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Abstract

B ihere has'besn a dramatic increase in the use of scale invariance in the
study of guuphy . «! fields. However, very little attention has been paid to the anisotropy
that 1s invi-iably ,cesent in these fields, in the form of stratification, differential rotation,
terture and merhols zy. In erder to uccount for scaling anisotropy, the formalism of
Generalized Scale To-aviance (GS™ was developed. Until now, only a single analysis
technique has .= <7 4 v+ ~oed which incorporates this formalism and which can be used
tostudy th. - oo Lol of fields.

J8.m & v iy fvenal representation of the linear approximation to GSI, a
new, greal’ ..y’ ¢4 ¢+ hnique for quantifying anisotropic scale invariance in
geophysical fizlus i <~ s # ped: the Scale Invariant Generator technique (SIG).

The ability of the technique to yield valid estimates is tested by performing the
analysis on multifractal (scale invariant) simulations. It was found that SIG yields
reasonable estimates for fields with a diversity of anisotropic and statistical
characteristics. The analysis is also performed on three satellite cloud radiances and three
sea ice SAR reflectivities to test the applicability of the technique. SIG also produced
reasonable estimates in these cases.



Résumé

Récemment, la fréquence d'utilisation de I'invariance d'échelle, dans I'étude des
champs géophysiques, a crii dramatiquement. Cependant, I'anisotropie, qui est toujours
présente dans ces champs sous forme de stratification, rotation différentielle, texture et
morphologie, a regu trés peu d'attention. Pour pouvoir tenir compte de l'anisotropie de
l'invariance d'échelle, le formalisme de l'invariance d'échelle généralisée (GSI) a été
développé. A présent, il n'y a qu'une seule technique d'analyse développée qui incorpore
ce formalisme.

En utilisant une représentation & deux dimensions de l'approximation linéaire du
GSI, une nouvelle technique, trés améliorée, est développée: Ia technique du générateur
échelle invariante (SIG). Cette technique sert 2 quantifier l'invariance d'échelle
anisotropique des champs géophysiques.

L'habilité, avec laquelle cette technique permet d'obtenir des estimations valides
des parametres du GSI, est évaluée en analysant des simulations multifractales (d'échelle
invariante). Des estimations raisonnables, pour plusieurs champs de caractéristiques
anisotropiques et statistiques différentes, ont été trouvées en utilisant SIG. Le
rayonnement (capté par satellite) de trois nuages et trois réflectivités SAR, de la glace de
la mer, sont également analysés afin d'évaluer l'applicabilité de cette technique. Dans ces
cas aussi, SIG a produit des estimations raisonnables.
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Statement of Originality

The Scale Invariant Generator technique is a new Generalized Scale Invariance
(GSI) analysis technique that was developed for this thesis. This is the first time a GSJ
analysis technique has been tested using multifractal simulations. The method of
enhancing the spectral energy density (section 3.3.3) and the equations that state the
conditions under which a linear GSI system (using a second order and fourth order
bivariate polynomial to model the GSI balls) is valid (section 2.4) are published here for

the first time.
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Chapter 1
INTRODUCTION

1.1 Scale Invariance as a Symmetry Principle

When the exact solutions of the dynamical equations of a system are not known
(as is typically the case when the equations are nonlinear), or even when the equations
themselves are not known, much can be learned of the dynamics by studying the
symmetries of the system. Important types of symmetries have long included
translational and rotational symmetries, but increasingly, the importance of scale
invariance is being recognized. Scale invariance is found when a system is invariant
under a scale transformation that is only a function of the ratio between the initial and
final scales. This implies that the system has no characteristic scale (size).

It is becoming more standard to use scale invariance in the study of geophysics
(even if only implicitly in the form of fractal geometry), although unfortunately, the full
scope of the notion is usually underestimated since only the very special self-similar or
self-affine scale transformations are employed. A system is self-similar if it is invariant
under an (isotropic) magnification (or reduction) and self-affine when it is invariant under
magnification followed by differential 'squashing’ in a fixed direction. It has been argued
elsewhere (e.g. Schertzer and Lovejoy, 1985a,b; 1987b) that the ubiquity of scale
invariance can be explained since it is a fundamental property of the dynamics, and
associated nonlinear partial differential equations, that describe many geophysical
systems. Take, for example, the basic equations of fluid dynamics, the Navier-Stokes
equations:

%+(v-V)v=-‘;Tp+vV’v+f

V.v=0 (1.1.1)

where v = velocity, p = pressure, p = density, v = viscosity, f =body force.
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Consider the scale transformation: x =>A7'x. If this transformation is made, the
equations will describe the same dynamics when the velocity is scaled as v=> A"y
(where H = an arbitrary scaling exponent) and the other quantities of the equation are
also rescaled according to dimensional considerations. From the above it can be seen that
the dynamics do not depend on the absolute size of the system; it is scale invariant. In
real systems such as the atmosphere, neither the forcing (2.g. planetary scale solar
heating) nor the viscosity is rescaled, hence the system will unly be scaling within a finite
(but possibly very large) range of scales.

Like other symmetries, scale invariance can a priori be assumed to hold unless a
specific symmetry breaking mechanism exists (e.g., a force that acts at only one scale).
Many geophysical fields exhibit no such mechanism over a wide range of scales. For
example, in many atmospheric motions, the scaling symmetry apparently remains
unbroken from large scales of 10 000 km down to the viscous dissipation scale (~ 1 mm)!
and from geological scales down to milliseconds. The boundary conditions (topography,
Lavallée, 1991) will not break the scaling, since they have also been shown to be scaling
(i.c. they have scale invariant symmetry).

No geophysical field is exactly isotropic. For example, in atmospheric fields,
there will be differential stratification due to gravity and differential rotation due to
coriolis forces. Many other geophysical ficlds also exhibit highly anisotropic
phenomena, such as ridges in sea ice, faultplanes in earthquakes and mountain ranges and
rifts in topography. It is often taken for granted that the anisotropic phenomena break the
scaling when, in fact, it is quite possible that they break only the self-similarity, since
their effects (or they themselves) are seen over a wide range of scales. For example,
evidence of scaling in the presence of gravity has been shown; the horizontal fluctuations
of the wind velocity in the atmosphere show evidence of scaling in the vertical, and from
dimensional analysis the (scale invariant) spectral exponent, B (see section 1.2), will be
approximately )% (Endlich et al., 1969; Adelfang, 1971; Schertzer and Lovejoy, 1985a)
whereas in the horizontal, it is closer to the Kolmogorov f=3%. Alsoc, using a data
analysis technique called 'elliptical dimension sampling', three dimensional radar rain
reflectivities were shown to scale anisotropically (Lovejoy et al., 1987). Fox and Hayes

1Here the symmetry will be broken at the inner scale of turbulence, £,. However, the invariance will hold
for £ >> ¢,



(1985) and VanZandt et al. (1990) also observed that the bathymetry of the ocean and
wind fluctuations, respectively, were anisotropic and studied the directional dependence
of the spectral slope.

An anisotropic satellite cloud radiance (AVHRR channel 1) is shown in figure 1.1
(top). While large scale bands are oriented mostly bottom left to top right, the small scale
structures are more left to right i.c. there is a clear change in orientation (and perhaps
degree of stratification) from large to small scales. The anisotropy can be seen more
clearly in the squared modulus of the Fouricr transform of the ficld, the spectral energy
density (bottom of figure 1.1). When the contours of the spectral energy density are
vertically elongated, the ficld (in real space) is horizontally stratified. The contours
closer to the center correspond to the large scale structure of the field while the outer
contours correspond to the small scales. Note the change in the orientation of the
contours as expected from the inspection of the real space image.

Considering that there is rarely strong empirical evidence of scale breaking
mechanisms, and few convincing theoretical reasons to invoke them, scale invariance, in
the absence of other information, must be assumed. However, there is usually no reason
to assume that a specific type of scale invariance will hold e.g. self-affinity. Therefore,
only the most general scale invariance should be considered, with no a priori restrictions.
This requires a generalization of the definition of scale and scale transformations. In
several papers, Schertzer and Lovejoy (1983, 1984, 1985b, 1987a, 1991a) present a
formalism called Generalized Scale invariance (GSI). GSI answers the question of what
is the most general conditions under which two scales can be related by a scale changing
operator that is only a function of the ratio of scales. Thus, GSI uses a scale
transformation defined as T, = 1™, where A is the ratio between the scales and G
(called the generator) is some function which is not dependent on scale. The ‘balls’,
which define the scale, can be of diverse shape as long as a few conditions (necessary to
ensure uniqueness) are met. (All this will be discussed further in the following chapters).




Figure 1.1 : Anisotropic satellite cloud radiance, AVHRR from NOAA-9 (top) and its spectral energy
density, the modulus squared in Fourier space (bottom). The anisotropic nature of the cloud can be seen in
the spectral energy density.
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1.2 Scale Invariance in Geophysics

The types of scale invariance of concern in many geophysical applications relate
the statistical properties of the system as it is transformed under generalized scale
changes. That is, the statistical moments, that describe the probability distribution of a
process, are scaling functions (i.e. they have scale invariant symmetry). In this thesis, a
geophysical field whose moments are scaling will be called a scaling field. Thus, we
consider scaling fields whose structure function, S(Ax), (a second order statistical
moment), satisfics a power-law relation with changes in scale:

S(T,Ax) = A5 (Ax) (1.2.1)

where Ax=x’-x, x’ and x are any two vectors in the vector space over which the field
is defined, and & is an arbitrary scale invariant exponent (see section 2.2). ‘The structure
function of equation (1.2.1) wili be valid for statistically translationally invariant fields
that are scaling under a variety of different types of scale invariance ranging from some
fractal sets (e.g. with the use of indicator functions), to monofractal functions, to
multifractal measures. (It may also be valid without the condition of statistical
translational invariance, but only over a small range in space, over which the translational
variation is negligible, see below). The statistical translational invariance makes it
convenient to study the field in Fourier space, where the modulus squared of the Fourier
transform of the field, the spectral energy density P(k) (where k is the wave number),
will be the relevant scaling quantity (see section 2.2) and will also satisfy a power-law
relation.

A method that is often used to study (isotropic) scale invariance involves the
isotropic energy spectrum, E(k), which is found by integrating P(k) over annuli of
constant k=Jk|. If the field is isotropic and scaling, then E(k)~k, where B is the
(scale invariant) spectral exponent. If the anisotropy of a scaling field is not extreme, it
may be 'washed-out’' by the smoothing effect of the integration and thus, the scaling of the
isotropic spectrum may seem to hold. The same may be said of one-dimensional energy
spectra (where the data is only known in one dimension), if many realizations are
averaged. Thus, a power-law isotropic energy spectrum can indicate scaling without
implying isotropy. It is stressed that this (and other) isotropic methods give no




information of the anisotropy, which must be considered if the anisotropic phenomena,
discussed in section 1.1 (e.g. differential stratification and rotation), are to be modeled.
Anisotropy is also important since, for example, it has been argued that it explains the
texture and morphology of fields (Lovejoy and Schertzer, 1985; Pflug et al., 1993). It is
important to note that a break in the isotropic scaling does not necessarily indicate the
field is not scaling in the general sense.

The existence of scaling has been seen in many geophysical fields using the
isotropic energy spectrum and other types of isotropic scale invariance. Below, a few
examples of different areas where different types of scale invariance have been studied,
are included. This is only a small incomplete sample of the examples available. See
Korvin (1993) for review and the books 'Non-Linear Variability in Geophysics'
(Schertzer and Lovejoy, 1991) and 'Fractals in Geophysics' (Scholz and Mandelbrot,
1989) containing papers using scale invariance with geophysical applications.

Various empirical studies of the horizontal fluctuations in wind velocity in the
atmosphere have shown evidence of a  ~ 34 scaling region in E(k) (over various ranges
in scale). Lilly and Petersen (1983) summarized much of the data available at the time in
a graph (figure 1.2). Included in the graph of figure 1.2 are data from Nastrom and Gage
(1983), Lilly and Petersen (1983), Vinnichenko (1970), Balsley and Carter (1982) and
Chen and Wiin-Nielsen (1978). The scaling seems to approximately hold from less than
1 km to 10 000 km. Fritts et al. (1990) further supports the notion that the velocity
fluctuations are power-law. This example is of interest since it shows no evidence of a
'meso-scale gap'. This gap would be seen as a dip in E(k) in the meso-scale region. The
absence of the gap contradicts the standard model of atmospheric dynamics (a three-
dimensional isotropic scaling regime at small scales and a two-dimensional isotropic
scaling regime at large scales with a dimensional transition in the meso-scale region).
However, it is consistent with the unified scaling model of atmospheric dynamics
(Schertzer and Lovejoy, 1983, 1985a,b; Lovejoy et al, 1993a) which uses GSI to
postulate a single anisotropic scaling regime from large to small scales. Lovejoy et al.
(1993a) further supports the unified scaling model with a systematic study of the energy
spectra of satellite cloud radiances. The radiances of five wavelength channels of fifteen
consecutive scenes were shown to be scaling from 160 m to 4000 km. )

The spectral slope has also been used to characterize surfaces in many areas of
geophysics. For instance, it has been used to study topography (Brown and Scholz, 1985;
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Figure 1.2 : A compilation of energy spectra of the fluctuations of
the horizontal wind in the horizontal, obtained from various sources,
including commerical aircraft (from Lilly and Petersen, 1983).



Sayles and Hayes, 1978), the bathymetry of the ocean (Fox and Hayes, 1985) and the
profiles of the underside of sea ice (Rothrock and Thorndike, 1980).

Above, the scaling of the structure function (a second order statistical moment)
was discussed. However, in order to obtain a more complete description of the statistical
properties of the process (field), the scaling of all the moments is needed. Because of the
initial success of fractal geometry at characterizing scaling by unique fractal dimensions
(as above), it was often thought that a single parameter was sufficient to characterize all
the moments. That is, the scale invariant exponents of the different moments ¢&n be
written as a linear function of the mor.ent and thus all the inf«:rmation of the statistical
properties can be found from B. The first example of non-linear multiple scaling was
given by Kolmogorov (1962) and Oboukhov (1962) who suggested that the moments of
the energy dissipation, &,, in fully developed turbulence depends on resolution, 4, in the
following manner:

(e1)=2"® (1.2.2)

where K(q) is the scale invariant exponent that is a function of the moments, g. In
general, each moment, ¢, will have a different scale invariant exponent. Multi-scaling
fields are of particular interest, since the analysis technique developed in this thesis will
be tested on multifractal simulations. A further discussion (although brief) is therefore
merited.

An equivalent description of multi-scaling fields (to that given directly above)
states that the probability that €, , at resolution A, will exceed A’ is:

Pr(g, 2 A7) =~ A~ (1.2.3)

where ¢ is the co-dimension which is some function of y= the order of singularity
(Schertzer and Lovejoy, 1987b). Therefore, in general, there will be a unique value of ¢
for each y and thus an infinite hierarchy of fractal dimensions corresponding to
¥ =[~o0,00] where ¥ € R. Scaling fields with this property are multifractals and they are
characterized by their extreme variability (Schertzer and Lovejoy, 1987b).




In general, c¢(y) is of an undetermined form and therefore requires an infinite
number of parameters for its determination. However, if a multifractal process exhibits a
sufficient number of non-linear interactions over a range of scales, much of the detail of
the process may be 'washed out' with the consequence that the statistics of its multifractal
generator will be described by (special) Lévy distributions (Schertzer and Lovejoy,
1987b, 1989b, 1991a; Schertzer et al., 1991b; Brax and Peshanski, 1991). These
multifractals are 'universal’. Only three parameters are necessary for a full
characterization of the probability distribution of a universal multifractal: a, C,, and H.
a (0<Sa<2)is a measure of the degree of multifractality (a = 0: monofractal, a = 2:
log normal multifractal), C, is a measure of the sparseness of the mean of the field and H
is a measure of the degree of non-conservation of the field (see Schertzer and Lovejoy,
1991a). Many geophysical (and other) ficlds have recently been shown to be well
represented by universal multifractals. Included is a table (Table 1.1) of some of these

results.

