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Abstract 

Interest in local intercellular communication within tissues in fields such developmental 

biology, neuroscience, and oncology have motivated the development of spatially resolved 

transcriptomics technologies. These technologies come with trade-offs; for in situ capture methods 

such as 10x Genomics Visium, for example, the gene expression captured from a single spot may 

come from multiple cells, and thus computational methods for integrating single-cell data to 

deconvolve cell type proportions have gained interest. To date, these have required sample-

matched datasets from each modality, whereas in most cases these are not available. Taking 

inspiration from and building on CellDART, a method that uses domain adaptation to address this 

problem by treating reference scRNA-seq data as source domain data, we further investigate the 

performance of 3 domain adaptation methods (ADDA, DANN, and Deep CORAL) and a Bayesian 

method (RCTD) on 3 different pairs of source and target datasets (dlPFC, PDAC, and a “gold 

standard” mouse cortex dataset). We used metrics across 3 levels of evaluation: (a) performance 

on source domain scRNA-seq derived “pseudo-spots”, (b) performance in mapping inputs from 

both domains to a common distribution, and (c) performance on real spatial transcriptomics spots. 

By integrating these 3 datasets and 3 levels of metrics, we ensured that our results were robust and 

broadly applicable. Upon performing hyperparameter tuning for all three models across all three 

sets, and evaluating the models, we were unable to conclusively determine whether any method 

performed better or worse. We found that CellDART remained a good performer, that it was 

difficult to train DANN, and that ADDA’s performance is limited by not remaining consistent for 

specific samples. Future directions include improving on CellDART, integrate cycle-consistent 

loss for ADDA, and implementing unsupervised domain adaptation validation methods.  
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Abrégé 

L'intérêt pour la communication intercellulaire locale au sein des tissus dans des domaines 

tels que la biologie du développement, les neurosciences et l'oncologie a motivé le développement 

de technologies transcriptomiques spatiales. Ces technologies s'accompagnent de compromis; pour 

les méthodes de capture in situ telles que 10x Genomics Visium, par exemple, l'expression génique 

capturée à partir d'un seul point peut provenir de plusieurs cellules, et c'est pourquoi les méthodes 

computationnelles d'intégration des données de cellules uniques pour déconvoluer les proportions 

de types cellulaires ont suscité un intérêt croissant. Jusqu'à présent, ces méthodes nécessitaient des 

ensembles de données correspondant à des échantillons de chaque modalité, ce qui n'est pas le cas 

dans la plupart des cas. En s'inspirant de et s’appuyant sur CellDART, une méthode qui utilise 

l'adaptation de domaine pour résoudre ce problème en traitant les données scRNA-seq de référence 

comme des données de domaine source, nous avons étudié les performances de 3 méthodes 

d'adaptation de domaine (ADDA, DANN et Deep CORAL) et d'une méthode bayésienne (RCTD) 

sur 3 paires différentes d'ensembles de données source et cible (dlPFC, PDAC et un ensemble de 

données de cortex de souris « étalon-or »). Nous avons utilisé des mesures à trois niveaux 

d'évaluation: (a) performance sur des « pseudo-points » dérivés de scRNA-seq dans le domaine 

source, (b) performance dans la mise en correspondance des entrées des deux domaines avec une 

distribution commune, et (c) performance sur de véritables points de transcriptomique spatiale. En 

intégrant ces trois ensembles de données et ces trois niveaux de mesure, nous nous sommes assurés 

que nos résultats étaient robustes et largement applicables. Après avoir effectué le réglage des 

hyperparamètres pour les trois modèles dans les trois ensembles et évalué les modèles, nous 

n'avons pas été en mesure de déterminer de manière concluante si l'une ou l'autre des méthodes 

était plus performante ou moins performante que l'autre. Nous constatons que CellDART reste 
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performant, qu'il est difficile d'entraîner DANN et que les performances d'ADDA sont limitées par 

le fait qu'elles ne restent pas cohérentes pour des échantillons spécifiques. Les orientations futures 

comprennent l'amélioration de CellDART, l'intégration d'un fonction objectif cohérente avec le 

cycle pour ADDA et la mise en œuvre de méthodes non supervisées de validation de l'adaptation 

de domaine. 

  



iv 

 

Acknowledgements 

I would like to thank my supervisor, Professor Amin Emad, for his guidance, feedback, and 

support as well as his engagement in the work that went into this thesis. I would also like to thank 

the Department of Electrical Computer Engineering at McGill and the Natural Sciences and 

Engineering Research Council of Canada for funding my research through the Graduate 

Excellence Fellowships and Canada Graduate Scholarships–Master’s, respectively. I would finally 

like to thank my family, friends, and lab partners for their unwavering support and help throughout 

my degree.  



v 

 

Table of Contents 

Abstract ............................................................................................................................................ i 

Abrégé ............................................................................................................................................. ii 

Acknowledgements ........................................................................................................................ iv 

Table of Contents ............................................................................................................................ v 

List of Tables ................................................................................................................................. vii 

List of Figures ................................................................................................................................. x 

List of Abbreviations..................................................................................................................... xii 

Contribution of Authors ............................................................................................................... xiv 

1. Introduction ............................................................................................................................. 1 

2. Literature Review.................................................................................................................... 4 

2.1 Overview .......................................................................................................................... 4 

2.2 Molecular biology background ........................................................................................ 4 

2.2.1 Gene expression and intercellular interactions ......................................................... 4 

2.2.2 Transcriptomics ......................................................................................................... 5 

2.2.3 Applications of spatial transcriptomics ..................................................................... 9 

2.2.4 Domain discrepancy in transcriptomics .................................................................. 10 

2.3 Computational background ............................................................................................ 12 

2.3.1 Integration of single-cell and spatial transcriptomics data ..................................... 12 

2.3.2 Domain adaptation .................................................................................................. 13 

3. Methodology ......................................................................................................................... 21 

3.1 Overview ........................................................................................................................ 21 

3.2 Data and data processing ................................................................................................ 22 

3.2.1 Datasets, cleaning, and pre-processing ................................................................... 22 

3.2.2 Data splitting and marker gene selection ................................................................ 25 

3.2.3 Pseudo-spot generation ........................................................................................... 27 

3.2.4 Log transforms and normalization .......................................................................... 29 

3.3 Evaluation....................................................................................................................... 30 

3.3.1 Source domain performance ................................................................................... 31 

3.3.2 Variance between source and target ........................................................................ 31 



vi 

 

3.3.3 Target domain performance .................................................................................... 35 

3.4 Models and training ........................................................................................................ 39 

3.4.1 Reimplemented CellDART ..................................................................................... 43 

3.4.2 ADDA ..................................................................................................................... 45 

3.4.3 DANN ..................................................................................................................... 48 

3.4.4 CORAL ................................................................................................................... 51 

4. Results ................................................................................................................................... 54 

4.1 Overview ........................................................................................................................ 54 

4.2 Overall performance ....................................................................................................... 54 

4.2.1 Performance on source domain data ....................................................................... 54 

4.2.2 Evaluation of domain adaptation ............................................................................ 55 

4.2.3 Evaluation of deconvolution of real spots .............................................................. 57 

4.3 Selected hyperparameters ............................................................................................... 59 

4.4 Adversarial training results ............................................................................................ 61 

4.5 Effect of domain adaptation ........................................................................................... 64 

4.6 Comparison with original CellDART ............................................................................ 66 

5. Discussion and Future Work ................................................................................................. 68 

5.1 Analysis of results .......................................................................................................... 68 

5.1.1 Gradient reversal layer causes poor adversarial training stability .......................... 69 

5.1.2 Performance of ADDA wholly a result of initialization of target encoder ............. 70 

5.1.3 Remark on domain discrimination performance..................................................... 71 

5.2 Future work .................................................................................................................... 72 

6. Conclusion and Summary ..................................................................................................... 75 

References ..................................................................................................................................... 76 

  



vii 

 

List of Tables 

Table 3.1: Mappings from source scRNA-seq data to target spatial transcriptomics regions used 

to evaluate cell type proportions for spatial PDAC data. ...................................................... 37 

Table 3.2: Mappings of scRNA-seq source dataset cell types to target spatial transcriptomic cell 

types for the mouse cortex dataset. Where multiple classes were merged, individual cell 

types are separated by a comma. For the source cell type, abbreviations used by the paper 

authors are used; for definitions, refer to the original paper {/Peng, 2019 #240/}. Greyed out 

cells indicate no mapping to the other set. ............................................................................. 37 

Table 3.3: Common data hyperparameters used for all model types. ........................................... 41 

Table 3.4: Specifications of CellDART. Where not specified, configurations values are either 

default PyTorch values or hyperparameters sets in Table 3.5; hyperparameter placeholders 

are indicated with an underline. ............................................................................................. 43 

Table 3.5: Reimplemented CellDART hyperparameters validated. 𝛼, as used in CellDART, is a 

scaling factor for the discriminator classification loss 𝐿𝑑, like 𝜆 in DANN. 𝛼𝐿𝑅 is a scaling 

factor for the discriminator’s learning rate against the main learning rate, with 5 being 

reported as a good value by CellDART’s authors. ................................................................ 44 

Table 3.6: Specifications of ADDA. Where not specified, configurations values are either default 

PyTorch values or hyperparameters sets in Table 3.7; hyperparameter placeholders are 

indicated with an underline. ................................................................................................... 46 

Table 3.7: Validated ADDA hyperparameters. 𝑑𝑒 is the dimension of the embedding at the output 

of the encoder. 𝛼𝐿𝑅 is a scaling factor for the discriminator’s learning rate vs. the main 

learning rate. 𝐾𝑑 is the discriminator loop factor. ................................................................. 47 

Table 3.8 Specifications of DANN. Where not specified, configurations values are either default 

PyTorch values or hyperparameters sets in Table 3.9; hyperparameter placeholders are 

indicated with an underline. ................................................................................................... 50 

Table 3.9: DANN hyperparameters validated. 𝑑𝑒 is the dimension of the embedding at the output 

of the encoder. 𝜆 is a scaling factor for the discriminator classification loss 𝐿𝑑. α is a scaling 

factor for the gradient as it passes through the GRL. Higher values of α mean larger encoder 

gradients relative to those passed from the discriminator. ..................................................... 51 



viii 

 

Table 3.10: CORAL specifications. Where not specified, configurations values are either default 

PyTorch values or hyperparameters sets in Table 3.11; hyperparameter placeholders are 

indicated with an underline. ................................................................................................... 52 

Table 3.11: CORAL hyperparameters validated. 𝑑𝑒 is the dimension of the embedding at the 

output of the encoder, while (𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) are CORAL loss weighting parameters for the 

encoder output and the predictor output, respectively. .......................................................... 52 

Table 4.1: Test performance of each model on synthetic scRNA-seq pseudo-spots. Values are 

mean cosine distance across bootstraps, lower values being better; standard deviation across 

5 bootstraps are shown in braces. .......................................................................................... 54 

Table 4.2: RF50 scores of each model by dataset using embeddings on test samples from both 

source and target, except for PDAC, where training samples were used. Values are expressed 

as mean accuracies of the random forest model on a holdout set of 20%. Standard deviation 

across 5 bootstraps is expressed in braces. A value closer to 0.5 is better. ............................ 55 

Table 4.3: miLISI scores between source and target test samples from both source and target. 

except for PDAC, where training samples were used. Values are expressed as the mean 

miLISI across 5 bootstrap models, while standard deviation is indicated in braces. A value 

closer to 2 is better. ................................................................................................................ 55 

Table 4.4: Performance on real spatial transcriptomics spots. Standard deviation, where 

available, is indicated in branches. The best performing deep UDA methods are indicated 

with an underline, while the best including the RCTD baseline is indicated in bold. .......... 58 

Table 4.5: CellDART hyperparameters selected via random search. 𝛼, as used in CellDART, is a 

scaling factor for the discriminator classification loss 𝐿𝑑, like 𝜆 in DANN. 𝛼𝐿𝑅 is a scaling 

factor for the discriminator’s learning rate against the main learning rate. ........................... 59 

Table 4.6: ADDA hyperparameters selected via random search. ADDA hyperparameters. 𝑑𝑒 is 

the dimension of the embedding at the output of the encoder. 𝛼𝐿𝑅 is a scaling factor for the 

discriminator’s learning rate vs. the main learning rate. 𝐾𝑑 is the discriminator loop factor.

 ............................................................................................................................................... 59 

Table 4.7: DANN hyperparameters selected via random search. 𝑑𝑒 is the dimension of the 

embedding at the output of the encoder. 𝜆 is a scaling factor for the discriminator 

classification loss 𝐿𝑑. α is a scaling factor for the gradient as it passes through the GRL. 



ix 

 

Higher values of α mean larger encoder gradients relative to those passed from the 

discriminator. ......................................................................................................................... 60 

Table 4.8: CORAL hyperparameters selected via random search. 𝑑𝑒 is the dimension of the 

embedding at the output of the encoder, while (𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) are CORAL loss weighting 

parameters for the encoder output and the predictor output, respectively. ............................ 61 

Table 4.9: Performance of CellDART and ADDA on source pseudo-spots comparing pretraining 

only and after domain adaptation stage. Values are cosine distance, where lower is better. . 64 

Table 4.10: Performance of CellDART and ADDA comparing RF50 between source and target 

data before and after domain adaptation stage. Values are expressed as discrimination 

accuracies, where lower is better. Test samples were used for both sets, except for PDAC 

where training samples were used as target samples. ............................................................ 64 

Table 4.11: Performance of CellDART and ADDA comparing miLISI scores between source and 

target data before and after domain adaptation stage. Test samples were used for both sets, 

except for PDAC where training samples were used as target samples. Perp.=perplexity, 

higher is better. ....................................................................................................................... 65 

Table 4.12: Performance of CellDART and ADDA comparing miLISI scores on real spots before 

and after domain adaptation stage. Test samples were used for both sets, except for PDAC.

 ............................................................................................................................................... 65 

Table 4.13: Comparison of test performance between our reimplementation of CellDART with 

the original code, using the selected hyperparameters shown in Table 4.5. In each dataset and 

metric, the better performing score of the two is bolded and underlined. Standard deviation 

is shown in braces. ................................................................................................................. 66 

  



x 

 

List of Figures 

Fig. 2.1: Comparison of mouse cortex pseudo-spots generated from scRNA-seq and real 10x 

Genomics Visium spots after independent log transforms and standardization, shown using 

PCA and UMAP. The scRNA-seq GEx was obtained from {/Tasic, 2018 #242/} and the 

spatial dataset was downloaded from the 10x Genomics database {/10x Genomics,  #266/} 

via the scanpy (v. 1.8.2) Python package {/Wolf, 2018 #235/}. Both datasets were gathered 

separately. SC=scRNA-seq, ST=spatial transcriptomics. .......................................................11 

Fig. 2.2: Diagram of the DANN architecture showing the adversarial aspect introduced by the 

GRL. Forward propagation is shown with orthogonal arrows, while backpropagation is 

shown with curved arrows. 𝛼 is a scaling parameter for the encoder gradient relative to the 

discriminator gradient. ........................................................................................................... 16 

Fig. 3.1: Overall methodology, excluding hyperparameter tuning, showing processing, marker 

selection, pseudo-spot generation, data splitting, and when each dataset is used when 

training or under each level of evaluation. The dlPFC datasets for both source and domain 

are shown for this example, where a single slide each is held out as validation and test. The 

x-axes (genes) of the GEx heatmaps before and after marker selection are not to scale, as the 

actual number of selected genes was much lower than the total number. The neural networks 

shown are a simplification and differ depending on the specific model architecture used. The 

architectures weights for the top and bottom models are the same between source and target, 

indicated by the dashed lines; in reality, this is also differs depending on the specific model 

used. ....................................................................................................................................... 21 

Fig. 4.1: Comparison of embeddings produced using CellDART and CORAL.  Target slide was 

test slide 151675, and source data were the test set of pseudo-spots. ................................... 57 

Fig. 4.2: Accuracy of discriminator and encoder of ADDA; it was not possible to separately 

measure the accuracy of the encoder during evaluation and so is left out of the validation 

subfigure. ............................................................................................................................... 62 

Fig. 4.3: Performance shown as cosine distance (lower=better) of ADDA on Spotless "gold 

standard 1" mouse cortex spots at each epoch of adversarial training when extending to 100 

epochs, performance before training is shown at epoch "-1", while the 20th epoch (epoch 19) 

that was the final model is indicated with a vertical line. ...................................................... 63 



xi 

 

Fig. 4.4: Accuracy at each iteration (end of epoch for validation) on domain discrimination task 

for final DANN model on Spotless “gold standard 1” mouse cortex dataset. Selected epoch 

372 indicated with a vertical bar. Note that as training of the encoder of the encoder and 

discriminator were not performed separately, we were unable to individually track their 

accuracies. .............................................................................................................................. 63 

Fig. 4.5: Potential mode collapse in the generator of DANN. This can be seen by the accuracy for 

both domains steadily increasing over training, indicating overfitting of the discriminator. 64 

  



xii 

 

List of Abbreviations 

2D: 2-Dimensional 

ADDA: Adversarial Discriminative Domain Adaptation 

ANOVA: Analysis of Variance 

AUROC: Area Under the Receiver Operating Characteristic Curve 

BCE: Binary Cross-Entropy 

CAF: Cancer-Associated Fibroblast 

CCIN: Cell-Cell Interaction Network 

cLISI: Cell Type Local Inverse Simpson’s Index 

CORAL: CORrelation Alignment 

CyCADA: Cycle-Consistent Adversarial Domain Adaptation 

DANN: Domain-Adversarial Neural Network 

dlPFC: Dorsolateral Prefrontal Cortex 

DNA: Deoxyribonucleic Acid 

DSTG: Deconvoluting Spatial Transcriptomics Data through Graph-Based Convolutional 

Networks 

ELU: Exponential Linear Unit 

ESC: Embryonic Stem Cell 

FISH: Fluorescence In Situ Hybridization 

FOV: Field of View 

FPR: False Positive Rate 

GAN: Generative Adversarial Network 

GCN: Graph Convolutional Network 

GEx: Gene Expression 

GRL: Gradient Reversal Layer 

GRN: Gene Regulatory Network 

iLISI: Integration Local Inverse Simpson’s Index 

ISS: In Situ Sequencing 

KL-Divergence: Kullback–Leibler Divergence 

LISI: Local Inverse Simpson’s Index 



xiii 

 

MDD: Major Depressive Disorder 

MERFISH: Multiplexed Error-Robust Fluorescence In Situ Hybridization 

miLISI: Median Integration Local Inverse Simpson’s Index 

mRNA: Messenger Ribonucleic Acid 

MSc: Master of Science 

PCA: Principal Component Analysis 

PDAC: Pancreatic Ductal Adenocarcinoma 

RCTD: Robust Cell Type Decomposition 

ReLU: Rectified Linear Unit 

RNA: Ribonucleic Acid 

RNA-seq: Ribonucleic Acid Sequencing 

ROC: Receiver Operating Characteristic 

scRNA-seq: Single-Cell Ribonucleic Acid Sequencing 

seqFISH: Sequential Fluorescence In Situ Hybridization 

snRNA-seq: Single-Nucleus Ribonucleic Acid Sequencing 

STARmap: Spatially-Resolved Transcript Amplicon Readout Mapping 

TCR: T Cell Receptor 

TF: Transcription Factor 

TME: Tumour Microenvironment 

TPR: True Positive Rate 

UDA: Unsupervised Domain Adaptation 

UMAP: Uniform Manifold Approximation and Projection 

  



xiv 

 

Contribution of Authors 

This thesis represents the culmination of my work toward the completion of my Master of 

Science (MSc) degree in the Department of Electrical and Computer Engineering at McGill 

University. All the content within this thesis is my contribution under the supervision of Professor 

Amin Emad. My contributions to each chapter are as follows: 

1) Introduction: In this chapter, I briefly state the background and motivation in cell type 

deconvolution of spatial transcriptomics data by integrating scRNA-seq as source domain 

data, as well as the objectives of the thesis. 

