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• 
Abstr~-lct 

I~~ .. t,lI," ~/'tere hu 'belin a dramatic increase in the use of scale invariance in the 

study of g\.üph);,,; Yt! fields. However, very linle attention bas been paid to the anisotropy 

that 15 inva:1ably i-'{e~ent in tbese fidds, in the fonn of stratification, differential rotation, 

terttd'e Md m();i1'hù~\~ 0'. In ardeT to liccount for scaling anisotropy, the fonnalism of 

Generalil.ed, S"a1e Y() .. ~riance (Gsr" was developed. Until now, only a single analysis 

techft..iquc ha.~ \'~ 't. -1 ;~I ,'tt --œd which incorporates mis fonnalism and which can he used 

to st!ldy t)o ';., " ir' ""',,.. ,.,>0 of fields. 

·JS.·1'~' :~ (.~,' j~:7'i; ',"t'llaI repl'esentation of the linear approximation to GSI, a 

new, greaè~ t,. ~'~";:"~ ~ hnique for quantifying anisotropic scale invariance in 

geophysical fi:.:ias i~' .,;. ~ l'J. perl: the Sc ale Invéiriant Generator technique (SIG). 

The ability of the techni,!ue to yield 'Valid estimates is tested by perfonning the 

analysis on multifractal (scale invariant) simulations. It was found that SIG yields 

reasonable estimates for fields with a diversity of anisotropie and statistical 

characteristics. The analysis is also performed on three satellite cloud radiances and three 

sea ice SAR reflectivities to test thl: applicability of the technique. SIG also produced 

reasonable estimates in these cases. 

ü 
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Résumé 

Récemment, la fréquence d'utilisation de l'invariance d'échelle. dans l'étude des 

champs géophysiques. a crû dramatiquement Cependant, l'anisotropie, qui est toujours 

présente dans ces champs sous forme de stratification, rotation différentielle, texture et 

morphologie, a reçu très peu d'attention. Pour pouvoir tenir compte de l'anisotropie de 

l'invariance d'échelle, le formalisme de l'invariance d'échelle généralisée (OSI) a été 

d~veloppé. A présent, il n'y a qu'une seule technique d'analyse développée qui incorpore 

ce formalisme. 

En utilisant une représentation l deux dimensions de l'approximation linéaire du 

GSI, une nouvelle technique, très améliorée, est développée: la technique du générateur à 
échelle invariante (SIG). Cette tec:hnique sert à quantifier l'invariance d'échelle 

anisotropique des champs géophysiques. 

L'habilité, avec laquelle cette technique pemlet d'obtenir des eSÛnlatiollls valides 

des paramètres du GSI, est évaluée en analysant des simulations multifractales (d'échelle 

invariante). Des estimations raisonnables, pour plusieurs champs de caract~;ristiques 

anisotropiques et statistiques différentes, ont été trouvées en utilisant SIG. Le 

rayonnement (capté par satellite) de tr()is nuages et trois réflectivités SAR, de la glace de 

la mer, sont également analysés afm d'6valuer l'applicabilité de cette technique. Dans ces 

cas aussi, SIG a produit des estimations raisonnables" 

üi 
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Statement of Originality 

The Scale Invariant Generator technique is a new Generalized Scale Invariance 

(OSI) analysis technique that was developed for this thesis. This is the f1l'st time a OSJ 

analysis technique has been tested using multifractal simulations. The method of 

enhancing the spectral energy density (section 3.3.3) and the equations that state the 

conditions under which a linear OSI system (using a second order and fourth order 

bivariate polynomial to model the OSI balls) is valid (section 2.4) are published here for 

the ïU'St tÏtne . 
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Chap'ter 1 

INTRODUCTION 

1.1 Scale Invariance as a Symmetry Principle 

When the exact solutions of the dynamical equations of a system are not tnown 

(as is typically the case when the equations are nonlinear), or even when the equations 

themselves are not known, much can be leamed of the dynamics by studying the 

symmetries of the system. Important types of symmetries have long included 

translational and rotation al symmetries, but increasingly, the importance of $Cale 

invariance is being ~ognized. Scale invariance is found wh en a system is invariant 

under a scale transformation that is oo1y a function of the ratio between the initial and 

final $Cales. This implies that the system has no characteristic $Cale (size). 

It is becoming more standard to use $Cale invariance in the study of geophysics 

(even if oo1y implicitly in the fonn of fractal geometry), although unfonunately, the full 

scope of the notion is usually underestimated since oo1y the very special self-similar or 

self-affme scale transformations are employed. A system is self-similar ü it is invariant 

under an (isotropic) magnification (or reduction) and self-aff'me when it is invariant onder 

magnification foUowed by differentiaI 'squashing' in a fixed direction. It has been argued 

elsewhere (e.g. Schertzer and Lovejoy, 1985a,b; 1987b) that the ubiquity of scale 

invariance can be explained sinee it is a fundamental propeny of the dynamics, and 

associated nonlinear partial differential equations, that describe many geophysical 

systems. Tue, for example, the basic equations of fluid dynamics, the Navier-Stokes 

equations: 

iJv +(v.V)v= Vp +vV'lv+/ 
dt p 

V·v=O (1.1.1) 

where v - velocity, p. pressure, p iii density, v == viscosity. /-body force. 

1 
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Consider the scale ttansformation: x ~ A-lX. If this transformation is made, the 

equations will describe the same dynamics when the velocity is scaled as y ~ l-Hy 

(where H li an arbitrary scaling exponent) and the other quantities of the equation are 

also rescaled according ta dimensional considerations. From the abave it can he seen that 

the dynamics do not depend on the absolutc size of the system; it is scale invariar.t. In 
real systems such as the atmosphere, neither the forcing (~.g. planetary scale solar 

heating) nor the viscosity is rescaled, hence the system will 'Joly he scaling within a finite 

(but possibly very large) range of scales. 

Like other symmetries, scale invariance can a priori he ISsumed to hold unless a 

sprcific symmetry breaking mechanism exists (e.g., a force that ects at only one scale). 

Many aeophysical fields exhibit no 5uch mechanism over a wide range of scales. For 

example, in many atmospheric motions, the scaling symmetty apparently remains 

unbroken from large scales of 10 000 km down ID the viscous dissipation scale ( - 1 mm) 1 

and from geological scales down to milliseconds. The boundary conditions (topography, 

Lavallœ, 1991) will not break the scaling, since they have also bœn shown ta he scating 

(i.e. they have scale invariant symmeuy). 

No geophysieal field is exactly isotropie. For example. in atmospheric fields. 

there will he differential stratification due to gravit y and differential rotation due to 

coriolis forces. Many other geophysical fields also exhibit highly anisotropie 

phenomena. 5uch as ridges in sca ice. faultplanes in earthquakes and mountain ranges and 

rifts in topography. It is often taken for grantcd that the anisotropie phenomena break the 

scaUng when. in fact, it is quite possible that they break only the self-similarity. sinee 

their effects (or they themselves) a.~ seen over a wide range of scales. For example, 

evidence of scaling in the presence of gravily has heen shown; the horizontal fluctuations 

of the wind velocity in the atmospherc show evidence of scaling in the vertical. and from 

dimensional analysis the (scale invariant) spectral exponent, (J (sec section 1.2). will he 

approximately IX (Endlich et al., 1969; Adelfang. 1971; Schertzer and Lovejoy. 1985a) 

whereas in the horizontal, it is closer ta the Kolmogorov fJ = ~. Also. using a data 

analysis technique called 'elliptical dimension sampling', three dimensional radar rain 

reOectivities were shown to scale anisotropically (Lovejoy et al., 1987). r1QX and Hayes 

1 H~ Ille symmeay will be brœen Illbe ÙUIC'Z acaIe of turbulenc::e. to. However, die invariance wjU bold 

for t» io. 

2 



(1985) and VanZandt et al. (1990) also observcd that the bathymetry of the ocean and 
wind fluctuations, respectively, were anisotropie and studied the directional dependence 
of the spectral slope. 

An anisotropic satellite cloud radiance (A VHRR channel 1) is shown in figure 1.1 

(top). While large seale bands are orientcd mostly bottom left to top right., the small seale 

structures are more left ID right i.e. there is a clear change in orientation (and perhaps 

degree of stratification) from large ta smaIl seales. The anisotropy can be seen more 

clearly in the squarcd modulus of the Fouri ... "J' transform of the field, the spectral energy 

density (bottom of figure 1.1). When the contours of the spectral energy dellsity are 

vertically elongated, the field (in real space) is horizontally stratified. The contours 
closer to the center correspond to the large scale structure of the field while the outer 

contours correspond to the small scales. Note the change in the orientation of the 
contours as expected from the inspe~on of the rea1 space image. 

Considering that there is rarely strang empirical evidence of scale breaking 

mechanisms. and few convincing theoretical reasons ID invoke them, scale invariance, in 

the absence of other information. must he assumed. However, th~ is usually no reason 
ID assume that a specific type of scale invariance will bold e.g. self-affmity. Therefore. 

only the most general seale invariance should he considered, with no a priori restrictions. 

This requires a gencralization of the defmition of scale and scale transformations. In 

several papers, Schertzer and Lovejoy (1983, 1984, 1985b, 1987a, 1991a) present a 

formalism called Gencralized Scale Invariance (OSI). GSI answers the question of what 

is the most gencral conditions under which two scales can he rela~ by a scale cbanging 

opcrator that is only a function of the ratio of scales. Thus, OSI uc:es a seale 

transformation defined as Tl = Â. -G, where Â. is the ratio between the scales and G 

(called the generator) is sorne function which is not dependent on scale. The 'balls', 

which derme the scale, CID be of clivent shape as long as a few conditions (nccessary ta 

ensme uniqueness) are met. (AU this will he discussed funh~ in the foUowing chapters). 

3 
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• Filurt 1.1: Anisotropie satellite cloud radiance, A VHItR from NOAA-9 (top) and its spectral energy 
density, tbe modulus squared in Fourier spaee (bollom). The anisotropie nature of tbe cloud ean be sun in 
tbe spectral energy density. 
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1.2 Scale Invariance in Geophysics 

The types of scale invariance of concem in many geophysical applications relate 

the statistical properties of the system as il is transformed under generalized scale 

changes. That is, the statistical moments, that describe the probability distribution of a 

process, are scaling functions (i.e. they have scale invariant symmetty). In this thesis, a 

geophysical field whose moments are scaling will he called a scaling field. Thus, we 

consider scaling fields whose structure function, S(Ax), (a second order statistical 
moment), satisfies a power-Iaw relation with cl1anges in scale: 

(1.2.1) 

where âx = x' - x, x' and x are any two vectors in the vector space over which the field 

is defmed, and ç is an arbitrary scale invariant exponent (see section 2.2). The structure 

function of equation (1.2.1) will he valid for statistically ttanslationally invariant fields 

that are scaling under a variety l\f different types of scale invariance ranging Û{\m SOale 

fractal sets (e.g. with the use of indicator functions), to monofractal functions, to 

multifractal measures. (It may also he valid without the condirion of statisticaJ 

translational invariance, but only over a small range in space, over which the ttanslational 

variation is negligible, see below). The statistical translational invariance mûes it 

convenient to study the field in Fourier space, where the modulus squared of the Fourier 

transform of the field, the spectral energy density P(k) (where k is the wave number), 

will bc the relevant scaling quantity (see section 2.2) and will also satisfy a powcr-Iaw 

relation. 

A method that is often used to study (isotropie) scale invariance involves the 

isotropie energy spectrum, E(Ie), whieh is found by integrating P(k) over annuli of 

constant le::; Ikl. H the field is isotropic and scaling, then E(Ie) -le-l, where fJ is the 

(scale invariant) spectral exponenl If the anisotropy of a scaling field is not extreDle. il 
may he 'washed-out' by the smoothing effect of the integration and thus, the scating of the 

isotropie spectrum may seem to bold. The same may he said of one-dimensional energy 

spectra (wbere the data is only known in one dimension), if many realizations are 

averaged. Thus, a power-law isotropie energy spectrum can indicate scaling without 

implying isotropy. It is stressed that this (and other) isotropie methods give no 

s 



• information of the anisotropy, whicb must he considered if the anisotropic phenomena, 

discussed in section 1.1 (e.g. differential stratification and rotation), are to he modeled. 

Anisotropy is alsa important sinec, for example, il bas been argued that il explains the 

texture and morpbology of fields (Lovejoy and Schenzer, 1985; Pflug et al., 1993). It is 

imponant to note that a break in the isotropie scaling does not necessarily indieate the 

field is not scaling in the general sense. 

The existence of scaling has been seen in many geophysical fields using the 

isotropic energy spectrum and other types of isotropie scale invariance. Below, a few 

examples of different areas where different types of scale invariance have been studied. 

are included. This is only a smaIl incomplete sample of the examples available. See 

Korvin (1993) for review and the books 'Non-Linear Variability in Geophysics' 

(Schenzer and Lovejoy, 1991) and 'Fractals in Geophysics' (Scholz and Mandelbrot, 

1989) containing papers using scale invariance with geophysical applications. 

Various empirical studies of the horizontal fluctuations in wind velocity in the 

atmosphere have shown evidence of a fJ - ~ scaling region in E(Ie) (over various ranges 

in scale). Lilly and Petersen (1983) summarized much of the data available at the time in 

a graph (figure 1.2). Included in the graph of figure 1.2 arc data from Nastrom and Gage 

(1983), Lilly and Petersen (1983), Vinnichenko (1970), Balsley and Caner (1982) and 

Chen md Wiin-Nielsen (1978). The scaling seems to approximately hold from less than 

1 km to 10000 km. Fritts et al. (1990) further supports the notion that the velocity 

fluctuations are power-Iaw. This example is of interest since it shows no evidenee of a 

'meso-scale gap'. This gap would he seen as a dip in E(Ie) in the meso-scale region. The 

absence of the gap contradicts the standard model of atmospheric dynamics (a three­

dimensional isotropie scaling regime at small scales and a two-dimensional isotropic 

scaling regime at large scales with a dimensional transition in the meso-scale region). 

However, il is consistent with the unified scaling model of atmospheric dynamics 

(Schertzer and Lovejoy, 1983, 1985a,b; Lovejoy et al, 1993a) which uses OSI to 

postulate a single anisotropie scaling regime from large to small scales. Lovejoy et al. 

(199:4a) further suppens the unified scaling model with a systematic study of the energy 

spectl"l of satellite cloud radiances. The radiances of five wavelength channels of fifteen 

consecutive scenes wcre shown to he scaling from 160 m to 4000 km. 

The spectral slope has also been used to characterize surfaces in many areas of 

geophysics. For instance, il bas been used to study topography (Brown and Scholz, 1985; 
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Sayles and Hayes, 1978), the bathymetty of the ocean (Fox and Hayes, 1985) and the 

proftles of the underside of sea ice (Rothrock and Thorndike, 1980). 

Above, the scaling of the structure function (a second arder statistical moment) 

was discussed. However, in order to obtain a more complete description of the statistical 

properties of the process (field), the scaling of aIl the moments is needcd. Because of the 

initial suceess of fractal geometty at characterizing scaling by unique fractal dimensions 

(as above), it was often thought that a single parameter was sufficient to characterize all 

the moments. That is, the scale invariant exponents of the different moments (tan he 

wrinen as a linear function of the mor~nt and thus all the infvrmation of the statistical 

properties can he found from /3. The fmt example of non-linear multiple scaling was 

given by Kolmogorov (1962) and Oboukhov (1962) who suggested that the moments of 

the energy dissipation, Ea' in fulIy developed turbulence depends on resolution, '\, in the 

following manner: 

(1.2.2) 

where K(q) is the scale invariant exponent that is a function of the moments, q. In 
general, eacb moment, q, will have a different scale invariant exponent. Multi-scaling 

fields are of particular interest, sinr.e the analysis technique developed in this thesis will 
be tested on multifractal simulations. A further discussion (although brief) is therefore 

merited. 

An equivalent de~'7iption of multi-scaling fields (to that given direcdy above) 

states that the probability tbat Ea' at resolution .\, will exceed '\' is: 

(1.2.3) 

wbere c is the co-dimension whicb is some function of r - the arder of singularity 

(Schertzer and Lovejoy. 1987b). Therefore, in general, there will he a unique value of c 

for eacb y and thus an infinite bierarchy of fractal dimensions corresponding to 

y = [-,001 where r E ~. Scaling fields with this property are multifractals and they are 

cbaracterized by their extreme variability (Schertzer and Lovejoy, 1987b). 
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• In general, c(y) is of an undetermined form and therefore requires an infinite 

numbcr of parameters for its detennination. However, ü a multifractal process exhibits a 

sufficient number of non-linear interactions over a range of scales, much of the detail of 

the process may he 'washed out' with the consequence that the statistics of its multifractal 

generator will he described by (special) Uvy distributions (Schenzer and Lovejoy, 

1987b, 1989b, 1991a; Schenzer et al., 1991b; Brax and Peshanski, 1991). These 

multifractals are 'universal'. Only three parameters are necessary for a full 

characterization of the probability distribution of a universal multifractal: a, Cl' and H. 

a (0 SaS 2) is a measure of the degree of multifractality (a = 0: monofractal, a = 2: 
log normal multifractal), Cl is a measure of the sparseness of the mean of the field and H 

is a measure of the degree of non-conservation of the field (sec Schertzer and Lovejoy, 

1991a). Many geophysical (and other) fields have recently been shown to he weil 

represented by universal multifractals. Included is a table (Table 1.1) of sorne of these 

results. 