Figld o +C1 LH_IRangeofscales | References
Cloud radiances  visible 11,35 1015 3103 1160m—> 4000km | Tessicretal, (1993a)
infrared §1.35 10.15 104 | 160m— 4000km ] Tessier et al. (1993a)
microwave 1 1.60_10.10_}0.35 | 160m— 4000km | Lavallée et al. (1993)
Rain ___ leadar 1135 1030 100 130m->64km 1 Tcssicretal (1993a)
gages 1135 1020 10.0 | 50km— 4000km | Tessicv et al. (1993a)
Sealce (radap) 121005 100 1o0mookm. _ LEmacisctal (1993)
|Occan surface (0O5um) 3111025 1035 Limo00m 1 Tessicretal (19930)
Topography 18 05 | 50m->1000km |Lavallée1ooD |
Seismicity 135 119 100 lmo Hooge (1993
DioxinPollytion (Seveso) (12108 1-02 130m—sikom ! Salvadori ctal, (1993)
}!md._T' | windtynnel11,30 | 13 1llmso s Schmitt et al. (1992) |
atmosphere11.45 10.23 {1/3 |1lms— Is Schmitt et al. (1993)
Temperature 120 1035 1030 [015-51000s {Schmisreral, 1992)
' icfield 119 lo15 1075 |1600m-200km | Loveiov et sl (19930)

Table 1.1 ;: Multifractal parameters determined for a variety of fields with the corresponding ranges of scale.
The accuracy of most parameters is ~ 0.1 (adapted from Pecknold et al., 1993).




1.3 Generalized Scale Invariant Analysis Techniques

All the above evidence supports the use of scale invariance in the analysis of
geophysical fields and the necessity of introducing more general notions of scale and
scale transformations. Generalized Scale Invariance (GSI) encompasses these general
notions. However, in order for GSI to be useful, it requires the knowledge of its basic
elements: the scale changing operator and the scale defining balls. In the isotropic case,
these are known(the generator, G, is the identity and the balls are concentric spheres), but
for GSI, special analysis techniques must be developed. However, the generality of GSI
causes problems in analysis. If GSI in its most general form were assumed, the generator,
G, would be described by an infinite number of parameters (i.e. G would be a stochastic,
nonlinear function, Schertzer and Lovejoy, 1991a). Since the usefulness of GSI lies in
the ability to estimate the generator, it is necessary to work with an approximation. In
this thesis, linear GSI will be studied.

Linear GSI approximates T, as a linear transformation. In this case, G is a matrix
(thus is described by D? parameters where D is the dimension of space) and a functional
form of T, can be found. Linear GSI is still general enough to model a diversity of
situation (see figures of Chapter 2 and 4). Self-similarity is the special case when G is
the identity matrix and self-affinity is when G is diagonal with unequal elements. Even
though in linear GSI, G is independent of position, it will still be a valid approximation to
any scaling field if only a small enough range is considered. Pflug et al. (1993) showed
that linear GSI holds approximately in clouds by studying the spectral energy density of
satellite cloud radiances and showed the potential of using the values of the GSI generator
for structural and textural analysis. In general, it will be necessary to study non-linear
GSI and/or to analyze the field in real space (as opposed to the spectral energy density).
Nevertheless, in principle, information about the full non-linear GSI can still be
determined by considering a series of linear approximations.

There are a number of possible ways to estimate G. The goal is to find a method
that is accurate while being computationally tenable. In Pflug et al. 1991a,b and 1993 (see
also Lovejoy et al., 1992), a cumbersome, but workable, technique called the Monte
Carlo Differential Rotation (MCDR) method was developed and used to estimate the
linear GSI parameters of satellite cloud radiances. The MCDR involves, at least, an
eight-dimensional parameter space that is reduced to practical proportions by estimating
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(with unknown accuracy) many of the parameters before the obligatory search of the
parameter space. In this thesis, the emphasis is on the development of an alternative
technique, which separates the estimation of the generator parameters and the estimation
of the parameters of the scale defining balls needed in the scale invariant system. Thus,
the technique is called the 'Scale Invariant Generator' technique (SIG) because it can
quantify the scale invariant generator, G, by searching a three-dimensional parameter
space, without any knowledge of the ball parameters.

The technique is tested on multifractal (scale invariant) simulations (see Wilson et
al., 1991 and Pecknold et al., 1993) that are constructed with known scale invariant
generators. Multifractal fields were chosen as the test fields because we feel that they are
the most relevant in geophysics and also, due to the extreme variability of multifractals,
they will be more difficult to analyze than other scale invariant fields (¢.g. monofractals,
such as ‘'fractional Brownian motion’). The Scale Invariant Generator technique is not
restricted to multifractals and can be used, without modification, to analyze the spectral
energy density of any (scaling) field (or, using indicator functions, anisotropic fractal
sets), regardless of the type of scaling expected.

The technique also includes a method of anisotropically ‘enhancing' the image in
Fourier space while maintaining the scaling properties of the field. This method may
have applications in image processing and data compression.

1.4 The Purpose and Structure of Thesis

The purpose of this thesis is to develop the Scale Invariant Generator technique
(SIG), an analysis technique that finds the linear Generalized Scale Invariance parameters
that best describe a scaling field. The emphasis is on testing the accuracy of the
technique by applying the analysis to a variety of simulated fields with fully known
properties. Details of the technique are investigated so that the technique can be made
numerically efficient. The purpose, however, is not to theoretically prove the optimum
efficiency, but to simply obtain a reasonably efficient technique that produces valid
estimates mainly in parameter ranges relevant to common geophysical fields such as
clouds, topography, seca ice, etc. Six actual geophysical fields (satellite radiances of
clouds and sea ice) are analyzed for the purpose of testing the applicability of the
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technique. Many more images must be analyzed if conclusions are to be made
concerning the full extent of the hypothesis of linear GSI in geophysics.

The thesis is structured as follows. Chapter 2 contains a discussion of
Genenlized Scale Invariance in a general sense and also in application to geophysics via
the structure function. Also, in section 2.4, there is a discussion of the restrictions on a
scale invariant system. In Chapter 3, analysis techniques for Generalized Scale
Invariance are discussed. The (previously published) Monte Carlo Differential Rotation
method is briefly presented, while the (new) Scale Invariant Generator technique is
discussed in great detail. Chapter 4 contains results of SIG on a variety of multifractal
simulations and Chapter 5 contains results of the analysis on actual geophysical fields.
The conclusions are stated in Chapter 6.
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Chapter 2
GENERALIZED SCALE INVARIANCE

2.1 The Elements of a Generalized Scale Invariant System

Generalized Scale Invariance (GSI) is a formalism which states the most general
conditions under which large and small scales can be related without introducing a
characteristic size. That is, the different scales are related by a scale changing operator
that is only a function of the ratio of scales. This generalization is measure based. The
notion of scale of a vector may be defined without introducing a metric; only a notion of
integration over sets is necessary.

A scale invariant system requires the definitions of the following three elements:
(1) a scale changing operator, T,, (2) a family of balls, B,, and (3) a measure of scale,
¢, (Schertzer and Lovejoy, 1985b, 1988). In order to see the nature of a generalized
scale invariant system, it is instructive to investigate these elements in more detail.

The scale changing operator, T, , is the reduction operator. It is the rule which
relates vectors of different scales by only their ratio of scales, 4, therefore, it does not
impose any characteristic size to the system. This implies that T, must satisfy the

properties:

T, =T, T, =T,T, (2.1.1)
ifandonly if: A,=4,4,, forany 4,, 4, and A4,, (see figure 2.1) and

(Th T, )Tl, =T, (T;., T,, ) (2.1.2)
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where T, are the scale transformations corresponding to a scale change of 4, =[l,e].
The identity is the operator for which 4 =1.

Figure 2.1 : Group properties of the scale changing operatar. B are balls of the scale invariant system.

These properties imply that the set of scale changing operators forms an infinite
one parameter Abelian multiplicative semi-group. Therefore, T, can be written as:

T,=A"° (2.1.3)

where G is the generator of the group and A4 is the scale ratio between any two scales
(Schertzer and Lovejoy, 1985b). The only restriction on G, (besides minor ones to ensure
a valid GSI system, see section 2.4), is that it not be a function of scale. G could possibly
be a stochastic non-linear function of time and space (Schertzer and Lovejoy, 1989a,
19912). Note that a priori it need not be required that an inverse, (T, ), exists (i.e. T,
form a semi-group). For example, the scale invariant cascades, that produce multifractal
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fields, typically go from large to small scales (i.c. an inverse need not be defined).
However, in many cases (such as in linear GSI, see section 2.3), an inverse will exist and
(T‘)"=Tr.. These are the transformations corresponding to the scale changes

A=101).

A ball, B,, of a GSI system is the set of all vectors of a given scale (labeled by
A). Alternatively, it can be said that all the position vectors associated with a ball are of
the same scale. A family of balls (Schertzer and Lovejoy, 1985b) is a set of ordered balls
(one for every scale) which covers the relevant vector space by uniquely assigning all the
vectors to a scale. All pairs of balls, BA., and B, (that are members of a family of balls),
must satisfy the property B, =T,B, , where l=3'2 2, i.c. operating T, on all the
vectors associated with B, must form another ball, B, . It can be said that the balls
order the vectors by increasing A. However, the balls, and thus the corresponding
vectors, are only related by their scale ratio, which, as yet, cannot be interpreted as a
relative size. It should be noted that the necessity of assocciating a notion of size with the
balls (and thus the vectors) implies that the balls must be measurable i.c. when a weight is

assigned to them (most easily using a normal Lebesque measure), they will become
measures.

It is possible to generate the whole family of balls from any one member by
operating T, on that ball for all possible values of the scale ratio. One ball will be
generated for every value of the scale ratio. Therefore, once one ball is known, all others
can be found if T, is known. It is convenient to choose one ball 1o which all the other
balls will be compared. This ball will be called the unit ball, B, (Schertizer and Lovejoy,
1985b, 1988). The family of balls will then be B, =T, B,. It should be stressed that the
unit ball has no unique characteristics and that any B, may be chosen as the unit ball.
For example, if B/ € B, such that B/ =T, B,, where 4, is the scale ratio between B and
B,, then B/ can also be defined as the unit ball since B,. =T,.B also defines the family
of balls, where 1’ =4 (R ie.

B,.=T,B/=T,T, B =T,B, =B,

where T,.T, =T, since A’A, = A as required by (2.1.1).
vy, =1
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To complete the scale invariant system, we must define how to associate a size
with A. The definition of scale, @, must be such that it can assigr: a unique positive real
number, that monotonically increases fiom low to high scales, to every ball, B. Any
consistent definition is equally valid; the exact definition used is a matter of convenience
or convention. The definition need not be restricted to being metric based, but may
require only that an integral be defined over the balls i.e. measure based definitions will
be allowed.

Thus we may use the volume bounded by a ball raised to some power to define
our measure of scale, @. It is worthwhile to note that any positive power of the volume
would be a consistent definition. The exact power that will be used is discussed below.

The volume of a ball, B, in D dimensions!, ®°(B), scales as A%, where
D,, =Trace(G) is the elliptical dimension (Schertzer and Lovejoy, 1984). That is,

O°(T,B)=2""0"(B) (2.14)
and ¢, is defined such that:

9.2 (B)= ®°(B) (2.1.5)

Therefore, if B, =T, B,

q’axp‘ (8,)= q’D(Ba )=1"®" (B)
P.,(B,)= ®”(B,) = 1"®%(B)

9.(B)=1"9,(B) (2.1.6)

Thus the scale ratio can be defined:
2 =2u(8) 2.17
'P.l (BA) ( )

lic. if D=2 then ®(B) is the square root of the area

16




i.c. the definition of scale is:
@ = @(B)= @,,(B) = ®*(B)

(the volume of the ball to the power of }/D.n) ior a magnification in scale.

Above, it was stated that any power of the volume may be chosen as a definition
of scale. This can be shown in an example. If a GSI system has T, as its scaling
operator, with G as its comesponding generator and @ as its definition of scale, then
¢=@’and G’'= G/p form an equally good GSI system. If T,' =(A°)°,

wiere 0B, 9'(B,)

= T, =(A")°

’

then, if G¢’'=—,T,=T,.

< |Q

This implies that the primed and unprimed systems are equivalent and thus the primed
system is valid. Note that this also implies a different D,, = D, % It can be seen that,
given our definition of scale (equation 2.1.8), the choice of the power of the volume
astermines D,,, or conversly, the choice of D, determines the definition of scale. As
stated earlier, this choice is a matter of convenience or convention.

D,, the elliptical dimension can be described as the effective dimension of the
space, (for given a defintion of scale, sir.ce D,, depends on this choice). For example,
using horizontal distance as scale, a three-dimensional field, that is infinitely stratified,
has D, =2. If itis completely non-stratified, it has D,, =3. It is possible that the
stratification due to gravity will cause the atmosphere to have some intermediate value
(see introduction). Lovejoy and Schertzer (1987) found empirically that D,, =2.22 in
rain and cloud radar reflectivities.

Figure 2.2 shows examples of different GSI systems. The special isotropic case is

when the generator is the identity (G=1) and the (metric based) definition of ¢ is the
modulus (conventional length) of the vectors thai form the balls, which are circles (in the
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( two-dimensional case shown). Note that the measure based definition of @ is equivalent.
‘ The square root of the area can be a consistent definition &nd it is proportional to the
modu.us of the vectors that form the ball.

Figure 2.2 : Examples of balls: Non-linear GSI (top, left and right) from Schertzer and Lovejoy, 1985b.
Isotropic case (bottom left). Linear GSI (bottom right).

Before continuing, a clarification may be required. If all the vectors associated

with the ball B, are operated on by T,, the vectors x, will form another ball, B, . The
scale of B, , 4,, and the scale of B, will be relatec by 4, =A"4,. For a valid GSI
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system, this will hold for any pair of members of the family of balls such that all vectors
are uniquely zelated to a scale.

An alternative way of looking at the problem is to invoke the idea of a 'trajectory".
If a vector is related to another by T, (e.g. x, = T,X,). then it is said that they lie on the
same trajectory. More completely, a trajectory can be generated by (repeatedly)
operating T, , with generator G, on a vector while varying A over all possible values.
One vector for every A will be generated. These vectors will trace out a continuous curve
which is called a trajectory. Note that the same trajectory will be generated if any vector
in the trajectory is chosen as the initial vector, when the same steps are followed. This is
a consequence of the group properties of the T, . Each vector of the field is a member of
one and only one trajectory and a given G will generate a whole series of trajectories as in
figure 2.3. Also, there is a unique set of trajectories for every G.

It can be said that the trajectory can be generated from a vector by T, with the
parameter A. This means a trajectory can be created with only knowledge of G and
independently of the family of balls. That is, as yet, the vectors have not been associated
to a ball. If a scale is imposed at some point along a trajectory, it is then defined for all
vectors along the trajectory. e.g. if x, and x, are related by T,, and if a scale, A, is
imposed at x,, then

A, =44, (2.19)

since A= %2 where A is known since it is the parameter relating vectors along a
trajectory. Therefore, once the trajectories are known, a scale invariant system is
generated when a scale is imposed on one, and only one, vector on every trajectory with
the restriction that the vectors of this scale must form a measurable ball. This imposed
scale is the unit ball. For the above conditions to be observed, there are certain
restrictions on G which are discussed in section 2.4.
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Figure 2.3 : Examples of trajectones for the isotropic case (top left), for the self-affine case (top tight)
and for two cases of linear GSI (bottom left and nght). Different colors represent different trajectones
(starting 1n the center).




2.2 Generalized Scale Invariance for Geophysical Applications
In geophysical applications, the scaling of the structure function:
S(x,Ax) =([f (x) - f(x+ Ax)[') (2.2.1)

of a field, f(x), is often studied (x is a position vector and Ax is a lag with respect to x
and '( )’ denote an ensemble average quantity). If a scaling field is statistically
translationally invariant, then the structure function is independent of x and will scale as:

S(T,Ax)= A7¢S(Ax) (22.2)

where € is the scaling exponent and 7, is the scale changing operator. The structure
function, and thus the scaling, is defined as an average over an ensemble of realizations
(c.g. an average over all the possible cloud scenes that can be generated with the same
scaling properties, where a realization is one particular cloud scene). Therefore, the
scaling is not expected to hold exactly on any given realization.

