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ABSTRACT

Identifying genomic locations of transcription-factor binding sites (TFBS),

particularly in higher eukaryotic genomes, has been an enormous challenge.

Computational methods involving identification of sequence conservation between

related genomes have been the most successful since sites found in such highly

conserved regions are more likely to be functional, i.e. are bound and regulate

protein production. In this thesis, we present such a probabilistic algorithm for

predicting TFBSs which also takes evolutionary turnovers into account. Our

algorithm is validated via simulations and the results of its application on ChIP-

chip data are presented.
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ABRÉGÉ

L’identification des sites de fixation des facteurs de transcription (TFBS),

particulièrement sur les génomes eucaryotiques plus élevés, a été un énorme

défi. Les méthodes informatiques comportant l’identification de la conservation

de séquence entre les génomes de différentes espèces ont eu beaucoup de succès

parce que les sites trouvés dans de telles régions fortement conservées sont

probablement fonctionnels (les facteurs de transcription se rajoutent sur le

génome à ces sites-là et règlent la production de protéine). Dans cette thèse, nous

présentons un algorithme probabiliste pour la prédiction de TFBSs qui prend

en considération également le remuement évolutionnaire. Notre algorithme est

validé par l’intermédiaire des simulations et les résultats de son application sur des

données ChIP-chip sont présentés.
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CHAPTER 1
Introduction

Life is specified by genomes. Every organism, including humans, has a genome

that contains all of the biological information needed to build and maintain a

living individual of that organism. The biological information contained in a

genome is encoded in its deoxyribonucleic acid (DNA) molecules, which is divided

into discrete units called genes [42]. Genes are segments of DNA and between

them they direct the physical development of an organism by coding proteins.

1.1 Physical structure of the human genome

DNA itself is a long molecule that looks like a twisted ladder (Figure 1–1) and

is made up of four types of simple units called nucleotides. These are the repeating

units in the DNA and form the “rungs” of the DNA ladder. There are four types

of nucleotides: Adenine (A), Cytosine (C), Guanine (G), Thymine (T) and it is

the sequence of these nucleotides that carries information, just as the sequence of

letters carries information on a page.

All DNA in a genome is packaged into chromosomes, each of which contains a

single long piece of DNA that is wound up and bunched together into a compact

structure. The genome itself is a collection of such chromosomes.

1.1.1 The central dogma of molecular biology

Although DNA is the carrier of genetic information in a cell, proteins do the

bulk of the work. Each cell contains thousands of different proteins: enzymes that
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Figure 1–1: DNA Structure [44]
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make new molecules and catalyze nearly all chemical processes in cells; structural

components that give cells their shape and help them move; hormones that

transmit signals throughout the body; antibodies that recognize foreign molecules;

and transport molecules that carry other molecules such as oxygen. The genetic

code carried by DNA is what specifies the shape and function of the protein.

The “Central Dogma” refers to the flow of genetic information in biological

systems. In general, genetic information flows from DNA to RNA1 to protein [15].

In order to use the information present in DNA to produce proteins, the DNA

must first be converted into a messenger RNA (mRNA) through a process called

transcription. The information carried by the mRNA is then used to construct

a specific protein (or polypeptide) through a process called translation (Figure

1–2).

Transcription is carried out by an enzyme called the RNA polymerase. This

molecule has the job of recognizing the DNA sequence where transcription is

initiated, called the “promoter” region. In general, promoter regions are usually

found upstream from the beginning of every gene. While the composition of bases

varies between promoters, they are recognized by the RNA polymerase complex,

which can grab hold of the sequence and start the production of an mRNA [18].

1 Ribonucleic acid (RNA) is a nucleic acid similar to DNA but is single-
stranded, consists of ribose sugar rather than deoxyribose sugar and uracil (U)
replaces thymine (T) as one of the bases. RNA plays an important role in protein
synthesis and other chemical activities of the cell. There are also several classes
of RNA molecules, including messenger RNA (mRNA), transfer RNA (tRNA),
ribosomal RNA (rRNA) and other small RNAs.
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Figure 1–2: Central dogma of molecular biology [56]
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1.2 Logical structure of the human genome

Genes make up about 1.5 percent of the total DNA in our genome [32]. In

the human genome, the coding portions of a gene, called exons, are interrupted

by intervening sequences, called introns (Figure 1–3). A eukaryotic gene does

not code for a protein in one continuous stretch of DNA. Both exons and introns

are “transcribed” into pre-mRNA, but before it is exported to the nucleus for

translation, the primary mRNA transcript is edited. This editing process is called

splicing and it describes the removal of the introns, joining of the exons together,

and the addition of unique features to each end of the transcript to make a mature

mRNA [42].

Figure 1–3: Gene [45]

The evolutionary conservation across the mammalian genomes of much more

sequence than can be explained by protein-coding regions indicates that many,
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and perhaps most, functional sequences in the genome remain unknown [61].

Regulatory sequences (such as promoter regions) are a part of this evolutionary

conservation and while they make up only about 2% of the human genome, it is

probably more than the percentage of genes in the human genome.

Forty to forty-five percent of our genome is made up of short non-protein

coding (or non-coding) sequences that are repeated, sometimes millions of times

[12]. There are numerous forms of this “repetitive DNA”, and a few have known

functions, such as stabilizing the chromosome structure or inactivating one of the

two X chromosomes in developing females, a process called X-inactivation [1]. Of

this 40-50% of repetitive DNA, most of it consists of transposable elements which

are sequences of DNA that can move around to different positions within the

genome of a single cell causing mutations and changing the amount of DNA in the

genome. Another class of highly repeated sequences found so far in mammals are

called “satellite DNA” because their unusual composition allows them to be easily

separated from other DNA. These sequences are associated with chromosome

structure and are found at the centromeres (or centers) and telomeres (ends) of

chromosomes. Although they do not play a role in the coding of proteins, they do

play a significant role in chromosome structure, duplication, and cell division [64].

While the publication of a nearly complete draft sequence of the human

genome is an enormous achievement, characterizing the entire set of functional

elements encoded in the human and other genomes remains an immense challenge

[14, 32].
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1.3 Transcription Factors

A transcription factor (TF; sometimes called a sequence-specific DNA

binding factor) is a protein that binds to specific sequences of DNA and thereby

controls the transfer (or transcription) of genetic information from DNA to RNA

[33]. Transcription factors perform this function alone, or with other proteins

in a complex, by promoting (as an activator), or blocking (as a repressor) the

recruitment of RNA polymerase (the enzyme that performs the transcription of

genetic information from DNA to RNA) to specific genes [49, 51] (Figure 1–2).

Since transcription factors bind to the genome, one of the most important

functional elements in any genome are the sites within the DNA to which they

bind. Defects in transcription factors or interferences in their interaction with

DNA can contribute to the progression of various diseases. For example, Durbin

et al. showed that targeted disruption of the mouse Stat1 gene results in com-

promised innate immunity to viral disease [19]. According to Bulyk [9], a more

complete understanding of transcription factors, their DNA binding sites, and

their interactions, would permit a comprehensive and quantitative mapping of the

regulatory pathways within cells, as well as a deeper understanding of the potential

functions of individual genes regulated by newly identified DNA-binding sites.

1.4 Transcription Factor Binding Sites

Transcription factor binding sites (TFBSs) are usually short (around 5-15

base pairs) and they are frequently degenerate sequence motifs, that is, a given

transcription factor can bind to a family of similar sequences. While they do

follow certain patterns, they are often quite degenerate. Thus, the most common
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computational representation of a TFBS is by a single consensus sequence. The

consensus sequence simply gives the nucleotide that is found the most often in

each position. Another representation is via an alternate (or degenerate) consensus

sequence which gives the possible nucleotides in each position. For example, the

alternate consensus sequence ARYCGN means that the first nucleotide is always

A, the second could be A or G, similarly the third nucleotide could be C or T,

the fourth and fifth bases are C and G respectively, and finally N represents any

nucleotide in the last position. The sequence degeneracy of TFBSs has been

selected through evolution and is beneficial, because it confers different levels of

activity upon different promoters, thus causing some genes to be transcribed at

higher levels than others, as may be required by the cell [53]. Another example of

a consensus sequence is presented in Figure 1–4a.

From a computational perspective therefore, potential binding sites thus can

occur very frequently in larger genomes such as the human genome. Moreover,

the experimental identification of regulatory regions in higher eukaryotes is more

difficult than in organisms with smaller genomes, partly because of the larger

genome size, because a larger portion of higher genomes is non-coding, and

because even the general principles governing the locations of DNA regulatory

elements in higher eukaryotic genomes remain poorly understood. For example,

regulatory elements can be found far upstream of coding regions, within introns,

and even far downstream of the genes they regulate, making the search for them

difficult [9] (Figure 1–5).
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Despite these challenges, many experimental and computational approaches

have been developed to identify such sites where transcription factors bind on the

genome to regulate transcription. These are described in the following sections.

