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Abstract

Multithreaded architectures use the parallelism in programs to tolerate long latencies for
communications and synchronizations. On encountering a long latency memory access,
the processor in a muitithreaded system rapidly switches context to another computation
thread, thereby improving the performance. Unlike traditional single threaded execution
and multitasking in operating systems, lilllltitlll'(!ﬂdillg allows accesses from one or more
threads of a user program at a processor to contend for systemn resources simultaneously.
Hence, a performance analysis of multithreading should account for the effect of multiple

concurrent accesses on throughput of subsystems.

Modeling a real multithreaded system, like McGill's EARTH system, poses several prob-
lems. First, in realistic subsystem interactions, more than one subsystem may serve the
same access simultancously, so contentions are difficult to predict. Second, the thread char-
acteristics like the number of remote accesses can differ with processing nodes. Thus, an

accurate computation of delays at subsystems is essential.

We propose analytical performance models, develop solution techniques, validate model
predictions, and analyze the performance of multithreaded architectures. Qur analytical
models, based on closed queueing networks, account for the feedback effect of the load at
subsystems on the processor performance. We demonstrate the robustness of these closed
quencing network models over open system models for the performance prediction. With
the feedback effect and the iterative nature of our solution technique, we predict the per-
formance of complex subsystem interactions in the EARTH system under a multithreaded
workload. Measurements from actual program executions are within 5% to 20% of model

predictions.

The model inputs are the architectural parameters and program workload characteris-

-
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tics. Model predictions include the processor utilization, message rate to the network, and

latency for remote accesses.

Given a program workload, we show the effectiveness of multithreading to telemte com-
munication latencies. We show the significance of the network capacity to tune program
workload characteristics to achieve high performance. Our analysis of the EARTH system
shows that under a multithreaded program workload, subsystem interactions al processing
nades are the bottlenecks. Reducing acecess times for subsystems tn an BEARTH node lewds
to a performance improvement especially at fine thread granadarities. Muoltithreading pro-
vides more robust performance to the changes in data distributions than a single threaded
execution. Our results demonstrate the tradeoffs of realistic costs of multithreading on the

performmance of fine-grain parallel program workload.

Overall, our analytical models are useful to system architects and compiler wrilers Lo

provide insight to the performance related optimizations.

—
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Résumé

Les architectures multiprogrammdes prennent en compte le parallélisme des pregrammes
afin de tolérer de plus longues latences dans les communications et les synchronisations. Lors
d'un acets mémoire avee une longue latence, le processeur d'un systéme multiprogrammeé
commute rapidement de contexte vers un autre programme de caleul, ce qui améliore la
performance. Contrairement & I'exécution traditionnelle monoprogrammée ainsi que dans
les systémes d’exploitation multitiches, la nmltiprogrammation permet des accés concur-
rents et de fagon siimtltannée aux resources du systéme global, & partir d’un ou de plusieurs
threads d’un méme programme usager. Une analyse de performance en multiprogram-
mation doit prendre en compte 'effet des aceés concurrents et multiples sur le débit des

sous-systémoes,

La modélisation d'un systéme réel multiprogrammé, comme le systtme EARTH de
McGill, pose d’autres problémes. Premiérement, lors des interactions réelles entre sous-
systémes, plus d'un sous-systéme pourrait émettre le inéme aceés au méme moment, ce qui
rend la prédiction des conflits difficile. Deuxidment, les caractéristiques des threads tel que
le nombre d'accés déportés peut. changer selon les nocuds de traitement. Par conséquent,

un caleul exact des délais s'avere essenticl.

Nous proposons, dans cette thése, des modeles de performance analytiques, nous dévelop-
pons des techniques de rvésolution, nous validons les prédictions du modéle et enfin nous
analysons la performance des architectures multiprogrammées. Nos models analytiques, qui
sont basés sur des réseaux de file d’attente fermés, considérent ’efet rétroactif de la charge
de traitement des sous-systeémes sur la performance du processeur. Nous démontrons la ro-
bustesse de ces modeéles de réseaux de file d'attente fermés par rapport aux models ouverts

pour la prédiction de la performance. Etant donné I'efiet rétroactif et la nature itérative de



notre technique de résolution. nous prédisons la performance des interactions complexes en-
tre sous-systémes dans ie systeme EARTH pour une charge de traitement. multiprogrammée
donnée. Les mesures prélevées & partir des excéeutions actuelles de progranumes se situent

entre 5% et 20% des valeurs prédites par le modile,

Les entrées du modéle sont les paramétres de architecture et la earactéristique de
la charge de traitement du programme. Les prédictions ou sorties du modele incluent
Putilisation du processeur, le taux de messages transférés sur le résean ainsi que In latence

des accts déportés.

Pour une charge de traitement donnée, nous montrons PVefficacité de la technigue de
multiprogrammation & supporter les latences de communication.  Nous montrons anssi
Iimportance de la capacité du résean & s'adapter aux cavactéristiques de la charge de
traitement du programme afin d'atteindre une performance élevée. Notre analyse sur le
systéme EARTH montre que pour une charge de traitement donnée d'un programme mul-
tiprogrammé, les interactions entre les sous-systémes, au nivean des noends de traitement,
constituent les goulots d’étranglement. Réduire le temps d’aceds dos sons-systeémes dans un
noeud du systéme EARTH permet d’améliorer la performance surtout & des niveaux fins de
la granularité des programmes. La multiprogrammation permet d'atteindre de meilleures
performances, en présence des changements dans la distribution des donndes, par rapport
i une exécution monoprogrammed. Nos résultats montrent les compromis possibles, avee
des cofits réels d’une multiprogrammation, sur la performance des progriummes paralleles i

grain fin.

Enfin, nos models analytiques sont d'une grande utilité aux conceptenrs d’architecture
de systémes et aux concepteurs de compilatenrs en leur fournissant des indices sur ley

optimisations reliées A la performance.
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Claim of Originality

This thesis contributes to the following aspects of multithreaded architectures:

anaelytical performence modeling; performance analysis; and performance optimnizations.

Analytical performaence modeling:

e We propose analytical models to predict the performance of multithreaded architec-
tures. We model them as integrated systems, i.e. with processor, memory and net-
work subsystems, using closed queuing networks. We show the robustness of closed

quencing networks for performance prediction over open system models.

e To extend our performance model to McGill’'s EARTH muitithreaded system, we
develop heuristics to the mean value analysis (MVA). First, we model the simultaneous
possession of the bus at a processing node, when the memory or network interface is
accessed. We exploit the iterative nature of the MVA, and the feedback effect of a
closed system model, to obtain the solution using only one queuing network model.
Sceond, we model a realistic multithreaded workload, i.c. thread characteristics at
different processing nodes may differ. To compute the queueing delays accurately, our

heuristic uses the service demand for each access in the queue at a subsystem.

Performance analysis:

¢ We show, under a multithreaded program execution model, how to derive the perfor-
mance measures like processor utilization, message rate to the network, and latency
for remote accesses with split-phase operations. We analyze the variation in these
performance measures with architectural and workload parameters. Simulation re-
sults from the petri net models and measurements from program executions on the
EARTH system validate model predictions.

viii



o We propose a metric. folerance indez, to quantify the effectiveness of multithreading
to tolerate latencies at a subsystem. The tolerance index, say for the network lateney,
shows how close is the system performance 1o that of an ideal systemn which inenrs no

network delays.

¢ We show the feedback effect about how significant are the throughputs of subsystems
in tuning the multithreaded program workload characteristies. First, we show that
the thread runlengths larger than the value of effective memory lateney yiekd a high
perforinance at a processing node. The effective mietmory latency is the average time
between successive memory respouses. Second. we show that the processor utilization
increases with an increasing number of threads, as long as the message rate is not
close to the network capacity. The network eapacity is the maxiumin message rate
per processor delivered by the network under o given aceess pattern, The increase in
the processor performance is in spite of increases in network fatencies and message

rate to the network.

e Multithreaded operations on the EARTH system are composed of a sequence of simple
operations such as memory accesses and network messages.  We provide the firs
detailed characterization of a multithreaded program workload with real costs (on

the EARTH system) and numbers of multithreading operations and loeal aceesses.
Performance oplimizations:

e Through nodel predictions and cmpirical measurements on the EARTH system, we
demonstrate the tradeofls of realistic costs of multithreading on the performance for
fine-grain parallel program workloads. We also show that the performance of a multi-
threaded program exccution is more robust to the changes in data distributions than

a single threaded execution.

e We show that performance bottlenecks on the EARTH system are the subsystem
interactions at processing nodes. By reducing access times of these subsystems, the
performance improves at finer thread granularities. Such architetural configurations

can be studied through our analytical models.

ix
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Chapter 1

Introduction

Multiprocessor architectures present an attractive approach to a cost-effective high perfor-
mance computing. Multiprocessor systems consist ol processing nodes on an interconnection
network. A typical processing node is composed of, a processor, a local memory, and a net-
work interface. On current distributed shared memory systemns, costs of aceessing data from
a remote memory are an order of magnitude higher than the cost of accessing from the local
memory [57, 70, 5, 46). A good decomposition of the computation in a parallel program
and a distribution of the data on a machine avoids excessive message tralfic on the network.
For such programs, a multiprocessor system yiclds a good performance with increase in the
number of processors. When the sharing of data wmnong processors inereases, the network
messages experience longer latencies due to an increased traflic [99]. Long latencies for
communication across the network and syunchronization in parallel program exccutions, are
considered to be the important causes for the performance degradation of multiprocessor

systems [14].

Multithreaded architectures are proposed as a promising approach to tolerate long com-
muunication latencies and unpredictable synchronization delays in parallel program exce-
cutions. Examples of such systems include, TERA [9], MASA [41], Alewife [5], *'T[68],
TAM [26], RWC-1 [82}, EARTH [46], Cilk [16], and M-Multicomputer [37]. Multithreading
technique provides a split-phase mechanisin for long latency operations, and a mechanisin to
rapidly switch the context of a computation task (thread). When a long latency operation

occurs, the multithreading technique rapidly switches the context to another computation
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task. This overlap of communication on one thread with compnutation on the other reduces
the idle time at a processor. Thus, the processor performance iimproves by maintaining a
pool of ready threads for execution, as well as by employing split-phase transactions for re-
mote accesses and synchronizations,  Next, we describe an abstraction of the multithreaded
program exceution, Later in Chapter 2, we discuss a multithreaded program workload in

detail.

1.1 A Multithreaded Program Execution Model

The execution at a single-threaded processor progresses along the instructions fetched by an
insiruction pointer and a stack pointer. Together, these pointers are referred as an activity
specifier in the literature [33). Along with the registers, an activity specifier represents the
context of a computation task (thread). The state of a single-threaded machine is made up

of the contezt and the set of values held in the memory.

In a multithreaded program execution, multiple contexts co-exist at a processor. A con-
text and associated set of values in the memory corresponds to the state of one computation
thread. The computation progresses according to the activity specifiers for these threads.
A multithreaded program workload is a partial order of :nultiple threads of computation.
A thread is a sequence of instructions followed by split-phase long latency transactions, e.g.,
a remote memory access. There are two multithreading approaches to support the main-
tenance of context for a thread. The first is the dataflow style multithreading, in which
cach thread is atomic. That is, once scheduled the thread executes till its completion and
stores its result in memory. Memory locations are used to communicate variables between
threads. Registers lose their identity on the completion of a thread, and are not saved. The
completion of a thread triggers synchronization among threads and further computation.
This producer-consumer synchronization is an abstract machine model of muitithreading
with data-driven semantics. In an implementation such as the EARTH system [46], a
compiler and runtime system may retain some registers across thread boundaries for an ef-
licient execution, while not violating the abstract model. The second is the von Neumann
style multithreading, in which a context {including registers) is retained across split-phase
long latency transactions. When long latency split-phase memory accesses are issued, the

thread is suspended and the state is saved at some place in the memory or in a register
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bank. On completion of a long latency operation, an execution on a thread may continue

after restoring the state of the thread in registers {9, 100, 5, 90].

In this thesis, we assume atomic threads as in the dataflow style of multithreading. We
note that the von Neumann style multithreading can be captured by this programn execution

model, as testified by our experiments in Chapter 7.

1.2 Performance Issues of Mulitithreading

The composition of a split-phase transaction is crucial to its performance. In this thesis,
split-phase transactions are also referred as multithreading operations. A multithreading
operation is composed of tasks such as, receiving messages from the network, aceessing
the local memory, responding to messages, and performing some synchronization opera-
tions. Costs of multithreading operations include, an overhead for switching the context
to the execution on another thread, and a support for split-phase accesses. Multithreading
operations on multiple threads may lead to multiple outstanding requests in the system.
Increased contentions at the tnemory and interconnection network may further incrense
the latencies. Performance of a multithreaded architecture depends on interactions of key

components of a system under overlapped multithreaded computation and communication,

An architect attempts to alleviate bottlenecks to the performance on target applications.
To efficiently support multithreading operations, an architect shotld know the following:
How frequently does a multithreading operation occur? And, which funclional units have
large response times? There are two possible approaches to reduce the response time of
a particular functional unit, One approach changes the organization of a subsystem e.g.
memory, while other changes the implementation of a multithreading operation, e.g., how
often does a processor check messages at the network interface. Thus, an architect needs

to assess the effect of these changes on the performance.

One of the main objectives of a compiler (and a programmer) is to maximize the proces-
sor utilization on a given multiprocessor system for an application program. Performance
related optimizations by a compiler change two aspects of a program workload: the data
distribution and the computation decomposition [10, 69]). A compiler needs information on

the following three aspects. First, which characteristics of a multithreaded program work-
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load are significant lo achieve high performnance? Some program workload characteristics
are, the number of threads, their runlengths, and the remote memory access pattern. A
compiler should be able to vary these characteristics to achieve a desired performance. Sec-
ond, how do the variations in these program workload characteristics affect the performance
of a system? In isolation as well as in combination? A characterization under realistic
costs for multithreading operations helps a compiler to choose suitable performance opti-
mizations. Third, what are the ranges of program workload cheracteristics which yield high
performance? Targets of performance optimizations are these ranges of workload charac-

teristics.

Differences in performance optimization strategies for multithreaded systems with those
for single threaded multiprocessor systems are as follows. For a single threaded system, the
optimizations aimn to reduce the network latencies, through a careful data partitioning, a
reduced data sharing and a reduced network traffic [34, 99]. In contrast, one focus of the
data distribution and computation decomposition on multithreaded systems is to remove the
unnccessary serialization in computations. For example, a distribution of z;.dja.cent rows of
an array to different memory modules reduces the access contentions to the same memory
module. Thus, a sufficient number of threads is unraveled so that the computation on
them is overlapped with the communication necessary for their progress. Parallel threads
improve the processor utilization, however an increased number of split-phase network

accesses inereases the network latencies as a side-effect.

The focus of performance optimization strategies for traditional multitasking systems
differ from multithreaded systems as follows. A multitasking operating system uses multiple
tasks to improve the throughput of a computer system. Each task is assigned a specific
time-slice for exccution on the processor(s). No contentions from resources occurs among
different tasks during a time-slice, hence the latencies at subsystems are low. In contrast, the
multithreading technique allows a tightly coupled sharing of data among multiple threads on
the same application. That is, these threads may co-exist at a processor, and share data at
fine granularities such as every tens or hundreds of instructions [85, 77, 64]. The execution
time of an application reduces with improved processor utilization. Accesses from multiple
threads on the same processor, however, are allowed to contend for the system resources.

So, the latencies to access these resources increase.

Thus, an increased overlap of cemputation and communication among maultiple threads
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requires changes to the traditional performance related optimizations.

1.3 Objectives and Research Issues

The objectives of this thesis are motivated by the needs of users! (architects and compilers)
of multithreaded systems. Section 1.2 outlines the need to model an overlapped computation
and communication in multithreaded program excention and to demonstrate the wse of
these models for performance optimizations. Thus, the main objectives of this thesis are
two-fold:

o To predict the performance of mullithreaded architectures. This objective includes the

following aspects:

1. identify the significant program workload parameters and architectural interac-

tions which affect the performance;

2. develop analytical models to predici the performance of multithreaded architec-

tures; and
3. validate model predictions using the results from simulations as well as system

measurements.

o To apply the analylical models for the performance analysis and oplimizations of multi-

threaded architectures. This objective includes the following aspects:
1. characterize the performance of multithreaded architectures with changes in ar-
chitectural and program workload paramcters;
2. identify the performance bottlenecks in program exccutions; and

3. demonstrate how optimizations of program workload characteristics and archi-
tectural implementations can improve the performance of multithreaded archi-
tectures,

We consider above objectives within the context of multithreaded architectures und

obtain solutions for each of the above steps. We also show the changes in the complexity

'Henceforth, we will use the terin users to refer to archilects, compilers and programmers, collectively,
We will also reier compilers in place of compilers and programmers.
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and scope of these problems with changes in the underlying system- a single processor

system, a multiprocessor system or a real machine.

1.4 Overview of The Thesis

Qur approach to meet the above mentioned objectives is as follows. We formulate perfor-
mance models of multithreaded architectures using closed queueing networks. Our solution
technique is based on approximate mean value analysis (MVA) [56]. We develop heuris-
tics to account for multithreaded workload, and subsystem interactions like simultaneous
resource possession. Results of Stochastic Timed Petri Net simulations verify the accuracy
of our model predictions. Measurements from actual program executions on the EARTH
systemn validate the model predictions. We extensively characterize the variation in per-
formance measures using model parameters. Using the realistic costs for multithreading
operations, we analyze the performance of the EARTH system, Through examples, we
demonstrate the usefulness of our performance analysis to optimize the performance on
multithreaded systems.

1.4.1 Performance Modeling

We model multithreaded architectures as integrated systems. The models account for the
behavior of processors, memories and interconnection networks, and interactions among
them under various program workloads. We show the following advantages of using closed
system models like ours, First, by accounting for the feedback effect of the load of the
subsystemns on the processor performance, the model predictions are robust even when
the systemn operates near the network saturation. We show tradeoffs of three open system
modecls employing feedback to improve accuracy in their processor performance predictions
with respect to the closed system models. Second, input parameters to our models can be
directly supplied by the users. In contrast, open system models require input parameters
like the message rate to the network, which are not usually known a priori (such models have
been used in [80, 8, 18, 90]). Finally, our closed system model provides a broader picture of
the system performance. For example, an increased locality in remote access pattern due to

a different data distribution, can increase the message rate while simultaneously reducing
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the network latency. If an open system model is used for the performance prediction [30, 1],
the user needs to accurately estimate the message rate (since the network latency rises
sharply with the message rate) and use a distinet characterization of network latency for
different locality patterns. Thus, to achieve the same desired results, a user of open system
models requires not only the statically known input parameters but also the intermediate

output parameters.

Our choice of closed queueing networks to model nmltithreaded architectures is hased
on the following reasons. First, systems with a large number of processors can be analyzed
quickly using standard techniques like the mean value analysis (MVA). Our model takes less
than one minute to analyze a 64-processor system on SPARCStation-20. Second, models of
a modified system can be developed quickly. As a case study, we have adapted our analytical
model, which is originally developed for a multithreaded system with a 2-dimensional mesh
network, to predict the performance of the EARTH system with an interconnection based
on crossbar switches, Third, the MVA is amenable to heuristics. For the EARTIH syslem
model, we developed heuristics for realistic subsystem interactions., Fourth, these gqueneing

network models have been applied to real systems in practice [(58].

We applied our analytical model to the performance predictions of MeGill's EARTH
system. We proposed two approximations to the MVA. The first approximation models the
realistic interactions at processing nodes in the EARTH systein. The sccond approximation

characterizes a realistic multithreaded workload.

First, on the architectural aspect, we model the simullancous possession of the bus for
accesses in an EARTH node. When an access from the processor is serviced by the local
memory, the bus at the processing node is busy until the access completes. For this duration,
no other resources at the node can be accessed, ¢.g. an access to the network interface from
a synchronization unit does not go through. Previous solutions to a gencral problem of
simulteneous resource possession involved the use of multiple queuecing network models,
which are solved iteratively. For example, one model for cach processing node to account
for processor accessing the local memory, and another model for the subsystems excluding
processors at cach node. These solutions are reported by Jacobson and Lazowska {48],
Lazowska et al. [56], and de Souza e Silva and Muntz [31]. In context of the EARTH
system, we exploit the iterative nature of the MVA to formulate the above problem under

one analytical model of the complete system. Our heuristic is that the total queneing delay
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for a new access to any resource on the bus is a sum of the service time for each already
queued access through the bus, rather than the queuecing delay at an individual resource

alone.

Second, on the program workload aspect, the thread characteristics at different process-
ing nodes may differ. Each type of request (e.g. local or remote memory accesses) requires
a different service time from the server (memory system). So, a single unified queue length
alone, us used by the existing MVA [75], is not enough to compute the queueing delay for
a specific request. To improve the accuracy, our heuristic to the MVA considers the service
demand for cach individual access in the queue at a subsystem, and the numbers and types
of requests in the queue at the time when this request enters. Such extension to improve
the accuracy of the MVA has been independently proposed by Leutenegger [58] and others.
Our contribution, in this thesis, is to model a multithreaded program workload such that
the above mentioned extension to the MVA provides an accurate prediction of the system

performance.

Given a multithreaded system and a program workload, we show how to derive the
performnance measures such as the processor utilization, the network latency for remote ac-
cesses with split-phase operations, and the message rate to the network. With architectural
paratneters and program workload characteristics, we characterize the variation in these

])UI‘[OI'IHEII’ICG measures.

1.4.2 Validation

We use simulations of the Stochastic Timed Petri Net (STPN) models as well as program
executions on the EARTH system to validate our model predictions. Simulations of the
Stochastic Petri Net (STPN) modecls, are commonly used for performance analysis [60,
81, 8, 23]. Motivations for our use of STPN models are as follows. First, under same
assumptions as queueing network model, both techniques are equivalent and should yield
samne results. Second, STPN models can easily be extended to study complex interactions,
which helps to assess the performance deviations of queueing network models under these
conditions. Through simulations, we obtain the processor utilizations and latencies for
nctwork messages. Model predictions typically match within 10% of the simulation results.

To validate our performance model of the EARTH system {46], we execute synthetic



CHAPTER 1. INTRODUCTION 9

benchmark programs. We have developed a low overhead tool for a runtime measurement
from actual program exccutions on the EARTH system. We measure the latency for split-
phase remote accesses and the processor utilization, These measurements compare well
within 5 to 20% of model predictions in most cases. Note that not all performance measures
can be measured using software tools. Also, & small perturbation in the performance

measures (< 5%) occurs during runtime measurenents.

1.4.3 Performance Analysis and Optimization

An analysis of the performance of all subsystems for cach set of values for paramoters
provides us an insight to tune the performance of multithreaded architectures. First, such
analysis points to critical values of parameters to achieve high performance. Second, the
analysis shows the performance bottlenecks. Third, the analysis helps Lo assess how the

changes to input paraneter settings aflect the processor performance.

Qur performance characterization of multithreaded systems with model parameters
shows critical values for which a high processor performance is achieved.  First, for a
processing node, we define the effective memory latency as the access time of the mem-
ory subsystem while servicing multiple, concurrent requests. To achieve a high processor
utilization, the thread runlengths should be larger than the value of the effective memory
latency. Thus, to support a fine grain program workload, a low cflective memory latency
is necessary. A use of interleaved memory banks and pipelined memory keeps the effective
memory latency low. Second, for a remote memory access pattern, we define the nelwork
capacity as the maximum message rate per processor delivered by the network. The proces-
sor utilization improves with an increase in the number of threads, as long as Lhe message
rate is not close to the network capacity. The processor performance increases despite the
increasing network latencies and message rate. Third, we investigate the effect of thread
characteristics like the nuinber of threads, their runlengths and the number of outstanding
requests during cach runlength of a thread. We show that the network latency increnses
more rapidly with the number of outstanding requests per thread than with the number
of threads. Also, the higher the number of outstanding requests per thread, the lower the
processor utilization. This decrease in the processor utilization cannot be compensated by

increasing the number of threads. Instead, the performance improves with optimizations
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like increasing the thread runlength.

We introduce a metric, the lolerance indez, to quantify the effectiveness of multithread-
ing to tolerate latencies at a subsystem. The latency for an access is lolerated, when the
processor does not idle due to this access. The tolerance index, say for the network latency,
shows how close the system performance is to that of an ideal system, which incurs no
network delays. For performance tuning, the lower the tolerance index, the greater the pos-
sibility of gains due to performance optimizations. Thus, a user can analyze the tolerance
of latency at individual subsystems, and tune the program workload with respect to these

subsystems.

We apply our model to analyze the performance of MeGill’'s EARTH multithreaded
multiprocessor system. The model predicts how various thread characteristics affect the
performance of a multithreaded system (like the EARTH) using realistic costs of mul-
tithreading operations. Measurements from program executions on the EARTH system
match well with the analytical model (within 5 to 20% of model predictions). While we
use synthetic benchmark programs to study impact of individual thread characteristics, we
also show applications of the model to optimize real benchmark programs. Qur results from
the EARTH system demonstrate the tradeoffs of realistic costs of multithreading on the
performance for fine-grain parallel program workload. For example, on current implemen-
tation of the EARTH system [46), programs yield processor utilizations above 80% when 4
to 8 threads have more than runlengths 3000 cycles and a low (< 3) number of outstanding
requests per thread.

We also explore how the changes in implementation of the EARTH system will affect
its performance. Specifically, we study how much performance benefits are obtained using
multithreading if costs of an EARTH processing node are reduced by 50%. Similarly, how
much performance gains are possible if the EARTH system employs a slower network (like
in a NOW, network of workstations).

Through examples, we show how to apply our analytical results to optimize the pro-
gram workload characteristics to achieve high performance. For users of multithreaded
architectures, our analytical results provide an insight to the impact of performance related

optimizations in the presence of long latencies on real systems.
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1.5 Scope of the Performance Analysis and Tools

This section provides the details on the generality of our approach and the scope of the

tools developed in this thesis.

1.5.1 Modeling and Analysis

Our analytical model is developed using dataflow-based multithreaded program exccutions,
i.e. the threads are atomic. However, our model is applicable to the von Neumann style

multithreading as illustrated by an example in Chapter 2 and experiments in Chapter 8.

The multithreaded program exccution model is well-suited for a Single-Program-Multiple-
Data (SPMD) model of computation [43). The SPMD model has been widely successful on
distributed shared memory machines, and provides users with a taugible set of parameters
to characterize the parallel program workloads. Since a perforinance characterization of
other parallel program structures like recursion (e.g. Fibonacci) is not general, this thesis
does not consider these programn structures. However, we believe that for multithreaded
workloads, the optimization hints obtained from an SPMD model are good heuristics to

tune other parallel program structures as well.

We have developed a solution package to analytically solve the closed queucing network
models of multithreaded systems- uniprocessors and multiprocessors. Initially, we focus
on simple architectures of processing nodes to explore the benelits of multithreading. We
model simple interactions among the subsystems, like split-phase memory accesses. Then,
we apply the analytical model is to analyze the EARTH-MANNA systein, This application
shows how to account for realistic subsystem interactions at an EARTH-MANNA node,
and how much is their impact on the performance of the systemn., We focussed on single-
data accesses in the EARTH-MANNA system, however, a similar extension of the model is

possible for other subsystem interactions, like block-data transfers in the EARTH.

We have analyzed two distributions for data locality, geomelrie and uniform. Chapter b

discusses how to extend our approach to analyze other data distributions.
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1.5.2 Performance Tools

Apart from the solution package for our analytical models, we have also developed a simu-

lator and measurement tools to validate the model predictions.

To validate the model predictions, we mcasure the performance of the EARTH-MANNA
system. A simple instrumentation of the application program allows us to measure the
network latency with an accuracy of § cycles. This instrumentation gathers latency values
on any application, where a processing node can be dedicated for a measurement thread.
The dedicated processing node executes measurement thread to monitor remote accusses
(Chapter 7 provides the details). The latency is measured for one access at a time. The
processor utilization is measured using a function which counts the cycles when there is no

computation thread to exccute.

A simulator is developed to validate model predictions for abstract uniprocessor and
multiprocessor multithreaded systems. The simulator is written in Voltaire [72], a language
to specify the net-list for colored petri nets. A significant processing at each place and
transition, based on attributes of the tokens, provides the following flexibility. Detailed
configurations of architectures can be quickly simulated, and a wide range of performance
statistics can be easily gathered. We have simulated a crossbar and a mesh network which
is modeled as o petri net with 80 places for a 16 processor system. Each processing node
contains 10 places in the petri net, as shown later in Figure 5.5. The simulator for a 16 node
machine takes 1 to 5 minutes for each run on a SPARC-10 workstation. (The analytical pre-
diction requires less than 1 minute for a 16-processor system.) The simulator can execute,
a steady state pattern (used in this thesis), as well as a parallelism profile based pattern
using synchronizations. We use deterministic and exponential service time distributions at

virrious transitions. However, the simulator allows other statistical distributions.

1.6 Synopsis

This thesis is organized as follows. In the next chapter, we survey the existing multi-
threaded architectures. Using a program workload, we show how to achieve an overlap
of computation and communication. We classify the existing work on performance eval-

uation of multithreaded architectures as: performance modeling, simulations, and system
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measurenents.

In Chapter 3, we discuss the issues in performance modeling, analysis and optimizations
of multithreaded architectures. We define the statements of the problems solved in this
thesis. We outline our approach to evaluate the performance of multithreaded architectures,
We also describe the multithreaded program execution model for which analytical models

of single and multiprocessor systems are developed in later chapters.

In Chapter 4, we propose an analytical model to predict the performance of a single pro-
cessor multithreaded system. Our analysis shows how the organization of a multithreaded
processing node affects its performance. We also discuss implications of these results for

performance optitnizations.

In Chapter 5, we propose an analytical model of a multithreaded multiprocessor system,
We validate model predictions using simulations of a stochastic timed petri net model of the
system. We show how to derive key performance measures of interest, and characterize Lhe
variation in these performance measures using critical architectural and program workload
parameters, We show the impact of performance optimizations on the performance of

system resources like inemory and network switch,

In Chapter 6, we discuss what we mean by the latency tolerance, how to gqnantify the

latency tolerance, and how does it help in performance optimizations.

In Chapter 7, we extend our analytical model to analyze the performance of the EARTH
multithreaded multiprocessor system. We propose a simple solution under multithreading
to the problein of simultancons resource possession. Measuretnents from the actual program

executions on the EARTH system validate the model predictions.

In Chapter 8, we also characierize the performance of the EARTH system under realistic
costs for multithreading. We discuss how program optimizations as well as changes in

system configurations affect the the performance of the EARTH systoem.

In Chapter 9, we present an overall perspective of this thesis, and outline fulure diree-
tions of this research.



Chapter 2
Background

The objective of this chapter is to familiarize the reader with how multithreaded architec-
tures operate, what probleins do they pose for their performance measurements, and what
are the existing methods for their performance evaluation. This background will provide
an insight to the issues in performance modeling and analysis of multithreaded program
exceutions, as discussed in later chapters. In Section 2.1, we describe the underlying ar-
chitectural mechanistns in existing multithreaded architectures. Through an example of a
program workload in Section 2.2, we show how a programiner can use multithreaded (split-
phase) operations to achieve an effective overlap of computation and communication. In
this thesis, this workload is used as a running example to show performance optimizations
on multithreaded architectures. In Section 2.3, we discuss the problems in the measure-
ment of performance of multithreaded systems. In Section 2.4, we survey recent studies on
performance evaluation of multithreaded architectures. We categorize these studies as the

analytic performance modeling, simulations, and system measurements.

2.1 Mechanisms in Multithreaded Architectures

In Chapter 1 (Section 1.1}, we outlined a multithreaded program execution model. Now we

will discuss how a multithreaded architecture supports such a program execution model.

Two cssential features of multithreaded architectures are: a mechanism to issue split-

phase trausactions like a remote memory access, and another mechanism to rapidly switch

14
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to execution on any of the available threads. During the excention of a thread, when a
processor encounters a long latency split-phase transaction, the processor issues the nceess
and rapidly switches the context to execute on another thread. So, the overall idle time
at the processor reduces. For example, let us consider the progress of computation on
two threads at a processor in Figure 2.1, Bach thread occupics the processor only for
time units, and idles for L time units till its memory aceess is serviced, Note that despite
incurring an overhead of € time units for cach coutext switch, the overall idle time (shown

as empty boxes) at the processor is reduced.

Above mechanisms to support a multithreaded program exceution model can be imple-
mented in the hardware, c.g. the processor of TERA [9) and April [6], or in the software,
c.g. a run-time support in TAM [26], *T {68] and EARTH-MANNA [46],

- Thread Exccution Context Switchh"L‘ time
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Figure 2.1: Computation and Communication Overlap in a Multithreaded Processor

Hardware Mecheaisms in o Processor:

A multithreaded operation is a split-phase operation with phases like sending remote
messages, accessing local memory for a read/write request. Hardware mechanisms use
the processor and surrounding circuitry, to detect these split-phase operations and ser-
vice individual phases. On completion of & multithreading operation, the execution on
the corresponding thread may proceed. Typically mnltithreaded processors maintain
contexts for multiple threads in its register set(s). So, a context switching consuines
a small time, c.g. one cycle on TERA [9] and 14 cycle on April [6]. Off-the-shelf tni-

croprocessors, however, need modifications to support these hardwire mechanisms,
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Three mechanisms to support this exccution are:

o Cycle-by-cycle interleaving: A processor concurrently executes on multiple threads.
In each cycle, the processor switches context to a thread selected in a round-robin
manner. If the memory access issued by a thread has not returned, the proces-
sor idles at the turn (cycle) for that thread. TERA [9] and its predecessors-
HEP [87] and Horizon [93]- adopt this approach,

o Block multithreading: A processor executes on one thread till it encounters a
cache miss on a remole memory uceess, The remote access is issued, and the
processor switches context to another thread. The context switch time is typi-
cally over 10 eycles. Once the remote access is complete, the thread is ready for
execution. Processors in Alewife [5] and [100] adopt this approach.

o Hybrid scheme: This scheme combines the advantages of above two approaches.
A processor executes on o thread till it encounters an off-chip access i.e. a local
or remote cache miss. The processor switches to another thread in one or two
cycles. When an aceess is completed, the execution on corresponding thread can

continue. This approach is adopted by processors in {51, 40, 55).

Software Mechanisms in a Run-Time System:

These mechanisms focus on the use of traditional multiprocessor systems. Multi-
threading primitives to invoke these mechanisms are supported in high-level lan-
guages, e.g., EARTH Threaded-C [46] and Spilt-C [25]. At compile-time, these prim-
itives are treated as a function call or expanded/in-lined as an assembly language
subroutine. Since the run-time system handies these mechanisms, multithreading

primitives provide the entry and exit points of the run-time system.

When a thread issues a split-phase transaction to fetch (or store) a remote data,
the run-time system allows the processor to continue the execution on other threads.
The run-time system ensures that the completed remote access is returned to the
waiting thread, and the ready thread is scheduled for execution. This approach is
used in EARTH [46], TAM [26], and *T {68]. As an example, let us consider a
remote memory fetch operation, GET_SYNC operation, on McGill’'s EARTH system. !

"We refer to McGill's EARTH-MANNA system as the EARTH systemn in this thesis. McGill's EARTH
architecture [46] is currently implemented on the MANNA system developed by GMD, Berlin, Germany [20}.
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(Appendix E outlines these primitives.) When a processor encounters 1 GET_SYNC
operation, the processor executes the corresponding assebly langnage subroutine.
This subroutine places a message for other functional unit in the processing node
(synchronization unit, SU), and returns the control of compntation to the point after
the GET_SYNC operation. Thus, a split-phase operation is issned. When a remote
access is complete, the SU at the local processing node activates the Lhread waitiong
for this data. A thread may require one or more remote aceesses o complete before
the start of its computation. On completion of these remote aceesses, the SU schedules
this thread for the processor to execute on. When the processor changes context at
a later instant, this thread is ready for further progress in computation. (The details

of the operation of the EARTH are discussed in Chapter 7.)

In comparison to hardware mechanisms described above, a context switch on the

EARTH system takes at least 36 cycles. Even though only 6 to 7 instructions are

required for a context switceh, the main cost is due to two cache misses on average

to save at least two registers in the local memory. The advantiage of sollware

tnechanisms, however, is that off-the-shelf microproeessors can he used without any
‘ expensive modifications to their designs.

The mechanisms discussed above are specific to multithreaded systems. o addition, a
support is needed for following thread operations: thread creation, data communication and

thread synchronization.

Thread creation: A thread is created to perforin a computation task. Each thread has a

unique identifier.

Thread synchronization: A thread can synchronize with one or more threads, When these
threads synchronize, a predefined state of computation is reached. A message is sent
for a synchronization when cither the threads communicate with each other or certain

threads complete their computation tasks.

Thread communication: A thread communicates with another thread through data values
for shared variables. A synchronization message ensures that correct values of shared

variables are communicated.
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These three mechanisms are also found on single threaded multiprocessor systems to
support a concurrent execution on multiple processors. Two major differences, however,
exist between multithreaded architectures and single threaded multiprocessor architectures.
First, multiple threads can be concurrently active on a multithreaded processor, so thread
identifiers are needed Lo perform most of the above operations. In contrast, an identifier
for a single threaded processor serves the purpose of identifying the thread it executes.
Sccond, a thread scheduling mechanisin is needed to select the next thread for execution,
save the context for the eurrent thread, and restore the context for the next thread. The
earlier discussion in this section shows that a mechanism to switch the context is provided
cither in the hardware (of a multithreaded processor) or in the software {through a run-time

system),

So far we discussed some basic mechanisms to support multithreading. Now, we will

focus on their use in a program exccution.

2.2 A Multithreaded Program Workload

In this section, we show a simple example on how to effectively use the multithreading
operations. The objective is to achieve an overlap of computation and cominunication such
that the processor performance improves. We use multithreading primitives in EARTH

Threaded-C [46) for our discussion, and elaborate them as we encounter.

Let us consider an addition of two 2-dimensijonal matrices, ie. ¢ = A + B. The
pseudo-code is shown in Figure 2.2, In the MAIN body of the program, lines 24 through 26
indicate how threads are forked on P nodes in the system. At the end of computations,
all threads synchronize and a thread with label TREAD_complete is triggered (see line 27).
Using the function INVOKE on line 25, we create P copies of new_thread on P processing
nodes of the multithreaded multiprocessor system. After forking these threads from node

0, END_THREAD is used to switch the context to any thread ready for execution at node 0.

On every processing node, new_thread spawns n, compute threads (lines 15 to 17). After
exccution, these 1, compute threads return the control of computation to THREAD done (line
18). A compute thread performs additions for K elements (line 3). For each addition, two
remote memory fetches, GET_SYNC operations, are issued in parallel (lines 4 and 5). Since
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these are split-phase long latency transactions, the processor can be freed for an execoution
on other threads. So, we use an END_-THREAD operation for the context switch (line 6). On
the return of GET_SYNC operations, the exceution on THREAD.add can begin (line 7). The
result of the addition is stored using one DATA_SYNC operation (line 9). Note that all the
three remote data accesses (two GET_SYNCs and onc DATA_SYNC) are independently exceuted,
Their completion, however, is necessary to trigger THREAD add. A small additional code is
nceessary at the start and end of computation shown between lines 3 and 9. AL the end of

computations, thread synchronizations follow an hierarchy similar Lo their forking.

Figure 2.4 illustrates an abstraction of the progress of computation at varions nodes for

the pseudo code shown in Figure 2.2. There ave T types of threads shown in Figure 2.4:

A: Thread A forks threads on different processors. Lines 24 to 26 in Figure 2.2 represent o
thread A.

B: Thread B forks multiple threads on the local node for computation. The new_thread in
Figure 2.2 is of the type thread B.

C: Thread C performs computations on the local processor, sends and receives long latency
accesses, and finally sends a completion signal (to a thread D) to synchronize. The

compute thread in Figure 2.2 is of the type thread C.

D: Thread D collects synchronization signals from threads in the local processing node. In

Figure 2.2, D thread is not explicitly shown. However, on completion of the thread D,
the execution reaches line 18.

E: Thread E collects synchronization signals from threads on different processing nodes.
In Figure 2.2, E thread is not explicitly shown. However, on completion of the thrend
E, the exccution reaches line 27. Results of the loop structure described by Figare 2.2
are correctly visible at line 27.

Thus, a thread A forks onc copy of thread B on each processing node. Each thread B forks
multiple copies of thread C for computation. At the completion of computation, C threads

synchronize locally and initiate the thread D. Finally, D threads from all nodes synchronize
at the thread E.
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1: THREADED compute (parameters...)

2: { /* j~th thread at node i */

3 for (k=low; k < high; k++) /* say low=0 and high = K */

4 { GET_SYNC (A([k][0],alk],add); /*Synchronize at THREAD_add.»/

5: GET.SYNC (B[k][0],b[k],add);

6 END_THREAD (); /*Context switch. On fetching, go to THREAD.add.*/
7 THREAD_add:

8 clkl = alk) + blk];

9: DATA_SYNC (c[k],C[k][0],add);

10: }

11: /* Thread completed. Return to new_thread */
12:}

13:THREADED new_thread (parameters...)

14:{ /% at node i */

16: for (j=0; j < nt; j++)

16: { SPAWN (compute,j,done); } /* Fork m, compute threads at node i */
17: END_THREAD (); /* Switch. Barrier. Go to THREAD.done.*/
18: THREAD_done: /* All C values are computed */

19: /* Return to node 0 =/

20:}

21:THREADED MAIN()

22:{ ...

23: /*= at node 0 x/
24; for (i=0; i < P; it++)
25: { INVOKE (i,new_thread,complete); } /* Fork i-th thread on node i */

25: END_THREAD (); /* Switch, Barrier. Go to THREAD.complete.*/
27: THREAD.complete:

28: /* All processors have synchronized */

29:

30:}

Figure 2.2: A Mu'tithreaded Program Workload
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The maximum time in a program exccution in Figures 2.2 and 2.4 is typically spewt
in thread C, i.e. compute threads. A support for multithreading techniques described
in Section 2.1 ensures that threads A, B, D, and E are executed efficiontly (we will show
measurements from the EARTH system in Chapter 8). At steady state, 1, compute threads
arc in various states of computation at cach processor: ready, crecuting or suspended. A
thread is ready for execution by the processor when all input operands are available. Onee
scheduled on the processor, the thread is in exccuting state. A thread is suspended when it
is waiting for its operands. Figure 2.3 shows the states cach compute thread experiences
between the iterations k=low and k=high-1 (lines 3 to 9). This steady stale hehavior of

a muitithreaded program execulion is the primary focus of our performance modeling and

analysis.

The execution time on the EARTH system for this program is shown in Tables 2.1 and
2.2. The matrix size is for 32768%8 clements. Cache organizations alfect the number of
read/write accesses. To ensure a constant number of read/write accesses in cach program
execution, we use 8 elements in cach row of matrices and access the first clement of each
row. Table 2.1 shows the exccution time when all GET_SYNC and DATA_SYNC operations are
sent uniformly to all nodes in the system. With a use of multiple threads, the idle time on
each processor and the program cxecution time reduces. The speedup at larger mmber of
processing nodes is poorer. For this program, we increase the computation helween lines
7 and 9 such that the thread runlength is 3000 cycles. Table 2.2 shows the execution time
for this example. Now, a lincar speedup is achieved with respert to the munber of nodes
in the system. With multiple threads, the performance improves by as much as 26% on a
16-node system.

In this example, we increased the runlength of cach thread by 60 times, i.c. increased the
computation per thread. With one thread on one node, the increase in progriun execution
time was only 7.08 times (=%‘%‘3), and on 19 nodes by only 49% (=1-'1‘:.’5=§-’-!g). Also with
19 nodes and each having 8 threads, the exccution time at higher runlength increased by
merely 35% (=%). An objective of the perforinance evaluation is to find out whether
these trends continue with number of threads and number of processing nodes, is there
an optimal thread granularity given & number of processing nodes, and which program
workload characteristics can be optimized. Even for simple loops discussed above, such

analysis is necessary, because contentions due to multiple accesses from cach processing
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node increase significantly in a multithreaded system.

SUSPENDED READY

EXECUTING

Figure 2.3: States of a Thread

In this thesis, we model and analyze the steady state behavior of a multithreaded
excceution of the program workload in Figure 2.2, This workload is used as a running

example for performance optimization purposes.

2.3 Issues in Performance Measurement

The exccution time of a program workload is the casiest measurement of the performance
. of a computer gystem. The execution time, however, yiclds little information on how to
optimize a program workload. Performance measures of our interest are, the processor
utilization, the message rate to the network, and the network latency (i.e. the latency
for multithreading opcerations like GET_SYNC on EARTH system [46]). These performance
measures pose difficulty in the runtime measurements or a multithreaded system. The
objective of this scction is to discuss the problems in their measurement on multithreaded

systems, and outline our approach for the EARTH system.

Note that detailed simulations of multithreaded systems also provide the above perfor-
mance measures. However, simulations, like other performance prediction techniques, are
a representative of the realistic performance behavior only for the ranges they have been
validated.

