
Network-based Application Monitoring as a
Service in Cloud Data Centers

Mona ElSaadawy

Doctor of Philosophy

School of Computer Science

McGill University

Montréal, Québec, Canada

June, 2022

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

©2022 Mona ElSaadawy

i

Abstract

Nowadays, many cloud applications can be considered large complex distributed services.
The increasing sophistication and complexity have made performance monitoring a major
issue and a critical process for both cloud providers and cloud customers. Many different
monitoring techniques are used for such applications to diagnose and resolve performance
issues, from simply measuring resource consumption, to application-specific measures such
throughput and request service time as well as observing how the different application
components invoke each other in form of a call graph during run-time. To fulfill such
monitoring needs, existing cloud monitoring systems require sophisticated application
and/or platform instrumentation which is cumbersome, requires expertise knowledge about
the application and/or platform, and cannot be deployed on-demand.

Interestingly, many of the application-specific performance metrics and dependencies can
be inferred from the network messages exchanged between the application components and
a variety of monitoring tools are thus based on such message exchange. Moreover, using new
trends such as Software Defined Networking (SDN) and Network Function Virtualization
(NFV) shows promise to instantiate monitoring functionalities into the network on-demand.
However, many of the existing network-based monitoring tools provide so far only partial
functionality and/or come with a significant overhead.

As such this thesis explores in a comprehensive manner the potential for the cloud
provider to offer holistic transparent Monitoring-as-a-Service (MaaS) functionality that is
purely based on monitoring network traffic avoiding software instrumentation and allows a
flexible placement of monitoring functionality in the network, and at the same time runs
with low overhead. The MaaS functionality includes providing some component-level
performance metrics, such as response time and throughput, information about the
dependency of components during run-time, and identifying the service type each
component provides e.g., MySQL database or a web-service.

We have worked on three contributions in this direction. Firstly, we explore how to
collect the measurements in the network and where to place the analysis functionality.
Towards this end, we explore existing network-based monitoring approaches and adjust
them for application monitoring, as well as propose a new network-based application
monitoring approach. In particular, we combine port mirroring with tunneling to enable
message filtering and reformatting, and we propose a novel sniffing approach. We provide

their implementations based on a software switch, analyze their advantages and
disadvantages, and provide a comprehensive performance evaluation to highlight the
trade-offs and show that moving application monitoring to the network is an attractive
option.

Secondly, we have designed and implemented a MaaS prototype, using the proposed
network-based monitoring approach that we have developed in the first step as core
building block. The MaaS prototype is itself a distributed system that follows a
client-server architecture that enables a flexible deployment of the monitoring and analysis
functionalities into the network. The MaaS prototype uses monitoring agents that are
co-located with software switches in order to extract performance metrics from the message
flows between application components in a non-intrusive manner, and that send the
calculated metrics to the administrators for visualization in near real-time and with
acceptable overhead. The agents support several service types and a wide range of
performance metrics to be monitored on-demand. In addition, the MaaS prototype is
designed in a modular way that allows for extensibility where new types of services and
new performance measures can be added to the MaaS in an incremental manner.

Thirdly, we have developed the DyMonD system that creates and visualizes application
call graph formations and offer service identification. It uses our network-based monitoring
approach to provide the cloud users a global view of how their application is actually
executing across services. DyMonD analyzes the packet traffic among components by
observing specific network flows at the switch-level, again in a lightweight manner. With
the extracted information it can determine call dependencies and service types, and track
performance metrics. In addition, DyMonD optionally performs a fine-grained service type
identification for microservice-based architectures. Among many approaches that perform
service type identification using network messages, including rule-based, statistical
correlation-based and deep learning-based approaches, DyMonD employs a novel deep
learning model that is based on Bidirectional LSTM layers to dynamically identify the
service type provided by each component to build a proper call graph. The advantage of
the deep learning approaches is that they limit the need of expert intervention. The
evaluation results show that DyMonD provides the call graph with high accuracy and with
a reasonable overhead compared to other network-based and application
instrumentation-based tools.

In summary, this thesis presents a holistic non-intrusive MaaS platform for monitoring
distributed applications that can be applied in a wide range of settings and provides both
the cloud and application administrators with the information they need to diagnose and
resolve performance issues.

iii

Abrégé

De nombreuses applications cloud peuvent aujourd’hui être considérées comme de grands
services distribués complexes. La sophistication et la complexité croissantes ont fait de la
surveillance des performances un problème majeur et un processus critique pour les
fournisseurs et les clients du cloud. De nombreuses techniques de surveillance sont utilisées
pour ces applications afin de diagnostiquer et de résoudre les problèmes de performance,
allant de la simple mesure de la consommation des ressources à des mesures spécifiques à
l’application telles que le débit et le temps de traitement des demandes, en passant par
l’observation de la manière dont les différents composants de l’application s’invoquent
mutuellement sous la forme d’un graphe d’appel pendant l’exécution. Pour répondre à ces
besoins de surveillance, les systèmes existants de surveillance du cloud requièrent une
instrumentation sophistiquée de l’application et/ou de la plate-forme, ce qui est difficile,
nécessite une connaissance approfondie de l’application et/ou de la plate-forme et ne peut
être déployé à la demande.

Il est intéressant de noter que de nombreuses mesures de performance et dépendances
spécifiques à l’application peuvent être déduites des messages réseau échangés entre les
composants de l’application et qu’une variété d’outils de surveillance sont donc basés sur
ces échanges de messages. En outre, l’utilisation de nouvelles tendances telles que le SDN
(Software Defined Networking) et la NFV (Network Function Virtualization) est
prometteuse pour instancier des fonctionnalités de surveillance dans le réseau à la
demande. Cependant, bon nombre des outils de surveillance existants basés sur le réseau
ne fournissent jusqu’à présent qu’une fonctionnalité partielle et/ou sont assortis d’une
surcharge importante.

Cette thèse explore de manière exhaustive le potentiel pour le fournisseur de cloud
d’offrir une fonctionnalité MaaS (Monitoring-as-a-Service) holistique et transparente qui
est purement basée sur la surveillance du trafic réseau sans instrumentation logicielle et
permet un placement flexible de la fonctionnalité de surveillance dans le réseau, tout en
fonctionnant avec une faible surcharge. La fonctionnalité MaaS comprend la fourniture de
certaines mesures de performance au niveau des composants, comme le temps de réponse et
le débit, des informations sur la dépendance des composants pendant l’exécution, et
l’identification du type de service fourni par chaque composant, par exemple une base de
données MySQL ou un service Web.

Nous avons travaillé sur trois contributions dans cette direction. Premièrement, nous
explorons comment collecter les mesures dans le réseau et où placer la fonctionnalité
d’analyse. À cette fin, nous explorons les approches de surveillance existantes basées sur le
réseau et les adaptons à la surveillance des applications, et nous proposons une nouvelle
approche de surveillance des applications basée sur le réseau. En particulier, nous
combinons la mise en miroir des ports avec le tunneling pour permettre le filtrage et le
reformatage des messages, et nous proposons une nouvelle approche de reniflement. Nous
proposons leurs implémentations basées sur un commutateur logiciel, analysons leurs
avantages et inconvénients, et fournissons une évaluation complète des performances pour
mettre en évidence les compromis et montrer que le transfert de la surveillance des
applications vers le réseau est une option intéressante.

Deuxièmement, nous avons conçu et mis en œuvre un prototype MaaS, en utilisant
comme élément de base l’approche de surveillance basée sur le réseau que nous avons
développé dans la première étape. Le prototype MaaS est lui-même un système distribué
qui suit une architecture client-serveur permettant un déploiement flexible des
fonctionnalités de surveillance et d’analyse dans le réseau. Le prototype MaaS utilise des
agents de surveillance qui sont co-localisés avec les commutateurs logiciels afin d’extraire
les mesures de performance des flux de messages entre les composants d’application de
manière non intrusive, et qui envoient les mesures calculées aux administrateurs pour
visualisation en temps quasi réel et avec un surcoût acceptable. Les agents prennent en
charge plusieurs types de services et un large éventail de mesures de performance à
surveiller à la demande. En outre, le prototype MaaS est conçu de façon modulaire, ce qui
permet une extensibilité grâce à laquelle de nouveaux types de services et de nouvelles
mesures de performance peuvent être ajoutés au MaaS de manière progressive.

Troisièmement, nous avons développé le système DyMonD qui crée et visualise les
formations de graphes d’appel des applications et l’identification des services d’offre. Il
utilise notre approche de surveillance basée sur le réseau pour fournir aux utilisateurs du
cloud une vision globale de la façon dont leur application s’exécute réellement à travers les
services. DyMonD analyse le trafic de paquets entre les composants en observant des flux
réseau spécifiques au niveau du commutateur, là encore de manière légère. Grâce aux
informations extraites, il peut déterminer les dépendances d’appel et les types de service, et
suivre les mesures de performance. En outre, DyMonD effectue en option une identification
du type de service détaillée pour les architectures basées sur les micro-services. Parmi les
nombreuses approches qui effectuent l’identification du type de service à l’aide de messages
réseau, y compris les approches basées sur des règles, des corrélations statistiques et
l’apprentissage profond, DyMonD utilise un nouveau modèle d’apprentissage profond basé
sur des couches LSTM bidirectionnelles pour identifier dynamiquement le type de service
fourni par chaque composant afin de construire un graphe d’appel adéquat. L’avantage des
approches d’apprentissage profond est qu’elles limitent le besoin d’intervention d’un expert.
Les résultats de l’évaluation montrent que DyMonD fournit le graphe d’appel avec une

grande précision et avec un surcoût raisonnable par rapport à d’autres outils basés sur le
réseau et l’instrumentation des applications.

En résumé, cette thèse présente une plate-forme MaaS holistique et non intrusive pour
la surveillance des applications distribuées qui peut être appliquée dans un grand éventail
de paramètres et fournit à la fois aux administrateurs du cloud et des applications les
informations dont ils ont besoin pour diagnostiquer et résoudre les problèmes de
performance.

vi

Acknowledgements

This PhD thesis would not have been possible without the support of many people.
Foremost, I am extremely grateful to my supervisor, Prof. Bettina Kemme, for her noble
guidance, support, full encouragement, enthusiasm, patience and continuous faith in me
over the years of my PhD journey. Her immense knowledge and plentiful experience have
given me the power and spirit to excel in my academic research and daily life. She is the
best mentor and advisor for my doctorate study beyond the imagination. Apart from my
supervisor, I want to express my gratitude to Prof. Mohamed Younis for his precious
contribution and guidance for my publications. His endless help and support are hard to
forget throughout my life.

I extend my gratitude to my PhD progress committee, Profs. Muthucumaru Maheswaran
and Jörg Kienzle for their invaluable advice, feedback and sharing insightful suggestions.

I would also like to thank my labmates, Omar Asad, Joseph D’Silva and Maximilian
Schiedermeier, for their help, useful discussions and and exchange of interesting ideas. I
also would like to thank the students that I co-supervised and who collaborated on some of
my research projects: Winnie He, Laetitia Fesselier, Taha Salman, Trung Thien, Jifeng
Wang, Petar Basta, Yunjia Zheng, Helen Kulka, Aaron Lohner, Ruoyu Wang and Xinchen
Hou. I am thankful for the quality work which they have done for validating and
implementing some of the ideas and concepts presented in this thesis.

A special thank to all of our system support staff, especially Andrew Bogecho. Andrew is
an amazing and very helpful guy. He facilitated access to all computing resources I needed
for my research projects and timely addressed any system issues, which was extremely
helpful throughout my work.

I want to express my gratitude to the organizations which provided me with funding to
pursue my doctoral studies: the Egyptian Cultural Office in Canada and Natural Sciences
and Engineering Research Council of Canada (NSERC), as well as the funding that my
advisor provided me with. Without these sources of funding, realizing this thesis would not
have been possible.

I also thank my friends for their unfailing support and continuous encouragement. I should
not forget to thank my family, especially my mother, Nagah, and my sisters for their
constant moral support, help, availability, affection, patience and hope they had given to
me. Without that hope, this thesis would not have been possible.

Last but not least, I want to express my deep appreciation and gratitude to my husband,
Nooreldin Salama, who enormously supported and encouraged me throughout this long
academic road and in my life in general. I am grateful for his patience, understanding and
coping with sometimes (often) long working hours towards the completion of this thesis. I
just could not be able to finish this thesis without his priceless help and support. Finally,
I’m very grateful to my two kids, Farida and Yusuf, who provide unending inspiration and
were patient enough of being even grumpier than normal whilst doing my PhD study.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contributions . 5
1.3 Publications . 8
1.4 Thesis Organization . 11

2 Background and Related Work 13
2.1 Networking Paradigms . 14

2.1.1 SDN . 14
2.1.2 NFV . 16

2.2 Cloud Architecture . 18
2.3 Performance Monitoring in the Cloud . 20
2.4 Network Monitoring . 21
2.5 Application Monitoring . 26

2.5.1 Software Instrumentation-based Application Monitoring 26
2.5.2 Network-based Application Monitoring 28

2.6 Network-based Service Identification . 30
2.6.1 Rule-based NTCs . 31
2.6.2 Traditional Machine Learning based NTCs 32
2.6.3 Deep Learning-based NTCs . 33

3 Application Monitoring as a Network Service 34
3.1 Collecting Application Monitoring Data via Port Mirroring 34

3.1.1 Port Mirroring Principles . 35
3.1.2 Using Mirroring Techniques for Application Monitoring 37

3.2 Sniffer . 40
3.2.1 Design . 41

3.3 Evaluation . 43
3.3.1 Application Latency . 46
3.3.2 Computational Overhead . 48

3.3.3 Switch Overhead . 49
3.3.4 Communication Overhead . 50

3.4 Summary . 51

4 Monitoring as a Service (MaaS) 53
4.1 Overall Architecture . 53
4.2 Performance Metrics . 58
4.3 Extensibility . 61

4.3.1 Integrating New Communication Protocol Parsers 61
4.3.2 Integrating New Performance Metrics 61

4.4 Evaluation . 64
4.4.1 Application Latency . 65
4.4.2 Computational Overhead . 66
4.4.3 Communication Overhead . 67

4.5 Summary . 68

5 Flow-based service type Identification using Deep Learning 69
5.1 The Principles of Using Deep Learning for NTCs 70
5.2 Data Generation and Service Types . 71
5.3 Dataset Preprocessing . 73

5.3.1 Header- and Payload-based data extraction 74
5.3.2 General Design Parameters . 75
5.3.3 Final Flow-based Datasets . 77

5.4 Deep Learning Models . 78
5.5 Experimental Evaluation . 81

5.5.1 Model Training and Validation . 81
5.5.2 Performance Metrics . 85
5.5.3 Performance Comparison of the Different DLMs 86
5.5.4 The Impact of the Packet Position in the Flow 89
5.5.5 Performance on a Per-service Basis 90
5.5.6 Secured Payloads . 93

5.6 Summary . 97

6 Dynamic Application Call Graph Formation and Service Identification
Platform 99
6.1 DyMonD Overview . 100

6.1.1 Sample Application Call Graphs . 101
6.1.2 Design . 105

6.2 DyMonD Agent . 107
6.2.1 Flow Detector . 107

x

6.2.2 Packet Capture . 108
6.2.3 Service Identifier . 109
6.2.4 Performance Analyzer . 110

6.3 DyMonD Controller . 110
6.3.1 Controller with a Single Agent Configuration 110
6.3.2 DyMonD in a Multi-agent Settings 115
6.3.3 Other Practicality Considerations . 116

6.4 Visualization Frontend . 117
6.5 Dynamic Service Identification . 117

6.5.1 Training CNN+BiLSTM DLM for DyMonD 118
6.5.2 Service Identification for HTTP-based Microservices 118

6.6 Evaluation . 121
6.6.1 Service Identification Evaluation . 121
6.6.2 Validating Call Graph Accuracy . 124
6.6.3 DyMonD Overhead . 125
6.6.4 Analysis Complexity . 129
6.6.5 Use-Cases . 131

6.7 Summary . 133

7 Final Conclusions & Future Work 135
7.1 Conclusions . 135
7.2 Future Work . 137

7.2.1 Scalability evaluation . 137
7.2.2 Monitoring Using a P4-based Switch 138
7.2.3 Spicy Integration . 139
7.2.4 Optimization of DyMonD’s Service Identifier Module 140
7.2.5 Performance Monitoring for Serverless Applications 141
7.2.6 Employing MaaS in Network-based Solutions for Other Domains . . . 142

