

alld a distribution of the data on a machille avoids ex<:essive messal;e t.ralli<: nll the lIetwnl'k.

For such programs, a l11ulliproccssor system yields a 1;00(1 performallœ with im:l'e;L~e in 1.111:

mllnbcr of proccssors. Whcu the sharing uf da.t.a. iLllU.mg proeessors iJl(:rcascs, t.he Ilctwork

messages cxpcricllcc longer latcllcics duc tu an ÎucrC1L"icd t.raflie [DU]. Luug latcJH:ics for

cOlluuunicatioll across the Ilctwork and syudlfouizatioll in J>arallcl progralll cxccutiollS, art!

considered to be the importallt callses roI' the perrormam:e <lel;l'a<lation or mllltipl'Oœssol'

systems [14J.

Multithreaded architectures arc proposed as a pl'Omisillg appI'01,,:h tn tlll"rat" lllnl; <:0111­

lIIunication latencies and IInpredictable sYIl(:hroll.izatinn delays in parallel pl'lJgralll "x,,­

cntions. Examples or snch systems indu!!e, TERA [91. MASA [41], Alewir" [5], *'1'[681.

TAM [261, RWC-1 [82), EARTH [461, Cilk [16], aud M-Multicolllpllt"r [371. Muitithreadilll;

techniqne provides a split-phase mechanism roI' 10llg latency operations, and a nll,,:hallism tn

rapidly switch the context of a computation task (thr"ad). When a long latell(:y operation

occurs. the multithreading technique rapidly switches the context to another computation

1
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t;L~k. This overlap of eOUlllllUlieat.ioli 011 olle thread with computation on t.he OtllCf rcduccs

tlu! hUI! tiuw al il proeessor. TJl11s, the pro(;essor performance improvcs by nlaintailling a

pool of re;uly th",ads for I!xecution, 'L' WI!1l 'L' hy ",nploying split-pluL"e transactions for re­

nllltl! ;U"'I!""I!S and syndmlllizations. NI!xt., WI! desnihe an abstraction of the multithreaded

program I!xI!ent.ion. Lat.I!r iu Chaptl!r 2, WI! diseuss a multithreaded program workload in

dl!t.ai!.

1.1 A Multithreaded Program Execution Model

The ex""ution at a singll!-t.hrl!aded processor progresses aloug the instructions fetehed byan

iWitnlClion l}(Jinlf!r and CL .'iiack 1Jointer'. Togethcf, thcsc pointers are rcfcrrcd as an activity

.'/Jecijier in the Iiterature [:l:l). Aloug with the registers, an activity specifier represents the

(;OJltext of a eomputation t'L,k (thread). The state of a single-threaded machine is made up

of the cOJltext and the set of values hcld in the memory.

ln a mnltithreaded program eXel:ution, multiple contexts co-exist at a processor. A con­

text and associat,ed set of values in the memory corresponds to the state of one computation

thread. The computation progresses according to the activity specifiers for these threads.

A multithrcaded program workload is a partial order of :uultiple threads of computatiml.

A thrcarl is a sequence of iustructions followed by split-phase long lateucy transactions, e.g.,

a remote memory access. There arc two multithreadiug approaches to support the main­

tenance of context for a thread. The first is the rlataflow style multithreading, in which

each thread is atomie. That is, once scheduled the thread executes till its complet ion and

stores its result in lIlelllory. Melllory locations arc used to communicate variables between

threads. Registers lose their identity on the completion of a thread, and are not saved. The

completion of a thread triggers synchronization among thrcads and further computation.

This prodUl:er-<:onsulller synchronization is au abstract machine model of multithreading

with data-driven semantics. In an implementation such as the EARTH system [46], a

compiler and rlIntime system may retain some registers acroSs thread boundaries for an ef­

ficient execution, while not violating the abstract mode!. The second is the von Neumann

style multithreading, in which a context (including registers) is retained neross split-phase

long latency transactions. When long latency split-phasn memory accesses are issued, the

thread is suspended and the state is saved at some place in the memory or in a register
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bank. On complctioll of il loup; !a.telley operation. an t~Xeellt iOIl on a thread lIIay eontimu'

after restoring the state of the thread in registers [9. IOll. 5. 901.

In this thesis. wc assullle atolllie thre",ls 'L' in the tiutu}/"II' slyh, of nlllitithre,"lillg. W"

Ilote that the tlOn Neumann st.yle nlllitithreadill~ t'an he captnn~(1 Ily this pn)~riun t!xe(~tltitm

lIlodel, 'L' testified by our experilllel'ts in Chapt'.,r ï.

1.2 Performance Issues of Multithreading

The composition of il. split-phase trallsm:tion is crudal tu its pcrfurmaru:e. III this thl'sis,

split-phase transactions an> also referred 'L' 1I11lltithn>llding "perations. A lIlultithreading

operation is composcd of tasks snell mi. rcccivilig mcssap;cs frolll the rwtwnrk. il.eee~;ill~

the local 11101l10ry, rcspolldillg to IIlcssagl'S, and performillg SOIl1I~ sYlldlnmizatioJi opera­

tions. Costs of Illultithreading operations indude, an overhead for switching tilt! ",,"text

to the execution on another thread, and a support for split-plHL'" "''''esses. Multithr.""ling

operations on multiple threads lIlay lead to lIlultiple outstanding W'IIlt!Sts in the syst...n.

Increased contentions at the lIlemory and interconneetion network lIlay fnrther incr"'L'"

the latencies. Performance of a multithreaded architc<:ture depends on intera<:tions of key

components of a system under overiapped multithreaded cDlnputation and cOllllllllnicatioll.

An architect attempts to alleviate bottlenCl:ks to the perforlllalll:e on target applications.

To efficient1y support Illultithreading operations, an architeet shonhl know the following:

How frelJuently does a rnultilhreading o/JemtirJrl {}(:cnr~ And, whir:h fllllr:timlll/ IIl1it.• /1<111"

{arye Te.'iTJOTUe tirnes'! Thore are twa possible approachcs tn l'cdllec the l'esponse tiUH! uf

a particnlar functional IInit. One approach changes the organization of a snhsystmn ...g.

mcmory, while oUter changes the implclllcntatioll of iL IIlUltithreadillg operatioll, e.g., huw

often does a pracessor check messages at the network interfal:!!. Thns, an architect n",~Js

10 assess the effect of these changes on the performancc.

One of the main objectives of a compiler (and a programnwr) is to maximize the pror:es­

sor utilization on a given multiproccssor system for an application program. PerfornulIIc:e

related optimizations by a compiler change two 'L'p..<:tS of a progrmn workluad: the data

distribution and the earnIJlJtation deeornpo.•itirJrl [10, 69]. A compiler nccds informatiun un

the following three aspects. First, w"ie" c1lamcteristie.• of a 71Il1ltit"readcd IJrogm71l work-
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/om1 Ofe ••(qnificont to ochieve high perfarmonce? SOllle program workload characteristics

arc, the numher of threads, their runleugths, and the remote memory access pattern. A

compiler should he ahle to vary these characteristics to achieve a desired performance. Sec­

ond, hoVl do the voriotion.• in tlle.•e T'ro.qmm VlOI'k/oad c!l<lracteristic.• affect the performance

of 0 sy.•tem? ln i.w/otion o., weil os in combinotion? A characterization under realistic

costs for multithreading operations helps a compiler to choose suitable performance opti­

mizations. Third, what arc the ronge.• of progrom work/oad charocteristics which yield high

Tlerformlmcc? Targets of jlerformance optimizations arc these ranges of workload charac­

teristics.

Differences in performance optimization strategies for multithreaded systems with those

for single threllded multiprocessor systems arc as follows. For a single threaded system, the

optimizations aim to reduce the network latencies, through a careful data partitioning, a

reduced data sharing and a reduced network traffic [34, 99]. In contrast, one focus of the

data distribution and computation decomposition on multithreaded systems is to remove the

unnecessary serialization in computations. For example, a distribution of adjacent rows of

an array to different memory modules reduces the access contentions to the same memory

module. Thus, a sufficient number of threads is unraveled so that the computation on

them is overlapped with the communication necessary for their progress. Parallel threads

improve the processor utilization, however an increased number of split-phase network

accesses increases the nptwork latencies as a side-effect.

The focus of performance optimization strategies for traditional multitasking systems

differ from multithreaded systems as follows. A multitasking operating system uses multiple

tasks to improve the thronghput of a computer system. Each task is assigned a specific

timc-slice for execution on the processor(s). No contentions from resources occurs among

different tasks during a timc-slice, hence the latencies at subsystems arc low. In contrast, the

multithreading technique allows a tightly coupled sharing of data among multiple threads on

the same application. That is, these threads may co-exist at a processor, and share data at

fiue grauularities such as every tens or hundreds of instructions [85, 77, 64]. The execution

time of an application reduces with improved processor utilization. Accesses from multiple

threads on the same processor, however, are allowed to contend for the system resources.

So, the latencies to access these n'sources increase.

Thus, an increased overlap of computation and communication among multiple threads
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1.3 Objectives and Research Issues

5

•

•

The objectives of this thesis arc motivated by l,he nccds of users l (ardliteets and compilers)

ofmultithreaded systems. Section 1.2 outlines t.lte need 1.0 modelllll overlapped computation

and communication in multithreaded program executioll and 1.0 demonstrate the lise of

these models for performancc optimizations. Thus, the main obje<:t.ives of this thesis are

two-fold:

• To predict the performance of ITlllltitlll'Caded architeet1l1'C.~. This objective im:1tllles the

following aspects:

1. identify the significant program workload paramel,ers and ardlil,llet,ural interl":­

tions which affect the performance;

2. develop analyticalmodels to predic!. the performance of mull,ithreaded ardlitlle­

turcs: and

3. vaLidate model predictions using the results from sinmlations lLq weil as sysl,em

measurements.

• To app/y the ana/ytica/ models for the TIC.jorrnrmce a'lIl/lI,.i,~ rmd oTltimizatirms IIf ITllllti­

threaded architectllre.•. This objective inc1udes the following ILqpects:

1. characterize the performance of rnultithreaded architectures with ell!Lnges in ar­

chitecturaland prograrn workload pararneters;

2. identify the performancc bottlenecks in progrmn executions: and

3. dernon.~trate how optirnizations of progralll workload charac:teristic.q and arc:hi­

tectural implementations can improve the performancc of Illllitithreaded archi­

tectures.

Wc consider above objectives within the context of Illultithreadecl architectures 11IId

obtain solutions for each of the above steps. We also show the changes in the complexity

1Hcnccforth, wc will use the tenD U&crs ta rerce ta urc!&itcc!s, compiler" und prtJgnunrncr.•, collectivcly.

\Vc will alsa h:ïcr compilera in place of compilers llnd prograrnrnCTtJ.
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and scope of these problems with changes in the underlying system- a single processor

syst.em, Ho multiproc;cHHor system or a real machine.

1.4 Overview of The Thesis

Our approach to meet the above mentioned objectives is as follows. Wc formulate perfor­

lIlanc!! modds of lIlultithmaded architectures using closed queueing networks. Our solution

t.echnique is based on approximate mean value analysis (MVA) [56]. Wc develop heuris­

tics to account for multithreaded workload, and subsystem interactions like simultaneOl..<

rcsource posscssion. Rcsults of Stochastic Timed Petri Net simulations verify the accuracy

of our model predictions. Measurements from actual program executions on the EARTH

system validate the model predictions. Wc extensively characterize the variation in per­

formance measures using model parameters. Using the realistic costs for multithreading

operations, we analyze the performance of the EARTH system. Through examples, wc

demonstrate the usefulness of our performance analysis to optimize the performance on

multithreaded systems.

1.4.1 Performance Modeling

Wc model multithreaded architectures as integrated systems. The models account for the

hehavior of processors, memories and interconnectioll networks, and interactions among

them under various program workloads. We show the following advantages of using closed

system models like ours. Fir.t, by accounting for the feedback effect of the load of the

snbsystems on the processor performance, the model predictions arc robust even when

the system operates near the network saturation. We show tradeoffs of three open system

models employing feedback to improve accuracy in their processor performance predictions

with respect to the closed system models. Second, input parameters to our models can be

directly supplied by the nsers. In contrast, open system models require input parameters

like the message rate to the network, which arc not usually known a priori (such models have

been used in [80, 8, 18, 90]). Finally, our closed system model provides a broader picture of

the system performance. For example, an increased locality in remote access pattern due to

a different data distribution, can increase the message rate while simultaneously reducing



• GHAPTER 1. INTRODUGTlON 7

•

•

the network latency. If an open system model is used for t.he performauec predietion [:lO, 1],

the user nccds ta accuratcly cstima.tc the message rate (sinee the Ilct,work latcncy riscs

sharply with the message rate) and use a distinct charact.erizat.ion of net.work lat.ency for

dilferent locality patterns. Thus, t.o achieve the same desired l'esult.s, a uscr of opeu system

models requires not only the statically known input parameters Imt. also t.he intermediat.e

output parameters.

Our choice of elosed queueing uetworks t.o model nmltit.hreadell archit.edures is h..",,1

on the following reasons. Fi,·.•t, systems with a large numher of pl'Oœssors can he analyzcd

quickly using standard techniqnes like the mean value analysis (MVA). Our model takes less

than one minute 1.0 analyzc a 64-processor system on SPARCSt.ation-20. s"c07IlI, models of

a modified system can be developed qnickly. As a ense stndy, we have adapted our analyt.kal

model, which is originally developed for a multithreaded system with a 2-dimensionalmcsh

network, 1.0 predict the performance of the EARTH system with an inter(:onnedion hIL~ClI

on crossbar switchcs. Thini, the MVA is amenable to heuristit~~. For the EARTH system

model, wc developed heuristics for realistk subsystem interactions. Fourth, t.hese queueing

network models have been applied 1.0 l'cal systems in practicn [581.

Wc applied our analytical model 1.0 the performance predictions of McGill's EAltrH

system. Wc proposed two approximations 1.0 the MVA. The lirst approximation models the

realistic interactions at proccssing nodes in the EARTH system. The stJCond approximation

characterizes a realistic multithreaded workload.

First, on the architectural aspect, wc model the .•i7Tlu/tlmelJ1l.• TJO••••"••••irm of t.he hus fol'

accesses in an EARTH node. Wheu an access from the processor is servked by t.he Io<:al

memory, the bus at the processing node is busy until the access complet.es. Fol' this duration,

no other resources al. the node can he ac(:essed, e.g. lUI acccss 1.0 the network interfacll from

a synchronization unit docs not go through. Pl'llvious solutions 1.0 a general problem of

simu/taneous resouree pos.•es.•ion involved the nSll of multiplll llullnlling network models,

which arc solved iteratively. For example, one model for each proœssing node to aœount

for processor accessing the local memory, and another model for the subsystel71s excluding

processors al. each node. These solutions are reported by .Jacobson and Lazowskll [48],

Lazowska et al. [56], and de Souza e Silva and Muntz [31]. In contllxt. of thll EARTH

system, wc exploit the iterative nature of the I\1VA to formulate the ahove problem under

one analytical model of the complete system. Our heuristic is that the total queneillg delay
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for a new aceess ta any resource on the bus is a sum of the service time for each already

queued IleceSS through the bus, rather than the queueing delay at an individual resource

alorw.

Second, on the program workload IL~pect, the thread characteristics at different process­

ing nodes may differ. Each type of request «l.g. local or remote mernory accesses) requires

a differcnt service time from the server (memory system). Sa, a single unified queue length

alone, ilS IIsed hy the existing MVA [75], is Ilot ellough to compute the queueing delay for

a specific reqllest. To improve the accuracy, our heuristic to the MVA considers the service

demand for each individual access in the queue at a subsystern, and the numbers and types

of reqllests in the qllene at the time when this requcst enters. Such extension to improve

the accuracy of the MVA has been independent1y proposed by Lelltenegger [58J and others.

Our eontribution, in this thesis, is to model a multithreaded program workload such that

the above mentioned extension to the MVA provides an accurate prediction of the system

performance.

Given a multithreaded system and a program workload, wc show how to derive the

performanee measures such as the processor utilization, the network latency for remote ac­

cesses with split-phase operations, and the message rate to the network. With architectural

parameters and program workload characteristics, wc characterize the variation in these

performance mensures.

1.4.2 Validation

We use simulations of the Stochasti<: Timed Petri Net (STPN) models as well as program

execlltions on the EARTH system to validate our model predictions. Simulations of the

Stochastic Petri Net (STPN) models, are commonly used for performance analysis [60,

81, 8, 23]. Motivations for our nse of STPN models are as follows. First, under same

assumptions as queueing network model, both techniques are equivalent and should yield

same results. Seeond, STPN models can easily be extended to study complex interactions,

which helps to assess the performance deviations of queueing network models under these

eonditions. Through simulations, we obtain the processor utilizations and latencies for

network messages. Model predictions typically match within 10% of the simulation results.

Ta validate our performance model of the EARTH system [46], wc execute synthetic
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benclllnark programs. Wc have developed a low overl",ad t.ool for a rtlnt.in", n""L,nrement.

from actual program executions on the EARTH syst.em. We me'L'nm t.he lat.mll:y for split.­

phase remotc acccsscs and the proecssor lltilizat.ioll. Thcsc mea..mrCUllmt.s emnpnrc weIl

within 5 1.020% of model predictions in most eases. Not.!! t.hat. nol, ail performanee me'L'nres

can be measured nsing software tools. Also, a small pert.nrbat.ion in t.he l'erfOl'nuutee

measures « 5%) oceurs dnring rtlntime meIL'nrements.

1.4.3 Performance Analysis and Optimization

An analysis of the performanee of ail snbsyst.ems for eaeh set. of vaines I(JI' pllmmet.ers

provides us an insight 1.0 tnne the perforumnee of mnltithreaded archit.ednres. First., snd.

analysis points to critieal vaincs of parmneters to aehieve high pe..rormanee. S""on<1, t,l",

analysis shows the performance bottlenecks. Third, t.he analysis helps 1.0 'L'sess how t.he

changes 1.0 input parameter settings affect the proeessor plll'forlllance.

Our performanee characterization of IlInltithreaded syst.ems with modd (llll'lllnet.ers

shows eritical values for which a high processor performance is aehieve<1. Fil·.•t, for a

processing node, wc deline the eJJectille !/lel/wry! latellcy as t.he Ilccess I.ime of t.he mem­

ory subsystem while servieing multiple, conenrrent rellnest.s. To lIl,hieve a high proeessor

utilization, the thread rnnlengths shonld be larger t.han the vainc of t.he effedive llIemory

latency. Thus, to support a line grain program workload, a low effedive memory lat.eney

is necessary. A use of inter!eaved llIemory hanks and pipelined llIemory keeps t.he effedive

memory latency low. Second, for a remote memory aeeess pat.t.em, wc deline the 7lct1lJ1J!'k

ealJaeityas the maximum message rate pel' proeessor delivered by thll network. The proœs­

sor utilization improves with an increase in the number of threads, IL' long IL' t.\w n!essage

rate is not close 1.0 the network capacity. The proeessor perforullLnee inermL,es dcspit.e the

increasing network latencies and message rate. Thini, wc invest.igat.e the effect of I.hread

characteristics like the number of threads, their runlengths and t.he number of outHI.anding

requests during each rnnlength of a thread. Wc show that the network latency incrmL,eH

more rapidly with the number of outstanding relluests pel' thread than with the number

of threads. Also, the higher the number of outstanding relluests pel' thread, t.he lower the

processor utilization. This decrea.,e in the processor utilization cannot be eOlllpmlsfltecl by

increasing the number of threads. Instead, the performance ÎlnproveH with optilllizationH
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We introduce a metric, the to/emncc index, to quantify the effectivencss of multithread­

ing to tolerate latencies at a subsystem. The latency for an access is to/cmtcd, when the

processor doc.. not idle due to this acccss. The tolerance index, say for the network latency,

shows how close the system performance is to that of an idea/ system, which incurs no

network delays. For performance tuning, the lower the tolerance index, the greater the pos­

sibility of gains due t,o performance optimizations. Thus, a user cau analyze the tolerance

of latency at individual subsystems, and tune the program workload with respect to these

subsystems.

We "l'ply our model to analyze the performance of McGill's EARTH multithreaded

multiprocessor system. The modcl predicts how various thread characteristics affect the

performance of a multithreaded system (like the EARTH) using realistic costs of mul­

tithreading operations. Mell8urements from program executions on the EARTH system

match weil with the analytical model (within 5 to 20% of model predictions). While we

use synthetic benchmark programs to study impact of individual thread characteristics, we

also show applications of the model to optimize real benchmark programs. Our rcsults from

the EARTH system demonstrate the tradeoffs of realistic costs of multithreading on the

performance for finc-grain parallel program workload. For example, on CUlTent implemen­

tation of the EARTH system [46], programs yield processor utilizations above 80% when 4

to 8 threads have more than runlengths 3000 cycles and a low (:5 3) number of outstanding

requests per thread.

We also explore how the changes in Implementation of the EARTH system will affect

Hs performance. Specifically, we study how much performance benefits are obtained using

multithreu.ding if costs of an EARTH processing node are reduced by 50%. Similarly, how

much performance gains are possible if the EARTH system employa a slower network (like

in a NOW, network of workstations).

Through examples, we show how to apply our analytical results to optimize the pro­

gram workload characteristics to achieve high performance. For users of multithreaded

architectures, our analytical rEsults provide an insight to the impact of performance related

optimizations in the presence of long latencies on real systems.
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This section provides the details on the generality of our approach and t.he S""I'" of I.he

tools developed in this thesis.

1.5.1 Modeling and Analysis

Our analytical model is deve!oped using datallow-based multithreaded progrmu eX<leulions,

i.e. the threads arc atomic. However, our model is applicable 1.0 the von NeumllUIl style

multithreading as illustra\ed by ail eXllmple in Chapt.er 2 aud experiments in Chapt.er 8.

The multithreaded program execution mode! is well-suit.ed for a Singlc-Program-Multiple­

Data (SPMD) model of computation [43]. The SPMD model has bccn widely successful on

distributed shared memory machines, and provides users with a t.augible set of pm'Iuneters

1.0 characterize the parallel program workloads. Since a performance characterizlltion of

otlter parallel program structures like recursion (e.g. Fibonacci) is not general, this thesis

does not consider t.hese program st.ructures. However, we believe thal. for multithreaded

workloads, the optimization hint.s obtained from an SPMD model arc good lumristics tu

tune other parallel program structures as weil.

We have developed a solut.ion package 1.0 anlllytically solve the dosed queueing nel.work

models of multithreaded syst.ems- uniprocessors and multiproccssors. initially, we focus

on simple architectures of processing nodes 1.0 explore the henefits of mult.ithreading. We

model simple interactions among the suhsystems, like split-phase mmnory accesses. Then,

we apply the analytical model is 1.0 analyze the EARTI-I-MANNA system. This application

shows how 1.0 account for realistic subsystem interllctions al. an EARTH-MANNA node,

and how much is their impact on the performance of the system. We focussed on single­

data accesses in the EARTH-MANNA system, however, a similar extension of the Illodel is

possible for other subsystem interactions, like hlock-data transfers in the EARTI-I.

We have analyzed two distributions for data locality, gcometric and llniform. Chapter li

discusses how 1.0 extend our approach 1.0 analyze other data distrihut.ions.
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1.5.2 Performance Tools
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Apart from the solution package for our analytieal models, we have also developed a simu­

lator and measurement tools to validate the modd predidions.

To validate the modcl predictions, we measure the performance of the EARTH-MANNA

system. A simple instrumentation of the application program allows us to measure the

network latency with an accuracy of 5 eydes. This instrumentation gathers latency valucs

on any application, where a processing node ean he dedieated for a measllrement thread.

TIll! dedicated proœssing node executes meaSUrl!llll!nt thread to monitor remote aCCeSses

(Chapter 7 provides the details). The latency is measured for one access at a time. The

processor lltilization is measured using a function which counts the cycles when therc is no

computation thread to execute.

A simulator is devdoped to validate model predictions for abstract uniprocessor and

multiprocessor multithreaded systems. The simulator is written in Voltaire [72], a language

tu specify the net.-list fur colored petri nets. A signifieant processing al. each place and

l,ransition, based on att,ributes of the tokens, provides the following f1exibility. Detailed

configurations of architectures can be quickly simulated, and a wide range of performance

statisti<:s can be easily gathered. We have simulated a crossbar and a mesh network which

is modeled Ils a petri net with 80 places for a 16 processor system. Each processing node

eontains 10 plaœs in the petri net, as shown later in Figure 5.5. The simulator for a 16 node

machine takes 1 1.05 minutes for each mn on a SPARC-lO workstation. (The analytical pre­

diction requires less than 1 minute for a 16-processor system.) The simulator can execute,

a steady state pattern (used in this thesis), as weil 'IS a parallelism prolile based pattern

using synchronizations. We use deterministic and exponential service time distributions al.

various transitions. However, the simulator allows other statistical distributions,

1.6 Synopsis

This thesis is organized as follows. In the next chapter, we survey the existing multi­

t,hread",l ardlitectures. Vsing IL program workload, we show how 1.0 achieve an overlap

of computation and communication. Wc classify the existing work on performance eval­

uation of multithreaded architectures as: performance modeling, simulations, and system
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measUl'etllcnts.

In Chaptcr 3, wc disenRs t.he issues in perl()rl1lêU1(~e Illocldiuf.!;, illlalysis amlcll)(.Îllllzat.hms

of multithreaded architectures. Wc deline t.he st.at.en"mts of the prohlelus solve,1 ill this

thesis. Wc ollt.line our approach t.o evaluate the perfonnan"" of multit.hrelllle,l arehitedlll·cs.

Wc also describe the mllitithreaded program exeellt.ioll Il,,,,ld fol' whkh mmlyt.ieal Il,,,,lds

of single anclul\lltiproccssor systems a.rc developcd iu lat.cl' dmpt.ers.

III Chapter 4, wc propose ail allalyt.icalmo,ld 1.0 prediet. t.l", perlllrmlm"" of a single pro­

cessor multithreaded sy,tem. Ollr allalysis shows how t.he organizat.iun of a mlllt.ithrca,!<,d

procrssillg Ilode affeds its performallcc. Wc also discllss implieations of t.hese rcsnlt.s fol'

performance optimizations.

III Chapter 5, wc propose ail allalytiealmodcl of a nmlt.it.hrcadcd mlllt.ipro""ssor syst.em.

Wc validate modcl predictions nsing simnlations of a st.oehasl.ie t.in""l pet.ri net n""ld of 1.1",

system. Wc show how to dCl'ivc kcy performa.nce mensures of illl.crcst., and dmrael.cl'iz(! I.Iw

variation in these pcrfornmncc mcaSlIl'CS tlsing crit.ieal architcet.l1l'a.1 and IH·()~ ..alll wOl'kload

parllllleters. Wc show the impact of performance optimizations on I.\m performan"" of

system resources Iike memory and network switch.

III Chapter 6, wc discllss what wc mean by the lat.ellcy t.olerall"", how t.o '1nantify t.he

latellcy tolerallce, alld how does il. help in performallce opt.imizat.ions.

In Chapter 7, wc extend our analytical model t.o analyze t.he perfonnalll:e of the EAllTH

multithreaded nmltiprocessor system. Wc propose a simple solllt.ioll m"ler IlmlLil.hreading

1.0 the problem of simu/tlmcouH re.<ource TJos.,e.,.,iou. MelL,"rements l'rom thc acl.llal pl'Ogram

executions on the EAllTH system validate the modcl predictiolls.

In Chapter 8, wc also charactel'ize the performance of tlm EAllTH syst.em ul"ler realistic

costs for multithreadillg. Wc discuss how program opt.imizations IL' wcll IL' d.lL/lges ill

system configurations affect the the performall"" of the EAllTH syste,".

In Chapter 9, wc presellt an overall perspect.ive of t.his t.hesis, and outline future dil'l":­

tions of this research.
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Chapter 2

Background

The objective of this chapter is 1.0 familiarize the reader with how multithreaded architec­

tures operate, what problems <10 they p(lse for their performancc measurements, and what

an! the existing methods for their performance evaluation. This background will l'l'ovide

ILll iusight 1.0 l.he issues iu performaucc modeling aud aualysis of multithreaded program

executious, as <Iiscusse<l iu later chapters. lu Section 2.1, wc describe the uuderlying ar­

chitecturai mechauisms iu existing multithreaded architectures. Through an example of a

program workload in Seetiou 2.2, wc show how a prograrTllue:' cau use multithreaded (..plit­

l'/W•• ,,) operations 1.0 achieve au effective overlap of computation and communication. In

this thesis, this workload is used as a ruuning example 1.0 show performance optimizations

on multithreaded architectures. In Section 2.3, wc discuss the problems in the measurc­

ullmt of performaucc of multithreaded systems. In Section 2.4, wc survey recent studies on

performance evaluatiou of multithreaded architectures. Wc categorize these studies as the

aualytic performancc modeling, simulations, and system measuremeuts.

2.1 Mechanisms in Multithreaded Architectures

lu Chapter 1 (Section 1.1), wc outlined a multithreaded program execution mode!. Now wc

will discuss how a multithreaded architecture supports such a program exccution mode!.

Two esseutial features of multithrcaded architectures arc: a mechanism 1.0 issue split­

phase trausactious like a remote memory access, and auother mechanism 1.0 rapidly switch

14



• CHAPTER 2. BACKGROUND

ta cxccution on any of the availablc thrcads. Dnrillg the cxcclltioll of a thrt~ad, wlum i\

processor cnCoulltcrs a. long latcncy split-phase trammctioll. the procm;smo issum; t.lle aeecss

and rapidly switchcs the context to execute on another thrend. So, t.he llverall idle I.Ïme

at the proccssor l'ceIuces. For cxamplc, let \1S eonsidcr the prov;l'CSS of (~otnpt1tatiuli 011

two threads at a processor in Figure 2.1. Each t.hread Il,,,,npies t.he pro""ssor only fm' /1.

time units, and idles for L time units till its nl<!mOl'y a""ess is serviced. Not.e t,hat despit.e

incurring an overhead of C time nnits for each wntext. swit.ch, t.he llverall hile l,in", (shown

as Clupty boxes) at the pl'occssor is rcduccd.

Above mechanisms to support a multithreaded program execnt.ion mOI Id Cllll he impie­

mented in the hardware, e.g. the processor of TERA [9) and April [6], or in the soft.ware,

e.g. a rnn-time snpport in TAM [26], *T [68] and EARTH-MANNA [46].

----.,
____ .J

- _- _-_-_-J-L

_ Thread Executionlrn Context SWit,c1D hile I.Ïme
(duc t.o nl<!mory lat,"!"'y)

Overall
'li:
Cl

- - - - - -1.~••m;;C:==:::;===::J••••IEi:r::=====:JCI 2 _ _ _ _ _ _ ".....1 u....1

iJ R C L

~ 1 -
~ R C•

TIME ON PROCESSOR

Figure 2.1: Compntation and Commnllication Overlap in a Mull.ithreadml Pro""ssllr

Hardware Mccha.li.'I1I.• in CL Proccs.wJl~

•

A multithreaded operation is a split-phase operatioll with ph,~"es Iike senrling rClnllte

messages, acccssing locallllClllory for a rcaù/writc rcqucst. Hardware nwchauislIIH UMe

the processor and surrounding cireuitry, to rleteet these split-pl.....e operations ILlld Hill'­

vieil individual phases. On completioll of a nlllitithreadillg opllratioll, t.he execlltioll 011

the eorresponding thread lIIay proceed. Typically 1I111Itit.hr",,,Il!l1 prO""HHorH IIIlLilltaill

eoutexts for mnltiple threads ill its register set(s). So, a cOlltext switehillg COIIHllllleH

a small time, e.g. oue cycle on TERA [9laud 14 cyde 011 April [6]. Olf-the-Hhelf lIIi­

eroproeessors, however, need 1II0dificatiolls to support these hardware lIIecluLIliHIIIS.
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Titree meehal1isIIls to snpport this exceutiou arc:
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• CYC:"-/I]J-"yd" i71t"l'it:alli71!J: A pror:eHHor <:Dncurrently executeH on multiple threads.

In ead. cyde, the proceHHor HwitcheH context to a thread Hclected in a round-robin

IIUUlJlcr. If the IIlclIlory ac(;css isstlccl hy il thrcad ltas Ilot rcturncd, the proccs­

Hor idleH at the tnm (cyde) for that thread. TERA [9] and itH predeceHHorH­

HEP [87J and Horizon [93]- adopt thiH approach.

• B/ock "mltithrclltli71!J: A prOCCHHor execnt.es on one t.hread till it. encount.ers a

eadw miss ull iL n~m()t(~ 11lCmonJ tl.CCC.'i.'i. The romate acccss is issued, and the

proceHHor Hwitches contexl. to another t.hread. The cont.ext. switch t.ime is t.ypi­

cally over 10 cydes. Once the relnote acces" is complete, t.he thread is rcady for

execntion. Processors in Alewife [5J and [100J adopt. t.his approach.

• IlY/II~d .•clIC""'; This "cheme combines the advantages of above t.wo approaches.

A processor execntes on a thread till it. rlllcount.ers an off-chili acccss Le. a local

or remot.e cache miss. The processor swit.ches to another thread in one or two

cycles. When an acccss is complet.ed, t.he execution on corresponding thread can

continue. This approach is adopted by procesHors in [51, 40, 55].

SOjtlllllI'C Mechllni.mls in Il Rlm- Time Sy.•~ern:

These mechanisms focus on the use of traditional multiproccssor systems. Multi­

l.hreading primitives to invoke these mechanisms arc supported in high-Ievel lan­

guages, e.g., EARTH Threaded-C [46J and Spilt-C [25]. At compilc-time, these prim­

itives arc treated as a function cali or expanded/in-lined as an assembly language

subrout.ine. Sincc t.he mn-time system handles these mechanisms, multithreading

primitives pl'Ovide the entry and exit point.s of the run-time system.

When a thread issues a split-phase t.ransaction to fetch (or store) a remote data,

the mn-time system allows the proccssor to continue the execution on other threads.

The mn-time system ensnres that the completed remote acccss is retumed to the

waiting thread, and the ready thread is scheduled for execution. This approach is

used in EARTH [46J, TAM [26], and *T [68]. As an example, let us consider a

rmnot.e memory fetch operation, GET..5VNC operation, on McGill's EARTH system.'

1Wc refer to McGiII's EARTH-MANNA system Ils the EARTH system in this thcsÎS. McGiII's EARTH

nrchitl'Cture (46) is currelltly implemellted 011 the MANNA system developed by GMD, Berlill, Gcrmany [201.
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(Appendix E ontlines these primitives.) When a PWI'I'SSOr t'lI<'ouutl'rs a GET .SYNC

operation, the processor executes the correspOlHlill~ il.o;St'lllhly lall~l1a~t' suhroutim',

This subroutillc places a lIlessa~e [or other fuudÎmml nnit in t.IH~ pr()('l~sil1~ ntHlt~

(syuchronization unit, SU). and retnrns the l'Ontrul of l'Omputation 1.0 the point aftl'r

the GET..5VNC operatiou. Thus. a split-ph'L,e operation is issul'l!. Wht'n a r",notl'

acccss is complet.e, the SU al the local prm:essiup; nulle tU.:ti\'ales t.lw thrmul waitiup;

for this data. A thrcad may require olle or lIIon~ l't'lIlut.e acees~ws ln complete IJPfol't~

t.he start of its comput"tion. Ou l'OlIlplet.ion of tl",se remot.e "."".sses. t.1", SU schl'dules

this thrcad for the processor tu eXC(:Ilt.c on. Wht'Il the proc:essor dmllp;(~s (:ontcxl al

a later instant, this thread is ready for further progress in l'Omputation. (Tht' details

of the operation of the EARTH are discussed in Chapter i.)

In c01uparisoll to hardware mcclml1Îsms describcd ahovc, a cOlllext switch on the

EARTH system l.akes al. lelL't 36 cydes. Even though only 6 1.0 7 instructions art!

rcquircd for a COlltcXt. switch, the main cosl. is clue 1.0 I.wo (;adH! missl~s on iLVel'iL~C!

to save at lcast t,wo rcgistcrs in the local memory. Thl! iLclviLllta~e of software

mct'1lltuisms, howcvcr, is that off·tlw-shelf micl"oprocessors call hl! lIsl~cl wit,houl allY

cxpcllsivc modifications to thcir designs.

The mechanisms discussed above are spedfic 1.0 luultithread"d systl!lus. In mlditioll, a

support is needed for fol1owiug thread op"ratious: tl17'cm[ CI'Clltion, lilltu t:01Il1l17111ic:lltitm ;Uld

tlirellli .•ynclironizution.

Tlireud creution: A thread is created 1.0 pel'form a computatiou t'L,k. Each thr"ml IUL' a

unique identifier.

Tlireud synclil'Onizution: A thread cau syuchrouize with OU" or mor" threa"s. Will'" th"s"

threads synchronize, a predefined stal.e of cOluputatiou is rem:hed. A m"ssage is .."ut

for a synchronization when either the threads communit:ate with "'I.I:h otller ur eertain

threads complete their computation ta..ks.

Tlil'eud communiClltion: A thread comnlllnicates with another thread through data valucs

for shared variables. A synchronizatiou message eusures that correct vahw8 of shared

variables are comlllunicated.
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These three JIIechanisms arc also found on single threaded multiprocessor systems to

support a concurrent execution on JIIultiple processors. Two major dilferences, however,

exist hetwecn multithreaded architectures and single l,hreaded multiprocessor architectures.

First, JIIultiple threads can he concurrently active on a multithreaded processor, so thread

identifiers arc necded 1.0 perform most of the ahove operations. In contrast, an identifier

for a single threacled processor serves the purpose of identifying the thread it executes.

Second, a tllI'carl .'ChcI!llling mechanisJII is nccded to select the next thread for execution,

save the context for the current thread, and restore the cOlltext for the Ilext thread. The

earlier discussion in this section shows that a llIechanism to switch the context is provided

either in the hardware (of a multithreaded processor) or in the software (through a run-time

system).

So far wc discussed some basic mechanisllls to support nlllltithreading. Now, wc will

foc:us ou their use in a program execution.

2.2 A Multithreaded Program Workload

In this section, we show a simple example on how to effectively use the multithreading

operations. The objective is to achieve an overlap of computation alld communication such

l,hat the processor performance improves. Wc use multithreading primitives in EARTH

Threackod-C [46] for our discussion, and elaborate them as wc ellcoullter.

Let us consider an addition of two 2-dilllensional matrices, i.e. C = A + B. The

pseudo-code is shown in Figure 2.2. In the MAIN body of the program, Iines 24 through 26

indi<:ate how threads arc forked on P nodes in the system. At the end of computations,

ail l,hreads synchronize and a thread with label TREAD_complete is triggered (see line 27).

Using the function INVOKE on line 25, we create P copies of nelLthread on P processing

nodes of the multithreaded llIultiprocessor system. After forking these threads from node

0, END_THREAD is used to switch the context to nny thread ready for execution at node O.

On every processing node, nelLthread spawns TIt compute threads (lines 15 to 17). After

execution, these lit compute threads retum the control of computation to THREAD_done (line

18). A compute thrend performs additions for K clements (line 3). For each addition, two

remote lI\emory fetches, GET-SYNC operations, arc issned in parallel (lines 4 and 5). Since
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t.hcsc a.rc split.wphasc long Int,cHey t.rammetiolls, t.he pl'()(~essol' ean he rrced fol' an exeenlioll

on other threads. Sa, wc use au END_THREAD opl'ration 1,,1' t.he t:Ont.<'xt. swit.d, (line li). On

the retum of GET-SYNC operat.ions, the <'Xe<:Ut.illU ou THREAD_add ""u h<'p;iu (liue 7). 'l'Ill!

result of the additiou is storccl using one DATA-SYNC opemtion (line il). Not.e t1mt ail t.he

t.hree remote data accesses (t.wo GET-SYNCs and one DATA-3YNC) are ÏJulepmulent.ly execut.ed.

Theil' completion, however, is lwecssary to trip;p;er THREAD_add. A snmll ad,lit.ional eOlI<' is

necessary at the start and end of l:omputation showu '",t.ween lines 3 and i). At. t.h<, end of

computations, thread synl:hronizations follow an hierarchy similar t.o t.he;'· forking.

Figure 2.4 illustrates an abstraction of t.he progress or l:OInput.at.ion al. various nod<'s l,II'

the pseudo code shawn in Figl1l'e 2.2. There are t·o." t.ypes of t.11I'l",ds shmvn in Fignre VI:

A: Thread A forks threads on dilferent processors. Lines 24 t.o 26 in Figure 2.2 r<'pres<'nt. a

thread A.

B: Thread B forks multiple threads on the local node for l:Ompntation. The nelLthread in

Figure 2.2 is of the type thrend B.

C: Thread C performs computations on t.he 100:al processor, semis and rm:eiv<'s long lat.mn:y

acccsses, and finally sends a cOlnpletion signal (ta a thread D) t.o synl:hronize. The

compute thrend in Figure 2.2 is of the type thread C.

D: Thread D collects synchronization signais l'rom threads in the 10l:al proeessing node. In

Figure 2.2, D thread is not explicitly shown. However, on l:Ompletion of t.he t;hread D,

the execntion readms line 18.

E: Thread E collects synchronization signais l'rom threads on dilfer<Jnt processing nodes.

In Figure 2.2, E thread is not explicitly shawn. However, on l:ompletion of the thrmul

E, the execution readms line 27. Resnlts or the 1001' st.rul:tnre describml hy Fignr<J 2.2

arc correctly visible at line 27.

Thus, a thread A forks one copy of thread B on each processing node. Eal:h thread B forks

multiple copies of thread C for computation. At the completion of l:ompntation, C threads

synchronize locally and initiate the thread D. Finally, 0 threads l'rom ail nodes synchronize

at the thread E.
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1: THREADED compute (parameters ... )

for (j=O; j < n_t; j++)

{ SPAWN (compute.j,done); } /* Fork nt compute threads at node i */

END_THREAD (); /* Switch. Barrier. Go to THREAD_done.*/

THREAD-tlone: /* AH C values are computed */

/* Return to node 0 */

Return to new_thread */

/* j-th thread at node i */

/* say low=O and high = K */

/*Synchronize at THREAD-add.*/

/* Thread completed.

/* All processors have synchronized */

(parameters ... )

/* at node

for (k=low; k < high; k++)

{ GET-SYNC (A[k) [0) ,a[k) .add);

GET_SYNC (B[k) [0) ,b[k) ,add);

END_THREAD (); /*Context switch. On fetching, go to THREAD_add.*/

THREAD-add:

c[k) = a[k) + b[k.);

DATA-SYNC (c[kJ ,C[k) [O).add);

14:{

15:

16:

17:

18:

19:

20:}

21:THREADED MAIN()

22:{

23: /* at node 0 */

24: for (i=O; i < P; i++)

25: {INVDKE Ci .new_thread, complete);} /* Fork i-th thread on node i */

26: END_THREAD (); /* Switch. Barrier. Go to THREAD_complete.*/

27: THREAD_complete:

28:

29:

30:}

2: {

3:

4:

5:

6:

7:

8:

9:

10: }

11:

12: }

13:THREADED new_thread

•

•
Figure 2.2: A Mu!tithreaded Program Workload
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The maximum time in a program exc<:ntion in Fignres 2.2 and 2.4 is typil:ally "pent.

in thread C, Le. compute threads. A snpport for mnll.ithreadin~ techniqnes descrilwd

in Section 2.1 ensures that threads A. B. D. and E arc eXl'Cnted emdenl.ly (wc will show

measurements from the EARTH system in Chapter 8). AI. steady state, 'l, compute I.hreads

arc in various states of compntation al. each proeessor: ,y:at/y, cxecutillg or .<ll"I'Cllt/et/. A

thread is reat/y for execntion by the proeessor when ail input opemuds are available. Ouœ

scheduled on the proeessor, the thread is in exccllting state. A thrcad is .<ll"I'Cllt/,:r/ wheu il.

is waiting for its operands. Figure 2.3 shows the states each compute threll<l experieuœs

between the iterations k=low and k=high-l (lines 3 1.0 9). Thi.' .'tt!Clt/lI .,tutt! /"'/lIllIim' IIf

a mllitithrt!at/t!t/ p1'Ogram cxt!clltion i., tilt! 1"'im",'!1 fOCII.' of "'"' 1't!li0l1""'II:C !l1Ot/din!! "'II/

ana/lIsi.•.

The execution time on the EARTH system fol' this program is sl.own in Tables 2.1 and

2.2. The matrix size is for 32768 x8 clements. Cache organizations affect the number of

read/write accesses. To ensure a constant number of read/write ac<:csses iu each pl'Ogmm

execution, wc use 8 clements in each row of matrices and access the lirst clmnent of each

row. Table 2.1 shows the execution time when ail GET-SYNC and DATAJlYNC opemtions are

sent uniformly 1.0 allnodes in the system. With a nse of mnltiple threads, the idle time on

each processor and the program execution time reduces. The speedup al. larger nnmher of

processing nodes is poorer. For this program, wc increa"e the computaI.ion hel,weell lines

7 and 9 such that the thread l'llnlength is 3000 cycles. Tahle 2.2 shows t.he eX<lCution Ume

fol' this example. Now, a linear spccdup is achieved with respm·t ta the numher of nodes

in the system. With multiple threads, the performanee improves hy lL~ mnch 'L~ 25% on a

16-node system.

In this example, wc increased the l'llnlength of each thread hy 60 times, i.e. incrmL~edthe

computation pel' thread. With one thread on one node, the incrmL~e in progmm execul.ion

time was only 7.08 times (=21113 ), and on 19 nodes by only 49% (= 11~:i!l2). Aiso wil.h

19 nodes and each having 8 thrcads, the execution time al. higher runlength Î1u:rmlSed hy

merely 35% (= 12~98!l). An objective of the performance evaluation is 1.0 lind out whether

these trends continue with number of threads and number of processing nodes, is therc

an optimal thread granularity given a nnmher of processing nodcs, and which progmm

workload characteristics can be optimized. Even for simple loops discussed ahove, Huch

analysis is necessary, because contentions duc 1.0 multiple acceHseH from mu:h proceHsing
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Figure 2.3: States of a Thread

In this thesis, we modcl and analyze the steady state behavior of a multithreaded

execlltion of the program workload in Figure 2.2. This workload is used as a running

example for performance optimizatiou purposes.

2.3 Issues in Performance Measurement

The execution time of a program workload is the easiest measurement of the performance

of a compnter system. The execution time, however, yields little iuformation on how to

optimize a progrmn workload. Performance measures of our interest are, the processor

ut,ilization, the message rate to the network, and the network latency (i.e. the latency

for multithreading operations like GET-SYNC on EARTH system [46]). These performance

melL~lIres pose dilficulty in the runtime measurements on a multithreaded system. The

objective of this section is to discuss the problems in their measurement on multithreaded

systems, and outline our approach for the EARTH system.

Note that detailed simulations of multithreaded systems also provide the above perfor­

mauce measures. However, simulations, like other performance predictiou techniques, are

li l'epreseutative of the realistic performance behavior only for the ranges they have been

validated.

Tools for obtaining the performmlce measurcs from program executions on a system are

iuvaluable to the task of performance tlmiug. Important aspects in the choice of tools are,

the ease of use, the accuracy of measurement, and the perturbation to the system execution.

As we mention below, the message rate is easy to mensure, however the network latency

and processor utilizatiou require specific considerations ou multithreaded systems.
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Number of Number of Nodes

Threads 1 3 7 11 15 19

1 321 227 129 109 97 92

2 254 166 115 102 94 90

4 241 155 113 100 93 89

8 241 161 112 100 93 89

24

Table 2.1: Execution time in ms. Runlength = 50 cycles. Uniformly distributed data

acccsscs.

Table 2.2: Execution time in ms. Runlength = 3000 cycles. Uniformly distributed data•

acccsscs.

Number of Number of Nodes

Threads 1 3 7 11 15 19

1 2273 846 372 244 180 145

2 2175 747 324 208 154 122

4 2168 724 310 200 146 116

8 2170 720 309 199 145 120

•

The measurement of network latency poses difficulty on a multithreaded system for the

following reason. The multithreading technique overlaps the communication on one thread

with the computation on another. So, the proccssor may switch to execute on other threads

after iuitiatiug the split-phase communication acccss on one thread. When the response

arrives, the processor may be busy executing on ot.her threads. Thus, the processor cannot

measure the precise elapsed time between the iuitiation of a remote access, and the arrivai

of il,s rcsponse. There are following two choices for measuring the latency:

1. Direct measurement (Time-stamp): This method makes use of a time-stamp on a

message to measure the network latency. Overheads involved in this method are: the

maintenance of a timer, the increase in the message length to include time-stamp,

and the maintenance of the network latency statistics. These overheads perturb the

measured value as weil as the program execution for the following reasons. To compute

the latency and store it in the lIlemory, certain number of instructions and memory
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accesses arc required. Further, acccssiug the timel", updat.iug it.s value, and p\adng

a time-starnp on a message, requîres additional instructions and II1Ctuory ncecsscs.

Together, these additions cau significautly alter the ruuleugth of a t.hrellli Il.' weil a.'

the execution time ou the processor. Similarlya change in t.he message leugth dH\nges

the service time for a message ou netwol"k switches aud alters the lat.eucy. FOl" fiue

grain applicatious, to exploit an overlap of computatiou aud commuuicatiou, t.hrea<1

runlengths arc typically within au order of magnitude of the uetwork lateucies (we

will discuss more iu Chapter 4). So, overheads in the t/ilY:ct 1/WIl••",ymwllt mu ell•• ily

change the program workload characterist.ics and the perfOl'mlUlee measnres.

2. Int/irect meaSUf"emcnt (Samp/ing): In this method, a threllli is dedi<:at.ed t,o t.he t,IL.k

of rneasurernent. This t.hread requires an exclnsive access t.o a proccssor during t.he

rneasurernent. Wc refer to this processing node as t.he t/et/iclltet/node, and t.he nodes

nnder investigat.ion as t,he test nodes. The thread selllis t.est. messages t.o lest. nodes,

and rneasures the time till the reccipt of their responses. The lateu<:y melL.ured hy

this rnethod indicates how mnch contention a message su/fers dnring one ronnd-trip.

An exclusive access to the dedicated node for time rnelL.uremcnt ensures t.IllLt tin:

dedicated node does not delay the test message.Any delay, in excess of the no-load

value of the latency, is a result of contentions at the network and the remote node(s).

A drawback of this method is as follows. When more than one remote messages arc

sent by a thread, the arrivai of the /irst response will stop the melI.'lUrement., sincc

the processor gets busy with the latency computation. Thus, ml accurate timing fOI'

the subsequent arrivais cannot be known. An advantage of this melhod is a rnntime

rneasurernent of latency with very little overhead.

In this thesis, we developed a software instrumentalion wilh the .,"m"lill!/approach lo

rneasure the network latency on the EARTH-MANNA system. The accuracy of the tool is

5 cycles (Le. toOns on 50 MHz Intel i860 XP). The tool provides a lIexibility lo be turned

on or off dynamically during a program execution. The tool introduccs less t.han 2 to 5%

increase in the program execution time even for communication intensive progrmns.

Our approach to measure the processor utilization uses the measllrement of idle time at

the processor. Whenever there are no threads in reat/y quene to execllte on, the processor

executes a function to rneasure the idle time. As soon as a thread is ready for execlltion,
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the iùle Lime measurement terminates. Two inaccuracies involveù in this measurement are

IL' fol1ows: Fi,·.•t, switehing ta anù from thc function ta measurc thc iùle timc incurs an

overheaù. Currently, the measurement function ùocs not reeorù the number of times it is

invokeù, 50 a eorrection for this vainc eannot be pcrformeù. Second, the idle time for a

proccssor, while waiting for the loeal bus aeeesses, cannot be measureù in software. Thus,

a higher protessor utilization is reported.

The message ratc to the network is eomputed by eounting the number of remote accesses,

measuring thc cxecntion time for a program and obtaining their ratio.

On the BARTH system, the program execlltion time can be measured with an accuracy

of 2.5"", Ahove measllrements for proccssor utilization and mcssage rate introùucc up to

5% increase to t,he program execution times as smal1 as 100 ms.

2.4 Related Work

Previous sections discussed the mechanisms for multithreaded execution, their use in a

program workload, anù the problems they pose in the performancc measurement. In this

section, wc briefly outline how various studies have carried out the performance evaluation.

Most of these studies are on multithreaùed architectures, anù can be c1assified as: nnalytical

moùels, simulations, anù system measurements. Wc discuss ùetailed differences these work

with our contributions in this thesis at the end of relevant chapters.

Analytieal Models:

These moùels arc further c1assified illto fol1owing two categories.

QIU'lleing NetwOI'k und Petri Net Models:

Saavedra ct al [80] proposeù the first analyticalmudel based on Petri Nets to predict

the performance of a multithreaded processor. This simple model is based on only

l~lUr parameters- the runlength and number of threads representing the workload, and

the context switch time and memory latency representing the architecture. They use

state-space analyses to derive the system performance, 50 modeling a multiprocessor

system and the contentions at subsystems, is computationally expensive. (That is,

Ilot possible for as small as 16-processor systems.)
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Alkalaj and Bopanna [8] proposed a Petri Net based mode! for a dynlUnk multi­

threaded workload on a bus-based nmltiproœssor syst.em. However. t.he hus mn­

t.ent.ions arc not considered. Also, t.he applicabilit.y of a dyuamic pro~mm wllrkIOl"\

model is Ilot dcar. The solution is hascd on the stat.e spaee uf t.he Ilct.ri Ilet mode!,

sa a.n extension ta illcorporatc contlmtiolls is eOluputatioually nxpcllsivc.

Yamamoto ct al [103] proposed an analyt.ical mode! for a superscalar multil.hreadell

processor. Theil' model account.s for the data and st.rtu:t.urall""mrds (Iurin~ the exe­

cut.ion on an instruction. They focus on achieving high instrtu:tion level pmail<:\ism,

in the absence of contentions at t.he memory.