2) Literature Review: In this chapter, I explain the biology background necessary to understand 

the context of and challenges we seek to address in this work, then review the literature 

embodying the computational applications in this field and that we sought to apply. 

3) Methodology: In this chapter, I explain the protocols I used to conduct my investigation, 

including the datasets and data processing, evaluation of models, the models used, and 

training. 

4) Results: In this chapter, I report the results of my investigation, and comment on any 

particularly interesting results. 

5) Discussion and Future Work: In this chapter, I comment on the implications of the results, 

interesting insights learned, and possible future directions.  

6) Conclusion and Summary: In this chapter, I summarize the findings of my investigations and 

their implications in the context of the objectives outlined in Chapter 1. 

7) Conclusion and Summary: I summarize the findings of my investigations and their 

implications in the context of the objectives outlined in Chapter 1. 

 



1 

 

1. Introduction 

The fundamental mechanism by which cells in a multicellular organism differentiate into 

different cell types, perform their respective functions, and interact is through variations in the 

activity of individual genes (and their protein products), referred to as gene expression (GEx) [1, 

2]. High throughput technologies such as single-cell RNA sequencing (scRNA-seq) and single-

nucleus RNA sequencing (snRNA-seq), which provide GEx of individual cells, have led to leaps 

in our understanding of immunology [3], oncology [4], and developmental biology [5], paving the 

way for myriad promising applications in human health. Despite these advancements, a major 

blind spot of single-cell transcriptomics is that the locations of individual cells are lost. This has 

motivated the development of spatial transcriptomic methods [6]. 

One example where spatial transcriptomics shows potential is in cell-cell interaction networks 

(CCINs) and their role in the development of biological tissues. Cell differentiation is regulated 

by transcription factors (TFs) [7] through both internal gene regulatory mechanisms (represented 

by gene regulatory networks or GRNs) and external crosstalk between cells in their environment 

[8] (represented by CCINs. The integration of these networks is necessary to comprehensively 

understand the biological mechanisms involved in cell differentiation, which provides a basis for 

the study of pregnancy, birth complications, and treatments, in addition to laying the groundwork 

for stem cell research. Significant progress has been made in understanding internal GRNs using 

bulk and single cell RNA sequencing (RNA-seq) technologies [5, 9-11], however without spatial 

information, their use in constructing CCINs along with other determinants of cell fate is limited, 

especially with respect to how cells organize themselves into tissues [12-15]. Another key area 

where spatial transcriptomics shows great potential is in understanding of the tumour 

microenvironment (TME) to elucidate structural factors in cancer. A recent area of focus in TME 
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research that can be elucidated using spatial transcriptomics is the role of stroma (a distinct tissue 

region that forms in aggressive cancers such as pancreatic ductal adenocarcinoma (PDAC) [16]), 

which has been implicated in enhanced angiogenesis (the formation of new blood vessels), 

immune escape, treatment resistance, and metastasis in these cancers [17-20]. 

Spatial transcriptomics methods, however, come with their own trade-offs when compared 

with methods like scRNA-seq. Image-based technologies such as multiplexed error-robust 

fluorescence in situ hybridization (MERFISH) [21] and sequential fluorescence in situ 

hybridization (seqFISH) [22] can capture GEx at single-cell resolution but for only a limited 

number of genes (typically in the 100s for seqFISH); these genes must be known a priori and thus 

have limited use in discovery of new pathways in GRNs and CCINs. On the other hand, RNA-seq-

based technologies such as 10x Genomics Visium [23] and the emerging Stereo-seq [24] can 

measure GEx for all genes (~20,000 in humans). The measurements provided by these 

technologies, however, correspond to spots, not cells, which in the case of Visium comprise of tens 

of cells of (potentially) different types, and even in emerging higher-resolution technologies like 

Stereo-seq, spots will still potentially measure expression from multiple different cells. Compared 

with scRNA-seq, whose specificity allows for the identification and measurement of GEx at a 

single cell resolution [25] but have spatial organization as a blind spot, these methods fall short in 

providing a comprehensive cell-specific view of the tissue. 

For a more comprehensive picture of cell-cell interactions and to identify cell type-specific 

factors controlling cell development and especially differentiation, integration of the two 

modalities has been of interest and has shown potential in revealing insights that would otherwise 

require targeted experiments [26].  Of interest to us is the integration of cell-type information from 

scRNA-seq and snRNA-seq with RNA-seq-based spatial transcriptomics using novel 
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computational methods, where a single-cell reference set is used to infer cell type proportions 

within spatial transcriptomics spots. The problem thus far has been largely framed around 

integrating datasets sourced from the same tissue sample, and thus integrating independently 

collected out-of-distribution scRNA-seq data remains a challenge [14]. A recent method that 

attempts to address this shortcoming as well as the inherent differences of the two modalities is 

CellDART [27], which uses unsupervised domain adaptation (UDA), an area of machine learning 

involving the transfer of learned knowledge to new contexts where labelled data is limited.  

Although the authors of CellDART [27] had demonstrated the potential of UDA, the analysis, 

training, and performance were characteristic of a singular proof-of-concept rather than a rigorous 

and in-depth analysis of UDA as a whole. Building on their work, we aimed to further explore and 

evaluate the use of UDA in cell type deconvolution by leveraging advancements developed in the 

fields of computer vision and natural language processing [28-31]. The main contributions of our 

work are the development and assessment of 3 deep UDA models. We focused on cases where 

single-cell source data was collected separately from the target spatial data. To do this, we 

compared our methods against a baseline non-UDA and non-deep learning model [32] found in a 

benchmarking study to be a top performer when using source and target data collected from the 

same source [33] and finally CellDART as our UDA baseline. We additionally investigated 

whether domain adaptation is a crucial factor in their performance, firstly by evaluating their 

performance in the source domain, secondly by evaluating each model’s ability to map each 

domain to a common distribution, and thirdly by evaluating their performance on real spatial 

transcriptomics data. To ensure that our results were applicable, we tested using three pairs of 

datasets.  
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2. Literature Review 

2.1 Overview 

In this chapter, we first explain the biology background necessary to understand the context 

of and challenges we seek to address in this work, then review the literature embodying the 

computational applications in this field. In Section 2.2, we begin by explaining GEx and the role 

it plays in the human body. We then provide an overview of relevant transcriptomics technologies 

used to measure it, the advantages and drawbacks of each, and finally the applications of spatial 

transcriptomics. In Section 2.3, we provide an overview of techniques used to integrate single-cell 

and spatial transcriptomics data, as well as a background on UDA, which we used in this work. 

2.2 Molecular biology background 

2.2.1 Gene expression and intercellular interactions 

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins are the 3 types of 

macromolecules carrying the sequential information used to build the structures and perform the 

functions necessary for life in biological systems. The central dogma of molecular biology states 

that this information cannot flow out of proteins; the information encoding its structure must come 

from DNA or RNA [34]. In multicellular organisms, the genome, which is all genetic information 

including the more than 20,000 protein-coding genes in humans, are encoded in DNA [35], and is 

identical and shared between nearly every cell in the body; in humans, this has been completely 

sequenced [36, 37]. Proteins, on the hand, form most of the structure and perform most of the 

functions of a cell. The general understanding is that the main processes by which genes become 

proteins occur in 2 steps: (a) transcription, whereby genes in DNA are copied into individual 
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messenger RNA (mRNA) strands, and (b) translation, through which a the sequence of nucleotides 

in mRNA is used to chain together amino acids into proteins [1, 2]. 

For individual cells to present and behave differently (despite sharing a common genome), not 

all genes corresponding to various functions are expressed equally or spatially across the cells 

within the body or over time. The regulation of a cell’s GEx is primarily controlled at the point of 

transcription through the modulation of the number of mRNA transcripts present and thus how 

many of the corresponding proteins will be produced [1]. The factors controlling transcription 

themselves naturally have their origins in genes, and how each gene affects and regulates one 

another can be modelled as GRNs. As proteins are the primary functional and structural 

components of cells, this process therefore controls the differentiation of stem (undifferentiated) 

cells into various types of somatic (forming the body) cells [38] as well as regulating the function 

of individual cells of the same type in different tissues [39] and playing a key role in their 

dysfunction in the case of many diseases [40]. 

In addition to the regulation of GEx within a cell, inter-cellular interaction also plays a role. 

Differentiation and organization of embryonic stem cells (ESCs) into different germinal layers, 

organs, tissues, and somatic cell types requires substantial and complex CCINs to signal to cells 

when, where, and into what they differentiate [41]. Similarly, dysfunction of genes within CCINs 

play a key role in diseases such as in cancer [8, 16-20, 42]. 

2.2.2 Transcriptomics 

2.2.2.1 A brief overview of transcriptomics 

Transcriptomics, or the measurement of RNA transcripts present in a cell or tissue, has, over 

the last few decades, seen great improvements in both the capabilities of available technologies 

and the discoveries and advancements they have produced. In recent years, this has been in no 
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small part due to the supplantation of microarray-based technologies (which uses arrays of spots 

each corresponding to known transcripts) by RNA-seq and its derivatives [43, 44]. 

One particularly fruitful form of RNA-seq has been scRNA-seq. In contrast with bulk RNA-

seq, which measures the sum of all transcripts in a sample tissue, scRNA-seq and other single-cell 

technologies measure RNA on a per-cell basis. The ability to differentiate GEx from individual 

cells using scRNA-seq and snRNA-seq data has resulted in innumerable discoveries in diverse 

biological and biomedical contexts. Unsupervised clustering methods are often used to group cells 

in a sample by their GEx profiles; these clusters can then be used to consistently identify and 

classify individual cells by cell type based on known expression of genetic markers for an 

associated cell type, or to even identify different cell states within a given cell type [45]. 

Knowledge of how different cell types each in different cell states interact in terms of GEx 

has allowed for a better understanding of the complex regulatory networks and interactions in the 

immune system [3]. This includes the discovery of the diversity, dynamic nature, and trajectories 

of dysfunctional T cells within tumours which presents opportunities for better immunotherapy 

[46], as well as shedding light on T cell responses based on the great variety of T cell receptors 

(TCRs) that may target antigens [47]. In addition, analysis of heterogeneity of GEx across cell 

types in the TME allows for the identification of new, specific drug targets, and analysis of 

heterogeneity across patients in concert with clinical profiling can allow for targeted combination 

therapies [4]. Another area in which scRNA-seq has proven useful has been in analysis leveraging 

cell type-specific pathways to determine the regulatory networks, including GRNs and CCINs, 

driving embryonic development, such as in lungs [5]. 
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2.2.2.2 Spatial transcriptomics 

While single-cell technologies have demonstrated their usefulness in the discovery of GRNs 

and CCINs, local effects are also important when analyzing co-expression of signaling molecules 

(ligands) and their receptors in cell-cell communication. Ligand-receptor pairs may only interact 

within the same compartments, and within a limited distance. These effects are not considered with 

scRNA-seq, and thus have motivated the development of spatially resolved transcriptomics, or 

spatial transcriptomics [6, 14, 15, 48]. The most common methods can be roughly organized into 

three major categories: (a) fluorescent in situ hybridization (FISH), (b) in situ sequencing (ISS), 

and (b) in situ capture, also known as spatial barcoding [49]. 

FISH-based approaches include seqFISH [21] and MERFISH [22], and use specialized 

nucleic acids to target and bind with a specific transcript within a histological section. A 

histological (tissue) section is a thin slice of tissue fixed on a microscopy slide to be stained, 

imaged, and used for any additional processing and data collection [50, 51]. Once mounted, they 

remain together during any imaging or transcriptomic analysis, so we use the term slide to refer to 

both. An example of spatial transcriptomics slides is shown in Fig. 3.1 for 10x Genomics Visium 

(discussed later in this section). These probes are fluorescent, and through microscopy imaging, 

GEx can be localized at a subcellular level. Although they provide high spatial resolution and can 

be multiplexed for thousands of genes in the case of MERFISH, they are still limited compared to 

RNA-seq based technologies which do not require transcripts to be set beforehand. 

ISS-based approaches include spatially-resolved transcript amplicon readout mapping 

(STARmap) [52], as well as the original ISS method [53]. Broadly speaking, transcripts are fixed 

and then reverse-transcribed from mRNA to a special form of DNA made of fluorescent markers, 

allowing the sequence to be directly imaged. Unlike FISH-based approaches, variations in 
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sequences can be detected, but, due to potential crowding and the requirement of targets to be pre-

selected, this method is limited in terms of the number of genes that can be measured. A more 

recent approach, STARmap, binds the transcribed sequences to a polymer added to the tissue called 

a hydrogel; this preserves the structure of the tissue and the positions of in the next step when the 

tissue is stripped from the gel. A transparent structure is left behind, allowing for increased 

sensitivity during imaging and thus allows for more unique transcripts to be sequenced. 

In contrast to the first two classes of spatial transcriptomics methods, in situ capture or RNA-

seq-based methods involve first capturing the position of transcripts, then sequencing transcripts 

afterward using existing bulk RNA-seq. The original method was named “Spatial 

Transcriptomics” by Ståhl et al. [50] and will hereafter be referred to as the Ståhl method to 

distinguish it from the field of spatial transcriptomics itself. The basic premise of each of these 

methods roughly involves applying a grid of spots or beads to a tissue, each spot containing probes 

with a spot-specific barcode, which binds to transcripts. When RNA-seq is performed, these 

barcodes can be recovered and thus transcripts can be associated with a particular spot. While this 

and derivative methods provide many of the advantages of scRNA-seq, namely whole-genome 

coverage, measurements are constrained by the structure of the grid of spots, with each spot 

potentially containing multiple or no cells, and some cells’ GEx split across multiple spots. 

Improvements in resolution have been made using advancements in capture technology; while the 

Ståhl method allows for up to ~1,000 spots with ~30-70 cells each, 10x Genomics’ Visium allows 

for up to ~5,000 spots with ~1-10 cells each [23], and, more recently, Stereo-seq has demonstrated 

cellular to potentially sub-cellular resolution for up to ~1015 spots [24]. Despite these increases in 

resolution, spots are still not necessarily matched with single cells, presenting a challenge when 

studying inter-cellular differences and interactions within a tissue sample. 
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2.2.3 Applications of spatial transcriptomics 

2.2.3.1 Developmental Biology 

The differentiation of ESCs into somatic cells, and their organization in tissues, are driven 

both by internal GRNs as well as external CCINs. As single-cell transcriptomic methods allow for 

identification of cell types, interactions between cell types may be studied by analyzing expression 

of ligand-receptor pairs, crucial to cell signaling, as well as by integration and augmentation of 

other molecular biology data [48]. This process has shed light on regulatory networks in the 

embryonic development of mouse lungs [5] and the development of the interface between the 

placenta and uterus [54]. 

One example where spatial transcriptomics shows potential is in CCINs and their role in tissue 

development. Differential GEx and therefore cell differentiation is regulated by transcription 

factors (TFs) [7] through both internal gene regulatory mechanisms and external crosstalk between 

cells in their environment [8], represented by CCINs and GRNs, respectively, and the integration 

of both is necessary to understand those biological mechanisms. This provides a basis for the study 

of pregnancy, birth complications, and treatments, in addition to laying the groundwork for stem 

cell research. By identifying candidate interventions for influencing cell development, better 

protocols for differentiating stem cells into desired cell types can be developed and used in 

therapies including regenerative medicine [55].  

2.2.3.2 Tumour microenvironment 

The physical layout and structure of tumours has long been known to be a key factor in how 

they form, resist immune responses, and grow. For example, tumour growth is facilitated in part 

by how it encourages angiogenesis (the formation of new blood vessels). While this has been 

known since at least the 1990s [42], the underlying mechanisms have, until recently, remained 
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elusive. One recent area of focus in TME research has been in the role of the stroma, a structural 

region serving as the “support” of a tumour present in certain highly aggressive tumours such as 

PDAC [16], how cell-cell communication influences its development [17], and how signalling 

within the stroma influences cancer-enhancing factors such as angiogenesis [19]. In addition, it 

has been demonstrated that cancer-associated fibroblasts (CAFs) in the stroma contribute to 

tumours’ ability to suppress an immune response and reinforce tumour cell proliferation and 

metastasis [18, 56]. Furthermore, it has been shown that, due to both the structure and signalling 

environment within the stroma, immune cells become dysfunctional, giving the tumour free reign 

in its growth and malignancy [20]. It is both the structural and cell-signaling aspects of the stroma 

which make spatial transcriptomics promising in cancer research. 

2.2.3.3 Neuroscience 

An extension of the developmental biology applications of spatial transcriptomics, as 

discussed in Section 2.2.3.1, is specifically in the development of the mammalian brain. In 

particular, the roles of GRNs and CCINs in regulating the formation of cerebral cortex functions 

and architectures, the analysis of different cell types in how they are physically connected, and the 

interactions in the local area around amyloid plaques in Alzheimer’s are all areas where 

advancements in spatial transcriptomics technologies show promise over non-spatial techniques 

such as scRNA-seq and snRNA-seq  [6].  

2.2.4 Domain discrepancy in transcriptomics 

GEx can be highly variable across individuals, technologies, within the same tissue or disease 

state, across research groups, and even when repeated within the same research groups due to 

slightly different conditions and protocols; these are known as batch-effects [4, 57, 58].  These are 

particularly problematic when differences in distribution of data across different batches 
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confounds results, leading to spurious type I errors; these effects can be pernicious and difficult to 

account for [59]. To help combat these issues, a body of research on methods and best practices in 

correcting batch-effects in transcriptomics has emerged [60-62]. 