1.4.1 Identifying candidate TFBSs in silico

Although degenerate consensus sequences (also known as motifs), are still fre-

quently used to depict the binding specificities of TFs, they do not contain precise

information about the relative likelihood of observing the alternate nucleotides at

the various positions of a TFBS. Thus, a common way of representing the degener-

ate sequence preferences of a DNA-binding protein is by a position weight matrix

(PWM). A PWM, again like a consensus sequence, is based on a set of sequences

for a TFBS. The difference is that it is a matrix with the rows representing the

four nucleotides: A, C, G, T and the number of columns depending on the size of

the TFBS. The elements of a PWM correspond to scores reflecting the likelihood

of observing that particular nucleotide at that particular position of the known or

candidate TFBS. The score for each nucleotide at each position is derived from

the observed frequency of that nucleotide at the corresponding position in the

input set of promoters. Thus, if in a set of 10 TFBS sequences, the nucleotide

in the first position is C in eight sequences with G and A found in the other two

sequences, the first column of the PWM would have 1, 8, 1, 0 for A, C, G, T rows

respectively. The score for any particular site is the sum of the individual matrix

values for that site’s sequence (Figure 1–4b).
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Figure 1–4: Representation of transcription factor binding sites. (a) An example
of six sequences and the consensus sequence that can be derived from them. (b) A
position weight matrix for the -10 region of E. coli TATA-box, as an example of a
well-studied regulatory element. The sequence TATAAT thus gets a score of of 85
(17 + 19 + 8 + 12 + 10 + 19). Note that the matrix values in (b) do not come from
the example shown in (a) but rather are derived from a much larger collection of
sequences. [9, 53].

1.4.2 Motif Scanning

The availability of consensus target sequences for many of the known tran-

scription factors has been used to construct databases that can be used by

computer algorithms to search for and identify novel regulatory elements in nu-

cleotide sequences. At present, the most widely used transcription factor database

is TRANSFAC [62], which catalogs eukaryotic TFs and their known binding sites,

and provides PWMs.
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Given a TF sequence motif, a simple approach would be to search the

complete genome for sequences (sites) that result in scores above a certain

threshold. Unfortunately, given the short length and degenerate nature of TFBSs

and the size of the human genome, the output of such a simple approach results

in a large number of false-positives. For instance, the unambiguous sequence

TATAA is expected once every 1,024 basepairs (bp) by chance, which predicts

3 million potential binding sites in a mammalian genome, thus leading to a vast

majority of them being biologically non-functional predictions [46]. The choice of

PWM score cutoffs is a critical issue in all predictions of sites from PWMs, as the

requirement for a more stringent match (a higher cutoff) is likely to result in fewer

false-positive predictions but can potentially result in more sites being missed

(false-negatives).

Various improved algorithms have been developed to sift through the output

of a transcription factor database search to decrease the number of false-positive

returned. Power can be gained by taking advantage of the sequence context in

which a predicted binding site is found. In the TATAA example, higher statistical

scores can be assigned if the site is found within 25 to 30 bp of a predicted

transcription initiation sequence. Predictions can be further strengthened if a

transcription factor is known to function as a dimer (Figure 1–5), and two similar

adjacent binding sites are found [46].

Along with motif scanning, inter-species sequence comparisons have been used

to identify non-coding sequences that have a reasonable likelihood of having gene

regulatory properties [20, 34], the most prominent being phylogenetic footprinting.
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Figure 1–5: Transcription factors bind to specific sites that are either proximal
or distal to a transcription start site. Sets of TFs can operate in functional cis-
regulatory modules (CRMs) to achieve specific regulatory properties [60].
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1.4.3 Phylogenetic Footprinting

Phylogenetic footprinting [54] is a method wherein regulatory elements,

specifically TFBSs, associated with a given gene are identified by considering

a set of orthologous2 non-coding sequences from a group of related species. If

these sequences contain regions that are unusually well conserved, it is reasonable

to conclude that these regions have some regulatory function. According to

Blanchette et al. [5], functional sequences tend to evolve much more slowly

than nonfunctional sequences as they are subject to selective pressure and it is

this difference in mutation rates that phylogenetic footprinting exploits. The

phylogenetic footprinting approach has proved successful for the discovery of

regulatory elements for many genes, including ε-globin (Tagle et al. [54]; Gumucio

et al. [27]), γ-globin (Tagle et al. [54]), rbcL (Manen et al. [38]), cystic fibrosis

transmembrane conductance regulator (Vuillaumier et al. [57]), and interleukin

(IL)-4, IL-13, and IL-5 (Loots et al. [34]). The same idea of using comparative

analysis to identify conserved elements, but among only two or three species

(particularly human and mouse), was made initially made popular by Hardison et

al. [28], Wasserman et al. [59] and Wu et al. [63]. Figure 1–6 presents an example

of TFBS identification using phylogenetic footprinting.

2 Orthologs are sequences in different species that are derived from the same
sequence in the last common ancestral species and thus usually have similar func-
tions in the genomes being compared.
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Figure 1–6: An example of TFBS identification of TFBS using multi-species com-
parative genomic sequence analysis. The region under consideration is upstream
of the well-studied apolipoprotein AI (ApoAI ) gene. (a) Comparison of roughly
150bp upstream of the predicted ApoAI transcription start site in human, mouse
and rabbit. This comparison indicates high levels of sequence conservation across
the entire region in these mammals, making it difficult clearly identify any se-
quences as TFBSs. (b) Addition of the orthologous region of the chicken ApoAI
gene. This decreased the level of conservation greatly but this also resulted in the
high levels of conservation in regions previously shown to be important in gene
regulation (yellow). Both the CCAAT box and the TATA box, important in core
promoter activity, are almost perfectly conserved across all four species. In ad-
dition, hepatic enhancer site C, experimentally shown to be necessary for ApoAI
liver expression, reveals strong sequence conservation (14 of 15 bp are conserved
across all 4 species). The other novel conserved block (blue) that was revealed by
comparative analysis was not assigned a biological function, Pennacchio et al. [46]
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The major advantage of phylogenetic footprinting over the motif scanning

approach is that the latter requires a reliable method for motif discovery whereas

phylogenetic footprinting is capable of identifying regulatory elements as long

as they are sufficiently conserved across many of the species considered [6].

Moreover, as sequence data for more species has become available, the accuracy of

phylogenetic footprinting methods has greatly increased.

Phylogenetic footprinting works by constructing a global multiple alignment

of the orthologous regulatory sequences and the subsequent identification of

conserved regions in the alignment. A tool such as CLUSTALW [55] is appropriate

for this purpose, as it can take advantage of knowledge of the phylogeny relating

the species. Unfortunately this approach is not always successful due to the

short lengths of TFBSs. Regulatory elements in general tend to be short (5 to

20 nucleotides long) relative to the entire regulatory region in which the search

for them is conducted (typically, a 1000-bp promoter region). If the species are

somewhat diverged, chances are that the the noise of the diverged nonfunctional

background will overcome the short conserved signal resulting in a mis-alignment

of the short regulatory sequences. In this case, the regulatory elements would

not appear to belong to conserved regions and would go undetected and thus, for

regions that are moderately to highly diverged, global multiple alignment is likely

to miss significant signals [6].

Instead of relying on multiple alignment, a more successful approach to

phylogenetic footprinting is to use one of the existing motif discovery programs

such as Projection (Buhler and Tompa [8]), Consensus (Hertz and Stormo [30])
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or AlignAce (Roth et al. [50]). These motif discovery programs take as input

multiple sequences along with certain parameters and attempt to find candidate

motifs in them. Cliften et al. [13], for instance, reported some successes using

AlignAce when global multiple alignment tools failed. However, these general

motif discovery algorithms do not take into account the phylogenetic relationship

of the given sequences since they assume the input sequences to be independent.

As explained by Blanchette et al. [6], if the phylogeny underlying the data is

ignored in data sets containing a mixture of some closely related species and some

distant ones, similar sequences from the set of closely related species will have an

unduly high weight in the choice of motifs reported. Even if these methods were

modified to weight the input sequences unequally, this would still not capture the

information in an arbitrary phylogenetic tree.

Blanchette et al. [6] therefore proposed an algorithmic method designed

specifically for phylogenetic footprinting in multiple species which avoids the

drawbacks described above of both multiple alignment and general motif discovery

algorithms. Given a set of unaligned orthologous sequences, their approach

identifies all DNA motifs that appear to have evolved unusually slowly compared

with the surrounding sequence (See Figure 1–7 for results from the FootPrinter

algorithm).