Tools for obtaining the performance measures from program executions on a system are
invaluable to the task of performance tuning. Iinportant aspects in the choice of tools are,
the casc of use, the accuracy of measurement, and the perturbation to the system execution.
As we mention below, the message rate is easy to measure, however the network latency

and processor utilization require specific considerations on multithreaded systems.
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Number of Number of Nodes

Threads 1 3 7 11 [ 15119
1 321 | 227 | 120 | 109 | 97 | 92
2 254 | 166 | 115 | 102 | 94 | 90
4 241 | 155 | 113 | 100 | 93 | 89
8 241 | 161 | 112 | 100 | 93 | 89

Table 2.1: Exccution tine in ns. Runlength = 50 cycles. Uniformly distributed data

ACCesSes.

Number of Number of Nodes
Threads 1 3 7T {11 ] 15 ] 19
1 2273 | B46 | 372 | 244 | 180 | 145
2 2175 | 747 | 324 | 208 | 1564 | 122
4 2168 | 724 | 310 | 200 | 146 | 116
8 2170 | 720 [ 309 | 199 | 145 | 120

Table 2.2: Execution time in 725, Runlength = 3000 cycles. Uniformly distributed data

dCCCESeSs,

The measurement of network latency poses difficulty on a multithreaded system for the
following reason. The multithreading technique overlaps the communication on one thread
with the computation on another. So, the processor may switch to execute on other threads
after initiating the split-phase communication access on one thread. When the response
arrives, the processor may be busy executing on other threads. Thus, the processor cannot
measure the precise elapsed time between the initiation of a remote access, and the arrival

of its response. There are following two choices for measuring the latency:

1. Direct measurement (Time-stamp): This method makes use of a time-stamp on a
message to measure the network latency. Overheads involved in this method are: the
maintenance of a timer, the increase in the message length to include time-stamp,
and the maintenance of the network latency statistics. These overheads perturb the
measured value as well as the program execution for the following reasons. To compute

the latency and store it in the memory, certain number of instructions and memory
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accesses are required. Further, accessing the timer, updating its value, and placing
a time-stamp on a message, requires additional instructions and memory accesses.
Together, these additions can significantly alter the runlength of & thremad as well as
the exccution time on the processor. Similarly a change in the message length changes
the service time for a message on network switches and alters the latency, For fine
grain applications, to exploit an overlap of computation and communication, thread
runlengths are typically within an order of magnitude of the network latencies (we
will discuss more in Chapter 4). So, overheads in the direct measurement can easily

change the program workload characteristics and the performance measures.

L

Indirect measurement (Sempling); In this method, a thread is dedicated to the task
of measurement. This thread requires an exclusive access to a processor during Lhe
measurement. We refer to this processing node as the dedicated node, and the nodes
under investigation as the lest nodes. The thread sends test messages to test nodes,
and measures the time till the receipt of their responses. The latency measured by
this method indicates how much contention a message suffers during one round-trip.
An exclusive access to the dedicated node for time measurement ensures that the
dedicated node does not delay the test message.Any delay, in excess of the no-load
value of the latency, is a result of contentions at the network and the remote node(s).
A drawback of this method is as follows. When more than one remote messages are
sent by a thread, the arrival of the first response will stop the measurement, since
the processor gets busy with the latency computation. Thus, an accurate timing for
the subsequent arrivals cannot be known. An advantage of this method is a runtime

measurement of latency with very little overhead.

In this thesis, we developed a software instrumentation with the sempling approach to
measure the network latency on the EARTH-MANNA system. The accuracy of the tool is
5 cycles (i.e. 100ns on 50 MHz Intel i860 XP). The tool provides a flexibility to be turned
on or off dynamically during a program exccution. The tool introduces less than 2 to 5%

increase in the program execution time even for communication intensive programs.

Our approach to incasure the processor utilization uses the measurement of idle time at
the processor. Whenever there are no threads in ready queue to exccute on, the processor

executes a function to measure the idle time. As soon as a thread is ready for execution,
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the idle time measurement terminates. Two inaccuracies involved in this measurement are
as follows: First, switching to and from the function to measure the idle timne incurs an
overhead. Currently, the measurement function doces not record the number of times it is
invoked, so & correction for this value cannot be performed. Second, the idle time for a
processor, while waiting for the local bus accesses, cannot be measured in software. Thus,

a higher processor utilization is reported.

The message rate to the network is computed by counting the number of remote accesses,

measuring the exccution time for a program and obtaining their ratio.

On the EARTH system, the program execution time can be measured with an accuracy
of 2.5;t8. Above measurements for processor utilization and message rate introduce up to

5% increase to the program exccution times as small as 100 ms.

2.4 Related Work

Previous sections discussed the mechanisms for multithreaded execution, their use in a
prograin workload, and the problems they pose in the performance measurement. In this
section, we briefly outline how various studies have carried out the performance evaluation.
Most of these studies are on multithreaded architectures, and can be classified as: analytical
models, simulations, and system measurements. We discuss detailed differences these work

with our contributions in this thesis at the end of relevant chapters.
Analytical Models:

These models are further classified into following two categories.

Queneing Network and Peiri Net Models:

Saavedra ct al [80] proposed the first analytical model based on Petri Nets to predict
the performance of a multithreaded processor. This simple mnodel is based on only
{our parameters- the runlength and number of threads representing the workload, and
the context switch time and memory latency representing the architecture. They use
state-space analyses to derive the system performance, so modeling a multiprocessor
system and the contentions at subsystems, is computationally expensive. (That is,
uot possible for as small as 16-processor systems.)
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Alkalaj and Bopanna [8] proposed a Petri Net based model for a dynamic multi-
threaded workload on a bus-based multiprocessor system. FHowever, the bus con-
tentions are not considered. Also, the applicability of a dynamic program workload
model is not clear. The solution is based on the state space of the petri net model,

s0 an extension to incorporate contentions is computationally expensive,

Yamamoto et al [103] proposed an analytical model for a superscalar multithreaded
¥

processor. Their model accounts for the data and structural hazards during the exe-

cution on an instruction. They focus on achieving high instruction level purailelism,

in the absence of contentions at the memory.

Torrellas et al [94] proposed an open queueing network based model for 2 DASH-like
single-threaded multiprocessor system. They characterize the performance variations
for small variations in input paramcters. An extension to multithreaded system does
not appear straight-forward.

Willick and Eager [101] proposed a closed queneing network model of an interconnee-
tion network which supports multiple ontstanding requests per processor. The system

. behavior is similar to a multithreaded system. Adve and Vernon [2] proposed a closed
queueing network model for multithreaded multiprocessor systems with k-ary, n-cube
interconnection network. Solutions to these models use mean value analysis, a com-
putationally efficient method, especially for analyzing large systems. These closed
system models capture the system behavior more realistically, as discussed later in
Chapter 5.

Analytical models in [101, 8, 66, 2] are validated through the simulations of petri net
and queueing network models. Note that due to lack of details on simulated systemns
in these work, we assume that discrete event simulations are used, and that their
assumptions are similar to those for respective analytical models. Saavedra et al [80]

report a validation using simulation results (from [100]).

Cuche Parameters Based Models:

Agarwal [4] proposed an analytical model based on cache parameters, for a multi-
threaded processor. The proposed model characterizes additional cache misses due
to a multithreaded exccution on the processor. The model does not include the feed-

back effect of network performance on the cache miss rates. Johnson [50] extended
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this model to incorporate the network performance. We will discuss advantages and
disadvantages of using Johnson's approach in Chapter 5. Both models are validated

using simulations of the Alewife system [5).

Simulations:

Simulation of a multithreaded program execution is an aid to verify the correctness of
the program behavior as well as the architectural design, and to evaluate the performance
realistically. A typical simulation approach imitates an execution of a program workload on
a behavioral model of functional units in the multithreaded system. Performance measures
are computed by maintaining the relevant statistics (like idle time of the processor, time
for an access to complete ete.). The accuracy of a performance prediction depends on
how detailed is the simulation model, e.g. whether contentions at subsystems are modeled.
Advantages of simulations are that the cHect of realistic program executions on the system
performance is captured. Changes to the system design as well as the programn workload can
be studied. However, with detailed modeling, only small program sizes can be simulated.
Two approaches for simulations are typically used: trace-driven simulations and system

simulalions,

Trace-driven Simulations:

These simulations use address traces and mode] the subsystem interactions. By not
maintaining the state of computations, these simu'lations reduce the complexity, and
improve the speed. However, the address traces are normally generated from single-
threaded multiprocessor executions [100, 90]. The execution trace of one processor is
treated as a single thread. Multiple copies of a single processor trace form multiple
threads of computation on a processor. Artificial synchronization points are inserted
to study the effect of various program characteristics like sharing of data variables

and synchronization on the performance.

Weber and Gupta [100] performed trace-driven simulations for a shared bus system
with strategics for switching contexts, and constant context switching times. They
considered a workload with multiple copies of a program trace as multiple threads.
Thekkath and Eggers [90] extended a similar approach using an analytical model {3)
for the network performance. Waldspurger and Weihl [98] report the results of simu-
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lations on a single node of multiprocessor system. They also assume that the network

is lightly loaded, i.e. no contentions.

System Stmulations:

System simulations focus on the correctness of progriun exceutions as well as the
subsystem interactions [49]. So, a karge state of the system is maintained at each cycle
(or event). However, the speed of simulation decreases, and large benchmark programs
take very long time to exccute. To improve the speed of simulations, behavioral
models of subsystems are used. These behavioral inodels may not accurately capture
the operations of functional units, and are potential sources of errors in performance

prediction.

Alewife [6, 5, 50] has been extensively studied using simulations. For McGill's EARTH
system, a simulator SEMi-a Simulater for EARTH, MANNA and i860- is being de-
veloped [92). The objective is to exhanstively study the program executions and
potential bottlenecks of the EARTH systenr. To speedup the simulation of a large
EARTH system, the simulator runs on the EARTH system itself.

System Measurements:

Actual measurements, from program executions on a system, provide an accenrate men-
sure of the performance. Hardware probes as well as soflware subrontines are useful for
performance measurements. However, during multithreaded program exceutions, diffieul-
ties arise in measuring the latencies for accesses as well as varions subsystermn delays (as
outlined in Scetion 2.3). Alewife [5] and EARTH [46, 64) are two multithreaded systems

for which performance measurements have been reported.

Arpaci et al [13] report a characterization of latencies for various operations on CM-5
using Split-C. A similar evaluation of a multiprocessor system using synthetic benchmarks is
reported by Boyd and Davidson [19]. These studies are indeed very useful for compilers and
programmers to choose which read/write features Lo use in an application, However, they

do not consider the impact of overlap of computation and communication on performance
measures.

In this thesis, we proposc analytical models for single processor and multiprocessor

multithreaded systems. To model and analyze realistic architectural interactions and pro-
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gram workload on McGill’s EARTH system, we expand the set of parameters. We validate
the analytical mode predictions using simulations of petri net models and measurements
from the EARTH multithreaded multiprocessor system. We analyze the effect of changes in
program workload characteristics as well as architectural parameters on the system perfor-
mance. These are significant extensions over previous studies. By addressing above issues,
we believe that our work provides a strong evidence on the usefulness of the analytical

models for performance optimizations on multithreaded systems.

2.5 Summary

In this chapter, we discussed the hardware and software mechanisins to support multithread-
ing technique in various computer architectures. The handling of split-phase operations, and
the management of contexts for threads are the key to an efficient multithreading support.
We illustrated how a user (programmer) can use the multithreading operations, fetching
a remote data, context switching, and storing to a remote location, to achieve an effective
computation and communication overlap. This improves the processor performance. We
showed how this overlap poses problems in performance measurements on multithreaded
systetns. Then, we surveyed the literature for performance evaluation of multithreaded
architectures. Most of the studies revolved around trace-driven simulations, and analyticcl
performance modeling. This thesis departs from the existing literature in the following
way. First, we propose analytical performance models of multithreaded systems- single
processor, and multiprocessor systems. We show how to incorporate realistic subsystem
interactions through a case study on McGill's EARTH multithreaded multiprocessor sys-
tem. Second, we validate the model predictions using performance measurements from
actual program exccutions on the EARTH system. Third, we show how the performance
models can be used for performance related optimizations of the architecture as well as the
program workload.

With above discussion on the hardware and softwure issues of multithreaded architec-
tures, and their performance evaluation, we are ready to explore the performance modeling,

characterization, and analysis of multithreaded architectures.



Chapter 3

Problems Statements for

Performance Analysis

Previous chapter outlined basic mechanisms to support multithreading techniques and their
use in a program workload. We also discussed issues in performance measurement on

multithreaded systems, and surveyed existing approaches.

The objective of this chapter is to state problems on the performance modeling and
analysis of multithreaded architectures studied in this thesis. These problems focus on our
approach to the performance prediction, performance analysiz, and uscefulness to users of

multithreaded systems.

In Section 3.1, we discuss the challenges to the performance modeling of multithreaded
architectures. In Section 3.2, we define the statements of problems on the performance
prediction solved in this thesis. In Section 3.3, we outline our approach to address these
problems. In Section 3.4, we describe the multithreaded program execution model. In later
chapters, this program exccution model serves as a basis to develop analytical performance
models of single processor and multiprocessor multithreaded architectures. In Section 3.5,

we summarize the discussion in this chapter.

31
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3.1 Performance Modeling Issues for Multithreaded Archi-

tectures

This section discusses how the performance modeling of multithreading differs from that
of traditional systems, namely, single-threaded architectures and multitasking operating

systems.

A multithreaded processor supports multiple outstanding accesses. In contrast to a
single-threaded system, these accesses can simultaneously keep multiple subsystems busy.
The performance modeling of multithreaded architectures differs from that of single-threaded

architectures as follows:

1. A processor can continue the execution (on another thread) after issuing a long-latency
memory request (to its local or remote memory). After the memory access request is

serviced for a thread, the processor may not exccute on the thread iminediately.

2. Accesses from multiple threads contend at subsystems, increasing their observed la-
tencies (even at local memories). In turn, longer latencies for individual accesses delay

the execution on waiting threads.

While multithreading helps to increase the processor utilization, the increased contention
reduces it. To weigh this trade-off, a complete performance model should capture the
feedback effect of the concurrent activities at various subsystem resources on the rate of

accesses to a subsystem and latency of a subsystem.

Similar to the multithreading, operating systems use multitasking technique to improve
the throughput of a system by assigning time slices to multiple tasks. When a task accesses
secondary memory or waits for interactive response from the user, an idle time results at
the processor subsystem and primary memories. The multitasking technique schedules the
time-slice for the execution of a task on which useful work can begin immediately. In general,
multiple tasks do not co-operate on the same application program. Unlike multithreading,
the overheads of multitasking are significantly larger than typical communication latencies
observed on the interconnection network. The presence of multiple tasks does not affect

the communication latencies for individual remote memory accesses on the network. Thus,
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the following two characteristics of multitasking make its performance modeling different
than that of multithreading:

» During a time-slice, one task has an exclusive access to the processors and primary
memories. Accesses from different tasks do not contend at primary memories and

network. So, the latencies are similar to single-threaded architectures (i.e. close to
their no-load values).

e Queucing delays and contentions due to multiple tasks are encountered only for ac-
cesses to shared resources like disks and secondary memorics, and to gain access to
a processing subsystem with primary memories. The execution time of a task on
the processing subsystem is assumed to be independent of the low level computation
and communication. That is, a typical modeling of multitasking technique does not
involve a detailed program cxecution with individual accesses to local and remote
memorics in a multiprocessor system.

A multithreaded program execution on real systems causes additional complications due
. to interactions among various subsystems. In our case study of the EARTH system, we have
explored the following two problems on performance modeling. These are representative of

problems one often encounters on other real systems as well,

o Simultaneous resource possession: On a system like the EARTH, resources at a pro-
cessing node can be accessed only through the bus. Further, the bus is held till the
access completes. The challenge is to predict the waiting time at each resource aceu-
rately. In queueing theory literature, this problem is known as sirnultancous resource
possession [48, 56]. Access contentions at such resources increase significantly in the
presence of multiple outstanding requests per processor,

o Multithreaded program workload: Multithreaded program workload may exhibit dif-
ferent thread characteristics at different processing nodes. The overheads of mul-
tithreading operations can be high, so it is essential to accurately characterize the

program workload, and to accurately tompute the queucing delays.

In summary, multiple outstanding requests increase the severity of the contention prob-

lem at system resources. The consequences to a user of multithreaded architectures are as
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follows. The no-load values are no longer a good indicator of the subsystem performance.
So, program workload partitioning strategics using a constant latency value (like LogP [27]),
do not yield the expected high performance. (An example in Chapter 5 illustrates the loss
in performance when contentions are accounted for.} A good performance model accounting
for the impact of a multithreaded program exccution on the system performance is essential

for performance related optimizations.

3.2 Problems Studied in this Thesis

In this section, we describe the problems solved in this thesis. The discussion in Section 3.1
shows the necessity to monitor and account for the performance of the processor as well
as other subsystems. Therefore our key performance measures of interest are— processor

utilization, network latency, and message rate to the network.

Problems in this thesis focus on predicting and characterizing the performance measures
using significant architectural and program workload parameters, identifying the system
hottlenecks, and providing insights to the performance related optimizations. In later
chapters, we develop models of multithreaded systems to predict the performance measures,

and apply the models to solve the problems mentioned below.

To a user of multithreaded systems, the processor utilization is the most important
performance measure on the effectiveness of all techniques and optimizations in the system.
It also provides a uniform measure of effectiveness irrespective of the number of processors

in the system. So, our first problem focuses on processor utilization:

Problem 3.2.1 Given a multithreaded architecture and e program «u:o»rkload:

1. How to derive the processor utilization?
2. How does the processor utilization vary with model parameters?
3. What are the ranges of model paramelers which yield high processor utilization?

The multithreading technique is promoted to be useful to tolerate large latencies on

multiprocessor systems. But the multithreading increases contentions. The network perfor-
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mance is a critical issue in optimizing an application program, so the network performance
is the focus of our second problem:

Problem 3.2.2 Given a multithreaded archilecture and a program workload:

1. How to derive the neiwork performance measures— the network latency and the net-

work message rate?
2. How does the network performance vary with model parameters?

3. What is the relationship belween the network performance and the processor perfor-

mance, with respect to model paramelers?
4. How robust is the network performance prediction?
The processor utilization and the network performance, indicate an absolute perfor-
mance for a set of values of model parameters. Our third problem focuses on how cffective

is the multithreading to tolerate latencies. Thus, a user knows how much improvement. may
be achieved through optimizations.

Problem 3.2.3 Given e multithreaded archilecture end a program workload:

1. Can we quantify the latency tolerance?
2. How does the ability of latency tolerance vary with maodel parameters?

3. How is the ability of latency tolerance related Lo the high processor performance?

Above three problems address the effect of multithreading on the system performance.
Many diverse considerations govern a real systetn design, e.g. other architectural technigues,
an availability of off-the-shelf components, costs of components, and simplicity in the design.
So, we perform a case study on McGill's EARTH multithreaded system. The fourth problem
summarizes the performance modeling objectives:

Problem 3.2.4 Given a multithreaded architecture such as the EARTH system and a pro-
gram workload:
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1. How do realistic subsystem inferactions affect the system performance under a mulli-
threaded program ezecution? Specifically, how to account for the simultaneous pos-
session of the bus in EARTH processing nodes when memory or network interface is

accessed,

2. How to characterize a realistic muitithreaded program workload? That is, how much
details should we model about the differences in program workload characteristics af

different processing nodes, and service times for different multithreaded operations.

From a user perspective, a performance model should serve as an aid to the performance
related optimizations. Qur fifth problem addresses how our performance analysis provides

insight to the performance behavior of the EARTH system:
Problem 3.2.5 Given a multithreaded architecture and a program workload e.g., a loop:

1. Houw to partition the program workload in the presence of realistic long latencies and
mullithreading costs? What are the significant workload characteristics? What are

their critical values to achieve high processor utilization?

2. What will be the effect of subsystem implementations on the system performance?

Next, we outline our approach to solve above problems. In Section 3.4, we describe a
multithreaded program execution model which forms a basis to develop analytical models

of single processor and nultiprocessor systems.

3.3 Our Approach

The problems in Section 3.2 aim to provide a progressively deeper insight to the performance
of the multithreading technique. First, we characterize the processor performance, then we
study the performance of subsystems, and finally, we analyze real subsystem interactions
under multithreaded workload. The above probleins are addressed under following aspects—

performance modeling, validation, analysis anc optimizations.

Our performance models use closed queueing networks. Initially, we model a single
processor multithreaded architecture. This simple system is characterized using basic pa-

rameters like the number of threads, their runlengths, the number of memory ports and
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the memory access time. An exact solution exists for such a model (which is much simpler
than Barrera’s method [80]). Then, we analyze a multithresded multiprocessor architec-
ture. Without loss of generality, we use a 2-dimensional network, & low-bandwidth network,
t. demonstrate the effectiveness of multithreading technique. We introduce additional pro-
gram workload and architectural parameters to characterize the multithreaded program
exccrition. Since an exact solution is no longer computationally feasible to analyze a large
system, we use approximate mean value analysis (AMVA) [75, 56]. Finally, we model the
EARTH system. Architectural related extensions to our performance model include realis-
tic subsystem intcractions. We also expand the program workload paramecters. We develop

heuristics to the MVA to account for above extensions under a multithreaded program
workload.

We use discrete-event simulations as well as actual program executions to validate our
model predictions. Stochastic timed petri net (STPN) models are developed to verify our
predictions for abstract multithreaded systems— a single processor and a multiprocessor
system with a 2-dimensional network. These STPN models provide flexibility to sim-
ulate various configurations, and require 1 to 5 minutes for cach set of paramet..s on
SPARCStation-20 (note that our analytical model predictions require less than 1 minute)
On the EARTH system, we execute synthetic and real benchmark programs and measure

the performance. The measurements are compared with model predictions for these bench-
mark programs.

A performance analysis ailows us to weigh tradeoffs for o multithreaded program exccu-
tion. We characterize the performance behavior of a multithreaded system under synthetic
program workload. Such an analysis provides an insight to how various program work-
load characteristics affec. the system performance. We show what are the critical values of
parameters to avert performance bottlenecks and achieve a high performance. Through ex-
amples, we use our characterization to aid performance optimization. Analyses on abstract
systems show the best possible gains for multithreaded systems. However, a characteriza-
tion on the EARTH system shows how large are the realistic multithreading overheads under
a multithreaded program workload, and how to reduce these overheads. We also use a case

study on real benchmark programs to show the usefulness for performance optimizations.
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3.4 A Multithreaded Program Execution Model

To solve the problems listed in Section 3.2, we need a multithrcaded program execution
model with the following considerations. The model should capture realistic behavior of
the program execution on a multithreaded system. Yet, the model should be simple for

analytical performance modeling.

Without loss of generality, we describe our multithreaded program execution model
assumning an underlying, abstract multiprocessor system with distributed shared memory.
We focus on the steady state behavior of multithreaded system necessary for performance
moccling {(Section 2.2. Such an execution model is easy to adapt to both a single processor

system as well as a specific real multiprocessor system.

For the purpose of this thesis, a multithreaded program workload is a collection of
partially-ordered threads. Each thread is a sequence of computation instructions followed
by a multithreading operation. A muitithreading operation involves multiple phases such
as accessing the local memory, sending messages on the network, receiving responses, and
performing synchronizations. The scheduling of individual threads is similar to a dataflow

model, Threads repeatedly undergo the following sequence of states (see Figure 2.3):

Execution: Once scheduled, a thread is executed on the processor pipeline till long latency

aceess is encountered.

Suspension: When the processor issues a long latency operation, and suspends the thread

till the response is received.

Rteady: A thread becomes ready for execution, after the response to its long latency access

is received.

Each processor executes a set of n; concurrent threads (see the program workload in
Figure 2.2). A processor executes a thread for a duration called runlength R, before sus-
pending it. On suspension, the state of the outgoing thread is saved and the context of
the newly scheduled thread is restored. We assume a fixed context switch time of C cy-
cles. (In practice, C has a variable component depending on how many registers need to
be saved.) Threads interact only through long latency accesses. Threads do not migrate
ACross proces:ing nodes.
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A long latency memory request is sent to a remote memory module with a probability
Premote- ' The remaining fraction of long latency memory access requests get serviced at
the local memory. Note that an assumption of premee = 0 adapts the program execution
model to a single processor system. On the other hand, a specific system, like the EARTH,
requires a characterization of different types of memory ruinwsts, locitl or remote access,

both may be with or without synchronizations.

We do not explicitly consider the presence of an cache in the system for the following
reasons. First, given the diversity of cache organizations, based on associativity and data
sharing, caches introduce too many variables in the model. Further, there is little agreement
on how to beneficially utilize the cache in a multithreaded programn execution. That's
why, multithreaded systems lik= TERA [9] avoid caches. Second, thread runlengths are an
embodiment of the cache effect, because a mmemory aceess at the end of a thread runlength is
same as a cache miss. Some approaches [51, 55] use each cache miss to decide for a context

switch, while others [5] use only remote memory cache misses to switch the context.

Above multithreaded program exccution model forms a basis for the development of

our analytical performance models.

3.5 Summary

This chapter outlined our overall approach to the performance modeling and analysis of

multithreaded architectures.

We discussed the issues in the performance modeling of multithreaded architectures, in
contrast to single threaded multiprocessor systems and multitasking systems. We desceribed
the problems solved in this thesis. These problems are representative of what a user of
multithreaded systems will face in practice, e.g., what is the processor performance for
a workload, how does the network performance change with various optimizations, and
how do the interactions on a real system affect the performance. Then we described our
multithreaded program execution model. This exccution model forms a basis to develop
analytical performance models, and solve the problems on the performance issues, in later

chapters.



Chapter 4
Single Processor System

In Chapter 3, we described the performance related problems of interest to this thesis.
We also outlined our approach to the performance modeling, validation and analysis of

multithreaded architectures.

This chapter focuses on a single processor system with the processor and memory sub-
systems, specifically the problem 3.2.1 on the processor performance. The two objectives
of this chapter are as follows: First, develop an analytical performance model of a single
processor systemn; and second, analyze the system performance, identify the bottlenecks
and suggest optimizations to achieve high processor utilization. A performance behavior
of such a single processor system also indicates the maximum achievable performance by a

node in a multiprocessor system.

Our resuits provide interesting insights to the performance of single processor multi-
threaded architectures, The application parallelism can be exploited as long as the hard-
ware parallelism is not exhausted. That is, the processor utilization increases with the
number of threads until all memory ports are busy. Further, the processor utilization is
high if the granularity of threads is larger than the effective memory latency, defined as an
average duration between successive responses from the memory (Section 4.2). For thread
granularities closer to the effective memory latency, multithreading provides a high speedup
over a single threaded execution,

This chapter is organized as follows. The next section describe the single processor

system under discussion. Section 4.2 presents an analytical model of the system and its

40
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cxact solution.  Section 4.3 provides a characterization of performance measures using
architectural and program workload parameters. Section 4.4 summarizes the results of this

chapter, and discusses their impact on the system design.

4.1 Architecture

We describe the single processor multithreaded architecture in this section.

Figure 4.1 shows a single processor system with the processor and memory subsystems.
The processor subsystem consists of an exceution pipelineg of the processor and a thread
management unit. Register windows may be used to achicve a low context switch time.
While executing an application program, the processor uses the data residing in its cache.
Note that to ensure a constant number of read/write accesses in a program exccution
and their impact on the performance due to various cache organization, we cnsure that
cache misses are explicitly known to us. Henceforth, we refer to these cache misses ag the
memory accesses. The processor supports multiple outstanding memory accesses. When a
cache miss occurs, the processor can continue the exceution on the computation, which does
not depend on servicing of this cache miss. In other words, on a cache miss, Lhe processor
sends a request to the memory and rapidly switches to the computation on another thread.
When the memory access is serviced, the corresponding computation thread is ready for
the exccution.

The memory subsystemn supports multiple concurrent accesses to provide a small re-
sponse time. The contentions at the memory subsystem are reduced using cither multiple
ports at the memory or interleaved memory banks (numbered 0 to 7 in Figure 4.1). A
reduction in the contention reduces the waiting time for each aceess before it is serviced by
the memory subsystem. On servicing the access, the memory subsystern sends Lhe response

with the identification of the thread which issued the access.

To support multithreading on a single processor system, the following architectural
considerations should be made. Latencies for memory accesses range from 15 to 100 cycles.
At conservative processor speeds, memory access times are 15 to 25 cycles, e.g., KSR-1 [19),
CM-5, SPARC, MANNA [20, 46]. For aggressive processor speeds, memory access times
appear higher, e.g., 60 to 100 cycles in AlphaServer 7000 and 8400 [28]. To exploit the
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benefits of the multithreading, the context uwitch overhead should be smaller than the
unloaded memory latency. Mechanisms to select a ready thread may differ, e.g., poll for a
ready thread, or receive a signal that a thread is ready. Apart from saving the context for one
thread, a selection for another thread also incurs an overhead. To gain some performance
benefit of multithreading, we should be able to perform two to three context switches in
search of a ready computation thread. That is, the overhead of context switch should be

less than one-third the unloaded latency.

We consider the following example to illustrate how the performance of a single threaded
execution gets limited by the memory system performance. Let the composition of load/store
access be 33% of the total instructions in a program, c.g., SPEC workloads have 20 to 50%
instructions as load/store operations [28]. Let the cache miss ratios within 5% for large
caches [78]. That is, 1.65% (=5% x 33%) instructions are memory accesses. In other words,
on average ouce in 60 instructions a local memory access is required. With one clock per in-
struction and a memory access time of 20 cycles, the processor utilization is 75% (= ﬁ'ﬂ%‘fi)'
At aggressive processor speeds, the utilization is significantly low (37.5%= mﬁ—uo) With
an increase in the use of instruction level parallelism (say a sustained parallelism of 2),
computation time on processor decreases (to 30). This further aggravates the memory
bottleneck. For a processor supporting multiple outstanding reijuests, multithreading and

prefetching techniques help to alleviate this performance bottl:neck.

4.2 Analytical Model

In this section, we will develop an analytical model and its solution to analyze the single
processor system in Figure 4.1. We describe our approach using closed queucing networks.

Then, we derive the performance measures of interest— processor and memory utilizations.

4.2.1 Closed Queueing Networks

A queueing network is typically useful to model and analyze large systems in their steady
state. The main components of a queueing network are the service centers and the cuslomers
visiting these service centers for a service. Many types of distributions are possible for the

service time at a service center, e.g., ezponential, deterministic, and hyper-ezponential.
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The number of customers at cach service center represents the state of a queueing network.
Under steady state, an analysis of the state space of the queucing network yields the per-
formance measures like the utilization of a service center (say, processor), and the response

time of a service center (say, the memory).

The expenential service time distribution is most commeonly used, due to its memory
less property. That is, the expected service time of the exponential distribution is always
the average value of the service time distribution. We can build markov chains using the
memory less property, where the probability of a transition to another state depends only
on the current state and not on the past states the system may have visited. An analysis
of markov chains yields the performance results for the queueing network. Some of the
good books on queneing networks for the performance analysis of computer systems are by
Lazowska el al [56], Trivedi [95], and Kleinrock [52].

A mapping of a compttter system to a queueing network model is fairly straightforward.
Various functional units can be represented as service centers in the queueing network. The
hardware delays at vhese functional units are the service times at service centers. A software
program workload determines the characteristics of the service at the processor. Accesses
sent by the processor to various functional units represent the customers in a queueing
network. With the use of deterministic and exponential distributions, the service time
at various service centers can be captured. Figure 4.2{a) shows such a queueing network
model of the single processor system in Figure 4.1. Pri represents the processor node, and
R is the service time for cach thread. Servers Si to Snp represent ports at the memory
subsystem, and L is the service time at each port. Arcs connecting the two subsystems
maintain queues, ready pool holds threads which are ready for execution, and mem queue
holds outstanding accesses to the memory subsystem.

An advantage of using queueing networks over techniques like Petri Net models, also
requiring a state-space analysis, is that sophisticated numerically efficient techniques have
been developed to analyze large queueing networks {75, 56]. The benefits become apparent
while analyzing a multiprocessor system with a large number of architectural and program
workload parameters. To our knowledge, efficient solutions to performance predictions using
Petri Net based models are based on the analysis of equivalent queueing networks [96]. We
note, however, that Petri Net models present an attractive approach to verify the correctness

of system models, and simulate them quickly. Stochastic Petri Nets with certain properties



CHAPTER 4. SINGLE PROCESSOR SYSTEM 45

have been shown equivalent to quencing networks [44, 60]. In the light of this equivaleuce,
we simulate the Petri Net model shown in Figure 4.2(b} to verify our analytical model

predictions in this chapter.

4.2.2 The Model and Its Solution

In this section, we develop a performance model for a single processor multi-threaded system
in Figure 4.1. The model is a closed queucing network. We show an exacl solution to this
moedel for a system with finite memory ports. Then, we obtain simple expressions [or certain
interesting cases, like a single-port memory and an infinite-port memory, First, we describe
the model. Second, we derive the equilibrium probability for the state of the system. Third,

we compute the performance measures, like utilizations for processor and memory.

There are two reasons for a detailed description of our simple analytical model based on
closed queueing networks (CQN). Saavedra [80] developed a Petri Net model of a similar
system and proposed a complex solution by analyzing the state-space. Our CQN model
has a very simple solution and yields precisely the same results. Also, unlike Saavedra's
solution, the CQN model can be casily extended to model multiprocessor systems and

analyzed by modifying the existing techniques (discussed later in Chapters 5 and 7).

We summarize the program execution model, as discussed in Chapter 3 (Scction 3.4).
A single processor systemn uses a multithreaded programn workload to improve the processor
utilization in the presence of local memory latency., We focus on the parallel portions in a
program workload, i.c., the workload consists of a number of iterations (= n,) of a do-all.
loop as discussed in Section 2.2. Each iteration is a thread, and it executes for a duration
called thread runlength, R cycles, before accessing the memory. Thus, one outstanding
request per thread is allowed. When the memory services an access, the computation

thread waiting for this access is triggered. Threads interact through memory locations,

A closed queueing network model for the single processor multithreaded system is shown
in Figure 4.2(a). Two service centers represent the processor and memory subsystems. The
processor executes the workload having n, threads. The service time R for a thread at the
processor is determined by the cache parameters. We note that cache misses are explicitly
known. The duration between these misses for a thread is 2. On encountering a long latency

memory access, the processor sends the accese (as a customer) to the memory subsystem,
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and suspends the execution on that thread. Assumptions for the closed queueing network

model are as follows, and symbols are summarized in Table B.1 of Appendix B:

o The processor node is a single server, with a first-come-first-served service discipline.
The mean value of the service time for each thread is R cycles. Every thread incurs
a context switch time of C cycles at the suspension. Thus, the maximum service rate

at the processor, pp, is T-:-C"

e The memory node is a multiple server, with a first-come-first-served discipline at each
server. Each of n, memory ports have one server, and have a service time of L cycles.

The overall service rate at the memory, jiy,, is:

tm =T, zm <.

= %ﬁl ¥ np < zm S ﬂ-g. (4-1)

where, £m is the number of accesses at the memory, and n, is the number of threads.
- saturates at '—',jl, when all memory ports are busy.

¢ The service times arc exponentially distributed.
o Processor utilization Uy, is the fraction of time the processor executes on threads.

¢ Memory utilization Uy, is the fraction of time for which a memory port is busy (aver-
aged over all memory ports). Uy, compares the effectiveness of a memory subsystem
with 7, ports to that of a memory subsystem with one port having a service time of
'1%.' cycles.

State of the System:

The state of the system, S, is defired by the distribution of n; threads on the two
nodes. Let zm be the number of accesses {one per thread) at the memory node, then S=
(ny — zm,zm), where (n, — zm) is the number of threads at the processor node. Thus, zm
can used to define the state of the system S as shown in Figure 4.3.

We derive the probability of the state S as follows. The closed greuing network in
Figure 4.2 follows the assumptions in a product-form network (see Appendix A and Baskett
et al (15)). For such a network, the equilibrium probability of a state 8 is given by:
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P(8) = G x fp(ng—xm) x fm(zmn) (4.2)

where, fp and fm are contributions from the processor and the memory module to the

equilibrium state probability; and G is a normalizing constant over the state space of S.

Now, we compute the individual terms in Equation 4.2.

1/(R+C) 1/(R+C) 1/(R+C) 1/(R+C)
Horerele
1/L C(zm)/L C(zm +1)/L C(n)/L
S(0) S(zm — 1) S{zm) S(zm+1) S(n.)

Figure 4.3: State Diagram for a Single Processor Multithreaded System.

The processor node is a single server. In the state (n; — zm, zm), the number of threads
at the processor is (ny ~zmm). Since the service rate at the processor remains y, irrespective

of the number of threads at the processor, fo(n, — zm) is recursively obtained as follows:

Ipn—zm) = (L) foln—am-1)
(re—wm)
= (%) M (&) = (#ip) (4.3)

The memory node has multiple servers, i.c., n, ports. In state (n, — zm,zm), the
number of access in service {or waiting for the service) is zm. The service rate is C{zm) ym,

where C{zm) is the number of busy ports. So, fr{zm) can be recursively obtained from
fm(zm — 1) as follows:

fmlzm) = E("EE—!)T x fm{zm - 1)

) am-1 (a=)  _ 1\ 1
= Et:ﬁﬁfxnﬂ‘:l l—é—tg'r = (——) “ _ﬁc_(a—) (4.4)

Hm
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where, Cla) =a fora<n,

=ny, otherwise, (4.5)

We substitute the second and third term in Equation 4.2 by their values in Equations 4.3
and 4.4. Below, we rearrange the tertns by multiplication with “1”  (terms enclosed in
circular brackets {}) and redefine the normalizing constant G’ (terms in square brackets
[.h. Note that normalizing constants G and G’ are obtained by summing the equilibrium

state probabilities over the whole state space S. Thus, we obtain the probability of state S
as follows:

PS) = 6 (i)(m-m) ()"

Fp ﬁgll Ca)

- o (L) e ()" DGl )
= Iy Hm I " Clm—a)) T Cla)

- ERL S —am) g
_ G (ﬂm) (&)(ng am) g, ﬁl lg(m_ﬂ,) { ::_‘:m_m"C(ng—u)}

[Tako C(ny — H)J Ip a=0 a=n C(a)

[ G (_l-)"! h (re=mn) 31y — -
= i &E _ ‘
[Tazo Clny — a) (,;,,) II ctu-a (4.6)

a=0

u {ne—zm) py—zm—| i (re~zm) e
= G (l—;ﬂ) H Cly—a) = G (—ﬂ) H Cla) (4.7)
D

a=0 Ity n=ir-t}
Pp— (_L )zm
Hm Hm
1/G6 = = s 4.8
/ %( ) =, Ca) e
{ne--zm) ny—zm-1 gt (ny—xm) ne
/G = Z(@) H Clny—a) = Z(—ﬂ) H Cla) (1.9)
S Hp a=0 S ftp a=xm-i1

The above equations represent the general case of a single processor system, where
the number of memory ports is finite. With the steady state probability of the state S, we
obtain various performance measures. Next, we discuss two special cases of the state space

in Figure 4.3, a memory with infinite ports, and a memory with a single port.

Memory with infinite ports:

When each access to the memory subsystem has a port available for service (i.e. n,=n,),

there is no queuing delay at the memory. So, from Equaiion 4.4, frn(zm) simplifies to the
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following:

Jm(zm) = E’lc)’.—:) = (-i )Im (“i-) (4.10)

tm zm !

We obtain the probability of the state S fromn Eguation 4.2 by substituting values from
4.3 and 4.10. We also rearrange the terms similar to that in Equation 4.7,

PS) =G (#)(ﬂ!—:l:m) _(_E_’;__::

(ree—zmi)
= (,.,,) %',r'r (4.11)
(ne—zm) (L wm
1/G = (“p) ) (4.12)
\(m—:::m)
/6" =Tg(l= ) ;*,,,!_ (4.13)

Memory with a single port:

When n, = 1, the memory node is a single server. The state space for this system is
shown in Figure 4.4. Note that the service rate of of memory subsystem is a constant at

(= -}:), that is C(a) = 1. So, from Equation 4.4, fm{zm) reduces to the following:

fm{zm) = ﬁ% = (“—1 )m (4.14)

O:O1010120

S(0) S(zm - 1) S{~m) S(zm + 1) S(n,)

Figure 4.4: State Diagram for a System with Single Memory Pozt.

Again, we obtain the probability of the state S from Equation 4.2 by substituting values
from Equations 4.3 and 4.14. Normalizing constants G and G' are derived similar to that
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in Equation 4.7.
o = o ()" ()
e (t;f;f)"“"”’" (4.15)
1/6 =g (A) 7 ()™ (4.16)
1@ =g ()" (4.17)

Performance Measures:

Using the equilibrium probability of the system state S, we compute the performance

measures of interest, processor utilization, memory utilization, and ntemory lalency.

Processor Utilization:

The utilization of the processor subsystem is the probability that at least one thread
is in the processor subsystem. Thus,

Utilization of the processor subsystem = L %~! P(n, — am,wm) =1— P(0,n,) (4.18)

The execution phase of a thread (R cycles) is immediately followed by a context

switch time of C cycles. So, U, is the useful fraction (-R—:;%) of Equation 4.18.

mn= R
Up = (rfz) Tt Pl = am,om) = ( A +c) [1-PO,n)] (4.19)

Memory Ultilization:
"The utilization of the memory subsystem, Uy, is the average utilization of all memory
ports. And, the utilization of a memory port is the probahility that the port has at
least one request for service. So, using Equation 4.5, U,,, is defined as follows:

"y
Un = % Z P(ny — o, zmn)Cem) (4.20)
P rm=1

Memory Lalency:
The latency of the memory subsystem is the response time to an access. When the

number of ports at the memory is one, we obtain the memory latency Ly, as [ollows

(a similar response time equation is derived by Kleinrock [52]):

_ U/ 1
LObJ - 1 - P(ﬂt,o) ,\ (4-21)
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where A is the arrivad rate at the memory. Since Uy, is the fraction of time the processor
is busy, A is obtained as g, x Up. When ny, > 1, we obtain the average number of
accesses § waiting in the queue at the memory subsystem. A new access gets service
after these § accesses are serviced.

1y

q = Z amP(ny — xm,zm) (4.22)
zm=0
Lo = C((])L + (f? - C(‘?))L (423)

Now we compute U, and Uy, for three cases based on the number of memory ports:

1. the general case (finite n,);
2. the ideal case (infinite n,); and
3. a typical case (ny = 1).
Gceneral Case (finite n) :
When the number of ports at the memory subsystem is finite (i.c. ny > np), the

transition probability of a state S is given by Equation 4.7. We use Equation 4.19 to

obtain the processor utilization.

Uy R+Cx(1—P[S(U,m)]]
R 1
= 1- (4.24)
(ng-xm) e
f+C ."zl:u=U (%’j") ! ::gzo.‘rm l C(nt - G)

The denominator in Equation 4.24 is rearranged in terms of am < ny and am > ny:
R
r=pra |1
R+C

1] ( - —_y— -
. nZ, H-J;- Ry-Tmt) (L"p_)"_'_'_l"_l -7_-’-:_[ . nzl #ﬂ n—Im J—
em=0 \ ! rm=np+l \ HP g
=t 4.25)

We derive the utilization of memory subsystem from Equation 4.20. Substituting

tue transition probability of a state from Equation 4.7 in square brackets, we obtain:
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A
1 ne 1 (e —am) (_!_ )
™ o e ik
" Ty pn=1 (#p) ;‘;’__’_‘I C(u) C(”“)
- __l__ [1 = Plap = 0,m = 1) -
ny (,:;_;,)
_ 1 R+C U;J N 1 L " |
= n, R (%) - ;; R (4.27)

Ideal Case (infinite n,) :
When n, > ny, an access to the memory subsystem does nol wail. for a service.

The transition probability of the state of the system is given by Equation 4,11

The processor and memory utilizations are obtained from Equations 4.19 and 4.20:

i i
Uy=5——=11 - (1.28)
n+C Ly \ (Be—EmH) '
3::1:(] (%ﬂ,") ( ;;,m ._F )
1 TH . np—rml !
Un= — el =2 -w—l o
ny =~ Iy arn |
1 g, (R +C ) 1 L
0y fan R r m R’ ( )

We note a similarity between Equations 4.25 and 4.28. When zm < np, the mem-
ory subsystem gives an illusion of being ideal in that the quencing delay is zero. In
the general case described above, the first term in the denominator of Equation 4,25
captures this behavior. Substituting n, = n; in Equation 4.25 yields Equation 4.28.
The impact of the hardware parallelism (n,} and the exploited application paral-
lelism (n¢) on the processor performance is similar. As we will see in Sectiond.d,
the sccond term in the denominator of Equation 4.25 contributes very little to the
processor performance (this occurs when zm > ny,, ie, hardware parailelism at the
memory subsysteimn is futlly exploited). Thus, a wavching of hardware parallelisin to
the application parallelism is necessary to fully exploit the performance gains due to

multithreading.
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Saavedra [80] and Alkalaj [8] use such an ides! case for their analyses. They assume
that a multithreaded system provides a fixed latency to access its resources. When a
large number of threads are present, the processor utilization will eventually becomes
high {note that the denominator in Equation 4.28 becomes very large). Thus, a large
latency can be tolerated. This case ignores the contention at the memory, hence is not
true in practice. The general case (with finite 1, < 7,) and the typical case (n, = 1)

arc mainly observed.