 

Fig. 2.1: Comparison of mouse cortex pseudo-spots generated from scRNA-seq and real 10x Genomics Visium spots 

after independent log transforms and standardization, shown using PCA and UMAP. The scRNA-seq GEx was 

obtained from [63] and the spatial dataset was downloaded from the 10x Genomics database [64] via the scanpy (v. 

1.8.2) Python package [65]. Both datasets were gathered separately. SC=scRNA-seq, ST=spatial transcriptomics. 

Of particular interest to us in our work are the differences in distribution between GEx data 

between those derived from each of spatial transcriptomics and single-cell transcriptomics, which 

can be compounded by batch effects when using independently collected datasets [14]. To 

demonstrate these differences, we generated pseudo-spots from scRNA-seq by randomly sampling 

cells from different cell types (𝑛𝑚𝑖𝑥 = 8; see Section 3.2.3 for pseudo-spot generation process) 

and aggregating their scRNA-seq profiles. Even after separately preprocessing, log-transforming, 

and normalizing the real spatial spots and generated pseudo-spots, their joint embedding using 

uniform manifold approximation and projection (UMAP) [66] and principal component analysis 

(PCA) (Fig. 2.1) showed clear separation. Furthermore, when using 80% of the data as a training 

set, using as sci-kit learn’s (v. 1.1.2) RandomForestClassifier and SVC [67] as models with the 

default settings, these models achieved 100% accuracy in predicting the origin domain on the 20% 
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holdout data, indicating the need for transfer learning techniques such as UDA for any model 

trained on one technology to be able to generalize to another [28]. 

2.3 Computational background 

2.3.1 Integration of single-cell and spatial transcriptomics data 

Most techniques which integrate scRNA-seq and spatial transcriptomics data broadly fall into 

one of two categories: (a) mapping-based techniques, whereby individual single-cell samples are 

mapped to a set of coordinates on the spatial transcriptomics slide, and (b) deconvolution 

techniques, which break down spots by their constituent cell types and/or their individual 

contributions to the GEx [14, 33]. 

Mapping-based approaches are used when spatial GEx data has single-cell resolution but are 

only available for a finite, predetermined set of genes, such as when derived from imaging-based 

methods of spatial transcriptomics [21, 22, 49, 52, 68]. By mapping scRNA-seq cells and/or their 

GEx to locations on a slide, the effective number of genes that are spatially resolved is increased 

[14]; this can be thought of as data imputation. One approach is to map both single-cell sets into a 

shared space and batch correcting them using a tool such as Harmony [69]. Harmony does this by 

first reducing both sets to the same number of dimensions using PCA, then clustering the data in 

this space under two constraints, both using a method referred to by the Harmony authors as local 

inverse Simpson’s index (LISI). The first is to quantify the mixing or integration of two datasets, 

using integration LISI (iLISI), which is a measure of the effective number of different datasets 

surrounding a particular cell. The second is to, also using LISI, minimize the number of cell types 

dominant within a cluster; they refer to this measure as cell type LISI (cLISI). As we use iLISI as 

a method to evaluate how well our models integrated single-cell and spatial transcriptomics data, 

we further explain and discuss LISI in Section 3.3.2. 
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Deconvolution techniques come in several approaches. One approach is to fit a distribution 

over the gene transcript counts of the scRNA-seq data and create a model of cell type proportions 

based on that, then apply it to the spatial GEx data. Robust cell type decomposition (RCTD), for 

example, uses a Bayesian hierarchical model, modelling gene counts as a random variable arising 

from a Poisson distribution as a prior, conditioned on a log-linear function based on cell type, 

among other factors [32]. This model is notable in that, in a recent analysis of 11 deconvolution 

methods using datasets including actual cell types as ground truth as well as synthetic data (the 

analysis pipeline and datasets are referred to as Spotless), it was one of the top two performing 

methods and the most stable and scalable of the two. It should be noted, however, that datasets 

used in this analysis were sample-matched i.e., both datasets came from the same biological 

sample, and thus may not fully capture a method’s  out-of-distribution performance [33]. 

Deep-learning based methods include “deconvoluting spatial transcriptomics data through 

graph-based convolutional networks” (DSTG) [70] and CellDART [27], the former of which we 

will briefly describe here, and the latter of which we describe in Section 2.3.2. DSTG generates 

pseudo-spots (the aggregates of single cells simulating in situ capture spots). Then, it constructs a 

heterogenous graph integrating the real and pseudo spots connecting them based on similarity. 

Finally, it trains a graph convolutional network (GCN) which propagates cell types along the graph 

in its output and is trained to predict cell type proportions. In this way, the cell type proportions of 

real spots are imputed via the graph. 

2.3.2 Domain adaptation 

All the techniques mentioned above apply varying degrees of regularization. Regularization 

is a body of techniques that seek to reduce a model’s variance or generalization error (i.e., the 

relative loss in performance when comparing the training data and real world data [71]). In 
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addition, many methods seek to reduce mismatch using “batch effect correction” techniques. 

These, however, ignore the fact that technologies such as scRNA-seq and in situ capture 

technologies are inherently different in how data are sampled and collected, despite both being 

based on RNA-seq. As we explored in Section 2.2.4, there can be a great discrepancy in the 

distribution of GEx data between those originating from single-cell and spatial transcriptomics 

methods. As a result, cell type deconvolution can be considered an out-of-distribution problem, 

where spatial transcriptomics data (for which we seek to infer cell type proportions) are the target 

domain and are of a different distribution than the single-cell data used to train a model (the source 

domain). 

To specifically address the issue of out-of-distribution inference in machine learning, a body 

of transfer learning methods are used. These methods seek to model how humans learn, applying 

a “far-transfer” of related skills and techniques acquired over a lifetime to new problems and 

contexts. While supervised transfer learning requires the use of at least some labels of target 

domain data for training, unsupervised domain adaptation or UDA addresses this issue by training 

using only the labels of source domain data and uses target domain data only as inputs to compare 

the source domain data against [28]. We explore three such UDA methods: (a) CORrelation 

Alignment (CORAL) [72], specifically its application to deep neural networks called Deep 

CORAL [31], (b) Domain-Adversarial Neural Network (DANN) [30], and (c) Adversarial 

Discriminative Domain Adaptation (ADDA) [29], each of which we describe in this section. We 

further discuss CellDART [27], a UDA method that specifically addresses cell type deconvolution 

using single-cell data as source domain data. 

Deep CORAL works by incorporating a loss function called CORAL into the overall training 

cost function, scaled by a coefficient 𝜆. CORAL loss is simply the distance between the latent 
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feature covariance matrices of the source and target embeddings produced by a model prior to their 

activation functions. This loss is described in Equation 2.1, where ‖∙‖𝐹
2  is the squared Frobenius 

norm, while the equation describing both 𝐶𝑆 and 𝐶𝑇 (the source and target covariances) is given in 

Equation 2.2. In this equation, 𝟏 is a vector consisting of all 1s and so (𝟏T𝒁) is the sum of 𝒁, an 

embedding matrix of 𝑛𝑠𝑝𝑜𝑡𝑠 × 𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, over its rows [31, 72]. 

𝐿𝐶𝑂𝑅𝐴𝐿 =
1

4𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
2

‖𝐶𝑆 − 𝐶𝑆‖𝐹
2  (2. 1) 

𝐶 =
1

𝑛 − 1
(𝒁T𝒁 −

1

𝑛
(𝟏T𝒁)T(𝟏T𝒁)) (2. 2) 

By contrast, other methods such as DANN and ADDA use an adversarial approach to ensure 

embeddings produced in both domains are indistinguishable. Adversarial networks were first 

proposed by Goodfellow et al. and used in generative adversarial networks (GANs) by training a 

generator network 𝐺 to generate new “fake” data, using random Gaussian noise as inputs, while a 

discriminator network 𝐷 learns to tell apart the “fake” data from “real” data by attempting to 

classify them. After training, 𝐺 can be used to generate “fake” data similar to the “real” data. This 

is done by setting the optimization criteria for the composite model 𝐷 ∘ 𝐺 such that the weights of 

𝐷 are optimized to classify “fake” and “real” data well, while 𝐺 is optimized to fool the 

discriminator resulting in poor performance on the same task [73]. We specify how this adversarial 

training is achieved further in this section while comparing DANN and ADDA. Regardless, 

adversarial training is not a simple optimization problem. As the weights of each of 𝐺 and 𝐷 each 

are changing in training, and as both networks have different goals, the objectives for each 

continuously changes. Furthermore, it is not the goal for any one subnetwork to converge, as that 

would mean one subnetwork has “won” and the other subnetwork has “lost”; in both cases, the 

generator fails in its role in producing good “fake” data. Ideally, both networks should demonstrate 
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mediocre but balanced performance in the classification metric on both “fake” and “real” data, and 

the overall system should achieve a metastable state during training between all these components 

and losses. 

In both DANN and ADDA, instead of generating “fake” data based on a noise input, the 

generator, which we refer to as an “encoder” 𝐸, learns to generate embeddings from input data 

from both the source and target domains, while the discriminator 𝐷 learns to classify the 

embeddings derived from each of the source and target domain, 𝒁𝑆 and 𝒁𝑇 respectively. This task 

is auxiliary to the primary prediction task, where a predictor 𝑃 is used and 𝑃 ∘ 𝐸 is trained end-to-

end using traditional supervised learning on source input data and labels via backpropagation [29, 

30].  

 

Fig. 2.2: Diagram of the DANN architecture showing the adversarial aspect introduced by the GRL. Forward 

propagation is shown with orthogonal arrows, while backpropagation is shown with curved arrows. 𝛼 is a scaling 

parameter for the encoder gradient relative to the discriminator gradient. 

DANN achieves the adversarial aspect through a gradient reversal layer (GRL) between the 

encoder and discriminator, as shown in Fig. 2.2. This layer is not active during a forward pass, but 

during backpropagation, the GRL negates the gradient of the loss function passed from 
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discriminator to the encoder. This causes the encoder to maximize the loss of the discriminator, 

while at the same time the discriminator is optimized for minimum loss in the domain classification 

task. The entire model is trained at the same time by combining both losses using Equation 2.3. In 

this equation, 𝑿𝑆𝑖
 and 𝒀𝑆𝑖

 are input and label vectors of sample 𝑖 out of 𝑛𝑆 samples from the source 

domain, 𝑿𝑇𝑖
 is the input vector of sample 𝑖 out of 𝑛𝑇 samples in the target domain, y𝑑𝑆

 and y𝑑 𝑇
 

indicate membership in either the source or target domain, respectively, 𝐿𝑦 is the loss function for 

the prediction task, 𝐿𝑑 is a classification loss (typically binary cross-entropy (BCE); see Equation 

3.10 in Section 3.4), and 𝜆 is a weight factor for the discrimination task. 

𝐿(𝑿𝑆, 𝑿𝑇 , 𝒀𝑆) =
1

𝑛𝑆
∑ 𝐿𝑦(𝑃 ∘ 𝐺(𝑿𝑆𝑖
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+ 𝜆 (
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)

𝑛𝑆

𝑖=1

, y𝑑𝑆
) +

1

𝑛𝑇
∑ 𝐿𝑑(𝐷 ∘ 𝐺(𝑿𝑇𝑖
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𝑛𝑇
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, y𝑑 𝑇
)) (2. 3) 

 

As opposed to the GRL-based approach of DANN, ADDA uses an approach more directly 

modeled after GANs [73] using 3 stages of training [29]:  

1) First, a pretraining phase is performed using only source domain data, training the predictor 

and encoder together as a single traditional supervised learning task, with predicted labels 

�̂�𝑆 = 𝑃 ∘ 𝐸𝑆(𝑿𝑆) (more on encoder 𝐸𝑆’s subscript following) and ground truth labels 𝒀𝑆. 

This is the only point where training on the prediction task is done. 

2) Then, in the adversarial phase, the weights of the encoder 𝐸𝑆 and prediction head 𝑃 are 

frozen, while two new modules, 𝐸𝑇 and 𝐷, are initialized. 𝐸𝑇, the target encoder, is 

initialized with, but does not share, the weights of frozen source encoder 𝐸𝑆, while 𝐷 is the 

discriminator. In this phase, 𝐸𝑇 is equivalent to the generator in a GAN, producing “fake” 
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embeddings 𝒁𝑇 = 𝐸𝑇(𝑿𝑇) from target input data that mimic “real” embeddings 𝒁𝑺 =

𝐸𝑆(𝑿𝑆) produced from source input data, while discriminator 𝐷 classifies the embeddings 

as originating from either the target or source domain. For domain classification criterion 

𝐿𝑑, ADDA follows GANs in alternating training of the target encoder and discriminator. 

When the discriminator is trained, the weights of both source and target encoders 𝐸𝑆 and 

𝐸𝑇 are frozen. The discriminator learns to classify the embeddings derived from both source 

and target data, predicting domain labels �̂�𝑑 = 𝐷 ∘ 𝐸(𝑿), where 𝐸 is the encoder matching 

the domain of input data 𝑿 and �̂�𝑑 are the predicted domains for the input data. During 

iterations where 𝐸𝑇 is trained, all other modules’ weights are frozen, and the domain 

discrimination task proceeds with only the target data, producing labels �̂�𝑑 𝑇
= 𝐷 ∘ 𝐸𝑇(𝑿𝑆). 

To optimize the weights of 𝐸𝑇 such that 𝐷 misclassifies its embeddings, the binary ground 

truth labels are flipped by the equation  𝒚𝑑
′ = 𝟏 − 𝒚𝑑, where 𝒚𝑑

′  are the now incorrect 

labels. 

3)  Finally, during inference, the target encoder 𝐸𝑇 feeds embeddings to predictor 𝑃 such that 

it predicts target domain labels �̂�𝑇 = 𝑃 ∘ 𝐸𝑇(𝑿𝑇). 

2.3.2.1 CellDART 

As far as we are aware, at the time of writing, the only method that explicitly leverages UDA 

techniques while using scRNA-seq as reference data is CellDART, integrating datasets of the two 

different modalities collected by different research groups. While the authors claim to use ADDA, 

upon closer inspection of the paper as well as the provided source code, their method 

architecturally more closely resembles DANN as shown in Fig. 2.2, using a single encoder for 

both source and target [30]. Training uses ADDA’s strategy of alternating training the encoder and 

discriminator [29], where in one step only the discriminator head is trained, and, in the other the 
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discriminator weights are frozen while the domain labels are flipped according to 𝒚𝑑
′ = 𝟏 − 𝒚𝑑. 

In the second step, the overall loss is calculated the same as DANN in Equation 2.3 while 

simultaneously training on the prediction task, but with the weights of the discriminator frozen. 

Additionally, similar to DSTG [70], they simulated in situ capture spots as pseudo-spots to form 

their source domain dataset [27]. As we reimplemented CellDART as part of our investigation, we 

explore and discuss its specifics in Section 3.4.1. 

Using the expected locations of each of 10 excitatory neuron cell types originating from an 

scRNA-seq dataset [74] to evaluate performance, CellDART showed favourable results when 

compared to 6 other methods, 2 of which were RCTD [32] and DSTG [70], previously discussed. 

Furthermore, CellDART was not one of the 11 methods evaluated in the Spotless analysis that 

showed RCTD as a consistent top performer [33]. As CellDART was the only known 

deconvolution method to leverage UDA in addition to its reported performance, it was important 

for us to explore, investigate, and compare against, as we detail further in this work. 

2.3.2.2 Remark on the current state of benchmarking cell type deconvolution 

Due to the nature of the task of UDA and the nascent field of cell-type deconvolution of spatial 

transcriptomics data, reference datasets with ground truth are difficult to obtain, and evaluation of 

performance is often done by using some kind of proxy for accuracy or using synthetic data. DSTG 

and many other models, for example, use pseudo-spots [33, 70, 75]. In the UDA setting, while this 

tells us valuable information on how well a model is performing in the source domain, it does not 

tell us anything about how well a model performs in the target domain. This is especially salient 

as we intend for our methods to be able to be used to integrate disparate datasets gathered at 

different times under different conditions by different researchers. An approach often used, in 

addition to evaluating using synthetic data, is to evaluate based on a correlation metric between 
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the expression of known marker genes for given cell types, and the proportions of the cell types 

predicted by the model [27, 32, 75, 76]. A final approach sometimes used is to visually validate 

regional distributions of cell types in plots and figures [27, 75, 77]. 

While not an exhaustive list, and while most methods rely on multiple different evaluation 

metrics, this still makes evident an issue pervasive in this field: few methods are actually evaluated 

based on their performance in their intended role in a direct and robust manner. Marker-based 

metrics require existing research on the expression of specific genes, which limits their potential 

in improving beyond those markers and truly leveraging the whole genome, and therefore could 

only ever be used as a sanity check. Spotless, a benchmarking pipeline, seeks to partially remedy 

this by creating synthetic “pseudo-Visium” spots in its “gold standard” datasets by leveraging the 

increased resolution of Stereo-seq fields of view (FOVs) to assign cell types to spots. An FOV for 

Stereo-seq is like a slide but corresponds to a “zoomed-in” subregion. They then spatially 

downsampled the high-resolution Stereo-seq spots to 10x Genomics Visium-sized spots to obtain 

relatively accurate cell type proportions, which can be used as a ground truth. A downside is that 

at Visium-like resolutions, each of the 7 FOVs only has 3×3=9 spots [33]. 
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3. Methodology 

3.1 Overview 

In this chapter, we explain the protocols we used to conduct our investigation. In Section 3.2, 

we go over each dataset used, processing and cleaning of data, the segregation of each dataset into 

training, validation, and test sets, and the generation of pseudo-spots. In Section 3.3, we detail the 

evaluation protocols we set to be able to accurately measure models’ performance in both domains. 

Finally, in 3.4, we elaborate on the implementation of training of the models we investigated. The 

overall workflow, excluding hyperparameter tuning, is shown in Fig. 3.1. 

 

Fig. 3.1: Overall methodology, excluding hyperparameter tuning, showing processing, marker selection, pseudo-spot 

generation, data splitting, and when each dataset is used when training or under each level of evaluation. The dlPFC 

datasets for both source and domain are shown for this example, where a single slide each is held out as validation 

and test. The x-axes (genes) of the GEx heatmaps before and after marker selection are not to scale, as the actual 

number of selected genes was much lower than the total number. The neural networks shown are a simplification and 

differ depending on the specific model architecture used. The architectures weights for the top and bottom models are 

the same between source and target, indicated by the dashed lines; in reality, this is also differs depending on the 

specific model used. 
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3.2 Data and data processing 

As our investigation focused on unsupervised domain adaptation, each experiment required 

two datasets: a labelled source dataset, and an unlabelled target dataset. The raw source datasets 

used were single-cell GEx matrices of 𝑁𝑐𝑒𝑙𝑙𝑠 × 𝑁𝑔𝑒𝑛𝑒𝑠, with values as raw integer transcript counts, 

with cell type labels for each cell. The raw target datasets used were spot-level GEx from multiple 

cells of 𝑁𝑠𝑝𝑜𝑡𝑠 × 𝑁𝑔𝑒𝑛𝑒𝑠, also containing raw integer transcript counts. Each dataset also contained 

varying amounts of metadata for each cell/spot, which guided data processing and evaluation. A 

basic overview of data processing, excluding log-transforming, normalization, and preprocessing, 

is shown for both spatial and single-cell data in Fig. 3.1. 