Bibliography 144

Acronyms 158

xi

List of Figures

1.1 Example of a multi-tier application architecture. 2

2.1 Traditional and SDN based networking. 15
2.2 The OVS architecture. 17
2.3 Example of cloud architecture . 19

3.1 Monitoring options in the network . 36
3.2 Request/response packet pair matching methodology 37
3.3 The overview of the proposed sniffer. 40
3.4 Sniffer architecture. 41
3.5 Packet capturing overview . 42
3.6 Test application architecture. 45
3.7 Average latency reported by YCSB client under various monitoring approaches. 46
3.8 Analysis tool CPU utilization. 48
3.9 OVS link latency impact of different mirroring-based approaches 50
3.10 Communication overhead when the analysis is conducted by a remote tool . 51

4.1 MaaS prototype architecture. 54
4.2 MaaS User interface to request monitoring [Fes]. 56
4.3 MaaS dashboard [Fes]. 57
4.4 Examples of implemented performance metric types. 62
4.5 Testbed architecture for MaaS prototype. 64
4.6 The MaaS prototype overhead . 66

5.1 The network flow composition in our flow-based dataset. 74
5.2 Frequency distribution of service types. 77
5.3 Three-layer Long Short Term Memory (LSTM) architecture (figure adapted

from [LKK+19]). 78
5.4 Combined convolutional neural network (CNN) and LSTM model architecture

(figure adapted from [MCSL17]). 79
5.5 Proposed CNN and Bidirectional LSTM model architecture. 80

xii

5.6 Aggregated performance for the header-based datasets. 87
5.7 Aggregated performance for the payload-based datasets. 88
5.8 The impact of the extracted packets’ position in the flow in both header-based

and payload-based datasets. 89
5.9 F1-score for individual service types for the payload-based datasets. 90
5.10 F1-score for individual service types for the header-based bidirectional dataset. 92
5.11 Aggregated performance for the encrypted bidirectional payload-based datasets. 93
5.12 F1-score for individual service types using ∆1. 95
5.13 F1-score for individual service types using ∆2. 95

6.1 Call graph for three-tier web application. 101
6.2 Call graph for TeaStore (Edge information is hidden for better readability). . 103
6.3 Call graph for SockShop (Edge information is hidden for better readability). 104
6.4 DyMonD architecture overview . 106
6.5 DyMonD agent architecture includes flow detector, packet capture, service

identifier, and performance analyzer . 107
6.6 DyMonD controller architecture. 111
6.7 Middle-flow classification performance of the CNN+BiLSTM model for the

client/server flows of encrypted and unencrypted service types in terms of
Precision, Recall and F1-score. 122

6.8 Testbed architecture for DyMonD. 126
6.9 Overhead of different monitoring tools for YCSB, TeaStore and SockShop. . 127
6.10 Execution time of DyMonD agent and controller analysis functions. 129
6.11 The breakdown of the execution time of DyMonD controller analysis functions.130
6.12 The call graph for a YCSB application with Memcached-misconfiguration,

where the MySQL service (light blue) has a higher throughput towards the
web-server than the Memcached service. 132

6.13 A part of TeaStore call graph with replicated authentication service. 133

xiii

List of Tables

2.1 Application monitoring tools for distributed applications 26

3.1 A list of evaluated approaches along with their characteristics. 44

4.1 Performance metrics for request/reply based services. 59
4.2 Events used for performance metric update and computation. 63
4.3 Performance metrics extracted for each monitoring configuration. 65

5.1 Services and applications used for model training and testing. 82
5.2 Examined parameter space . 83
5.3 The optimal hyper-parameter values for the payload-based dataset (U:

uniform, N: normal, G: glorot uniform, S: softmax, R: rmsprop, A: adam). . 84
5.4 Training time (in seconds) of different DLMs for header-based and payload-

based datasets. 84
5.5 Confusion matrix for 3-LSTM with bidirectional payload-based dataset. . . 91
5.6 Confusion matrix for 1-BiLSTM with bidirectional payload-based dataset. . . 91
5.7 Confusion matrix for CNN+BiLSTM with bidirectional payload-based

dataset. 92

6.1 Detected service labels for HTTP-based microservice vs. the actual ones . . 124

1

1
Introduction

Many application domains have started to move their services into the cloud, such as e-
commerce, health management, education, entertainment, and many more. The performance
of these applications has a direct impact on revenue and customer satisfaction. For example,
Google loses 20% traffic for each additional delay of 0.5 second to their page-load time and
Amazon loses 1% of revenue for every 100 ms in latency increase [JKW17]. Overall, effective
use of logging and monitoring is an important part of administrating the cloud applications,
keeping track of their performance, and to detect, diagnose and resolve performance-related
problems.

1.1 Motivation

Cloud applications often follow a distributed service-oriented architecture for modularity,
scalability and reliability purposes.

Figure 1.1 illustrates a basic example of a multi-tier architecture with a front-end

1.1 Motivation

Front-end
server

Implemented as a
web-service

Application
server 1

Implemented as a
web-service

MySQL
Database

Memcached
Application

server 2
Implemented as a

web-service

Figure 1.1: Example of a multi-tier application architecture.

server, application servers, Memcached1-based caching service and a MySQL2 database for
persistence. Each component normally runs on a dedicated virtual machine (VM) or
container, or may be replicated on a cluster of machines to support higher demand. The
front-end web server receives client requests and distributes them to the application server
replicas, where the processing logic is stored. As such, front-end servers also often serve as
a load balancer. Both types of components are often implemented as HTTP-based
web-services. Processing client requests can involve data retrieval from different data
sources such as databases and/or caches, in the above example a MySQL database and a
Memcached caching service. Cache systems are used to store the most frequently accessed
data in main-memory in order to reduce latency. However, more and more applications are
further divided into smaller components with tens of microservices where each of them is
typically a HTTP-based web-service and internally implements a particular functionality
such as an authentication or a recommendation service. These architectures have further
expanded to include replicated and/or distributed services for scalability and reliability,
e.g., a multi-node Cassandra key-value store [Cas] or distributed computational services
such as Spark [Spa].

Performance analysis of such distributed applications is complex as there are many
possible causes for performance anomalies. Over time, a set of measures have been shown
to be useful and are provided by many monitoring tools. A common first step to get
insight into the performance and potential bottlenecks is to measure hardware resource
consumption in terms of CPU, memory, I/O and network. Many cloud monitoring tools
use the unit of a virtual machine on a hypervisor to observe the behavior of individual
components [dCRCG+16].

1https://memcached.org/.
2https://www.mysql.com/.

2

https://memcached.org/
https://www.mysql.com/

1.1 Motivation

On top of this, application-layer measures such as throughput, request service time,
message size, or characteristics of service call distributions are also important to
understand application performance issues, facilitating resource management and help
troubleshoot faulty applications. For instance, considering the distributed application
illustrated in Figure 1.1, if application replica 2 is not using the Memcached service at all
or less than expected (e.g., due to misconfiguration), this will cause significantly higher
response times for a subset of the requests since they need to be processed by the database
instead of the much faster cache. This kind of performance anomaly will not be detected
by looking at resource consumption unless the database is overloaded [LW15]. A similar
load on CPU, memory, and the network would be reported for each application replica as
they all do the same task – receiving an input request and then making a network call to
either MySQL database or Memcached server. However, this kind of performance anomaly
could be detected when looking at component throughput and response time between each
component as it would reveal higher message throughput between the application replica 2
and the database server compared to the one to the cache server, and a longer request
service time between the front-end and that application replica compared to the
application replica 1. Thus, end-to-end application-layer performance metrics as well as
their breakdown within and across components/tiers can help an administrator diagnose
application performance issues.

Furthermore, having a global view of the distributed application structure and
dependencies during run-time is also crucial [WZXG20]. With global view we mean a
visualization of how the different components invoke each other in form of a call graph [J.
17]. Ideally, a monitoring tool should be able to automatically generate during run-time a
graph that looks similar to Figure 1.1. It should not only include the structure and
dependencies among the components but also show the service type of each component,
e.g., that the component is a MySQL database or a HTTP-based web-service. Although
the overall architecture of an application is commonly described in some sort of
documentation, as applications evolve, new dependencies might be created that are not
reflected in the documentation. In addition, the actual inter-component dependency often
varies over time according to the workload. For example, replicas to the individual
application components might be added or removed or certain components might not be
active in a given setup. For instance, a run-time visualization of the example application in
Figure 1.1 shows there are two instances of the application server, while a documentation
might indicate only one application server. Furthermore, a system can be configurable with
various database systems, while the run-time visualization of the application call graph will
show the one actually used. Thus, real-time call graphs are needed [ERR18].

Overall, combining the run-time application call graph with the component-level
performance metrics such as throughput and response time provides a holistic application

3

1.1 Motivation

monitoring platform that can help the application administrator determine when particular
components become the bottleneck, or when misconfiguration causes outages such as the
caching service misconfiguration described above, as well as manage application
components far more efficiently.

Having such a global view of the application at run-time is not only beneficial to the
application administrators but also assists a cloud provider in placing applications properly;
for example ensuring that two database replicas are not put on the same server for more
reliability, or that a web-server is close to the caching service it calls frequently. Hence,
clouds must become “distribution-aware” so that they can deduce the overall structure and
dependencies within a client’s distributed application and use that knowledge to better guide
monitoring and management services.

For all the aforementioned monitoring features, many monitoring solutions exist [ama,
Goo22,SBB+,Zip,WEG,HvH20,LTRW,ZWG+18,WGH+15, sys,MCSL17,LKK+19,HLZ+].
Most existing monitoring systems [ama, Goo22, SBB+, Zip, WEG, HvH20] provide such
features through sophisticated application and/or platform instrumentation which are
tightly integrated and therefore must be developed for each application resp. platform.
Furthermore, they are mostly static, meaning that in order to enable monitoring, the
system must be properly pre-configured or the application must be interrupted and
restarted.

Interestingly, many of the application-specific performance metrics, dependencies and
service type information can be inferred from the messages exchanged between the
application components, and a variety of monitoring tools are thus based on such message
exchange. By sniffing the message flows that a component exchanges with other
components, they can deduce application performance metrics such as response time and
throughput and also infer inter-dependency information. Some of them [Tsh, sys, HLZ+]
exploit the programmability feature of new networking paradigms such as Software Defined
Networking (SDN) [JMD14] and Network Function Virtualization (NFV) [MSG+16] to
instantiate monitoring of application traffic flows on demand [LTRW] or integrate
application performance analysis function into the network component that routes the
application messages [ZWG+18,WGH+15]. Additionally, some work has shown that service
and application types can be automatically inferred from the network flows through deep
packet inspection (DPI) [LKC+16, SCP14], traditional feature-based machine learning
techniques [ZXW+13], and more recently, deep learning techniques [MCSL17,LKK+19]. A
strength of these network-based monitoring systems is that they do not require platform or
application instrumentation. This is a strong advantage because they can support a wide
range of service types without necessarily requiring a deep expert knowledge in all the
different applications and platforms that exist or will exist in the future. This is crucial

4

1.2 Thesis Contributions

given the rapid changing market for cloud platforms. Furthermore, they can be
instantiated at run-time and do not require the application to be interrupted and restarted.
However, as far as we are aware of, none of these tools provides all of the application
monitoring capabilities we are aiming at but rather focuses on specific functionality. That
is, they do not represent full-fledged, integrated real-time application monitoring systems.
Furthermore, the systems we explored all induced a significant overhead on the application
and/or network components.

Given this context, the broad objective of this thesis is to explore how to provide a
holistic and comprehensive Monitoring-as-a-Service (MaaS) solution that has the
advantages that come with deriving all information from the network flows between
components but overcomes the shortcomings of existing network-based work. Towards this
end, this thesis proposes a holistic dynamic network-based application performance
monitoring system that provide four main features: 1) It provides the communication
structure of a running distributed application in form of a call graph, 2) it automatically
derives the service type of each component, 3) it derives important performance metrics for
each component as a whole and in regard to the other components it interacts with, and 4)
it does all that with very low overhead and on-demand, that is, without interrupting the
running application. Being a network-based approach, our MaaS solution does not rely on
application or platform instrumentation or deep knowledge about specific services. The
proposed solution allows for dynamic and flexible integration of monitoring and analysis
functionality into the cloud infrastructure in a transparent way, serving both cloud and
application administrators. We envision it to be offered by the cloud provider as a service,
to check the health of the running applications and/or manage the cloud resources.

1.2 Thesis Contributions

The main contribution of this thesis is a dynamic holistic network-based application
monitoring framework that decouples the monitoring functionality from the application
platform and the applications themselves, and can be deployed on demand at run-time
with low overhead. We do that by developing an efficient network monitoring function that
runs at the software layer of the network. In contrast to many network-based solutions, it
follows a loosely coupled approach that offers a flexible and adjustable integration of
application monitoring and analysis functionality into the network with minimal overhead.
More concretely, this thesis provides the following contributions:

5

1.2 Thesis Contributions

Application monitoring in the network The first step of this thesis was to design a
solution that collects the data at the communication layer and links it to the analysis with
reasonable overhead. While there are network-based solutions that are located at the end-
hosts where the components reside, intercepting the message flows right when they leave or
arrive at the component, our focus was at looking how we can integrate the solution deeper
in the network layer, by exploiting the characteristics and capabilities of software-defined
networking. To this end, we have explored existing SDN-based monitoring approaches,
some already used for application monitoring, others mainly designed for monitoring the
network itself, and have evaluated their performance in terms of the impact on the network
element and communication overhead. We have found two different existing approaches.
The first is to instrument SDN components such as switches and routers such that they
duplicate messages to forward a copy to a second destination that then performs the actual
analysis [LW15,LTRW]. While it has the advantage of simplicity, the message traffic overhead
can be significant. The second approach is to extend the source code of the software switch
to have an inclusive analysis function [ZWG+18,MHM+14,CLKdR16,WGH+15,DFC+16].
However, the extra computation might have a negative impact on latency and throughput.
Therefore, we advocate a novel network-based monitoring approach that strikes a balance
between responsiveness, compute and message overhead. We have been inspired by the NFV
concepts where the network functionality is executed within virtualized functions that are
executed in the software but are still an integrative part of the network. We have adapted
a conceptual similar strategy to allow for a flexible and adjustable amount of application
monitoring and analysis functionality within the network. The main idea is to decouple
the network monitoring function from the switch forwarding path by developing a virtual
network monitoring function, that we refer to as a sniffer, that is only loosely coupled with
the switch functionality, and runs on the host of the software switch. This sniffer inspects
messages and is able to calculate performance metrics locally as needed. It can then send
performance results and/or message summaries to an analysis server for aggregation. Such an
approach works for software switches that run on general purpose hardware that also allows
other processes to execute. In our comparative study, we have evaluated and compared
our solution with the other approaches for calculating one specific application performance
metric, namely response time. Our results show that our solution performs favorable in terms
of impact on the monitored application, general resource consumption and communication
overhead.

Monitoring as a Service (MaaS) prototype The second contribution of this thesis
is the design and implementation of a possible architecture for a holistic Monitoring-as-a-
Service (MaaS). The service needs to allow the administrators to specify the components
and the performance metrics they are interested in. As such we have designed a multi-
tier distributed architecture where the sniffers at the software switches serve as agents to

6

1.2 Thesis Contributions

collect performance metrics and communicate with an analysis component for aggregation
and coordination. A front-end component interacts with the MaaS client to receive the
monitoring requests and visualize the results in near real-time. We have developed solutions
for a wide range of common application-level performance metrics, for instance throughput,
response time, error rates and request types. Several of these performance metrics are
independent of the service types but some require some deep message inspection- which
we support so far for a range of services, for instance HTTP-based web-services, MySQL
database and Memcached. We have designed our MaaS system so that new types of services
and new performance metrics can be added in an incremental manner.

DyMonD In our third contribution, we have extended our application monitoring
functionality to provide a further service, namely dynamic identification of application
component call graphs. We have proposed DyMonD, a full-fledged network-based
framework for dynamic holistic application level monitoring that: 1) infers the overall
structure and dependencies between distributed components of the cloud applications, 2)
identifies the service type provided by each application component, 3) and tracks
component performance metrics such as throughput and response time. It can serve an
arbitrary number of different services and platforms with low overhead using the sniffer
approach. So far, our solution supports request/reply-based services as a proof of concept
given their ubiquity usage by the cloud applications. DyMonD analyzes the packet traffic
among components by observing relevant network flows. With the extracted information it
can determine call dependencies and service types, and track component performance
metrics. DyMonD employs a novel deep learning model to classify the service type of each
component through the packet data. Therefore, it does not need to rely on static
information such as service ports. DyMonD classifies particular software systems that are
widely used by cloud applications, such as MySQL, Memcached, or web-service (based on
HTTP). In contrast to many other deep-learning based service identification solutions,
which rely on receiving the first few (handshake) packets of a connection, DyMonD
provides excellent prediction results even if monitoring starts at a random time after
connection setup. Furthermore, DyMonD yields high prediction accuracy for secured
traffic.