Typical Case (n, =1) :
When n, = 1, C(xmn) is 1. Thus, Equation 4.19 and 4.20 reduce to the following:

Up =71~ (4.30)

z::"=u (':—;3—) {(ng=xm)
L

Up
U"" = ."j-tg( ﬂrnj }lpi = }Z-Up (4‘31)

Since the memory subsystem is a single server, the system is symmetric and simple.
The maximum achievable processor utilization is defined by the ratio of thread exe-
cution time at the processor and the service time for access at the memory. If R > L
then processor reaches saturation with large number fo threads, otherwise memory

subsystem saturates. Thus, U, in following two cases are obtained as follows:

1. when ¢ ” < 1:

oo n=—xm
R
U = ( = 1_ 1 lm = 4.32
' ( .cm—u ( p’P ) )) ( ( Hy )) L ( )
2. £>1
- I - T _ R
U =me (1 B 1/( wns (%) )) =530 (4.33)

Effective Memory Latency:

In all three cases, Uy, is related to Uy through L, R and the maximum number of ports in
use (1, lor general case, and n, for ideal case). The memory utilization from Equations 4.27,
4.29 and 4.31 is:

L 1
Ui nnnln,.,m[ T r = m x ﬁUp (4.34)
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piy ]
[9 ]

Intuitively, the maximmun number of accesses a memory can service simultancously is the
minimun of its number of ports and the number of threads in the system. So, the service
rate at the memory subsystom is min{n,,,n;};t,,, = iy 't"”' . We define the effective
memory latency, Leyy, as the reciprocal of the effective service rate at the memory. Lygy is
on average the minimum time between two successive service completions al the memory

subsystem. As shown later, L. sy significantly affects the processor performance.

We apply the above analytical model to analyze the performance behiavior of the single
processor system in Section 4.3.

4.3 Results

In this section, we highlight our results when our model is applied to analyse the perfor-
mance of a single processor system. Our pe-formance incasures of interest ave, the processor
utilization, metnory utilization, and memory latency. We characterize the variation in these

i @asures with architectural and program workload parameters:

o We show that an inerease in Uy with an incerease in the number of threads i almost
to the same extent as the increase in Uy with an increase in the numnber of threads.

A duality exists between n, and 7p, and a minitnum of the two values dominates U,

e We show how the processor and memory utilizations vary with the thread runlengih
and cffective meutory latency. We also show how to capture the transition region
of Uy and Uy, curves using system utilization, an average of processor and memory

utilizations. We also note variations in memory latency, Ly, with model paraneters.

e We show the critical values for architectural and program workload paramecters to
achieve high processor performance. Specifically, the thread runlengths should match

(and exceed) the effective memory latency values to yield high U,

Our results are arranged as follows. Seccion 4.3.1 presents a verification of the mouel
predictions using simulations of Petri Nets. Section 4.3.2 shows the effect of duality of n,
and 7, on the processor performance. Section 4.3.3 shows how Rt and L, p afect subsystem
utilizations. Finally, Section 4.3.4 investigates critical values for parameters to yield a high
processor utilization.
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4.3.1 Verification of the Model Predictions

Now, we verify predictions of the analytical model presented in Scection 4.2, We compare
the model predictions with simulation results of the Stochastic Timed Petri Net (STPN)

model of the single processor multithreaded system shown in Figure 4.1.

Our choice of STPN model to verify the model predictions is based on the following

reasorns:

s The STPN models provide an easy approach to quickly modify system designs, and

verily their correctness.

o The STPN models with product form solutions are equivalent to the queueing net-
work models [96]. Hence, we can verify the analytical predictions of the queueing
nctwork models easily. Morcover, the STPN models provide a flexibility in the use
of arbitrary distributions for paramecters. For example, we can simulate an actual
program cxecution with the Voltaire package [72], which is used for our purposes.

Many similar packages exist. !

The STPN model for the single processor multithreaded system under investigation is

shown in Figure 4.2(b). The processor and metnory subsystems are marked by dotted lines.

The STPN model is a bipartite graph of place and transitions. A transition receives
tokens from onc or more input places, and delivers them to one or more oufpul places.
Circles denote places which hold tokens. Either a token occupies some space in the places
or keeps a transition busy. Voltaire [72] allows various attributes to tokens, which facilitates
the processing of tokens. Lines without arrows denote immediate transitions, e.g. 0 and
t4. These transitions fire as soon as their input places have tokens. Rectangular boxes

denote transitions with non-zere firing times.

The processor subsystem counsists of places p0, pl, and p2. A pool of ready threads is
maintained at the place p4. A single token in the place p0 ensures that at a time only one
thread is executed by transitions ¢0, t1, and t2. The transition £1 executes a thread for

the duration R, before a memory access is requested. The memory access is queued at the
place p3.

!Murata [62] provides a detailed survey on Petri Nets. Trivedi et al. [96] discuss some of the recent tools
for performance evaluation based on queueing networks and petri nots.
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The memory subsystem consists of places pdb and p6. The munber of tokens in pb
indicates the number of ports at the memory. For cach memory access ab p3, a port is
chosen from place p6, and is kept busy for a duration L at the transition $3. On service
of the meniory access, the corresponding thread is placed in the ready pool (pd). For o
simulations, the duration R is exponentially distributed. L and € are fixed time delays.

The analytical model assumes exponential distributions for all non-zero delays.

We perform simulaticns [ur 100,000 time units (which is long enough to climinate the
transient cffects in simulations). Our performance measure of interest is . We report

simulation results and analyticel predictions for the following two sots of parameters:

1. The Hdeal Model: R =15, C =2, L =100, and n, = 20.

2. The General Model: R =15, C =2, L =100, and n, = 5.

In Figure 4.5, U, is plotted with number of threads, for two values of 72y, “Simulation”
represents the mean value of U, obtained from multiple simulation runs, “Model” represents
the prediction by analytical model (Equation 4.28 for the ideal case and Equation 4.24 for
the general case). “Asymptote” represents a simple, deterministic analytical model, which

we proposed in [65). The deterministic model is as follows:

Up =gip whenn =L (4.35)
U, = 7%%:_‘-&- whenn, < npand B x (1, — 1) < L. (4.36)
U, = ie—’,ﬂ‘- whenn, > npand R xn, < L. (4.37)
U, = 7%(: [R xmin{n, — 1L,up}] > Landny > L. {4.38)

From Equations 4.36 and 4.37, we observe that n; > n, yields no performance gain,

Ideal Model: n, =

When the number of ports is large (20 in this case), there is almost no queuncing at the
memory, and is defined earlier as the ideal case. Figure 4.5 shows that analytical predictions
match well the simulation results (within &= 3%). A possible source of discrepancy is that
the STPN model uses a fixed value of context switch overhead C, while the analytical model
uses an exponential distribution,
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Processor Utilization U_p

Simulation- 20 ports
100 4~ Asympiote- 20 ports
Model- 30 ports™ "7
0.90 _ Simulation= 3 ports. =~ 7
/ Asymptote- 5 ports
0.80 Model-Sporis — — T
0.70
0.60
0,50
. 0.40
0.30
0.20 |—
0.10
0.00
Number_of_threads n_t
0.00 5.00 10.00 15.00 20.00

Figure 4.5: Comparing the model with simulation results and the asymptotic analysis: for
n, = 5,20, =15 C = 2, L = 100
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These results also match with the analytical results of a more complicated solution of
Petri Net model presented by Saavedra-Barrera et @l [80]. The STPN wodel obtains a
closed form expression for processor utilization [80] by assuming the runlength as a random
variable, and keeping other parameters fixed. Such model cannot account for contentions,

e.g. the next case shows 7, < 1, and contentions occur at the memory.

General Model: n, <

Now, we reduce the number of ports to 0, t.e. less than the maximum muuber of threads.
Analytical predictions by Equation 4.24 match within 5% of the simulation results, Again, a
small deviation from the simulation results occurs, which can be attributed to the exponen-

tial distribution of C in the analysis, as opposed to a fixed value in the STPN simulations.

In both the idegl case and the general case, we note that the processor utilizalion
increases with number of threads. The general case also shows that processor utilization
saturates, when 7, exceeds np. This lends credence to the above simple, deterministic model
described by Equations (4.35) to (4.38).

Thus, the performance prediction by the analytical model developed in Section 4.1
compares well with the performance results of STPN simulations. While we report the
predictions of analytical model in rest of this chapter, these have been verified using simu-

lations.

4.3.2 Processor Utilization

In this section, we characterize the variation in the processor utilization with architec-
tural and workload parameters. We use the general case to derive processor utilization as
described in Equation 4.25. Wheu ny = 1, Equation 4.25 converges Lo Eguations 4.30.

Similarly when n, > 1, Bquation 4.25 converges to Equation 4.28, the tdeal case,
p = Tity 1 B | 1

Figure 4.6 shows how processor utilization changes with the number of threads. ‘To show
how the hardware parallelisn at the mewmory subsystem affects the performance, we use a
large L value of 100 cycles, and small 12 of 15 cycles. € is 2 cycles. When the number of
memory ports is high, Up, rises rapidly with the number of threads. The saturation value of

U, is high, if ny is high. For example, ai n, = 7, U, rises to 75% before saturaling. Oun the
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other hand, at a low n, of 4, U, saturates at a low value 47.5% even when n, is increased
to 10. At low ny, since L is significantly larger than R, memory services the accesses at a
slower rate than that of processor requesting them. So, the processor cannot overlap the
memory latency with computations, and the processor utilization is low. In summary, the
processor utilization increases with the munber of threads when the memory subsystem can

service multiple requests simultancously.

100[' o—o n_p:l
~ 80
s
[l
R
& 601
N
§
S 40}
§ . _*._.—-lr-l—[l:-g-——)(--—--x-———x.._-.)(___fn‘
= "6 -—=0 =10 : !
™ 20t erTE ol RIS
-0 7=t o o
% 2 4 6 8 10

Number of Threads n_t

Figure 4.6: Effect of n, on U, when R = 15, C = 2, L = 100.

Now, we show how the variation in n, as well as n, affects the processor utilization
(sce Figure 4.7). We consider an average runlength R of 25 cycles. Other parameters
are: C = 2, and L = 100. Interestingly, increasing either of the parameters, n, and
n,, increases U, to almost similar values. The lower of the two parameters dominates
Up values. This duality is a result of the available hardware parallelism in the systemn,
¢.g., np ports at the memory. (Recall the discussion following Equation 4.28.) Note that
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Up saturates for ny > (np +1). Thus, the luwency of an ideal memory subsystem can
be tolerated using 5(= 1 + L/R)} threads. Figure 4.7 shows that U, reaches nearly 80%.
Intuitively, when 1y equals n, + 1, all ny, menory ports are busy sorving memory aceesses,
and the (n, + 1)-th thread executes on the processor. The surface for Uy, values is alnost
symmetric around n, = np. Thus, the parallelism in the program workload improves the
performance as long as the parallelistn exists among the hardware resources. A use of split-
phase transactions allows the multithreading to exploit the concurrency among hardware

resources, c.g. simultancous accesses to multiple memory ports.

Processor Utilization U_p

Number of Ports n_p Number of Threads n_t

Figure 4.7: Effects of n, and ny, on Uy, when € =2, L =100, and 12 = 25.
In summary, we note that:

e The parallelism in the program improves the performance as long as the parallelism
(concurrency) cxists among the hardware resources in the system. A duality exists
between n; snd n, such that same changes in cither parameter affects the processor
performance by almost the same value.
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o The minimum value of the two parameters, n, and n,, dominates U, value. So,
the most of the performance gains can be obtaired cven with a low value of =, if
= (n, +1).

4.3.3 Subsystem Utilizaticns

In this section, we will study how the performance of both subsystems varies with archi-
tectural and program workload parameters. Specifically, we track the knce of the processor

performance, i.c. transition region where the performance changes are significant.

The effect of thread runlength on utilizations of processor and memory subsystems is
shown in Figure 4.8. The processor utilization is denoted by U_p and memory utilization
by U.m. We fix the L value as 50, the maximum value of R in the Figure 4.8. We assume
that n, = 5, so we fix 7, at 3 to exploit full hardware parallelisim. With increasing 12 values,
U, increases rapidly. Since ny, = 3 and L = 50, the knee occurs when R = 17(= ;{;—). Above

this 2, U, values are high.

The variation in U, with increasing R shows that each thread spends a smaller fraction
7 . a1he o . . :
(m) at the memory subsystem, so Uy, decreases. Uy, valucs start decrcasing when R
L

approaches Lgsr (= ™ in this case). The workload is equally balanced between the two

subsystems at It = Loyy, and U, cquals Uy,.

For a single processor system, we define the system utilization, U,y,, as an average of

the processor utilization and the memory utilization:

Ugys = M (4.39)

We define Uy, with the two purposes. First, for a high performance, {7; should be high.
For a cost-cffective performance, we want both U, and U,, to be high, i.e. Ugys should be
high. Second, we want that U, should track the transition region, where one subsystem
reaches saturation with changes in a parameter while the other subsystem comes out of
saturation. Ugys is high near the knece of the U, curve. We call a maximum value of Uy,
as the Pesk System Utilization, (PSU). The PSU tracks the onset of workload parameter
values yielding a high Uy. From Figure 4.8, with increasing R values, the PSU occurs when

Up is ncar saturation (= 85%). Also, the Uy valuc is close to its maximum.
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Figure 4.8: Uy, Uy, and Ugy,, when € =0, L = 50, and ny = 5.

Figure 4.9 shows a perspective on how the performance measures will change with
Leps. Usys behavior with Lesy (= ,%) is similar to Ugyy behavior with R as scen earlier in
Figure 4.8. We note a significant increase in performance of a multithreaded system when
concurrent requests at the memory are serviced. Uy, and L, values indijcale thal quencing
delays at the memory are sufficiently low even with 2 to 4 memory ports. For ng, = 1, Loy,
is high. At the PSU i.c. for n, = 5, however, the value of Ly, is less than twice the no-lowd

value,

Now, we study the variation of U,ys with thread runlength. Figure 4.11 shows how the
PSU changes at different L.;; values. Other paramcters are: ¢ =0, L = 50, and ny = 5.
We achieve the variation in L.y, by changing the number of memory ports. As expected,
when Leyy is large, the PSU occurs at a large R (=L.s7). An increase in /2 also results in
a high U,. So, the PSU (= U, = Usy) is also high.
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Figure 4.9: Effect of n, on Uy, Uy and Usys, when R = 10, C = 0, L = 50, and n, = 10.

We show the variation of Usys with Ly in Figure 4.12. U,y curves for R= 12, 25 and
50 cycles, are similar to those in Figure 4.11. We also observe that Uy, values increase
when the PSU occurs at high R values. Other than service times, the only architecture
parameter being changed is n,. Let us analyze the two equations for processor utilization,
Equations 4.28 and 4.30. These equations indicate that n, memory ports with a mean
service time of L cycles do not exactly behave as ene memory port with a mean service time
of 1{7 cycles.?2 However, these results on U, and Uy, for multithreaded systems show that
their behavior is indeed similar. We will discuss the design implications of this ubservation
in Section 4.4.

¥To be precise, each term in the denominator of Equation 4.28 is smaller by a factor WI—-T) f};’; with
l'l',
respect Lo the corresponding term in Eguation 4.30. So, increasing L and ny, to keep ""—” the same, yiclds a

slightly lower value of U,
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Figure 4.10: Effect of 1y on Loy, when R = 10, €' =0, L = 50, and 1y = 10,

In summary:

e System utilization, Uy, is an average of U, and Uy, values. The peak system uliliza-
tion, PSU, tracks the knee of the processor performance. The PSU oceurs, when R
equals Leyy.

o With n, ports, the memory subsystem behaves similar to a server with a mean service

H Lo Jne . H ‘gue e w1
time of ﬁ(-— Ls;) cycles, under a multithreaded program exceution.

4.3.4 Critical Values for the Parameters

Previous sections {4.3.2 and 4.3.3) showed a duality between the processor and memory

subsystems. In this section, we study how this duality helps to achieve high processor
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Figure 4.11: Effect of Thread "tunlength on System Utilization, when n, = 5, C = 0,
L =50.

performance. In particular, what the critical values are for program workload paraineters—

the number of threads and their runlengths,

We have observed that increasing R beyond L.y, marks the onset of high U, region.
Figure 4.14 shows the variation in Uy, with thread runlength, for different values of Leyy.
We change L.y by varying the number of memory ports. Other parameters are: n; = 10,
C =2, and L =100. In general, R > Ly yields a high U,. However, if ft is large when
R equals Legp, Uy, values is high. For example, when R = L,py = 100 and np = 1, Uy is
90%. When R = Loyy =10 and n, = 10, Uy is 72%. (Using R = Lesy =10 and np, =1 in
the Equation 4.25 described in Section 4.2, we get U, = 81%.) In other words, a memory
subsystem with a high L and n, approaches (but does not equal) the performance of a

faster memory subsysteni, i.e., lower L and a low n,. The difference is prominent at low R
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Figure 4.12: Effects of 7, and 12 on System Utilization, when € =0, L = 50, 1, = 5.

values. This gives credence to the belief that hoth low latency and high bandwidth are a

requiremers for high performance computing [17)].

Let us look at the multithreaded program workloads used in practice. Two contrasting
types of multithreaded program workload are used in practice: First, Schauser ot al [85],
and Roh ct al [77] report thread runlengths of the order of 3 to 30 instructions. Second,
Maqueline et al [59], and Thekkath and Eggers [90] veport thread runlengths of the order of
700 to 1,000,000 cycles. So, which workload characleristics are suilable for single processor

multithreaded system?

We consider the first group of multithreaded workload, which exhibits a fine granularity
of threads, i.c. 3 to 30 instructions. To achieve the condition 2 = L.y, the effective nemory
latency for an architecture should be low. Increasing the number of memory ports helps

to reduce Lgsy, and achieve high performance on such a program workload. Figure 4.14
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Figure 4.13: Effects of ny and R on Ly, , when € =0, L = 50, ny = 5.

shows that 4 to 6 ports are sufficient to previde good performance. Additionally, the use of
interleaved memory banks can increase the concurrency among multiple memory requests.
An advantage of the interlcaving is that the number of interleaved banks can be as high as
16 [76). Now, consider the sccond group of multithreaded workload with thread runlengths
of the order of 700 to 1,000,000 cycles [59]. Threads do not switch the context for local
memory accesses, The thread switching itself requires restoring the thread identifiers from
the local memory. Such partitioning is not intended to take advantage of the multithreading

technique on a single processor system.

4.4 Summary

The major results for this single processor system are summarized below:
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2, L = 100,

1. The parallelism in a program workload improves the performance as long as the
concurrency exists among hardware resources in the system. The result is a duality
between processor and memory subsystems. A change in either of ny and n, affects U,
by almost the same value. However the parameter, which has a lower vilue, dominates

U, value.

2. Under a multithreaded program execution, the performance of a memory subsystem,

with ny poris and a latency L, approaches that of the subsystem with 1 port and
latency #p(= Lesyy:

3. For R > Less. a high Uy, is obtained. At R = L., Uy, is almost 90% of its maximum

value. Coriesponding values of L,y are also low.
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The above observations have a significant impact on the design of a multithreaded
system. Given typical local memory latencies of 20 to 100 cycles (28, 19, 46], a multithreaded
program workload should have low runlengths (like 3 to 30 iustmictions in [85] and [77]) to
exploit benefits of multithreading on a single processor system. However, L.y should also

be low to achieve a high Uy, In other words, n, should be high.

In practice, a large size memory subsystem with 2 or more ports is prohibitively expen-
sive. In comparison, on-chip caches of much lower sizes- 8 to 64 KB- on current generation
processor support at most 2 to 4 ports [104]. Only for registe - sets, at most 5 to 10 ports
are viable [61, 104]. Since the objective of multiple ports is to increase the concurrency in
memory accesses, we can take advantage of the following memory organizations to serve

the same purpose (listed in the order of their increasing costs):

1. A set of interleaved memory banks support concurrent accesses, if no two requests are
directed towards the same memory bank. This is the cheapest approach to increase
the memory baudwidth, and is widely followed. 4, 8 and 16 way interleaved memory
banks are commonly observed in commercial designs, e.g. Cray X-MP/Model 24 uses

16-way interleaved memory [76).

2. A pipelined memory module can service the accesses by more than one memory re-
quests, depending upon the number of stages in the memory pipeline. These siages
can be: address decode, data read and fetch, and output data latch. This approach

is costlier than using memory banks.
We briefly discuss the implications of our results on the following two design approaches:

Prime number memory system: This approach to the memory interleaving is useful to
reduce contentions at memory modules, when access patterns from multiple threads
are almost identical (74, 39]. A major impediment of implementing a prime-nw abered
memory subsystem is the increased latency for address calculation, Our results in-
dicate with n, concurrent accesses at the memory, the performance of the memory
approaches that of the memory with a latency of ;fép Since the support for split-phase
transaction in a multithreaded system cnsures that the processor is not held up, the

address computation can take place either during the context-switch time or as the
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first pipelined stage in the memory subsyster. Thus, with a marginal increase in

latency, access contentions can be reduced.

Cache-less Systems: Two types of general purpose computer systems, which do not use
caches, have been proposed: first, dataflow systews [32, 47), and second, nmltithreadod
systems like HEP [87, 91. (We note that the vector computers exploit spatial loeality
through the use of large vector registers [76].) A conunon aspect. between these two
types of systems is that asynchronons execution along multiple throads at a processor
mukes it difficult to exploit the locality between the computation on these threads.
So, if we attempt to exploit the locality ou one thread, the miss rate on other threads
may suffer [4, 91]. Cache coherence among multiple processors is another significant
rescarch problem {22). In a cache-less system, as long as memory is capable of sup-

porting multiple concurrent accesses, multithreading can yicld substantial benelits.

These results and design considerations of a single processor systemn also provide an
insight to the performance of a processing clement in a multiprocessor system, which we

discuss in the next chapter.



Chapter 5

Multiprocessor System

5.1 Introduction

In Chapter 4, we developed an analytical model to predict the performance of a single
processor system. We characterized how architectural parameters like the memory access
time, and workload characteristics like the thread runlength, affect the performance of the

processor and nemory subsystems. -

A single pre essor system, augmented with a network interface, lorms a processing
node of multiprocessor systems with distributed shared memory. An analysis of these
multithreaded multiprocessor systems, however, becomes significantly more complex due
to an increase in the number of parameters to characterize the architectural subsystem as
well as the multithreaded program workload. This chapter focuses on problems 3.2.1, 3.2.2,
and 3.2.5 {discussed in Chapter 3). The objectives of this chapter are as follows. First,
we extend the analytical framework to the performance modeling of such multithreaded
multiprocessor systems. Second, we analyze their performance behavior. Third, we apply

the analysis to optimize the processor performance on a multithreaded program workload.

A multithreaded muitiprocessor system (MMS) consists of an interconnection network
(IN) subsystem, and processing nodes with processor and memory subsystems. Latency for
communication across the network significantly afiects the performance of & multiprocessor
system [14]. A multithreaded processor supports multiple outstanding accesses, The pro-

cessor performs the computation on one thread, issues a long latency access, and switches

72
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to another thread. Thus, the processor utilization hmproves. But a side-effect of wlti-
ple outstanding requests is to incerease the contention at the memory and interconnection
network, which may further increase the memory and network latencies. In burn, longer
latencies for individual accesses delay the execution on the waiting threads. So, a complete
performance model should capture the feedback effect of the concurrent activities at vavious

system resources on the access rate and lateney of a subsystem.

In this chapter, we extend our closed queueing network (CQN) model, developed in
Chapter 4, to a multithreaded multiprocessor system. Additional considerations to the
performance modeling are as follows. First, the multithreaded program workload on a
multiprocessor system exhibits characteristics like the locality of accesses, i.e., whether to
request a remote memory access, and il so, how far to travel on the network., Sccound, the
number of functional units increases significantly. The iuteractions among functional units
also needs to be modeled. Third, to accurately compute the waiting time at subsystetns in
the presence of access contentions, these accesses {threads) from ditferent processor should
be considered as separate customer classes in the closed quencing network. With the last two
considerations, an exact solution of a CQN model is prohibitively expensive. For example,
cven a small system, with 2 processors having 10 threads each, has ('9) x () = 1166400
states. Here, “37 represents one processor and two memory modules on vwhich a thread (or

its memory access) receives a service.

Tke motivation for our performance model is to meet the needs of our anticipated
users: architects, programmers and compiler writers of multithreaded systems. Given aset
of architectural parameters (e.g., number of processing nodes, memory access time, network

switch delay, context switch time), users would like to know:

e How to achieve high processor utilization on a target sct of progrion worklond?
e How does the processor utilization vary with the workload?

¢ How doces the network performance vary with the progrim workload?

The above information should help a compiler writer for performance related optimizations
on a programn workload. These optimizations involve a decomposition of the data and
computation on different processing nodes, and a partitioning of the computation into

multiple threads. We refer to these tasks collectively as a thread pertitioning strategy. The
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performance model shows how the changes to a thread partitioning strategy wounld affect the
performance.  For system architects, the information is needed to tune the architectural
parameters for & target set of workload. A concern to users of a performance model is
whether they nced ‘o estimate any input parameter, which is not known a priori. And

finally, how robust is the prediction of the performance model?

Our performance model integrates simple models of processors, memories, and inter-
connection network subsystems, This integrated model also accounts for the interaction
between these subsystems under various application program workloads. Inputs Lo our
integrated systetn model are workload parameters (e.g., number of threads, thread run-
length, remote access pattern, ctc.) and architectural paramcters (e.g., memory aceess
time, network switch delay, ete.). These parameters are directly provided by users. The
model predicts the processor utilization, the network latency and the message rate to the
network. We present the formulation of this model, its solution techniques, its verification,

and its application to the performance evaluation of multithreaded multiprocessor systems.

Previous analytical studies of multithreaded architectures have mainly focused on the
effect of workload parameters on processor performance (sce Saavedra-Barrera et al. [80],
Alkalaj et al. 8], and Agarwal [4]), but their models do not incorporate the cffect of con-
tentions at the memory and network. On the other hand, studies on interconnection net-
works model the effect of contentions, but assume that the efiect of workload is reflected
by an average value of the input message rate (sce Abraham [1] and Dally [30]). We call
these performance models as open system models, or open quencing nelwork models (QQN).
Perhaps the work most related to this chapter are by Willick and Eager [101], Johnson [50],
and Adve and Vernon [2). All three work model a multithreaded multiprocessor system as a

closed system to capture the subsystem interactions, which we will elaborate in Section 5.11,

We construct our integrated system model based on a set of assumptions, which are rea-
sonable for current multithreaded system implementations such as EARTH [46], TERA [9]
and Alewife [6]. Our solution technique uses the mean value analysis (MVA) [75], lor
the following reasons. First, large systems can be efficiently analyzed. Second, the MVA iy

amenable to heuristic extensions for complex subsystem interactions.! Third, MVA provides

'We will discuss how such heuristics are helpful to analyze the EARTH system in Chapter 7. The
strultancous resource possession property, during an access at a processing node, violates the assumptions
for an application of a product form solution based techniques for queneing networks.
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an easy interpretation of performance measures, unlike the probabilistic approach of state-
space based techniques. Fourth, it has been suecessfully applied to analyze real computer
systems, e.g., Wisconsin Multicube [58). We verify the correctness of the model predictions
of processor utilizations, latencies and message rate, using a simulation of a Stochastic
Timed Petri Net model of the multithreaded multiprocessor system., We quantitatively
characterize variations in these performance measures, identify the system bottlenecks, and

wovide an insight Lo the impact of performance related optimizations,
¥ Y i I

Our closed quencing network based model enabled us to identify the feedback cffect
ol subsystems on the processor performance. We show how the processor performance
is affected by the maximum message rate per processor delivered by the network for a
given remota access pattern (defined later in Section 5.6 as the capacity of the network).
Our model helps a user to locate the operating point for a specific workload, and indicate
whether the network capacity has been reached, thus providing a guidance on how to tune

the workload parameters.

The uscfulness of closed system model, like ours, is two-fold: One, users can work di-
rectly with the program workload and architectural parameters which are familiar to them.
And two, when the network is near saturation, the sensitivity of performance prediction to
model input parameters is significantly lower than the sensitivity of performance prediction
using open system models. Our analysis indicates that the nctwork latency reduces with
a simultancous increase in the message rate to the network because of cither an increased
locality in the remote access pattern or the use of a faster network! This is not obvious
from open system based network studies [30, 3]. We then compare the robustness of our
model with three, successively refined open system models employing feedback to improve
accuracy of their processor performance predictions, and demonstrate their weaknesses

and tradeoffs with respect to our model.

Finally, we show through a simple example, how a compiler writer may progressively
tune a program workload. We show that the processor utilization increases with an increase
in the number of threads, as long as the message rate to the network is below the network
capacity, even when the observed network latency for individual accesses experienced per
thread is large. Once the capacity is reached, a higher locality in remote access pattern
(through data set partitioning) can improve the capacity value, and thereby improving the

processor utilization. 1f the processor utilization remains low, then increasing the thread
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runlength improves the processor utilization.

The rest of the chaptu is organized as follows. In the next section, we ontline our wulii-
threaded multiprocessor system, present the multithreaded excention model, and discuss
the assumptions made to develop the analytical model of the multithreaded multiprocessor
system based on closed queueing network, In Sections 5.3 to 5.9 we show how to evaluate
the performance of our multithreaded multiprocessor system using the results derived from
the closed queucing network model. In Scetion 5.4 we verify the analytical predictions using
Stochastic Timed Petri Nets (STPN) simulations. In Section 5.11 we dizeuss the related

work. Finally in Section 5.12, we present the concluding remarks.

5.2 Analytical Model

In this section, we outline the multithreaded multiprocessor system (MMS), and the pro-
gram workload. Subsequently, we describe how to analytically model the MMS and derive

the performance measures of interest.

Our MMS consists of processing elements (PE} connected through a 2-dimensional torus,
as shown in Figure 5.1. Each PE has a multithreaded processor, and a part of the distributed
shared memory. A PE is interfaced to a switch on the IN. Each PE containsg three subsys-
tems: a processor, a memory module and a switch on the IN (see Figure 5.2). A connection
cxists between each pair of these subsystems at & node. An access to a subsystem incurs a

delay, and may encounter a contention from other accesses.

The program execution model is similar to our earlier description in Chapter 2 (Sec-
tion 2.2). The application program is a set of partially ordered threads. A thread consists
of a sequence of instructions followed by a memory access. A thread repeatedly goes
through the following sequence of states- execution at Lthe processor, suspension after issu-
ing a memory access and after arrival of response, ready lor exceution, Threads interact
through accesses to memory locations. We assume that the application programn exhibits
similar behavior at each PE, and that the load is evenly distributed (like a Single-Program-
Multiple-Data, SPMD, model) [43]. This assumption provides a user with a tangible, small

sct of workload characteristics to analyze their cffect on performance.

The Multithreaded Multiprocessor System:
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We now describe the MMS and a PE in Figures 5.1 and 5.2, Table .1 in Appendix B
sunnmarizes all symbols. We use simple models of subsystems and show their impact on
the system performance. In later chapters, we will show how subsystem interactions in a

real system can be modeled and analyzed.

Processor: Each processor exeeutes a set of 14 threads. These threads may be ny iterations
of a do-all loop [43]. The time to exeente the computation in a thread (including the
issue of a memory access) is the runlength of a thread, and its average is denoted by R.
After issuing a memory access (whother loczl or remote), the processor context switches to
another ready thread. C is the context switeh time. X, is the rate of messapes sent by the

processor to the IN.

Memory: The processor issues a shared memory access to a remote memory module with
probability premote and to its local memory module with probability (1 — premare). Let the
memory latency, L, be the time to access a local memory module (without guencing delay)

and observed memory latency, Laps, be the latency with queucing delay at the memory.

IN Switch: The IN is a 2-dimensional torus with & PEs along each dimension. Figure 5.1
shows an example of an IN with 16 PEs. We assume that cach processor is interfaced to

the IN through an inbound switch and an ontbound switch as shown in Figure 5.2

The inbound switch accepis messages from the IN and forwards them either to the local
processor or to other switching nodes towards their destination PE, The oulbound swilch
sends messages from the host processor to the IN. A messagn from a PE enters the TN only

through the outbound switch.

The time taken by a message between its entry to the network from an ontbound switch
and its exit from the network through an inbound switch at the destination PE is called
the network latency. A message requires S time units for routing at each switch on the IN.

Sobs is the one-way network latency with quencing delays.
The Closed Queueing Network Model:

The closed queucing network (CQN) model of the MMS is shown in Figure 5.4, Nodes
in the CQN model represent the components of a PE and edges represent their interac-
tions through messages. P, M and Sw represent the processor, memory and switch nodes,
respectively. The service rates for processor, memory, and switch nodes are denoted by

'IIE’ -}; and :,I;, respectively. An arc indicates how the access is sent from the tail of the arc
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to its head. A value on an are is the probability with which an access at the tail nses that
link. Values for network links are not shown. We assume that all nodes in the performance
model are single servers, with First Come First Served (FCFS) discipline. Their service
times are exponentially distributed. Now, we describe how to compute waiting time at the

nodes, when the system operates at steady state with ny threads on each processor.

Processor Node: The mean value of serviee time for a thread on the processor is R time

units. Threads do not migrate, so threads at a processor 1 belong to a class 7 in the CQN

model. The waiting time w]; for a thread at the processor node ¢ includes its service time
’

and the queucing delay (when other ready threads are serviced ):
- =l .
wi; =(1+%=n; R (5.1)

ilere, “1" denotes the newly arrived (7,-th) thread. 7;; is the number of ready threads at
the processor ¢, when the number of threads in class 1 is n,. Thus, ﬂ‘,ﬁ—’n,-,,- is the number of
threads of class ¢ at the processor 4, when the population of class 1 is (1, — 1), and presents
a queneing delay of ﬂ'"_'—[n,-'.' R to the newly arrived thread. Note that n; ; for class i at

processor j is zero, because no class € thread is exceuted by processor j.

Memory Node: The mean value of service time, for each access to the memory, is L time
units. For requests from a thread at processor i to the memory at node j, em; ; is the visit
ratio. The visit ratio for a subsystem like the metnory at a node 7 for a thread on processing
node %, is the number of times the thread requests an access to memory at node j between
two consecutive exccutions on processor i. The value of em; ; depends on the distribution
of remote memory accesses across the memory modules, Since the service demand for a

class ¢ access at memory j is em; ;j L, cach access waits for the following duration w; 5

wi; = (1+ ﬂi;—'n.-'j + Zf_._lw#i nej) em;; L (5.2)

The term in circular brackets is the total queue length experienced by a newly arrived
access from class 1 at the memory node j. The factor ule_:_l interpolates the queue length of
class i, to reflect the gueue length when the thread population in class i is (n, — 1). The

quene length due to remaining classes is 2,{;1',# Nrj.

Let the distance, h, between two PEs be the minimum number of hops required along
any possible path from one PE to reach another PE. Let dp,qr be the maximum distance

between any pair of PEs in an MMS. We assume a geometric distribution for remote access



CHAPTER 5. MULTIPROCESSOR SYSTEM 80

pattern, and characterize it using a locality parometer, po,. The py, is a factor by which
the probability of an access to a remote memory module at a distance of it hops reduces with
respect to that at a distance of (A — 1) hops. In particular, the probability of & memory
access to a remote memory module at o distanee of b hops [rom the local processor, is
Plw/a. where a is a normalizing constant. A low value of p,, shows a higher locality in

IICINOTY acCesses.

h
o
ey, = Lo {(h.13)
1]
e r
— !
= z p_:w (5'4)
h=1

The average distance dyy, traveled by a remote aceess is:
dmru h
Py
dang = —"':—'1 x h
n=1 ¢
We restrict our attention to the geometric distribution, to bring ont meaningful resulis
for users of multithreaded systems. The geometric distribution captures the locality in
remote accesses, and is uselul for high performance. A similar access pattern has heen
studied by Agarwal [3, 50]. While the remote access pattern is dependent on the workload,
a locality is exploited in practice [97]. Our model is applicable to other distributions, e,

a uniform distribution over P nodes, explored in Chapler 6, yiekls em; ; as 1/(P - 1).

IN Switch Nede: We model the switch as two separate nodes, inbound and outhound.
The mean service time at cach node is S time units, The effect, of message length on serviee
time is included in S. We make following two assumptions to simplify the switch model.
The assumptions for switches are as follows: First, the switch operates in one direetion
at a time while other links are idle, e.g. Intel's iPSC/2 and iPSC/860 [12]. Second, the
network switches are not pipelined. By changing the service rale of the switches, we obtain
the desired switch performance. This method works well, except to achieve Lthe low latency
of pipelined networks in the presence of a light network traffic. This exception is not
restrictive, because with as small as 4 threads, the network in an MMS is close Lo saturation
(Section 5.6); and near the network saturation, the performance of pipelined networks is
similar to that of non-pipelined networks (Appendix C).

A switch node interfaces its local PE with four neighboring switch nodes. (The mesh

network has four neighbors.) The visit ratio ei; j, from processor i to inbound switch j, is
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compited as the sum of the remote accesses, which pass through the switch 7, as shown
in Figure 5.3. The visit ratio eo,; for the ovtbound switch is same as em; ;, because all
remote memory accesses of class © which pass through the outbound switch at node j are

serviced by the memory at node §.

41; sort.distance(sorted_pes);
42: /* sort the processing nodes according to their distance from the node (0,0),

43: and place their “id"s in the 2-dimensional array “sorted_pes™. */

44: Tor (d = dypagid > 0;d - =)

45 {

A for (k=1; ((k<=mum_procs) && (sorted_pes[d][k] = 0)); k++)
a7 |

48: new_id = sorted._pes[d][k]; /* newd = (x,y) in the mesh */

49): { for each neighbour of newid {(x-1,y), (x+1,y), (x,y-1} and (x,y+1)}
50: [* if (neighbour is more distant than new.id from processor )

5l: {add visit-ratio of the switch at neighbour to eij yew it} */

52: }

53}

54: }

Figure 5.3: Pseudo code to compute the visit ratio ei; ;.

Using the visit ratios and service times, the waiting times cor class 7 at switch node j

are:

wijo =1+ E'"“—'n,-uf,o + 3 pinrjo) €0ij 8 at an outbound switch  (5.5)

w!

g =0 +an 4+ Y szitegs) €ii; 8 at an inbound switch  (5.6)

e

Tera:s in circular brackets are the queue lengths experienced by a newly arrived access from
class i at the switch node j. The factor ﬂ;;—l interpolates the queue length of class i, to
reflect the queue length when the thread population in class ¢ is {n, —1). The queue lengths
due to remaining classes at outbound and inbound switches are given by Z,’;Lr;ﬁ nrj,0 and

Z,{;l.,.#,- 1y 4.1y Tespectively.
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For a geometric distribution, Table 5.1 shows the visit ratios ey, oy, and efy, for
class 1 threads at nodes 1 through 16, when pruore and py, are 0.5 and 0.9, respectively.
These values are computed using Equation 5.3 and Figure 5.3. (0.0} are the co-ordinates
of node 1 in the 4 x 4 mesh, and (x,y) correspowds to a node j (= 4y + 0 + 1). Values
in bold-faced, emphasis, and brackets “g" are the em; ;'s for the memories at distances of
1, 2 and 3 hops, respectively. Similarly, we obtain the visit ratios for other classes. With

these visit ratios, we compute the waiting times using Equations 5.1, 5.2, 5.5 and 5.6.

T x=0 x=1 x=12 ] x=1 _m
Y| ez | eo; | ety ey | eoni | ehy; eyl oecor | el ey | eou, | ety
0 0.5 0.5 0.5 || 0.0687 [ 0.067 { 0.183 0.022 1 0.022 | 0.056 {| 0.087 | 0.067 | 0.183
1| 0.067 | 0.067 | 0.183 0.022 1 0.022 | 0.056 | (0.017]] 0.017 | 0.033 0.022 1 0.022 | 0,056
2 | 0.022}0.022 | 0.056 | {0.017]] 0.017 | (.O33 0.033 | 0.033 | 0.033 m 0017 | 0.033
3J 0.067 | 0.067 | 0.183 (.022 1 0.022 | 0.056 || |0.017)) 0.017 | 0.043 0022 1 0.022 | 0.056 I

Table 5.1: em ;, eoy; and eiy; for pyy = 0.5 and pyemate = 6.5 on a4 x 4 mesh.

The following assumptions simplify the analysis of CQN model: (1) Every thread in
a processor that is waiting for a memory request will get its request in finite time. So,
there is no deadlocking of threads waiting for memory requests due to finite resources, (2)
Only finite number of threads are active in & processor at any instant. This helps Lo avoid
deadlocking at network switches due to finite buffer capacities of real network switches. (3)
A sound multithreaded program execution model, such as dataffow-like EARTH model, does
not have inherent deadlocks. These assumptions are reasonable for practical multithreaded
systems like TERA (9], Alewife [6], and EARTH [46).

The above CQN model satisfies following conditions of a product-form network [15, 75]:

e Job Flow Balance: Since the CQN is a closed model, [or each class, the number of

arrivals to a subsystem equals the number of departures [rom the subsystem.

e One-Step Behavior. A change in the state of a CQN results only when there is a
single access that inoves between pairs of subsystems in the system. Thus, no access

gets service at two or more subsystems simultancously.

e Device Homogeneily: The service rate of a subsystem for a particular class does not
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Figure 5.4: Quencing Network Model.

depend on the state of the system in any way except {or the total queue length at the

subsystem and the designated class’s queue length.

The cquilibrium state probability for a product-form queneing network can be obtained
by multiplication of a function of queue lengths at cach of its service centers. An explicit
cnumeration of complete state-space is not needed to obtain this probability. Next, we

describe how to obtain the performance measures for our CQN model.

Solution Technique:

An accurate solution to the above mentioned CQN model using the state space tech-
uiques is computationally intensive [75]. For example, a two processor system with 10
threads on each processor has (30) x (1) = 63504 states, where (3) = G—ﬂnle' A solution
for product-form networks can be obtained with cfficient techniques like Approzim:te Mean
Value Analysis (AMVA) [56], which is outlined in Figure A.1 (in Appendix A). The pseudo-
code of the software we developed for this purpose is described in Appendix F. With n,

threads on each processor in the system, for each class i the AMVA computes:
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—

. Ai, the rate at which the processor ¢ sends memory accesses:

I

. wy . the waiting time of an access at each node m (Equations 5.1, 5.2, 5.5 and 5.6);

3. n},,, the quene length for a class £ aceess at each node m.

The core approximate MVA algorithm computes statistics for population vectors N =
{ry .omy) and N - 1;. Population vector N — 1; indicates that there ave 2 — 1 threads
at processor i, and other processors have 1y threads cach. The intuition of the MVA is
that a newly added thread to a class (i.e. new population NY sees the quenecing network in

equilibrium with respect to the population N - 1;.

Step 1 of the AMVA makes an initial guess for quenclengths at each node, for £ classes
of threads, and a thread population of N. Using the quene lengths at each service node for
population N — 1;, waiting times are computed for the new throad/access (Step 2). The

waiting times at various nodes are given by Equations 5.1, 5.2, 5.5 and 5.6.

Waiting times at all M nodes for a class ¢ are used to compute throughpats (Step 3).
N;

Ai(N
( ) Zﬁ::l"’:,lﬂ

(5.7)

Using Little's law [75], quene lengths at a node for each class are computed (Step 4).

Ny, = Ai(N) w,, (N) (5.8)

1,m

Step 5 verifics whether the difference between the queuclengths from successive iteri-
tions of Steps 2 to 4 arc within the tolerance level. Thus, performance measures of interest,

arc obtained at the population N (sce the psceudo code in Appendix F).

Table B.1 in Appendix B lists all symbols used here. Based on Ay, w;,,, service times

and visit ratios, we compute the following performance measures.

1. Observed Network Lalency: An access from a processor ¢ encounters quencing delay
and service time at each switch in the network on its path, So, the average network
latency Seps for an access, is the sum of waiting time at a switch node (weighted by
the visit ratio of a class 7 thread to that switch node) over all P swilches in the IN:

P

Sobs = Z('”i'a.! X etij +wy 0 X eoj;) (5.9)
i=1
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wy g and wg o, are waiting times at inbound and outbound switches, respectively.

1)

Messayg: Rate to the Nelwork: Ay, is an average rate at which a processor sends
accesses ou the IN (to remote memory modules). A; is the rate at which the processor
t sends memory accesses. A fraction pregmore of these messages are sent to remote

memory modules. Sa,

1y X Premole -
'\m.! =X X Premote = —T>x7 —— (u.lO)

M .
Lj=1 W

The denominator represents the total wait time for an access in class 1.

3. Processor Ulilization: A; is the rate at which responses to memory accesses arrive
(and threads get enabled). Since R is the duration cf a thread at the processor, the

processor utilization U, is given by

U, = AxR (5.11)

Using the above CQN model, we analyze the performance of processor and IN subsystems
. now. We outline these results in Section 5.3, In Section 5.4, we present the details of a
simulation model based on Stochastic Timed Petri Nets (STPN) used to verify some of the

analytical predictions.