While the above mentioned phylogenetic footprinting methods (including a

hybrid approach making use of local multiple sequence alignment blocks when

those are available and reliable and also allowing finding motifs in unalignable

16



Figure 1–7: Identification of 12 highly conserved motifs using the FootPrinter al-
gorithm in the metallothionein gene family. Numbers along branches indicate when
each motif was created (unboxed) or lost (boxed), ignoring any less conserved
occurrences of the motif not reported by FootPrinter, Blanchette et al. [6].
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regions [22]), have been successful in the discovery and identification of TFBSs,

none of these methods consider binding site turnover.

1.4.4 Binding site turnover

Attempting to identify functional genomic elements via phylogenetic foot-

printing works well when such elements are relatively long so that they are not

drowned out by the non-functional “noise” surrounding them and also when the

base composition of these elements is well known. Unfortunately, TFBSs suffer

from both problems as they are very short in length and have variable sequences.

Due to the combination of these two properties, it is quite likely that TFBSs

can be created via random mutations with high frequency [52]. Similarly, since a

substitution at a position with high base specificity within a TFBS can abolish its

binding activity, mutations that inactivate binding sites should also be frequent.

Now, if the inactivation of an existing site follows creation of a new site which is

close enough to satisfy any constraints on the position of a bound transcription

factor, the new site can take over the function of the previous site, leading to a

binding site turnover [48] (Figure 1–8).

Figure 1–8: Example of binding site turnover: note that a new binding site was
created very close to the original in the mouse lineage and took over the function
of the original in the mouse genome, whereas the ancestral site was conserved in
the human genome.
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The most prominent study providing evidence of widespread binding site

turnover was done by Dermitzakis et al. [17], who showed that there is extensive

divergence within the nucleotide sequence of TFBSs, and by using direct exper-

imental data from functional studies in both human and rodents for 20 of the

regulatory regions, they estimated that 32% to 40% of the human functional sites

are not functional in rodents. A handful of case studies of binding site turnover

show that some binding site gain and loss events are tolerated, or even preferred,

by natural selection. Some of these clearly alter regulatory output [25, 37]. For

example, the gain of binding sites for the TF engrailed in a preexisting regulatory

sequence has led to the emergence of a pigmented spot on the wings of Drosophila

biarmepes [25], a clear example of binding site gain altering regulatory output [41].

Interestingly, other case studies have found turnover events that do not alter func-

tion [47, 35]. The orthologous evenskipped stripe 2 enhancers of Drosophila species

differ considerably, with many functional sites found in D. melanogaster absent in

related species. Yet these enhancers function normally in D. melanogaster embryos

[35, 36, 37], leading to the conclusion by Dermitzakis et al. that “conservation

of function can be maintained in the face of fluidity in the exact composition of

regulatory regions”.

Characterization of binding site turnover on a large scale has only recently

been attempted. Moses et al. [41] analyzed the dynamics of sites bound by the

transcription factor Zeste using the genome sequences of four species in the

melanogaster species group: D. melanogaster, D. simulans, D. erecta, D. yakuba,

and found that at least 5% of the functional Zeste binding sites in Zeste-bound
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regions have been created or lost since the four analyzed species diverged from

a common ancestor approximately 10 million years ago. Their approach was to

identify functional Zeste binding sites using a genome wide ChIP–chip experiment.

This data was then used with the multiple alignment of the 4 melanogaster

species to develop an evolutionary model to study binding site turnover. In this

thesis, we have approached the problem in reverse, i.e., given a phylogenetic tree

with predicted binding sites on its constituent sequences, our aim is to predict

which sites are most likely functional. However, there are certain points worth

highlighting from the work done by Moses et al:

• Multiple sequence alignment errors did not significantly impact their analysis

in closely related species.

• They identified 294 regions of the D. melanogaster genome bound in vivo by

Zeste with orthologous sequences in the other species. These regions were

then used to identify 1,406 Zeste binding sites. They note that a comparision

to flanking sequences of the bound regions revealed significant number of

functional nonconserved binding sites, lending weight to the theory that

functional binding sites are not necessarily constrained to promoter regions.

• As in our model, they separate turnover events into binding–site losses and

gains and estimate the rate of each process.

Other studies have also involved creating probabilistic models for large scale

identification of binding site turnover [16, 40], and while successful at shedding

light on the properties of the phenomenon, they also deal with smaller genomes

and closely related species. For example, Moses et al. argue in their study that
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binding sites for crucial transcription factors do not vary quantitatively between

species and go on to present a transcription factor binding site model based on this

assumption. Again, in this case their study relies on binding sites obtained from in

vivo experiments and simulations to make up for lack of sufficient data.

1.5 Thesis outline

This thesis presents a probabilistic framework to predict TFBSs on the human

genome using a phylogenetic approach but also taking binding site turnover into

account. Chapter 2 details the mathematics behind our probabilistic model: given

motifs for known TFs, we treat binding sites as individual entities that can be

created, lost or conserved. Our model also incorporates certain constraints that

take the biological properties of observed binding site turnover into account.

Our goal is to compare promoter regions of various extant and reconstructed

ancestral genomes and predict sites that are most likely to be biologically func-

tional. In chapter 3, we validate our approach via simulations and also present the

results of applying our algorithm on ChIP-chip microarray data.
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CHAPTER 2
Methodology

In this chapter, we first present the basic notions of our probabilistic model

which is used to predict functional TFBSs. Thereafter, we introduce the binding

site evolutionary model which forms the basis of the entire promoter evolutionary

model. This probability is then used to identify functional sites.

Before presenting our probabilistic model, we need to make an important

distinction regarding the functionality and non-functionality of transcription factor

binding sites:

• A functional site is one that is bound by a transcription factor and regulates

expression.

• A non-functional site is one that may or may not be bound by a given

transcription factor. However, a non-functional site does not play any role

in regulating gene expression or may even play a different role altogether.

Much of the work presented deals with this distinction between functionality

(denoted by F ) and non-functionality (denoted by N), and our goal is to be able

to predict with a certain degree of confidence, the functional binding sites in

the human genome for a given transcription factor. Also, although a TFBS is

essentially a sequence of base-pairs on a given genome, for the purposes of our

model, we treat each site as a single unit.
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Phylogenetic footprinting, as explained in chapter 1, exploits the relationship

between orthologous sequences to identify binding sites that have been well con-

served over time. Our algorithm tries to improve upon this approach by labeling

sites as functional or non-functional taking turnover into account. Moreover, phy-

logenetic footprinting originally involved comparison between genomes of related

living species whereas our model is based on aligned sequence data available from

a phylogenetic tree of reconstructed ancestral genomes as well as present genomes.

Thus, our algorithm takes as input:

1 A phylogenetic tree T ,

2 n aligned input promoter sequences (one for each leaf and internal node of

T ) containing sites identified for a particular transcription factor. Binding

site identification is done via motif scanning using PWMs obtained from a

database (Section 3.1).

It labels the sites of each promoter as being non-functional or functional. To

describe our probabilistic model, the first question tackled is that of modeling

TFBS turnover. Thereafter, the presented model is used in calculating the

promoter content transition probability and applied in estimating the labeling over

the given phylogenetic tree.

2.1 Binding site evolutionary model

To model binding site evolution, we approached the problem in reverse,

that is, given ancestral and descendant sequences annotated with functional

and non-functional sites, what would be the simplest way to capture all possible

evolutionary events? For example, in Figure 2–1, the following events have taken
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place at some point in time separating the two sequences: loss of a site (F2), gain

of a site (N2), conservation of two sites (F1, N1) and a turnover event (F3, F4).

Figure 2–1: An evolutionary scenario between ancestor and descendant promoter
regions of 500 bp each, separated by time λ with TFBSs for a given TF marked
and labeled as functional (F) or non-functional (N). The first two sites in the
ancestor have been conserved in the descendant, a non-functional site has been
gained, a functional site has been lost and a functional site (F3) has shifted to the
right, that is, a turnover has occurred.

We note that by treating the complete set of predicted sites as a single

evolving entity, all possible events can be modeled if we only model binding site

conservation, gain and loss. A turnover event need not be modeled explicitly as

it basically consists of a binding site gain followed by a loss. The evolution of

individual binding sites is modeled using a 3-state continuous-time Markov chain,

with transition rates as described in Figure 2–2.