Torrellas et al [94] proposed an open qnendng nctwork h'L""\ model for a DASH-like

singlc-threaded mnltiproccssor system. They characteri1.e t.he performanee variations

for small variations in input parameters. An extension t.o nmltithreaded syst.em dnes

not appear straight-forward.

Willick and Eager [101] proposed a closed queueing net.work model of IlIl intl1rcomu:c­

tion network which supports multiple outstanding requests l'cr pro<:cssor. The system

behavior is similar to a multithreaded system. Adve and Vernon [2] pl'llposed a dosl1'\

queueing network model for multithreaded multiprocessor systems wit.h k-ary, Il-cuhe

interconnection network. Solutions to these models use mean value analysis, a mm­

putationally efficient method, especially for anulY1.ing large syst.ems. These dllsed

system models capture the system behavior more realistically, IL' discnssed lat.er in

Chapter 5.

Analytical models in [101, 8, 66, 2] arc validated throngh t.he simulations of pet.ri nel.

and queueing network models. Note t.hat duc to lack of details on simulat.ed systems

in these work, wc assume that discrete event. simnlations a...! used, and that. their

assumptions are similar to those for respec:tive analytical nlOdels. S,uLvedm ct. al [80]

report a validation using simulation results (from [100]).

Cache Parameters Based Mode/s:

Agarwal [4] proposed an analytical model based on cache parameters, for a mnlti­

threaded processor. The proposed model characteri1.es additional <:lLdw misses dne

to a multithreaded execution on the processor. The model does not include the feed·

back elfect of network performance on the cache miss rates. .Johnson [50] extended



• CHAPTER2. BACKGROUND 28

•

•

this model to incorporate the network performance. We wil! discuss advantages and

disadvantages of using .Jolmson's approach in Chapter 5. Both models are validated

using simulations of t1w Alewife system [5].

Simulations:

Simulation of a IllUltithreaded progrmn execution is an aid to verify the correctness of

the program behavior as weil as the architectural design, aud to evaluate the performance

realistically. A typical simulation approach imitates an execution of a program workload on

a behavioralmodel of functional units in the multithread'.1d system. Performance measures

are comput.ed by maintaining t.he relevant. statistics (like idle time of the processor, time

for an access to complete etc.). The accuracy of a performance prediction depends on

how detailed is the simulation model, e.g. whether contentions at subsystems are modeled.

Advantages of simulations are that the effect of realistic program executions on the system

performauce is captured. Changes to the system design as weil as the program workload can

be st.udied. However, with det.ailed mt'deling, only small program sizes can be simulated.

Two approaches for simulations are typkally used: tmce-cirivefl .,irnutatiofl.' and system

.,imulatiofls.

T'mee-cidllefl Simulation."

These simulations use address traces aud model the subsyst.em interactions. By not

maintaining the state of computations, these simnlations reduce the complexity, and

improve the speed. However, the address traces are normally generated from single­

threaded multiprocessor executions [100, 90]. The execution trace of one processor is

t.reated as a single thread. Multiple copies of a single processor trace form mnltiple

threads of computation on a processor. Artificial synchronization points arc inserted

to study the elfect of various program characteristics like sharing of data variables

aud synchronization on the performance.

Weber and Gupta [100] performed trace-driven simulations for a shared bns system

with strategies for switching contexts, and constant context switching times. They

considered a workload with multiple copies of a program trace as multiple threads.

Thekkath and Eggers [90] extended a similar approach using an analytical model [3]

for the network performance. Waldspurger and Weihl [98] report the results of simu-
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lations on a single node of nlllitiproœssor systelll. They also iL'Sllme thal, the lIetwork

is lightly loaded, i.e. no contentions.

Sy.•lem Simula/iolls:

System simnlations foclls on the eorredness of progralll exeeul,ions iL' weil iL' t.I",

subsystem interactions [49]. So, a large state of the syst",n is lIIaintain",1 al, each cyde

(or cvcnt). Howcver, the specd ofsiultllatioll deCrmL"l(lS, a.nd larf.!;e l)(mduuark pro~nLlIlS

take very long time to cxccutc. Ta improvc the spccd of simulations, bchavioral

models of subsystems arc lIsed. These behaviomllllodds may nol, aœllrately mpl,nfe

the operations of fUIlctional nuits, and arc potcllt.ial som'ces of cl'l'oI's in pcrformam:c

prediction.

Alewife [6, 5, 50] has been extensively stlldied lIsing sinllllal,ions. 1"01' McGill's EARTH

system, a simlliator SEMi-a Simlliator for EARTH, MANNA and i860- is heing dL~

veloped [92]. The objective is 1.0 exhanstively stlldy the progmm excclltions ILnd

potential bottlellccks of the EARTH systetll. To speedllp the sinllliation of IL hU'/-Ie

EARTH system, the simulator l'IIns on the EARTH system itself.

Rystem Measurements:

Actual nlcasurcmcnts, from program cxccutiolls 011 Ho systeIll, provide an a<:ellratc lIlen..

sure of the performance. Hardware probes iL' well as software sllbrollt.ines m'e nsefnl for

performance measurements. However, dllring mllitithreaded prograru excelltions, dilliclll­

tics arise in measuring the latencies for accesses iL~ weil as variolls snbsystem dnlays (iL~

outlined in Section 2.3). Alewife [5] and EARTI-I [46, 64] m'n two Inllltil.hrnILded systems

for which performance measurements have been reported.

Arpaci et al [13] report a characterization of latencies for variolls operations on CM-5

using Split-Co A similar evaluation of a multiprocessor system nsing synthetic benc!lInILrks is

reported by Boyd and Davidson [19]. These studies are indeed very usefnl for compilers and

programmers ta choose which read/write features ta nse in an application. However, they

do not consider the impact of overlap of computation and communication on perfortllluu:e

measures.

In this thesis, wc propose analytical models for single processor and lllllitiprocessor

multithreaded systems. To model and analyze realistic architectural interactions and 1'1'0-
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gram workload on McGiIl's EARTH system, we expand the set of parillneters. We validate

the analytical mode predictions nsing simnlations of petri net models and measurements

from the EARTH multithreaded multiprocessor system. We analyze the e!fect of changes in

program workload characteristics IL' weil as architectnral parameters on the system perfor­

mance. These are signilicillit extensions over previous studies. By addressing above issues,

we believe that our work IJrovides a strong evidence on the usefulness of the analytical

modcls for performance optimizations on multithreaded systems.

2.5 Summary

ln this chapter, we discussed the hardware and software mechanisms to support multithread­

ing technique in various computer architectures. The hillidling ofsplit-phase operations, illid

the management of contexts for thrends are the key to an efficient multithreading support.

We iIlustrated how a user (programlller) cau use the multithreading operations, fetching

" remote datn, context awitching, and atoring to a remote location, to achieve an effective

computation and communication overlap. This improves the processor performance. We

showed how this overlap poses problems in performance measurements on multithrcaded

systems. Then, we surveyed the Iiterature for performance evaluation of multithreaded

architectures. Most of the studies revolved around trace-driven simulations, and analyticrJ

performance modeling. This thesis departs from the existing literature in the following

way. First, we propose analytical performance models of multithreaded systems- single

processor, and multiprocessor systems. We show how to incorporate realistic subsystem

interactions through a case study on McGiIl's EARTH multithrended multiprocessor sys­

tem. Second, we validate the model predictions using performance measurcments from

actual program executions on the EARTH system. Third, we show how the performance

models can be used for performance related optimizations of the architecture as weil as the

program workload.

With above discussion on the hardware illid software issues of multithreaded architec­

tures, and their performance evaluation, we are ready to explore the performance modeling,

c!mracterization, and analysis of multithreaded architectures.
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Chapter 3

Problems Statements for

Performance Analysis

Previous chapter outlined basic lIlecimnisms to support lIlultithn'lUliull techuiques uud thcir

use in u pr~gralll workload. We also discussed issues in perfOl'lllUnCC meusurement on

multithreuded systems, und surveyed existing upprouches.

The objective of this chupter is to stute problems on the performuncc 1Il0deling und

analysis of multithreaded urchitectures studied in this thesis. These problems focus on onr

appronch to the performance prediction, perforlllance anulysi~, und usufulness to usurs of

multithreaded systellls.

In Section 3.1, we discuss thu challenges to thu performauce moduling of lIlultithreaded

architectures. In Section 3.2, we deline the statellll!llts of problellls on tlll! purformunce

prediction solvud in this thusis. ln Suction 3.3, wu outlinu our approach to ILdclmss these

l'roblems. In Section 3.4, we describe the multithreadud progralll execution lIlode!. In lutur

chapters, this program exccution model serves as IL basis to devdop ILnulyticlLl performunce

models of single proccssor und multiprocessor multithrcaded architectures. In Section 3.5,

we summarize the discussion in this chupter.

31
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3.1 Performance Modeling Issues for Multithreaded Archi­

tectures

This section discusses how the performance modeling of multithreading differs from that

of traditional systems, namely, singlc-threaded architectures and multitasking operating

systems.

A multithreaded processor supports multiple outstanding accesses. In contrast to a

single-threaded system, these acccsses can simultaneously keep multiple subsystems busy.

The performance modeliug ofmultithreaded architectures differs from that of singlc-threaded

architectures as follows:

1. A proccssor can continue the execution (on another thread) after issuing a long-latency

mcmory request (to its local or remote memory). After the memory access request is

serviccd for a thread, the processor may not execute on the thread immediately.

2. Accesses from multiple threads contend at subsystems, increasing their observed la­

tencies (even at local memories). In turn, longer latencies for individual accesses delay

the execution on waiting threads.

While multithreading helps to increase the processor utilization, the increased contention

reduces it. To weigh this tradc-off, a complete performance model should capture the

feedback effect of the concurrent activities at various subsystem resourres on the rate of

accesses ta a subsystem and latency of a subsystem.

Similar to the multithreading, operating systems use multitasking technique to improve

the throughput of a system by assigning time slices to multiple tasks. When a task accesses

secondary memory or waits for interactive response from the user, an idle time results at

the processor subsystem and primary memories. The multitasking technique schedules the

timc-slice for the execution of a task on which useful work cao begin immediately. In general,

multiple tasks do not co-operate on the same application program. Unlike multithreading,

the overheads of multitasking are significantly larger tlmn typica! communication latencies

observed on the interconnection network. The presence of multiple tasks does not affect

the communicationlatencies for individual remote memory accesses on the network. Thus,
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the following two characteristics of IIl11ltitasking make its performance modeling dilfereat

than that of multithreading:

• During a time-slice, one task has an exclnsive m:cess to the processors and primary

memories. Accesses from dilferent tasks do not contend al. prillllLry memories and

network. So, the latencies arc similar 1.0 single-threaded IU'chitectlll'es (i.e. dose to

their no-Ioad values).

• Queueing delays and contentions duc 1.0 multiple tllsks arc encountered only for ac­

cesses 1.0 shared resources like disks and secondary memories, and to gain access to

a processing subsystem with primary memories. The execution time of a tusk on

the processing subsystem is assuIlled 1.0 be independent of the low level computation

and communication. Thal. is, a typical modeling of multitllsking technique does not

involve a detailed program execution with individual accesses to local and rmuote

memories in a multiprocessor system.

A multithreaded program execution on real systems causes adclitional complications clue

1.0 interactions among various subsystems. In our case stucly of the EARrH system, we have

explored the following two problems on performance mocleling. These arc representative of

problems oue often encounters on other real systeIlls as weil.

• Simul!aneous resource possession: On a system like the EARTH, resources al. IL pro­

cessing node can be accessecl only through the hus. Further, the bns is helcl till the

access completes. The challenge is 1.0 predict the waiting time al. each resource accu­

rately. In queueing theory literature, this problem is known as simnl!/meons 1Y!SOllrCe

possession [48, 56]. Access contentions al. such resources itll:rClL~e significantly in the

presence of multiple outstancling requests l'cr processor.

• Mul!ithreaded program workload: Multithreacled program workloacl /llay exhibit clif­

ferent thread characteristics al. dilferent processing nocles. The overheads of IIIul­

tithreading operations can be high, so il. is essential 1.0 accurately characterize the

program workloacl, and 1.0 accurately r.oml>ute the queueing delays.

In summary, multiple outstanding requests increllse the severity of the contention prob­

lem al. system resources. The consequences 1.0 a user of multithreacled architectures are as
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follows. The no-load values are no longer a good indicator of the subsystem performance.

So, program workload partitioning strategies using a constant latency value (like LogP [27]),

do not yield the expected high performance. (Au example in Chapter 5 iIlustrates the loss

in performance when contentions are accounted for.) A good performance model accounting

for the impact of a multithreaded prOb'fam execution on the syst.em performance is essential

for performance related optimizations.

3.2 Problems Studied in this Thesis

In this section, we describe the problems solved in this thesis. The discussion in Section 3.1

shows the necessity to monitor and account for the performance of the processor as weil

fIS otller subsystems. Therefore our key performance mensures of interest are- processor

utilization, network latency, and message rate to the network.

Problems in this thesis focus on predicting and characterizing the performance measures

using significant architectural and program workload parameters, identifying the system

bottlenecks, and providing insights to the performance related optimizations. In later

chapters, we develop models of multithreaded systems to predict the performance measures,

and apply the models to solve the problems mentioned below.

To a user of multithreaded systems, the processor utilization is the most important

performance mensure on the effectiveness of ail techniques and optimizations in the system.

It also provides a nniform measure of effecUveness irrespective of the number of processors

in the system. So, our first problem focuses on processor utilization:

Problem 3.2.1 Given a mllitithreaded architectllre and a program \i :.rkload:

1. How to deTive the processor lltilization?

2. How does the IJrocessor lltilization vary with modcllJarameters?

3. What are the ranges of modcl parameters which yicld high processor utilization?

The multithreading technique is promoted to be useful to tolerate large latencies on

multiprocessor systems. But the multithreading increases contentions. The network perfor-
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mance is a critical issue in optimizing an application progmm, HO the network perfortllllnœ

is the focus of our second problem:

Problem 3.2.2 Given a mllitithreadecl UI'Chiteetllre uncl Il /I7YJg1'll1ll wm'klollll:

1. How ta derive the nclwork /}e,jmmunee IIlCU....''C.• - Uw nctwOI'k luteney (IIul Uw net­

work message mte?

2. How does the network pcr/077nunee VUl11 with lIlode! /}(IlY1l1leter..?

3. What is the ,·c/ation.•/Ii/) between the ,wt1Oork /}e,jomulllc" lIIul Uw /17VC"•••WlI' /""jOl'­

munee, 10ith T'Cspcet ta model parameters?

4. How l'Obllst is the nctwork pcr/mmunee /Irediction?

The proeessor utilization and the network perfornulIlcc, indical.e an IlhHolul.c perfor­

mance for a set of values of model parameters. Our third pl'Ohlcm fOl:useH ou how effective

is the multithreading to tolerate latencies. Thus, anser knowH how nuu:h improvmnenl. mllY

be achieved through optimizations.

Problem 3.2.3 Givcn a mllltithT'Cudccl aI'chitcdll''C Ulul a pl'lJgIYIIll III1J1'kl(}(ul:

1. Gan wc qllanti/y the latency toleranee?

2. How dacs thc ability o/Iatcncy tolcranee !}(I!'1J 10ith rrwdel/}(Iramctcr.•?

3. How is thc ability o/Iatcncy tolcranee relatcd ta the hi!lh /I7YJec.•.•07· /lcr/ot7111I11Cc?

Above t.hree problems address the effect of lJlultithreading on t.he sysl.em performllnce.

Many diverse considerations govern a real system design, c.g. other arehil.m:tumll.eehniques,

an availability of off-thc-shelf components, eosts of eomponents, and simplieil.y in the design.

So, we perform a ease study on McGill's EARTH multithreaded system. The fourth problem

summarizes the performanee modeling objeetives:

Problem 3.2.4 Given a mllltithreadccl urehitcctllre .'lIch as the EARTH system and Il PIV­

gmm workload:
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1. How do Tealistic .mb.•ystem intp.ractions affect the .•ystem peTformance under a multi­

threadcd Tlroyram exeClLtionY Specifically, how to account for the simultaneous pos­

session of the bus in EARTH proeessiny nodes when memory or network interface is

aecessed.

2. How to characterize a reali.•tic muitithreaded Tlroyram workload? That is, how much

dclails .•hOllid wc modcl ,l/JOut the differences in proyram workload characteristics at

different processiny nodes, and service times for different multithreaded operations.

From a user perspective, a performancc model should serve as an aid to the performance

related optimizations. Our firth problem nddresses how our performance analysis provides

insight to the performance behavior of the EARTH system:

Problem 3.2.5 Given a multithreaded arehiteeture and a proyram workload e.y., a loop:

1. How to partition the proyram workload in the presence of realistic lony latencies and

mllltithreadiny co.•ts? What are the siynificant workload characteristics? Wllat are

their critical values to achieve hiyh proce.•sor lltilization?

2. What will be the effect of sllbsystem implementations on the system performance?

Next, we outline our approach to solve ahove problems. In Section 3.4, we descrihe a

multithrended program execution model which forms a basis to develop analytical models

of single processor and multiprocessor systems.

3.3 Our Approach

The problems in Section 3.2 aim to provide a progressively deeper insight to the performance

of the multithreading technique. First, we characterize the processor performance, then we

study the performance of subsystems, and finally, we analyze real subsystem interactions

under multithreaded workload. The above problems are nddressed under following aspects­

performance modeliny, validation, analysis anc optimizations.

OUI' performance models use c10sed queueing networks. Initially, we model a single

processor multithreaded architecture. This simple system is characterized using basic pa­

mmeters like the number of threads, their runlengths, the number of memory ports and
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the memory access time. An exact solution exists for sur.h a model (which is much simpler

than Barrera's method [80]). Then, W(l analyze a multit,hrm.,ied multiprocessor archilt,c­

ture. Without loss of generality, we use a 2-dimensionalnetwork, a low-bandwidth network,

k demonstrate the effectiveness of multithreading technique. We introduce additional pro­

gram workload and architectural parameters to c1mracterize the multithreaded program

ellccntion. Since an exact solution is no longer computationally feasihle to ana\yze a huge

system, we use approximate mean value analysis (AMVA) [75, 56]. Finally, we model the

EARTH system. Architectural related extensions to our performance model in<:1ude renlis­

tic subsystem interactions. We also expand the program workload parmneters. We develop

heuristics to the MVA to account for above extensions under a multit,hreaded program

workload.

We use discretc-event simulations ilS weil as nctual program exceutions to validate our

model predictions. Stochastic timed petri net (STPN) modll1s are developed to verify our

predictions for abstract multithreaded systems- a siugle processor and a multiprocessor

system with a 2-dimensional network. These STPN models provide flexihility to sim­

ulate various configurations, and require 1 to 5 minutes for each set of parametu..~ on

SPARCStation-20 (note that our analytical model predictions require less t,han 1 minute)

On the EARTH system, we execute synthetic and real benclunark programs and mClL~ure

the performance. The measurements are compared with modei predictions for these bell(:h­

mark programs.

A performance analysis a;lows us to weigh tradeoffs for a multithreaded progrnm execu­

tion. We characterize the performance hehavior of a multithreaded system under synthetic

program wOl'kload. Such an analysis provides an insight to how various program work­

load characteristics affect the system performance. We show what are the critical values of

parameters to avert performance bottlenecks and achieve a high performance. Through ex­

amples, we use our characterization to aid performance optimization. Analyses on ahstrnct

systems show the best possible gains for multithreaded systems. However, a chnracterizlL­

tion on the EARTH system shows how large are the realistic multithrCl,ding overheads under

a multithreaded program workload, and how to reduce these overheads. We also use a cnse

study on real benchmark programs to show the usefulnesB for performance optimizations.
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To solve the problems listed in Section 3.2, we nccd a multithreaded program execution

model with the following considerations. The model should capture rcalistic behavior of

the program execution on a multithreaded system. Yet, the model should be simple for

analytical performance modeling.

Without loss of generality, we describe our multithreaded program execution model

lL~suming lUI underlying, abstract multiprocessor system with distributed shared memory.

We focus on the steady state behavior of multithtcaded system nccessary for performance

mo<.eling (Section 2.2. Such an execution model is easy to adapt to both a single processor

system as well as a specific realmultiprocessor system.

For the purpose of this thesis, a multithreaded program workload is a collection of

partially-ordered threads. Each thread is a sequence of computation instructions followed

by a multithreading operation. A muitithreading operathn involves multiple phases such

as accessing the local memory, sending messages on the network, receiving responses, and

perforllling synchronizations. The scheduling of individual threads is similar to a datallow

1Il0dei. Threads repeatedly undergo the following sequence of states (see Figure 2.3):

Exccution: Once scheduled, a thread is executed on the processor pipeline tilliong latency

access is encountered.

SU"lJcnsion: When the processor issues a long latency operation, and suspends the thread

till the response is received.

Renel,,: A thread becomes ready for execution, after the response to its long latency access

is rcccivcd.

Each processor executes a set of 71: concurrent threads (see the program workload in

Figure 2.2). A processor executes a thread for a duration called mn/cnytll R, before sus­

pending it. On suspension, the state of the outgoing thread is saved and the context of

the newly scheduled thread is restored. We assume a fixed context switch time of C cy­

cles. (In practice, C has a variable cOlllponent depending on how many registers need to

be saved.) Threads interact only through long latency accesses. Threads do not migrate

across proces,·.i'lg nodes.
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A long latency memory request is sent to a remote memory modnle wit.ll a prohability

Prcmotc' The remaining fraction of long latency memory access reqnests get serviced lit

the 10clI\ memory. Note that an assumption of /lr"",o'" = 0 adllpts t.he program exccntion

model to Il single processor system. On the other hllnd, a spedlic system, like the EARTH,

requires a characterization of different types of mmnory n';lnests, local or rmnote access,

both may be with or withont synchronizations.

We do not explicitly consider the presence of lin cache in the systmn for the following

reasons. First, given the diversity of cache organizations, blL,ed on associlltivity IInd data

sharing, caches introdnce too many variables in the mode!. Fnrther, there is little IIgreement

on how to beneficially ntilize the cache in a mnltithreaded program exccntion. Thllt's

why, multithreaded systems lik2 TERA [9] avoid caches. Second, thread rIlnlengths l\l"e lin

embodiment of the cache effect, becanse a memory m:cess at the end of a threlld rIlnlength is

same as a cache miss. Some approaches [51, 55] nse each cache miss to decide for Il context

switch, while others [5] nse only remote meillory cache misses t,o switch the context.

Above multithreaded program execntion model forms a basis for the devnlopment of

our analytical performance models.

3.5 Summary

This chapter ontlined our overall approach to the performance modeling and analysis of

mnltithreaded architectures.

'Ne discussed the issues in the performance modeling of mnltithreaded architectnres, in

contrast to single threaded multiprocessor systems and multitasking systems. Wc descrilJl!d

the problems solved in this thesis. These problellls arc representative of whllt Il nser of

multithreaded systems will fllce in practice, e.g., what is the pl'Ocessor performance for

a workload, how does the network performance change with varions optimizations, Ilnd

how do the interactions on a l'cal system affect the performan"". Then we described our

multithreaded program execution mode!. This execution model forms Il blL,is to devolop

analytical performance models, IInd solve the prohlems on the performance issnes, in later

chapters.
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Chapter 4

Single Processor System

In Chapter 3, we described the performance related problems of interest 1.0 this thesis.

We also outlined our approach 1.0 the performance modeling, validation and analysis of

lIlultithreaded architectures.

This chapter focuses ou a siugle processor system with the processor aud memory sub­

systems, specilically the problem 3.2.1 on the processor performance. The two objectives

of t,his chapter are liS follows: First, develop an analytical performance model of a single

processor system; and .•ecoud, analyze the system performance, identify the bottlenecks

and suggest optimizations 1.0 achieve high processor utilization. A performance behavior

of such a single processor system also indicates the maximum achievable performance by a

node in a multiprocessor system.

Our results l'l'ovide interesting insights 1.0 the performance of single processor multi­

threaded architectures. The application parallelism can be exploited as long as the hard­

ware pamllelism is not exhausted. Thal. is, the processor utilization increases with the

number of threads until ail memory ports are busy. Further, the processor utilization is

high if the granularity of threads is larger than the effective memOrlJ lateucy, defined as an

average duration between successive responses from the memory (Section 4.2). For thread

grmllliarities closer 1.0 the effective memory latency, multithreading l'l'ovides a high speedup

over a single threaded execution.

This chapter is organized as follows. The next section describe the single processor

system under discussion. Section 4.2 presents an analytical model of the system and its

40
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exact solution. Section 4.3 providcs a. charactcriza.tioll of pCrfOl"lllê\I1Ce mensures usillg

architectur,ù and program workload parameters. Sect.ion 4.4 sunlllllLri"," the results of this

chapter, and discusscs thcir impact on the sYSlctll design.

4.1 Architecture

Wc describe the single processor IllUltithreaded architectul'll iu this sed.ion.

Figure 4.1 shows a single processor system with the processor and memory snhsystmns.

The processor subsystem consists of an execntion pipeline of the proceSSOl' and a thread

management unit. Register windows may be nsed t.o achieve a low cont.ext switch t.îme.

White executing an application program, the processor uses the dat.a residing in its cache.

Note that to ellsurc a constant llutnbcr of rcad/writc acccsscs in a progrmll cxeelllion

and their impact on the performance duc to varions cache organization, wc ensnre t.hat

cache misses are explicitly known to us. Henceforth, wc l'Cfer 1.0 t.hese cache misses IL" t.he

memory accesses. The processor supports mnltiple ont.standing memory accesses. Wheu a

cache miss occurs, the processor can continue the exœutiou on the computatiou, which does

not depend on servicing of this cache miss. ln other words, on a cache miss, t.he prol'essor

sends a request to the memory and rapidly switches to t.he eomputat.ion on anot.her I.hread.

When the memory aeeess is serviced, the eorresponding cOlnput.ation thread is ready for

the execution.

The memory subsystem support.s multiple concurrent aceesses t.o provide a small re·

sponse time. The contentions at the memory snbsystem arc reduced nsiug eithm' mnltiple

ports at the memory or interleaved memory banks (numberecl 0 1.0 7 in Figul'll 4.1). A

reduction in the contention reduces the waiting time for each acecss bdore it is servieed by

the memory subsystem. On servicing the access, the memory snbsyst.em semis the response

with the identification of the thread which issued t.he access.

To support multithreading on a single processor &ystem, the following architectuml

considerations should be made. Latencies for mClnory accesses range from 15 to 100 (:ycles.

At conservative processor speeds, memory access times are 15 to 25 cycles, e.g., KSR-1 [191,
CM·5, SPARC, MANNA [20, 46]. For aggressive processor speeds, memory aœess times

appear higher, e.g., 60 to 100 cycles in AlphaServer 7000 and 8400 [28]. To exploit the
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benefits of the multithreading, the context lIwitch overhead should be smaller UllLn the

unloaded memory latency. Mechanisms to seled a ready threlUl may ditfer, e.g., 1'011 for a

ready thread, or receive a signal that a thread is rea<!y. Apart from saving the context for one

thread, a selection for another thread also incurs an overhellll. To glLin some performance

benefit of multithreading, we should be able to perform two to thrCll context switches in

search of a ready computation thread. That is, the overhead of context switch should be

less than onc-third the unloaded latency.

We consider the followinb example to illustrate how the performance of a single threaded

execution gets limited by the memory system performance. Let the composition of 101ld/store

acceSs be 33% of the total instructions in a progrmn, e.g., gPEC workloads have 20 to 50%

instructions as load/store operations [28). Let the cache miss ratios within &% for large

caches [78). That is, 1.65% (=5% x 33%) instructions are memory accesses. In oUler wurds,

on average once in 60 instructions a local memory access is required. With one clock per in­

struction and a memory access time of20 cycles, the processor utilizlItion is 75% (= fiO':;!2U).

At aggressive processor speeds, the utilization is significanUy low (37.&%= (;u~~uu). With

an increase in the use of instruction level pamllelism (say a sustained parallelism of 2),

computation time on proccssor decreases (to 30). This further aggmvates the memory

bottleneck. For a processor supporting multiple outstanding relluests, nl'lltithreading and

prefetching techniques help to alleviate this performance botthneck.

4.2 Analytical Model

In this section, we will develop an analytical model and its solntion to anulyze the single

processor system in Figure 4.1. We describe onr approach nsing closed queueing networks.

Then, we derive the performance mensures of interest- processor and memory ntilizutions.

4.2.1 Closed Queueing Networks

A queueing network is typically useful to modcl and analyze large systems in their steady

state. The main components of u queueing network are the seroice cente,·s and the custome,·s

visiting these service centers for a service. Many types of distributions are possible for the

service time at a service center, e.g., e:cpo7le7ltia/, dcte771li7listic, and hvper-e:cpo7lc7Itia/.
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The number of customers al, each service center represents the statc of a queueing network.

Under steady state, an analysis of the state space of the queucing network yields the per­

forrnance mensures like the utilization of a service center (say, prucessor), and the response

lime of a service (:clltcr (say, the mcmory).

The expunential service time distribution is most commonly used, duc to its memonJ

le.,., property. That is, the expected service time of the exponential distribution is always

the average value of the service time distribution. Wc can buitd markov ehains using the

1IlemOl"1/ les.' property, where the probability of a transition to another state depends only

on the current state and not on the past states the system may have visited. An analysis

of markov chains yields the performance results for the queueing network. Some of the

good books on queueing networks for the performance analysis of computer systems are by

Lazowska et III [56], Trivedi [951, and Kleiurock [52].

A mapping of a computer system to a queueing network model is fairly straightforward.

Various functional units can be represented as service centers in the queueing network. The

hardware delays at these fUl1ctionaiunits are the service times at service centers. A software

program workload determines the characteristics of the service at the processor. Accesses

sent by the processor to various functional units represent the customers in a queueing

network. With the use of deterministic and exponential distributions, the service time

at various service centers can be captured. Figure 4.2(a) shows such a queueing network

model of the single processor system in Figure 4.1. Pr1 represents the processor node, and

R is the service time for each thread. Servers Sl to Snp represent ports at the memory

subsystem, and L is the service time at eaeh port. Arcs connecting the two subsystems

maintain queues, ready pool holds threads which are ready for execution, and mem queue

holds outstanding accesses to the memory subsystem.

An advantage of using queueing networks over techniques like Petri Net models, also

requiring a state-spnce analysis, is that sophisticated numerically efficient techniques have

been developed to analyze large queueing networks [75, 56]. The benefits become apparent

white mmlyzing a multiprocessor system with a large number of architectural and program

workload parameters. To our knowledge, efficient solutions to performance predictions using

Petri Net based models are based on the analysis of equivalent queueing networks [96]. We

note, however, that Petri Net models present an attractive appronch to verify the correctness

of system models, mld simulate them quickly. Stochastic Petri Nets with certain properties
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have been shown equivalent to queueing networks [44, 60]. In the light of I.his e'luivalenl'C,

we simulate the Petri Net. modcl shown in Figure 4.2(b} to verify our mmlytiml mode!

predictions in this chapter.

4.2.2 The Model and Its Solution

In this section, wc develop a performanCllmodcl for a single processor multi-threaded system

in Figure 4.1. The model is a closed queueing network. We show an exact solution tu this

modcl for a systelU with finite memory ports. Then, wc ubtain simple expressions fur ""l'tain

interesting cases, like a sinyle-l'ol·t memory and an infinite-/IOI·t memory. I~irst, we descrihe

the mode!. Second, wc derive the equilibrium probability for the state uf the systcm. Thini,

wc compute the performance measures, like utilizations for proeessor m.d memury.

There are two reasons for a detailed description uf uur simple analyticalmodel blL~",1 on

closed queneing networks (CQN). Saavedra [80] developed a Petri Net model uf a simiil.r

system and proposed a complex solution by analyzing the statL~spacc. Our CQN mudd

has a very simple solution and yields precisely tlll1 same results. Also, unlike Saavedm's

solution, the CQN model can be easily ext,ended to model nmltipl'Ocessur systmns mul

analyzed by modifying the existing techniques (discussed later in Chapters 5 and 7).

We summarize the program execution model, lL~ discussed in Chapter :1 (Section :lA).

A single processor system uses a multithreaded program workload to impl'llve the proeessor

utilization in the presence of localmemory latency. Wc focus on the parallel portions in a

program workload, Le., the workload consists of a nllluber of iterations (= ILt) of a do-aH

1001' as discussed iu Section 2.2. Each iteration is a thread, and it executes for a duratiun

called thread runlength, R cycles, before accessing the Illemory. Thus, one outstanding

request pel' thread is allowed. When the Illelllory services an access, the cOlllputntion

thread waiting for this access is triggered. Threads iuteract thl'llugh Illemory locations.

A closed queueing network model for the single processor multithreaded system is shown

in Figure 4.2(a}. Two service centers represent the processor and Illemory subsystmns. The

processor executes the workload having ftt threads. The service tirne R for a thread at the

processor is determined by the cache parallleters. We note that cache misses are explicitly

known. The duration between these misses for a thread is R. On encountering a long latency

memory access, the processor sends the accese (as a customer) to the mernory subsystern,
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and suspends the execution on that thread. Assumptions for the closcd qucucing nctwork

modcJ arc as follows, and symbols are summarized in Table B.1 of Appendix B:

• The prol,e.'••or Twill] is a single server, with a first-come-first-scrved service discipline.

Thc mean value of the scrvice time for cach thread is R cycles. Every thread incurs

a "ontext switch timc of C "yeles al the suspcnsion. Thus, the maximum service rate

at the proecssor, 'L,,, is u~C.

• The memOl'1J nolle is a multiple set'vcr, with a first-comc-first-served dis<:ipline at each

scrver. Each of n" memory ports have one server, and have a service time of L cycles.

The overall service rate at the memory, 'L"" is:

Ilm

--~ < </, ,n" xm _ nt. (4.1)

•

•

where, xm is the number of IIccesses lit the memory, ant! nt is the number of threads.

'L", saturates at ~, when ail memory ports are busy.

• The service times are exponentially distributed.

• Processor utilization U" is the fraction of time the processor executes on threads.

• Memory utilization U", is the fraction of time for which a memory port is busy (aver­

aged over ail memory ports). U", compares the effectiveness of a memory subsystem

with Til' ports to that of a memory subsystem with one port having a service time of

.b.. cycles.
fI"

State of the System:

The state of the system, S, is defir.ed by the distribution of Tlt threads on the two

nodes. Let xm be the number of accesses (one per thread) at the memory node, then S=

(Tlt - xm,xm), where (Tlt - xml is the number of threads at the processor node. Thus, xm

can used to define the state of the system S as shown in Figure 4.3.

We derive the probability of the state S as follows. The closed q"euing network in

Figure 4.2 follows the assumptions in a prollucl-form network (see Appendix A and Basket.t

cl al [15]). For SIKh a network, the equilibrium probability of astate S is given by:
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Figure 4.2: (Po): Queueing Nctwork M"del and (b):St.1' :uL%ic P"ui Net. Model.

•
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PtS) = G x fp(nt - xm) x fm(xm)

48

(4.2)

where, !T' and fm' arc contributions from the proœssor and the memory module to the

equilibrium state probability; and G is a normalizing constant over the state space of S.

Now, we compute the individual terms in Equation 4.2.

l/(R + C) l/(R+ C) l/(R +C) l/(R + C)

•••

l/L

SeO)
C(xm)/L

S(xm - 1) S(xm)

C(:cm + l)/L

S(xm + 1)

C(nt)/L

Sent!

•
Figure 4.3: State Diagram for a Single Processor Multithreaded System.

The processor node is a single server. In the state (nt -xm,xm), the number of threads

at the processor is (nt - xml. Since the service rate at the processor remains J.Lp irrespective

of the nUlnLer of threads at the processor, f,!,(nt - xm) is recursively obtained as follows:

fp(nt - xml = CU fp(nt - 3:m - 1)

= UJ nUt-xm-1 U,,) = eJ"·-Xrrl) (4.3)0=1

The memory node has multiple servers, i.e., np ports. In state (nt - xm, xml, the

number of access in service (or waiting for the service) is xm. The service rate is C(xm) J.Lm,

where C(xm) is the munber of busy ports. So, fm(xm) can be recursively obtained from

fm(xm - 1) as follows:

•
fm(xm) = ~à;,!j x fm(xm - 1)

= (r)) x rrxm- I (r? =c.: :r.m 0=1 C a (
1 ) xm :=-,1=-:'

Ilm :< rr~~\ C(a)
(4.4)
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where, 0(,,) = " for Il ~ ""

= nt, otherwisc. (4.5)

We substitute the second aud thinlterm iu Equatiou 4.2 by l.heir values iu Equations 4.3

aud 4.4. Below, we rearrange the terms by multiplication with "1" (ternIs enclos",1 in

circular brackets {}) and redefine the normalizing r:onstant G' (terms in square brackel.s

[.J). Note that normalizing constants Gand G' are obtained by snmming l.he equilibrhnn

state probabilities over the whole state spacc S. Tll11s, we ohtain the prohahilit.y of st.at.e S

as follows:

{
œ:!..n,-xm O(ftt - Il) }

nXIII O( )u=() (l.

(4.8)

(4.6)

C(a) (4.9)

0((') (4.7)

11,

II

11,

II

1

U=:l:11I+ 1

1I=:r:m+1

œ~'oO(II)

( )

(1I,-XIII)

= L: Ilm

S""

Jlt-xm-I

II O(nt - Il)
tI=()

C(nt - a)

("Ill)'" œ:!..O O(n, - Il)}"Ill n~~O O(nt - Il)

( )

(n,-xIII)
Pm

""

œ~" O(a)

n,-xm-l

II
u=o

( _' )XIII
JI".

= L ( 'llll)(1I,-xm)

S 'lV

= L ( PIII)(n, ..x",)

S Pv

I/G

I/G'

(_
1 ) (1I,-xm)

P(S) = G
'lV

= G (~) (1I,-XIII)

'l"
= [ G (f.;)'" ]

n~~o O(nt - a)

= [ G (f.;)'" ] ("Ill) (n,-xIII) '''-ff-'O(n" _ Il)

n~~OO(nt - a) "" n=O

( )

(1It -:cm) 1I1-X7Il-1

G' '1111 II O( )= - nt- lL

~p "=0

( _' )XIII
l'm

•

The above equations represent the general case of a single processor system, where

the number of mcmory purts is finitc. With the steady statc prohabilil.y of the stat.c S, we

obtain various performance nl('IL~ures. Next, we discnss two speeial CIL~es of the state spacc

in Figure 4.3, a memory with infinitc ports, and a memory with a Hingle port.

•
Memory with infinite ports:

When each acccss 1.0 the memory subsystem has a port availahle for service (L(l. ",,=nt),

there is no queuing delay al. the memory. So, from Eql11.'ion 4.4, Jrrt(xm) simplifies 1.0 the
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following:

= (_1 )xm (_1)
/lm xm!

(4.10)

We obtain the probability of the state S from Equation 4.2 by substituting values from

4.3 and 4.10. Wc also rearrange the terms similar to that in Equation 4.7.

PtS)

1/G

1/G'

(
1

)
(n,-xm) {--L )""

- G - --'-":!'h,!!::-'r-_
- IJ,. xm !

= QI (I!!!!.)(n,-xm) x .!!t.J..
IJ,. xm 1

( ) {-' )'"'_ ( .1.) 1u-xm !lm

- LS IJ,. xm!

"" (,,_ \ (n, -xml ,
-~~) ~- S JI,. xm.

(4.11)

(4.12)

(4.13)

Memory with a single port:

When np = l, the memory node is a single server. The state space for this system is

shown in Figure 4.4. Note that the service rate of of memory subsystem is a constant nt

/1".(= il, that is Cfa) = 1. So, from Equation 4.4, fm(xm) reduces to the following:• (--L )'"'
fm(xm) = n~~, C(a)

= (_1 )xm
/Lm

(4.14)

l/{R+ C) l/{R+ C) l/{R+ C) l/(R+ C)

l/L

•••

S(xm +1)

/~L
l/L

S(~m.)

l/L

S(xm - 1)
l/L

S(O)

Figure 4.4: State Diagram lor a System with Single Memory P0rt.

•
Again, we obtain the probability of the state S from Equation 4.2 by substituting values

from Equations 4.3 and 4.14. Normalizing constants Gand G' arc derived similar to that
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in Equation 4.7.

51

PIS)

I/G

I/G'

Performance Measures:

= G (-,-)<UI-XUl) (_1 )Xm
1'" IJ III

= GI (ilill.)(rlt-rm)
",.

= L (-,-){,.• -n,) (_1 )'/11
Sil" 11111

(

'1 ••• ) (II,-xm)
= LS '"'"'-l'J,

(4.15)

(4.16)

(4.17)

•

Using the equilibrium probability of the system state S, we compute the performance

mensures of inl,erest, processor utilization, llIemory utilization, and memory lal.mlcy.

Processor Utili::ation:

The utilization of the processor subsystem is the probability l.hat at lelL~t oue thread

is in the proccssor subsystem. Thus,

Utilization of the proccssor subsystem = L~:,;~oP(llt - 3:m,:r.m) = 1- P(O, 111) (4.18)

The execution phnse of a thread (R cyclcs) is iUlluediately followed by a context

switch time of C cycles. So, U1• is the useful fraction (il~c) of Equation 4.18.

Up = (il~c) L~:,;~oP(nt -:r.m,:r.rn) = (R:C) [1- P(O,lltll (4.19)

Memoru Utilization:

The utilization of the memory subsystelll, U/II' is the average utilization of ail melllory

ports. And, the utilization of a memory port is the probahility that the port IUIll at

lenst one request for servke. So, lIsing Equation 4.5, U/II is ddined lL~ follow5:

Um =
1 fil

- L P(nl - xm, :r.m)0(:r.1I\)
n" :r.m=1

(4.20)

(4.21)

•

MemoT'J Latencu:

The latency of the memory sllbsystelll is the rosponse time to IlIl II.CCess. When the

number of ports at the memory is one, we obtain the llIcmory latcncy Lob. IIll follows

(a similar response time eqllation is derived by Kleinrock [52]):

nt!J1./11 1
1 - P(nhO) ..\
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wheru'\ is t.he arrivaI rate at the mcmoty. Silice UtJ is the fnu:tion of time the proccssor

i~ busy, À is obtained as Ill' X Upo Wheu "II > 1, we obtaiu the average number of

aecesses Ij waiting in the queue at the memory subsystern. A uew access gets service

after thcsc rÎ acecSScs arc scrvkcd.

'"li = L :I:ml'("t - xm, xm)
xm=O

LoII " = C(Iï)L + (ij - C(tïl)L

(4.22)

(4.23)

•

Now we <:omput" UII aud U", for three cases hased on the number of melllory ports:

1. the general elL'e (finit.e IL,,);

3. a l.ypical CIL'e ("II = 1).

General Case (finite "l') :

When the IIlnnber of ports at. t.he melllory subsyst.em is finite (i.e. nt ~ n,,), the

transit.ion probability of astate S is given by Equation 4.7. We use Equation 4.19 t.o

obtain t.he processor ut.ilizat.ion.

1

UII =

=

R
R + C x (1 - P[ S ( 0, "t ) ])

---.!!:...- (1 -R+C ( ) (llt- Xf1l )",UI l!!!l. TInt -xm-I C("
l."xm=O Il,, n=O t

(4.24)

•

Thn denominator in Equatiou 4.24 is rearranged in terms of xm :::; "p and 3:m > "II:

We derivc the Ilt.ilization of melllory sllb3ystem from Equat.ion 4.20. Substituting

t;", tmnsition probability of a stat.e from Equation 4.7 in square brackets, we obtain:
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l "t [ (I){"'-Xm) (_1)""']
U '" G l''''

tII = - L- 1 - """."'"f-,~,..--;n" .m=1 l'" 0 .. =1 C(It)

1 [1 - P(,,']) = 0, ,ml = n,)]

= "" (&!.)
l'l'

U1•

(l!-"'.) =
1'"

('1.2(i)

(,1.27)

Ideal Case (infinite n,,) :

Wheu 71
'
1 ;::: nt, an nCCCSH tu the llIclllory stlh:;ystcm dues Ilot wail, fol' a sm'vien.

The transition probability of the state or the system is ~iven hy Eqnatioo 4.11.

The proccssor and memory utilizations arc obtained 1'1'0111 Equal,ions 4.IU ILl Il1 4.20:

•
u = _11._ (1 _ 1 )

" R + C '<""" (I!-"l.) {,,, xml ( , )
LJxm=O 1'" ;~~l ",

1 ~ (JLm)nt-xm Ut, t
Um = - L.., G - -- 'I:11t

nt 1 l''J :1:1fl, !xru=

= 1 IL" (R + C) U _ 1 LU
n,. IL I11 -----n- "- n, II. "

(4.2!!)

(4.2!J)

•

We note a similarity betwccn Equations 4.2G 'lIId 4.2!!. Wlllm 'l'm :s H", the nWlu­

ory subsystem gives an illusion of beiug id"lL/ in that the queueiu~ delay is Zf:,·IJ. In

the geoeral case described above, t.he Iirst terrn io the denominator of E1lual.iou 4.25

captures this behavior. Substituting n" = nt in Eqnatioll 4.25 yields Equatiou 4.2!!.

The impact of the hardware parallelism (n,,) and the eXJlloited applic:atioll l'ami­

lelism (n,) 011 the pl'Ol:Cssor performanl:C is silllilar. As wc will sm in Se<:l.ioIl4.3,

the secolld terrn in the denomillator of Equatiou 4.2G wutrihutes very little tIJ the

proccssor performance (this OCClUS whou Xl", ~ n'JI Le. Imrclw!u'o parallelhuli at. the

IIleIllory subsystem is l'ully exploit",I). Thus, a lIilLl.dliug of IlIlrdwa", Jlarallelism to

the application parallelism is lIecessary 1.0 l'ully exploit the perfIJrmauc:n gaÎlIH dlle to

IIlultithreading.
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Saavedra [80J and Alkalaj [8] use such an ideul case for their analyses. They assume

that a multithreaded system provides a lixed latency to access its resources. When a

large I11llnher of threads are present, the processor utilization wiII eventually becomes

high (note l.hat the denominator in Equation 4.28 becomes very large). Thus, a large

latency can he tolerated. This case ignores the contention at the memory, hence is not

true in prnctiee. The general ease (wit.h finite "l' < "tl and the typical case (n" = 1)

arc mainly ohscrvcd.

Typical Case (n" = 1) :

When "" = l, C(xm) is 1. Thus, Equation 4.19 and 4.20 reduœ to the following:

U,' = ï&v (1 - (1 )'''1-''''')~"l l!.w.
L...:rm=O '1'1

(4.30)

(4.31)

•
Since the memory suusystmn is a single server, the system is symmetric and simple.

The maximum achievahle processor utilization is defined by the ratio of thread exe­

eution time at the proeessor and the service time for access at the memory. If R > L

then processor reaches saturation with large number fo threads, otherwise memory

subsysl.em satumtes. Thus, U,' in following two cases arc obtained as follows:

1. when ~ < 1:

U,,=~ (1­R+C
1/ ("'too (Il.m) "I-X"') )

\ xm=O Il,)
- n (1 (1 l!!!!.»)- n+c - - 1"1'

R
=L (4.32)

2. ~ ~ 1:

UI' = u~c: (1 -
Effective Memory Latency:

1/ (""1-:"00 (l!!!!.)"I-X"'))L...xm_O l'II
R

= R+C
(4.33)

ln all tl.ree cases, U'" is related to Up through L, R and the maximum number of ports in

use (11" for gerleral CC1Se, and "t for ideal case). The memory utilization from Equations 4.27,

4.29 and 4.31 is:

•
L 1

= -rn-:"ir-l{'n-
p
-,r-1t;-} x R Up (4.34)
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•

•

Intuitivcly, the lllaxinuull llumbcr of ac(~CSSCS n mcmory ean sllrvicc silllultllucously is the

minimum of its number of ports and the nnmber of threads in the system. So, I.\\l! servke

rate at the 1l1CIIlory subsystclll is ,ni1l.{n,,,udllm = min': "f., . Wc doline t.lw dTl~c:tillf~

mcmory latency, LeIf, aS the rcciproca,l of the ofrcetivc scrviel~ ra.t.e at. tlw lIwllIory. Ll~/J is

on average the luinimutll tinte bctWCCll twa ,ucccssivc scrvit~c eomplctiullH al t.he mmllul'Y

subsystem. As shown later, L,," significantly affects the pl'llcessor perfOl'llllUlce.

Wc apply the above analytical model 1.0 mmlyze the perfol'ln1ln"" behavior of the single

processor system in Section t1.3.

4.3 Results

In this section, wc highlight our results when onr modcl is applied t.o IUII.IY'l.e t.he perfor.

ma.nce of a single proccssor systcnl. Our pc:-fonnallcc mcmmrCH of illtcrnsl. arc, 1.110 processOl'

utilization, memory utilization, and memory latency. We chamcterizc I.\IC varial.ion in I.hese

rr.el\Sures with architectural and progrlLln workload parameters:

• Wc show that an incrClLSe in U" with an increase in the nllmber of threacls is almosl.

1.0 the same extent 'LS the incre'LSe in UI, with an illl're'L,e in the nlllnher of threlllis.

A duality exists between nt and "1" and a mininmm of the two vaincs dominates U,•.

• Wc show how the processor and memory utilizations vary with the thre",1 rllnlengl.h

and effective melllOl'y latency. We Il.1so show how to captlll'() the tmnsition region

of Up and Um curvcs nsillg system utilizatioJ1, an average of Pl'oc:t!l';:mr and IIlCIIlOl'Y

utilizations. We aiso note variations iUlIleIllUl'Y lalcuey, Lobfll with model parmuclm's.

• Wc show the critical values for architectural and pl'ogmm wOl'kload pamlll!!t!!l's lo

achieve high processor performance. Specifical1y, the thread l'IInl!!ngths shonld IIllLtch

(and exceed) the effective lIIemory latency vaincs 1.0 yield high U".

Our reRu1ts arc arranged 'L' fol1ows. Section 4.3.1 presents a verilication of th!! 1II0dl!1

prediction:; using simulations of Petri Nets. Sectioll 4.3.2 shows the effeet of duality of lit

and IIp on the processor perforlllall<:o. SecHontl.3.3 shows how Rand L"II affect subsystelll

utilizations. Final1y, Section 4.3.4 investigates critical values for parameters to yil!1d IL high

processor utilization.
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4.3.1 Verification of the Model Predictions

56

•

•

Now, we verify pr",lielions of the analytical modcl presented in Section 4.2. We compare

the model predictions with simnlation resnlts of the Stochustie Timed Petri Net (STPN)

modcl of the single processor multithreaded system shown in Figure 4.1.

Our !;hoice of STPN modcl to verify the model predictions is bused on the following

rca..'iOllS:

• The STPN modcls provide an eusy approach to quickly modify system designs, and

verify their correctness.

• The STPN models with pl'Odnct fonn solutions are equivalent to the queueing net­

work models [96J. Hence, wc can verify the analytical predictions of the queueing

nlltwork models easily. Moreover, the STPN models provide a Hexibility in the use

of arbitrary distributions for parameters. For example, we can simulate an actual

program execution with the Voltaire package [72], which is used for our purposes.

Many similar packages exist. 1

The STPN model for the single processor multithreaded system under investigation is

shown in Figure 4.2(b). The processor and mClilory subsystems are marked by dotted lines.

The STPN model is a hipartite graph of /'/Clce and t7'Cln.ition... A transition receives

tokens from one or more input places, and delivers them to one or more output places.

Cirdes denote p/Clce.• which hold token•. Either a token occupies some space in the p/Clces

or keeps a t7'Cln.•ition husy. Voltaire [721 allows various attributes to tokens, which facilitates

the processing of tokens. Lines without arrows denote immcdiate transitions, e.g. tO and

t4. These transitions fire as soon us their input places have tokens. Rectangular boxes

denote transitions with non-ze7'O firing times.

The processor suhsystem consists of places ]10, ]11, and ]12. A pool of ''''Cldy threads is

maintained at the plaee ]14. A single token in the place ]10 ensures that al. a time only one

thread is exccuted hy transitions ta, t1, and t2. The transition Il executes a thread for

the duration n, hefore Il memory access is requested. The memory access is queucd at the

place ]13.

1Murata (62) l'l'ovides a dctailed 'l'rvey oa Petri Nets. Trivedi et lÙ. (96) di.cuss sorne of the rccent taol.

for performance cvall1ntiou bnscd aIl qUl:ucillg Ilctworks and petri Il.1tS.
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•

•

The memory suhsystelll consis\s of plaees 1'5 ami 1'6. TI", IIInnl>or of tokens in 1'6

indicates the nnlllbCl' of ports at the ulelllory. For cach lII<'1nor)' aeeess at /,:1, a port. is

chosen frolll place 1'6, and is kepl. bus:, for a duration L at. t.he transit.ion t:l. Ou service

of the melllory acccss, the corresponding thread is plaeed in t.he \'eady pool (pol). For oHl'

simulations, the duration R is exponentially distrihnted. Land C arc lixcd tillle ddays.

The analytical 1II0dei assUllles cxponent.ial distribntions for ail non-""ro ddays.