3.2.1 Datasets, cleaning, and pre-processing 

In general, for each dataset, we first imported and converted raw data from each dataset into 

the AnnData format using the anndata (v. 0.8.0) [78] and scanpy (v. 1.8.2) [65] Python packages. 

Using scanpy, we performed quality control by first filtering out genes found in fewer than 3 

samples. Then, for single-cell source data, we filtered out cells with fewer than 200 genes. Where 

possible, we also filtered out cells where 5% or more of the total counts were mitochondrial. As 

our goal in UDA was to make predictions in the target domain regardless of the sample quality, we 

did not filter out spatial transcriptomics spots nor genes, instead relying on single-cell quality 

control, which would later be reflected in the target data after marker selection (see Section 3.2.2). 

Finally, we performed library size normalization, whereby we scaled the counts such that, for each 

sample, the total transcript counts across all genes was 10,000. Further details on pre-processing 

specific to each dataset, along with information on each dataset itself, are explored in the following 

subsections. 
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3.2.1.1 Dorsolateral prefrontal cortex 

Human dorsolateral prefrontal cortex (dlPFC) datasets were used by the CellDART authors to 

evaluate and compare the performance of their model against other methods [27]. As such, we 

used the same datasets and evaluation methods to reproduce and compare their results. 

The source dataset came from a transcriptomic study of the dlPFC in major depressive disorder 

(MDD) [74]; we, as with the CellDART authors [27], only used samples that were obtained from 

the healthy controls. After filtering out the non-control samples, preprocessing, and filtering out 

2,130 genes, the dataset composed of snRNA-seq GEx profiles for 35,212 nuclei in the form of 

transcript counts for 27,932 genes. Each sample had been additionally labelled into one of 26 cell 

type clusters, with 10 being excitatory neurons, each labelled based on genetic markers, with one 

or more of the 6 mammalian neocortex layers [79] they could be expected to be found in. 

The target dataset composed of a total of 12 slides of dlPFC tissue [80], which we obtained 

via the spatialLIBD package [81]. Each slide’s data contained between 3,460 to 4,789 (inclusive) 

10x Genomics Visium spots (mean: 3,973), each with corresponding GEx transcript counts for 

25,615 genes along with 2-dimensional (2D) coordinates on the plane of the slide. Each spot had 

also been annotated by its location in one of the 6 mammalian grey matter neocortex layers [79], 

with some spots labelled as white matter if they were not a part of the neocortex. The 12 slides 

along with their neocortex layer is shown in the bottom left of Fig. 3.1. 

3.2.1.2 Pancreatic ductal adenocarcinoma 

We elected to use a PDAC dataset by Moncada et al. [26], previously used in several spatial 

transcriptomics deconvolution analyses [75, 77, 82]. This consisted of, in part, Ståhl method-

derived data from 2 slides, each from a separate PDAC tumour, referred to as PDAC A and PDAC 

B, with 428 and 224 spots respectively. Each spot contained corresponding transcript count data 
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for 19,725 genes along with 2D coordinates on the plane of the slide and were estimated by the 

authors to contain ~30-70 cells each. In their analysis, Zhou et al. [82] used annotations of spots 

by region (cancer region, pancreatic tissue, duct epithelium, stroma, and interstitium) from the 

data-generating paper [26]. These regions had been annotated by the original authors by leveraging 

sample-matched scRNA-seq data and subsequently validated using independent annotations of 

images of the corresponding slides. We were unable to find these annotations in the dataset except 

in the figures of the dataset’s accompanying paper, so we manually transferred and verified these 

annotations from said figures. 

In other analyses, the accompanying sample-matched scRNA-seq data provided by Moncada 

et al. [26] was usually also the source dataset used to evaluate spatial transcriptomics 

deconvolution methods [75, 77, 82]. As we intended to investigate UDA where sample-matched 

data are not available, for our source dataset, we instead used an independent PDAC scRNA-seq 

dataset originally produced by Peng et al. [83] and then processed by Chijimatsu et al. [84]. As the 

data were already preprocessed, no samples or genes were filtered out when we performed quality 

control and the full complement of 41,964 cells and 16,999 genes were available, along with 10 

different cell types. 

3.2.1.3 Mouse cortex and Spotless gold standards 

An issue inherent in cell type deconvolution is the lack of reliable ground truth for cell type 

proportions to evaluate our methods against. For all previously discussed target datasets, no cell 

type proportions are provided; instead, all evaluation had to be done using metadata (layers for 

dlPFC, regions for PDAC). To remedy this issue among a host of evaluation related issues, Sang-

aram et al. presented Spotless, a spatial transcriptomics cell type deconvolution pipeline, alongside 

54 “silver standard” and 3 “gold standard” datasets [33]. In particular, the “gold standard” datasets 
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consists of high-resolution seqFISH [22] (gold standards 1-2) or STARmap [52] (gold standard 3) 

data. Individual cells were isolated in silico and their cell types identified. Then, GEx and cell 

types were aggregated in 55 μm “spots” to simulate 10x Genomics Visium-like GEx data, along 

with cell type proportion labels. We used “gold standard 1”, which was derived from a single 

mouse cerebral cortex slide and consisted of 7 individual fields of view (FOVs), which are sub-

regions of a slide that are captured in a single spatial transcriptomic array. A disadvantage of this 

method was that, because of the aggregation, each FOV consisted of merely 9 “spots” arranged 

3×3; otherwise, GEx data were available for 10,000 genes and cell type proportions for 17 cell 

types. 

While Spotless [33] used sample-matched data as a source; i.e., the source dataset used was 

holdout samples, we again opted to use an independent scRNA-seq GEx dataset to investigate the 

case where matched single-cell data are not available. We used data collected from the mouse 

primary visual cortex (VISp) and anterior lateral motor Cortex (ALM). After pre-processing, the 

GEx transcript counts data for 4,915 genes were filtered out, leaving 40,853 genes across 25,720 

cells, of which 22,277 had cell type information [63]. 

3.2.2 Data splitting and marker gene selection  

To be able to evaluate, perform validation, and compare performance in both the source and 

target domain, we randomly split the single-cell data for each source dataset into training, 

validation, and test sets with proportions of 80%, 10% and 10% respectively. We stratified using 

cell type to maintain consistent proportions across splits, and thus filtered out cell types with fewer 

than 10 cells to ensure that at least 1 sample would be present in each of the splits. This resulted 

in a reduction of 29 to 28 cell types for mouse cortex. To avoid data leakage, this splitting was 

performed after initial preprocessing but prior to any marker selection, pseudo-spot generation, or 
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normalization, among other analyses. Additionally, the same splits were used for all said 

downstream analyses to maintain consistency and remove sources of variation. 

For the spatial data, as we did not want to disrupt the spatial structure of each slide (or FOV 

for the Spotless mouse cortex data), we elected to hold out 2 whole slides/FOVs in each target 

dataset as our validation and test datasets. We randomly selected the validation and test slide, while 

eliminating certain samples from contention due to poor suitability for evaluation (4 sections in 

the dlPFC set did not have any spots in layer 1 of the neocortex, while 4 FOVs in Spotless’s “gold 

standard 1” contained relatively few of the total cell types in the dataset). As our PDAC dataset 

only contained 2 sections, each with slightly different but not exclusive annotations, we opted not 

to hold out a test sample, instead relying on the fact that our models were trained in an unsupervised 

manner to limit data leakage. 

As we wanted to be able to directly compare our methods against CellDART, we followed the 

example of the CellDART authors [27] and performed feature selection by identifying 

characteristic genes for each cell type in the source dataset. This was done on our part to reduce 

the dimensionality of the data and thus avoid the “curse of dimensionality” while training our 

models, as the datasets we used contained GEx data for ~20,000 genes, often in excess of the 

number of samples. For detailed information on the characteristics of each dataset, refer to Section 

3.2.1. Using scanpy’s rank_genes_groups function [65], we first ranked the top characteristic 

genes for each cell type in the training split of the source data. The process performed by this 

function with the parameters we used is as follows: 

1) For each gene, the Mann–Whitney U (MWU) [85] test was used to find the significance of 

the enrichment of that gene’s expression, or p-value, for each cell type, in a one-vs-rest 

(comparing GEx for a given gene within and without a cell type) manner. The MWU test is 
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a non-parametric significance test of the null hypothesis that two sets of sample values are 

drawn from equal distributions. This provides, for every cell type and every gene, a p-value 

indicating that gene’s enrichment for a cell type. 

2) To correct for multiple discoveries for a given cell type, the Benjamini-Hochberg method 

[86] was used to calculate the false discovery rate (FDR) for each gene from p-values. 

3) The FDRs for each cell type were ranked by significance (lowest to highest, with lowest 

being most significant.) 

Then, the union of the top 𝑛markers across all cell types was used as the selected features of 

each source dataset, with 𝑛markers being a hyperparameter. As CellDART [27] used 𝑁markers =

20 for brain data, we opted to investigate performance for 𝑁markers = 20, 40, and 80. We then 

used the intersection of the selected features with the genes in the matching target dataset as the 

final set of genes. 

3.2.3 Pseudo-spot generation 

To train our models to predict cell type proportions, we, like other methods, chose to aggregate 

GEx and cell type proportions into pseudo-spots. Since we sought to compare against CellDART, 

we, as with feature selection, once again used CellDART’s method [27] as a starting point. This 

involved two additional hyper-parameters, 𝑛mix and 𝑛spots. The method used is as follows for a 

given GEx matrix 𝑿 of shape 𝑁𝑐𝑒𝑙𝑙𝑠 × 𝑁𝑔𝑒𝑛𝑒𝑠, cell type vector 𝒚 of length 𝑁𝑐𝑒𝑙𝑙𝑠, and 

hyperparameters 𝑛mix and 𝑛spots: 

1) Convert 𝒚 into a one-hot matrix 𝒀 of 𝑁𝑐𝑒𝑙𝑙𝑠 × 𝑁cell types, where 𝑁cell types = |{𝑦𝑖}𝑖∈{1,…𝑁𝑐𝑒𝑙𝑙𝑠}| 

(# of unique values of 𝑦𝑖). 

2) For 𝑖 = 1 … 𝑛spots, 
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a. draw, with replacement, 𝑛mix samples from 𝑿 and their corresponding samples in 𝒀, 

forming samples (𝑿𝒌, 𝒀𝒌)k∈{1,…𝑛mix}, 

b. randomly sample 𝑛mix values from distribution 𝑈[0,1], normalize the values such that 

their sum is 1, and multiply each drawn sample (𝑿𝒌, 𝒀𝒌) exclusively with one of the 

sampled values, 

c. and sum the k ∈ {1, … 𝑛mix} samples together elementwise along 𝑛mix to form 𝑖𝑡ℎ 

elements 𝑿𝑺𝒊
 and 𝒀𝑺𝒊

 of pseudo-spot matrices 𝑿𝑺 and 𝒀𝑺. As each sampled cell 𝒀𝒌’s 

elements sum to 1 due to its one-hot encoding, and the uniformly sampled fractions are 

also normalized to sum to one, naturally the pseudo-cell type proportion of 𝒀𝑆𝑖
 will also 

sum to 1. This also preserves the library size normalization on the GEx counts performed 

in the pre-processing stage. 

This method forms pseudo-spot matrices 𝑿𝑺 and 𝒀𝑺 of shapes 𝑛spots × 𝑁𝑔𝑒𝑛𝑒𝑠 and 

𝑛spots × 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠, respectively, which could now be considered as our source dataset. For our 

part, we performed this process separately for each of the training, validation, and testing splits. 

We also chose to fix 𝑛spots = 100,000, or 5 times as many as used in CellDART, as any arbitrary 

number of pseudo-spots could be generated. Increasing 𝑛spots acts as a form of data augmentation, 

where few data are randomly transformed to increase the effective size of the dataset, acting as a 

form of regularization to prevent overfitting [87]. Furthermore, as we held out slides/FOVs for 

validation and evaluation, as opposed to CellDART which treated each section as individual 

datasets with no holdout samples, we combined all training slides. This resulted in larger training 

sets (40,450 samples for dlPFC vs. a mean of 3,973 spots per slide for CellDART) requiring a 

higher number of pseudo-spots. We thus found that 100,000 was good a value for 𝑛spots, 
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augmenting the source dataset by more than two-fold for dlPFC and more for PDAC and mouse 

cortex. For validation and test sets, we generated 25,000 pseudo-spots each. 

Pseudo-spot generation is shown as part of the scRNA-seq processing pipeline in Fig. 3.1. We 

hereafter denote our labelled source pseudo-spot datasets and unlabeled target datasets with the 

subscripts “T” and “S”, respectively. 

3.2.4 Log transforms and normalization 

While the process of log-transforming raw count data is controversial from a statistical point 

of view and especially for analysis of variance (ANOVA) [88], it is still common practice for 

transforming from long-tailed data, such as transcript counts, into a better fit for linear models, 

such as the inputs of neural networks [89]. Furthermore, we aimed to minimize deviation from 

CellDART, which used the log-transform, to be able to fairly and directly compare their domain 

adaptation method [27]. We transformed all input matrices elementwise as shown in Equation 3.1, 

where ln is the natural logarithm.  

𝑋𝑖𝑗
′ = ln(1 + 𝑋𝑖𝑗) (3. 1) 

After log transformation, we used sci-kit learn’s (v. 1.1.2) StandardScaler, which performs 

standardization [67], to normalize our input data by feature across samples. The equation for each 

the standardization of each element is as shown in Equation 3.2, where 𝑖 and 𝑗 index samples and 

features respectively, 𝑋𝑖𝑗 is a single element of an input matrix, 𝑿𝒋
̅̅ ̅ is the mean of the elements for 

the vector of samples corresponding to the feature, 𝑠(𝑿𝒋) is the sample standard deviation of the 

elements of that feature vector, and 𝑋𝑖𝑗
′  is the standardized value for the element. This linearly 

transforms the data such that the mean is 0 and standard deviation is 1. 

𝑋𝑖𝑗
′ =

𝑋𝑖𝑗 − 𝑿𝒋
̅̅ ̅

𝑠(𝑿𝒋)
 (3. 2) 
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As CellDART uses min-max scaling, we additionally used sci-kit learn’s MinMaxScaler, 

which linearly scales the data for each feature such that the minimum value is 0, and maximum 

value is 1 [67], to ensure that we could evaluate CellDART as intended by its authors. The 

transformation is expressed in Equation 3.3, where 𝑖 and 𝑗 index samples and features respectively, 

𝑋𝑖𝑗 is an element of a matrix, 𝑋𝑗𝑚𝑖𝑛
 is the minimum value of the elements of a vector of samples 

for feature 𝑗, 𝑋𝑗𝑚𝑎𝑥
 is the maximum value, and 𝑋𝑖𝑗

′  is the element’s normalized value. 

𝑋𝑖𝑗
′ =

𝑋𝑖𝑗 − 𝑋𝑗𝑚𝑖𝑛

𝑋𝑗𝑚𝑎𝑥
− 𝑋𝑗𝑚𝑖𝑛

 (3. 3) 

For both scaling methods, the statistics (𝑿𝒋
̅̅ ̅, 𝑠(𝑿𝒋), 𝑋𝑗𝑚𝑖𝑛

, and 𝑋𝑗𝑚𝑎𝑥
) were calculated only 

using training samples, while the transform was applied to all sets (training, validation, and test) 

to avoid data leakage. For spatial data, where there were multiple histological sections or FOVs, 

we concatenated the sections/FOVs within a given split prior to transformation. 

3.3 Evaluation 

To mitigate the pitfalls in evaluating cell-type deconvolution we remarked on in 2.3.2.2, we 

used multiple approaches to cover as many blind spots that each metric would have on its own and 

multiple datasets to address the others’ shortcomings. In doing so, we aimed to show that our 

methods could work well in many contexts in both the source and target domains. We organized 

our metrics into 3 levels: (a) synthetic data or source domain/pseudo-spot performance, (b) 

invariance of the models between target and source domains, and (c) performance using real spots. 

Our choice of datasets (dlPFC, PDAC, and mouse cortex; see Section 3.2.1) was also guided by 

their suitability in these three levels of evaluation. The model configurations and contexts in which 

each level of metric is used is shown in Fig. 3.1. 



31 

 

3.3.1 Source domain performance 

The first level was straightforward: we simply evaluated the cell type proportion labels of our 

generated pseudo-spots. We used the mean sample-wise cosine distance as our distance metric, as 

shown in Equation 3.4, where 𝒀𝒕𝒓𝒖𝒆𝒊
 and 𝒀𝒑𝒓𝒆𝒅𝒊

 are the matching 𝑖𝑡ℎ samples of the ground truth 

and predicted cell type proportion matrices, respectively, while ‖𝒀𝒕𝒓𝒖𝒆𝒊
‖ and ‖𝒀𝒑𝒓𝒆𝒅𝒊

‖ are the 

magnitudes (Euclidean lengths, or L2 norms) of those vectors. The cosine distance is based on the 

angle between the two vectors, with 0 being 0°, 2 being 180°, and 1 being orthogonal. Each element 

of 𝒀𝒕𝒓𝒖𝒆𝒊
 and 𝒀𝒑𝒓𝒆𝒅𝒊

, being proportions, has a range of [0,1], and so there cannot be a negative 

component to a sample’s output vector. This means that the angle between the vectors is at most 

orthogonal, and it follows that the range of the distance metric is restricted to [0,1], with 0 being 

exactly equal and 1 being most different. We used this evaluation on each of the training, test, and 

validation pseudo-spot splits; for more details on how pseudo-spots were generated, refer to 

Section 3.2.2. This first level indicates a given model’s performance in the source domain. 