Assuming statistical translational invariance, it is convenient to study the scaling
in Fourier space. The relevant scaling quantity is the spectral energy density, which is the
Fourier transform of the auto-correlation function, or equivalently, the modulus squared
of the Fourier amplitude of the field:

P(k)=|F(k)’ (2.2.3)

where F(k) is the Fourier transform of f(x) and Kk is the wave number. Given the
jadependence of the structure function with x, linear GSI (see section 2.3) will be used.
Note that many geophysical fields of interest do not satisfy the condition of statistical
translational invariance (e.g. atmospheric motions, since coriolis forces are a function of
latitude). However, in many cases, it is plausible to assume that the assumption will hold
over a smz'l range. Therefore, if the ficld does not globally statisfy the assumption of
statistical translational invariance, in principle, it is possible to considcr a series of sub-
regions of the field, where the assumption will be expected to hold.
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( The spectral energy density of a scaling field whose structure function satisfies
‘ equation (2.2.2) will have the property:

(P(T,k)) = 2~(P(K)) (2.2.4)

where T, = A% is the scale changing operator in Fourier space and s=&+D,, is the
anisotropic scaling exponent. G = GT is the generator in Fourier space, and in the case of
linear GS1, is equivalent to the transpose of the real space generator (Schertzer and
Lovejoy, 1991a; Pflug, 1991a). Since we will deal exclusively in Fourier space, the tilda
will be dropped with the understanding that we are referring to the Fourier space version
of the GSI elements.

Since equation (2.2.4) applies to position vectors, k, rather than the relative
vectors, Ax, the balls can now be given a physical interpretation. A scaling spectral
energy density will be constant on the perimeter of the balls and thus the balls can be
defined as the volume bounded by a contour of (P) (see Figure 2.4). Each ball will
represent a contour of (P) and the amplitudes of B, , (P,ﬂ) and that of B, , (P‘,) will
be related by <P1. ) = l"(PM ) This will hold for any pair of contours of (P). The balls
can take on any shape as long as the GSI system remains valid (i.e. each vector is related
to one, and only one, measurable ball). Thus it can be seen that the conventional length
of a vector is no longer an adequate definition of scale.

D

Figure 2.4 : The balls of the GSI system are related to the contours of a scaling energy spectral density as
depicted above. For instructive purposes, three of the vectors that are associated with the contours, and
(. thus the balls, are shown.
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Invoking, once again, the concept of trajectory: if the amplitude of (P) is known
for one vector along the trajectory, it is known for all vectors along the trajectory, via
equation (2.2.4). This is a vector equation and does not depend on the family of balls. It

is this concept that will be used in the Scale Invariant Generator technique discussed in
section 3.3,

2.3 Linear Generalized Scale Invariance

For the purpose of analysis, it is useful to investigate the case when the scale
changing operator is approximated by a linear transformation: linear Generalized Scale
Invariance (Schertzer and Lovejoy, 1985b). In linear GSI, G is a matrix and thus has
D*D parameters (where D is the dimension of space). It is convenient to discuss linear
GSI, in a format analogous to that of section 2.1, by irivestigating the consequences of the
approximation on the three essential elements needed in a scale invariant system: a family
of balls (a unit ball), the scale changing operator, and a measure of scale.

The family of balls is needed to describe the contours of constant scale, where the
boundary of a ball is some continuous closed curve. Although it is theoretically possible
to use any form of equation to describe the curve, it is useful to choose a form that is
invariant under the scale changing operation. This simply means that if the equation
describing B, is of a certain form, and B, =T, B, then B, is of the same form with
different coefficients. In the case of lincar GSI, this means that the form of the equation
remains invariant under linear transformations. This leads to the consideration of
bivariate polynomials. Noting that the spectral energy density, P(k), of real fields, must
satisfy P(k)= P(—k), there will be a restriction to polynomials of even order. Again, the
most general case would be a polynomial of infinite order, however, for the purpose of
the analysis, an approximation is needed. In the case of GSI in two dimensions, the two
most simple even order bivariate polynomials are ihe second and fourth order equations:

Ax* +2Bxy+Cy* =1 23.1)

Ax* +2Bx’y+Cx%y* +2Dxy’* + Ey* =1 (23.2)
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where A, B, C, D, E are real numbers and x, y are the coordinate axes (for simplicity
k, = x,etc.).

For equation (2.3.1), the condition that the equation describes a closed curve
imposes thc constraints :

AC>0 and AC-B>>0 (2.33)

Under these conditions, the equation describes an ellipse or a circle. It is useful to
transform equations (2.3.1) and (2.3.2) to polar form by making the substitution:

x=(‘)= ('cf’so) 23.4)
y rsin@

Using basic trigonometric identities, the polar form of equation (2.3.1) may be written
as:

r=[r, +a,c0520+b;sin 26] % (2.3.5)
where 7= -;-(A +C), a= %(A-C) and b, =B 2.36)

The constraints (2.3.3) are: 7,>0 and r; >a +b.
Similarly, the polar form of equation (2.3.2) is:
r =[ry + @,c0520+ b 5in26 + ,c05 40 + b, sin 46] % 23.7)

The second order equation (2.3.1) or (2.3.5) is that of an ellipse. Therefore, the
family of balls is a subset of the family of ellipses. The fourth order equation (2.3.2) or
(2.3.7) is the next level of generalization. By inspection of the spectral energy densities
of actual satellite radiances of clouds and by Pflug (1991a), it was concluded that
although the second order equation is adequate for many cases, a more general form is
sometimes needed.




If there exists a scale where the field is isotropic, the corresponding ball will be
spherical (circular for GSI in two dimensions). This scale will be called a 'sphero-scale'
(Schertzer and Lovejoy, 1983, 1984). In the case of lincar GSI where a sphero-scale
exists, all the balls will be of the form of equation (2.3.1). Since linear GSI with a
sphero-scale is the most simple case, it will be used often as an example. See figures 2.5
and 2.6 for examples of scaling spectral energy densities where the balls are described by
the second order equation (figure 2.5) and by the fourth order equation (figure 2.6).

Since satellite radiances are a form of data that will often be analyzed, GSI in two
dimensions will be examined. G will be a 2 X 2 matrix. G will be written as a linear
combination of the basis of two dimensional matrices (pseudo-quatemions, Schertzer and
Lovejoy, 1985b; Lovejoy and Schertzer, 1985):

G=dl+cK+fI+el 23.8)
10 10 0 1 0 1
whete l=(o 1)’ K=(o —1)’ "=(1 0)’ l=(—1 o)
d+c f+e
Thus, G-( foe d_c) 239)

Written as such, the parameters, d, ¢, f, and e, have more significance.

The diagrams of figure 2.7 show the effect of the parameters in the case of linear
GSI with a sphero-scale. d determines how the volume of the balls changes with scale
since Trace(G)=2d =D,,. D,, will be chosen to be 2, hence d=1 (see discussion below).
In the diagrams, it can be seen that ¢ determines the relative scaling of the axes. The
trajectories tend more toward the horizontal with increasing ¢ and thus the scale defining
ellipses become more stratified. The matrix J, of above, is a reflection across a plane
oriented 45 degrees with respect to both x and y axes. Therefore, the larger f becomes,
the more the trajectories tend toward the plane of reflection. This also means it has a
stratifying effect. Since the matrix I is a rotation, e is a measure of the degree of rotation.

With G written as in equation (2.3.9), a functional form of T, can be found:

T, =2°=22°" = T,=2exp|(G-1d)na] (2.3.10)
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Figure 2.5 : Examples of theoretical ensemble average scaling spectral energy deasities for the case of
linear GSI with sphero-scale. The units of the sphero-scale are given relative to the external scales 1 unit.
Top left: isotropic case: c=0.0, f0.0, e=0.0, all balls are circular;

Top right: self-affine case: ¢=0.3, f=0.0, e=0.0 with sphe.~-scale at 0.14 units?

Bottom left: straufication dominant case (a* > 0) : c=0.6, f=0.5, e=0.6 with sphero-scale at 0.14 units;'
Bottom right: rotation dominant case (a? < 0): c=0.8, f~0.4 e=2.0 with sphero-scale at 0.3 units]

d=1 for all cases. (See below for description of generator parameters (c, f, ¢) and a = ¢? + f2-¢*). The
amplitude of the fields are presented as InP with Palette 1 (see Appendix B). Palette 1 is discontinuous so
that the contours of laP are highlighted.
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Figure 2.6 : Examples of theoretical ensemble average scaling spectral energy densities for linear GSI
with balls described by fourth order equation (equation 2.3.7).
Top Lefi: ¢=0.45, [<0.2, =04, ro =2.17-10%, g, =by = a, =b, = 0.80 10°.
Top Rught: c=0.3, f=0.1, e=0.0, ro = 2.17 10>, 4, =b; = 4,=0.0, b, =2.06 10°.
Bottom Left: ©=0.35, f=0.2, e=0.5, r, =1.24 10°, a, = 0.60 10>, b, =0.85 10°, a, = -0.40 10°,

b, =0.61 10°.
Bottom Right: ¢=0.3, f=-0.3,e=0.3, ro = 2.17 10°, & = 0.56 10>, b, =1.48 10°, a, = b, =0.22 10’.
The ball parameters are 1n (unns)", where external scales! unit. d=1 for all cases. (See below for
descripuion of generator parameters: c, f, e ). The amplitude of the fields are presented as InP and labeled
with the colours of Palette 1 (see Appendix B). Palette 1 is discontinuous so that the contours of nP are
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Figure 2.7 : Examples of balls and trajectories for linear GSI with sphero-scale: isotropic case: c=0.0,
J=0.0, e=0.0 (t0p left); sclf-affine case: c=0.35, £=0.0, £=0.0 (top right); stratification dominant case (2 > 0)
with no rotation: ¢=0.35, f=0.25, ¢=0.0 (bottom right); rotation dominan: case (a2 < 0): ¢=0.35, fu0.25
e=0.6. d=1 for all cases with sphero-scale at 0.06 units (where the extemal scale= 1 unit).
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Writting this as a series, with u=1ni:

T, =243 W' (1 -GY @3.11)
a=0 n!
Defining a=ct+fi-e (2.3.12)

For the case when a* > 0:

- 2n
(G~1d)" =a™1 and (G-1d)**"'= (G -1d)a
a

Then, separating into even and odd terms:

T, = l‘(lcosh(au) +€- ”’:i“h(“")) (23.13)
or
cosh(au) + -Esinh(au) -f-'-'-'-fsinh(au)
T,=A1* a a (2.3.19)

.-L'_‘;_esinh(au) cosh(au) - %sinh(au)

Similar calculations for a* <0 yield the same result with the exception that the
hyperbolic trigonometric functions are replaced by their regular counterparts and a = |a].
The case for a=0 yields:

T, = 1‘( l+ou (74 ’)") 23.15)

(f—eu 1-cu

Applying the different cases of the transformation yields two different
morphologies that correspond to the sign of a*: stratification dominant, corresponding to
the case when a* >0 and rotation dominant (a? < 0) (Schertzer and Lovejoy, 1985b).
Stratification dominance is characterized by a limit to the rotation of the balls and no
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limit to their stratification. In the case of linear GSI with a sphero-scale, (see figure 2.7),
the ellipses become increasingly elongated while they have limited rotation. This can
also be seen in the trajectories. In this case, only one sphero-scale exists. Note that there
is a change in the major axes as you vary the scale through the sphero-scale. Rotation
dominance is characterized by a limit to the stratification of the balls and no limit to
rotation (see figure 2.7). The trajectories are spirals. In linear GSI with a sphero-scale,
there are multiple sphero-scales. For further discussion see Pflug 1991a.

To complete the linear GSI system, the definition of scale must be completed. In
the previous section it was argued that @ can be taken as some power of the volume
bounded by the associated contour. The power was chosen to be }/D,, where D,, is the
elliptical dimension. In the horizontal plane of the atmosphere, we do not expect the
elliptical dimension to be different than the topological dimension since there is no
mechanism that causes differential stratification. Therefore, D, =2 and thus @ is the
square root of the area of the balls. Since,

D, = Trace(G)=2d, (2.3.16)

we have d=1 (2.3.17)

2.4 Restrictions on the Generator and Balls of a Generalized Scale
Invariant System

Every vector of the field must be associated to one, and only ornie, scale and one,
and only one, trajectory. The curves that describe the balls cannot cross, nor can the
trajectories. This restriction is necessary to ensure that no vector is associated to more
than one scale (i.e. the vector must have only onz size). Since the balls necessarily cross
if the trajectories cross and the converse is not true, it is a more stringent restriction that
the balls do not cross. The above restrictions correspond to restrictions on the generator
and ball parameters.

The condition that the real parts of the (generalized) eigenspectrum of the

generator, G, must be positive (Schertzer and Lovejoy, 1985b) ensures that the
trajectories are unique and increasing. If this condition is not satisfied, a trajectory in the
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direction of a negative eigenvalue would move inwards with increasing scale (as opposed
to outwards as it must). This can be seen because a vector in the direction of an
eigenvector will be transformed to another vector in the same direction multiplied by the
scale ratio raised to the power of the corresponding eigenvalue (by the properties of
eigenvalues). Therefore, if the eigenvalue has a negative real part, the vector will be
reduced (if A >1). The eigenvalues of T, will be 2* where ¢, are the eigenvalues of G.

The above condition is sufficient to ensure that there is some ball that can be
drawn such that each vector of the ball is associated with a unique trajectory. However, a
priori, it is impossible to determine what equation can describe this ball. Therefore, it is
necessary to make some approximation to the balls so that they may be described by a
predetermined form. For linear GSI, we chose the second and fourth order bivariate
polynomials, equations (2.3.1) and (2.3.2) respectively, since .hese forms are invariant
under linear transformations (see section 2.3). This is a necessity if the constraints on G
and the balls are to be found.

The condition of non-intersection of the balls, 3 and B, =T, B, implies that B,
must be completely enclosed within B, for all 4 >1 (magnifications). That is,

r,—r,>0 (2.4.1)

where r; is the curve in polar form that describes the ball, B,. This condition must hold
for all @ and also for all the balls related by T, . However, if the condition is violated at
one scale, it is necessarily violated at all scales. This can be seen by noting that if a
vector, X,, is associated wih two scales, A, and A,, then all vectors on the trajectory
x, =T,x, (see sections 2.1 and 2.2) are also associated with two scales, A4, and 44,.
Therefore, it is sufficient to compare any ball with its infinitesimal neighbour. Thus,
restrictions can be placed on the ball, B,, and the generator to ensure that the GSI system
which they describe is valid. These restrictions are found below for the case of linear
GSI when the balls are described by the second order equation (2.3.5). The restrictions
for the fourth order case (2.3.7) can be found with an identical procedure and they are
stated below.
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The ball, B,, will be described by:

r, =[r, +a, cos20+ b, sin26] % (24.2)
and its infinitesimal neighbour,
r,= [r‘,’ +a,, cos20+ b, sin 20]—M (2.4.3)

can be found by operating the infinitesimal scale changing operator, T, (Where u=1n4
and du = %4 ) on every vector in r,. More practically, since the form of the equation is
invariant under linear transformations, the parameters of r, can be found as functions of
the parameters of r, and G by finding the transformation that T, (operating on the
vectors) will ‘induce’ on r, (see Elliott and Dawber, 1979). To facilitate this, 7, will be
written in matrix form:

Ax*+2Bxy+Cy*=1 = x'M;x=1 (2.4.4)
where x= (;) and M, = (:" 2) (24.5)

and the transformation between the parameters of M, and r, are as equation (2.3.6):
ry= %(A +C), a = -;—(A ~C) and b =B (24.6)
Then, T, will induce a transformation on M, as follows:
xT(T2) M (T )x =1 (24.7)
= x'M;x=1 (24.8)
where M, = (T2) M,(T3)

and M, will be related to 7, by the simple transformations of equation (2.4.6).

o
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Before continuing, the infinitesimal scale changing operator, T, must be found.
This can be done by expanding the Fourier space scale changing operator, T, =A%, ina
Taylor series to first order about u=1n4 =0.

T, =exp(Gu) (24.9)
Tu=l+£| du=1+Gdu (2.4.10)
du um0
and T, =1-Gdu (2.4.11)

where the inverse operator was found from T;' = 4 i.e. by replacing u = —u.

Now, M, can be found using the inverse infinitesimal operator of equation
(2.4.11):

M, =(T;') My(T7)
= (1-Gdu)"M,(1-Gdu)
= (1-G"du)(M, — M,Gdu)
=M, - M,Gdu - GTM,du+ G"M,G(du)’

neglecting the term of order (du)?