5.3 Results

This section presents the highlight of the results and observations (to be detailed in Sec-
tions 5.5 to 5.10) when using our analytical model to address the performance issues of

multithreaded architectures.

Without loss of generality, we analyze the MMS described in Section 5.2 as a case study
with default values of sotne workload and architecture parameters as presented in Table 5.2.
The workload characteristics are ny, R, Premote and dyvg. Chapter 4 shows that the effect
of context switching is to limit the maximum Uj, to 'R% So, we use R to incorporate the
context switch value as well, Architecture parameters, L and S, are chosen to match the
thread runlength R. The network has & = 4 nodes in each of the two dimensions. For

architecturai parameter values in Table 5.2, when the application executes one thread per
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node (1 = 1). and accesses are serviced by local memories, then 1, s 50%. Also, the
unloaded value of Sy, is 27,33 time units.? Onr vesults show how high S, vlues rise with
respect to its unloaded vadue. under nultithreaded program execution, Finally, the trends
we have reported for an MMS with 4 x4 wesh, are also observed for Lweger size systems.
We report some results on the etfect of sealing up to an MMS with a 10 x 10 mesh in the

aext chapter.

Workload Architecture Output

Parameters Parameters Paramet ers

e | Premote R }va(=> dmry) L 5 k Jl Up(%r) Smh.s
8 [05. 08010 0s(= 1733 Jwlw] « ] s0 |oras

Table 5.2: Default Settings for Model Parameters.
Given an architncture and a program workload, our analytical model yields key perfor-

mance measures of interest— the processor utilization Uy, the message rate to the network

Anet, and the observed network latency S,y,. The highlights of the results are as follows,

o In Section 5.5, our model provides a quantitative characterization of how U, varies

with the program workload and the architecture parameters.

¢ In Section 5.6, we explore the relation between Ay and Up, and identify the system
bottlenecks for an application prograw. For a compiler, our model shows the impact
of optimizations of the program workload on the performance, o whether the
network has reached the maximum number of messages it can deliver, defined later
as the network capacity. If the network remains saturated after tuning the workload
and U,, remains low, then the network is a bottleneck. For a system architect, such

application is a test case, where the system design is not well balanced.

o In Section 5.7, we analyze how S, varies with the program workload and architecture

parameters. We examine the performance of the network and processor subsystems,

2For comparison, a pipelined network will have a hase value of 11.733 time units. However, in Section 5.6
and Appendix C we show that with multithreading and contentions, the advantage of pipelining on Sus 8
quickly lost.
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¢ In Section 5.8, we demonstrate the usefulness of closed system models that the pro-
gram workload and architecture parameters are predictable by users. In particular,
near network capacity, the network performance is highly sensitive to Aper, the input
piarameter of open system models of the network [30, 3]. We also compare the robust-
ness of our model with three successively refined open system models to estimate the
averall performance, and show their weaknesses and tradeoffs with respect to closed

system models,

e [n Section 5.10, we characterize the utilizations of memory and network switches with
respect to model parameters. We show how these subsystem utilizations vary when
the processor performance is high. Such characterization provides an insight to the
impact of program workload optimizations on the performance of various subsystems,

and helps to identify bottlenecks in the system design.

We derive all analytical results using the queneing model in Section 5.2. The significant

transitions in performance behavior at various places, are explained using simple bottlencck

. analyses.

The results are presented a3 follows. Section 5.4 verifies some of the model predictions
using Stochastic Timed Petri Net (STPN) simulations. In Section 5.5, we characterize the
processor utilization with model parameters. Section 5.6 reports an analysis of the network
performance (Aye), and shows the feedback effect of network subsystem on the processor
performance. A large network latency Sguy, 15 considered as a fundamental cause of per-
formance drop in single-threaded systems [14]. Hence, Section 5.7 is an investigation of
Lhe performance behavior of Se, and its impact on U,. In Section 5.8, we demonstrate
the robustness of estimating U, by analyzing a closed queueing network model, and com-
paring with other approaches based on open system models. Through a simple example,
Section 5.9 shows the usefulness of our results for performance related optimization of work-
load parameters. In Section 5.10, we characterize how utilizations of subsystems vary with
model parameters. We show that an average utilization of the three subsystems at a node,

called system utilization, tracks the onset of high processor performance.
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5.4 Verification

In this section, we outline the Stochastic Timed Petri Net (STPN) model for the multi-
threaded multiprocessor systemn deseribed in Scction 5.2. We verify some of the predictions
of our analytical model, using the simulations of (STPN) model for the MMS. The assump-
tions made for the STPN model are the same as those for the analytical model. While such a
validation by no means is complete, simulation results provide an independent conlirmation
of analytical results. Simulations also permit us to study changes in architectural parame-
ters. As noted in Chapter 2 (Scction 2.3), an overlap of computation and communication

poses difficulty in the run-tine measurcment of performance of multithreaded systems.

5.4.1 The STPN Model

Processor

e A A R
I
|
| _ A A— —
Pm === — e dmn -
|

To ot H

netw '

i - | network

swuchqs S switches

e e e e __5__ J

Network Switch

Figure 5.5: Petri Net Model for a Processing Element.

The STPN model of a multithreaded processing element (PE} is shown in Figure 5.5,
A PE consists of a multithreaded processor, a memory module and a network interface. A

pool of ready threads is maintained at place p4 in the processor subsystem. Transition (1
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exceutes on a thread for the duration R before it encounters a long latency memory access.
Transition {2 directs a fraction of accesses to remote memory through an gutbound port
on the network interface, with a probability premee. Otherwise, the access is serviced by
the local memory. Transition {2 also handles saving the state of the outgoing thread and

restoring that of the newly scheduled thread, in duration C.

The transitions &y, fyend, and 8, and the places p7, p8 and ppepn, model the network
interface. An incoming message from the network for a suspended thread in this processor,

is forwarded to pd, while the request to access the memory is forwarded to p3.

The memory port modeled by a token in pG, picks an access from p3 for service at 3
with a duration L. Transition {3 routes the response to pd (local access) or p7 (remote

aceess).

Transitions with non-zero delays are represented using rectangular boxes, R and L have

exponentially distributed service time, and C has a fixed time delay.

5.4.2 Comparison with the Model

We simulated the STPN model, and also solved the analytical model for the following values
of parameters:  premote = 0.5, and § = 10,20. Each run of the simulation was carried
out for 100,000 time units, thus cach transition fires from 50 to 5000 times depending on
values of parameters. For variations with respect to n,, Figure 5.6(a) shows the values of
Anet- With an increase in ny, Aye increases and reaches close to saturation by ny = 6. For
§ = 10, the model predictions are almost identical to the simulation results. For § = 20,
the model predictions arc within 2% of the simulations. Further, model predictions in both

cases are slightly lower than the simulations.

Figure 5.6(b) shows the variations in S, for the same set of parameters. We observe
that Spye increases linearly with n,. While the values of S,y obtained from simulations
match closely with the analytical results for S = 10, the values are close within 5% for
S = 20. We also studied the cffect of a change in the service time distribution for memory
access time (L), from exponential to deterministic, only for the STPN simulations. We
found that S, values were still within 10% of original model prediction. This indicates
that the small error int prediction is because of the variance in service time distributions,
and demonstrates the robustness of the model.
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Figure 5.6: Model and Simulations.

5.5 Processor Utilization

In this section, we apply our integrated system model to study the processor utilization U,
— a key performance parameter of interest. Qur objective is Lo explore for what values of
workload parameters is U, high? Scction 5.5.1 characterizes how U, varies with the program
workload and architecture parameters. In Scction 5.5.2, we use our model to identify
critical values of certain program workload parameters at which significant performance
transitions occur, and verify them via an intuitive back-of-the-envelope computation based
on bottleneck analysis.

5.5.1 Model Parameter Characterization

Given a set of input workload parameters and architectural parameters in Table 5.2, the
AMVA yields yields the arrival rate {);) of memory responses at the processor i. Since Lhe
processor is kept busy for a duration R by a thread, the processor utilization is A; x R (see
Equation 5.11).

Let us consider the effect of changes in workload parameters ry and premote on U, shown
in Figure 5.7. Expecctedly, a decrease in premote #nd an increase in ny yields a high U,.  Two
conspicuous regions for low U, values are, a small value of n;, and a large value of premote.

When n, is small, the communication for a thread is not overlapped completely with the
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Figure 5.7: Effect of n¢ and premoate ont Up.

computation on other threads, and low Uy, results. When premoe is large, a larger fraction of
accesses incurs network latencies. Also, increased contentions on the network increases the
value of Sgpe. (A small reduction occurs in Lgps at high premoete.) Figure 5.7 shows that for
R =10 and 20, the knee of the U, curve occurs at premote = 0.2 and 0.6, respectively. We
analyze this transition in U, in the next scction, and investigate the network performance
in Scction 5.6 and Section 5.7.

The effect of network related parameters (§ and p,w) on Up is shown in Figure 5.8,
where n; is 8 and premote is 0.5. Note that Uy decreases when either the switch delay S or
the locality parameter p,,, increases. With an increase in S, a remote access suffers a large
dclay on each network switch. So, a suspended thread, expecting this response, waits for a
longer duration. Note a sharp decrease in Up when S increases beyond 10 (= R). With a
decrease in pyy,, the average distance d,,, for a message increases, resulting in a decreased
processor utilization. Since n; is large (say 8) we expect a high Uy, but Uy still depends on
the feedback from resources, which is quantified by the response time of resources. We
make the following two observations from Figure 5.8: First, for a very fast IN (i.e. low S),
the locality has no impact on Uy, because the delay for a message on the IN is negligible
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Figure 5.8: Effect of S on U,

compared to that on other system resources (say, memory). Second, a decrease in Uy due

to a decrease in locality is inversely proportional to ratio of the average distance dyug in
- Uplat paw=0.1) tavg(at pyw=0.8) .

two cases. For example, at § = 10, Total poot®) < dordlal mo=01] = 2. Even at high S

values, this observation holds, because the network is a bottlencck.

Figure 5.9 shows the effect of thread runlength R and memory access time L on Up. To
accentuate the effect on Up, we choose a high value of premoge 1.¢. 0.8. Let us consider two
symmetric halves of this graph, say a planecat R= L joining R=L=0and R = L = 100.
On the left hand side of the (imaginary) plane R = L, U, is high, clsewhere Uy, is low. An
increase in R has two effects:

1. A processor is busy for longer duration at higher R. So, a linear increase in U, is
observed with R in Figure 5.9. Figure 5.9 conforms with the intnition fromn Equa-
tion 5.11 that U, increases linearly with % (until a high R affects A;).

2. The processor issues memory requests at a reduced rate (for same 7, and premote
values). A reduced contention on the network helps to maintain U, high till a larger
value of premote-

Figure 5.7 also supports these two observations. A runlength of 20 yiclds U, values which
are twice of those for R = 10. Also, the knee of the U, curve occurs at premote values of 0.2
and 0.6 for R = 10 and 20, respectively.
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5.5.2 Analysis of Performance Transitions

In this section we will use a back-of-the-envelope bottleneck analysis to discuss reasons for
wide performance variations. We, however, note that our performance model of Section 5.2

is necessary to obtain an accurate solution.

We noted in Figure 5.7 that the knee of the U, curve occurs at premae=0.2 and 0.6
for R = 10 and 20, respectively. To compute this critical premote, we apply a bottleneck
analysis at the processor node in Figure 5.4. A remote access from a processor node travels
2d;y, hops for a round trip on the IN, and spends 25 time units to get on/off the IN. The
remaining fraction of accesses, i.e. 1 — Premote, is serviced locally. Thus, message rates at
the processor node are:

message rate from processor < local memory service rate +message rate from network

1 1- 1
- < re 4
R = 2(davg +1)S
Premote <1+ (m - TI%) (5.12)

Equation 5.12 gives the critical premote for the knee of the U, curve, and is independent of
n;. For a lower value of premotes the processor does not run out of threads, resulting in a
high Up. This premote value is 0.18, when py,, =0.5 and R = 10. Figure 5.7(a) conforms with
this observation. At R = 20, critical value rises to 0.7, which conforms with Figure 5.7(b).

When premote is increased beyond the critical value, U, value diminishes irrespective of
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n¢, mainly because either the memory or the network becomes a bottleneck.

At critical value of premote, service rates at processor, memory module, and network
switch are balanced, i.c. premate = 0.18, when 1/R, 1/L and 1/8 are 0.1. For these service
rates, a processor sends, on average, one memory access for a thread while the memory
module and the network switch are busy responding to one access each. Thus, intuitively,
three accesses keep subsystems busy at steady state, To tolerate differences in service times
and their distributions among these subsystems, a few more threads are required. We note
from Figure 5.7 that 5 to 8 threads per processor are sufficient to achieve most of the gan
in Up. Changes in service times (R, L and S) lead to changes in distribution of threads (or

accesses) based on service times. This implies that performance gains are realized up to a
smaller value of n;.

5.5.3 Summary

In this section, we have shown how to compute Uy, given workload and architectural param-
' rE
cters, characterized the processor performance with model parameters, and analyzed the

significant performance transitions. The results on processor utilization U, are as follows:

1. A high U, can be achieved by increasing n; as long as the fraction of remote accesses

(Premote) 1s below a critical value, which is determined by R, L, S, and remote access

pattern.

2. A high R raises the critical value of premote up to which U, remains high. Also,
a processor is kept busy for longer duration when each a thread is executed, thus
increasing the Up.

With 5 to 8 threads per processor, most of the performance gaing due to multithreading
are achicved. When U, remains low, to optimize workload parameters (for compilers) and
architectural parameters (for system architects), an understanding of the performance of
other subsystems of the MMS is essential.
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5.6 Message Rate to the Network

In this section, we apply our model to study the network performance parameter of interest—
Anet, the message rate to the network. In Section 5.6.1, we show how to compute the message
rate to the network, and its maximum {or saturation) value for a remote access pattern,
the network capacity. We show that Ape can saturate even at a low value of n,. Hence, the
performance behavior of an MMS near the network saturation is essential for performance
tuning (unlike in single-threaded systems [3]). In Section 5.6.2, we quantitatively charac-

terize the network performance behavior with workload and architecture parameters.

5.6.1 Capacity of the Network

Given the input workload and architectural parameters in Table 5.2, we solve the analytical
model using AMVA, For a thread executing on a processor 1, the AMVA yields the arrival
rate of threads A; at processor 2. A processor i issues one memory access for each thread,
and a fraction premote are sent to remote memory modules. So, the message rate of accesses
from processor i to the network is premote X Ai (see Equation 5.10). Figure 5.10 shows how

'\ﬂﬂt VE].I‘i(!S With ﬂ.t a“d prcyﬂalc.

Let the mazimum number of messages delivered by the network per unit time per proces-
sor, under any remote memory access pattern, be the maezimum throughput of the network.
We also refer to this value as the bandwidth of the network per processor. For a particular
remote access pattern, the maximum number of messages delivered by the network per unit
time per processor is defined to be the capacity of the network. The maximum rate of mes-
sages from the processor to the network saturates at the network capacity. We denote the
network capacity by Apet saturation. Since a processor allows multiple outstanding memory
accesses, Apge rises close to saturation even with n, as low as 6 (see flat, dark surface in
Figure 5.10 shown for R = 10).

We use a simple bottleneck analysis to compute the capacity. Our computation should
conform with results of the AMVA algorithm, depicted in Figure 5.10. Under a remote
access pattern, a message travels dyyg hops on the IN, and so does its response. With a
delay of S time units on each switch, total duration for a message on the IN is 2 dgyy S
time units. At psyw = 0.5, dgyg is 1.733 hops. S is 10 time units. Hence, the maximum rate

at which a message is received by a processor under a remote access pattern is the capacity
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of the network:

1
Anet,saturation = m (= 0.029 at pg,, =0.5) {5.13)

Using the performance model and Equation 5.10, we obtain Ape values shown in Figure 5.10.
The dark, flat surface in Figure 5.10 provides the value of My saturation Which is = 0.029.

This conforms with simple intuition given by Equation 5.13.%

We note that if we use only one switch instead of an outhound and an inbound switch,
additional contention occurs at local switch. Thus in each direction, a message contends

on d,y, switches (= number of hops), and one local switch. So, the network capacity is

: 1
restricted to T I S

Under a remote access pattern, a message from a processing clement typically travels
farther than the necarest neighboring PE. The resulting value of d,y, would be larger than
1, and the capacity of the network is lower than the bandwidth of the IN (per processor).

However, the maximuimn value of the capacity is the bandwidth.

To compute Premote at which the IN saturates, let us consider how a PE comnmmicates
with the rest of MMS, and apply a bottlencck analysis at the inbound switch. A pro-
cessor sends remote memory itecesses through the outhound switch at the PE, and receives
responses through the inbound switch. Similarly, the memory module receives remote mem-
ory accesses through the inbound switch, and responds these accesses through the euthound
switch. The rate of accesses sent through the outbound switch at a PE cquals the rate of
incoming accesses through the inbound switch. In addition to servicing the accesses coming
into the PE, the inbound switch also forwards accesses [rom neighboring switches destined
for other neighboring inbound switches. This additional traffic is the contention on the noet-
work. This contention changes according to the locality in remote memory access pattern.
Capacity nf the IN is recached when the throughput at an inbound switch reaches '.%' Thus,

a balance of message rates, at an inbound switch, yields the critical pramae value for which

3In Appendix C, the expression in Equation 5.13 is derived using Agarwal’'s OQN mode! for a pipelined
interconnection network [3]. Note that the pipelining of network links has no effect on value of Ayce saturntion.

Also, MAnct.saturation is the value at which the actual traffic in the “actual traffic vs. attempted traffic”
saturates [30].
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the capacity is reached:

(maximum throughput of a switch at PE i} ~ (forwarded messages: contention)

= (rate of messages from processor and memory to local switch)

Ev,&#.— Ciri Premote Premote
5 R T TL (5.14)

In the above equation, -é denotes the maximum throughput at an inbound switch of a PE

Uy —

i. Out of this total rate of messages serviced by the switch, we remove the forwarded
messages (i.e. neither the source nor the destination is the PE i). Thus, the left hand
side of Equation 5.14 indicates the remaining messages entering the PE i. This rate must
equal the maximum rate of messages sent out by the PE, i.e. by the processor and memory
subsystems. The right hand side of Equation 5.14 assumes that before the network switch
becomes a bottleneck, n, is large enough (say, > 6) so that the processor and memory send
remote accesses at maximum rate. At ps, = 0.5, Equation 5.14 yields premote = 0.3 for
Anet to saturate. This premore value conforms with the prediction of the performance model

shown in Figure 5.10.
5.6.2 Model Parameter Characterization

Figure 5.10 shows the cffect of changes in workload parameters n; and premote 0N Aper, when
R = 10. An increase in n; as well 88 Premote increases Ane;. When premote is held constant,
Anet increases with n;, because more memory accesses (local and remote) are requested by
the processor. A saturation of Anee at high value of n, indicates that either memory (at low
Premote) OF network (at high premote) becomes a bottleneck. When n; is a constant, Ane
increases with premote, because a larger fraction of accesses is diverted to remote memory.
Aner Saturates, when premore > 0.3 and ny is high (say, 2 6). Anet saturation i8 0.029 (flat,

dark surface in Figure 5.10). Analyzing U, values from Figure 5.7(a) with A,e; behavior
from Figure 5.10, we note that once the capacity is reached, U, values are low.

¢ An increase in n, does not increase Uy, What happens to additional messages at high
m ¢ These messages are queued at the switches (we will see the latency values in
Section 5.7).

e At a fixed value of n;, A remains at its saturated value even with increase in premote-
But U, decreases, because a larger fraction (premote) of accesses experiences a higher
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network latency S, in addition to the wmemory latency Lo, (at local or remote
node).

Rate, lambda_nct
=
=
L)
- —

(=
<
~N

Mgsage
=]

Number of Threads. n_t 00 p_remote

Figure 5.10: Effcct of 7y and premote 01 Apet.

The effect of network related parameters (S and pgy) on Ay is shown in Figure 5.11,
Premote 18 0.5 and n; is 8. An increase in § increases the waiting and service time for a
. message at each network switch. The corresponding thread at a processor is suspended
for a longer duration. The longer the suspension of a thread (due to a higher S), the
lower the A,g. This feedback due to S changes the capacity of the IN. Equation 5.13 also
demonstrates how A, depends on the waiting time at all nodes.

For an OQN model, the message rate is an input parameter. So, a user of an OQN
model has to estimate the effect of subsystem interactions on A,e. Then, the user chooses
the correct network characteristics to predict the network performance. These extra steps

are needed in OQN models to incorporate the eflect of subsystem interactions.

We note the similarity in Figures 5.11 and 5.8. At premote= 0.8 and n; = B, the network
is a bottleneck and is close to its capacity. So, U, values track the behavior of Aney with S
and psy. Equation 5.10 and Equation 5.11, indicate how U, and A, are affected by A;.

Figure 5.11 also prominently displays the feedback effect of the locality on Ape. A
decrease in py, implies an increase in the locality, because a message travels a shorter
distance (dgyg) on the IN. Faster traversal of a message through the IN increases Ay, and
hence the capacity increases. Figure 5.11 indicates that:
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Figure 5.11: Effect of § on Ay

1. A fast network (i.c. low S) has a high capacity. On average, a fast network delivers

messages too quickly, so the performance gains due to locality are negligible.

2. Equation 5.13 indicates that an improvement in A,. due to an increased locality is

at most of the order of the reduction in d,y,. Figure 5.11 shows that for S > 6,
mazrimum A < davg at paw=0.8 {=> 3.17)
MINUNUM Anet davg ol paw=0.1 (= LI1}"

Equations 5.10 and 5.11 indicate that the sbove observations should hold true for Uy,

values as well. Our observations in Section 5.5.1 conform with this intuition.

The effect of thread runlength R and memory latency L on A, is shown in Figure 5.12,

where premote i8 0.8 and n; is 8. We make the following observations:

o A decrease in R reduces the time spent by a thread at the processor between successive
memory accesses. So, U, decreases, but Ape ircreases. When the values of R and L

are low (say, from 45 down to 28), Apg rises rapidly to (93% of) its saturation value.

o The A, surface is symmetric with respect to R and L. For remote accesses, a thread
alternates between execution at the processor, and a service at the remote memory.
So, the lower of R and L values dominates the rate at which the accesses are sent on
the network.

We discussed the U, values for above parameters in Figure 5.9. Apart from Apet, Up values
are also affected by R/L ratio.
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Figure 5.12: Effect of R and L on A,y

5.6.3 Summary
The main results on Ay, capacity of an IN, and their impact on U, are summarized below:

1. When either premote OF 7t¢ is incr2uased from a low value, A, increases, and saturates
close to the capacity of the IN. At low premote, Up is mainly governed by n,. Once
the capacity of the IN is reached, U, does not improve with an increase in 1y, but

decreases sharply with premote-

2. Capacity of the IN is determined by § and dy,,. A faster network, ie. low S, has
a higher capacity. {As shown in Appendix C, the pipelining does not increase the
capacity.} Also, a higher locality in accesses increases the capacity. A higher capacity
permits to achieve a higher Up,.

3. R and L have an identical effect on A, An increase in A, occurs when both 22 and

L are low. But, Up value depends on -i! and g ratios.

5.7 Network Latency

The communication latency is considered as a fundamental cause for a decrease in perfor-

mance of multiprocessor systems [14]. So, we analyze the variations of observed network
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latency Sgps with workload and architectural parameters. We also investigate how the
network latency affects processor utilization of an MMS.

5.7.1 Parameter Characterization

Given the input workioad parameters and the architectural parameters, we solve the ana-
lytical model using AMVA to obtain the waiting time at each service node, for each class of
threads. A remote memory access encounters service and queueing delay at each network
switch in the network on its path. The observed network latency, Sg,, for an access by a
thread executing on the processor i, is the average waiting time for class i threads (accesses)
at each switch., An access for a class i thread does not visit all switches in the network. So,
in the computation of Sy, the waiting time of each switch j is weighted by the visit ratio
of a class i access to that switch j (see Equation 5.9). When a model parameter changes,
the waiting times at various nodes in the queueing network model changes. We perform

the above computation for each set of parameter values, to reflect the change in S, value.

Fiéure 55,13 shows how Spy, varies with changes in workload parameters (n; and premote)-
While S, increases with n,, the rate of increase changes significantly with the value of
Premote- Using Equation 5.12 and Equation 5.13, we consider following three parts of the
Sobs surface and the corresponding U, values (from Figure 5.7(a})].

(1) premote < 0.18: In this region, either the processor is busy and sends accesses slowly, or
the memory is a bottleneck since the most accesses are serviced locally. The messages
to the IN are sent at a lower rate than Apet,saturation. S0 irrespective of an increase in
n¢, Sobs 18 close to its unloaded value. Uy values are high, when n; is large (say > 5).

(ii) 0.18 £ Premote < 0.3: Beyond premote = 0.18, the number of messages on the IN
increases. Hence, the contention as well as S, increases with ny. Close to premote =
0.3, Soby is high. However, the drop in U, from its maximum value is not significant
at high n,.

(iii} 0.3 £ Premote: Recall from Section 5.6 (Equation 5.14) that the capacity of IN is
reached for premote = 0.3, thus the inbound switch becomes a bottleneck. When n; is
a constant, Sy, remains constant at a high value with respect to Premote, because the
number of messages on the IN (either being routed or queued) becomes a constant.
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However, since at higher prepmore 8 larger fraction of messages suffer a delay of S, on
the IN, U, values decreasc.

When n, is increased, the number of accesses waiting at the network switches increase,

and Sy, increases. The network switches are the bottleneck. So, Ay and Uy do not
change.

We now look at some interesting operating points of the MMS. Table 5.3 is excerpted
from Figures 5.7, 5.10, and 5.13. Refer to the lines marked ‘e’ and the numbers in the
bold-face in Table 5.3. Notice that Sp, values 43.8, 54.8 and 82.7, for these operaling
points are in an increasing order with n,, but so are their respective U, values— 28.4%,
40.2% and 72.7%. However, when A, is close to saturation value (= 0.029), even a large
7 does not improve Uy,. From Table 5.3, U}, values for n; =4 and 8 utb pregore = 0.8, are

26.7% and 31.5%, respectively. In summary:

1. A high U, can be achieved on an MMS by increasing ng, cven though individual

accesses may experience a large Sppy, 08 long as the network capacity is not reached.

. 2. When the network capacity is reached, even for a small value of Sy, Uy remains low.

The item (1}, without the mentioned condition, is an intended objective of an MMS. The
item (2) suggests that when the network capacity is reached, increasing n; has no im-
pact. The implication of the item (2) is that we should explore other mechanisms such as

increasing the thread runlength or changing the locality in access pattern.

The effect of network related parameters (S and pyy) on Spys 18 shown in Figure 5.14,
when premote i8 0.5, and n; is 8. An increase in S increases the service time at each
switch. So, a linear increase occurs in Spyy. Also through the feedback cffect, Uy, and A,y
are proportional to é, as shown carlier in Figure 5.8 and Figure 5.11. A sgimilar effect is
observed when the locality is changed. An increase in the locality (i.c. a low p,.,) decreases
dayg for each message, thereby decreasing the S;,.

The effect of thread runlength R and memory access time L on network lutency is shown
in Figure 5.15. Value of premote is 0.8 and n; is 8. Figure 5.15 shows that both parameters
have a similar effect on S,ys. Only when both R and L are low, S, is significantly affected.
For example, (even compared to A, values from Figure 5.12) Sy, rises sharply from 50 to
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pe ]l RUne | Lot | Sotn | Anec| Up | R{nu ] Lots | Seobs| ner| Up
00|10 1] 10.0| 0.00) 0,0000 { 50.00 (| 10| 2| 15.0| 0.00 | 0.0000 | 66.57
0.1 10.9 | 29.6 | 0.0037 | 37.20 15.1 | 31.8 | 0.0056 | 56.30
0.2 11.2 | 81.2 | 0.0059 | 29.36 14.8 | 36.0 | 0.0094 | 46.96
0.3 11.5 ] 32.4 1 0.0072 | 24.13 142 | 3944 0.0117 | 39.21
0.5 11.5 | 33.9 | 0.0088 | 17.67 13.3 | 43.8 | 0.0142 | 28.44
0.8 11.3 | 35.1 | 0.0100 | 12.54 12.3 | 47.2 | 0.0157 | 19.64
00(f20 2 10.0 | 000 | L.0000 | 8453 || 10| 4| 250 | 0.00| 0.0000{ 80.00
0.1 13.0 | 30.2 | 0.0039 | 77.31 246 | 34.2 | 0.0074 | 74.07
0.2 13.1 | 33.2 | 0.0070 | 69.74 227 43.5) 0.0183 | 66.29
0.3 13.1 | 35.9 | 0.0093 | 62.30 20.0 | 534 | 0.0170 | 56.80
0.5 12,7 ] 40.4 | 0.0124 | 49.44 16.0 | 54.8 | 0.0177 | 40.21
0.8 P 12.1 | 44.5 | 0.0145 | 36.30 13.5 | 74.3 | 0.0213 | 26.68
00{ 20| 4 15.1 { 0.00 | 0.0000 | 9468 ||| 10| 8|} 450 0.00 | 0.0000 | 88.89
0.1 15.8 | 31.2 | 0.0046 | 92.12 44.6 | 36.1 | 0.0086 | 86.26
0.2 15.9 | 36.1 | 0.0089 | 88.63 407 52.7| 0.0164 | 81.94
0.3 15.8 | 42.1 | 0.0126 | 83.80 31.56 { 82.0 | 0.0218 | 72.74
0.5 14.9 | 55.1 | 0.0175 | 70.18 19.0 | 120.6 | 0.0246 | 49.18
0.8 13.3 | 67.5 | 0.0203 50.7M 145 | 134.8 ; 0.0251 | 31.45

NOtG: p’l = premolc.

Table 5.3: Performance Measures at R = 10 and R = 20.

140 time units, when both R and L decrease from 40 to 2 time units. Comparing U, values
from Figure 5.9, we note that to achieve high Uy, both _{E and % ratios should be high.

5.7.2 Summary
Above results on S5, show that:

1. An increase in n; increases Sq, as well as Uy,. Once the capacity of IN is reached, Sgss
increascs linearly with n,, and U, remains constant. When the network saturates, for
an ny, Sy Saturates at a high value with increasing premote, while Uy, decreases.
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Figure 5.13: Effect of n; and premote 0N Sops-

2. Spps increases linearly with S, and with a decrease in locality. However, a larger value
of Seps delays the triggering of suspended threads, so U, (and Ane) decreases.

3. Only when both R and L are low, Sgs is high. Otherwise, Seps is near its unloaded
. value. Up, on the other hand, depends on -F and ?’,rl ratios.

An intended objective of an MMS is the first item of increasing Up,. However, when the
network capacity is reached, we should explore other mechanisms such as increasing the
thread runlength or changing the locality in access pattern. Like vector machines [76, 88],
with multithreading, U, is more affected by the rate (An.e) at which subsystems respond
than by latencies (Sgp,) for individual accesses. Intuitively, when the network is a bottle-
neck, A, saturates. On each response from a remote memory, the processor computes for
R time units, and sends an access. That is, U, depends on Age (to be precise, st Ry,

Premote

5.8 Usefulness and Robustness

In Section 5.8.1, we show the necessity to use closed system models over open system models
in terms of sensitivity of performance prediction to the input parameters. In Section 5.8.2,
we also compare the robustness of our model with open system models. We present three
scenarios where an open system model may be applied to estimate the overall performance
(such as Up), and demonstrate their weaknesses and tradeoffs with respect to closed system
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O wieh Delg. 5
Figure 5.14: Effect of § on Sgy,.

model.

5.8.1 Usefulness of Closed System Model

. In this section, we compare the prediction of network latency using closed system model to
that using open system model. We particularly focus on the region where the network is
near saturation, because even with 4 to 6 threads, A, saturates (as shown in Section 5.6).

Open system characteristics for IN are reported in literature with observed network
latency Sgue as the output parameter against message rate Ape as the input parameter,
c.g. Abraham [1), Agarwal [3] and Dally [30]. Initially, Sess rises slowly with Ane, but rises
sharply when Ane is close to saturation.

To draw a fair comparison of robustness in performance prediction, we also plot such
characteristics. However, A, an input parameter of the open system models, is not known
a priori, because A,q results from the interaction among various subsystems, during a
program execution on a multiprocessor system. We consider two ways to vary Ap.: The
first uses workload parameters, n; and premote, 88 shown in Figure 5.16 and the second uses
network related parameters, S and pyy, as shown in Figure 5.17.

In Figure 5.16(b), we obtain S5 versus Ang characteristics, using our closed system
model. The following procedure shows how to obtain the open system characteristics using
our model,
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Figure 5.15: Effect of R and L on S,,.

Figure 5.16(a) and Figure 5.16(c) show the effect of workload parameters on Sy, and
Anet, respectively. Figure 5.16(a) is a two-dimensional view of Figure 5.13 discussed carlier
in Section 5.7. Similarly, Ane behavior in Figure 5.16(c) is a two-dimensional view of
Figure 5.10 in Section 5.6.

Using these Figures 5.16(a) and 5.16(c}, we show a plot of Su, versus Ay in Fig-
ure 5.16(b) similar to the open system characteristics. To plot each point in Figure 5.16(b),
we consider each pair of n; and premote values, abtain A,e value from Figure 5.16(c), and
obtain Sy, value from Figure 5.16(a). For example, at n; = 10 and premote = 04, Apet
and Sps values are 0.0265 and 125, respectively. Each curve in Figure 5.16{(a) and Fig-
ure 5.16(c) represents a fixed value of premote, and this curve gets mapped on to a small
part of the curve in Figure 5.16(b), e.g. at premote = 0.1, Aner changes between 0.0035 and
0.0095. To obtain a coraplete plot of Sy, against Ane, we overlap projections for various
values of premote and ng.

Now we compm:e the sensitivity of the prediction of Sy, using OQN model in Fig-
ure 5.16(b), and using a closed system model in Figure 5.16(a). Recall from Section 5.6
that to use the MMS efficiently, the IN performance may be pushed to the network capacity.
We assume that the operating point of the MMS i8 n; = 7, premate = 0.5, Anet = 0.025, and
Sops = 100. These values are close to the network saturation region. Let My, the input
parameter of the OQN model, be changed by 15% from 0.025 to 0.02875. We note that
the prediction of S,;, changes from 100 to 200~ a change of 190%! This shows that S,, is
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highly sensitive to Ay, near the network saturation. In reality, this change in Ape can be

brought only if we change n, from 7 to 20, by 186% (at premote = 0.5).

An cstimation of queucing delay at a scrvice node, is the reason for high sensitivity of
Subs t0 Apey in the prediction using an open system model. This estimation is called as the
contention factor (53, 3], because it reflects the increase in the waiting time at a service
node in the presence of accesses from other processors (and threads). The contention factor
is T‘E_p' where p is the utilization of a link, Since these links are connected to each switch,
we consider the utilization of a switch, p. Equation 5.15 shows p as the sum for accesses
from all classes of service demand for a class at a switch times the throughput of that class.

Thus, the contention factor can be expressed using Ape; as follows:

P = Yy, 5% visit ratio for class rx throughput of classr =§ Z(eir'g)\net',)(&m)
vr

£ = Anct(S Yy eini) = Anet Contention factor (5.16)

1—- p - ('\ncl.mturnliun—ancl)(s Z\fr cir.i] = '\llcl.mlllru!ion_)‘nel

In Equation 5.15, ei,; is the visit ratio of class r access at the inbound switch 4. Since
S5 is the gervice time at switch i, S X ei,; is the service demand for a class r access. We
substitute value of p in Equation 5.16. We assume that et and Mgt saturation are same for
all classes, i.e. the remote access pattern is isomorphic with respect to any processing node.
Thus, Equation 5.16 can be simplified as shown in the right hand side. Near the network

saturation, Anp approaches Aet saturations 50 Sops i8 highly sensitive to Aqe.

Let us consider the same change of 15% in the input parameter n;, of the CQN model,
i.e. ny changes from 7 to 8.  The resulting values of Spy; and M, change by 14% to
114, and 3% to 0.0257, respectively. We note that Sg, varies at most linearly with n,
(Figure 5.16(a)).

The discussion above brings out the following advantages of using a CQN model! for the
network performance prediction, for users:

1. A uscr is more familiar with an input parameter like n; or premote than Aper.  For
example, on how many itersiions of a do-all loop should the computation begin at
a time? This is similar to the k-bounded computation on-loops [24], and the sample
program workload in Section 2.2.

2, The network performance (Sype) is highly sensitive to Ane, an input parameter of
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open system model, than to ny or premote, input parameters of closed system model,
This robustness of network performance prediction with respect to ny and premote
is also helpful to compute buffer requirements at network switches. For example,
a small error in Ane near the network saturation can lead to a significant error in
buffer requirements at the switches. Further in Section 5.8.2, we also show how this

robustness is helpful for processor performance prediction.

Now, we show another interesting perspective of Sy, and A, characteristics using
network related parameters, S and p,y,. Figure 5.17 shows these vartations, and has been
obtained similar to our approach in Figure 5.16. We usc premote = 0.5 and n; = 8. Let ug
consider Sgp, and A, values, when S is 10. When the locality is increased, say by decrensing
the value of pyy, doy, decreases and S, for a message decreases, as shown in Figure 5.17(n),
Since the response to a remote request is received faster, the corresponding thread is ready
for execution earlier. Due to this feedback cffect (also discussed in Scction 5.6), The results
is an increase in An. as shown in Figure 5.17(c). For a pair of psyw and S values, we plot Sype
and A;ee together in Figure 5.17(b). In contrast to S, versus Ay plot in Figure 5.16(h}, we

. notice that Ane increases while Sy, decreases in Figure 5.17(b).  Such characteristics are
not reported in OQN model based studies {1, 3, 30]. To deduce these characteristics from
OQN model, a user needs to estimate Ang, and then use Sy, versus A, characteristics with
appropriate parameter settings. However, this perspective of the performance behavior due

to locality variations is essential to the performance tuning techniques used by compiler
writers.

Thus, capturing the subsystem interaction helps otir integrated system model to predict
the effect of program workload on the IN performance (i.e. Ay and Sgps). On the other
hand, the focus of OQN studics is to evaluate the IN performance, by considering idealized
interactions with the rest of the system.

5.8.2 Robustness of Processor Performance Prediction

Section 5.8.1 showed that open system models are less useful than closed system models
for performance prediction of multithreaded architectures, because the network capacity is
reached even for small number of threads. In this section, we investigate the error in the
prediction of open system models:
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What is the difference in the processor performance prediction using closed and

open system models? And in case of a significant difference in the performance

prediction:

Given an open system characteristics of the network, can we obtain the perfor-
. mance of an MMS by coupling it with a model for the processing node of an

MMS?

We consider three successively refined models to predict the processor performance
based on open system models, and compare their results with our closed system model.
In all three cases, we assume that Figure 5.18, which is derived from Figure 5.16(b), is
the representative open system characteristics of network in the MMS under study. These

characteristics represent a function f, such that

Sobs = f()\nct) (5-17)

Next, we discuss the three models in detail.

o The Nasve Model:
The first model, called naive, uses a naive approach, which assume that the network
is moderately loaded. For this load (Anet), Sops is obtained from the open system
characteristics. Using Sgps, we compute the time for each thread (access} to return to
the processor as (R + L + 2 premote Sobs), and obtain U, (= MFLTF g‘pi — Soa..))'
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o The Simple Model:
The second model is 2 simple model with a simplistic feedback mechanism. "Che moddel
assumes initial values for A,e; and Sgpe, and proceeds as the first model to compute
_ 1t Premote + . .
new values for A,e (= (R L+ 2 et sm)) and Up,. New Ay is used o obtain Sy,
from Figure 5.18. The process repeats till the values in successive iterations are close

enough (see Figure 5.19).

o The Closed Loop Model;

The third model uses open system models of the processing node, and the network
subsystem. Input and output parameters of these subsystemn models are suitably in-
terconnected to form a closed loop, and arc solved iteratively. We call this model as
a closed loop model. To capture the feedback cffect, the output parameter of the pro-
cessing node model is Aqe, which provides the input parameter of the network model.
Similarly, the output parameter of the network model is S,,, which provides the
input parameter of the processing node model. Solving these models simultancously
yields the values of performance measures— Apet, Sops, and Uy,

. The Naive Model;

In the naive model, we assume a moderate load on the network (A}, and obtain
Sops from the open system characteristics in Figure 5.18. We compute the cycle time for
a thread {access) to return to the processor as (R + L + 2 premote Sovs)- This value
represents the wait time for a thread at all queueing nodes. Each thread spends a duration
R at the processor, so for n, threads, we obtain Up as o1 ;‘:‘ew"y ——. Similur

approach of an assumed, fixed network load is used by Boothe [18] and Thekkath [91], to
study various aspects in multithreading.

This naive model works well when n; = 1. Let us assume that Sy, is 27.33, i.e. its
un-loaded value. Substituting values of R, L and premete in (2 + L + 2 premote Soba)r WE

obtain Up as g +2xpl.:m.,.. g =21.1%. Our closed system model of Section 5.2 yields
17.67%.

At higher n; values, predictions differ even widely. Let us assume that n, is 6, and

Anet i8 0.025 (close to the network saturation). The corresponding Sp, is 135. So, Up is

GES T _'_2?(’;'13““,“55 = 38.7%. Predictions of our closed system model for Apee, Soby, and Up

are 0,023, 92.5, and 46.0%, respectively. A different choice of A,q (c.g., 0.02 and 0.015),
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leads to widely different Uy, values (69.3% and 94%, respectively). The better the prediction
of network performance, i.c. Ape and Sy, the greater the accuracy of U,. A weakness of

the naive model is an absence of a feedback to improve the assumption of the network load
(‘\uct)-

A caution for the use of this simple model is that the assumed load should be higher than

actual, otherwise the predicted value of Up may wrongly exceed 100%. For example, usingan

6x10 —
TOFI0F 2 X Jiremore X27-33

un-loaded value of Syy4 i.e. 27.33, with 1y = 6 leads to a U, value of
126.6%.

The Simple Model:

The simple model provides a feedback mechanism to improve the accuracy of the per-
formance prediction. Starting with an assumption for Spys, we use characteristics in Equa-

tion 5.17 to iteratively refine the prediction of Ayer, and Spys.  Figure 5.19 shows the steps in

. . . . n
this model, Starting with a no-load value of Sy, Ane: is computed as mTLT 2-;,m“m AW

. uwy It . H H . -
and U, as T ;!p"mm - Using new Appr, Sgps is obtained as Sgps = f(Anet), the

function depicied in Figure 5.18. The iterative process repeats till the new Sy, value is
close to its old value. For examples we have tried, this method converged only for n, < 2.
We assumed that adjacent performance points shown in Figure 5.18 are connected using
straight lines, i.e. a linear interpolation for performance points in between those shown in
Figure 5.18. Predictions at n; = 2, for Sopsy Anet, and U, arc 46.1, 0.0149, and 29.89%,
while the closed system model predicts 43.8, 0.0142, and 28.44%. We note that:

o The prediction of Uy value is within 5% of that using closed system model, when
network is unsaturated.

¢ For higher values of n, the iterative process did not converge. Since the steep slope
of open system characteristics, the output parameters oscillated between two to three
values. Figure 5.18 shows an almost vertical line at A, = 0.029 which prevents

accurate computation of the network operating point (Sgp,).

¢ It is difficult to study the effect of network related parameters (similar to our inves-
tigation using S and py, in Section 5.8.1) with only the knowledge of open system
characteristics in Figure 5.18.

The Closed Loop Model:
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Given an open system characteristies for the interconnection network, Sppe = f(Apet)

0- Assume S, to be a no-load value, say S,, where j is the iteration number,
l- Compute X; and Up, based on 1y, premote, and S;.
2- For new A;, obtain S; = f(A;).
3- If ((Sj — S;-1) > tolerance)
then go to step 1;
else exit.

Figure 5.19: Feedback Algorithm.

The closed loop model uses open system models of the processing node, and the network
subsystem. Input and output parameters of these subsystem models are suitably intercon-
nected to form a closed loop, and are solved iteratively. To capture the feedback effect, the
output parameter of the processing node model is A, which provides the input param-
cter of the network model. Similarly, the output paramecter of the network model is Sy,
which provides the input parameter of the processing node model. Solving these models
simultaneously yields the values of performance measures— Aner, Sopss and Up. The closed
loop model uses analytical expression for the network performance shown by Equation 5.17,
In this approach {used by Johnson [50]), a processing node is modeled using the following
cquation:

n R
Sops = ,\n; -3 (5.18)
In Equation 5.18, the network latency is, on average, the numnber of outstanding remote

accesses times the duration between successive responses fromn the network minus the exe-
cution time at the processor. A factor “2” in the last term is due to two remote messages,
the request and its response, associated with cach thread. Equations 5.17 and 5.18 are
simultaneously solved for two unknowns, Sp,y and A,e. With the resulting value of Ay,

we obtain the processor utilization as follows:

Uy = Rhet (5.19)

The original model by Johnson [50] does not take into account the local memory. However,
we can incorporate a detailed model of the processing node, in Equations 5.18 and 5.19.
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The validity of this approach is based on the property of eggregation for queueing net-
work [29). This property states that any subnetwork (of a product-form queueing network)
can be exactly aggregated into a single station with a load-dependent service rate. A load-
dependent service center is the service center whose service rate is dependent on how many
aceesses are waiting in the queue. When remote access pattern is isomorphic with respect
to the network, i.e. independent of processing nodes in networks like in 2-dimensional mesh,
an analytical expression for the network performance can be obtained. Equation 5.17 rep-
resents this analytical expression. When more than one network links are needed to capture
the behavior of network performance, a set of simultaneous equations may be needed to
solve the model (replacing Equation 5.17).