Wc perlorlll simuiatiulis ["r 100,000 lilIIe nnits (whieh is 10llg ellongh to eliminat.e 1.1",

transient elfects in simulations~. Our perfol'lnam:c mClL'III'C of intewsl. is (1". Wc report

simulation results and analyticd predietions fOI' the following two set.s of paranll'ters:

1. The Ideal Madel: R = 15, C = 2, L = 100, and 71" =20.

2. The Ge7leml Madel: R = 15, C = 2, L = 100, and 71" = 5.

In Figure 4.5, Up is plotted with IIInnber of l.hl'Cads, for two vaincs of 71". "Simulation"

represents the meau value of U" obtained frolllmuitiple silllulation1'llns. "Model" repwsents

the prediction by analyticalmodel (Equation 4.2H for the id",,1 elL'" and Equation 4.2'1 for

the gel,elYÛ case). "Asymptote" represents a simple, deterlllinislie analytiml Inodel, whieh

wc proposed in [65]. The deterlllinistic 1II0dc1 is as follows:

Vi, _ Il
when lit = 1. (4.:15)- r.m

U"
_ Ilxnr when 7It S 71" and R x (7It - 1) < L. (4.:16 )- /_+I1+C

U" = Il>r" when 7It > 7Ip and R x n" < L. (4.:17)

U"
_ Il

[R X mi7l{7It -I,7Ip}1 ~ Land 1/.1 > 1. (4.:IH)- Ne

From Equations 4.:16 and 4.:17, wc observe that Ut ~ 71" yields no I",rforlllanee gain.

Ideal Model: np = 00

When the number of ports is large (20 in this case), there is allIIost no "ueueing at the

memory, and is defined earlier as the ideal case. Fignre 4.5 shows that analytical prmlietions

match weil the simulation resnlts (within '" :1%). A possible souree of discrepllney is that

the STPN modelnses a fixed V'dolue of context switch overhead C, while the llnlllytil:llllllodei

uses an exponential distribution.
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Figure 4.5: Comparing the moùe] with simulation results anù the asymptotic allalysis: for

11" = 5, 20, R = 15, C = 2, L = 100.
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Thcse res111ts alsa match \Vit.h t.lw illlalyticai results of a. more t'llluplka.t.ed solutiun of

Petri Net model preseuted by Sallvedra-13arrera d III [80]. The STPN modd ohtaius a

closed form expre,siou for processor utilizatiou [801 by 'L"suming the 1'I11lleugth 'L" a mndolll

variable, aud keepiug other pammeters lixed. Such modd cannot a<'<:OIlnt for ""utentions.

c.g. the ncxt case shows 11,'1 ~ 1I,t a.nd contentions occur al t.he müluory.

General Model: n,. < 1/t

Now, we redul:C the number of ports ta ~, i.e. less than the maximum nnml"'r of thwa<ls.

Analytical predictions by Equation 4.24 match within5% of t.he sinllliation results. Again. a

small deviation from the simulatiou results oc(:urs, which eau be att.ribuwd tu the exponen­

tial distributiou of C in the aualysis, 'L" opposed 1.0 a lixed value iu the STPN simulations.

lu both the idelll case aud the ge,wml e'L"e, we uote that the pl'Oel'ssor ui.ilizatiou

iuerC1lSes with Humber of threa<ls. The geueral e'L"e alsn shows that prm:essor ul.ilizatiou

saturates, wheu nt exeeeds n". This lends eredenee 1.0 the above simple, dcterministk uuule!

described by Equatious (4.35) ta (4.38) .

Thus, the performauce predictiou by the atUllytical modd devdoped iu Sœt.ion 4.1

compares well with the performauce results of STPN simulatious. White wc report the

predictious of aualyticalmodel iu l'est of this chapter, l.hese have beeu v""ilie<l usiug siulII­

latious.

4.3.2 Processor T.Ttilization

In this sectiou. we charaeterize the variation iu the prol:CSSOl' utilizat.iou with arehitee­

tural aud workload parameters. We lise the !Jc,wml e'L"e 1.0 derive proœssor ulilizatiou as

rlescribed iu Equation 4.25. Whp:, n" = 1, Equatiou 4.25 couverges ta Equatious 4.311.

Similarly when n p ;:: nt, Equation 4.25 converges ta Eqnatiou 4.2tl, the idelll e'L"e.

Figure 4.6 shows how processor ntilization dUlnges with the uumber of threads. '1'0 show

how the hardware parallelism al. the memory subsystem affeets the performanl:C, we use a

large L value of 100 cycles, aud small R of 15 cycles. C is 2 cycles. When the uumber of

memory ports is high, Up rises rapidly with the uumber of thrcads. The satul'lltiou value of

Up is high, if np is high. For example, a, n" = 7, L'l' rises to 75% I",fore satumtiug. Ou the
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otllcr hand, at a low "l' of 4, Up saturatcs at a low valuc 47.5% cvcn whcn "t is incrcased

to 10. At Iow " 1" since L is significantly largcr than R, memory serviccs the accesses at a

slowcr rate than that of processor rcques'iug thcm. 80, the processor cannot ovcrlap the

mcmory latcncy with computations, and thc processor utilization is low. In summary, the

processor utilization incrcases with the uumbcr of threads wheu thc memory subsystem cau

service lJlultiplc rcqucsts simuitaneously.
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2 4 6
Number of Threads n_t
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Figure 4.6: Effect of 111 on Up whcn R = 15, C = 2, L = 100.

Now, wc show how the variation in 1It as well as 1Ip affects the processor utilization

(sec Figurc 4.7). Wc consider an average runlength R of 25 cycles. Other parameters

arc: C = 2, aud L = 100. Intcrestingly, increasiug either of the parameter~, "t and

"1" incrcases UI, to almost similar values. The lower of the two parameters dominates

Up values. This duality is a fl'.sult of the available hardware parallelism in the system,

e.g., 1Ip ports at the mcmory. (Recall the discussion following Equation 4.28.) Note that
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U" satur'\tes for nt ;::: (n,. + 1). Thu~, the Im.eucy of au iri,,"l mmuory snbsyst.mu ""u

he tolerated usiug 5(= 1 + LIR) threads. Fignre 4.7 shows that U,. readles uearly 80%.

Intuitivcly, whou Ut cquals n1J + 1, a.Il 7J.J' mülllory port.s arc busy snrvillg IIlClllory aet:t.!sses,

and the (n,. + I)-th thread executes ou the proeessor. TI'e snrfaec for Ur' values is ahuost

symmetric arOlmd nt = np' Thus. the parallelism in the program workload improves the

performance as long as the parallelism exists amoug the hardware resourees. A use of split­

phase transactions allows the multithreading to exploit the coucurreucy lUUOUS hardware

resources. e.g. simultaneous accesses to multiple memory ports.

<>r
:10.8
c
.2
10
.~ 0.6
5• ~

0

i:l 0.4
"~
0. 0.2

0
10 10

Number of Ports "-Il
o 0 Number of Threads "_,

•

Figure 4.7: Effects of nt and n,. ou Url> wheu C = 2. L = 100. aud Il = 25.

In summary. wc uote that:

• The parallelism in the program improves the performance 'L~ long as the parallelism

(eoncurrency) exists among the hardware resources in the system. A dllality exists

between nt and np such that same changes in either pararrwter affects the proccssor

performance hy almost the same value.
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•

• The minimum value of the two parameters, TI, and TIp , dominates Up value. So,

the most of the performan<:e gains can be obtair:ed even with a low value of TIl., if

TIt ~ (TIl' + 1).

4.3.3 Subsystem Utilizations

ln this s""tion, we will study how the performance of both subsystems varies with archi­

tecturai and program workload parmneters. Specifically, we t.rack the knee of the processor

performance, i.e. transition region where the performance changes are significant.

The effect of thread runlength on utilizations of processor and memory subsystems is

shown in Figure 4.8. The processor utilization is denoted by U_p and memory utilization

hy U_m. We lix t.he L value as 50, the maximum value of R in the Figure 4.8. We assume

that 1It = 5, so we lix 111, at 3 to exploit full hardware parallelism. With increasing R values,

UI' increases rapidly. Since TIl' = 3 and L = 50, the knee occurs when R = 17(= ,~;,J. Above

this R, UI' values are high.

The variation in UlII with increasing R shows that each thread spends a smaller fraction

(11+8+1,) at the memory subsystem, so Urn decreases. Um values start decreasing when R

approaches Leff (= .b.. in this case). The workload is equally balanced between the two
""subsystems at R = Leff' and Ur' equals UlII •

For a single processor system, we define the ..y.,tem utilization, U,,,... as an average of

t.he prol:Cssor utilizatiou and the memory utilization:

u _ Ur + VIII
.',y.'! - ~ (4.39)

•

We deline U,'" with the two purposes. FiI..,t, for a high performance, [~J should be high.

For a cost-effective performance, we want both Up and Urn to be high, i.e. U,,,., should be

high. Second, we waut that U.,,,., should track the transition region, where one subsystem

reaches saturation with changes in a parameter while the other subsystem comes out of

saturation. U.,,,., is high near the knee of the Ur' curve. We cali a maximum value of U,'"

as the Peak Sy.,tem Uti/ization, (PSU). The PSU tracks the onset of workload parameter

val'Ies yielding a high Up. From Figure 4.8, with increasing R values, the PSU oceurs when

UI' is near saturation ("'=' 85%). Also, the Up value is close to its maximum.
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Figure 4.8: U,,, U". and U.,y,,, when C = 0, L = UO, and "/. = U.

Figure 4.9 shows a perspective on how the performance melL~ures will change with

L e//. U,y, behavior with Leif (= ,:;,l is similar 1.0 U.,y., behavior with R IL~ seen earlier in

Figure 4.8. Wc note a significant increllSe in performan<:e of a multithreaded system when

concurrent requests al. the memory arc servked. U". and L o/", values indieal,e thal, "ueuning

delays al. the memory are sufliciently low even with 2 t,o 4 mmnory port,s. Fol' "" = l, fJob.,

is high. At the PSU i.e. for "" = U, however, the value of Lob., is Icss than t,wiee L1m no-Ioad

value.

Now, wc study the variation of U.y• with thread runlength. Figure 4.11 shows how the

PSU changes al. different Leif values. Other parameters are: a = 0, fJ = ua, and "t = U.

We achieve the variation in Leif by changing the 111lmber of memory port.s. As exr,ected,

when L e// is large, the PSU occurs al. a large il (=L"If)' An iru:reIL~e in il IÙSO results in

a high Upo So, the PSU (= U" = U".) is also high.
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Figure 4.9: Effect of n" on Up, U", and U.y., when R = 10, G = 0, L = 50, and nt = 10.

We show the variation of U,y, with Lell in Figure 4.12. U,y. curves for R= 12, 25 and

50 eycles, are similar to those in Figure 4.11. We also observe that U.,y., values increase

when the PSU occurs at high R values. Otller than service times, the only architecture

parameter being changed is n", Let us analyze the two equations for processor utilization,

Equations 4.28 and 4.30. These equations indicate that n" memory ports with a mean

service time of L cycles do not exactly behave as one memory port with a mean service time

of ,~;. cycles.2 However, these results on Up and U.y , for multithreaded system~ show that

their behavior is indced similar. We will discuss the design implications of this ,)bservation

in Section 4.4.

:lTo be precise, cach term in the dcnDminator of Equation 4.28 is smallcr by a factor (fi ~ ••" .!!.Ll. with
"" 1 ) ~trIl

respect ta the corrcspollding terril in Equation 4.30. Sa, illcrcnsing L and Tl,,, to kccp .1:.. the same, yields ilUr
slightly lowcr value of U,•.
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Figurc 4.10: Elfcd of nI' on Lob,,, when R = lU, G' =0, L ,~ 50, and nt = 10.

In summary:

• Systcm utilization, U,.y,,, is an average of U" and U", vaincs. The peak system ntiliza·

tian, PSU, tracks the kncc of the proeessor pcrformancc. The PSU Ol:l:IIl'S, when R

cqnals Leif•

• With np ports, thc mcmory subsystcm behaves similar ta a servel' with a mean scrviœ

tillle of ,~~ (= L"II) cyclcs, undcr a mllitithl'nad!!d progralll exet:lltioll.

4.3.4 CriticaI Values for the Parameters

•
Prcvious scctions (4.3.2 and 4.3.3) showcd a dllality betwcclI Ul!! processor and mmnory

subsystems. In this scction, wc stndy how this duality hclps ta al:hi!!v!! high prOC!!HSOr
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Figurc 4.11: Elfcct of Thrcad rtunlcngth on Systcm Utilization, whcn Tlt = 5, G = 0,

L = 50.

pcrformancc. In particular, what thc rritical valucs arc fol' program workload paralOctcrs­

t.hc "umbcr of threads and their l'Unlcngths.

Wc have ohservcd that increasing R beyond 1,"11 marks the onset of high UI' region.

Figurc 4.14 shows t.hc variation in U,' with thread runlength, for dilfercnt vaincs of L"II'

Wc change L"f! by varying the numbcr of mcmory ports. Othcr parameters are: Tlt = 10,

G = 2, and L = 100. In general, R ;::: L"II yields a high U". Howcvel', if R is larg" when

R cquals L"II' U" valucs is high. For cxamplc, whcn R = L"II = 100 and TIl' = l, U,' is

90%. Whcn R = L"II = 10 and TI" = 10, U" is 72%. (Using R = L"11 = 10 and TIl' = 1 in

the Equation 4.25 describcd in Section 4.2, wc gct UI' = 81%.) In othpr words, a mcmory

subsystcm with a high L and TI" approachcs (but does not equal) thc pcrformancc of a

l'lister mcmory subsystcm, Lc., lowcr L and Il low TIl" Thc difl'ercnce is promincnt at low R
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and R on System Utilizatioll, when C = 0, L = uO, 1It = u.

values. This gives credence 1.0 the belief that botb low latmll'y ami high handwidl.b am a

l'equirenlCl',t fOL high pel'fol'lnance computing [171.

Let us look at the multithreaded progmm workloacls nsed in pl'lldice. Two (:ontt"L~ting

types of multithreaded progmm workload arc ns"d in pmetiee: Fi,·.,t, Sr:hansm' <:t al [8ul,
and Roh ct al [771 report thread rtlnlengths of the order of :1 1.0 :10 insl.rlll:t.ions. 8(":()lId,

Maqueline ct al [u9], and Thekkath and Eggel's [90] report thread runh.ngths of the orrh.1' IIr
700 to 1,000,000 cycles. So, whieh wOl'klo(u/ ehm'llde,i.,tir:.' (m: ""it"III" f"" .,illf//" In'()"".''''''·
7Tl"ltithmaded system?

We eonsider the first group of multithrcacled workloacl, which exhihil.s Il Iilw gl'llnniaril.y

ofthreads, Le. 3 to 30 instructions. To achieve the condition R = L"II' the effer:l.ive mmnllry

latency for an architecture shonld be low. lncre.lsing the number of memory p"rl.s helps

1.0 reduce Lell , and achieve high ped'll'm",",e ou such a program workloarl. Figure 4.14
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•

shows that 4 to 6 ports are sulficient to prtvide good performance. Additionally, the use of

interleaved memory banks can increase the concurrency among multiple memory requests.

An advantage of the interlcaving is that the number of interleaved banks can he as high as

16 [76). Now, considel' the second b'1'OUP of multithreaded workload with thread l'Unlengths

of t.he order of 700 to 1,000,000 cycles [59]. Threads do not switch the context for local

memory accesses. The thread switching itself l'cquires restoring the thrcad identifiers from

the 10calmemOl·Y. Such partitioning is not intended to take advantage of the multithreading

technique on a single processol' system.

4.4 Summary

The major rtsults for this single processor system are summarized helow:
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1. The parallelism in a progrllln workload improves tho !",rformlLlu,o IL' long IL' I.ho

concurrùncy cxists among hardwaro rosonrcos in tho systom. Tho I·osnll. is a dlmlity

between proccssor and memory subsystcms. A change in cithor of lit and Il,, affects U"

by almost the same value. However the parameter, whieh IUL' a lowor vahlll, dOIllÏ1ml.es

Up value.

2. Under a lIIultithreadcd progralll execlltion, the performancc of a memury snbsysl.em,

with n" ports and a latency L, approadws thal. of the sllbsysl.mn with 1 1'01'1. and

latency I~;' (= Leif)·

3. For R ~ Leff . il high Up is obtailled. At R", Leif' UII is ahllost. 90% of its maximum

value. Cor.·espondillg values of Lobs arc also low.

•
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The ahove ohservations have a signiricllnt impact on the design of a multithreaded

system. Civen typicallocalnlCmory lateneiei> uf 20 1.0 100 cydes [28, 19,46], a multithreaded

program workload should have low rtlnlengths (Iike 3 1.0 30 instmctions in [85) and [77]) 1.0

exploit henerits of nmltithreading on a single pro<:cssor system. However, Lell should also

he low 1.0 achieve a high Uw In otller words, "" should be high.

In practke, a large size memory subsystem with 2 or more ports is pl'Ohibitivcly expen­

sive. In comparison, on-chip caches of much lowct· sizes· 8 1.0 64 I<B- on current generation

processor support al. most 2 1.04 ports [104]. Only for regist.. " sets, al. most 5 1.0 10 ports

arc viable [61, 1041. Since the objeetive of multiple ports is to increase the concurrency in

IIWlIlDl'Y acc:csscs, wc ca.n takc advalltagc of the fol1owing lllcmory ol'ganizations t.a serve

the HlLlll() purpose (Iisted in the order of their increasing costs):

1. A set of interleaved memory banks support concurrent accesses, if no two requests arc

directed towarcls the same memory bank. This is the cheapest approach 1.0 increase

the memory balldwidth, and is widely followed. 4, 8 and 16 way interleaved memory

hanks arc commonly observed in commercial designs, e.g. Cray X-MPjModel 24 uses

16-way interleaved memory [76].

2. A pipelined memory module can service t,he accesses by more than one memory rL~

'luests, depct.ding upon the ntllnber of stages in the memory pipeline. These stages

can he: address decode, data read and fetch, ane! output data latch. This appl'Oach

is costHer than using memory banks.

Wc briefly discus- the implications of onr results on the following two design appl'Oaches:

Pl'ime IlIlmbel' memOl1l system: This approach ta the memory interleaving is useful to

reduce contentions al. mell\ory modules, when aecess patterns from multiple threads

arc alInost identical [74, 391. A major impediment of implementing a prime-nui "bered

memory subsystem is the increased latency for address calculation. Our results in"

dicate with "" concurrent accesses al. the memory, the performance of the memory

approaches that of the Il\emory with a latency of.b.., . Since the support for split-phase, p

tmnsaction in a multithrell.ded system ensures that the pl'Ocessor is not held up, the

address computntion ';<1n take place either during the context-switch time or as the
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first pipcliucd stage in the mcmory subsystcn. Thus, with n. ma.rginal inCl'eaSH in

latcncy, a.cccss contentions call he rcduccd.

CILelte-l"ss Systems: Two t.ypes of geueral plll'pose <:!lIupul.<·r SYSt.''''IS. whkh ,10 uot lise

caches, have heeu pl'llposed: li7'st, datallow syst.ems [32, 4ïl, mul ""'''mIL, umltit,hn"ulcd

systems like HEP [8ï, 9]. (We uote that. the vedor <:llmputers exploit. spatialloClllity

throllgh the use of large vcdor l'cgisters [76].) A CUlIll11011 'L"peel. het.wl~(m tlH'SC I.wo

types of systems is that a...~Yl1dll'Ollotls executiOll aloll~ 1I1l11t.i1Jlc t.lll'muls aL a. pI'Ol~(~SSOl'

makes il. dillicult ta exploit the localit.y hdweeu the <:llmputatiou ou U",se tlm'Illls.

Sa, if wc attempt ta exploit the locality ou oue thread, the miss rate ou oU",r t.hreads

may suifer [4, 911. Cache cohelence amoug lIlultiple pro""ssors b aln1t,her siguilicaut

research prohlem (22). lu a cachL~less syst.em, lL' loug lL' melulll'Y is capahle of snp­

portiug multiple coucurreut acccsses, lIlultit.hrmuliug cau yield snhsl,antial hendit,s.

These rcsults and design considerat.ions uf iL single prOCtlSSOl' systmll also pruville ail

iusight to the perfol'mance of a. j)l'OeCssillg c1<mlCut iu iL 1I11l1tipJ'(J(:(~SSOI' sy:-il.elll, whieh wn

discuss iu the uext chapter.



•

•

•

Chapter 5

Multiprocessor System

5.1 Introduction

In Chapter 4, we developed an analytical model to predict the performancc of a single

processor system. Wc charactcrizcd how architectural paralllctcrs likc the lncmory acccss

Lime, and workload characteristies like the thread l'l1nlength, atfect the performance of the

proccssor all(' ~uctnory subsystclIls.

A single Pl" essor system, angmented with a network interface, forms a pl'Ocessing

node of mnltipl'Occssor syst.ems with distributed shared memory. An analysis of these

multithreaded multipl'Ocessor systems, however, be("Omes significant1y more complex duc

to ml increlL,e in the number of parameters t.o characterize the architectural subsystem as

weil as the multit.hreaded pl'Ogram workload. This chapter focuses on problems 3.2.1, 3.2.2,

and 3.2.5 (di3cussed in Chapter 3). The objectives of this chapter arc as follows. First,

wc extend the analytical framework to the performancc modeling of such multithreaded

nmlLipl'Occssor systems. Second, wc analyze their performance behavior. Third, wc apply

t.he analysis to optimize the processor performance on a multithreaded program workload.

A multit.hreaded multipl'Ocessor system (MMS) consists of an interconnection network

(IN) snbsystem, and processing nodes with processor and memory subsystems. Latency for

cOInmunication across the network significant1y affects the performance of a multiprocessor

system [14J. A multithreaded procossor supports multi~le outstanding aeccsses. The prD­

cessor performs the computation on one thread, issues a long lateney access, and switches
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to another thread. Thus. the processur utili",ll.ion iIllPro"CS, Uut a sidl~dfl'l't of ullllti·

pIc outstandillg rcquests is lu illcrca.....c the contention al the nWlllory am\ illtcrrUll11ediull

network, which llIay further inere'L'" the llIelllory and net,work latcucies. ln tUrll, loul';er

lat.cncics for illdividlla.l aCccsscs delay the cxccution 011 the waitiul;!; thn~ads. So, IL eOillplclt~

performauce modei shuuld captnre the fcedhack dfect of thc ""ueurt'cnt adivitil's at varions

system rCSOUrcCS on the acccss rate and latclH:Y of a sllbsystcm.

ln this chapter, wc cxtend our dosell 'lucl",inl'; nel.work (CQN) ullJtlcl, dcvdopcd iu

Chapler 4, t.u a. Illultithreadcd multiproccssor syst.em. Additioual cOllsideratiolls 1,0 the

performance lIlodclill~ arc as follows. First, t.he lI1ultithrcaded pru~ralll workload 011 il

Illultiproccssor system cxhibits cilaractcristics likc th(~ localily of acecsscs, Le., wlwtlwr tn

rcqucst a rcmote meUlary access, and if SO, how far t.u lravpl on tite network. Second, the

uUIuber of fuuctiouai uuit.s iuereases signifieanlly. The iutel'adions allHm~ ftllu:tiollal uuits

also nccds to hc modeled. Thini, to accuratcIy <:ompnte the waitinl'; time al. snhsystl!lns in

the presence of access contentions, t.hcsc acccsscs (threads) from dill'erellt l'rocessor should

be considered a.s scparatc custolllcr elm;ses in the closed quemünp; Ilctwol'k. With tlw hL"lt. two

considerations, un cxact solution of a CQN modcl is pl'ohibitively (!xlwm;ive. For ('xaillpl(!,

even a small system, with 2 proccssors having JO thrcillh, cadi, IllL' (IN) x (IN) = 1166'lOll

states. Herc, "3" reprcscllts allc pr()(:cssor and two IIlcmory modules on \';hich a tlu'end (01'

ils llWlllory access) reccives a service,

TI;e motivation for our performanec modcl is to mec!. the necds of onr anticipate.1

users: architccts, programmers and compiler writcrs of IImltithrcaded systcms. Givell a. Sl:t

of architectural paramctcrs (e,g., numher of pl'ocessin~ Ilude:;, IIwlllory access limc, lIl:twork

switch delay, context switeh t.ime), nsers wonld Iike 1.0 know:

• How ta achievc high proccssor 1lt.i1izatioll on a. tar~ct sel. of pro~rall1 workload'!

• How does the proccssor ntilization vary with the warkloacl'l

• How does the network performance vary with the progmm workload'l

The above information should help a compiler writer fol' l'''l'foflllanl:l! rdated optilllizations

on a program workload. These optimizations ;nvolve a dceomposition of the data and

computation on ùifferent processing noùes, alUl a partitiuninl'; of t.he c:omputation intu

multiple threads. Wc refer to these t'L~ks collectively 'L' a thrr<tlli IlClrtilirmill!/ ,.tmlt:!/y. The
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performance model shows how the changes t.o a t.hread Jlarl.itionin~ st.rat.e~y wonld alfed. the

performance. Fo~ syst.em archit.ect.s. t.he informat.ion is nce,led t.o t.une t.he archit.œtural

pa.rmnctcrs for a tnrgct :-let of workload. A eoncerll t.o nsers of a perfofmauee mode! is

whcthcr they ncccl ~.o cstima.t.c an)' input pa.rmllctm', which is tlot. knowlI fl "rù",,;. And

finally, how robust is the predktiou of t.he pm'fOl'mane<! Inode!"!

Our performauce model iutegrates simple modc1s of proecssnrs, memories, and inter·

counection nctwork subsystellls. This iutcgrat.ed model also account.s for t.he illteraction

between these subsystems IInder variolls application program worklmuls. IlIpllt.s t.o our

integrated system model arc worklmul parmneters (e.~., number of t.hr",uls, t.hread rull'

lcngth, Tcmate accc..loiS pattern, etc.) and al'c:hitcc:tnral paramctcrs (a.g., IIWIllOI'Y HermlS

time, network switch delay, etc.). These paramet..rs are direct.ly provided by users. TI\(!

model predicts the processor ntilizatioll, t.he net.work lat.ency and t.he message rate t.o the

network. Wc present the formulation of this model, it.s solutioll t.Cdllli'lu,,~, its verili<:at.ioll,

and its application to the performance eVlllllation of mllitithreaded mllltiprocl'.Ssor systems.

Previous analytical st.udies of multithreaded architectures have maillly focused on the

elfect of workload parameters on prol'essor performallce (scc Sa<lvedra-l3arrera ct al. [80],

Alkalaj ct al. [8], and Agarwal [4]), but their models do not incorporate the errcd of con·

tentions at the memory and network. On the otller hand, stndi,,~ on int.erconnect.ion lIet·

works model the elfect of contentions, bnt assume that the erfect. of workload is rellected

by an average value of the input message rate (sec Abraham [1] and Dally [:lO]). We cali

these performance models as 01)e1l sy.•tem motIeI.•, or open qllellcill!J netlllork modds (OQN).

Perhaps the work most relate<! ta this dmpter arc by Willick and Eager [lOI], .10hnson [50],
and Adve and Vernon [2]. Ali three work model a ll1ultithreaded IImltiprocessor systmll lL~ a

c10sed system to capture the subsyst.em interactions, which wc will elaborate in Sect.ioll 5.1 J.

We construct ollr illtegrated system model based on a set of assumptions, which llm rea·

sonable for current multithreaded system implemelltations s.u:h lL~ BARTH [46], TERA [9]

and Alewife [6]. Our solution techniqne nses the mean value analysis (MVA) [75], for

the following reasons. First, large systems l'an be erficiently analyzed. Second, the MVA is

amenable to heuristic extensions for complex subsystem interactions.' Thirel, MVA provides

'We will discuss how such heuristics arc helpful 10 analyze the EARTH system in Chapler 7. The

simultancou.s resOU7CC possession propcrtYI durillg ail acccss at a IJroc~'iing 1I0ÙC, violatCH the ~l1l1llJtiollH

for an application of a product form solution bascd tcchniqur.H for qucucing nctworks.
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ail (!;L'iY Îulerpretation of performance mCaSllTCS. 1l1llikc the prohabilistïc apI,Toach of statc­

spaec I".",d tedmiqlles. FUllrth, it 1,,", hcell sllc""ssflllly applied ta analyze l'cal computer

SYSt.","S, e.g., Wist:OlIsin Mllitiellhe [58]. Wc verify the eorrect.ncss of the model predictions

of proeessor utilizations, latcncics and lIICSSélJ.tC ralc, usÎllg a. simulation of il Stocha..'itic

Tilllml Petri Net model of the mllitithreaded mllitipruœssor system. We qllantitativcly

dmraet.erizc variations in thcsc performance mmL'illI'CS, idclltify the system hottlcnccks, and

provide an insight ta t.he impaet. of performance related optimizations.

O,:r dosed qllelleing network h,.,ed modcl enahled liS to identify the feedbaek elfect

uf sllhsyst.elns on the processor performance. We show how t.he processor performance

is alfect.ed hy the maximllm message rate pel' processor delivered by t.he net.work for a

given remot." access patt.ern (delined later in Section 5.6 as t.he capacity of t.he network).

0111' lIIodel helps a liser to locat.e t.he operating point for a specilic workload, and indicate

whet.her t.he net.work capacity has bccn reached, t.hlls providing a guidance on how to tune

t.he workload parameters.

The IIsefnlness of c10sed system model, like ours, is two-fold: One, nsers can work di­

rectly wit.h t.he program workload and archit.ectural parameters which arc familial' t.o them.

And tilla, when t.he net.work is near satllration, t.he sensitivity of performance prediction to

model input parameters is signilicantly lower than t.he sensitivity of performance prediction

IIsing open system models. Our analysis indicatcs that the network latency reduces with

a simultaneolls incre"se in the message rate to the network because of cither an increased

locality in t.he remote access pattern or the nse of a faster network! This is not obvious

from open system based network stndies [30, 3]. Wc then compare t.he robllstness of our

lIIodel with three, snccessivcly relined open syst.em models employing feedback to improve

m,cnracy of their processor performance predictions, and demonstrate their weakncsscs

and tmdcolfs with respect. to onr mode!.

Finally, wc show throngh a simple example, how a compiler writer may progressively

tnne a program workload. Wc show that the pracessor utilization increases with an increase

in the number of threads, as long as the message rate to the network is below the network

capacity, even when the observed network latency for individual acr.csses cxperienced pel'

thread is large. Once the capacity is reached, a higher locality in remote acccss pattern

(throngh data set partitioning) can imprave the capacity value, and thereby improving the

processor ntilization. lf the proccssor utilization remains low, then increasing the thread
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The rcst of t.h{~ chapt(.;j is organizcd a...O; follo\\'s. In the next. sediou. we ont.liliP our tlmlli­

threaded IIlnltiprocessor system. present the nlllitithreadcd execntion IIllldei. all<l cliscnss

the assnmptions lIlade 1.0 develop the analytkal modeillf the mnltit.hreacbllllllltipl"llCl'ssllr

systctn bascd on closcd quclleinp; llc~.\Vork. In Sl'dions 5.3 t.o 5.9 WP show how tu pvahmte

the performance of our multithreaded multipro""ssllr system usill/'; the results derive,1 frolll

the c10sed queueing network mode!. III Sedioll 5.4 wc verify the aualyt.kal predidillllS usill/';

Stochastic Timed Petri Nets (STPN) simulatiolls. lu Sectiou 5.11 wc di,<cuss the related

work. Finally in Section 5.12. wc PTCS""t the mndudin/'; r",narks.

5.2 Analytical Model

ln this section, wc outline the multithreade,l mult.ipl"OCeSSllr syst"," (MMS), mlll the pro­

gram workload. Subsequently, wc describe how to mmlytically model the MMS /lI1l1 derive

the performance measures of interest.

Our MMS consists ofprocessing clements (PE) connected through a 2-dimensioual tOI"llS,

as shown in Figure 5.1. Each PE has a multit.hreaded processor, aud a part of tlw clistributed

shared rnemory. A PE is iuterfaced to a swit.ch on the IN. Eadl PE <:ont.ains I.hree subsys­

tems: a processor, a memory morlllle aud a .'!lIiteh on the IN (see Figure 5.2). A <:01l1lCl:tioll

exists between each pair of these subsystems at a uode. Ail access t,o a subsysl.em illcurs a

delay, and lIlay encoullter a contention from otller accesses.

The program execntion model is similar to onr earlier description in Chapter 2 (SClC­

tion 2.2). The application program is a set of partially ordered threads. A thread consists

of a sequence of instructions followed by a nwmory access. A thread repeatedly goes

through the following seqnence of states- execlItioll at the processor, .•1I••/"".••i01l aCter issu­

ing a memory access and after arrivai of response, TOUrly for execution. Threads interad

through accesses 1.0 memory locations. Wc lL~sume that the application program exhibits

similar behavior al. each PE, and that the Joad is evenly distribnted (like a Singlc-Program­

Multiplc-Data, SPMD, model) [431. This assnmption provides a user with a tangible, snUlIl

set of workload characteristics to analyze their errect on performance.

The Multithreaded Multiprocessor System:
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Figllrl! 5.1: 4 x 4 Mllltiproœssor with 2-dimensional nwsh.
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We now deseribe t.he l\IMS aJu! a PE ill Fip;nrl's 5.1 aJul 5.2. 'I:,bll' B.I ill Appl'wlix Il

SUllltuarizcs aH sylt1hul~. \Ve use simple models of suhsysh'lIls and show l,heit' il1lpiU~t. on

the systt!1ll pcrfofmanee. III latcr dmptprs. \\'t: will show ho\\' slIhsySh'llI il1t.t~r:u·li(}lls in ft

nm.l s)"::-::fcm eall he lIIode1cd and alla!yz(~(l.

Processor: Eadl pro('pssor cxccnt.es a set of ht t.hl'eads. Thcs(~ t.hrl'ads Blay Iw 11t it.cratiollS

of a do-aU loop [43]. The t.ime 1.0 execnt.e t.he cOlllpnt.at.ioll ill a t.hread (indlulinp; t.lw

issue of il tllClIlory acccss) is the "mlcu!Jlh of il t.hrcad, and it.s a."/cra~c is (1«mot.ccl hy Il.

After issning a memory access (wlocther local or r",not.e), t.he proCI'SSOl' <:ont.ext. swit,dws t.u

another ready thread. C is the mllkx/ stllikh ti"", . .\",., is t.he rat.e of messap;l's sent. hy t.he

ploeessor 1.0 the IN.

Memory: The proccssor issues a sharcclmcmory acre:;s tu il n~lJ1ot.e mmnory moduh! with

probability l'"cm,,'" and t,o its lœalmemory modllie wit.1o prohabilit.y (1 -1'''''''''''')' L<>t. t.he

rnemory latelll:y, L, be the time t.o aeeess a localm","ory module (wit.hout. 'llIlmdnp; delay)

alld ob.<c''Vl'd ",emOl'Y l(lI".IlCll' L"b... b" t.he lat.eney \Vit.h qneueinp; dday al. th" m"mory.

IN Switeh: The IN is a 2-dimensionai t.oms with k PEs alonp; "ad. dim"nsion. Fip;\II''' 5.1

shows an examp!e of an IN with 16 PEso We assume that "ad. pro""ssol' is illt"rfae",! t.o

the IN through an illbollnd switeh and "n OIttlmll7ll1 switeh IL~ shown in Fip;um 5.2.

The inbo.tII(J switeh aeeepts messages from th" IN alld forwards t.hem dt.her t.o tl", llll:al

proccssor or 1.0 other switehinp; nodes t.owards t.heir dest.illal.ioll PE. Th" mtt/JOIlIlII switeh

sends messages from the host proeessor 1.0 t.he IN. A messagr' from a PI' ellt"I'S t.l", IN ()J,ly

through t,he OIl/bOIlIlIl switeh.

The lime taken by a message between its entry t.o the network from 1111 (Jllt/m.mll switd.

and its exit. from the network throngh an ill/JOIlIlfJ swit.r:h at. t.he destination PI' is <:alled

the nl'tlllork latl'nell. A message requires S t.im~ nnits for l'Outing at. mll:h swit.eh 011 the IN.

Sob, is the onc-way network latem:y with qllelleing delays.

The Closed Queueing Network Madel:

The closed qllelleing network (CQN) mode! of the M~iS is showIl in Fip;nm 5.4. Nodes

in the CQN model represent the eomponents of a PE and edges represent their inter1lt:­

tions throllgh messages. P, M and Sw represellt the processor. memory and switeh nork.....

rcspectively. The service rates for proccssor, memory, and switeh nodes arc denoted hy

~. t and k, rCllpeetively. An arc indicatcs how the acees" is sent from the tail of the arr:



• CI/M'TEll 5. J'v/ULTIPIWCESSOIl SYSTEM ï9

1.0 its Il,,ad. A vah", 011 ail an: is 1.11" prohahility witll which ;'n ",:l:l'SS al. the tail"sc" that

lillk. Vah",s for Il'''-work lillks ;trI, 1101. showlI. W" ;L"ume that ail 1I0des ill the perforlllall""

modd an, sillp;l" s"rv"rs. with First Comn Firsl. Served (FCFS) disdplille. Theil' servic:e

tiuu" are expolIl'lIlially dislrihllted. Now, we de~",rihe how t,o compute waitiug time al the

lJ(ules, wlHm IJIll system operat.e!' at, st.eady st.ate with Ut thrcads 011 cadi proccssor.

Procp.ssor Node: The meall vaille of service lime for a thread 011 the processor is R time

IIl1its. Threads do 1101 migrate, so thwads al. a processor i bdollg 1.0 a cl;L" i ill lhe CQN

mode!. The wait.inp; t.ime w;,i for ft threacl al, tin: proccssor Bode i illd1lcles it.s service timc

alicl the '1''''I1l,illg dday (whell other ""'11111 threads are servieed):

111~· = (1 + !!L.=..!.n· .) R1,1 Ut 1,1 (5.1 )

•

nef<!, "1" dellol.(~~ the lIewly arrivccl (n,-th) thread. ni,i is t.he lIumber of l'Cudll threads al.

the processor i, when t.he number of threads in ch" i is nt. Thus, n:,~ 1ni,; is the nnmber of

threads of CllL~S i al. the processor i, when the population of c1ass i is (nt -1), and presents

a '1neneing dclay of n:,~III;,; R t.o the newly arrived t.hread. Note that lIi,j for class i al.

proecssor j is zero, because no c1ass i thread is exccuted hy proecssor j.

Memory Node: The mean vaInc of service time, for each a<:cess to the memory, is L time

nnits. For re'luest.s from a thread al. processor i 1.0 the memory al. node j, cm;,j is the lIisil

1.lIio. The lIi.,i! ratio for a subsystem like the memory at anode j for a thread on processing

node i, is the number of times the thread requests an access to memory at node j between

t.wo consecntive execntions ou processor i. The value of cm;J depends on the distribution

of remote memory accesses acrOSs the memory modules. Since the service demand for a

CllL'5 i aCcess at m'H110ry j is cmiJ L, each access waits for the following duration wiJ:

(5.2)

•

The terln in circular brackcts is the total queue length experienced by a newly arrived

access from cJa.~s i at the memory node j. The factor n~~' interpolatcs the queue length of

c1ass i, to rellect the queue length when the thread population in c1ass i is (nt - 1). The

queue length duc 1.0 remaining classes is E~=l,r;oi nrJ'

Let the distance, h, between two PEs be the minimum number of hops required along

any possible path from one PE 1.0 reach another PE. Let dm.., be the maximum distance

betwccn nny pair of PEs in an MMS. Wc assume a geometric distribution for remote acccss
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pattern. and charaderÏiw il. lIsill~ a )ocalit.y pal'iJ,lIldt'l'. P."U" Tht' fJ ... ll' is il fadol' hy whkh

the probahility of an accp:o;s tn il l't'mut.e 1IH'I11Ory lIIo(lult, at. a disl.alH"l' of Il hops 1't'1lrU"I'.<i \Vith

respect t.o t.hat at. a dist.ance of (il - 1) hops. In part.Îl:ular. thl' prohahilit)" of" IIII'UII,r)"

acres:; t.o a retnot.e lltelllory module al. il disl.alln~ of Il hops [rolll tlw local prw'pssor, il'

1J~~tv/a, whcre (1 is ft lIonnalizillg C:OlIsl.allt.. A lu\\' \'alut' of JI .... , shows a hip;hl'r io('alit.y in

memary accesscs.

('71/·i.1 = (r•. :1)

dmur

Il = "'"' 1/'L- ......
11=1

The average distance dfJII!1 travelcd hy il. remof.{! i\(:ccss is:

(fl..!)

•

•

We restrict our attent.iou to t.he geollletrÎl: distrill\ltiou, 1.0 hriuV; 0111. u",auiuv;ful rl'sults

for users of lIIultithreaded systellls. The v;eolll..trÏ<: distrihlltion ''''pt lires the loeality ill

Tomate acccsscs, and is uscful for high performance. A similar aC:CllSS pat.t.erll hiL"t hl.!lm

studied hy Agarwal [3, 50]. While the relllole ac,"'" pattern is del"'III\<"'t 011 1.1", workl",,,I,

a locality is exploited in pradiee [971. Our m()(lei is applicahle 1.0 ol.her distrihut.iolls, e.V;.,

a ,miform distribntion over P nodes, explore<l in Chapter 6, yidds '''''i.1 IL~ I/(P - 1).

IN Switch Nede: We model the switch IL' two separate 1I0des, inllfl1mrlllllll ollt/mlll"l.

The Incan service lime at cadi Bode is S lime lIuits. The (!ffed. of IIwssage length ou sl~rvk(!

time is inclndcd in S. We make following I.wo :L,sumpl,ions to simplify tlw swil.ch mo,lel.

The assumptions for switches are IL' follow,,: Fi...<t, I.he switch operates ill one <liredion

al. a time while other links are i<lle, c.v;. IlIl.cl's iPSC/2 alld iPSC/1l6() [121. &<:0,,,1, the

network switches are not pipelilled. I3y dlllnv;ing the serviee rate of 1.1", switches, wc ohtain

the desired switch performancc. This method works weil, ex""pt to :,,:hieve 1.1", low lat",":y

of pipelined networks in the presence of a Iight network trafli<:. This exception is Ilot

restrictive, bceause with IL~ smalllL~ 4 thr..a<ls, the network in III1 MMS is dose 1.0 sal.umtion

(Section 5.6); and near the network saturation, the performance of pipelilll:<i networks is

similar 1.0 thal. of non-pipelined networks (App"'"Iix Cl.

A switch node interfaces its local PE with four neighboring switch no<les. (The n""h

network has four neighbors.) The v;dil. ratio eii,j, from 1'1'0'''''"01' i to inhouIIII switch i, is
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"OIlp"I"d iL' I.h" Slllll of th" wnwt" a,:!:!"s,,,. whieh pass I.hrough t.he swit.ch j, iL' shown

in Fiv;ure ;'.a. Tlw visit. ratio ('(Jr,) fûr the ol't.bonud swit.eh is saille as Cmi,j, hcca,llsC ail

rmflotf~ mnInory ac:ceSliCS of dmiH i whieh pass throllgh the onthonud switch al Hade j arc

s"rvie!!d hy the 1II!!lIIory at und!! j.

41: ;orLdisl.auœ(sort!!cLpes};

42: r sorl. I.h!! proœssiu!'; uodes a""oreling t.o t.heir distanœ frolll t.he node (0,0),

4:i: and place thcir "id"s in the 2-dimcnsiollal array "sortccLpes". */

~A: for (d = d",ax;d > O;d - -)

45: {

41i:

4'7:

4l:l:

'19:

50:• 51:

52:

53:

54: }

for (k=l; ((k<=uulII_Proc!s) && (sort.ed_pes[cmk] = 0)); k++)

{

"c1lI_id = sOl'l.e,Lpes[dj[k]; r nC1I!-id ;; (x,y) iu the lIIesh • /

{ for ead. 7tcighbour of "e1l!-id ({x-l,y), (x+l,y), (x,y-I) and (x,y+l)}

r if (nci!lhl)()ur is 1II0re dist.aul. t.hau 7tc1ll-id from proc:cssor i)

{add visit-ratio of the switch at lleighb01tr to Cii,flelV_id) • /

}

}

•

Figure 5.3: Pseudo "ode to cOlllpute the visit. ratio CiiJ.

Using the visit ratios and service times, the waiting times cor c1ass i at switch node j

arc:

llIi,j,a = (1 + fI:~llli,j,a + L~=ln'illrJ,a) eOiJ S at an ontbound switch (5.5)

llIi,j,/ = (1 + fI~I~lni,j,/ + L~=ln'i nrJ,il Cii,j S at an inbound switch (5.6)

Tcr'1lri in circulaI' brackets arc the queue lengths experienced by a newly arrived acccss from

class i at the switeh node j. The factor flh~1 interpolates the queue length of class i, to

rcllcct the quene length when the thread population in class i is (nI -1). The queue lengths

duc to relllaining classes at ontbound and inbound sViitehes are given by L~=I,r;<i nr,j,a and

E~=llr#inrJ,/1 rcspcctivcly.
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For a gcometrir. distribut.ion. 11\ble n.l :-ohowl'i t.ht' visir, rat.ios t~71lt.). ('Ol.) alHl (·i l .., for

class 1 t.hrcads al Bades 1 t.hrollp;h Hi. when J1rnllClk ami l'.HI' an' 0.5 and 0.5. resppdi\'dy.

These values arc eomputecl using Equation il.:! ancl Figme il.:!. (UI) ar" th" ",,-orilinatt's

of node 1 in the 4 x 4 mesh, ancl (x,y) ml"l"<'SI"ll\lls 10 a nod,' j (= ·11/ +;1" + 1). VahlPs

in bold·faccd, emIJ/twii.'l, and hraekcts "d'· are t.1lt! Cl1li.i·s for t.lw lllt~lllot'ies al. distaufes of

1, 2 and 3 hops, respect.ively. Similarly, wc obtain t.he visit ratios for otlll'r d'L,""s. With

thesc visit ra.tios, wc compute the waiting t.intes Hsill~ EqllatiOllS 5.1. 5.2, 5.5 iLnd 5,(;'

x=o x=1 x=2 Il x=:l

y c7nl,j COl,j e~l,j C7"'IJ eOI,) ci),j C7I"),j I:°l,j ei l .) ('7111 J t~O:J r~ll J

0 0.5 0.5 0.5 0.067 0.067 0.18:1 0.022 0.022 (l.{15(i 0.067 0.0(i7 0.18:1

1 0.067 0.067 0.183 0.022 0.022 0.056 10.0171 0.017 0.0:13 o.lI:œ 0.022 0.056

2 0.022 0.022 0.056 10.0171 0.017 0.033 0.03:1 0.033 0.03:1 @.0171 0.017 O.O:i:1

3 0.067 0.067 0.183 0.022 0.022 0.056 \0.ül7! 0.017 (1.033 11.1122 0.022 0.056

Table 5.1: cml,j, cOI,i and eil,j for IJ.'IIII = 0.5 and 1J1'f!"wl,~ = 0.5 OH a" x JI mesh.

The following assnmptions simplify the atmlysis of CQN mo<ld: (1) Every thr",,,1 in

a proec~sor that is waiting for a lllemory request will gel. il.s n'lluest in finite tim". So,

therc is no deadlocking of threads waiting for memory reqnests <lue 1.0 finit" ""sourc"S. (2)

Only finite number of threads arc adive in a proecssor at. any instant.. This helps 1.0 avoi<l

deadloclting al. network switches duc 1.0 finite buffer eapadties of r"aln"twork swil.<:Iws. (3)

A sound multithreaded program executionmodel, sueh 'L~ <lal.allow-like EAIlTH llIodd, <loes

not have inherent deadlocks. These assullIptions ar" r"'L~onable for praetiealmultithrm"le<l

systems Iike TERA [9], Alewife [6J, and EAIlTH [461.

The above CQN model satisfi"s following conditions of a TII"OfillCt-jonTl network [15, 75J:

• .Job Flow Balance: Sinec the CQN is a dos"d model, for ea<:l. d'L~S, the nUlllb"r of

arrivais 1.0 a subsystem equals the mllnber of departlll"es from the subsystem.

• One-Step Beltavior. A change in the state of a CQN results only when therc is a

single access that 1l10VCS betwccn pairs of subsysl.mns in the system. Thus, no 'lCCCSS

gets serviee al. two or more subsystems simultancously.

• Deviee Homogencity: The serviee rate of a subsystelll for a particular d'L~s does Ilot
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depcud ou the statc of the system iu auy way except for the total queue length al. the

subsystem and the designatcd class's qneue length.

The c'tnilihrium state prohahility for a prodnct-form queueing network can .be obtaincd

hy multiplication of a fuuctiou of queue lengths al. each of its scrvice centers. An explicit

cnumeration of complete statL'-space is nûl, nccded 1.0 obtain this probability. Ncxt, We

11esl:ribe how to obtain the performancc measures for our CQN mode!.

Solution Technique:

Au aceurate solution 1.0 the above mentioned CQN model using the state space tech­

niques is l:Omputationally intensive [751. For examp1e, a two processor system with 10

threads on each proccssor has (!O) x aU) = 113504 states, where œ) = ln 'l;j!k!' A solution

for I,rodllct-fonn networks can be obtained with efficient techniques like Approxima!e Mean

Vaill" Analy.~j.. (AMVA) [561, which is outlined in Fignre A.l (in Appendix A). The pseudo­

code of the software wc developed for this purpose is described in Appendix F. With nt

threads on each processor in the system, for each class i the AMVA computes:
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1. Ài, the rate al which the pro('t!:-;sor i sentis memory ô\(TeSl'iI'S:

2. m;.ru' the waitillg t.illw of an (l('('ess al ('adl Bo(le 111 (Etillatiolis 5.1. fl.2. 5.5 :llul fi.H);

a. n:,m l the queue length for CL d,u;s i ;HTPSS al. el\('h lIluh' 111.

The core approximate MVA al,;oritlllll complltes statistks for poplllat.ion Vl'd,ors N =
(Tl/, ...• Tl,) alld N - li. Poplliation veet.or N - li indkat.es t.hat. t.her" are Il, - 1 t.hrea"s

al. pro""ssor i. ami ot.her proœssors haVI' Tl, t.hr",,,ls Pad.. TI", illt.llit.ion of t.1", MVA is

t.hat a newly added t.hread to a d,",s (i.e. new poplllat.ion N) """" t.he '1l1endn,; net.IVork in

eqnilibrillm with respcet 1.0 the poplllat.ion N - li.

Step 1 of the AMVA makes an initial gness for 'I",mden,;t.hs at. eaeh ,,,"le. for l' d,",ses

of threads. and a thr",,,l popnlation of N. Usin,; 1.1", ql1lme len,;t.hs at. l'ad, s."vice m"le for

popnlation N - 11, waiting times arc compllt.ed for the new t.hre,,,I/ac,,,,ss (Stcp 2). The

waitillg times at varions nodcs arc given hy Equations 5.1, 5.2, 5.5 iLnd 5.li.

([j.7)'\;(N}

Waiting times al. ail l'v! no,les for a d,",s i are nsed t.o compnte t.hron,;hpllt.s (Stcp 3).

N;• Using Little's law [nI. qllelle lengths al. a node for "ach d,",s are comp"t."d (Step 4).

Il; '" = '\;(N} 111; ... (N). . ([j.Il)

Step 5 verifies whether the difference h"tw",,,, t.he '1,,,,,wlengt.hs from snccessiv., it."ra­

tions of Steps 2 1.0 4 arc within t.he t.oleranœ I"v,,!. Thlls. perfornHlnc" m'-'"'"r"s of int.cJ'l'st.

arc obtained al. the popnlation N (sec t.h" pselldo eu<l" in Appel1lhx l').

Table B.l in Appendix B lists ail symhols IIsed h"re. B,"""I on '\;, 111;,... , servieil tim"s

and visit ratios, wc compllte the following performance m"'"'"res.

1. Ob"erved Network Lateucy: An access from a pro""ssor i el":onnt.,,rs '1111"",in,; delay

and service time al. each swil.<:h in the network on its pat.h. So, the average network

latency 8ob. for an access, is the sllm of waiting time al. a Hwitd, node (wei,;hted hy

the visit ratio of a class i thread 1.0 that switch node) over ail P switch"" in the lN:

•
l'

Bob! = L (1lJid,l x eii.j + w;,i,O x (!Oi,])

j=\

([j,!!)
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w· 1 amI tIlt 1 () ilf(l wait.iug t imes al. iuholllld and outhollud swit-c:1ws, respectivcly.
l,). •. ,

2. A-l,!.'i.'m!ll~ Ralf: if) litt! Ne:t1IJ(Jri..-= '\nd is an average rate at whieh il proccssor sends

a.":l'S""" Oh t/", IN (t.o r"mol" m"mory modules). ).j is the rate al which the processor

i sends 1IH!1lI0TY aecc:-;ses. A l"rat:tioll l}n'''lOlt~ of thcsc messages arc ~cnt ta rClllotc

IIlI!lIlory modules. 80,

'\,".l = A, x ]Jrt!UlOtl'
_ nt x ]Jremoif:

- ",II •
LJj=1 tlJ~,j

(1;.10)

The dCUOIuillator represcllts the total wail lime for an access in clasH i.

3. Procf!.,.wr Utiiiza/irm: ..\; is the mte al which responses lo memory acccsses arrive

(~uld t.hreads 11;"1. enabled). Since R is t.he duratio'l cf a thread at the processor, the

prOl:essor ulilization Ut' is given by

Using the above CQN lllodel, we analyze the performance of processor and IN subsystems

now. We outline these msnlts in Section 5.3. In Section 5.4, we present the details of a

simulation modcl based on Slochastic Timed Petri Nets (STPN) uscd 1.0 verify some of the

analytical predictions.
•

Ut. = ..\j X R (5.11)

•

5.3 Results

This section presents the highlight of the results and observations (1.0 be detailed in Sec­

tions 5.5 lo 5.10) when using our analytical model 1.0 address the performance issues of

lIlult.ithreaded architectures.

Withotlt loss of generality, we analyze the MMS described in Section 5.2 as a case study

with defuult values of some workload and architecture parameters as presented in Table 5.2.