M, =M, - (M,G +G™M,)du 24.12)
M,=M, - %’-du 2.4.13)

vhere %’- =M,G+G™,. Finding %’- explicidy:

QM___ A BYzs, 812) (gu & YA B:) 2.4.14

- du -(Bx CA8n 82 * 8: 82\B G (2419

where G=(g" g"):(d” ! ") (2.4.15)
8 8z f-e d-c

33




daM
du 812A +(8,; +82)B, +8,C 2g,,B, +2g,C,

FIZ3
g|8e|8

- ( 2811A| + 282181 glel + (g,, +8n)31 + ngCI)

(2.4.16)

Therefore, since A, = A -—%:?du, from equation (2.4.13), and similarly for B, and C,,
we can write:

1o, =3 (4 +C,)=2(4 + c)—-—(‘:: < @4.17)
Then,
dr
= -_—g . -
ro, =T dudu (2.4.18)
d, 1(dA dC
o (22,0 -
where & 2(du+du) (d+c)A +2fB +(d-c)C, (2.4.19)
or Lo = 3(r, d+a,c+b, f) (2.4.20)
du 0, 1 1 i

from equations (2.4.6), (2.4.15), (2.4.16) and (2.4.17). There are similar calculations for
a, and b, . In summary:

o, =a -g, 2.4.21)

where  ¥o=3(r d4a c4b, f)

%‘;‘l = 2(r,,.c +a,d- b,.e) (2.4.22)




(' We now return to the restriction: r,—r, >0 or equivalently r;-r?>0.
Investigating further, using equations (2.4.2) and (2.4.3):

1 1
r,, +a, cos20+b, sin20 r, +a cos20+b, sin26 >0

(ro, + @, c0s20+ b, 5in260)-(r,, +a;, c0s20+ b, 5in26)>0
(ro, =70, )+ (@, - @, )cos20 +(b, - b, )sin26>0 (2.4.23)
Using equation (2.4.21) and dividing through by du:

dry  da o0, 9B
—L 2 2 4.
du+ducos 0+dusm 6>0 (24.24)

where -‘%";‘9-, %‘-;L and ‘;—’;‘L are as in equation (2.4.22).

This equation can be simplified further by noting that it must hold for all 6 and
therefore, it is adequate to impose the condition on the minimum of the equation:

41,98 00204 Bhsin29] - 2829 - 28
e -1 =2 - =0 (222
do[du+duc0529+dusm20 dusm20 Zducos20 0 ( 5)
(Y
@n20=2 = @=1un '( )+¢ (2.4.26)
da, 2 da,

where da,=%‘;‘ldu. db,=%i1-du, ¢ =0or n corresponding to a maximum or a
minimum and depending on the four different cases (the four possible combinations of
signs of da, and db). However, in all cases (with the correct choice of ¢), by
substituting equation (2.4.26) into equation (2.4.24) and using basic trigonometric
identities, the inequality becomes:

@
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dr, (%)’ - (é%) >0 (2.4.27)

O
(5T

while noting the condition %-:‘9- > 0, the restriction on the generator and ball parameters
can be written:

(%)’ > (d_aL)’ . (1"1)’ (2.4.29)

du du du

Using equation (2.4.22) and noting that this restriction must hold when 7, describes any
member of the family of balls, and thus the subscripts of the coefficients of 7, can be
dropped, the general condition becomes:

(red+ac+bf) >(rc+ad-be) +(r.f +ae+bd) (2.4.30)
The above restriction can be simplified if the initial contour is of a less general
form. For example, in the case where a sphero-scale exists (see section 2.3), there will be
a ball that is spherical (a, = b, = 0). Therefore, the restriction for the case of linear GSI
with a sphero-scale is that the GSI parameters must satisfy the simple inequality:

d>ct+f? (2.4.31)

When there is no assumption of the existence of a sphero-scale, it is more difficult
to obtain such a gencral form that does not depend on the ball parameters. However, it is
possible to prove the inequalities,

d’>c* and d*> f? (2.4.32)

for the cases where g, =0 and b, =0 respectively.
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In the fourth order case, the condition remains r, —r,>0 (for du>0) or
equivalently, r3 — i >0, where the fourth order equation is written as in equation (2.3.7):

r=[r, +a,cos20+ b 5in26 + a,cos 40 + b, sin49] 74 (2.4.33)
Following the same procedure, the restriction can be found:

%:—+%cos20+%sin20+%cos48+%sin40> 0 (2.4.34)

dr, 1 1
where: Eul =4r,d +-3-a,c + Eb'f

%: 4(r°c+a,d—%b,e+azc+b,f)

d?Z‘-=A(ro,f+-;-a,e+bn,d—a2f+b,c)
%=a,c—b,f+4a,d—4b,e

L - af +ho-dae+abd

This condition must hold for all angles. No analytic solution was found for the minimum
of equation (2.4.34) as a function of 8, therefore no simplification along the lines of the
second order case was possible. Although this form is not ideal, it is possible to tell if a
given set of generator and ball parameters is a valid GSI system. This can be done by
simply plotting equation (2.4.34) numerically as a function of 6. If the value is positive
for all 0, the GSI parameters described a valid system. This method must be used, for
example, if valid simulations are to be generated.

The results of this section will also be used to restrict the search of the parameter
space that is necessary in GSI analysis techniques (see chapter 3, in particular 3.3.2d)
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Chapter 3

ANALYSIS TECHNIQUES FOR LINEAR
GENERALIZED SCALE INVARIANCE

3.1 Method of Least-Squares for Linear Generalized Scale Invariance

The purpose of the analysis techniques discussed below is to test the hypothesis of
Generalized Scale Invariance by determining the parameters of the scale invariant
generator and the balls that best describe a scaling field. The problem is complicated by
the fact that the scaling is not expected to hold on a single realization, but only when
averaged over an ensemble of realizations with the same generator and family of balls. In
such an ensemble average, the field will satisfy:

(P,)Y=27(P,) (3.1.1)

or

In(P,)=-sin4 +1n(P,) (3.12)

exactly, for every contour and every vector of the contour, where ( ) indicates an
ensemble average quantity, (P,) is the amplitude of the spectral energy density about a
unit ball, B, A is the scale ratio with respect to the unit ball and s is the anisotropic
scaling exponent. The generator parameters themselves are possibly stochastic (i.e. they
will vary randomly from scenc to scene). An attempt to empirically estimate the
ensemble average by averaging many arbitrary realizations would result in a smearing of
the parameters (since each realization would have a different generator). Therefore, only
one realization will be analyzed at a time and fluctuations about the ensemble average
contours of the spectral energy density are expected. (Figure 3.1 shows the spectral
energy density of a simulated single realization and its ensemble average counterpart.)
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Figure 3.1 : Theoreucal ensemble average spectral energy density (top), and a corresponding single
realization (bottom) (from a multifractal simulation). An average over an ensemble of such single
realizations would produce an image as above (top). Images have linear GSI parameters: s=2.68, G: ¢=0.3,
f=0.2 and e=0.3 and B,: sphero-scale at 0.14 units"(where external scale =1 umt). Intensities are
presented as InP and labeled by the colours of the discontinuous Palette 1 of Appendix B.
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The problem of the estimation of the GSI parameters can be considered as one of
a non-linear statistical regression. That is, the N data points, P(k,), of the spectral
energy density of a single realization are fit to a theoretical function,
P,(k)=(P(G,B,,(P,),s,k)>, which is the ensemble average spectral energy density
generated from the linear GSI parameters: G(c, f,e) (since by convention d=1),
B = B (ro.a,b,.[a,,b,]), 5, and (F,), where a unit ball, B,, is estimated by the second
[fourth] order equation (2.3.5) [(2.3.7)]. Usual procedures involve the method of least-
squares, where the parameter estimates can be determined by minimizing the ‘error
function”.

EZ(G,B,,(Pl),s)=I—:I-i[InP(k,)-lnP,(k,,G,B,,(P,),s)r (3.13)

Other E? may be defined for the same purpose, but we choose to use the difference of
logarithms (see section 3.3.1 for reasons and implications). Note that, from equation
(3.1.2), InP,(k,)=-sIn1(G,B,,k,)+In(P,), where the function A(G,B,k,) is the
solution of a non-trivial transendental equation (involving G and B,) which must be
solved for each k;.

Since it is not possible to analytically solve for the minimum of E?, it is necessary
to consider E? as a continuous function of the p parameters that describes a p-
dimensional hypersurface in parameter space (where p is, at least, eight, depending on B,,
as above). Therefore, the space must be searched for the appropriate minimum
(Bevington, 1969, Chapter 11) i.e. E? must be found numerically at intervals in
parameter space to trace out the behavior of the hypersurface. In general, E* can be a
complex function with multiple extrema. Therefore, if the absolute minimum is to be
found, the intervals must be fine enough such that the estimate of the hypersurface
exhibits the same extrema. Since the analysis is performed on a single realization, the
actual explicit values of E? will be statistically scattered around the continuous
hypersurface expected when an infinity of independent data points are usea (this would
require knowledge of P over an infinite range of scales). This continuous hypersurface,
which will be denoted by E2, will have similar characteristics as the hypersurface
expected when P(k,) are ensemble average quantities. The hypersurface of the ensemble
average will be denoted as E;, and the usual E* will be reserved for the hypersurface of
a single realization. Figure 3.2 shows a one-dimensional cross-section of a possible
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Figure 3.2 : The effect of an increase in the number of points used to calculate E*. Shown are the one-
dimensional cross sections (c and f fixed) for the hypersurfaces of a multifractal simulation (see figure 3.1,
bottom) calculated using ~15 000 points (top) and ~450 000 points (bottom). As the number of statistically
independent points goes to infinity, the hypersurface is expected 10 become smooth. The explicit values of
E? have been connected by a continuous line 1o highlight the point t point fluctuations.
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hypersurface for a single realization calculated using two different numbers of data
points. It can be seen that the hypersurface becomes smoother as the number of points
increases. Due to these high frequency fluctuations, a function is fit to the explicit values
of E? in an attempt to estimate E>. The estimated minimum of E? can then be found by
calculating the minimum of the function.

The full search required for (at least) an eight-dimensional parameter space is
computationally prohibitive, even when a transcendental equation need not be solved.
Therefore, it is necessary to make some approximation to the error function of eguation
(3.1.3). In this chapter, two such approximations will be discussed: The Monte Carlo
Differential Rotation method of Pflug (1991a) and the Scale Invariant Generator
technique (presented here for the first time).

3.2 Monte Carlo Differential Rotation Method

The Monte Carlo Differential Rotation method started with explicit guesses for
the parameters and used a Monte Carlo approximation to the error function of equation
(3.1.3). Instead of solving for InP,(k,) using the transcendental equation, an estimated
value was calculated from ~sin4, +In(P,), where 4, is a randomly chosen scale ratio.
Then the position of the corresponding data point was computed from: k; = A.fk,‘ , where
k,, is a randomly chosen vector on the unit ball. Thus, prior knowledge of s, (P,) and
the parameters of B, was required, therefore, they were estimated prior to the estimation
of G. Unless the anisotropy is quite extreme, s can be reasonably estimated from the
isotropic energy spectral slope, B (see section 1.2), since the anisotropy tends to be
‘washed out' by angular intcgration in Fourier space. B, was estimated by fitting a curve
to the levelset of the ficld at (P,) (the set of data points that have amplitude within the
range (P,)1 AP) (see figure 3.3). Since, within the scaling regime, any ball is equivalent
to any other ball, P, can be chosen arbitrarily. The curve describing B, was of the form:

|k,| = k(6) = g, + g, cos(26) + q,5in(26) + ¢,cos(46) + ¢, sin(46) (3.2.1)

where g, are real numbers.!

1 This curve describing B, is different then the one used in the Scale Invariant Generator technique (see
section 3.3). This curve is not invariant under linear transformations (see section 2.3).
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Figure 3.3 : A levelset of a spectral energy density of a satellite cloud radiance (top) and the same levelset
with curve drawn (bottom). This curve (of the form of equation 3.2.1) is the estimated unit ball, B,.




An crror function?, that was only a function of three parameters, G = G(c, f,e),
was defined :

E;m(a)=.nl.z[1n P(%:°K, ) +sin2, - 1n(P)] (32.2)

The sum is over n random combinations of k, and 4, and therefore n data points,
P,= P(3;°k, ).

The random k, were found by choosing a point on B from a randomly chosen
angle, 6,, between 0 and 2n. Then k, was computed from £,(6,), equation (3.2.1). 4,
was a random number between O and A_, (4,, was an estimation of the maximum
scale ratio). n was chosen such that the fluctuations due to adding another data point
were much smaller than the gradient of the hypersurface.

The estimates for ¢, f and e were found using a 'grid search' (Bevington, 1969) of
the parameter space: explicit guesses were made for two of the parameters then Exep,
(equation 3.2.2) was found as a function of the third, while the other two were held fixed
at their guessed values, (i.c. a one-dimensional cross section of the hypersurface was
invezgated). A one-dimensional parabola was fit, near the minimum, to smooth the high
frequency fluctuations. The first estimate of the third parameter was the value for which
the parabola was a minimum. With the third parameter held fixed at its first estimate
value, the other two were varied successively. The successive variation of all three
parameters was then iterated until convergence was reached.

3.3 The Scale Invariant Generator Technique

In order for a GSI analysis technique to be numerically efficient, it must
necessarily reduce the dimension of the parameter space. The Monte Carlo Differential
Rotation method attempted to do this by estimating many of the parameters before
scarching the parameter space of G(c,f,e). However, this is not an ideal solution since

2 Pflug swdied the error functions defined using the difference of logarithms of P as well as that of the
difference of P and the results were found to be similar.
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errors in the estimations (of B, in particular) were magnified increasingly with scale ratio
when the k; were calculated. The errors were due to the statistical scatter of the levelsets
from which the B, were estimated. In some cases, it may have been possible to
completely ziscalculate the unit ball since a levelset of P may not resemble the family of
curves thau describes it. The reason is because the position of the data points of a given
value of P can be considered to statistically fluctuate about the ensemble average contour.
The fluctuations are predominantly uniformly spread between the theoretical contours
(P)t AP, where AP depends on the magnitude of the fluctuations. Therefore, since the
contours can be closer together at some angles, the spread of points in space at those
angles will be smaller. Fitting a curve 0 a levelset of such a case will cause biased,
hence poor, parameter estimates.

The Scale Invariant Generator technique, described in this thesis, has the very
significant advantage of avoiding the problems of making initial estimations to reduce the
parameter space (e.g. of B,, as above) by separating the estimations of G and B,. The
Scale Invariant Generator technique estimates the more fundamental G without prior
knowledge of B,. Itthen usesG to ‘enhance’ the spectral energy density and thus enable
an accurate estimate of B,. The discussion of the technique will therefore start with the
estimation of G.

3.3.1 Estimation of the Generator, G
(a) Determination of the error function

G can be estimated by searching a three-dimensional parameter space without
introducing errors due to the prior estimation of other parameters (with the exception of s,
which can usually be accurately estimated using B, as before). The Scale Invariunt
Gencrator (SIG) technique can do this by moving away from the idea of comparing the
value of a data point to a theoretical ensemble average value of P and by exploiting the
fact that the amplitude of any two points on the same trajectory, k, and k, = 47k, ,
(see sections 2.1 and 2.3) will on average be related by:

(P(agk, )= 23 (P(ks,)) (3.3.)
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in{P(AZK,, )} =-sin 4, +In{P(k, )) (3.3.2)

If a field is scaling (in this case with respect to the linear Fourier space scale changing
operator, T, =A%), this relation holds independently of the shape of the balls, for all
pairsk, , k, = ASk 2, Where 4, is any positive real number such that k 2, lies within the
range of the data and k, is itsclf any point along the trajectory (parametrized by 4,).
Recall, from section 2.1, that a trajectory can be parametrized by A. Therefore, to
parametrize pairs of points, two parameters, A, and A,, are needed.