Consequently, the probabilities that a site undergoes a particular event over

time λ are:
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Figure 2–2: Binding site evolutionary model

• The probability of gain from nothing to non-functional site

PφN(λ) = 1 − e−λ·RφN

• The probability of gain from nothing to functional site is mutually exclusive

from the gain from nothing to a non-functional site

PφF (λ) = (1 − PφN(λ)) · (1 − e−λ·RφF )

• The probability of loss of a non-functional site to nothing

PNφ(λ) = 1 − e−λ·RNφ

• The probability of loss of a functional site to nothing

PFφ(λ) = 1 − e−λ·RF φ
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• The probability of gain of a functional site from a non-functional site is

mutually exclusive from the loss of a non-functional site to nothing

PNF (λ) = (1 − PNφ(λ)) · (1 − e−λ·RNF )

• The probability of loss of a functional site to a non-functional site is mutu-

ally exclusive from the loss of a functional site to nothing

PFN(λ) = (1 − PFφ(λ)) · (1 − e−λ·RF N )

• The probability of a non-functional site being conserved is the probability

that its functionality did not change nor did it disappear altogether

PNN(λ) = 1 − PNF (λ) − PNφ(λ)

• The probability of a functional site being conserved is the probability that it

did not lose its functionality nor did it disappear altogether

PFF (λ) = 1 − PFN(λ) − PFφ(λ)

• The probability of no event having occurred at a given position is the

probability that no new sites were created

Pφφ(λ) = (1 − PφN(λ)) · (1 − PφF (λ))
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At present, we assume that we have accurate values for the rate parameters

and continue building the probabilistic framework. Section 2.3.3 explains how

these values can be estimated in more detail.

2.1.1 Distance function

An important observation on the characteristics of regulatory sequences is

that gene regulation is mediated by cooperative interactions between TFs that

bind to clusters of sites within cis -regulatory modules (CRMs) [60, 31]. While it

is clear that functional binding sites are under selective pressure, this observation

leads us to believe in the redundancy of such functional sites. Also, turnover

is more likely when there are multiple sites for a single TF, since the selective

pressure for all of them to be conserved is low. Hence, we introduce a distance

function that increases the variability in the rate of loss of a functional site and

the rates of functionality changes of a site if there are other functional sites close

to it. In our model, we hope to capture the phenomenon of binding site turnover

by allowing sites close to each other to have a higher variability than those further

apart. Consider the following function,

f(dist) = min

(
0.9 ,

1

1 + dist
c

+ d

)
(2.1)

where dist is the number of bp between a site and the closest functional site on

the sequence under consideration. If there is no functional site present, dist = ∞.

In practice the distance function will be used to modulate the rates of loss and

functionality changes of functional sites. The idea behind the distance function

is that if there are two functional sites close to each other, then the rates are
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decreased by a minimal amount, however for two functional sites far apart the

decrease will be substantial resulting in a lower probability (Figure 2–3). This

means that functional sites closer together are subject to more frequent changes

than those further apart.

Figure 2–3: Distance function plot with example values for c and d as 10 and 0.1
respectively. Note that the value of this function is capped at 0.9.

Again, for the moment we leave c and d as unknown parameters which will be

dealt with in section 2.3.3.

2.1.2 Probabilities revisited

The primary idea of the distance function is to increase the variability of

a functional site if there are other functional sites nearby. The f(dist) is thus

multiplied to all the rates involving functional sites. Revising the probabilities in
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our binding site evolutionary model to incorporate the distance function, we get:

PφN(λ, dist) = 1 − e−λ·RφN ·(1−f(dist))

PφF (λ, dist) = (1 − PφN(λ, dist)) · (1 − e−λ·RφF ·f(dist))

PNφ(λ) = 1 − e−λ·RNφ

PFφ(λ, dist) = 1 − e−λ·RF φ·f(dist)

PNF (λ, dist) = (1 − PNφ(λ, dist)) · (1 − e−λ·RNF ·f(dist))

PFN(λ, dist) = (1 − PFφ(λ, dist)) · (1 − e−λ·RF N ·f(dist))

PNN(λ, dist) = 1 − PNF (λ, dist) − PNφ(λ)

PFF (λ, dist) = 1 − PFN(λ, dist) − PFφ(λ, dist)

Pφφ(λ, dist) = (1 − PφN(λ, dist)) · (1 − PφF (λ, dist))

where λ is time elapsed.

In our model, while the existence of functional sites around a given site affects

its probability of loss and change of functionality, the creation of any type of a

site is independent of the presence of other sites around. Since the concept of site

functionality does not exist biologically, this keeps our model close to biological

processes. Thus, to compensate for the effect of the distance function on RφF , we

negate its effect on RφN .

2.2 Promoter content transition probability

Coming back to the example presented in section 2.1 (Figure 2–1), given the

labeling of a promoter sequence under consideration, we would like to calculate the

probability of all TFBS gains, losses and conservations that occurred over time λ
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between a given ancestral site configuration and a given descendant site configura-

tion. In Figure 2–1 there are 4 events (2 gains, 2 losses) and 2 conservations. We

note that there are actually infinitely many possible explanations for the observed

pair of configurations. For example, if a site at position x in the ancestral sequence

is found at position x + 10 in the descendant sequence, then the site at x could

have been conserved until the time λ/8, another site could have been gained and

then lost from the time λ/8 to λ/5 and finally the observed site at position x + 10

in the descendant could have been gained at time λ/5.

Enumerating all the possible scenarios is thus impossible and whereas the

probability of a lot of these scenarios occurring is very small, in principle they

do need to be considered. We therefore present a compromise by enumerating

all the possible permutations of a given set of events for two sequences and sum

the probabilities of each scenario to approximate the promoter content transition

probability. Thus, revisiting the example in section 2.1, we slice the time λ elapsed

between the two sequences depending on the number of events occurred1 and

enumerate all the possible orderings of events. Calculating the promoter content

transition probabilities for each of the time slices, we get the probability of a single

scenario. Considering a scenario with k events, occurring at times λ
k
, 2λ

k
, 3λ

k
, . . . , λ,

we get figure 2–4 which illustrates one of the permutations: loss of site N2, gain of

site F2, gain of site F3, gain of site F4.

1 Note that an event is when a site is either lost, gained, or changes functional-
ity.
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Figure 2–4: Given the data in Fig. 2–1, we split the time λ by the number of
events and enumerate all the possible scenarios for the 4 events. As a result, we
can generate 4! scenarios and the above figure shows N2 → F2 → F3 → F4,
i.e. the first two sites were conserved for λ, the third site (N2) was gained between
time 0 and λ/4, the fourth site (F2) was conserved until 2λ/4, the fifth site (F3)
was conserved until 3λ/4 and the sixth site (F4) was gained and conserved from
3λ/4 to λ. Equation 2.2 formalizes this probability.

The probability of the scenario in Figure 2–4 can be calculated by multiplying

the probability of the events having occurred during each time slice with the

probability that no other sites were gained or lost in that time period. For

example:

P (N2, F2, F3, F4) =

{PFF (λ
4
, 250) · PNN(λ

4
, 50) · PφN(λ

4
, 100) · PFF (λ

4
, 100) · PFF (λ

4
, 100) ·

(Pφφ(
λ
4
))500−5} ×

{PFF (λ
4
, 250) · PNN(λ

4
, 50) · PNN (λ

4
, 100) · PFφ(λ

4
, 100) · PFF (λ

4
, 100) ·

(Pφφ(
λ
4
))500−5} ×
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{PFF (λ
4
, 350) · PNN (λ

4
, 50) · PNN(λ

4
, 150) · PFφ(

λ
4
), 350) ·

(Pφφ(
λ
4
))500−4} ×

{PFF (λ
4
, 500) · PNN (λ

4
, 50) · PNN(λ

4
, 150) · PφF (λ

4
, 400) ·

(Pφφ(
λ
4
))500−4}

(2.2)

The total promoter content transition probability is the sum of the probabilities of

all the event permutations. Again in our example this is:

P (descendant|ancestor) = P (N2, F2, F3, F4) + . . . + P (F4, F3, F2, N2)

Before we continue our discussion, we note that there are certain tools from

Markov theory that could be applied to estimating (or bounding) the probabilities

of these events. A continuous time Markov process can be used to simulate a

dynamical system. These processes work well when the number of variables is

small but increase exponentially in complexity when we consider a system with

multiple components.

In their conference paper, El-Hay et al. [21] present continuous time Markov

networks which are specifically designed for modeling sequence evolution. In their

implementation individual mutations specified by different rates are modeled by

a continuous-time proposal process. A global fitness or energy function of the

entire system determines the probability of a proposed change being accepted,

which is captured by a Markov network that encodes the fitness of different states.
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While their implementation could be used a complete solution to TFBS evolution

(since they also go on to describing a maximum likelihood function and a learning

strategy for parameters as we do), it is not focused on incorporating binding site

turnover into their predictions. Moreover, a major hurdle lies in proposing a global

fitness function for different sequences with TFBS predictions.

Thus, to reduce the complexity of our algorithm, we enumerate scenarios

with the same number of events as the observed data and calculate the promoter

content transition probability between each.