In this prospective, this thesis also contributes with generating a large flow-based dataset
for a wide range of commonly used service types in multi-component cloud applications,
conducting a thorough analysis of using different deep learning architectures for recognizing
them, examining various design parameters and demonstrating their trade-offs.

Furthermore, for micro-service architectures, which wrap each component as a
web-service based on the HTTP protocol, DyMonD can optionally determine

7

1.3 Publications

application-specific service types (e.g, "authentication" or "recommender") by performing a
deep-packet inspection and applying natural language processing techniques.

1.3 Publications

This section lists the publications that are part of this thesis along with a brief of their
contributions.

Published

[Els19] Monitoring as a service for SDN based cloud data centers.
Mona ElSaadawy.
Proceedings of the 20th International Middleware Conference
(Middleware’19) (Doctoral Symposium), 2019.

In this paper, we outline the research problem and motivation of this Ph.D. thesis, as well
as the foundation and initial design of our three contributions: Sniffer, MaaS framework,
and DyMonD. This work is done by me under the guidance of my advisor.

[SKY] Enabling Efficient Application Monitoring in Cloud Data Centers using
SDN.
Mona ElSaadawy, Bettina Kemme, and Mohamed Younis.
IEEE International Conference on Communication, ICC’20, 2020.

In this paper, we explore mechanisms to integrate application monitoring into SDN. In
particular, we analyze whether switch-based message filtering is feasible and see whether
the amount of messages that need to be sent to an external analysis tool can be reduced by
exploiting the filtering capacity of SDN switches without impacting the switches’
performance. Furthermore, we advocate a novel approach that strikes a balance between
responsiveness, compute and message overhead. The main idea is to decouple the
monitoring function from the switch forwarding path by developing a separate process that
is only loosely coupled with the switch functionality, and runs on the host of the software
switch. Such an approach works for software switches that run on general purpose

8

1.3 Publications

hardware that also allows other processes to execute. This separate process allows for a
flexible and adjustable amount of application monitoring and analysis at the software
switch itself. We conducted an extensive performance evaluation and comparison of the
approaches presented in this paper, as well as highlighted the corresponding trade-offs. As
the main contributor of this paper, I designed and implemented the proposed monitoring
approach and performed the experiments under the guidance of my advisor. Profs. Bettina
Kemme and Mohamed Younis joined the discussion of the paper, provided feedback, and
helped with the paper writing. The contributions made by this paper are covered in
Chapter 3

[EFK21] Application Monitoring as a Network Service.
Mona ElSaadawy, Laetitia Fesselier, and Bettina Kemme.
41st IEEE International Conference on Distributed Computing Systems,
ICDCS’21 (Demo), 2021.

In this demonstration, we demonstrate the design and implementation of a complete
Monitoring as a Service (MaaS) framework that is built with the network monitoring function
proposed in [SKY] as core building block. The MaaS framework follows a client-server model
that provides a client interface, where a MaaS user can dynamically choose the components
to be monitored and what performance measures they are interested in, as well as the
monitoring duration/window. The current MaaS supports several service types and a wide
range of performance metrics. In addition, we have designed the MaaS software in a modular
way that allows for extensibility for new service types and performance metrics. As the main
contributor of this paper, I worked on the basic design and concepts of the MaaS framework,
and wrote the paper under the guidance of my advisor. Laetitia performed a considerable
part of the MaaS implementation through a summer undergraduate project and a follow-up
research course3. The contributions made by this paper are covered in Chapter 4.

[SBZ+] Flow-based Service Type Identification using Deep Learning.
Mona ElSaadawy, Petar Basta, Yunjia Zheng, Bettina Kemme, and
Mohamed Younis.
IEEE International Conference on Network Softwarization, Netsoft’21,
2021.

3COMP400 report:https://www.cs.mcgill.ca/~lfesse/doc/Application%20Monitoring%20As%20A
%20Network%20Service-v2.pdf

9

https://www.cs.mcgill.ca/~lfesse/doc/Application%20Monitoring%20As%20A%20Network%20Service-v2.pdf
https://www.cs.mcgill.ca/~lfesse/doc/Application%20Monitoring%20As%20A%20Network%20Service-v2.pdf

1.3 Publications

In this paper, we have provided a comprehensive study of the use of deep learning
models for service type identification of network flows considering various service types
that are commonly used in multi-component cloud applications. We have compared the
performance of various deep learning models, while using header-based and payload-based
data for training. We have highlighted the trade-offs and the impact of various parameters
on the classification performance and required model training time. As the main
contributor of this paper, I worked on generating the dataset from pre-collected network
traces, implemented the deep learning models along with their optimization algorithms,
run the experiments, and wrote the paper under the guidance of my advisor. Petar and
Yunjia collected the network traces for the considered service types. This includes the
development of three Java applications to use those service types. Prof. Mohamed Younis
helped in the paper editing and reviewing process. Part of the content of Chapter 5 of this
thesis is derived from this paper.

[ELW+21] DyMonD: Dynamic Application Monitoring and Service Detection
Framework.
Mona ElSaadawy, Aaron Lohner, Ruoyu Wang, Jifeng Wang, and Bettina
Kemme.
the 22nd International Middleware Conference (Middleware’21) (Demo),
2021.

In this demonstration, we demonstrate the design and implementation of DyMonD, a
holistic framework that dynamically monitors the software layer of the cloud network to track
dependencies between application components and derive performance metrics. It adapts a
novel deep learning model to identify the service type of each component, and visualizes all
information in form of a call graph. Our evaluation results confirm that DyMonD can infer
the proper call graph and identify the services at run-time with acceptable overhead and good
accuracy. As the main contributor, I worked on the design and implementation of DyMonD,
and wrote the paper under the guidance of my advisor. Aaron, Ruoyu and Jifeng worked on
the integration and communication between DyMonD’s individual components as well as the
visualization frontend through undergraduate research projects4. The contribution made by
this paper are covered in Chapter 6.

4DyMonD source code: https://github.com/a-a-lohn/DyMonD/

10

https://github.com/a-a-lohn/DyMonD/

1.4 Thesis Organization

Under revision

[SYWK22] Dynamic Application Call Graph Formation and Service Identification in
Cloud Data Centers.
Mona ElSaadawy, Mohamed Younis, Jifing Wang, and Bettina Kemme.
IEEE Transactions on Network and Service Management (TNSM), 2022.

This journal paper extends the previous Middleware demo paper about DyMonD by
presenting the details of DyMonD’s design, its individual components as well as the
performance evaluation. This work was done by me including writing the paper under the
guidance of my advisor. Prof. Mohamed Younis helped in the paper editing and reviewing
process. Jifeng helped in editing the visualization tool used by DyMonD through an
undergraduate research project. The contributions made by this paper are covered in
Chapter 6.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 presents some relevant background, as well as
relevant related work.

Chapter 3 provides first details about various approaches that can be used to
dynamically collect application information at the network layer with corresponding
limitations. We will then present our network-based application data collection approach
and its contributions towards limiting the monitoring overhead while providing flexibility
in integrating the monitoring and analysis functionality into the network.

Chapter 4 presents the design and implementation of a complete multi-tier Monitoring as
a Service (MaaS) architecture that is built with the network monitoring function proposed in
Chapter 3 as core building block. We will illustrate the application monitoring capabilities
of our MaaS prototype and discuss its extendability feature that allows for monitoring new
services and performance metrics by exploiting its modular implementations.

Chapter 5 provides a thorough analysis of the different deep learning approaches and
architectures that can be employed to classify the various service types that are commonly
used in multi-component cloud applications. We demonstrate the trade-off of various deep
learning approaches and analyze their sensitivity to crucial design parameters in terms of

11

1.4 Thesis Organization

service identification performance and training time overhead. Additionally, we introduce
two novel deep learning architectures which adapt Bidirectional deep learning models that
outperform the other models in terms of service identification accuracy with reasonable
overhead.

Chapter 6 presents DyMonD, our holistic application monitoring framework that infers
the application dependency information, labels the application components with the service
type it provides, tracks component-level performance metrics, and then visualizes all this
information in the form of a call graph. It employs our network-based monitoring approach
as well as the proposed Bidirectional deep learning model. We also show the additional
fine-grained service identification feature that DyMonD offers for microservice-based
architectures.

All chapters describe main contributions, present our concrete solution, describe its
implementation and present a detailed performance evaluation that shows the feasibility
and relevance of the solution.

Chapter 7 provides the conclusions of the thesis and outlines some of the future research
directions in the context of Monitoring-as-a-Service.

12

13

2
Background and Related Work

This chapter provides background in cloud networking, cloud management and monitoring
approaches as well as related work pertinent to this thesis. In Section 2.1, we take a brief
look at software-driven networking paradigms such as SDN and NFV, and their
characteristics that enable the dynamic management and provision of today’s cloud
network infrastructure. We then show in Section 2.2 the basic architecture of cloud data
centers and how distributed applications are deployed inside them. We then discuss the
basics of performance monitoring in Section 2.3. We present the set of performance
measures that are usually tracked in today’s cloud data centers to ensure the health of the
cloud infrastructure and cloud applications. This includes system, network and application
layer measures. We then introduce in Section 2.4 various approaches used for network
monitoring, with emphasis on the ones that adapt SDN and/or NFV to provide agile
monitoring mechanisms. Section 2.5 focuses on application-layer performance monitoring
which can be either done by instrumenting the application/platform at their running host,
or by analyzing the network messages that are exchanged by the components of the
distributed application. We discuss the advantages of network-based performance
monitoring techniques that motivate us to employ it as a best candidate for the
Monitoring-as-a-Service solution we aim at. Finally, in Section 2.6 we have a more detailed
look at the area of network traffic classification as it is highly relevant for service
identification in our application monitoring context.

2.1 Networking Paradigms

2.1 Networking Paradigms

2.1.1 SDN

Software Defined Networking (SDN) [JMD14] is a relatively new computer networking
paradigm providing a fundamental shift in the way network configuration and real-time
traffic management is performed. To motivate SDN, we first describe the functionality of
networking devices and the traditional way to configure them. From there, we discuss the
limitations of this traditional configuration approach that call for a new network
configuration paradigm such as SDN.

Traditional Networks

Networking devices such as switches and routers are the building blocks that enable
communication between entities on a network. Enabling communication means anything
that helps data get from source to destination. For example, a network switch is a
multi-port device that receives messages on its input ports and forwards them to its output
ports according to given forwarding rules. Those forwarding rules use the received packet
information such as the destination IP address and map it to an action such as forwarding
the packet to an output switch port or even dropping it. For example, a forwarding rule
could be that any packet received from the switch port number X with destination IP of
A.A.A.A, should be forwarded to the switch port number Y . These forwarding rules
represent the control plane of the networking device, while the actual process of relaying
the messages represents the forwarding plane.

Traditionally, networking devices have been developed by manufacturers. Each vendor
designs their own firmware and other software to operate their own hardware in a proprietary
way [KRV+15]. Thus, the forwarding rules are configured and deployed into the hardware of
the networking devices through the proprietary software as illustrated on the left hand side
of Figure 2.1, leading to a tight coupling of control and forwarding planes. This traditional
approach of manual configuration of networking devices is cumbersome and error-prone for
large networks. In addition, it significantly increases the complexity and cost of network
reconfiguration required whenever new services, technologies or hardware are to be deployed
within existing networks, or to implement network optimization algorithms such as traffic
prioritizing, access control, and bandwidth management that are used to achieve the required
Quality of Service (QoS) defined for the running applications.

Being aware of these limitations, the networking research community has worked on

14

2.1 Networking Paradigms

SDN

Control plane

Forwarding plane

Figure 2.1: Traditional and SDN based networking.

analyzing the design of traditional networks and proposed abstractions that allow for easier
and better network configuration. Thus, proposals for a new networking paradigm, namely
programmable networks have emerged.

SDN-based networks The SDN framework is one of the programmable networks
proposals. It centralizes the control plane in a piece of software decoupled from the
networking device hardware (i.e. the forwarding plane) as illustrated on the right hand side
of Figure 2.1. This allows network control to become directly programmable via an open
interface (e.g., OpenFlow [MAB+08]) and the underlying infrastructure to become simple
packet forwarding devices that can be programmed. This programmability can be used to
automate network configuration. Thus, SDN is a key element that is deployed in large data
center networks to provide a quick response to the dynamic change in the networking
requirements, while eliminating the manually intensive regime of fine tuning individual
hardware components.

The SDN framework consists of two main components: SDN controller and SDN switch
[JMD14,KRV+15]. The SDN controller is a software-based entity that represents the control
plane in the SDN framework. The SDN controller provides a set of rules to the SDN switches,
indicating how to forward the different flows through the network. A network flow is defined
as the packet stream between a source and a destination that is typically identified by a
set of packet header fields, including layer 2-4 (i.e. data link, network and transport layers)
packet information such as IP address, port number, protocol type, and other information.
As a result, the SDN controller can customize how to route individual flows using its own
application logic. OpenFlow – the de facto standard of SDN – is an API used for exchanging
control messages between the controller and the switches.

A SDN switch could be hardware- or software-based, and has one or more flow tables
– configured by the SDN controller through the OpenFlow API – which contain matching

15

2.1 Networking Paradigms

fields to match incoming flows’ packets with certain actions such as prioritization, queuing,
packet forwarding and dropping. When a packet reaches a port on the SDN switch, the
switch performs a lookup in the flow tables for a flow entry that matches the packet header
characteristics, such as destination IP address, and executes the set of actions defined in the
matched flow such as forward the packet to the switch port that is connected to the target
destination, duplicate the packet to another destination such as an analysis tool, or even
drop the packet. In the case of no match, the SDN switch forwards the packet (or just its
header) to the controller to request a new flow rule for the un-matched packet. In addition,
each flow rule has some counters, such as the flow’s number of packets and bytes, which are
recorded and updated based on the matched packets.

The following is an example of a flow table rule:

TCP protocol, Source IP= A.A.A.A, Source Port= X, Destination IP= B.B.B.B,
Destination port=Y, TCP Flags=ACK, Actions=output to out1, out2.

A.A.A.A and B.B.B.B. are the IP addresses of the source and destination communication
entities, respectively, and out1 and out2 are the switch ports connected to the targeted
destinations. In addition, the counters for the number of received packets and bytes are
updated accordingly, whenever a packet is handled that sets the flow rule to true.

2.1.2 NFV

Network functions such as packet switching, intrusion detection, load balancers and
firewalls are traditionally implemented as custom hardware appliances, where software is
tightly coupled with specific proprietary hardware. Network function
virtualization [MSG+16] has been recently proposed to provide more agile networks, with
significant savings for operation and capital expenses, by leveraging the virtualization
technology to design, deploy and manage network functions and services. This means that
network functions – including packet switching – can be implemented as an instance of
plain software that is decoupled from the underlying hardware, and running on
standardized compute nodes. OpenVswitch (OVS) [KAB+14] is one of the widely used
virtualized software switches in the networks of today’s cloud data centers. Various cloud
computing platforms and virtualization management systems have integrated software
switches such as OVS, including OpenStack [Lam14], openQRM [Ope], OpenNebula [Llo]
and oVirt [Ovi].

16

2.1 Networking Paradigms

Flow
table

0

Flow
table

1

Flow
table

n

User space

Kernel space

Kernel
Flow cache

Execute
Action set

Packet out
Packet in

Figure 2.2: The OVS architecture.

Software switch design and performance A software switch such as OVS typically
consists of a kernel space and a user space as depicted in Figure 2.2. They work together to
forward packets, with the user space being a full (but slow) set of forwarding rules while the
kernel space serves as a cache consisting of the subset of recently matched flow rules so that
active flows can be directly processed in the kernel. In particular, incoming packets are first
matched against the flow rules in the kernel space. If no match is found to a packet, it is
copied to the user space, and the flow matching process is executed in the user space. The
relevant rules are then cached to the kernel space. Due to the locality of the network traffic,
most packets should be processed in the fast kernel path. However, the kernel space has a
limited number of flow entries due to the memory size limitation.