A (normalized) error function, that is only a function of G(c,f,e), can be
defined. Since theory states that every point along a trajectory must satisfy equation
(3.3.2) for continuous A4, the error function would take the form3:

E: ., (G)= -i- [If[1n P(ASK(A,.0)) + 5102, ~ In P(k(A, D)) dA,02,4¢ (3.33)

where { parametrizes the trajectories and the A, and A, integrations compare all pairs of
points (within the range of scales where P is known) on the same trajectory, {, and A is
the appropriate normalization factor. Note that since only points along trajectories are
compared, there is no reference to the balls i.e. no unit ball need be known. The integral
of equation (3.3.3), however, requires specific knowledge of k(4,,{), which is as
difficult to determine as P,(k). Yet, the integration over dA,d{ is simply an integration
over an area in Fourier space (i.e. 4, and { is a coordinate system that uniquely defines a
point in Fourier space, see section 2.1 and figure 2.3). Therefore, with a change of
variables (or re-parametrization) to the Cartesian system, (4,,§) = (k,.k,) and 1, =4,
equation (3.3.3) may be rewritten as:

Ef.(G)-—— r [mp(;.“k)mn). +InP(k)| dAdk,dk, (3.3.4)

L - .,-

where A =(A, -1)ffdk,dk,

3 Note that this error function can be interpreted as a least-squares fit of an experimental value (which is a
function of data points) to the theoretical value zero.
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and no a priori knowledge of the trajectories or balls is necessary. &, and k, ., are the
maximum wave numbers for which P is known. Note that there will actually be a region
about the origin (corresponding to the minimum know wave number) that will not be
included in the integral. 4, depends on &, and k, and is determined by &,,,, and k ..
Only A >1 (i.e. only magnifications) were considered since this avoids the comparison of
the same pair twice. Note that the Jacobian of the transformation is unity since D, = 2.
Since the uncertainties in estimating the parameters depend on the characteristics of the
hypersurface (see below), equation (3.3.4), will determine the maximum accuracy with
which the parameters can be measured using the technique. However, to evaluate E:..,
equation (3.3.4), P(k) must be known in functional form and not as discrete data points as
is the case. Therefore, E;, must be approximated as:

E:,O(G)=%Z[lnl’(lf‘ki)+ sind, - In P(k, )] (33.5)

The sum is over all the data points, P(k ,). and all the possible (discrete) scale ratios, 4,,
which form the unique pair [P(A7k,),P(k ). It is important to note that P(A7k,) and
P(k;) are data points (i.c. random variables) and therefore both will fluctuate about their
average values. This will cause the minimum variance (the minimum value of Egg,
equation 3.3.5) to be larger than the case when only one point is uncertain. However, as
more statistically independent pairs are summed, the results should converge to the value
of the smooth hypersurface, E2. As before, the number of statistically independent pairs
will depend on the minimum and maximum scales (and also on the resolution) of the data
set. Since all pairs along trajectories are compared, the number of pairs will be greater
than the number of data points. Below, since we will deal exclusively with equation
(3.3.5), the subscript will be dropped: E3; = E>.

A further complication to the problem is that the fluctuations could possibly be
much more variable than those described by multi-variate Gaussian distributions?,
Therefore, there is no rigorous theoretical justification for using the method of least-

4 Work on complex cascades (Schertzer and Lovejoy, 1993) indicates that the Fourier space fluctuations
have essentially the same extreme variability as the real space fluctuations; for example, an @ = 2
universal multifractal with log-normal probabilities in real space will also have log-normal variations abowt
the mean in Fourier space (see Duncan et al., 1993, for numerical study).
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squares. However, it is still plausible to assume that the behavior of the hypersurface
near the minimum will not be substantially altered if the fluctuations are not too violent.
Logarithms of P were used in E?, equation (3.3.5), since taking the logarithm has the
effect of decreasing the variability. This could possibly lead to biased estimates.
However, a similar error function, without logarithms, is not necessarily an unbiased
estimator. In fact, it is possible that the bias is decreased by taking the logarithm The
results shown in Chapter 4 justify the use of the method of least squares and indicate that
the bias due to taking the logarithm was small.

(b) Method of searching parameter space

The preferred method of searching the parameter space for the appropriate
minimum must be determined. To do this, the behavior of E', was examined, for a large
portion of the parameter space (i.e. E* was calculated explicitly for a theoretical
ensemble average spectral energy density). E(’) is shown in figure 3.4 as a function of
the GSI parameters through a series of cross-sections where the parameter ¢ is held
constant. The horizontal and vertical axes are f and e, respectively. In order for the three-
dimensional hypersurface to be more easily visualized, another hypersurface is shown
through a series of cross-sections of constant e (figure 3.5, where the horizontal and
vertical axes are ¢ and f, respectively). It can be seen, from figure 3.4, that the concavity
of E(’) along the e axis is much larger relative to the concavity along the f axis. This is
important since the concavity, in part, determines the accuracy with which the parameters
can be estimated.

A possible method of searching the parameter space for the global minimum is the
grid search (successive variation of the parameters), the method used in the Monte Carlo
Differential Rotation method (see section 3.2). It was found that the characteristics of the
hypersurface were such that the convergence to the absolute minimum was extremely
slow (i.c. many iterations were needed to reach the minimum). It was so slow, in fact,
that the change in amplitude of a parameter, due to one iteration, could possibly be
smaller than the uncertainty in the estimation of the parameter. Such a search was
performed on the hypersurface of figure 3.5 (with minimum at ¢=-0.3, £=-0.2 and e=0.2).
A value of e=-0.4 (top center of figure 3.5) was chosen for the initial value of e. The
minimum of E(’). with respect to ¢ and f, for e = —0.4, was found to be at ¢ =-0.5 and
f=0.3. Note that these estimates of the absolute minimum, at ¢=-0.3, f=-0.2 and e=0.3,
are inaccurate, therefore, at least another iteration is needed. Holding ¢=-0.5 and
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Figure 3.4 : Hypersurface of a theoretical ensemble average spectral energy density, E(z), presented as a
series of cross-sections of constant ¢. For a given image, f and e (the x and y axes respectively) are vaned
while c is held fixed. The images from left to right are the cross-sections where ¢=-0.7 to 0.9 in increments
of 0.2. The numerical values of E* have been rescaled to enbance contours (values correspond to those
of Palette 2 1n Appendix B, gray 15 t’ngh, green 1s low and white 1s very low), The edges of the cross-
sections correspond to ct+ f * =1 (see section 2.4 concerning restrictions of the GSI parmeters) and
e=+1.5 The GSI parametersof P are s=2.0, G: ¢=0.3, f=0.2, ¢=0.3.




Figure 3.5 : Hypersurface of a theoretical ensemble average spectral energy density, l'.'(2 y» presented as a
series of cross-sections of constant e. For a given image, ¢ and f (the x and y axes respectively) are varied
while e is held fixed. The 1mages from left to right are the cross-sections where e=-0.6 to 0.8 in increments
of 0.2. The numencal values of E\z\ have been rescaled to enhance contours (values correspond to those
of Palette 210 Appendix B). The edpes of the cross-sections correspond to ¢* + f ‘a1 (see section 2.4
concermag restrictions of the GSI parmeters). The GSI parameters of P are: s=2.0, G: c=-0.3, f=-0.2,
c~0.2.




=03, E(’) was plotted as a function of e (figure 3.6). The minimum was found to be
at e=-0.33. The case examined was an ensemble average case, therefore, it is
conceivable that, for a single realization, the error on the estimate of e would be of the
same order of magnitude as Ae=-0.33-(-0.4)=0.07. This would mean the
convergence would be undetectable over the noise. Also, several iterations would be
needed to find the absolute minimum, thus increasing the time needed for the calculation.
Another possible problem is that this technique may fail to converge to the absolute
minimum if there are multiple minima. The above arguments make the grid search
method unappealing. Therefore, we chose an alternative involving a parabolic expansion
of the hypersurface close to the absolute minimum.

A parabolic expansion of E? not only smoothes the high frequency fluctuations
about E2, but is also convenient because the minimum of E? (and thus the estimates of
the parameters) is simply the solution of a system of linear equations. However, the
hypersurface is not globally parabolic, therefore, the expansion is a reasonable estimate
only in a neighbourhood of the absolute minimum. The neighbourhood was found to be
much smaller than the extent in parameter space in which the absolute minimum would
be expected to lie (see section 3.3.2d). Therefore, it was necessary to obtain initial
estimates of the parameters. Conventional estimation methods (e.g. gradient search,
Press et al., 1986) were not used since substantial difficulty is caused by the fluctuations
about E2. A less efficient but more accurate method, a type of ravine search, was used.

A ravine is the path of least resistance toward the minimum (e.g. in analogy to
topography, it is the course a river would follow). Good initial estimates of the
parameters can be found by fitting a one-dimensional parabola to the projection of the
ravine onto the respective axes. However, if the ravine is not steep, relative to the
fluctuations, it will cause errors in the initial estimates. Approximations to the
projections of the ravine were found by searching the portion of parameter space where
the minimum was expected to lic and recording the minimum of the hypersurface for the
given value of the parameter, regardless of the value of the others. For example, the
value of E*(e=0) (where E; is the projection of the ravine onto the e axis) was the
minimum value of E*(c,f.e=0) over all possible values of ¢ and f. On average, this
point will be along the ravine. This was carried out for several values of e for the
theoretical hypersurface of figure 3.5. The minimum of each cross-section is plotted in
figure 3.7. The initial estimate of e is the minimum of the one-dimensional parabola fit to
the values of E;.
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Figure 3.6 : Results of a grid search of the hypersurface of Figure 3.5, where e was varied while ¢ and f
were held fixed at -0.5 and 0.3, respectively (see text). The minimum is at e=-0.33. The equation of the
parabola that was fit to the data near the minimum is included in the figure. The absolute minimum is at:
c=-0.3, f=-0.2, ex0.3. Numerical values are as in figure 3.5.
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Figure 3.7 : Results of a ravine search of the hypersurface of figure 3.5, where the data points represent
the minimum of the hypersurface of the comresponding value of e (over all possible = and f). The minimum
is at e=0.17 and the equation of the parabola, that is fit to the data near the minimum, is shown. The
sbsolute minimum is at: c=-0.3, f=-0.2, e=0.3. Numerical values are as in Figure 3.5.




In summary, SIG calculates EZ, the error function of equation (3.3.5),
numerically at intervals in parameter space. Due to the fluctuations of the data points
about the ensemble average, the numerical values of E? fluctuate about E2. Initial
estimates of the parameters are found using the ravine search and a parabolic expansion
of E? in three dimensions is then made about the initial estimates. The parabolic
expansion is necessary to smooth the fluctuations about E2. The parameter estimates are
taken to be the minimum of the parabola.

3.3.2 Further Details of the Scale Invariant Generator Technique

Before the Scale Invariant Generator technique can be applied, some details must
be examined. For example, the error function, E? of equation (3.3.5), compares all pairs
of points along a trajectory. This would mean comparing approximately £/ pairs, where
there are L? data points. It is expected that not all pairs need be considered in order to
obtain a reasonable estimate of the valuc of E? (if only because many of the L/ pairs
will be statistically dependent). If this is true, the number of pairs that are necessary, and
a method of choosing these pairs, must be found. Also, it must be determined how many
points in parameter space (where E? will be found explicitly) are needed for a reasonable
estimate of E2. The uncertainties will be used to determine the appropriate choices since
the uncertainties theoretically determine the accuracy of the estimates. Therefore, the
effects of the above choices on the uncertainties will be examined. These choices are
important since our goal is not only to find a method that produces good estimates, but
one that is efficient as well.

(a) Uncertainties

To determine the uncertainties, the procedure of estimating the parameters will be
examined in more detail. The hypersurface was estimated by a function of the form:

2 2
E*~E2, —E’+Z—89-Ag, -22‘”: e, (3.36)

te1 0, 2410 a&
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i.c. a parabolic expansion about the initial estimates, g, , found using the ravine search,
where g, are the GSI parameters (c, f, e), Ag, =(g,-g,.) and the ten parabolic

cocfficients, p*:

OE? ’E>
© g2 M=""0 p@=—e (3.3.7)
p P oJg, ¥ 08,9%,

arc the derivatives of E? with respect to g, at (g,, 8o, ,g,,).

The p“ were found by a least-squares fit to the numerically calculated values of
E? at m points in parameter space (this will be discussed further below). The parameter
estimates were then g, = Ag,,, +8, ,where Ag,, werethe solutions to the system of
linear equations:

oE?

3[&-;:—=0 (3.3.8)
ie. a(Ag)=P or Ag=pe (3.39)
where e=a", Ag=(Ag,.As,Ag;) @, = IE, and B =—li’§. « is called
- femla-denfes) &S M P,

the curvature matrix because it contains the information about the curvature of the
parabola. € is the error matrix (it will be used to determine the uncertainties).

Since the minimum of E? was not found analytically, neither can the
uncertainties. However, they can be estimated by making an analogy to the case when an
analytic solution is possible (i.e. the case when the curvature matrix describes the
hypersurface exactly, see Bevington, 1969 for discussion). The estimated uncertainties
on g, willthen be:

2
0%, =S (3.3.10)




where €,, are the diagonal elements of the error matrix, n is the number of pairs of data
points compared (asin £?) and E2_ is the value of E? at its minimum (approximately
equal to the sample variance).

The estimated uncertaintics, 03, , are expected to approach the actual uncertainties
as the hypersurface is more accurately approximated by a parabola and as the error in
determining the parabolic coefficients decreases. Note that equation (3.3.10) also
assumes that the 72 pairs are statistically independent. Since this condition is not expected
to hold for all pairs, it will be an additional source of error.

(b) Choice of pairs

A better estimate of the parameters is expected as of. decreases. Therefore,
increasing the number of pairs or decreasing the £,, (i.e. increasing the curvature since
€=0") will improve the results. Considering this, the effect on the curvature due to the
choice of pairs, [P(Afk ,), P(k ,)], was examined. The choice of pairs corresponds to a
choice of k; and 4. Since the location of the first element of the pair, P(lfk ,.), is
calculated, it is not known a priori if that element lies within the range of the data. If a
choice, (A‘,k ,.), is made such that ATk, lies outside the range, it cannot be considered as
one of the n pairs used in E? and thus it will not contribute to reducing the uncertainty.
The same may be said if the same pair is considered twice. Since all pairs take the same
time to be calculated, it would be more efficient to avoid the pairs which did not
contribute. For this reason, it would be beneficial to control the choice of pairs by
<hoosing them systematically as opposed to randomly (as in the Monte Carlo Differential
Rotation method).

Theinitial distribution, k ;, was chosen from a rectangular region about the origin
in Fourier space (ic. k, =[-W,0] and & =[-W,W], where W is the width of the
rectangular region). See figure 3.8. A rectangular region is considered since the spectral
energy density will have the property P(k)=P(—k). Ak is the interval at which the
points inside the rectangle will be chosen (i.e. Ak=2 means every other point will be
taken). The A, will be chosen from A, =[A4,4,,,] atcertain intervals. These intervals
will be taken uniformly in InA because the fluctuations about the theoretical contours of
the spectral energy density go as InA. This will slightly alter the error function,
however, the difference will be an unimportant weighting factor. All the In A4 will be
positive so that only magnifications are considered. This is to ensure that all the pairs are
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Figure 3.8 : Pictorial demonstration of variables involved in the choice of pairs for the numerical
calculation of equation (3.3.5).

unique. It is more convenient to write 4, as 4, =InA, such that: &, =[Au,u,,, ] in steps
of Au.

The effects on the hypersurface (and thus on the uncertainties) for changes in W,
Ak, Au and u,,, were investigated by performing the analysis on a theoretical ensemble
average energy spectral density (figure 3.1). The investigation was performed for a
single choice of G. Although this choice is expected to cause small changes in the
observations, the general behavior of all hypersurfaces due to changes in W, Ak, Au and
u,,, is expected to be very similar. To facilitate the computation and presentation, E(’)
was found as a functirn of e while ¢ and f were fixed at their theoretical values. The
same behavior is expected on this one-dimensional cross-section as on the full
hypersurface.
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Varying Ak, W and Au, while all others were held fixed, showed little effect on
the cross-section of the hypersurface (see figures 3.9, 3.10 and 3.11). «_,, (figure 3.12),
however, was shown to have a substantial influence (the larger the u_,,, the greater the
concavity). This implies that it would be beneficial to use a large u_,,. However, for a
given W and Ak, n will generally decrease as u,,, increases, since more pairs will fall
outside the range of the data due to larger magnifications. Consequently, if a larger u__,
is desired, a smaller W is needed. However, it is not desirable to over sample a small
subset of points since it could possibly introduce biases. To keep n large, it is also
possible to decrease Ak or Au. Yet there will be correlations between neighbouring
points in Fourier space. If the data points at (e"“)a k, = A%k ; and (e('”)‘" )ok ; (where
InA = /Au and ! is some integer between 1 and “=/,) are correlated, then the situation is
similar to when the same pair is considered twice: the repeated pair will not contribute to
a reduction of the uncertainties. Thus, it is not beneficial to choose Au to be too small.
Unfortunately, any Au (for which the choice of n corresponds to reasonable
uncertainties) might yield correlated pairs. In effect, this will cause an underestimation of
the uncertainties of equation (3.3.10), since not all pairs will be independent.

Yet another factor to consider is how » effects the fluctuations about E2. An
increase in n will cause a decrease in the amplitude of the scatter (in some non-trivial
manner), such that a more accurate estimate of the hypersurface can be made.
Unfortunately, there is no analytical method for solving for the optimum combination of
W, Ak, Au and u_,, since the possibility of biasing due the choice of W, the correlations,
and n for given W, Ak, Au and u,,, will differ from scene to scene depending on the data
and the GSI parameters that best describe the field. In effect, the above arguments can
only guide our selection which will be, to some degree, arbitrary.