𝐷𝐶(𝒀𝒑𝒓𝒆𝒅, 𝒀𝒕𝒓𝒖𝒆) =

∑ (1 −
𝒀𝒕𝒓𝒖𝒆𝒊

∙ 𝒀𝒑𝒓𝒆𝒅𝒊

‖𝒀𝒕𝒓𝒖𝒆𝒊‖ ∙ ‖𝒀𝒑𝒓𝒆𝒅𝒊
‖

)
𝑛𝑠𝑝𝑜𝑡𝑠

𝑖=1

𝑛𝑠𝑝𝑜𝑡𝑠

(3. 4)
 

3.3.2 Variance between source and target 

For the second level, we compared the latent representations generated for each of the target 

and source datasets to evaluate the variance when moving from the source to target domain. We 

used the intermediate embeddings produced by a model’s encoder just prior to feeding forward 

into a prediction head. For a given encoder 𝐸, predictor 𝑃, and input matrix 𝑿, the embeddings 

matrix can be represented by 𝒁 = 𝐸(𝑿), and thus the final predictions �̂� = 𝐶(𝒁) can be obtained. 

At this second level of evaluation, we sought to measure how well integrated were the sets of 

representations 𝒁𝑺 = 𝐸(𝑿𝑺) and 𝒁𝑻 = 𝐸(𝑿𝑻), the source and target representation sets 



32 

 

respectively, using 2 metrics: (a) a use case of LISI called iLISI, as defined and used in Harmony 

[69], and (b) RF50, both of which we have defined below. 

For a given sample 𝑖 and its corresponding vector 𝒁𝒊 in a space 𝒵, LISI’s purpose is to quantify 

the effective number of classes of other samples 𝒁𝒌≠𝒊 that dominate its local neighbourhood [69]. 

Simpson’s Index 𝜆 is a diversity metric that gives the probability that two random samples drawn 

from a set will be of the same class, given by Equation 3.5, where 𝑅 is the number of discrete 

classes in the set and 𝑝𝑟 is a given class’s proportion within that set [90]. If the problem is reframed 

under the geometric distribution, where 𝑝 is the probability of an event occurring on a given try, 

and 
1

𝑝
 is the mean number of tries for at least one success, it then follows that the inverse Simpson’s 

Index is the mean number of independent draws of two samples required to obtain samples of the 

same class at least once. When the proportions of all classes are equal, 𝑝𝑟 =
1

𝑅
  and so 𝜆 =

1

𝑅
 as 

well, while when only 1 class is present when there should be multiple, 𝜆 = 1. Equivalently, a 

perfectly balanced set will have 1/𝜆 = 1, whereas when one class dominates, 1/𝜆 → 1. For these 

reasons, the inverse Simpson’s Index is often used as a measure of the effective number of classes 

within a set, although it is in reality a measure of the number of dominant classes [91], which we 

discuss later in this section. 

𝜆 = ∑ 𝑝𝑟
2

𝑅

𝑟=1
 (3. 5) 

To define a neighbourhood, LISI takes after t-distributed stochastic neighbour embedding (t-

SNE) in using a Gaussian kernel centered around a query point 𝒁𝒊 [92]. For a query sample 𝑖, the 

contribution 𝑝𝑘|𝑖 of a sample 𝑘 ≠ 𝑖 toward its class proportion 𝑝𝑟 is weighted by the Gaussian 

probability density function (pdf) 𝑓(𝑥) =
1

𝜎𝑖
𝜑 (

𝑥

𝜎𝑖
), where 𝜑(𝑧) is standard normal distribution of 

𝜇 = 0 and 𝜎2 = 1, using its distance ‖𝒁𝒌 − 𝒁𝒊‖ from the query point 𝒁𝒊 as input. To account for 
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how dense or sparse the neighbourhood surrounding a sample 𝑖 is, instead of fixing the variance 

𝜎𝑖
2, a fixed value of perplexity is chosen instead. 

To help explain the intuition behind fixing perplexity, we explain it in the context of diversity 

scores [93]. If we define a discrete random variable 𝑋 with 𝑁 possible outcomes and their 

corresponding proportions, in this case 𝑝𝑘|𝑖 =  𝑓(𝑥𝑘|𝑖) ∀ 𝑘 ≠ 𝑖 where 𝑥𝑘|𝑖 = ‖𝒁𝒌 − 𝒁𝒊‖, then the 

perplexity 𝐾 ≤ 𝑁 is the reciprocal of the geometric mean of all proportions, each weighted by 

itself. For our case, the perplexity 𝐾𝑖 for the kernel around a query point 𝑖 is calculated using 

Equation 3.6. While the Simpson’s Index 𝜆 can be thought of as the self-weighted arithmetic mean 

of proportions [90], 
1

𝐾
 is the self-weighted geometric mean. These are both proportions if all 

proportions had to be equal, just that the arithmetic uses the sum of proportions weighted by 

themselves, while the geometric mean is measured and constrained by the product of proportions 

weighted by themselves. This means that, while Simpson’s index 𝜆 can be useful for an observer 

as an expectation of the class proportion for a given sample, a geometric mean gives a better 

estimate of the average proportion relative to the population as proportions are a relative value. 

Their inverses, 
1

𝜆
 and 𝐾, are special cases of the Hill diversity numbers 𝑁𝑞 with orders 2 and 1, 

respectively [90]. 𝑁2 is also called Simpson’s diversity and used as a “dominance metric”, such as 

when used to quantify mixing with iLISI. On the other hand, 𝑁1, related to Shannon entropy [94], 

is used as a “true” diversity metric [91]. We can then say that the perplexity 𝐾𝑖 for a point 𝑖 gives 

a true unbiased estimate for the effective number of samples in the neighbourhood of 𝒁𝒊. By fixing 

perplexity instead of standard deviation, each kernel can be a different width in response to how 

dense or sparse the neighbourhood surrounding a sample is. To calculate iLISI, we adapted the 

implementation in the Python package harmonypy [95], itself a Python port of Harmony [69]. We 

concatenated sample-wise the embedding matrices 𝒁𝑺 and 𝒁𝑻 using target and source domain as 
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classes, while we also randomly undersampled the majority class to eliminate any imbalance. For 

the final score, we used the median value across all samples, referred to as median-iLISI (miLISI). 

𝐾𝑖 =
1

∏ 𝑝
𝑘|𝑖

𝑝𝑘|𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑘=1

, 𝑘 ≠ 𝑖 (3. 6) 

Our second metric, RF50, measured how well a classifier can discriminate between the two 

classes. We concatenated sample-wise the embedding matrices 𝒁𝑺 and 𝒁𝑻 using target and source 

domain as classes, then split the combined set, stratified by domain, into training and test sets of 

80% and 20% of the total set. We found the first 50 (or the width of the embedding, whichever 

lesser) principal components using the RF50 training set and applied the transform to both sets. 

Then, we used the RF50 training set to train a random forest classifier using the default settings of 

the imbalanced-learn (v. 0.10.1) Python package’s BalancedRandomForestClassifier, which 

randomly undersamples the majority class for every bootstrap model [96]. Finally, we calculated 

the average accuracy across all classes (“macro” accuracy) using the RF50 test set; the closer the 

score to 1, the worse the domain invariance of the encoder was, while the closer to 0.5 (i.e., 

random), the better. 

Finally, as we were evaluating how well an encoder can provide domain-invariant 

representations to the predictor, this required a consistent definition of a prediction head across all 

models for comparable results. Due to backpropagation, the training of an encoder is not 

independent of the predictor and could vary otherwise.  For every model and dataset, a predictor 

head 𝐶 was a single fully connected layer with 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠 neurons, followed by a softmax 

activation function [71], which produced an output vector 𝒀𝒊 with values in the range (0,1) and 

also summing to 1, consistent with cell type proportions. By keeping the predictors as shallow as 

possible, a predictor is only capable of learning proportions that are monotonic transforms of a 

latent vector 𝒁𝒊, because single-layer perceptrons can only learn first-order mappings [97]. This 
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means that an encoder 𝐸 must map all samples from a manifold in GEx space to a representation 

𝒁𝒊 in a latent space 𝒵, where meaningful variations in cell type proportions only occur linearly in 

that space [71]. We did this to reduce potential variability in the latent distributions from the 

encoder, allowing us to evaluate the representations specifically as they pertain to the classification 

task. For further details on the architecture of the models, see Section 3.4. 

To ensure that any good result in the evaluation of variance between domains was meaningful, 

we specifically sought single-cell source domain data obtained by different research groups from 

the target spatial transcriptomics data (see 3.2.1 for further details on each dataset). If a given 

method performed well both on pseudo-spots in the source domain (level 1 performance) and 

demonstrates invariance across source and domain data (level 2 performance), then we could by 

proxy conjecture that our model’s performance in the source domain would likely generalize to 

the target domain. 

3.3.3 Target domain performance 

For performance in the target domain, we faced the same issues as other methods [27, 32, 33, 

70, 75, 77], where most real datasets did not have direct ground truth data. We therefore used a 

different approach for each of the three datasets.  

Each spot in the dlPFC 10x Genomics Visium target dataset [80] had been annotated with one 

of the 6 mammalian neocortex layers [79]. Furthermore, of the 26 cell types present in the source 

dataset, there were 10 distinct excitatory neuron groups, each having been labelled with whichever 

neocortex layer(s) where it would be expected to be found. CellDART’s authors [27] used the 

predicted cell type proportion of each of these 10 excitatory neuron groups to separately calculate 

receiver operating characteristic (ROC), using whether that excitatory cell type is expected to be 

found in a spot/layer as the ground truth. The ROC shows the increase in the false positive rate 
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(FPR) as the true positive rate (TPR) (also referred to as sensitivity or recall) increases when 

different detection thresholds are used for a set of continuous predictions; the equations for TPR 

and FPR are shown in Equations 3.7 and 3.8, respectively. In our case, given a set of predictions 

of proportions, ROC can be thought of as the trade-off between correctly predicting a cell type’s 

abundance in the layer(s) it would be expected to be versus incorrectly predicting that cell type’s 

abundance elsewhere. The area under the ROC (AUROC) can thus serve as a heuristic, at least for 

the cell types evaluated, how well the predicted proportions match the 2D structure of the slide. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3. 7) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(3. 8) 

Although this metric applied to the dlPFC set relies on markers and only works with a subset 

of cell types, this target spatial transcriptomics dataset is the largest and most complete out of our 

datasets, with the most spots per slide and most slides in total (see Section 3.2.1.1). It also uses the 

10x Genomics Visium technology, which is the technology with the resolution (1-10 cells per spot) 

where cell type deconvolution is most useful and the number of spots per slide (up to ~5,000) [23] 

where datasets are large enough for deep learning methods, and it therefore represents the main 

use case for our work. We therefore included this dataset to be able to have a metric of how well 

it performs in this use case, and so, for evaluating true performance across different models, we 

relied on stronger metrics applied to our other datasets. 

As with for dlPFC, we also only had region annotations for our spatial PDAC data, but due to 

the regions representing wholly different tissues, we were able to map most cell types in the source 

domain dataset to regions in the target domain dataset using information from their respective 
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papers [26, 83] as well as the literature [16-18, 98, 99]. The mappings used are shown in Table 3.1, 

where cell types were mapped to up to 2 regions. 

Table 3.1: Mappings from source scRNA-seq data to target spatial transcriptomics regions used to evaluate cell type 

proportions for spatial PDAC data. 

Source domain cell type Target domain region 

Region 1 Region 2 

Ductal cell type 2 

Cancer region 

 

T cell 

Stroma 

Macrophage cell 

Fibroblast cell 

B cell 

Stellate cell 

Pancreatic tissue Acinar cell 

 
Endocrine cell 

Ductal cell type 1 Duct epithelium 

Endothelial cell Interstitium 

 
For the Spotless mouse cortex data [33], as ground truth labels were available, we were able 

to use cosine distance as with the level 1 evaluation on pseudo-spots (see Section 3.3.1). A 

challenge, however, was mapping the scRNA-seq source dataset’s cell types [63] produced by a 

model to the cell type labels present in the Spotless dataset. Through careful inspection of 

clusterings of cell types in the source data and through thorough reading of the matching paper’s 

discussion, we were able to map 25 out of 28 cell types from the scRNA-seq data to 13 out of 17 

Spotless mouse cortex cell types. This, however, meant the merging of each into 10 cell types. The 

full mapping used is shown in Table 3.2. 

Table 3.2: Mappings of scRNA-seq source dataset cell types to target spatial transcriptomic cell types for the mouse 

cortex dataset. Where multiple classes were merged, individual cell types are separated by a comma. For the source 
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cell type, abbreviations used by the paper authors are used; for definitions, refer to the original paper [83]. Greyed 

out cells indicate no mapping to the other set. 

Source cell types Target cell types 

Astro, Doublet Astro Aqp4 Ex Astrocytes deep, Astrocytes superficial 

Batch Grouping, L5 PT, L5 IT, L6 CT, L6 IT, L6b, 

NP, High Intronic, Doublet VISp L5 NP and L6 CT 

Excitatory layer 5/6 

L2/3 IT Excitatory layer II, Excitatory layer 3 

L4 Excitatory layer 4 

Endo, Peri, Doublet Endo Endothelial, Choroid plexus 

Macrophage Microglia 

Lamp5, Meis2, Pvalb, Serpinf1, Sncg, Sst, Vip Interneurons, Interneurons deep, 

Oligo Oligodendrocytes, Oligodendrocyte 

progenitor cell 

CR, SMC, VLMC  

 Ependymal, Neural Stem Cells, Neural 

progenitors, Neuroblasts 

 
We strove to limit the amount of manual processing of cell types prior to evaluation to limit 

inductive bias on our part, only performing merging where necessary and only applying them at 

evaluation time. For source scRNA-seq cell types lacking a mapping to Spotless mouse cortex cell 

types, we merged these predictions at evaluation time into an “Other” column (meaning an 

erroneously predicted cell type) and added a corresponding feature to the ground truth matrix set 

to 0. For the predictions, we added a corresponding feature at the same index as that in the ground 

truth and set the values to 0, indicating that none of that cell type was predicted. As this method of 

evaluation directly used ground truth labels of cell type proportions, this was the strongest metric 

we used for evaluating level 3 performance, being the performance in the target domain on real 

spatial transcriptomics spots. On the other hand, the Spotless dataset was the smallest and least 

applicable to any potential real-world use (for details regarding this dataset, refer to Section 
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3.2.1.3), so evaluation using all 3 datasets was necessary to gain a comprehensive understanding 

of our and other methods’ performance. 

3.4 Models and training 

We evaluated 5 models, among them 2 baselines and 3 of our own UDA models. For our 

baselines, we first tested RCTD, a hierarchical Bayesian model that uses a Poisson random variable 

[32] which was shown in the Spotless analysis to be simultaneously among the best performing, 

most consistent and stable, and most scalable methods [33]. Fitting Poisson distributions has been 

shown to work well for transcript-based count data [100, 101], so we used our data prior to pseudo-

spot generation, log-transforming, and normalization (for data processing, refer to Section 3.2). 

We also tested two versions of CellDART, the first being the author’s code [27] and the second 

being our reimplementation in PyTorch (v. 1.13.1) [102], to more effectively integrate it into our 

training pipeline and evaluate it fairly (see Section 3.4.1 for details). 

 Our three models are composed of fully connected subnetworks and are based on the ADDA 

[29], DANN [30], and Deep CORAL [31] UDA model architectures. As briefly mentioned in 3.3.2, 

we defined consistent model architecture components across all our models (as well as CellDART 

[27]) to be able to train and evaluate each in a fair and consistent matter. Each model consisted of 

at least two parts, an encoder 𝐸 and a predictor 𝑃. Our adversarial models (ADDA and DANN, as 

well as our reimplementation of CellDART) also incorporated a discriminator 𝐷. The encoder’s 

role was to map an 𝑛𝑠𝑝𝑜𝑡𝑠 × 𝑁𝑔𝑒𝑛𝑒𝑠 input matrix 𝑿 to an 𝑛𝑠𝑝𝑜𝑡𝑠 × 𝑑𝑒  𝒁 matrix, where 𝑑𝑒 is the 

dimension of the latent space 𝒵. The predictor’s role was to map 𝒁 to 𝑛𝑠𝑝𝑜𝑡𝑠 × 𝑁cell types cell type 

proportion matrix �̂�. To be able to consistently compare the embedding from source and target 

domain data, 𝒁𝑺 = 𝐸(𝑿𝑺) and 𝒁𝑻 = 𝐸(𝑿𝑻) respectively, as discussed in Section 3.3.2, we fixed 

the predictor to be a single fully connected layer of 𝑁cell types neurons of input dimension 
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𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 and no hidden layers, with a softmax output activation function to ensure each row 

(sample) �̂�𝒊 summed to 1 with all values in the range (0, 1); this is also consistent and therefore a 

fair comparison with CellDART. Finally, as the discriminator’s role was to classify source 

embeddings and target embeddings into their respective domains, for our models, the discriminator 

took embeddings matrix 𝒁 containing embeddings from one or both domains to an 𝑛𝑠𝑝𝑜𝑡𝑠 vector 

�̂�𝑑𝑜𝑚𝑎𝑖𝑛 = 𝐷(𝒁), with input dimension 𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 and a single output neuron with a logistic 

activation function. 

For the prediction task, the overall model 𝑀 can be represented as �̂� = 𝑃 ∘ 𝐸(𝑿). The loss 

function we used was Kullback–Leibler divergence (KL-divergence) [103], a common one-sided 

metric of the relative entropy of a model probability distribution 𝑄 against a reference distribution 

𝑃, which in our case are, for every sample 𝑖, the rows of the cell type matrices �̂�𝒊 and 𝒀𝒊 

respectively. We present the sample-wise KL-divergence in Equation 3.9, with ln being the natural 

logarithm. For the KL-divergence across all samples 𝑖, the mean is taken. 

𝐿𝐾𝐿(�̂�𝒊, 𝒀𝒊) = ∑ 𝑌𝑖𝑗

𝑁cell types

𝑗=1

∙ ln
𝑌𝑖𝑗

�̂�𝑖𝑗

(3. 9)   

For the discrimination task, the overall model 𝑀𝑑 can be represented as �̂�𝑑𝑜𝑚𝑎𝑖𝑛 = 𝐷 ∘ 𝐸(𝑿) 

trained against ground truth labels 𝒚𝑑𝑜𝑚𝑎𝑖𝑛, where each element 𝑦𝑑𝑜𝑚𝑎𝑖𝑛𝑖
 was one of 0 and 1, For 

our models, we used the mean BCE across samples as the loss function of the discriminator, for 

which the element-wise formula is shown in Equation 3.10, where ln is the natural logarithm. 