Software switches have some performance issues due to memory copy and context
switching between the kernel and user spaces. To optimize the performance of software
switches, a set of libraries and drivers for fast packet processing is used such as the Data
Plane Development Kit (DPDK) [DPD]. With DPDK, a software switch can copy packets
to its user space with no kernel intervention which accelerates packet processing workloads
running on a wide variety of CPU architectures.

NFV deployment In a typical NFV deployment, a network operator sets up an NFV
infrastructure (NFVI). NFVI consists of computing nodes and network resources that host
the virtualized network functions (VNFs). In addition, the network operator obtains VNFs
from vendors that build the network function software, and installs the VNFs on the NFVI
using the NFVI infrastructure manager (VIM), which controls the allocation of resources for
the VNFs [MSG+16]. OpenStack [Lam14] is an example of an open source VIM, controlling
the physical and virtual resources for VNFs. Finally, the network is configured to correctly

17

2.2 Cloud Architecture

forward the packets along the sequence of VNF components through which a request should
flow (i.e. service chain). An example of a network policy could be to require “any web traffic
targeted to web-serverWS to first go through the firewall and then the load balancer VNFs”.

NFV vs. SDN NFV and SDN have a lot in common since they both leverage automation
and virtualization to achieve agility, cost reduction, dynamism, and automation. However,
SDN and NFV are different concepts, aimed at addressing different aspects of a software-
driven networking solution. NFV aims at abstracting the network functions by decoupling
network functions such as the network switch from specialized hardware elements, while
SDN abstracts the network by separating the control logic of the networking devices from
the networking device itself.

In fact, NFV and SDN are highly complementary, and hence combining them in one
networking solution may lead to greater value. SDN can accelerate NFV deployment by
offering a flexible and automated way of chaining network functions, while NFV is able to
support SDN by providing the infrastructure upon which the SDN software can be run.
For instance, the SDN controller, as a network function, is commonly implemented as pure
software which runs on commodity servers, while the SDN switch can be implemented either
in software running on commodity servers or as specialized hardware.

In our work, we heavily depend on VNF as a common infrastructure as we exploit the
software switch to extract relevant message information for application monitoring.
Furthermore, our overall MaaS architecture was inspired by NFV and SDN. While the final
implementation is quite different, our application monitoring functions have a conceptual
similarity with NFVs as they dynamically capture and analyze certain message flows as we
will show later in Chapters 3, 4, and 6.

2.2 Cloud Architecture

A typical cloud data center architecture today consists of a 2-3 layer tree of switches and/or
routers, that connect the physical machines that are distributed in racks and that host the
application components, such as shown in Figure 2.3. Many of today’s cloud data centers
already deploy SDN and NFV technology for their network. According to Cisco Global
Cloud Index report1, SDN and NFV traffic volume is already making up 50% of the data
traffic within today’s data centers. Hardware packet switches are being used in the core

1https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d
364c5_white-paper-c11-738085.pdf

18

https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf
https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf

2.2 Cloud Architecture

Rack 1 Rack 8Rack 7Rack 6Rack 5Rack 4Rack 3Rack 2

A1
A3/A4B3

B2
B1

A2

Core HW switches.

Aggregation HW switches.

ToR SW switches

Application A traffic.
Application B traffic.

A3 A4

SW switchAnalysis
tool

A1 - A4 Components of application A.
B1 - B3 Components of application B.

Figure 2.3: Example of cloud architecture

network where low latency is a must. The lower levels often deploy software switches. For
instance, optimized software switches (e.g., OVS integrated with DPDK) are largely deployed
as top-of-rack (TOR) switches [HRW15,CAR,Riz12,MAR+14].

The leaf nodes in the different racks might host one or more application components.
Virtual environments such as virtual machines or containers allow several components to
run on the same physical host. Software switches are commonly used in such high-end
machines that host many application components to facilitate the communication between
the co-located application components as well as with the outside network.

The application components are distributed over the leaf nodes in the different racks.
Figure 2.3 shows two example applications A and B, with components A1 - A4 and B1 - B3,
respectively. Some or all of the application components could also be co-located on a single
physical machine. Nevertheless, the communication between the application components
passes through one or more switches. Figure 2.3 shows an example with components A3 and
A4 on the same machine connected through a software switch that routes messages exchanged
between them, which in turn is connected to the ToR switch to enable communication with
the outside network as well.

19

2.3 Performance Monitoring in the Cloud

2.3 Performance Monitoring in the Cloud

In this section, we first outline the basic monitoring aspects required for ensuring the health
of the cloud infrastructure as well as the running applications. Then, we will discuss each
monitoring aspect and the corresponding literature in separate sections, with highlighting the
potential role of SDN & NFV in providing dynamic cloud application performance monitoring
solutions.

Effective monitoring of the overall health of the cloud infrastructure and of individual
applications requires data collection from the infrastructure and application components
to get useful performance indicators. This includes system, network and application layer
measures.

System layer measures track the health of the physical nodes as well as the individual
containers and the virtual machines by collecting the state of hardware resources such as
processor, memory, hard drive and ingoing and outgoing network traffic. Having
information about the utilization of these hardware modules helps the cloud administrator
to ensure that no physical host becomes a bottleneck or is unnecessarily under-utilized, and
that all application components are assigned the physical resources that were agreed on.
For the application administrators, knowing the resource utilization by each of the
components helps in detecting bottlenecks within the application and guides decisions such
as whether individual components need to be replicated or require more
resources [dCRCG+16]. The performance and utilization of system resources can be
measured by deploying monitoring agents at the operating system level or the hypervisor
level of the individual physical machines. There exist plenty of monitoring tools that
provide this in an efficient and transparent manner [ama, azu,Goo22]. Thus, our research
does not focus on such system resources monitoring.

Monitoring the network is also crucial for cloud management. Network layer measures
such as utilization of the individual links of the network hierarchy, message throughput
and message delay on individual links and within parts of the network, and end-to-end
packet delay and packet loss rates allow the detection of bottlenecks within the network
infrastructure and help guide the cloud administrator in distributing applications across their
infrastructure such as to avoid overload of some parts of the network and to guarantee service
level agreements (SLAs). For instance, in Figure 2.3 assume that the ToR switch of the rack
to which web-service A3 is connected is overloaded and thus starts to drop packets that are
sent to A3. In return, the components communicating with A3 will resend these dropped
messages which will cause a delay in processing and potentially also a further overload of
the switch. There are many approaches to monitor the cloud network and diagnose network
performance anomalies. We have been inspired by these approaches to see whether they can

20

2.4 Network Monitoring

also be used for application monitoring. Thus, we will discuss them further in Section 2.4.

We have already outlined the importance of application layer performance for both cloud
administrators as well as application administrators in the introduction (Chapter 1). We
have identified that application specific performance metrics such as throughput and response
time, knowing the call graph of distributed applications at run-time, and knowing the specific
service type of the individual components are all important to monitor the health of an
application. For instance, they allow application administrators to determine bottlenecks
when they see that response times of individual components are higher than anticipated
or to detect failures in the execution workflow or misconfigurations when the call graph
does not follow the expected structure. And they allow cloud administrators to ensure
that the assignments of components to physical hosts does not cause unnecessary message
delay or congestion in the network, or lead to loss of reliability if component replicas were
to be collocated on the same physical host. This thesis focuses on such application layer
performance monitoring. We will discuss existing solutions to application monitoring in
detail in Section 2.5. Furthermore, in Section 2.6 we focus on solutions for network traffic
classification that can potentially be used for the service identification that is needed for
application monitoring.

Whether it be system, network or application monitoring, it typically consists of two
tasks. The first task is to capture and collect the relevant data, be it from the hosts, the
application components or the network. This task is concerned about what, where and how
to capture and collect performance related data. The second task is to aggregate and analyze
the collected performance data to create useful performance metrics and present them to the
administrators. This data aggregation and analysis can be performed by dedicated analysis
nodes which requires the collecting components to send all collected data to such analysis
nodes. Alternatively, the collecting components can potentially perform the analysis locally,
although some aggregation might be necessary at the end to consolidate information if there
are several components that collect data. We will see in the following sections how existing
solutions perform data collection and analysis.

2.4 Network Monitoring

Cloud providers perform extensive network monitoring to ensure the health of their network
infrastructure. Network layer measures such as network latency, i.e. the time the network
takes to deliver the network packets to their destination, throughput, i.e. the amount of
successfully delivered network messages per time unit, and packet loss, i.e. the amount of
the network packets that failed to reach their intended destination, are commonly collected

21

2.4 Network Monitoring

to assess the network performance. There exists extensive research on how to monitor the
cloud network to detect and diagnose network performance issues. We discuss a variety of
these network monitoring proposals in this section.

Data collection at the host Monitoring network performance relies on capturing
information from the network traffic and analyzing it. Commercial network sniffers such as
Wireshark/TShark2 or tcpdump3 can be deployed at end-hosts to collect network messages
exchanged over specific network interface(s) in real-time. For example, in Figure 2.3,
TShark can be deployed at the end host running A1 to sniff the network interface
connected to A1 and collect the network messages that are exchanged over it.
Wireshark/TShark and tcpdump perform some local analysis of the collected network
packets and extract relevant data, mainly the header information, and transform them into
log entries. Most typically, these log entries are then written to files that can be further
processed by an external analysis component. Additionally Wireshark/TShark provides
itself quite sophisticated analysis functions that provide network metrics such as packet
loss and number of transmitted packets/bytes over the monitored connections.

Message mirroring Alternatively, the network components such as switches can be
instrumented to collect network messages for network monitoring purposes. For instance,
port mirroring is a popular network data collection approach used for network monitoring
purpose. Port mirroring is a switch configuration that instructs the switch to “mirror” all
traffic that passes through specific switch port(s) to another switch port that is connected
to an analysis component. For example, port mirroring can be configured for the rack 1
ToR switch in Figure 2.3 to mirror all network packets that are transmitted over the switch
port that is connected to A1 to the analysis tool deployed in rack 1. The concept of port
mirroring is quite simple and easy to configure, yet it imposes significant communication
overhead as it mirrors all packets independently of content.

The “match” capability in commodity switches, i.e. in both traditional and SDN switches,
can help in reducing such communication overhead by filtering out certain flows/packets to
be collected from the network and mirrored to a remote analysis node. Pre-defined rules,
similar to the forwarding rules, are used to match the network packet header information and
then certain actions are executed such as mirror to a remote analysis tool. This approach
avoids sending possibly large and mostly irrelevant packets to the analysis tool. For instance,
EverFlow [ZKC+15] utilizes such “match and mirror” capability in commodity switches to

2TShark www.wireshark.org/docs/man-pages/tshark.html
3Tcpdump http://www.tcpdump.org/.

22

www.wireshark.org/docs/man-pages/tshark.html
http://www.tcpdump.org/

2.4 Network Monitoring

capture certain TCP control packets to debug Data Center Network (DCN) faults such as
link latency and packet loss.

SDN has shown to have promising features to provide support for dynamic network
performance monitoring. In particular, SDN switches and controller are instrumented to
collect and analyze network parameters. For instance, Detection-as-a-Service
(DaaS) [MKK17] combines an intrusion detection system (IDS) with SDN programmability
features to passively detect anomalies in the traffic that passes through the SDN network
and to prevent malicious traffic from flowing into the SDN network. In the collection
phase, DaaS instruments SDN switches to mirror any packet that arrives to the first flow
path switch and forward it for analysis to a DaaS node where an IDS instance is running.
IDS is programmed to identify patterns in the flows it receives that may indicate a network
attack. During the analysis phase, the DaaS node in turn will decide whether the flow
traffic is malicious or normal. A network reconfiguration will be needed if the DaaS node
tags the traffic flow as malicious in order to block it. The malicious flow will be blocked by
inserting a flow blocking entry into the switch flow table with the help of the SDN
controller. Other related approaches can be found in [GAM15,CMLX15].

All mirroring-based approaches share three main limitations. First, the mirroring rules
are coupled with the forwarding rules and are executed at the same time the messages are
processed by the switch. This may lead to processing overhead and thus, delay in routing
the message. Second, flow mirroring rules only apply to the packet header; a deep inspection
is not possible. Thus, in some cases one might have to send more packets than actually
necessary as filtering at the header-level might be quite coarse-grained. Furthermore, the
switch performs a set of actions that are limited to packet forwarding and/or dropping.
Thus, the collecting components, i.e. the switches, are only capable to collect and forward
the network data to a remote analysis node without having the ability to perform any kind
of analysis locally, which also leads to message overhead in the network as the switch has
to send all the packet data to an external analysis node, while a local analysis capability
may enable extracting and forwarding only the needed information from the packet to the
analysis node.

Switch enhancements To address limitations of mirroring, some research work extends
the switch functionality to decouple the monitoring rules from the switch forwarding path,
support inspecting the packets based on higher layer information such as the packet payload
and/or executing customized actions. Most of this research work utilizes the software-driven
networking technologies such as SDN and NFV to provide such extended switch functionality.
Both [WGH+15] and [ZWG+18] embed network monitoring function inside the OVS software
switch by modifying the OVS source code, while attempting to decouple the monitoring

23

2.4 Network Monitoring

functions from the forwarding path of OVS in different ways. UMON [WGH+15] decouples
monitoring from forwarding by defining a monitoring flow table in the user space of the OVS
software switch, while Zha el al. [ZWG+18] extend the kernel space of the OVS software
switch to buffer the monitored packets into a ring buffer where they can be picked up by
the monitoring process. Both approaches are meant for collecting network flow statistics
such as the byte counts for specific flows, that can afterwards be pulled by the analysis node
for performance monitoring purposes. However, these proposals still negatively affect the
forwarding latency of the OVS as the matched packets must be copied to the monitoring
flow table in [WGH+15] or to the ring buffer in [ZWG+18].

Several projects have focused on extending switch software to provide monitoring
functionality. In particular, they often provide deep packet inspection for the network
packets [CLKdR16] or define new actions for the matched
packets [FDN14, Ham14, MHM+14]. For instance, the authors in [CLKdR16] extend the
OVS software switch architecture to inspect not only the packet header but also the
payload information in the packets to detect network security attacks. They achieve that
by extending the software switch code to have a deep packet inspection module that
inspects the packet payload against a set of predefined string patterns. Those string
pattern rules are inserted into the switch at the time of the switch initialization. Logs of
matched packets are generated and sent to a log server for further analysis. In
contrast, [Ham14] extends the software switch code to enable the software switch to
perform user-defined actions and analyze received network packets to detect network
security attacks such as port scanner detector, which looks for repeated attempts to
connect to a closed port on a system (i.e. the victim) from another system (i.e. the
attacker). Similarly, [MHM+14] augmented software switches with application processing
logic defined in a table called application table. This table is similar in spirit to the
OpenFlow flow table. However, the application table actions are customized to be either
ordinary OpenFlow API functions or specific application functions. Therefore, more
sophisticated and application specific functions such as firewall and load balancer can be
generated locally within the switch by executing application table actions for captured
packets. While none of these proposals considered application performance functionality,
conceptually some of the performance analysis logic we are aiming at might also be realized
by user-defined or application actions in such architectures. However, depending on the
extra tasks to be performed, the switch performance might be negatively affected and it
might now handle significantly less packets per time unit than without application-specific
functionality.

The common disadvantage of all the switch enhancement-based proposals is that
modifying the OVS base code is not a trivial task, specially for the kernel space

24

2.4 Network Monitoring

modifications. Packet processing languages such as P44 have been developed to facilitate
enhancements to the switch functionality [KCBH21]. They allow for a more convenient way
to specify rules that determine when a specific packet should trigger actions and to also
program more complex actions that include maintenance of data structures on the
switch [KSK21, MFP+22]. However, as far as we are aware of, P4 has not yet been
thoroughly evaluated. In addition, P4 is somewhat limited in its processing capabilities as
it uses fixed length data structures, which make it more challenging to perform a
sophisticated deep packet inspection.

Without the need of message mirroring, the SDN switch and controller characteristics can
also be exploited for measuring network performance parameters. For example, OpenNetMon
[vADK14] measures the network throughput and packet loss by pulling the flow’s sent bytes
counters from the SDN switches. Furthermore, it uses the programmability feature of the
SDN controller to embed flow rules directly into the SDN switches to inject probe packets that
travel the same flow paths to calculate the path latency. In this scheme, the SDN switches
are the collectors for the performance data, while the controller performs the aggregation
and analysis tasks of the collected data to measure the network performance. In [SMX+15],
in-network monitors are embedded along the forwarding path of the network packets to
embed a tag into the packet headers for network monitoring purposes such as determining
path latency and packet loss. These in-network monitors can be separate nodes or co-reside
with the forwarding plane of the SDN switches along the packet traffic path. In other words,
these in-network monitors are deployed as VNFs and then configured by the SDN controller
to be part of the service chain of the network packets. The SDN controller also configures
the marking actions for the network packet at these in-network monitors according to the
monitoring requirements. When the network packets arrive the last monitoring agent before
their targeted destination, the packet tags are forwarded to the SDN controller for further
analysis.