In summary, W, Ak and Aux effect the accuracy of the estimates primarily in their
contribution to n. However, correlations and sample biasing must be considered when
choosing them. An increase in 4, will increase accuracy, however, it must alter the

choice of Au and W and more pairs can be expected to fall outside the range of the data.

The choices of W, Ak, Au and u,,, were made such that:

2
02 =fe"an f ~0.05 (3.3.11)
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Figure 3.9 : Effect of change in Au on hypersurface of a theoretical ensemble average spectral energy
density shown in three one-dimensional cross-sections for Au={.1, Au=0.2 and Au=0.3. It can be seen that,
near the minimum, there is little difference in the curvature for the different cross-sections.
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Figure 3.10 : Effect of change in Ak on hypersurface of a theoretical ensemble average spectral energy
density shown in three one dimensional cross-sections for Ak=1, Ak=2 and Ak=4. It can be scen that this

change has little effect.
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Figure 3.11 : Effect of change in W on hypersurface of a theoretical ensemble average spectral energy
density shown in three one-dimensional cross-sections for W=50, W=100 and W=150. It can be seen that,
near the minimum, there is little difference in the curvature for the different cross-sections.
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Figure 3.12 : Effect of change in #,,, on hypersurface of a theoretical ensemble average spectral energy
density shown in three one-dimensional cross-sections for ¥, =2.4, U, =1.2 and U_,, =0.6. It can be
seen that changes in i, have a substantial effect on the curvature of the hypersurface.
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from equation (3.3.10) with k=3 (c and f are generally more accurate). This number was
chosen because it is of the same order of magnitude as the error expected due to making
the parabolic expansion over too large of a range about the first estimate of the minimum
(i.c. the points used to estimate the parabola covered too large a volume for the surface to
be well approximated by a parabola, see below). The numbers quoted directly below
apply to an image size of 512 x512 pixels, with multifractal parameters approximately
those measured empirically in cloud radiances (see table 1.1). The extent of the validity
of these choices, with respect to a change in the multifractal parameters, are discussed in
section 4.3. For this case, W, Ak, Au and u_,, were chosen as:

W=100  Ak=2 Au=0.2  uy =12 = n~31000
(33.12)

It should be noted that there are many other possible choices that could have been
made. In fact, other choices were tested and were found to give similar results (which
indicates the robustness of the technique).

(c) Parabolic expansion of E2

We now consider the problem of the parabolic expansion of the hypersurface. If
E? is found numerically at more points in parameter space, a better approximation can be
made. The error on the parabolic coefficients, p*’, from equation (3.3.7), will result in
an error in the minimum. However, the estimates of the parameters cannot be more
accurate than the sample variance, E2_, and the curvature of the parabola permit.
Therefore, it is not necessary to obtain excessive accuracy for an estimate of the
hypersurface. Note that the uncertainties on the p®, 67, and thus the uncertainties on
the minimum of the parabola due to 0':(., , are dependent on the estimated uncertainties,
0, . Therefore , the ‘total’ uncertainty on the parameters will not be the sum of the two.
Actually, we will assume that the uncertainties of the minimum of the parabola due to
0':,, will be negligible if they are of the same order of magnitude as a‘,’.. Thus, the
number of points, m, in parameter space where E? will be calculated, will be chosen such
that 0 ~ 0.05 and similarly for the other parameter’s uncertainties.
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The uncertainties on the parabolic coefficients, a:“, , can be found from the error
matrix of the least-squares fit of the m points to the parabola, E2, (equation 3.3.6) and the
sample variance, 57, due to the scatter about the hypersurface:

o2, = e’ (3.3.13)
’ m

It would be algebraically tedious to solve explicitly for the error on the minimum due to
a':,, (the minimum is the solution to the system of equations shown in equation 3.3.8).
Therefore, since only an order of magnitude estimate is required, we will estimate the
error by examining the one-dimensional cross-section of the three parameters about the
(known) minimum of E? of a (simulated) single realization. That is, one-dimensional
parabolas, which are functions of only one parameter while the others are held fixed, will
be examined. The one-dimensional cross-section of the hypersurface as a function of e
is:

EL(c= Consf = faiar€)=PR€ +(D§ ' + PG foia + PV )+ A (3.3.14)

1 ?*E? 1 2*E? 1 I’E} JE? -
where p¥ =2 Py = 2 e p wr P’ = and A is independent of
e. These are the p* of equation (3.3.7) with g, replaced explicitly with the GSI

parameters and the g, are also explicitly replaced.

The minimum is located at:

(2) (2) (1)
CoinPyt + foinP32 + Py
Coi = m 5o ) (3.3.15)
Py

Assuming that the 0':,, are independent, the standard deviation of e_, due to a:,,, is:
de_.
Ae= 2-5’,%0,«, (3.3.16)
i

where a:(,, is the standard deviation of p*. So,
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(There are similar expressions for the other parameters.) Varying m gave the results in

i‘ﬁ o @ Cmo’ﬂ + f n'na’a) + O";,,

hJ

- U I +
(2)
€ Py

Table 3.1. Thus, m=250 was used.

(2)
Coin P31

2 1
+ fouPiy + DY

(3.3.17)

- Oincducto O | Oinfducto O | Oinedueto O
48 0.055 0.075 0.259

250 0.008 0013 0.036

1500 0.001 0.002 0.007

Table 3.1: Estimation of the standard deviations in the measurement of the minimum of the parabola (and
thus the parameter estimates) due w uncertainties in the parabolic coefficients.

Finally, the optimum range of the parabolic expansion must be considered.
Ideally, the range would correspond to the neighbourhood, about the minimum, where the
hypersurface is well approximated by a parabola. However, if the range is too small, it is
possible that the curvature would not be detectable over the fluctuations. If the range is
too great, the higher order terms in the expansion of the hypersurface become non-
negligible and errors are introduced. The optimum range was estimated by performing
the analysis on a theoretical ensemble average spectral energy densities. The results of
two cases studied, over the ranges given in Table 3.2, are presented in Tables 3.3 and 3.4.
Although Range 3 seems to give the better results in the cases below, when the analysis
was performed on single realizations, it was found to be too small (relative to fluctuates).
Therefore, Range 2 is a better choice when considering multifractal parameters as those
found empirically in clouds, since the biases are not too great. The error due to the non-
infinitesimal range is expected to change depending on the choice of parameters, as well
as the fluctuations. It was judged that there was fairly small change in the contours and
that the morphology of the fields did not differ greatly due to changes of this magnitude
in the parameters. Figure 3.13 shows two simulations whose parameter ¢ differs by 0.1.
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Range 1 04 +0.3 +£0.4
Range 2 103 102 103
Rnnie 3 +0.2 +0.] +£0.2

Table 3.2 : Definition of ranges of the parabolic expansion of hypersurface used for Tables 3.3 and 3.4.

theoretical values

Range 1

0.302

0.202

0.354

0.300

0.200

0.313

Table 3.3 : Results of the analysis on theoretical ensemble average spectral energy density for different
ranges in the parabolic expansion (Case 1). See Table 3.2 for definitions of ranges.

theoretical values .
Range 1 0.080 0.096 0535 |
Range 2 0.084 0.098 oso1___ |
Range 3 0.091 0.099 oso. |

Table 3.4 : Results of the analysis on theoretical ensemble average spectral energy density for diffesent
ranges in the parabolic expansion (Case 2). Sece Table 3.2 for definitions of ranges.

It should be noted that if the absolute minimum is outside the range of the
expansion, the parameter estimates will generally be as well. The estimates will be poor
and will generally lie in the direction of the absolute minimum. Therefore, if the
parameter estimate lies outside the initial range, another parabolic expansion should be
made, where the range should be adjacent to the initial and in the direction of the
estimates. However, this was rarely the case since the first estimates of the ravine search
were fairly accurate.
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Figure 3.13 : Companson of multifractal simulations with similar GSI parameters: c=0.3, f=0.2, e=0.3

(top), and ¢=0.3, f=0.2, e=0.2 (bottom). The continuous Palette 3 is used. Red represent high values and
blue low.
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(d) Details of the ravine search

Since the ravine search found the values of E? explicitly for points at intervals in
the parameter space, it is desirable to restrict the search to a volume where the minimum
is expected to lie. Restrictions on the generator (i.c. the real parts of the eigenspectrum
must be positive, see section 2.4) could be used to limit the search. This restriction for
the case of linear GSI is:

cd+fl-e? <1 (3.3.18)

(where d=1)This still corresponds to an infinite volume in parameter space, therefore,
further restrictions should be made. It may be possible to use the fact that, after the
generator parameters are found, equations of the form (2.3.5) and (2.3.7) are to be used to
approximate the balls. This imposes further constraints on the generator parameters to
ensure the validity of the GSI system (see section 2.4). These restrictions generally
depend on both the generator and the ball parameters and, since the ball is not known a

priori, they are of limited usefulness. Nevertheless, they may be used to estimate the
relevant volume.

If a sphero-scale is assumed to exist, the parameters must satisfy equation
(2.4.31):

A +fi<«1 (3.3.19)

In most of the cases when the ball is approximated by an equation of the forms (2.3.5) or
(2.3.7), this is nearly a sufficient restriction. For example, ¢* <1 and f%<1 (the
condition of equation 2.4.32) is imposed if any member of the family of balls has a, or b,
equal 0 and the conditions of equation (2.4.34) are often more stringent than equation
(3.3.19). Also, the magnitude of e is not expected to exceed 1.5 (by inspection of the
restrictions of equations (2.4.30) and (2.4.34) and by the limited experience we have with
geophysical fields analyzed so far). Therefore, the volume of the search can be chosen so
that it satisfies:

c+fi<1, e=[-1515) (3.3.20)

65



Although, all possible cases will not satisfy these conditions, most will. If the
absolute minimum lies outside this region, the ravine search will not fir.d a minimum
within the volume and the search must be readjusted. This solution is not iieal, however,
if the restrictions are not made, computation time increases substantially. One of the
simulations that was analyzed (see Chapter 4) had parameters that did not satisfy equation
(3.3.20) and valid results were still obtained. Examples of a ravine search are plotted in
section 4.1 and 5.2.

3.3.3 Estimation of the GSI Ball Parameters

The next step in the Scale Invariant Generator technique is the estimation of the
family of balls. Once any one member of the family of balls is found, the whole family
can be generated, since the generator has already been estimated (see section 2.1 and
3.3.1). Thus, the estimation consists of finding the parameters that describe a unit ball.
As stated in section 2.3, the balls will be approximated by the second or fourth order
bivariate polynomials of equation (2.3.1) and (2.3.2), respectively. The relevant
parameter space will therefore be three or five dimensional.

Unlike the generator parameters, the ball parameters may be found using an
analytic method. The ball parameters may be found by fitting a curve of the appropriate
form to a levelset of the spectral energy density (as discussed in section 3.2). It was
stated that the large fluctuations about the ensemble average contours cause undesirable
errors in the parameter estimates. Ideally, the spectral energy density, P, could be
smoothed before the fitting procedure. However, conventional smoothing (e.g. averaging
adjacent data points) causes non-uniform spreading of the contours of P and
consequently, the smoothed field will not be described by the same GSI parameters as the
actual P.

Assuming that the estimates of the generator parameters, found using the error
function of equation (3.3.5), E?, are reasonably accurate, they can be used to 'enhance’
the contours of P without effecting the scaling of the field. Regardless of this
assumption, fitting a curve to a levelset of the enhanced P will find the best estimate of a
unit ball given the estimated generator parameters.




The enhancing technique consists of applying a running average to the data points
that lie on the same trajectory (see section 2.1). The same principle, that was used for
E?, is implemented again i.c. the fact that the amplitude of any two data points on the
same trajectory will be on average related by equation (3.3.1):

(P(ask, ) =x(P(k,,)) (3.321)

Thus, if the amplitude of all the points along a trajectory, k, = A7k 1, » are transformed to
a point, k, , then the transformed amplitudes, AP (lck A, ), will fluctuate about the
ensemble average value, (P(k ) Averaging the 4] P(l"k A, ) will then give an estimate

of (P(K,,)).

As in section 3.3.1, an approximation is made such that only M data points are
used in the running average. That is, to generate the enhanced P, P, ( ,) the amplitude
of cach data point, P(k,), is replaced by:

P,.(k,):-;-l-gl?(lj“k,) (33.22)

where A; were incremented by intervals of Au=0.2 (as in section 3.3.2) and M was
chosen to be six. It can be see from the figures in Chapter 4 that the enhancing technique
has a substantial smoothing effect. This effect can also be seen in figure 3.14, where a
levelset of a P,,(k ,.) and one of a normal single realization are compared. The points
correspond to the data points which had amplitude 16.00 £ 0.04.

Here, the parameters of a unit ball, B, at some chosen P,, were found by fitting a
curve of form of equation (2.3.5) or (2.3.7) to a levelset of P,.(k ,). If increased statistics
are required, the parameters of several such balls (by choosing several P)) can be
estimated and transformed (with the known generator parameters, using the idea of
section 2.4) to some arbitrary scale, where they can be averaged. The scale ratio of the
transformation will be:

-¥
A= (.5_) (3323)
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Figure 3.14 : Comparison of levelsets of the spectral energy density. TOP LEFT: levelset of enhanced P.
TOP RIGHT: levelset of a single realization (before enhancing) at the same level. A curve of the form
(2.3.5) is drawn through the levelsets of the enhanced P (bottom left) and single realization (bottom left). It
can be seen that fitting a curve to the pre-enhanced levelset causes large biases.




where P_, arbitrarily determines the choice of scale. Alternatively, all the points of
P,,(k ,.) can be transformed to some arbitrary scale using the known generator, thus
increasing the number of points used in the estimation of the unit ball . The scale ratio of
the transformation will be:

-
P_lk;
l=[ =/ ) (3.3.24)

where P_, is chosen arbitrarily and determines the final scale.

Given that the family of balls are described by equation (2.3.1), it may be
instructive to discover whether a sphero-scale exists. This can be done by using the
equations of ‘ellipticity’, €= %35-—1. where O, . and Q. are the major and minor
axes of the ellipse (ball) that is generated from a transformation on a sphero-scale, (Pflug,
1991a). The ellipticity can be found as a function of the scale ratio of the transformation
given the linear GSI generator parameters. We, however, are interested in the inverse
problem. The ball, and thus its ellipticity, are known, therefore, if the ball can be
generated from a sphero-scale, the scale ratio corresponding to this transformation can be
found from the inverse of the ellipticity equation. The sphero-scale can then be found by
transforming the ball with the calculated scale ratio. If no sphero-scale exists, the
transformed ball will not correspond to a sphero-scale.

The choice of whether to use the second or fourth order equations to mode! the
balls is somewhat arbitrary. Often the choice is clear by inspection of the enhanced
spectral energy density. However, a more objective method can be implemented if the
curve that is fit to the levelset of P is found using the method described directly below.
Noting that %; of equation (2.3.5) is the sum of the second order terms of a Fourier
expansion, then the ball parameters are simply found by taking the Fourier transform of
%z , where r is of the positions of the data points as a function of angle. This can be
done by discretizing the angles and calculating a Fast Fourier Transform (see Appendix A
for details). The higher order terms, of the transform, are assumed to be negligible, or
equivalently, they are assumed to be due to the fluctuations about the contour of P. The
same method is applicable to the fourth order case (equation 2.3.7), except that yr‘ is
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the sum of the second and fourth order terms of the Fourier series. Note that the second
and fourth order equations require the transformation of different functions i.e. %z or
%. . The most simple case (second order) will initially be assumed to be adequate. If
the fourth order terms, determined from the transform, are comparable to the second
order terms, then it is clear that a fourth order expansion is necessary and consequently
the fourth order curve should be found. Conversely, if the fourth order terms are small
(i.c. less than a tenth of the magnitude of the second order terms), then the second order
curve is used. This was the criteria for determining the appropriate order of equation to
model the balls.

3.4 Procedure of the Scale Invariant Generator Technique

The procedure of the Scale Invariant Generator technique can be summarized in
point form as follows:

(11  The anisotropic scaling exponent, s, is estimated from the isotropic spectral slope,
B.via s=p+D, -1. Here, s =p+1 (see Pflug 1991a).

{2]  The spectral energy density, P, is found by using an FFT technique (Press et al.,
1986) to calculate the Fourier transform of the field.