Table 1.1 : Multiftactal parameters de&ermincd for 1 variety of fields with the corresponding l'Mges of 1CIIe. 
The aa:urac)' of most pnme&ers is - 10.1 (adapled!rom Pccknold et al., 1993). 
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1.3 Generalized Scale Invariant Analysis Techniques 

AlI the above evidence supports the use of scale invariance in the analysis of 
leophysical fields and the ncccssity of introducing more general notions of scale and 
scale transformations. Oeneralized Scale Invariance (OSI) encompasses these gencral 
notions. However, in arder for OSI to he uscful, it requircs the knowlcdge of its basic 
clements: the scale changing operator and the scale defming balls. lr1 the isotropic case, 
these are known(the generator, G, is the identity and the balls are conccntric sphercs), but 
for OSI, special analysis techniques must he developed. However, the gencrality of OSI 
causes problems in analysis. If OSI in its most general fonn werc L~sumed. the generator, 
G, would be described by an inf'mitc number of parameters (i.e. G would he a stochastic, 
nonlinear function, Schcrtzcr and Lovejoy, 1991a). Since the usefulness of OSI lies in 
the ability ta estimate the gener&tor, it is necessary to work with an approximation. In 

this thesis, lincar OSI will he studicd. 

Uncar OSI approximates T 1 as a linear transformation. In this case, G is a matrix 

(thus is described by D2 parametcr5 whcrc Dis the dimension of space) and a functional 

fonn of T 1 can he found. Linear OSI is still general enough to model a diversity of 
situatiOJ1r (sec figures of Chapter 2 and 4). Self-similarity is the special case when G is 
the identity matrix and self-affmity is when Gis diagonal with uncqual clements. Even 
though in lincar aSI, G is independent of position, it will still he a valid approximation ta 

any scaling field if only a small enough range is considercd. Pflug et al. (1993) showc:d 
that linear OSI holds approximately in clouds by studying the spectral energy density of 
satellite cloud radiances and showed the potential of using the values of the OSI generator 
for structural and texturai analysis. In leneral, it will he necessary ta study non-linear 
OSI and/or ta analyze the field in real space (as opposed ta the spcctJ'al energy density). 
Nevenheless, in principle, information about the full non-linear aSI can still he 
detennincd by considering a series of linear approximations. 

Therc arc a number of possible ways to estimate G. The goal is ta find a method 
that is accurate while heing computationally tenable. In PDul et al. 1991a,b and 1993 (sec 

also Lovejoy et al., 1992), a cumbersome, but workable, technique called the Monte 

Carlo Differential Rotation (MCDR) mcthod was developed and uscd to estimate the 

linear OSI parameters of satellite cloud radiances. The MCDR involves, at lcast, an 
eight-dimensional parameter space that is reduced to pr8Ctical proponions byestimating 
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(with unknown accuracy) many of the parameters before the obligatory search of the 

parameter space. In this thesis, the emphasis is on the development of an alternative 

technique, which separates the estimation of the generator parameters and the estimation 

of the parameters of the scale defming balls needed in the scale invariant system. Thus, 

the technique is called the 'Scale Invariant Generator' technique (SIG) because il can 

quantify the scale invariant generator, G, by searching a three-dimensional parameter 

space, without any knowledge of the ball parameters. 

The technique is tested on multifractal (scale inv3liant) simulations (see Wilson et 

al., 1991 and Pecknold et al., 1993) that are constructed with known scale invariant 

generators. Multifractal fields were chosen as the test fields because we feel that they are 

the most relevant in geophysics and al~o, due 10 the extreme variahility of multifractals, 

they will he more difficult 10 analyze than other scale invariant fields (e.g. monofractals, 

such as 'fractional Brownian motion'). The Sc ale Invariant Generator technique is not 

restricted 10 multifractals and can he used, without modification. 10 analyze the spectral 

energy density of any (scating) field (or, using indicator functions, anisotropic fractal 

sets), regardless of the type of scaling expected. 

The technique also includes a method of anisotropically 'enhancing' the image in 

Fourier space while maintaining the scaling properties of the field. This method may 

have applications in image processing and data compression. 

1.4 The Purpose and Structure of Thesis 

The purpose of this thesis is 10 develop the Scale Invariant Generator technique 

(SIG), an analysis technique that fmds the linear Generalized Scale Invariance panuneters 

that best describe a scaling field. The emphasis is on œsting the accuracy of the 

technique by applying the analysis ta a variety of simulated fields with full Y known 

properties. Details of the technique are investigated 50 that the technique can he made 

numerically efficient The purpose, however, is not to theoretically prave the optimum 

efficiency, but to simply obtain a reasonably efficient technique that produces valid 

estimates mainly in parameter range~ relevant to common geophysical fields such as 

clouds, topography. sea ice. etc. Six actual geophysical fields (satellite radiances of 

clouds and sea ice) are analyzed for the purpose of testing the applicability of the 
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technique. Many more images must be analyzed if conclusions are to be made 

conceming the full extent of the hypothesis of linear OSI in geophysics. 

The thesis is structured as follows. Chapter 2 contains a discussion of 

Generalized Scale Invariance in a general sense and also in application 10 geophysics via 

the sttucture fonction. Also, in section 2.4, there is a discussion of the restrictions on a 

scale invariant system. In Chapter 3, analysis techniques for Generalized Scale 

Invarianœ are discussed. The (previously published) Monte Carlo Differentiai Rotation 

method is briefly presented, while the (new) Scale Invariant Generator technique is 

discussed in great detail. Chapter 4 contains results of SIG on a variety of multifracta1 

simulations and Chapter 5 contains results of the analysis on actual geophysical fields. 

The conclusions are stated in Chapter 6. 
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Chapter 2 

GENERALIZED SCALE INVARIANCE 

2.1 Tbe Elements of a Generalized Scale Invariant System 

Generalized Scale Invariance (GSn is a fonnalism which states the most general 

conditions under which large and small scales can be related without introducing a 

characteristic size. That is, the different scales are related by a scale changing operator 

that is only a function of the ratio of scales. This generalization is measure based. The 

notion of scale of a vector may be defmed without introducing a metric; only a notion of 

integration over sets is necessary. 

A scale invariant system requires the definitions of the following three elements: 

(1) a scale changing operator, T l' (2) a family of balls, B1' and (3) a measure of sc ale , 

tp, (Schertzer and Lovejoy, 1985b, 1988). In order to see the nature of a generalized 

scale invariant syste~ it is instructive to investigate these elements in more detail. 

The scale changing operator, T", is the reduction operator. It is the rule which 

relates vectors of different scales by only their ratio of scaJes, A, therefore, il does not 

impose any characteristic size to the system. This implies lhat T 1 must satisfy the 

properties: 

(2.1.1) 

(2.1.2) 
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whcre T,.. arc the scale transformations corresponding to a scale change of Aj = [1,00]. 

The identity is the operator for whicb 1 = 1. 

Ftpre 2.1: Group propenics of the scaIe changing operaIOr. B are baUs of Ihe lC8Ie invarianl system. 

These properties imply that the set of scale changing operators forms an infmite 

one parameter Abelian multiplicative scmi-group. Therefore, Tl cao he wriuen as: 

Tl = 1-0 (2.1.3) 

where G is the generator of the group and Â. is the scale ratio hetwccn any two scales 
(Schenzcr and Lovejoy, 1985b). The only restriction on G, (besides minor ones 10 ensore 
a vaUd OSI system, sec section 2.4), is that it not he a function of scale. G could possibly 
he a stochastic non-linear function of time and space (Schertz.er and Lovejoy, 19891, 
1991 a). Note that 1 priori it necel not he requircd that an inverse, (T,f' , exists (i.e. T, 

fonn a semi-group). For example, the scale invariant cascades, that produce multifractal 
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fields. typically go mm large to smal1 scales (i.e. an inverse need not he defined). 

However, in many cases (such as in linear OSI. see section 2.3), an inverse will exist and 

(TA fi =TA-1 • These are the transformations corresponding to the scale changes 

Â = ]0,1]. 

A baU, B1' of a OSI system is the set of all vectoTS of a given scale (labeled by 

Â). Altcrnatively, it cao he said that aIl the position vectors associated with • baU are of 

the same scale. A family of balls (Schertzer and Lovejoy. 1985b) is a set of ordered bans 

(one for every scale) which covers the relevant vector space by uniquely assigning aU the 

vectors to a scale. AU pairs of balls, BA3 and B1. (that are members of a family of balls), 

must satisfy the property BAa = T1BA.' where A = ~1 i.e. operating T1 on ail the 

vectors associated with Bl. must fonn another ball, BAa' It can he said that the balls 

order the vectors by increasing A. However. the balls, and thus the corresponding 

vectors, are only related by their scale ratio, which, as yet, cannot he interpreted as a 

relative size. It should he noted that the necessity of assocciating a notion of sile with the 

balls (and thus the vectars) implies that the balls must he measurable i.e. when a weighl is 

assigned 10 them (mosl easily using a normal Lebesque measure), they will become 

measures. 

It is possible ta generate the whole family of balls from any one member by 

operating TA on that ball for a1l possible values of the scale ratio. One bail wiU he 

generatcd for every value of the scale ratio. Therefore, once one ball is known, all others 

can he found if Tl is known. Il is convenient to choose one ball to which all the other 

balls will be compared. This baU will he called the unit baU, BI (Schenzer and Lovejoy, 

1985b, 1988). The family of balls will then be Bl = TA ~. It should he stRsscd thal the 

unit bail has no unique characteristics and that any BA may he chosen as the unit ball. 

For example, if Il; E Bl such that Il; = T J, ~, where AI is the scale ratio between ~ and 

s.. then s: can atso tic defined as the unit ball since Bl , = T",S; also dermes the family 

of baI1s, where A' = ~I ' i.e. 

BA' = Tl,S; = Tl,TA.S. =T"S. =B" 

where T"T At = Tl sinee A'Â. = A as required by (2.1.1). 
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To complete the scale invariant system, wc must derme bow to associate a size 

with A. The dcfmition of scaIe, " must he such that il can assign a unique positive real 
number. that monotonically increases fi'Om low to high scales. to every ball, B. Any 

consistent definition is cqually valld; the exact definition used is a matter of conveniencc 

or convention. The definition need not he restticted ta being mettic based, but may 

JCqUÏJ'e only thal an integral be defmed over the balls i.e. measure based defmitions will 
be allowed. 

Thus we may use the volume bounded by a ball raiscd ta sorne power 10 defme 

our measure of scale. ,. Il is worthwhile to note that any positive power of the volume 

would he a consistent dermition. The exact power that will be usee! is discusscd below. 

The volume of a ball. B, in D dimensions l • .z,D(B). scales as A-DI!. where 

Del = Trace(G) is the elliptical dimension (Schenzer and Lovejoy, 1984). That is. 

and tp., is defmed such that: 

Therefore. Ü B1 = Ta. B., 

",_, Dol (B1 ) = «I»D(B1 ) = A-D ... D (BI) 

9'.,(B,,) = ~"~(B.\) = A-lcz,"_(~) 

Thus the scale ratio can he def'med: 
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i.e. the defmition of scale is: 

" = .,(B) = tp.,(B) = ~""(B) (2.1.8) 

(the volume of the bail ta the power of Yvel) 'lar a magnifieation in scale. 

Above, it was stated that any power of the volume may he chosen as a definition 

of scale. This can he shown in an example. If a GSI system has Tl as its scaling 

operator, with G as its corresponding generator and tp as its definition of scale, then 

tp' = 'l" and G' = % form an equally goad GSI system. If Tl' = c;l 'ro', 

where 

, 
Tl = (1')-0' 

G ' then, ü G'= -, Tl = Tl' 
P 

This implies that the primed and unprimed systems are equivalent and thus the primed 

system is valid Note tbat this also iInplies a different D., ::::) Dr,. It can he seen that, 

(~ven our deÏmition of scale (equation 2.1.8), the choice of the power of the volume 

Q~termines D." or conversly, the choice of D., determines the def'mition of scale. As 

stated earlier, this choice is a matter of convenienee or convention. 

D", the elliptieal dimension can be described as the effective dimension of the 

space, (for given a def'mtion of scale, sir_ce D., depends on this ehoice). For example, 

using horizontal distance as scale, a three-dimensional field, that is inf'mitely stratified, 

bas Del = 2. If it is completely non-stratifi~ il bas Del = 3. It is possible that the 

stratification due ta gravity will cause the atmosphere to have some intermediate value 

(sec inttoduetion). Lovejoyand Schertzer (1987) found empirically that D., = 2.22 in 

rain and cloud radar reflectivities. 

Figure 2.2 shows examples of different OSI systeJDS. The special isotropie case is 

when the generator is the identity (G-I) a"d the (mettic based) definition of ., is the 

modulus (conventionallength) of the vectors tha~ fonn the baIIs, which are eircles (in the 
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two-dimcllsional case shown). Note that the measure based def"tnition of , is equivalent. 

The square root of the area can he a consistent definition &nd il is proponional to the 

modU;us of the vectors that form the baIl. 

Fipre 2.2: Eumples of balIs: Noo-linear OSI (top,lcft and right) from Sclatzel' and Lovejoy, 1985b. 
lsoIropic case (boaom left). Linear OSI (boUom right). 

Befme continuing, a clarification may he required. If alI the vectors associated 

with the bail Bli are operated on by Tl' the vectors ](2 will form another bail, BJ.a' The 

scale of B,-. AI' and the scale of Bla will he relat~ by A2 = A-l11• For a valid OSI 

18 



• system, this will hold for any pair of members of the family of balls such that all vectors 

are uniquely related to a scale. 

An alternative way of looJdng at the problem is to invoke the idea of a 'njectory'. 

If a vector is related to another by Ta (e.g. X2 = Tax,). then it is said that they lie on the 
same trajectory. More completely. a trajectory can he generated by (repeatedly) 

operating T Jo' with generator G, on a vector while varying Â. over all possible values. 

One vector for every À will he generated. These vectors will trace out a continuous curve 

which is called a trajectory. Note that the same trajectory will he generated if any vector 

in the trajcctory is chosen as the initial vector, when the same steps are followed. This is 

a consequence of the group properties of the T Jo' Each vector of the field is a member of 

one and oruy one trajectory and a given G will generate a whole series of trajectories as in 

figure 2.3. Also, there is a unique set of trajectories for every G. 

It can he said that the ttajectory can he generated from a vector by TA with the 

parameter Â.. This means a trajectory can he created with only knowledge of G and 

independently of the family of baIls. That is, as yet, the vectors have not been associated 

to a bail. If a scale is imposed at some point along a trajectory, it is then dermed for aIl 

vectors along the ttajectory. e.g. if XI and x 2 are related by TA' and if a scale, )..1' is 

imposed at "l' then 

(2.1.9) 

since À = ';{2 where Â. is known since it is the parameter relating vcctors tlong a 

trajectory. Therefore, once the trajectories are Down. a scale invariant system is 

generated when a scale is imposed on one, and ooly one, vector on every trajectory with 

the restriction that the vectors of this scale must form a measurable ball. This imposed 

scale is the unit ball. For the above conditions to he observed, there are cenain 

restrictions on G which are discussed in section 2.4. 
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Figure 2.3 : Examples of traJcctones for the Isotropie case (tOp left), for the self-affine case (top nght) 
and for two cases of linear GSI (boltom left and nght). Different colors represent different traJectones 
(staning ln the center) . 



2.2 Generalized Scale Invariance for Geophysical AppUcations 

In geophysical applications, the scaling of the structure function: 

S(x,tU) = ([J(x) - j(x + ÂX)t} (2.2.1) 

of a field, /(x), is often studied (s is a position vector and &l is a lag with respect to x 
and '( ), denole. an ensemble average quantity). If a scating field is statisticaUy 

translationally invariant, then the structure function is independent of]( and will scale as: 

(2.2.2) 

where ~ is the SCalirAg exponent and TA is the scale changing operator. The structure 

function, and thus the scaling, is def'med as an average over an ensemble of realizations 

(e.g. an average over all the possible cloud sames that can he generated with the same 

scaling propenies, where a realizaûon is one particular cloud scene). Thercfore, the 

scating is not expected to hold exactly on any given realization. 

Assuming statistical translational invariance, it is convenient to study the scaling 

in Fourier space. The relevant scaling quantity is the spectral energy density, which is the 

Fourier transform of the auto-correlation function, or equivalently, the modulus squared 

of the Fourier amplitude of the field: 

(2.2.3) 

where F(k) is the Fourier transfonn of I(x) and k is the wave number. Oiven the 

hldependence of the structure function with 'S, linear OSI (sec section 2.3) will he usee!. 

Note that many geophysical fields of interesl do not satisfy the condition of statistical 

translational invariance (e.g. atmospheric motions. since coriolis forces are a function of 

latitude). However. in many cases, il is plausible to assume that the assumption will hold 

over a SlDI',;j range. Therefore, if the field docs not globally staûsfy the assumption of 

statistical translational invariance, in principle. il is possible to considtr a series of sub­

l"Cgions of the field, where the assumption will be expected to boldo 

21 

a 



The spectral energy density of a scaling field whose structure function satisfies 

equation (2.2.2) will have the property: 

(2.2.4) 

wherc TI. = i.,c is the scale changing operator in Fourier space and s = ~ +D., is the 

anisotropie scaling exponenL G = GT is the generator in Fourier space, and in the case of 

linear OSI, is equivalent to the ttanspose of the real space generator (Schenzer and 

Lovejoy, 1991a; POug, 1991a). Since we will deal exclusively in Fourier space, the tilda 

will be droppcd with the undcrstanding that wc arc referring to the Fourier space version 

of the OSI elements. 

Since equation (2.2.4) applies to position vectors, k, rather than the relative 

vectors, Ax, the balls can now be given a physical interpretation. A scaling spectral 

energy density will be constant on the pcrimctèr of the balls and thus the balls can he 

defined as the volume bounded by a contour of (P) (see Figure 2.4). Each ball will 

represent a contour of (P) and the amplitudes of Bl., (p ",) and that of B"'2' (p ",,) will 
he rclated by (Pl,) = i..-'(p",.). This will hold for any pair of contours of (P). The balls 

can take on any shape as long as the OSI system rcmains valid (i.e. each vector is related 

ta one, and only one, measurable bail). Thus it can he seen that the conventionallcngth 

of a vector is no longer an adequate definition of scale. 

l'1prt 2.4: Tbe baUs of die aSI system .-e reIaIed ID 1he conIOurs of • acalinS eneqy spectral density u 
depicted above. For insIJuclive purposcs, three of Ihe veclOrs hlll'C usociated wim the contours, and 
chus the beIls. are shawn. 
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Invoking9 once again, the concept of trajectory: if the amplitude of (P) is Down 

for one vector along the trajectory, it is known for ail vectors along the trajectory, via 

equation (2.2.4). This is a vector equation and does not depend on the family of balls. It 

is this concept that will be used in the Scale Invariant Oenerator technique discussed in 

section 3.3. 