In a nutshell, a considerable amount of network monitoring and analysis is already taking
place in the network. This raises the question of whether the network components could also
be used for application monitoring and analysis. We will discuss in the next section how
some of network traffic analysis approaches discussed in this section can be adapted for
application performance monitoring.

4P4 https://p4.org/

25

https://p4.org/

2.5 Application Monitoring

Tool Performance
metrics

Application
call graph

Dynamic service
identification

Microservice
identification On-demand

Software instrumentation-based approaches

Twitter [LLL+12], Google
Cloud Monitor [Goo19,
Goo22], and [SAR14]

4 7 4 4 7

Facebook [CMF+14] 4 4 4 4 7

OpenZipkin [Zip] and
Jaeger [Jae] 4 4 4 4 7

Dapper [SBB+] 4 4 4 4 7

Kieker [HvH20] 4 4 4 7 7
NewRelic [New] 4 4 4 4 7
AppDynamics [App] 4 4 4 4 7
SolarWinds [Sol] 4 4 4 7 7
Datadog [Dat] 4 4 4 4 7
Dyntrace [Dyn] 4 4 4 7 7
Weavescope [Weaa] 4 4 7 7 4

Network-based approaches

NetAlytics [LTRW],
[SMX+15] 4 7 7 7 4

PreciseTracer [SZL+12] 4 4 7 7 4

SmartRelationship [ZZZ+] 7 4 7 7 4

SysDig [sys] 4 4 7 7 4
CAT [ENOP21] 4 4 7 7 4

Net-Cohort [HSG+] 7 4 7 7 4

TopClass [HLZ+] 7 4 4 7 4

Table 2.1: Application monitoring tools for distributed applications

2.5 Application Monitoring

There exists a wide range of solutions that provide application-layer performance monitoring
for distributed applications. In this section we provide an overview of existing solutions
that provide one or more of the application monitoring functionalities we aim at, namely
collecting high-level application measures such as throughput and response time, inferring the
call graph of distributed applications and knowing the specific service type of the individual
components at run-time. We have a close look at how they perform the monitoring, how
and where they collect the relevant information, and whether they are able to start and stop
application monitoring on demand and with zero interruption to the running application.
We distinguish between software instrumentation and network based approaches as they are
fundamentally different. Table 2.1 provides an overview of the different features provided by
existing systems.

2.5.1 Software Instrumentation-based Application Monitoring

The most common way to extract application relevant metrics is through software
instrumentation, which relies on an application and/or platform dependent data collection
process and requires deep knowledge of the system. It typically creates explicit application
and/or platform specific log entries that then allow to extract the high level measures such

26

2.5 Application Monitoring

as request service time [LLL+12, Goo19, SAR14] or build call
graphs [CMF+14, Zip, SBB+,HvH20]. A log message is a text string with an abundance of
contextual information about events that occur during run-time. For instance,
Twitter [LLL+12] instruments its code to generate structured client event log messages,
that can be later processed by an analysis node to infer some application performance
measures such as request service time. Alternatively, a software platform can incorporate a
logging mechanism that can deliver the necessary metrics for the applications deployed on
the platform. For example, Apache Tomcat uses its proprietary “Access Log Valve”5 for
collecting performance data and creating log files. Any request arriving at a Tomcat web
application is passed to the access log valve process as well, where information about both
the request and its response is collected and analyzed to calculate application-layer
performance metrics such as request service time, which are then saved into access log files.
Another example is Google Cloud’s operations suite [Goo22] which uses both user-defined
and platform logs to collect performance data that is analyzed by an analysis component.

Logging and tracing are also widely used as a data collection mechanism for analysis
systems that infer call graphs of distributed applications. Many approaches trace
individual client requests to build call graphs and determine end-to-end latency. For
instance, Facebook [CMF+14] logs messages with request IDs for their individual services
to construct the request execution graph. OpenZipkin [Zip] and Jaeger [Jae] are
open-source tools that instrument various platforms to generate log traces and build
dependency diagrams for the traced requests that show how they are processed by the
components of the application. OpenZipkin is used by popular troubleshooting tools such
as Edgar [Net], which tracks the request flows across Netflix distributed micro-services.
Jaeger is combined with a Linux kernel tracer LTTng [DD08] to analyze the execution path
of requests in [GEJD21]. Weavescope [Weaa] uses established container APIs (for example,
the Docker API) to gather information about the containers that run on a specific host to
build a topology of those containers. Google’s Dapper [SBB+] instruments its RPC
middleware to generate log traces and builds the execution tree of individual requests,
while Kieker [HvH20] relies on monitoring probes within the components to provide these
traces in order to construct a dependency graph for the instrumented components that
shows how they invoke each other.

Furthermore, there is a set of commercial tools that perform automatic instrumentation
to known frameworks and libraries in order to trace the application execution path.
Examples include New Relic [New], SolarWinds [Sol], Datadog [Dat], AppDynamics [App]
and Dyntrace [Dyn], which employ a sort of automatic instrumentation for each service
deployed on the monitored host and show the relationships between services, processes and

5https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/valves/AccessLogVal
ve.html.

27

https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/valves/AccessLogValve.html
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/valves/AccessLogValve.html

2.5 Application Monitoring

hosts, in addition to some performance metrics. Automatic instrumentation works by
modifying the code at run-time or at compile-time to add tracing capability to the libraries
and frameworks the application depends on [CFAI17, ASRC14]. The automatic
instrumentation, installation and usage differ from language to language, depending on the
capabilities of the language run-time. For example, for Java one can leverage the capability
of the execution environment, i.e. the Java Virtual Machine (JVM), to instrument the byte
code of Java classes, while languages such as Go require wrapping the existing libraries
with instrumentation code. Automatic instrumentation injects small pieces of code before
and after certain events, like HTTP requests and database queries, to measure their
duration and collect metadata (e.g., the database statement as well as HTTP related
information such as the URL, parameters, and headers) [ASRC14]. For example, auto
instrumentation code could be injected just before and after the servlet invocation of any
class that extends "javax.servlet.HttpServlet". Similarly, Fournier et al. [FEAD] add
tracing points to PHP to get the start and end time of web requests in order to monitor
the request service time.

Obviously, platform- and application-based instrumentation approaches can easily derive
the type of service that each component provides, at various levels of granularity as they have
deep access to the internal functionality of each component. That is, service identification is
not really a challenge for this kind of application monitoring systems. The commercial tools
that rely on automatic instrumentation also often know exactly with which service type they
are working, as shown by the servlet example above. Some of them also access configuration
files to determine the fine-grained information, e.g., that a particular HTTP service offers
“authentication” [New,App,Dat].

The major disadvantage of all these approaches is that they involve sophisticated
framework/application or language dependent instrumentation, and thus, require
considerable efforts and engineering knowledge for each new framework that needs to be
integrated. For example, Tomcat valves can not be used in a different servlet/JSP
container and automatic instrumentation used for JVM can not be applied to
Python-based applications. Also, most of these approaches need a restart of the application
to activate monitoring, and thus, cannot perform monitoring on demand.

2.5.2 Network-based Application Monitoring

Interestingly, a considerable number of high-level application specific metrics can be
obtained in an application/platform agnostic way by only looking at the application
messages exchanged between components of the application. One example is request
service time that can be calculated by capturing and matching outgoing response messages

28

2.5 Application Monitoring

with their corresponding incoming request messages and taking the difference between the
two capture times for each request-response pair as the request service time. Network
monitoring tools such as Wireshark/TShark or tcpdump that we have already discussed in
Section 2.4 can be used to observe and monitor the message exchange. They are deployed
at the host and capture relevant messages in real-time by using message filtering at the
network interface to the application layer. Thus, these tools cannot only be used to provide
network-related statistics but also application-relevant data. In fact, Wireshark/TShark
already provides quite sophisticated analysis tools for these application messages in order
to calculate some application relevant performance metrics such as the request service time.

Network-based approaches are also used within large end-hosts that host many
components that communicate with each other [J.
17,ENOP21,Weaa,SZL+12,HSG+,HLZ+]. Sieve [J. 17] uses the kernel module SysDig [sys]
to collect the communicating paths of the different components as an event stream of
system calls with some information about the monitored processes, in order to map
processes to components and infer the links between them. CAT [ENOP21] employs system
tracer tools such as ptrace [ptr] to trace network and storage-related system events (e.g.,
recvfrom, pwrite64), while extracting some content information from those events such as
the number of sent/received or read/written bytes, to better correlate the events and
detect errors in their data flows across the monitored application’s components.
Weavescope [Weaa] deduces dependency information between containers running on a
specific host by monitoring the network of the container platform such as Docker6 and
Kubernetes7. In PreciseTracer [SZL+12], a TCP Tracer is deployed inside each VM to
track communication and produce request execution path and performance statistics.
Net-Cohort [HSG+] uses both packet sniffing and metrics correlation to discover links
between VMs. TopClass [HLZ+] captures all packets transferred between VMs through the
Linux netfilter table to derive the application call graph.

All the aforementioned approaches execute at the host. In most cases they sniff all the
network flows which impacts the performance of the application, adds significant
computational overhead and increases the analysis time. In addition, the monitoring
process often interferes with the execution path of system calls [sys, ENOP21] or switch
functionality [ZZZ+], which might negatively impact performance at high traffic rates.

There also has been some work that exploits the SDN and NFV functionality for
application monitoring. For instance, NetAlytics [LTRW] deploys analysis nodes, called
monitoring agents, across the cloud network and connects them directly to the TOR SDN
switches. The SDN controller is then used to instrument the SDN switches to mirror their

6https://www.docker.com/
7https://kubernetes.io/

29

https://www.docker.com/
https://kubernetes.io/

2.6 Network-based Service Identification

flows to the monitoring agents. The main focus is on analyzing traffic that arrives at the
monitoring agent in real-time by developing specific parsers and a query language that
allows to specify which ports need to be monitored and how.

Capturing the information about the network flows that go through the software switches
can also be used to infer the application dependency information and deduce its call graph.
For instance, SmartRelationship [ZZZ+] uses tcpdump and/or flow information exporters
such as sFlow8 and NetFlow9 to collect and forward the exchanged flow information, such
as source and destination IPs and port numbers from the virtual switches to an analysis
node to build the application call graph. However such flow exporters are limited to extract
aggregated information about the exchanged flows and do not provide the packet level details
required for complete application performance analysis (like the response time analysis etc).
In addition, as the flow exportation process is tightly coupled with the switch, it might
negatively impact the switch performance at the higher traffic rate as more flows are collected
and forwarded to the analysis tool.

We have been inspired by these network-based application performance monitoring
approaches because they do not require a deep knowledge about the running
application/platform and can be applied in a wide range of settings. In our solution, we
focus on approaches that involve the switches and are decoupled from the VMs, containers,
and processes that run the components, as this allows for a more flexible assignment of
monitoring functionality. At the same time, we want to avoid the forwarding delay and
reduce the communication overhead that is currently caused by the switch-based solutions.

Finally, in regard to service identification, while this is a rather straightforward process
for the application monitoring tools that use software instrumentation, it is more challenging
when we only have access to the message flows between the application components. The
next section thus discusses network-based service identification in more detail.

2.6 Network-based Service Identification

In the context of a MaaS for cloud-based distributed applications we believe that the
appropriate granularity for a service label of a component is in most cases the software
system that is used by the component, e.g., a MySQL, PostgreSQL or DB2 database

8https://sflow.org/
9https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

30

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

2.6 Network-based Service Identification

system, a Memcached or Redis cache10, or a HTTP-based web-service11. Each of them has
their own well-defined communication protocol that defines how message are exchanged
between clients and service. Thus, in the context of this thesis, we are looking for a Service
Type Classifier (STC) that can identify the service type of each component based on the
communication flows it has with its clients.

In fact, there is a large body of research approaches that can be used for this purpose,
referred to as “Network Traffic Classification” (NTC): given a flow of messages, the task is to
classify that flow. In [ZJYP21], the authors lay out different granularities for the classification
result. Quite common is the service type level that we also envision, that is based on the
communication protocol used. But the aim could also be to identify large scale well-known
applications (such as Facebook, Google, Youtube, etc.), a more high-level definition of service
(mail, database system), or the activity type such as chatting or streaming. NTC has been
intensively used for various cloud management tasks such as provisioning Quality of Service
(QoS), identifying faults, resource allocations, and security monitoring [PSkJ17, LKK+19,
RKL20,RYCW21,GKK+19,WZZ+17].

There exists different definitions of what exactly is a network flow that is given as input
to the classifier. In the most common case, it is defined as all the messages from a sender
identified by a specific IP address and port to a receiver, again identified by an IP address
and port number. But it could also be the bidirectional flow of messages that are exchanged
between these two endpoints.

Given that NTC seems a promising approach that we can use in the context of our MaaS,
we have a closer look in this section at the different approaches proposed for NTC in the
research literature.

2.6.1 Rule-based NTCs

Rule-based NTC techniques rely on packet headers or perform a deep-packet inspection, and
require knowledge of the communication patterns.

10https://redis.io.
11As mentioned in Chapter 1, the individual components in microservice-based architectures are all

wrapped within their own web-service. Thus, a STC based on communication protocols would identify
all of these microservice-based components as HTTP-based services, which might not be very informative.
In this case, a more fine-grained level service identification about the particular purpose of the individual
components, such as persistence, authentication, etc., would be valuable and provide more insights into the
application call graph. Therefore, we propose a Natural Language Processing (NLP)-based approach for a
fine-grained analysis of web-services in Chapter 6.

31

https://redis.io

2.6 Network-based Service Identification

• Header-based approaches rely solely on the header information of the network packet,
such as the source/destination IP addresses and port numbers to identify the
application/service type [J. 17, SZL+12, ZZZ+, LKC+16, SCP14]. This works well for
application/services with predefined IP/port numbers but not when these services are
configured to use dynamic IP/port numbers. We consider this not adequate for our
purposes.

• Deep packet inspection (DPI) techniques overcome IP/port number dependency by
analyzing message formats and match them with predefined protocol-specific
characteristics. For instance, HTTP request packets contain the URL string,
Memcached packets contain information about whether a call is a put or a get, etc.
Despite high identification rates, the usage of format rules requires maintaining an
up-to-date rule database for a wide range of services. [FRR+14] provides a survey of
DPI-based classification approaches.

Others use more advanced techniques. For instance, TopClass [HLZ+] matches the
application call graph to predefined service architecture templates through graph similarity
algorithms in order to infer the most likely running service in each application component.
However, the computational overhead of graph similarity algorithms is high and
proportionally increases with the number of service templates. Also, these service
templates need first to be created, requiring expert knowledge.

2.6.2 Traditional Machine Learning based NTCs

Some NTCs use traditional machine learning classifiers such as logistic regression, decision
trees and support vector machines. In particular, their input for learning is a set of records,
each record consisting of a set of features (including a class label) describing a particular
network flow. These features need to be extracted from the messages that make up the
network flow, thus requiring a complex feature engineering process [ZXW+13]. The learned
model can then be used to classify unlabeled network flows. Those flows need again be
transformed into a feature vector before they can be fed to the model for classification.

The stochastic profile of network flows such as bytes transmitted, packet inter-arrival
times, and flow duration can be used as features.

Both supervised and unsupervised methods have been proposed in the literature. For
instance, Singh et al. [Sin] use unsupervised K-means to form groups of different applications
based on the similarity of their network traffic. As examples of supervised learning, the
approach of [WYKH15] uses random forests to classify several mobile applications, while

32

2.6 Network-based Service Identification

Amaral et al. [ADP+] additionally use stochastic and extreme gradient boosting algorithms
to classify applications such as Skype and Facebook. In addition, Parsaei et al. [PSkJ17]
employ different kinds of neural network estimators, while Shafiq et al. [SYW16] use multi-
layer perceptron, C4.5 decision tree, and support vector machine to classify network traffic.

The disadvantage of these traditional machine learning models is clearly the tedious
feature engineering process. It is clearly not trivial to find the appropriate parameters to be
fed to the machine learning algorithm.