2.3 Prediction

Given data consisting of aligned mammalian sequences and their ancestral

reconstructions, we annotate the promoter regions with TFBS predictions and

would like to be able to predict the functionality of these predicted TFBSs. Thus,

given a TF and a binary phylogenetic tree T of promoter regions with binding site

predictions for that TF, we want to find the functional/non-functional labeling

L whose probability given the observed sites is maximized. In other words, we

would like to find functional/non-functional labeling for the sites on the given

phylogenetic tree which maximizes the promoter content transition probabilities

over all the branches. More formally we want to maximize the probability:

P (Obs, L) =

⎛
⎝ ∏

(a,b)∈edges(T )

P (Obs(b), L(b) | Obs(a), L(a))

⎞
⎠×

P (Obs(root) · L(root)) (2.3)

where L(x) is the vector of labels of all the sites on node x and Obs(x) is the

vector of positions of sites on node x.
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2.3.1 Computing the total likelihood of all possible labelings

Now that we have an evolutionary model that allows us to compute probabil-

ities of change of states along the given phylogenetic tree, we present an algorithm

very much based on the maximum likelihood algorithm as proposed by Felsenstein

[23]. Felsenstein proposed a maximum likelihood technique to estimate evolution-

ary trees from nucleic acid sequence data. In our case, we would like to calculate

the sum of the probability of all possible labelings over the given phylogenetic tree.

This value will help us in estimating the values for the unknown parameters as we

can use it to find the combination of parameters which maximize the likelihood of

observed data (Section 2.3.3).

In order to apply Felsenstein’s algorithm, we assume that evolution over a

single branch is independent from other branches. To calculate the sum of all

possible labelings on a phylogenetic tree, we start from the leaves onwards and

cycle through all the possible labelings between the children and their parent

sequences, summing them up all the way to the root. To facilitate our algorithm,

we introduce a quantity which may be called the conditional likelihood of a

subtree, Xu[L]. This value is the likelihood of all the labelings for a subtree rooted

at node u in which u is labeled with L (note that if u has k sites, there are 2k

possible labelings). This conditional likelihood is first calculated for the leaves for

all possible promoter labeling combinations and stored in a data structure. These

values are then used to calculate the total likelihoods upwards to the root. More

formally, the general formula for calculating the conditional probability at node u
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for a particular labeling L is:

Xu[L] =

(
∑
L′∈v

(P (L′ | Obs(u), Obs(v), L) · Xv[L
′])) ×

(
∑

L′′∈w

(P (L′′ | Obs(u), Obs(v), L) · Xw[L′′])) (2.4)

where v and w are the children of node u, L′ is a labeling of v, L′′ is a labeling of

w and P (B | Obs(a), Obs(b), A) is the promoter content transition probability of

going from a parent sequence with labeling A to a child sequence with labeling B,

given by equation 2.3. When u is a leaf with known labeling Z, that is, when the

labeling of a particular leaf sequence is known, any labeling configuration that does

not comprise of the known labeling for that leaf sequence will return a probability

of 0:

Xu[L] = 1, if L = Z

Xu[L] = 0, otherwise

and when u is a leaf with unknown labeling, that is, when a leaf sequence has no

known labeling, all labelings are equally possible in that case:

Xu[L] = 1, for all L

The calculation of the total conditional likelihood probability at each node is

explained via Figure 2–5. In Figure 2–5, the conditional likelihood for each of the
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Figure 2–5: The above is a small phylogenetic tree example with 5 promoter se-
quences along with TFBS predictions for a particular TF. Here, an extra site has
cropped up in the human and chimp sequences.

nodes is calculated as follows:

Xh[FF ] = Xh[FN ] = Xh[NF ] = Xh[NN ] = 1

Xc[FF ] = Xc[FN ] = Xc[NF ] = Xc[NN ] = 1

Xm[F ] = Xm[N ] = 1

Xr1[F ] = {P (FF | F ) · Xh[FF ] + P (FN | F ) · Xh[FN ] +

P (NF | F ) · Xh[NF ] + P (NN | F ) · Xh[NN ]} ×

{P (FF | F ) · Xc[FF ] + P (FN | F ) · Xc[FN ] +

P (NF | F ) · Xc[NF ] + P (NN | F ) · Xc[NN ]}

Xr1[N ] = {P (FF | N) · Xh[FF ] + P (FN | N) · Xh[FN ] +

P (NF | N) · Xh[NF ] + P (NN | N) · Xh[NN ]} ×

{P (FF | N) · Xc[FF ] + P (FN | N) · Xc[FN ] +
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P (NF | N) · Xc[NF ] + P (NN | N) · Xc[NN ]}

Xr2[F ] = {P (F | F ) · Xr1[F ] + P (N | F ) · Xr1[N ]} ×

{P (F | F ) · Xm[F ] + P (N | F ) · Xm[N ]}

Xr2[N ] = {P (F | N) · Xr1[F ] + P (N | N) · Xr1[N ]} ×

{P (F | N) · Xm[F ] + P (N | N) · Xm[N ]}

The total likelihood for all possible labelings of the tree is
∑

L Xroot[L]. In Figure

2–5, this is Xr2[F ] + Xr2[N ].

2.3.2 Labeling the tree

To label the tree with the best likelihood labeling, we again use a modified

version of the Felsenstein algorithm [23] as used for computing the total likelihood

for all possible labelings over the phylogenetic tree. This algorithm is similar and

works in tandem with the conditional likelihood calculation. As Xu[L] for a node

at root u and labeling L is calculated, we associate the best labeling found when

going from node u to each of its children. In this manner, as information flows up

the tree, the conditional likelihood at each node (Xu), is associated with the best

child labelings, for each of its labelings (L).

The best labeling here is the labeling that results in the maximum likelihood

of going from ancestor to descendant, taking the subtree of the descendant into

account. More formally, for any Xu[L], the best labelings for its children v and w
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are:

L′ = argmaxL′∈v(P (L′ | Obs(u), Obs(v), L) · Xv[L
′])

L′′ = argmaxL′′∈w(P (L′′ | Obs(u), Obs(v), L) · Xw[L′′]) (2.5)

where v and w are the children of node u labeled with L, and P (B | Obs(a), Obs(b), A)

is the promoter content transition probability of going from a parent sequence with

labeling A to a child sequence with labeling B. Note that if u is a leaf, then L′ and

L′′ do not exist.

Finally, once all the labelings have been generated for each of the conditional

likelihood values, we label the root of the entire tree with the labeling of the

maximum Xu value and label its children with the associated labelings. Thereafter,

each node having been labeled by its parent, propagates the labeling down to its

children via its Xu value. In this way, all the information gathered while going up

the tree is propagated back down to the leaves. Revisiting the example in Figure

2–5, the maximum likelihood labeling algorithm is explained in Figure 2–6.

2.3.3 Estimating rates and other parameters

Having presented the probabilistic framework, we describe how to obtain the

values for the parameters in our binding site evolutionary model from section 2.1.

Estimating RφN and RNφ

Given data in the form of regions of a multiple sequence alignment whose

constituent species come from a phylogenetic tree, we used the TRANSFAC

database to make TFBS predictions for all of its matrices. The regions chosen were
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Figure 2–6: Revisiting the example in Figure 2–5, the maximum likelihood label-
ing algorithm works as follows: The values of Xu are calculated for each of the
nodes, as given in equation 2.4 along with the labeling that results in the best
probability of going from u to each of its children, as given in equation 2.5. The
calculated values for Xr1 and Xr2 are shown in the figure. Thereafter, the maxi-
mum probability at the root of the entire tree determines the labeling for the root
sequence, which in this example is 0.001, and its children, the r1 and m sequences
are labeled with F and F respectively. Given than r1 is labeled as F , we label its
children, the h and m sequences as NF , NF respectively.

1000bp upstream from transcription start sites on the human genome and in total

we generated 57332 sets of orthologous promoters per matrix.

Since we did not know anything about the functionality of these predicted

sites, we made the conservative assumption that they were all non-functional.

We then estimated the probabilities of gain and loss of a non-functional site by

counting the number of site changes per branch of the phylogenetic tree from the

given data. More formally, for a given branch, we get:

PφN =
numφN

length(l)

PNφ =
numNφ

numNφ + numNN
(2.6)
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where length(l) is the number of base-pairs on branch l, numφN , numNφ and

numNN are the number of site gains, losses and conservations respectively ob-

served along branch l.

Given formulae for PφN(λ) and PNφ(λ) from section 2.1.2, we calculate the

average rates of gain and loss of a non-functional site for a particular branch,

RφN = Avgl∈T

{−ln(1 − PφN(λ))

λ(l)

}

RNφ = Avgl∈T

{−ln(1 − PNφ(λ))

λ(l)

}
(2.7)

where l is a branch in tree T and λ(l) is the time elapsed over the branch l.