The workload characteristics arc nt, R, l'remote and dllog . Chapter 4 shows that the effect

of "ontext swit"hing is 1.0 limit the maximulll Up 1.0 uZe:' So, we use R 1.0 incorporate the

"ontext switch value liS weil. Ar<:!liteeture parameters, Land 5, arc chosen 1.0 match the

thread rtInIength R. The network has k = 4 nodes in each of the two dimensions. For

architecturai parameter values iu Table 5.2, wheu the application executes olle thread per
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Bode (Bt = 1). and atTt'SSPS an' st'n'ict'd hy loral 1lU'lIIl1rit's. tht'Il 1"" is !'"'O'Ïtl. Also, LI1I'

Iluloadcd value of Sc,/J,\ is 'li .a3 t.iull' uuits.:.! Our n'suit s show ho\\" hi~h 8 01,,\ \'a~lll's ris" witit

respect 10 its tlulua<ietl \'allH'. 1lIHIt~r 1ll1l1t.it.hrp,ull'd pro~ralll pxpcut.iul1. Fil1ally. titI' 1.I't'nds

wc have reported for an ~H\.fS with ·1 x ·1 Illl'sh. a.n' al:m OhS(,fVI'd fo'.' lar~l'r sizl' systellls.

We report SOIllP rpsllits 011 the ptrect of sl'alill~ III' t.u ail i\I~IS with il III x III IlIt",h ill the

,text dmpter.

Workload Architecture Olltl'Ilt

Parallwters Par.Ll11t~t.l~rs Ilarallu·'t·r.s

1I.t 1 IJn:rrwll' 1 R
--_....•--

IJ.\II'(~ dcnr"l L S k V,,(%)
~~

~:1O Il.5( => 1. ï3:l) 10 10 ·1 50 27.;la

Table 5.2: DefaillI. Settin~s for Model ParlUnetel's.
GivclI an archit~dtlreand a program workload, OUf analytkal Il1lUld yidds key perfor­

tuance mcasl1rcs of intcrest~ t.he prOl:cssor utilizatiun V,,, the lIlessal-!;e ratl! tn tlw III~twnrk

À"et, and the observed uetwol'k latency S"b.•. Th" hi~hli~htsof the r"slllts are 'L' fol\ows.

• lu Section 5.5, our model provides a quantitative! dmr:u:lel'izatioll uf how V" varies

with the progralll workload a.nd the arehitedur(! par;ulU~tt~rs.

• In Section 5.6, we "xplore t.he wlatioll hetw",n '\,,0'/ and V,,, and identify the systmn

bottlenecks for an al'plieatiou progr'l'n. For a ""lIIpilt,., DilI' mode! shows the impl\(:t

of optitnizations of the program workloa.d on the IH!rfol'lImuee, e.~. wh(!lher the

nctwork has reachcd the maxiulUlIl Ilutuhcr of IlIcs.'iaw~ il eall ddivcr, dcfincd lat(~r

as the nctwol'k capacity. If the nctwork l'l!lIIains saturated after tllniul( tI", workload

and V" rcmains low, then thl' nctwork is il bottl"Ill,,:k. For a syst"m ,m:hitcct, slll:h

application is a test ClL,e, where the system desi~u is uot weil halanl:l:'l.

• In Section 5.7, wc analyzc how Sob, varies with the program workload and ardlitm:turc

paramctcrs. Wc examine the performance of the uetwork and prnœssor Hllhsystems.

2For comparison, a pipelined network will haVI! il ha."I~ value of 11.733 tinw tllliL.,. lIo\lo'l!vcr, in Section 5.6

and Appcndix C wc show that with luultithrcadinR and cOlltcntion!'!, tilt! flch'antaKI! or pilU!liniuK on Sil". hi

quickly lost.
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• In Section 5.8, we demonstrate the usefulness of closed system models that the pro­

gram worklmul and architecture parameters are predictable by users. ln l'articulaI',

near network capadty, t.he network performance is highly sensit.ive t.o À"ch the input

parameter of open syst.em models of the network [30, 3]. We also compare the robust­

nIC'S of our model with t!lrcc successivcly refincd open system models 1.0 estimate the

overail performance, and show their weaknesses and tradeoffs wit.h respect 1.0 closed

system models.

• In Seetion 5.10, we charact.erize the utilizations of memory and network switches with

respect 1.0 model par:lInnters. Wc show how these subsystem utilizations vary when

the processor performance is high. Such characterization l'l'ovides an insight 1.0 the

impact. of program workload optimizations on the performance of various subsystems,

and helps to identify bottlenecks in the system design.

Wc derive ail analytical results using the queueing model in Section 5.2. The significant

transitions in performance behavior al. various places, arc explained using simple bottleneck

analyses.

The results arc presented li3 follows. Section 5.4 verifies some of the model predictions

using Stochastic Timed Petri Net (STPN) simulations. In Section 5.5, wc characterize the

processor utilization with model parameters. Section 5.6 reports an analysis of the network

performance (À"c,), and shows the feedback effect of network subsystem on the processor

perfornuLIlce. A large network latency Sob... is considered as a fundamental cause of per­

formance drop in single-threaded systems [14). Hence, Section 5.7 is an investigation of

the performance behavior of Sob... and its impact on U/I' ln Section 5.8, we demonstrate

the robustncss of estinmting U,I by analyzing a c10sed queueing network model, and com­

paring with other approaches based on open system models. Through a simple example,

Section 5.9 shows the usefulness of our rœults for performance related optimization of work­

load param\1ters. ln Section 5.10, we characterize how utilizations of subsystems vary with

model parameters. Wc show that an average utilization of the three subsystems al. anode,

called system utilization, tracks the onset of high processor performance.
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5.4 Verification

In this section, wc outlîue the St.odl11st.ie Timed Pet.ri Net. (STPN) mode! for t.he mult.i­

threaded mnltiprocessor system descrihed in Se""ion 5.2. We verify son", of t.he pl'l"lict.ious

of onr analytical modcl, using t.he simulat.ious of (STPN) model for t.he MMS. The ".slllnp­

tians made for the STPN modcl arc t.he sanw n.' t.hose for t.Iw analyt.iealnllllle!. While such a

validation by no IIlcans is complete, simulation results proville an ilHlepelHlont (~oIlIiI'I1ULt.ioll

of analytical resnlts. Simnlations also permit. ns t.o st.ndy dmnges in archit.eet.ural parame­

ters. As noted in Chapter 2 (Section 2.3), lUI overlap of t'Omput.ation and comnllmieat.iou

poses difficnlty in the run-time me...uremeut of performance of mult.it.hre",!e,1 syst.ems.

5.4.1 The STPN Model

MClIlury-----1
l " 1

1

1
1
1
1

Ir...",. 1 1, 1 __ ' 1

1
p71NclWlllk Inlcerllee

1'rtJl."Cs.~or

1- - - - -"

1
1
1
1

oLlwr

. S ,- lll!lWflrk
8WIlCh111 .on·... ! _ _ JHwitchcH

Nlltwork Swilch

•

Figure 5.5: Petri Net Model for a Processing Element..

•
The STPN model of a multithreaded proccssing elCluent {PEl is shawn in Figure 5.5,

A PE consists of a mnltithreaded p10cessor, a memory module and a neLwork interface. A

pool of ready threads is maintained al. place p4 in the processor subsystelll. Transition t1
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ex,,':ules on a lhread for the duration R b"fore it "ncouut"rs a long laleucy memory access.

Transition t2 ,lirl!l:ts a frlU,tiou of ac<:esses 1.0 remote melllOry througb au outbDund port

ou the nctwork interfacc, with ft prohahility l}rt~motc' Othcrwisc, the acccss is scrviccd by

lhe lo<:al memory. Trausition t2 nlso handles saving the state of the outgoing thread and

resloring thnt of the 'IlJwly sdwduled thread, in duration C.

The transitions tre", /...",t/, and t8, and the pla""s p7, p8 and Pllor" model the network

iuterface. An iucoming message from the net.work for a .mspended t.hread in this proccssor,

is forward"ù 1.0 1,4, while tl", r"qu"st 1.0 access the memory is forwarded to p3.

The memory pori; moùcled by a tokm, in IJO, picks an ac""ss from p3 for service at t3

with a dnration L. Transition 1.3 routes the response to p4 (local access) or p7 (remote

acccss).

Transitious with non-zero delays arc mpresm,ted using r"ctangular boxes. Rand L have

"xponentially distributed service time, and C has a fixed time delay.

5.4.2 Comparison with the Madel

We simulated t.he STPN model, and also solved the analytical model for the following values

of parlUneters: Pre...olc = 0.5, and S = 10,20. Each mn of the simulation was carried

out for 100,000 time units, thus each transition fires from 50 to 5000 times depending on

values of parlUnet.ers. For variations with respect. to nt, Figure 5.O(a) shows the values of

..\ncl' With an increase in n" ..\nct iucreases and l'caches close to saturation by lit "" O. For

S = 10, the modcl predictions are almost identical to the simulation rcsults. For S = 20,

the model predictions are within 2% of the simulations. Further, model predictions in both

cases are slightly lower than the simulations.

Figure 5.O(b) shows the variations in Sobs for the same set of parameters. Wc observe

that Sob.• increa.~es liuearly with Tlt. While the values of Sobs obtained from simulations

nmtd, c10sely with the analytical results for S = 10, the values are close within 5% for

S = 20. Wc also studied the effect of a change in the service time distribution for memory

access time (L), from exponent.ial 1.0 deterministic, only for the STPN simulations. Wc

found that Sob.• values were still within 10% of original model prediction. This indicates

that the small error iu prediction is because of the variance in service time distributions,

and demonstrates the robustness of the model.
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Figure 5.6: Model and Simnlations.

5.5 Processor Utilization

•
In this section, we apply our integrated system model to study the procllssOl' ntilizat.ion U'J

- a key performance parameter of interest. Onr objective is to llxplore for 1II/lIlt !mllle.' of

lllorkload parameters i.' Up hi,qh? Section 5,5.1 eharacterizes how U" varies with the progmm

workload and architecture parameters. In Section 5.5.2, wc nsc onr modcl to identify

critical values of certain program workload paramcters at which signilicant pcrformancc

transitions occur, and vcrify them via an intnitivc back-of-the-cnvclope compntation blL~cd

on bottlcneck analysis.

5.5.1 Model Parameter Characterization

Given a set of inpnt workload parameters and architectnral parameters in Table 5.2, thc

AMVA yields yields the arrivai rate (>.;) of memory responses at the proccssor i. Sirn:ll the

processor is kept busy for a duration R by a thread, tbe prOCllssor utilization is >.; x R (Sllll

Equation 5.11).

•

Let us consider the elfect of changes in workload parameters TlI and TIr",,"'!" on U'J shown

in Figure 5.7. Expectedly, a decrease in Premol" and an increa.~e in Tlt yields a high U'J' Two

conspicuous regions for low Up values are, 1.1. smaU value of Tl/, and a large vainc of Tlremol"'

When nI is smaU, the communication for 1.1. thread is not overlapped completely with the
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Figure 5.7: Effect of nt and Promole on Up •

computation on other threads, and low Up results. When Promole is large, a larger fraction of

accesses incurs network !atencies. Also, increased contentions on the network increases the

value of Sob•. (A small reduction occurs in Lob. at high Premote.) Figure 5.7 shows that for

R = 10 and 20, the knee of the Up curve occurs at Premole = 0.2 and 0.6, respectively. We

analyze this transition in Up in the next sectioll, and investigate the network performance

in Section 5.6 and Section 5.7.

The elfect of network related parameters (S and P.w) on Up is shown in Figure 5.8,

where nt is 8 and Premote is 0.5. Note that Up decreases when either the switch delay S or

the locality pnrameter P.w increases. With an increase in S, a remote acces. sulfers a large

delay on each network switch. So, a suspended thread, expecting this response, waits for a

longer duration. Note a sharp decrease in Up when S increases beyond 10 (= R). With a

decrease in P.w, the average distance davg for a message increases, resulting in a decreased

processor utilization. Since nt is large (say 8) we expect a high Up , but Up still depends on

the feedback from resources, which is quantified by the response time of resources. We

make the following two observations from Figure 5.8: Firs!, for a very fast IN (Le. low S),

the locality has no impact on Up, because the delay for a message on the IN is negligible
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•
compared to that on otller system resonrces (say, memory). Seconri, a clccrelL~e in U" cine

to a decrease in locality is inversely proportional to ratio of the average distance tllIll9 in

t '" 1 t S 10 U, at .w=U.1 ,/.. " at .w=O.8 - 2 E t l' -1 Swo cases. ror examp e, a = 'U at p -08 < t -U 1 - •• ven a lIg 1
JI 'W- . Ul'" ft p.w- .

values, this observation holds, becanse the network is a bottleneck.

Figure 5.9 shows the effect of thread runlength R lInd memory at:l:ess time L on U". Tu

accentuate the effect on Up, we choose a high value of Premole Le. 0.8. Let ns consider two

symmetric halves of this graph, say a plane at R = L joining R =L =Il and R = L = 100.

On the left hand side of the (imaginary) plane R = L, U" is high, elsewhere U" is low. An

increase in R has two effects:

1. A processor is busy for longer duration at higher R. So, a linear increase in U,. is

observed with R in Figure 5.9. Figure 5.9 conforms with the intuition from Equa­

tion 5.11 that Up increases liuearly with R (uutil a high R affects ),j).

2. The processor issues memory requcsts at a reduccd rate (for same 711 aud Premote

values). A reduced contention on the network helps to maintain Up high till a larger

value of Premote.

•
Figure 5.7 also supports these two observations. A runlength of 20 yields Up values which

are twice of those for R = 10. Also, the knee of the Up curve occurs at Premole values of 0.2

and 0.6 for R = 10 and 20, respectively.
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5.5.2 Analysis of Performance Transitions

In this section we will use a back-of-the-envelope bottleneck analysis to discuss reasons for

wide performance variations. We, however, note that our performance model of Section 5.2

is necessary to obtain an accurate solution.

We notOO in Figure 5.7 that the kncc of the Up curve occurs "at Promoto=0.2 and 0.6

for R = 10 and 20, rcspectively. To compute this critical Promoto, we apply a bottleneck

analysis at the processor node in Figure 5.4. A remote access from a processor node travels

2davg hops for a round trip on the IN, and spends 2S time units to get on/off the IN. The

remaining fraction of acccsses, i.e. 1 - Promoto, is serviced locally. Thus, message rates at

the processor uode are:

message rate from proccssor
1
R

Pr~rnote

:::; local memory service rate

< I-prr.mptt
- L

+mcssage rate from network
1

+..,...,...,:-----,~
2(davg + 1)8

(5.12)

•

Equation 5.12 givcs the critical Promoto for the knee of the Up curve, and is independent of

nt. For a lower value of Promoto. the proccssor docs not run out of threads, resulting in a

high Up. This Promoto value is 0.18, when P.w =0.5 and R = 10. Figure 5.7(a) conforms with

this observation. At R = 20, critical value riscs to 0.7, which conforms with Figure 5.7(b).

When Promote is increased beyond the critical value, Up value diminishcs irrespective of
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nt. mainly because either the memory or the network beconws a bol.tlenœk.
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At critical value of Prcmotc, service rat~s at proecssor, mcmory module, and nctwork

switch arc balanced, i.e. Premole = 0.18, when l/R, l/L and l/S arc 0.1. For these servi""

ratcs, a proccssor sCIuls, on average, Olle tIlcmory acces:; fol' a. thread whilc the mcmory

module and the network switch arc busy responding to one aceess each. Thus, intuitively,

three accesses kccp subsystems busy at steady state. To tolerate ,lilrerences in serviee times

and their distributions among these subsystems, a few more threads arc requirec1. Wc note

from Figure 5.7 that 5 1.0 8 threads per processor arc suflicient 1.0 achieve most of the gain

in Up• Changes in service times (R, Land S) lead 1.0 changes in distribution of threads (or

accesses) based on service times. This implies that performance gains arc realized np 1.0 a

smaller value of nt.

5.5.3 Summary

•

•

In this section, wc have shown how to compute U" given workload and archil.cc:tural param­

eters, characterized the processor performance with model parameters, and analyzec1 the

significant performance transitions. The results on proccssor ntilization U,. arc 'L~ follows:

1. A high Up can be achieved by increasing nt liS long 'L~ the frac:tion of remote accesses

(Prernot.) is below a critical value, which is determined by R, L, S, and remote ac:cess

pattern.

2. A high R raises the critical value of Prt:rnote up to whidt U" remains high. Also,

a processor is kept busy for longer duration when each a thread is exe(:uted, thus

increasing the Up •

With 5 to 8 threacls per processor, most of the performance gains dne to multithreading

are achieved. When Up remains low, to optimize worklolld parameters (for c:ompilers) and

architectural parameters (for system architects), an nnderstanding of the performance of

other subsystems of the MMS is essential.
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ln this section, wc apply our modcl ta study the network performance parameter of interest­

ÀlIC" the message rate ta the network. In Section 5.6.1, wc show how ta compute the message

rate ta the network, and its maximum (or saturation) value for a remote access pattern,

the 7lCtwork CIlp"city. Wc show that Ànet can saturate even at a low value of nt. Hence, the

performance hehavior of an MMS near the network saturation is essential for performance

tnning (unlike in single-threaded systems [3]). In Section 5.6.2, wc quantitatively charac­

terize the network performance hehavior with workload and architecture parameters.

5.6.1 Capacity of the Network

Given the input workload and architectural parameters in lable 5.2, wc solve the analytical

modelusing AMVA. For a thread executing on a processor i, the AMVA yields the arrivai

rate of threads Ài at processor i. A processor i issues ouc memory access for eaeh thread,

and a fraction pccrno'e arc seut ta remote memory mod ules. Sa, the message rate of aeeesses

from processor i ta the network is IJccrnote X Ài (sec Equation 5.10). Figure 5.10 shows how

ÀlIct varies with n, and Prernote'

Let the mClXimum number of messages delivered by the network l'cr unit time l'cr proces­

sor, under any remote memory access pattern, be the mru:imum throughput of the network.

Wc also refer ta this value as the bfl7,dwidth of the network l'cr proeessor. For a particular

remote aecess pattern, the maximum number of messages delivered by the network l'cr unit

time l'cr processor is delined ta be the capacity of the network. The maximum rate of mes­

sages from the processor ta the network .,,,tumtes at the network cap"city. Wc denote the

network eapacity by ÀlIet ,.aturation' Since a proccssor allows multiple outstanding memory

aceesses, ÀlIcL rises close ta saturation even with nt as low as 6 (sec fiat, dark surface in

Figure 5.10 shawn for R = 10).

Wc use a simple bottleneek analysis ta compute t,he eapacity. Our computation should

conform with results of the AMVA algorithm, depieted in Figure 5.10. Under a remote

acccss pattern, a message travels dang hops on the IN, and so does its response. With a

delay of S time units on eaeh switch, total duration for a message on the IN is 2 dang S

time units. At P.•w = 0.5, dang is 1.733 hops. S is 10 time units. Henee, the maximum rate

at which a message is received by a proeessor under a remote aceess pattern is the eapacity
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of the network:

!lli

'\nd.~Clturfltion =
1

2 i S
(= (U)29 at. l'.• ,,' = 0.5 )

( (Illy
(5.1:1)

•

•

Using the performance modcl and Equation 5.10, wc obt.ain '\"d values shown in Fi(!;llrl' 5.10.

The dark, Hat surface in Fi(!;ure 5.10 provides the value of '\",.(,.• n'urnli"n whieh is ::::: 0.029.

This conforms with simple iutuition giveu by Equat.ion 5.1:1."

Wc note that if wc use ouly one switch instea,l of an ollt/wllIui mul au in/wllIui swit.ch,

additional contention occurs at local switch. Thus in eaeh dircdiol1, a mes:mg(~ eOlltellds

on d."g switches (= number of hops), and one local swit.ch. So, t.he uetwork "Itpadty is

restricted 1.0 :1 (d.,~+I) S'

Under a remote access pattern, a message from a processing elemeut. typieally tmvels

farther than the nearest neighboring PE. The resulting value of ti""!1 wOllld he larger t1mu

1, and the capacity of the network is lower than the bandwidth of t.he IN (l'cr proeessor).

However, the maximnm value of the capacity is the bandwidth.

Ta compute Premotc at which the IN saturat.es, let us considcr how a. PB comlllullÎcatcs

wit.h the rest of MMS, and apply a bottleneck mmlysis al. the i"lwlIllli switch. A pro­

cessor sends remote l1\emory accesses through the olltbOll7ld swit.ch at the PE, ILnd receives

responses through the inbollnd switch. Similarly, t.he memory module reccives remote mem­

ory accesses through the inbollnd switch, and responds these aceesses t.hrongh the olltbOll7ld

switch. The rate of acceSSeS sent through the OlltbOll"d switch al. a PE equals the rate of

incoming accesses through the inbollnd switch. In addition ta servidng the accesses coming

into the PE, the inbollnd switch also forwards accesses from ncighboring switches destined

for oUler neighboring inbollnd switches. This additional tmllic is t.he contention on t.he net­

work. This contention changes according 1.0 the locality in remot.e mel1\ory access pattern.

Capacity of the IN is reached when the throughput al. an inbollnri switch reaches k. ThIlS,

a balance of message rates, al. an inbound switch, yields the criticalllrem..'r. vaIlle for which

31n Appcndix C, the expression in Equation 5.13 is dcrived lIsillg Agarwnl's OQN model for n pipclined

intcrconncction nctwork {3]. Note that the pipclining of IIctwork links hn.'I no cffcct UII vahlc or ..\rlt~I ••llllmIU"'I'

Also, Ânct ••aturation is the value nt whieh the actllaJ traffie in the Uactual traffie vs. nttcmptcd traffie"

saturatcs (30).
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(maximum throughput of" switch at PE i) - (forwarded messag~s: contention)

= (rate of messages from processor and memory to local switch)

1

S
LVrkr~i cir,Î

S
= Prr..motc + lJremolc

R L (5.14)

•

•

In the "bove equation, kdenotes the maximum throughput at an inbound switch of a PE

i. Out of this total rate of messages serviced by the switch, we remove the forwarded

messages (Le. neither the source nor the destination is the PE il. Thus, the left hand

side of Eqnation 5.14 indicates the remaining messages entprïng the PE i. This rate must

equal the maximum rate of messages sent out by the PE, Le. by the processor and memory

subsystems. The right hand side of Equation 5.14 assumes that before the network switch

becomes a bottieneck, nt is large enough (say, ;:: 6) so that the proccssor and memory send

remote accesses at maximnm rate. At Ps," = 0.5, Equation 5.14 yields Premote = 0.3 for

>'"et to saturate. This Premote value conforms with the prediction of the performance model

shown in Figure 5.10.

5.6.2 Madel Parameter Characterization

Figure 5.10 shows the elfect of changes in workload parameters nt and Promote on >'"ell when

R = 10. An increase in nt as weIl as premote increases >'"et. When Premote is held constant,

>'"et increases with nt, becanse more memory accesses (local and remote) are requested by

the processor. A saturation of >'"et at high value of nt indicates that either memory (at low

Premote) or network (at high Premote) becomes a bottleneck. When nt is a constant, >'"et

increases with Premote, because a larger fraction of accesses is diverted to remote memory.

>'"et saturates, when premote ;:: 0.3 and nt is high (say, ;:: 6). >'"et,saturat;." is 0.029 (fiat,

dark surface in Figure 5.10). Analyzing Up values from Figure 5.7(a) with >'"et behavior

from Figure 5.10, we note that once the capacity is reached, Up values are low.

• An increase in nt does not increase Upo What happens ta additional messages at high

nt F These messages are quened at the switches (we will see the latency values in

Section 5.7).

• At a fixed value ofnll >'"et remains at its saturated value even with increase in Premote.

But Up decreases, bccause a larger fraction (Premote) of accesses experiences a higher
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network latency 8ob... in addition to the memory lallmcy Lob, (at local or rmnoh,

node).

Numbcr of Thrcads. "_t o 0

•

•

Figure 5.10: Effect of Tlt and P••mole on ..\"ct.

The effect of network related parameters (8 and p"v) on ..\"ct is shown in Figure 5.11.

P••mot. is 0.5 and Tlt is S. An incrCllSe in 8 incrCllSes the waiting and service time for a

message at each network switch. The corresponding thread at a processor is suspendml

for a longer durntion. The longer the suspension of a thread (due to a higher 8), the

lower the ..\"c!' This feedback due to 8 changes the capacity of the IN. Equation 5.l:J also

demonstrates how ..\".1 depends on the waiting time at allnodes.

For an OQN model, the message rate is an inpnt parameter. So, a user of lUI OQN

model has to estimate the effect of subsystem interactions on ..\"rt. Then, the user chooses

the correct netwC'rk characteristics to predict the network performance. These extra steps

are needed in OQN models to incorporate the effect of subsystem interactions.

We note the similarity in Figures 5.11 and 5.S. At 7).0...010= O.H and Tlt = S, the network

is a bottleneck and is close to its capacity. So, U" values track the belllLvior of ..\"01 with 8

and P'W' Eqnation 5.10 and Equation 5.11, indicate how Up and ..\"C! are alrected by ..\i.

Figure 5.11 also prominently displays the feedback effect of the locality on ..\"c!' A

decrease in P.w implies an increase in the locality, because a message travels a shorter

distance (da"y) on the IN. Faster traversai of a message through the IN increases ..\,.ct. and

hence the capacity increases. Figure 5.11 indicates that:
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Figure 5.11: Elfect of 8 on Anet-

1. A fast network (i.e. low 8) has a high capacity. On average, a fast lletwork delivers

lIlesgages too quickly, so the performance gains due to locality arc llegligible.

2. Equation 5.13 indicates that an improvement in Anet duc to an increased locality is

at most of the order of the reduction in davg . Figure 5.11 shows that for 8 > 6,
mtlXimum ..\nd < da", aL 11.",=0.8 (~ 3.17)
rrnnnnum X"el ïJQ"9 at p.w-O.I (=> 1.11)'

Equations 5.10 and 5.11 indicate that th~ 3bove observations should hl)!d truc for Up

values as weil. Our obserV'.ltions in Section 5.5.1 conform with this intuition.

The elfect of thread runlength Rand memory latency L on Anet is shown in Figure 5.12,

where Prernate is 0.8 and ftt is 8. Wc make the following observations:

• A decrease in R reduces the time spent by a thread at the processor between successive

memory accesses. So, Up decreases, but Anet il'.~reascs. When the values of Rand L

arc low (say, from 48 down to 28), Anet riscs rapidly to (93% of) its saturation value.

• The Anet surface is symmetric with respect to R and L. For remote accesses, a thread

lliternates betwccn execution at the processor, and a service at the remote memory.

So, the lower of R and L values dominatcs the rate at which the accesses are sent on

the network.

Wc discussed the Up values for above parnrneters in Figure 5.9. Apart from Aneto Up values

arc also alfected by RIL ratio.
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Figure 5.12: Effed of Rand L on À"",.

5.6.3 Summary

The main rcsults on Àflct , capacity of an IN, and their impact oU U1" are stulunariz(!fll)(,low:

1. Whcu either Prcrnotc or 1&t is illcr,~ascd from a. Jow va.luc, ).net increa..'ieH, and :;n,turntcs

close to the capacity of the IN. At low l'wnut•• Up is mainly governed by "t. Once

the capacity of the IN is reached. Up dOL'S not improve with an increll.~e in "h hnt

decreases sharply with p.enlOt••

2. Capacity of the IN is determined by Sand cInvy • A faster network, i.e. low S. hns

a higher capacity. (As shown in Appendix C. the pipelining does not incrClllle the

capncity.) Also, a higher locality in acccsses increascs the capacity. A higher capacity

permits to achieve a higher Up•

3. Rand L have an identical elfcct on À".t. An increlllle in À"", occurs when both Rand

L arc low. But, Up value depends on ~ and ~ ratios.

5.7 Network Latency

The communication latency is considered as a fnndamental callSe for a decreasc in perfor­

mance of multiprocessor systems [14]. 80, wc analyze the variations of obscrved network
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latency Sob. with workload and architectural parameters. Wc also investigate how the

network latency affects processor utilization of an MMS.

5.7.1 Parameter Characterization

Given the input workload parameters and the architectural parameters, wc solve the ana­

lytical model using AMVA to obtain the waiting time at each service node, for each class of

threads. A remote memory access encounters service and queueing delay at each network

switch in the network on its path. The obscrvcd nctwork latcncy, Sob" for an access by a

thread executing on the processor i, is the average waiting time for class i threads (accesses)

at each switch. An access for a class i thread does not visit aU switches in the network. So,

in the computation of Sob.. the waiting time of each switch j 'is weighted by the visit ratio

of a class i access to that switch j (sec Equation 5.9). When a model parameter changes,

the waiting times at various nodes in the queueing network model changes. We perform

the above computation for each set of parameter values, to reHect the change in Sob. value.

Figure 5.13 shows how Sob. varies with cllanges in workload parameters (nt and Premote).

While Sob. increases with nt. the rate of increase changes significantly with the value of

Premote' Using Equation 5.12 and Equation 5.13, wc consider foUowing three parts of the

Sob. surface and the corresponding Up values (from Figure 5.7(a)j.

(i) Premote :5 0.18: In this regiou, either the processor is busy and sends accesses slowly, or

the memory is a bottleneck since the most accesses arc serviced 10ca1ly. The messages

to the IN are sent at a lower rate than Anet,.aturation. So irrespective of an increase in

nt. Sob. is close to its unloaded value. Up values arc high, when nt is large (say;::: 5).

(H) 0.18 :5 Premote :5 0.3: Beyond Premote = 0.18, the number of messages on the IN

increases. Hence, the contention as weU as Sob> increases with nt. Close to Premote =

0.3, Sob. is high. However, the drop in Up from its maximum value is not significant

at high nt.

(Hi) 0.3 :5 Premote: RecaU from Section 5.6 (Equation 5.14) that the capacity of IN is

reached for Premole ;::: 0.3, thus the inbound switch becomes a bottleneck. When nt is

a constant, Sob. remains constant at a high value with respect to Premote, because the

number of messages on the IN (either being routed or queued) becomes a constant.
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However, since at higher Premole a larger fraction of messages suffer a c1clay of Soh.• on

the IN, Up values decrease.

When nt is increased, the number of accesses waiting at the network switchcs increase,

and 8oh. increases. The network switches are the bottleneck. So, Anct mlll U'J do not

change.

Wc now look at sorne interesting operating points of the MMS. Table 5.:1 is C'.J(ccrpteci

from Figures 5.7, 5.10, and 5.13. Refer to the lines marked 'n'and the nUlllbers in the

bold-face in Table 5.3. Notice that Sob. values 4:1.8, 54.8 and 82.7, for these operating

points are in an increasing order with nt, but 50 arc their respective U" valnes- 28.4%,

40.2% and 72.7%. However, when Anet is close to saturation value (... 0.029), even a large

nt does not impro~e Upo From '1'.1ble 5.3, U/J values for nt = 4 and 8 at l'remote = 0.8, arc

26.7% .lnd 31.5%, respectively. In summary:

1. A high Up can be achieved on an MMS by increasing nt, even thongh individual

accesses may experience a large 80 b" a. long a.~ the network capacity is not reached.

2. When the network capacity is reached, even for a small value of 80b" U'J renmins low.

The item (1), without the mentioned condition, is an intended objective of an MMS. The

item (2) suggests that when the network capacity is reachcd, increasing nt has no im­

pact. The implication of the item (2) is that wc shonld explore otller mcchanisms snch Ils

increasing the thread runlength or changing the locality in accoss pattern.

The effect of network related parametcrs (8 and P.m) on 8oh. is shown in Figure 5.14,

when Premote is 0.5, and nt is 8. An incrcase in 8 increascs the service timll at each

switch. So, a linear increase occurs in 8oh•• Also through the feedback effect, Up and Anet

are proportional to ~, as shown ('arlier in Figure 5.8 and Figure 5.11. A similar effect is

observed when the locality is changed. An increase in the locality (i.e. a low P".) decreascs

dovg for each message, thereby decreasing the 8ob••

The effect of thread runlength Rand memory access time L on network h.tency is shown

in Figure 5.15. Value of Premote is 0.8 and nt is 8. Figure 5.15 shows that both parameters

have a similar effect on 8ob•• Only when both Rand L arc low, 8ob. is significantly affected.

For example, (even compared to Anet valucs from Figure 5.12) 8ob. rises sharply from 50 to
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Pr Prcmotc

PT R nt Lob. Sob. Ànet Up R nt L,.,. 8,.,. Ànet Up

0.0 10 1 10.0 0.00 0.0000 50.00 10 2 15.0 0.00 0.0000 66.67

0.1 10.9 29.6 0.0037 37.20 15.1 31.8 0.0056 56.30

0.2 11.2 31.2 0.0059 29.36 14.8 36.0 0.0094 46.96

0.3 11.5 32.4 0.0072 24.13 14.2 39.4 0.0117 39.21

0.5 11.5 33.9 0.0088 17.67 13.3 43.8 0.0142 28.44

0.8 11.3 35.1 0.0100 12.54 12.3 47.2 0.0157 19.64

0.0 20 2 10.0 0.00 0.0000 84.53 10 4 25.0 0.00 0.0000 80.00

0.1 13.0 30.2 0.0039 77.31 24.6 34.2 0.0074 74.0ï

0.2 13.1 33.2 0.0070 69.74 22.7 43.5 0.0133 66.29

0.3 13.1 35.9 0.0093 62.30 20.0 53.4 0.0170 56.80

0.5 12.7 40.4 0.0124 49.44 16.0 54.8 0.0177 40.21

0.8 a 12.1 44.5 0.0145 36.30 13.5 74.3 0.0213 26.68

0.0 20 4 15.1 0.00 0.0000 94.68 10 8 45.0 0.00 0.0000 88.89

0.1 15.8 31.2 0.0046 92.12 44.6 36.1 0.0086 86.26

0.2 15.9 36.1 0.0089 88.63 40.7 52.7 0.0164 81.94

0.3 15.8 42.1 0.0126 83.80 31.5 82.0 0.0218 72.74

0.5 14.9 55.1 0.0175 70.18 19.0 120.6 0.0246 49.18

0.8 13.3 67.5 0.0203 50.70 14.5 134.8 0.0251 31.45
Note: =

b

l,

a

a

• a

Table 5.3: Performance Measures at R = 10 and R = 20.

140 time units, whell both Rand L decrease from 40 to 2 time units. Comparing Up values

from Figure 5.9, we note that to achieve high Up, both ~ and ~ ratios should be high.

5.7.2 Summary

Above results on Sob. show that:

•

1. An increase in nt illcreases S,.,. as weil as Up• Once the capacity of IN is reached, Sob.

increascs linearly with nt, and Up remains constant. When the network saturates, for

an nt, S,.,.• saturates at a high value with illcreasing Premote, while Up decreases.
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Figure 5.13: Elfect of nt and Premote on Sob.•.

2. Sob. increases linearly with S, and with a decrease in locality. However, a larger value

of Sob. delays the triggering of suspended threads, so U" (and Anet! decrcl1.~cs.

3. Only when both Rand Lare low, Sob. is high. Otherwise, Sob. is near its unloaded

value. Up , on the other hand, depends on ~ and ~ ratios.

An intended objective of an MMS is the first item of increl1.~ingU'" However, whcn Lhe

network capacity is reached, we should explore otller mechanisms such as increasing the

thread runlength or changing the locality in access pattern. Like vector machines [76, 88),

with multithreading, Up is more alfected by the rate (Anet) at which subsystems respond

than by latencies (Sob.) for individual accesses. Intuitively, when the nctwork is Il boLtle­

neck, Anet saturates. On each response from a remote memory, the processor computes for

R time units, and sends an access. That is, u,p depends on Anet (to be precise, p~R).
remotCl

5.8 Usefulness and Robustness

In Section 5.8.1, we show the necessity to use closed system models over open system models

in terms of sensitivity of pcrformance prediction to the input parameters. In Section 5.8.2,

we also compare the robustness of our model with open system models. We present thrcc

scenarios where an open system model may be applied to cstimate the overall performance

(such as Up ), and demonstrate their weaknesses and tradeolfs with respect to closed system
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5.8.1 Usefulness of Closed System Madel

ln this section, we compare the prediction of network latency using closed system model to

that using open system model. We particularly focus on the region where the network is

near saturation, because even with 4 to 6 threads, Ànet saturates (as shown in Section 5.6).

Open system characteristics for IN are reported in literature with observed network

latency Sob. as the output parameter against message rate Ànet as the input parameter,

e.g. Abraham [1), Agarwal (3) and DaUy [30J. InitiaUy, Sobs rises slowly with Ànell but rises

sharply when À"et is clo~e to saturation.

'lb draw a fair comparison of robustness in performance prediction, we also plot such

characteristics. However, À"ell an input parameter of the open system modeIs, is not known

a priori, because À"e! results from the interaction among various subsystems, during a

program execution on a multiprocessor system. We consider two ways to vary Ànet: The

first uses workload parameters, nt and Premote, as shown in Figure 5.16 and the second uses

network related parameters, S and P.w, as shown in Figure 5.17.

ln Figure 5.16(b), we obtain Sob. versus Ànet characteristics, using our closed system

modeI. The foUowing procedure shows how to obtain the open system characteristics using

our modeI.
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Figure 5.15: Elfect of Rand L on Sob.••

Figure 5.16(a) and Figure 5.16(c) show the elfect of workload parameters on Sob.• and

>'neh respectively. Figure 5.16(a) is a two-dimensional view of Figure 5.13 discussed earlier

in Section 5.7. Similarly, >'net behavior in Figure 5.16(c) is a two-dimensionnl view of

Figure 5.10 in Section 5.6.

Using these Figures 5.16(a) and 5.16(c), we show n plot of Sobs versus >'net in Fig­

ure 5.16(b) similar to the open system characteristics. To plot each point in Fignre 5.16(b),

we consider each pair of nt and Premole values, obtain >'net vaine from Figure 5.16(c), und

obtain Bobs value from Figure 5.16(a). For example, at nt = 10 and 7)remole = 0.4, >'"et

and Bobs values are 0.0265 and 125, rcspectively. Each curve in Figure 5.16(a) and Fig­

ure 5.16(c) l'epresents a fixed value of Premote, and this curve gets mapped on to a slllull

part of the curve in Figure 5.16(b), e.g. at Premote = 0.1, >'net changes between 0.0035 and

0.0095. To obtain a complete plot of Bobs against >'neh we overlap projections for varions

values of Premote and nt.

Now we compa,;e the sensitivity of the prediction of Bobs using OQN model in Fig­

ure 5.16(b), and using a c10sed system model in Figure 5.16(a). Recall from Section 5.6

that to use the MMS efliciently, the IN performance may be pushed to the network capacily.

We assume that the operating point of the MMS is nt = 7, Premote =0.5, >'net = 0.025, and

Bobs = 100. These values are close to the network saturation region. Let >'neh the input

parameter of the OQN model, be changed by 15% from 0.025 to 0.02875. We note that

the prediction of Bobs changes from 100 to 290- a change of 190%1 This shows that Bobs is
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highly sensitive to À,octo near the network saturation. In reality, this change in Ànet can be

hrought only if we change nt from 7 to 20, by 186% (at Premote = 0.5).

An estimation of queneing delay at a service node, is the reason for high sensitivity of

Sobs to Ànet in the prediction using an open system modcl. This estimation is caUed as the

contention factor [53, 3], because it ref\ects the increase in the waiting time at a service

node in the presence of accesses from other processors (and threads). The contention factor

iB ~, where p iB the utilization of a link. Since these links are connected to each switch,

we consider the utilization of a switch, p. Equation 5.15 shows p as the sum for accesscs

from aU classes of service demand for a class at a switch times the throughput of that class.

Thus, the contention factor can be expressed using Ànet as foUows:

Il = ~Vr Sx visit ratio for class rx throughput of class r = S~)eir,iÀnet,r)(5.15)
Vr

In Equation 5.15, eir,i is the visit ratio of class r access at the inbound switch i. Since

S is the service time at switch i, S x eir,i is the service demand for a class r access. We

substitute value of p in Equation 5.16. We assume that Ànet and Ànet,satur~tion are same for

ail classes, i.e. the remote acccss pattern is isomorphic with respect to any proccssing node.

Thus, Equation 5.16 can be simplilied as shown in the right hand side. Near the network

saturation, Ànct approacllCs Ànet,.aturation, 50 Sob. is highly sensitive to Ànet.

•
-p­
1-p

_ '\,u:l(S Cir,i) _ Ànet

- (Ànel .•atuTntion-,),nd)(S "Ir eir,i) - >I,u:t ••otIlTa(jcJn And
Contention factor (5.16)

•

Let us consider the same change of 15% in the input parameter n" of the CQN model,

i.e. nt changes from 7 to 8. The rcsulting values of Sob. and Ànct change by 14% to

114, and 3% to 0.0257, respectively. We note that Sob. varics at most linearly with nt

(Figure 5.16(a)).

The discussion above brings out the foUowing advantages of using a CQN model for the

network performance prediction, for users:

1. A user is more familiar with an input parameter like nt or Premote than Ànet. For

example, On how many itemtions of a do-al1 loop should the computation begin at

a time? This is similar to the k-bounded computation on 'loops [24], and the sample

program workload in Section 2.2.

2. The lIetwork performance (Sob.) is highly sensitive to Ànet, an input parameter of
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open system model, than to 1It or l"ClllOle, input parameters of closed system mode\.

This robustness of network performance prediction with respœt 1.0 11, and 1''''"01.
is also helpful to compute bulfer requirmnents at network swit,d.es. For exmuple,

a small crror in "nct near the nctwork saturation cau lend to IL sigllificaut crrur in

bulfer requirements at the switches. Further in Section 5.8.2, we also show how I.his

robustness is helpful for processor performance prediction.

Now, we show another interesting perspective of Sob.• and Alict charaeteristics using

network related parameters, Sand l'sw' Figure 5.17 shows these variations, and hns been

obtained similar to our approach in Figure 5.16. We use l'..mote = 0.5 and 1It = 8. Let us

consider Bobs and Alict values, when B is 10. When the locaHty is increased, say by decrensing

the value of l'sw, d oog decreases and Bobs for a message decrellses, ILq shawn in Figure 5.17(a).

Since the response to a remote request is received faster, the correspouding thread is ready

for execution earHer. Due ta this feedback elfect (also discussed in Section 5.6), The results

is an increase in Anet as shown in Figure 5.17(c). For a pair of1'...0 and B valuc.q, we plot Bobs

and Anet together in Figure 5.17(b). In contrast to Bob.• versus Allet plot in Figure 5.16(h), wc

notice that Anet increases while Bobs decreases in Figure 5.17(b). Snch c1mrncteristics arc

not reported in OQN model based studies [l, :J, :JO]. To deduce these c1mracteristit:s from

OQN model, a user nceds to estimate Aneto and then use Bob.• versus Alict charncteristics with

appropriate parameter settings. However, this perspective of the performance behavior duc

to locality variations is essential to the performance tuning techniques used by compiler

writers.

Thus, capturing the subsystem interaction helps our integrated system model to predict

the elfect of program workload on the IN performance (i.e. A,,,,! and Bob.• ). On the otller

hand, the focus of OQN studies is to evaluate the IN performance, by considering idealized

interactions with the rest of the system.

5.8.2 Robustness of Processor Performance Prediction

Section 5.8.1 showed that open system models arc less usefnl than c10sed system models

for performance prediction of multithreaded architectures, because the network capacity is

reached even for small number of threads. In this section, we illvestigate the error in the

prediction of open system models:
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What is the difference in the proccssor performance prediction using closed and

open system models'! And in case of a significant difference in the performance

predietion:

Given an open system characteristics of the network, can we obtain the perfor­

mance of an MMS by coupling it with a model for the processing node of an

MMS?

We consider three successively refined models to predict the processor performance

based on open system models, and compare their results with our dosed system mode!.

In ail three cases, we assume that Figure 5.18, which is derived from Figure 5.16(b), is

the representative open system characteristics of network in the MMS under study. These

characteristics represent a function l, such that

Bobs = I()..".t)

Next, we discuss the tlnee models in detai!.

(5.17)

•

• The Naive Madel:

The first model, called naive, uses a naive approach, which assume that the network

is moderately loaded. For this 1000 ()..".t), Bobs is obtained from the open system

dlaracteristics. Using Bob.. we compute the time for eadl threOO (access) to return to

the processor as (R + L + 2 Premote Bob.), and obtain Up (= (h + L +~. n S l)'prcmolc 06.
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• The Simple Model:

The second model is '1 ••imple model with a simplistic fccdback mcchnnism. Thc modcl

assumes initial values for Anet and Sob... and proceeds as the lirst modcl to compnte

uew values for Ànet {= (Il + L n~ ~r;:::f'Ult Sob~)) and U", New Ànet is uscd ta obtaiu S,>b!l

from Figure 5.18. The process repeats till the vaincs in snccessive itemtions arc dose

enough (sec Figure 5.19).

• The Glosed Loop Model:

The third model uses open system models of the procc.,sing nodc, and thc nctwork

subsystem. Input and output parameters of these subsystem modcls are snitably in­

terconnected to form a closed 1001', and are solved iteratively. We cali this model II.'

a closed loop model. To capture the feedback effect, the ontput parmneter of the pro­

cessing node model is Anet. which providcs the input parameter of the network mode!.

Similarly, the output parameter of the network model is Sob.. which providcs t\1l!

input parameter of the processing node mode!. Solving these models simultaneonsly

yields the values of performance measures- Anet. Sob.. and U",

The Naive Model:

In the naive model, we assume a moderate load ou the network (Anet), and obtain

Sobs from the open system characteristics in Figure 5.18. We compute the cycle time for

a thread (acccss) to retum to the processor as (R + L + 2 Prefllot.. Sobs)' This value

represents the wail lime for a Ihrcad al ail queueing ,IOdes. Each thread spends Il duration

R at the processor, 50 for nt threads, wc obtain Ur' as walt lime ut ~Yi ~~eucmg flo'Ica' Sitnilllr
approach of an assumed, lixed network load is used by Boothe [181 and Thekkath [91], to

study various aspects in multithreading.

This naive model works weil when rit = 1. Let us assume that S,",s is 27.33, i.e. its

un-loaded value. Substituting values of R, Land Prefllot.. in (R + L + 2 Premote Sobs), wc

obtain Up as 1O+l0+2Xpl,~mol' x27.33 =21.1%. Our closed system model of Section 5.2 yields

17.67%.

At higher rit values, predictions differ even widely. Let ns assume that nt is 6, and

Anet is 0.025 (close to the network saturation). The corrcsponc!ing Sobs is 135. So, Up is

IO+lO+2~;~~mol' x135 = 38.7%. Predictions of our closed system model for Anet. Sob.. and Up

are 0.023, 92.5, and 46.0%, rcspectively. A different choice of Anet (e.g., 0.02 and 0.015),
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leluls to widely dilferent Up values (69.3% and 94%, respectively). The better the prediction

of network performance, Le. Àro •t and Sob.. the greater the accuracy of Up ' A weakness of

the ll"ive model is an absence of a feedbaek to improve the assumption of the network load

(Àroet )·

A caution for the use of this simple model is that the assumed load should be higher than

actuul, otherwise the predieted value ofUp muy lUrongly exceed 100%. For example, using an

un-Ioaded value of Sob. i.e. 27.33, with "1 = 6leads to a Up value of 1O+1O+2:;':~o"X27.33=
126.6%.

The Simple Madel:

The simple model provides a feedback mechanism to improve the aceuracy of the per­

formance prediction. Starting with an assumption for Sob.. wc use characteristies in Equa­

tion5.17 to iteratively reline the prediction of Àroet , and Sob.. Figure 5.19 shows the steps in

this mode!. Starting with a no-Ioad value of Sob... Àro•t is computed as (Il + L + 2rl, S j'
prernote ob,

and U,I IL'! (Il + 1 + ~' Il S )' Vsing new Àro.t. Sob. is obtained as Sobs = J(À ro•t ), the.. premote ob,

function depicted in Figure 5.18. The iterative process repeats till the new Sob. value is

close to its old value. For examples wc have tried, this method converged only for "1 ~ 2.

Wc assumed that adjacent performance points shown in Figure 5.18 arc connected using

strnight lines, Le. a linear interpolation for performance points in between those shown in

Figure 5.18. Predictions at "1 = 2, for Sob.. Àro.t. and Up , arc 46.1, 0.0149, and 29.89%,

while the closed system model prediets 43.8, 0.0142, and 28.44%. We note that:

• The prediction of Up value is within 5% of that using closed system model, when

network is unsaturated.

• For higher values of "l, the iterative process did not converge. Sinee the steep slope

of open system characteristics, the output parameters oseillated between two to three

values. Figure 5.18 shows an almos! vertical line at Àro•t ~ 0.029 which prevents

aceurate computation of the network operating point (Sobs)'

• It is dillieult to study the effeet of network related parameters (similar to our inves­

tigation using Sand P.w in Section 5.8.1) with only the knowledge of open system

characteristics in Figure 5.18.

The Closed Loop Madel:
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Given an open system eharaeteristk$ for the interconnectiun netwurk, S,>/>, = f('\""l

0- Assume Sob., to be a. uo--load valuc, say SJ~ where j is the iteration llllltll)l~r.

1- Compute Àj and U,,, bêL'lcd 011 1ltl IJrt'ulfJtf" and Sr

2- For new >'j, obtain Sj = J(>')).

3- If «(Si - Si-Il> toierclIlee)

then go to stcp 1;

cise exit.

Figure 5.19: FL'Cdba<:k Aigorithm.

The closed 1001' modeluses open system models of the proeessing nude, aud the network

subsystem. Input and outpnt parameters of these subsystem models arc snitably intereon­

nected to form a closed loop, and arc solved iteratively. To capture the fcedback effect, the

output parameter of the processing node model is >'''d, which provides the inpnt parllln­

eter of the network model. Similarly, the output parameter of the network model is S,lb.,

which provides the input parameter of the processing nude mode!. Solving these models

simultaneously yields the valucs of performance measnres- >'''r./, S,lb., and U'" The c10sed

loop model uses analytical expression for the network performance shown by Equation 5.17.

In this approach (used by Johnson [50)), a proeessing nude is modeled nsin!!; t.he fol1owing

equation:

7lt R
Soo, = - - - (5.18)

>'".t 2

In Equation 5.18, the network latency is, on average, the number of outstanding remote

accesscs times the duration between successive responses from the network minus the eXL'­

cution time at the proeessor. A factor "2" in the last term is duc to two remote mcssages,

the requcst and its response, associated with each thread. Equations 5.17 and 5.18 arc

simultaneously solved for two unknowns, Soo, and >'".t. With the resulting value of >'''.10

we obtnin the proccssor utilization as fol1ows:

(5.19)

•
The original model by Johnson [50] docs not take into account the localmemory. However,

we can incorporate a detailed model of the processing node, in Equations 5.18 and 5.19.
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The validity of this approneh is based on the property of aggregation for qneueing net­

work [29J. This propcrty states that any subnetwork (of a product-form queueing network)

can be exnetly aggregated into a single station with a load-dependent service rate. A load­

dependellt service center is the service center whose service rate is dependent on how many

al:Cessc.~ arc waiting in the queue. When remote acccss pattern is isomorphic with respect

to the network, i.e. independent of processing nodes in networks like in 2-dimensional mesh,

an analytical expression for the network performance can be obtained. Equation 5.17 rep­

rc.~ents this Ilnalytical expression. When more tllan one network links arc needed to capture

the bchavior of network performance, a set of simultaneous equations may be needed to

solve the model (replacing Equation 5.17).

There arc two dilliculties in the third model:

• When the rcmote access pattern (or the program workload) for ail the processing

nodes is not the same, an analytical expression for the network is dillicult to obtain.

• When no single representative link can be found to analytically capture the perfor­

mance behavior of ail the links in the network, the performance model can be dillicult

to solve. This typically happens in an hierarchical network, for example, interconnec­

tion network of the MANNA system [381 whieh consists of an hierarchy of crossbar

switches to achieve large configurations. In such a case, more than one representative

links may be present. 50, a set of simultaneous equations (one for each representative

Iink, and one for the processing node) are needed to obtain the performance measures

of the MMS. To our knowledge, such a study has not been conducted.

Another drawback specific to .Johnson's model [50] is that for a program workload exhibiting

a high locality (i.e. distance traveled per dimension, kd < 1), the analytical expression

is incorrect- a fnet also observed by other researchers [79]. For this locality, the model

assumes that there is no contention. Let us consider the parameters in Table 5.2, for which

doag = 1.733 i.e. kd = 0.866. Our results show that with nt = 8, 8 ob. and Up are 120.6

and 49.18% respectively. However, Iike Johnson's model, if no contention is considered on

the network (i.e. 8ob. = 27.33), then Up value significantly rises to 78.85%, an error of

60%. Johnson's assumption that the network is unsaturated (and the contention is less),

appears reasonable only when n,. is small (say, 1). In this case, Up values with and without

contention are 17.67% and 20.37%, respectively.



• CHAPTER 5. MULTIPROCESSOR SYSTEM

5.8.3 Summary

This section compared the performalicc prediction of closed nnd open system models:

116

•

1. A use of closed system mode! is robust "enr network snl,urntion, and input pammeters

are predictable by the users. With an open system model, a snlllll error in nrrivnl mte

near saturation can lead to significant error in determining the bulrer requirements.

2. The closed system mode! provides n bronder perspective by cnpturing the feedbll<:k

effect, e.g., an incrensed !ocality in remote 'u:cesses decreases S"'I" but inCrCl~"eS '\''''1'

3. A comparison with three tec111. les bnsed on open system models, showed that IL

feedback is essential for accurate processor performance prediction,

• A simplistic feedback approach, Le. ..imlJ/e model, for accounting the impll<:l,

of the network performancc on the performance of proccssing nodes, worka weil

only when the network is unsaturated.

• Wc point out that through a use of a,qgregation property of queueing networks,

the processor performance can be computed accnrately, provided the network

performance can be accurately described by an ana!ytica! expression. However,

such a performancc mode! is dilficult to solve in the following cases:

(1)- when remote memory access patterns of individual, or groups of processing

nodes are differentj

(2)- when the network is hierarchical, so more than one network links ILre nCllded

to analytically capture the performance behavior of ail the neLwork links.