2.6.3 Deep Learning-based NTCs

Recently, deep learning has been exploited as NTC for service/application type classification
purpose. The interesting aspect about deep learning models is that the features are extracted
automatically, which alleviates the need for manual feature engineering needed for traditional
machine learning approaches. In general, deep learning models learn both the low-level
features and the high-level presentation of input data across model layers and have been
shown to outperform traditional machine learning algorithms as the amount of learning data
increases [LKK+19]. This makes deep learning very attractive for traffic classification, as
there is no need to have detailed knowledge of the service specifics and message formats to
learn a model.

Existing deep-learning based NTCs use either the packet-header or packet-payload as
training data. For instance, Wang et al. [WZZ+17] have introduced a Convolutional Neural
Network (CNN) model to differentiate between malware traffic and normal traffic using the
packet-header information. Similarly, Martín et al. [MCSL17] applied several architectures
of recurrent neural network (RNN) and CNN models to detect the service type (e.g., HTTP,
SIP ...) of network flows, while using packet-header information as learning data. On
the other hand, Lim et al. [LKH+] and [LKK+19], use the packet-payload for training two
deep learning models, with focus on predicting different applications (Facebook, Google,
Wikipedia, Yahoo..etc.) that all use the same service type (HTTP). Similarly, Rezaei et al.
[RKL20] proposed a packet payload-based CNN model to classify various mobile applications
such as Google Map, Google Music, YouTube, HTTP, etc.

As the performance of these NTCs is very promising, we have performed a thorough
analysis and comparison of this existing work along many different configuration parameters
to see whether it can serve well the STC task that we need for our MaaS. Thus, we describe
these approaches in more detail in Chapter 5, where we also explore further types of deep-
learning models. In Chapter 6, we show how we have adapted the deep learning model-based
STC in our proposed application monitoring framework DyMonD.

33

34

3
Application Monitoring as a Network Service

The first step of our research was to determine where within the communication layer to
conduct the main phases of application monitoring, namely data collection and performance
metric calculation. We argue that the network switches can potentially be involved in both.
In the following, we first outline how some of the switch-based approaches for monitoring the
network that we have introduced in Section 2.4 can be exploited for application monitoring.
In addition, we present a new solution in which monitoring functionality is loosely integrated
into software-based switch components, allowing for a flexible and adjustable deployment of
data collection and analysis functions. We then compare all approaches and analyze the
corresponding trade-offs.

3.1 Collecting Application Monitoring Data via Port
Mirroring

As already discussed in Section 2.4, port mirroring can be used for data collection in the
network so that relevant information is forwarded to an analysis component. Thus, we have a
deeper look at port mirroring techniques before we look at how to use them for the collection
phase of application monitoring.

3.1 Collecting Application Monitoring Data via Port Mirroring

3.1.1 Port Mirroring Principles

Using standard port mirroring, the switch forwards all messages of a flow not only to the
indicated destination but also to a secondary destination. Figure 3.1a shows an example of
port mirroring of all network traffic of component B2. Port mirroring is simple, and does
not impose major computational overhead at the switch because it does not perform any
kind of reformatting of the mirrored messages. However, port mirroring might have a
significant communication overhead as it mirrors all packages of a flow. A further
disadvantage of mirroring is that the machine to which messages are forwarded has to be
directly connected to the switch as mirroring does not change the routing information of
the mirrored package. In the example in Figure 3.1a, the switch to perform the mirroring is
the rack switch on which the analysis tool runs; thus, there is a direct connection.
Furthermore, in case of software switches that connect components running on the same
physical machine, mirroring is also a possibility. Port mirroring runs with lower priority
compared to the normal forwarding. When a switch becomes busy, then switching the
normal traffic flow takes high priority and the performance of mirroring may be degraded
or in extreme circumstances be temporarily suspended.

Reducing message overhead: Selective mirroring uses the matching capability of
commodity cloud network switches to copy and forward only those network packets to the
analysis tool that match predefined criteria, thus reducing the number of packets to be
transferred. Selective mirroring can be defined in the switch through the flow rules. For
example, suppose that B2 in Figure 3.1a is a web-server and we only want to mirror data
messages to the analysis tool that are relevant to calculate the performance metrics of
interest. As such, we can add two OpenFlow rules to B2’s ToR switch, one for each flow
direction B2→ client(s) and client(s)→B2. We will show shortly how such rule would look
like for a specific metric. Furthermore, messages can be truncated so that only the first X
bytes are mirrored, with X being a parameter. For instance, if the packet header suffices
for the analysis, we can use the truncation option to mirror only the packet header. We
refer to it as “header mirroring”, and avoid sending possibly large and mostly irrelevant
payloads to the analysis tool.

One has to note that selective mirroring is coupled with the switch forwarding path as
the flow rules are executed at the time messages are processed. This may lead to a
processing overhead and thus, delay in routing the message. Furthermore, flow rules only
apply to the packet header; a deep inspection is not possible. Thus, in some cases one
might have to send more packets than actually necessary as filtering at the header-level
might be quite coarse-grained. Just as basic port mirroring, selective port mirroring
requires a direct connection between switch and the mirroring destination.

35

3.1 Collecting Application Monitoring Data via Port Mirroring

Rack I Rack I+1

App B2

Analysis
tool

Mirrored traffic

B2 traffic

(a) Port/selective mirroring
Rack I Rack I+1

App B2 Tunnel
Analysis

tool

B2 traffic

Tunneled mirrored packet format

Outer header

Tunnel protocol header

Payload:
L2 header, L3 header,
L4 header, and original
payload.

(b) Selective tunneled mirroring.

Figure 3.1: Monitoring options in the network

Selective tunneled mirroring: If the analysis tool should reside anywhere in the
network, packet tunneling can be used. Tunnels, in conjunction with OpenFlow, can be
used to create a virtual overlay network with its own addressing scheme and
topology [ZKC+15]. Figure 3.1b shows an example where the switch of B2 is programmed
to tunnel messages to the analysis tool. Tunneling protocols such as GRE [FLH+00] or
VXLAN [MDD+14] encapsulate network data and protocol information in other network
packet payload. Tunneling protocol adds two headers to each encapsulated packet to allow
the encapsulated packets to arrive at their proper destination: 1) the tunneling protocol
header that indicates the protocol type used by the encapsulated packet, and 2) an outer
header which contains the Ethernet and IP headers of the sending switch and tunnel
destination, and the payload contains the original packet (starting from the L2 header). At
the final destination, de-capsulation occurs and the original packet data is extracted. Flow
rules similar to the one described earlier in this section are added to the switch in order to
define the selection criteria for network packet encapsulation.

To enable tunneling, the switch will be configured to set up a tunnel between itself and
the host where the analysis tool resides. Then, OpenFlow rules similar to the one described
earlier in this Section 2.1.1 are added to the switch in order to define the selection criteria
to encapsulate the network packets and send them through the tunnel to the analysis tool.

All mirroring approaches can be used not only by software switches but also by
OpenFlow capable hardware switches as we only use standard OpenFlow mechanisms to
enable mirroring.

36

3.1 Collecting Application Monitoring Data via Port Mirroring

Client Server
Request 1

Response 1

M
a

tc
h

Response 2

Response 3

Request 2

Request 3

Figure 3.2: Request/response packet pair matching methodology

3.1.2 Using Mirroring Techniques for Application Monitoring

In this sub-section we discuss how these different selective mirroring options can be used
for application performance logging. To better illustrate and compare the approaches, we
choose request service times for HTTP requests as an example of a performance metrics to
measure. Given the ubiquity of HTTP traffic in many cloud centers [MN15,DP11], providing
transparently and on-demand request service times to web applications would be a crucial
feature of any monitoring service [CC16].

HTTP request service time analysis The request service time can be defined as the
time difference between the last request data packet received by the web-server and the first
data response packet initiated by the web-server. The idea is to filter exactly those data
messages at the switch that are needed to measure request service time and forward them
to the analysis tool.

In many HTTP versions, a client connection to the web-server can have at most one
outstanding request; that is, a client can only send a new request once it has received a
response for the outstanding request. Thus, by having access to the flows from client to
server and from server to client, one can take the time difference between the observed
request and response as the request service time. If a client is allowed to have multiple
outstanding requests (as shown in Figure 3.2), then one can simply assume that the first

37

3.1 Collecting Application Monitoring Data via Port Mirroring

response refers to the first request, the second response to the second request, etc. In fact, as
also the client needs to know to which request to match a response, some servers guarantee
that they will send responses only in the order they received requests even if they execute the
requests concurrently. In newer versions of HTTP, each request/response tuple is associated
with a unique ID. When the client sends a request, it gives it an ID, and that ID will be put
in the server’s answer. Therefore, this ID can be used to match the responses with requests
without the need to respect the requests’ order.

Most request/reply protocols, including HTTP, use TCP as underlying communication
mechanism. Thus, the header information of messages follows TCP format, and the HTTP
(or other protocol specific) headers are within the data payload. Requests and responses
could be spread across several TCP messages. While unlikely, even the protocol specific
header could be spread across more than one TCP message. Thus, we have to be careful of
how we detect the right messages.

To filter the HTTP data messages needed to the calculate the request service time,
some form of deep packet inspection is needed. Deep inspection occurs when we look at
the message payload past the TCP header. As TCP headers have a fixed size, it is quite
straightforward to perform deep inspection and extract the HTTP specific headers to detect
the TCP packet that contains the last part of the HTTP request header for the flow from
client to server, and the packet that contains the first part of the HTTP response header for
the flow from server to client. Request service time can then be determined by taking the
time difference between the arrival of these two packets. We assume that the timestamps of
the request and response packets are captured by the same monitoring entity. Otherwise, a
clock synchronization mechanism between the entities that capture those timestamps should
be in place [GS20,PPN+20,JG17].

Data collection using the different mirroring approaches The question now arises
how we can use the various mirroring techniques to send the relevant data to the analysis tool
so that it can perform the response time analysis as just described. Using port mirroring,
all messages are sent to the analysis tool, which then has access to all messages to perform
the analysis. When using selective mirroring, the idea is that we only send the relevant
packets to the analysis tool. However, selective or selective tunneled mirroring cannot do
deep inspection but has only access to the TCP headers. Therefore, in our selective mirroring
approach, our filtering rules rely on the assumption that if a request or reply message is split
into n TCP-packets (n ≥ 1), then all data packets have the TCP "ACK" flag set and the
TCP flag "PSH" is set to true in the last of these TCP packets. We have confirmed that this
assumption holds for the HTTP implementation we have deployed.

Thus, given the above example of B2 being a web-server, for the particular task of HTTP

38

3.1 Collecting Application Monitoring Data via Port Mirroring

request service time, we set up two flow rules. The first is to forward packets that are sent to
the B2, and have the ACK and PSH TCP flags set. This is to filter the last HTTP request
data packet. The second rule is to mirror the ACK packets sent by the B2 to the client(s).
This is to ensure capturing the first HTTP response data packet. Note that we use wildcards
"*" for the client IP to cover all the client connections.

Rule1:
Conditions: TCP-protocol, Source IP = *, Source Port = *, Dest. IP = B2’s
IP, Dest. port =8080, TCP-Flags = ACK and PSH
Actions: Forward to B2 and Analysis Tool.
Rule2:
Conditions: TCP-protocol, Source IP = B2’s IP, Source Port = 8080, Dest. IP
= *, Dest. port =*, TCP-Flags = ACK
Actions: Forward to original destination and Analysis Tool.

In this scenario, the TCP-Flags ACK and PSH are used to distinguish data packets
from TCP control messages that are of no relevance for monitoring. As most ACKs are
piggypacked on data packets, these mirroring rules should hopefully not send too many
unnecessary messages. Note that apart of the approach that retrieves the HTTP IDs, the
analysis node only needs the message headers. Thus, we can truncate the mirrored messages
to contain only the headers. When HTTP IDs are used, we have to keep at least the amount
of the payload that contains the HTTP header.

For both the port mirroring and selective mirroring, when the analysis node receives those
packets, it first organizes them into distinguishable flows. Each flow is defined by basically
4 fields: Source IP, source port, destination IP and destination port. Then, the analysis
tool constructs individual HTTP pairs according to the applied HTTP version protocol as
described above and calculates the corresponding service times. In case of mirroring without
selection, the analysis tool has to handle and inspect a significantly larger number of messages
than when selective mirroring is used.

Avoiding deep packet inspection An estimate of the web-server response time can
be determined, without the need for deep packet inspection, by continuously observing the
intervals between ACKs sent from the web-server side for each client. Such approach has
been used by [LW15]. Following this approach, one can only mirror the header information
of the web-server ACK packets to the analysis tool, i.e. header mirroring. Therefore, Rule2
in the previous example is only needed in this case while setting the length of the mirrored
packet to the length of the packet headers.

39

3.2 Sniffer

Rack I Rack I+1

App B2 Analysis
tool

Sniffer Onsite analysis

Analysis Output

Offsite analysis

B2 traffic

 Received packet from sniffer

Ethernet header

IP header

 UDP header

 Payload: selected
information from original
 packet header and data.

Figure 3.3: The overview of the proposed sniffer.

3.2 Sniffer

While mirroring and selective mirroring are only capable of forwarding (hopefully efficiently)
relevant messages to an analysis tool that then does the actual analysis, we propose in this
section a new approach that provides more flexibility and allows the switch to perform some
analysis locally. Our proposal requires the switch to be provided as a software switch. We
refer to this approach as sniffer. The idea is that the sniffer “attaches” to the ingoing and
outgoing ports of the software switch and inspects the ingoing and outgoing messages on
these ports. This is somewhat conceptually similar to how Wireshark/TShark sniffs the
messages at the network cards of the end-hosts, and we have actually closely looked at
the various mechanisms that have been developed to do such sniffing efficiently. Figure 3.3
shows the principle design. The sniffer is implemented as an independent process on the
node running the software switch. For instance, assuming that all ToRs in Figure 2.3 are
virtualized on computing nodes, a sniffer process can be deployed on B2’s ToR switch host
and instructed to sniff all web traffic traversing the virtual switch port connected to B2. In
principle, the sniffer can implement any kind of semantics; for example, the sniffer can simply
forward selective messages to an analysis tool, aggregate and reformat logging messages that
only contain information relevant for the analysis (as depicted in Figure 3.3), or just perform
the analysis by itself. For the latter case, tools such as TShark could be deployed on the
switch node. In our implementation, we follow a flexible approach that allows a wide range
of possibilities.

40

3.2 Sniffer

Input packets OVS port
RX Filtered packets

Local analysis Analysis output

Encapsulated packets
Monitoring Application

Yes

No

Listener

Performance
Analyzer

Data Extractor
 & encapsulation

Figure 3.4: Sniffer architecture.

While the proposed sniffer can simply forward selective messages to the analysis tool
conceptually similar to the mirroring approaches discussed in Section 3.1, it has the
advantage of not having the monitoring functionality coupled with the forwarding path of
the switch as it is an independent process at the host of the software switch. Another
advantage of the proposed sniffer approach over the mirroring approaches is that it can
perform a fine-grained filtering of the network messages based on non-header fields.
However, in contrast to the mirroring approaches, our proposed sniffer can only be used in
software switches.

In Section 2.4 we discussed several switch enhancements proposals [WGH+15,ZWG+18,
CLKdR16,MHM+14]. Our sniffer also enhances the switch functionality. But again, it is
completely decoupled from the switch forwarding path and enhances the switch functionality
with zero modification to the switch source code. Thus, the deployment of our proposed
sniffer is applicable in a wide range of settings.

3.2.1 Design

Here we describe the internal design of our proposed sniffer within OVS as an example of the
software switch. Figure 3.4 shows how packets flow through the sniffer. The sniffer separates
the actual sniffing from any additional tasks. A listener thread keeps inspecting the received
packets’ buffer of the predefined switch port, filters relevant messages, and saves the needed
traffic packets into a shared memory space, i.e. the "filtered packets" queue in Figure 3.4.
From there, further extraction, analysis and forwarding is performed by extra thread(s) as
needed. We have implemented the listener in a separate thread as it has to work at the
speed of the OVS ports. Thus, we wanted to make the listener task as simple as possible,
allow for straightforward multi-threading and avoid interference with analysis functions.