2.3 Linear Generalized Scale Invariance 

For the purpose of analysis, it is useful ta investigate the case when the seale 

changing operator is approximated by a linear transfonnation: linear Genera1ized Scale 

Invariance (Schertzer and Lovejoy, 1985b). In linear OSI, G is a matrix and thus has 

D*D parameters (where Dis the dimension of space). It is convenient to discuss linear 

OSt in a format analogous 10 that of section 2.1, by investigating the consequences of the 

approximation on the three essential clements needed in a scale invariant system: a family 

of balls (a unit bail), the seale changing operator, and a measure of seale. 

The family of balls is needed to descrihe the contours of constant scale. where the 

boundary of a bail is some continuous closed curve. A1though il is theoretically possible 

to use any form of equation to describe the curve. it is useful to choose a form that is 

invariant under the scale changing operation. This simply means that if the equation 

describing ~ is of a cenain fonn. and ~ =Tls". then 82 is of the same rorm with 

different coefficients. In the case of lineu OSI, this means that the form of the equation 

remains invariant under linear transformations. This leads to the consideration of 

bivariatc polynomials. Noting that the spectral energy density. P(k). ofreal fields, must 

satisfy P(k) = P( -k), there will be a restriction to polynomials of even order. Again, the 

most general case would he a polynomial of infmitc order, however, for the purpose of 

the analysis, an approximation is needed. In the case of OSI in two dimensions, the IWO 

most simple even order bivariate polynomials are dle second and fourth arder equations: 

,4x2 + 2Bxy+ Cy2 = 1 (2.3.1) 

(2.3.2) 
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where A, B, C, D, E are Rai numbers and x, y are the coordinate axes (for simplicity 

ka ~ x. etc.). 

For equation (2.3.1), the condition that the equation describes a closed curve 

imposes the constraints : 

A,C>O and AC-B2 >0 (2.3.3) 

Under these conditions, the equation describes an ellipse or a circle. It is useful to 

transfonn equations (2.3.1) and (2.3.2) to polar fonn by making the substitution: 

x=(x)=(r~S8) 
y rsm8 (2.3.4) 

Using basic trigonometric identities, the polar form of equation (2.3.1) may he written 

as: 

(2.3.5) 

where (2.3.6) 

The constraints (2.3.3) are: ro > 0 and r! > ~ +~. 

Similarly, the polar form of equation (2.3.2) is: 

r =[ro + ~ cos28+ht sin28+4zcos48+b2 sin48r~ (2.3.7) 

The second orcier equation (2.3.1) or (2.3.5) is that of an ellipse. Therefore, the 

family of balls is a subset of the family of ellipses. The fourtll order equation (2.3.2) or 

(2.3.7) is the next level of generalization. By inspection of the specttal energy densities 
of actual satellite radiances of clouds and by Pflug (1991a), it was concluded that 

although the second order equation is adequate for many cases, a more general fonn is 

sometimes needed. 
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If there exists a scale where the field is isotropie, the corresponding ball will he 

spherical (ein:ular for OSI in two dimensions). This scale will he called a 'sphero-scale' 

(Schenzer and Lovejoy, 1983, 1984). In the case of linear OSI where 1 sphero-scale 

exists, all the balls will he of the form of equation (2.3.1). Since tinear OSI with a 
sphero-scale is the most simple case, it will he used often ail an example. See figures 2.S 

and 2.6 for examples of scaling spectral energy densities where the balls are described by 

the second order equation (figure 2.5) and by the fourth arder equation (figure 2.6). 

Since satellite radiances are a form of data that will often be analyzed, OSI in two 

dimensions will he examined. G will he a 2 X 2 matrix. G will he wrinen as a linear 

cambination of the basis of two dimensional matrices (pseudo-quaternions, Schenzer and 

Lovejoy, 1985b; Lovejoy and Schertzer, 1985): 

G=dl+cK+ JJ+d (2.3.8) 

where 1=(~ ~). K=(~ ~J J = (~ ~). 1 = ( ~1 ~) 

Thus, G=(d+C t+e) 
f-e d-c 

(2.3.9) 

Written as such, the parameters, d, c,f, and e, have more significance. 

The diagrams of figure 2.7 show the effect of the parameters in the case of lineu 

OSI with a sphero-scale. d determines how the volume of the balls changes with scale 

since Trace(G)= 2d = D.,. D., will he chosen 10 he 2, hence d=l (see discussion helow). 

In the diagrams, it can he ~en that c determines the relative scaling of the axes. The 

trajectories tend more toward the horizontal with increasing c and thus the scale defining 

ellipses become more stratified. The matrix J, of above, is a reflection across a plane 

oriented 4S degrees with respect to both .x and y axes. Therefore. the larger f hecomes, 

the more the trajectories tend toward the plane of reOection. This also means it has a 

stratifying effecL Since the matrix 1 is a rotation, e is a measure of the degree of rotation. 

With G written as in equation (2.3.9), a functional form of TA can he found: 

(2.3.10) 
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Fllure 1 . .5: Examples of theoretieal ensemble average sealing spectral energy densities for the case of 
linear GSI with sphero-scale. The units of the sphero-scale are given relaûve to the extemal scale· 1 unit. 

Top !cft: isotropie case: c-O .0,1-0.0, e-o.O, aIl balls are circular; 
Tap riib!: self-affine case: c-o.3, 1-0.0, e-O.O Wlth sphe:"'-scale al 0.14 units~ 
BQuom left: stratIfication dominant case (al> 0): c-o.6,f-O.S, e-o.6 with spher~scale at 0.14 units;1 
BQuom riibl: rolallon domloant case (a2 < 0): C-O.8, 1-0.4 e-2.0 with sphero-scale at 0.3 units; 
d-l for ail cases. (Sec below for descnption of generator parameters (c, l, e) and a2 

• Cl + 12 
- i). The 

amplitude of the fields are presented as InP Wlth Palette 1 (sec Appendix B). Palette 1 is discontinuous 50 

lhat the contours of InP are bigbligbted. 
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• 

--- ------------------------------------. 

Figure 2.6: Examples of theoretical ensemble average scaling spectral energy densltles for linear GSI 
Wlth balls described by fourth order equation (equallon 2.3.7). 
Top LeÛ: c-0.4S,f-o.2, e-0.4, ro - 2.17'103

, ~ -bt - ~ -~ - 0.80 103
• 

Top Rlilll: c-0.3,f-o.l, e-o.O, ro - 2.17 103
, ~ - ~ - (;12· 0.0, b2 • 2.06 10l

• 

BQuomLeft: c-O.3S,f-0.2,t-O.S, ro -1.24 l03,11j - 0.60 103
, b.. -0.85 103, ~ - -0.40103

, 

b2 • 0.61 103• 

Bollom RliOt: c-oJ,J--o.3, e-0.3, '0.2.17 103
, ~ - 0.56 103

, b1 -1.48 103
, a2 - b2 - 0.22 10). 

The bail parameters are ID (uDltsf", where exlernal scale-l unlt. d-l fOT ail cases. (Sec bclow for 
descnplloD of generalor paramcters: c, f, e). The amplitude of the fields are presented as InP and labeled 
wlth the colours of Palette 1 (see Appendlx B). Palette 1 is dlscontlnuous so lhat the contours of InP are 
bighhghted. 
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FI ..... ' 2.7 : Eumplea ofballs _ ~tories for linear OSI widl sphao-lCale: iIoIropic case: c-O.O, 
/=0.0, fIIO.O (top Ica); self-affane case: c-O.3S,f=O.O, t=O.O (top riPl); SIratificaIion dominant eue (il. > 0) 
with no rolaÛOn: c-O.35,f-O.25. e-o.O (bouom righl); million dominant c:ue (.2 < 0): c-o.35,f-O.25 
P().6. da 1 for aU cases widl sphao-ale Il 0.06 units (where the exœmal scale -1 uniI) • 



Writting this as • series, with u == ln l : 

(2.3.11) 

Defming (2.3.12) 

For the case when .2> 0: 

Then, separating into even and odd terms: 

Tl = l"( lcosh(au) + (G -ld~Sinh(aU») (2.3.13) 

or 

T =l" a a 
(

COSh(QU)+ E.sinh(QU) 1 +e sinh(au) ) 

,. -e c 
7Sinh(QU) cosh(au) - ;;sinh(au) 

(2.3.14) 

Sunilar calculations for a2 < 0 yield the same result with the exception that the 

hyperbolic trigonometric functions are replaced by their regular counterparts and a ~ lai. 
The case for a=O yields: 

T :l .. (,l+CU C/+e)u) 
,. (/- e)u 1- cu 

(2.3.1S) 

Applying the different cases of the transformation yields two different 

morphologies that com:spond ta the sign of a2
: sttatification dominant, corresponding ta 

the case when a2 > 0 and rotation dominant (a2 < 0) (Schertzer and Lovejoy, 1985b). 

Sttatification dominance is characterized by a limit to the rotation of the balls and no 
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limit ta thcir stratUication. In the case of linearGSI with a sph~scale, (see figure 2.7), 

the ellipses become increasingly elongated while they have limited rotation. This can 
also be seen in the ttajeetorics. In Ibis case, only one sphero-scale exists. Note that there 
is a change in the major axes as you vary the scale through the sphero-scale. Rotati\ln 
dominance is characterized by a limit to the sttatification of the baIls and no limit to 
rotation (sec figure 2.7). The trajectories are spirals. In linear OSI with a sphero-scale, 
there arc multiple sphe~scales. For funher discussion sec POug 1991a. 

To complete the linear OSI system, the deruùtion of scale must he completed. In 

the previous section it was argued that tp can he taken as sorne power of the volume 

bounded by the associated contour. The power was chosen to he li> where D., is the /L., 
elliptical dimension. In the horizontal plane of the atmosphere, we do not expeet the 

elliptical dimension to be different than the topological dimension since there is no 

mechanism that causes differential stratification. Therefore, D., = 2 and thus tp is the 

square root of the area of the baIls. Since, 

D., = Trace(G) = 2d, (2.3.16) 

wehave d=1 (2.3.17) 

2.4 Restrictions on the Generator and Balls of a Generalized Scale 
Invariant System 

Every vector of the field must he associatecl ta one, and only "ne, scale and one, 
and only one, trajectory. The corves that de",,-.n.be the balls cannot crt"ISS, Dor can the 
trajcctories. This restriction is nccessary to ensore that no vector is associated ta more 
than one scale (i.e. the veetor must have only one size). Since the balls necessarily cross 
if the ttajcctories cross and the converse is Dot bUe, it is a more stringent restriction that 
the baUs do not cross. The above restrictions correspond ta restrictions on the generator 
and baU parameters. 

The condition that the real parts of the (generalized) eigenspectrum of the 
generator, G, must be positive (Schertzer and Lovejoy, 1985b) cnsures that the 

trajcctories are unique and increasing. If this condition is not satisfied, a trajectory in the 
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direction of a negative eigenvalue would move inwards with incre&sing scale (as opposed 

to outwards as it must). This can he seen because a vector in the direction of an 

eigenvector will he transformed ta another vector in the same direction multiplied by the 

scale ratio raised ta the power of the corresponding eigenvalue (by the properties of 

eigenvalues). Therefore, if the eigenvalue has a negative real pan, the vector will be 

reduced (if 1>1). The eigenvalues of Tl will he A·' where e, are the eigenvalues of G. 

The above condition is sufficient to ensure that there is some ball that can he 

drawn 5uch that each vectar of the bail is associated with a unique trajectory. However. a 

priori, it i5 imponible ta determine what equation can descrihe this baIl. Therefore, it is 

necessary ta make some approximation ta the baIls 50 that they may he described by 1 

predetermined form. For linear OSI, we chose the second and fourth order bivariate 

polynomials. equations (2.3.1) and (2.3.2) respectively, since Jlese fonns are invariant 

under linear transformations (sec section 2.3). This is a necessity if the constraints on G 

and the baIls are to he found. 

The condition of non-intersection of the baIls, a. and B" = Tl s., implies that B" 
must he completely enclosed within B" for alll > 1 (magnifications). That is, 

(2.4.1) 

where ri is the curve in polar form that descrihes the ball, Bi' This condition must hold 

for ail 8 and also for ail the baIls related by Tl' However, if the condition is violated at 

one scale, it is necessarily violated at all scales. This can be seen by noting that if a 

vector. x.' is associated wih IWO scales, 11 and 1 2, then aIl vectors on the trajectory 

x, = Tl x. (see sections 2.1 and 2.2) are also associated with IWO scales, lAI and AA2• 

Therefore, it is sufficient ta compare any bail with its inrmitcsimal neighbour. Thus, 

resttictions can he placed on the bail, ~, and the geherator ta ensore that the OSI system 

which they descrihe is valid. These restrictions are found helow for the case of linear 

OSI when the baIls are described by the second arder equation (2.3.S). The resttictions 

for the founh order case (2.3.7) can he found with an identical procedure and they are 

stated below. 
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The ball, ~, will he described by: 

(2.4.2) 

and its infmitcsimal neighbour, 

(2.4.3) 

can he found by operating the infmitesimal scale changing operator, Tut (where ,,= inA 

and du = .aA) on every vector in Tl' More practically, since the fonn of the equation is 

invariant under linear transformations, the parameters of '2 can he found as functions of 

the parameters of Tl and G by finding the transformation that T.. (operating on the 

vectors) will 'induce' on TI (sec Elliott and Dawher, 1979). To facilitate this, Tl will he 

written in matrix form: 

(2.4.4) 

where (2.4.5) 

and the transformation between the parameters of Ml and Tl are as equation (2.3.6): 

1 1 
'0 =-(A+C) , Dt =-(A-C) and bl =B 

2 2 
(2.4.6) 

Thent Tu will induce a transformation on Ml as follows: 

(2.4.7) 

(2.4.8) 

and M 2 will he relatcd ta T2 by the simple transformations of equation (2.4.6) . 
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Befo~ continuing, the infmitcsimal scale changing operator, T., must he found. 

This cao he done by expanding the Fourier space scale changing opcrator , Tl = AG, in a 

Taylor series to flI'St order about Il = ln Â = o. 

and 

Tl =exp(Gu) 

T da =l+
dTl l du=I+Gdu 
du u-o 

Td;! = I-Gdu 

where the inverse operator was round from rAI = T 1-1 i.e. by ~placing u ~ -u. 

(2.4.9) 

(2.4.10) 

(2.4.11) 

Now, M2 can he found using the inverse infmitesimal operator of equation 

(2.4.11): 

M - (T-I)T M (T-I) 2 - l 1 l 

= (1- Gdu)TM I (1- Gdu) 

= (1-GT du)(MI - MIGdu) 

= MI - MIGdu - GTMldu + G™IG(du)2 

neglecting the tcrm of mer (du)2 

dM M =M --du 
2 1 du 

h dM MG G™ F' din dM li 'd w cre du = 1 + l' 10 g du exp Cl y: 

where o=('U 112)=(d+C f+ e) 
'21 lu f -e d-c 
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(2.4.12) 

(2.4.13) 

(2.4.14) 

(2.4.15) 



gl21\ + (gll + gn)~ + g2lCl) 
2g12~ + 2gnCI 

(2.4.16) 

Therefore, since A:z = ~ - dA du, from equation (2.4.13), and similarly for B2 and C2 , 
. du 

wecan wnte: 

(2.4.17) 

Then, 

dT "0 = "0 - ~du 
a • du 

(2.4.18) 

where =.2.=_ -+- = (d+c)1\ +2~ +(d-c)C: dl'. 1 (dA dC) 
du 2du du 1 

(2.4.19) 

or ~ = 2(ro.d+lIt.C+"'.f) (2.4.20) 

from equations (2.4.6), (2.4.15), (2.4.16) and (2.4.17). There are similar calculations for 

a.a and "'a. In sumrnary: 

"0 = "0 - ciro du 
a • du 

n.. =n.. -~du 'a '. du 

where :: = 2(ro.d+a..C+bl.f) 

~ = 2 (ro. c + Gt. d - 11.. e) 

~ = 2(ro.l + a..e+"..d) 

db 
J. =J.a -~du 
"la "l. du 
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We now retum to the restriction: '2 -'1> 0 or equivalently ,; -,~ > O . 

Investigating funher, using equations (2.4.2) and (2.4.3): 

1 _ 1 >0 
'oa + ~a cos29+b1a sin28 '01 +~I cos28+~1 sin 29 

(2.4.23) 

Using equation (2.4.21) and dividing through by du: 

dro +~cos28+~sin28>0 
du du du 

(2.4.24) 

where ::' ~ and ~ are as in equation (2.4.22). 