Unknown rates and parameters

Having estimated values for RφN and RNφ for a given TF, we look to estimate

the other rates and the parameters for the distance function in section 2.1.1. Since

biologically all sites are supposed to be equal, in our model we can be conservative

and assume that all sites are non-functional. Thus, we can assume that the

rates of loss for both functional and non-functional sites are the same, that is,

RFφ = RNφ. Similarly, we set the rates of gain of functional and non-functional

as same, that is, RφF = RφN . Note that RFφ exists as a separate entity as it

will be modified by the distance function in a different manner for functional and

non-functional sites.

To resolve the remaining parameters, which are RFN , RNF , c and d (from

the distance function described in section 2.1.1), we try to estimate them as best

as possible via our proposed algorithm. Given sets of orthologous promoters with

sites predicted for a particular TF, we would like to find the parameters that result
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in the best total likelihood. Although before we assumed that all binding sites are

non-functional, the reality is that a certain fraction of is functional. We thus seek

the combination of parameter values that maximizes the likelihood of the observed

data.

Therefore, given a set of values for the parameters, we calculate the total

likelihood value over a tree of promoter sequences. We then sum the Xu[L] value

at the root for 1000 sets of orthologous promoters (where L is the best labeling as

determined by our algorithm) and find parameters that will result in the highest

possible sum. The sum M is defined as:

M =
∑
t∈T

(Xroot(t)[L]) (2.8)

where t is a tree in the dataset T and L is the best possible labeling at the root of

t.

To find the best parameters we pick a range of values for each of the un-

knowns (See Table 2–1 for an example starting range), cycle through all the

combinations and sort them in descending order of their respective M scores. The

combination that achieves the best score is then used as a base for formulating an-

other range by increasing the resolution around it (a concrete example presented in

the following chapter). We then conduct another search over the second range to

find the set of parameters that yields a better M score than the previous iteration.

The cycle of iterations stop when there is no significant improvement or M or a

certain number of iterations has been reached. Thus, for a given dataset we are

able to identify parameters specific to a particular TF.
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Table 2–1: First iteration of parameter estimation

Parameter Range

c 0.1, 1, 10, 100, 1000

d 0.001, 0.01, 0.1, 1, 10, 100

RFN 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10

RNF 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10

Note that this method of parameter estimation can be thought of as “drilling

down” to obtain the parameters which will yield the best total likelihood over

all the labelings, over all the provided data. Unfortunately, this method does not

guarantee a global maximum, that is, the best parameter combination that we

find may not necessarily be the actual best. However, given the computational

complexity involved in the calculation of the total likelihood value of one tree, it is

the most feasible option.

2.4 Summary

This chapter presents a probabilistic framework for predicting TFBSs using

a phylogenetic approach. We start by presenting our binding site evolutionary

model, wherein we treat TFBSs as individual entities which evolve much like

individual nucleotides on the genome. A TFBS can thus be gained, lost or

conserved and in this manner, we do not explicitly model turnover but instead

introduce the concept of site functionality via labels. We then determine the

parameters of site functionality and how they differentiate TFBS evolution.

Once the framework for a single site and is laid out, we present the promoter

content transition probability, which takes a parent sequence and a child sequence,
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both with known TFBS configurations and labelings, and calculates the proba-

bility of the parent configuration having evolved to the child configuration. This

probability is then used in our prediction algorithm, which takes as input a set of

orthologous sequences, each sequence representing a branch of a phylogenetic tree

and each sequence composed of sites marking TFBS predictions with unknown

functionalities. Given this input, our prediction algorithm determines the correct

functionality labeling for the entire tree by using a maximum likelihood approach.

Finally, we discuss the estimation of the various parameters introduced in our

binding site evolutionary model.

In the following chapter, we validate our methodology and present the results

of applying our algorithm on ChIP-chip data.
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CHAPTER 3
Results

This chapter presents an overview of the results obtained by our TFBS

prediction algorithm. We first describe in detail the generation and sources of data

used in evaluating our algorithm. We then provide examples of the parameter

estimation for RφN , RNφ, RφF , RFφ, RFN , RNF , c and d as presented in chapter 2,

for two TF matrices on data generated from multiple sequence alignment (Section

3.1). Thereafter, we evaluate our algorithm on data generated in silico and finally,

the results of our algorithm on experimental data from published experiments are

presented.

3.1 Experimental Data

Our algorithm takes as input a region of a multiple sequence alignment whose

constituent species come from the phylogenetic tree as depicted in Figure 3–1.

Starting with a set of 57332 human promoter regions (some of which were defined

as 1000bp upstream of transcription start sites on the human genome), we used

the TBA program (Blanchette et al. [4]) to obtain the corresponding alignments

with other extant species. The Threaded Blockset Aligner (TBA) itself is a novel

multiple alignment technique which instead of using a reference sequence, produces

“blocks” of alignments. As explained in Blanchette et al. [4], these blocks are

basically a local alignment of some or all of the given sequences, in which each

position in the given sequences appears precisely once. Any detected match
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among some or all of the sequences is represented among the blocks, and mutually

consistent reference-sequence alignments can be extracted at will. This property

is exploited to produce a set of blocks under the assumption that the matching

regions occur in the same order and orientation in all species.

This alignment was further used to reconstruct the ancestral sequences as

described in Blanchette et. al [3]. Specifically, given the phylogenetic tree and

assuming that its topology is correct, the branch lengths were inferred using the

HKY model [29] and the PHYML program [26]. Thereafter, the TBA tool [4]

was used to obtain a multiple sequence alignment of the following mammalian

species: human, chimp, macaque, rat, mouse, rabbit, dog, cow, armadillo and

elephant. The algorithm of Blanchette et al. [3] was then used to make predictions

regarding which positions of the alignment correspond to ancestral bases, and

which correspond to nucleotides inserted after the ancestor. These position

specific predictions were made using a greedy algorithm that seeked to explain the

observed alignment using a set of insertions and deletions of maximum likelihood.

Finally, the identity of the nucleotide at each ancestral position was then predicted

using a context-dependent maximum-likelihood estimation.

An actual data file thus consists of a region of the multiple alignment of the

extant and the reconstructed ancestral sequences with binding site predictions on

all sequences. To generate the dataset of predicted TFBSs, we predicted binding

site matches for all 481 TRANSFAC [62] position weight matrices, where each

match was scored using a log likelihood ratio score. We only report those matches

such that the probability that a random sequence would have a log likelihood
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Figure 3–1: The mammalian phylogenetic tree used to generate experimental data
and make predictions. Image courtesy Freslund et al. [24].
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ratio score that is as good or better than the one observed is very small, i.e.

p − value < 211.1 = 0.0005. Figure 3–2 illustrates the data generation process.

Figure 3–2: Using the TBA program, mammalian genomes from the tree in fig-
ure 3–1 are aligned and this alignment is then used to reconstruct the ancestral
sequences. The extant and ancestral sequences are re-aligned using the TBA pro-
gram again, and it on this alignment that TFBS predictions for all TRANSFAC
matrices are made.

The generated dataset of predicted TFBSs for a single matrix consists of

57332 sets of orthologous promoters in total over the entire genome. Each set itself

contains an average of 10 predicted sites giving us over 500,000 sites per matrix

over which to base our calculations on.
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3.2 Estimation of rates and parameters

An important aspect of our binding site evolutionary model are the rates and

parameters chosen. Using the theory presented in section 2.3.3 and data from

section 3.1, we present the results of the rate calculation and parameter estimation

for two transcription factors: Estrogen Receptor (TRANSFAC Matrix M00191)

and NF-κB (TRANSFAC Matrix M00054).

3.2.1 RφN and RNφ calculation

Using the data from section 3.1, we calculated the number of non-functional

site gains, losses and conservations for each branch of the phylogenetic tree, over

all the promoters. We used these counts to calculate the probability of the gain

and loss of a non-functional site (Equation 2.6). These probabilities were then used

to calculate RφN and RNφ (Equation 2.7).

Table 3–1 provides the non-functional site counts per branch for the Estrogen

Receptor (ER) transcription factor. We observe that the calculated probabilities

correspond to the phylogenetic tree used for their calculation. For example, the

highest probability of loss of a site is to be found at the longest branch (between

afrothere and echTel1). Also, the branch between glire and rodent presents

relatively high probabilities of loss and gain of sites, which is again consistent with

the observation that the mouse lineage underwent a higher rate of deletion [61].

Moreover, these probabilities are also consistent with the results of studies on

the divergence of transcriptional regulation between the two genomes [43]. Table

3–3 provides the final calculated rates for both the ER and NF-κB transcription

factors with the rates for NF-κB having been calculated in a similar manner.