(3)- for the specific mode! deve!oped by .Johnson [50], k,1 < 1 yields lUI incorrect

value of latency, Le. the !atency reduces compared to its no-Ioad vaine.

5.9 An Example for Workload Optimization

•
Now, wc show through a specific example (sec 'T'o1b!e 5.3 excerpted from Figure 5.7, Fig­

ure 5.10 and Figure 5.1.3) how a compiler writer can progressively optimize the workload

characteristics to ac1lieve high proccssor utilization. Our proposed order of steps is in the
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order of their difficulty in implelllentation, however a compiler writer may prefer other

orders suitable for a partic:ular application.

As an example, consider the values marked 'b' in Table 5.3 and are emphasized (Sec­

tion 5.7). Let Premote be 0.2 and R he 10. An increase in nt from 1 to 4, increascs Up up to

2.3 times. >'"et also increases up to 2.3 times (at Premote=0.2). However, a further increase

of nt to 8 yields only a small increase in Up, when >'net is close to saturation (also observe

very high Bob. values).

At hip;her Premote values, U" values are low. A change of data layout (by placing the

data close to computation) can improve the utilization. Table 5.3 captures this effect, when

a decrease in Premole sends fewer accesses to remote memory. At each value of nC, a decrease

in Premote yields a higher U,,, while Bob.• and >'net decrease. However, a certain amount of

data sharing is necessary, in most applications, which places a bound on the performance

gains achieved by this technique.

If the processor utilization remains low, then thread runlength should Le increased. We

need techniques such as aggregating the network requests to the same memory module

from multiple threads (works weil for array acccsses), increasing the number of instructions

between successive memory requests by merging two or more dependent threads (at times,

at the cost of parallelism), and using sophisticated register allocation/instruction scbeduling

techniques (whicll reducc the register spills). These extra efforts pay off because for higber

tbread runlengtb, the memory accesscs arc fewer, so the contention at tbe memory and

tbe network arc less (sec Lob. and Bob.• values). Rcsulting Up values arc significantly high.

Note tbat nt = 4 and R = 20 yields higher U p values than nt = 8 and R = 10. Table 5.3

also sbows tbat for the application with Premole = 0.8 and R = 20, tbe network is still a

bottleneck for bigb performance. Sucb an application is a test case for system architects

for tuning tbe architectural parameters.

In summary, we propose following optimizations:

1. Increase nt to achieve a high UV' Note that >'nel! Sob. also increase.

2. For nt ~ 5, >'net is close to saturation, so the performance gain due to a high nt

diminishes even tbough Bob. may not be bigh. Hence, increase the locality to get a

higher UV'
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3. Finally, increase R to improve prerno'e for which high Up l'an be obtained. SimultanL~

ousl, Up value also increases. A high thread runlength hlL~ more impaet on UJ, t.lmn

nt·

Note that the order of difficulty in each of the above steps changes with t,he application IL~

weil as the compiler. Here wc showed benefits of these steps, without diseussing the costs

associated with their implementations. Other alternative orderings arc possible. Bllsed on

experiences in compilation of multithreaded progrlUn workloads, our performance model

l'an be effectively applied to optimize the worklolld characteristics.

5.10 Subsystem Utilizations

In this section, wc analyze ntilizations of snbsystems with changes in workload and archi­

tectnre parameters. l<'irst, wc discuss how the system utilization, U.•y... tracks the dynamics

in subsystem utilizations duc to variations in model parameters. Second, wc nse U.y .• 1.0

point to values of input parameters, which resnlt in high performancc.

With Premote = 0, the memory requests arc restricted to the local memory module. An

increase in Premote increases the number of messages routed to remote memory modules

across the IN. This has a two-fold effect on performancc: (i) Since the latency for a remol.e

access is higher (than the local memory latency) dne to extra time spent in traversing the

IN, the corresponding thread is suspended for a longer duration, (H) A larger number of

messages on the network leads to a higher contention or network congestion, which in turn

increases the network latency. This reduces the ntilizat:on of the processor and memory

subsystems. Figure 5.20 shows this effect of Premote on the subsystern utilizations, for L

= 10, and L = 20. At L = 10, an increase in Premole from 0.2 to 0.8 reduces the values of

Up and Um from nearly 90% to 23% and 22%, respectively. When Unet saturates, the fall in

the values of Up and Um is steep. For L = 20, Up and Urn decrense rapiclly after the network

saturates in the same WWJ. Also, the variations in Premote affect Up and U", identically.

Similar observations could be made, when wc consider the effect of memory latency on

the processor and network utilizations, or the effect of S on the processor and lIIemory

utilizations. If the melllory latency is increased then the nnlllber of requests waiting at the

melllory increases, thereby reducing the values of U11 and Unet• Similarly, lm incrense in S
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Figure 5.20: Subsystem Utilizations.

inc:reases the network latency, so more threads at the processor remain suspended waiting

for the corresponding memory responses to arrive. In turn, this decreases the rate at which

memory aCCCS8es are sent, resulting in a fall in the values of Vp and Vm with respect to an

increase in S.

Thus, we observe a close coupling U1nong the subsystems, based on our integrated model

of processor, memory and network subsystem.

System Utilization

•

Having known the behavior of subsystem utilizations (from Figure 5.20), wc are interestecl in

the ability of V.•y•• to track the transitions corresponding to saturation of these subsystems.

Figure 5.21 plots the subsystem utilizations and U,y, with respect to memory latency for

R = 10, and R = 20. When L is close to zero, the system utilization is low due to the low

utilization of memory. At values of L close to 100, the memory subsystem saturates, but

the U,y, is low (the Iimiting value is 33%) due to low Up and Ullet . For U,y" a peak oecurs

when L = R = S(= 10), since ail subsystems are close to their maximum utilization values.

With L > 10, both U
"

and Ullet drop off sharply with L, and only a small rise occurs in Um,
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Figure 5.21: System Utilization with respect 1.0 L.

resulting in low value of U.,y,. The maximum value of U.,y, is referred t.o IL~ the I1mk "lI.,tolll

utitization (PSU). Let the corresponding memory latency IHl LI'SII. From Figure 5.21 we

observe that:

(i) U.y, rellects the relative values of U,,, UIII and Und' When pammeters of proœssor and

memory subsystems are considered, PSU occurs at L = R. We note that PSU represents

a transition phase in which one subsystem approaches satumtion and ut.ilizations of other

subsystems drop. This is due to balance of throughput betwecn any pair of subsystmns.

(H) For R = 10 and L ~ 10, at PSU, U,I is only 5% less than its maximum value while U.,y,

has improved by almost 25%. For R = 20 and L ~ 20, these differenccs for U,I and U,y.

are 7% and 30%. Thus, by keeping the operating range near PSU, we gain considembly in

overall system utilization and the loss in processor utilization is small.

(Hi) For any value of L less than Lpsu, U,I is high. TllIIS, Lpsu represents the slowest

memory we can operate without hampering a high system performance significant1y.

•
The hell shaped plot for system utilization also occ:urs with respect 1.0 changes in other

parameters such as Rand S.
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Effect of Network Parameters

Figure 5.22 shows the elfect of Tlromoto on the system utilization for various values of S.

Curvc for each value of Sis bell-shaped, with a PSUoccurring at Promoto,PSu, For Promoto :5
Promote,I'SU, Up is high and the network is unloadcd. U'v' increases with Promote. because

more messages get diverted ta remote memory modules across IN. For Promolo ~ Promoto,PSu,

most of the messages wait at the IN, and Up decreases rapidly. Consequently, U'v' a1so

decreases for high Tlromoto' We observe that: (i) PSU lies between 70 to 80% for a wide

range of S, and (ii) For faster switches i.e. low S, Unet does not saturate unti! Promoto is

high. Thus, a large number of messages can be transported without congesting the network.
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Figure 5.22: Elfect of Promoto on U'v' for various S.

Effect of Thread Runlength

•

Figure 5.23 plots the system utilization with respect to Promoto for various values of thread

runlength. Let us IL"sume that the average time taken by a message on the unloaded network

to complete a rouud trip is Tav9 • For a geometric distribution of memory accesses with P.w

= 0.5, a remote memory access travels a distance dav9 = 1.733 hops on a 4 x 4 mesh. Thus,
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a round trip takes 2x 1.733x 10 time units in the unloaded network. ln addition, a delay

of S (= 10) time units is incurred at the local swit.ch on the forward as well as the return

path of the message. Hence 7~vg (= 34.66+ 20 = 54.66) is given hy :

Tavg = 2(davII + I)S (5.20)
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Figure 5.23: Effect of Prcu",tv on U.•IIS for varions R.

•

In Figure 5.23, for R ::; 10, PSU increases with R from 67% to 79%. Also, the PSU

almost always occurs at Prvraote "" 0.18. Since R ::; L, IL threILd spends less Ume at the pro­

cessor than it spends at the memory module, PSU results from the matching of throughpnt

between the memory and network subsystems. A memory module retnrns the remotl! mem­

ory accesses to the network at the rate of P'ï;"". At PSU, throllghput of the im:oming

messages from the network (= ",L) equals the throughput of the responses from the nlClII-
14Vg

ory module (= V..m"L"psu). So, Prcmote,PSU is d'- = 0.18. For R ;:: 10, the processor
IllVg

and network subsystellls govern the PSU value. A processor sends out memory requests

at the rate of l A fraction (=Prcmolc) of these arc directed aeross the network to remotl!

memory modules. The network delivers the messages to proeessor at the rate of ",L. As
lavg

the throughputs should match at PSU, Prcmotc should equal nIL. Considering these two
lavu



• CHAPTER 5. MULTIPROCESSOR SYSTEM 123

•

•

scenarios together, the maximum value of PSU occurs when throughputs of the three sub­

systems are equal. That is, the thrcad runlength, memory latency and network latency

should be such that:

Prcmole,PSU = Tavg at PSU
R

Prernole,PSU =Tavg at PSU (5.21)
L

1 _ I-1Jrrmllt.. + 1 (5.22)
R - /J ;l~tl9

Equation 5.22 results from Equation 5.21, bccause at steady state memory access rate

from a proccssor to its local memory (= 1-"7r"') is matched by the service rate of the

local memory. The remaining fraction Premale is serviced by the network. When one sub­

system saturates, Equation 5.21 could be applied to obtain the utilization values for other

sllbsystems. For example, in Figure 5.20, we observe that on network saturation the values

of if" and Um are close to v Rx'f' and v Lx1' . Similarly, in Figure 5.21 when
remote aug rr!mofe lIt/g

the memory subsystem reaches saturation, the values of Uv and Uncl are proportional to

~ and ï, respectively. We note that Equation 5.22 is same as Equation 5.12 obtained in

Section 5.5.2.

Locality of Memory Aceesses

If the rcmote memory access pattern is a geometric distribution, an increase in P.w increases

davg for a message on the network, and hence the network latency. Figure 5.24 shows the

elfect of increasing P,w on system utilization, for various values of thread runlength when

flremale = 0.17. For low value ofp.w, PSUoccurs due to saturation at processor and memory

subsystems. PSU increases from 65% to 78% when P,w is increased from 0.1 to 0.7 due to

an increase in the value of Unel• Further increase in P,w to 0.9 brings down PSU to 72%,

due to lower values of Uv and Urn •

Summary

Our study suggests the following conditions for achieving high performance:

• Overall high utilization of ail subsystems is achieved irrespective of the value of nt

(> 1), when (i) the thread runlength R equals the memory latency Lj and (li) the
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Figure 5.24: U.y• with Geometric Distribution.

remote memory access rate (I!ww!!<.!.) equals the network service mte "'!-.Il ---- 1 <IVII

• The applications with larger locality can tolerate slower networks withont Illuch degm­

dation in performance due to reduced network traHic.

5.11 Related Work

A number of analytical and simulation studies on the performance of Illultithreaded archi­

tectures have been reported in the literature. First group of analytical studies focuses on

the processor performance only (e.g. Saavedra-Barrera et al. [80], Alkalaj ct al. [8], Ilnd

Agarwal [4]), while second group studied interaction of various subsystems inlln MMS (c.g.

Johnson [50], Nemawarkar et al. [66], and Adve et al. [2]).

Saavedra-Barrera et al.[80] and Alkalaj et al. [8] use Petri Nets to analyze rnultithreaded

systems. Their analysis uses the state space of PNs. Since contentions at the Illemory and

network increase the state space tremendously, the contentions are not studicd. TheBe

models are Bimilar to the naive model in Section 5.8.2.
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Agarwal [4] presents an analytical model for processor performance using cache parame­

ters. The model is simi!ar to the closed loop model in Section 5.8.2, except that the effect of

latency on cache miss rates is not included and the memory is not modeled. So, the model

is applicable, where latencies and cache miss rates are independent, e.g. either latency or

cache miss rates arc low.

The interconnection network performance has been extensively analyzed using open

'1ueuing network (OQN) models in the literature [3, 30J. We showed that an OQN model

does not properly capture important subsystem interactions such as the feedback effect

in an MMS, hence the netwol'k perl\>rmance predictions of these studies were not directly

llsable for analyzing MMS. However, note that OQN models l'l'ovide an insight to the

IN performance, with a minimal set of assumptions about the system and the program

execlltion mode!.

The performance model for an IN can be effectively comLined with models for other

subsystems to capture their interactions. Four studies using closed system models follow

this approach [101, 50, 66, 2J. Our work and these studies, complement each otller to

reinforce the claim that a CQN faithfully models subsystem interactions of a large scale

MMS.

Johnson [50] develops a closed system model to account for the feedback effect of the IN,

and predict the effect of locality in an MMS. This is the closed loop model in Section 5.8.2.

He adds the model of a program execution ta Agarwal's network model [3]. Johnson's model

IlSsumes an unsaturated nphvork and does not take into account the effects of the memory

subsystem. His model does not capture the network behavior correctly, if the Iocality in

the remote access pattern is high (specificalIy kd :5 1). His resuIts show benefits of tuning

the workload parameters ta exploit the locality, which we have confirmed in this paper.

Willick and Eager [101] studied the performance of k-ary n-cube interconnection net­

works embedded in muItiprocessor systems. The focus of their study is to present a per­

formance model for sucb an interconnection network, with each processing node allowing

multiple outstallding requests. They have not analyzed the system performance in detai!.

Thus, their results do not bring out specific hints for users to optimize the performance of

multithreaded systems.

In a recent, independent work, Adve and Vernon [2] also use a CQN modeI to analyze the
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performancc of a k-ary n-cube network in an MMS. They focus on elfects of .U"chitecturnl

features (i.e. pipelining and virtual channels in the IN) on performlUlce. They develop a

new set of approximations for AMVA. The model increases in complexity, but provides a

greater accuracy. In contrast, wc use a simple network lllodel, which reduces the complexity

of the model, and use a weil known approximation to apply AMVA. Our results show the

effectiveness of multithreading to tolerate long latencies. In particuhU", wc luwe identified

the raie of network capacity on the network latency and processor utilization.

Three simulation studies .l.1so report the performance benelits of multithreading [100,

18, 90]. An early study by Weber [100] shows the dilfereuces in perfornulllce gains duc to

multithreading, because of variations in the bus tralHc. Thekkath [90] studies the elfectiv~"

ness of multithreading in presence of cache. Their results indicate the nccd for tuning of

workload characteristics such as the locality, and number of threads, to obtain perfornulllCll

gains using multithreading, which is validated by our results. Boothe [18] shows the benefits

of various techniques manipulating the network messages, adjusting the thread l"Unlengths,

for multithreading. While confirming these results, wc also show that their assumption of a

constant network latency [91, 18] is not realistic, so the degrce of performance gains using

proposed techuiques, changes substantially.

5.12 Conclusions

In this chapter, we proposed a performance model for analyzing a multithreaded lllulti­

processor system. Our integrated system model, based on c10sed queueing networks, takes

into account the behavior of processors, memories and interconnection nctwork, and the

interaction between them under various program workload.

Given progrlUll workload and architectural parameters, wc showed how to derivc the

key performance measures- processor utilization Up , message mte to thc network >'''.11 and

observed network la~ency Sob•• We applied our model to provide a quantitative character·

ization of their variations with model parameters, to understand system bottlenecks, and

to provide insight to the impact of performance related optimizations.

Our analysis brought out the importance of jeedback elfect of network performance on

processor utilization. We showed that a strong coupling exists betwccn these snbsysteIlls.

A variation in parlUlleters of one subsystem affects utilizations of other subsystems 88
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weil. Concurrently analyzing the network and processor performance we also showed the

significance of network capacity to tune the workload characteristics in order to achieve a

high proccssor utilization. For cxample, Up increases with an increase in the number of

threads (nt) as long as the capacity of the IN is not reached, even when Boo, is large. Also,

the higher the capacity, the higher can be the Up value.

We demonstrated the usefulness of closed system performance models to users (compiler

writers, programmers, and system architects): they can work directly with the program

workload parameters and architectural parameters which are familiar. Added advantage

is that near the network saturation, unlike open system models, problems of dealing with

high sensitivity of performance to input parameters, do not arise. We also showed that the

robustncss of our model is helpful in processor performance prediction, in comparison to

three successively refined approacbes based on open system models to estimate the processor

performance.

In the ncxt chapter, we will explore how effective is the multithreading in tolerating

long latencies. Then in Chapters 7 and 8, we will apply our performance model to analyze

McGill's EARTH-MANNA multithreaded multiprocessor system.
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Chapter 6

Latency Tolerance

The previous chapter showed how, given a multithreaded architecture and a program work­

load, to derive absolute performance measures, like processor utilization. Wc discussed how

the model parameters affect the processor utilizations in a multithreaded multiprocessor

system. We also noted the effect on the message rate to the network and the network

latency. These performance measures, however, do not provide lUI estimate of the perfor­

mance loss due to latencies at subsystems, e.g. lIlemory. Users of mlÙtithreaded architec­

tures may spend large efforts to tune the performance. For example, a system architect

needs to explore a large design space to tune the subsystem implementations or the sys­

tem configuration. Similarly, a compiler needs to change a signi6clU.t nUlllber of workload

characteristics to achieve performance improvemellts.

This chapter focuses on quantifying how effective is the multithreading technique in

tolerating long latencies for lIlemory accesses. We restate the fol1owing problem 3.2.3 from

Chapter 3:

Problem 6.0.1 Given a mu/lithreaded architecture and a program work/oad:

1. Gan lUe quantify the latency tolerance?

8. How does the abi/ity of /atency to/erance vary lUith mode/ parameters?

3. How is the abi/ity of /atency to/erance re/ated to tlle high processor performance?

128



• CIiAP7'ER 6. LATENCY TOLERANCE 129

•

•

Thus, the objectives of this chapter are, to quantify the latency tolerance, and to show the

usefulness of latency tolcrance in pcrformancc optimizations.

The benefits of quantifying the latency tolerance are as follows. There are many work­

load and architcctural parameters, which affect the performance of a multithreaded system.

With information on tolerating particular latencics, Iike the network latency, a user can nar­

row the focus to tune the parameters, which have a large effect on the system performance.

On a target set of workloads, a system architect experiments with the system configura­

tions, e.g. the numbcr of processing nodes, and number of concurrent memory operations,

and architecture parametcrs, e.g. routing delays at switches. The latency tolerance shows

how changes in these parameters affect the performance, thus bringing out the performance

bottlenecks. For example, if the latency ·of a memory subsystem is less tolerated (than say

the network latency), then a system architect can tune the memory subsystem. Tuning the

parameters of other subsystems will have less effect on performance.

Given a multithreaded multiprocessor system, a compiler writer has to optimize a pro­

gram workload. The number of threads, their granularity, and the locality in their remote

accesses, are the typical program workload parameters for optimization. A characteriza­

tion of the latency tolerance with workload parameters helps to choose an effective thread

partitioning, i.e. a suitable computation decomposition (thread partitioning) and data dis­

tribution. For cxample, if network latency is not tolcratcd, then a compiler can redistribute

the data and computation to reduce the messages on the network. Changes in the number

of processors in the system have a significant effect on performance of particular thread

partitionings and data distributions. The latency tolerance can also be used to analyze one

or more subsystems at a time.

We are not aware of any literature that quantifies the latency tolerance as a measure

to evaluate system performance. Perhaps the only related work, of which we are aware, is

by Kurihara et al. [54]. The authors show how the memory access costs are reduced with

the use of 2 threads (per processor). Our conjecture, however, is that memory access cost

is Ilot a direct indicator of how weil the latency is tolerated.

Intuitively, we say that a latency is tolcratcd, when the progress of computation is not

affeeted by a long latency operation. In other words, if the processor utilization is not

affected by the latency for an access, then the latency is tolerated. The latency tolerance is
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quantified using the toleranee index for a lalency, and indicates how close the performance

of the system is to that of an ideal system. An ideal system assnmes the value of t.he latency

to be zero time units. Under this nssumption, the performance of a system is independent

of scaling. We do not nssume that au ideal subsyst.em is a eontentiou-Ie.... subsystem with

finite delay, because the performancc of such a system is Iikcly t.o c1lllngn, whcu either the

number of processiug nodes or the data distribution is chlluged.

We compute the tolerance index using the Ilnalyticlli framework devcloped iu Chapt,er 5.

Analytical result.s are obtained for a multithreaded multiprocessor system (MMS) with a

2-dimensional mesh. A characterization of the t.olerance index with various architectural

and workload parameters, helps us to tune the system performancc.

We begin the next section with a discussion on latency tolerance. In Section 6.2, mill­

Iyzing the latency tolerance on an MMS, we show Il strong impact of the memory and IN

subsystems on the system performance. Further, wc apply latency t,olerance to mllllyze

a thread-partitioning strategy. This strat.egy deals with how t.o partition the comput.ation

in a do-aU loop in terms of the number of threads and their granularities, as cliscusscd

in Chapter 2. We show that the latency tolerancc docs not depcnd on the actual latcncy

incurred by individual messages, but on the rate at which the subsystems can respond to

remote messages. In otller words, a high value of Il latency for messages does not imJlly a

degradation in system performance.

To\erating a memory (or network) latency indicates that the memory (or network)

subsystem is not a bottleneck. Our analysis of memory latency tolerance in SecUon 6.3

shows that to ensure a high processor performance, however, it is necessary that bath the

network and memory latencies are tolerated. With a sma11nulllber of threads, performance

gains saturate duc to a low hardware para11elism (per processor). Use of mechanisms likn

pipeliningjmu\ti-porting at the system resources (like memory), hoosts the pm'Iormancn

gains up to a higher number of threads. However, incrensing the threlld rtlll\ength for Il

sma11 number of threads (> 1) results in the best performance.

The above results use an MMS with 4 x 4 mesh, similar to our study in Clil~pter 5.

The default parameters are given hl the Table 6.1. In Section 6.4, we analyze the tolerance

index when the number of processors is scaled from 4 to 100, i.e. the number of processors

in each dimension, k, varies from 2 to 10. We shtlw that a geoTlletrie distribution performs
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signilieantly better than a unifonn distribution for larger systems, because with a geometric

distribution, the messages cover a smaller average distance on the IN. In a large system,

V/irious switches on the network can act as pipeline stages for remote memory messages

from a processor. These stages present linite delays to the messages, thereby reducing

otherwise severe contentions at the remote memories. As a result, under a suitable locality,

the performance of a system with linite switch delays is better performance than even an

ideal (very fa.;t) network.

"':om Section 6.1 to Section 6.5, wc analyze and discuss these results. In Section 6.6,

we compare our work with the related work. Finally, Section 6.7 concludes this chapter.

Workload Parameters Architecture Parameters

nt 1 Prcrnote 1 R 1 p,w(=> d.vg ) L 1 S
1

k 1 npm0.2,0.41 10,20 10.5(=> 1.733) ~ 10,20 10,10 14,2-10 [!J

Table 6.1: Default Settings for Model Parameters.

6.1 Tolerance Index: A Metric for Performance Analysis

In this section, wc discuss the intuition for lat.ency tolerance and deline the tolerance index

to quantify the lateney tolerance.

When a processor requests a memory access, the access may be directed to its local

memory or a remote memory. If the processor utilization is not alfeeted by the l.Ltency

at a subsystem, then the latency is tolerated. That is, 1he latency at a subsystem does

not lead to any additional idle time at the processor. Two possible reasons are, either the

subsystem does not pose any latency to an access, QI' the processor progresses on additional

work during this access. In general, however, the latency to access a subsystem delays the

computation, and the processor utilizatioll may drop. For comparison, we deline an ideal

systcfll whose performance is unalfected by the rcsponse of an ideal subsystem.

Definition 6.1.1 Ideal Subsystcm: A subsystcm wllich oJJers zero delay to service a request

is cal/ed an ideal subsystem. The response of tllis subsystem is cal/cd an ideal response.
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Definition 6.1.2 Latency To/emnce: It is· tlic de!Jrce /0 lUliicli tlie .•y.•tem l'e'lor~llanee i.•

close ta tliat of an ideal sy.•telll. Tlie tolerancc index is it.• metric.

Definition 6.1.3 Tolemnce Index (for a /atency): Tolerancc index, /O/,ub.y./CfI" i.• tlie mtio

of Up,.ub,y,'.m in tlie presence of a .mbsystelll lUitli a non-zero de/av ta U,'.il/.1I1 .,"b,y.",'''' in

tl or'd 1 b tIti' l' / / _ Il,, .• ,,,......,,'Le presence OJ an 1 ea BU ,'iy.fI CTn. n 0 te7 WOTt .Il, ,0 .'lIIbSl,·..,t,:m - fI . •
, J.,lIlr.f1' 1I11~"JlIltt'f11

As discussed in the introdnction, therc arc t.wo ways of defining an idm/ snbsystmn: IL~

a zero de/av snbsystem or as a contention-/e.•.• snbsystem. Wc prefer l.he former for the

following reason. Consider the tolerancc of network latency. Let the number of processors

in a system be scaled. Wc believe that the performancc of t.he idea/ system should not.

change. In other words, if the network latency is tolerated, t.he performance of a processor

should not be affected by changes in either the system size or IL data placement stmtegy

(which affects parameter values for remote access patterns). Thns, the choice of a zero-delay

subsystem is amenable 1.0 analyze the /atency to/emnce for more than one snbsystem al. a

time.

A tolerance index of one implies that the latency is tolemted. Thns, the system perfor­

mance does not degrade from that of an idea/ system.' Wc divide l,he system performance

in the following zones:

tol.ub,y,'.rn ;:: 0.8: the latency is to/emted.

0.8 > tol.ub&y.t.m ;:: 0.5: the latency is lJartially to/emtefl.

0.5 > tol.ub.y.•t.rn: the latency is not to/emted.

The choiee of 0.8 and 0.5 is somewltat arbitrary, exccpt for the faet that the corresponding

Up values are 0.8 and 0.5, when other subsystems do not alfect UI"

With the above background, we next analyze the network latency tolemnce.
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Figure 6.1: Effect of Workload Parameters at R = 10.

•
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Figure 6.2: Elfect of Workload Parameters at R = 20.
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In this section, wc show the impact of workload parameters on network latency tolerance.

We study the performance of processor and IN subsystems simultaneously, with the follow­

ing purpose: For lllhat lllork/oad citarac!eristics is the netlllork /atency to/erated?

Figures 6.1 and 6.2 show Up, Bob.. Àuct and tO/uctwork for R= 10 and 20, respectively.

The placement of U" and tO/uctmork plots adjacent ta Bob,. and Àuct highlights the effect of

workload parameters on bath subsystems, the processor and the network. We analyzed the

U,,, Bob. and Àuct with these model parameters in Chapter 5. In this section, we will review

the performance of network and processor subsystems, study the behavior of tO/uctwork, and

analyze the impact of a thread partitioning strategy on the latency tolerance.

Network Performance:

Figures 6.1(c) and 6.2(c) show that thc network is a bottleneck for high values of Prcmotc'

80, Àuct saturates at 0.029. On saturation, the IN routes the maximum number of messages

pel' unit time pel' processor under given remote access pattern. Each message travels davg

hops on the IN on average, and sa does its response. Thus analytically, a maximum rate at

which messages return ta a processor from the IN is:

\ ,_ 1
"uet,.•aturatlon - 2 dav9 8 (= 0.029, for P.w = 0.5 and B = 10.) (6.1)

ÀucI••aturatiou is independent of workload characteristics (except the l'emote access pattern).

Figures 6.1(c) and 6.2(c) show that Àuct saturates at prcmote = 0.3 and 0.6, respectively.

Whell Àuct saturate.•, the network latency varies as follows (sec Figures 6.1(b) and 6.2(b)):

1. For a fixed value of nt. Bob. remains constant (at a high value) with respect to Premote'

The network is a bottleneck, so the number of messages on the IN (either waiting or

being routed) becomCll a constant.

2. IfP,'cmote is constant and nt increases, then more messages wait on the IN. 80, a linear

increase in Bob. occurs with nl.2

ISl.'Ctiou 6.4 shows Rn CXCCptiOlial case whcu the performance may cxcccd that of the idcal system.
:llf the switches on the IN have Iimitcd buffcring, thcll Bob' will snturatc with nt. Wc do not investigatc

the affect of buffcring on IN switcbcs, in this thcsis.
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When ,x"e' is be/DIu satumtion, we observe the foUowing:
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1. Whon nt is constant, an incrcase iUIJrcnwh! diverts more messages to rmllote lllClI1orics.

Sa, "'net incrcascs lincarly \Vith PrefJIuh~' Sit)(~C the contention on the nctwork illCrCIL.~(~S

with Prcmote, Bobs starts from an unloadcd value a.nd fiscs rapidly at. high IJrrullltc'

2. For a Prcmotc, ..\rlet incrcascs with nt and aimast suturates by Ut = 5. 8 ob.• Îm:rClL.'iCS

linearly with nh and the rate of incrCLlSe is smaU at low l'..,...ot. values.

Processor Performance:

Let us trace the Up values at nt = 4 to observe the elfect of l'"""ote, in Figure 6.1(a).

U,> is close to 100% for Pre...ote '" O. In other words, the processor receives a response tn

(one of) its acccsscs beforc it ruIls out of work. An iucrcasc in 7)rt~"wl_c ilH~rca ..'ics Bolls , and

beyond a critical Pr."",'., Url decrelL.es, according to Figures 6.1(b) and 6.1(a) respectively.

At this critical Premol., a remote access travels 2davy hops for a ronnd t.rip on the IN and

spends 28 time units to get on/olf the IN. The remaining fradion of lU:œsses is sllrvicnd

locally. Our back-of-thc-envelope analysis in Clmpter 5 (Equation 5.12) shows that:

message rate from processor
1
R

Prcmotc

$ local memory service mte

< 1-7J""IIIIII ..
- L

+message rate from network

+ 1
2(dl1"y + 1)8

(6.2)

•

For R =10 and 20, the above equality occurs at Pre"",'e =0.18 and 0.68 respectively. From

Figure 6.1(a), wc observe that Up drops for Premote ~ 0.18, because the l'CInote act:esses

take longer time to return. Let us consider three zones for Ur> blL.ed on l'''''/lolc values of

0.18 and 0.3 (the value at which IN saturates):

Premole $ 0.18: In this region, the processor does not I"lIn out of work, and Up is high.

Since 8 0 bs and ,x/lel are small, Up is unalfected by network delays.

0.1 8 $ Prcmole $ 0.3: Up drops with an incrCllSe in the value of l'r"...ote, beclUlse a rupicJ

rise in 80 bs increases the delay for remote accesses. At large nh Ur> remains high,

despite a high value of 8obs'
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0.3 :s T'remote: ln this region, the IN becomes a bottleneck Le. "net saturates. Saturation

value of U" is low, but does not change in spite of an increasing value of nt (and Sob.).

Givcn an 7lt, an incrcasc in Prcmote incrcascs the number of threads waiting for a

rernote response. Up decreases with increasing Premote, in spite of a constant Sob..

becanse the fraction of threads serviccd tocally diminishes.

Figure 6.2 shows a sirnilar behavior. The corresponding values of Premole are higher because

Ris higher.

Figure 6.1(a) and (d) show that a nse of 5 to 8 threads results in most of the perfor­

mance gains. For the MMS, on average, each class of threads has three fI' ,,~tional units

(a processor, a \lIemory and a switch). When service timcs are batanced, 3 threads (or

accesses) on 3 nnits are serviced. The remaining 2 to 5 threads (or accesses) in the waiting

queue at each unit help to toterate the differences in service times and their distributions.

Tolerance Index:

While the absolute vatue of Up is critical to achieve a high performance, the toterance index

signifies whether the latency of a subsystem is a performance bottleneck. To compute

tolllctwork, there are two ways to analytically obtain the performance of an ideal system:

• Modify system parameters: Let the switches on the IN have ZCI'O delays, then the

performance can be compnted without attering the remote access pattern. The dis­

advantage is that this method is not useful for measurements of an existing system.

• Modify application parameters: Let Premote be ZCI'O, then the ideal performance for

an SPMD-like model of computation is computed without the effcct of the network

tateney. The disadvantage is that the remote access pattern needs to be altered. We

prefer this method, since it is applicable to existing systems.

Figures 6.1(d) and 6.2(d) show the tolerance index (O. U. ) for the network
p,ldeal nt'twork

lateney at R = 10 and 20, respectively. Horizontal planes at tolnetwork = 0.8 and 0.5

divide the processor performance in three regions: Sob. is tolemted (tollletwork ;:: 0.8); Sob.

is partially tolcmtcd (0.8 > tollletwork ;:: 0.5); and Sob. is not tolcmted (0.5 > tolnetwork)'

Recall from Equation 6.2 that when Premote is less than the critical value, the rate of

memory aceesscs (with maximum value of ft) is less than the throughput of memory and IN
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subsystems (i.e. memory aud IN baudwidths). Ou average, a pl'llecssor receives n respouse

before it mus out of work. Figure 6.1 shows that eveu at n smalllli (5), tO/"d...ork is ns

high as 0.86. Wheu the IN becomes a bottleueck at /Irco""c = 0.3, I.O/"dllmrk drops to 0.75.

A higher value of R tolerates a /Ircmo'c value as high IL' 0.6 (see Figure 6.2).

Both figures show that tO/lIc'work is low wheu the IN saturates. For au uusatumted IN,

tO/"etwork is higher. An obvious questiou is: Doc.• So',., t/ctt!l1llinc tO/lIdwork Y The followiug

example shows that Sob, does not; determiue tol"c'work' Wc foclls ou l'articulaI' performnuœ

points from Figures 6.1 aud 6.2, which have similar Sob, vailles (as showu iu 'nLble 6.2). AI.

R = 10, note that n, = 8 tolerates au Sob.• of 53 time uuits, bllt ILt = 3 does uot. Similnrly

at R = 20, nt = 6 tolerates an Sob, of 56 time lIuits, bllt ILt=3 aud 4 only partially tolerate

Sob,. So, wltat determines tlte region of OIJeration? Fol' the same arehiteetlll'lL1 pnrlLlueters,

different combinations of Tlt, Rand /Iremo'e eall yield the snme Sob., bllt dilfereul. tO/"clwork.

A combination of low Premote aud either a high Tlt or a high R, exposes (aud performs) more

work locally in the PE, (for example, Prcn",te= 0.2, Tlt = 8, aud R=20), aud heuce tO/"dllmrk

value is higher. Thus, for an uusaturated IN, the followiug ways cau improvc trn""tllmrk:

1. A low Premole reduces the nllmbcr of messages on the IN, reslliting in nlower Sob.• nnd

higher tO/network' The disadvantage is t1mt the messages arc diverted to locnlmemory

module for service, thereby increasing its response time Lob.,. Fol' a speeinl ense of Il

small nt (",. 1), the network tralfic is also low, heuee U,. is <:lose to the perfornllLuee

of an idea/ IN, aud tO/"etwork is close to 1.

2. An increase in R (from 10 to 20, iu the example) reduees the uumber of messages Lu

IN and local memory. Thus, Sob' aud Lob, dcercase aud tO/""twork iuerCl~~es. Nol;e

from Figure 6.2(d) that Sob.• is partinlly tolerated for Il..,,,,ot,, ,~~ high I~~ 1.0.

3. Lastly, an increase in nt inereases tO/"etwork duc to IJ.vnilability of more work (a higlwr

Tlt with same R indicates thnt more iteraLious of a 1001' arc exposed/forked at a time).

However, the disadvautage is a significaut iucrClLSe iu respouse times nL the swiLches

(collectively Sob') aud at the local rnemory module (Lob,).:1

We note the following points for the network lateucy Lolcrance:

3Agarwal [4] reports n deteriorntillg effect of partitiollillg of Il c'lChe lit Il IlIrge 71,. TllCkkl1th ct 111. [DIJ

and Eickcmcyer ct al. [35] report Iittlc variations in cllChc miss fIltes duc tu lIlultilhrmuJilig. In Liais tllf~iH,

wc do not explore tbis applicntion-dcpcndcnt phcllorncnoll.
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1. Workload characleristics and not the resulting Sub.• value determine whether the net­

work latency is toleratcd, T,artially tolcratcd or not tolcmtcd.

2. For a set of values for architccture and workload parameters, there exists a critical

T'rwou /<: beyond which the network latency cmlllot be tolcrated.

3. IncrClL'ic in R improvcs tol,wtworkt and also illcrcascs the critical value of Prcmotc np

to which the network latency is tolerated.

R lit TJrct1wlc Lobs Sobs Anet Ut' tolnctwork

10 8 0.2 40.7 52.7 0.0164 81.94 0.929

4 0.3 ~G.O ü3.4 0.0170 56.80 0.710

3 0.5 14.8 54.7 0.0177 35.45 0.473

20 6 0.4 17.0 56.1 0.0175 87.55 0.899

4 0.5 14.9 55.2 0.0175 70.18 0.741

3 0.7 13.1 53.6 0.0174 49.69 0.543

Table 6.2: Netwol'k Latency Toleranco, with R = 10 and R = 20.

Impact of a Thread Partithning Strategy on Latency Tolerance

Performance objectives of a thread partitioning strategy arc to minimize communication

overheads and to maximize the exposed paralleHsm [84, 18]. Recall from Section 5.2 that

onr model assumes the threads as iterations of a doal! loop. So, performance related

questions arc: How many itcmtions should bc 9mupcd into cach th7'Cadf And, how do Utc

wO"klond TJlIramctc,'s nifcct thc tolcmltcef

Let us assume that our thread partitioning strategy varies nt and maintains the exposed

computation constant (at a time), by adjusting their R values, i.e. Ttt x R is constant.4

Figure 6.3 shows tolnchuork with respect to Ttt and R. Horizontal planes at tolnctwork =

0.5 and 0.8 divide the tolnctwork plot in three regions:, where Sobs is tolerated, partially

4This is simillU' ta the grouping of ncccsscs by Boothc (18) ta improve R. For llU'ge grouping the m....ge

Hize will nffcct the routing dclay, 5 on a switch. Here, wc will ignore this cffcct.
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tolerated, aud uot tolerated. Wc highlight certain values of Il, x R frolll Fignre li.3 iu

Table 6.3 and Figure 6.4. For lit x R = 40, Table 6.3 shows thal,:

1. A low Prcmotl: l'csults in highcr tolnl!tllwrkl bceallsc a smallcr fraet.ion of mmnul'Y l\Cl:muoiCS

wail. for Sobs'

2. At a fixcd va.lue of 7Jrf'uwh: (say, 0.2), I,oludumrk is fairly eOllstant., hllCll.lUm U

"

and

U1),idcfd wdwork illcrcasc in ahuost the ~éUllC proportion \Vith n.

3. For R:S L(= 10), Lob., is relatively high aud degl'lldes U,. values. Siu"" U,.,j,ku' "d"...rk

is also alfected, tO/"ctlUork is surprisiugly high.

When R :S L, Figure 6.4 shows a convergence of lit x Il lines, bceausc t.hc IIlCIllOl'y snhsyst.elll

has 1Il0re elfeet on tO/"c!tVork (as diseussed in uext. sect.ion). Wc not.c t.1ml,:

1. For R ;::: L, the to/"..tlUurk (aud U,.) vainc is closc tG 1Il1lXinlllln al, lit =2. Thns, a high

R achieves good results, but lit should be 1Il0re t.han 1.

2. A high value of Tlt x R exposes 1Il0re <:olllputatiou at IL tillle, so /,o/" ..' .....rk is high.

]Jrcmotc nt R Lobs Sob., ÀJlI:t U,. toifll:tlllork

0.2 2 20 13.1 33.2 0.0069 69.74 ll.825

4 10 22.7 43.5 0.0133 66.29 ll.829

5 8 30.0 48.6 0.0153 61.02 0.843

7 6 47.1 55.7 0.017:1 51.96 0.891

0.4 2 20 12.9 38.4 0.0111 u5.45 0.656

4 10 17.6 61.3 0.0190 47.64 0.596

5 8 19.7 75.0 0.0212 42.49 0.587

7 6 22.8 103.7 00237 35.60 0.6 LO

Table 6.3: Erfeet of Thread Partitiouing Strategy on Net.work Lat.euey Tolerancc.
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(a) Premote = 0.20. (b) Prernole = 0.40.

•
Figure 6.3: tolnetwork with two Prernole values.

6.3 Memory Latency Tolerance

In this section, wc discuss the tolerancc of memory latency using workload parameters.

Figure 6.5 shows tn/memoru for two values of L, when Prernole = 0.2. Horizontal planes

at tolmemoru = 0.5 and 0.8 divide the tolmernoru plot in thrcc regions: Loo. is tolerated,

partially tolerated, and not tolerated. For R ~ 20 and nt ~ 6, tolrnernoru saturatcs at 1.0,

Le., Loo. does not affect the proccssor performance. Table 6.4 focuses on sampIe points for

which n, x R is constant. Note that the data for L = 10 is same as that for Prernote = 0.2

in Table 6.3. The dilferenccs in tolmernoru and tolnetwork from the two tables indicate that:

1. A high tol.ub.u.tern does not neccssarily mean a high Up, unless the latencies of ail

snbsystems are tolerated. (When R ~ L, Up is proportional to tolrnernoru x tolnetwork')

Thus, a low tol.ub!u.tem indicates that the subsystem is a performance bottleneck.

•
2. The impact of nt on Lob. is significant at low Prernote, because more messages are

diverted to local memory. For a change in nt from 2 to 7, Lob. increases by 3-folds.

Table 6.3 shows a smaller clmnge in Loo. at high Prernote.
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Figure 6.4: Network Latency Tolerance for Thread Partitioning Strategy.

For R :::; L, memory subsystem dominates the performance. Table 6.4 shows that:

1. An increase in L from 10 to 20 increases Lob. by over 2.5 times. Also, toll/wI/ory is at

most partially tole.ralcd.

2. R ~ L results in high tol",e",ory and Up, because cach thread klJCps the processur bnsy

for longer duration. A side elfect is a lower contcntion at the !llenlOry.

For the thread partitioning strategy (which kceps 1It x R = constallt), a high R vainc

means low nt, and further reduces contentions. The result is a high tolmernory.

Similar to the observation on the network latency tolerancc, we note that depending on the

workload characteristics, the same value of Lob. can rcsult, when the MMS is operating in

any of three tolerance regions.

•

In Section 6.2 on the network latency tolerance, we mentioned that performance gains

beyond 5-8 threads were negligible (as also reported by others [100, 4, 90]). Wc conjectnred

that this was due to exhaustion of hardware parallelism (l'cr processor). To vcrify the

conjecture, we focus on a single node of the MMS. For R = 2 and L = 10, Figure 6.6
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.Figure 6.5: tolm.mory with respect to workload parameters.

shows the effect of number of ports at the memory on Upo A low R highlights the effect

of hardware parallelism. For nt > n p , a linear increase in Up with n p ' Also, note that

Up satumtœ with increasing nt, when nt > npo In other words, once the memory ports

are busy, the processor performance cannot be improved using nt. Thus, the processor

performance improves with nt in the presence of a higher hardware parallelism (np ).

6.4 Scaling t.he System Size

The scaling of the system size mises the following questions for a compiler to optimize the

workload parameters: H:Jw will the tolerance of network latcncy change with the system

size? Which parameters huve significant effect on the tolerance? First, we discuss the

affect of distributions for a remote access pattern, i.e. geom__tric and uniform (where a

remote access is directed to any of the memory modules with equal probability). We show

that the effect of locality on the latency tolerance is significant. Second, we study the

performance of subsystems and show that a careful tuning of the workload can exploit the

INJor a better performance than an ideal (very fast) IN.
1·,-
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u,)1 tolmcmorv 1

10 2 20 13.1 33.2 69.74 0.843

4 10 22.7 43.5 66.29 0.797

5 8 30.0 48.6 61.02 0.763

7 6 47 ~ 55.7 51.96 0.729

20 2 20 32.3 31.7 55.01 0.665

4 10 67.2 35.4 41.62 0.501

5 8 87.5 36.2 35.28 0.441

7 6 128.0 37.0 27.82 0.390

Table 6.4: Effect of Thread Partitioning Strategy on Memory Lntency Tolerance, when

Premote is 0.2.

•
Figure 6.7 shows tolnetwork when the number of processors, P, is varied from 4 to 100

(i.e. k=2 to 10 proccssors l'cr dimension). At Premote = 0.2, nt is varied for two runlengths.

Wc observe that:

1. For a uni/orm distribution, dovg increases rapidly (from 1.3 to 5.0) with the system

size, and the network latency is not tolerated. tolnetwork satl.rates with low Ttt and high

k. But for a geometric distribution, dovg asymptotically approaches 1_:,,,, (= 2) with

increase in P, and an increase in Ttt improves tolnctlVork close to 1. The performance

for the two distributions coincides at h: = 2 for all nt values.

2. For all the machine sizcs, tolnetwork is clost, to its saturation value for 5 to 8 threads.

Note that even a large system does not require a large nt to tolerate network latClll:Y.

3. At R =- 10, and k from 6 to 10, tolnetwork .increa~es nI' to 1.05 for a geometric

c1istribution, i.e. the system performs beLter than with an ideal IN. The dehLYs at

network switches alleviate the contentions at remote memorics, thereby improving

the rcsponse for local acCCllSCS.

•
4. An increase of R increases tolnetwork values and the maximum tolnetwork value is close

to 1. A higher R reduccs the memory access rate. A rednced contention at the

memory decreases Lob•• This improvcs Up as weil as Up,ideal network.
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Figure 6.6: Up with respect to number of memory ports np'

Now, we focus on the observation 3 stated above. Figure 6.8 shows that with increasing

the system size, the system throughput (= Px Up) increases, when nt -' 8 and R = 10. For

the uniform distribution, the network latency increases rapidly and the throughput is low.

In contrast, a n~om"l.rically distributed acccss pattern shows an almost linear increase in

throughput (slightly better toan the system with an ideal IN). Transit delay for ail remote

accesses on an ideal IN is zero. Acccsses from ail processors contend at a memory module

increasing the Lob. (see Figure 6.8(b)). Thus, Up,ideol network is alfected. For a neometric

dist.ribution, the IN delays the remote accesses at each switch (similar to the stages in a

pipeline), just enough to result in a low Sob. and Lob.. The local memory accesses are

serviced faster, and Up values improve. The fo11owing are the two implications from the

above observations:

• A very fast IN may increase the contention at local memory, and the performance

sulfers, if memory response time is not low. Multiporting/pipelining the memory can

be of help. AIso, prioritizing the local memory requests can improve the performance

of a system with a very fast IN.



• CHAPTER 6. LATENCY TOLERANCE 14li

o.

....... 1-t-j-l-t-r .... l-·-l"I·'-t"t"1 i!......... 'xxxi le .. ,01
,. XX ~ • ,,_, • Il •• o, o,- !

, • x .' "".' . CDf x. ,~. ,.' C
'x x • 1

./ x '. •• __ ~_ ... _M ~O...., ~~.-~_ ..- ~

x E
.~ , ~, - - - ..';.-~~.;.~~. ,~'-t·:.~·~ t~ ~.,-.; -~-~ gO.

/ .......;-+"'t l!
" ~'.'+.+ t .'+ k=10,unilorm. G:l
/t .. -+- -t k= la, geomelric: ë

+' k'; 8. uniform 1-0•
• • • k=8, geomel~c

k=6, uniform
li x lC k=6, geomelric

k=4, uniform, O.
k=.4, 9eomelric

o 0 0 k=:2. uniform
t .. t k=: 2, geomelrlc

• .. -t k= 10. uniform
• - -t k=10. 9eomB!ric

k=8, uniform .
• •• k=8,9Bomelrio

k=6. unlform
x x x k=6. geomBlric

k=4. unilorm '.
k=4. geomBlric

o 0 0 k=: 2, unirarm
t .. • k::: 2, geomelric

2 4 6 8 10 12 14 16 18 20
Number of Threads, nJ

(a) R = 10.

2 4 6 8 10 12 14 16
Numbar 01 ThrBade, nJ

(b) R = 20.

18 20

•

•

Figure 6.7: Tolerance Index for different, syst.em sizes.

• A larger system can makc better use of IN under a good 10caliLy t.u t.olerat.c Ilet.work

latencies than a smaller system.

6.5 Discussion

In summary, our results on t.he lat.ency tolerance show t.hat.:

1. The extent of t.he lat.ency tolerancc depends on t.he choice of workload pammet.er

values rather than the resu\ting value of latency. A large lat.C1wy does not. nec:essarily

degrade the system performance.

2. The net.work latency is tolerated only if the memory acccss rat.e is less than t.he mt.e

al. which memory and IN can respond. We comput.e t.he crit.ical Pr""",!. value up 1.0

which network latency is t.olerated.

3. A high Up requircs h!gh tolerance indices for bot.h the network and memory lat.encics.

A low tolsub.ystern indicates that the subsystem is a performance bot.tleneck.
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Figure 6.8: System throughpllt for uniform and geometric remote access patteru.

4. A high thrend runlength yields a high U,,, and tolerates the latencies better than a

high nt. Vnder :mr assumptiou of a small number of ports for a realistic memory

subsystem, performance gains for nt beyond 5 to 8 threads are negligible becanse

hardware parnllelism in the system is exhaustcrl.

5. A large system with a good locality in remote acccss pattern cau make go,'d use of the

IN lLq lL pipelined bulfer and relieve contentions at the memory. So, the through\J1\"

increases almast linearly with the system size and is up to 5% better than with an

ide,,1 IN. The use of a very fast IN lends to an i'lcreased contention at the memory.

Hence, the performancc sulfers.

Item 5 sllggests that Lv Ïtnprove the performance we should also prioritize the requests

from local processor helps to keep the local computation unalfp.cted by conte!'tions. This

lLppronch has been adopted in the processing node design' if the EM-4 multiprocessor sys­

tem [83].
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The latency avoidancc techniques, like caches amlmemory hiel'l1rdlY, <:llnt.inue t,o be studiml

extensively in t;,e literatme [Sli, 7, 73, 78]. The elfcetiveness of lILl.eney tolerance t""hni'lues,

like multithreading and prefetching, has not been studied fOl'lnally in a WILY sug~estml in

this chapter. Kurihara ct al [54] evaluate the e!fectiveness of nmltithreacling using up to

two threads (sincc their applications did not. have more inherent pal'llllelism). Theil' cosl,

analysis shows a reduction in remot." memory "cccss l'asts wiUI t,he use of t,wo threads.

They report a simultaneous incrense in the network latency and channel utilization. Those

conclusions are in conformity with our analytical results. Fmther, we have definecl thn

latency tolcrance and applied it to analyze the performance bott.lenecks in the system.

Analytical ,lerformancc evaluation studies by Agarwal [4] and SluLVcdara-Barrcra ct,

al. [SOl, modeled a multithreaded proccssor in a cachc-based multiproœssor systcm. Willick

[101], Johnson [50J and Adve [2J modeled a closed system. Weber [100] and Thcklmth [!JO]
simulated bus- and network bllsed multithreadcd systems. Most of t,hese studics focus on

processor performance and report that 4 to :; threads pel' pl'Oœssor yield a performance

increase while higher parallelism decrellSes the pl'Occssor throughput. Howevcr, none of

these work analyze the latency treatment fOl'lnally.

Our analysis l'l'ovides significant information on ho\\' to tolel'lLte a Intency ami i;J1ll

impact of a thread partitioning strategy on the latency tolerancc and system perfornllLnce.

on latency tolerance l'l'ovides additionnl significant information We nlso show that the

saturation of processor performance occms al. a small mlInber of threu,ls, becallse the

hardware parallelism (number of rcsources pel' pl'O<:ossor) in the system is exhaustml.

For single-thruaded machines, the Flash ~ystmn [42] hlL~ heen studied by comparïng its

performance with an ideal machine. TLey use a C(J7lteTltiOll-I(~.~.9 network, and zcro-de/au for

cache protocols. Similar to 0111' observation (incrca.~ed memlJry response time due to ideal

IN), they report an increa.~e in contention al. the cache due 1,0 idcal belllL'lior of the hus

and memory. They use a fixed size system (of 16 processors) for their fl'sults. So, they do

not observe the effect of unloaded network latency on th,! system performance. Sedion li.I

shows that unloaded network latency varies with system size, and sho1l1d he facl.ored ont of

the performance of the ideal system. Section li.4 shows how the latency toleranc!! l:hang!!s

with the system sizes.
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In this chapter, we have introduccd a new metric calicd the ta/eronce index, tO/.•ub.y.te.... for

analyzing the latency tolerance in an MMS. For I! ~"bsystem, ta/....b.•y.tem indicates how close

the performance of a system is to that of an ideal system. The interaction of subsystems in

lUI MMS plays an important role in determining the performance. We provide an analytical

framework based on c10sed queueing networks, to compute tol.mb.y.tem.

Our results show how the latency can lm tolerated as long as the rate at whicll a

processor sends memory ac':esses is less than the rate at which the subsystems can respond.

Further, the latency tolerance depends on the choiLe of workload parameter values and

inherent delays at the subsystcms, rather than the lal,ency for individual accesses. The most

performance gains rcsult from 5 10 8 threads due to exhaustion of hardware parallelism.

A pipelining or mul~i-p(lrting of system resources provides increased hardware parallelism

essential to exploit the high software parallelism (say, nt > 5).