𝑙𝐵𝐶𝐸(�̂�, 𝑦) = −𝑦 ln �̂� − (1 − 𝑦) ln(1 − �̂�) (3. 10) 

In all of our own models, we used the AdamW optimizer [104], a variation on the commonly 

used [71] Adam [105]. AdamW corrects an issue where L2 norm regularization penalty term on 

the weights (often referred to as weight decay) was obliterated with large gradients. Outside of 
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pretraining, we defined an epoch to be based on one iteration over the target spatial transcriptomics 

dataset, as the randomly generated source pseudo-spots dataset could be of arbitrary size due to 

the 𝑛𝑠𝑝𝑜𝑡𝑠 hyperparameter. At every epoch, the pseudo-spot samples would be re-shuffled but 

would not iterate over the whole dataset, as we set 𝑛𝑠𝑝𝑜𝑡𝑠 = 100,000, much larger than any one 

spatial dataset. As potentially different random samples would be seen every epoch, this introduced 

a degree of limited data augmentation to our method. To reduce the variability caused by tuning 

batch sizes, we set a minimum alternative batch size of 512 for pretraining for CellDART and 

ADDA. 

To perform hyperparameter tuning, we performed a random search, selecting a subset from 

the total set of possible hyperparameters we defined for each model. The number of 

hyperparameter combinations assessed, specific to each model and dataset, was dependent on 

available training resources. Using the reserved validation slide, we validated the performance 

using the reserved real-spot metric specific to each dataset that we defined in Section 3.3.3. For 

data inputs, we assessed the same common set of hyperparameters for all models, differing only 

across datasets; these are shown in Table 3.3, while model-specific hyperparameters are detailed 

in the following subsections. Ranges for 𝑛𝑚𝑖𝑥 were selected for average abundances of cells for 

each of the three spatial transcriptomics technologies used. 

Table 3.3: Common data hyperparameters used for all model types. 

Hyperparameter Dataset (if applicable) Values (set) 

𝑛𝑚𝑖𝑥  dlPFC [3, 5, 8, 10] 

PDAC [30, 50, 70] 

mouse cortex [5, 8, 10, 15] 

𝑛𝑚𝑎𝑟𝑘𝑒𝑟𝑠   [20, 40, 80] 

Normalization  [min-max, standard] 
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In the following subsections, we detail specific aspects of each of our models and how we 

trained them. Some commonalities and general rules we abided by include: 

• For our adversarial models (DANN and ADDA), we used leaky ReLU for hidden layer 

activations, a variation of the rectified linear unit (ReLU) (a commonly used hidden 

activation [71]) that, instead of clamping negative inputs to 0, scales them by a factor of 0.01 

[106]. This activation function was found by Radford 𝑒𝑡 𝑎𝑙. to work well in GANs [107]. 

For CellDART, we used the same activation function of the original method, the exponential 

linear unit (ELU). 

• While we initially only intended to use min-max normalization to evaluate CellDART in its 

default configuration, we found that CellDART universally performed better with min-max 

normalized data. We thus added scaler a hyperparameter to be tuned for all models. 

• For our adversarial models (DANN and ADDA), we set the momentum parameter 𝛽1 of the 

AdamW optimizer for the discrimination task to 0.5, as opposed to the default 0.9. This was 

found by Radford 𝑒𝑡 𝑎𝑙. to reduce oscillations between the discriminator and generator and 

better achieve stability, as it allows gradients for each to react more quickly to changes [107]. 

• For all our models, we used batch normalization [108], commonly used to help stabilize 

parameter updates [71], after the hidden layer activations. We did not use batch 

normalization on the outputs of encoders, as suggested by Radford et al. for GANs, as they 

found that this resulted in instability between the generator and discriminator. 

• Batch size and batch normalization momentum were fixed to 8 and 0.1 respectively for the 

mouse dataset due to the small number of samples within that dataset. 
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3.4.1 Reimplemented CellDART 

We reimplemented, to the best of our abilities, CellDART in PyTorch, as it had originally been 

implemented in Keras [109]. We explain the implementation here; a detailed set of the 

specifications are shown in Table 3.4. Where not specified, configurations values are either default 

PyTorch values or are specified later in Table 3.5 as hyperparameters. 

Table 3.4: Specifications of CellDART. Where not specified, configurations values are either default PyTorch values 

or hyperparameters sets in Table 3.5; hyperparameter placeholders are indicated with an underline. 

Parameter type and 

component, if applicable 

Configuration Value 

Model Encoder Layer sizes (input + hidden layers + 

output) 
(𝑁𝑔𝑒𝑛𝑒𝑠, 1024, 𝑑𝑒) 

Discriminator Layer sizes (input + hidden layers + 

output) 
(𝑑𝑒, 32, 2) 

Hidden dropout rate 0.5 

Output activation Softmax 

Predictor Layer sizes (input + hidden layers + 

output) 
(𝑑𝑒, 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠) 

Output activation Softmax 

Whole model Batch normalization configuration 𝜖: 0.001 

Activation unless otherwise specified ELU 

Optimizer (Adam) Optimizer configuration (𝛽1, 𝛽2): (0.9, 0.999) 

𝜖: 1×10-7 

Training Pretraining Epochs 10 

Adversarial Iterations 15,000 

 
Some aspects to note about this specification include: 

• The CellDART authors encoded the domain labels 𝒀𝑑 in one-hot format, hence the 2 output 

neurons, softmax function, and categorical cross-entropy instead of BCE. 
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• The authors used the default Keras parameters for Adam [105] and batch normalization 

[108], which are different from PyTorch defaults; here we manually set them to Keras 

defaults. 

• CellDART’s original configuration was to train for 3000 iterations; as we, unlike CellDART, 

treated all training slides as part of one dataset, we increased the iterations to 15,000. 

• As in the original implementation, instead of epochs, batches were randomly sampled, with 

replacement, from each of the source and target sets, and each were concatenated sample-

wise together, masking out the target samples in the set for the prediction task. 

CellDART did not use any form of early stopping or validation set during training, but we still 

performed hyperparameter tuning as with our models. A table of the hyperparameter values 

explored in each of the 3 datasets are shown in Table 3.5. 

Table 3.5: Reimplemented CellDART hyperparameters validated. 𝛼, as used in CellDART, is a scaling factor for the 

discriminator classification loss 𝐿𝑑, like 𝜆 in DANN. 𝛼𝐿𝑅 is a scaling factor for the discriminator’s learning rate 

against the main learning rate, with 5 being reported as a good value by CellDART’s authors. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (200) 

𝑑𝑒  [32,64] 

𝛼  [0.1, 0.6, 1.0, 2.0] 

𝛼𝐿𝑅 [1, 2, 5, 10] 

Learning rate [0.01, 0.001, 0.0001] 

Batch size [256, 512, 1024] 8 (fixed) 

Batch norm momentum [0.01, 0.1, 0.9, 0.99] 0.1 (fixed) 

 
Note that PyTorch and Keras define momentum for batch normalization differently, where 

they are the complement of each other. Keras’s default momentum is 0.99, hence 0.01 here. We 

additionally tried a range of values to explore the effects of changing this hyperparameter. 



45 

 

3.4.2 ADDA 

As ADDA fully relies on the pretraining phase for the prediction task, we performed a more 

comprehensive pretraining on source pseudo-spots. We first increased the depth of the encoders, 

while adding dropout to the source encoder; specific configurations are shown in Table 3.6 and 

Table 3.7. We then extended the number of pretraining epochs from 10 to 200 and applied a one-

cycle learning rate scheduler to maximize convergence [110], as implemented in PyTorch. This 

scheduler smoothly ramps the learning rate from 1/25th to the full learning rate over the first 30% 

of training, then anneals the learning to 1/10,000th of the maximum over the remaining 70%. The 

motivation is to first “warm up” any optimizers and batch normalization layers, then ramp up to 

the set learning rate to quickly seek out appropriate minima, before settling at a lower learning rate 

to fine-tune the model. We additionally performed early stopping by measuring the loss at the end 

of each epoch on the source validation set and saving the state at the best validated epoch, using 

that as the final model.  

During adversarial training, at each alternation between training the discriminator and target 

encoder, we passed source and target and performed backpropagation and weight updates 

separately, one after another, to avoid initial batch effects confounding batch normalization. 

Leveraging separate batch normalization is important to prevent initially highly separable 

distributions causing the discriminator to overfit. This causes the encoder/generator to simply 

produce a single result the discriminator cannot generalize to, a condition called mode collapse 

[107]. Additionally, as the authors of ADDA state that due to its lack of weight sharing, the target 

encoder depends greatly on being pre-initialized to the source encoder weights [29], it thus clear 

and also for reasons we will further explore in Section 5.1.2 that ADDA depends heavily on its 



46 

 

starting conditions. We thus limited the number of adversarial training epochs to just 20, which we 

later show in Section 4.4 to be more than sufficient. 

We performed initial testing to find configurations and ranges of values that appeared to work 

well in producing a stable adversarial model. To avoid the situation where compromised 

embeddings produced by the target encoder are used to train the discriminator, we disabled dropout 

in the target encoder. For the discriminator, we had to ensure that it would consistently be capable 

of, to use a chess analogy, “check” the encoder. To match the target encoder, we set the number of 

hidden layers and neurons in the discriminator to be the same as the encoder but in reverse. We 

further added two factors in training to help the discriminator react to new kinds of inputs as 

presented by the encoder. The first, 𝛼𝐿𝑅, is a hyperparameter that scales up the learning rate of the 

discriminator relative to the target encoder; a similar hyperparameter was also used in CellDART 

[27]. Next, we added a “discriminator loop factor” 𝐾𝑑 defining how many iterations the 

discriminator should be trained before the encoder’s turn to train for a single iteration. A full list 

of the model specifications that we found worked well during initial testing and fixed during 

hyperparameter tuning are shown in Table 3.6, while hyperparameter values that we validated for 

are shown in Table 3.7. 

Table 3.6: Specifications of ADDA. Where not specified, configurations values are either default PyTorch values or 

hyperparameters sets in Table 3.7; hyperparameter placeholders are indicated with an underline. 

Parameter type and 

component, if applicable 

Configuration Value 

Model Source encoder 

 

Layer sizes (input + hidden layers + 

output) 
(𝑁𝑔𝑒𝑛𝑒𝑠, 1024, 512, 

𝑑𝑒) 

Hidden dropout rate 0.5 

Target encoder 

 

Layer sizes (input + hidden layers + 

output) 
(𝑁𝑔𝑒𝑛𝑒𝑠, 1024, 512, 

𝑑𝑒) 

Hidden dropout rate 0.0 
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Discriminator 

 

Layer sizes (input + hidden layers + 

output) 
(𝑑𝑒, 512, 1024, 1) 

Hidden dropout rate 0.5 

Output activation Logistic 

Predictor 

 

Layer sizes (input + hidden layers + 

output) 
(𝑑𝑒, 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠) 

Output activation Softmax 

Whole model Batch normalization configuration 𝜖: 0.001 

Activation unless otherwise specified Leaky ReLU 

Optimizer 

(AdamW) 

Pretraining  Optimizer configuration (𝛽1, 𝛽2): (0.9, 0.999) 

𝜖: 1×10-7 

Adversarial Optimizer configuration (𝛽1, 𝛽2): (0.5, 0.999) 

𝜖: 1×10-7 

Scheduler  Pretraining   Scheduler type One cycle 

Training Pretraining Epochs 200 

Adversarial Epochs 20 

 

Table 3.7: Validated ADDA hyperparameters. 𝑑𝑒 is the dimension of the embedding at the output of the encoder. 𝛼𝐿𝑅 

is a scaling factor for the discriminator’s learning rate vs. the main learning rate. 𝐾𝑑 is the discriminator loop factor. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (1000) 

𝑑𝑒  [32, 64] 

𝛼𝐿𝑅 [1, 2, 5] 

Pretraining learning rate [0.0001, 0.0002, 0.001] 

Adversarial learning rate [0.01, 0.001, 0.0001] 

𝐾𝑑  [2, 5, 10] 

Batch size [512, 1024, 2048] [256, 512, 1024] 8 (fixed) 

Batch norm momentum [0.01, 0.1] 0.1 (fixed) 

 
To note, regarding the hyperparameters in Table 3.7: our initial testing for dlPFC and ADDA 

seemed to achieve stability more readily at larger batch sizes, so we increased the range of possible 



48 

 

batch sizes compared to other methods. This was not possible in PDAC, as 1,024 samples would 

be already larger than the entire dataset, so we left the batch size for that set as-is. 

3.4.3 DANN 

Like with ADDA, we trained using a discriminator that mirrored the structure of the encoder. 

On the other hand, due to the nature of training the whole model, including both the prediction and 

the domain discrimination task in a single pass, we encountered multiple issues. The first was that, 

during initial testing, we found DANN much more difficult than ADDA to achieve a stable state, 

as the encoder was responsible for both tasks at once. The second was how to deal with batch 

normalization. 

To address the stability concerns as well as squaring two different training tasks, we defined 

conditions for stability of the model and tied them to early stopping as well as a learning rate 

scheduler. We defined stability by calculating the training accuracy over the course of the epoch, 

and then checking whether 0.5 < 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑡𝑟𝑎𝑖𝑛
< 0.6. for both domains 𝐷 ∈ {𝑆, 𝑇} Then, at 

the end of the epoch we checked using the validation set whether  0.3 < 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑣𝑎𝑙
< 0.8. 

Both ranges are shifted upward as <50% accuracy on average would indicate predicting the 

opposite class of what is correct, which is undesirable, while the criterion for validation is looser 

to account for variance. If all four conditions are met, then we considered that epoch to be stable. 

Then, at the end of every epoch, we perform the pseudo-Python Algorithm 3.1, which depends on 

whether a stable epoch had been found previously, whether the current epoch is stable, and the 

current validation loss on the prediction task. 

Algorithm 3.1  

best_val_loss = +inf 
stable_found = False 
scheduler = StepLR(PATIENCE) 
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for i in i...epochs-1: 
... 
# train model 
# check if stable 
... 
# stable and have the best stable epoch so far 
if (stable and ((curr_val_loss < best_val_loss) 
# or found the first stable epoch 
or (not stable_found)): 
    best_val_loss = curr_val_loss 
    save_best_model() 
    scheduler.reset_counter() 
 
# improving in the prediction task 
elif (curr_val_loss < best_val_loss) 

    # but not stable but working toward it 
and (not stable) and (not stable_found): 
# and still early in training 
and (i < GRACE_PERIOD): 
    # for tracking best score during grace period 
    best_val_loss = curr_val_loss 
    # give more time an extension for effort on prediction task 
    scheduler.reset_counter() 
    # save in case no stable model is ever found 
    save_best_model() 
else: 

        # steps down learning rate after PATIENCE steps 
    scheduler.step() 

 
Algorithm 3.1 performs a form of early stopping based on validation performance on the 

prediction task, but the score only counts if stability conditions are met. It also includes a scheduler 

to monitor both stability and the prediction score and scales the learning rate by a factor of 0.5 

after 50 epochs of no stable score that improves over the previous stable score. We allowed for a 

grace period of 100 epochs where, so long as the validation score was improving, the counter 

would reset to give more time for the model to begin to converge (the grace period ends after the 

first stable epoch has been found). We chose the model saved at the stable epoch with the best 

source domain cell type proportion loss as the final model; if no such model existed, then we chose 

the best unstable epoch. During the hyperparameter random search, we also placed a constraint 
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that the top stable model on validation must be chosen, to eliminate unstable and potentially 

ungeneralizable configurations. 

The second issue relates to batch normalization. The DANN algorithm originally did not 

incorporate batch normalization and performed weight updates for all tasks and both domains at 

once. As explained in Section 3.4.2, batch normalization is useful when training adversarially, as 

this prevents stability and mode collapse. We thus added two hyperparameters: the first is whether 

to perform the weight updates in a single pass, or iteratively for each of target and domain as in 

ADDA, where the prediction task naturally would only occur in the source pass. while the second 

is whether to perform the source pass or target pass first. We considered the second unlikely to 

have any real effect, and simply included it out of interest. The specifications of DANN are shown 

in Table 3.8, while the hyperparameters we validated are shown in Table 3.9. 

Table 3.8 Specifications of DANN. Where not specified, configurations values are either default PyTorch values or 

hyperparameters sets in Table 3.9; hyperparameter placeholders are indicated with an underline. 

Parameter type and component, if 

applicable 

Configuration Value 

Model Encoder 

 

Layer sizes (input + hidden 

layers + output) 
(𝑁𝑔𝑒𝑛𝑒𝑠, hidden 

layers, 𝑑𝑒) 

Discriminator 

 

Layer sizes (input + hidden 

layers + output) 
(𝑑𝑒, hidden layers, 

1) 

Output activation Logistic 

Predictor 

 

Layer sizes (input + hidden 

layers + output) 
(𝑑𝑒, 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠) 

Output activation Softmax 

Whole model Batch normalization 

configuration 

PyTorch defaults 

Activation unless otherwise 

specified 

Leaky ReLU 

Optimizer 

(AdamW) 

Adversarial  Optimizer configuration (𝛽1, 𝛽2): (0.5, 

0.999) 
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Scheduler  Adversarial Scheduler type Step 

Training Adversarial Epochs 500 

 

Table 3.9: DANN hyperparameters validated. 𝑑𝑒 is the dimension of the embedding at the output of the encoder. 𝜆 is 

a scaling factor for the discriminator classification loss 𝐿𝑑. α is a scaling factor for the gradient as it passes through 

the GRL. Higher values of α mean larger encoder gradients relative to those passed from the discriminator. 

Hyperparameter Dataset (number of random search 

configurations) 

dfPFC 

(200) 

PDAC (200) Mouse cortex 

(200) 

𝑑𝑒  [32, 64] 

Encoder hidden layers (reversed for 

discriminator) 

[(512,), (1024,), (512, 512), (512, 256), (256, 

128),] 

𝛼 [1, 2, 5] 

𝜆  [0.5, 1, 2] 

Hidden layers dropout [0.1, 0.2, 0.5] 

Discriminator dropout factor [0.5, 1] 

Adversarial learning rate [2×10-3
, 1×10-3

, 2×10-4
, 1×10-4

, 2×10-5
, 1×10-5] 

Batch size [256, 512, 

1024] 

[128, 256, 

512] 

8 (fixed) 

AdamW weight decay [0.01, 0.1] 

Separate iterations for source and target data [True, False] 

If separate iterations, whether first iteration 

should be source or target 

[Source, Target] 

 
Note that we included a large variety of hyperparameters and ranges, as no pattern could be 

ascertained as to what values lead to stable training. 

3.4.4 CORAL 

An important consideration was how to incorporate CORAL loss. Deep CORAL enables the 

use of multiple hyperparameters 𝜆𝑖, with 𝑖 indexing the output, pre-activation, of a layer, using 

Equation 3.11, where 𝐿𝑌 is the loss on the prediction task, 𝐿 is the overall loss, and 𝑡 is the number 
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of layers in the network. In Deep CORAL, the authors suggested using the logits just prior to the 

softmax output activation as a starting point, and then adding deeper layers [31]. We performed 

initial testing to determine appropriate values of 𝜆𝑙𝑜𝑔𝑖𝑡𝑠. For our hyperparameter search, we then 

also included 𝜆𝑒 = 0 or 𝜆𝑒 = 𝜆𝑙𝑜𝑔𝑖𝑡𝑠 to control the CORAL loss at the output of the encoder. For 

the specifications of CORAL we used in this model, refer to Table 3.10; for the full set of random 

search hyperparameters, refer to Table 3.11. 