This equation can he simplified funher by noting that it must hold for all 8 and 

therefore, it is adequate 10 impose the condition on the minimum of the equation: 

.!!..[~ + ~cos28 + ~sin 28] = 2~sin 28 - 2~cos 28 = 0 (2.2.25) 
d8 du du du du du 

(2.4.26) 

where dat = ~du, ~ = ~du, ,= 0 or te corresponding to a maximum or a 

minimum and depending on the four different cases (the four possible combinations of 

signs of ~ and ~). However, in ail cases (with the correct choice of ,), by 

substituting equation (2.4.26) into equation (2.4.24) and using basic ttigonometric 

identities, the inequality becomes: 
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(2.4.27) 

(2.4.28) 

while noting the condition :: > 0, the restriction on the generator and bail parameters 
can be wriuen: 

(2.4.29) 

Using equation (2.4.22) and nOMg that this restriction must hold when '1 de scribes any 

member of the family of baIls, and thus the subscripts of the coefficients of '1 can he 

dropped, the generaI condition becomes: 

(2.4.30) 

The above restriction can he simplified if the initial contour is of a less general 

form. For example, in the case where a sphe~scale exists (see section 2.3), there will he 

a bail that is spherical (~ = ". = 0). Therefore, the restriction for the case of linear OSI 
with a sphero-scale is that the OSI parameters must satisfy the simple inequality: 

(2.4.31) 

When there is no assumption of the existence of a sph~scale, it is more difticult 

to obtain such a general fonn that does not depend on the bail parameters. However, it is 

possible to prove the inequalities, 

(2.4.32) 

for the cases where ~ = 0 and ~ = 0 respectively. 
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In the fourth order case, the condition remains '2 - rI > 0 (for du> 0) or 

equivalendy, ,; - ri > 0, where the fourth order equation is written as in equation (2.3.7): 

r = [ro +Dt cos28+ ~sin28+~cos48+b2 sin48r~ (2.4.33) 

Following the same procedure, the restriction can be found: 

(2.4.34) 

where: 

This condition must hold for all angles. No analytic solution was found for the minimum 

of equation (2.4.34) as a function of 8, therefore no simplification a10ng the lines of the 

second arder case was possible. Although this fonn is nOl ideal, il is possible to tell if a 

given set of generator and ball parameters is a valid OSI system. This can he done by 

simply plotting equation (2.4.34) numerieally as a function of 8. If the value is positive 

for ail 8. the OSI parameters described a valid system. This method must he used, for 

example, if valid simulations are to he generated. 

The resuIts of this section will also he used to restriel the search of the parameter 

space that is necessary in OSI analysis techniques (see chapter 3. in particular 3.3.2d) 
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Chapter 3 

ANALYSIS TECHNIQUES FOR LINEAR 
GENERALIZED SCALE INV ARIANCE 

3.1 Metbod of Least-Squares for Linear Generalized Scale Invariance 

The purpose of the analysis techniques discussed below is to test the hypothesis of 

Oeneralized Scale Invariance by determining the parameters of the scale invariant 
generator and the balls that best descrihe a scaling field. The problem is complicated by 
the fact that the scaling is not expected to hold on a single realization. but only when 

averaged over an ensemble of realizations with the same generator and family of balls. In 
such an ensemble average, the field will satisfy: 

(3.1.1) 

or 

(3.1.2) 

exactly. for every contour and every vector of the contour, where ( ) indicates an 
ensemble average quantity, (Pl) is the amplitude of the spectral energy density about a 

unit ball. s.. Â is the scale ratio with respect to the unit ball and s is the anisotropie 

scaling exponenl The generator parameters themselves are possibly stochastic (i.e. they 

wiu vary randomly from scene to scene). An attempt to empirically estimate the 

ensemble average by averaging many arbitrary realizations would resuIt in a smearing of 

the parameters (sinee each realization would have a different generator): Therefore, only 

one realization will he analyzed at a time and fluctuations about the ensemble average 
contours of the spectral energy density are expected. (Figure 3.1 shows the spectral 

energy density of a simulated single realization and its ensemble average counteIpart.) 
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Figure 3.1: Theoretlcal ensemble average spectral energy denslly (top). and a corresponding single 
realization (bottom) (from a multifraclal simulation). An average over an ensemble of sucb sJOgle 
realizalions would produce an image as ab ove (IOp). Images have linear GSI paramelers: ,,-2.68, G: c-O.3, 
1-0.2 and e-o.3 and B1: sphero-scale al 0.14 units· (where external scale .1 unit). rD(~nsll1es are 
prcsented as loP and labeled by the colours of the discontinuous Palette 1 of Appendix 8. 



The problem of the estimation of the OSI parameters can he considered as one of 

a non-linear statistical regression. That is, the N data points. P(k.). of the spectral 

energy density of a single realization are fit to a tbeoretical function. 

P,(k)=(P(G,~,(PI),S.k)}, which is the ensemble average spectral energy density 

generated from the linear OSI parameters: G(e./.e) (since by convention d = 1), 

~ = ~(ro,"t.ht,[~,b2])' s. and (PI)' where a unit ball, ~. is estimated by the second 

[founh] order equation (2.3.5) [(2.3.7)]. Usual procedures involve the method of least­

squares, where the parameter estimates can be determined by minimizing the 'error 

function': 

2 1 N 1 
E (G,~,(P,),s) = - r,[lnP(k,) -lnP,(k"G,~,(PI)'s)] 

N ,-1 
(3.1.3) 

Other E2 may he defined for the same purpose, but we choose to use the difference of 

logarithms (see section 3.3.1 for reasons and implications). Note that, from equation 

(3.1.2), lnP,(k,) = -.s ln l(G.Bl'k.}+ ln(Pl) , where :he function l(G,~,k.) is the 

solution of a non-trivial transendental equation (involving G and ~) which must he 

solved for each k i . 

Since it is not possible to analytically solve for the minimum of E2
, it is necessary 

to consider E2 as a continuous function of the p parameters that descrihes a p­

dimensional hypersurface in parameter space (where pis, at least, eight, depending on ~, 

as above). Therefore. the space must he searched for the appropriate minimum 

(Bevington, 1969. Chapter 11) i.e. E 2 must he found numerically at intervals in 

parameter space to trace out the hehavior of the hypersurface. In general, E2 can he a 

complex function with multiple extrema. Therefore. if the absolute minimum is to he 

found, the intervals must he rme enough such that the estimate of the hypersurface 

exhibits the same extrema. Since the analysis is performed on a single realization. the 

actual explicit values of E2 will he statistically scattered around the continuous 

hypersurface expected when an infmity of independent data points are useCl (this would 

requiR knowledge of P over an infmite range of scales). This continuous hypersurface, 

which will he denoted by E~. will have similar characteristics as the hypersurface 

expected when P(k,) are ensemble average quanti tics. The hypersurface of the ensemble 

average will he denoted as Et) and the usual E2 will he reserved for the hypersurface of 

a single realization. Figure 3.2 shows a one-dimensional cross-section of a possible 
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Fipre 3.2: The effccl of III ÎDaQSe in the nwnber of points uscd ID c:alculalc E2
• Shown.-e the one­

dimensional cross sections (c ud/fllted) for the hyp:rsurfaces of a mulûfnIctaJ simulaûon (aee figure 3.1, 
bouom) c:aJculated using-lS 000 poinlS (aq,) and -450 000 points (boaom). As the number of statistically 
independent points SOCS ID infuùty. the hypersurface is expc:çtcd ID bccomc smooth. The explicit values of 
E2 have been connec&ed by • continuous liDe ID highlighl the poinllO point OUC1UlÛOllS. 
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hypersurface for a single realization calculated using two different numbers of data 

points. It can be seen that the hypersurface becomes smoother as the number of points 

increases. Due ta these high frequency fluctuations, a function is fit ta the explicit values 

of E 2 in an attempt to estimate E!. The estimated minimum of E2 
CID then be found by 

~'!alculating the minimum of the function. 

The full search required for (at least) an eight-dimensional parameter space is 

computationally prohibitive, even when a transcendental equation need not he solved. 

Therefore. it is necessary to make some approximation to the enor function of equation 

(3.1.3). In this chapter, two such approximations will he discussed: The 'Monte Carlo 

Differentiai Rotation method of Pflug (1991a) and the Seale Invariant Generator 

technique (presentee! here for the fust lime). 

3.2 Monte Carlo DifYerentiai Rotation Method 

The Monte Carlo Differentiai Rotation method started with explicit pesses for 

the paramcters and used a Monte Carlo approximation to the enor function of equation 

(3.1.3). Instead of solving for lnP,(k.) using the transcendental equation, ID estimated 

value was calculated from -slnA, +ln(P1), where Âi is a randomly chosen scale ratio. 

Then the position of the corresponding data point was computed from: ki = A?kl, , where 

k l , is a randomly chosen vector on the unit bail. Thus, prior knowledge of s, (Pl) and 

the paramcters of S. was requ~ therefore, they were estimated prior to the estimation 

of G. UnIess the anisotropy is quite extreme, s ean he reasonably estimated from the 

isotropie cnergy spectral slope, fJ (see section 1.2), sinee the anisotropy tends to he 
'washed out' by angular integration in Fourier space. S. was estimatcd by fitting a curve 

to the levelset of the field at (PI) (the set of data points that have amplitude within the 

range (PI) ± 41') (sec figure 3.3). Since, within the scaling regime, any bail is cquivalent 

to any other bail. PI can he ehosen arbitrarily. The curve describing S. was of the form: 

Ikll = A; (8) = qo +ql oos(28)+ qz sin(28) + q,eos(48) + q. sin(48) (3.2.1) 

where qJ are real numbers.1 

1 This curve de8cribinS BI is differenl Ihen die one used in the Sc:aIe Invariant Genel'llOl' technique (see 

IeClion 3.3). 'Ibis curve is DOt invariant under Iinear transfonnalians (sec sectiOll 2.3). 
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Figure 3.3: A levelset of a spectral energy density of a satellite cloud radiance (top) and the same levclsCI 
with curve drawn (bottom). This curve (of the fonn of equation 3.2.1) is the eSlimated unit bail, BI' 

~ ~----
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An error function2, that was only a function of three parameters, G = G(c./.e), 
was defmed: 

E:.m.(G) = ! ~[lnP(Â~Gkl.)+SlnÂ; -ln(PI)Y 
1 

(3.2.2) 

The sum is over fi random combinations of kil and Â;, and therefore ft data points, 

Pi = P(Â~Gkl.). 

The random kil were found by choosing a point on ~ from a randomly chosen 

angle, 8;, between 0 and 2n. Then kil was computed from At(8;}. equation (3.2.1). Âi 

was a random number between 0 and Â.._ (Â_ was an estimation of the maximum 
scale ratio). ft was chosen such that the fluctuations due to adding another data point 

were much smaller than the gradient of the hypersurface. 

The estimates for c,land e were found using a 'grid search' (Bevington, 1969) of 

the parameter space: explicit guesses were made for two of the parameters then E:'CDR 

(equation 3.2.2) was found as a function of the third, while the other two were held fixed 

at their guessed vaJues, (i.e. a one-dimensional cross section of the hypersurface was 

inve:.!igated). A one-dimensional parabola was fit, near the minimum. to smooth the high 

frequency fluctuations. The first estimate of the third parameter was the value for which 

the parabola was a minimum. With the third parameter held flXed at its f"trSt estimate 

value. the other two were varied successively. The successive variation of ail three 

parameters was then iterated until convergence was reached. 

3.3 The Scale Invariant Generator Technique 

ln order for a OSI analysis technique to he numerically efficient, il must 

necessarily reduce the dimension of the parameter space. The Monte Carlo Differentiai 

Rotation method attempted to do this by estimating many of the parameters befme 

searching the parameter space of G(c,/,e). However, this is not an ideal solution since 

2 POug slUdied the error fWICtions derUlccl using the difference of logarilhms of P u weU as that of the 

diffeœnœ of P and the resulas weœ found 10 be similar. 
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enors in the estimations (of ~ in panicular) were magnified increasingly with scale ratio 
when the kj were ealculated. The errors were due to the statistieal seaner of the levelsets 
from whieh the Il. were estimated. In some cases, it may have been possible to 
completcly miscaleulate the unit baU since a levelset of P may not rtsemble the familyof 
eurves that describes iL The rcason is because the position of the data points of a given 
value of P can he eonsidered to statistieally nuetuate about the ensemble average contour. 
The fluctuations are predominantly uniformly spread hetween the theoretical contours 
(P) ± AP Il wherc llP depends on the magnitude of the fluctuations. Therefore, since the 
contours can he closer together at sorne angles, the sprcad of points in space al those 
angles will he smaller. Fitting a curve ,0 a levelset of such a case will cause biased, 
hence poor, parameter estimates. 

The Scale Invariant Oenerator technique, describcd in this thesis, has the very 
significant advantage of avoiding the problems of making initial estimations ta rcduce the 
parameter space (e.g. of s.. as above) by separating the estimations of G and B,.. The 
Scale Invariant Generator tc<:hnique estimates the more fundamental G without prior 
knowledge of s.. It then uses G to 'enhance' the specttal energy density and thus enable 
an accurate estimate of s.. The discussion of the technique will therefore start with the 
estimation of G. 

3.3.1 Estimation 01 the Generator, G 

(a> Determination of the elTOJ' function 

G cao he estimatcd by seuching a three-dimensional parameter space without 
introducing errors due ta the prior estimation of other parameters (wim the exception of s. 
which can usually he accurately estimated using P. as before). The Scale InvarU.nt 
Generator (SIG) technique can do this by DlOving away from the idea of comparing the 

value of a data point ID a theoretical ensemble average value of P and by exploiting the 

fact that the amplitude of any two points on the same trajectory, kA, and kA, = Â~kl." 
(sec sections 2.1 and 2.3) will on average be related by: 

(3.3.1) 
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or 

(3.3.2) 

If a field is scaling (in this case with respcct ta the lincar Fourier space scale changing 

operator , Tl =).. G), this relation holds independently of the shape of the balls, for all 

pairs kl " k la = )..~kl, whcre Âl is any positive real numbcr such that kla lies within the 

range of the data and k1 , is itsclf any point along the trajectory (paramcttizcd by .1.1), 
Rccall, from section 2.1, that a b'ajectory can he parameb'izcd by A. Therefore, to 

paramctrize pairs of points, two parameters, Ât and Al' are needcd. 

A (normalizcd) error function, that is only a function of G{c,/,e), can he 
defincd. Since theory states that every point along a trajectory must satisfy cquation 

(3.3.2) for continuous A, the error function would take the form3: 

where , parametrizes the trajectories and the Âl and Âl integrations compare all pairs cl 

points (within the range of scales where P is known) on the same trajcctory, ',and Ais 

the appropriate nonnalization factor. Note that sinee only points along trajectories are 

compared, thel'C is no reference to the balls i.e. no unit ball ncccl he known. The integral 

of equation (3.3.3), however, rcquires specific knowledge of k(A.,'), which is as 

difficult to detennine as P,(k). Yet, the integration over dÂld' is simply an integration 

over an area in Fourier space (i.e. AI and , is a coordinate system that uniquely detines a 

point in Fourier space, sec section 2.1 and figure 2.3). Therefore, with a change of 

variables (or re-paramcb'ization) to the Cartesian system, (Al") ~ (kll ,k, ) and )..2 ~ At 
equation (3.3.3) may be rewritten as: 

(3.3.4) 

3 NOIe IhIllhis aror funclion CID be inltlpreted as a Ieast-squares fil of an experimental value (which is • 

funclion of daIa points) 10 &he Ihcorelical value zero. 
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and no a priori knowledge of the trajectories or baIls is necessary. k._ and k,_ are the 
maximum wave numbers for which P is known. Note that there will actually he a region 

about the origin (corresponding to the minimum know wave numher) that will not he 

included in the integral. A. depends on k. and k7 and is determined by k .... and k7-.aJ' 

Oo1y A> 1 (i.e.ooly magnifications) were considered since Ibis avoids the comparison of 
the same pair twice. Note that the Jacobian of the transformation is unily since D" = 2. 

Since the uncenainties in estimating the parameten depend on the characteristics of the 
hypersurface (sec below), equation (3.3.4), will determine the maximum accuracy with 

which the parameters can he measured using the technique. However. ta evaluate E! .• , 
equation (3.3.4), P(k) must he Imown in functional fonn and not as discrete data points as 
is the case. Therefore, E! .• must he approximated as: 

(3.3.5) 

The sum is over a11 the data points, P(kJ)' and all the possible (discrete) scale ntios, Ai' 
which form the unique pair [P(A?kJ),P(kJ]. It is important ta note that P(A?kJ) and 
P(kj) are data points (i.e. random variables) and therefore both will fluctuate about their 
avenge values. This will cause the minimum variance (the minimum value of E~o' 
equation 3.3.S) ta he larger than the case when oo1y one point is uncenain. However, as 
more statistically independent pairs are summed, the results should converge to the value 
of the smooth hypersurface. E!. As hefore, the number of statistically independent pairs 

will depend on the minimum and maximum scales (and also on the resolution) of the data 

seL Since all pairs along trajectories are compared, the number of pairs will he greater 

than the number of data points. Below, since we win deal exclusively with equation 

(3.3.5), the subscript will he dropped: E~G => E2
• 

A further complication ta the problem is that the fluctuations could possibly he 

much more variable than those described by multi-variate Gaussian distributions4, 

Therefore, there is no rigorous theoretical justification for using the method of least· 

4 Work on comptCl cascades (Scbenzer and Lovejoy. 1993) indiC8l.cS lha1 the Fourier IJ*C Ouctuations 

bavc essentially Ihc sune extreme variability u the real lpICC fluctuations; for cumple, an a = 2 

univcrsal multifraclal wim log-normal pobabilitics in rcaI space will also bave loi-normal varilLiCllS about 

the mean in Fomier space (sec Duncan et .... 1993. for numerical study). 
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squares. However, it is still plausible to assume that the behavior of the hypersurface 

near the minimum will not he substantially altcred ü the fluctuations are not tao violent 

Logarithms of P were used in E2
, equation (3.3.5), sinee taking the logarithm has the 

effect of decreasing the variability. This could possi bly lead to biased estimates. 

However, a similar error function, without logarithms, is not necessarily an unbiased 

estimator. ln fset, it is possible that the bias is decrcased by taldng the logarithm The 

resuIts shown in Chaptcr 4 justify the use of the method of lcast squares and indicate that 

the bias due ta taking the logarithm was small. 