3] The error function, E? of equation (3.3.5), is found numerically at intervals in
parameter space. The choice of pairs is made as in equation (3.3.12) (see section
3.3.2b).

[4] The first estimates are found using the ravine search (see sections 3.3.1b, 3.3.2d)
over the volume in equation (3.3.20).

[5]  Theestimate of s is verified by investigating E? as a function of s while the
generator parameters are held fixed at their first estir:ate values.

[6] A parabolic expansion of E? about the first estima::s is made over Range 2 of
Table 3.2 (see section 3.3.2c for details). The parameter :stimates correspond to
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7

(8]

the suinimum the parabola. The uncertainties on the estimates are given by
equation (3.3.10).

P is enhanced using the generator parameters estimated above (see section 3.3.3).
The parameters of a unit ball are found by fitting a curve of the appropriate form

to a levelset of the enhanced P (see section 3.3.3). The appropriate form is
determined by the criteria given in section 3.3.3.
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Chapter 4
RESULTS ON MULTIFRACTAL SIMULATIONS

4.1 Results on Multifractal Simulations with a Variety of GSI
Parameters

In this chapter, the Scale Invariant Generator technique is tested using simulations
of continuous multiplicative cascades yielding universal multifractals (Schertzer and
Lovejoy, 1987b; Wilson et al., 1991). The basic steps in the simulation are: (a) the
production of a ' §-correlated’ (extremal) Lévy noise, the 'sub-generator' (this determines
the type of probability distribution), (b) filtering to produce an (anisotropic) }; noise, the
multifractal generator, (c) exponentiation to produce the conserved multifractal, (d) a
final (anisotropic) fractional integration (differentiation). For details of the method used
to render the algorithm anisotropic, see Pecknold et al. (1993).

A variety of different generator and ball parameters were tested following the
procedure described in section 3.4. The multifractal parameters were the same for each
simulation: a =15, C =01, H=04. These values are similar to those found
empirically in cloud radiances (see Table 1.1). The effects on the accuracy of the
technique due to changes in these parameters are studied in section 4.3. The simulations
considered were 512 x 512 pixels in size, (which is a typical size of many geophysical
data sets). The simulations were all generated from the same random sub-generator so
that the changes in the characteristics of the fields due to the different GSI parameters
could be seen more clearly.

The results of cach simulation are presented in a separate figure and a separate
table. On the top left of the figure is the simulated field in real space, presented using the
continuous Palette 3 of Appendix B. All other images are presented using the
discontinuous Palette 1. On the top right is the spectral energy density, P, of the
simulation. On the bottom left is the enhanced spectral energy density. On the bottom
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right the balls, generated from the estimated parameters, are drawn over P; the accuracy
of the estimated parameters can be seen quite well in this image and also by comparison
with the enhanced P. The simulated and estimated parameters with uncertaintics are
presented in a table directly following the figure. A discussion of the results and the
accuracy of the estimated uncertainties is given in section 4.2.

In order for the estimated ball parameters to be compared to their theoretical
values (the parameters of the unit ball of the simulation), the estimated parameters must
describe a ball at the scale corresponding to the unit ball. That is, the transformation on a
ball, which is induced by T,, must be found (as in section 2.4, with the exception that the
infinitesimal transformation cannot be used) and used to transform the ball, described by
the estimated parameters, to the appropriate scale. Since, for the fourth order case, the
algebra involved in this test is non-trivial, another, equally valid test was used. Note that
if the estimated ball parameters are accurate, they should describe a contour of constant
P. Thus, the accuracy of the fit can be determined by observing if the value of an
ensemble average P, with the theoretical generator and ball parameters, is constant along
the estimated ball. The mean-squared deviation from the constant value of P can be used
as a measure the goodness of the fit. The percentage deviations from the constant were
found to be very close to 1% in all cases.

In application to geophysical fields, it is instructive to discover if a sphero-scale
exists. The procedure of finding the sphero-scale, discussed in section 3.3.3 (which also
involves a transformation of the balls to another scale), was tested on the simulations
when the appropriate curve was second order. The results are presented in the table of
the corresponding simulation.

A typical example of the ravine search, described in section 3.3.1b and 3.3.2d, is

given for Simulation 1. The first estimate values are given in the figure caption. The
graphs are not presented in each case since the results are similar.
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Figure 4.1 Simulation 1 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 4.1 for simulation and estimated GSI parameters.
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TABLE 4.1 : Estimated Parameters for SIMULATION 1

2.64

0.3

0.2

0.3

sphero-scale

2.69 +0.04

0.28 £0.01

0.20+£0.01

0.31 £0.03

0.149

TABLE 4.2 : Estimated Parameters for SIMULATION 2

2.64

0.2

sphero-scale

253 10.04

-0.1910.01

0.18+0.01

-0.54 £0.06

0.100

The sphero-scales are given in units-!, where the external scale is defined to be at 1 unit.
Note that the errors were not calculated on the sphero-scale measurements since the
errors that were found on the ball parameters (~1%, from mean-squared deviation from a
contour of ensemble average P) are magnified non-trivally with a scale transformation.
The sphero-scale was found with the method discribed in section 3.3.3.



Figure 4.3 Simulation 3 : in real space (top left), spectral energy deasity (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 4.3 for simulation and estimated GSI parameters.




Figure 4.4 Simulation 4 : in real space (top left), spectral energy deasity (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 4.4 for simulation and estimated GSI parameters.




TABLE 4.3 : Estimated Parameters for SIMULATION 3

sphero-scale
theory 2.64 0.5 0.2 20 0.146
estimated § 2.641£0.02 | 0461002 | 020+0.01 | 1.9210.03 0.150

TABLE 4.4 : Estimated Parameters for SIMULATION 4

2.64

0.2

0.4

-0.2

2.6010.03

0.2310.01

<0.33+0.02

-0.1410.03

0.061

The sphero-scales are given in units!, where the external scale is defined to be at 1 unit.
Note that the errors were not calculated on the sphero-scale measurements since the
errors that were found on the ball parameters (~1%, from mean-squared deviation from a
contour of ensemble average P) are magnified non-trivally with a scale transformation.
The sphero-scale was found with the method discribed in section 3.3.3.




Figure 4.5 Simulation 5 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 4.5 for simulation and estimated GSI parameters.




TABLE 4.5 : Estimated Parameters for SIMULATION §

s 2.64 2.63 £ 0.03
¢ 0.1 0.05 0,01
f 0.1 0.08 + 0,01
e 0.5 0.51 £ 0.01

Note that the balls were approximated by curves of the form in equation (2.3.7) and that
the errors in the ball parameters are approximately 1% (measured by the deviation from a
a contour of an ensemble average, P). The ball parameters are given in (units)*, where
the external scale is defined as 1 unit.




Figure 4.6 Simulation 6 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral eoergy density with estimated
GSI contours (bottom right). See Table 4.6 for simulation and estimated GSI parameters.




TABLE 4.6 : Estimated Parameters for SIMULATION 6

s 2.64 2.6310.02
c 0.23 0.1910.02
f 0.19 -0.1910.01
e 0.36 0.3210.03

Nou. that the balls were approximated by curves of the form in eqnation (2.3.7) and that
the errors in the ball parameters are approximately 1% (measured by the deviation from a
a contour of an ensemble average, P). The ball parameters are given in (units)*, where
the external scale is defined as 1 unit.




4.2 Discussion of Results and Investigation of the Accuracy of the
Uncertainties

From the results on the simulations of section 4.1, it can be seen subjectively that,
the estimated balls, drawn over P, seem to reasonably match the contours of P. However,
in many cases, the discrepancies between the estimated and theoretical values are
somewhat larger than the estimated standard deviations. A closer investigation is
necessary because it is not known if the discrepancies are due to the realization to
realization variability (in which case the estimated uncertainties, 67 , are too small) or if
they are an indication of a biased estimation. Thus, it is necessary to investigate the
accuracy of 0, .

In chapter 3, it was stated that the uncertainties on the sstimates of the GSI
parameters, g,, due to the statistical nature of the data, would be estimated as:

¢ = Eubn @.2.1)

[ n

where £,, are the diagonal elements of the error matrix, » is the number of pairs of data
points (as in equation 3.3.5) and EZ_ is the value of the hypersurface, EZ, at its
minimum.
The o], are expected to be reasonable estimates of the actual uncertainties if the n
pairs are effectively independent, if the hypersurface can be reasonably approximated by
a parabola and if the statistics are approximately Gaussian. However, these ideal
conditions will not be met and it is unknown exactly how the deviations from the ideal
will effect the accuracy of the of‘ . Itis possible to check the accuracy by using the fact
that o, is an estimate of the realization to realization variability in the parameter
estimates (due to the statistical fluctuations of the data points). That is, if an ensemble of
realizations are analyzed, then the actual uncertainties are the variances of the parameter
estimates about their respective mean values. Therefore, in order tc obtain a direct
estimate of the actual uncertainties, the analysis was performed on ten different
simalations that were created with the same GSI and multifractal parameters but with
different random sub-generators (i.c. ten different realizations). O':. can then be
compared 1o the uncertainties obtained from the (sample) variances, 7. , of the parameter
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estimates (of the ten realizations) about their mean values, 7, (i.e. a direct measure of the
realization to rcalization variability). Table 4.7 shows the estimates from the ten
simulations. The standard deviations quoted £xe those calculated from equation (4.2.1).
The mean values, g,, are listed in Table 4.8 (with the actual theoretical values for
comparison). The standard deviations calculated from s? are listed in Table 4.9 along
with typical values of o, . The generator parameters of the simulations were: ¢=0.3,
f=0.2, e=0.3, with sphero-scale at 0.30 units-? (where the outer scale is measured as 1
unit) and the simulation was 512x512 pixels in size (see figure 4.1). The procedure,
described in section 3.4, was followed.

simulation c C o e (2
1 0.319 0.010 0.168 0.009 0.395 0.025
2 0.306 0.010 0.166 0.009 0.328 0.023
3 0.297 0.010 0.203 0.009 0.300 0.023
4 0.316 0.010 0214 0.009 0.379 0.024
5 0.324 0.010 0.183 0.009 0.366 0.022
6 0.329 0.010 0.199 0.009 0.305 0.025
7 0.295 0.011 0.167 0.009 0.292 0.026
8 0.342 0.010 0.183 0.009 0.489 0.023
9 0.322 0.N11 0.183 0009 (0.288 0.026
10 0.292 0.012 0.192 0.009 0.331 0.027

TABLE 4.7 : Parameter estimates and uncentainties for ten different realizaiicns (with GSI parameters:
c=03, 0.2, e=0.3) foundusing SIG.

mean values
actual values

TABLE 4.8 : Mcan values, 8, , of the estimates of the perameters of the ten realizations listed in Table 4.7
and the actual simulation values.
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k g' (4 £
Sy 0015 0.016 0.059
| o, 0,010 0.009 0.024

TABLE 49 : The standard deviations, S, ,calculzted from the variance of the estimates of the parameters
(listed in Table 4.7) about g, (listed in Table 4.8) and typical estimated standard deviations, O, expected
from equation (4.2.1) (as in Table 4.7).

Thus, it can be seen that o, are, in fact, underestimates of the actual
uncertaintiecs. However, they are within a factor of two (at werst), which is quite
reasonable. The discrepancies between s’ and ¢, are most likely caused by the
following factors which were not taken into account in the calculation of of‘: the
statistical dependence of the n pairs, the uncertainties in the estimates of the parabolic
coeificients and the non-Gaussian nature of the statistics. Since these factors (and thus
the actual nncertainties) arc expected to depend on the GSI and multifractal parameters,
in general, it is unknown how the discrepancies can be used to increase the accuracy of
of. . Howewver, it is expected that the largest change in the factors will come with a
change in the multifractal parameters and, as a first estimate, the effects of the factors can
be assumed to be approximately independent of the GSI parameters. With this
assumption, (better) estimates of the uncertainties of the analysis on the simulations of
section 4.1 can possibly be obtained by adding the differences between o>, and s>, , of
this section, to the uncertainties of section 4.1. We do not claim that adding the
differences is a theorz=tically correct method, but merely state that it could plausibly be an

adequate approximation.

Thus, the results of section 4.1 should be reviewed while noting the revised
standard deviations, o, , (where 0, =0, +0.01, 6;=0,+0.01,and 0,= 0, +0.04). It
can be seen that six of the eighteen estimates were further than one (revised) standard
deviation away from the theoretical values. Most of these estimates were just outside this
range and only two were further than two standard deviations. This gives an indication
that our revised standard deviations are reasonable and that the bias is small. Although
the possibility of bias cannot be ruled out, from these findings, we can conclude that an
upper bound on the bias is one standard deviation.
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Another pcint of interest is the discrepancies between the mean values of the
estimates, g,, and the theoretical values of the parameters. These discrepancies could be
an indication of bias, since the standard deviation in g, is:

"

i.e. g, donot lie within one standard deviation of their theoretical values. Note, however,
that the bias is still somewhat small (~0.01 of c and f; ~0.03 for €). Although this bias
tends to overestimate ¢ and e, and underestimate f, there seems to be no evidence of a
systematic overestimation (or underestimation) of the parameters in section 4.1. This
implies that the bias may be different for each generator. Some bias could be due to the
non-parabolic characteristic of the hypersurface (see section 3.3.2c). This bias could then
be reduced by decreasing the range of the parabolic expansion. Because this is expected
to increase the realization to realization variability, it is unclear if the change would yield
better estimates.

In conclusion, it can be stated that the estimated uncertainties, of‘, are in fact an
underestimation of the actual uncertainties, however, in general, the results obtained
above cannot be used to improve of‘. Since of. are expected to be roughly within a
factor of two of the actual uncertainties, they will be maintained as the estimates, with the
understanding that they are most probably underestimates. Considering a revision of the
of‘ , the parameter estimates found in section 4.1 seem to be reasonable. Although a bias
is expected, evidence shows that it will be reasonably small. The bias is expected to be
different for different generator parameters, however, the study in section 4.1 likely
shows that the bias is small in a variety of cases. Finally, it can be seen, by inspection of
the images of the estimated balls drawn over P, that the generator and ball paramcters
have been reasonably well approximated. This test is the best measure of the accuracy of
the fit since, from the images, it can be judged if the bias in the estimates is too great.
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4.3 The Effects of the Multifractal Parameters on the GSI Parameter
Estimates and their Corresponding Uncertainties

The results of the analysis (in section 4.1) on simulations, with multifractal
parameters comparable to those found empirically in clouds, shows that the Scale
Invariant Generator (SIG) iechnique could plausibly be used in the study of actual cloud
radiances. However, since SIG is applicable to many geophysical fields, it would be
beneficial to investigate the accuracy with which it measures the GSI parameters of fields
with different statistical properties (e.g. different anisotropic scaling exponents and noise
characteristics). For universal multifractals, these properties are described by the
multifractal parameters: @, C, and H (see section 1.2 and Schertzer and Lovejoy, 1987,
1991a). Therefore, by varying the multifractal parameters, the accuracy, with which SIG
analyzes fields with different properties, can be exarmined.

It is expected that the anisotropic scaling exponent, s, will be a major determinant
of the accuracy since it determines the rate of decay of the amplitude of the spectiai
energy density, P, with scale. As s decreases the contours of P become less
distinguishable, therefore it is expected that there exists some critical s at which the
technique will no longer yield reasonable estimates. Equivalently, it is expected that the
curvature of the hypersurface will decrease with decreasing s and thus, the uncertainties
in the GSI parameter estimates will increase. The analysis was performed on three
theoretical ensemble average spectral energy densities of different s, in order to
investigate its effect on the hypersurface. The results are presented in the one-
dimensional cross-sections of the hypersurfaces shown in figure 4.7. It can be seen that s
has a substantial effect on the cu-vature.

a, C, and H determine the anisotropic scaling exponent, s, in the following
maaner:

s=D,,—;C_‘—1-(2"-2)+2H

where D, is the elliptical dimension (see section 2.1). Since we will consider D, =2 to
be constant, the uncertainties will predominately depend on C, and H. H is expected to
effect the results solely in its contribution to s, however, C, is a direct measure of the
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Figure 4.8 : Effect of change in C| on uncertainty of the estimate of the GSI parameter ¢. The data is
contained in Table 4.10. An exponential furction has been fit to the data.
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amplitude of the noise (i.c. the contours will be less distinguishable due to an increase in
C,). The weak dependence of the uncertainties on & will not be studied.