41

3.2 Sniffer

User space

Kernel space

Listener

RX

BPF filter OVS port
Exchanged packets

Figure 3.5: Packet capturing overview

The listener thread sniffs the packets by inserting some filtering code (such as BPF
[Lin19]) into the kernel of the software’s switch host at run-time. BPF supports filtering
packets, allowing a userspace process to supply a filter program that specifies which packets
it wants to receive. For example, for capturing HTTP service request times, the listener
thread injects BPF filter code to receive only packets that initiate a TCP connection to
port number 8080 over the OVS port that is connected to the web-server. In this case,
BPF returns only packets that pass the filter that the listener thread supplies. This avoids
copying unwanted packets from the operating system kernel to the listener thread, greatly
improving performance. This code will copy each exchanged packet at the monitored OVS
port that passes the filter code and place it into a buffer (RX buffer) where the userspace
listener thread will read the buffer and get the packets. Figure 3.5 illustrates this process.
Note that tcpdump and TShark are imposing similar kernel filtering code as the one we used
in the sniffer to collect the network packets. Thus, there is packet copy overhead for these
commercial tools as well.

Taking the same example of capturing HTTP service request times, we have implemented
two options for processing the collected data by the listener thread. In the online option, a
performance analyzer thread extracts the relevant information from the messages deposited
by the listener in the "filtered packets" queue. Such a thread distinguishes the different client
connections and captures the arrival time of messages as described in Section 3.1. In order
to detect requests and responses, it performs a deep inspection of TCP packets, as the http
headers are embedded in the payload of these packets. It matches request/response for each
client connection and calculates service times. Only simple data structures are maintained.

In the offline option, a Data Extractor & Encapsulation thread extracts the relevant
information, such as source and destination IP/port pairs, and determines timestamps of
data packets, but does not do the matching itself. Instead, the extracted data is encapsulated

42

3.3 Evaluation

and placed in the “encapsulated packets” queue to be forwarded to a remote analysis tool
(see Figure 3.4), similar to the selective forwarding mechanisms described in Section 3.1.1.
However, our sniffer can perform fine packet filtering based on non-header fields such as the
TCP payload size and data. For instance, to measure the HTTP request service time, the
sniffer forwards the extracted information to the analysis tool only for HTTP data packets
(i.e., with TCP payload size > 0). The analysis tool, in turn, will perform request/response
packet pairs matching using the received data and calculate the corresponding HTTP request
service time. The sniffer sends the extracted information using UDP.

In the performance analyzer component, whether it resides within our sniffer or is on a
separate analysis node, we have to distinguish the messages from the different connections of
interest. Thus, when information about a request message arrives, it is stored in a connection
specific data structure until the response arrives. Only the time difference between a request
and its response needs to be kept track of. If several requests are queued when a response
arrives, the match is done as described in Section 3.1.2.

Note that the precision of the measurements might depend on where timestamps are
taken. For the mirroring approaches, the times are taken when the mirrored messages arrive
at the analysis tool. For port sniffing, the sniffer process can take the time. In both cases,
this is not the time when the message was sent by the original source nor the time the
destination receives the message. For example, the time taken by the sniffer for the request
is before the message arrives at the server, and for the response it is after the message is
sent by the server. Our assumption is that message delay times in the network are negligible
compared to request execution times, especially if the switch in charge of mirroring or sniffing
and the analysis tool are close to the server under observation.

3.3 Evaluation

In this section we present an evaluation of the approaches presented in Sections 3.1 and 3.2,
and compare their performance also with a software instrumentation-based tool as well as
network tools that can run on the application end host such as TShark and tcpdump. Table
3.1 enlists these mechanisms and their characteristics such as where information capturing
takes place, and whether the data collection and analysis are done at the same location
(i.e. onsite analysis). For a fair performance comparison of all the evaluated monitoring
mechanisms, we have implemented and configured all of them to log HTTP request service
time into a file. The location of the analysis file depends on the location of the analysis
process, i.e. at a separate analysis node, the same host where the application is running, or
at the host of the switch. For all switch-based approaches, the analysis process follows the

43

3.3 Evaluation

Monitoring mechanism Data collection location Onsite analysis Location
Tomcat logging Application platform Yes Host of application.
TShark Application host Yes Host of application.
Tcpdump Application host No Host of application.
Port mirroring OVS host No Analysis node.
Selective mirroring OVS host No Analysis node.
Header mirroring OVS host No Analysis node.
Tunneled mirroring OVS host No Analysis node.

Sniffer OVS host Yes/No Onsite: Host of the switch.
Offsite: Analysis node.

Table 3.1: A list of evaluated approaches along with their characteristics.

approach depicted in Figure 3.2 for matching the HTTP responses with their requests in
order to calculate the HTTP request service time.

Compared Approaches For a platform-specific software instrumentation at the end host,
we enabled the access log valve in Apache Tomcat server to log HTTP request service times.
We refer to this as Tomcat in the performance graphs.

For networking monitoring tools deployed at the web-server host, we use TShark, the
command line interface to Wireshark, and tcpdump. With TShark, we can do the analysis
in an online fashion, i.e., TShark sniffs the messages, analyzes requests and either visualizes
them or logs them to a file. Visualization was considerably more expensive. Thus, our
evaluations show the overhead when results are dumped to a file. Tcpdump is only a message
capturing tool with filtering capability. Such capability is only used to filter messages that
are relevant for the analysis. Tcpdump does not have an analysis engine, and is thus only
instructed to dump all packets to/from the web-server port to a disk file, that can be then
fed into any offline analysis tool.

For application monitoring in the network, we have evaluated port mirroring, selective
port mirroring of whole matched packet as well as for the header only (i.e. header
mirroring), tunneled mirroring using GRE/VXLAN and our sniffer. As both tunneling
approaches have very similar performance results, we only show VXLAN in the graphs for
better readability. For all approaches except of the sniffer, the mirrored packets are sent to
the analysis tool. For the sniffer approach, we show the results when the sniffer performs
the analysis itself and when it sends relevant data to the analysis tool (similar to what the
selective mirroring approaches do). The remote analysis tool used for mirroring and by our
offsite sniffer performs the analysis and dumps the results to a file.

44

3.3 Evaluation

Sniffer

YCSB client(s)

Tomcat web-server

MySQL database
container

Memcached container

OVS Host 1

Host 2

Analysis tool container

Tomcat access log valve

TShark
Tcpdump

Tomcat container

M
irr

or
in

g/
T

u
nn

e
lin

g

U
D

P
 lo

g
 m

e
ss

ag
es

Figure 3.6: Test application architecture.

Test environment Our basis for evaluation has been the YCSB benchmark [CST+] on
an extended architecture as depicted in Figure 3.6. While YCSB is originally a database
benchmark where the YCSB client sends requests to a database, our extended version has
added a Tomcat web-server as frontend for the client and a caching server. The clients
submit a predefined workload of HTTP requests to the web-server whereby each request
retrieves data from either a MySQL database or a Memcached server. The experiments use
the YCSB read-only workload with 3 million scan requests and zipfian distribution for record
selection over a 10GB database (10 million records). Each test scenario runs such workload
for two minutes and we report the average of 5 workload runs for each test scenario. We
also show the error bars. We have tested with up to 30 client threads, where the web-server
gets saturated even without monitoring enabled.

In order to compare the performance of different monitoring approaches, we run our
YCSB benchmark with and without monitoring. We then measure the overhead for each of
the monitoring approaches by analyzing the client perceived performance. That is, we check
how the different approaches affect the latency observed at the clients. We also compare the
performance of our sniffer to TShark and tcpdump in terms of resource utilization and to
the mirroring approaches in terms of communication overhead. Finally, we show how OVS
forwarding performance is affected in case of the mirroring approaches.

The experiments are performed using two DELL hosts with dual Intel(R) Xeon(R) CPU

45

3.3 Evaluation

Figure 3.7: Average latency reported by YCSB client under various monitoring approaches.

E3-1220 v5 @ 3.00GHz CPUs (4 cores per socket), a Broadcom NetXtreme BCM5720 Gigabit
Ethernet Dual Port NIC, and 32.8GB memory, with the clients on one machine and all server
components on another machine together with the OVS software switch. This resembles the
scenario where the cloud provider has large end-host machines that host many components.
Each server component runs in its own docker container (docker-ce version 18.03.1) with
predefined available resources and a separate core. All docker containers are connected by
10 Gigabit Ethernet OVS ports. We used OVS version 2.9.90. 16GB of RAM are assigned
to Memcached 1.5.12, the frontend web-server employs Apache Tomcat 9.0.13 and backend
database system is MySQL 5.7.24. A separate analysis tool component is used for some of
the evaluated approaches as shown in Table 3.1.

3.3.1 Application Latency

We have examined the impact of monitoring on the latency at the YCSB client. Ideally,
monitoring has little to no impact on the performance observed at the client side. Figure 3.7
shows the end-to-end latency observed by the YCSB client while increasing the workload,

46

3.3 Evaluation

i.e., adding more client threads. Of all approaches, Tomcat valve works best by having nearly
no impact on performance. This is because the access log valve does not need to perform any
sophisticated message analysis. This is only possible because the valve is tightly integrated
into Tomcat’s software and can very easily intercept the events of receiving a request and
sending a response. The other two end-host mechanisms, both application independent,
negatively affect performance. Tcpdump has much lower impact than TShark, though.
For example, with 20 clients TShark has 67% more latency compared to no monitoring,
while tcpdump increased the latency by around 1%. Note that tcpdump stores the logged
messages locally and the file needs to be retrieved from there before analysis takes place.
That is no analysis or message sending occurs. In contrast, mirroring-based approaches
and the two variants of our sniffer perform significantly better than TShark (by at least
15%), and only slightly worse than tcpdump (up to 6.5% for the header mirroring approach
at the highest workload). This is very promising given that they do so much more than
tcpdump (forwarding and reformating the messages, or even performing the analysis). The
mirroring approaches perform quite similar with selective mirroring always being better than
tunneled and header mirroring, as tunneling has the extra overhead of encapsulation and
header mirroring needs a truncation processing of the messages. Mirroring all messages
is more expensive than selective mirroring because more messages are forwarded but also
better than tunneling and truncation because of its simplicity. The two variants of the sniffer
approach are overall slightly better than the mirroring approaches and basically perform the
same as tcpdump with less than 2% worse performance.

In general, for all switch-based monitoring approaches, there is a delay induced for
executing the forwarding rules and copying messages, but in different contexts. As we
mentioned before, with mirroring, the switch has to push the packets to an additional port.
Additionally, VXLAN has the additional work of encapsulation and header mirroring has
the additional work for truncating the mirrored packet. In our sniffer implementation, the
kernel makes the packet copy for the listener thread as described in Section 3.2. Thus,
although with our sniffer the copying process is not in the OVS forwarding path to the
original destination, it runs on the same core as the OVS switch. Additionally, the sniffer
executes further analysis and/or encapsulation and forwarding actions. Thus, the sniffer
has an impact on the performance, albeit very minimal. In the future, we will consider
implementing the listener thread with a Zero-copy fast packet processing library such as
DPDK [CAR] that provides an access to the packets in the kernel space with no copying
overhead.

Overall and compared to platform-dependent approaches, the results for the switch-based
solutions are very promising and indicate that moving the sniffing tasks to the network is
effective with no significant client perceived performance overhead.

47

3.3 Evaluation

Figure 3.8: Analysis tool CPU utilization.

3.3.2 Computational Overhead

In this section we evaluate the computational overhead for the monitoring activities where it
is possible. As Tomcat valve and the mirroring-based approaches are tightly integrated with
the web-server and the switch respectively, it was not possible to measure the overhead. But
TShark, tcpdump and both versions of our sniffer use an independent monitoring process,
so we can measure the computational overhead. Note that we ignore the computational
overhead of the analysis node as this is a remote activity with less impact on the monitored
application.

Note that the sniffer is executed on the host of the switch while TShark and tcpdump
are executed on the application host. The Linux top command is used to measure the
CPU utilization of each running process. The results shown in Figure 3.8 indicate that
TShark has the highest CPU utilization consuming about 27% of the CPU resources of the
web-server host on average. In fact, we believe that this is the reason for the poor client-
perceived performance that we discussed in the previous section. One reason for TShark’s
bad performance is its poor software architecture: it is single-threaded and has poor memory
usage as it keeps messages in main memory for a long time. In contrast, our sniffer employs
multi-threading to avoid interference between different tasks and has carefully designed data
structures for message management. We note that TShark has frequently crashed during
the experiments. In addition, it also missed messages at higher rates. Meanwhile, our onsite
sniffer, that performs the analysis locally and writes it to a local file, performs much more

48

3.3 Evaluation

efficiently than TShark by consuming only 10% of the host CPU resources. We note that
in our evaluation tests, we enabled only the TShark analysis features that correspond to
the ones performed by our sniffer and thus, the performance advantage of our approach
is not attributed to analysis complexity. Nonetheless, the sniffer requires more CPU time
than tcpdump, which is very much expected, because tcpdump actually does not do any
sophisticated analysis tasks but just dumps the data into a file. Tcpdump consumed about
3% on average of the CPU resources of the web-server. Interestingly, when the sniffer only
reformats messages and sends them to a remote analysis tool, it requires on average around
1% more CPU utilization compared to the onsite sniffer version. It seems like creating
messages and sending them to a remote site is more CPU intensive than performing the
analysis locally, at least for the relative simple analysis of measuring request response times.

3.3.3 Switch Overhead

Here we compare the performance of port mirroring, selective mirroring, tunneled mirroring
and header mirroring in terms of their impact on the OVS forwarding performance. To do
that, we use Iperf [ESn16] to measure core link performance. We deploy the Iperf server, the
Iperf client and an analysis tool process, each in a separate docker container, all connected
through 10 Gigabit Ethernet OVS ports. We work within a single host as the focus is on
the performance of the OVS software. We run experiments with up to 30 concurrent client
connections.

Figure 3.9 shows forwarding latency when 30 clients are connected with the server using
OVS without any mirroring or tunneling, using OVS with port, selective and header
mirroring, and using OVS with tunneling (VXLAN). As expected, OVS without enabling
any mirroring mechanisms performs best. Port mirroring, selective and tunneled mirroring
are slightly worse than OVS. Header mirroring is the slowest.

Selective mirroring and port mirroring add around 0.2 and 0.6 microseconds latency
overhead, respectively. Tunneled mirroring incurs a higher delay of 1 microsecond because
it has to reformat messages (i.e. encapsulation). We believe that the client-perceived
performance impact observed in Figure 3.7 for mirroring and tunneling might be partially
due to this forwarding delay. However, the switch processing needed for truncating
messages in header mirroring has a serious impact on the switch latency with an increase of
9.7 microseconds. In fact, not shown in a figure, the OVS CPU utilization is also 50 times
higher for header mirroring compared to the other mirroring approaches. The performance
impact on the client-perceived performance observed for the header mirroring in Figure 3.7
is around 9% at the maximum tested workload.

49

3.3 Evaluation

Figure 3.9: OVS link latency impact of different mirroring-based approaches

3.3.4 Communication Overhead

To analyze the communication overhead induced by sending messages to a remote analysis
tool, we have collected the number of received packets and bytes at the analysis node while
running YCSB with 20 clients. Figure 3.10 shows the number of transmitted packets and
bytes. Figure 3.10a shows that port mirroring sends the most packets to the analysis tool as
it forwards all packets over the monitored link. All the selective mirroring variants involve
similar packet count since they use the same filtering rules. Overall, about 30% less messages
than with port mirroring are sent. The offsite analysis sniffer transmits the fewest packets
as it further eliminates sending the acknowledgement packets that do not have any data (i.e.
with TCP data size = 0), which constitutes less than 12% of the number of messages port
mirroring is sending.

Figure 3.10b reports the communication overhead in terms of total message sizes.
VXLAN and selective forwarding send only 5% respectively 6% fewer bytes than port
mirroring although they transmit 30% fewer packets. The reason is that these approaches
avoid sending the control messages but these are typically small in size. Furthermore,
VXLAN adds some bytes to each packet for encapsulation (i.e. the outer and VXLAN
headers in Figure 3.1b) which leads to more bytes than selective mirroring. On the other
hand, header mirroring sends around 95% fewer bytes compared to mirroring the whole
packet, because the TCP header is only about 5% of the maximum segment size of TCP

50

3.4 Summary

(a) Number of packets received by analysis tool. (b) Number of MBytes received by analysis tool.

Figure 3.10: Communication overhead when the analysis is conducted by a remote tool

packets. The offsite analysis sniffer sends the fewest bytes, representing only 1.25% of what
port mirroring typically sends. The reason is that it is customized and extracts only the
target fields to be sent to the analysis node.