(b) Method of searching parametcr space 

The preferred method of searching the parameter space for the appropriate 

minimum must he determined. To do this, the behavior of El) was examined, for a large 

portion of the parameter space (i.e. E 2 was calculated explicitly for a theoretical 

ensemble average specttal energy density). El) is shown in figure 3.4 as a function of 

the OSI parametcrs through a series of cross-sections where the parameter c is held 

constant The hŒÎZOntal and vertical axes are/and e, respectively. In order for the thœe­
dimensional hypersurface to be more easily visualized, another hypersurface is shown 

through a series of cross-sections of constant e (figure 3.5, where the horizontal and 

vertical axes are c and!, respectively). It can be seen, from figure 3.4, that the concavity 

of Et) along the t axis is much larger relative to the concavity along the faxis. This is 

imponant sinee the concavity, in part, determines the accuracy with which the parameters 

can he estimated. 

A possible method of searching the parameter space for the global minimum is the 

grid search (successive variation of the parameters), the method uscd in the Monte Carlo 

Düferential Rotation method (see section 3.2). It was found that the characteristics of the 

hypersurface were such that the convergence to the absolute minimum was exttemely 

slow (i.e. many iterations were needed to reach the minimum). It was 50 slow, in fact, 

that the change in amplitude of a parameter, due to one iteration, could possibly he 

smaller than the uncertainty in the estimation of the parameter. Such a search was 

performed on the hypersurface of figure 3.5 (with minimum at c=-O.3,f=-0.2 and t=O.2). 

A value of e = -0.4 (top center of figure 3.5) was chosen for the initial value of e. The 

minimum of El), with respect to c and f, for e = ~.4, was found ta he al C = -{).S and 

1 = 0.3. NOle that thesc estimates of the absolute minimum, at c=-O.3,.f=-O.2 and e=O.3, 
are inaccurate, therefore, at least another iteration is needed. Holding c = -{).S and 
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Figure 3.4: Hypersurface of a theoreucal ensemble average spectral energy denslly, E(2), presented as a 
series of cross-sections of constant c. For a given image, f and e (the l and y axes respectlvely) are vaned 
while c is held fixed. The images from left to nght are the cross-secUons wbere c··0.7 to 0.910 Increments 
of 0.2. The numencal values of El, have been rescaled to enhance contours (values correspond to tbose 
of Palette 2 ln Appendlx B, gray 15 hlgh, green 15 low and wh Ile IS very low). The edges of the cross­
sections correspond to C

Z + ( - 1 (see section 2.4 concemmg restrictions of the GSI parmelers) and 
e-±1.5. The GSI parameters of Pare 3W'2.0, G: c-0.3, 1=0.2, c-o.3 . 
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Flpre 3.5: Hypersurface of a theoretical ensemble average spectral enerey density, Et), presented as a 
senes of cross-sections of constant e. For a given image, c and 1 (the l and y axes respectively) are varied 
whlle e is held fixed. The Images from left to rigbt are the cross-sections where e-·O.6 to 0.8 in increments 
of 0.2. Tbe numencal values of El \ have been rescaled to enbance contours (values correspond to those 

\ 

of Palelle 2 ID Appendix B). The edges of the cross-sectIOns correspond 10 c2 + /2 - 1 (see section 2.4 
concernmg restnctlonS of the GSI parmeters). The GSl parameters of Pare: s-2.0. G: c--O.3. 1--0.2. 
c-0.2 . 



/ = 0.3, El) was plotted as a function of e (figure 3.6). The minimum was found to he 

at t = -0.33. The case examined was an ensemble average case, therefore, it is 
conceivable that, for a single realization, the error on the estimate of t would he of the 
same order of magnitude as Ae=-O.33-(-O.4) = 0.07. This would mean the 
convergence would he undetectable over the noise. Also, several iterations wou Id he 

needed ta fmd the absolute minimum, thus incre&Sing die time needed for the calculation. 
Another possible problem is that this technique may fail to converge to the absolute 
minimum if there are multiple minima. The above arguments make the grid search 
method unappealing. Therefore, we chose an alternative involving a parabolic expansion 
of the hypersurface close ta the absolute minimum. 

A parabolic expansion of El not only smoothes the high frequency fluctuations 
about E~, but is also convenient because the minimum of El (and thus the estimates of 
the parameters) is simply the solution of a system of linear equations. However, the 
hypersurface is not globally parabolic, therefore, the expansion is a reasonable estimate 
only in a neighbourhood of the absolute minimum. The neighbourhood was found to he 

much smaller than the extent in parameter space in which the absolute minimum would 
he expected to lie (see section 3.3.2d). Therefore, it was necessary to obtain initial 
estimates of the parameters. Conventional estimation methods (e.g. gradient search, 
Press et al., 1986) were Dot used since substantial difficulty is caused by the fluctuations 
about E~. A less efficient but more accurate method, a type of ravine search, was used. 

A ravine is the path of lcast resistance toward the minimum (e.g. in analogy 10 

topography, it is the course a river would follow). Good initial estimates of the 
parameters can he found by fitting a one-dimensional parabola to the projection of the 
ravine onto the respective axes. However, ü the ravine is not steep, relative to the 

fluctuations, it will cause errors in the initial estimates. Approximations to the 
projections of the ravine were found by searching the portion of parameter space where 
the minimum was expectcd to lie and recording the minimum of the hypersurface for the 
given value of the parameter, regardless of the value of the others. For example, the 
value of E!(t = 0) (where E! is the projection of the ravine onto the taxis) was the 
minimum value of E2(c./.e = 0) over aIl possible values of c and/. On average, this 
point will he along the ravine. This was carried out for several values of e for the 
theoretical hypersurface of figure 3.S. The minimum of each cross-section is plotted in 

figure 3.7. The initial estimate of e is the minimum of the one-dimensional parabola fit 10 

the values of E!. 
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y = 227 + 61.0 x + 91.6x"2 

10 

20 

o+-------.-------~----~~----~ ·1.0 0.0 0.5 1.0 

Fipre 3.6: Rcsults of. lrid scarch of &he hypersurface of Figure 3.S, whcrc , wu vlried while c and! 
were field f"lxed al -O.S and 0.3, respectively (sec text). The minimum is al e=-O.33. The equation of the 
parabola Ihat was fit 10 the daIa near the minimum is included in the figure. The absolute minimum is At 
c--O.3, f.-O.2, e-O.3. Numerical values are IS in figure 3.5. 

y = 2.2 - 13.6 x + 40.3 xN.2 
20 • 

• 

10 
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·1.0 ~.5 0.0 0.5 1.0 

, 
Fiprt 3.7: ResuilS of. avine searcb of the bypenurface of figure 3.S, where the data points represent 
the minimum of &he hypcnurfaœ of the conesponding value of e (ovu aU possible c _/). The minimum 
is Il ,.0.17 and the equaliOli of abc parabola, tbal is fil 10 the daIa Dell' the minimum, is shown. The 
absolute minimum is al: c=-OJ, f=-O.2, e=O.3. Numtzical values are u in rJgW'C 3.5. 



In summary, SIG calculates E2
• the error function of equation (3.3.S). 

numerically at intervals in parameter space. Due to the fluctuations of the data points 

about the ensemble average, the numerical values of E2 fluctuate about E!. Initial 

estimates of the parameters are found using the ravine search and a parabolic expansion 

of E2 in three dimensions is then made about the initial estimates. The parabolic 

expansion is nccessary to smooth the fluctuations about E:'. The parame ter estimates are 

taken to he the minimum of the parabola. 

3.3.2 Furtber Details or the Scale Invariant Generator Technique 

Before the Scale Invariant Genemtor technique can he applied. sorne details must 

he examined. For example. the error function. E2 of equation (3.3.5). compares all pairs 

of points along a ttajectory. This would mean comparing approximalely L:,{ pairs, whcre 

there are J! data points. Il is expected that not all pairs necd be considered in arder to 

obtain a reasonable estimate of the value of E:' (if ooly because many of the L:,{ pairs 

will be statistically dependent). If this is true, the number of pairs that are necessary, and 

a method of choosing these pairs. must be found. Also. it must he determined how many 
points in pa11UIlCter space (where E2 will he found explicitly) are needed for a reasonable 

estimate of E:'. The uncenainties will be used to determine the appropriate choices since 

the uncertainties theoretically determine the accuracy of the estimates. Therefore, the 

effccts of the above choices on the UDcenainties will he examined. These choices are 

important since our goal is not only to fmd a method that produces good estimates, but 

one that is efficient as weIl. 

(a) Uncertainties 

To dctermine the uncertainties. the procedure of estimating the parameters will he 

examined in more detail. The hypersurface was estimated by a function of the fonn: 

(3.3.6) 
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i.e. a parabolic expansion about the initial estimates, BOt' found using the ravine search, 

where Bt; are the OSI parameters (c, /, e), llgt; = (gt; - Bo.) and the ten parabolic 

coefficients, p(I): 

(3.3.7) 

The p(l) were found by a least-squares fit to the numerically calculated values of 

E2 at m points in parameter space (this will be discussed funher below). The parameter 

estimates were then glflll1t = !1grmna + gOt ' where Agmma were the solutions to the system of 
linear equations: 

(3.3.8) 

i.e. a(Ag) = li or àg = f3E (3.3.9) 

the curvature matrix because il contains the information about the curvature of the 
parabola. t is the error matrix (it will he used to detennine the uncertainties). 

Since the minimum of E 2 was not found analytically, neither can the 

uncenainties. Howevcr, they can he estimated by maldng an analogy to the case when an 

analytic solution is possible (Le. the case when the curvature matrix describes the 
hypersurface exactly, sec Bevington, 1969 for discussion). The estimated UDcertainties 

on B_. will then be: 

(3.3.10) 

54 



whete E,. are the diagonal clements of the error mattix, n is the number of pairs of data 

points compared (as in E2) and E!.a is the value .:.Jf E2 at its minimum (approximately 

equal to the sample variance). 

The estimated uncertainties. a!a' are expected to approach the acrual uncertainties 

as the hypersurface is more accurately approximated by a parabola and as the error in 

determining the parabolic coefficients decreases. Note that equation (3.3.10) also 

assumes that the 11 pairs are statistically independent. Since this condition is not expected 

to hold for aIl pairs, it will he an additional source of error. 

(b) Choice of pairs 

A better cstimate of the parameters is expected as <T,a decreases. Thercfore, 

inCIeasing the number of pairs or decrcasing the Eu: (i.e. increasing the curvaturc since 

e = «-1) will improve the results. Considering this. the effect on the curvature due to the 

choice of pairs, [p( A?k 1 ). p( k 1)]' was examined. The choice of pairs corresponds to a 

choice of kj and Aj' Since the location of the t1l'st element of the pair, P(A~ki)' is 

calculated. it is not known a priori ü that clement lies within the range of the data. If a 

choice. (Â;,k i)' is made such that A?k 1 lies outside the range. it cannot he considered as 

one of the n pairs used in E2 and thus it will nol conttibute to reducing the uncertainty. 

The same may he said if the same pair is considered twice. Since all pairs take the same 

time to he calculated, it would he more efficient to avoid the pairs which did not 

conUibute. For this teason, il would be beneficial to control the choice of pairs by 

\.hoosing them systematically as opPOsed to randomly (as in the Monte Carlo DifferentiaI 

Rotation method). 

The initial distribution, k j' was chosen from a rectangular region about the origin 

in Fourier space (i.e. 1" = [-W. 0] and l, = [-W. W], where W is the wldth of the 

rectangular region). Sec figure 3.8. A rectangular region is considered since the spectral 

cnergy density will have the propeny P(k) = P( -k). llk is the interval at which the 

points inside the rectangle will he chosen (i.e. Ale =2 means every other point will he 

taken). The 1; will he chosen!rom A; = [~,Amu] at cenain interVals. These intervals 

will be taken uniformly in inA bccause the fluctuations about the theotetical contours of 

the spccttal energy density go as ln A . This will slightly alter the error function, 

however. the dift"erence will he an unirnponant weighting factor. AIl the ln tU will he 

positive 50 that only magnifications are considered. This is to ensure that al1 the pairs are 
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Pilure 3.1: PiclOriaI demonstralion of variables involved in the choice of pairs for the numerical 
calculalion of equation (3.3.S). 

unique. It is more convenient to write li as u, = ln l, such that: "i = [Au.u...] in steps 
of Au. 

The effects on the hypersurface (and thus on the uncenainties) for changes in W, 

âk, hM and u... were investigated by performing the analysis on a theoretical ensemble 
average energy spectral density (figure 3.1). The investigation was performed for a 
single choice of G. Although this choice is expected to cause small changes in the 

observations. the general hehavior of all hypersurfaces due to changes in W, AI. Au and 

"- is expected to he very similar. To faci1itate the computation and presentation. El) 
was found as a functil"n of e while c and 1 were fixed at their theoretical values. The 

same behavior is expected on this one-dimensiona! cross-section as on the full 

hypersurface . 
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• Varying M, Wand AM, while ail othen were he1d fixed, showed little effect on 
the cross-section of the hypersurface (see figures 3.9,3.10 and 3.11). u... (figure 3.12), 
however, was shown to have a substantial influeuce (the larger the .,..., the greater the 

concavity). This implies that it would he heneficial to use a large.,.... However, for a 

given Wand 1JJc, Il will genera11y decrease as u... increases, sinee more pairs will fall 

outside the range of the data due to larger magnifications. Consequently. if a larger "­
is desired, a smaller W is needed. However, it is not desirable to over sample 1 smal1 
subset of points since it could possibly introduce biases. To keep Il large, il is also 
possible to decrcase Ilk or AM. Yet there will he correlations hetwccn neighbouring 
points in Fourier 5pace. If the data points at (elAMtkJ = AGkj and (e(l+l''''''tkJ (where 

ln A = l&l and 1 is some integer between 1 and .... "') are correlated, then the situation is 
similar to when the samc pair is considered twice: the repeated pair will not contribute to 

a Rduction of the uncenainties. Thus, il is not heneficial ta choose Au ta he too small. 
Unfonunately, any AM (for which the choice of Il corresponds to reasonable 
uncertainties) might yield corrclated pain. In effect, this will cause an underestimation of 
the uncenainties of equation (3.3.10), sinee not ail pairs will he independent. 

Yet another factor ta consider is how fi effects the fluctuations about E!. An 

inCl'ease in Il will cause a decrease in the amplitude of the sealter (in some non-uivial 

manner), such that a more accurate estimate of the hypersurface can he made. 

Unfortunately, there is no analytical method for solving for the optimum combination of 

W, Ak, Au and "_ sincc the possibility of biasing due the choice of W, the correlations, 

and Il for given W, M, Au and "- will differ ftom scene ta scene depending on the data 
and the OSI parameters that best describe the field. In effect, the above arguments can 

only guide our selection which will he. to some degree, arbitrary. 

In summary. W, !JJc and &l effect the accuracy of the estimates primarily in their 
contribution to Il. However. correlations and sample biasing must he considered when 

choosing them. An inCl'ease in "- will increase accuracy. however, il must alter the 
choicc of 4u and W and more pairs can he expected to fall outside the range of the data. 

The choices of W, M, Au and "- were made 5uch that: 

~ = EHE!n _ 0.05 . " (3.3.11) 
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Fipre 3.9: Effett of change in .6» on bypersurface of a Iheoretical ensemble average specttal energy 
c1ensily shown in thrce one-climensional cross-sections (or .6»=0.1, Au=O.2 and Au=O.3. Il can be seen lhat. 
Deal' the minimum, there is litlle dif(erence in the curvature (or the different cross-sections. 
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Figure 3.10: Effet' o( change in 4Jc on hypersurface o( 1 tbcoretical ensemble Ivenae spectral energy 
density shown in thrce one dimensional cross-sections (or 4i=l, Ak=2 and 4Jc-4. Il can he seen chat dûs 
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from cquation (3.3.10) with t=3 (c and/arc generally more accurate). This number was 

chosen because it is of the same order of magnitude as the error expected due to making 

the parabolic expansion over toc> large of a range about the fnt estimate of the minimum 

(i.e. the points uscd to estimate the parabola covered too large a volume for the surface to 

be weIl approximated by a parabola, sec below). The numbers quoted directly helow 

apply to an image size of SI2 x SI2 pixels, with multifractal parameters approximately 

those measured empirically in cloud radiances (sec table LI). The extent of the validity 

of thesc choices, with respect to • change in the multifractal parameters, Ile discussed in 

section 4.3. For this case, W, fJc, Au and "IIIU were chosen as: 

W=IOO !Jc=2 Au=0.2 Ua.. =1.2 ~ n-31000 

(3.3.12) 

It should be noted that there are many other possible choices that could have been 

made. In fact, other choices were tested and werc found to give similar results (which 

indicates the robusbless of the technique). 

(c) Parabolic expansion of E 2 

We now consider the problem of the parabolic expansion of the hypersurface. If 
E2 is found numerically at more points in parameter space, a better approximation can he 

made. The error on the parabolic coefficients, p(i), from equation (3.3.7), will result in 

an error in the minimum. However, the estimates of the parameters cannot he more 

accurate than the sample variance, E!a, and the curvature of the parabola permit. 

Therefore, it is not necessary 10 obtain excessive accuracy for an estimate of the 

hypersurface. Note that the uncertainties on the p(i), ~(I)' and thus the uncertainties on 

the minimum of the parabola due 10 crcrJ , are dependent on the esûmated uncertainties, , 
0:.. Therefore. the 'total' uncertainty on the parameters will not be the sum of the two. 

Actually, we will assume that the uncenainties of the minimum of the parabola due 10 

a;." will he negligibl~ if they are of the same order of magnitude as 0:.. Thus, the 

number of points. m, in parameter space where E2 will he calculated, will he chosen such 

that cr. -O.OS and similarly for the other parameter's uncertainties. 
r 
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The UDcenainties on the parabolic coefficients, cr(f)' can be found from the error , 
matrix of the least-squares fit of the m points to the parabola, E!, (equation 3.3.6) and the 

sample variance, s!, due to the seattcr about the hypersurface: 

2 
....2 _~ 
U(f)-, m (3.3.13) 

It would be algebraically tcdious to solve explicitly for the enof on the minimum due to 

O!", (the minimum is the solution to the system of equations shown in equation 3.3.8). 