𝐿 = 𝐿𝑌 + ∑ 𝜆𝑖𝐿𝐶𝑂𝑅𝐴𝐿

𝑡

𝑖=1

(3. 11) 

Table 3.10: CORAL specifications. Where not specified, configurations values are either default PyTorch values or 

hyperparameters sets in Table 3.11; hyperparameter placeholders are indicated with an underline. 

Parameter type and 

component, if applicable 

Configuration Value 

Model Encoder 

 

Layer sizes (input + hidden 

layers + output) 
(𝑁𝑔𝑒𝑛𝑒𝑠, hidden layers 

hyperparameter, 𝑑𝑒) 

Predictor 

 

Layer sizes (input + hidden 

layers + output) 
(𝑑𝑒, 𝑁𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠) 

Output activation Softmax 

Whole model Batch normalization 

configuration 

PyTorch defaults 

Optimizer (AdamW) Optimizer configuration PyTorch defaults 

Scheduler  Scheduler type One cycle 

Training Epochs 200 

 

Table 3.11: CORAL hyperparameters validated. 𝑑𝑒 is the dimension of the embedding at the output of the encoder, 

while (𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) are CORAL loss weighting parameters for the encoder output and the predictor output, respectively. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex 

(1000) 

𝑑𝑒  [32,64] 
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Encoder hidden layer sizes [(1024, 512), (512, 256), (256, 128), (512, 256, 128)] 

Activation unless otherwise 

specified 

[Leaky ReLU, ReLU] 

(𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) [(0, 50), (0, 100), (0, 200), (50, 50), (100, 100), (200, 200)] 

Hidden layers dropout [0.1, 0.2, 0.5] 

Learning rate [0.01, 0.001, 0.0001] 

Batch size [256, 512, 1024] [128, 256, 

512] 

8 (fixed) 

AdamW weight decay [0.1, 0.3, 0.5] 

 
As this was not an adversarial model, training Deep CORAL was uncomplicated, and so we 

took advantage of the one-cycle scheduler [110] we also used in the pretraining phase of ADDA. 

Because CORAL loss requires embeddings from both domains, we naturally trained the whole 

model end to end for both source and target at once. As both 𝐿𝑌 (KL-divergence) and 𝐿𝐶𝑂𝑅𝐴𝐿 were 

normalized, we did not scale the losses to account for fewer data in the prediction task. 
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4. Results 

4.1 Overview 

In this chapter, we report the results of our investigation, and comment on any particularly 

interesting results. In Section 4.2, we report overall performance results on the 3 levels of 

evaluation we defined in Section 3.3. In Section 4.3, we report the final hyperparameters for each 

model and dataset that were selected. We review and comment on adversarial training in Section 

4.4 and domain adaptation in Section 4.5. Finally, in Section 4.6, we compare and validate our re-

implementation of CellDART against its original implementation. 

4.2 Overall performance 

To obtain the final performances of each model, we performed 5 bootstraps of each model 

using the hyperparameters found, generating different sets of pseudo-spots and using different 

seeds for each. We report both mean and standard deviation values for the summary results. We 

first tackle all the results in summary at each level of evaluation as defined in Section 3.3. Due to 

its architecture, RCTD results are shown only for level 3 (target domain) predictions. 

4.2.1 Performance on source domain data 

Table 4.1: Test performance of each model on synthetic scRNA-seq pseudo-spots. Values are mean cosine distance 

across bootstraps, lower values being better; standard deviation across 5 bootstraps are shown in braces. 

Source cosine distance 

(↓better) 

Dataset 

Model dlPFC PDAC Mouse cortex 

Our CellDART 0.29581 (0.04825) 0.03794 (0.00311) 0.07141 (0.01079) 

ADDA 0.16617 (0.00098) 0.01225 (0.00006) 0.02749 (0.00011) 

DANN 0.17357 (0.00103) 0.10759 (0.07501) 0.08469 (0.00472) 

CORAL 0.24273 (0.01216) 0.07106 (0.00225) 0.55217 (0.03186) 
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As shown in Table 4.1, on source domain data, ADDA performed the best out of all our 

methods plus CellDART. This is unsurprising, as ADDA’s source encoder and predictor are only 

trained on the source prediction task. The rest of the methods perform at around the same level, 

except with CORAL on the mouse cortex set; while the other methods demonstrate distances below 

0.1, CORAL achieves a cosine distance of ~0.55, failing in the prediction task. This could possibly 

indicate fitness issues in the calculation of covariance due to the small batches of size 8 used for 

this dataset. 

4.2.2 Evaluation of domain adaptation 

Table 4.2: RF50 scores of each model by dataset using embeddings on test samples from both source and target, except 

for PDAC, where training samples were used. Values are expressed as mean accuracies of the random forest model 

on a holdout set of 20%. Standard deviation across 5 bootstraps is expressed in braces. A value closer to 0.5 is better. 

Source×target RF50 

(↓better) 

Dataset 

Model dlPFC PDAC Mouse cortex 

CellDART (ours) 0.9991 (0.00055) 0.99977 (0.00014) 0.99998 (0.00005) 

ADDA 0.94986 (0.01622) 0.88372 (0.02075) 0.78032 (0.20845) 

DANN 0.99474 (0.00421) 0.66653 (0.03227) 0.98954 (0.00615) 

CORAL 0.91612 (0.01835) 0.99972 (0.00045) 0.71642 (0.12817) 

 

Table 4.3: miLISI scores between source and target test samples from both source and target. except for PDAC, where 

training samples were used. Values are expressed as the mean miLISI across 5 bootstrap models, while standard 

deviation is indicated in braces. A value closer to 2 is better.  

Source×target miLISI 

(↑better) 

Dataset 

Model dlPFC 

(perplexity=30) 

PDAC 

(perplexity=30) 

Mouse cortex 

(perplexity=5) 

CellDART (ours) 1.0 (0.0) 1.33019 (0.1097) 1.02483 (0.02368) 

ADDA 1.25775 (0.03382) 1.81931 (0.01604) 1.2893 (0.11881) 

DANN 1.09193 (0.12809) 1.84353 (0.01732) 1.09244 (0.02474) 
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CORAL 1.23499 (0.06981) 1.0 (0.0) 1.51268 (0.15324) 

 
In terms of our domain variance metrics, we note several items in Table 4.2 and Table 4.3; 

note also that while this was comparing test samples from source and target sets, as there was no 

test set in the PDAC target set, we compared test source data with target training data for that 

instead. The first is that CellDART fails in the domain invariance task, with near perfect (i.e., poor) 

scores in RF50 across all datasets and miLISI scores close to 1, indicating low local neighbourhood 

mixing, with the exception being PDAC with an effective 1.33 classes dominating each sample’s 

local neighbourhood. This is reflected upon PCA visualization of the embeddings in Fig. 4.1, where 

CellDART’s embedding shows almost linear separability in the first two principal components.  

The second is that CORAL performs the best on both tasks on the mouse cortex dataset, indicating 

that, for that dataset, it performed well at eliminating domain discrepancy in its embeddings, 

Furthermore, ADDA and DANN perform well in both metrics on the PDAC dataset, but DANN 

performs poorly on the other datasets. Both ADDA and CORAL perform well in these metrics on 

the dlPFC dataset, but neither perform exceptionally well, with RF50 still being able to 

discriminate most embeddings from both. Also of note is that ADDA had decent performance in 

the mouse cortex dataset. We must note, however, as the size of the test dataset was small (just 18 

samples, 9 from source and 9 from target), we had to reduce the perplexity of the miLISI score 

relative to the other datasets, making the scores not directly comparable across datasets. 
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Fig. 4.1: Comparison of embeddings produced using CellDART and CORAL.  Target slide was test slide 151675, and 

source data were the test set of pseudo-spots. 

4.2.3 Evaluation of deconvolution of real spots 

We now evaluate how these first levels of evaluation translate to real spot performance, as 

shown in Table 4.4. Firstly, as the best performer in the source domain was ADDA in all cases, and 

ADDA was one of top two performers in the domain discrepancy metrics in both the dlPFC and 

mouse cortex sets, one might expect that ADDA would be able to generalize well in the target task. 

In practice, while ADDA performed the best among the deep models tested in the mouse cortex 

(second including RCTD), it performed near the bottom of methods in the dlPFC task. It should 

also be noted that, while dlPFC is the most realistic dataset, its ground truths are also the least 

comprehensive, only measuring the location so one cell type, whose identities were determined 

from the enrichment of markers that would presumably also be in the input data. Secondly, we 

note that although CellDART was not a particularly well performing method in the source domain 

deconvolution task and was by far the worst in RF50 and miLISI, it was the only method to achieve 

greater than 50% AUC on the PDAC dataset, despite ADDA outperforming it on that dataset in 

both previous tasks. We point out, however, that CellDART was not much better, and these in fact 

could all be erroneous results as a result of data leakage, as the PDAC set did not have separate 

test and training samples for target data. We finally bring attention to CORAL’s performance; 

although it performed best on dlPFC, consistent with its domain integration performance, it 

CellDART CORAL 
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performed the worst on real spots on the gold standard data, reflecting its poor performance while 

training on synthetic spots. 

To evaluate RCTD, we used raw counts for the scRNA-seq reference data and passed in 

unscaled and pre-log-transformed data. As RCTD filters cell types with <25 scRNA-seq samples, 

when evaluating we filled in missing cell type proportions as 0. RCTD also did not generate 

predictions for some spots. For AUROC we set the predicted proportions for all cell types to 0 for 

missing spots. Filling values of 0s for predicted proportions has the effect of ensuring that, until 

FPR reaches 1 on the right edge of the ROC curve, the TPR will be short those samples, excluding 

that proportion of samples from the AUROC. For cosine distance, we set scores for samples that 

were missing to 1, representing complete orthogonality between predicted and ground truth cell 

type proportions. 

We were not able to obtain intermediate nor bootstrap results, so Table 4.4 only includes the 

mean value for a single run using the target test sample. RCTD performed no better than a random 

predictor for dlPFC with an AUROC of ~0.5; we note also that none of the excitatory neuron cell 

types evaluated had fewer than 25 samples. The performance on the PDAC set was no better or 

worse than any other model, while for the Spotless “gold standard 1” mouse cortex sample, it 

performed the best by a margin of just over a standard deviation of the next best, ADDA. 

Table 4.4: Performance on real spatial transcriptomics spots. Standard deviation, where available, is indicated in 

branches. The best performing deep UDA methods are indicated with an underline, while the best including the RCTD 

baseline is indicated in bold. 

Target Dataset 

Model dlPFC AUROC 

(↑better) 

PDAC training 

AUROC (↑better) 

Mouse cortex cosine 

distance (↓better) 

RCTD 0.49709 0.5 0.12118 

CellDART (ours) 0.67013 (0.02787) 0.51736 (0.00707) 0.14755 (0.0764) 

ADDA 0.65349 (0.01498) 0.49236 (0.00141) 0.13697 (0.01517) 
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DANN 0.64932 (0.05255) 0.49494 (0.00578) 0.14784 (0.04081) 

CORAL 0.6958 (0.03309) 0.4949 (0.00523) 0.2383 (0.03621) 

 

4.3 Selected hyperparameters 

In this section are the selected hyperparameters of each model by dataset, after we performed 

tuning via random search based on the candidate hyperparameters in Section 3.4. We briefly 

comment on any interesting results. 

Table 4.5: CellDART hyperparameters selected via random search. 𝛼, as used in CellDART, is a scaling factor for the 

discriminator classification loss 𝐿𝑑, like 𝜆 in DANN. 𝛼𝐿𝑅 is a scaling factor for the discriminator’s learning rate 

against the main learning rate. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (200) 

𝑛𝑚𝑖𝑥  3 50 10 

𝑛𝑚𝑎𝑟𝑘𝑒𝑟𝑠  40 80 80 

Normalization Min-max Min-max Min-max 

𝑑𝑒  32 32 32 

𝛼  2 1 0.6 

𝛼𝐿𝑅  10 5 5 

Learning rate 0.0001 0.001 0.001 

Batch size 512 256 8 (fixed) 

Batch norm momentum 0.01 0.9 0.1 (fixed) 

 

Table 4.6: ADDA hyperparameters selected via random search. ADDA hyperparameters. 𝑑𝑒 is the dimension of the 

embedding at the output of the encoder. 𝛼𝐿𝑅 is a scaling factor for the discriminator’s learning rate vs. the main 

learning rate. 𝐾𝑑 is the discriminator loop factor. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (1000) 

𝑛𝑚𝑖𝑥  3 50 5 

𝑛𝑚𝑎𝑟𝑘𝑒𝑟𝑠  40 20 80 
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Normalization Min-max Min-max Min-max 

𝑑𝑒  32 32 64 

𝛼𝐿𝑅  1 2 1 

Pretraining learning rate 0.001 2×10-4 1×10-4 

Adversarial learning rate 2×10-4 2×10-4 2×10-6 

𝐾𝑑  2 10 10 

Batch size 2048 512 8 (fixed) 

Batch norm momentum 0.01 0.01 0.1 (fixed) 

 

Table 4.7: DANN hyperparameters selected via random search. 𝑑𝑒 is the dimension of the embedding at the output of 

the encoder. 𝜆 is a scaling factor for the discriminator classification loss 𝐿𝑑. α is a scaling factor for the gradient as 

it passes through the GRL. Higher values of α mean larger encoder gradients relative to those passed from the 

discriminator. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (200) 

𝑛𝑚𝑖𝑥  3 70 5 

𝑛𝑚𝑎𝑟𝑘𝑒𝑟𝑠  80 40 20 

Normalization Min-max Standard Min-max 

𝑑𝑒  64 32 64 

Encoder hidden layers (reversed for 

discriminator) 

(512,256) (512,256) (256,128) 

𝛼  1 1 2 

𝜆  2 1 0.5 

Hidden layers dropout 0.2 0.2 10 

Discriminator dropout factor 1 1 1 

Adversarial learning rate 0.002 1×10-5 0.1 (fixed) 

Batch size 256 512 8 (fixed) 

AdamW weight decay 0.1 0.1 0.1 

Separate iterations for source and 

target data 

False False True 
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If separate iterations, whether first 

iteration should be source or target 

Target Target Target 

 

Table 4.8: CORAL hyperparameters selected via random search. 𝑑𝑒 is the dimension of the embedding at the output 

of the encoder, while (𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) are CORAL loss weighting parameters for the encoder output and the predictor 

output, respectively. 

Hyperparameter Dataset (number of random search configurations) 

dfPFC (200) PDAC (200) Mouse cortex (1000) 

𝑛𝑚𝑖𝑥  10 30 10 

𝑛𝑚𝑎𝑟𝑘𝑒𝑟𝑠  80 80 20 

Normalization Min-max Standard Standard 

𝑑𝑒  32 64 64 

Encoder hidden layer sizes (256,128) (512,256,128) (256,128) 

Activation unless otherwise 

specified 

Leaky ReLU Leaky ReLU ReLU 

(𝜆𝑒, 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) (200,200) (200,200) (0,100) 

Hidden layers dropout 0.2 0.5 0.5 

Learning rate 0.01 0.001 1×10-4 

Batch size 512 512 8 (fixed) 

AdamW weight decay 0.3 0.3 0.1 

 
One notable aspect that we found was that for the dlPFC and PDAC sets, the weights 

(𝜆𝑒 , 𝜆𝑙𝑜𝑔𝑖𝑡𝑠) for the CORAL loss were the maximum possible options along with the weight decay, 

whereas with the mouse cortex data, lower values of 𝜆 were selected. 

4.4 Adversarial training results 

As discussed previously, adversarial training is inherently a two-sided problem and is prone 

to reaching a state where it does not converge. We show, as an example of stable training, the 

accuracies of ADDA on the mouse cortex datasets, which was a performant model in all metrics 

and the top performer on the Spotless “gold standard 1” set, in Fig. 4.2. As is visible, although the 
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accuracy is noisy, due to the small batch sizes used, the accuracy during the training phase for all 

components (discriminator and encoder) on both datasets remain stable and do not individually 

converge across all 20 epochs. 

 

Fig. 4.2: Accuracy of discriminator and encoder of ADDA; it was not possible to separately measure the accuracy of 

the encoder during evaluation and so is left out of the validation subfigure. 

We further investigated the performance ADDA during training on the spotless gold standard 

dataset by testing its deconvolution performance at every epoch checkpoint shown in Fig. 4.3, 

including continued training for another 80 epochs (100 total), where the used model at the 20th 

epoch (epoch 19) is indicated with a vertical line. We found that its performance had reached its 

final equilibrium point in a single epoch. Interestingly, both the train and test performance 

decreased over the pretrained model (shown as epoch “-1”). This is in line with our earlier 

conjecture in Section 3.4.2, as well as the ADDA authors’ comments [29], that as ADDA is highly 

dependent on pretraining and the target encoder’s weights are not shared with the source encoder 

nor trained in any prediction task, that the target encoder is highly sensitive to initialization. 
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Fig. 4.3: Performance shown as cosine distance (lower=better) of ADDA on Spotless "gold standard 1" mouse cortex 

spots at each epoch of adversarial training when extending to 100 epochs, performance before training is shown at 

epoch "-1", while the 20th epoch (epoch 19) that was the final model is indicated with a vertical line. 

An example of a model that had much more difficulty converging, at least in our investigation, 

was DANN. In Fig. 4.4, we show the accuracy at the discriminator on training and validation data 

across both sets separately; as neither discriminator nor encoder can be separated to show different 

results, this reflects both optimization tasks. This was the model trained using the hyperparameters 

that were eventually selected and was considered stable for the epoch chosen by our criteria from 

Section 3.4.3. Even so, large oscillations from predicting mostly source and target were seen. We 

generally had more difficulty training DANN than ADDA; out of 600 models trained across the 3 

datasets (dlPFC, PDAC, Spotless mouse cortex), only 301 ever met the stability criteria at any 

epoch. An example of DANN that did not every reach stability is shown in Fig. 4.5; as accuracy 

steadily increased, this potentially is an example of modal collapse because of the discriminator 

overfitting. 

 

Fig. 4.4: Accuracy at each iteration (end of epoch for validation) on domain discrimination task for final DANN model 

on Spotless “gold standard 1” mouse cortex dataset. Selected epoch 372 indicated with a vertical bar. Note that as 
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training of the encoder of the encoder and discriminator were not performed separately, we were unable to 

individually track their accuracies. 