There are two difficulties in the third model:

o When the remote access pattern (or the program workload) for all the processing

nodes i3 not the same, an analytical expression for the network is difficult to obtain.

o When no single representative link can be found to analytically capture the perfor-
mance behavior of all the links in the network, the performance model can be difficult
to solve. This typically happens in an hierarchical network, for example, interconnec-
tion network of the MANNA system [38} which consists of an hierarchy of crossbar
switches to achieve large configurations. In such a case, more than one representative
links may be present. So, a set of simultaneous equations {one for each representative
link, and one for the processing node) are needed to obtain the performance measures
of the MMS. To our knowledge, such a study has not been conducted.

Another drawback specific to Johnson's model [50] is that for a program workload exhibiting
a high locality (i.c. distance traveled per dimension, Xy < 1), the analytical expression
is incorrect— a fact also observed by other researchers [79]). For this locality, the model
assunes that there is no contention. Let us consider the parameters in Table 5.2, for which
davg = 1.733 i.e. kg = 0.866. Our results show that with n, = 8, S, and U, are 120.6
and 49.18% respectively. However, like Johnson'’s model, if no contention is considered on
the network (i.e. Sy = 27.33), then U, value significantly rises to 78.85%, an error of
60%. Johnson's assumption that the network is unsaturated (and the contention is less),
appears rcasonable only when n, is small (say, 1). In this case, U, values with and without
contention are 17.67% and 20.37%, respectively.
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5.8.3 Summary
This section compared the performuice prediction of ¢losed and open system models:

1. A use of closed system model is robust tear network saturation, and input parameters
are predictable by the users. With an open system model, a small error in arrival rate

near saturation can lead to significant error in determining the buffer requirements,

2. The closed system model provides a broader perspective by capturing the feedback

effect, e.g., an incrcased locality in remote accesses decreases Sopy, but increases Ay .

3. A comparison with three techr :es based on open system madels, showed that a

feedback is essential for accurate processor performance prediction,

o A simplistic feedback approach, i.c. simple model, for accounting the impact
of the network performance on the performance of processing nodes, works: well
only when the network is unsaturated.

o We point out that through a use of aggregation property of queueing networks,

. the processor performance can be computed accurately, provided the network

performance can be accurately described by an analytical expression. However,

such a performance model is difficult to solve in the following cases:

(1)- when remote memory access patterns of individual, or groups of processing

nodes are different;

(2)- when the network is hierarchical, so more than one network links are needed

to analytically capture the performance behavior of all the network links.

(3)~ for the specific model developed by Johnson [50], ky < 1 yields an incorrect

value of latency, i.e. the latency reduces compared to its no-load value.

5.9 An Example for Workload Optimization

Now, we show through a specific example (see Table 5.3 excerpted from Figure 5.7, Fig-
ure 5.10 and Figure 5.13) how a compiler writer can progressively optimize the workload

characteristics to achieve high processor utilization. Our proposed order of steps is in the
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order of their difficulty in implementation, however a compiler writer may prefer other

orders suitable for a particular application.

As an example, consider the values marked ‘4’ in Table 5.3 and are emphasized (Sec-
tion 5.7). Let premote be 0.2 and R be 10. An increase in n, from 1 to 4, increases Uy, up to
2.3 times. A, also increases up to 2.3 times (at Premote=0.2). However, a further increase
of 7, to 8 yiclds only a small increase in Up, when A, is close to saturation (also observe
very high Sy, values).

At higher premote values, Uy, values are low. A change of data layout (by placing the
data close to computation) can improve the utilization. Table 5.3 captures this effect, when
a decrease in premere Sends fewer accesses to remote memory. At each value of ny, a decrease
in Premote yields a higher Uy, while Sy and Apee decrease. However, a certain amount of
data sharing is necessary, in most applications, which places a bound on the performance
gains achieved by this technique.

If the processor utilization remains low, then thread runlength should be increased. We
need techniques such as aggregating the network requests to the same memory module
from multiple threads (works well for array accesses), increasing the number of instructions
between successive memory requests by merging two or more dependent threads (at times,
at the cost of parallelism), and using sophisticated register allocation/instruction scheduling
techniques (which reduce the register spills}. These extra efforts pay off because for higher
thread runlength, the memory accesses are fewer, so the contention at the memory and
the network are less (see Ly, and Seps values). Resulting U, values are significantly high.
Note that n; = 4 and R = 20 yields higher U, values than n; = 8 and R = 10. Table 5.3
also shows that for the application with premote = 0.8 and R = 20, the network is still a
bottleneck for high performance. Such an application is a test case for system architects
for tuning the architectural parameters.

In summary, we propose following optimizations:

1. Increase n, to achieve a high Uy. Note that Aney, Sgus also increase.

2. For n; 2 5, Apet is close to saturation, so the performance gain due to a high n,
diminishes cven though Sy;s may not be high. Hence, increase the locality to get a
higher U,



CHAPTER 5. MULTIPROCESSOR SYSTEM 118

3. Finally, increase R to improve premore for which high U, can be obtained. Simultane-
ously ¥/, value also increases. A high thread runlength has more fmpact on U, than
n;.

Note that the order of difficulty in cach of the above steps changes with the application as
well as the compiler. Here we showed benefits of these steps, without discussing the costs
associated with their implementations. Other alternative orderings are possible. Based on
experiences in compilation of multithreaded program workloads, our performance model
can be effectively applied to optimize the workload characteristics.

5.10 Subsystem Utilizations

In this section, we analyze utilizations of subsystems with changes in workload and archi-
tecture parameters. First, we discuss how the system utilization, Uyy,, tracks the dynumics
in subsystem utilizations due to variations in model parameters. Second, we use Uy, lo

point to values of input parameters, which result in high performance.

With premote = 0, the memory requests are restricted to the local memory module, An
increase in Premote increases the number of messages routed to remote memory modules
across the IN. This has a two-fold effect on performance : (i) Since the latency for a remote
access is higher (than the local memory latency) due to extra time spent in traversing the
IN, the corresponding thread is suspended for a longer duration, (ii) A larger number of
messages on the network leads to a higher contention or network congestion, which in turn
increases the network latency. This reduces the utilization of the processor and memory
subsystems. Figure 5.20 shows this effect of premere On the subsystem utilizations, for L
= 10, and L = 20. At L = 10, an increase in premae from 0.2 to 0.8 reduces the values of
U, and Uy, from nearly 90% to 23% and 22%, respectively. When Upe, suturates, the fall in
the values of Uy, and Uy, is steep. For L = 20, U, and U,, decrease rapidly after the network
saturates in the same way. Also, the variations in prenar, affect U, and Uy, identically.

Similar observations could be made, when we consider the effect of memory latency on
the processor and network utilizations, or the effect of § on the processor and memory
utilizations. If the memory latency is increased then the number of requests waiting at the
memory increases, thereby reducing the values of U, and Upe. Similarly, an increase in S
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Figure 5.20: Subsystem Utilizations.

increases the network latency, so more threads at the processor remain suspended waiting
for the corresponding memory responses to arrive. In turn, this decreases the rate at which
memory accesses are sent, resulting in a fall in the values of U, and Uy, with respect to an
increase in S.

Thus, we observe a close coupling among the subsystems, based on our integrated model

of processor, memory and network subsystem.

System Utilization

Having known the behavior of subsystem utilizations (from Figure 5.20), we are interested in
the ability of U,y to track the transitions corresponding to saturation of these subsystems.
Figure 5.21 plots the subsystem utilizations and U,y with respect to memory latency for
R=10, and R = 20. When L is close to zero, the system utilization is low due to the low
utilization of memmory. At values of L close to 100, the memory subsystem saturates, but
the Uy, is low (the limiting value is 33%) due to low Uy and Uyey. For Uyy,, a peak occurs
when L = R = §(= 10), since all subsystems are close to their maximum utilization values.

With L > 10, both U, and Uy, drop off sharply with L, and only a small rise occurs in Uy,
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Figure 5.21: Systemn Utilization with respect to L.

resulting in low value of U,y,;. The maximum value of U,y, is referred to as the peak system
utilization (PSU). Let the corresponding memory latency be Lpgy. From Figure 5.21 we
observe that:

(i) Usys reflects the relative values of Uy, U, and Uy, When parameters of processor and
memory subsystems are considered, PSU occurs at L = R, We note that PSU represents
a transition phase in which une subsystem approaches saturation and utilizations of olher

subsystems drop. This is due to balance of throughput between any pair of subsystems.

(ii) For R =10 and L < 10, at PSU, U, is only 5% less than its maximum value while Uy,
has improved by almost 25%. For R = 20 and L < 20, these differences for U, and Uy,
are 7% and 30%. Thus, by keeping the operating range near PSU, we gain considerably in

overall system utilization and the loss in processor utilization is small.

(iii) For any value of L less than Lpgy, Uy is high. Thus, Lpgy represents the slowest

memory we can operate without hampering a high systemn performance significantly.

The bell shaped plot for system utilization also occurs with respect to changes in other
parameters such as I and S.
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Effect of Network Parameters

Figure 5.22 shows the cffect of premote On the system utilization for various values of S.
Curve for each value of S is bell-shaped, with a PSU occurring at premote, PSU. FOE Premote <
Premote,psu, Up is high and the network is unloaded. Uy, increases with premote, because
more messages get diverted to remote memory modules across IN. For premote 2 Premote, PSU,
most of the messages wait at the IN, and U, decreases rapidly. Consequently, U,y, also
decreases for high premoe. We observe that : (i) PSU lics between 70 to 80% for a wide
range of S, and (ii) For faster switches i.e. low §, U, does not saturate until premote 15

high. Thus, a large number of messages can be transported without congesting the network.
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Figure 5.22: Effect of premote 0n Uyys for various S.

Effect of Thread Runlength

Figure 5.23 plots the system utilization with respect to premote for various values of thread
runlength. Let us assume that the average time taken by a message on the unloaded network
to complete a round trip is Toyg. For a geometric distribution of memory accesses with py,
= 0.5, a remote memory access travels a distance day, = 1.733 hops on a 4 x 4 mesh. Thus,



CHAPTER 5. MULTIPROCESSOR SYSTEM 122

a round trip takes 2x 1.733x 10 time units in the unloaded network. In addition, a delay
of § (= 10) time units is incurred at the local switch on the forward as well as the return
path of the message. Hence Tqpy (= 34.66+4 20 = 54.66) is given by :

Tnug = 2(dan_q + I)S (5-20)
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Figure 5.23: Effect of premote on Ugyy for various R.

In Figure 5.23, for B < 10, PSU increases with R from 67% to 79%. Also, the PSU
almost always occurs at prenote = 0.18. Sitce R £ L, a thread spends less time at the pro-
cessor than it spends at the memory module, PSU resuits from the matching of throughput
between the memory and network subsystems. A memory module returng the remote mem-
ory accesses to the network at the rate of Eespeiz - At PSU, throughput of the incoming
messages from the network (= ,Iul‘_u;) cquals the throughput of the responses from the mem-
ory module (= h’"‘ﬁ""ﬂ'ﬂ). 50, Dremote,PSU 18 rnl,—u; = 0.18. For R > 10, the processor
and network subsystems govern the PSU value. A processor sends out memory requests
at the rate of '}E A fraction (=premote) of these are directed across the network to remote
memory modules. The network delivers the messages to processor at the rate of T‘;l-.-’; As

the throughputs should match at PSU, premote should equal ’I‘.ﬁ_, Considering these two
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scenarios together, the maximum value of PSU occurs when throughputs of the three sub-
systems arc equal. That is, the thread runlength, memory latency and network latency
should be such that:

Premote, PSU

7 = Taug at PSU
Premng,PSU = Toup at PSU (5.21)
1 —DPremote
7 = I_IfuL + ’Tﬁl.,_g (5.22)

Equation 5.22 results from Equation 5.21, because at steady state memory access rate
from a processor to its local memory (= l—_"',—}"'ﬂ"-) is matched by the service rate of the
local memory. The remaining fraction premote i8 serviced by the network. When one sub-
system saturates, Equation 5.21 could be applied to obtain the utilization values for other

subsystems. For example, in Figure 5.20, we observe that on network saturation the values

L

and Premate XTavg °

of Uy, and Uy, are close to

pm..ofx’lh > Similarly, in Figure 5.21 when
the memory subsystem reaches saturation, the values of U, and Uy, are proportional to
-E and -f:, respectively. We note that Equation 5.22 is same as Equation 5.12 obtained in

Section 5.5.2.

Locality of Memory Accesses

If the remote memory access pattern is a geometric distribution, an increase in p,,, increases
davy for a message on the network, and hence the network latency. Figure 5.24 shows the
effect of increasing py,, on system utilization, for various values of thread runlength when
Premote = 0.17. For low value of pyy,, PSU occurs due to saturation at processor and memory
subsystems, PSU increases from 65% to 78% when p,y, is increased from 0.1 to 0.7 due to
an incrcase in the value of Uye. Further increase in pyy to 0.9 brings down PSU to 72%,
due to lower values of U, and Up,.

Summary
Our study suggests the following conditions for achieving high performance:

o Overall high utilization of all subsystems is achieved irrespective of the value of n,
(> 1), when (i) the thread runlength R equals the memory latency L; and (ii) the
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Figure 5.24: Uy, with Geometric Distribution.

. remote memory access rate (Z=pete) equals the network service rate rpll;;

o The applications with larger locality can tolerate slower networks without much degra-

dation in performance due to reduced network traffic.

5.11 Related Work

A number of analytical and simulation studies on the performance of multithreaded archi-
tectures have been reported in the literature. First group ol analytical studies focuses on
the processor performance only (e.g. Saavedra-Barrera et al. [80], Alkalaj et al. [8], and
Agarwal [4]), while second group studied interaction of various subsystems in an MMS (c.g.
Johnson (50], Nemawarkar et al. [66], and Adve et al. [2]).

Saavedra-Barrera et al.[80] and Alkalaj et al. [8] use Petri Nets to analyze multithreaded
systems. Their analysis uses the state space of PNs. Since contentions at the memory and
network increase the state space tremendously, the contentions are not studied. These
models are similar to the naive model in Section 5.8.2.
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Agarwal [4] presents an analytical model for processor performance using cache parame-
ters. The model is similar to the closed loop model in Section 5.8.2, except that the effect of
latency on cache miss rates is not included and the memory is not modeled. So, the model
is applicable, where latencies and cache miss rates are independent, e.g. either latency or

cache miss rates are low.

The interconnection network performance has been extensively analyzed using open
queuing network (OGN) models in the literature [3, 30). We showed that an OQN model
tdloes not properly capture important subsystem interactions such as the feedback effect
in an MMS, hence the network péribrmance predictions of these studies were not directly
usable for analyzing MMS. However, note that OQN models provide an insight to the
IN performance, with a minimal set of assumptions about the system and the program
execution model.

The performance model for an IN can be effectively combined with models for other
subsystems to capture their interactions. Four studies using closed system models follow
this approach [101, 50, 66, 2]. Our work and these studies, complement each other to

reinforce the claim that a CQN faithfully models subsystem interactions of a large scale
MMS.

Johnson [50] develops a closed system model to account for the feedback effect of the IN,
and predict the effect of locality in an MMS, This is the closed loop model in Section 5.8.2.
He adds the model of a program execution to Agarwal’s network model [3]. Johnson’s model
assumes an unsaturated network and does not take into account the effects of the memory
subsystem. His model does not capture the network behavior correctly, if the locality in
the remote access pattern is high (specifically £y < 1). His results show benefits of tuning

the workload parameters to exploit the locality, which we have confirmed in this paper.

Willick and Eager [101] studied the performance of k-ary n-cube interconnection net-
works embedded in multiprocessor systems. The focus of their study is to present a per-
formance model for such an interconnection network, with each processing node allowing
multiple outstanding requests. They have not analyzed the system performance in detail.
Thus, their results do not bring out specific hints for users to optimize the performance of
multithreaded systems.

In a recent, independent work, Adve and Vernon [2] also use a CQN model to analyze the
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performance of a k-ary n-cube network in an MMS. They focus on effects of architectural
features (i.e. pipelining and virtual channels in the IN) on performance. They develop a
new set of approximations for AMVA. The model increases in complexity, but provides a
greater accuracy. In contrast, we use a simple network model, which reduces the complexity
of the model, and use a well known approximation to apply AMVA. Our results show the
effectiveness of multithreading to tolerate long latencies. In particular, we have identified

the role of network capacity on the network latency and processor utilization.

Three simulation studies also report the performance benefits of multithreading [100,
18, 90]. An early study by Weber [100] shows the differences in performance gains due to
multithreading, because of variations in the bus traffic. Thekkath [90] studies the effective-
ness of multithreading in presence of cache, Their results indicate the need for tuning of
workload characteristics such as the locality, and number of threads, to obtain performance
gains using multithreading, which is validated by our results. Boothe [18] shows the benefits
of various techniques manipulating the network messages, adjusting the thread runlengths,
for multithreading. While confirming these results, we also show that their assumption of a
constant network latency [91, 18] is not realistic, so the degree of performance gaing using
proposed techniques, changes substantially.

5.12 Conclusions

In this chapter, we proposed a performance model for analyzing a :nultithreaded multi-
processor system. Our integrated system model, based on closed queueing networks, takes
into account the behavior of processors, mmemories and interconnection network, and the
interaction between them under various program workload.

Given program workload and architectural parameters, we showed how to derive the
key performance measures- processor utilization Uy, message rate to the network Aper, and
observed network latency Seus. We applied our model to provide a quantitative character-
ization of their variations with model parameters, to understand system bottlenecks, and

to provide insight to the impact of performance related optimizations,

Our analysis brought out the importance of feedback cffect of network performance on
processor utilization. We showed that a strong coupling exists between these subsystems.

A variation in parameters of one subsystem affects utilizations of other subsystems as
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well. Concurrently analyzing the network and processor performance we also showed the
significance of network capacity to tune the workload characteristics in order to achieve a
high processor utilization. For example, U, increases with an increase in the number of
threads (n;) as long as the capacity of the IN is not reached, even when Sg, is large. Also,
the higher the capacity, the higher can be the U, value.

We demonstrated the usefulness of closed system performance models to users {compiler
writers, programmers, and system architects): they can work directly with the program
workload parameters and architectural parameters which are familiar. Added advantage
is that ncar the network saturation, unlike open system models, problems of dealing with
high sensitivity of performance to input parameters, do not arise. We also showed that the
robustness of our model is helpful in processor performance prediction, in comparison to
three successively refined approaches based on open system models to estimate the processor

performance.

In the next chapter, we will explore how effective is the multithreading in tolerating
long latencies. Then in Chapters 7 and 8, we will apply our performance model to analyze
McGill's EARTH-MANNA multithreaded multiprocessor system.



Chapter 6
Latency Tolerance

The previous chapter showed how, given a multithreaded architecture and a program work-
load, to derive absolute performance measures, like processor utilization. We discussed how
the model parameters affect the processor utilizations in a multithreaded multiprocessor
system. We also noted the effect on the message rate to the network and the network
latency. These performance measures, however, do not provide an cstimate of the perfor-
mance loss due to latencies at subsystems, e.g. memory. Users of multithreaded architec-
tures may spend large efforts to tune the performance. For example, a system architect
needs to explore a large design space to tune the subsystem implementations or the sys-
tem configuration. Similarly, 2 compiler needs to change a significant number of workload

characteristics to achieve performance improvements.

This chapter focuses on quantifying how effective is the multithreading technique in
tolerating long latencies for memory accesses. We restate the following problem 3.2.3 from
Chapter 3:

Problem 6.0.1 Given a maultithreaded archileclure and a program workload:

1. Can we gquantify the latency tolerance?
2. How does the ability of latency tolerance vary with model parameters?

3. How is the ability of latency tolerance related to the high processor performance?

128
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Thus, the objectives of this chapter are, to quantify the latency tolerance, and to show the

usefulness of latency tolerance in performance optimizations.

The benefits of quantifying the latency tolerance are as follows. There are many work-
load and architectural parameters, which affect the performance of a multithreaded system.
With information on tolerating particular latencies, like the network latency, a user can nar-

row the focus to tune the parameters, which have a large effect on the system performance.

On a target set of workloads, a system architect experiments with the system configura-
tions, e.g. the number of processing nodes, and number of concurrent memory operations,
and architecture parameters, c.g. routing delays at switches. The latency tolerance shows
how changes in these parameters affect the performance, thus bringing out the performance
bottlenecks. For example, if the latency of a memory subsystem is less tolerated (than say
the network latency), then a system architect can tune the memory subsystem. Tuning the

parameters of other subsystems will have less effect on performance.

Given a multithreaded multiprocessor system, a compiler writer has to optimize a pro-
gram workload. The number of threads, their granularity, and the locality in their remote
accesses, are the typical program workload parameters for optitnization. A characteriza-
tion of the latency tolerance with workload parameters helps to choose an effective thread
partitioning, i.e. a suitable computation decomposition (thread partitioning) and data dis-
tribution. For example, if network latency is not tolerated, then a compiler can redistribute
the data and computation to reduce the messages on the network. Changes in the number
of processors in the system have a significant effect on performance of particular thread
partitionings and data distributions. The latency tolerance can also be used to analyze one
or more subsystems at a time.

We are not aware of any literature that quantifies the latency tolerance as a measure
to evaluate system performance. Perhaps the only related work, of which we are aware, is
by Kurihara et al. [54). The authors show how the memory access costs are reduced with
the use of 2 threads (per processor). Qur conjecture, however, is that memory access cost
is not a direct indicator of how well the latency is tolerated.

Intuitively, we say that a latency is tolerated, when the progress of computation is not
affected by a long latency operation. In other words, if the processor utilization is not
affected by the latency for an access, then the latency is tolerated. The latency tolerance is
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quantified using the tolerance indez for a latency, and indicates how close the performance
of the system is to that of an ideal system. An tdeal system assumes the value of the latency
to be zero time units. Under this assumption, the performance of a system is independent
of scaling. We do not assume that an ideal subsystem is a contention-less subsystem with
finite delay, because the performance of such a system is likely to change, when cither the
number of processing nodes or the data distribution is changed.

We compute the tolerance index using the analytical framework developed in Chapter 5.
Analytical results are obtained for a multithreaded multiprocessor systemn (MMS) with a
2-dimensional mesh. A characterization of the tolerance index with varions architectural

and workload parameters, helps us to tune the system performance.

We begin the next section with a discussion on latency tolerance. In Scetion 6.2, ana-
lyzing the latency tolerance on an MMS, we show a strong impact of the memory and IN
subsystems on the system performance. Further, we apply latency tolerance to analyze
a thread-partitioning strategy. Thig strategy deals with how to partition the computation
in a do-all loop in terms of the number of threads and their granularities, as discussed
in Chapter 2. We show that the latency tolerance does not depend on the actual latency
incurred by individual messages, but on the rate at which the subsystems can respond to
remote messages. In other words, a high value of a latency for messages does not imply a
degradation in system performance.

Tolerating a memory (or network) latency indicates that the memory (or network)
subsystem is not a bottleneck. Our analysis of memory latency tolerance in Section 6.3
. shows that to ensure a high processor performance, however, it is necessary that both the
network and memory latencies are tolerated. With a stall number of threads, performance
gains saturate due to a low hardware parallelism (per processor). Use of mechanisms like
pipelining/multi-porting at the system resources (like memory), boosts the poiformance
gains up to a higher number of threads. However, increasing the thread runlength for a
small number of threads (> 1) results in the best performance.

The above results use an MMS with 4 x 4 mesh, similar to our study in Cis::pl:cr b.
The default parameters are given in the Table 6.1. In Section 6.4, we analyze the tolerance
index when the number of processors is scaled from 4 to 100, i.c. the number of processors

in ecach dimension, k, varies from 2 to 10. We show that a geometric distribution performs
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significantly better than a uniform distribution for larger systems, because with a geometric
distribution, the messages cover a smaller average distance on the IN. In a large system,
various switches on the network can act as pipeline stages for remote memory messages
from a processor. These stages present finite delays to the messages, thereby reducing
otherwise severe contentions at the remote memories, As a result, under a suitable locality,
the performance of a system with finite switch delays is better performance than even an

ideal (very fast) network.

1 om Section 6.1 to Section 6.5, we analyze and discuss these results. In Section 6.6,

we compare our work with the related work. Finally, Section 6.7 concludes this chapter.

Workload Parameters Architecture Parameters

Tt | Premote R Paw(=> dauy) L S k ny
8 102,04 (10,20 | 0.5(=1.733) | 10,20 | 0,10 | 4,2-10 | 1

Table 6.1: Default Settings for Model Parameters.

6.1 Tolerance Index: A Metric for Performance Analysis

In this section, we discuss the intuition for latency tolerance and define the Lolerance index

to quantify the latency tolerance.

When a processor requests a memory access, the access may be directed to its local
memory or a remote memory. If the processor utilization is not affected by the latency
at a subgystem, then the latency is folerated. That is, the latency at a subsystem does
not lead to any additional idle time a2t the processor, Two possible reasons are, either the
subsystem does not pose any latency to an access, or the processor progresses on additional
work during this access. In general, however, the latency to access a subsystem delays the
computation, and the processor utilization may drop. For comparison, we define an ideal

systern whose performance is unaffected by the response of an idea! subsystem.

Definition 6.1.1 Ideal Subsystem: A subsystem which offers zero delay to service a request

is called an ideal subsystem. The response of this subsystem is called an ideal response.
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Definition 6.1.2 Latency Tolerance: It is the degree lo which the system performance is

close to that of an ideal system. The tolerance index s its metric.

Definition 6.1.3 Tolerance Indez (for a latency): Tolerance index, tolyysystem, i3 the ratio
of Up,subsystem in the presence of a subsystem with a non-zero delay to Upideat subssten it

i i
the prese subsystem. In other words, = nauhayatem
he presence of an ideal ystemn y L0lyubsystem U_L.__J—Jl.idmll pvw——

As discussed in the introduction, there are two ways of defining an ideal subsysten: as
a zero delay subsystem or as a conlention-less subsystem. We prefer the former for the
following reason. Counsider the tolerance of network latency. Let the number of proeessors
in a system be scaled. We believe that the performance of the ideal system should not
change. In other words, if the network latency is tolerated, the performance of & processor
should not be affected by changes in cither the system size or a data placement strategy
(which affects parameter values for remote access patterns). Thus, the choice of a zero-delay

subsystem is amenable to analyze the latency tolerance for more than one subsystemn al a
time.

A tolerance index of one implies that the latency is tolerated. Thus, the system perfor-
mance does not degrade from that of an ideal system.! We divide the system performance
in the following zones:

tolsubsystern = 0.8: the latency is tolerated.

0.8 > toleuhsysten = 0.5: the latency is purtially tolerated.

0.5 > tolgupaystem: the latency is not toleraled.

The choice of 0.8 and 0.5 is somewhat arbitrary, except for the fact that the corresponding
U, values are 0.8 and 0.5, when other subsystems do not affect U,

With the above background, we next analyze the network latency tolerance.
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6.2 Network Latency Tolerance

In this section, we show the impact of workload parameters on network latency tolerance.
We study the performance of processor and IN subsystems simultaneously, with the follow-

ing purposc: For what workload characteristics is the nelwork latency tolerated?

Figures 6.1 and 6.2 show Uy, Spbs, Anet and tolyepyork for R= 10 and 20, respectively.
The placement of Uy, and Lolpeiwors Plots adjacent to Sepe and Ay highlights the effect of
workload parameters on both subsystems, the processor and the network. We analyzed the
Upy Sous and Aper with these model parameters in Chapter 5. In this section, we will review
the performance of network and processor subsystems, study the behavior of tol,ciwork, and

analyze the impact of a thread partitioning strategy on the latency tolerance.
Network Performance:

Figures 6.1(c) and 6.2(c) show that the network is a bottleneck for high values of premote-
So, Ayet saturates at 0.029. On saturation, the IN routes the maximum number of messages
per unit time per processor under given remote access pattern. Each message travels dayg
hops on the IN on average, and so does its response. Thus analytically, a maximum rate at

which messages return to a processor from the IN is:

f\uct“qﬂf_ura“an = ﬂall.l_g.—g (= 0-029, fOl’ psw = 0.5 and S = 10.) (6-1)

Anet,saturation 18 independent of workload characteristics (except the remote access pattern).
Figures 6.1(c) and 6.2(c) show that A,e saturates at prenote = 0.3 and 0.6, respectively.

When Ape saturates, the network latency varies as follows (see Figures 6.1(b) and 6.2(b)):

1. For a fixed value of ny, Sgp; remains constant {at a high value) with respect to premote-
The network is a bottleneck, so the number of messages on the IN (either waiting or

being routed) becomes a constant.

2. If premote is constant and 7 increases, then more messages wait on the IN. So, a linear
increase in Sy, occurs with ;.2

'Section 6.4 shows an exceptional case when the performance may exceed that of the ideal system.
2If the switches on the IN have limited buffering, then S,;, will saturate with n;. We do not investigate

the effect of buffering on IN switches, in this thesis. -
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When A, is below saturation, we observe the following:

1. When n, is constant, an increase in premote diverts more messages to remote memories.
So, Ay increases linearly with premoe. Since the contention on the network increases

with Premote, Sops starts from an unloaded value and rises rapidly at high premotes

2. For a premote, Anet increases with 7, and almost saturates by n; = 5. Sppy increnses

linearly with n,, and the rate of increase is small at low premore vatlues.

Processor Performance:

Let us trace the Up values at n, = 4 to observe the effect of premote, in Figure 6.1(a}.
U, is close to 100% for premote = 0. In other words, the processor receives a respouse Lo
(one of) its accesses before it runs out of work. An increase in preygre increases Sy, and
beyond a critical premote, Uy decreases, according to Figures 6.1(b) and 6.1(a) respectively.
At this critical premote, & remote access travels 2d,,, hops for a round trip on the IN and

spends 28 time units to get on/off the IN. The remaining fraction of accesses is serviced

. locally. Our back-of-the-envelope analysis in Chapter 5 (Equation 5.12) shows that:
message rate from processor < local memory service rate  -Fmessage rate from network
1 _ 1
R < 1 —premote +___2(drwy +1)S
Premote <l+ (m - "JLE) (6.2)

For R = 10 and 20, the above equality occurs at prepmote = 0.18 and 0,68 respectively. From
Figure 6.1(a), we observe that Uy, drops for premate 2 0.18, because the remote accesses

take longer time to return. Let us consider three zones for U, based on premote values of
0.18 and 0.3 (the value at which IN saturates):

Premote < 0.18: In this region, the processor does not run out of work, and U, is high.
Since Sgps and Anee are small, U, is unafiected by network delays.

0.18 < premote < 0.3: Uy, drops with an increase in the value of premate, becatuse a rapid
rise in S,y increases the delay for remote accesses. At large ny, U, remains high,
despite a high value of Sgps.
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0.3 < Premote: In this region, the IN becomes a bottleneck i.e. Ay saturates. Saturation

value of U}, is low, but does not change in spite of an increasing value of r; (and Spps).

Given an 1, an increase in premote increases the number of threads waiting for a
rcmote response. U, decreases with increasing premote, in spite of a constant Spps,

because the fraction of threads serviced locally diminishes.

Figure 6.2 shows a similar behavior. The corresponding values of premote are higher because

R is higher.

Figure 6.1(a) and (d) show that a use of 5 to 8 threads results in most of the perfor-
mance gains. For the MMS, on average, cach class of threads has three fu:ictional units
(a processor, a memory and a switch). When service times are balanced, 3 threads (or
accesses) on 3 units are serviced. The remaining 2 to 5 threads (or accesses} in the waiting

queue at each unit help to tolerate the differences in service times and their distributions.
Tolerance Index:

Wahile the absolute value of Uy, is critical to achieve a high performance, the tolerance index
. signifies whether the latency of a subsystem is a performance bottleneck. To compute

toly,ciwork, there are two ways to analytically obtain the performance of an ideal system:

o Modify system parameters: Let the switches on the IN have zero delays, then the
performance can be computed without altering the remote access pattern. The dis-

advantage is that this method is not useful for measurements of an existing system.

s Modify application parameters: Let premote be zero, then the ideal performance for
an SPMD-like model of computation is computed without the effect of the network
latency. The disadvantage is that the remote access pattern needs to be altered. We

prefer this method, since it is applicable to existing systems.

Figures 6.1(d} and 6.2(d) show the tolerance index (U:m—:m) for the network
latency at R = 10 and 20, respectively. Horizontal planes at tol,etwers = 0.8 and 0.5
divide the protessor performance in three regions: Sy, is tolerated (tolnepwort = 0.8); Sobs
is partially tolerated (0.8 > tolyepwork = 0.9); and Sy, i8 not tolerated (0.5 > tolyptwork )

Recall from Equation 6.2 that when ppemote i8 less than the critical value, the rate of
memory accesses (with maximum value of JIE) is less than the throughput of memory and IN
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subsystems (i.e. memory and IN bandwidths). On average, a processor receives a response
before it runs out of work. Figure 6.1 shows that even at a small ny (5), tolyeneor 15 88
high as 0.86. When the IN becomes a bottleneck at premote = 0.3, Lol etwors drops to 0.75.

A higher value of R tolerates a premote value as high as 0.6 (sce Figure 6.2).

Both figures show that tol,epwert i8 low when the IN saturates. For an unsaturated IN,
tolerwork is higher. An obvious question is: Dees Sy, determine tolyeiwors ¥ The following
example shows that S,;, does not determine tolperpere. We focus on particular performance
points from Figures 6.1 and 6.2, which have similar S5, values (as shown in Table 6.2). Al
R = 10, note that n;, = 8 tolerates an Spps of 53 time units, but 1, = 3 does not. Similarly
at R =20, n; = 6 tolerates an S, of 56 time units, but 2,=3 and 4 only partially tolerate
Sobs- S0, what determines the region of operation? For the same architectural parameters,
different combinations of n;, R and premete can yield the same Sy, but different Lol,gpwork.
A combination of low premere and either a high ny or a high R, exposes (and performs) more
work locally in the PE, (for example, premote= 0.2, 1, = 8, and R=20), and hence Lo, ptpark

value is higher. Thus, for an unsaturated IN, the following ways can improve Lol gpork:

1. A low premote reduces the number of messages on the IN, resulting in a lower Sy and
higher tol,eizori- The disadvantage is that the messages are diverted to local memory
module for service, thercby increasing its response time Lg,. For a special case of a
small n; (= 1}, the network traffic is also low, hence Uj, is close to the performance
of an ideal IN, and tol,,ctwers 18 close to 1.

2. An increase in R (from 10 to 20, in the example) reduces the number of messages Lo
IN and local memory. Thus, Spus and Ly, decrease and Lolygpwors increases. Nole
from Figure 6.2(d) that Sy, is partially tolerated for premere #8 high as 1.0

3. Lastly, an increase in n; increases tol,upork duc to availability of more work (a higher
ny with same R indicates that more iterations of a loop are exposed /forked at a time).
However, the disadvantage is a significant increase in response times at the switches

(collectively Sgp,) and at the Iocal memory module (L)

We note the following points for the network latency tolerance:

3Agarwal [4] reports a deteriorating cffect of partitioning of a cache at & large ne. Thekkath et al. [91]
and Eickemeyer et al. [35] report little variations in eache tniss rates due to multithreading. In thiy thesis,
we do not explore this application-dependent phenomenoun.
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1. Workload characteristics and not the resulting S, value determine whether the net-
work latency is tolerated, partially tolerated or not tolerated.

2. For a sct of values for architecture and workload parameters, there exists a critical

Premote Deyond which the network latency cannot be tolerated.

3. Increase in R improves tolyunperk, and also increases the critical value of premote Up

to which the network latency is tolerated.

R | ng | premote || Lobs | Sobs Anet Up | tolycwor
0] 8 0.2 || 40.7 [ 52.7 | 0.0164 | 81.94 0.929
4 0.3 || 26.0 | 53.4 | 0.0170 | 56.80 0.710
3 0.5 || 14.8 | 54.7 | 0.0177 | 35.45 0.473

20 0.4 [ 17.0 | 56.1 | 0.0175 | 87.55 0.899
0.5 || 14.9 | 55.2 | 0.0175 | 70.18 0.741

0.7 | 13.1 | 53.6 | 0.0174 | 49.69 0.543

[ - >}

Table 6.2: Network Latency Tolerance, with R = 10 and R = 20.

Impact of a Thread Partitivning Strategy on Latency Tolerance

Performance objectives of a thread partitioning strategy are to minimize communication
overheads and to maximize the exposed parallelism (84, 18]. Recall from Section 5.2 that
our model assumes the threads as iterations of a doall loop. So, performance related
questions are: How many iterations should be grouped into each thread? And, how do the

workload paramelers offect the tolerance?

Let us assume that our thread partitioning strategy varies ny and maintains the exposed
computation constant {at a time)}, by adjusting their R values, i.c. n; x R is constant.?
Figure 6.3 shows tol,.work with respect to ny and R. Horizontal planes at tolpejwork =

0.5 and 0.8 divide the tol,eiwerk plot in three regions:, where S, is tolerated, partially

“This is similar to the grouping of accesses by Boothe [18] to improve R. For large grouping the message
size will affect the routing delay, § on a switch. Here, we will ignore this effect.
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tolerated, and not tolerated. We highlight certain values of 1y x R from Figure 6.3 in
Table 6.3 and Figure 6.4. For n;, x R = 40, Table 6.3 shows that:

L. A low premote vesults in higher toly,pipork, because a smaller fraction of memory accesses
wait for Spps.

2. At a fixed value of premote (say, 0.2), tolypwerk is faitly constant, because Uy il

U, ideal network increase in almost the saine proportion with 2.
™ 1

3. For R < L(= 10), Lgp, is relatively high and degrades U, values. Since Upideal network
is also affected, tolerwers 18 surprisingly high.

When R < L, Figure 6.4 shows a convergence of ny x 12 lines, beeause the memory subsystem
¥ y Y

has more effect on tol,pwork (as discussed in next scetion). We note that:

1. For R > L, the tolyetwors (and Up) value is close to maximum at y = 2. Thus, a high

R achieves good results, but n, should be more than 1.

2. A high value of ny %X @ exposes more computation at a time, so tolyewers is high.

Premote | Tt | || Lovs Sobs Anet Up | tolyeiwork
0.2 2|20 13.1 ] 33.2}0.0069 | 69.74 (0.825
410 [ 22.7 | 43.5 | 0.0133 | (66.29 (0.829

o 813001 48.6 10.0153 } 61.02 0.843

7 6] 47.1 | 55.7 | 0.0173 | 51.96 (.891

04] 2|20 12,9 | 38.4 [ 0.0111 | 55.45 0.656
4110 17.6 | 61.3 | 0.0190 | 47.64 (.596

5 19.7 | 75.0 | 0.0212 | 42.49 0.687

22,8 | 103.7 | 0.0237 | 35.60 0.6t0

Table 6.3: Effect of Thread Partitioning Strategy on Network Lateney Tolerance.
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. 6.3 Memory Latency Tolerance

In this scction, we discuss the tolerance of memory latency using workload parameters.
Figure 6.5 shows tolyemery for two values of L, when premote = 0.2, Horivontal planes
at tolyemory = 0.5 and 0.8 divide the tolmemory plot in three regions: Lg, is tolerated,
partially tolerated, and not tolerated. For R > 20 and ny > 6, tolyemory saturates at 1.0,
i.c., Lgyy does not affect the processor performance. Table 6.4 focuses on sample points for
which n, X R is constant. Note that the data for L = 10 is same as that for premoete = 0.2
in Table 6.3. The differences in tolmemory and tolpetwors from the two tables indicate that:

1. A high tol,,psystem does not necessarily mean a high U, unless the latencies of all
subsystems are tolerated. (When R > L, Uy, is proportional to tolmemory X tolnetwork-)

Thus, a low tol,yupsyseem indicates that the subsystem is a performance bottleneck.

2. The impact of n; on Lgy, is significant at low premote, because more messages are
diverted to local memory. For a change in n; from 2 to 7, Loy, increases by 3-folds.
Table 6.3 shows a smaller change in Lgp; at high premote.
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Figure 6.4: Network Latency Tolerance for Thread Partitioning Strategy.
. For R < L, memory subsystem dominates the performance. Table 6.4 shows that:

1. An increase in L from 10 to 20 increases Loy by over 2.5 times. Also, toly,gmory is at
most partially tolerated.

2. R > L results in high tolynemory and Up, because cach thread keeps the processor busy
for longer duration. A side effect is a lower contention at the memory.

For the thread partitioning strategy (which keeps 1y x R = constant}, a high R value

means low 7, and further reduces contentions. The result is a high Lolyemory-

Similar to the observation on the network latency tolerance, we note that depending on the
workload characteristics, the same value of L,y can result, when the MMS is operating in
any of three tolerance regions.

In Section 6.2 on the network latency tolerance, we mentioned that performance gains
beyond 5-8 threads were negligible (as also reported by others {100, 4, 90]). We conjectured
that this was due to exhaustion of hardwarc parallelism (per processor}). To verify the
conjecture, we focus on a single node of the MMS. For R = 2 and L = 10, Figure 6.6
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Figure 6.5: tolyamory With respect to workload parameters.

. shows the effect of number of ports at the memory on Up,. A low R highlights the effect
of hardware parallelism. For n; > 7, a linear increase in U, with n,. Also, note that
Up saturates with increasing n;, when n; > np. In other words, once the memory ports
are busy, the processor performance cannot be improved using mn;. Thus, the processor

performance improves with 7, in the presence of a higher hardware parallelism (np).

6.4 Scaling the System Size

The scaling of the system size raises the following questions for a compiler to optimize the
workload parameters: How will the tolerance of network latency change with the system
size? Which parameters huve significant effect on the tolerance? First, we discuss the
offect of distributions for a remote access pattern, i.e. geometric and uniform (where a
remote access is directed to any of the memory modules with equal probability). We show
that the effect of locality on the latency tolerance is significant. Second, we study the
performance of subsystems and show that a careful tuning of the workload can exploit the
IN for a better performance than an idea! (very fast) IN.

1
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Llm| RY Los | Sobs Up | tolmemory
10| 2|20 13.1]33.2]69.74 0.843
4 | 10| 22.7 | 43.5 | 66.29 0.797

5 30.0 | 48.6 | 61.02 0.763

7 473 | 55.7 | 51.96 0.729

20 2|20 323|317 55.01 0.665
4110 672|354 | 41.62 0.501

5| 8| 87.5]36.2|35.28 0.441

7 128.0 | 37.0 | 27.82 0.390

Table 6.4: Effect of Thread Partitioning Strategy on Memory Latency Tolerance, when
Premote 18 0.2

Figure 6.7 shows tol,epore when the number of processors, P, is varied from 4 to 100

(i.e. k=2 to 10 processors per dimension). At premare = 0.2, 1y is varied for two runlengths.
We observe that:

1. For a uniform distribution, dgy, increases rapidly (from 1.3 to 5.0) with the system
size, and the network latency is not tolerated. tol,siwork Saturates with low n, and high
k. But for a geometric distribution, da,, asymptotically approaches TT;:T.J (= 2) with

increase in P, and an increase in n, improves tolyenverk close to 1. The performance
for the two distributions coincides at & = 2 for all n; values,

2. For all the machine sizes, tolgptwork i8 close to its saturation value for & to 8 threads.

Note that even a large system does not require a large n, to tolerate network latency.

3. At R = 10, and & from 6 to 10, tolyeuwork increases up to 1.05 for a geometric
distribution, i.e. the system performs beuter than with an ideal IN. The delays at
‘network switches alleviate the contentions at remote memories, thereby improving
the response for local accesses.

4. An increase of R increases tol,emyork values and the maximum Lol eiwmork value is close
to 1. A higher R reduces the memory access rate. A reduced contention at the
memory decreases Lgp,. This improves U, as well as Uy, ideat network-
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Figure 6.6: U, with respect to number of memory ports np,.

Now, we focus on the observation 3 stated above, Figure 6.8 shows that with increasing
the system size, the system throughput (= P x U,) increases, when ny - 8 and R = 10. For
the uniform distribution, the network latency increases rapidly and the throughput is low.
In contrast, a geomufrically distributed access pattern shows an almost linear increase in
throughput (slightly better than the system with an ideal IN). Transit delay for all remote
accesses on an ideal IN is zero. Accesses from all processors contend at a memory module
increasing the Loy, (sce Figure 6.8(b)). Thus, Upigeat network is affected. For a geometric
digtribution, the IN delays the remote accesses at each switch (similar to the stages in a
pipeline), just enough to result in a low Sy and Lgs. The local memory accesses are
serviced faster, and U, values improve. The following are the two implications from the
above observations:

e A very fast IN may increase the contention at local memory, and the performance
suffers, if memory response time is not low. Multiporting/pipelining the memory can
be of help. Also, prioritizing the local memory requests can improve the performance
of a system with a very fast IN.
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Figure 6.7: Tolerance Index for diffcrent systemn sizes.
. e A larger system can make better use of IN under a good locality to tolerate network

latencies than a smaller system.