Therefore. sinee only an order of magnitude estimate is required, we will estimate the 

error by examining the one-dimensional cross-section of the three parameters about the 

(known) minimum of E2 of a (simulated) single realization. That is, one-dimensional 

parabolas, which are functions of ooly one parameter white the others are held fixed, will 

be examined. The one-dimensional cross-section of the hypersurface as a function of t 

is: 

E2 (- 1- /, )- (2) 2 (2) (2)/, (1)\.., A (33 14) .. , C - clIIÏIl ' - _,t - P33 e + P31 c_ + Pn IIIÏD + P, ~ + .. 

1 iJ2 E2 1 iJ2 E2 1 iJ2 E2 iJE2 
where p(2) = ___ 0 p(2) = ___ 0 p(2) = ___ 0 pU) =_0_ and A is independent of 

33 2 iJe2· '1 2 iJeiJe' 32 2 iJeiJf' 3 de 
e. These are the pCi) of equation (3.3.7) with gl replaced explicitly with the OSI 

parameters and the ,_. are also explicitly replaced. 

The minimum is located at: 

-(c P(2) + /, p(2) + p(I») lIIÏIl 31 _ 32 , 

elllÎl! = (2) 
2p" 

(3.3.15) 

Assuming that the cr fi) are independent, the standard deviation of t .. due to fil(f) is: , , 

(3.3.16) 

where o!(1) is the standard deviation- of pCi). So, 
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(3.3.17) 

Obere are similar expressions for the other parameters.) Varying m gave the resuIts in 

Table 3.1. Thus, m=250 was used. 

m a in c due ta u,(f) a in/due to U,fII a in e due to u,(f) 

48 0.055 0.075 0.259 

250 0.008 0.013 0.036 

1500 0.001 0.002 0.007 

Table 3.1: EstimaIion of the s&andInI devialions in the measuremenl of the minimum of the parabola (and 
thus the parameter estimaaes) due w unceI1ainties in the paraboUc coefficients. 

Finally, the optimum range of the parabolle expansion must be eonsidered. 
Ideally, the range would correspond ta the neighbourhood, about the minimum, where the 
hypersurface is weIl approximated by a parabola. However, ü the range is too small, il is 

possible that the eurvatore would not be detectable over the fluctuations. If the range is 
too great, the higher order lerms in the expansion of the hypersurface become non­
negligible and eoors are introduced. The optimum range was estimated by performing 
the analysis on a theoretical ensemble average spectral energy densities. The results of 
IWo cases studied, over the ranges given in Table 3.2. are presented in Tables 3.3 and 3.4. 

Although Range 3 seems ta give the better resuIts in the cases below, when the analysis 
was perfonned on single realizations, il was found to be too small (relative ta fluctuates). 
Therefore, Range 2 is a bctter ehoiee when considering muItifractal parameters as thosc 
found empirically in elouds, since the biases are not tao great. The error due to the non­
infmitesimal range b expected to change depending on the choice of parameters, as weil 

as the fluctuations. It was judged that there was fairly small change in the contoun and 

that the morphology of the fields did not differ greatly due to changes of this magnitude 

in the parameters. FiJ1ll'C 3.13 shows IWo simulations whose parameter t differs by 0.1 • 
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c J e 

Range 1 tO.4 tO.3 tO.4 

Range 2 tO.3 tO.2 tO.3 
Range 3 tO.2 tO.1 tO.2 

Table 3.2: Definilioo of fIIDIes of the parabolic expansion of hypersurface used for Tables 3.3 and 3.4. 

c J e 

theoretical values 0.3 0.2 0.3 

Ran~e 1 0.318 0.208 0.387 

Range 2 0.302 0.202 0.354 

Range 3 0.300 0.200 0.313 

Table 3.3: ResullS of the anaIysis on theoretical ensemble average speclrBl energy density for diff«ent 
ranges in the parabolic expansion (Case 1). Sec Table 3.2 for defmilions of ranges. 

c J e 

theoretical values 0.1 0.1 0.5 

Range 1 0.080 0.096 0.535 

Range 2 0.084 0.098 0.501 

Range 3 0.091 0.099 0.501 

Table 3A: Results of the anaIysis on theoretical ensemble average spectral energy density for diff«ent 
ranges in the parabolic expansion (Case 2). Sec Table 3.2 for dcfmilions of ranges. 

It should he noted that if the absolute minimum is outside the range of the 

expansion. the parameter eSÙDlates will genera1ly be as weil. The estimates will he poor 
and will generally lie in the direction of the absolute minimum. Therefore. ü the 

parameter estimate lies outside the initial range. another parabolic expansion should he 

made, where the range should be adjacent to the initial and in the direction of the 

estimates. However, this was rarely the case sinee the fust estimates of the ravine scU'Ch 

were fairly accurate . 
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Fipre 3.13: Companson of mulufractal sImulations with simJ1ar OSI parameters: c-O.3, {-o.2, e-o.3 
(top), and c-o.3. 1-0.2, e-O.2 (bouom). The continuous Palette 3 is used. Red represenl hlg!! values and 
blue low. 
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(d) Details of the ravine search 

Since the ravine search found the values of E 2 expücitly for points al inlervals in 

the parameter space, it is desirable to l'Cstriet the search to a volume where the minimum 

is expected to lie. Resttietions on the generator (i.e. the real pans of the eilenspcccrum 

must he positive, sec section 2.4) could he used to limit the search. This restriction for 

the case of lineu OSI is: 

(3.3.18) 

(where d=l)This still corresponds to an infinite volume in parameter space, therefore, 

funher restrictions should he made. Il may he possible to use the fact that, after the 

generator parameters are found, equations of the fOIDl (2.3.S) and (2.3.7) are ta he used to 

approximate the balls. This imposes further consttaints on the generator parameters to 

ensore the validity of the OSI system (see section 2.4). These restrictions generally 

depend on both the generator and the ball parameters and. since the ball is not known a 

priori, they are of limited usefulness. Nevertheless. they may he used to estimate the 

relevant volume. 

If a sphero-scale is assumed to exist, the parameters must satisfy equation 

(2.4.31): 

(3.3.19) 

In most of the cases when the ball is approximated by an equation of the forms (2.3.S) or 

(2.3.7), this is nearly a sufficient restriction. For example, c2 < 1 and /2 < 1 (the 

condition of cquation 2.4.32) is imposed if any member of the family of balls has a. or Ilt 
equal 0 and the conditions of equation (2.4.34) are often more stringent than equation 

(3.3.19). Also, the magnitude of t is not expected ta exceed 1.5 (by inspection of the 

restrictions of cquations (2.4.30) and (2.4.34) and by the limited experience we have with 

geophysical fields analyzed 50 far). Therefore, the volume of the search can he chosen 50 

that il satis6es: 

t = [-1.5,1.5] (3.3.20) 
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Although, all possible cases will not satisfy these conditions, most will. If the 

absolute minimum lies outside this regiont the ravine search will not fuld a minimum 

within the volume and the search must be readjusted. This solution is not ideal, however, 

if the restrictions are not made, computation time inereases substantially. One of the 

simulations that was analyzed (sec Olapter 4) had parameters that did not satisfy equation 

(3.3.20) and valid results were still obtained. Examples of a ravine search arc plotted in 

section 4.1 and S.2. 

3.3.3 Estimation 01 the GSI Bail Parameters 

The next step in the Scale Invariant Generator technique is the estimation of the 

family of balIs. Once any one member of the family of balls is found, the whole family 

cao be generated. sincc the generator has already been estimated (see section 2.1 and 

3.3.1). Thus, the estimation consists of fmding the parameters that describe a unit ball. 

As stated in section 2.3, the balls will he approximated by the second or fourth order 

bivariate polynomials of equation (2.3.1) and (2.3.2), respectively. The relevant 

parameter space will therefœe he three or five dimensional. 

Unlike the generator parameters, the ball parameters may be found using an 
analytic method. The ball parameters may he found by fitting a curve of the appropriate 

form to a levelset of the spectral energy density (as discussed in section 3.2). It was 

stated that the large fluctuations about the ensemble average contours cause undesirable 

errors in the parameter estimates. Ideally, the spectral energy density, P, could be 

smoothed before the fitting procedure. However, conventional smoothing (e.g. averaging 

adjacent data points) causes non-uniform spreading of the contours of P and 

consequendy, the smoothed field will not he described by the same OSI parameters as the 

actual P. 

Assuming that the estimates of the generator parameters, found using the error 

function of equation (3.3.S), E2
, are reasonably accurate, they can be used to 'enhance' 

the CvdtOurS of P without effecting the scaling of the field. Regardless of this 

assumption, fitting a curve to a levelset of the enhanced P will find the best estimate of a 

unit ball given the estimated generator parameters. 
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The enhancing technique consists of applying a running average to the data points 

tltat lie on the same trajectory (sec section 2.1). The same principle, that was used for 

E
2

, is implemented again i.e. the faet that the amplitude of any two data points on the 

same trajectory will be on average related by equation (3.3.1): 

(3.3.21) 

Thus, if the amplitude of all the points along a trajectory, k 1
2 
= l~k 1

1 
' are transfonned to 

a point, k 11 , then the ttansformed amplitudes, A~P(Â.~k.\J, will fluctuate about the 

ensemble average value, (P(k11 )). Averaging the l~P{Â.~kll) will then give an estimate 

of (P(k1J). 

As in section 3.3.1, an approximation is made such that only M data points are 

used in the ronning average. That is, to generate the enhanced P, p •• (k J ), the amplitude 
of each data point, P(kJ ). is replaced by: 

(3.3.22) 

where li were incremented by intervals of Au = 0.2 (as in section 3.3.2) and M was 

chosen to he six. Il can he sec from the figures in Chapter 4 that the enhancing technique 

bas a substantial smoothing effect. This effeet can a1so be seen in figure 3.14, where a 

levelset of a P.,. (k j) and one of a normal single realization are compared. The points 

correspond to the data points whicb bad amplitude 16.00 ± 0.04. 

Here, the parameters of a unit ball, ~ at sorne chosen PI' were found by fitting a 

curve ofform of equation (2.3.5) or (2.3.1) to a levelset of P .. (kJ)' Ifincreased statisties 

are required, the parameters of several such balls (by choosing several Pl) can he 

estimated and transformed (with the known generator parameters, using the idea of 

section 2.4) to sorne arbitrary scale, where they can be averaged. The scale ratio of the 

ttansformation will he: 

( 
P )-r. l = -=..L 

P.,. 
(3.3.23) 
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Filure 3.14: Comparison of levelsets of the spectral energy density. TOP I..E.fT: levelset of enhanced P. 
TOP RlG HT: Ievelset of • single realizaIion (before enhancing) al the same leveL A curve of the fonn 
(2.3.5) is drawn Ihrough the Ievelseas of the enhanced P (boUam left) and sina1e realiution (boaom Jeft). Il 
can be seen that fiaing • turve 10 the pre~ leve1set causes large biases. 



where p .. arbittarily determines the choice of scale. Altematively, all the points of 

P .. (k j ) can he transformed to sorne arbitrary scale using the known generator, thus 

increasing the number of points used in the estimation of the unit baIl. The scale ratio of 

the transformation will he: 

(3.3.24) 

where p .. is chosen arbittarily and detennines the final scale. 

Given that the family of balls are described by equation (2.3.1), it May he 

instructive to discover whether a sphero-scale exists. This can be done by using the 

equations of 'ellipticity', E = t:- -l, where C?n.Jar and Q,....... are the major and minor 

axes of the ellipse (ball) that is generated !rom a transformation on a sphero-scale, (Pflug, 

1991a). The ellipticity can be found as a function of the scale ratio of the transformation 

given the linear aSI generator parameters. We, however, are interested in the inverse 

problem. The baIl, and thus it:; ellipticity, are Down, therefore, Ü the ball can he 

generated from a sphero-scale, the scale ratio corresponding to this transformation can he 

found from the inverse of the ellipticity equation. The sphero-scale can then he found by 

ttansforming the ball with the calculated scale ratio. H no sphero-scale exists, the 

transformed ball will not correspond to a sphero-scale. 

The choice of whether to use the second or fourth order equations to model the 

halls is somewhat arbitrary. Often the choice is clear by inspection of the enhanced 

spectral energy density. However, a more objective method can be implemented if the 

curve that is fit to the levelset of P is found using the method described direcdy below. 

Noting that X2 of equation (2.3.5) is the sum of the second order terms of a Fourier 

expansion, then the ball parameters are simply found by taking the Fourier transfonn of 

X2 • where r is of the positions of the data points as a function of angle. This can he 

done by discretizing the angles and calculating a Fast Fourier Transform (sec Appendix A 

for details). The higher order terms, of the ttansform, are assumed to he negligible, or 

equivalendy, they ~ assumed to he due ta the fluctuations about the contour of P. The 

same method is applicable to the fourth order case (equation 2.3.7), except that Yr4 is 
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the sum of the second and fourth arder telUlS of the Fourier series. Note that the second 

and fourth order equations require the transformation of different functions i.e. X2 or 

Y,4' The most simple case (second order) will initially be assumed ta be adequate. If 

the founh order terms, determined from the ttansform, are comparable to the second 

order terms, then il is clear that a fourth order expansion is necessary and consequently 

the founh order corve should be found. Conversely. if the fourth order terms are small 

(i.e. less than a tenth of the magnitude of the second order tenns), then the second order 

curve is used. This was the criteria for determining the appropriate order of equation to 

mode) the baIls. 

3.4 Procedure of the ScaIe Invariant Generator Technique 

The procedure of the Scale Invariant Generator technique can be summarized in 
point form as follows: 

[1] The anisotropic scaling exponent, s, is estimated!rom the isotropic spectral slope, 

Il. via s = fJ + D., -1. Here, s = fJ+ 1 (sec Pflug 1991a). 

[2] The spectral energy density, p. is found by using an FFf technique (Press et al., 
1986) ta calculate the Fourier transfonn of the field. 

[3] The error function, E2 of equation (3.3.5), is found numerically at intervals in 

parameter space. The choice of pairs is made as in equation (3.3.12) (sec section 

3.3.2b). 

[4] The rust estimates are found using the nvine search (see sections 3.3.lb, 3.3.2d) 
over the volume in equation (3.3.20). 

[5] The estimate of s is verified by investigating E2 as 1 function of s while the 

generator paramelers are held flXed at their fust e~til.~:ate values. 

[6] A parabolic expansion of E2 about the fust estima1!:s is made over Range 2 of 

Table 3.2 (sec section 3.3.2c for details). The parameter ~stimates correspond to 
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the minimum the parabola. The uncenainties on the estimates are given by 
cquation (3.3.10). 

[7] P is enhanced using the generator parameters estimated above (sec: section 3.3.3). 

[8] The parameters of a unit baU are found by fitting a curve of the appropriate fcJnn 

ID a levelset of the enhanced P (see section 3.3.3). The appropriate form is 

detennined by the criteria given in section 3.3.3. 
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Chapter4 

RESUL TS ON MUL TIFRACT AL SIMULATIONS 

4.1 Results OD Multifractal Simulations with a Variety or GSI 
Parameters 

In this chapter. the Scale Invariant Generator technique is tested using simulations 

of continuous multiplicative cascades yielding universal multifractals (Schertzer and 

Lovejoy. 1987b; Wilson ct al .• 1991). The basic steps in the simulation are: (a) the 

production of a '8-correlated' (extremal) Uvy noise, the 'sub-generator' (this detcrmines 

the type of probability distribution). (b) filtering to produee an (anisotropie) il noise, the 

multifraetal generator, (e) exponentiation to produee the eonserved multifractal, (d) a 

fmal (anisotropie) fractional integration (diffcn:ntiation). For details of the method used 

to render the algorithm anisotropic. see Pecknold et al. (1993). 

A variety of düferent generator and ball parameters were tested following the 

procedure described in section 3.4. The multifractal parameters werc the same for caeh 

simulation: a = LS. CI = 0.1. H =0.4. These values arc similar to those found 

empirically in cloud radiances (see Table LI). The effects on the accuracy of the 

technique due to changes in these parameters are studied in section 4.3. The simulations 

considered were 512 x S12 pixels in size. (whieh is a typical size of many geophysical 

data sets). The simulations were all generatcd from the same random sub-generator 50 

that the changes in the characteristies of the fields due ta the different aSI parameters 

could he scen more elearly. 

The results of each simulation are prcsented in a separate figure and a separate 

table. On the top left of the figure is the simulated field in real space, presented using the 

eontinuous Palette 3 of Appendix B. Ali other images arc presented using the 

discontinuous Palette 1. On the top right is the spectral energy density. P. of the 

simulation. On the bottom left is the enhanced spectral energy density. On the bottom 
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ript the balls, lenerated from the estimated parameters, are drawn over P; the accuracy 

of the estimated parameters can be seen quite well in this imale and also by comparison 

with the enhanced P. The simulated and estimated parameters with uncenainties are 
presented in a table directly following the figure. A discussion of the results and the 

accuracy of the estimated UDcenainties is given in section 4.2. 

ln order for the estimated ball parameters to he comparee! 10 their theoretical 

values (the parameters of the unit ball of the simulation), the estimated parameters must 

describe a ba1l at the scale corresponding 10 the unit ball. That is, the transformation on a 

ball, which is induced by Tl' must be found (as in section 2.4, with the exception that the 

infmitesimal transformation cannot be used) and used to transfonn the ball, described by 

the estimated parameters, to the appropriate &Cale. Since, for the founh order case, the 

algebra involved in this test is non-trivial, another, cqually valid test was used. Note that 

if the estimated ball parameters are accurate, they should describe a contour of constant 

P. Thus, the accuracy of the fit can he determined by observing if the value of an 

ensemble averale P, with the theoretical generator and ball parameters, is constant along 

the estimated balle The mean-squared deviation from the constant value of P cao be used 

as a measure the goodness of the fit The percentage deviations from the constant were 

found 10 be very close 10 1 % in ail cases. 

ln application 10 geophysical fields, it is instructive to discover if a sphero-scale 

exists. The procedure of finding the sphero-scale. discussed in section 3.3.3 (which also 

involves a transformation of the balls to another scale), was tested on the simulations 

when the appropriate curve was second order. The results are presented in the table of 

the corresponding simulation. 