48



Table 3–1: Per branch rate calculations for ER transcription factor

Ancestor Descendant PφN PNφ RφN RNφ

eutherian afrothere 0.000180142 0.412879 0.00180158 5.32524

eutherian nonAfro 0.000129851 0.136802 0.0012986 1.47112

nonAfro borEut 0.0001362 0.119834 0.00681049 6.38225

nonAfro dasNov1 0.000318872 0.784657 0.00159461 7.6776

borEut euArc 0.000101016 0.17138 0.0101021 18.7994

borEut laurasia 0.000181322 0.305224 0.0181339 36.4166

euArc glire 0.000161872 0.386653 0.00161885 4.88825

euArc primate 0.00034406 0.466486 0.00688239 12.5654

primate ape 9.12852e-05 0.146427 0.00182579 3.16649

primate rheMac2 0.000160595 0.265394 0.00321215 6.16842

ape hg18 2.98571e-05 0.0481245 0.00298575 4.9321

ape panTro2 3.26969e-05 0.0908542 0.00326975 9.52498

glire oryCun1 0.000268342 0.779211 0.000894593 5.03516

glire rodent 0.000478442 0.723211 0.00159519 4.28166

rodent rn4 0.000233828 0.405187 0.00233855 5.19507

rodent mm8 0.000184511 0.329764 0.00184528 4.00125

laurasia bosTau2 0.000401474 0.674886 0.00133851 3.74527

laurasia canFam2 0.000392757 0.601698 0.00130945 3.06848

afrothere echTel1 0.000319747 0.78587 0.000639597 3.08234

afrothere loxAfr1 0.000255089 0.550095 0.000850406 2.66239
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3.2.2 Estimation of RFN , RNF , c and d

To estimate the unknown parameters, we seeked the values that maximize the

likelihood of the given data. As explained in section 2.3.3, these parameters were

estimated by a sieving technique. This involved creating initial ranges for each of

the 4 parameters and cycling through all the possible combinations. Calculation of

Xu[L] for a single set of orthologous promoters takes about 30 seconds and since

we had to cycle over 1000 combinations for a single range, we limited the dataset

to 1000 sets of orthologous promoters.

After having cycled through all the parameter combinations we got a list of

all the combinations and their M-scores (Equation 2.8). From this list we picked

the combination that resulted in the highest M-score and created another range

around each of the values in the combination. We repeated the calculation of a

list of M-scores for this range, creating another range and continued the iterations

until there was no significant change in parameter values or an iteration limit of

6 was reached. Table 3–2 presents the unknown rate and parameter estimation

ranges for ER transcription factor whilst all the calculated and estimated parame-

ters for ER transcription factor are listed in Table 3–3. Similarly, we estimated the

unknown rates and parameters for NF-κB transcription factor (Table 3–3).
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Table 3–2: Unknown rate and parameter estimation ranges for ER transcription
factor

Iteration Parameter Values tested

1

c 0.1, 1, 10, 100, 1000, 10000

d 0.001, 0.01, 0.1, 1, 10, 100

RFN 0.0001, 0.001, 0.01, 0.1, 1, 10

RNF 0.0001, 0.001, 0.01, 0.1, 1, 10

Best: c = 10, d = 0.1, RFN = 0.0001, RNF = 10

2

c 0.1, 1, 5, 10, 20, 100

d 0.01, 0.05, 0.1, 0.5, 1

RFN 0.0001, 0.005, 0.001, 0.005, 0.01

RNF 0.1, 1, 5, 10, 20

Best: c = 20, d = 0.1, RFN = 0.0001, RNF = 5

3

c 10, 15, 20, 25, 30

d 0.05, 0.1, 0.2, 0.25

RFN 0.0001, 0.005, 0.001, 0.05

RNF 1, 2.5, 5, 7.5, 10

Best: c = 10, d = 0.2, RFN = 0.0001, RNF = 5

4

c 7.5, 10, 12.5

d 0.15, 0.2, 0.25

RFN 0.00001, 0.0001, 0.001

RNF 4, 5, 6

Best: c = 7.5, d = 0.25, RFN = 0.0001, RNF = 4
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Table 3–3: All rates and parameters for ER and NF-κB transcription factors

Rate/Parameter RφN = RφF RNφ = RFφ RFN RNF c d

ER Values 0.00351738 7.41948 0.0001 4 7.5 0.25

NF-κB Values 0.00398662 6.54232 0.0001 0.5 0.0001 0.23
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3.3 Algorithm performance on simulated data

To evaluate the efficacy of our prediction algorithm, we needed a well-studied

and biologically relevant dataset against which we could compare results. Due

to the lack of such a standard, we decided to generate data in silico and then by

assuming that our proposed model is correct, we could evaluate the accuracy of the

predictions over this “gold standard”.

To generate data in silico, we used the mammalian phylogenetic tree from

section 3.1. We set all the sequences to be 1000bp in length and inserted sites at

the root, that is, the eutherian ancestral sequence at positions 100, 500, 800 and

labeled them as being functional, non-functional and functional respectively. Using

the rates and parameters as calculated in section 3.2 for a single TF, we simulated

the evolution of these initial sites over the entire set of orthologous promoters

using our binding site evolutionary model to obtain a dataset with known site

functionality.

We evaluated the performance of our algorithm by generating 100 simulated

datasets using the parameters for both ER and NF-κB transcription factors, and

then calculating the accuracy of predictions made by our algorithm on each of the

simulations. The algorithm was applied in the same way we would test a dataset

with unknown site functionalities. Also, in addition to calculating the accuracy of

the predictions, for each dataset we made two sets of predictions:

• the first with a constant value for the distance function (Section 2.1.1),

f(dist) = 0.1,

• and the second with the original parameters used to generate the data.
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In our binding site evolutionary model, the distance function is what differentiates

functional and non-functional sites, along with constraining binding site evolution

depending upon functionality. Therefore, comparing algorithm performance against

a fixed turnover parameter gave us a clearer picture of whether our algorithm was

actually picking up binding site turnover as opposed to identifying only those sites

that have been linearly conserved in the given input.

Table 3–4 presents the results on simulated data for both sets of predictions.

The first thing to note is that algorithm performance is quite good in both sets

and for both TFs. We note that using a fixed distance function parameter leads

to a lower specificity but higher sensitivity in the predictions and vice versa when

the original parameters are used. This leads to a rather open interpretation and

depending upon the goals of a future experiment, algorithm parameters could be

accordingly tweaked.

The results also indicate that our predictor has a tendency in general to

over predict functional binding sites. A detailed analysis of the predictions made

shows us that most of the false positives are clusters of non-functional sites which

were predicted as functional. A very prominent example of this is the gain of 5

non-functional sites around 1 conserved functional site going from laurasia to the

bosTau2 sequences in the simulation. Our algorithm predicted all the sites as

functional whereas, using the constant distance function, one of the false-positives

was correctly predicted as non-functional. Biologically, the fact that our algorithm

can capture these clusters is a good thing as functional binding sites rarely act in

solitude [2].
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Table 3–4: Simulation results for 100 sets of orthologous promoters generated
using parameters for ER and NF-κB. Predictions were made on each tree using
the original parameters and also by using a constant value for the distance func-
tion (represented by an asterisk), for each TF. ‘N’ and ‘F’ refer to non-functional
and functional labelings respectively. The number of labelings for all 100 sets of
orthologous promoters are summed to obtain the sensitivity and specificity.

ER* ER NF-κB* NF-κB

Correct N predictions 1276 866 1519 1245

Total N labelings 1568 1911

Specificity 81.38% 55.23% 79.49% 65.15%

Correct F predictions 2446 2597 2816 2898

Total F labelings 2671 2920

Sensitivity 91.58% 97.23% 94.44% 99.23%

Analyzing the simulation results further, we note that our algorithm does

a moderately good job of identifying binding site turnover. The caveat here lies

in the definition of binding site turnover: our algorithm performs well when we

allow the loss and the gain of a functional site very close (less than 100 bp) to

an existing functional site and over a long time, that is, over two nodes on the

phylogenetic tree or λ > 0.1. However over small distances (λ < 0.1), our algorithm

is unable to catch binding site turnover, mainly because the parameters rarely

generate such situations.

3.4 Results on ChIP-chip experimental data

Presented here are the results of applying our predictor on data obtained

from ChIP-chip experiments. ChIP-chip is a technique that combines chromatin

immunoprecipitation (ChIP) with microarray technology (chip). Like regular
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ChIP, ChIP-chip is used to investigate interactions between proteins and DNA

in vivo. More importantly, ChIP-chip allows the identification of binding sites of

DNA-binding proteins on a genome-wide basis and whole-genome analysis can be

performed to determine the locations of binding sites for almost any TF of interest

[11].

We picked two papers that documented genome-wide ChIP-chip experiments

for a particular transcription factor and given the regions provided, we were able

to use the methodology from section 3.1 to create the relevant datasets with TFBS

predictions. The first paper by Carroll et al. [10], documents a genome-wide

ChIP-chip experiment for the Estrogen Receptor (ER) transcription factor. The

second by Martone et al. [39], documents a genome-wide ChIP-chip experiment for

the NF-κB transcription factor. The first experiment results in 5782 regions with

an average of 1162bp per region and the second results in 1000 regions of 1300bp

each.