6.5 Discussion
In summary, our results on the latency tolerance show that:

1. The extent of the latency tolerance depends on the choice of workload parameter

values rather than the resiting value of latency. A large latenry does not necessarily
degrade the system performance.

2. The network latency is tolerated onfy if the memory access rate is less than the rate

at which mernory and IN can respond. We compute the critical propote value up to
which network latency is tolerated.

3. A high U, requires high tolerance indices for both the network and memory latencies.

A low tolgypsystem indicates that the subsystem is a perfermance bottleneck.
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Figure 6.8: System throughput for uniform and geometric remote access pattern.

4. A high thread runlength yiclds a high U, and tolerates the latencies better than a

high n;. Under vur assumption of a small number of ports for a realistic memory

subsystem, performance gains for n; beyond 5 to 8 threads are negligible becanse

hardware parallelism in the system is exhausted.

b1 ]

A large system with a good locality in remote access pattern can make govd use of the

IN as a pipelined buffer and relieve contentions at the memory. So, the throughput

increases almost linearly with the system size and is up to 5% better than with an

ideal IN. The use of a very fast IN leads to an increased contention at the memory.

Hence, the performance suffers.

Item 5 suggests that tu improve the performance we should also prioritize the requests

from local processor helps to keep the local computation unaffected by contertions. This

approach has been adopted in the processing node design -.f the EM-4 multiprocessor sys-

tem [83).
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6.6 Related Work

The latency avoidance techniques, like caches and memory hierarchy, continne to be studied
extensively in tue literature [86, 7, 73, 78]. The effectiveness of latency tolerance techniques,
like multithreading and prefetching, has not been studied formally in a way suggested in
this chapter. Kurihara et ai [54] evaluate the effectiveness of multithreading using up to
two threads (since their applications did wot have more inherent parallelism). Their cost
analysis shows a reduction in remote memory wceess costs with the use of two threads.
They report a simultancous increase in the network latency and channel utilization, Those
conclusions are in conformity with our analytical results. Further, we have defined the

latency tolerance and applied it to analyze the performance bottlenecks in the system.

Analytical performance evaluation studies by Agarwal [4] and Saavedara-Barrera et
al. [80], modeled a multithreaded processor in a cache-based multiprocessor system. Willick
[101], Johnson [50]} and Adve [2] modeled a closed system. Weber [100] and Thekkath [90)
simulated bus- and network based multithreaded systems. Most of these studies focus on
processor performance and report that 4 to 5 threads per processor yield a performance
increase while higher parallelism decreases the processor throughput. However, none of

these work analyze the latency treatment formally.

Our analysis provides significant information on how to tolerate a latency and the
impﬁct of a thread partitioning strategy on the latency tolerance and system performance.
on latency tolerance provides additional significant information We also show that the
saturation of processor performance occurs at a small number of threaeds, becanse the

hardware parallelism (number of resources per processor) in the system is exhausted.

For single-threaded machines, the Flash system [42) has been studied by comparing its
performance with an ideal machine. Tl:ey use a conlention-less network, and zero-deluy for
cache protocols. Similar to our observation (increased memnry response time due to ideal
IN), they report an increase in contention at the cache due to ideal behavior of the bus
and memory. They use a fixed size system (of 16 processors) for their results. So, they do
not observe the effect of unloaded network latency on the system performance. Section 6.1
shows that unloaded network latency varies with system size, and should be factored out of
the performance of the ideal system. Secction 6.4 shows how the latency tolerance changes
with the system sizes.
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6.7 Conclusions

In this chapter, we have introduced a new metric called the tolerance indez, tolyyysystem, for
analyzing the latency tolerance in an MMS. For a ribsystem, Lolyypaystem indicates how close
the performance of a system is to that of an ideal system. The interaction of subsystems in
an MMS plays an iinportant role in detertnining the performance. We provide an analytical

framework based on closed queueing networks, to compute tolypeystem.

Our results show how the latency can be tolerated as long as the rate at which a
processor sends memory aceesses i8 less than the rate at which the subsystems can respond.
Further, the latency tolerance depends on the choice of workload parameter values and
inherent delays at the subsystems, rather than the latency for individual accesses. The most
performance gaing result from 5 to 8 threads due to exhaustion of hardware parallelism.
A pipelining or multi-porting of system resources provides increased hardware parallelism

essential to exploit the high software parallelism (say, ny > 5).

The latency tolerance is useful to identify the performance bottlenecks. For high per-
formance, both the memory and network latencies have to be tolerated. Since the number
of parameters in a multithreaded systemn is large, the latency tolerance helps to narrow the
focus of performance optimizations to the parameters, which affect the performance the
most. Thus, an analysis of the latency tolerance yields more insights into the performance

optimizations than an analysis of processor utilization.

In the next chapter, we apply our analytical model to analyze McGill’'s EARTH multi-
threaded system. This case study shows the effect of multithreading in the presence of

realistic subsystem interactions.



Chapter 7

Case Study: EARTH-MANNA
System

In previous chapters, we developed analytical performance models of absiract multithreaded
systems and analyzed their predictions. Our focus was on the effectiveness of multithreading
to achieve high performance. We studied how the network traffic and latencies increased
with multithreading, and how the network performance affected the processor utilization.
Earlier in Chapter 4, we discussed how the design of a multithreaded processing node

affected its performance.

A real multithreaded system, like MceGill's EARTH-MANNA mulliprocessor system,
presents more challenges to performance modeling and analysis due to complications of
realistic subsystem interactions under multithreaded program exccutions. This chapter fo-
cuses on the problems 3.2.1, 3.2.2, 3.2.4, and 3.2.5 discussed in Chapter 3. The objectives
of this chapter are as follows. First, we extend our analytical performance model to aun-
alyze the EARTH-MANNA system. Second, we validate the model predictions using the

measurements from program executions on the EARTH-MANNA gystem.

The EARTH (Efficient Architecture for Running Threads) architecture supports a multi-
threaded execution model based on split-phat communications and synchronizations [16].
Currently, the EARTH architecture is implemented on a 20-node EARTH-MANNA multi-
processor hardware testbed [59]. The EARTH-MANNA processing nodes (with Intel 860

XP) are connected across a high-bandwidth network, consisting of a hicrarchy of crossbar

150
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switches. Henceforth, we refer to the EARTH-MANNA system as the EARTH system,
except where we digcuss the implementation details of the MANNA system.

We apply the analytical model in Chapter 5 to predict the performance of the EARTH
system. Extensions to the analytical model are two-fold, First, we develop two approx-
imations to the mean value analysis (MVA). These approximations account for complex
interactions among the resources in the EARTH system, and the characteristics of a real-
istic multithreaded workload. Sccond, we expand the set of parameters to represent the
program workload in the EARTH Threaded-C. Such workload characterization is helpful

for performance related optimizations.

First, on the architectural aspect, we model the simultancous possession of the bus,
for accesses in an EARTH node. For example, when the processor at an EARTH node is
accessing the local memory, no access from remote processors to other functional units on
this node can proceed. With our heuristic and the iterative nature of the MVA, we formulate
the above problem under one analytical model (uniike at least two models in [48, 56]). Each
request to the resources, memory or network interface, contends at the bus, and releases
the bus at the completion of the access. Thus, the queueing delay for the access is the sum
of service time for each queued request through the bus, rather than the queueing delay at

individual resource alone.

Second, for a program workload, the thread characteristics at different processing nodes
may differ. Each Sype of request (e.g. local or remote memory accesses) requires a different
service time from the server (memory system). So, a single unified queuc length alone, as
used by the existing MVA [75], is not enough to compute the queueing delay for a specific
request. To tmprove the accuracy, our heuristic to the MVA considers the service demand
for each individual access in the queue at a subsystem, and the munbers and types of

requests in the queue at the time when this request enters.

Inputs to our performance model are, the program workload parameters, like the number
of threads, thread runlengths, the number of split-phase long latency operations, and the ar-
chitectural parameters derived from the EARTH system. The model predicts the processor
utilization and the latency for a remote access with split-phase operations. We character-
ize the variation of these performance measures with program wuskload parameters. The

runtime measurcments from the EARTH system on synthetic benchimark programs match
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within 5% of the analytical model predictions in most cases. These predictions also conlorm
well with the measurements on the real programs (reported in [59]). These results demon-
strate how the reliastic costs of mmltithreading affects the performice of the fine-grain
parallel program workload.

A split-phase multithreaded operation may involve accessing the local memory, sending
messages on the network, receiving responses, and performing synchronization operations.
Through the performance characterization using workload parameters, we show what are
the realistic latencies experienced by individual aceesses during o multithreaded program
executions, and how they affect the processor performance. These latency values are sig-
nificantly higher than their base values typically reported in the literature. Such character-
ization provides a strong evidence on how uselul our analytical model is to compilers and

systemn architects of multithreaded systeinss for performance related optimizations,

This chapter is arranged as follows. In Scction 7.1, we describe the relevant detaily
of the EARTH system. In Section 7.2, we outline our analytical model for the EARTH
system, and develop approximations to the mean value analysis (MVA). In Section 7.3, we
validate our model predictions using the runtime measurements on the BARTH system. We
characterize the variation in the performance measures with respect to program workload
parameters. We discuss the related work in Scetion 7.4, and summarize major resulls of
this chapter in Scction 7.5.

7.1 Experimental Testbed

This section contains a brief description of the McGill EARTH-MANNA systemn and the

program workload to characterize the system,

7.1.1 EARTH Architecture

The EARTH (Efficient Architecture for Running Threads) architecture proposes that syn-
‘chronization operations and computations can be efficiently performed using separate fune-
tional units [46]. A node in an EARTH multiprocessor consists of an Execution Unit (EU)
to execute threads sequentially, and a Synchronization Unit (SU) to support synchroniza-

tion operations in parallel program executions and communication with remote processing
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nodes, Currently, the EARTH programming model is implemented on the MANNA multi-
processor, developed at GMD FIRST in Berlin, Germany [20). The EARTH Threaded-C
compiler supports multithreading primitives by expanding them inline in order to reduce
their overheads. This seetion deseribes MeGill's EARTH system.  Appendix D reports

further details.!

System: The EARTH multiprocessor system consists of multiple EARTH nodes across a
high-bandwidth interconnection network (IN}). Figure 7.1 shows a multiprocessor configura-
tion for EARTH system. EARTH nodes are connected to the leaves of the interconnection
network. Each EARTH node, as shown in Figure 7.2, counsists of two Intel i860 XP RISC
processors clocked at 50 MHz, 32 MB of DRAM, and a fast network interface called the
link. The network is a hicrarchy of 16x16 crossbar chips [20].

EARTH Node: An EARTH uode has an Exceution Unit (EU}, a Syuchronization Unit
(SU), and a part ol distributed shared memory (sce Figure 7.2). The EU and the SU interact

through ready and event queues maintained in memory at the same node. The EU exccutes
the application programm code. The SU perforins the synchronization and communication

operations.

EU: To start & computation, the EU fetches a thread id from the ready queue, and executes
a thread to completion. The BU issucs a long latency memory access (local or remote},

places them in the event queue, and context switches to another ready thread.

SU: The SU reads incoming messages from the event queue (from local EU), and the
link_in node (network messages from remote processors). In response, the SU reads/writes
to local memory, sends messages, replies to messages, updates synchronization variables,

and schedules threads for execution by writing their thread id’s to the ready queue.

Memory: The memory at an EARTH node maintains the local data, global data, ready
queue, and event gucue. An access to the local memory by the EU {or SU) incurs a service

time of 10 cycle, in the absence of queucing delays,

Multiple such local memory accesses are required to complete one long latency memory
aceess.  The multithreading operation GET_SYNC is a long latency memory access. This

operation fetches a datum, and completes a synchronization to activate a thread. A similar

"In this thesis, we use the terms “EARTH", “EARTH-MANNA" and “MANNA" to represent “EARTH-
MANNA system”. n reality, “EARTH" architecture is mapped on to the *MANNA" system.
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operation DATA_SYNC is issued to stores a datumn and synchronize. The EU issues these
accesses to communicate among threads, which mnay execute on different nodes. The des-
tination SU accesses its local memory, and routes the response to the EU originating the

aceess,

Link Interface: The Link_in and Link_out nodes interface an EARTH node to the uctwork,
Buffers at cach link node store up to 4 messages. An SU sends a message to a remote SU

through the Link_out node, and receives a network message through the Link_in node.

Bus: All functional units in an EARTH node communicate through a pipelined bus, e.g.,
an access to a link node by the SU. The bus is held till the access to a functional unit is

complete.

Crossbar: Each crossbar chip connects 16 input channels to 16 output channels in parallel.
A chaunel is 1 byte wide, and supports pipelined transfers. Each output channel selects
an input channel for message transfer in a round-robin manner. The first byte takes up to
32 cycles to reach the output channel, and ticreafter, the transfers take 1 byte per cycle.
After the completion of one transfer, other waiting channels, if any, are given priority for
next message transfers.  The interconnection network uses a hierarchy of crossbar chips.
Processing nodes are connected to the leaves of the interconnection network (Figure 7.1

shows a 20-node configuration).

EARTH Threaded-C Language: The EARTH Threaded-C language is an extension to

the C language. The extensions support the declaration of threaded functions, the specifi-

cation of threads withir these functions, and the specification of EARTH operations. The
language requires an explicit specification of the partitioning of threads and the EARTH
operations to be used. For example, one GET_SYNC operation fetches one remote datum,
onc DATA_SYNC operation stores a datum to remote location, and the END.THREAD opera-
tion performs a context switch. An explicit mention of these operations helps in obtaining
the program workload paramecters. We provide a synopsis of the EARTH multithreading
opcratious in Appendix E. A sample program workload is discussed in detail, earlier in
Scction 2.2
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7.1.2 Program Workload

In this section we outline program workloads used to characterize the performance behavior
of the EARTH system. The performance of the multiprocessor system depends on Lhe cost
of remote accesses. For a remole access, first, o request is sent across the network. Second,
the access is processed at the remote node. Finally, the response is recoived across the

network. Thus, a remote access may sufler contentions at the node, and on the network.

We usc two synthetic workloads to characterize the performance. The first workload
characterizes the access conteativns at an EARTH node. The secoud workload characterizes
the contentions at the node-network interface, and the interconnection network. We choose
these synthetic workloads because the input parameters of interest are casier Lo adjust,
and their effect on the system performance can be individually studied. These progriun
workloads are written in the EARTH Threaded-C language. (Appendix E provides details
on the EARTH Threaded-C language.)

‘Workload 1:

The objective of the frst workload is to characterize the EU-SU interference on a bus
at a node. That is, how much delay occurs due to contention, when a remote memory
access receives a service at a particular node. We ensure that there are no nessages on the
network, and the contention occurs only at the node under investigation, referred as a Lest
rode,

A remote acerss reaches the test node through the link interface and the SU. To process
the access ¢ the test node, the SU fetches the requested location fromn Lhe memory, prepares
a response,. and sends the response through the link interface. For each bus aceess ab the
test node, the SU may experience a contention from the EU. Figure 7.3 shows the program
workload for the EU at the test node. The EU writes one double-precision floating point
number in each iteration. There are L_a:gg iterations. The duration belween writes is
controlled using the number of nops in the body of the loop. In addition, to eliminate the
effect of cache on the number of write accesses during the measurcments, we write to every
8th element.

The program workload ensures that the EU exccution has ihree phases as shown in

Figure 7.3. The ezecute, read/write and idle phases at an EU indicate an exccution of



CHAPTER 7. CASE STUDY: EARTH-MANNA SYSTEM 157

thread, an access by the EU waiting for the bus, and a service at the memory, respectively.
For exzecule phase, the EU does not contend on the bus. “asm (‘‘nop?’);" represents
the part of the computation, which does not require a memory access (see Figue 7.3). At
the end of the execute phase, a write operation is issued and the EU requests an access
to its local memory. The shaded read/write phase indicates that this access experiences
i contention from the SU. The idle period indicates that the memory access by EU is in
service, and the EU is waiting for the memory response. An access from the SU to the local
memory follows the same sequence of operations as shown in Figure 7.3. We monitor the

contention for the bus by varying the thread runlength.

EU execute read/write idle

for (i=0; i< Large; i+8) oo o e
{ asm (“nop"); M - P VRN ) Lo T T T A
a[i] = double_value; } 1 o riv _idle >Time

Figure 7.3: Workload for the node characterization.

‘Workload 2:

The objective of our second workload is to characterize the performance of the network
and its interface to the node. That is, how much contention a remote memory access suffers
at the network and remote processing nodes under multithreaded program execution. We
want to vary the following program characteristics: the number of threads, their thread

runlengths, and the number of multithreading operations for each thread.

Figure 7.4 shows the code segment for one thread of our program workload. Figure 7.4
also shows an abstraction of the program execution when two threads are active at an EU.
We presented a detailed description of such program workload in Figure 2.2 (Section 2.2).

The program cofnputes a vector addition: a + b = ¢. We chose this program workload
for the following two reasons: First, it is simple to vary the program workload character-
istics. Second, caclie cffects can be easily eliminated by a simple addressing scheme. For
the purpose of our analysis, all EUs follow the same execution behavior. Each EU fetches
two arrays (a and b), computes their vector sum, and stores the result (in array c¢). The
code scgment shows one thread. For cach thread, two GET_SYNC operations are initiated to
fetch j-th clements. Figure 7.4 shows that the EU at node 1 sends two messages to SU1
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i.e. its local SU. The SU1 sends two remote accesses to the SU2, the SU at node 2. The
SU2 responds back with the data. When the j-th clements arrive, thread_1 is triggered.
After the computation, a DATA_SYNC operation stores the result in j-th clement of array, ¢,
Thread runlength is controlled using nop instruciions. The EU1 sends the result and two
fresh messages to the SUL. These messages are forwarded to the SU2. Thus, the program
exccution on a thread continues. Multip'e such threads are forked at each node (as shown

earlier in Figure 2.2 and Figure 2.4).

In Section 7.3, we will use the measurements from the EARTH system on these work-
loads to validate our model predictions. Further, our workload in Figure 7.4 provides us
the flexibility of characterizing the effect of various multithreaded workload parameters on

the system performance.

for (i=0; i < C; i++)
{ aljl  bljl
GET_RSYNC (a_remote+j, a+j, ...); Thread !
GET_RSYNC (b_remote+j, b+j, ...); } I—
END_THREAD (); Thread 2
———
THREAD_]: asm ("nop"); c[jl
DATA_RSYNC (a[j]+b[j], c_remote+j, ...); EUI-SUl  local messages
} SUI-SU2  network messages
EUI

SuUI

SyU2

Figure 7.4: Workload with Multithreaded Operations

7.2 Analytical Model

In this section, we outline our analytical performance model for the EARTH system. This
model includes the extensions to our original model (in [63]) to realistically capture the
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multithreaded program exccutions on the EARTH system. First, we discuss the models for
the functional units at an EARTH node and the network. Second, we explain the heuristics
for the solution technique to predict the performance of the EARTH system. Finally, we

show how to derive the performance measures of interest.

7.2.1 The Model and Its Assumptions

Our performance model of the EARTH system shown in Figure 7.5 is based on closed
queueing networks (CQN}. Nodes in the CQN model represent the functional units in the
EARTH system and edges represent their interaction through messages. We discuss the
model in more detail, below. Table B.1 in Appendix B summarizes all symbols and their
cxperimental values for system parameters.

Our program execution model, and one sample application program are described earlier
in Scction 2.2. The application program is a set of partially ordered threads. THe only
difference with our previously described model assumptions is that a thread is a sequence
of computation and local accesses followed by one or more long latency accesses. A thread
repeatedly goes through the following sequence of states, an ezecution at the processor, a
suspension after issuing long latency memory accesses, and ready for the execution after
the arrival of all responses. Threads interact through explicit long latency accesses. We
assume that the application program exhibits similar behavior at each node (like a Single-
Program-Multiple-Data, SPMD, model) [43]. With this assumption, one set of parameters
characterizes the workload on all nodes excluding the dedicated node in the system, so the

number of input parameters is reduced.

We now describe the assumptions in the closed queueing network model shown in Fig-
ure 7.5 for the EARTH system.

o All nodes in the performance model are single servers, with a First Come First Served
(FCFS) discipline. Their service times are exponentially distributed. Table B.1 lists
the mean value of service time for each visit to a node.

e EU 2 Each EU executes a set of n, threads, e.g., n, iterations of a for all loop
are forked on each node (sce Section 2.2). The mean value of the service time of

?We use the notation “EU” and “processor” interchangeably.
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a thread is R cycles. The number of local memory accesses performed during the
thread runlength R. is rw, i.e. the local read/writce accesses. For the context switch,
C cycles are spent. We assume that threads do not migrate, so threads at a node i
belong to a class i in the CQN model.

e SU: A multithreading operation requires onc or more visits to an SU. For each visit,
on average, SUs,,., cycles arc spent. This assumnption is valid on the EARTH system,

because the SU exccutes a fixed, optimized set of cvents of each request.

e Memory Node: The memory node has a mean service time of L cycles for each
local access. A long latency memory access from an EU is sent to a remote memory
with a probability premote. Therefore, (1 = premote) i8 the probability of a local long
latency access. For requests from a thread at processor ¢ to memory at node j, em; ;
denotes the visit ratio. The value of emn;; depends on the distribution of remote
memory accesses across the memory modules,

e Link Nodes: The Link_out node has a mean service time of Inkout .y cycles for each
SU access. Similarly, the Link_iti node has a mean service time of Inking,., cycles for
. each SU access. We assume an infinite buffer capacity at link nodes for the following
reason. Access time of link nodes is very fast (15 to 20 cycles per access) compared to
the processing time (60 to 80 cycles per operation) at SU. Similarly on the network
side, a message encounters a round-robin selection at each crossbar switch as well ag
the contention from other messages. Each sclection at the crossbar switches incurs
around 17 cycles. So, the link nodes will not exhaust their buffer spaces.

e Bus: An access to a resource through the bus incurs a delay of bus,ery (=1) cycle at
the bus, apart from the delay at the resource.

o Crossbar Switch Nodes: Each input port of the crossbar switch node has a mean
service time of Zingery cycles. Each output port has a mean service time of zoutsery
cycles. Each output channel performs a round-robin to select the input channel, so
TOoutgery (= 32) cycles are needed to transfer the first byte to output channel, after
which the transfer is pipelined. Since the data transfer between link interface and
input port is smooth and one byte is transferred at every cycle, we assign the length
of the message to the service time of input port, i.e. zin,., (=8) cycles.
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The above models describe the behavior of individual functional »nits in the EARTH
system. In the next section, we show how to model the interactions among functional units,

based on the above behavioral descriptions of the CQN model.

EU SU 1
TS |
1/lnkoutsery, | 1/Zinsery '
NG g
I Xin
! 1/moutye
1/Inkingery :
Mem Lnkl I Xout
Node Model Network

Figure 7.5: Queueing Network Model of the EARTH System.

7.2.2 Solution Technique

Our solution technique uses approximate mean value analysis (AMVA) [75]. As mentioned
in Chapter 5, two salient features of AMVA are, its computational efficiency of AMVA to
solve models of large systems, and its amenability to heuristics. To capture the realistic
subsystem interactions of the EARTH system, we need to exploit the second feature of the
AMVA. We propose two simple heuristics to predict the performance of the CQN model
shown in Figure 7.5. The first heuristic accounts for the multithrended program workload
in the EARTH system, and the second heuristic accounts for thread accesses in an EARTH
node, which hold the bus till the completion of their service,

The AMVA algorithm is outlined in Figure A.1 of Appendix A. With n; threads on
each processor in the system, for each class i of threads and at each node m, the AMVA
computes:
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s the rate A; at which the processor 1 sends memory accesses;
e the waiting time wj,,; and

o the queue length nf,,.

Now, we discuss heuristics to this AMVA algorithm, for performance prediction of the
EARTH system.

Heuristic for Multiple Classes:

We briefly outline the heuristic to account for different service demands for accesses
from different classes (processors). The later experiments show one example on the s
of this heuristics: the application (program workload-2 in Fignre 7.4) is executed on thu
test nodes and the measurement thread is executed by the dedicated node. To accurately
predict the performance, such workload characteristics need to be accounted. An essential
idea of the AMVA is that the queue length scen by an arriving access from class 7 at o
node m is equal to thu time averaged queuelength at the node, with one less thread in
the system [75]. In AMVA (sce Figure A.1 in Appendix A), Step 2(a} provides the queue

. length seen by this access. We note that the AMVA ignores the eflect of differences in
gervice demands for different class of accesses on the waiting time. Thus, Step 2(b) may
incorrectly predict the waiting time. Our heuristic computes the waiting time p;,, for a

class i access at a node m using an accurate composition of all queued requests:

w:'l,m(N) = Pian [1 + (ﬁh.:_lnz,m(N)) + z_;":l,jgﬁ %"},m(N)] (7'1)

In Equation 7.1, the service demand p;,, is multiplied by the effective queue length, Terms
in the square bracket represent the effective queue length for a newly arrived access, “17
represents the newly arrived access. The second term is the quene length of class 1 accenses
at node m. A linear interpolation is used to obtain the queune length of class i accesses
before the arrival of new access in class i. The third term includes the actual quene length
of class 7 accesses, and scales this queue length of class 7 accesses using their service times.
In effect, the third term times the service demand represents the actual queueing delay due
to class 7 accesses, which are already in the queue at node m.
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Sitilar corrections to the AMVA have been considered in literature by Leutencgger {58]
and others. We independently derived this approach. Our contribution is that we have
suceessfully modeled characteristics of a multithreaded program workload with variations
in service time for different multithreading operations, and we have validated the effect
of this heuristic on the performance prediction using runtime measurements from a real
system.

Heuristics for the Node Model:

The CQN model shown in Figure 7.5, doces not have a product-form solution, because the
following two subsystem interactions do not satisfy the assumption on the single resource

possession, the assumption 8(a) in Appendix A:

1. When an EU accesses the memory, the bus is held till the access is complete. So,
the SU cannot access other resources like link-in or link-out nodes. This subsystem

interaction is an example of a simultaneous resource possession.

2. Crossbar switches allow a pipclined transfer of data, thus a message may be in service

at more than one resources simultancously.

Queueing delays during the above interactions are affected by the queues at more than one

resources, so the product-form solution is not applicable [13, 75).

Now we show how to incorporate the cffect of the simultaneous resource possession for
performance prediction of the EARTH systcii, under one analytical model (unlike at least
two models in [48, 56]). The problem of simultancous resource possession in an EARTH node
occurs as follows. Consider a local memory request issued by an EU (see Figure 7.3). When
this access is in service at the memory module, three functional units {(queueing nodes)—
processor, bug and memory— are simultancously busy to service this access, Specifically,
the bus is possessed as long as the memory is accessed. An access from the SU to the local
mewory or link nodes has to wait till the local memory aceess from KU is complete, Sn, a
new memory access does not get the bus, till the previously issued requests are serviced. A
similar wait period is encountered for memory accesses by the EU, i{ the SU is accessing a

link node. Thus, a bus request observes the waiting queue at all of the resources.

An outline of conventional approaches to this simultancous resource possession problem
is as follows (48, 56):
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First, identify a set of primary resources where an aceess is serviced, e.g., & memory,
Identify a set of secondary resources, o.g., a bus, which are needed to complete the

scrvice at primary resources.

Second, isolate cach such occurrence of the shmultancous resource poseession for an
independent model; i.e. develop one model for following functional units on each
EARTH node— bus, memo: =, SU, linkdn and link.out,

Third, derive a flow-equive: 1.0 queueing server for above model of lunetional units.
That is, given a number of accesses in service, obtain the rate of their service (through-
put} and the completion time for service of each access. Lot us eall these llow-

equivalent models to be the srp models.

Fourth, develop a model of rest ol the system, and incorporate a delay server in
place of the above llow-cquivalent quencing server representing functional unils under
simultancous resource possession problem. Let us call this model as the srp-free

model.

Fifth, solve the srp-free model in the third step for the desired mnnber of threads in

the system, and obtain the throughput and delay of the delay server.

Sizth, use the throughput and delay of the delay server as an inpul of srp models in

Step 2, and from the srp-free model, obtain the throughput and delay for accesses.

Finally, iterate Steps 5 and 6 till throughputs and delays at che flow-cquivalent server

converge with respect to their values in the previous iteration.

Qur approach to the simultancous resource possession problem in the BARTH node is

as follows: Each access to a resource on the bus waits Lill the bus has serviced all previous

accesses to resources connected to it. Thus, the waiting guene for cach access is not only

the wait queue at the resources being accessed, but also a sum of wait queues at other

resources on the bus. The scrvice time for cach aceess through the bus is the service thne

of the resource being accessed. In summary, although we model cach resource as a separite

node (i.e. a server and associated queuc), we compute the waiting Litne at the bus in node

m as a sum of the waiting time at all the resources-- link nodes, and the memory. In

Appendix F, the procedire Compute. AMVA _srp shows the pseudo code to intergrate this
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heuristic into the AMVA. Equation 7.2 provides the total wait time at the PE m for an
access from class ¢. This value is used to compute the total wait tiine for a class 4 access

and throughput.

»
Wi bus nceess — (c"":',m + Cin bus + Ci,m,inko + ei,m.lnki)
- - » [ 3
x [(wi.m.mcm 1 wt',rrl,bus + wi.m,luka + wi,rrl.fﬂki)
"(Pi.m,mum + o bus + Pim ko T ﬂi,m.lnki)]

+(Pi,m,mcm + fignbus + Pim ks + f)i.m.lnki) (7-2)

Equation 7.2 shows how to compute the total waiting time due to simultaneous pos-
session of the bus. Two parts of the waiting fime w],, 4.5 uecess a1¢ the queucing delay
(i.c. contention) at resources, and the service demand at each resource. The first bracket,
#(...)", is the munber of accesses to all resources connected to the bus. The second bracket,
“(...)", is the waiting time for each access through the bus. The third bracket, “(...)", is
the service demand at resources for each access through the bus. Together, the second and
third brackets, “[...]”, yield the queueing delay for each access, by removing the service
demand from the total waiting time at cach resource. The fourth bracket, “(...}", is the
service demand for individual resources on the bus. The total waiting time w},, sus access
for an access is a sum of the cucueing delay for this access and the service demand at

individual resources on the bus.

We need to model how the simultancous resource possession during accesses to resources
affect the thread runlength at the EU. When the EU executes on a thread, there arc three
phases (see Figure 7.3). First, the EU ¢xecutes using the data in the cache, thus offers no
contention to bus accesses from the SU. Second, the EU rcquests a location in the local
mewnory. If an access from the SU is in service, the bus is not immediately available for the
access by the EU. Third, the access [rom the EU is serviced by the memory. After the third
phase, the EU returns to the ficst phase. We note that for the second and third phase, the
EU idles, but the EU is not free to perform any other operation® We assume that this idle

timue does uot significantly change the runlength . threads under multithreaded program

SFor this discussion, we ignore the “posted-write” mechanism on i860 XP, which allows the processor to
cantinue execution, as long as the write access doos not affect rest of the computation.
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exccution. The EARTH system adopts a bus arbitration scheme for a fair sharing of the
bus between the EU and the SU. So, in practice, this assumption does not cause significant
error. We also note that there is no software mechanism which can measure this idle time
incurred by the EU. We account for the effect on the waiting time of other resources in the
EARTH node. In the case of SU, we have included the effect of bus accesses on the SU
processing time (using Equation 7.2 and Step 4 in Figure A.1).

Performance Measures:

We use the above modeling assumptions to derive service demands pg g, gy lor class @
accesses at the functional unit fu of the node 1. With the above mentioned heuristics and
the AMVA [75] (outlined in Appendix A and F), we compute for class i

1. the rate A; at which the processor ¢ sends long latency memory acceesses, e.g., GET_SYNC
messages;

2. the waiting time w;,, fu of an access at a functional unit fu ol a node m: and

3. the queue length nf,, ;, for an access from class @ at a functional unit fu of & node
L) ¥
m.

Table B.1 in Appendix B lists all symbols used here. Based on A, wim, service Limes and

visit ratios, we obtain the following performance meusvres.

Message Rate lo the Network: X\, is the average message arrival rate from a processor ¢
to the IN. Each thread issues x GET_SYNC messages. A; is the rate at which processor
i sends long latency accesses. A fraction premore fCcesses are sent Lo remote memory.

So, Anet,get—-sync 18

1 X Premote X L .
Anet,get-syne = Ai X Premote X & = M (7.3)

»
=1 T“i,j

The dendominator is the total wait time at all queucing nodes for all accesses by a
thread executed by the processor i. Equation 7.2 provides the total waiting tine at
affected functional units of cach EARTH node.

- Processor Ulilization: Uy, is the fraction of the time an EU s neither idling nor context

switching. A is the rate at which long Intency accesses get serviced (and threads gol
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enabled), Since the EU at the node i spends R cycles on cach thread, the processor
(or EU) utilization Up is:

U_p = t\,‘ ~ R (7.4)

Latency for a GET_SYNC operation: Lo syne, the GET_SYNC latency is the time between
initiating a GET_SYNC oper- “ion from an EU and receiving its response at the EU.
A GET_SYNC opcration consists ol the following phases. The EU sends a request to
the local SU, which is forwarded to the remote SU. The response is sent by the
remote SU through the network. On receiving the response, the local SU unwraps
the message, completes the synchronization, writes to a local memory location and
cnables the thread suspended on this long latency access. The EU reads the local
memory location and progresses on its computation. Lgei-syne is a sum of waiting
timne for a GET.SYNC access on each functional unit.

Lyct-syne = (XlI — residence time at the processor i) (7.0)

The first tcrm represents the total time for a thread from the start of the execution
on the processor i, the suspension for long latency operation, and then the start of
. another exccution on the processor i. Removing the second term, the residence or
waiting time at the processor i, we obtain the duration for which the thread has to

wait for completion of its long latency access.

Since we measure Lger—yyne from the dedicated processing node P, we apply Equa-
tion 7.5 to predict the same Lyer- gyne- The measurement of Lyei—syne proceeds as
follows. A mecasurement thread is forked on a dedicated processing node, while the
rest nodes exccute the application program. The dedicated node sends one sample of
GET.SYNC access at a time for each runlength, R, sasurement. Elapsed time till response

reaches the dedicated node is Lyet—syne. Analytical value of Lget—sync is given by:
Lgct—syuc = (]\% - anasurcrrwut - 2PP,P.bus - 2PP.P,mcm) (7-6)
The last two terms in Equation 7.6 represent the time taken by EU to read the data

from ready queue.

In Scction 7.3, we validate some of our analytical results by comparing with program
exccutions on the EARTH-MANNA system. We also use the above performance model to
analyze the performance of processor and IN subsystems.
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7.3 Results

In this section, we show how the contentions in the EARTH system affect the GET_SYNC
latency, and the processor utilization. First, we consider the effect of contentions between
accesses from the EU and the SU at an EARTH node on these performance mensures.
Second, we characterize the no-load behavior of the crossbar switches by empirical mea-
surements of the latencies on the network. Third, we study the cffect of contentions on
EARTH nodes and the network under multithreaded workloads. We validate our model
predictions using measurcments from the EARTH system on synthetic programs. These

synthetic programs are discussed ecarlier in Section 7.1.2 and Section 2.2.

7.3.1 EU-SU Interaction at a Node

As discussed in Section 7.2, the GET_SYNC latency provides a measure of the waiting time at
various functional units due to contentions. To measure the effect of contentions between
the accesses from the EU and SU at an EARTH node, we send Lest messages to the test
node under investigation. The EU at the test node accesses its local memory every R cycles.
The SU contends for the bus only when test messages arrive. With a variation in thread

runlength, we monitor the bus contention.

Figure 7.6 shows the cffect of thread runlength on the GET_SYNC latency. Three curves
represent che latency values for the model predictions and the measurements from two 2-
node EARTH systems. The solid line shows measurements from the system with a crossbar,
and the dotted line shows system without a crossbar but with the link interfaces of two
nodces directly connected to each other. Symbols show the latencies for R = 7 to 14, and
19 cycles. R = 100 represents close to the no-load values. Each experimental value is an
average of over 15 observations. In turn, each observation is an average of over 3,000 to
10,000 sampies.

The difference between the analytical results and the measurements from the system
with crossbar is less than 5%. In the absence of a crossbar in the system marked “+" second

system, the latency decreases by 25 to 35 cycles. From Figure 7.6, we note the following:

e With a decrease in the runlength for local accesses, the contention increases signifi-

cantly. For R < 10, the memory almost continuously services the request from EU.



. CHAPTER 7. CASE STUDY: EARTH-MANNA SYSTEM 169

e The number of bus accesses required for a GET.SYNC operation determines the slope
of Liget—syne curve with respect to 2. We estimate that the SU at the test node makes

the following 6 bus accesses in response to a GET_SYNC request:

The first access reads-the status of the link_in node i.e. a message has arrived. The
second access reads the message from the link.dn node. The third access performs
a read (or write) to the local memory. The fourth access reads the status of the
link.out node, in preparation of sending the response. The fifth and sizth accesses
write the respouse to the buffer at the link.out node. The above estimate assumes
that a request is at the link.in node and a buffer space is available at the link-out

node.

A lower number of accesses comprising a multithreading operations will decrease the
latency for that operation: less timne will be spent on bus accesses, and less contention
will occur at the bus. Thus, an implementation of the GET.SYNC operation strongly

governs its latency value.

Maquelin et al. [59] report a no-load latency of 355 cycles (with an EU overhead of

. 39 cycles). Thus, without the EU overlicad, the no-load latency is 315 cycles. Our model
predictions and measurements in Figure 7.6 show that no-load value without the EU over-

he. " is 306 cycles, which conforms within 10 cycles. (The reason our measurements do not

incluae the EU overhead is that as soon as the message arrives at the dedicated node, the

function to measure the idle time is stopned. So, we measure the latency for each message

scparately, and do not include the EU overhead. In contrast, Maquelin et al. report an

average value obtained by sending a message to remote node, receiving its response and

continuing this process over a large sample.) The heuristic for simultuneous resource pos-

session, outlined in Section 7.2, improved the accuracy of performance prediction in this

experiment.

7.3.2 The Unloaded Network

Now, we study changes in the GET_SYNC latency due to a round-robin selection at a cross-
bar switch. We perform this characterization using the measurements from the EARTH
system because the details of the round-robin selection policy and internal functioning of
the crossbar switches are not known to us. Figure 7.7 shows the GET_SYNC latency when



CHAPTER 7. CASE STUDY: EARTH-MANNA SYSTEM 170

400r
3350" %-o;_ -
t':'.’, By M Tmm~e .
2 e e E N .
=300} .
S
‘éf 250r
-~ 200
oy
§ 150r »=——x 2-Node Machine (With Crossbar)
= +-+ + 2=Node Muchine (No Crossbar)
% 100f o - -  Analytical Mode!
2 0
:2 5

0 1 1 I 1 }
0 20 40 60 80 100

Thread Runlength, R (cycles)

Figure 7.6: The EU-SU Contention on the Node bus

a certain number of nodes are accessed through the crossbar. In Figure 7.7, the Same
Crossbar means that the dedicated node is on the same crossbar as the test nodes under
investigation, Thus, the message from a dedicated node goes to the crossbar switch and
is routed to its destination test node. The crossbar switch receives the response from the
test node and routes the message to the dedicated node. The Remote Crossbar means that
the dedicated node is on a different crossbar (see Figure 7.1). So, the message from the
dedicated node is sent to the crosshar-1, say the one to which the dedicated node is directly
connected. Crossbar-1 routes the message to crossbar-2, the crousbar to which the test node
is connected. Crossbar-2 receives the response from the test node, and routes the message
to crossbar-1, and the message is forwarded to the dedicated node. Solid lines show model

predictions, and dashed lines show measurenients from the EARTH system.

The program workload ensures that one GET_SYNC message is on the network at a time.

The destination of GET-SYNC message is varicd to characterize the effect of round-1obin
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selection of input channels on the delay of crossbar switches, Qur analytical inodel assumes
a stepped increase in the delay when up to 4 nodes are accessed. Specifically, the inerease in
delay in cach direction is: 27 cycles when 2 nodes are accessed, 9 eyeles for the 3rd node and
4 cycles for the 4th node. Beyond 4 nodes, the model assumes a small lincar increase {of 2
cycles per node) in the delay at the crossbar. Figure 7.7 shows that the model predictions

are within 5% of the experimental values for both conligurations.
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Figure 7.7: Characterizing the Crossbar Switch delay

7.3.3 GET_SYNC Latency

To study the effect of workload parameters on GET_SYNC latency, we consider the following
multithreaded workload. The program performs a vector addition on remote arrays, efj)
= a[j] +b[j]. As cxplained carlier in Section 7.1.2, n, threads are forked on each node.
Each thread issues two GET_SYNC operations to fetch the uniformly distribuled remote data.
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On completion of these GET_SYNCs, the result is computed, and stored to the remote array
using 4 DATA_SYNC operation. ry is varied from 1 to 16. Thread runlengths are R (=1500,
3000) eycles. Parameters of the measurement thread on the dedicated node are: ny = 1,
It = 200 cyeles, and one GET_SYNC operation.

Figure 7.8 shows how the GET_SYNC latency varies with ny. Solid lines are model predic-
tions for 2 = 1500 and 3000 cycles. Dashed lines are runtime measurements from program
exceutions on the EARTH system. The model predictions for GET_SYNC latency conform
within 5% of the measurements, in most cases. The maximum difference of 20% occurs at
R = 1500 cycles and n; = 16. One source of error is that for certain functional units we have
estimated the delays which cannot be accurately measured. Specifically, these functional
units are the input and output chaunels (buffers) of crossbar switches, link interfaces, and
the SU. We can only measure the total delay for the GET.SYNC latency. We attribute the
delays to various functional units based on their access times, e.g. the remote SU spends
20 cycles for cach GET_-SYNC access, and the reinote memory spends 10 cycles. A small ecror
in this breakdown of delays leads to a large error in prediction, particularly when the delay
for a particular functional unit is large, e.g., the local SU spends up to 60 cycles to process

each GET_SYNC message from the EU. From Figure 7.8, we note that:

1. At higher thread runlength, the interval hetween remote messages increases. A lower

message rate reduces the contention at resources. Hence, the GET_SYNC latency is low.

2. The GET_SYNC latency increases with ny, because the number of outstanding, contend-

ing messages in the system increase.

3. At higher thread runlengths, Lgei—syne saturates near no-load values when 1, > 8. At

lower runlengths, Lyer—syne increases rapidly with n,.

For this experiment, we notice the significance of heuristic on multithreaded workload
(in Section 7.2.2). With MVA in Figure A.1, using Step 2(b) the predicted value of Lgg;-syne
changed by less than one cycle, even with an order of magnitude changes in n; and R. The
reason is that even for n; = 16, the queue lengths at functional units (other than EUs) are
very small (< 0.1). With our heuristics, in Equation 7.1, we achieved a good agreement
with the measured values.
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Figure 7.8: Effect of Workload Paratneters on Lgg—ayne

7.3.4 Processor Utilization

In this section, we study the effect of a multithreaded workload on the processor utilization,
Up. For the experiment described above, Figure 7.9 shows how the number of threads and
their runlengths affect the processor utilization. Selid lines are the model predictions for
R = 1500 and 300 cycles. Dashed lines for same thread runlengths are the runtime
measurements from benchmark execution on the EARTH system. We observe that the
model predictions match within 5% of system measurements. At n; = 1, the discrepancy
is up to 20%. We make a modeling assumption that a processor idles for a local memory
access, Our software measurement tool cannot measure this idle time, so onr tneasurement,
is an overestimate of actual utilization at the processor. Further, the idle time at the EU iy
measured by calling a function in the absence of ready threads. Switching to and from the

function to measure the idle time incurs an overhead. Currently, the measurement function
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does not record the nmaumber of times it is invoked, so a correction for this value cannot be
performed. At higher number of threads, this function is called less frequently, thereby

increasing the accuracy of prediction. We observe that:

1. A higher thread runlength yields a higher Uy,

2. Uy, values increase with 7. This is an esseace of the multithreading technigue (an
increase ny increases Uy, even though Lye— o increases). U, values saturate beyond

1, = 8. The workload is compute-bound, so Uy, saturates close to 7&;

3. A comparison of U, vihues with that at 7y = 1 shows a higher speedup with an increase
in 7y, when R is small. For example, the predicted speedup is 1.5 at R = 3000 (i.c.
U, = 2% for 1y = 8 and Uy, = 65% for ny = 1). On the othcr‘lmnd, the speedup is
2 when R = 1500 (i.c. U, = 87% for n; = 8 and U, = 45% for n, = 1). However, the

absolute U, value is low at small 1.

7.4 Related Work

Now, we overview the contributions of this chapter with respect to the existing literature on
performance evaluation of multithreaded architectures. These work have been validated

through simulatious.