A typical example of the ravine search, described in section 3.3.lb and 3.3.2d. is 

given for Simulation 1. The fml estimate values are given in the figure caption. The 

graphs &Je nol presented in each case since the results are similar. 

73 



• 

• 

1 

'~'''''' 
t~· 

+., 

Figure 4.1 Simulation 1 : in real space (top left), spectral energy dcnsity (top rigbt), 
enhanced spectral energy density (bottom left) and spectral energy density witb estimated 
GSI contours (bottom right). See Table 4.1 for simulation and estimated GST parameters . 
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Fipre 40th: The results of a ravine search for simulation 1 (sec figure 4.1). The projeclions of die ravine 
onlO 1hc c uia (top), 1hc/uis (middlc) and die e axis (boaom). ne lUIIlysis VlU pcrformed on simulation 
1. The parabolas fil near the minimum arc shown. The farst esti.matcs are: for c: ' .. = 0.4, for 1: 
'ea = 0.2 and for t: 'o~ = 0.4. 

• 



• 

• 
Figure 4.1 Simulation 2: real space (top left), spectral energy density (top right), 
enhanced spectral energy density (bottom lett) and spectral energy density with estimated 
GSI contours (bottom right). See Table 4.2 for simulation and estimated GSI parameters . 
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TABLE 4.1 : Estimated Parameters 'or SIMULATION 1 

parameters s c f e sphero-scale 

theory 2.64 0.3 0.2 0.3 0.146 

estimated 2.69±0.04 0.28 ±0.01 0.20 i 0.01 0.31 ±0.O3 0.149 

TABLE 4.2 : Estimated Parameters 'or SIMULATION 2 

parameters s c f e sphero-scale 

theory 2.64 -0.2 0.2 -0.6 0.098 

estimated 2.53 ±0.04 -0.19 ± 0.01 0.18 i 0.01 -O.S4±O.06 0.100 

The sph~scales are given in units-I , where the external scale is defmed to he at 1 unit. 
Note that the mors werc not calculated on the sphero-scale mcasuremenlS since the 
crrors that were found on the baIl parametcrs (-1%, from mean-squared deviation from a 
contour of ensemble average P) arc magnified non-trivally with a &cale transformation. 
The sphero-scale was round with the method discribed in section 3.3.3. 
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Figure 4.3 Simulation 3: in real space (top le ft), spectral energy density (top right), 
enbanced spectral energy density (bottom left) and spectral energy density with estimated 
GSl contours (bottom right). Sec Table 4.3 for ~imulation and estimated GSl parameters . 
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Figure 4.4 Simulation 4: in real space (top lcft), spectral energy density (top rigbt), 
enhanced spectral energy deosity (bottom left) and spectral energy dcosity with estimated 
GSI contours (bottom right). See Table 4.4 for simulation and estimated GSI parameters . 
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TABLE4.3 : Estimated Parameters lorSIMULATION 3 

parameters s c f e spher~sca1e 

theory 2.64 0.5 0.2 2.0 0.146 

estimated 2.64iO.02 0.46iO.02 0.20±0.01 1.92fO.03 O.ISO 

TABLE 4.4 : Estimated Parameters lor SIMULATION 4 

parameters s c f e sph~sca1e 

theory 2.64 0.2 -0.4 -0.2 0.059 

estimated 2.60tO.03 0.23fO.Ol -0.33 ± 0.02 -0.14 f 0.03 0.061 

The sphero-scales arc given in units°1, where the external scale is dermed lO he at 1 unit 
Note that the errors were not calculated on the sphero-scale measuremcnts since the 
CITOrs that were ft'und on the baU parameters (-1 %, from mean-squared deviation from a 
contour of ensemble average P) BR magnified non-ttivally with a scale transformation. 
The sphero-scale was found with the method discribed in section 3.3.3. 
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Figure 4.5 Simulation 5: in real space (top left), spectral cnergy density (top rigbt), 
enbanced spectral energy density (bottom left) and spectral energy density witb estimated 
GSI contours (bottom rigbt). See Table 4.5 for simulation and estimated GSI parameters . 

.. 



• 
TABLE 4.5 : Estimated Parameters for SIMULATION 5 

parameter theory estimate 

s 2.64 2.63 ±0.03 

c 0.1 0.05 ±0.01 

/ 0.1 0.08 ±0.01 

e 0.5 0.51 ± 0.01 

ro ~ ~ tl:2 b2 

5.81.103 -3.59.103 2.59.103 0.36.103 4.14.103 

Note that the balls were approximated by curves of the form in equatioD (2.3.7) and that 
the errors in the ball parameters are approximately 1 % (measured by the deviation from a 
a contour of an ensemble average. P). The ball parameters are given in (units)4, where 
the extemal scale is defined as 1 UDÏL 
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Figure 4.6 Simulation 6: in real space (top le ft), spectral energy dcnsity (top right), 
enbanced spectral energy density (bottom left) and spectral energy density with estimated 
GSI contours (bottom right). See Table 4.6 for simulation and estimated GSI parameters . 
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TABLE 4.6 : Estimated Parameters for SIMULATION 6 

parameter theory estimate 

s 2.64 2.63±0.02 

c 0.23 0.19 i 0.02 

f -0.19 -0.19iO.01 

e 0.36 0.32iO.03 

'0 lit ~ a,. b2 

1.01.103 -0.01.103 0.69.103 -0.28.103 -0.10.103 

No~ that the balls were approximated by curves of the form in eqnation (2.3.7) and that 
the mors in the bail parameters are approximately 1 % (measured by the deviation from a 
a contour of an ensemble average, Pl. The ball parameters are given in (unitst. where 
the external scale is defined as 1 unit. 



4.2 Discussion of Results and Investigation of the Accuracy of the 
Uncertainties 

From the results on the simulations of section 4.1, it can be seen subjectively tha~ 
the estimated balls. drawn over P, seem to reasonably match the contours of P. However, 

in many cases, the discrepancies between the estimated and theoretical values are 

somewhat Jarger than the estimated standard deviations. A closer investigation is 

necessary because il is not known if the discrepancies are due to the realization to 

rea1ization variability (in which case the estimated uncertainties, 0:., are too smalI) or if 

they are an indication of a biased estimation. Thus, it is necessary to investigate the 

accuracy of u: .. 
In chapter 3, il was slated that the uncertainties on the estimates of the OSI 

parameters, 8 .. , due to the statistical nature of the data, would be estimated as: 

(4.2.1) 

where ElIA are the diagonal elements of the error mattix, n is the number of pairs of data 

points (as in equation 3.3.S) and E!m is the value of the hypersurface, E 2
, at ils 

minimum. 

The a!t are expected to be reasonable estimates of the actual uncenainties ü the n 

pairs are effectively independent, if the hypersurface can be reasonably approximated by 

a parabola and if the statistics are approximately Oaussian. However, these ideal 

conditions will not he met and it is unknown exactly how the deviations from the ideal 

will effeet the accuracy of the 0:.. It is possible to check the accuracy by using the fact 

that o! is an estimate of the realization to realization variability in the parameter 

estimates (due 10 the statistical fluctuations of the data points). That ls, ü an ensemble of 

realizations are analyzed, then the actual uncertainties are the variances of the parameter 
estimates about their respective mean vall1f'!s. Therefore, in order tCl obtain a direct 

estimate of the actual uncenainties, the &nalysis was performed on ten different 

simojlations that were created with the same OSI and multifractal parameters but with 

different random sub-generators (i.e. ten different realizations). 0:. can then be 

compared to the uncertainties obtained !rom the (sample) variances, s: .. of the parameter 
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estimates (of the ten realizations) about their mean values, 1. (i.e. a direct measure of the 

realiution to realization variability). Table 4.7 shows the estima tes from the ten 

simulations. The standard deviations quoted 1w""e those calculated from equation (4.2.1). 

The mean values, g,. are listed in Table 4.8 (with the actual theoretical values for 

comparison). The standard deviations calculated from s:. are listed in Table 4.9 along 

with lypical values of CI, •• The generator param{'lers of the simulations were: e=OJ. 

/=0.2, e=O.3, with spbero-scale at 0.30 units·1 (where the outer scale is measured as 1 
unit) and the simulation was 512 x 512 pixels in size (see figure 4.1). The procedure, 

described in section 3.4, was followed. 

simulation e 0, f CT, t u. 

1 0.319 0.010 0.168 0.0Q9 0.395 0.025 

2 0.306 0.010 0.166 0.009 0.328 0.023 

3 0.297 0.010 0.203 0.009 0.300 0.023 

4 0.316 0.010 0.214 0.009 0.379 0.024 

5 0.324 0.010 0.183 0.009 0.366 0.022 

6 0.329 0.010 0.199 0.009 0.305 0.025 

7 0.295 0.011 0.167 0.009 0.292 0.026 

8 0.342 0.010 0.183 0.009 0.489 0.023 

9 0.322 O.ml 0.183 0.009 
-'~':"-""":1q. 

0.288 0.026 

10 0.292 0.012 0.192 0.009 0.331 0.027 

TABLE 4.7 : Parameaer estimates and uncertainties for ten different realiuJ.UC'IS (with GSI parameters: 
c=O.3. /=02. t=O.3) found using SIG. 

Ri e / ~ 

meanvalues 0.314 0.186 0.347 

actual values 0.3 0.2 0.3 

TABLR 4.8: Mean values. l" oftheestimar.es oflhe Plramer.ers of the rcn realizIûons lisIed in TabJc4.7 
and abc actual simulaûon values. 
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gl; c f e 

s,. 0.015 0.0l6 0.059 
0',. 0.010 0.009 0.024 

TABLE 4.9: 'The srandard deviations. S,.' calcu1?Jed from the variance of the estimales of the pmmeters 
(Iisled in Table 4.7) about 'lI; (listed in Table 4.8) and typical estimated standard deviations. a,., expected 
from equation (4.2.1) (as in Table 4.1). 

Thus. it can be seen that a;. are, in fact, underestimates of the actual 

uncenainties. However, they are within a factor of two (at worst), which is quite 

reasonable. The discrepancies between s:. and cr,. are most likely caused by the 
following factors which were not taken into account in the calculation of a:.: the 
statistical dependence of the n pairs, the uncertainties in the estimates of the parabolic 
coefficients and the non-Gaussian nature of the statistics. Since these factors (and thus 
the actual uncerWnties) are expected to depend on the OSI and multifractal parameters, 
in general, il is unknown how the discrepancies can he used to increase the accuracy of 

a!.. However, it is expected that the largest change in the factors will come with a 
change in the multifractaI parameters and, as a tirst estimate, the effects of the factors can 
he assumed to be approximalely inde pendent of the aSI parameters. With this 

assumption, (beuer) estimates of the uncertainties of the analY!-lis on the simulations of 

section 4.1 can possibly he obtained by adding the differences between cr,. and s: .. of 

this section. to the uncertainties of section 4.1. We do not claim that adding the 

differences is a theor~tically correct method, but merely state that it could plausibly be an 

adequate approximation. 

Thus. the lesults of section 4.1 should be reviewed while Doting the revised 

standard deviations. cT,.' (where 0: = U c + 0.01. ut = u, + 0.01, and Û, = u. +0.04). Il 
can he seen that six of the eighteen estimates were further than one (revised) standard 
deviation away from the theoretical values. Most of these estimates wcre just outside this 
range and only two were further than IWo standanl deviations. This gives an indication 

that our revised standard deviations are reasonable and that the bias is smaIl. Although 
the possibility of bias cannot he ruled out, from these findings, wc can conclude that an 
upper bound on the bias is one standard deviation. 
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• Another pcint of interest is the discrepancies between the mean val ues of the 

estimates, 'll' and the theoretical values of the parameters. These discrepancies could he 

an indication of bias, since the standard deviation in gt is: 

i.e. l" do not lie within one standard deviation of their theoretical values. Note, however. 

that the bias is still somewhat small (-0.01 of c and/; -0.03 for e). Although this bia.~ 

tends to overestimate c and e. and underestimate f. there seems to he no evidence of a 

systematic overestimation (or underestimation) of the parameters in section 4.1. TItis 

implies that the bias may be different for each generator. Sorne bias could he due to the 

non-parabolic characteristic of the hypersurface (see section 3.3.2c). This bias could then 

be reduced by decreasing the range of the parabolic expansion. Because this is expected 

to increase the reallzation to realization variability, it is unclear if the change would yield 

better estimates. 

In conclusion, it can be stated that the estimated uncertainties. 0:., are in faet an 

underestimation of the actual uncertainties, however, in general, the results obtained 

above cannot he used to improve 0:.. Since a;. are expected to he roughly within a 

factor of NO of the aetual uncertainties, they will he maintained as the estimates, with the 

understanding that they are most probably underestimates. Considering a revision of the 

0:. ' the parameter estimates found in section 4.1 seem to he reasonable. A1though a bias 

is expected, cvidence shows that it will he reasonably small. The bias is cxpected to be 

different for different generator parameters, however, the study in section 4.1 likely 

shows that the bias is small in a variety of cases. Finally, it can be seen, by inspection of 

the images of the estimated balls drawn over P, that the generator and ball parameters 

have been reasonably well approximated. This test is the best measure of the accuracy of 

the fit since, from the images, it can be judged u the bias in the estimates is too great. 
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4.3 Tbe Effects of the Multifractal Parameters on tbe GSI Parameter 
Estimates and tbeir Corresponding Uncertainties 

The results of the analysis (in section 4.1) on simulations, with multifraetal 

parameters comparable to those found empirically in clouds, ~hows that the Seale 

Invariant Generator (SIG) technique could plausibly he used in the study of actual cloud 

radiances. However, sillce SIG is applicable to many geophysicall fields, it would he 

beneficial to investigate the accuracy with which it measures the QSI parameters of fieltis 

with different statistical properties (c.g. different anisotropie scaling exponents and noise 

characteristics). For universal multifractals, these properties are described by the 

multifractal parameters: a. CI and H (see section 1.2 and Schertzer and Lovejoy, 1987, 

1991a). Therefore, by varying the multifractal parameters, the acrw-acy, with which SIG 

analyzes fields with different properties, can be examined. 

It is expected that the anisotropic scaling exponent. s, will be a major detenninant 

of the accuracy since it determines the rate of deeay of the amplitude of the speeb. al 

energy density. P, with scale. As s decreases the contours of P beeome less 

distinguishable, therefore il is expected that there exists some eritical s at which the 

technique will no longer yield reasonable estimates. Equivalently. it is expected b'1at the 

curvature of the hypersurface will decrease with decreasing s and thus, the uncertainties 

in the GSI parameter estimates will increase. The analysis was performed on three 

theoretical ensemble average spectral energy densities of different s, in order to 

investigate its effcet on the hypersurface. The resuIts are presented in the one­

dimensional cross-sections of the hypersurfaces shown in figure 4.7. It can be seen that s 
has a substantiaI effect on the cu.-vature. 

a, Cl and H determine the anisotropie scaling exponent, St in the following 

manner: 

where D,. is the elliptieal dimension (see section 2.1). Sinee we will consider D,. = 2 to 

he constant, the uncertainties will predominately depend on Cl and H. His expected to 

effeet the results solely in its contribution to s, however, CI is a direct measurc of the 
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amplitude of the noise (i.e. the contours will he less distinguishable due to an increase in 

CI)' The weak dependence of the uncenainties on a will not he studied. 

Table 4.10 con tains the results of the analysis performed on ten simulations 

(c=O.3,/=O.2, ~.3) with different values of CI' H and a were held ~on~tant al 0.4 and 

1.5, n:spectively. The technique as described in section 3.4 was used. As an example, 

the uncertainty of c is plotted as a function of CI in figure 4.8. The results are similar for 

the uncertainties off and e. An exponential function bas been fit to the data. Note that 

the uncertainties have been plotted and the standard deviations of Table 4.10 will increase 

less slowly. 

Cl S C (JI' f a, e (J 

0.05 2.78 0.293 0.011 0.186 0.009 0.383 0.025 

0.10 2.69 0.293 0.012 0.190 0.009 0.334 0.028 

0.15 2.61 0.302 0.013 0.199 0.009 0.319 0.029 

0.20 2.53 0.272 0.015 0.208 0.010 0.279 0.035 

0.25 2.45 0.275 0.015 0.216 0.010 0.291 0.033 

0.30 2.38 0.256 0.018 0.210 0.010 0.269 0.036 

0.35 2.30 0.295 0.019 0.218 0.011 0.312 0.034 

0.40 2.23 0.304 0.021 0.232 0.011 0.307 0.037 

0.45 2.16 0.340 0.021 0.231 0.012 0.346 0.033 

0.50 2.10 0.274 0.026 0.227 0.012 0.262 0.039 

TABLE 4.10: The dependence on CI of the parameler estimates and uncertainties of uoiversal 
multifractal simulations found using SIG. H = constant = 0.4. 

The UDcertainties were then studied as a function of H (for constant Cl = 0.1). See 

Table 4.11. It was found that the technique as described in section 3.4 was only able to 

obtain valid resulls for H ~ -{l.1 (s ~ 1.~9). For values of H smaller than -0.1, the 

curvature of the hypersurface became negligible compared to the fluctuations about the 

hypersurface and consequently. the uncenalnties became very large. The uncertainties 

are plotted as a function of s in figure 4.9 (there is a linear relation between s and H). 

91 



20~ ____________________ • ________ ~ 

10 

5 

O+---__ --~--~--~~--~--_r--~ 
-0.2 0.0 0.2 0.4 

H 

Figure 4.9: Effeet of change in H on uncenainty of the estimale of the GSI parameter c. The data is 
contained in Table 4.11. A smooth ClD'Ve bas been fil ID the data. 