Table 4.10 contains the results of the analysis performed on ten simulations
(c=0.3, f=0.2, €=0.3) with different values of C,. H and o were held constant at 0.4 and
1.5, respectively. The technique as described in section 3.4 was used. As an example,
the uncertainty of c is plotted as a function of C; in figure 4.8. The results are similar for
the uncertainties of f and ¢. An exponential function has been fit to the data. Note that
the uncertainties have been plotted and the standard deviations of Table 4.10 will increase
less slowly.

0.05
0.10 2.69
0.15 2.61
0.20 2.53
0.25 2.45
0.30 2.38
0.35 2.30
0.40 2.23
0.45 2.16
0.50 2.10

TABLE 4.10 : The dependence on C, of the parameter estimates and uncertainties of universal
multifractal simulations found using SIG. H = constant = 0.4.

The uncertaintics were then studied as a function of H (for constant C,=0.1). See
Table 4.11. It was found that the technique as described in section 3.4 was only able to
obtain valid results for H2-0.1 (s21.59). For values of H smaller than -0.1, the
curvature of the hypersurface became negligible compared to the fluctuations about the
hypersurface and consequently, the uncertainties became very large. The uncertainties
are plotted as a function of s in figure 4.9 (there is a linear relation between s and H).
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Figure 4.9 : Effect of change in H on uncertainty of the estimate of the GSI parameter c. The data is
contained in Table 4.11. A smooth curve has been fit to the data.
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the GSI parameter ¢. The data is contained in Tables 4.10 and 4.11. It can be scen that C, has a greater
effect than H. An exponential function has been fit to the data.




TABLE 4.11 : The dependence on H of the parameter estimates and uncertainties of universal multifractal
simulations found using SIG. C,=constant =0.1.

In figure 4.10, both the effects of C, and H are plotted as functions of s, in order
to see their relative effects (exponential functions are fit to the data). It can be seen that
the effect of C, is greater than that of H. However, in the range studied, valid resnlts
were obtained for all C,. Itis expected there will also be a maximum C,, above which
valid results will not be possible. In fact, there will be a combination of effects due to C,
and H. It may be plausible to assume that (as a first estimate) the effects are additive i.e.
that the rate of rapid increase in the uncertainties due to C, will be approximately the
same, regardless of the value of H, and likewise for H with respect to C,. This, however,
was not studied further.

The above results indicate that SIG, as described in section 3.4, will probably
yield valid estimates for a range of multifractal parameters that is adequate to include the
majority of the fields of Table 1.1. The parameters of pollutant and seismic fields are
possibly outside the range of validity. However, it should be noted that changes can be
made to increase this range. For example, by changing the range of the parabolic
expansion (see section 3.3.2b), valid results were obtainable for H 2-0.3 (s21.16),
The results of the analysis, where the range of expansion was increased for ¢ and e to the
first estimates 10.6, and for f to £ 0.4, are shown in Table 4.12. Note the discrepancies
of the estimated parameters from the theoretical (simulation) parameters are much greater
for this case. This is likely due to the increased range of expansion.
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H s c o, t. | o, € g,
-0.2 1.38 0.274 0.02 0.132 0.02 0.294 0.05
-0.3 1.16 | 0.266 0.02 C.129 0.02 0.220 0.05

TABLE 4.12 : The dependence on H of the paramieter esumates and uncertainties of universal multfracial
simulations fonnd using SIG. C,=constant =0.1. Range of expansion is defined in text.

In conclusion, we can state that the technique in its form of section 3.4 is valid for

most of the fields described in Table 1.1. If the analysis of fields outside this range of
multifractal parameters is required, an adjustment in the range of the parabolic expansion
can be made (with the consequence of an increase in bias). This conclusion was made for
a given set of GSI parameters and would be expected to change slightly depending on
them. However, the conclusions are expected to be reasonable in most cases.
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Chapter 5

ANALYSIS ON GEOPHYSICAL FIELDS

5.1 Analysis on Satellite Cloud Radiances

In this section, the Scale Invariant Generator technique (as in section 3.4) is used
to analyze satellite cloud radiances. The radiances were obtained from the NOAA-9
satellite, in a channel of the AVHRR sensor that is sensitive to visible wavelengths. In
particular, the channel is sensitive to the wavelengths between 0.5 and 0.7 um. The
scenes were obtained with the sensor centered at a point over the Atlantic Ocean, east of
Florida (longitude of 70° west and latitude of 27.5° north). These scenes were used in a
systematic study of the energy spectrum of cloud radiances (LLovejoy et al., 1993). The
resolution of the sensor is 1.1 km and the image is 512 x512 pixels in size.

The presentation of the results is identical to that of section 4.1.

The standard deviations quoted were calculated from equation (3.3.10). However,
as discussed in section 4.2, they are expected to be underestimates. The error on the balls
is expected to be approximately the same as in the case of the simulations. The accuracy
of the estimated parameters can be seen quite well by observing the similarity between
the estimated and actual contours of P (image on bottom right of figures) and also by
comparison with the enhanced P (bottom right of figures).

95




Figure 5.1 Cloud Scene 1 : 1n real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral e nergy density with estimated
GSI contours (bottom right). See Table 5.1 forestimated GSI parameters,



TABLE 5.1 : Estimated Parameters for Cloud Scene 1

; parameter estimate
s 2.6910.01
c <0.05 1 0.01
f 0.1310.02
e 0.47 £ 0.06
a -0.202
r, 60.3
a, 8.6

r
b, -1.6

sphero-scale 12.7 km

Note that the balls were approximated by curves of the form in equation (2.3.5). Using
the method discussed in section 3.3.3, the field was found not to have a sphero-scale.
Ball parameter units are (km)?.




Figure §,2 Cloud Scene 2 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 5.2 estimated GSI parameters,




TABLE 5.2 : Estimated Parameters for Cloud Scene 2

parameter estimate
s 2.4510.01
c 0.1110.01
f 0.15+£0.02
e <0.01+0.03
a 0.035
T 101.2
a, 65.5
b -37.4
sphero-scale -

Note that the balls were approximated by curves of the form in equation (2.3.5). Using
the method discussed in section 3.3.3, the field was found not to have a sphero-scale.
Ball parameter units are (km)?.
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TABLE 5.3 : Estimated Parameters for Cloud Scene 3

7 parameter
2.341£0.02
c -0.05 £ 0.02
f 0.12+0.02
e 0.121+0.06
a* 0.003
To 96.1
| ¢ 40.3
b, 31.1
rsphmude -

Note that the balls were approximated by curves of the form in equation (2.3.5). Using
the method discussed in section 3.3.3, the field was found not to have a sphero-scale.
Bali parameter units are (km)?*.




5.2 Analysis on Sea Ice Reflectivities

Below, the results of SIG on sea ice data are presented. The analysis was
performed on the SAR reflectivity data. The scenes were taken by the Jet Propulsion
Laboratory (JPL) airborne SAR (AIRSAR) operating in the L-band (25 cm) wavelength
range. The transmitted and reflected beams were linearly polarized in the horizontal and
vertical, respectively. The scenes were obtained over a section of the Beaufort Sea, from
an altitude of 9 km, at a latitude of 76° north and a longitude of 165° west.

The presentation of the data is the same as in the previous sections. The results
are discussed in section 5.3
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Figure 5.4 Ice Scene 1: in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 5.4 for estimated GSI parameters,
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Figure 5.4b : The results of a ravine search for sea ice scene 1 (see figure 5.4). The projections of the
ravine onto the ¢ axis (1op), the f axis (middle) and the e axis (bottom). The analysis was performed on
simulation 1. The parabolas fit ncar the minimum are shown. The first estimates are: for c: g, =0.15, for
f: 8, =-0.1 andfore: g, =-0.3.
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TABLE 5.4 : Estimated Parameters for Sea Ice Scene 1

parameter estimate

s 2.05+0.01

c 0.131+0.01

f -0.06 £0.01
=

e -0.10+£0.05

a’ 0.011

To 1.01-107*
| a -0.58-107

b, -0.06.10*
I a, -0.17-10™
[ b, -0.03.10

Note that the balls were approximated by curves of the form in equation (2.3.7). The ball
parameter units are (km)°*.
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Figure 5.5 SeaIce Scene 2 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 5.5 for estimated GSI parameters.




TABLE 5.5 : Estimated Parametrs for Sea Ice Scene 2

parameter estimate
——————————————
s 1.8410.02
c 0.2110.01
f 0.00 0.01
€ 0.00£0.03
a 0.044
r 2.95-1072
a, 1.29-10°2
b, 0.13-1072
sphero-scale 53 meters

Note that the balls were approximated by curves of the form in equation (2.3.5). Using
the method discussed in section 3.3.3, a plausible sphero-scale was calcuated. Ball
parameter units are (km)®.




Figure 5.6 Sea Ice Scene 3 : in real space (top left), spectral energy density (top right),
enhanced spectral energy density (bottom left) and spectral energy density with estimated
GSI contours (bottom right). See Table 5.6 for estimated GSI parameters.




TABLE 5.6 : Estimated Parametrs for Sea Ice Scene 3

I parameter estimate

5 1.50+0.01
c 0.07+0.01
f 0.02+0.01
e -0.111£0.03
a’ -0.007

| ' 2.06-10°

I g, -0.73-10°°

I b, 0.49-10°°

‘ a, -0.75-107°
b, -0.11-1u°

Note that the balls were approximated by curves of the form in equation (2.3.7). The ball
parameter units are (km)°.



5.3 Discussion of Results

It can be seen that the estimated balls are reasonable approximations in all cases,
although it is difficult to judge in the case of Sea Ice Scene 3 since the contours of P are
not easily distinguishable.

Attention should be brought to a number of points of interest:

- The balls of all three cloud scenes were adequately described by the second order
equation while two of the sea ice scenes used the fourth order. Plausible sphero-scales
exist in one out of three of the cloud scenes and one out of three of the sea ice scenes.
This further supports the claim of Pflug (1991) that a sphero-scale does not necessarily
exist. Also, note that a sphero-scale was not evident in two of the cloud scenes, even
though the balls were described by the second order equation. The sphero-scale of the
cloud was at 12.7km (similar to values found by Pflug, 1991) and that of the sea ice was
at 53 meters.

- Most of the estimated generator parameters are relatively small (of the order of
0.1=30.2). This is well within the range of parameters studied in section 4.1. By
inspection it can be seen that although the parameters are small, the anisotropy is not
negligible. Note also that two of the six cases studied exhibit rotation dominance
(a* <0), while four showed stratification dominance (a@*>0), (see section 2.3). In all
cases, however, the magnitude of @ is small.

- The estimated uncertainties in the estimated parameters of the sea ice scenes are not
greater than those of the cloud scenes, even though the s is smaller. This can be
explained because sea ice has been found (empirically) to have a lower C, than cloud
radiances (sce section 4.3 and Table 1.1).

From only six fields strong conclusions cannot be made. However, the results are
very encouraging, not only because the technique produced good results, but also because
the fields were reasonably modeled using linear GSI. In the future, large scale analysis
will be needed to support the assumption of GSI. Also, because different generators
produce different field characteristics (sec figures in Chapter 4 and 5), it might be
possible to use the generator parameters as a quantitative means of classification (in
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particular in sea ice and clouds). Many scenes, which have been classified with the
present (subjective) methods, could be analyzed to see if the generator parameters of
scenes of the same class are similar. Then the scenes may be classified by the volume of

parameter space in which they lie.
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Chapter 6
CONCLUSIONS

In this thesis, a technique (the Scale Invariant Generator technique, SIG) was
developed to estimate the parameters of a linear Generalized Scale Invariant system. It
was able to estimate the generator parameters without prior knowledge of the GSI balls.
This was an advantage over the previous method. It then used the estimated generator
parameters to enhance the spectral energy density and thus it was able to produce good
estimates of the GSI balls. The details of the technique were studied so that it could be
made numerically efficient. The estimated uncertaintics were found to underestimate the
actual uncertainties. Universal multifractal simulations, generated with a variety of GSI
and multifractal parameters, were used to test the technique. It was found that SIG
reasonably estimated the GSI parameters over most of the range of multifractal
parameters found in Table 1.1. Specifically, virtually all of the geophysical fields whose
multifractal parameters are known have parameters which allow them to be analyzed by
SIG. Thus, it can be concluded that SIG could plausibly be used to quantify the
anisotropy of many geophysical fields.

The analysis was also performed on three cloud scenes and three sea ice scenes.
The estimated contours seemed to be reasonable approximations to the actual contours.
This not only supports the above conclusions, but also supports the assumption that cloud
and sea ice ficlds can be approximated by linear Generalized Scale Invariance. For the
latter to be conclusive, many more images must be analyzed. It was stated that the GSI
parameters may be used as a measure of texture and morphology and as a means of
classification. This was not tested in this thesis, however, by inspection of the images
and results of chapters 4 and 5, it can be seen that the different GSI parameters
correspond to different characteristics of the fields.

Thus, since we are confident that we have developed a valid and useful technique,
future research should include the application of SIG to a large number of scenes of a
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variety of geophysical fields. If necessary, a modification of the te:-hnique may be
required to include fields which lay outside the rarge of multifractal parameters where
reasonable results were found. Also, the possibility of using the generator parameters as
a quantitative means of classification should investigated. Eventually, it may be possible
to test the full non-linear GSI. This is necessary if the full potential of GSI and the Scale
Invariant Generator technique is to be discovered.
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Appendix A

ELLIPSE FITTING PROCEDURE

A possible method of finding the balls of a scale invariant system consists of
fitting a curve to a levelset of the spectral energy density. In section 2.3, the forms of the
curves were chosen to be the second and fourth order bi-variate polynomials. It was also
shown that these equations could be written as:

r =[r,+a,cos20 + b;sin 20]'% (A.1)
and
r =[r,+8,c0s20 + b, 5in20 + a,c0s40 + b, sin 40]'% (A.2)

as in equations (2.3.5) and (2.3.7).

There are many possible analytic methods of curve fitting available. See Pflug
(1991a; Appendix A for a number). In this thesis, the method described in this appendix
was used. It should be noted, that in most analytical methods, the data points are
weighted according to convenience. However, in our case, since the points are expected
to be scattered predominantly between the theoretical contours (P)+ AP, and the
amplitude of P falls off as InP, then the points closer to the origin should be more heavy
weighted. This is not possible to do analytically. Therefore, it is expected that analytic
methods will be give biased estimates and, generally, will underestimate the parameters
(the area of the biased curve will be greater than that of the actual curve). This bias will
increase with the amplitude of the noise about the theoretical contour. For this reason, it
is necsssary to smooth the field before findin; the levelset.
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Because 2 of equation (2.3.5) is the sum of the second order terms of a Fourier
expansion, the ball parameters can simply be found by taking the Fcurier transform of
%, » where r is of the positions of the data points as a function of angle. That is, the
space is sub-divided into pie-shaped regions delimited by discrete angles. All the points
which fall within a region are averaged (according to their radius) to obtain an average
radius for that region. This average is found for each region such that the average radius
of the data points is known as a function of discrete angles. %z is then computed. A
Fast Fourier Transform (Press et al., 1986) can then be used to find the Fourier expansion
coefficients of %; . The zeroth order term (divided by two) is r,, the real part of the
second order term is g, and the imaginary part of the second order term is b,. This
method can also be used for the fourth order equation except using %.. ro,» 6, and b
are determined as in the second order case and @, and b, are the real and imaginary parts
of the fourth order term, respectively. Note that since the spectral energy density has the
property, P(k)=P(—k), the odd order terms are expected to be negligible. Also note that
the higher order terms are included in the expansion and can be used to determine if the
appropriate choice of the order of the equation was used.

Two important details must be considered: the choice of the number of sub-
regions (the magnitude of the discrete angles) and the interval of amplitudes to include in
the levelset i.e. the choice of AP, where the levelset contains all the points of amplitudes
(P)1 AP. The angles should be chosen such that r is approximately constant over the
sub-region, otherwise, biases will be introluced. However, if the angles are too small,
then there may be sub-regions which contain no points. Also, the averaging effect is
reduced. If the AP is toc. small, then the number of points in the levelset, and thus the
statistics, are reduced and if AP is too large, biases will be introduced. In the cases
studied in this thesis, AP was chosen to be 0.04 ((P,) was chosen to be some
intermediate value of the field, approximately 16) and consequently, the number of points
in the levelset was of the order of several thousand. The number of sub-regions was
chosen to be 64. The bias with these choices appears to be small since the deviation from
the contour of the ensemble average was approximately 1%.
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Appendix B: Colour Palettes
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