Queueing Network and Petri Net Models: Saavedra et al [80] report a simple vali-
dation using results of Weber’s studies [100]. However computation requirements of
Saavedra’s models are prohibitively high for multiprocessor systems in the presence
of coutentions. Analytical models in [101, 8, 2, 103} are validated using simulation
results from petri net models and queueing network models. None of these models
include realistic subsystem interactions for multithreaded operations at a processing
node.

Other Models: Agarwal [4] proposed an analytical model based on cache parameters.
Johnson [50] extended this model to include the feedback effect of network on the
performance. Both models are validated using simulations of Alewife system {5). They

do not model the memory subsystem. Further, they do not study the performance
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Figure 7.9: Effect of Workload Parameters on Uy,

of processor and network subsystems together. So, the system bottlenecks cannof be

easily located.

Simulations: Weber and Gupta [100] performed trace-driven simulations with constant
context switching times, and constant shared bus latencies. Thekkath and Eggers [90)
extended a similar apprcach using an analytical model [3] for the network perfor-
mance. Waldspurger and Weinl [98] report the results of simulations on a single node
of multiprocessor system. They also assmme that the network is lightly loaded (no

contentions).

In this chapter, we expanded the set of parameters to model realistic architectural
interactions and program workload. We characterized the performance of multithreaded
architectures with architectural and workload paramecters. And finally, we validated our

performance predictions using the measurements from the EARTH multithreaded multi-
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processor system. Thus, this chapter is a significant extension over previous studies. By
addressing above issues, we helieve that our work has provided a stroug evidence on the

usefulness of the analytical models for performance optimizations on multithreaded systems.

7.5 Summary

In this chapter, we extended our analytical model {(in Chapter 5) and analyzed the perfor-

mance of MeGill’'s EARTH multithreaded multiprocessor system.

We developed approximations to mean value analysis (MVA) Lo account for the simul-
Lancous possession of the bus at an EARTH node, and the multithreaded workload. We
showed how, given program workload and architecture parameters, to derive performance
measures, like processor utilization and latency for split-phase multithreaded operations.

We analyzed these performance measures using realistic costs of multithreaded operations.

Since the multithreading poses challenges to the performance measurement, we have
used the following approach for performance characterization. We developed a software
instrumentation to measure che latency, based on sample messages to the nodes under in-
vestigation. We validated the performance predictions using measurements on the EARTH
systenl. Our inodel predictions of the GET_SYNC latency and processor utilization conform to
within 5% of the runtime measurements on the EARTH system for synthetic benchmarks
under typical program workloads. Maximum differences are around 20%, when thread

runlengths are small (< 1500 cycles).

Gur results indicate how the processor performance improves with increasing thread
rimlengths. For example, at thread runlength of 1500 cycles, with architectural parameters
of the EARTH system, the multithreading improves the processor performance up to 100%
of a single-threaded prograin exccution. The GET_SYNC latencies increase significantly up
to two times their base values, when R is small (1500 cycles) and n, is high (say, 16). In
Chapter 8, we will discuss the performance related optimization of a program workload,
and the cffect of the number of local and remote accesses per thread on the performance.
We will also discuss the effect of changes in arcliitectural parameters on the performance,
Specifically, we consider two systems based on the EARTH: The first system has low access
times for certain functional units at an EARTH node. The second system has delays of a
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NOW system (networks-of-workstations) for the interconnection network Finally, we will
show an advantage of multithreading, in comparizon to single-threaded exeeution, in terms

of reduced sensitivity of performance to the data locality,
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Chapter 8

Applications to Performance

Optimizations

8.1 Introduction

In Chapters 4 and 5, we developed analytical models to predict the performance of unipro-
cessor and multiprocessor multithreaded systems. We analyzed multithreaded systems and
showed critical values of parameters to achieve high processer performance. In Chapter 7,
we applied the performance model to analyze the EARTH system. We validated our model

predictions of performance measures using measurements from actual program executions.

This chapter presents a next step of a performance evaluation study. The objective of
this chapter is:  how to optimize the performance of a multithreaded system? Specifically,

we address the following questions:

1. What is the impact of program workload characteristics on the EARTH system per-
Jormance? In Scction 8.2, we characterize the performance behavior of the Single-
Program-Multiple-Data (SPMD) computation, The measurements from the EARTH
system show the cost-benefits of various tree-like sirategies to fork parallel compu-
tation threads on multiple nodes. In Section 8.3, we study how remote and local
accesses affect the performance of the EARTH system, where the system bottlenecks

are, and for what values of parameters, multithreading yields significant performance

178
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benefits. We show that the mimber of long lateney aceesses per thread should be 3
or less, and thread runlengths should be greater thau 1500 eyeles to achieve highor

than 80% EU utilization on the EARTH system.

How would the changes in the architectural configuralion affect the performance of
the EARTH system? 1In Scction 8.4, to evaluate the architectural tradde-oifs of an
EARTH-like system, we analyze performance of two systems based on the EARTH
architectural parameters. The first system, NOIW, assmes that the EARTH pro-
cessing nodes are connected to a network with %gher delays {similar to those in a
neltworks-of-workstation system, NOW, ). Our vesults show that for the NOW system,
witin multithreading the performance improves up to 200% over a single threaded
program cxccution when thread runlengths are larger than 3000 eycles. The second
system, fast EARTH, assumes that service times at subsystems in an EARTH pro-
cessing node are reduced. That is, the SU and the link nodes are twice as fast as
the current EARTH-MANNA hardware test-bed (Lhese costs are shown in ‘Table 8.1).
We show that the performance improveinent of the fust EARTH over the EARTH
system is by 10% on single threaded execcutions, even ad small thread ranlenglhs,
At large runlengths and with multiple threads, the performance improvement. of the
fast EARTH reduces, because the performance ol the EARTH system increases with

multiple threads.

How robust is the performance of the EARTH system to the changes in data distri-
butions, when multithreading is used? In Scction 8.5, we compare the sensitivity of
performance on single-threaded and multithreaded program workloads to the changes
in data distiibutions. We propose metries to evaluate this sensitivity, analytically
predict their values, and experimentally validate the results. We show that the de-
crease in the performance of a multithreaded workload due to a non-optimal data
distribution is less than the decrease in the performance of a single-threadoed program
workload. Intuitively, a non-optimal data distribution would increase the latencies.
However, a multithreaded workload should tolerate long latencies. This ability of
multithreaded workload indeed helps to reduce the performance loss. The implica-
tions of this result on compilers and programmers are as follows: On multiprocessor
systems, proper choices for computation and data decomposition are crucial to achieve

high performance using a single threaded program. With multithreading technigue,
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the same performance can be achioved (or exceeded) with similar efforts on the com-
putation and data decomnposition. On applications we studied, even a non-optimad
data-listribution {reguiring tess efforts) yields a performance close to the perforimance
of the best or optima? Jata discribation. For programs exhibiting irregular computa-
tion parallelisn, the decomposition of computation and data is extremely challenging,
Thus, for programmers and compilers to achieve high performance, the multithreading

reduces the need to carelully eraft data distributions.

We depart from our earlier chapters in the following way. We use results from both
the performance model and measurements on the EARTH system for our analysis. An
assessment. of realistic costs of multithreading on the EARTH system requires runtime
measurements (rom actual program executions. Speuific cases are the program exetution
time for transient pliases, which involve forking and joining of multiple threads. Since not
all measurements are possible from the system, e.g., the contentions at subsystems like the

SU and the network, the model predictions provide additional insights,

Next, we discuss performance related optimizations of a program workload on the

. EARTH system. In Scction 8.3 , we investigate the effect of architectural and program
workload parameters on the EARTH system. In Section 8.4, we study how the changes in

the EARTH implementation affect the performance. In Section 8.5, we study the sensitivity

of the performance of the EARTH system to data locality. In Section 8.6, we discuss the

related work. We summarize the results of this chapter in Section 8.7.

8.2 Program Optimizations

[n this section, we characterize the performance behavior of the SPMD computation on the

EARTH system using model predictions and measurements,

Table 8.2 shows different sets of input parameters, the number of threads n; and thread
runlength R, when the number of EARTH nodes is 8. The performance model in Chapter 7
predicts the processor utilization Uy, the GET_SYNC latency Lyet—sync, and the delay at an
SU, “SU". “Measurcinents” indicates the runtime measurements of Up and Lger—sync deds
when the EARTH system exccutes the application program shown in Figure 7.4. U, values

indicate the processor utilization on EARTH nodes which execute the application program.
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Parameter | Description Values |

Worklowd Parameters

1y Number of threads at cach processor
R Mean value of thread runlength
Deemote Probability of accessing a remote memory module
W Number of Read/Writes in the duration R
# awl type of long latency operations  GET.SYNC, BLKMOV
Dp A distribution of data on P procersing nodes

Tpu, (Dp) | Program exccution time with 7y threads on P nodes

System Parameters ( Values measured on EARTH)

C Context switch overhead (END_THREAD, Scheduling ete.) 37 cyeles
. L Memory latency for each access 10 eycles
SUsers SU processing time for each access (other thany BLKMOV) 20 cyeles
Inkinger, | Link access time for incoming network message 15 eycles
Inkoutyyr, | Link access Lime for sending network message 8 eycles
L gnry Delay at input port of network switch 8 cycles
2oulgery Routing delay at output port of network switch 32 cycles
P Number of nodes in the system. 210 16

Output Parameters

Lops Observed memory latency (with queueing delay)
Sabs Observed network latency (individual message type)
Lget—syne Latency for GET_SYNC operation. ded subscript = dedicated node

Anet Message rate from processor to the IN (message Lype)

Uy Processor (EU) utilization

Table 8.1: Medel Parameters for EARTH System.
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Liyet - synedea indicates the latency for a GET_SYNC operation issued by the dedicated node
(for runtime measurements). The ne-load value of Lye o syneded for an 8-node system is
402 ey:les. #SU" values indicate the number of cycles to process a message at a remote
synchronization unit. Since cach thread issues three split-phase operations-two GET_SYNC
and one DATASYNC -, the *SU” value at no-load is 60 cycles.

Let us consider the values in the bold face from Table 8.2, i.e. rows 1, 5, 9, and 13.
When the input parameter thread runlength 22 is deercased from 3000 eyeles to 1500 cycles
(the rows 5 and 9), the corresponding munber of threads is inereased from 2 to 4. This
increase in 7y leads to an increased contentions in the system. So, Lyet—syneded INCreases
from 487.8 cycles to 545.3 cycles, i.e. by 12%. At R=3000 cycles, increasing ry from 1 to 8
results in a 57% increase in analytical Lyer—syne ded values. In addition, a higher n, requires
nwre overheads to fork threads and synchronize them at the end of computation. So, when
2 is low, then U, values decrease even at high »,. The system measurements conform with

these predictions.

Table 8.2 also shows the latencies for a service at the SU. We note that for R < 1500
cycles, the lateney at the SU is high. A direct consequence of jncrense in the latency at
the functional units like the SU is that Ly gyneded increases and U, decreases. Most
applications reported by Maquehn et al. {59] have thread runlengths of the order of 10,000
cycles to 25,000,000 cycles. Of these applications, the N-Queens program (in [59]) has the
smallest runlengths, i.e. 700 cycles. U, value of the N-Queen for one-node system is 72%.
For the remaining 28% duration, the one-node system exccutes multithreading primitives.
An 8-node system yields an absclute speedup of 6.4 (ie. U, = 72 » & = 57.6%). These
values conform with the results in Table 8.2, In summary, our results show that EARTH

system can cfficiently support applications with granulavity up to 1500 cycles.

Table 8.3 shows measurements of costs to fork (and synchronize) one thread on the
EARTH system. We forked 1000 computation threads on the local as well as remote node,
denoted by local and remote respectively. Recall the discussion on § types of threads shown
in Figure 2.4 (Chapter 2). The row labeled Normal § in Table 8.3 indicates a sequential or
a single-threaded exceution, These are € type threads for steady-state computation at the
local node. For a remote node, one A type thread is used to fork one C type thread, while
the synchronization occurs through an E type thread. The Normal P indicates a parallel

fork and synchronization of threads, i.c. a multithreaded execution. For a local node, one
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B type thread forks muitiple € type threads, which synchronize using D type threads. For
a remote node. one & type thread forks multiple © tvpe threads, which synehronize using
E type threads. Tree invocation structures are best represented in Figare 2.4, Tyee S/
indicates that one Z type thread forks one B type thread on o local or remote node. 1o
turn, the B type thread forks multiple € type threads. Synchronizations oceur using D and
E threads. Tree P/S indicates that multiple A type threads fork one € type thread on local
or remote node. Synchronizations occur through E type threads. Tree £/ indicates that
an A thread forks one B thread on each node. In tuen, These B threads fork multiple ©
threads. Synchronizations ocenr through D and E threads as shown in Figure 2.0, 7-2 and

T-8 indicate tree structure is forked on a 2-node and a 8-node system, respectively.

For tree invocations, we focus on remote vadues. Note that invocation costs per thread
for normal P and tree S/P structures are quite similar. The reason is that for a large
number of € threads (1000 threads i Tree-1) in the P structure, most overheads are al the
remwote node and those threads are forked local to that node. When the wumber of € threwds
is small (10 threads in Tree-2). costs are slightly higher at 1097 ns per thread. These costs
per thread indicate that tree invocation is especially useful when lorking a large mumber of
threads on a large system. Rows for 7-2 P/P and T-8 P/P show how costs per thread are
reduced by 4 times when 4 times the number of threads are forked on an 8-node system. In
other words, even though more number of threads are lorked Gz an 8-node system, almost

no increase is observed in the program execntion time.

Consider an 8-node system. We want to fork 16 threads per node. The two scenar-
jos we consider are, the normal P structure, and the tree S/P stracture.  Their costs
per thread are, 2798ns and 4097ns respectively. A normal P ostructure would require
2798ns x 16 threads x 8 nodes = 358 pus for forks and synchronizations. In con-
trast, a tree invocation requires (2798ns x 8 nodes) + (106 threads x 409Tns) = 88 us,
a reduction by 4.07 times. Further, & use of T-8 P/P structure requires only 53.9 ps
(= 42Ins x 16 threads x 8 nodes). This is a reason why we choose a tree invocation
when a large nuraber of threads need to be forked on remote nodes. Sinee costs per thread
are mentioned in Table 8.3, we note that a large n, per node requires a large time to fork

and synchronize, thereby performance benefits of multithreading are reduced.

In summary of results from Tables 8.2 and 8.3, to obtain a high processor ntilization on
the EARTH system:
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e the number of threads should be moderately high, i.c., from 2 to 8;
e the thread runlength should be high;

e a tree invocation should be used to reduce costs of forking and synchronizing threads

on multiple processing nodes.

Input j Analytical Predictions Measurements

R W SU |  Up | Loet—syneyted || Loet—syneaed | Up
[ 6000 | 1 72.11 743 433.3 416.9 | 91.8
2 2 74.9 | 87.7 440.2 421.4 | 93.9
3 4 76.4 | 93.9 443.8 434.1 | 95.4
4 (1 30001 1 78.8 | 66.3 449.7 433.9 | 82.3
5 2 86.8 | 83.7 487.8 443.0 | 88.7
G 4 94.8 | 90.8 498.7 474.8 | 91.7
7 8 99.5 | 92.8 502.6 485.5 | 93.5
8 [f 1500 [ 2 08.2 | 69.5 495.6 "l- 501.9 | 84.3
9 4 ([ 120.2 | 82.2 545.3 557.0 | 85.6
10 8 155.2 | 86.3 620.7 592.5 | 86.8
11 16 J[ 201.3 | 87.3 716.5 579.1 | 86.9
131 750 4 132.1 | 32.2 571.2 787.2 | 65.5
14 8 || 182.7 | 39.3 678.0 1016 | 72.3
15 IGJ” 279.6 | 45.4 874.6 1035 | 72.3

Table 8.2: An Example of Workload Optimization.

8.3 Performance Characterization of the EARTH System

In this section, we present the performance characterization of multithreaded architectures.
This characterization demonstrates how multithreaded program workload parameters affect
the performance. To illustrate our results using realistic multithreading costs, without loss
of generality, we analyze the EARTH system described in Section 7.2. The default archi-
tectural parameters are mentioned in Table 8.2, These values are obtained experimentally
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Invocation || Local | Remote

s ns
Normal S || 5030 8960
Normal P || 3039 2798

Tree-1 §/S | 5593 | 5073

Tree-1 S/P || 3696 4097

Tree-2 S/S || 4972 5041

Tree-2 S/P | 3253 | 3256

T-2P/S | 5590 | 3499
T-2P/P || 3413 1678
T-8 P/S [ 5590 893
T-8 P/P || 3413 421

Table 8.3: Costs to fork a thread: S= Sequential, P= Parallel, Tree-1= 10 remote threads,
Tree-2= 1000 remote threads; T-2= Tree for 2 nodes; T-8= Tree for 8 nodes.

from the EARTH system, in the absence of contentions. Values of workload parameters are
mentioned in the description of each experiment.

We characterize the variations in the GET_SYNC latency and processor utilization U, with
architectural and program workload parameters. We also measure the perlformance on the
EARTH system, when {est nodes exccute the program workload in Figure 2.2 (Section 2.2).
The highlights of our results are as follows,

¢ With an increase in the number of processing nodes in the system to execute a program
workload, the contention increases significantly at low thread runlengths (< 1600 cy-
cles), and the performance suffers. We show an interesting implication for users of
systems with current superscalar processors. When thread runlengths decrease from
3000 cycles (for a scalar code) to 1500 cycles (say a sustained instruction-level paral-
lelism, ILP, of 2 is achieved), U, decreases to half of its value. That is, the program
execution time does not change! Thus, there is a need to optimize communications

in a program workload to effectively utilize the program parallelism,
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e We show that multiple read /write accesses for a thread to the local memory change the
GET_SYNC latency and Uy, by 2% to 5%. However, multiple remote accesses (GET_SYNCs)
per thread have a significant effect on the performance. Our model predictions are
within 5% of the system measurements for most of the workload parameter values.
The model predictions provide two additional insights. First, even though the pro-
cessor utilization increases with the number of threads, the GET.SYNC latencics for
the application are 2 to 6 times higher than their no-load values. Second, delays at a
processing node (like the SU) are the major cause for the increased GET_SYNC latencies
on the EARTH system!

e We illustrate under what architectural configurations can the current EARTH im-
plementation yicld further gains. First, we consider a system with current EARTH
nodes and the network delays similar to those on a network-of-workstations. The
multithreading yields an increase in the speedup from 2 (the current value) to 3,
when thread runlength is 3000 cycles in an 8-node system. Interestingly, these thread
runlengths to achieve high performance are similar to those observed for the current
EARTH implementation. Second, we consider a fast EARTH system with the costs

. of the current MANNA network, and reduce the access times of functional units at
a processing node by 50%. The performance of the current EARTH system increases
by nearly 10% under single threaded program exccution, even at low thread run-
lengths. The performance of the EARTH system improves with multithreading, so

the improvement due to fast EARTH reduces at higher number for threads.

We present the results as follows. First, given a program workload, how does the per-
formance vary when the machine size is varied. Second, for a given machine size, what
program workload parameters have significant impact on the processor performance. Mon-
itoring the performance of individual subsystems is not easy during program executions
(and not available to us on the EARTH system), The analytical model predicts how the
program workload parameters affect the performance of individual subsystems. Finally, we
predict how the system performance would change, if the architectural implementations of
the EARTH system be changed.
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8.3.1 Architectural Parameters

In this section, we study how sensitive is the performance of the EBARTH systein on agiven
programn workload, to the changes in machine size. We consider the program workload in
Figure 2.2 with the following thread characteristics. For two thread runlengths, R = 1500
and 3000 cycles, we vary the number of threads from 1 to 8. Each thread issues 3 remote
data accesses (2 GET_SYNCs and 1 DATA.SYNC). Despite varying the machine size, we keep the
problem size fixed. So, the program exceution time reduces with an increase in 7, as well s
an increase in the number of processing nodes. This investigation helps us to evaluate the

computation decomposition of a program workload on a system wilth multiple processing
nodcs.

Figure 8.1 shows how sensitive is the network latency for GET_SYNC operation, when the
machine size is varied from 2 to 16 nodes. Thread runlengths remain constant at. 12 = 3000
and 1500 cycles. When R is 3000 cycles and n; is 1, Lget—syne values are close lo no-lond
values for the particular number of processing nodes in the EARTH system. Note that
Lget—sync plots overlap completely, when 2y = 4 (“o”) and 8 (“—") at R = 3000 cycles, At
R= 3000 cycles, Lggtsyne values rise very slowly with machine size, However ab 2= 1500
cycles, Lgej—yyne values sharply increase beyond 8 nodes in the system. The two Lyet— syne
plots which rise to almost three times the no-load values on a 16-node EARTH system are

for n; = 4 and 8, when R is 1500 cycles,
1400
#—a~a Threads = |, R = {0
. o -0- o Threads = 4, R = 1K)
Threads = 8, R = 3000
-~~~ Threads = |, R = 1500 ’
w—w—x Threads =4, R = 1500 ,-
«===Thresds =8, R = I_S,()(I *
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Figure 8.1: Lyg—yync characterization with number of processing nodes,

Let us consider how does the processor performance change (see Figure 8.2). As the
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machine size is increased, the processor utilization consistently reduces. The change in U,
varies with 2 and ;. For R = 3000 cycles, the decrease in U, is small even for a 16-node
system. And with 4 to 8 threads, the processor utilization is close to the saturation value.
Thus, a partitioning with R = 3000 cycles yiclds a robust performance when the machine
size varies from 2 to 16 nodes. In contrast, at & = 1500 cycles, Uy, decreases rapidly with
increasing machine size. Also, an increase in the munber of threads (up to 8) yields little

performance gains.

The following is a surprising implication from Figure 8.2 when the number of nodes is
16. With the multithreading (i.e. ny > 1), Up values at R = 3000 are almost double of U,
values at R = 1500. Each EARTH node contains Intel i860 XP processor which supports
a dual-issue of instructions [20, 46]. Without loss of generality, the implication of this
result on superscalar processors is as follows. Let us assume that the compiler produces
a scalar code for a program workload with mean thread runlengths of 3000 cycles. For
the same program workload, when compiler optimizations are applied, the generated code
achicves a sustained instruction-level parallelism (ILP) of 2, i.c. mean thread runlengths
are 1500 cycles. There is, however, no change in the communication characteristics.
Since processing nodes place their messages on the network at a higher rate due to low
I, contentions increase significantly and there is no performance gain due to increased
ILP. In effect, with new techniques using a high performance processor efficiently does not
guarantee a high system performance. A tuning of workload parameters as well as system

architecture should pay attention to a performance analysis of various subsystems.

Thus, we note that:

e On the EARTH system, thread runlengths over 3000 cycles (i.c. 60 ps} achieves good

processor utilization { > 80%), even when the system contains up to 16 nodes.

o When thread runlengths are smaller than 1500 cycles, a decomposition of the program
workload on to a large number of EARTH nodes causes a significant reduction in
processor utilization. For these runlengths contentions at subsystems and network

increase, $0 Lger—gyne increases and the Uy decreases.
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Figure 8.2: U, for different machine sizes.

8.3.2 Multithreading Operations

We noted in Section 8.3.1 that for /2 above 3000 cycles, Uy, is high even for machine sizes
up to 16 nodes. Now, we discuss which program workload parameters aflect the per-
formance measures. We use a default machine size with 8 EARTH nodes. Thread run-
lengths are 1500 cycles and 3000 cycles. We vary the number of remote aceess operations
(GET-SYNC/DATA_SYNC) per thread as well as the number of local read/write accesses for
cach thread.

Figure 8.3 shows how U, varies with the number of threads for runlengths = 3000
and 1500 cycles. Continuous lines are model predictions and dotted lines are runlime
measurements from the EARTH system. For both runlengths, U, values increase with
number of threads and saturate. Model predictions and system measurements follow the
same trends and their difference decreases at higher mumber of threads. Two causes of
differences between model predictions and system measurements are as follows (discussed
earlier in Section 7.3): First, we cannot measure the idle time at the EU due to its loeal
memory accesses. Jecond, we cannot accurately account for an overhead to invoke the

function for idle time measurement.

Threads with 2 GET_SYNC operations yicld higher U, values than threads with 3 GET.SYNC
operations (see Figure 8.3). The difference at higher number of threads (say 8) is duce to

the overhead of issuing and synchronizing an extra GET_SYNC operation. Interestingly, U,
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values for threads with 3 GET.SYNC operations and R= 3000 cycles, are almost similar to
Up values for threads with 2 GET_SYNC operations and 2 = 1500 cycles. That is, if threads
need more number of GET_SYNC opcrations, their runlengths should be high to achieve a

good U,
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Figure 8.3: Effect of the number of remote accesses per thread on Up.

Now, let us consider the effect of remote accesses on Lge;—gync for the two runlengths
R= 3000 cycles and 1500 cycles. Figure 8.4 shows that with 2 GET_SYNC operations per
thread, Lget—yync is small and does not change significantly with other parameters, n, and
R. However, with as small as 3 GET.SYNC operations per thread, Lge:—sync increases sharply
at lower R (= 1500 cycles). When n, is 4, R is 1500 cycles and each thread has 3 GET_SYNCs,
Lget-sync values are much higher than those for the workload with n, = 8 and 2 GET_SYNCs
per thread. Despite a larger number of outstanding accesses, when ny is 8, Lyet—sync is lower
compared to the workload with n; = 4 and 3 GET.SYNCs. Thus, the number of GET_SYNCs
per thread is more crucial to the performance than the number fo threads. Curves for
R = 3000 cycles show a similar behavior, with smaller differences. Notice the similarity
with an observation from Figure 8.3 that Lget—sync values for threads with 2 GET_SYNCs and

runlength of 1500 cycles are almost similar to Lge sync for threads with 3 GET_SYNCs and
runlength of 3000 cycles.

Next, we predict the effect of remote accesses on delays at the SU, one of the key
functional units to support the multithreading. A runtime measurement of the delay at
an SU is not possible in the software, because the SU at a remote node is only one of the
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Figure 8.4: Effect of the number of remote accesses per thread on Lgei—syne

many functional units on the path of a remote access. Figure 8.5 shows how the delay
at the remote SU varies with n; and R. Continuous lines are model predictions for R =
3000 cycles, and dotted lines are model predictions for R = 1500 cycles. The delay at
the SU increases with n,. A more significant increase occeurs with the number of GET_SYNC
operations per thread; for example, when the number of GET_SYNCs is 3, each GET-SYNC
requires a service of 20 cycles at the SU and the overall delay is 60 cycles. For threads with
low R (=1500 cycles), the queucing delay at an SU increases rapidly. So, a high Lget—syne
occurs as noted in Figure 8.4. Finally, we note that at high thread runlength, the delay at
SU does not change significantly with the number of threads.

Figure 8.6 shows how the local read/write accesses rw affect Lyot—syne- We consider
rw = 1 and 4. Local read/write accesses increase Lgei—yyne by less than 2% to 3% in all
cases. There are two reasons as follows: First, unlike remote accesses, service times for
local accesses are very small. For example, a local memory access requires 15 cycles at
the memory. In contrast, a remote memory access issued by an EU initiates 4 accesscs
to its local memory, two to initiate the remote memory access, and two to complete the
remote memory access. Second, each split-phase multithreading operation causes multiple
bus accesses (to memory and network interfaces). So, a small number of read/write accesses
per thread does not significantly increase the contentions on the node bus. We report the
system measurements only. Model predictions for Lyet—sync also change within 2% to 3%
(not shown in Figure 8.6).
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Figure 8.5: Effect of program workload parameters on the delay at the SU.

We show the effect of local read/write accesses on U, in Figure 8.7. Similar to the
changes i Lyet—sync values, Uy values decrease by less than 5% due to iucrease in local

aACCesSses.

. In summary, we note how sensitive the performance of real multithreaded machines is

to the number of multithreading operations and thread runiengths.

e The number of GET_SYNC operations per thread is significant to determine the con-
tentions in the system. Even with as small as 3 GET_SYNC operations per thread,

Lget~sync for individual accesses is high on a real system like the EARTH.

e Declays at functional units like the SU in a processing node dominate the latency
costs, in the current EARTH implementation. As a result Lgetsync increases with
the number of GET_SYNCs per thread. In spite of these long delays at functional units,
the processor performance increases under multithreaded execution compared to a

single threaded execution.

¢ A program workload achieves high processor utilization (> 80%) on the EARTH
system for thread runlengths above 3000 cycles (60us) and the number of GET_SYNCs
is less than 3. When the number of GET_SYNCs per thread increases, the contentions

increase and the U, values decrease.

o The number of local read/write accesses do not significantly affect the performance
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Figure 8.6: Effect of remote and local accesses on Lger— ayne-

of the EARTH system, as compared to the number of remote aceesses. Changes in
the number of read/write access to local memory change Lye—gyne and Uy values by
less than 5%.

8.4 Architectural Optimizations

The delays at a processing node reduce the performance gains achieved due to multithread-
ing as shown by Section 8.3.2. Now, we discuss how different architectural implementations
of the EARTH system can yield higher performance gains, We consider two systems. First,
the system has the network delays similar to those observed in o Networks-of- Workstations
type system. Sccond, the processing node overheads in the EARTH system are reduced.
We use model predictions for comparing the performances of all systems. Predictions for

the current EARTH system arc validated carlier in this chapter.

One of the recent trends in large scale computing is to use Nelworks of Workslations
{(NOW) to achieve high throughputs [11, 71]. Some of the characteristics of these systems
in comparison to multiprocessor systems are as follows. The processing nodes in 8 NOW
system are similar to those used in a multiprocessor system like the EARTH. However,
the interconnection among these nodes in & NOW gystem is slower than the network ina
multiprocessor system. A NOW system uses standard interconnection networks, like ATM

or Ethernet. Also the distances between workstations can be large. So, communication la-
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Figure 8.7: Effcct of remote and local accesses on Up.

tencies for messages are higher than those in a muitiprocessor system, which use customized

intercotunection networks.

For our discussions of a NOW systemn, we consider that the processing nodes of the
EARTH system are connected using an interconnection network slower than the one in
the EARTH system. We use the best values for a round-trip latency reported by Pakin ct
al [71]. In particular, the round trip latency is 50xs (and one-way is 25u8). To achieve this
value, we need to set the crossbar delay xoutyer, to be 1100 cycles. The rest architectural

paramelers have the same values as on the EARTH system (see Table 8.1).

Figure 8.8 shows how U, values of the NOW system compare with U, for the EARTH
gystem, when the munber of threads are increased. Continuous lines show the performance
of the current implementation of the EARTH systein on MANNA platform. Dotted lines
show how the performance of the NOW system changes with thread runlengths, when the
number of GET_SYNC operations per thread and thread runlengths vary. As expected, the
single-threaded performance of the NOW system is worse than the EARTH system, because
the delays on the network ar: much longer. However, with multithreading the performance
of the NOW system improves rapidly. Let us consider that R is 1500 cycles. When the
number of GET_SYNCs is 3, with increasing n;, U, values saturate close to double the value at
ny = 1. With GET.SYNCs = 2, the U, for n, = 8 is almost 2.5 times the U, at n, = 1. When
R is 1500 cycles, U, saturates at 24% and 46% with GET_SYNCs = 3 and 2 respectively,
because the network latencies (Lge—sync) are very high. For R= 3000 and 6000 cycles, the
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saturation of Uy occurs at 80% and above. Further, at R= 3000 cycles, U, rises to nearly
J times at n,=16 (not shown in Figure 8.8}, Similar performance gains are observed even

when the number of remote aceesses per thread.

In summary. with current service times of subsystems in the EARTH processing node,
a 8-node NOW systemn can achieve as imuch as 3 times the performance of a single threaded
program execution. Interestingly, thread granularitics, which yield high processor utiliza-
tion, are almost same as those we noted for the current EARTH implementation, i.e. thread
runlengths of 3000 cycles and above.
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Figure 8.8: U, for a NOW system.

Let us consider another important trade-off in the EARTH processing node design, ser-
vice times at subsystems like the SU and the link interfaces. We compare the performance
of systems with the current EARTH node implementation (whose service times are men-
tioned in Table 8.1} and with a hypothetical fest EARTH node. The service times al the
fost EARTH node are as follows: SUery is 10 cycles: Inking ., is 8 cycles; and nkoul qory is
4 cycles. The model predictions of U, for the current EARTH implementation and the fast
system are shown in Figure 8.9. Continuous lines with the label EARTH are the model
predictions for the current EARTH systemn. Dotted lines with the label Fast are the model
predictions for the fust EARTH system.

For single threaded program execution, we observe that a fast system yields nearly 10%

higher Uy than the current EARTH system when R is 1500 cycles (Figure 8.9). At higher
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thread runlengths, there is not much scope of performance improvement due to high U,
vidues. However, the performance improvement decreases with an increase in 7y, because

latencies are better tolerated with wmultithreading,.
o
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Figure 8.9: Effect of fast subsystems on U,,.

Figurc 8.10 shows network latencies Lyei—yyne for the two systems, the fest EARTH
system and the current EARTH systetn.  Lyey—gyne values for the fast system are at least
100 cyeles lower than Lyeq-yyme for the current EARTH systemn. However, Lyet—yync values
for the fast EARTH system follow the same trend with mnodel parameters as the Lger—gyne
values for the current EARTH system. That is, Lyer—syne increases rapidly with n, when R
is small and the number of GET.SYNCs per thread is 3 or more.

In summary, we note that lower latencies for the fast EARTH system yields up to 10%
higher U, values than the current EARTH system, when thread granularities are low. This
result conforms with the conunon notion that a faster communication enables an efficient
exccution of finer grain parallel program. However, with multithreading the performance

gap narrows down to less than 5% between the fast EARTH system and the current EARTH
system.

The next section explores an advantage of multithreading on a distributed shared mem-
ory multiprocessor systems. The ability of multithreading to tolerate latency enables us to
achieve better performance even in the absence of a data locality.
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Figure 8.10: Effect of fast subsystems on Ly ayne
8.5 Data Locality Sensitivity

In this section, we investigate the robustness of the performance of the EARTH system
to changes in data distributions. First, we define metrics to evaluate the sensitivity of
performance to changes in data distributions. Second, we describe our program workload
to study the data locality sensitivity. Third, we show results on the data locality sensitivity

of single-threaderd and multithreaded program workloads,

8.5.1 Metrics for Data Locality Sensitivity

Given a multiprocessor system like EARTH, the data locality sensitivity of a program is Lhe
variation in the performance of the system due to changes in data distributions. We deline
two metrics to quantify the data locality sensitivity of distributed memory multiprocessor
systems. These metrics are, the multiprocessor locality sensitivity indee (MLSI) and the
locality sensitivity index (LST).

Intuitively, the worse the locality of the data access pattern, the worse the performance
of single-threaded multiprocessor systems. A lower locality in a data distribution increases
the latency for a remote memory access (sce Scction 5.7). A processor waits for the long

latency access to complete before exccuting further. To get a reasonable performance, a
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compiler or a programmer needs to spend efforts to minimize inter-thread communication

and maximize the reuse of the data in local memory.

Changes in data distributions change the network latency experienced by an access.
A dcleterious effect of a remote memory access on performance can be reduced, if this
remote memory access latency is overlapped with an execution on other threads, i.e. the
multithreading support. Thus, the multithreading should reduce the needs of compiler
writers and programmers to carefully craft data distributions to achieve high performance.
This is especially beneficial for irregular and communication intensive applications, where

an optimal data distribution may not be easy to find.

'i‘hc performance of a multithreaded system also depends on a matching of program
workload to the underlying machine architecture. We focus on the following program
workload parameters: (a) the number of threads n, at each processing node; (b} the thread
runlength R; (¢) the number of long latency accesses per thread; (d) the probability premote
of sending these accesses to remote memory; and (e) the number of processing nodes P.
On the EARTH system, we use the program execution time to compare the performance

of various program workloads and data distributions.

Next, we define metrics to quantify data-locality sensitivity.

Definition 1 Given a program workload, let Dp be a well-tuned deta distribution on P
processoring nodes (i.e. with an oplimal data locality), end D}, be the other data distribution
under investigation, e.g., a randomly distributed data. Let Tpyp, (Dp) and Tpy, (Dp) be
execution limes of a¢ program running on P nodes of a multiprocessor system, when data
distributions are Dp and D}, respectively. The Mulliprocessor Localily Sensitivity Inder
(MLSI) is defined as:

MLSIpp(Dp, D) = ﬁ—’;—%—% (8.1)
where n; denotes the average number of threads on cach node. A data disiribution is optimal,
when no remole memory access is required for any data accessed by threads at a processor,
except the cssential remote data accesses. Essential remote date accesses are the accesses

for data that must be shared among threads at different processors.

The MLSI measures how is the performance of a system on a program with a particular
data locality. The MLSI compares the performance for a program workload on an imperfect
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data locality, with the performance on a perfect data locality, i.c., optimal distribution. The
MLSI usually ranges between 0 and 1. Note that MLSI may be greater than 1, if D}, leads
to lower program execution time than Dp. The closer the MLSI value to 1, the wmore
robust the performance with respect to variations in the data locality. (For some programs,
it is not difficult to obtain an obvious, optimal distribution.) We can also use the MLSI
to compare different data distributions, for example, how is the performance on a block

distributed partitioning of matrices in an application with a block cyelic distributed one,

We note the similarity of the MLSI with the Tolerance Index discussed in Chapter 6.

There are following two major differences:

1. The MLSI measures the performance variation of a system on a program with respect
to different data distributions. There is a possibility that the optimal distribution
Dp may not necessarily be the one with all data residing in local memory module. In
contrast, given a program workload and a data distribution, the tolerance index (for
network latency) compares the performance of a system with that of an ideal system,
i.e., a system with no delays on the network.

2. The MLSI helps to assess the performance variations of a distributed memory multi-
processor system with respect to variations in the data locality. In contrast, the
tolerance index helps to assess the impact of the latency of a subsystem on the per-

formance of the system on given program workload.

Now, we define another metric Locality Sensitivity Index (LSI), which is a special case of
the MLSI. The LSI deals with the program execution on a single processing node, when the
data is distributed on P processing nodes. Thus, the LSI removes the impact of contentions
at the network on the performance comparison. In case of the EARTH system, the LSI

also reduces the effect of waits at remote processing nodes to service long Iatency accesses,

Definition 2 Given a program workioad, let Dp be o well-tuned date distribution on P
processoring nodes (i.c. with an optimal data localily), and D3}, be the other dala distribulion
under investigation, e.g., a randomly disiributed datu. Let T\,,(Dp) and Ty p,(Dp) be
ezeculion limes of a program running on I node of ¢ mulliprocessor system, when dale
distributions are Dp and D}, respectively. The Locality Sensitivity Index (MLSI) is defined
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where 1y denotes the average number of threads on each node. A dala distribution Dp is

LSI, (Dp,D}) (8.2)

optirnal, when no remote memory access is required for any deta accessed by threads at a

processor.

The LSI is a positive rcal number between 0 and 1. The closer the LSI value to 1,
the more robust the performance of a system on a program with respect to variations in
data locality, The LSI rcflects how good is the performance of a node in a multiprocessor
system, when the data is distributed on multiple nodes. In other words, the LSI indicates
the ability of a node in a multiprocessor system to tolerate the remote access latency. Again,
we notice a similarity with the tolerance index that the optimal data distribution Dp for

the LSI ensures the absence of remote accesses.

In conventional parallel computing, the performance of a multiprocessor system on
a gingle-threaded program workload changes significantly due to the data locality. So,
compilers and programmers must spend significant efforts to improve data locality through
smart data partitioning strategies and changes in the control structure of program workload.
Our intuition is that the performance of multithreaded computation is less sensitive to
changes in data distributions. Accordingly, we study how robust is the performance of a
multithreaded system with respect to variations in data locality.

Next, we describe program workloads and their data distributions on the EARTH sys-
tein, We use these program workloads to investigate the data locality sensitivity of the
EARTH system in Scction 8.5.3.

8.5.2 Program Workloads and Data Distributions

We introduced the performance metrics, MLST and LSI, to quantify the data locality sensi-
tivity. In this section, we show how to compute the MLSI and LSI for a specific application,
and also compare performance of the single-threaded computation with multithreaded com-
putation. The empirical measurcments are made under a synthetic workload with different
data distributions. We also outline program workloads used to study the data locality
sensitivity of the EARTH system.



CHAPTER 8. APPLICATIONS TO PERFORMANCE OPTIMIZATIONS 201

MLSI and LSI Computation

Now, we show how to compute the MLSI and LSI for a synthetic benchuiark. Later, we

extend this computation to Matrix Multiplication.

Synthetic Benchmark

The synthetic benchmark is similar to the program workload shown in Figure 2.2 (Scc-
tion 2.2). We vary the number of threads n; forked on each processing node and their thread
runlengths R. All input data for a thread is fetched from remote memory module before the
computation begins. We use BLK.MOV operations to perform these long message transfers
between remote processing nodes. The size of network messages changes depending on the

granularity of threads. We also vary data distributions, i.e., change premote.

The synthetic benchmark SB provides us a flexibility to adjust the communication pat-
tern and program execution behavior, We measure measure MLSI and LSI for different data
distribution, and for variations in input parameters such as n, and premote. The threaded
function of SB mainly consists of two parts: (a) a communication-thrend which reads the
data from local/remote memory; and (b) a computation-thread which serves to compute the

result and write back. We propose the following four computation-communication patierns
to measure the MLSI and LSI.

o Single Thread on 1 node (ST-1): The processing node 0 executes one thread, i.c.,
n, = 1. The input data for the computation is distributed on P processing nodes.
This thread issues two remote read operations (using BLK.MOVs) for the input data.

On return, the computation part of this thread is triggered. This process is repeated
till the end of the computation.

e Multiple Threads on I node (MT-1): The processing node 0 executes n, thread, The
input data for the computation is distributed on P processing nodes. Each thread
issues two remote read operations (using BLKMOVs) for the input data, On return,

the computation part of the waiting thread is triggered. This process is repeated for
each thread till the end of the computation.

o Single Thread on P nodes (ST-P): Each processing node 7 (where i = 0,1,...,P — 1)

executes one thread, i.e., 7, = 1. The input data for the computation is distributed on
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P processing nodes. This thread issues two remote read operations (using BLK.MOVs)
for the input data. On return, the computation part of this thread is triggered. This

process is repeated till the end of the computation.

o Mulliple Threads on P nodes (MT-P}): Each processing node 7 (where i = 0,1,..., P~1)
exceutes 7y thread. The input data for the computation is distributed on P processing
nodes. Each thread issues two remote read operations (using BLKMOVs) for the input
dati. On return, the computation part of the waiting thread is triggered. This process

is repeated for each thread till the end of the computation.

Figures 8.11 {a) and {b) show the exccution patterns for ST-1 and MT-1. Let us compute
the performance benefit of multithreading using a simplistic back-of-the-envelope analysis
based on simple measurements from the EARTH system. The timing details are presented

to illustrate the concept.

In Figure 8.11 {a), let the BLKMOV operation take 120us (=Lygmes) for ST-1. The

EU at processing node 0 takes 1ps (=1) to issuc a BLKMOV. Let us assume that thread

. runlength R is 300us. The context switch time € of 2,525 is incurred because the first part
of thread issued remote accesses, and the second part gets triggered at the completion of

these accesses. Then the overall execution time Ty is (£ + C + Lyjgmen + R) = 425.5p18. All

of these values are measured from the EARTH system.

Now, for MT-1 in Figure 8.11 (b), we split the computation into 3 threads. Since the
message size requirement for each thread is reduced to one-third of that in Figure 8.11(a),
we assume that the latency for cach BLKMOV reduces to 40us (= Lytmoy). For the Thread-1
(the left-most one), we have I = 1us, C = 2.5u¢ and R = 100us. The thread completes
exceution after a duration of (I + C + Lygmer + 2} = 143.5us. The Thread-2 (in the
middle) receives its BLKMOV operation by 136.5u3. Though we expect that this BLK_MOV
by I+ C + Lyjkmos + Lutkmen = 83.518, a contention between the EU and the SU at
processing node ¢ delays the completion of the second BLK_MOV operation. The execution
on Thread-2 follows. Thus, Thread-2 completes after a duration of (I + C + Lytkmos +
R+ C + R) = 246.0us. For Thread~3 the same logic applies regarding the contention
between the EU and the SU. The corresponding BLK.MOV operation completes by 235.5us.
So, the overall execution time of the program is Ty, = I+ C+ L1 + R+ C+R+C+R=

348.5us. y A comparison of exccution times in two cases T, and T, shows the bencfit
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due to multithreading. The performance improvement is (T, — 7,)/T, = 0.181 i.c., 18.1%.
We note that in Figure 8.11(b), the responses to latter two BLKMOVs are received before
the processing on Thread-1 and Thread-2 complete. If the distribution of data is worse,
leading to a higher latency, the overlap of computation and communication ensures a smaller

variation in the performance.