 

Fig. 4.5: Potential mode collapse in the generator of DANN. This can be seen by the accuracy for both domains 

steadily increasing over training, indicating overfitting of the discriminator. 

4.5 Effect of domain adaptation 

Table 4.9: Performance of CellDART and ADDA on source pseudo-spots comparing pretraining only and after domain 

adaptation stage. Values are cosine distance, where lower is better. 

Model Stage dlPFC PDAC Mouse cortex 

CellDART 

(ours) 

Pretrain 0.20242 (0.00188) 0.00972 (0.00028) 0.04599 (0.00237) 

After 

UDA 

0.29581 (0.04825) 0.03794 (0.00311) 0.07141 (0.01079) 

ADDA Pretrain 0.16617 (0.00098) 0.01225 (0.00006) 0.02749 (0.00011) 

After 

UDA 

0.16617 (0.00098) 0.01225 (0.00006) 0.02749 (0.00011) 

 
As both CellDART and ADDA had pretraining stages, we were also able to compare 

performance with just pretraining and after domain adaptation. Table 4.9 shows a decrease in 

source dataset performance for CellDART after domain adaptation due to the generalization task, 

while there was no change in performance for ADDA, which uses separate encoders for source 

and target dataset. 

Table 4.10: Performance of CellDART and ADDA comparing RF50 between source and target data before and after 

domain adaptation stage. Values are expressed as discrimination accuracies, where lower is better. Test samples were 

used for both sets, except for PDAC where training samples were used as target samples. 
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Model Stage dlPFC PDAC Mouse cortex 

CellDART 

(ours) 

Pretrain 0.99226 (0.0032) 0.99998 (0.00003) 0.99922 (0.0006) 

After 

UDA 

0.9991 (0.00055) 0.99977 (0.00014) 0.99998 (0.00004) 

ADDA Pretrain 0.99196 (0.00202) 0.99918 (0.00132) 1.0 (0.0) 

After 

UDA 

0.94986 (0.01622) 0.88372 (0.02075) 0.78032 (0.20845) 

 

Table 4.11: Performance of CellDART and ADDA comparing miLISI scores between source and target data before 

and after domain adaptation stage. Test samples were used for both sets, except for PDAC where training samples 

were used as target samples. Perp.=perplexity, higher is better. 

Model Stage dlPFC (Perp.=30) PDAC 

(Perp.=30) 

Mouse cortex (Perp.=30) 

CellDART 

(ours) 

Pretrain 1.0 (0.0) 1.0 (0.0) 1.03059 (0.0212) 

After 

UDA 

1.0 (0.0) 1.33019 (0.1097) 1.02483 (0.02368) 

ADDA Pretrain 1.0 (0.0) 1.00101 

(0.00126) 

1.00084 (0.00062) 

After 

UDA 

1.25775 (0.03382) 1.81931 

(0.01604) 

1.2893 (0.11881) 

 
In both miLISI and RF50 as shown in Table 4.10 and Table 4.11 respectively, CellDART and 

ADDA both showed near complete separability between source and target embeddings after only 

pretraining. After domain adaptation, while ADDA showed modest (in dlPFC) to good (on PDAC 

for miLISI) improvements, CellDART only showed any improvement in PDAC in miLISI, while 

demonstrating no improvement in RF50. This shows that ADDA’s adversarial training phase 

achieved its purpose, while CellDART failed to do the same. 

Table 4.12: Performance of CellDART and ADDA comparing miLISI scores on real spots before and after domain 

adaptation stage. Test samples were used for both sets, except for PDAC. 

Model Stage dlPFC AUC 

(↑better) 

PDAC training 

AUC (↑better) 

Mouse cortex cosine 

distance (↓better) 
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CellDART 

(ours) 

Pretrain 0.60007 (0.01197) 0.49037 (0.00364) 0.22675 (0.06909) 

After 

UDA 

0.67013 (0.02787) 0.51736 (0.00707) 0.14755 (0.0764) 

ADDA Pretrain 0.59167 (0.01418) 0.49461 (0.00163) 0.30749 (0.06652) 

After 

UDA 

0.65349 (0.01498) 0.49236 (0.00141) 0.13697 (0.01517) 

 
In terms of final performance, Table 4.12 shows an improvement in performance over just 

pretraining for ADDA in both the dlPFC and Spotless mouse cortex slides, but no improvement 

for the PDAC set. As Fig. 4.3 shows, however, this improvement only occurred in the test slide, 

with a decrease in performance in both the training and validation slides. In addition, the scores 

reached their final resting positions within a single epoch. These points put ADDA’s supposed 

improvement in target domain performance due to adversarial training in question, which we 

discuss in Section 5.1.3. 

4.6 Comparison with original CellDART 

To ensure that comparison we made of our methods with CellDART in Section 4.1 was valid, 

we also compared the performance of our implementation against that produced by CellDART, 

shown for all metrics and datasets in Table 4.13. While the performance of either were not equal, 

neither performed better overall across all datasets or all metrics, and were generally within a 

standard deviation of one another, affirming that our reimplementation was true to the original. 

Table 4.13: Comparison of test performance between our reimplementation of CellDART with the original code, using 

the selected hyperparameters shown in Table 4.5. In each dataset and metric, the better performing score of the two 

is bolded and underlined. Standard deviation is shown in braces. 

Metric Dataset Our CellDART Original CellDART 

Source cosine 

distance 

(↓better) 

dlPFC 0.29581 (0.04825) 0.24922 (0.018) 

PDAC 0.03794 (0.00311) 0.06093 (0.01248) 

Mouse cortex 0.07141 (0.01079) 0.07385 (0.01074) 
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Source×target 

RF50 (↓better) 

dlPFC 0.9991 (0.00055) 0.99605 (0.00373) 

PDAC 0.99977 (0.00014) 0.99988 (0.00009) 

Mouse cortex 0.99998 (0.00004) 0.99996 (0.00009) 

Source×target 

miLISI (↑better) 

dlPFC (perp.=30) 1.0 (0.0) 1.04271 (0.05164) 

PDAC (perp.=30) 1.33019 (0.1097) 1.09925 (0.06027) 

Mouse cortex (perp.=5) 1.02483 (0.02368) 1.05944 (0.03526) 

Real spots 

 

dlPFC AUC (↑better) 0.67013 (0.02787) 0.63081 (0.00978) 

PDAC AUC (↑better) 0.51736 (0.00707) 0.51978 (0.00563) 

Mouse cortex cosine 

distance (↓better) 

0.14755 (0.0764) 0.20848 (0.1336) 
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5. Discussion and Future Work 

5.1 Analysis of results 

As we show in Section 4.2.3, while we were able to produce models (ADDA and CORAL) 

that outperformed CellDART in 2 out of the 3 datasets tested (dlPFC and Spotless mouse cortex), 

and CORAL outperformed RCTD on the dlPFC dataset, we were unable to show an improvement 

conclusively or consistently. We can eliminate the PDAC results, as it did not use a test sample 

and all models showed more-or-less the same 50% AUROC performance, indicating an evaluation 

protocol for real spots on PDAC (see Section 3.3.3) that was possibly flawed. Even then, 

CellDART outperformed both ADDA and DANN for the dlPFC set, and DANN and CORAL on 

the Spotless mouse cortex set, and no one method outperformed CellDART in both. 

Although ADDA was the best performer among the UDA models on the Spotless “gold 

standard 1” mouse cortex set, which was the only dataset we used that included true cell type 

proportions as ground truth to evaluate against, it did not outperform RCTD. Furthermore, for 

both, the Spotless mouse cortex dataset contained fewer genes (10,000 versus ~20,000) for the 

remainder as well as fewer samples (merely 45 in the training set and 9 in validation in test), which 

makes it a poor fit in how it might reflect real world usage. This is especially true given that 

ADDA’s score is not a drastic improvement over CellDART (cosine distance of 0.13697 versus 

0.14755, with lower being better). For a definitive result, both ADDA and RCTD would have to 

perform well on at least another dataset. The reverse could be said about CORAL with the dlPFC 

dataset, which although, being a 10x Genomics Visium dataset, reflects the main use case for cell 

type deconvolution as we explain in Section 3.3.3, the usage of only excitatory neurons to evaluate 

means that the metric used only serves as a heuristic. Similarly, the improvement demonstrated 

was modest (AUROC of 0.6958 versus 0.67013, with higher being better). 
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5.1.1 Gradient reversal layer causes poor adversarial training stability 

The only consistent conclusion in terms of real spot performance we can make is that we 

demonstrated that DANN was consistently the worst performer among the methods tested. As we 

reported in Section 4.4, it was difficult to train DANN to be stable, with nearly half (301 out of 

600) of all tested hyperparameter configurations in our random search never achieving the stability 

criteria we outlined for DANN for early stopping and hyperparameter selection in Section 3.4.3. 

Additionally, compared with ADDA, when DANN did achieve stability, it did so in a manner with 

large oscillations. These contrasting results can be seen by comparing Fig. 4.3 for ADDA and Fig. 

4.4 for DANN, each showing trends in the domain discrimination task over the course of training. 

In our initial testing, we were also unable to discern any clear pattern as to what ranges of 

hyperparameters resulted in a stable equilibrium being reached, which is what necessitated our 

early stopping and learning rate annealing protocol, shown in Algorithm 3.1. Even then, stability 

was difficult to achieve, as our remarks thus far have all been about training DANN with this 

protocol in place. 

There are several reasons why DANN may be so difficult to train. The first is that DANN 

trains on both the prediction task and domain discrimination task at the same time. This confounds 

each task, and there are obvious trade-offs, especially given that adversarial training by nature is 

unstable and thus can be knocked out of a metastable equilibrium easily. This may also explain 

CellDART’s poor performance in the level 2 domain variance metrics RF50 and miLISI (see Table 

4.2 and Table 4.3 in Section 4.2.2), where it failed to produce latent representations that corrected 

for differences in distribution between source and target. As CellDART trains both tasks in 

alternating iterations, it would also suffer from this problem somewhat as well, although it does 

not train both objectives at any given time. We also note that DANN generally performed better 
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than CellDART in RF50 and miLISI; this may also be due to our rule that only hyperparameter 

configurations where our stability criterion was met could be selected as part of the random search. 

A second reason why DANN has difficulty achieving an equilibrium during adversarial 

training is its use of a GRL to put the objectives of the discriminator and encoder in opposition to 

one another. As the authors of ADDA note, as the discriminator converges, the gradient as passed 

through the gradient reversal layer vanishes [29]. This means that the more the discriminator learns 

and as it performs better on the domain discrimination task, the smaller the weight updates of the 

encoder for the opposing task become. This may explain the large oscillations in Fig. 4.4: as the 

discriminator begins to converge in a certain direction in loss space following the gradient, it is 

difficult for the encoder to stop that convergence. This would also explain the modal collapse we 

observed in Fig. 4.5. In contrast, by training the encoder and discriminator in separate steps and 

using inverted labels, stronger gradients are passed to the encoder as accuracy in the discrimination 

task increases, which is why this technique is used in GANs [73] and ADDA. In light of this, we 

suggest that the label inverting approached used in CellDART [27] and ADDA are better suited 

for adversarial training tasks. 

5.1.2 Performance of ADDA wholly a result of initialization of target encoder 

ADDA was unique amongst our methods tested in that the subnetworks trained during 

pretraining to label source domain data, the source encoder and predictor, were independent of the 

subnetworks trained during the adversarial phase, the target encoder, and the discriminator. Given 

that the source and target encoder do not share weights, this, as stated by the authors of ADDA 

[29] and supported by our own observations, means that ADDA’s performance is highly dependent 

on how the target encoder is initialized, which is using the final pretraining weights of the source 

encoder. This is why we limited the number of adversarial epochs to 20. We also observe, as shown 
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in Fig. 4.4, that the performance of ADDA on the real spot cell type deconvolution task settles to 

an equilibrium within a single epoch, and that the performance on the training and validation sets 

actually decrease over the pretrained model (shown as epoch “-1”). 

A crucial observation when examining the implementation of ADDA is that the target encoder 

never has as an objective to specifically present a “correct” embedding for any given sample. Its 

only objective, across all stages of training, is to present to the discriminator embeddings from 

each of the source and target datasets that the discriminator is unable to discern from which dataset 

it came from. Thus, it does not matter to either the discriminator or the encoder whether the 

embedding presented to the discriminator represents the same cell type as was given as input to 

the encoder. The only way to enforce true mapping of embeddings is if samples from each of the 

source and target domain were matched. For these reasons, and our own observations as well, we 

theorize that the only reason that ADDA can perform any cell type deconvolution with any degree 

of accuracy at all is purely due to the initialization of the weights of the encoder. 

5.1.3 Remark on domain discrimination performance 

A proposition that we provided as justification for including the three levels of metrics, as 

defined in Section 3.3, was that a combination of different methods of evaluation could be used as 

a substitute for using datasets with hard ground truth labels in the target domain. We surmised that 

if a method performed well in pseudo-spots and demonstrated well matched latent mappings from 

each of the source and target domains, that a conclusion could be made that it would also perform 

well on target domain data. Our results in Section 4.1 do not bear this hypothesis out. While ADDA 

performed the best across all three datasets in the source domain, as shown in Table 4.1, and 

demonstrated relatively good performance across all three datasets in RF50 and miLISI, as shown 

in Table 4.2 and Table 4.3, the only dataset where its real target spot performance was good was 
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on the Spotless mouse cortex set. Furthermore, while CellDART showed middling performance in 

the level 1 pseudo-spots metrics and failure in the level 2 domain discrepancy metrics, CellDART 

was one of the better performers in level 3 on the dlPFC dataset and the best on the PDAC dataset. 

We must note, however, that we used ADDA’s source encoder for source data; since we used the 

target encoder for the inference task on the real spatial transcriptomics spots, the results in level 1 

metrics may not truly reflect the learning that would be transferred to the spatial transcriptomics 

domain. Additionally, we must also note that, as previously discussed in this section, that the spatial 

transcriptomics metric for the PDAC dataset may have been faulty, and thus the performance of 

CellDART in this must be met with a degree of skepticism. 

5.2 Future work 

The results we obtained, while not definitive, raised some interesting questions. One might 

speculate that RCTD did not perform well on the dlPFC set because the task involved identifying 

the layers in which excitatory neurons belonged; it performed otherwise the best on the Spotless 

“gold standard 1” set, and thus one possible explanation is that RCTD can broadly model cell types 

but is unable to distinguish between specific sub types and/or cell states; further analysis may be 

needed to investigate whether or not this is the case. Additionally, a potential reason for why 

CORAL performed poorly on the Spotless mouse cortex dataset was the small batch sizes due to 

overall small size of the dataset causing effects on calculated feature covariances. While this led 

to CORAL performing the best in the level 2 domain invariance metric for that dataset, we also 

noted in Section 4.3 that the weighting parameter 𝜆 selected in our hyperparameter search was the 

lowest among all models. We could investigate the effect of different batch sizes when using 

CORAL on the dlPFC set, which was our largest. 

 



73 

 

In terms of possible future approaches, in light of CellDART remaining a good performer, and 

as we remarked earlier in this section that the drawback of ADDA and DANN respectively were 

ADDA’s lack of source domain training during its adversarial phase and DANN’s gradient reversal 

layer, CellDART’s approach of using ADDA’s method of inverting labels for the adversarial task 

while using DANN’s approach of training both the prediction and domain discrimination tasks in 

the same phase appears to be an optimal solution. Given that CellDART’s primary issue was its 

inability to reduce domain mismatch, we believe that the most immediate avenue of work involves 

using methods to better improve its adversarial methods, such as by using the stability protocol we 

used with DANN, shown in Algorithm 3.1. 

Another interesting avenue to explore is addressing ADDA’s domain mismatch issue. 

Addressing the sample matching issue would help the target encoder produce better true 

embeddings for target samples. One approach to do this would be the use of a variety of cycle 

consistency loss consistent loss using cycle-consistent adversarial networks [111]. The authors of 

ADDA later presented cycle-consistent adversarial domain adaptation (CyCADA), which uses a 

pair of adversarial models in tandem with cycle-consistency loss, to ensure that individual images 

being mapped from one domain to another could be mapped back using a complementary model 

[112]. A similar approach could also be used for our implementation of ADDA by applying the 

same method to embeddings. As this approach would still allow for separate source and target 

encoders and would not rely on initialization, we could also tailor each encoder so for each 

modality, for example by using a GCN to for the spatial data to incorporate spatial information. 

We finally include the caveat that, as we used validation ground truths to perform 

hyperparameter tuning, our results are only valid in circumstances where there exists already at 

least 1 annotated slide to validate against. Otherwise, we suggest end users seeking to use our 
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methods to use the tuned hyperparameters we report in Section 4.3. Given current standard practice 

in UDA is to use some amount of “peeking” at the target labels to fine-tune models, as summarized 

in a review [113], and CellDART in fact did not use any holdout samples, using the same spatial 

transcriptomics slides to train, validate and tune hyperparameters, and evaluate their model, our 

conclusions are at least as robust as the current literature. That being said, the usefulness of UDA 

depends on its ability to perform well where no labels exist, and so a number of truly unsupervised 

methods of validation have been proposed, such as reverse validation, which involves using the 

trained UDA model to first label target domain samples, then training a second model on those 

samples as the new source domain and validating using source labels [114]; notably, this method 

was used to evaluate DANN when first presented by its authors [30]. We thus view leveraging 

these methods as a top priority for any future work so that we will be able to obtain truly robust 

results that are usable in many circumstances. 
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6. Conclusion and Summary 

In this work, we thoroughly compared and assessed the performance and behaviour of 3 deep 

UDA methods, being ADDA [29], DANN [30], and Deep CORAL [31], along with a task-specific 

UDA baseline, CellDART [27], and a Bayesian task-specific baseline, RCTD [32], of cell type 

deconvolution for spatial transcriptomics spots. Although we were unable to conclusively 

demonstrate that any of the UDA methods we compared (CellDART, ADDA, DANN, or CORAL), 

or indeed even RCTD, performed better or worse when applied to deconvolving target domain 

spots, we were able to gain insights that open the door for further investigation. We firstly found 

that DANN was difficult to train in a stable manner. We secondly found that while ADDA 

performed the best in the source scRNA-seq prediction task across all datasets, its performance on 

the target domain deconvolution task was wholly dependent on pre-initialization from a pretraining 

phase on the source domain. Finally, we noted that performance in inter-domain variance metrics 

did not necessarily translate in terms of performance from scRNA-seq source domain data to real 

target domain data. We finally laid the groundwork for future directions of research, including 

improved ADDA models to address the dependency on initialization, the including of GCNs to 

incorporate spatial information, and using truly unsupervised methods of hyperparameter tuning 

such as reverse validation [114]. 
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