The latency tolerancc is useful to identify the performancc bottlenecks. For high per­

formance, both the memory and network latencies have to be tolerated. Since the number

of parameters in a multithreaded system is large, the latency tolerance helps to narrow the

focus of performance optimizations to the parameters, which affect the performance the

most. Thus, an analysis of the latency tolerance yields more: insights into the performancc

optimizations than lUI analysis of processor utilization.

In the next chapter, we apply our analyticalmodel to analyze McGill's EARTH multi­

l,hrell(led system. This case study shows the effect of multithreading in the presence of

realistic subsystem interactions.
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Chapter 7

Case Study: EARTH··MANNA

System

In previous chapters, wc developed analyticlll performance models of ahsl.ract mull.il.hreluled

systems and analyzed their predictions. Our focus was on the elfecl.iveness of nmll.ithrellding

to achieve high performance. We studied how the network trame and lal.eneies inerelL~e<1

with lIIultithreading, and how the network performanœ alfeel.e<1 the proellssOl' ntilizal.ion.

Earlier in Chapter 4, we discussed how the dllsign of a muitillll'lmded pl'Occssing node

affected its perforlllance.

A l'cal multithreaded system, like McGill's EARTH-MANNA nmILipl'llœSsOl' syst.em,

presents more challenges to perforlllance modeling and analysis dne 1.0 eomplientions of

realistic subsystem interactions under multit.hreaded pl'Ogram execntions. This dllLpter fo­

cuses on the problems 3.2.1, 3.2.2, 3.2.4, and 3.2.5 discnss",( in ClllLpt.er 3. Thil ohjlletives

of this chapter are as follows. First, wc extend our analyl.ieal pe..rormauee model to lIn­

alyze the EARTH-MANNA syst.em. Seco1ll1, we validat.e the model prediel.ions using I.he

measurements frolll program executions on the EARTH-MANNA syst.em.

The EARTH Œffieient Architeeture fG)' Running Threads) architecture supports Il lIIulti­

threaded execution model based on split-pha:'(; comlllunications and synehronizlltionH [461.

Current1y, the EARTH architecture is implemented on Il 20-node EARTH-MANNA lIIulti­

processor hardware testbed [59]. The EARTH-MANNA proeessing nodes (with Intel 860

XP) are connected acl'OSS Il high-bandwidth network, eonHisting of a hierarehy of erossbnr

150



• CHAPTER 7. CASE STUDY: EARTH-MANNA SYSTEM 151

•

•

switehes. Hen<:cforth, wc refer to the EARTH-MANNA system as the EARTH system,

cx<:cpt where wc diseuss the implementation details of the MANNA system.

We apply the analytical model in Chapter 5 to predict the performan<:c of the EARTH

system. Extensions to the analytic:al model arc two-fold. First, wc develop two approx­

Î1nations to the menn value analysis (MVA). These approximations account for complex

interactions mnong the resources in the EARTH system, and the eharacteristÎ<:s of a real­

istie mnltithreaded workload. Second, wc expand the set of parameters to represent the

program workload in the EARTH Threaded-C. Such workload characterization is helpful

for performance rc1ated optimizations.

First, on the arehitectural aspect, wc model the si7Tlll/taneolls l}Ossession of the bus,

for aeeesses in an EARTH node. For example, when the processor at an EARTH node is

ac<:cssing the local memory, no l\l'CeSS from remote processors to other functional units on

this node can pro<:ced. With our heuristic and the iterative natnre of the MVA, wc formulate

the above problem under one analytical model (nnlike at least two models in [48, 56]). Each

request to the resour<:cs, memory or network interface, contends at the bus, and releases

the bus at the completion of the access. Thus, the qneueing delay for the access is th~ sum

of serviee time for cadi queued request through the bus, rather than the queueing delay at

individual resour<:c alone.

Second, for a progrmn workload, the thread charaeteristics at dilferent processing nodes

may di/fer. Each ~ype of request (e.g. local or remote memory accesses) requires a dilferent

service time from the servel' (memory system). So, a single unified queu~ length alone, as

used by the existing MVA [751, is not enough to compute the queueing delay for a specific

requcst. To improve the accuracy, our heuristic to the MVA considers the service demand

for each individual access in the queue at a subsystem, and the numbers and types of

requests in the queue at the time when this request enters.

Inputs to onr performance model arc, the program workload parameters, like the number

of threads, thread runlengths, the nnmber of split-phase long latency operations, and the ar­

chitecturai parameters derived from the EARTH system. The model predicts the proeessor

utilization mld the latency for a remote ac.cess with split-phase operations. Wc charneter­

ize the variation of these performance measures with program woik!oad parameters. The

runtime measurements from the EARTH system on synthetic benchmark vrograms match
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within 5% of the ana1ytical model predictions in most cases. TI",se predidions also eonform

weil with the measurements on the l'cal programs (reported in [59]). These results demon­

strate how the reliastie costs of multithreading all'ects the pCl'fortlllUlCC of the fitlL~gmin

parallel prograln workload.

A split-phase multithreaded operation may involve accessing the local mClnory, sClllling

messages on the nctwork, rcccivillg l'espanNes, and pcrforming syne11l'onizat.ioll 0Pl!l'l\tions.

Through the performancc chal'llcterization usiug workload pm'an",ters, we show what are

the realistic latencies experienccd by individmù a(:Cesses during a IIInltithreaded progmm

executions, and how thcy affect the proccssol' pCrfOl"lIlll.IlCC. 'rhm;c latclley valucs arc sig~

nificantly higher than their base values typically reported in the literature. SUdl chm'm:l,er­

ization provides a strong evidencc on how nsefnl Olll' analytical model is to (:ompilcrs and

system architects of multithreaded systems for performance rclated opl,imizatious.

This chapter is arranged Ils follows. In Section 7.1, we describe the relevant details

of the EARTH system. In Section 7.2, wc outline our analytic:al model for the EARTH

system, and develop approximations to the n",an value analysis (MVA). ln Section 7.3, we

validate our model predictions using the ,untime mClL~lll'ementson the EARTH system. We

charactcrize the variation in the performance mmL~IlI'eS wil,h respœl, 1.0 pl'Ogmm worklo",1

patarneters. Wc discuss the related work in Sœtion 7.4, and sUllllnm'ize major resnlts of

this chapter in Section 7.5.

7.1 Experimental Testbed

This section contains a brief description of the MeGill EARTH-MANNA sysl,l!In and the

program workload to eharaeterize the system.

7.1.1 EARTH Architecture

The EARTH (Efficient Arehiteeture for Running Threads) al'ehiteeture prop.Jses that syn­

chronization operations and eompntations ean be effieiently performed using separate fune­

tionalunits [46]. A node in an EARTH multiprocessor l:onsists of an Execution Unit (EU)

to execute threads sequentially, and a Synchronization Unit (SU) to support synehronizll.­

tion operations in parallcl program cxeeutions and eommunication with rcmote proeessing
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noc!es. Current1y, the EARTH programming mode! is illlplelllented on the MANNA multi­

p1'O""ssor, devcloped at GMD FIRST in Berlin, Germany [201. The EARTH Threaded-C

l:OlIIpiler supports lIIultithreading primitives by expanding them inline in order to reduce

t.heir overlwads. This section describes McGiIl's EARTH systelll. Appendix D reports

further c!etails. 1

System: The EARTH nlUltipl'Ocessor system consist.s of lIIult.iple EARTH nodes across a

high-bandwidth interconnectionnetwork (IN). Figure ·l.l shows a lIIultiprocessor configura­

tion for EARTH system. EARTH nodes are connccted ta the leaves of the interconnection

nefwork. Each EARTH node, lL~ shown in Figure i.2, consists of two Intel i860 XP RISC

proœssors clockml at 50 MHz, 32 MD of DRAM, and a fast network interface called the

link. The network is a hiernrchy of 16x 16 crossbar chips [201.

EARTH Node: An EARTH node has an Exc<:ution Unit (EU), a Synchl'Onization Unit

(SU), lUul a part of distributed shared memory (see Figure 7.2). The EU and the SU internct

thl'Ough l'Cudy and ClJcnt queues maintained in memory at the same node. The EU executes

t.he application pl'Ogram code. The SU pm'forms the synchronization and communication

opemtions.

EU: Ta start a computation, the EU fetches a thl'CIlII id from the ready queue, and executes

a t.hread to cOlllpletion. The :-:U issues a long latency memory acœss (local 01' remote),

places them in the event queue, and context switches ta another ['eady thread.

SU: The SU l'euds incoming messages fl'Om the event queue (from local EU), and the

linkJn node (netwOl'k messages from remote processors). In response, the SU reads/writes

to local memory, sends messages, replies 1.0 messages, updates synchronization variables,

and schedules threads for execution by writing their thread id's 1.0 the ready queue.

Memory: The memory at an EARTH node maintains the local data, global dat.a, ready

queue, and event queue. An access to the localmelllory by the EU (or SU) incurs a service

t.ime of 10 cycle, in the absence of queueing delays.

Multiple such !ocalmemOl'y accesses are required to complete one long latency lIIemory

IIccess. The nlUltithrellding operation GET..sYNC is Il long latency memory access. This

opemt.ion fetches a dat.um, and complet,," a synchl'Onization to activate a threlld. A similar

1111 this thesis, wc use the tenus "EARTH" 1 llEARTH-MANNA" and "MANNA" to rcprescnt IIEARTH­
MANNA s)'stcmn. lu rcality, llEARTH" architecture is mappcd 011 to the ul\'lANNA" system.
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operation DATA.5YNC is issued to stores a datulll and syuchronize. The EU issues these

ll<:ecsses to com1nunicate mnong threm!s, which Illay exccute on different nodes. The des­

tination SU accesses its loc,ù memory, and rontes the response to the EU originating the

aCCCSH.

Link Interface: The Link_in and Link_ollt nodes interface an EARTH node to the network.

Dullers at each Iink node store up to 4 messages. An SU sends a message to a remotll SU

through the Link_ollt node, and receives a network Illessage through the Link_in node.

~: Ail functional units in an EARTH node conllnunicate through a pipelincd hus, e.g.,

an access to a Iink node hy the SU. The bus is held till the ac<:css to a functional unit is

complete.

Crossbar: Each crossbar chip connects 16 input channels to 16 output channels in paralle!.

A channel is 1 byte wide, and supports pipelined trausfers. Each output channel selects

an input channel for message transfer in a round-robin manuel'. The first byte takes up to

32 cycles to reach the output channel, and titereafter, the transfers take 1 byte pel' cycle.

After the completion of one transfer, other waiting channels, if any, are given priority for

next message transfers. The interconnection network uses a hierarchy of crossbar chips.

Processing nod~s are counected to the leaves of the interconnection network (Figure 7.1

shows a 20-node configuration).

EARTH Threaded-C Language: The EARTH Threaded-C language is Ill! extension to

the C language. The extensions support the dec!aration of threaded functions, the specifi­

cation of threads withiJ: these functions, and the specification of EARTH operations. The

language requires an explicit specification of the partitioning of threads and the EARTH

operations to be nsed. For example, one GET-SYNC operation fetches one remote datum,

one DATA.5YNC operation stores a datum to remote location, and the END_THREAD opera­

tion performs a contcxt switch. An explicit mention of these operations helps in obtaining

the progrmn workload parnmeters. We provide a synopsis of the EARTH multithreading

operations in Appendix E. A smnple program workload is discussed in detail, earlier in

Section 2.2.
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In this section wc Dutlinc progrmn workload'\ uscd to dmraderize tlw performance hdmviur

of the EARTH system. The performance of the mnltiproeessor syst.em depmnls on t.he cost.

of rCl11oto acccsscs. For a. rCI1101ü acecss, first, a rcqucst is sent across t.he IIctwork. Seeoml l

the access is processed at the remote node. Finally, the response is reciJived anoss t.he

nctwork. Thus, a rctnotc acccss Illay suifer contentions at the Hude, and on the llctwork.

Wc use two synthetic workloads t.o chamct.eri~e the perfol·nuLlu:e. The firs!. worklollli

characterizes the access conteutivns at lUI EARTH node. The second work load dmract.erizes

the contentions at the nodL'-network interface. and t.he int.erconnedion net.work. Wc dloose

these synthetic workloads becanse the input parameters of int.el"Cst. are ClL,ier to adjnst,

and their elfect on the system performance can be individnally studied. These progr","

workloads are written in the EARTH Threaded-C language. (Appendix E provides details

on the EARTH Threaded-C language.)

Workload 1:

The objective of the 6rst workload is to dml'llcteri~e the EU-SU interference on a hus

at anode. That is, how much delay oGeurs due to contention, when a rmnote memory

access receives a service at. a l'articulaI' node. Wc ensnre that thel'C are no messages on the

network, and the contention occurs only at the node nnder investigation, referwd IL' a tt:.,t

:"ode.

A remote ac('~:;s l'caches the test node through the link interfaœ and the SU. 'lb pro""ss

the access H the test node, the SU fetches the relluested loeation from tlll: nll)mory, pwpares

a reS;,10nse, e.nd sel:ds the response throngh the link interface. For each hns aceess at Lhe

test node, the SU may experience a eontention from the EU. Fignre 7.3 shows the progmm

workk''ld for the EU at the test node. The EU writes one donblL'-precision lIoating point

number in each itemLlon. There are L~ge iterations. Tlw dUl'lltioll between writes is

controlled using the number of nops in the body of the 1001" III additioll, to elimillate the

elfect of cache on the number of write accesses during the mCllSurements, we write to ev(!ry

8th clement.

The program workload ensures that the EU execution ha., thrcc pha.,es a.' shown in

Figure 7.3. The execute, read/write and idl" pha.,es at lUI EU indicate an execution of
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thread, an access by the EU waiting for the bus, and a service at the memory, respectively.

For CXCClltC phase, the EU does not contend on the bus. "asm (r' nop' ') ; Il represents

the part of the computation, w'tich does not require a memory access (see Figure 7.3). At

the end of the execute pha..e, a write operation is issued and the EU requests an access

to its local memory. The shaded read/writc phase indicates that this access experienccs

il contention from the SU. The idtc period inrlicates that the memory access by EU is in

ser'/ice, and the EU is waiting for the memory response. An access from the SU to the local

memory follows the same sequence of operations as shown in Figure 7.3. We monitor the

contention for the bus by varying the thread runlength.

EU exeCUlc reacUwrilc idlc

r.~'=ï:'"~~:;;~""O'-(~"'!"~<':"o·~:'";,::;g:'"e;""i7+"'8)"·M9m ; busy \ ~ i; lb
aU] = double value; 1 0 r.~0!1W~i;dl;:Jcll!!i·_i!iIili! :;.Time

Figure 7.3: Workload for the node characterization.

Workload 2:

The objective of our second workload is to characterize the performance of the network

and its interface to the node. That is, how much contention a remote memory access suffers

at the network and remote processing nodes under multithreaded program execution. We

want to vary the following program characteristics: the number of threads, their thread

runlengths, and the number of multithreading operations for each thread.

Figure 7.4 shows the code segment for one thread of our program workload. Figure 7.4

also shows an abstraction of the program execution when two threads are active at an EU.

We presented a detailed description of such program workload in Figure 2.2 (Section 2.2).

The program computes a vector addition: a + b = c. We chose this program workload

for the following two reasons: First, it is simple to v..ry the program workload character­

istics. Second, cache effects can be easily eliminated by a simple addressing scheme. For

the purpose of our analysis, ail EUs follow the same execution behavior. Each EU fetches

two arrays (a and b), computes their vector sum, and stores the result (in array cl. The

code segment shows one thread. For each thread, two GET-SYNC operations are initiated to

fetch j-th elements. Figure 7.4 shows that the EU at node 1 sends two messages to SUI
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i.e. its local SU. The SUI sends two rcmote accesses ta the SU2, the SU al. node 2. The

SU2 responds back with the data. When the j-th clements arrive, thread.l is triggercd.

After the computation, a DATA.5VNC operation stores the result in j-t.h clement of array, c.

Thread runlength is controlled using nop instru~~ions. The EUI selllls the result mlll two

fresh messages ta the SUI. These messages arc forwarded 1.0 the SU2. Thus, the progmm

execution on a thread continues. Multip'e such threads arc forked al. eaeh node (IL~ shawn

earlier in Figure 2.2 and Figure 2.4).

In Section 7.3, wc will use the measurements frolU the EARTH system on these work­

loads ta validate onr model predictions. F\lrther, our workload in Figure 7.4 provides us

the flexibility of eharacterizing the effect of various lUultithrellded worklo",l pamlUeters on

the system performance.

Thread 2

Thread 1

EU /-SUJ loce" I1W.fstlge.\·

cli)

GET_RSYNC (a_remote+j, a+j, );

GET_RSYNC (b_remote+j, b+j, );

END_THREAD 0;
THREAD_l: asm ("nop");

DATA_RSYNC (aUl+bUl, c_remote+j, ...);
L._-'-} -' SU/·SU2 netwnrk lIIe.'...ge.'

for 0=0; i < C; i++)

{

•

Figure 7.4: Workload with Multithreaded Operations

7.2 Analytical Model

•
In this section, we outline our analytical performance model for the EARTH system. This

model includes the extensions 1.0 our original model (in [63]) 1.0 realistically captnre the
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•

•

lIlultithreaded program executions on the EARTH system. First, wc discuss the models for

the functional units at an EARTH node and the network. Second, wc cxplain the heuristics

for the solution technique to predict the performance of the EARTH system. Finally, wc

show how to derive the performance measures of interest.

7.2.1 The Madel and Its Assumptions

Our performance model of the EARTH system shown in Figure 7.5 is based on closed

queueing networks (CQN). Nodes in the CQN model represent the functional units in the

EARTH system and edges represent their interaction through messages. Wc discuss the

model in more detail, below. Table B.1 in Appendix B summarizes ail symbols and their

experimental values for system parameters.

Our program execution model, and one sample application program are described earlier

in Section 2.2. The application program is a set of partially ordered threads. THe only

difference with our previously described model assumptions is that a thread is a sequence

of computation and local accesses followed by one or more long latency accesses. A thread

repeatedly goes through the following sequence of states, an executioll at the processor, a

suspension after issuing long latency memory accesses, and ready for the execution aCter

the arrivai of ail responses. Threads interact through explicit long latency accesses. Wc

assume that the application program exhibits similar behavior at each node (like a Single­

Program-Multiple-Data, SPMD, model) [43]. With this assumption, one set of parameters

characterizes ,the workload on ail nodcs exeluding the dedicated node in the system, so the

number of input parameters is reduced.

Wc now describe the assumptions in the elosed queueing network model shown in Fig­

ure 7.5 for the EARTH system.

• Ali nodcs in the performance model are single scrvers, with a First Come First Served

(FCFS) discipline. Their service times are cxponentially distributed. Table B.1 lists

the mean value of service time for eaell visit to anode.

• EU 2: Each EU cxecutes a set of nt threads, e.g., nt iterations of a for a11 loop

are forked on each node (see Section 2.2). The mean value of the service time of

2WC usc the notation "EU" and "proccssor" intcrcbangcably.
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•

•

a thread is R cycles. The number of local lIlemory accesses performed duriug the

thread runlength R. is rw, Le. the local read/write accesscs. For the context switch,

o cycles arc spent. We assume that threads do not migrate, so threads at anode i

belong to a class i in the CQN mode!.

• SU: A multithreading operation requires one or more visits to lUI SU. For each visit,

on average, SU.erv cycles arc spent. This asslllItption is valid on the EARTH system,

because t,he SU executes a fixed, optimized set of events of each request.

• Memory Node: The memory node has a mean service time of L cycles for each

local access. A long latency memory access from an EU is sent to a remote lIlelllory

with a probability Premote' Therefore, (1 - Prerrwte) is the probability of a local long

latency access. For requests from a thread at processor i to memory at node j, emi,j

denotes the visit mUo. The value of emi,j depends on the distribution of remote

memory accesses across the memory modules.

• Linle N odes: The Link_oul node has a mean service time of InkolLI.•ertl cycles for each

SU access. Similarly, the Link_iu node has a mean service time of Inkin••rv cycles for

each SU access. Wc assume an infinite buffer capacity at link nodes for the following

reason. Access time of link nodes is very fast (15 to 20 eycles per aeeess) eompared to

the processing time (60 to 80 cycles per operation) at SU. Similarlyon the network

side, a message encounters a round-robin selection at each crossbar switch Ils weil 1111

the contention from other messages. Each seleetion at the crossbar switehes ineurs

around 17 eycles. 50, the link nodes will not exhaust their buffer spaees.

• Bus: An access to a resourœ through the bus incurs a delay of /mS.ertl (=1) eycle at

the bus, apart from the delay at the resource.

• Crossbar Switeh Nodes: Each input port of the erossbar switeh node has a mean

service time of xin.ertl cycles. Each output port has a mean serviee time of xOlLt'erli

cycles. Each output channel performs a round-robin to seleet the input channel, so

xOlLt.erv (= 32) cycles are needed to transfer the first byte to output channel, after

which the transfer is pipelined. Since the data transfer betwcen link interface and

input port is smooth and one bl'te is transferred at every cycle, we assign the length

of the message to the service time of input port, Le. xin.ertl (=8) cycles.
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The above models describe the behavior of individual functional nnits in the EARTH

system. III the next section, we show how to model the interactions among functional units,

based on the above behavioral descriptions of the CQN model.

Figure 7.5: Queueing Network Model of the EARTH System.•
Mem

su

l/lnkinsCl'v

Node Madel

LnkI

1
1
1
1

1
1
1
1
1
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7.2.2 Solution Technique

•

Our solution technique uses approximate mean value analysis (AMVA) [75J. As mentioned

in Chapter 5, two salient features of AMVA are, its computational efficiency of AMVA to

solve models of large systems, alld its arnenability to heuristics. To capture the rea1istic

subsystem interactions of the EARTH system, we need to exploit the second feature of the

AMVA. We propose two simple heuristics to predict the performance of the CQN model

shown in Figure 7.5. The first heuristic accounts for the multithreaded program workload

in the EARTH system, and the second heuristic accounts for thread accessCR in an EARTH

node, which hold the bus till the completion of their service.

The AMVA a1gorithm is outlined ill Figure A.1 of Appendix A. With nt threads on

each processor in the system, for each class i of threads and at each node m, the AMVA

computes:
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• the rate Ai at which the processor i sends memory accesses;

• the waiting time wi.m; and

• the queue length ni"..,

162

•

Now, wc discuss heuristics to this AMVA algoritlull, for performance predietion of the

EARTH system.

Heuristic for Multiple Classes:

We briefly outline the heuristic to account for dilferent service demands for Ilcœsses

from different classes (processors). The later experiments show olle eXlllnple on the USI)

of this heuristics: the applitation (program worklolld-2 in Figurn 7.4) is executed on thl'

test nodes ami the measurement thread is executed by the dedieated node. To Ileeumte\y

predict the performance, such workload characteristics lIeed to be neeounted. An esseliLial

idea of the AMVA is that the queue length seen by llll Ilrriving nccess from <:Iass i Ilt Il

node m is equal to the time averaged queuelength nt the uode, with one less thread ill

the system [75]. In AMVA (see Figure A.l in Appendix A), Step 2(a) provides the queue

length seen by this acccss. Wc note that the AMVA ignores the effeet of dilfereuces iu

service demands for different c1ass of accesses on the waiting time. Thus, Step 2(b) may

incorrectly predict the waiting Lime. Our heuristic computes the waiting time Pi,,,, for a

class i acccss at anode m using an accurate composition of ail queued fCquests:

wi,,,.(N) = Pi,,,. [1 + (NN~ 1n;,,,,(N)) +L:r=l#i pl:::: 7lj,,,.(N)] (7.1)

•

In Equation 7.1, the service demand Pi,,,. is multiplied by the effective queue length. Terms

in the square hracket represent the effective queue length for n newly arrived IlCCesS. "l"

represents the newly arrÎ\'ed acccss. The second term is the queue length of c1ass i llCeesses

at node m. A linear interpolation is used to obtain the queue length of c1ass i accesses

before the arrivaI of new &Cccss in c1ass i. The third term includes the nctuul quelle length

of c1ass j uccesses, und scales this queue length of c1ass j IlCcesses using their service times.

In effect, the third term times the service demund represents the actuul qucueing delay due

to class j accesses, which are already in the queue at node m.
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•

•

Similar corrections to the AMVA have been considered in literature by Leutenegger [58]

and oLhers. Wc indcpendcntly derived this approach. Our contribution is that wc have

sl1l:œw'fully modeled dlllracteristics of a multithreaded program workload with variations

in serviee tinl<' for dilferent multithreading operations, and we have validated the elfect

of t.his heuristie on the performance prediction using runtime measurements from a real

system.

Heuristics for the Node Madel:

The CQN model shown in Figure 7.5, does not have a TJ7YJdllct-fonn solution, because the

following two suhsystem interactions do not satisfy t.he assumption on the single resollrce

T}().v.v"•.vion, the ussumption 8(a) in Appendix A:

1. When an EU accesses the memory, the hus is h~ld till the access is complete. Sa,

the SU cdnnot access other resources li!;e link-in or link-out nodes. This suhsystem

interaction is an cxamplc of a si7Twl/ancotlS resourcc TJOSscssion.

2. Crosshar switches allo,," a pipelined transfer of data, thus a message may be in service

at more Lhan one resources simultaneously.

Qneueing delays during the above interactions are alfected by the queues at more than one

resources, sa the TJ7'odllct-fonn solution is not applicable [15, 75J.

Now wc show how ta incorporate t.he elfect of the .im'j!tancolls ,'esollrc" posses.vion for

performance prediction of the EARTH systellt, under one analytical model (unlike at least

two models in [48, 56)). The problem ofsimultaneous resource possession in an EARTH node

OCCIIl'S as follows. Consider a localmemory request issued by an EU (see Figure 7.3). When

this access is in service at the memory module, three functional units (queueing nodes)­

proecssor, bu~ and memory- arc si7ll1l!taneoll..Ty busy ta service this access. Specifically,

the bus is possessed as long as the memory is ac:cessed. An nccess from the SU ta the local

memory or link nodes has ta wait till the local memory access from BU is complete. Sn, a

new memory access does not get the bus, till the previously issued requl)sts are serviced. A

similar wait period is encountered fn~ memory accesses by Lhe EU, if the SU is accessing a

link nude. Thus, a bus request ohserves the waiting queue aL ail of the resources.

An outline of conventional approaches ta this simultaneous rcsource possession problem

is as follows [48, 56]:
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•

1. Fir.'it, idcntify a set of primary rcsourecs whcre an aeeess is Hcrviecd, C'~" l\ lIwmory.

Idcntify a set of .'1eCOncla71/ rCSOlll'ces, ('.g., .il hus, whieh arc Ilcedl~d t.n complt~t.e t.lw

service at priInary rcsourccs.

2. Second, isolate cach slH~h occnrrence of the sÎluultu,llculIS l'Csntlree PO:-;UfJHSion fm' an

independent model; Le. develop one model for followin~ fllllet.ionai IIl1it.s on "aeh

EARTH node- bus, mem,r ", SU, linkJn and link_ollt..

3. ThiNi, derive a jlow-clJuitlr.:, ..t 'Illelleillg sm'ver llll' above modelof fllllet.iunai Il IIi t.s.

Tha.t is, givcll a IlUlJ1bcr of acecssm; in sl!rvieo, ol)l.aill t.he rat.e of t.hcir SUl'Viel! (t.llnmv;ll­

1'111.) and t.he eompletion time 1'01' servie" of "aeh aœ"ss. Ll\l. liS mil t.lwse Ilow­

equivalent models 1.0 be the ."J' models.

4. FOlLdh, develop a model of l'est. of tbe syst.em, aud ineorpomt.e a delay s"rvm' in

place of the above /Iow-eqllivalent. queueing servel' rep,·es"nt.illg fllnct.iOlllllllnits IIl1dm'

simultaneous resollrce possession problem. Let. liS cali t.his model 'L' LIli' '''J'-1r''''
mode!.

5. FiJth, solve the srp-free model in t.he thinl st.cp 1'01' t.he desirell nmlll)()r ,,1' l.hwlllls ill

the system, and obtain the throllghput and delay of t.he delay servel'.

6. Sixth, use the thronghpnt and delay of the delay servel' IL~ IlIl inp"t of srI' Ilio<id:, in

Step 2, and l'rom the srp-frcc model, obtain the throllghpllt and delay fol' Ill'''''SSb'.

7. Final/y, itemte Steps 5 and 6 t.ill thronghputs and delays at l.he /Iow-"'I"ivale"t. serv"r

converge with resI,eet 1.0 their vailles in the previolls itel'lltioll.

0111' approach 1.0 the simultalleons resomee possess\J11 pmblmll ill t.he EAH:l'H 1I0de is

as follows: Eaeh aecess 1.0 a resouree on the blls waits Lill t.he blls II:L~ sm'vieed ail previollH

aecesses to resourees conneeted to il.. Tlms, the waiLillg 'I"e\t() fol' "aeh ac<:ess is nol, ollly

the wail. queue al. the resources being aecessed, bill. also a sum of wail. 'I"e"es at. 01.1",1'

resourees on the bus. The scrvicp. time for eaeh ae<:ess thl'OlIgh the hlls is 1.1", serviee time

of the resouree being aceessed. In HUlllmary, alt.hollgh we model eaeh resour<:e 'L~ a separal.e

node (Le. a servel' and associatcd queue), wc eompllte the waitillg titlllJ al. the hus ill uode

m as a Hum of the waitiug time al. ail I.he resoIll'CllS-- liuk uodes, and I.he memory. lu

Appendix F, the proee(l.i;~e Comlmtc_AMVA_'''J' shows the pseudo eocle 1.0 illt.er~rate this



• CHAPTER 7. CASE STUDY: EARTH-MANNA SYSTEM 165

/",urisLic inLo Lhe AMVA. E'luaLion 7.2 provides the total wait time at the PE m for an

ac""ss from dtŒS i. This value is used to compute the total wait t.ime for a class i acccss

!LIId throughput.

•
'wi,rn.bll~ (JCCf!S,' =

x [(wi,m,rlU:m + wi,Ul,lms + wi,lU,lnko + Wi,m,lnki)

--(pi,fII,JUcm + Pl,fII,bu.'1 + Pi,m,lnko + Pi,fIl,lnkdl

+(Pi,1U,fllcm + f1i,rtl,bus + fli,m,lnka + (Ji.fn,lnki) (7.2)

•

•

Equation 7.2 shows how to compute the total waiting time due to simultaueous pos­

:;essioll of the 011S. Two parts of the waitillg 1~IUC Wi,m,bus flCCC."lS arc, the qucuciug delay

(i.e. contentiou) at resources, and the service demaud at each resolll'cc. The first bradet,

"( ) u, is the number of a""esses to ail resources conneGted to the bus. The second bracket,

"( )U, is the waiting time for cadi aceess through the bus. The thire] bradet, "(...)U, is

I.he service denllLnd at resources for each aceess through the bus. Together, the second and

third bl'llckets, "[...]U, yicld the queueing delay for each access, by removing the service

demand from the total waiting time at each resomee. The four th bracket, "( ...)U, is tl.e

service ùmnalld for individuul rcsotlrces 011 the bus. The total wuiting time wi,m,bus acecu

for ILII aceess is a sunl of the r,.lCueing delay for this access and the service demand at

individual resources on the bus.

Wc need to model how the simultaneous resource possession during accesses to resourccs

affect the thread runlength at the EU. When the EU executes on a thread, there arc three

phases (sec Figure 7.3). Fir.t, the EU executes using the data in the cache, thus offers no

conl.ention to bus aecesses from the SU. Second, the EU rLquests a location in the local

memory. If an access from the SU is in service, the bus is not immediately available for the

access by the EU. Tl&ird, the access from the EU is serviced by the memory. After the third

phase, the EU returns to the first phase. Wc note that for the second and third phase, the

EU idles, but the EU is not free to pcrform any ot.h"r operation.3 Wc assume that this idle

tÎl1l11 does not significantly change the runlcngth ". Ihreads under multithreaded program

3For tItis discussion, wc ignore the "postcd~writc" lIlCChallislIl on i860 XP, which allows the proccssor ta

continue cxccution, ilS long ilS the writc ncccss does not affect rcst or the computation.
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•

execution. The EARTH system adopts a bus arbitratiou scheme for a fair slmriug of the

bus between the EU and the SU. So, in practke, this assumpt,ion does not musc siguilieant

error. We also note that there is no software nllJehanism whidl ""n nW'L,m'e this idle time

incurred by the EU. We acc:ount for the ell'eet on the waiting time of other l'eSOlll'ces in the

EARTH node. In the case of SU, wc have iududed the efl'eet, of bus a""esses on t.lllJ SU

processing time (using Equation 7.2 and Step 4 in Figure A.I).

Performance Measures:

We use the above modeling assumptions to derive serviee delllands Ilj,lII./u for d'L'S i

accesses al. the functionalunit fil of the node 7/1. With the ahove llIentioned heuristics and

the AMVA [75) (outlined in Appendix A and F), wc compute for dlL'S i:

1. the rate >'j al. which the processor i semis long latem:y memory a<:cesses, e.g., GET.5YNC

messages;

2. the waiting time wi.III./u of an access at a functiona\ unit filaI' anode 7/1; and

3. the queue length ni,III,/u for an a<:cess l'rom class i al. a functional uuit fil of anode

m.

T'àble B,I in Appendix B lists all sYlllbols used llere. B'L""I 011 >'j, Wj,,, .. service I,inws alld

visit ratios, wc obtaiu the followiug performance me:umres.

Message Rate to tile Network" >'uet is the average message arrivai mte l'rom a processor i

1.0 the IN. Each thread issues :r. GET_SYNC messages, >'j is the mte al, which processor

i sonds long la.tcncy acccsscs. A fraction IJr/!"wlC accesseH a.re Hcul to 1"011101.0 mülllory.

So, Ànetl9ct-sync is

71,t X Prlmwt(! X X
=

"M •
LJj= 11I1iJ

(7.3)

•

The dCl.,:mlinator is the total wait time al. all qlleueillg uodes for all a<:ceSSI!ll by a

threar! executed by the processor i. Equatiou 7.2 pl'Ovides the total waiting tiu;<; al.

aff<!cted functional units of each EARTH 1I0de.

Processor UtilizatioTl: Up , is the fraction of the time an EU is lIeither idliug 1101' cOlltext

switching. >" is the rate al. which long ;'Ltcucy accesses get serviced (and threads g!!t
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mmbled). SinCH the EU at the node i spends R cyclns on each thread, the proeussor

(or EU) ntilization V" is:

(7.4)

Latellcy for a GET_SYNC 0lJCl'lltioll: Lyct-sYllc, the GET-SYNC latelley is the time between

initiating a GET_SYNC opcr' 'ion from an EU and receiving its response at the EU.

A GET-SYNC operation consists Di the following phases. The EU sends a request to

the local SU, whir:h is forwarded to the remote SU. The response is sent by the

remote SU throngh the network. On recciving the response, the local SU unwraps

the message, completes the synchronization, writes to a local memory location and

enables the thread suspended on this long latency aceuss. The EU reads the local

memory location and progres~es on its computation. Lyct-sYIIC is a sum of waiting

time for a GET-SYNC aceuss on each functional unit.

The first tCrln represents the total time for a thread from the start of the execution

on the processor i, the suspension for long latency operation, and then the start of

/Lnother execution on the processor i. Removing the second te1'1u, the residence or

waiting time at the processor i, we obtain the duration for which the thread has to

wait for completion of its long latency access.

Sincc we measure Lyct-.'Yllc from the dedicated processing node P, we apply Equa­

!.ion 7.5 to predi<:t the S'Ilne L yct - SY"C' The mcasuremcnt of Lyct-sYllc procceds as

folbws. A mcasuremcnt thread is forkcd on a dedicated proeussing node, while the

rcsl nodcs exccute the application program. The dcdicated node scnds one sample of

GET_SYNC aceuss at a time for each runlength, R"""•."".",cllt. Elapsed time till response

rcaches the dedicatcd node is Lyct-.'Yllc' Analytical value of Lyct-sYllc is given by:

•
Lyct-sYIIC = (t - resideneu time at the proeussor i) (7.~)

(7.6)

•

The last two terlns iu Equation 7.6 rcprcsent the time taken by EU to read the data

from ready queue.

In Scction 7.3, wc validate some of our analytical rcsults by comparing with program

cxccutions on the EARTH-MANNA system. Wc also use the above performance model to

~'nalyze the performance of processor and IN subsystems.
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7.3 Results

16!l

•

•

In this section, wc show how the contentions in the EARTH system affect the GET.SYNC

latency, and the processor utilization. First, we consider the effect of contentions betwccn

aCcesses from the EU aud the SU at au EARTH uode ou these performance mel\snres.

Second, we characterize the uo-Ioad behavior of the crossbar switches hy llInpirical mea­

surements of the latencies on the network. Third, wc stndy the "ffeet of cont.cntions on

EARTH nodes and the network under umltithreaded workloads. Wc validate 0\11' modul

predictious using mellSuremeuts from the EARTH system on synt.hetic pl'OgrlLlns. Tlll'se

synthetic programs arc discussed earlier in Section 7.1.2 and Sectiou 2.2.

7.3.1 EU-SU Interaction at a Node

As discussed in Section 7.2, the GET_SYNC latency provides a mensure of the waitiug thne at

val'ious functional nnits duc 1.0 contentious. '1'0 measure the etrect of contentions betwllllll

the accesses from the EU and SU al. an EARTH node, wc send test messages to the te.•t

node under investigation. The EU al. the test node accesses its localmlllnory every R eycles.

The SU contends for the bus only when test messages arrive. With a variat.ion in thrend

runlength, we monitor the bus eontention.

Figure 7.6 shows the elfect of thread l"Unlength on the GET_SYNC latency. Three enrves

represent the latency values for the model predietions and the measurements from two 2­

node EARTH systems. The soliel line shows measurements from the system with a cl'Ossbar,

and the dotted line shows system without. a erossbar but with the liuk interfaœs of two

nodes directly eonneeted ta ench other. Symbols show the lat"ncies ior R = 7 to 14, Ilnd

19 cycles. R = 100 represents close 1.0 the no-Ioad values. Each experimental vainc is IlIl

average of over 15 observations. In tn1'll, eaeh observation is an average of over :J,OOO ta

10,000 sam,,;es.

The difference between the analytical resnlts and the melLqUrell",uts from the system

with crossbar is less than 5%. In the absencc of a crossbar iu the system marked "+" seconel

system, the latency deereases by 25 1.0 :J5 cycles. From Figure 7.6, wc note th" following:

• With a decrease in the runlength for loeal m:cesses, th" contention increases signifi­

cantly. For R :5 10, the memory almost continuonsly services the request l'rom EU.
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• The number of bus accesses required for a GET..sYNC operation determines the slope

of L!/ct-oYlle curve with rcspect ta R. We estimate that the SU at the test node mukes

the fol1owing 6 bus accesses in l'Csponse to a GET.SYNC request:

The lirst access l'cads ·the status of the IinkJn node i.e. a message has al'rived. The

..ccaru[ access l'earls the message from the IinkJn node. The third access performs

a rend (or write) ta the local memory. The fOUl·th access reads the status of the

Iink.out node, in preparation of sending the response. The fifth and sixth accesses

write the response ta the buffer at the Iink.out node. The above estimate assumes

that a request is at the IinkJn node and a buffer space is available at the link.out

node.

A lower number of accesses comprising a multithreading operations will decrease the

latency fOl' that operation: less Lime will be spent on bus accesses, and less contention

will occur at the bus. Thus, an Implementation of the GELSYNC operation strongly

governs its latency value.

Maquelin ct al. [59) report a no-load latency of 355 cycles (with an EU overhead of

39 cycles). Thus, without the EU overhead, the no-load latency is 315 cycles. Our model

predictions and measurelllents in Figure 7.6 show that no-Ioad value without the EU over­

heL . is 306 cycles, which conforms within 10 cycles. (The reason our measurements do not

incluoe the EU overhend is that as saon as the message arrives at the dcdicatcd node, the

functiou to measure the idle time is stop:,ed. So, wc measure the latency for each message

separutely, and do not include the EU overhead. In contrast, Maquelin et al. report an

avemge value obtained by sending a message ta remote node, receiving its response and

continuing this process over a large sample.) The heuristic for simu/taneous resource pos­

se.•sion, outliued in Section 7.2, improved the accuracy of performance prediction in this

experiment.

7.3.2 The Unloaded Network

Now, wc study changes in the GET..sYNC latency duc to a round-robin selection at a cross­

bar switch. Wc perform this characterization using the lUeasurements from the EARTH

system because the details of the round-robin selection policy and internai functioning of

the crossbar switches arc not known to us. Figure 7.7 shows the GET..sYNC latency when
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a certain number of nodes are accessed throuJ;h the crossbar. In Figure 7.7, the Srulle

Crossbar mealls that the dedicated node is on the same crosshar as the test nodes under

investigation. Thus, the message from a dedicated node goes ta the crossb"r switdl ami

is routed ta its destinatIOn test nocle. The erossbar switeh reccives the response from the

test node al:d routes the message ta the dedicated node. The Remole Cro.•.•bar means that

the dedieated node is on a different crossbar (sec Figure 7.1). Sa, the message from the

dedieated node is sent ta the erossbar-l, say the one ta which the dedicated node is direetly

conneeted. Crossbar-l routes the message ta crossbar-2, the crossbar ta which the test node

is connected. Crossbar-2 reccives the response from the test node, and routes the mc.~s"ge

ta crossbar-l, and the message is forwarded 1.0 the dedicated node. Solid linc.~ show model

predictions, and dlL~hed lines show meIL"lre""·"t.s Irom t.he EARTH syst.em.

The program workload eusures that one GET-SYNC message is on the network at a time.

The destination of GET..sYNC message is varied ta characterize the effed of round-l.:>bin
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selection cf inpnt. charmels on t.he delay of crossbar swih,hes. Our analyt.ical Il,,,,1''' 'L'sun,,'s

a stcppcd incrcnsc in t.he dday when 11p (.04 llodes are aceessecl. Slwdlieally, t.l1(~ ilicren.."\e iu

dclay in cach dircetion is: 27 cydel' wlwn 2 lIod(~s are accessed, 9 eydes for t.he 3rd nodp and

4 cycles for the 4th node. Beyond 4 nodes, t.he lIIod'" 'L'SllllteS 1\ small Iinear inCI'l"L'" (of 2

cycles pel' node) in the delay at. t.he crossbar. Figure i.i shows t.hat. t.he mod'" prellidions

arc within 5% of the experimcntal values for bot.h ""u!igul'at.iolls.
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Figure 7.7: Chlll'acterizing the Crossbar Switch delay

7.3.3 GET-SYNC Latency

To study the elfect of workload parameters on GET-SYNC lateney, wc c:onsider the following

multithreaded workload. The program performs a vm:tor addition on r",note Ilrmys, cLil
= aLil +bLiI· As explained earlier in Section 7.1.2, fil threads arc forked 0/1 eaeh node.

Each thread issues two GET-SYNC operations ta feteh the l.mifonTlly dislri/mlea remote data.
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On <:cJlllpl"tion of 1.1""" GET..5YNCs, th" resnil. is e(llllpnl."d, and sl.ored 1.0 the remote array

nsin~ a DATA..5YNC o(,,:ral.ion. Tlt is vari"d frolll 1 1.0 lfi. Thread rnnlengths arc R (=1500,

:1(00) "yd"s. Paralll"t"rs of th" lIIe'L,ur"lII"nl. I.hread on the dedicated node are: Tlt = l,

R = 200 "yd"s, and on" GET..5YNC ol'"ration.

Fi~ur" 7.8 shows how the GET..5YNC lat"ncy vari"s with nt. Solid lin"s are 1110deI predic­

l.ious for R = 1500 aud 3000 cyd"s. Dashed lines arc runtime measurements from program

"x"eul.ions on the EARTH system. The model predictions for GELSYNC latency conform

within 5% of the mcasurmmmt.s, in must e;u;cs. The lIlaxiumrIl differcncc of 20% occurs al

R = 1500 eydes and lit = lü. On" soure!! of "rror is I.hat for certain functional units wc have

"stimated the delays which eannot h" ,u:curately me'L,ur"d. Spedfically, these functional

units are the input and output "hannels (huffers) of crossbar switches, link interfaces, and

the SU. Wc ean only lIIe:L'urc tlll! total delay for thc GET..5YNC latcncy. Wc attribute the

delays 1,0 various functional units b'L,ed on their acœss times, c.g. the remote SU spends

20 eydes for each GET..sYNC acecss, and the rcmote memory spends 10 cycles. A small e..ror

in this brcakdown of delays leads ta a large ernJr in prediction, particularly when the delay

for a particular functionalunit is largc, c.g., the loeal SU spends up ta fiO cycles ta process

"ach GET..5YNC message from the EU. From Figure 7.8, wc note that:

1. At higher thread rtInlength, the interval between remote messages increases. A lower

message rate redlu:es the contention at resources. Hence, the GET..sYNC latency is low.

2. The GET..sYNC latency increases with nt, "ecause the number of outstanding, contend­

ing messages in the system increa..e.

3. At higher thread runlengths, LYet-'Ylle saturates near no-Ioad values when lit > 8. At

lower rtInlengths, Lyet-,y"c incrC:lSes rapidly with nt.

For this experiment, we notice the significance of heuristic on multithreaded workload

(in Section 7.2.2). With MVA in Figure A.I, using Step 2(b) the predicted value of Lyet-,y"e

changed by less than one cycle, even with an order of magnitude changes in nt and R. The

re:ISOn is that even for nt = 16, the queue lengths at functional units (other than EUs) are

very small « 0.1). With our heuristics, in Equation 7.1, we achieved a good agreement

with the mellSured values.
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In this section, we study the cffect of a mlllt.ithreaded workload ou t.he proœssor ut.ilizaLiou,

Up • For the experimeut described above, Figul'll 7.9 shows how Lhe uumber of thrmuls alld

their runlengths affect the prol:Cssor IItilizaLiou. Solid Iiues are t.11ll modnl predidious for

R = 1500 and 30W cycles. D'LqIICd Iines for Salll!) t.hre,ul ruuleugLhs are the runlilIIe

measurements from benchmark executioll ou Lhe EARTH sysLmu. We ohserve LhaL the

model predictions match within 5% of system measurements. AL 7lt = 1, Lhe diserepaucy

is up 1.0 20%. We make a modeling assumptiou that a proœssor idles for a local mmnory

access. Our software measurement 1.001 callnot measure this idle tiJne, HO our IIICllllurmuellt

is an overcstimate of actual utilization al. the proœssor. Further, the irlle time al. the F;U is

measured by calling a function in the absencc of ready thre,u1s. Switchiug 1.0 and from the

funclion 1.0 mensure the idle time incurs ,\li overhead. Currently, the nW'LqUrement funclion
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clOf~S uot meord th(~ IllUuher of tiUH!S il. is Îllvoked, !-in a. correction for this value cannat he

fJ!!rfOrJIw,1. At high"r 11111llh!!f of thr!!ads, this fllllC:t.ion is ,:alled I"ss freqllcnt.ly, t.hereby

Îru:fflasillg the ;u:curac:y of pw<ii<:tioJl. We ohserve that.:

1. A high"r t.hread rlllliength yidcls a highcr U,,,

2. U'I vahws im:rem;e with n,. This is an essence of the Illultithrcacling technique (an

jJl(:rea.'oie nt Îlu:rmL'ws V" evm) though Lf)d-s~/ru: iucrcascs). V,) va.lucs Haturatc hcyond

"t = 8. Th!! workload is comput!!-hound, so Up sat.urates dose t.o U~(}.

:J. A t:Omparison of U,• values with that at "t = 1 shows a higher speedup with an increase

in lit, when R is small. For example, l.he predicted speedup is 1.5 at R = 3000 (Le.

U
"

= 92% for I/.t = 8 and Up = 65% for Il, = 1). On t.he other hand, the speedup is

2 when R = 1500 (Le. U,• = 87% for lit = 8 and U
"

=45% for nt = 1). However, t.he

absolut.e U
"

value is low at small R.

7.4 Related Work

Now, wc overview the contributions of this chapter with respect to the existing literature on

performance evaluation of multithreaded architect.ures. These work have becn validated

through simulat.iolls.

Queueing Network and Petri Net Models: Saavedra ct al [80] report a simple vali­

dation using results of Weber's studies [1001. However computation requirements of

Saavedra's modcls arc prohibitivl:1y high for mu!tiprocessor systems in the presence

of contentions. Analytical modcls in [101, 8, 2, 103J arc validated using simulation

results from petri net models and queueing uetwork mode!s. None of these mode!s

inc1ude realistic subsystem interactions for mn!tithreaded operations at a processing

node.

Other Models: Agarwal [41 proposed lUI analytical model based on cache parameters.

Johnson [50] exteuded this mode! to inc1ude the feedback effect of network on the

performance. Both modcls are validated using simulations of Alewife system [5]. They

do not mode! the memory subsystem. Further, they do not study the performance
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of proccssor and network subsystems to)!;et.hcr. So, t.be systcm hol.tlcnc<:ks <:annol, 1",

casily located.

Simulations: Weber and Gupta [1001 perfonnecl tracc-drivcn simulat.ions wil.h eonsLant

context swit<:hing times, and <:onsl.ant. slmrecl bus lat.<mdes. Thekk1LI.h and E)!;)!;ers [901
extended a similar apprcach using lUI analyt.ical moclel [3] for t.he neLwork perfor­

mance. Waldspurger and Weil.1 [98J report the resnlts of simulat.icns ()II a sin)!;lc noclc

of multiprocessor system. They also 'U;~'lIoe that. the nct.work is li)!;ht.ly llllulcd (no

contentiolls).

In this chapter, we expandcd the sct. of pnranwtcrs to modcl realisl.i<: nr<:hitedural

interactions and progrnm workload. We characterizecl the performance uf multithrerulecl

architectures with architectural and workload paranwters. And linally, we validatecl our

performance predictions using the measuremcnts from the EARTH mnltithrmuled lIlulti-
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pr()(:I!S~Or systmJl. l'lins, this dmpter is a siJ!;Ilifkanl ext.ensiOIi over previons st,uelins. I3y

addressing: alwv(! issues, wc helicve that our work has providcd ft strcmK cvidcncc on the

usefulness of the analyticalmoclds for performance optimizations on mnltithreaclecl systellls.

7.5 Summary

ln this dHlpter, we extenr!ecl our analyUeal lIloclc1 (in Chaptel' 5) anr! analyzecl the perfol'­

nHlnl'" of MeGill's EARTH IIlnltithreadeci nmitipro<,essor system.

We deve1oper! approximations 1.0 mean vainc analysis (MVA) to a<:count for the siuml­

taneous possession of tllù bns at an EARTH nocle, and the mnltithreaded workload. Wc

showecl how, given program workload ancl architecture parameters, to derive performance

IIlClL'IlreS, like proccssor utilization and lateney for split-pluL,e multithreaded operations.

We analyzed these perforlllanee lIIe/L'nres nsing l'ealistic eosts of nmltithreaded operations.

Since the IIlnltit.hreacling poses challenges to the performance lIIeasurement, wc have

used the following approadl for performance charaeterization. We c1eveloped a software

instrumentation t.n measure the latcncy, ha.."cd 011 sampic messages ta the nodcs uurler in­

vest.igation. Wc validated t.he performanl:C predict.ions using measurement.s on t.he EARTH

syst.elll. Onr modcl predict.ions of t.he GET.5YNC lateney and proccssor uf.ilizat.ion conform to

wit.hin 5% of t.he rnnf.ime mClL,urements on the EARTH system for synthetic benchmarks

nnder typical program workloads. Maximum differences are around 20%, when thread

runlengths arc small « 1500 cydes).

Our resnlts indicate how t.lle processor performance improves with increasing thread

runlengths. For example, at thread runlength of 1500 cycles, with architectural parameters

of the EARTH system, the mnltithreading itnprovcs the processor performance up t.o 100%

of a singlc-threaded program execuf.ion. The GET.5YNC latencies increase significantly nI'

to two times their base vaincs, when R is small (1500 cycles) and flt is high (say, 16). In

Chapter 8, wc will discuss the performance related opf.imizaf.ion of a program workload,

and the elfect of the number of local and remote accesses pel' thread on the performance.

Wc will also discnss the effect of changes in architectural parameters on the performance.

Specifically, wc consider two systems based on the EARTH: The first system has low acccss

times for certain functional units at an EARTH node. The second system has delays of a
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NOW system (uctworks.of.workstatiüus) for II", iut.Prl'omu'diou uctwork l'iually. Wl' will

show an advalltage of l11t1lt.ithreadin~. in ('ompari;;o1l t.o sill~le~thr('ad('d pXPcllt.ioll, in h'illlS

of rednccd sensiti"ity of l'crformalll:1' to thl' ,Iata "",alit)'.
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Chapter 8

Applications to Performance

Optimizations

8.1 Introduction

ln Chapters 4 and 5, wc devcloped analyticalmodels t.o predict the performance of unipro­

cessor and nmltiprocessor multithreaded systems. Wc analyzed multithreaded systems and

showed l'ritical values of parameters to al'hieve high proecssor performanec. In Chapt.er 7,

wr applied the performance model to analyze the EARTH system. Wc validated our model

predil'tions of performanec measurcs using measurements from actual program executions.

This d",pter presents a next step of a performauce evaluation study. The objective of

t.his l'hal't.er is: how to optimize the performanec of a multithreaded system'! Specifil'aIly,

we address the following questions:

1. Wilat i,. tile imllUct of /JlYlgram 100rki0lld cilllmcteri,.tics 011 tile EARTH .•ystem per­

fOlmllllce? In Section 8.2, wc charaeterize t.he performanec behavior of the Single­

Program-Multiple-Data (SPMD) computation. The measnrements from the EARTH

system show the cost-benefits of varions trcc-like strategies to fork parallei compu­

tation threads on mnltiple nodcs. In Section 8.3, wc study how remote and local

accesses affect the performance of the EARTH system, wherc the system bottIenccks

arc, and for wlmt vaincs of parameters, multithrcading yields significant performance

178
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henefits. \Vl~ show t.hat. tlll' 1l1l1ll1H~r of IOIl~ latt'w'y ;U't't'SSt'S Ih'l' t.hn"HI should IH' a
or less, and t.hreatl rllIlletl~ths shouhl he ~r(';~t.('r titan 1GOn t'~·('It·~ t.u l\('.hit·\,(, hi~ht'I"

t.hau 80% EU ut.ilizat.iou ou t.hl' EAHTH s)"st.l'm.