PE,, PE, PE

Feteh / Store

P
[ 1
I: EU Overhead el &
L: Lutency + Busy-Whaiting Deluy L
R: Threud Runlength € g
C: Context Switching Overhewd! C

(a) Single-Threaded Computation (b} Multi-Threaded Computation
Figure 8.11: Examples of ST-1 vs, MT-1 Execution Palterns

Executions for ST-P and MT-P arc very similar to those shows in Figure 8.11, The
execution of ST-P differs from that of ST-1 as follows. While the ST-1 allows execution of
single thread only on processing node 0, the ST-P allows cach processing node Lo execute
one thread. Similarly, MT-P allows a ntunber of threads 7y (> 1) on each processing node in
contrast to MT-1, which allows n; threads only on the processing node 0. Thus, ST-1 and
MT-1 incur no contention at remote nodes for remote memory accesses {but contentions
occur at the network and the processing node 0 among mnltiple outstanding accesses from
different threads at processing node 0). On the other hand, under ST-P and MT-P, remote
access from a processing node incur contentions at the network and at cach processing node
with remote accesses from other processing nodes. The ST-1 pattern leads Lo a shorter
delay for busy-waiting on cach remote memory access compared to the ST-I* exccution
pattern, because the ST-1 execution occurs only on the node 0 and there are no threads
to synchronize (on node 0 or other nodes). The same argument applies to the MT-1 aml

MT-P execution patterns.

Now, we describe the Matrix Multiplication, which we will use to study the data locality
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sengitivity of the EARTH system. We have implemented a 1-D Systolic Matrix Multiplica-
tion (SMM) algorithm to compute C = A x B. A, B and C are n x n matrices, and N = n?.
Let ug assume that P processing nodes exchange data as they would on a ring. Let each
processing node have w consecutive columns, where w = 5. Thus, 4 = [4g 4 ... Ap_y],
where A; block is located on the i-th processing node at the start of computation. A similar
distribution exists for B = [{By B) ... Bp_1]. As the computation proceeds, Cy accumulates
on the processing node k, such that C = [Cy € ... Cp_1]. The progress of computation is
as follows: First, cach node & computes Ag x By and stores as a partial sumn for Cy. Second,
Ag’s are cyclically shifted, say to nodes (k+1). Third, the partial computation of Cj, repeats
at the node k. The second and third steps continue, till Ay visit all processing nodes (a
total of (P — 1) shifts). Thus, Cy accumulates at the node k. That is, Gy = Z{;‘o' A; By,

where By, contains rows ¢ x w to (1 + 1) * w of By,

Ruke 4 L Summmind of €y Nude & s g Fummuerad of Cg Nk L Ay By Summand of Cuy
iy [[™ [,
Farend tt] Am Am By Moratr| Am Aot Threadtt { A2 Aoz
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Figure 8.12: Exccution Pattern of 1-D Systolic Matrix Multiply (SMM)

Let us consider the data movement in single-threaded and multithreaded execution of
the SMM. For a single-threaded exccution, each cyclic shift of Ay is followed by a partial
computation of Cy on the node k. Total number of shifts are (P - 1). On each shift, a node
receives 1};- data elements and performs -}';ag multiplications on matrices of sizes n x § and
# x 1. The computation and communication phases of the program arc distinctly visible.
For a multithreaded program execution, each processor executes on n, threads after each
cyclic shift of A, = 1,2,...,ny. Rows numbered between mn x w and (m 4 1) * w of A

n?

and Cj, are referred as A,y and Cpyg. Each thread requires p data elements on each

shift, and performs ;:‘%, multiplications (and their additions) on matrices of sizes wXPp
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and 5 % $. Thus, after the arrival of the first block Ay of ;ﬁ clements, the computation
on threads is overlapped with the arrival of remaining (ny - 1}itp data elements. With

multithreading, the computation and communication phases are overlapped thereafter.

8.5.3 Data Locality Sensitivity of the EARTH System

In this section, we will investigate how sensitive is the performance of the EARTH system
to changes in data loeality. Firsl, we study the data locality sensitivity when the EARTH
system executes the synthetic benchmark discussed in Section 8.5.2. Sceond, we study the

data locality sensitivity for the Matrix Multiplication program discussed in Section 8.5.2,

Now, we explore the locality sensitivity varies with various workload parameters. Syn-
thetic benchmark in Section 8.5.2 allows us to vary the number of threads, their runlengths,
and their data access patterns. We consider the effect of workload parameters on the Malti-
processor Sensitivity Index, MLSI, shown in Figurc 8.13. The synthetic benchmark is exe-
cuted on 20 processing nodes. The block size for remote data accesses (BLK_MOVs) is such
that the program performance is the least when each processing node executes one Lhiread.
These block sizes for each BLKMOV are 120 and 480 floating poiut numbers, The number
of threads n; on cach processing node varies fromn 1 to 20. The fraction, premote, of long
latency operations sent to remote memory varies {rom 0 to 0,95, as shown on the axis Litled
“Data Distribution” with a block size of 120 floating point munbers. Note that the remote
data is distributed on remaining nodes as follows: for pregere = 0.5, one node containg
rest of the data; for premote = 0.66, two nodes contain rest of the data; for premote = 0.9,
nine nodes contain rest data; and so on. For a particular value of ny (say 2), the MLSI is
the relative decrease in program exccution time due to a data locality (premote > 1) with
respect to the program cxecution time when the data is local i.e. premote = 0. We observe
that:

o For the single-threaded exccution (n; = 1), the MLSI decreases by 18.8% when all of
the data is distributed over remote memory modules. When half the data is remotely
located, the decrease in MLSI is nearly 14.7%.

s For a multithreaded execution, the decrease in the MLSI s less than 5% when premote
is greater than 0.5. The closeness of MLSI values to 1 for 7, > 1 shows that the Jocality

has very little impact on the performance of multithreaded program workload.
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Program exccution times for these MLSI values shown in Figure 8.13 indicate that n, = 2
and 4 provide the best performance. At high n, (8 to 20), the program execution time is up
to 8.56% higher than that for n, = 2, because an extra thne is required to fork the threads

at the beginning of computation and to synchronize the threads at the end of computation.

o

o
»

o
ad

Multiproc Locality Sensitivity Index MLSI
o

o
oL

0.4 5

1 Number of Threads, n_t
p_remota (Data Distribution with BLK=120)

0.6 08

Figure 8.13: MLSI values for Synthetic Workload at BLK=120.

Figure 8.14 shows how the processor performance varies when there is no contention
from exccutions on other processors. The synthetic benchmark program executes on the
processing node 0, and the data is distributed on 20 nodes in the system. In Figure 8.14, a
long latency BLK_MOV is sent to a remote memory with the probability premote- As mentioned
above, with premee = 0.5, node 1 contains rest data; with premote = 0.75, nodes 1, 2 and
3 contain rest data; and so on. Premote values are 0, 0.5, 0.75, 0.875, 0.917, 0.925, and
0.95, corresponding to the number of nodes 1, 2, 4, 8, 12, 16, and 20 on which the data
is distributed. Each BLK_MOV transfers 480 elements, one of the two best sizes for single-
threaded performance on a 20-node EARTH system. The number of tiireads on the node
0 vary from 1 to 20. From Figure 8.14, we note the following:

e A distribution of data to remote memory modules decreases LSI values by 17.4 to
20.3% when n; > 1. Howevel, an increase in premote from 0.5 to 0.95 marginaily
incrcases the LSI value. The reason is that at higher premore the data is spread over
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a larger number of nodes, so bottlenecks at remote vodes to service remote memory
accesses reduce,

o For premote 2 0.5, with multithreading the LSI values increase by 19.% over the LS1
values at n,=1.

Similar to the observation for the MLSI values, we note that 2, = 2 provides the best
program cxecution time as well as the highest LSI values. The reason is that when a
remote access is in progress for one thread, the computation on another thread hides the
latency of remote access. When there are more than 2 threads (say 10 or 20), a large time is
also spent in forking these threads before the computation begins and syuchronizing themn

at the end of computation.

o

o

Locality Sensitivity Index LSI

0.8
1 Number of Threads, n_!

p_ramote (Data Distribution with BLK=480)
Figure 8.14: LSI valucs for Synthetic Workload at BLK=480.

Next, we consider the matrix multiplication program (SMM) discussed in Scection 8.5.2.
The MLSI values for the SMM are plotted in Figure 8.15 with respect to the number of
threads n, per processing node and different data distributions, i.c., different premote vislues.
n, varies from 1 to 20. premote values are 0, 0.5, 0.75, 0.875, 0.917, 0.925 and 0.95. Given a
Premote, the smallest MLSI value occurs at ny, = 1. With increasing n, > 4, the MLSI values
are almost constant. The program execution times (not shown in Figure 8.15) are the least
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for ny = 4 and 8. We also note that for prepmote < 0.917 the MLSI values are almost close
to 1 when n, > 4. Comparing the MLSI values for a single threaded execution (n; = 1) to

those for a multithreaded execution, we observe the following;:

e The MLSI decreases rapidly with increasing premote, especially when ny = 1.

o At large premote (say 0.95), the MLSI value increases by as much as 11.8% with
multithreading. (The program exccution time decreases by nearly 14.5%. However,
the program exccution time decreases for n, > 1 even when premote = 0, so a lower

improvement in the MLSI value is observed.)

Overall, our experiments show that the decrease in MLSI (and LSI) for a multithreaded
program execution is less than the decrease in MLSI (and LSI) for a single threaded ex-
ccution. So, the multithreaded program exccution is more robust to the changes in data
distributions. Thus, we believe that an inherent ability of multithreading technique to tol-
erate long latency helps to maintain a high performance. A user of multithreaded system
needs to make only a small effort on data distribution even when the remote access pattern

is communication-intensive and irregular or changes dynamically in & program execution.
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Figure 8.15: MLSI values for Matrix Multiplication.
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8.6 Related Work

In this chapter, we have focussed on the issves related to the performance optimization of
multithreaded multiprocessor systems. We characterized the performance of the EARTH

system. Then we addressed the sensitivity of performance to the changes in data locality.

First, we characterized the performance of the EARTH system with workload parame-
ters. Arpaci et al [13] report a characterization of latencies for various operations on CM-5
using Split-C. Boyd and Davidson [19) report an evaluation of a multiprocessor system
using synthetic benchmarks. One of the main objectives of these studies is to provide in-
formation on how much penalty user-level language primitives incur. These primitives are
various types of local and remote accesses. Compilers and programmers can choose the
best possible hardware mechanism using these primitives to achieve faster communication.
However, they do not consider the impact of overlap of computation and communication
on performance measures. We show in this chapter that the overlap has significant cffect,
on the processor performance. Two important aspects of the overlap are as follows, First,
the overlap improves the processor performance compared to a single-threaded program
execution. Seccond, the number of outstanding requests per processor increase with the

number of threads, so strategies for performance related optimizations change,

On the other hand, Woo et al [102] study SPLASH-2 benchmark suite, specifically the
aspects like the application parallelisi, computation to communication ratio, and locality.
They use above aspects to characterize a program exccution on a multiprocessor system.
However, they do not consider how the architectural mechanisms affect the performance of
a multiprocessor system on a program workload. Qur results show that program workload
parameters as well as architectural parameters should be considered to analyze and optimize

the performance of a program workload on a multithreaded multiprocessor system like the
EARTH.

Second, we investigated the data locality sensitivity of performance of the EARTH sys-
tem. Some of the related work arc by Johnson [50], Felten [36) and Sohn [89). Johnson
proposed a model in [50] to predict the performance of a multithreaded system. His model
characterizes application behavior with parameters that capture the computation granular-
ity, the sensitivity to communication latency and the degree of locality in the access pattern.

He shows that exploiting communication locality provides gains on overall performance. In
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other words, a high locality in remote accesses helps to achieve a good performance on
large-scale multiprocessor systems, and the performance is sensitive to the communication
locality. The results of this chapter show that with multithreading, the performance is more

robust than single threaded systems to the changes in locality in remote accesses.

Felten and McNamee [36) argued that computation and communication overlap can be
casily achieved by exccuting multiple threads on each processor. They also argued that this
approach is practical on distributed-memory architectures without any special hardware
support. They presented timing data for the PDE solver [36). Their results conform with

the data-locality analysis in this chapter.

Sohn et al [89] investigated the effects of multithreading on data distribution and work-
load distribution. On 80-processor EM-4 distributed memory multiprocessor, they investi-
gate three types of data distribution, namely, row-wise cyclic, k-way partial-row cyclic, and
blocked distribution. Their experimental results indicated that multithreading can offset
the Joss due to a mismatch of distribution to workload distribution. This work is perhaps
the closest to our results on data locality sensitivity. We show that the ability of multi-
threaded program exccution to tolerate long latency provides a robustness of performance

to the changes in the data distribution of a program workload.

8.7 Summary

In this chapter, we investigated various aspects on the optimization of the performance of
the EARTH system.

First, we showed how various performance measures are affected when parameters of a
program workload are varied.

Sccond, we investigated the trade-offs for thread runlengths, number of remote accesses
per thread and number of local accesses per thread. We noted that the larger the number
of remote accesses per thread, the lower the processor utilization. The performance can be
improved with higher thread runlength and not by higher number of threads. Changes in the

local read/write accesses do not affect the processor utilization and latencies significantly.

Third, we defined measures to quantify the sensitivity of data locality to the perfor-
mance. We applied these measures, the multiprocessor locality sensitivity index (MLSI)
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and the locality sensitivity index (LSI). to study the EARTH system. We noted that even
with current implementations of the EARTH system, the MLSI (and LS1) values for multi-
threaded program workload are up to 20% higher than those for single threaded exccution.
That is, the wultithreaded program execcution significantly increases the robustness of per-
formance to the changes in data distributions. The reason is that a multithreaded execution
is expected to tolerate long latencics, which can be a vesult of changes in data distributions.
The implication of our result is that a programmer/compiler need not have to achieve the
optimal data distribution (which may not even exist) on a multiprocessor system and yet

reach near the performance levels of an optimal distribution.



Chapter 9

Conclusions

This chapter summarizes main results of this thesis and outlines directions for future work.

9.1 Summary

This thesis showed that the perfermance analysis of multithreaded systems differs signif-
icantly from that of traditional single-threaded systems and systems with a multitasking
operating system. A multithreaded processor is capable issuing multiple outstanding re-
quests. A user of multithreaded systems needs to assess the following tradeoff: a perfor-
mance improvement due to an increased overlap of computation and communication; and
a performance loss due to contentions and increased latencies at subsystems. To satisfy
the above nceds, our objectives were: first, to predict the performance through analyt-
ical models and validate the model predictions; and second, to analyze the performance
of multithreaded systems and recommend performance related optimizations of the archi-
tecture and program workload. We considered three successively detailed multithreaded
systems for performance modeling and analysis: a single processor system, a multiprocessor
system, and McGill's EARTH multithreaded multiprocessor system.

We proposed analytical models based on closed queueing networks to predict the per-
formance of multithreaded architectures, developed their solution techniques, and showed
their robustness over predictions using open system models. Given program workload and
architecture parameters, the models predict performance measures, like the processor uti-

N 212
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lization, subsystem utilizations, and latency for split-phase operations. We characterized
these performance micasures using realistic costs of multithreaded operations. We validated
the performance models using results from the simulations as well as the EARTH system
measurements. We applied the analytical models to optimize the program workload charac-

teristics, as well as to explore different architectural configurations, to achieve performance
benefits from multithreading.

First, our analysis of abstract single processor and multiprocessor multithreaded systems
showed how the multithreading affects the performance. The duality of processor and
memory subsystems can be exploited to yield high processor performance. A conctrrent
analysis of the networ. and processor performance brought forth the significance of the
network capacity to tune the program workload characteristics to achieve a high processor
performance. We showed how the tolerance of latency at a subsystem is affected by program
workload characteristics.

Second, our analysis of the EARTH system showed how much performance gains can be
achieved under realistic costs of multithreading and subsystem interactions. We presented a
solution to the simultaneous possession of the bus at an EARTH node, using only one ana-
lyticul model. Our model predictions conform to within 5 to 20% of the measurements from
actual program executions on the EARTH system. For a compiler/system architect, the
performance characterization of the EARTH system showed the gains from multithreading
technique. Our results demonstrate the tradeoffs of realistic costs of multithreading on the

performance for fine-grain parallel program workload.

Third, we applied the analytical models to the performance optimization on multi-
threaded systems. We identified the bottlenecks in the EARTH system design, and ex-
piored how the changes in different architectural parameters will affect the performance.
For example, a NOW system with multithreading yiclds up to a three-fold performance
improvement over a single threaded system. Our results also showed that the performance
of a multithreaded program workload is more robust as well as closer to optimal than the
performance of a single threaded program workload to the changes in data distributions, W

The focus of our models is a Single-Program-Multiple-Data (SPMD) computation, since
the SPMD model successfully provides users with a tangible set of parameters to character-
ize the parallel program workloads. We belicve that the optimization hints obtained from
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an SPMD model] provides good heuristics to tune other multithreaded parallel program
structures as well.

We have developed a package for an analytical solution of the closed queueing network
(CQN) models of multithrcaded systems. The solution accounts for simple split-phase
transactions among subsystems as well as the simultaneous resource possession problem

encountered on the EARTH system.

To validate the performance prediction, we developed measurement tools on the EARTH
system. Also, we simulated stochastic petri net models of multithreaded systems to provide

an independent verification of our analytical predictions.

Our results provide a strong evidence on the usefulness of performance models to com-

pilers and systemn architects for performance optimizations on multithreaded systems.

9.2 Future Directions

Analyses in this thesis show that an extensive set of program workload and architectural
parameters is needed to characterize a multithreaded program execution on multiprocessor
systems. On the architectural aspects, it is necessary to identify a minimal set of primitives
to perform all tasks in & multithreaded program execution. Further, timing overheads and
design implications of this set of primitives should be studied for multithreaded systems with
off-the-shelf components as well as custom-designed components. On the program workload
characteristics, for a given multithreaded multiprocessor system, the performance analysis
should be used to assist compiler/run-time system in program workload distribution.

In the long term, a compiler or a run-time system should integrate the performance
analysis to perforin program workload partitioning as well as data-set partitioning to achieve
high processor performance. Also, the performance analysis should be used from early
design stages of the multithreaded system. This helps to identify and correct potential
performance bottlenecks, before major design implementation related decisions are taken.
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Appendix A

Approximate Mean Value Analysis

In this section, we describe the assumptions lor queucing networks such that they have
product-form solutions {15, 75, 56, 49]. Next, we describe an approximate mean value

analysis (AMVA) to solve such queuneing network models in this thesis.

A.1 Assumptions for Product-Form Solution

A queueing network is called a product-form network if the cquilibrinm probability of the
state of the queueing network is a product of functions of queue lengths at cach functional
unit. For a queueing network with M nodes, let n; be the queue length at nede 2 and f;(n;)
be a function of queune length n;. Let N be the total number of accesses in the system,
Then the equilibrium state probability P is given as follows:

1

M
P(ni,ng,.,npm} = 'C';.T]'V—)Hfi(ﬂi) (A.1)
i=]

where G(N) is a normalizing constant and a function of N,

The significance of product-form networks is that to obtain the eguilibrium probability
of a state we do not need to enumerate all states of the system. Thus, large systemns can
be analyzed easily. Based on this concept, many computationally efficient technigues have
been developed, e.g. Mean value analysis (75}, Approximate mean value analysis [75, 56],
and Convolution algorithm {21].

227
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For a queucing network to have a product form sclution, following assumptions should
he satisfied [15, 56]:

¥4

. Service Disciplines: All service centers have one of the following four types of service

disciplines: First Come, First Served (FCFS), Processor Sharing (PS), Infinite Servers
(IS), and Last Come, First Served Preemptive Resume (LCFS-PR).

. Job Classes: The accesses belong to a single class while awaiting or recciving service

at a service center but may change classes and service centers according to fixed

probabilities at the completion of a service request.

. Service Time Distributions: At FCFS service centers, the service time distributions

must be identical and exponential for all classes of jobs. At other service centers,
where the service times should have probability distributions with rational Laplace

transforms, different classes of jobs may have different distributions.

. Slate-dependent Service: The service time at a FCFS service center can depend only

on the total queue length of the center. The service time for a class at PS, LCFS-PR,
and IS centers can also depend on the queue length for that class, but not on the
queue length of other classes. Moreover, the overall service rate of a subnetwork can
depend on the total number of jobs in the subnetwork.

Arrival Processes: In open networks, the time between successive arrivals of a class
should be exponentially distributed. No bulk arrivals are permitted. The arrival rates
may be state dependent. A network may be open with respect to some classes of jobs

and closed with respect to other classes of jobs.

. Job Flow Balance: For each class, iiic number of arrivals to a device must equal the

number of departures from the device.

One-Step Behavior: A state change can result only from single accesses entering the
system, moving between pairs of devices in the system, or exiting the system. This

assumption asserts that simultaneous access moves will not be observed.

Device Homogeneily: A device’s service rate for a particular class does not depend on
the state of the system in any way except for the total device queue length and the
designated class’s queue length. This assumption translates to the following:
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(a)

(b)

(c)

(f)

Single-Resource Possession: An access may not be present (waiting for sorvice
or receiving service) at two or more devices at the same time,

No Blocking: A device renders service whenever accesses are present; its ability

to render service is not controlled by any other device.

Independent Job Behavior: Interaction among accesses is limited to queucing lor

physical devices; for example there should not be any synchronization require-
ments,

Local Information: A device’s service rate depends only on local queue length
and not on the state of the rest of the system.

Fair Service: If service rates differ by class, the service rate for a class depends
only on the queuc length of that class at the device and not on the quene lengths

of other classes. This means that the servers do not diseriminate against accesses

in a class depending on the queue lengtns of other classes.

Routing Homogeneity: The access routing should be state independent.

@ A.2 AMVA Algorithm

Now we discuss the approzimate mean value analysis (AMVA) to solve the closed quencing
networks which have a product form solution. This AMVA algorithim has been excerpled

from Lazowska et al [56], and suitably modified for our work. We asstune the snme termi-

nology as described carlier in Section 5.2 and the {ollowing Table B.1.

Inputs to the AMVA are architectural parameters and program workload paratneters.

We compute service demands, p; s, at cach service center for cach class of accesses. The

AMVA considers two population vectors, representing the number of threads for cach class

of accesses. The vector (N) = (ny, ...,n;) indicates that n, threads can he executed by each

processor,

The population vector (N — 1;) indicates that processor ¢ has (n, — 1) threads,

while other processors have n; threads cach.

The AMVA computes (sec Figure A.1):

1. the arrival rate A; for the threads belonging to cach processor ¢;

2. the waiting time w},, at each node mn; and
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3. the queue length ng,,,.

Statistics for population vector (IN — 1) are used to compute the queue lengths and wait-
ing times for ng-th thread added on to the processor i. Statistics for population vector
N indicate the steady state performance measures when n, threads are present at each

JroCessor.

The AMVA uses statistics at populations (N = 1;) and (N). The intuition is that
a newly added thread to a class (l.e. new population N) sees the queueing network in
equilibriuin with respect to the population (N — 1;).  First, using the queue lengths at
each service node for population (N — 1;), waiting times are computed for the new thread
(nccess). Second, waiting times for cach class are used to compute throughputs. Third,
using Little’s law [56], queue lengths at cach service nodes are computed. Thus performance
measures of interest are obtained at the population (N). Figure A.1 shows 5 steps in the
AMVA algorithm.

Step 1 in the AMVA is an initial guess for performance measures when the thread
population in the system is (N). These performance measures are the queue lengths at
cach of M nodes, for P classes of threads. Note that the thread population in cach class ¢,
i.e. Ni(=mny), is cqually distributed on M nodes. The speed of convergence of Steps 2 to §

depends on the closeness of this guess to the final queue length distribution [45).

Step 2 computes waiting time w],, for class i access at node 7. Step 2(a) obtains the
queue length n},, at cach node m when class i population is (NV; — 1) i.e. the population
vector (N — 13). The first term “1” represents the newly arrived thread (or access) for
class i. The sccond term uses an epprozimation function to compute queue lengths of class
i accesses. The approximation is an interpolation of nj (N}, that is, ‘-v-]'q'l,—lnE.m(N). The
third term is the queue length for other classes. Since population of other classes does
not change, the queue length (i.e. the number of accesses at each node} for these classes
remains the same. Step 2(b) computes the waiting time for the class ¢ access using the

service demand at node m and queue length at node m for class i.

In Step 3, thie eycle time for a thread in class i is a sum of waiting times at all nodes for
a newly added thread in class i. Hence, the throughput for class i is

cycle time fr;- one thread"
Step 4 uses Little's law. New queue lengths are computed at each node m and for each

class i, using the throughput for class i and the waiting time for a class ¢ access at node m.



APPENDIX A. APPROXIMATE MEAN VALUE ANALYSIS 231

Finally Step 5 verifies whether the maximum difference between quene lengths from
successive iterations are within the tolerance level. Iterations for Steps 2 to 5 continue till

the maximum difference is acceptable.

1- Initialize  n},,(N) = -‘Av-}-

2- Compute at each node m and for ecach class §

& n;'m(N -l =1+ [Ek_.-_l"f,m(N)] + z_;,:l\j¢,' ”},m(N)
b- w;,m(N) = Pim [";],,.(N - 1;)]

3- Compute for each class i
. - N
A:(N) - Zm:l wl'..m
4- Compute new values for n;,,,(N) at all nodes n and for all classes i
7} (N) = M(N)wj,, (N)
§- If dif ference(n],,(N)new, nn(N)gyg) > lolerance

then go to siep 2 clse exit

Figure A.1: AMVA Algorithin



Appendix B

Symbols and Their Meanings

Workload Paramecters

L
Hp

1 Number of threads at each processor

Mean value of thread runlength

Premote | Probability of accessing a remote memory module

W Number of Read/Writes in the duration R

Paw Probability that a message is sent to neighboring switch

- # and type of long latency operations— GET_SYNC, BLKMOV

System Parameters (Values measured on EARTH)

SUHCI"U
Inkirtery
Inkoutgory
Lillsery
Loul sery
1y

P =2

Context switch overhcad (END.THREAD, Scheduling etc.)
Memory latency for cach aceess

Routing delay at a network switch

Number of processors in one dimension, i.e., row/column
SU processing time for each access (other than BLKMOV)
Link access time for incoming network message

Link access time for sending network message

Delay at input port of network switch

Routing dclay at output port of network switch

Number of ports at the memory

Number of nodes in the system

37 cycles
10 cycles

20 cycles
15 cycles
8 cycles
8 cycles
32 cycles
1

2to 16
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Qutput Parameters

Lnbs

Sobs
Lyel-—-.vyr:c
'\m.'t

U,

Un
Usys
LSI,,

Observed memory latency (with quening delay)

Observed network latency (individual message type)

Latency for GET_SYNC operation. ded subseript = dedicated node
Message rate {rom processor to the IN (message type)

Processor (EU) utilization

Unets Usw, p | Switch Utilization

Memory utilization
System utilization, and PSU is the peak system utilization
Locality sensitivity index for 7y threads

MLSIp,, Multiprocessor locality sensitivity index for program on P nodes

Analysis

Related and Derived Paramcters

Tm

G
em; j

. CijJu

Pim

Pij.fu

Wi m

wi- it
h

@

dauy
Ky

B

Dp

Number of accesses at the memory subsystemn

Normalization constant for product-formn solution

Visit ratio of thread from processor ¢ to memory module j

Visit ratio of thread from processor i to functional unit fiu at j

Visit ratio for thread from processor i at node m x service rate atb node m
Service demand p for thread of class ¢ ab functional unit fu of node j
Number of nodes in the system

Maximum thread population, r,, at cach processor in the systemn (for AMVA)
Processor 1 having n; — 1 threads while the rest have n, threads

Queue length at node m, due to threads from processor

Message arrival rate at the processor i

Waiting time (including service time) for thread {rom processor i at node m
Waiting time for thread from processor ¢ functional unit fu at node j
Number of hops traveled by a message from its source node

Normalization constant for geomcetric distribution

Average distance (in hops) for a message on the network

Average distance (in hops) for a message in a dimension

Bandwidth of the network

Data distribution on P processing nodes

Execution time with n, threads on P processing nodes

. TP,m

Table B.1: Model Parameters




Appendix C

Throughput of Pipelined Networks

The abjective of this section is to determine the performance of a pipelined 2-dimensional

mesh network under saturation.

We consider the following problems for &-ary n-cube networks, with an emphasis on

2-dimensional meshes:

Problem C.0.1 For a 2-dimensional open network, under an access patlern, what is the

{(analytical) value of the mazimum throughput?

Problem C.0.2 For a network topology (say, ¢ 2-dimensional mesh), what is the mazimum

throughput of un open network under any (source-destination} access pattern?

Problem C.0.3 For chove 2-dimensional nelwork embedded in the multithreaded multi-
processor system, under the saume access pullern as in Problem C.0.1, what is the (anc-

Iytical) value of the mazimumn throughput? Do the values in Problems C.0.1 and C.0.3
match?

The throughputs are derived for pipelined k-ary, n-cube networks. & is the number
of processing nodes in cach of the n dimensions of the network. Here the term pipelined
network refers to a worm-hole routed network, which allows a switch to begin forwarding

of a message as soon as the message header arrives {(in absence of contentions) [30, 3]. The
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g

remote access pattern is assumed to be the same for each processor. A channel or link
represents a connection between two adjacent switches on the network. For example, a
switch node in a 2-dimensional mesh network has 4 channels. The terminology used here

is consistent with the one used by Agarwal [3]:
1 is the number of dimensions of the k-ary, n-cube network,

mn is the probability of a network request from a processing node.

p is the probability of a unit-sized message arriving at the channel. p is also same as the
channel utilization.

Usy is the utilization of the switch node. Uy, is an average utilization of the channels
connected to the switch.

ky is the average distance in cach dimension. Thus, k4= %, if & is even and channel is

bidirectional.

tauy 18 the average distance travelled by a message on the network. Thus, dyy, = n kg,

and dgy, = 2 kg, when n =2,
B is the size of a messages in flits, i.e. the time it takes to get service at a switch,

S is the delay for a message at a switch on a store-and-forward network, which is not

pipelined. The value of § in a store-and-forward network is the same as B in a
pipelined network.

Anet 18 the number of remote messages sent by the processor in each cycle. Given an aceess

pattern, Anet,saturation i the maximum value of Ane.

Now, let us consider the first problem.

Problem C.0.1: For a 2-dimensional open nelwork, under an access putlern, whal is the

analytical velue of the mazimum throughput? !

Let us consider a switch node with links in n dimensions. The switch receives m network

messages per cycle from the processing node attached to it. A message travels a distance of

INote that this is the saturation value of “actual/achieved traffic” when “offered traffic® ix increased
indefinitely.
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vy (= 1 ky) hops. In other words, m n kg messages from n kg nodes are at a switch node,
in each cycle. Dividing this traffic at a switch among the 2n-channels we get the channel

itilization:
p o= &;5;;‘-'4 =m ky/2 (C.1)

In Equation C.1, the numerator mn n &y is the total number of messages arriving/leaving
a switch node, and the denominator is the number of links used for transferring these
inessages. When we assume that all links carry equal load, dayy and k4 are the only
parameters affected by a particular access pattern. For a 2-dimensional network, there
are 4 links connected to cach switch. The utilization at a switch, Uy, is an average of

utilization of these links.
Uw =2np =mnky (C.2)
=1 dyy, (C.3)

A switch saturates when Ugy, equals “1”. We obtain the throughput for a switch using
Equation C.3.

m = ?lung for separate channels in each direction. (C.4)
= 2—-315 for bidirectional channels at a switch. (C.5)

Thus, the maximum throughput is a reciprocal of the number of switch nodes a message
travels.

When the size of cach message is B flits, the service time for this message at a switch
requires B cycles. In other words, the effect of increasing the packet size to B flits can
be approximated by increasing the delay through the switch by a factor B to reflect the
increase in the service time of each packet [3, 53]. Reflecting the increased packet size in
the Equation C.1, we get:

Bnk mBd
p =mBnk =_.__2;ﬂ (C.6)

Equation C.6 can be interpreted as follows. A channel receives I messages per cycle
through a switch (from the processing node attached to it). Every message keeps each of
dayg channels busy for B cycles each. ‘That is, each of m messages from dp,y processing

nodes keeps a channel busy for B cycles.
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For a 2-dimensional mesh, the switch utilization Uy, for messages of size B flits is given
by:

Uw =2n p =m B dyyg for separate channels in each direction, (C.7)
Ugw = MEM-L for bidircctional channels. (C.8)

Equations C.7 and C.8 show that a message occupies a switch and associated chanuel for B
cycles. Messages [rom dgy, processing nodes arrive at a switch, In a cyele, i me sages are
tent to the network by a processing node, The maximum throughput, e, is the reciproceal

of the duration for which these messages occupy the switch, That is,

l

mo=gys for separate channels in cach direction. (C.9)
_ | . g o . . .
m =g for bidirectional channels. (C.10)

Now, we compute the maximum throughput of an open network.

Problem C.0.2: For a network topology (say, o £-dimensional mesh), what is the mazi-

mum throughput of an open network under any (source-destinalion) access patiern?

For a 2-dimensional mesh network (and A-aryn-cube, in general), au ideal mapping
requires only a single network hop. Also, the messages are sent to all neighbors at a
distance of one network hop, i.c., an average distance in each dimension, kg, is 1. Using
Equations C.4 and C.9, we get

m =1 for unit-sized messages (C.11)

= -,1; for B-flit messages (C.12)

Now let us compute above throughputs when the network is embedded in a muVi-

processor system, which is executing a parallel program workload.

Problem C.0.3: For above 2-dimensional network embedded in the mullithreaded mulli-

processor system, under the access pattern in Problem C.0.1, what is the enalytical value of

the mazimum throughput?

The interaction between the network and the rest of the system occurs through the
interface between the switch and the processing node. The numnber of messages per cycle,
sent by a processing node to the attached switch node, is rn. Without a loss of generality, we
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assume that for cach message sent by a processor, the memory at a remote node responds

with one message. Thus, a processor sends % messages per cycle, and the memory sends

the rest of % messages per cycle. Since Ay is the message rate from the processor to the
m

network, Ane equals %. Also, the message size B is same as the switch delay S. From
Equations C.9 and C.10, we obtain the saturation value of A,

m 1 ] T . . s .
Anet.saturation = 5 = Ty B Ty S for separate channels in each directid.13)
m 1 1 e .
Anet,saturation = 5 S % B = ThnS for bidirectional channels. (C.14)

Equation C.13 is same as the network capacity(Section 5.6). Thus, the maximum
throughput of a network in a multiprocessor system is the same irrespective of whether
the network is pipelined.



Appendix D

McGill EARTH-MANNA System

The EARTH (an Efficient Architecture for Running Threads) architecture proposes an
efficient execution of the synchronization operations and the computations using different
functional units {46). Currently, the EARTH programming model is implemented on the
MANNA multiprocessor, developed at GMD FIRST, Germany. The structure of a MANNA
node is close to the EARTH node architecture, thus helping an efficient emulaticn of the
EARTH architecture through the EARTH-MANNA run-time system and the MANNA
hardware. The EARTH Threaded-C compiler offers direct support for EARTH operations,

expanding them inline in order to reduce their overhead to a minitum.

EARTH Architecture: An EARTH multiprocessor system consists of multiple EARTH
nodes and an interconnection network. Each EARTH node consists of an Execution Unit
(EU) and a Synchronization Unit (SU), linked by a pan of buffers (see Figure 7.2). The
SU and EU share a local memory, which is part of a distributed shared memory.

The processing functions at an EARTH node are distributed onto two units: the EU
executes the application program code, and the SU performs the synchronization and com-
munication operations. The EU processes instructions in an aclive thread, where an active
thread is initiated for exccution when the EU [etches its thread id from the ready queue.
The EU executes a thread to completion before moving to another thread. It interacts with
the SU and the network by placing messages in the event queue. The SU fetches these
messages from the event queue, in addition to the messages coming from remote processors

through the network. The SU responds to remote synchronization commands and requests
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for data, and also determines which threads are to be run and adds their thread ids to the

ready queue.

MANNA System: The MANNA (Massively parallel Architecture for Non-numerical

and Numerical Applications) multiprocessor system consists of multiple high performance

MANNA nodes connected to the leaves of a high bandwidth interconnection network. Each
MANNA node consists of two Intel i860 XP RISC processors clocked at 50 MHz, 32 MB
of dynamic RAM and a bidirectional network interface (see Figure 7.2). The link interface
is capable of transferring 50 MB/S in each direction simultancously, for a total bandwidth
of 100 MB/S per node. The network is based on 16 x 16 crossbar chips which support the
full 50 MB/S link speed. Smallest machine configuration is a two-node MANNA-PC with
the links directly connected, All higher configurations use crossbar chips (see Figure 7.1).

Configurations up to 40-node machine with 4 crossbar chips are in use.

EARTH-MANNA Run-time System: The EARTH node architecture is mapped onto
a MANNA node as follows. The EU tasks are performed by one of the processors. The

SU tasks are performed by other processor. The ready queue and the event queue which
interface the EU and the SU, are implemented in the local memory. The link interface chips
maintain the buffers for the network interface. The capacity of network interface buffers is

augmented through the overflow queues maintained in local memory.

EARTH Threaded-C Language: The EARTH program model is implemented as an

extension to the C language. These multithreading extensions are the support for, a dec-

laration ¢f threaded functions, the specification of threads within these functions, and
the speci§eation of EARTH operations. This explicitly parallel language, called EARTH
Threaded-C, allows a programmer to directly specify the partitioning into threads, and the

EARTH operations (s)he wants to use. Appendix E provides the details.



Appendix E
Threaded-C Language Extensions

Following is a synopsis of some of the multithreading macros used in this report:

void INVOKE (int procnum, proc *fun, params...);

This macro starts a [uncuon on at arbitrary processor. The calling thread is nol
suspended. The parameters to INVOKE are a processor mumber, the function name,

and its paramaters.

void CALL (proc *fun, params...);

This macro executes a threaded function directly, without going through the invoke
mechanism. The calling thread is suspeuded until the funetion returns. The paran-

eters to CALL() are the function name and its parameters.

void END_FUNCTION ();

This must be the last statement of a threaded function. It must bhe used oven if the

function contains only a sugle thread.

void RETURN ();

This statement must be used at the end of a function instead of END_FUNCTION ir
the function is to be called with the CALL() macro.

THREAD nn:
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(nnn is an integer constant.) Labels with this format indicate the start of a new
thread.

void END_THREAD ();

This macro signals the end of a thread. This macro will normally be followed by a
thread label.

SLOTS SYNC_SLOTS [nnnl;

This macro reserves space for nnn synchronization slots, This must be the first

variable declaration of a function (if sync slots are used).

void INIT.SYNC (int slotno, int cnt, int rst, int th.no);

This macro initializes a synchronization slot. A thread label with the corresponding
name must exist for cach number used in INIT_ SYNC,

Following macros provide synchronization and data-transfer operations across threads,
and 3f required, nodes:

void RSPAWN (char »fp, char *ip);

This macro spawns the specified thread. This macro allows the specification of threads
that are not local to the current function.

void RSYNC (SLOT #slot.addr);

This macro signals the specified sync slot, possibly starting a thread.

void GET_RSYNCD (double *src, double *dest, SLOT *slot.adr);

This macro implements remote loads and start the specified thread after completion of
synchronization requirements through slot_adr. Similar macros exist for character,
integer, and foating point data. GET_SYNC_x does the same operation but with the
slot specified by its number,

void DATASYNCD (double val, double *dest, int slot.no);

This macro implements remote stores to the destination address, and the update of

the specified synchronization tlot at completion. DATA_RSYNC x, but with the slot
specified by its address.
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void BLKMOV.RSYNC (char *src, char *dest, long bsize, SLOT *slot.adr);

This macro implements block transfers. The source and destination addresses can be
located on an arbitrary node. There are no alignment restrictions, but the operation is
performed more efficiently if the data is aligned on quad-word (16 bytes) boundaries.

The size of the block to transfer is specified in bytes (as in sizeof()).



Appendix F

The MVA Pseudo Code

1001: Main Steps
1002: { while (all sets of inputs are analyzed) do
1003: { Get the next sct of inputs;

1004: Initialize the input parameters;

1006: Compute Memory.Visit-Ratios for cach class in the Closed Queueing Network;
1006: Compute Switch_Visit_Ratios for each class at cach node in the CQN;
1007: Compute Service_Demands at each node;

1008: if {simultaneous resource fossession)

1009: { Invoke AMVA_SRP for the EARTH related heuristics; )

1010: else '

1011: { Invoke AMVA for product_forin CQNs;}

1012: Compute Performance-Measures;

1013: } "

1014: }

044
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‘i

101: Memory_Visit_ Rativus

102: { for all classes: class = 1to P

103:
104;
105:
106:
107:
108:
109:
110:
111:
112
113:
114:
199:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211
212:
213:
214:
215:
216:

for all processing clements: node = 1 to P
if (local ntode for a class)
{ visit_ratio[class|[processor(node)] = 1.0;
visit_ratiofclass|[remory(node)] = 1.0 — premote; }
else (the node is remote)
{ visit_ratio|class][processor(node)] = 0.0 /* no access to processor */
switch (memory_distribution)
{ case uniform:
visit.ratio[class][remory(node)] = LIiole,
case geometric:

P N . (paremotesgeometricodist(p_sw.closs, e}y |
visit_ratiolcluss|[memory(node)] = ramelr icoraal i}

Switch_Visit_Ratios

Sort the nodes according to their distance from node (0,0).
Place their “id"s in the 2-dimensional array “sorted_pes[distance]{ids]”.
/* Compaute visit ratio for class “1" as follows */
for h = d;,4r downto 0
{ for each processor_id k at distance L in sorted_pes[h][ids]
{k = (z,9) in two-dimensional mesh
{ for each neighbor of k in {{-1,0}, (1,0), (0,-1) and (0,1)} dircctions
if (neighbor is more distant than k)
{visit_atio|l][inbound(k)] + =
visit_ratiol)[inbound(neighbor )] + visil_ratio(l]|outbound(neighbor});}
}
}
}

Repeat similar computation for other classes;

if (the access pattern is same), obtain new visit ratios using proper offscts;
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301: Service_Demands
302: { for all classes: i =1to P

303: { for all processing clements: j =1 to P

304: { pli)[processor(j)| = visit_ratioli][processor(j)] x (R + C);
305: plE][mermory(j)] = visit_ratioli]|[rnemory(j)] * L;

306: plilfinbound(;)) = visit_ratio[i][inbound(j)] * S;

307: pliloutbound(j)] = visit_ratiofi][outbound(j)] » S;

308; }

309: }

310: }

401: AMVA

402: { do {

403:  for all classes: class = 1 to P, initialize total_wait_timne=0;

404:  { for each queuecing node at all processing elements: 1 to P;

405: { for each class: r = 1 to P, initialize sum = 0;

406: { sum = 1+ ¥ L girlinode][old); if (r == class)

407: + = gir][node][old]; for remaining classes r

408: = 1.0; for delay centers

409: } qlclass][node][new] = sum,; total queue length at a node
410: } waiting_time|class][node] = plclass][node] * g[class][node][new);

411: total_wait_time[class]+ = waiting_time[class][node);

412: '} arrival_rate(class) = Ma,_w'::i[f_l;f;]e[dm];

413:

414: Compute maximum.differences between the waiting time and arrival rate
415 from current iteration with their vaives from the previous iteration;

416:  Assign q[class]{node]{old] = waiting_time[class][node] * arrival rate[class);

417:  } while ( maximum.differences > tolerance_level)
499; }
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551: Performance_Measures

502: { Compute A,qfclass| using arrival rate[class] and premute; /* Equation 5.10 */
503: Compute processor._utilization using

504: arrival_rate[class], runlength and context_switch_time; /* Equation 5,11 */ .
505: Compute network_latency using

506: waiting times at the switch nodes for cach class; /* Equation 5.9 */

599: }

60l: AMVA_SRP

602: { do {

G603:  Identify secondary nodes required for the simultancous possession, ¢.g. the node bus;
604:  Identify the set of primary nodes associated with each of the secondary nodes,

605: e.g. {the memory, link_in and link_out} at a node associated with the node bus;
606:  for all classes: class = 1 to P, initialize sum2 = 0, total_awail titne = 0;

607: { for each queucing node at all processing clements: 1 to P

608: { for cach class: r = 1 to P, initialize sum = 0;

609: {sum 4= 1+255 Y glr)[node][old); if (r == class)

610: + = q[r][node][otd];%; for remaining classes r

611: = 1.0 for delay centers A

612: } qlclass][node][new) = sum; total queuc length at a node

613: } waiting.time(class](node} = p[class]node] * g{cluss][node]{new);

614:

615: if (node is a primary node) { Do not modily total_wait_time.}

616: if {node is a secondary node)

617: { sum?2 = ((queueing delays at the secondary node and associated primary nodes)
618: *(total number of accesses through the secondary node))

619: + (p[class][node] at the secondary node and associated primacy nodes);
620: total_wait_time[class]+ = sum2; }

621: if (node is neither primary nor secondary}

622: { total wait timeclass)+ = waiting time[class][node]; }

1ie|clasa)

623:  } arrival.rateclass]) = gy —time[clasa] !
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624: Compute maximum_differences between the waiting time and arrival rate

625: from current iteration with their values from the previous iteration;

626:  Assign glelass][node](old] = waiting_time[class][node] * arrival_raiefclass);
627:  } while ( maximum.differences > tolerance_level)

699: }