7T--------T--------------------------------~ 

6 

3 

2 

1+-~--~-r~-------~--~_r--~~~ 

1.7 1.9 2.1 2.3 2.5 2.7 

s 

+ Cl 
A H 

Figure 4.10: Effect of change in Cl and H (plou.ed as a function of s)on uncatainty of the estimaIe of 
die OSJ pararneter c. The daIa is contained in Tables 4.10 and 4.11. Il cao be seen that CI bas a greater 
effeet &han H. An expooential function bas been fit ID the data. 



/1 s c cr f cr, e cr. 

0.4 2.69 0.293 0.012 0.190 O.n09 0.334 0.028 

0.3 2.49 0.292 0.014 0.191 0.010 0.332 0.029 

0.2 2.25 0.302 0.015 0.186 0.011 0.345 0.033 

0.1 2.02 0.282 0.018 0.194 0.013 0.299 0.039 

0.0 1.80 0.286 0.022 0.198 0.015 0.283 0.045 

-0.1 1.59 0.270 0.038 0.1~8 0.023 0.278 0.084 

TABLE 4.11: The depcndence on H of the parametez estimates and uncertainties of universal multifractal 
simulations round using SIG. CI = constant = 0.1. 

In figure 4.10, both the effects of CI and H are plotted as functions of St in order 

to see their relative effects (exponential functions are fit to the data). It can he seen that 

the effeet of CI is greater than that of H. However, in the range studied, valid restùts 

were obtained for all Cl' It is expected there will also be a maximum CI' above which 

valid results will not be possible. In fact, there will he a combination of effects due to Cl 
and H. It may he plausible to assume that (as a tirst estimate) the efrects are additive i.e. 

that the rate of rapid increase in the uncertainties due to Cl will be approximately the 

same, regardless of the value of H, and likewise for H with respect to CI' This, however, 

was not studied further. 

The above results indicate that SIG, as described in section 3.4, will probably 

yield valid estimates for a range of multifraetal parameters that is adequate to inelude the 

majority of the fields of Table 1.1. The parameters of pollutant and seismie fields are 

possibly outside the range of va1idity. Howevert it should be notOO that changes can he 

made to increase this range. For example, by changing the range of the parabolic 

expansion (see section 3.3.2b), valid results were obtainable for H ~ -(J.3 (S ~ 1.16). 

The results of the analysis, where the range of expansion was increasOO for c and e to the 

fusl estimates ± 0.6, and for f to ± 0.4, are shown in Table 4.12. Note the discrepancies 

of the estimated parameters from the theoretical (simulation) parameters are mueh greater 

for this case. This is likely due to the increascd range of expansion. 
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H s C Clt:. '- Cf, e Cl. 

-0.2 1.38 0.274 0.02 0.132 0.02 0.294 0.05 

-0.3 1.16 0.266 0.02 C.119 0.02 0.220 0.05 

TABLE 4.ll: The de?endence on H of lt}e parameter estunates and uncertainties of universal mulufracial 
simulations fOlmd using SIG. Cl = co~tant = 0.1. Range of expansion is defmed m text. 

In conclusion. we can state that the technique in its fonn of section 3.4 is valid for 

most of the fields described in Table 1..i.. li the analysis of fields outside this range of 

multifractal parameters is required. an adjustment in the range of the parabolic expansion 

can be made (with the consequence of an increase in bias). This conclusion was made for 

a given set of aSI parameters and would be expected to change slightly depending on 

them. However. the conclusions are expected to be reasonable in most caseL 
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Chapter 5 

ANAL YSIS ON GEOPHYSICAL FIELDS 

S.l Analysis on Satellite Cloud Radiances 

In this section, the Scale Invariant Generator technique (as in section 3.4) is used 

to analyze satellhe cloud radiances. The radiances were obtained from the NOAA-9 

satellite, in a channel of the A VHRR sensor that is sensitive to visible wavelengths. In 

panicular, the channel is sensitive to the wavelengths hetween 0.5 and 0.7 J..Lm. The 

scenes were obtained with the sensor centered at a point over the Aùantic Ocean, east of 

Florida (longitude of 70' wes( and latitude of 27.5' north). These scenes were used in a 

systematic study of the energy spectrum of cloud radiances (Lovejoy et al., 1993). The 

resolution of the sensoris 1.1 km and the image is 512 x 512 pixels in size. 

The presentation of the results is identical to that of section 4.1. 

The standard deviations quoted were calculated from equation (3.3.10). However, 

as discussed in section 4.2, they are expected to he underestimates. The error on the balls 

is expected to he approximately the same al) in the case of the simulations. The accuracy 

of the estimated parameters can be seen quite weIl by observing the similarity betweeD 

the estimated and actual contours of P (image on bottom right of figures) and also by 

comparison with the enhanced P (bottom right of figures) . 
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Figure 5.1 Cloud Scene 1 : 10 real space (top left), spectral energy dcnsity (top right), 
enbanced spectral energy density (bottom lcft) and spectral energy density with cstimatcd 
GS! contours (bottom righ t). See Table 5.1 for esti mated as 1 parameters . 
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TABLE 5.1 : Estimatecl Parameters for Cloud Sc:ene 1 

parame ter estimate 

s 2.69±O.01 

c -o.05±0.01 

f -0.13 ± 0.02 

e O.47±0.06 

a2 -0.202 

To 60.3 

llt 8.6 

". -1.6 

sphe~scale 12.7 km 

Note that the balIs were approximated by curves of the fonn in equation (2.3.S). Using 
the method discussed in section 3.3.3. the field was found not to have a sphero-scale. 
Ball parame ter units are (km)2 . 
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• 
Figure S.2 Cloud Scene 2: in real space (top left), spectral energy density (top right), 
cnhanced spectral energy density (bottom left) and spectral energy density with estimated 
GSI contours (bottom right). See Table 5.2 estimated GSI parameters . 
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TABLE 5.2 : Estimatecl Parameters for Cloud Seene 2 

parametC' estimate 

s 2.45 ± 0.01 

c -0.11 ±0.01 

f -0.15 ± 0.02 

e -0.01 tO.03 

a2 0.035 

'0 101.2 

6t 65.5 

'" 
-37.4 

sphero-scale -

Note that the balls were approximated by curves of the fonn in equation (2.3.5). Using 
the method discussed in section 3.3.3, the field was found not to have a sphe~sca1e. 
Ball parametcr units are (kmi. 
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Figure 5.3 Cloud Scene 3 : in real space (top le ft), spectral energy density (top rigbt), 
enhanced spectral energy density (bottom left) and spectral energy density witb estimated 
GSI contours (bottom right). See Table 5.3 for estimated GSI parameters . 



TABLE 5.3 : Estimated Parameters for Cloud Sc:ene 3 

parameter estimate 

s 2.34±0.02 

c -().05 ± 0.02 

f 0.12±0.02 

e -().12 ± 0.06 

a'l 0.003 

70 96.1 

lit 40.3 

bl 31.1 

sphero-scale -

Note that the balls were approximated by curves of the form in equation (2.3.S). Using 
the method discussed in section 3.3.3, the field was found not to have a sphero-scale. 
Bali parameter units are (km)2. 



5.2 Analysis on Sea lee Renectivities 

B~low. the results of SIG on sea ice data are presented. Tht' analysis was 

performed on the SAR reflectivity data. The scenes were taken by the Jet Propulsion 

Laboratory (JPL) airbome SAR (AIRSAR) operating in the L-band (25 cm) wavelength 

range. The transmined and reflected beams were linearly polarized in the horizontal and 

vertical, respectively. The scenes were obtained over a section of the Beaufort Sca, froID 

an altitude of 9 Jan, al a latitude oi 76- nonh and a longitude of 16Y west 

The presentation of the data is the same as in the previous sections. The results 

are discussed in section 5.3 
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• 
Figure 5.4 lee Scene 1 : in real space (top left), spectral energy density (top right), 
enbanced spectral energy density (bottom ldt) and spectral energy density with estimated 
GSI contours (bottom rigbt). See Table S.4 for estimated GSI parameters . 
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TABLE 5.4 : Estimatecl Parameters for Sea Iœ Scene 1 

parameter estimate 

, 2.05 ±0.01 

c 0.13 ±0.01 

/ - 0.06± 0.01 

e - 0.10±0.OS 

a2 0.011 

ro LOl·10~ 

~ -{).S8·10 ..... 

~ -{).06·10 ..... 

tI:2 -{).17·10~ 

~ -{).03·10 ..... 

Note that the baIls were approximated by curves of the form in equation (2.3.7). The ball 
parameter units are (km) . 
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Figure S.S Sea Ice Scene 2: in real space (top left), spectral energy density (top right), 
enhanced spectral energy density (bottom le ft) and spectral energy density with estimated 
GSI contours (bottom right). See Table S.S for estimated GSI parameters . 



• TABLE 5.5 : Estimated Parametrs for Sea Ice Scene 2 

parameter estimate 

s 1.84iO.02 

c 0.21 iO.01 

f 0.00±0.01 

e O.OOiO.03 

a2 0.044 

To 2.95.10-2 

lit 1.29.10-2 

hl 0.13.10-2 

sphero-scale 53meters 

Note that the balls were approximated by curves of the fonn in equation (2.3.S). Using 
the method discussed in section 3.3.3, a plausible sphero-scale was calcuated. BalI 
parameter units are (km)2. 
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Figure 5.6 Sea Ice Scene 3: in real space (top left), spectral energy density (top right), 
enhanced spectral energy density (bottom lett) and spectral energy density with estimated 
GSI contours (bottom right). See Table 5.6 for estimated GSI parameters . 
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TABLE 5.6 : Estimated Parametrs for Sea lce Sœne 3 

parameter estimate 

s 1.50±0.01 

c O.07±O.OI 

f 0.O2±0.01 

e - 0.11 ± 0.03 

a2 -0.007 

ro 2.06.10-5 

~ --{). 73.10-5 

~ 0.49.10-5 

~ --{). 75.10-5 

b2 --{).11.1lJ 5 

Note that the balls were approximated by curves of the fonn in equation (2.3.7). The ball 
parameter units are (km) . 



5.3 Discussion of Results 

It can he seen that the estimated balls are reasonable approximations in all cases, 

although il is difficult to judge in the case of Sea Ice Scene 3 since the contours of P are 

not easily distinguishable. 

Attention should he brought to a number of points of interest: 

- The balls of all three cloud scenes were adequately described by the second order 

equation while two of the sea ice scenes used the fourth order. Plausible sphero-scales 

exist in one out of three of the cloud scenes and one out of three of the sea ice scenes. 

This further supports the claim of Pflug (1991) that a sphero-scale does not necessarily 

exist. AIso, note that a sphero-scale was not evident in two of the cloud scenes, even 

though the balls were described by the second order equation. The sphero-scale of the 

cloud was at 12.7km (similar to values found by Pflug, 1991) and that of the sea ice was 

at 53 meters. 

- Most of the estimated generator parameters are relatively smalt (of the order of 

0.1 ~O.2). This is weIl within the range of parameters studied in section 4.1. By 

inspection it can he seen that although the parameters are small, the anisotropy is not 

negligible. Note also that two of the six cases studied exhibit rotation dominance 

(a2 <0), while four showed stratification dominance (a2 >0), (see section 2.3). In ail 

cases, however, the magnitude of a2 is small. 

- The estimated uncertainties in the estimated parameters of the sea ice scenes are not 

greater than those of the cloud scenes, even though the s is smaller. This can be 

explained because sea ice has been found (empirically) to have a lower CI than cloud 

radiances (Siee section 4.3 and Table 1.1). 

From ooly six fields strong conclusions cannot he made. However, the results are 

very encouraging, not ooly because the technique produced good results, but also because 

the fields were reasonably modeled using linear OSI. In the future, large scale analysis 

will he needed 10 support the assumption of OS!. Also, because difrerent generators 

produce different field characteristics (sec figures in Chapter 4 and S), it might be 

possible to use the generator parameters as a quantitative means of classification (in 
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panicular in sea ice and clouds). Many scenes, which have been classificd with the 

present (subjective) methods. could be analyzed to see if the generator parameters of 

scenes of the same class are similar. Then the scenes may be classificd by the volume of 

parameter space in which they lie. 
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Chapter6 

CONCLUSIONS 

In this thesis, a technique (the Scale Invariant Generator technique, SIG) was 

developed to estimate the parameters of a linear Generalized Scale Invariant system. It 

was able to estimate the genentor parameters without prior knowledge of the OSI balls. 

This was an advantage over the prcvious method. It then used the estimated generator 

parameters to enhance the spectral energy density and thus il was able to produce good 

estimates of the OSI balls. The details of the technique were studied 50 that it could he 

made numerically efficient. The estimated unccrtainties were found to underestimate the 

actual uncenainties. Universa1 multifractal simulatiorls, generated with a variety of OSI 

and multifractal parameters, were used to test the technique. It was found that SIG 

reasonably estimated the GSI parameters over most of the range of multifractal 

parametcrs found in Table 1.1. Specifically, vinually aIl of th" geophysical fields whose 

multifractal parameters are knOWD have parameters which allow them to he analyzed by 

SIG. Thus, it can he concluded that SIG could plausibly be used to quantify the 

ani5Otropy of many geophysical fields. 

The analysis was also performed on three cloud scenes and three sea ice scenes. 

The estimated contours seemed to he reasonable approximations to the actual contours. 

This not only supports the above conclusions, but al50 supports the assumption that cloud 

and sea ice fields can he approximated by linear Generalized Scale Invariance. For the 

latter to he conclusive, many more images must be analyzed. It was staled that the OSI 

parameters may he used as a measure of texture and morphology and as a means of 

classification. This was Dot tested in this thesis, however, by inspection of the images 

and results of chapters 4 and S, it can he seen that the different OSI parameten: 

correspond to different characteristics of the fields. 

Thus, sinee we are confident that we have developed a valid and useful technique. 

future research should include the application of SIG to a large number of scenes of a 
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vuiety of geophysical fie!ds. H necessary. a modification of the tc,~hnique may be 

required ta includc fields which lay outside the rar.ge of multifractal parameters where 

reasonable results were found Also, the possibility of using the generator parameters as 

a quantitative means of classification should investigated. Eventually, it may be possible 

ta test the full non-linear OSI. This is necessary ü the full potential of OSI and the Scale 
Invariant Generator technique is ta be discovered . 
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ELLIPSE FITTING PROCEDURE 

A possible method of finding the balls of a scale invariant system consists of 
fitting a curve to a levelsct of the spectral enr.rgy density. In section 2.3, the forms of the 
curves were chosen to be the second and fourth arder bi-variate polynomials. It was also 
shown that these equations could be written as: 

r = [ro +Ilt co528 + b15in28r~ (A.t) 

and 

r =[ro + ~ cos28 + ~ sin28 + ~cos48+b2sin48rM (A.2) 

as in equations (2.3.S) and (2.3.7). 

There are many possible analytic mellods of curve fitting available. Sec Pflug 
(1991a; Appendix A for a number). In this thesis, the method described in this appendix 
was used. Il should he noted, that in most analytical methods, the data points are 
weighted according to convenience. However, in our case, since the points are expected 
to he scattered prf'.dominantly hetween the theoretical contours (P) ± âP, and the 

amplitude of P faIls off as lnP, then the points closer ta the origin should he more heavy 
weighted. This is Dot possible ta do analytically. Therefore, it is expected that analytic 
methods will he give biased estimates and, generally, will underestimate the parameters 
(the area of the biased curve will be gre8te1' than that of the actual curve). This bias will 
incre&se with the amplitude of the noise about the b"e.oreticaJ contour. For this reason, it 
is ncc!ssary to smooth the field before .~din;g the levelset 
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Because Y,2 of cquation (2.3.S) is the sum of the second order tenns of a Fourier 

expansion, the ball parameters can simply he found by taking the Fourier transfonn of 

Y,2, where , is of the positions of the data points as a fonction of angle. That is. the 

space is su~divided into pie-shapee! regions ~limited by discrete angles. AlI the points 

which fall within a region are averaged (according to their radius) ta obtain an average 

radius for that J'egion. This average is found for each region such that the average radius 

of the data points is known as a function of discrete angles. X2 is then computed. A 

Fast Fourier Transform (Press et al., 1986) can then he used ta frnd the Fourier expansion 

coefficients of Y,2. The zeroth order term (divided by two) is '0' the real part of the 

second order lerm is Dt and the imaginary pan of the second order lerm is 11.. This 

method can also he used for the fourth order equation except using y,.. '0' Dt and ~ 
are determined as in the second order case and ~ and ~ are the real and imaginary parts 

of the fourth order tenD, respectively. Note that since the speclral el.ergy density has the 

propeny, P(k)=P(-k), the odd ordertermsarc expected to henegügible. Alsonote that 

the bigher order terms are included in the expansion and cao he used ta detennine if the 

appropriate choice of the order of the equation was uscd. 

Two important details must he considered: the choice of the number of sub­

regions (the magnitude of the discrete angles) and the interval of amplitudes ta include in 

the levelset i.e. the choicc of AP. where the levelset contains aU the points of amplitudes 

(P) ± M' . The angles should be chosen such tbat , is approximately constant over the 

sub-region, otherwise, biases will he introiuced. However, ü the angles are too small, 

then there may he sub-regions which contain no points. Also, the averaging effcct is 

reduced. H the AP is toc. small, then the number of points in the levelset, and thus the 

statistics, are reduced and if âP is too large, biases will he introduced. In the cases 

studied in Ibis thesis, M' was chosen to he 0.04 «(PI) was chosen to he: sorne 

intermediate value of the field, approximately 16) and consequendy, the number of points 

in the levelset was of the order of several thousand. The number of sub-regions was 
chosen to he 64. The bias with these choices appears to he small since the deviation from 

the contour of the ensemble average was approximately 1~ . 
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Numerical values corresponding to the colour'S decrease from top to bottom. 
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