A disadvantage of ChIP-chip technology is the fact that the size of DNA

fragments achieved is at minimum 200bp. Considering that the length of the

binding sites is much smaller, such an experiment can only reveal a broad picture

of binding site locations. Therefore, when we applied our predictor on the ER

regions, our predictor only predicted 33% of the sites found as functional (Table

3–5).

To determine whether the predictions made by our predictor were statistically

significant, we applied our predictor with the same ER parameters on data that is

not enriched with ER binding sites. Thus, we applied our predictor on the NF-κB
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Table 3–5: Results of applying our algorithm on both ER (TRANSFAC Matrix:
M00191) and NF-κB (TRANSFAC Matrix: M00054) ChIP-chip experimental data.
The ER dataset was obtained from regions provided by Carroll et al. [10] and the
NF-κB dataset was obtained from the regions provided by Martone et al. [39].

Predictions ER dataset NF-κB dataset

Functional labelings 3332 (33%) 193 (25%)

Non-functional labelings 5624 (66%) 598 (75%)

Totals 8956 791

dataset with ER parameters. Using a χ2 test, we conclude that the predictions

made on the ER dataset are very significant with P < 0.001 (Table 3–6). This

leads us to believe that either the ER transcription factor is critical to biological

processes leading it to having a large number of redundant sites, or that there exist

other functional sites outside of the regions obtained from the in vivo experiment.

Table 3–6: χ2 test to measure the statistical significance of predictions made with
ER parameters on the ER dataset versus the NF-κB dataset. oi and ei are the
observed and expected frequencies respectively.

Category oi ei oi − ei
(oi−ei)2

ei

Functional labelings on ER 3332 3258.23 73.77 1.67

Functional labelings on NF-κB 214 287.77 -73.77 18.91

Non-functional labelings on ER 5624 5697.77 -73.77 0.96

Non-functional labelings on NF-κB 577 503.23 73.77 10.81

n = 9747 9747 χ2 = 32.35
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3.5 Conclusions

Using a methodology whereby we obtain a multiple sequence alignment of

extant genome sequences and their reconstructed ancestral sequences, we generated

dataset containing over 50 million bp and used the TRANSFAC database to make

binding site predictions for each of its matrices (or TFs). We then used this data

to estimate parameters for two well studied transcription factors: ER and NF-κb.

We first evaluated our algorithm by calculating the accuracy of its predictions on

simulated data. We next applied our algorithm on data obtained from genome-

wide ChIP-chip experiments and evaluated its usefulness in making functional site

predictions.

The results that we have obtained are a positive indication of the potential of

our algorithm. Using the results on simulated data, we were able to successfully

validate our model. The results on ChIP-chip data were also positive with func-

tional site predictions on data enriched for ER binding sites being proportionally

much higher than those on data not enriched for the same. Also, the number of

functional sites predicted by our algorithm on ER regions was only 33% out of all

the sites predicted by the data generation process. Taking into consideration the

fact that our algorithm has a tendency to over-predict functional sites, it could be

quite a useful tool to weed out false-positive predictions in ChIP-chip experiments.

3.6 Further Work

While our initial attempts at modeling binding site turnover have been

successful, we note that there are certain improvements that could be made to

enhance the speed and accuracy of our algorithm:
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Calculation of the promoter content transition probability We note that

having to enumerate through all possible event scenarios to calculate this

probability is computationally very expensive. A simpler model with more

relaxed constraints would speed up this process. For example, we could fix

the functionality of sites and not allow them to change once determined at

the leaves. Another option is to reduce the number of parameters which

would lead to a quicker and a more accurate estimation.

Parameter estimation It is evident that the power of our algorithm is in

the parameters that are used for each transcription factor. Hence, the

weakest link in the chain is our sieving technique of parameter estimation,

which is prone to hit local maxima. A better approach would be to use an

Expectation–Maximization algorithm. The EM algorithm is an efficient

iterative procedure to compute the Maximum Likelihood (ML) estimate in

the presence of missing or hidden data. Each EM iteration is composed of

two steps: Estimation (E) and Maximization (M). The M-step maximizes a

likelihood function that is further refined in each iteration by the E-step [7].

However, even such a method is prone to hit local maxima.

Confidence score The addition of a confidence score to predictions would would

help us in improving our algorithms sensitivity and specificity. At present

the algorithm works as follows: the total likelihood for all possible labelings

is computed from the leaves to the root; and the labeling is specified by the

maximum conditional likelihood value at the root and propagated back to

the leaves. This labeling is a simple binary value without any indication of
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the confidence of such a prediction. Since we are interested in the human

binding sites, we propose the calculation of the total likelihood score when

one of the sites on the human branch is fixed to be functional or non-

functional. Fixing the functionality of one site on the human promoter

thus would enable us to calculate the total likelihood for all the labeling

permutations for the remaining sites on the human promoter. These scores

could then be used to calculate the level of confidence of our predictions.

This addition will however, increase the computational complexity and may

render our algorithm infeasible for genome-wide datasets.
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CHAPTER 4
Summary and Conclusions

Transcription factor binding sites play an important role in gene regulation

and generally, the transcriptional machinery is highly conserved during evolution.

However, there are well documented examples in yeast and fly where the loss

and gain of binding sites have lead to some dramatic changes in gene expression.

At the same time there are other well documented examples where such binding

site activity has produced little or no change in the same [48]. Due to their short

length and the degeneracy of their binding requirements, binding sites are subject

to a lot of evolutionary variation. Fortunately, binding site turnover, which is

the coordinated loss of a site and the gain of a new one nearby helps in keeping

disruptive changes in gene regulation at bay.

While studies on TFBS turnover have been done on insects and other micro-

organisms, it is only recently that studies attempting to confirm the same have

been attempted on mammals [17, 58]. Moreover, identification of functional

elements has largely only been successful via phylogenetic footprinting and with

the availability of accurate reconstructed mammalian ancestral genomes, the

accuracy of this method has been greatly improved. Identification of transcription

factor binding sites in mammals however, has largely been done via in vivo ChIP-

chip or ChIP-seq genome-wide sequencing which, while useful, can only be used to
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accurately identify regions where binding sites for a given TF are functional for the

conditions under which the experiment was done.

In this thesis, we present a model that aims to identifying individual func-

tional binding sites for a given TF as opposed to identifying functionally active

regions in vitro. As explained in chapter 1, biologically, binding sites are not

simple black and white entities that are labeled as functional or non-functional.

It is quite possible that a binding site is only at times involved in regulating gene

expression. Instances of this scenario include multiple TFs working together to in-

crease production, thereby leading to a lot of sites being bound. However, our goal

is to identify with a certain degree of accuracy, those sites that have a high chance

of participating in gene regulation taking the concept of binding site turnover into

account.

Since this study is a first of its kind, a major hurdle in establishing the

accuracy of our predictor was the lack of standardized data and testing protocols.

As a result, we relied on simulations to assess its efficacy and we note from

our simulation tests that our predictor has a tendency to over predict sites as

being functional, especially when encountering clusters of sites. However, this is

biologically relevant and a good sign because functional binding sites rarely act in

solitude [2]. Our algorithm also does a moderately good job in identifying binding

site turnover, however we hope that with the availability of more genome-wide

ChIP-chip or ChIP-seq experiments, we will be able to enhance our test suites and

improve our algorithm in this regard.
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While our presented mathematical model is useful, any further understanding

of the actual underlying biological processes will have to be grounded with

experimental data from in vivo effects of sites with various sequences on gene

expression [48]. Thus, the next step will be to experimentally confirm the validity

of predicted functional sites. Feedback from in vivo testing will also help us refine

our model by analyzing the false negatives and false positives.

Finally, it would also be prudent to note that despite the various ways

to minimize the number of false-positive functional binding site predictions,

even those sites that are perfectly conserved across all species or meet the most

stringent criteria for being classified as functional might still be non-functional in

a genomic context, for instance, the binding site might be inaccessible owing to

chromatin structure or blockage by other proteins [46]. Clearly, this study is but

an initial attempt in the iterative refinement of our knowledge of the mammalian

regulatory processes.
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Key To Abbreviations

A: adenine

bp: basepair

C: cytosine

CRM: cis -regulatory module

DNA: deoxyribonucleic acid

ER: Estrogen Receptor

G: guanine

mRNA: messenger ribonucleic acid

Mya: million years ago

NCBI: national center for biotechnology information

RNA: ribonucleic acid

rRNA: ribosomal ribonucleic acid

T: thymine

TF: transcription factor

TFBS: transcription factor binding site

tRNA: transfer ribonucleic acid

U: uracil
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