2. HOlll WOll/ri 1/", ,,/llm!I"" i71 th" 1l1't:/lit"ctllm/ ""nji!/llmtiml al'''ct I/l!' 1""jOI1l"'"('l' "f

the EARTH "y.,ft:m? III Sl'dioll 8.·1. 1.0 l'mluall' 1.1", arl'hil,,,·I.lu·al t.r,..h·-olfs of ail

EARTH-like syst.I'm, Wl' allalyze pl'rfon"""",, of t.wo syst.l'Il's h'L,,·.1 011 t.hl' 1':A HTll

"rl'hit.eet.uml pmamet.ers. The firHt. system. NO 11', 'L'SUllll'S t.hat. t.hl' EAHTII 1'1'11­

eessing Bades a.re cOllllcet.ed 1.0 a net.work \Vith ~i.~her delays {silllilar t.u l.host· in a

lletlll(J('k,<-of-lII(J('k"tatitm syst.em, NOI!',l. Om' result,s show t.h"t 1.,1' t.hl' NOW s'yst.l'm,

\Vith multithrcadillg t.he perfOrllliUICe improves up tu 200% ove)" a sill~lt~ t.hl'PIUh!d

pl'Ogmm cxceutiou when thread rtIulengths are larl';er than :lllOO "ycies. TI", se""n"

system, fa"t EARTH, assnmes that, serviee Umes al. sllhsystmns ill an EAHTII 1'1'11­

œssing node are rmlnl'ed. Thal. is, the SU and the lillk Ilodes are twicl' 'L' f'L,t IL'

t.he clll'rent. EARTH-MANNA hardware t.est-hell (these l'osts arl' shown iu Tahle 8.1 l.
We show that the performance impl'Ovell",nt. of the fa.,t I~AHTH ovm' 1.1", EAHTH

system is by 10% on single thrcatlcd exm:utiolls, evell al. slIIali t.hrt~acl l'tlllhmJ.!;t.hs.

At large l'Unlengths and with multiple t.hre:uls, t.he pel'fo1'llmlll''' impl'Ov"'"1'II. of th"

fo"t EARTH l'l'duces, bccause the perforlllallce of t,l", EAHTII syst."m illl:W'L"'S wit,h

multiple threads.

3. How robll"t i.. 1/", perf0l7Tl1l11ce of the EA nTl! .'y.,telll to 1/", ""O"!I"" i" tloto lli.,tri­

bution", w",," lIIultil/1I'Cotli7l!l i" u.w,tI? In Set:l.ioll 8.5, we <:lIInpar" the sellsit.ivity of

performance on single-threaded and multithwaded pl'Ol';ralll workloads 1.0 the "'mlll';es

in data distl ibutions. We pl'Opose met.ril'S t.o evalllate t.his sellsil,ivity, analyl,i<:ally

predict their values, and experimentally validate t.he wSlllts. We show t.h..t the d,,­

crCllSe in the perforlllance of a multithwaded worklmul due 1.0 a uOIl-opt.imlll dllta

distribution is less t.han t.he de<:re:L~e in the performanœ of a sinl';ll:-thw,ul<,d pl'lll';ralu

workload. Intuitively, a non-optilllai data distriblltion would irll:r"'L'" the Illt.endeH.

However, a lIlultit.hreaded workload should tolerate IDlII'; latendes. This Ilbility of

multithreaded workload indccd hclps 1.0 wdlll:e the performall"" loss. The illlplil:lL­

tions of this result on compilers alld programmers are 'L~ follows: On multiproeessor

systems, pl'Oper choices for complltation and dat.a decompositioll aw l:rudal 1.0 Ill'hieve

high performance using Il sihgle threllded progralll. With multithrl'adiul'; technique,
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tilt! sallie p(~rfOrIllallet~ can lw ac:hÏllved (or (~xce(!ded) \Vit.h similar efforts on the COIl1­

IHlt.atioli ;lIHI d,Lta d(~(:Olllpositioll. 011 apllJit:atjom; \\'(~ st.udif!(I. (~V(~ll il Iloll-optium)

dal,iHlistrilmtioll (n!qllirillJ,!; h!ss dforls) yidds fi. performiLllce dOl-ie 1.0 the pcrforlllatu:e

()f !.llI! I)(~st or (JptiUIil.f .Iat.a disl.rihllt jlHl. For programs exhihit.illg irregular computa­

tion parallelislI1, the dl~C:Olllpositioli of cOIllplll.at.ion alut (Iat.a. is cxtrcmdy ehallclIging.

Tlms, for prop;rauuucrs and ('ompilers t.o achiev(~ high pCl'fOl'llIiUICC, t.he lIlultit.hrcaùillg

r"due"s th" IIe"d tu earefully <Taft dat.a dist.rihutious.

W" d"part from our "arH"r d",pt."rs iu th" fullolViug lVay. We ns" results from hot.h

the performauee mode! aud me'"~nl'ement.s on t.h" EAR.TH syst.em for onl' almlysis. An

'""eSSUient. of reaHstie eost.s of Innlt.it.hreading on t.h" EARTH syst.em reqnires rtlntime

IIll!lL'tUTClIlcnts from actllal pl'ogram cxccut ions. Spe:.;~iie eascs are the progrmn cxccution

t.iu", for tmnsicnt pin"",", IVhich illv01ve forkinl': and joining of multiple threads. Sine<! not

ail IIlC;L"illrmJl{!Ills aw posHiblt~ from the system, e.g., the cOlltelltiollH al sllbsystcms likc the

SU and the nctwork, t.he mode1 predidions providc additional insights.

Next, IVe diseuss performane<! relat.ed optimizations of a progrmn 1V0rkload on the

EARTH system. In Sedion 8.3 , wc investigat., the e!fed of al'dtiteetural and program

1V0rkioad pammeters on the EARTH system. In Section 8.4, IVe stlldy how the ehanges in

t.he EARTH implementation alfed the performan<:e. In Seetion 8.5, We stndy the sensitivity

of t.he performalle<! of the EARTH system to data loeality. In Seetion 8.6, IVe discuss the

l'e!;üed work. We summarize the results of this ehapter in Secti.on 8.7.

8.2 Program Optimizations

ln this section, IVe charactel'ize the perfornmn<:e behavior of the SPMD eoIllputation on the

EARTH system using model predictions and measurements.

'n,bic 8.2 sholVs different Hets of input parameters, the number of threads Ilt and thread

l'Unlcngth R, when the nnmher of EARTH nodes is 8. The pcrformanec model in Chapter 7

predi<:ts the proeessor utilization U,,, the GET_SYNC latency Ly"'_,y..... and the delay at an

SU, uSU". ~4Mcasl1rcments" illdicatcs the rUlltimc mcasurcmcllts of Up and Lget-~1Inc,ded,

when the EARTH system executes the application program sholVn in Figure 7.4. Up values

indicate the proccssor utilization on EARTH nodes which execllte the application program.
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=CValut~
\Vorkloilcl ParélllIeters

'" NUlIlher of t.hrl'ads at. eilf~h IH'on~SSlll'

R Meau value of thr",ul run"m~t,h

1)!"1!n1011~ Prohahility of accessill~ il. relllot,e IIWlllOI'Y lIIotillit'

1'll1 Nnmher of Re,ul/Write" in 1.1", dnmtiou Il
.. # and type of lon~ lateney operat,ion" GET.SYNC, 13LI<MOV

DI' A distrihution of data on P proc"r"in~ UUd,lS

TI',n, (Dl') Program execulion lime \Vith nt threads ou f> Ilmles

System Parameters (VIl/'W,' IIWIl,,,,,..,r/ IIll EARTlf)

C Context switeh uverhe",1 (END_TH REA D, Sd""luliu~ t'I.e.) :17 c:yd,,"

L Mcmory latcllC:Y for eadl acceSH III cydes

SU:u~rv SU praœssin~ time for each ac:cess (otl"'r thau 13LI<MOV) 211 cyd"s

lnkill.~I:rlJ Lillk aeccss lime fur illcomiuJ,!; Ilct,work Jlwssa~(! 15 cyde"

L11ko1Lt.~erv Link ucccss lime for selldillp; Iwl,work message Mcyd"s

:l:il1..,,~rv Delay at input port of uetwork switch Mcyd,,"

xoutl'lcrv Rauting delay at untpnt port of net.work switch :12 cyd,,"

P Number af uodes in t.he syst.em. 2 t.o iii

Outpnt Pammet.ers

Lobs Observcd memary lateuey (wit.h '1\1(meiu~ d"lay)

Sob.Of Ohserved uctwark latency (individuaJ ll1essa~e type)

Lyct-flync Lat.mu:y far GET-SYNC aperat.ion. tlctl suhscript. ~ ,1<:di<:at.ed uode

Ànct Messa~e rate from pracessor to t.he IN (u":ss"~e tYI"')

Up Processar (EU) Iltilizat.iall

1 Para.nwter 1 Descript.ioll

•

Table 8.1: Madel Paramet.ers far EARTH System.

•
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1JlJd--.\1jur,dl:d illdicat.(~s tlw latmu:y for a GET....sYNC 0lwratioll isslIed hy the dcdicated Bode

(for fUJltimc IIW;L"tlIr(!II1Culs). Tlw IHJ-Ioad value of L!Jct-.~Yllc.dl'd for ail M-noùe system is

tl02 {:y':lf!S. '4SU" vailles jIHlicfll.e the IIl11uher of I:ydes ta proce!oiS a message al iL rClllotc

syuchrouizatioll nuit. Siu{:c eaeh t.hrea(I, issues three split-pha.."ic operations-twa GET_SYNC

anrl "ue DATA..5YNC, t.he "SU" vaine at. no-Inari is 60 eydes.

Let, ns .:onsirler t.h" vaines in t.he bold face from Table 8.2, i.e. rows 1, 5, 9, anrl 13.

When t.he inpnt. paramet.er t.hrcad runlengt.h R is deer'''L",rI from 3UOO .:ydes t.u 1500 eydes

(1.1... rows 5 allli 9), 1.1", eurresponding nnmber nf t.hreads is iner"'L",,1 from 2 t.o 4. This

iJl(:n!a."i(~ in nt leads lu ail ilH:rem;cd (:olltentioIlS in the system. So, L!JI'l-.'i1/uc,dcd increa..."ics

from 487.8 eydes t.o 545.3 eydes, i.e. by 12%. At. R=30UO eydes, inerC1L~ing "t from 1 t.o 8

reslllts in il 57% illcrcfL';(~ in allalytical L!Jd-,'iY'&l~.tlcfl values. III addition, a higher nt requires

Iilllre overheads to fork t.hrcads aud synchroni'l.e t.hem at t.he end of comput.ation. Sa, whC/;

Il is low, then V" va.lues c1ecreasc cvcn al high nt. The system Ineasnrmncnts confortn \Vith

t.hese prediet.ions.

Table 8.2 also shows t.he lat.endes for a serviœ at. t.he SU. Wc not.e t.hat. for R ~ 1500

eydes, t.he lat.euey at. t.he SU is high. A direet eDnscqneuœ of iner"'lSe in the lat.eucy at

the fuudional uuit.s Iike t.he SU is t.hat Lyd-.,Yllc,dcd incr"'lSes aud U" decreases. Most

applieat.ious reported by Maquehn ct al. [59] have thread runleugths of the arder of 10,000

cydes t.o 25,000,000 cydes. Of t.hese applications, the N-Queens program (in [59]) has the

smallest rtInleugt.hs, i.e. 700 cycles. U" vI.lue of t.he N-Queen for Olle-node system is 72%.

For t.he rcuminiug 28% durat.ion, t.he onL~uode system cxccutes nlllltit.hreading primitives.

Au 8-uodc syst.em yields au abse:lute speedup .,f 6,4 (i.e. U" = 72 >. 6;1 = 57.6%). These

values eonform wit.h t.he rcsults iu Table 8.2. lu sunllllllry, our result.s show that EARTH

syst.em ean eflicient.ly support. applieations with granularity up ta 1500 cycles.

Table 8.3 shows measurcments of l'Osts ta fork (and synchroni'l.e) one thread on t.he

EARTH system. We forked 1000 compntat.ion threads on the local as weil as remote node,

deuoted by local and ""'IO!e respeetively. Reeall the discussion ou 5 types of threads shawn

in Figure 2.4 (Chapter 2). The row labeled Nonltal S in Table 8.3 indicates Il sequential or

a singk~threaded execut.ion. These IlIe C t.ype threads for steady-st.ate eomputation at the

local node. For Il remote node, one A t.ype thread is used ta fork one C type thread, while

t.he synehronization oecnrs through ail E type thread. The Normal P indicates a parallel

fork and sYllclironizlltioll of t.hrcads, i.e. a nl\lltit.hreaded executioll. For Il local node, Olle
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B t.ype t.hrea<l fork" IIl\1ltiph' C type thn',,,I". whid, "~·II..hrollize ""i"~ D t~ïlt' Ilm·a<l". I~lr

ft. rcmote Illule. OlW A tnH' t.hn'ad forks lIlult,iplt· C t\"1'1' thn·luls. whkh s."JI('hrolli'l.t' m;ill~

E type t.hreads. '/7... '(' iruu}('ulitHl strlh'fUn's an' hl'st. n'llI"pst'lltt·tI iu FiAIII't' ~..I. 1'h'" SjP

jlUlieat.es t.hat. 011<' :. 1.."1)(' t.!ln'atl forks olU' 8 typt' 1hn':ul 011 a local or n'lIIot.1' uod". III

I.Ul"n. the B typP t.hn·ad forks lIIult.iplt· C type thn'ads. S."tldll'Olli~at.iolls0(T11I' usiUA 0 :ultl

E t.hrea<l". Tl,"" l'/S ill<lieat.es t.hal 1\I1I1t.iple A type 1hn',,,I" fork ,"11' C typ., t.h,"",,,I,", loml

or remote node. SYllehrollizat.iolls m'CUl' t.hroll~h E t.ypl' t.hn~ads. 'Hn' l'/P ilUlieat.es t.hat

ail A t.hrea<l fork" olle B t.h,..",,1 oll l'ad. 110<11'. III t.1I"". The"e Il Ihre,,,!" fork 1I1\11t.ipl(' C

thrcads. Sym:hrouizatiolls ocelll' through 0 a.nd E thrl'ads ;L'" sho\\o'u in FiAllrt' 2..1. 'f'.!] and

T-8 indicate trl'I' structure is furkcd 011 a 2-nlHh~ awl iL S-Ilode S."Stl'IIl, rpslu·(,ti\'({y.

For lrec invocations, wc focns on 1Y~m()t(~ vahws. Not.l~ that illVOl'atioll ('osts pel' t.hl'l~atl

for Ih)rmal P and trce Sir structures an~ quit(~ similar. The rl~:L'iOIi il'> t.hat. for a hLr~\!

number of C thread" (1000 thread" ill '/1"".1) ill I.hl' P "tructurl'. mo"1 oVl'rhead" art! nt 1.1",

remote node alld t.hose thre'\lb are forked local t.o that 1I0de. \VI"," tI", nllmber of C th..",,,I"

is "mali (10 threads ill Tre,,·:!). <:Il"t" arl' "Ii!(htly hi!(her al ·1ll!Ji Ils I",r tllI·I""1. TI","" ""st"

pel' thread indicate tltat trec invocation is espm:ially nseflll willm forkill~ a lar~c Humher of

threads 011 a lar!(e sy"tmn. Row" for T·:! P/I'alld T·8 1'/1' "how Illlw ",,",$ I",r t.hrmd are

redllccd hy 4 times when 4 time" the lIumher of I.hread" are forked 011 ail 8-1ll)(le "ystmn. III

ollter words, (~Vcn thollgh mure IlUml}(!r of threads are forkcd (i:i ail H-II()(h~ syst.I~IIl, alruost

no iuerc:L.';c is ohs-1rved in the pro~ralll exec:ulioll time.

COIŒider ail 8-lIode system. Wc wallt 1.0 fork !li threacb l'cr lIode. The two s""",u'­

ios wc cOlIsidcr are, the llon"a[ P struc:ture, and the trt~t! S/I' strtu:turc. TllI!Îr I:osts

l'cr thrcad arc, 2i!J811" and 40!J7"s resJl(divdy. A lIonllal P "tructllre wonld re'lnirc

2798".. x 16 threud.. x 8 "ode.' :158 /'" for fork" allli "ynchrcmizations. [n <:Il1I­

trast, a trcc invocation re'l"ire" (2i!J8".. x 8,un/".• ) + (16 tI"·",,,/.. x 40!J7".• ) = 88 /"',

a reduction by 4.07 tiUles. Fllrther, a ""e of T-8 1'/1' "tnu:tllre rc"l"ir<" only 5:1.!J /'"

(= 421".. x !li thr""d.. x 8 "0<1".. ). 'l'hi" i" a re'L'on why we choo"e a trcc illvm:ation

when a large mll~ber of thr",,,ls nL",,1 to he forked on reUlote lIociL'S. Since wsts l'cr thr"!\ll

a.re IIlcntiollcd in 1àlJlc 8.3, wc Ilote that a large nt pel' nulle f(~qllif(~ a larf.tl! time tu fork

and synchrol1izc, thcrchy performance hmmfits of nmltithre:ulill~are recluecd.

lu sUllllllary of reslllts from Tables 8.2 aud 8.:1, to ohtaiu " hi!(h proœs.,or utiliz"Liou on

the EARTH system:
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• the nUllIber of threads should be moderately high, i.e., from 2 to 8;

• the thread runlength shC'uld be high;

184

• a tree invm:ation should be used to reduce <:osts of forking and synchronizing threads

on multiple processing nodes.

•

1

2

3

4

5

6

7

8

9

10

11

13

14

15

Input Analytical Predictions Measurements

R Tlt SU Up Lgct-sync,tlcd Lgct-sync,dcd Up

6000 1 72.1 74.3 433.3 416.9 91.8

2 74.9 87.7 440.2 421.4 93.9

4 76.4 93.9 443.8 434.1 95.4

3000 1 78.8 (iG.3 449.7 433.9 82.3

2 86.8 83.7 487.8 443.0 88.7

4 94.8 90.8 498.7 474.8 91.7

8 99.5 92.8 502.6 485.5 93.5

1500 2 98.2 69.5 495.6 501.9 84.3

4 120.2 82.2 545.3 557.0 85.6

8 155.2 86.3 620.7 592.5 86.8

16 201.3 87.3 716.5 579.1 86.9

750 4 132.1 32.2 571.2 787.2 65.5

8 182.7 39.3 678.0 1016 72.3

16 279.6 45.6 874.6 1035 72.3

•

'TIlble 8.2: An Example of Workload Optimization.

8.3 Performance Characterization of the EARTH System

In this section, wc present the performance characterization of multithreaded architectures.

This characterization demonstrates how multithreaded program workload parameters affect

the performance. To illustrate our results using realistic multithreading costs, without loss

of generality, we analyze the EARTH system described in Section 7.2. The default archi­

tectural parameters arc mentioned in 'TIlble 8.~. These values are obtained experimentally
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Invocation Lo<:al Remote

l1S ns

Normal S 5030 8960

Normal P 3039 2798

TreL~1 SIS 5593 5073

Trec-l S/P 3696 4097

Trec-2 SiS 4972 5041

Trec-2 S/P :1253 3256

T-2 PIS 5590 3499

T-2 P/P 3413 1678

T-8 PIS 5590 893

T-8 P/P 3413 421

185

•

•

Table 8.3: Costs to fork a thread: S= Seljuential, P= Parallel, TreL~I= 10 remote thrmuls,

Trec-2= 1000 remote threads; T-2= Trec for 2 nodes; T-8= Trec for Il nodes.

from the EARTH system, in the absence of contentions. Values of workIOl:.d paranll!ters arc

mentioned in the description of each experiment.

We characterize the variations in the GET-SYNC latency and processor ntilizat.ion U" with

architectnral and program workload parameters. Wc also melL~Ure the perfornmm:e on the

EARTH system, when test nade.• execute the progrnm workload in Fignre 2.2 (Section 2.2).

The highlights of onr results arc as follows.

• With an increase in the number of processing nodes in the system to execnte a progrnm

workload, the contention increases significantly at low thread runlengths (~ 1500 cy­

cles), :.nd the performance sulfers. Wc show an interesting implication for users of

systems with current superscalar processors. When thread rnnlengths decrClL~e from

3000 cycles (for a scalar code) to 1500 cycles (say a snstained instruction·level parai.

lelism, ILP, of 2 is achieved), Up decrcases to half of its vainc. That is, the progrnm

execution time does not change! Thus, therc is a need to optimize communications

in a program workload to elfectively utilize the program parallelism.
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• Wc show that multiple readjwrite acccsses for a thread to the local memory change the

GET-SYNC latency and U" hy 2% to 5%. Howcver, multiple remote accesses (GET-SYNCs)

pel' thread have a signifi<:ant effect on the performancc. Our model predictions are

within 5% of t,he system mea-,urements for most of t.he workload parameter values.

The model predi<:tions provide two additional insights. First, even though the pro­

cessor utilization Îlu:reases with the nUlllber of threads, the GET-SYNC latencies for

the applimtion arc 2 ta 6 times higher than their no-load values. Second, delays at a

processing node (like the SU) arc the major cause for the increased GET.SYNC latencies

on the EARTH system!

• Wc iIlustrate under what architectural configurations can the current EARTH im­

plementation yield further gains. First, wc consider a system with current EARTH

nodes and the net.work delays similar to t.hose on a netlllOl·k-of-lllorkstations. The

multithl'cading yields an increase in the speedup from 2 (the current value) ta 3,

when thread runlength is 3000 cycles in an 8-node system. Interestingly, these thread

runlengths to achieve high performance arc similar to those observed for the current

EARTH implementation. Second, wc consider a fast EARTH system with the costs

of the cunent MANNA network, and reduce the access times of functional units at

a processing node by 50%. The performance of the current EARTH system increases

by nearly 10% under single threaded program execution, even at low thread l'Un­

lengths. The performance of the EARTH system improves with multithreading, so

the improvement duc to fast EARTH reduces at higher number for threads.

We present the results as follows. First, given a jJrogram workload, how does the per­

formance vary when the machine size is varied. Second, for a given machine size, what

program workload parameters have significant impact on the processor performance. Mon­

itoring the performance of individual subsystems is not easy during program executions

(aud not available to us on the EARTH system). The analytical model predicts how the

program workload parameters affect the performance of individual subsystems. Finally, wc

predict how the system performance would change, if the architectural implementations of

the EARTH system be changed.
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8.3.1 Architectural Parameters

ISi

•

•

In this section, wc study how sensitive is the performanœ of the BARTH system on a ~iven

program workload, 1.0 the changes in machine size. Wc consider the pro~ram worklolld iu

Figure 2.2 with the fol1owing thread characteristics. FOI' I,wo thread runlen~l,hs, R = HiOO

and 3000 cycles, wc vary the number of threads from 1 ta 8. Bach thread issues :1 remote

data accesses (2 GET-SYNCs and 1 DATA-SYNC). Despite varying the machine size, wc k""p the

problcm size fixcd. Sa, the program cxccutioll time reduccs \Vit.h ail inc:nm..m in Ut 1\.."1 weil n."I

an increase in the number of proccssing nodes. This investigation helps us 1.0 emluate the

computation decomposition of a program workload on a system with multiple proœssin~

nodes.

Figure 8.1 shows how sensitive is the network latency for GET-SYNC opemtion, when the

machine size is varied from 2 1.0 16 nodes. Thread rtInlengths remain constllnt. at. R = 3000

and 1500 cycles. When R is 3000 cycles and 7It is l, L9"t-"IIII" values me close 1.0 no-Ioacl

values for the l'articulaI' number of proccssing nodes in the BARTH system. Note I.hat

Lget-'lIlIe plots overlap completely, when 711 = 4 ("0 ") and 8 ("_") at. R = 3000 cydes. AI.

R= 3000 cycles, Lget-"lIlIe values rise very slowly with machine size. However ai R= 1500

cyclcs, L get -"lIlIe values sharply increase beyond 8 nodes in I.he system. The l.wo LII""_"IIII"

plots which rise 1.0 almost three times the no-loacl vaIncs on a 16-node BARTH system am

for nt = 4 and 8, when R is 1500 cycles.
14()()

- Thrends = 1. R= 30no
0- -0- -0 Thrcnds = 4. R= 3000
-- 1llrcnds =H. R= 3000 •
- _. - Thrc.d, = 1. R = 15110
-Thrc.d,=4.R= 1511O ..
... -+- -+nlrcnds = 8. R= I~SJlO"

-~.-

°01;---~5----:'IO;;---~1';-5--~2'()

Numbcr of Nades

Figure 8.1: Lget-'/llie characterization with number of processing nodes.

Let us consider how does the processor performance change (sec Figure 8.2). As the
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machine size is irll:re'L,ed, the proc",sor utilization <:Dnsistently reduces. The change in U1J

varies with R and fit. For R = 3000 cycl"" t.he dccre'L,e in U1, is small even for a 16-node

system. And with 4 to 8 threads, the processor utilization is close to the saturation value.

Thus, a partitioning with R = 3000 cycles yields a robust performance when the machine

size varies from 2 to 16 nodes. In l:OntrlL't, at R = 1500 cycles, U1J dccreascs rapidly with

incrl!1L,ing ma<:hine size. AIso, an incrmL,e in t.lw mnnber of threads (up to 8) yields Iit.tle

pcrformallec gains.

The following is a surprising implicat.ion from Figure 8.2 when the number of nodes is

lli. With the mult.it.hreading (Le. Tlt > 1), U1, values at R = 3000 are almost double of Up

valucs at R = 1&00. Each EARTH node contains Intel i860 XP processor which supports

a dual-issue of inst.ructions [20, 461. Without loss of generality, the implication of this

result on superscalar processors is 'L' follows. Let. us 'L'smne that the compiler produces

a scalar code for a program workload with mean thread runlengths of 3000 cycles. For

t.he same progrmn workload, when compiler optimizations are applied, the generated code

a<:!lieves a sustained instruction-level parallelislll (ILP) of 2, i.e. mean thread runlengths

are 1&00 cycles. There is, however, no change in the comlIlunication characteristics.

Sine<: processing nodes place their messages on the network at a higher rate duc to low

R, contentions increase significantly and there is no performance gain duc 10 increased

ILP. In elfect, with new techniques using a high performance proccssor efficiently does not

guarantee a high system performance. A tuning of workload parameters as weil as system

architecture should pay attention to a performance alllllysis of various subsystems.

Thus, wc note that:

• On the EARTH system, thread TUnlengths over 3000 cycles (Le. 60 IlS) achieves good

processor utilization ( > 80%), even when the system contains up to 16 nodes.

• When thread runlengths arc smaller than 1500 cycles, a decomposition of the program

workload on to a large number of EARTH nodes causes a significant reduction in

processor utilization. For these runlengths coutentions at subsystems and network

iucrease, so L9ct- .•~"c increases and the U1J decreases.
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Figure 8.2: Ur' for rlilferent machine sizes.

8.3.2 Multithreading Operations

We noted in Section 8.3.1 that for R above 3000 l'ydes, Ur' is high even fOI' machine sizes

up to 16 nodes. Now, we discuss which progrmn workload parameters alf""t I.he per­

formance measures. We use a default machine size with 8 EARTH nodes. Thl'earl l'lIn­

lengths are 1500 cycles and 3000 cycles. We vary the numl"'r of remol.e access operai.ions

(GET-SYNCjDATA...5YNC) pel' thread as well as the number of local rnadjwl'Îl,e a<:<:esses for

each thread.

Figure 8.3 shows how Up varies with I.he number of threarls for l'lInlengl,hs R= :1000

and 1500 cycles. Continuous lines are model predict.ions and rlol.ted lines are l'lIntime

measurements from the EARTH system. For both l'lInlengths, U" values itll:rell.~e with

number of threads and saturate. Model predictions and system melL'llrements follow I.he

same trends and their difference decreases at higher number of I.hrnads. Two causes of

differences between model predictions and system mmL~nrements are IL~ follows (diseusserl

earlier in Section 7.3): FiI'st, we cannot measure the idle time al. the EU due to its loelll

memory accesses. Second, we cannot aceuratcly aceount for lUI overhearl t.o invoke I.he

function for idle tÏlne measurement.

Threads with 2 GET.SYNC operations yield higlwr Up values than I.hr",uls wif.h :1 GET.SYNC

operations (see Figure 8.3). The difference at higher number of threads (say 8) is due to

the overhead of issuing and synchronizing an extra GET...5YNC operation. interestingly, Ur'
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values for threatls with 3 GET.5YNC operations and R= 3000 cycles, arc almost similar to

U" values for threads with 2 GEr.5YNC operations and R = 1500 cycles. That is, if threads

need more number of GET.5YNC operations, their runlengths should be high to achieve a

good U".

100

Now, let us consider the effect of remote accesses on Lget-syne for the two runlengths

R= 3000 cycles and 1500 cycles. Figure 8.4 shows that with 2 GET.5YNC operations per

thread, Lget-syne is small and does not change significantly with other parameters, nt and

R. However, with as small as 3 GET.5YNC operations per thread, Lget-syne increases sharply

at lower R (= 1500 cycles). When nt is 4, R is 1500 cycles and each thread has 3 GET-SYNCs,

Lget-.yne values are much higher than those for the workload with nt = 8 and 2 GET-SYNCs

per thread. Despite a larger number ofoutstanding accesses, when nt is 8, Lget-syne is lower

compared to the workload with nt = 4 and 3 GET.5YNCs. Thus, the number of GET-SYNCs

per thread is more crucial to the performance than the number fo threads. Curves for

R = 3000 cycles show a similar behavior, with smaller differences. Notice the similarity

with an observation from Figure 8.3 that Lget-syne values for threatls with 2 GET.5YNCs and

rulliength of 1500 cycles are almost similar to Lget-syne for threads with 3 GET-SYNCs and

runlength of 3000 cycles.

10

•

,. • __.~~.__~_~.'='.:c••:-:.::;~
,,., ,.",

Figure 8.3: Effect of the number of remote accesses per thread on Up •

F::/ . ~d 80

160

:5
~ 40

- Oel_Synes =3. R =3000 (Model) ~ - Oe'_Synes =3. R=1500 (Model)

Oe'_Synes =2. R=3000 (Mode') ~ OCl_Synes =2. R=1500 (Model)
cl: 20

0- - -0 GcLSyncs =3. R= 3000 (Mensured) 0 • - -0 GCI_Syncs =3. R=1500 (Measurcd)

GcLSyncs =2, R= ~OOO (Mcasurcd) • ~ -... Gcl_Syncs =2. R=1500 (Mcnsurcd)
°0~---:2~""::'-4~----C6~----C8~---;'1O' 00 2 4 6 8

Numhcr of Thrcnds. "_1 Number ofThrcnds. "_1

•

•
Next, we predict the effect of remote accesses on delays at the SU, one of the key

functional units to support the multithreading. A runtime measurement of the delay at

an SU is not possible in the software, because the SU at a remote node is only one of the
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•
many functional units on the path of a reDlote access. Figure 8.5 shows how the delay

at the remote SU varies with nt and R. Continuous lines are model predictions roI' R =

3000 cycles, and dotted lines are model predictions roI' R = 1500 cycles. The delay at

the SU increases with nt. A more significant increase occtll's with the Iltllnber or GET-SYNC

operations pel' threadj for example, when the number or GET-SYNCs is 3, eaeh GET_SYNC

requires a service of 20 cycles at the SU and the overall delay is 60 cycles. For threlUis with

low R (=1500 cycles), the queueing delay at an SU increases rapidly. So, a high Ll/et-6YII.

occurs as noted in Figure 8.4. FinallY' we note that at high thread rtlnlength, the delay at

SU does not change significantly with the number or threads.

•

Figure 8.6 shows how the local read/write acccsses Till a/rect Lyet-61111.' We consicler

Till = 1 and 4. Local read/write acccsses increase Lyct-.'Ylle by less than 2% t.o 3% in all

cases. There are two reasons as follows: FiT.•!, unlike remote acccsses, servÎl:e timc.~ for

local accesses are very small. For example, a local memory acccss requires 15 cycles at

the memory. In contrast, a remote rnemory nccess issued by an EU initiates 4 accesses

to its local memory, two to initiate the remote memory ncccss, and two to complete the

remote memol'Y access. Second, ench split-phase multithreacling operation causes multiple

bus accesses (to memory and network interfaces). So, a small number of read/write accesses

pel' thread does not significantly increase the contentions on the node bus. We report the

system measurements only. Model predictions for L yet-6Ylle also change within 2% to 3%

(not shown in Figure 8.6).
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Figure 8.5: Effeet of progmm workload parameters on t.he delay at the SU.

•
Wc show the elfect of loeal read/write aceesses on Up in Figure 8.7. Similar to the

changes in Lyet-.•y"c values, Up values llecrease by less than 5% due to i.uerease in loeal

acccsscs.

In summary, we note how sensitive the performanee ùf real multithreaded machines is

to the number of multithreading operations and thread runlengths.

• The number of GET_SYNC operations per thread is significant to determine the con­

tentions in the system. Eveu with as small as 3 GET.5YNC operations per thread,

L!/ct-.y"c for individual nceesses is high on a real system like the EARTH.

• Delays at functional units like the SU in a proccssing node dominate the latency

eosts, in the current EARTH implementation. As a result Lyct-.y"c increases with

the number of GET.5YNCs per thread. In spite of these long delays at functionalunits,

the processor performance increases under multithreaded execution compared to a

single threaded execution.

•

• A progrnm workload aehieves high proeessor utilization (> 80%) on the EARTH

system for thread runlengths above 3000 eyeles (60ps) and the number of GET.5YNCs

is less than 3. When the number of GET.5YNCs per thread increases, the contentions

increase and the Up values decrease.

• The number of local read/write accesses do not significantly affect the performance
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of the EARTH system, as <:ompared 1.0 the nmuber of relnot.e a<:<:csses. Chan~es in

the number of read/write a<:œss 1.0 local memOl'y dmnge L!/ct- .•""" ami V" values hy

less than 5%.

8.4 Architectural Optimizations

The delays al. a pro<:essing node rednce the performance gains l\l:hieved duc 1.0 muitithrellll·

ing as shown by Section 8.3.2. Now, wc discnss how different ar<:hitecl.uml implementations

of the EARTH system can yield higher performanœ gains. Wc l:onsider two syst.ems. First,

the system has the network delays similar 1.0 those observed in a Ndltlork.,·of- Work.,t"tio71.,

type system. Second, the proœssing node overheads in the EARTH system are rtsluœd.

Wc use model predktions for compnring the performanœs of ail systems. Predic:tions for

the current EARTH system arc validated carlier in this dmpter.

One of the recent trends in large s<:ale l:ümpnting is t.o use Ndltlork., of Work.,t"ti071H

(NOW) 1.0 achieve high throllghputs [11, 7l). Some of the charlleteristil:s of t.hese syst.ems

in comparison 1.0 multiproccssor systems arc Ils follows. The processing nod08 in Il NO W

system are similar 1.0 those used in a mnltiprocessor system Iike the EARTI-I. I-Iowever,

the interconncction among these nodes in a NO W system is slower thlln the nct.work in a

multiprocessor system. A NOW system uses standard interconnection networks, like ATM

or Ethernet. Also the distances between workstations can be large. So, communication ln-
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•

•

teucies for messages arc higher thau those in a umltiprocessor system, which use enstomized

interconnection networks.

For our discussions of a NO W system, wc consider that the processing nodes of the

EARTH system are connected nsing an interconnection network slower than the on", in

the EARTH system. We use the best vaInes for a round-trip latency reporte<! by Pakin et

al [711. In particular, the rounâ trip lateucy is 50jl8 (and one-way is 25jl8). Ta achieve this

vaine, we need ta set the erossbar delay XOllt..rv ta be 1100 cycles. The l'est architectural

parameters have the same values as on the EARTH system (sec Table 8.1).

Figure 8.8 shows how Up values of the NOW system compare with U/J for the EARTH

system, whcu thc muubcr of threadJ are incrcllScd. Continuons Hnes show the performance

of thc current implemcntation of the EARTH system on MANNA platform. Datte<! Hnes

show how thc pcrformance of thc NO W system ehangcs with thread runIengths, when the

lIIunbcr of GEr.sVNC opcrations l'cr thread and thread runlengths vary. As expected, the

single-threadcd pcrformancc ofthc NOWsystem is worse than the EARTH system, because

thc delays on thc network ar·; mnch longer. Howcver, with multithrcading the performance

of the NO W systcm improves rapidly. Lct ns consider that R is 1500 cycles. When the

number ofGET..sVNCs is 3, with increasing nt. Up values saturate close ta double the value at

1It = 1. With GEr.sYNCs = 2, thc U/> for 1It = 8 is almost 2.5 times the Up at nt = 1. When

R is 1500 I:Yclcs, Up satnrates at 24% and 46% with GEr..sYNCs = 3 and 2 respectively,

becausc the network latcncies (Lgct-.YIlc) arc very high. For R= 3000 and 6000 cycles, the
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saturation of U,. oceurs al. SO% and ahoVl'. Further. al. H= :1000 cyd,'s, Il,. l'ÎSI'S 1.0 nl'arly

3 timcs at 1J.t=16 (Ilot showlI in Figllf(~ ~.8). Similar perrm'miuH'e gains an~ oiJservt'd I!\'t'U

when the IlIl1nber of relllote at'<:css'" pel' thr""d.

In SUIIUlli:lry. \Vith enrrent. servÏee tiulPS of snbsyslems in t.hl' EAHTII In'Oft~ssillg lIotll~.

a 8-llodc NO lV system t:all aehicve iL'" lll\lch iL'" 3 limes the pl~rrOl'llliLnC(~ of a single t.hrt·iult~d

program cxcc:ut.ioll. Iuterestillgl)', thread grmI1l1arit.ies. whidt yield high lu'ocpssor utiliza·

tian, arc ahnost sallie lL' those we note,l for the current EARTH illlplen",nlalion, i.e. lhrl'all

rIInlengths of 3000 cycles and above.
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Figure 8.8: U" for a NOW syslelll.

Let us consider another illlportant tra<k~o(f in the BARTH proc:essin~ node design, ser­

vice times at subsystems like the SU and the link inlerfaces. We ""1II!,are lhe perfornmnce

of systems with the current EARTH node implelllenlation (whose servi"" linw" are lIIen·

tioned in Table 8.1) and with a hypothetical 1""1 EARTH Ilode. The servi"" linll'" al lhe

IIlsl EARTH node arc as follows: SU,er. is 10 cydes; tnkin,,,,,,, is 8 "ydes; and tnkoul....u i"

4 cycles. The model predictions of Up for the cnrrent EARTH illlplemenlation arlll the 1""1
system arc shawn in Fignre 8.9. Continuons lines wilh the lab<:l EARTH lLre lhe mod<:l

predictions for the cnrrent EARTH systelll. Dotted lines with the lab<:l Fast arc the IIIUl1<,1

predictions for the 1",,1 EARTH systelll.

•
For single threaded program execution, wc observe that a fast SYSlclll yields nearly 10%

higher Up than the current EARTH system when R is 1500 cycles (Fignre 8.9). At higher
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thread ruulelll;ths, there is Ilot mueh s<:ope of performallce improvetnent due to high Up

value:;. However, the perfol'lllam:e impl'OVmllcllt dccrcascs with an illcrcasc in ntl bccause

latelldes are hetter tolerated with 1I1111tit.hreading.
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Figure 8.9: Elrect. of fast subsystems on UI"

Figure 8.10 shows net.work latencies Lget-,ync for the t.wo syst.ems, the fast EARTH

system and the current EARTH system. LYet-'YIIC values for the fast system arc at least

100 cycles lower than Lg<l-,yne foi' the cnrrent EARTH system. However, Lyet-.yne values

for the fast EARTH system follow the same trend with modd parameters as the Lyet-.yne

values for the eurrent EARTH system. That is, Lget-'Ylle inermlSes rapidly with Tlt when R

is small and the lIulllber of GET..sYNCs l'cr thread is :J or more.

•
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•

In SlIlllnllU'Y, wc note that lower latellcies for the fast EARTH system yields up to 10%

higher Up values than the cnrrent EARTH system, when thread granularities are low. This

result coufol'luS with the comlllon notion that a faster communication enables an efficient

execution of liner grain plU'allel program. However, with multithreading the performance

gap narrows down to less than 5% between the fast EARTH system and the eurrent EARTH

system.

The next section explores an advantage of multithreading on a distributcd sharcd mem­

ory multiproecssor systellls. The ability of lI1ultithreading to tolerate latency enables us 1.0

achieve bel.ter performance even in the absencc of a data loeality.



CH.4PTER li. ,\PPLIC,\TIONS TO l'EHFORM.·\;\,CE OI'TIAllZATIONS I!I;

..• R" ntllllltl'a.U

R .. \llllllthl'U

R" 1~llltl;ol.n

.....-......... K :ltltllltb\Hllll

--- H .. 1:\tllltb\Rll1l

---- --- -~-- ---- ----~-
5~.::-:1- ---==-=:---- -- -:

l>(KI

~. '
!: ItK)~
z '

R .. .\IIlIiIlF-.hU

- _. - R,. 1~lltllh&\1I

.....-- K .. NlUtltE,\MTIII

- H =JIMiltlll~\RnU

- R '" 1~lltllE,\Rnlt

.. - - - R '" NltltllFa.1I

~=---~___"
Cl 1 .~._~-

•

°O::----:2:----:4---~.---k;;------:"1ll

Numbl:r or Thn:ads. "_,
4 • k

NumtlCr tir Thrcads. n_l
III

GET..sYNCs = :l GET..sYNCs = 2

Figure 8.10: Em~ct of r~Lo.;t suhsyslems ou L!It.t- .•u'If"

•
8.5 Data Locality Sensitivity

ln this section, wc investigatc the robustness of tlll! performan"" of tlll! BARTH system

to changes in data distributions. First, Wl! dl!liue metri<:s to evaluate the sl!nsitivity of

performance to changes in data distributions. Second, wc dl'Sl'ribl! onr program worklOlul

to study the data locality sensitivity. Third, wc show rl'Sults on thl! data loc:ality scnsitivity

of singlc-threadb'l and multithreaded program workloads.

8.5.1 Metrics for Data Locality Sensitivity

Given a multiproccssor system like EARTH, tlll! data I<>l'ality sl!nsitivity of a progrlUn is the

variation in the performance of the systl!ln duc to l'hangl'S in data distributions. Wc dl!line

two metrics to quantify the data locality sensitivity of distributl!d memflry IImltiproccssor

systems. These Illetrics arc, the 7IIu/liproccs.~or locality .~ell.~itivity illtiex (MLS/) alld thl!

locality sellsitivily illtiex (LS/).

•

Intuitively, the worse the locality of the data accl!SS pattern, thl! worse the pcrforrrmlll:c

of singlc-threaded multiproccssor systems. A lowcr locality in a data distribution irn:rea.~cs

the latency for a remote mcmory acccss (Sl'C Section 5.7). A proccssor waits for the long

latency access ta complete b,'fore executing further. 1'0 get a rea.~nable l"lfformlLllce, Il
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(8.1)

•

•

compiler or a programmer needs to spend efforts to millimize inter-thread communication

and maximize the reuse of the data in local memory.

Changes in data distributions change the network latency cxperienced by an access.

A deleteriolls effect of a remote m~mory access on performance can be reduccd, if this

remote memory access latency is overlapped with an execution on other threads, i.e. the

multithreading support. Thus, the multithreading should reduce the nceds of compiler

writers and programmers to careflllly craft data distributions to achieve high performance.

This is especially benelicial for irregular and communication intensive applications, where

an optimal data distribution may not be easy to lind.

The performance of a multithreaded system also depends on a matching of program

workload to the underlying machine architecture. We focus on the following program

workload parameters: (a) the number of threads nt at each processing node; (b) the thread

runlength R; (c) the number of long latency accesses per thread; (dl the probability Premate

of sending these accesses to remote memory; and (e) the number of processing nodes P.

On the EARTH system, we use the program oJX(;cution time to compare the performance

of various program workloads and data distributions.

Next, we deline metrics to quantify data-locality sensitivity.

Definition 1 Given a program workload, let Dp be a well-tuned data distribution on P

processoring nodes (i. e. with an optimal data locality), and D pbe the ot/ter data distribution

lmder investigation, e.g., a randomly distribllted data. Let Tp,n,(Dp) and TP,n, (Dp) be

execlltion times of a IJrogram nmning on P nodes of a mllltiproces.90r system, when data

distributions are Dp and D p, respective/y. The Multiprocessor Locality Sensitivity Index

(MLSI) is defined as:

MLSI (D D') TP,n, (Dp)
P,lI, p, P = T (D' )

P1nt P

where ni denotes the average number of threads on each node. A data distribution is optimal,

when no remote memm"y access is required for any data accessed by threads at a processor,

except the essential remote data accesses. Essential remote data accesses are the aCcesses

for data that must be shared among threads at diJJerent processors.

The MLSI measures how is the performance of a system on a prograrn with a particular

data locality. The MLSI compares the performance for a program workload on an imperfect
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data locality, with the performance on a perfeet data locality, Le., optimal distribntion. The

MLSI usua11y ranges between 0 and 1. Note that MLSI may be grcater than l, if Di, leads

to lower program execntion time than DI" The c10ser the MLSI vaine to l, I.he more

robust the performancc with respect to variations in the data locality. (For some progmm",

it is not difficnlt to obtain an obvious, optimal distribntion.) We can also IlSe t.he ML81

to compare different data distributions, for exmnple, how is the performance on a block

distributed partitioning of matrices in an application with a blm:k eyelie distribnl.ed one.

We note the similarity of the MLSI wit.h the TolerlLnee Index disr.ussed in CllIIpt.er 6.

There arc fo11owing two major differences:

1. The MLSI measures the performance variation of IL syst.em on a progmm with respect

to different data distributions. There is a posRibility that the optimal distribution

DI' may not necessarily be the one with a11 data residing inloealmemory modnle. ln

contrast, given a program wurkload and a data distribution, the tolermu:e index (for

network Iatency) compares the performance of a system with that of lUI i,lelll system,

i.e., a system with no dclays on the network.

2. The MLSI helps to assess the performance variations of a distributed memory mnlt.i·

processor system with respect to variations in the data locality. In contrast, the

tolerance index helps to assess the impact of the latency of a snbsystem on the pero

formance of the system on given program workload.

Now, we deline another metric Locality Sensitivity Index (LSI), which is a special cl~~e of

the MLSr. The LSI deals with the program execution on a single processing node, when the

data is distributed on P processing nodes. Thus, the LSI removes the impact of contentions

al. the network on the performance comparison. In CI~~e of the EARTH system, the LSI

also reduees the effeet of waits at remote processing nodes 1.0 service long latency IlCCCSSCB.

Definition 2 Given a program workload, let DI' be a well-tuned data distribution on P

processoring nodes (i.e. wit/I an optimal data locality), and Di, be tile ot/ler data distribution

under investigation, e.g., a randomly distributed datll. Let TI,7I,(Dp) and T1,7I,(Dj,) be

execution times of a program running on 1 node of a m,J1tiproccssor system, wilcn data

distributions are DI' and Dp, respectively. Tile Locality Sensitivity Index (MLSI) is defined
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LB! (D D') T1.fI,(Dp) (8.2)
fi, p, p = T (D' )

t,fil P

IlIhere nt denotes tlte (lUera.qe 7llnnber of thread.• on each node. A data distribution D p is

optimal, lllhen no remote mef(lor.q acces.• i.• reqnired for any data acce.•.•eJ by threads at a

IJrocessor.

The LSI is a positive real number betwccn 0 and 1. The closer the LSI value to 1,

the more robust the performance of a system on a program with respect i.> variatiouti in

data locality. The LSI re8ects how good is the performance of a node in a multiprocessor

system, when the data is distributed on multiple nodes. In other words, the LSI indicates

the ability of a node in a multiprocessor system to tolerate the remote access latency. Again,

we notice a similarity with the tolerance index that the optimal data distribution D p for

the LSI ensnres the absence of remote accesses.

In conventional parallel computing, the performance of a multiprocessor system on

a singlc-threaded program workload changes significantly due to the data locality. So,

compilers and programmers must spend significant efforts to improve data locality through

smart data partitioning strategies and changes in the control structure ofprogram workload.

Our intuition is that the performance uf multithreaded computation is less sensitive to

changes in data distributions. Accordingly, we study how robust is the performance of a

multithreaded system with respect to variations in data locality.

Next, we describe program workloads and their data distributions on the EARTH sys­

tem. We use thcse program workloads to investigate the data locality sensitivity of the

EARTH system in Section 8.5.3.

8.5.2 Program Workloads and Data Distributions

We introduced the performance metrics, MLSI and LSI, to quantify the data locality sensi·

tivity. In this section, we show how to compute the MLSI and LSI for a specific application,

and also compare performance of the singlc-threaded computation with multithreaded com­

putation. The empirical measurements are made under a synthetic workload with different

data distributions. We also outline program workloads used to study the data locality

sensltivity of the EARTH system.
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Now, we show how ta compute the MLSI and LSI for a synthetic bench:;,ark. Later, we

extend this computation ta Matrix Mnltiplication.

Synthetic Benchmark

The synthetic benchmark is similar ta the progrmn workload shown in Figure 2.2 (Set:­

tion 2.2). We vary the number of threads n, forked on each processing node and their t,hread

runlengths R. Ali input data for a thread is fetched froll\ remote memory modnle before the

computation begins. We use BLK.MOV operations to perform these long message tl'llnsfers

between remote processing nodes. The size of network messages changes depending on the

granularity of threads. We also vary data distribntions, i.e., change 1'''''"0''''

The synthetic benchmark SB provides us a flexibility to ndjust t,he l:Omnllmiclltion pat­

tern and program execution behavior. We mensure mensure MLSI and LSI for dilferent data

distribution, and for variations in input parameters snch ns Tl, and l'",,,,,,,,,. The threadml

function of SB mainly consists of two parts: (a) a communication-thread which reads the

data from local/remote memory; and (b) a computation-thread which serves ta compute the

result and write back. We propose the following four computal,ion-communication patterns

to mensure the MLSI and LSI.

• Single Thread on 1 node (ST-I): The proccssing node 0 executes one thread, i.e.,

nt = 1. The input data for the computation is distributed on P processing nodes.

This thread issues two remote read operations (using BLK.MOVs) for the inpnt data.

On return, the computation part of this thread is triggered. This process is repeated

till the end of the computation.

• Multiple Thrcads on 1 node (MT-I): The proccssing node 0 executes Tlt threacl. The

input data for the computation is distributed on P processing nodes. Each thread

issues two remote read operations (using BLK.MOVs) for the input data. On return,

the computation part of the waiting thread is triggered. This process is repellted for

each threacl till the end of the computation.

• Single Thrcad on P nodes (ST-P): Each proccssing node i (whm'e i = 0,1, ... , P - 1)

executes one thread, i.e., nt = 1. The input data for the computation is distributed on

•
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P pro<:cssing nodes. This t.hread issues two remot.e read operations (nsing BLK-MOVs)

for the input. data. On returIl, the <:amputation part. of t.his thread is triggered. This

process is repeated till the end of the computation.

• Mlllti[I/" Th",ml.. 011 P 'lOti".• (MT-P): Each proccssing node i (where i = 0, 1, ... , P -1)

execut<~~Tlt threm!. The input data for t.he computation is distributed on P processing

nodes. Each thread issues two remote reml operal,ions (using BLK-MOVs) for the input

data. On rel.urn, the comput.1Ltion part of the waiting thread is triggered. This process

is repeated for each thread till t.he end of t.he computation.

Figures 8.11 (a) and (b) show the executiou patterns for STol and MT-l. Let us compute

t.he performance benetit. of nmltithreading using a simplistic back-of-thc-envelope analysis

blL~ed on simple measurements from the EARTH system. The timing details are presented

t.o iIlustral.e the conccpt.

In Figure 8.11 (a), let t.he BLK-MOV operation take l201's (=Lbtkmau) for STol. The

EU al. proccssing node 0 takes l"s (=1) 1.0 issue a BLK-MOV. Let us assume that thread

rtInlength R is 300"", The context switch time C of 2.5"" is incurred because the tirst part

of t,hread issued remote accesses, and the second part gets triggered al. the completion of

these acccsses. Then the overall execution time '1;, is (1 + C + Lbtkm.1I +R) = 425.5"s, Ali

of these values are mmL~ured from the EARTH system.

Now, for MT-l in Figure 8.11 (b), we split the computation into 3 threads. Since the

message size requirement for each thread is reduccd 1.0 onc-third of that in Figure 8.11(a),

we lL~sume that the latency for each BLK-MOV reduccs 1.040".• (= Lb/kmau). For the Thread-l

(the leCt-most one), wc have 1 = l'IS, G = 2.5"s and R = 1001's, The thread completes

exc<:ntion after a duration of (I + G + Lblkmelll + R) = l43.5"s. The Thread-2 (in the

middlc) reccivcs its BLK-MOV operation by 136.5/18. Though we expecl that this BLK-MOV

by 1 + G + Lblk"llIu + Llllkmall = 83.5"s, a contention between the EU and the SU al.

processing node 0 delays the completion of the second BLK-MOV operation. The execntion

on Thread-2 follows. Thns, Thread-2 completes after a dnration of (I + G + Lb/km.1I +
R + G + R) = 246.0/18. For Thread-3 the same logic applies regarding the contention

between the EU and the SU. The corresponding BLK-MOV operation completes by 235.5"8.

So, the overall execntion time of the program is Tb = 1 + G + LI + R + G + R + G + R =
348.5/l8. Y A comparison of execution times in two cases Ta and n shows the benetit
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due 1.0 multithreading. The performan"l! improvement iH ('I;, -1),)/T.. = IU81 Le., 18.1%.

We note that in Figure S.U(b), the reHponHeH tn latt.er twn BLK..MOVH art! reCllived ht'fOl'e

the proccssing on Thread-l and Thread-2 mmpiete. If the diHtrihntion of data iH worHe,

lcading ta a highcr latency, the ovcrlap of {~omptlt.a.t.iol1mut COllllllllllicat.ioll ensures a slIIallel'

variation in the performance.
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(a) Singlc-Thrcadcd Computation (h) Mlliti-Thrcmlcd CUIIIJltllmioll

Figure 8.11: Examples of ST-I VH. MT-I Execnl.ion Paf.tel'l1H

Executions for SToP and MT-P are very Himilar 1.0 l.hoHe Hhnwa in Fignl'l! 8.11. The

execution of SToP differs from that of ST-I a~ followH. While the ST-l allowH exccllt.ÎolI of

single thread only on procesHing node 0, the SToP allowH each PI'OCllHHillg node 1.0 cx",,"tc

one thread. Similarly, MT-P allows a number of thl'eads 7It(> 1) 011 cadi pl'OeeHHing nndc in

contrast 1.0 MT-l, which allows 7It threads on\y on the prm:essin!!: node O. ThIlS, ST-I alld

MT-I incur no contention al. remote nodes for remote mt!lnory acœsseH (hui. c:onl.entions

occur al. the network and the proccssing node 0 among multiple outsl,andin!!: aceesses from

different threads al. proccssing node 0). On the otIter hand, under SToP and MT-P, remol.e

access from a processing node inGllr contentions al. the nel.work and al. ead. proc:essing node

with remote accesses from other processing nodes. The ST-1 pattern leads 1.0 a shorl.er

delay for busy-waiting on each remote memory access compared I.n the S'f-P exm:lltion

pattern, because the ST-l execlltion occllrs only on the node () and there are no thrmuls

1.0 synchronize (on node 0 or other nodes). The same argumenl. applies 1.0 the M'f-I lLlul

MT-P execution patterns.

Now, we describe the Matrix Multiplication, which we willusn to study the data localil.y
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sellsitivity of the EARTH system. Wc have implemented a 1-D Systolic Matrix Multiplica­

tion (SMM) algorithm ta compute C = A x B. A, Band C arc n x 71 matrices, and N = n2
•

Let us IL~SUnw that P pro<:essing nodes exchange data as they wnuld on a ring. Let each

proeessillg 110de have 'W c:olIscc:l1tivc coltlUlIlS, whcrc 111 = po Titus, A = [Ao Al", Ap-d,

where Ai hlock is located on the i-f.h processing node at the start of computation. A similar

distribution exist.s for B = [Bo BI'" Bp-d. As the computation proceeds, Ck accumulates

on the processing node k, such that C = [Co CI 00. Cp_ d. The progress of computation is

IL~ follows: FiI.../, each node k computes Ak x Bk and stores as a partial sum for Ck. Second,

Ak's are cyclically shifterl, say to nodes (k+ 1). Thilyl, the partial computation of Ck repeats

at t.he norie k. The sel:Ond and third steps continue, till Ak visit ail processing nodes (a

total of (P - 1) shifts). Thus, Ck accumulates al. the node k. Thal. is, Ck = ~r..OI AiBik,

where Bik l:OlItains rows i * II! 1.0 (i + 1) * II! of Bk.
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Figure 8.12: Execution Pattern of 1-D Systolic Matrix Multiply (SMM)

•

Let us consider the data movement in singlc-threaded and multithreaded execution of

the SMM. For a singlc-threaded execution, each cyclic shift of Ak is rollowed by a partial

computation of Ck on the node k. Totalnumber of shifts arc (P -1). On each shift, anode

receives ~ data clements and performs ~ multiplications on matrices of sizes n x p and

p x 71. The computation and communication phases of the program arc distinctly visible.

For a multithrcaded program exccution, each processor executes on 7It threads after each

cyclic shift of A"'k> 711= 1,2'00.,71/. Rows numbcred between 11'1 *w and (11'1 + 1) * w of Ak

and Ck arc referrcd as A",k and C"'k. Each thread requires rI'p data clements on eachn,
shift, and performs n;';" multiplications (and their additions) on matrices of sizes ::, x p
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and Fx p. Thus, after the arrivaI of tI", lit'st hlock A1k of ,,:,,1' "'en",nts, tlll' computal,ion

ail threads is overlapped wit.h the arrivai of rentainin~ (u, - I)...!!.':r dat.a "'en",nt.s. \VithII,

llmltithrcading, the computation and (~Ollllllllllieatioll phn.."ics arc overlapptld t.iwreaft.m",

8.5.3 Data Locality Sensitivity of the EARTH System

In t.his section, wc will investigate how sensitive is t.he performanœ of 1.1", EAHTH systmn

ta changes in data loc"lity. First, wc stndy the dat" localil,y sensitivit,y wlum the EAHTH

system executes the synthetic henchm"rk discnssed in Section tl.5.2. Se""nd, wc sl,ndy tlu,

data locality sensitivity for t.he Matrix Mnltiplic"tion pro~mm discnssml in Sed.ion 8.5.2.

Now, wc explore the locality sensitivity varies with v"rions worklo"d pamnll\t.ers. Syn­

thetic benchmark in Section 8.5.2 allows us ta vary t.he nnmber of t.hl"O"ds, t.heir runlen~ths,

and their data access patterns. Wc consider the effect of workload pammet.ers on the Multi­

processor Sensitivity Index, MLSI, shawn iu Figure tl.13. 'l'he syul.l"'l,je hendun"rk is ex,!­

cuted on 20 processing nodes, The black size for remote dat.a aceesses (BLK...MOVs) is slteh

that the program performance is the lClL,t when each processing node exeentes 01'" l,hre",1.

These black sizes for each BLK...MOV arc 120 and 480 f1m"'ing poinl, numhcrs. The nnmher

of threads n, on each processing node varies from 1 1.0 20. The frad.ion, T'",,,,,,,,,, of long

latency operations sent ta remote memory varies from 0 to 0,95, IL' shown on the axis W,led

"Data Distribution" with a black size of 120 f10ating point numbers. Not,e th"t, the relllote

data is distribnted on remaining nodes IL' follows: for T'r""",'" = 0.5, (loe node <:Dntains

l'est of the data; for pr""",'" = 0.G6, two nodes contain l'est. of the data; for T'''''''''''' = 0,9,

nine nodes contain l'est data; and sa on. FOl'" particnlar value of 71,. (say 2), l,he MLSI is

the relative decrease in program execution l,ime dne 1.0 a data localit.y Ü''',,,,,,,,, > 0) with

respect ta the program execution time when the data is local Le. T'".",,,,,, =O. Wc ohscrve

that:

• For the single-threaded execution (n, = 1), the MLSI decl'ClL,es by 18,8% whell ail of

the data is distributed over remote memory modules. When Jmlf the data is relllotdy

Iocated, the decrease in MLSI is lIearly 14.7%.

• For a multithreaded execntioll, the decrellse in the MLSI is less than 5% whenT'r""",'"

is greater than 0.5. The c\oseness of MLSI values ta 1 for nt > 1shows that the locality

has very little impact on the performance of IllUltithreaded progrmll workload.
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Program execlltion times for these MLSI values shown in Figure 8.13 indicate that nt = 2

and 4 provide the best performance. At high ftt (8 to 20), the program execut.ion time is up

to 8.5% higher than that for ftt = 2, becallse an extra time is required to fork the threads

at the heginning of computation and to synchronize the threads at the end of computation.
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• Figure 8.13: MLSI values for Synthetic Workload at BLK=120.

Figure 8.14 shows how the proccssor performance varies when there is no contention

from executions on other processors. The synthetic henchmark program executes on the

processing node 0, and the data is distributed on 20 nodes in the system. In Figure 8.14, a

long latency BLK..MOV is sent to a remote memary with the probability Premole' As mentioned

above, with Premote = 0.5, node 1 contains rest data; with Premote = 0.75, nodes l, 2 and

3 contain rest data; and 50 on. Premole values arc 0, 0.5, 0.75, 0.875, 0.917, 0.925, and

0.95, corresponding to the number of nodes l, 2, 4, 8, 12, 16, and 20 on which the data

is distributed. Each BLK..MOV transfers 480 elements, one of the two best sizes for single­

threaded performance on a 20-node EARTH system. The number of threads on the node

ovary from 1 to 20. From Figure 8.14, we note the following:

•
• A distribution of data to remote memory modules decreases LSI values by 17.4 to

20.3% when ftt > 1. HowevC1, an increase in Premole from 0.5 to 0.95 marginally

increases the LSI value. The reason iB that at higher premote the data is sprend over
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a larger number of nodes, so bottlenecks at remot0 uodes to service relllote lII",uory

accesses reduce.

• For Premole 2:: 0.5, with multithreacliug the LSI values increlL'" by 19.% over the LSI

valucs at "t=1.

Similar to the observation for the MLSI values, we note that "t = 2 provides the best

program execution time as well as the highest LSI values. The rClL'on is that when a

remote access is in progress for one thread, the computation on another thread hicles the

latency of remote access. When there arc 1II0re than 2 threads (say ](] or 20), a large tÎlne is

also spent in forking these threads before the compntation begins and synchl'Onizinl!: tll",n

at the end of computation.
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Figure 8.14: LS1 values for Synthetic Workload at BLK=480.

.'

Next, wc consider the matrix multiplication program (SMM) discnssed in Section 8.5.2.

The MLS1 values for the SMM arc plotted in Figure 8.15 with respect to the mllnber of

threads nt l'cr processing node and different data distributions, i.e., c\ilferent T'remol. valueR.

nt varies from 1 to 20. Premole values arc 0, 0.5, 0.75, 0.875, 0.917, 0.925 and 0.95. Given a

Premote, the smallest MLS1 value occurs at nt = 1. With increasing "t 2:: 4, the MLS1 valucs

are almost constant. The program execution times (not shown in Figure 8.15) arc the least
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for Tlt = 4 allù 8. Wc also Ilote that for T'r""",t" S 0.917 the MLSI vailles arc almost close

to 1 whell Tlt ~ 4. COlllJlarillg the MLSI values for a single threaùeù executioll (Tlt = 1) to

those for a 1II1lltithrea.ded execution, wc observe the following:

• The MLSI ùecreases rapidly with illcreasing T'"""ote, especially when nt = 1.

• At large PrwlOte (say 0.95), the MLSI value increases by as lIIuch as 11.8% with

lIIultithreadillg. (The program executiou time ùecreases by uea.rly 14.5%. However,

the Jlrogralll execution tillle ùecreases for nt > 1 even when Premote = 0, so a lower

illlJlrOVelllellt in the MLSI value is observeù.)

Overall, our experiments show that the ùecrease ill MLSI (anù LSI) for a multithreaded

progralll execution is less than the decrease in MLSI (and LSI) for a single threaded ex­

ecutioll. So, the multithreaded program execution is more robust to the changes in data

distributions. Thus, we believe that an Inherent ability of multithreading technique to tol­

erate long latency helps to maintain a high performance. A nser of mnltithreaded system

Ileeùs ta make only a small effort on ùata distribution even when the remote access pattern

is comlllnnication-intensive and irregular or changes dynamically in a Jlrogram execution.
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Figure 8.15: MLSI values for Matrix Multiplication.
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In this chapter, wc have focllssed 011 the iSS'les related 1.0 the perfortlmnce optimization of

nlllitithreaded multiprocessor systems. We clmractel"ized the perfortlm\l(,e of the BARTH

system. Then wc addressed the sensitivity of performance 1.0 the changes in data \o"alit.y.

First, wc characterized the performance of the BARTH system with workload 1"U"amL~

ters. Arpaci et (LI [13] report a dllU"acterization of \atencies for varions opel"lltions on CM-5

using Split-C. Boyd and Davidson [19] report an evalnation of a nmltiprocessor system

using synthetic benchmarks. One of the main objectives of these stndies is 1.0 provide in­

formation on bow much penalty nser-Ieve\langnage primitives in"nr. These primitives arc

variollS types of local and remote nccesses. Compilers and progrllllmlers can choose the

best possible hardware mcchanism IIsing these primitives 1.0 achieve fIL,ter commnnil'ation.

However, they do not consider the impact of overlap of l'ampntation and "Olnnmnication

on performance measnres. We show in this chapter that the overlap IIlL' signilkanl. cIrc","

on the processor performance. Two important aspeets of the overh,p arc 'L' follows. First,

the overlap improves the processor performance "Olnpared 1.0 a singk~threaded progl"llm

execution. Second, the number of outstanding reqnests l'cr processor incrmL,e with the

number of threads, so strategies for performance related optimizations dmnge.

On the other hand, Woo ct al [102] study SPLASH-2 benchmark sni te, specilkally the

aspects Iike the application parallelism, computation 1.0 commnnication ratio, and IOClùity.

They use above aspects 1.0 characterize a program execution on a nl1lltiprocessor system.

However, they do not consider how the architecturalmedtanisms affect I.he performance of

a multiprocessor system on a program workload. Our resnlts show tlmt progrmn workload

parameters as weil as architectural parameters shonld be considered 1.0 analyze and optimize

the performance of a program workload on a mnltithreaded mnltiprocessor system Iike the

EARTH.

Second, we investigated the data locality sensitivity of performance of the BARTH sys­

tem. Some of the related work arc by .Johnson [SOl, Felten [36] and Sohn [89]. .Johnson

proposed a model in [SOl 1.0 predict the performance of a multithreaded system. His model

characterizes application behavior with parameters that capture the computation granular­

il.y, the sensitivity 1.0 communication latency and the degrce of lor;ality in the access pattern.

He shows that exploiting communication locality provides gains on overall performance. ln
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otlter words, a high locality in remote accesses helps to achieve a good performance on

largL~s<:ale multiprocessor systems, and the performance is sensitive to the communication

locality. The r<,-~ults of this chapter show that with multithreading, the performance is more

robust tlUUl single threaded systems to the changes in locality in renh,te accesses.

Felten and McNamee [361 argued that computation and comlIlunication overlap can be

easily achieved by executing multiple threads on each processor. They also argued that this

apprmu:h is practical on distributeù-memory .U"chitectures without any special hardware

support. They presented timing data for the PDE solver [36]. Theil' results conform with

the data-Iocality analysis in this chapter.

Sohn ct al [89] investigated the elfects of multithreading on data distribution and work­

load distribution. On 80-processor EM-4 distributed memory multiprocessor, they investi­

gate three types of data distl"ibution, namely, row-wise cyclic, k-way partial-row cyelic, and

blocked distribution. Theil' experimental results indicated that multithreading can offset

the loss duc to a mismatch of distribution to workload distribution. This work is perhaps

the elosest to our results on data locality sensitivity. We show that the ability of multi­

threaded program execution to tolerate long lateucy provides a robustness of performance

to the changes in the data distribution of a program workload.

8.7 Summary

In this chapter, wc investigated various aspects On the optimization of the performance of

the EARTH system.

First, wc showed how v.U"ious performance measures are affected when parameters of a

program workload 'U"c varied.

Second, wc investigated the trade-olfs for thrcad runlcngths, number of remote accesses

1';)1' thread lUld llIunber of local accesses pcr thread. Wc noted that the larger the number

of remote accesses pel' thread, the lowcr the processor utilization. The performance can be

improvcd with highcr thrcad runlength and not by higher number of threads. Changes in the

local read/write acccsses do not affect the processor utilization and latencies significantly.

Third, wc defined measures to quantify the sensitivity of data locality to the perfor­

nnUlce. Wc applied thcse measures, the lIlultiprocessor locality sensitivity index (MLSI)
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aud the locality sensitivity iudex (LSI). to stndy the EARTH systcm. Wc noted thllt ,'veu

with curreut implementations of the EARTH systcm. thc MLSI (and LSI) vllhu'S for umlti­

threaded program workload are nI' to 20% higlwr than thosc for single threllded cxecntion.

That is, the u:ultithreaded program exc<:ution significll1ltly itu:relL<es the rohustm'SS of per­

formance to the changes in data distributions. The rC1L<l1ll is that a mnltithwl\(bl executiou

is expeeted to tolerate long latencies, which can he a result of dlang,'S in ,lllta distrihutions.

The implication of onr result is that a progranllner/compiler nL'Cd not have to achieve the

optimal data distribution (which may uot even exist) on a nlllitiprocessor systl!lu and yct

reach near the performauce levels of an optimal distribntion.
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Chapter 9

Conclusions

This chapter summarizes main results of this thesis and outlines directions for future work.

9.1 Summary

This thesis showed that the performance analysis of multithreaded systems dif."ers signif­

icantly from that of traditional single-threaded systems and systems with a multitasking

operating system. A multithreaded processor is capable issuing multiple outstanding re­

quests. A user of multithreaded systems needs to assess the following tradeoff: a perfor­

mance improvement due to an increased overlap of computation and communication; and

a performance loss due to contentions and increased latencies at subsystems. To satisfy

the above needs, our objectives were: /irsf, to predict the performance through analyt­

ical models and validate the model predictions; and second, to analyze the performance

of multithreaded systems and recommend performance related optimizations of the archi­

tecture and progratn workload. We considered three successively detailed multithreaded

systems for performance modeling and analysis: a single processor system, a mu/tiprocessor

system, and McGill's EARTH multithreaded multiprocessor system.

We proposed analytical models based on c10sed queueing networks to predict the per­

formance of multithreaded architectures, developed their solution techniques, and showed

their robustness over predictions using open system models. Given program workload and

architecture pararncters, the models predict performance measures, like the processor uti-

• ,-' '. 212
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lization, subsystem utilizations, and latency for split-phase operat.ions. We c1mracterized

these performance mUUHlres uaing realistic costs of multithreaded operations. We vnlidated

the performance models nsing results from the siltllliations as weil ilS the EARTH system

mellSurements. We Ilpplied th" llnlllyticalmodels to optimize the progrlllll workload dmrac­

teristics, as weil as 1.0 explore different architectnral configurations, 1.0 achieve performance

benefits from multithreadin:;.

First, our analysis of abstract single l'rocessor and multiprocessor multithreaded systems

showed how t.he multithreading affects the performancc. The duality of processor and

memory subsystems C~'l be exploited 1.0 yield high processor performlUlce. A concurrent

analysis of t.he networ.. and processor performance brought forth th~ significance of the

net.work capacity 1.0 tune the program workload characteristics to achieve a high processor

performance. We showed how the tolerance of latency al. a snbsystem is affected by program

workload characteristics.

Second, our analysis of the EARTH system showed how much performance gaills can he

achieved under realistic costs of multithreading and subsystem interactions. We presented a

solution 1.0 the simultaneous possession of the bus al. an EARTH node, using only one ana­

lytical mode\. Our model predictions conform 1.0 within 5 1.0 20% of the mellsurements from

actual program executions on the EARTH system. For a compiler/system architect, the

performance characterization of the EARTH system showed the gains from mnltithreading

technique. Our results demonstrate the tradcolfs of realistic costs of multithreading on the

performance for fine-grain parallel program workload.

Third, we applied the analytical models 1.0 the performance optimization on lIlulti­

ti.readed systems. We identified the bottlenecks in the EARTH system design, and ex­

piored how the changes in different architectural parameters will alfect the performance.

For example, a NOW system with multithreading yields nI' to a three-fold performance

improvement over a single threaded system. Our results also showed that the performance

of a multithreaded program workload is more robust Ils weil as doser 1.0 optimal than the

performance of a single threaded program workload 1.0 the changes in data distributions.

The focus of our models is a Single-Program-Multiple-Data (SPMD) computation, since

the SPMD model successfully provides users with a tangible set of parameters 1.0 character­

Ize the parallel program workloads. We believe that the optimization hints obtained from
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an SPMD model provides good heuristics to tune other multithreaded parallel program

structures as weil.

We have developed a package for an analytical solution of the closed queueing network

(CQN) models of multithreaded systems. The solution accounts for simple split-phase

transactions among subsystems as weil as the simultaneous rcsource possession problem

encountered on the EARTH system.

To validate the performance prediction, we developed measurement tools on the EARTH

system. Also, we simulated stochastic petri net models of multithreaded systems to provide

an illdependent verification of our allalytical predictions.

Our results provide a strong evidence on the usefulness of performance models to com­

pilers and system architects for performance optimizations on multithreaded systems.

9.2 Future Directions

Analyses in this thesis show that an extensive set of program workload and architectural

parameters ie needed to charaeterizc a multithreadcd program execution on multiprocessor

systems. On the architectural aspects, it is necessary to identify a minimal set of primitives

to perform ail tasks in a multithreaded program execution. Further, timing overheads and

design implications of this set of primitives should be studied for multithreaded systems with

olf-thc-shelf components as weil as custom-designed components. On the program workload

characteristics, for a given multithreaded multiprocessor system, the performance analysis

should be used to assist compiler/run-time system in program workload distribution.

In the long term, a compiler or a run-time system should integrate the performance

analysis to pel'form program workload partitioning as weil as data-set partitioning to achieve

high processor performance. Also, the performance analysis should be used from early

design stages of the multithreaded system. This helps to identify and correct potential

performance bottlenecks, before major design implementation related decisions are taken.
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Appendix A

Approximate Mean Value Analysis

In this section, we descrihe the assulllptions for queueing networks such l.hal. t.hey have

produc!-form solutions [15, 75, 56, 49]. Next, we descrihe lUI approxilllate meau value

analysis (AMVA) 1.0 solve such queueing network modcls in this thesis.

• A.l Assumptions for Product-Form Solution

A qneueing network is called a lJrodllct-fOl'TTI network if the equilihrillln prohahility of LIll!

state of th~ queueing nctwork is a product of functions of queue lengt.hs at eadl functiOlUlI

unit. For a queueing network with M nodes, let ni he the queue length at nccle t and h(nj)

he a function of queue length nj. Let N he the total nlllnber of accesses in the system.

Then the equilibrium state prohability P is given as follows:

(A.I)

•

where G(N) is a normalizing constant and a function of N.

The significance of produc!-form networks is that 1.0 ohtain the cquilihrinlll prohahility

of astate we do not need 1.0 enumerate ail states of the syst.em. Thus, huge syst.ems can

be analyzed easily. Based on this concept, many computationally efficient techniquCH have

been developed, e.g. Mean value analysis [75J, Approximate rnean value alllllysis [75, 56],

and Convolution algorithm [21] .
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For a qlleueing network to have a prodllct form solution, following assumptions should

he Hlltisfied [15, 56):

1. SCnlico Di.~ciplinc." Ali service centers have one of the following four types of service

disciplines: First Come, First Servcd (FCFS), Processor Sharing (PS), Infinite Servers

(IS), and Last Come, First Served Preemptive Resume (LCFS-PR).

2. Job Cill.~8C.~: The accesscs belong to a single class while awaiting or receiving service

al. a service center but may change classes and service centers according to fixed

probabilities at the completion of 1. service request.

3. SCnlico Timc Di.,tri/mtions: At FCFS service centers, the service time distributions

must be identical and exponential for ail classes of jobs. At other service centers,

where the service times should have probability distributions with rational Laplace

transforms, different classes of jobs may have different distributions.

4. Statc-dcpcndent Senliee: The service time at a FCFS service center can depend only

on the total queue length of the center. The service time for a class at PS, LCFS-PR,

and IS centers can also depend on the queue length for that class, but not on the

queue length of other classes. Moreover, the ovemll service rate of a subnetwork can

depend on the total number of jobs in the subnetwork.

5. Arrivai Processes: In open networks, the time between successive arrivais of a class

should be exponentially distributed. No bulk arrivais are permitted. The arrivai rates

may be state dependent. A network may be open with respect to sorne classes of jobs

and closed with respect to other classes of jobs.

6. .Job Flow Balance: For each class, .i.cl number of arrivais to a device must equal the

number of departures from the device.

7. One-Step Beilavior: A state change can result only from single accesses entering the

system, IIIoving between pairs of devices in the system, or exiting the system. This

IIssumptioll asserts that simultaneous access moves will not be observed.

8. Device Homogeneity: A device's service rate for a particular class does not depend on

the state of the system hl any way except for the total device queue length and the

designated class's queue length. This assumption translates to the following:
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(a) Single-Resource Possession: An acccss may not be present (waiting for servi""

or receiving service) al. two or more devices al. t.he same time.

(b) No Bloeking: A device renders service whCllllver accesses are present; its ability

1.0 render service is not control1ed by any other device.

(c) Independent .lob BehaviOl~ Interadion among accesses is Iimited 1,0 quelleing for

physical devices; for examp\e there should not he any synchrouization requirL~

ments.

(d) Local Information: A device's service ml,e dl'pends only on loml qlleue lengl,h

and not on the state of the l'est of the system.

(e) Fair Service: If service rates differ by class, the service rate for a class depends

only on the queue length of that class al. t,he device and not on t,he queue lengths

of other classes. This means that the servers do not discriminate against ae!:"sses

in a class depending on the queue lengtlls of ol,her ehL~ses.

(f) Rouling HomogencillJ: The access routing should be statn indepenc\ent.

A.2 AMVA Aigorithm

Now wc discuss the approximalc 71lcan vainc analy,~is (AMVA) t,o solve t,he closed queneing

networks which have a IJ7'Odncl for11l solution. This AMVA algorithm IIIL~ bmm exeerpled

from Lazowska cl al [561, and suitably modified for our work. Wc lL~sume the same termi­

nologyas described earlier in Section 5.2 anc\ the fol1owing Table B.l.

Inputs 1.0 the AMVA are architectural parameters and progl'llm workload pal'llmeters.

Wc compute service demanda, Pi,m, at cach service center for cach dn..1.19 of a<:CCHHcH. The

AMVA considers two population vectors, representing the number of thrends for each chllls

of accesses. The vector (N) = (nt, ... ,nLl indicntes that nt threads can be executed byead.

processor. The population vector (N -11) indicates that processor i hns (nt - 1) threads,

whHe other processors have nt tbreads each.

The AMVA computes (sec Figure A.l):

1. the arrivai rate ),j for the threads belonging 1.0 each procc.~sor i;

2. the waiting time wi,m al. each node TTl; and
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Slalistics for population veetor (N - Id arc uscd to compute the queue lengths and wait­

ing times for nt-tlt thread added on to the processor i. Statistics for population vector

N indicate the steady state performance Illnasures when nt threacls arc present at each

proccssor.

The AMVA uses statistics at populations (N - Id and (N). The intuition is that

a newly acIdccl thrcad to a claas (i.e. new population N) sees the queueing network in

equilibrium with respect to the population (N - 11)' FiI".t, using the queue lengths at

each service node for population (N - 11), waiting times arc cOlllputed for the new thread

(access). SecOIul, waiting times for each claas are used to compute throughputs. Third,

using Little's law [56), queue lengths at each service nodes are computed. Thus performance

measnres of interest arc obtained at the population (N). Figure A.1 shows 5 steps in the

AMVA aigorithlll.

Step 1 in the AMVA is an initial gucss for performance measures when the threacl

population in the system is (N). These performance measures are the queue lengths at

each of M nodes, for P classes of threads. Note that the thread population in each class i,

i.e. Ni(= nLl, is equally distributed on M nodes. The speed of convergence of Steps 2 to 5

deJlends on the closeness of this gness to the linal queue length distribution [45].

Step 2 computes waiting time w;,,,, for claBs i access at node m. Step 2(a) obtains the

queue length ni,,,, at each node m when class i pOJlulation is (Ni - 1) i.e. the population

vector (N - 11). The lirst term "1" represents the newly arrived thread (or access) for

claas i. The second term uses an approximation function to compute queue lengths of class

i accesses. The approximation is an interpolation of ni,,,,(N), that is, Nh~l ni,,,,(N). The

third term is the queue length for other classes. Since population of otller classes does

not chauge, the queue leugth (i.e. the number of accesses at each node) for these classes

l'cumins the slllne. Step 2(b) computes the waiting time for the class i access using the

service demand at node m and queue length at node m for class i.

lu Step 3, tli;: cycle time for a t117'1~ad ':71 class i is a sum of waiting times at ail nodes for

a uewly added thread in class i. Hence, the throughput for class i is cycle lime lM one IhTead'

SteJl 4 uses Little's law. New queue lengths are computed at each node m and for each

class i, using the throughput for class i and the waiting time for a class i access at node m.
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Finally Step 5 verifies whether the maximllm diffenlllce betw""l1 qllelle 1eugths from

sllccessive iteratious are withiu the tolerance leve!. Iterat.ious for Steps 2 t.o 5 <'Dnl.iulle t.m

the maximum differencc is acceptable.

1- Initialize

•

•

2- Compute al. each node 711 and for each class i

a- n;,,,,(N -11) = 1 + [N~~lll;,,,,(N)] + ~r=l#illj,,,,(N)

b- IV;,,,, (N) = Pi,,,, [n;,,,, (N - 11)]

3- Compllte for each class i

','(N) =Nj" "ML..tm::::t1 1Ll;,1II

4- Compute new values for n; ",(N) al. allnodes 7TI lIud for ail <:IlL"ses i,
ni,,,, (N) =,xi (N)IVI,,,, (N)

5- If dif ference(nl,,,,(N)new. n;,,,,(N)o/,Û > lo/emnce

then go 1.0 ••Iep 2 cise exil

Figure A.1: AMVA Algoritlun
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Appendix B

Symbols and Their Meanings

1 Workload Parameters

Tlt Number of threads at each processor

R =.L Meau value of thread runlength
Jl'I

T'rc",,,Lt: Prolmbility of accessing a remote memOl'y module

rtv Number of Read/Writes in the duration R

T'..." Probability that a message is sent to neighboring switch

# and type of long latency operations- GET_SYNC, BLKMOV

System Parameters (Vuilles 7/Icusllrcd OTl EARTlf)

C Context switch overhead (END_THREAD, Scheduling etc.) 37 cycles

L=-I Memory latency for each access 10 cyclesIJ",

S Routing d~'ay at a nctwork switch

k NlIInber of proccssors in one dimension, i.e., row/column

8U.'ICrl1 SU processing time for each access (other than BLKMOV) 20 cycles

Inkin.•crv Link access time for incoming network message 15 cycles

Inkout .•crv Link access time for sending network message 8 cycles

xiutlerlJ Delay at input port of network switch 8 cycles

xout..erv Routing delay at output port of network switch 32 cycles

ft" Number of ports at the mClllory 1

P = k2 Number of nodes in the system 2 to 16

232



• APPENDIX B. SYMBOLS AND THEIR MEAN/NOS

Output Parameters

Lob. Observed memOl'y latency (\Vith ljueuing delay)

Sob. Observed network latency (individualmessllg" type)

L90t-.,y"e Latency for GET..sYNC operation. r/"r/ suhscript ~ ,Iedkated nOlle

A"et Message rate from proccssor to the IN (message t.ype)

U" Proccssor (EU) utilization

U"oh U.'1"' p Switch Utilization

UIIl Memory utilization

U.y• System utilization, and PSU is t.he peak system utilizat.iou

LSI". Locality sensitivity index for "t t.hrellds

M LSIp,,,. Multiprocessor locality sensitivity index for pt'ogram on P nod"s

Analysis Related and Derived Parameters

233
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xm

o
erni.i

M

N

N -li

li

Nnmber of accesses at the memory suhsystem

Normalization constant for product-form solution

Visit ratio of thread from processor i ta memory module j

Visit ratio of thread from processor i ta fuuctional uuit fllat. j

Visit ratio fol' thread from processor i at node m x servie" rat.e at. node 711

Service demand p for thread of dass i at. fnnctionalnuit. fu of node j

Nllmber of nodes in the system

Maximum thread population, "t, at each processor in the system (fol' AMVA)

Processor i having rit - 1 threads while the l'Cst have rit t.hl'Cacls

Queue length at node m, duc ta threads from processor i

Message arrivai rate at the processor i

Waiting time (inclnding service time) fol' threacl from pro,:essol' i at node 711

Waiting time fol' thread from processor i functionalunit fil at node j

Nnmber of hops traveled by a message from its SO\ll'CC norie

Normalization constant for geometric distribntion

Average distance (in hops) fol' a message on the network

Average distance (in hops) fol' a message in a diInension

Bandwidth of the network

Data distribution on P proccssing nodes

Execution time with nt t.hreads on P processing nodes

Table B.l: Madel Parameters
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Appendix C

Throughput of Pipelined Networks

The objective of this section is to determine the performance of Il pipelined 2-dimensional

mesh uetwork under saturation.

We cousider the followiug problems for k-llry Tl-cube networks, with au emphasis on

2-dimensioual meshes:

Problem C.0.1 FOI' a 2-dimellsiollal 0IJe7I TletwOl'k, 1lllder an access pattern, what is the

((malytical) vaille of the maximllm thmllghpllt?

Problem C.0.2 For a lIetwork topology (say, a 2-dimensional mesh), what is the maximllm

tl17vllghpllt of ail open network llndCl' any (so1l7'Ce-destination) access liat/cm?

Problem C.0.3 FOI' ubove 2-cIimellsional lIetwork embedded in the mllltithreaded multi­

/Jlvce..,or system, 1l7lllel' the sume access put/cm as in Pl'Oblem C.O.l, what is tlle (ana­

Iytical) vnllle of tlle maximllm tl17vughput? Do the values in Problems G.0.1 and G.0.9

matclâ

The throughputs are derived for pipelined k-ary, n-cube networks. k is the number

of processing nodes iu each of the n dimensions of the network. Here the term pipelined

network refers to a worm-hole rollted network, which allows a switch to begin forwarding

of a message as soon as the message header arrives (in absence of contentions) [30, 3]. The

234



• APPENDIX C. THROUGHPUT OF PIPELINED NETWORKS 235

•

•

remote access pattern is assumed to be the slUue for cach processaI'. A c/lllllllc/ or lillk

represents a connection between two adjacent switches on the nctwork. For eXlUnJlle, 1\

switch node in a 2-dimensional mesh netwOl'k has 4 cluumcls. The terlllinology uscd hel'll

is consistent with the one used by Agarwal [3]:

n is the number of dimensions of the k-ary, n-cube netwlll'k.

m is the probability of a network request from a proGCssing uode.

p is the probability of 1\ unit-sized message arriving at the dmunel. p is also SlUlU' lL~ t.l",

channel utilization.

USfll is the utilization of the switch node. U."" is an avel'llge utilization of t.he ehlUu",ls

connected to the switch.

kIt is the average distance in each dimension. Thus, k,/= ~, if k is even and dll\nnel is

bidirectional.

davy is the average distance travelled by a message on t.he network. Thus, dUI/II = n kil,

and davy = 2 kil, when Il = 2.

B is the size of a messages in flits, Le. the time it takes ta get sm'viee at. a swit.ch.

S is the delay for a message at a switch ou a storL'-and-forward network, which is not

pipelined. The value of S in a storL'-and-forward uetwork is the same Ils 13 in a

pipelined network.

À"et is the number of remote messages sent by the proGCssor in ell<:h cyele. GivenlUl access

pattern, '\nct,saturation is the luaximuItl valuc of "net.

Now, let us consider the first problem.

Problem C.O.l: For" 2-dimcn.9ion,,1 0TJeJl lIetlllork, ullde,' lm acceH.9 TJUtterfl, lII/wt iH the

an"lytieal va/ue of lite ITlClXimulTl throughput~ 1

Let us consider a switch node with links in TI dimensions. The switch reccives 111 networJ:

messages pel' cycle from the processing node at.tached ta it. A message tmvels a distan<:<l of

lNotc tllat this is the saturation value of "nctunl/nchicvcd truffic" whcu "offcrecJ Lraffie" iH incrCluœû

indefinitcly.
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tluvy (=" kd) hops. In other words, Tf1" kd messages from" kd nodes are at a switch node,

in eadl cycle. Dividing this tralfic at a switch alllong the 2,.-channels we get the channel

utilization:

(C.l)

In Equation C.I, the nnmerator rn " kd is the total number of messages arrivingjleaving

a switch nude, and the denominator is the nUlllber of links used for transferring these

messages. When we assume that al! links carry equal load, tlavy and kd are the only

parameters alfected by a particular access pattern. For a 2-dimensional network, there

arc 4 links connected to each switch. The utilization at a switch, U.,w, is an average of

utilization of these links.

A switch satnrates when U.w equals "1". Wc obtain the throughput for a switch using

Equation C.3.• Tf1 - 1- tIavfI

- 1
- 2 dllvg

= Tn davg

for separate channels in each diredion.

for bidirectional channels at a switch.

(C.2)

(C.3)

(C.4)

(C.5)

Thus, the maximum throughput is a reciprocal of the number of switch nodes a message

tmvels.

When the size of each message is B Bits, the service time for this message at a switch

requires B cycles. In other words, the elfect of increasing the packet size to B Bits can

he approximated by increasing the delay throngh the switch by a factor B to ruBect the

incrCllSe in the service time of each packet [3, 53]. ReBecting the increased packet size in

the Equation C.l, we get:

P
_mBnkrl
- 2n

= rn B tlavg

2,.
(C.6)

•
Equation C.6 can be interpreted as fol!ows. A channel receives !ft messages per cycle

through Il switch (from the processing node attached to it). Every message keeps each of

davg channels busy for B cycles each. That is, each of Tf1 messages from dav9 processing

nodes kecps a channel busy for B cycles.
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For a 2-diml'nsionalmesh, the switch utilization U,..v for messages of size il llits is given

by:

U,w = 271 P = III B davg

_ ru IJ dOl",
- 2

for scparntc chmmcls in cm:h direction.

for bidirectional channels.

(C.7)

(C.B)

Equations C.7 and C.B show tlmt a message occupies a switch and lIsso<:Ïatml duulIlei for il

cycles. Messages from davg pl'Occssing nodes arrive at a switch. In a cyde, III ml" ;lIges I\l'(l

Lent to the network by a proccssing node. The maximnm thronghput, Ill, is the recipr"':lIl

of the duration for which these messages occnpy the switch. That is,

III - 1- 7IïI;;;;

111 = 2 nldav!I

for separate channels in each direction.

for bidirectional channels.

(C.U)

(C.IU)

•
Now, wc compute the maximum throughput of an open uetwork.

Problem C.0.2: For a network top%gy (."lU. a 2-rlimen.,iOlIll/ me.,/i). w/mt i.' t/w mClxi­

mum throughllUt of an ol'en 1letwOl'k unde1' (my (.<01l1'Ce-destinClticJ1I) IIcce.'.' 1)(lt!em f

For a 2-dimensional mesh network (and k-ary,7I-cnbe, in geneml), au ideal ml\pping

requires only a single network hop. Also, the messages arc sent to ail neighbors at 1\

distance of one network hop, Le., an average distance in each dimension, kil, is \. Using

Equations CA and C.9, wc get

III = 1 for unit-sized messages

= -II for B-Ilit messages

(C.ll)

(C.12)

•

Now let us compute above thronghpul,S when the network is embedded in a mnl'J­

processor system, which is executing a parallel program workload.

Problem C.0.3: For above 2-dimensionll/ network embedded in the lIlultithmaded lIlulti­

proeessor system, under the aeeess pattern in Prob/em C.0.1, W/lIlt is the (ma/ytiell/ va/uc of

the maximum throughput?

The interaction between the network and the l'est of the system occurs through the

interface between the switch and the processing node. The number of messages l'cr cycle,

sent by a processing node to the attached switch node, is m. Without a loss of generality, wc
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assume that for each mCllsage sent by a processor, the memory at a remote node responds

with one message. Thus, a processor sends T messages pel' cycle, and the memory sends

the rCllt of !J messages pel' cycle. Since >''''1 is the message rate from the processor to the

network, >'".t equals!J. Also, the message size B is same as the switch delay S. From

Equations C.9 and ColO, wc obtain the saturation value of >'".t.

for separate channels in each directiqICo13)
tTl

Ànct•.!IIoturation = "'2
m

Ànd •.!atUf'1tinfl = ""2

- 1 _ 1
- 2 CCllg 1J - 2 dOIll/ S
- 1 _ 1
- 01 dGvg h - 4 davfI S for bidirectional channels. (Co14)

•

•

Equation C.13 is sallie as the netwol'k capacity(Section 506). Thus, the maximum

throughput of a network in a lIIultiproœssor system is the same irrespective of whether

the network is pipelined.
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Appendix D

McGill EARTH-MANNA System

The EARTH (an J:;fficient Architecture for !!unning Threads) architecture proposes 1LI1

efficient execution of the synchronization operations and the computatious using dilferent

functional units [46]. Currently, the EARTH progranllning model is implemented on the

MANNA multiprocessor, developed at GMD FIRST, Germany. The structure of a MANNA

node is close to the EARTH node architecture, thus helping lm efficient ellllliaticn of the

EARTH architecture through the EARTH-MANNA run-tinle system llnd the MANNA

hardware. The EARTH Threaded-C compiler offers direct support for EARTH opemtions,

expanding them inline in order to reducc their overhead to a minimulll.

EARTH Architecture: Au EARTH mu1tipf(lcessor system consists of multiple EARTH

nodes and an interconnection n<,twork. Each EAftf}l node consists of an Execution Unit

(EU) and a Synchronization Unit (SU), liukcd by a pan' of bn/fers (see Figure 7.2). The

SU and EU share a localmemory, whicl\ is part of a distributed shared I\lemory.

The processing functions at 1LI1 EARTH norie are distributcd onto two uuits: the EU

executes the application progrUln code, and the SU performs the synchronization and com­

munication operations. The EU proccsses instructions iu an aclive thrClul, whcrc an active

thrcad is initiated for execution when the EU fetches its till'Cfld id from the rcady 'Iueue.

The EU executes a thread to completion before moving to another thread. It interacts with

the SU and the network by placing messages in the event queue. The SU fctches these

messages from the event queue, in addition to the messages comiug from remote processors

through the network. The SU responds to remote synchronizatiou commands Ulld requests

239
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•

•

for rlata, anrl also rletnrlnines whic:h !.hrearls arc to be run and adds tbeir tbread ids to the

rmuly queue.

MANNA System: The MANNA (Massively paralle! Architecture for Non-numerical

anrl NUlllerical Applic:ations) 1I1t11tiprocessor system consists of multiple high performance

MANNA nodes wnnected to the leaves of a high bandwidth intercollnection network. Each

MANNA node consists of t.wo Intel i860 XP RISC processors cloc:ked at 50 MHz, 32 MB

of dynmnic RAM and a bidirec:tionalnetwork interfac:e (sec Figure 7.2). The Iink interface

is capable of transferring 50 MB/S in each dircc:tion simultaneously, for a total bandwidth

of 100 MB/S per node. The net.work is based on 16 x 16 crossbar chips which support t.he

full 50 MB/S Iink spced. SlIlallest. machine configuration is a two-node MANNA-PC with

the links direct.ly wnnected. Ali higher configurations use crossbar chips (sec Figure 7.1).

Configurations up to 40-node machine with 4 crossbar chips are in use.

EARTH-MANNA Run-time System: The EARTH node architecture is mapped onto

a MANNA nade as follows. The EU tasks arc performed by one of the processors. The

SU tasks arc perforllled by otlter processor. The readIJ Ilueue and the event queue which

interface the EU and the SU, are implemented in the local memory. The Iink interface chips

lIIaintain t.he bufrers for the network interface. The capacity of network interface bufrers is

auglllented through the overflow queues maintained in local melllory.

EARTH Threaded-C Language: The EARTH program model is implemented as an

extension to the C language. These multithrellding extensions arc the support for, a dec­

laration c' threaded functions, the specification of threads within these funetions, and

the spec:5cation of EARTH operations. This explicitly parallel language, ealled EARTH

Threaded-C, allows a programmer to directly specify the partitioning into threads, and the

EARTH operations (s)he wants to use. Appendix E provides the details.
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Appendix E

Threaded-C Language Extensions

Following is a synopsis of sOllle of the llIultit.hreading macros used iu t.his reI'OI'1.:

void INVOKE (int proe-num, proe .fun, params ... );

This macro starts a fuucL;on on 1lI. arbit.l'llry l'l'Ocessor. The calling threll.cl is Ilot

suspended. The pal'llllleters 1.0 INVOKE are a processor IIIl1nher, the fUII<:tion murH',

and its paramt~lcrs.

void CALL (proe .fun, para~s... );

This macro executes a threllded function dircct.ly, without going t.hl'Ough t.he invoke

mechanism. The calling thl'ead is suspeuded uutH the fundion ret.lII·ns. The l'amm­

eters 1.0 CALLO are the fUllction nlllne aud its l'al'lllllet.ers.

void END.FUNCTION 0;

This must be the last statement of a threaded fnnction. It. must. lm used even if t.Illl

function contains ouly a d.àgle thread.

void RETURN 0;

This statement must be used al. the end of a funct.ion inst.eat! of END.FUNCTION if

the flJnction is 1.0 he called with the CALLO III11CI'O.

THREAD.nnn:

241
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•

•

(mm is an integer constant.) Labels with this format indicate the start of a new

threac!.

void END.THREAD 0;

This macro signais the CliC! of a thread. This macro will 1I0rmally be followed by a

l.hread label.

SLOTS SYNC-SLOTS [nnn];

This macro reserves space for IIlm synchronization slots. This must be the first

variable declaration of a fllnction (if ~ync slots arc used).

void INIT-SYNC (int slot.no, int cnt, int rst, int th.no);

This macro initializes a synchronization slot. A thread label with the corresponding

name must exist for each number used in INIT..sYNC.

FolI.owing macros provide synchronization and data-transfer operations across threads,

and ;.f required, nodes:

void RSPAWN (char *fp, char *ip);

This macro spawns the specified thread. This macro allows the specification of threads

that are not local 1.0 the current function.

void RSYNC (SLOT *slot.addr);

This macro si~nals the specified sync slot, possibly starting a thread.

void GETJRSYNCJD (double *src, double *dest, SLOT *slot-adr);

This macro implements remote loads and start the specified thread arter completion of

synchronization requirements through slot-adr. Similar macros exist for character,

integer, and f10ating point data. GET-SYNC.x does the same operation but with the

slot specifid by its number.

void DATA-SnICJD (double val, double *dest, int slot.no);

This macro implements rernote stores 1.0 the destination address, and the update of

the specified syuchronization ~Iot al. completion. DATA.RSYNC.x, but with the slot

specifiee! by its address.
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void BLKMOVJRSYNC (char .src, char .dest, long bsize, SLOT .slot.adr);

243

•

•

This macro implements black transfers. The source and destination addresses can be

10cated on an arbitrary node. There are no alignlllent restrictions, but the operation is

performed more efficiently if the data is aligned on quad-word (16 bytes) boulllhLries.

The size of the block 1.0 transfer is specified in bytes (liS in sizeof()) .
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Appendix F

The MVA Pseudo Code

1001:~ain Steps

1002: { while (ail sets of inputs are analyzed) do

1003: {Get the next set of inputs;

1004: Initialize the input parameters;

1005: Compute Memory_Visit..Ratios for each class in the Closed QU"~lCing Network;

1006: Compute SwitclLVisit..Ratios for each c1ass at each node in th"! CQNj

1007: Compute Servicc..Demands at each node;

1008: if (simll/tlmeOlI., .'Csollrre po.,session)

1009: { Invoke AMVA_SRP for the EARTH relatel\ ltcuristics;)

1010: else

1011: { Invuite AMVA for p.'OtlllcLfonn CQNs;}

1012: Compute Performance_Measures;

1013: }

1014: }

244
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}

Repeat similar computation for otller classes;

if (the access pattern is Sallie), obtain new visit ratios IIsing l'l'Opcr olfsels;

}

}

Memory_Visit.Ratius

{ for ail classes: cla..s = 1 1.0 P

for ail processing clements: norle = 1 1.0 P

if (local norle for a clll.... )

{ visiLTIltio[clllsSl~J1'occs"01'('lCJrlc)l = 1.0;

visiLmtio[cla..s][mel/wl'lI(norlc)] = 1.0 -1're"",',,; }

else (the norl" is re:note)

{ visiLmtio[clllss]~J1'Oces.'01·(norle)] = 0.0; /* no aceess 1.0 Ill'ot:essor • /

switch (memory.distribution)

{ case IIniform:

visiLl'fltio[clllss][memol'y(norle)] = "_I~III:,k;

case gcometric:
l_rr!tlwtf:.tICcmlCtric~tliNl J_sUJ,drl.'f.'I,1I0111! ',}

!/,:rmu:Lrü:_uorwuvisiLmtio[clllss] [rnemOl'Y(norle}J =

}

}

Switch_Visit.Ratios

{ Sort the nodes according 1.0 their distancc from node (O,n).

Place their "id"s in the 2-dimensional array "sorted.pes[disl.anee][ids]".

/* Compute visit ratio for c1ass "1" as follows • /

for h = dlll"x downto 0

{ for each processorJd k al. distance h in sorte<Lpes[hJ(ids]

{k == (x, 11) in two-dimensionalmesh

{ for each neighbol' of k in {(-l,O), (l,O), (0,-1) and (U,l)} dire<:tions

if (neighbOl' is more distant than k)

{visiL'atio[l][inbountl(k)] + =

visit-rct.io[l] [inIJOulld(nei!JhlmTII + vi.,il-TIII.io[ 1] [rmtbOlllltl(nci!JhbrJ1'));}

101:

102:

103:

104:

105:

106:

107:

108:

109:

110:

111:

112:

113:

114:

199:

201:

• 202:

203:

204:

205:

206:

207:

208:

209:

210:

211:

212:

213:

214:

215:

216:

•
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Service-Demands301:

302: {

303:

304:

305:

306:

307:

308:

309:

310: }

for ail clllSses: i = 1 to P

{ for ail proccssing clements: j = 1 to P

{ (J[i][processor(j)J = visiLratio[iJ[proccssor(j)] * (R +Cl;

p[i][mernory(j)) = visiLratio[i][memory(j)] *L;

p[i][inbOlmd(j)] = 1Ji.9iLratio[i][inbound(j)] *s;
(J[i][outbound(j)] = visiLratio[i][OlltbOll1ld(j)] *S;

}

}

416:

417:

499: }

401:

402:

403:

404:

405:

• 406:

407:

408:

409:

410:

411:

412:

413:

414:

415:

•

AMVA

{ do {

for ail clIlSSCS: class = 1 ta P, initialize totaLwaiUime=O;

{ for each queueing node at ail proccssing clements: 1 to P;

{ for ench class: r = 1 ta P, initialize sum = 0;

{ s!lm + = 1 + n:,~ ;1 q[r][node][old); if (r == class)

+ = q[r][rlOde][old); for remaining classes r

= 1.0; for delay centers

} q[class][node][new] = sum; total queue length at anode

} waiting_tirnc[class][nodc] = p[class][nodc] *q[class][nodc][ncw];

to!aLwaiLtime[class]+ = waiting_timc[class][nodc];

} . 1 t [ 1] n, cl...arnva _ra e c ass = tota _wait_time ass;

Compute mnximum_diffcrences between the waiting time and arrivai rate

from current iteratioll with their vail:es from the previous Iteration;

Assign q[clas.9][nodc][old) = waiting_tirnc[class][nodc] *arrivaLratc[class];

} while ( mnximum_differellces > toleranceJevel)
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5G!: Performance..Measures

{ Compute >'"et[class]usiug arrillaLrate[cla.,s]llud 1'r,,,,,,te; r EqUlltiou 5.10 */
Compute processor_1Itilization usiug

arrivaLrate[class], runleugth aud coutexL.witc!Ltillle; r EqUlltiOU 5.11 */
Compute networkJatency usiug

waiting times at the switch uodes for ellch cluss; r EqUlltiou 5.9 */

502:

503:

504:

505:

506:

599: }

•

•

601:

602:

603:

604:

605:

606:

607:

608:

609:

610:

611:

612:

613:

614:

615:

616:

617:

618:

619:

620:

621:

622:

623:

AMVA_SRP

{ do {

Identify .•econdary norles required for the silllultllueous possessiou, <J.g. the uûde bus;

Identify the set of primaTlJ nade.• associllted with ellch of the secoudary uodes,

e.g. {the memory, linkJn aud liuk_out} llt a uode associllted with the uode bus;

for ail classes: class = 1 to P, initialize s1lm2 =0, totaLwaiUime =0;

{ for each queueing node at ail processing elClueuts: 1 to P;

{ for each class: r = 1 to P, initialize S1llTl = 0;

{ s1lm + = 1 + ":l~ ;1 q[I'J[norleJ[oltl); if (r == class)

+ = q[r][norle][old] r .",de. for relllaining clusses l'pcaunoc'

= 1.0; for delay ceuters

} q[classJ[nodeJ[new] = s1lm; totlll queue leugth at Il uode

} waitiny_time[classJ[node] = p[cla.•sJ[norle) *q[classJ[notleJ[new];

if (n'ode is Il ll1'ÎmaTlJ norle) { Do uot Illodify tott,LwaiUime.}

if (node is a seconrlary narle)

{ s1l1112 = ((queueing delays at the secondary node llnd !lSSOcillted priul/Lry nodes)

*(total number of llccesses through the secondllry uodo))

+ (p[clas••J[notle]llt tho secundary node llnd Ussocillted primllry nodos);

totaLwaiUime[class]+ = s1lm2; }

if (node is neither primnry nor secondllry)

{ totaLwaiUimtlciass]+ = llItlitiny_timc[classJ[norlc]: }

} . 1 t[l] ",cl...
arr~va _ra e c ass = tota _waiLtimc c osa i
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624: Compute lIluximum_differellccs betwccll the waiting Ume and arrivai rate

625: from current itemtion with their values from the previous iteration;

626: Assign q[c1ass][node][old] = waitiny_time[class][node] *arrivaLrate[c1as•• ];

627: } while ( lIluximulll_differences > tolerallceJevel)

699: }

:::-_-_ ..