3.4 Summary

Conducting complex application-independent analysis on the end host, as done by TShark,
can have a considerable negative impact on application performance. Network-based
application monitoring approaches decouple the data collection and analysis from the end
components, allow for flexible placement of data collection and even analysis somewhere in
the network.

Port mirroring has shown better performance than tunneling in our experiments as it
introduces less overhead in the switch. However, port mirroring produces more traffic,
which may negatively affect the overall cloud performance should the analysis tool reside
on a different node than the switch. Selective and tunneled mirroring reduces slightly this
communication overhead. Header mirroring has the least communication overhead between
mirroring approaches. However, it has significant impact of the switch latency.

Compared to mirroring and tunneling, the sniffer has the advantages that: (a) it does

51

3.4 Summary

not introduce any direct delay at the switch, and (b) it can perform some analysis locally or
send selective information for remote analysis which significantly reduces the communication
overhead. The disadvantage of the sniffer is that it can be only implemented in software and
not on SDN-enabled hardware switches.

Overall, we believe that a network approach provides us considerably more flexibility
in the placement of monitoring functionality. For hardware switches, selective mirroring is
probably the most efficient approach if the analysis tool resides on a node that has a direct
link to this switch, but tunneling provides flexibility for the location of the analysis tool that
is probably worth the overhead. For software switches, we believe that our sniffer is the
preferred route to go because of performance and flexibility.

52

53

4
Monitoring as a Service (MaaS)

In this chapter, we propose an architecture for a Monitoring-as-a-Service (MaaS) platform
that can provide performance measurements on a per-component basis, and present a
prototype implementation. The MaaS has as its core building block the sniffer that we
have introduced in the previous chapter. Care has been taken to follow a design that allows
for scalability of the different components. In its current format it already supports the
monitoring of various service types providing a wide range of performance metrics. A focus
of the design has been extensibility so that new service types and new performance metrics
can be integrated with acceptable overhead. We also analyze the performance impact the
MaaS has on the application under observation.

4.1 Overall Architecture

Figure 4.1 illustrates the overall MaaS architecture and its deployment inside the cloud
network. It follows a distributed architecture that is composed of three main software
components: monitoring agent, visualization frontend, and controller. Such distributed
architecture provides considerable flexibility in the placement of the components within the
cloud infrastructure. It also allows for scaling-out the different components individually. A

4.1 Overall Architecture

SW switch

Rack 1 Rack 2 Rack n-1 Rack n

…...

Monitoring
Agent

Controller

Visualization
Frontend

A3

ToR switches

A1

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

A4 A5

A2
Monitoring
Agent

A4/A5

Figure 4.1: MaaS prototype architecture.

monitoring agent is attached to each software switch in the network and performs message
analysis as described in the previous chapter. Users submit their monitoring requests via
the visualization frontend which relays them to the controller. The controller knows about
all agents in the network and sends requests to the appropriate agents, which return their
results to the controller who forwards them to the visualization frontend for visualization.

Assumptions For simplicity, we assume that each component has its own unique IP
address across the cloud network that allows it to communicate directly with other
components. Thus, we use this IP address as an identifier of a component. For instance, in
Figure 4.1, each application component of A1-A5 should have a unique IP across the cloud
network. Furthermore, as MaaS leverages software switches as it loosely attaches
monitoring agents to these switches in order to intercept message exchange among
components, we assume that MaaS knows about all software switches deployed in the cloud
network. In addition, we assume that each connection between two components passes
through at least one software switch. We believe that such an assumption holds for many
clouds or will do so in the near future as software switches become the prevalent solution
for the lower levels of the cloud infrastructure. Should there still be flows that only go
through commodity hardware switches, existing SDN technology can still be exploited in
order to route relevant flows to MaaS [SDGK21,LTRW]. This can be done by dynamically
adding forwarding rules to the flow tables of the hardware switches as described in Section
3.1.

54

4.1 Overall Architecture

In the following we provide some details of our implementation of this architecture1.

Visualization Frontend The visualization frontend is implemented as a web-server.
Users connect via a web-browser to the frontend where they can indicate what they want
to monitor. If there are many users, the frontend can be easily scaled to several instances
and the clients be distributed across these instances. Frontends can be deployed on any
node in the network. The user can indicate one or more services they want to monitor and
what performance metrics they want to collect through a form, as depicted in Figure 4.2.
They also indicate how long they want to monitor the service(s) and at which time
intervals they want to receive the updates to the performance metrics. They can specify
that they want to have the metrics for all clients connected to the monitored service or
only for a specific client.

Once performance metrics are available for visualization, the frontend displays them
in near real-time as depicted in Figure 4.3. As the frontend receives new updates to the
metrics at each interval, it updates the graphs that are presented to the user. The graphs
show aggregated results for each performance metric over the last time interval by reporting
various statistics such as the average and cumulative distribution, as we will describe later
in this chapter. This dashboard can be dynamically configured by adding and removing
performance metric graphs. We will provide more information about the graphs that are
visualized in the next section.

Controller The controller is the broker between frontend and monitoring agents and can
reside at any node in the network. It assigns monitoring requests to relevant monitoring
agents and returns the results to the frontend. Thus, the controller is itself a backend server
to the visulatization frontend as well as a client to the monitoring agent server. We use
a controller between frontends and monitoring agents instead of letting frontends directly
communicate with the agents, because the controller has a wide range of responsibilities
that are not necessary compatible with the web-server design of the frontend. First, the
controller might itself perform some analysis tasks to reduce the computation done by the
agents, as we discussed in the previous chapter regarding distribution of analysis between
sniffer and analysis tool. Further, the controller must know and be able to communicate with
all deployed agents. It also has to determine the switch/agent that connects to a service for
which monitoring is requested. The details of this process will be discussed in Chapter 6.

1Note that a considerable part of this implementation has been realized through undergraduate research
projects. Therefore, we do not present the implementation details but only give a high-level overview of the
components to better understand the capabilities of the MaaS.

55

4.1 Overall Architecture

Figure 4.2: MaaS User interface to request monitoring [Fes].

56

4.1 Overall Architecture

Figure 4.3: MaaS dashboard [Fes].

Monitoring agent Finally, the monitoring agent is an extension of the sniffer that was
presented in the previous chapter. It is deployed at the host of each software switch. Figure
4.1 shows a monitoring agent at each ToR switch and the software switch that resides on the
machine that hosts A4 and A5. It analyzes the messages that travel through the switch and
performs performance analysis on the fly by analyzing specific network messages. Assuming
the distributed application A1-A5 in Figure 4.1, the traffic between A3 and A4 could be
monitored by the agent of the ToR switch of Rack n or by the agent of the switch embedded
in the machine hosting A4. The monitoring agent computes the requested performance
metrics at given time intervals for the duration of the monitoring and sends them to the
controller for dissemination. The requested performance metrics are computed and stored
at user-defined time intervals and the results are sent for visualization to the MaaS user
on a regular basis. The same monitoring agent can execute several monitoring requests
simultaneously. The monitoring agent is implemented as a server that continuously listens
for incoming analysis requests. Then, it spawns a set of threads to efficiently distribute and

57

4.2 Performance Metrics

separate the work required to capture the network packets from the other data extraction
and analysis tasks as described before in Section 3.2.

4.2 Performance Metrics

Given a service, the message exchange between client and server typically follows a specific
communication protocol most commonly built over TCP/IP. Many services use
HTTP [MN15, DP11, CC16] or have their own proprietary protocol. In each of these
protocols, the message payload often follows clear patterns. As pointed out in Section 2.5,
considerable application relevant metrics can be extracted by looking at message content
providing information about the performance of the individual components and the system
overall. In this section we want to motivate the possibilities by outlying some of the
metrics we can collect through message inspection for many services, and how we have
implemented them in our MaaS prototype.

Many cloud application components are built from well-known services (e.g., web-server,
database systems such as PostgreSQL, caching services such as Memcached or Redis, etc.)
that all use a request/reply communication pattern with their clients. Providing on-demand
performance metrics for such request/reply-based services will be a crucial feature of any
monitoring service. Therefore, we have chosen to start with those services as a proof of
concept for our MaaS.

So far, our MaaS prototype is able to calculate the performance metrics as described
in Table 4.1. As we can see, most of them are common for any service that is based on
request/reply patterns, which allows us to develop a generic monitoring platform to derive
them. More precisely, we distinguish between two main categories: (1) general performance
metrics for any request/reply based service, and (2) protocol-specific performance metrics
that can be quite specific for a particular service.

General performance metrics Application performance metrics such as the request
service time, number of bytes transmitted per time unit between the service and its client(s),
and the service load in terms of the number of received requests per time unit, the error
rates for these requests, the number of connected clients and the number of distinct open
connections by those clients to the server, all are examples of application performance metrics
that can be applied to any service that is based on the request/reply communication protocol.
Some of these general performance metrics can be measured without deep packet inspection,
as the needed information is in the packet header such as the throughput which is based

58

4.2 Performance Metrics

Metric name Description
General performance metrics

Service time The time elapsed between the submission of a service request and its
corresponding response.

Throughput The number of bytes transmitted between a service and its client(s)
in both directions (per time unit)

Connection rate The number of distinct open connections to a service (per time unit)
Request rate The number of service requests (per time unit)

Clients The number of distinct hosts (IPs) connecting to a service (per time
unit).

Error rate The number of failed requests per time unit.
Protocol-specific performance metrics

Request type The ratio of each of the request types offered by a specific service.
Examples include GET, POST, etc. for the HTTP communication
protocol, SQL query type for DB systems such as SELECT, DELETE,
INSERT, etc, and GET and SET for caching services.

Response status The ratio of each of the service’s response status.
Request path The path to requested resource, as mentioned in service’s request

URL. It can be found, for instance, in services that use HTTP
as the communication protocol. For example, the path of the
requested resource in the HTTP request with HTTP URL of
"https://www.overleaf.com/login" is "//www.overleaf.com/".

Request method The called function in the service’s request, such as login, register,
authorize, etc. It can be found, for instance, in services
that use HTTP as the communication protocol. For example,
the called function in the HTTP request with HTTP URL of
"https://www.overleaf.com/login" is "login".

Table 4.1: Performance metrics for request/reply based services.

on the length of the packets transmitted by the server as well as the connection and client
rates that depend on the IP/port information in the packet header. In contrast, service
time, request rate and request error rate may require a deep packet inspection to identify
the service individual requests, responses, and the response status code. An example of how
this can be done for HTTP request service time is described in Section 3.1.2.

Protocol-specific performance metrics Each service protocol could have its unique
parameters that are needed to be monitored. For instance, each request/reply-based service

59

4.2 Performance Metrics

usually has different types of the possible requests and responses. For instance, the clients
of HTTP-based services can send a GET request to retrieve data from a specific resource,
a POST request to create/update a specific resource, or a DELETE request to delete a
certain resource. Similarly, GET, SET and DELETE requests could be initiated to key-
value services to read the value, add a new key-value record, and delete key-value record,
respectively. The response messages also may have different codes which indicate different
statuses. For instance, HTTP response messages have different codes to indicate the different
types of errors for the failed requests such as receiving a not understandable request or
unavailability of the web-server to handle the request. Other examples of protocol-specific
performance metrics include the frequency of requests for individual objects/methods. For
instance, HTTP request messages contain the full path, in terms of a URL, of the requested
resource and the called function such as login, register, authorize, etc.. Keeping track of
the number of requests per URL and/or method, calculating their frequencies on an interval
basis can be used to measure the popularity of the resources and the load for the different
methods. In a Memcached service, one might be interested to keep statistics about access
frequencies of certain objects. Again, if the structure of the request messages is known to
the monitoring service, this information is easily obtainable.

Thus, there is a similarity regarding the semantics but the implementation details can be
different for each service and likely need deep packet inspection. For example, the response
status performance metric will have similar semantics for each request/reply based service,
but the response status codes will not be identical. In summary, the MaaS must know how to
parse the service’s messages according to its communication protocol, to be able to extract
the needed information for the performance metrics shown in Table 4.1 in the service context.
That is, while we do not need to instrument the services that we monitor, we still need to be
aware of the service-specific communication protocol for some of the performance metrics.

Aggregated results: Typically, administrators are interested in aggregated information.
Therefore, for each performance metric, statistics like the maximum, minimum, average and
the cumulative distribution are produced over a given observation window. In case of long-
lasting observations, values are given periodically as aggregates over predefined observation
intervals. Space and computation overhead to keep track for such aggregated information is
expected to be small. Thus, it should be possible to maintain them even at high throughput
rates.

60

4.3 Extensibility

4.3 Extensibility

So far, our MaaS prototype derives the performance metrics shown in Table 4.1 for three
main services, namely HTTP, MySQL and Memcached, as a proof of concept. However, the
MaaS implementation is designed in a modular way that allows for dynamic integration of
code components for new communication protocols or new performance metrics that are not
yet supported. We present here the high-level idea for extending the MaaS platform for new
protocol parsers and performance metrics.

4.3.1 Integrating New Communication Protocol Parsers

As mentioned before, the request/reply-based protocols have a common semantics which
enables us to develop a common platform for monitoring them. The MaaS offers a standard
interface for request and reply messages, although the format of the messages is then
protocol-specific. Thus, our MaaS framework provides an API that allows to define parsers
for request/reply-based communication protocols that are not supported yet by the MaaS
prototype. The protocol parser API wraps all the common internal structures necessary to
encode request and response message formats for any request/reply based services. For
instance, the protocol parser API allows for declaring protocol-specific attributes such as
request method types, protocol version, response status codes and request/response pairs.
The protocol API also contains methods that define how to identify and parse the protocol
request and response messages, as well as a list of the supported performance metrics.
Furthermore, we have developed a library to parse Ethernet, IP, TCP, and UDP headers.
Based on this library and the protocol parser API, new protocol parsers can be written
with minimal code. For instance, we have integrated monitoring support for the Redis
protocol with only 110 lines of code using the protocol parser API.

4.3.2 Integrating New Performance Metrics

The MaaS also provides an API to define new performance metrics either by
extending/combining existing ones or creating completely new ones. As one performance
metric can be useful for different protocols, each performance metric is assigned to different
contexts depending on the attached protocol message format. Therefore, the MaaS has also
a common API for performance metrics.

Performance metric types: The performance metric API provides two main types of

61

4.3 Extensibility

Min.

Avg.

Max.

(a) Example of an average metric.

2.2.2.2: 0.5980

3.3.3.3: 0.13043

2.2.2.2: 0.27229

(b) Example of a cumulative distribution metric.

Figure 4.4: Examples of implemented performance metric types.

metrics:

• Average metric type At each time interval, three different values are reported for a
particular performance metric: the maximum, average and minimum values over the
last time interval. An example of the average metric type is request service time and
it is illustrated in Figure 4.4a where three lines of maximum, average and minimum
service time are shown. Throughput, connection rate, request rate and error rate are
currently defined to have the average metric type in our MaaS prototype.

• Cumulative distribution metric type At each time interval, all received values from
the start of analysis are displayed with their cumulative distribution. For instance,
Figure 4.4b shows an example of a cumulative distribution metric type. In Figure
4.4b, almost 60%, 13% and 27% of the connections to the monitored service since the
start of the analysis are belonging to the clients with IP addresses of "2.2.2.2", "3.3.3.3",
and "4.4.4.4", respectively. For that, a list of key-value pairs is reported where the keys
are the possible values, and the values reflect the cumulative distribution. Response
status, request type, path and method all belong to the cumulative distribution metric
type in the current implementation of the MaaS prototype.

Events: The performance metric API is implemented as an event-based system where
data processing takes place at particular key points triggered by a family of events such as
receiving new request/response, having a new client connection to the monitored service, etc.
Each performance metric registers to some events of interest and provides a notify function
to be called for each event it is registered to. For instance, data processing for "service time"
performance metric is needed once a new response is received at the monitored service, while
the connection rate performance metric is updated once the monitored service receives a new

62

4.3 Extensibility

Event Performance metric

New flow
Connection rate.
Clients.
Throughput.

Flow update.
(i.e. received a data packet over an already open flow) Throughput.

Request received

Request rate.
Request type.
Request path.
Request method.

Response received
Service time.
Response status.
Error rate.

Timer expired.
(when one second has elapsed. Mainly used for rate computation)

Throughput.
Connection rate.
Error rate.
Request rate.

Interval elapsed All requested performance metrics.

Table 4.2: Events used for performance metric update and computation.

connection. Table 4.2 lists the currently implemented events and their related performance
metrics.

Data formatting for visualization: Each defined performance metric type has to
specify the output format and a function to send this output for visualization. The output
format for the two implemented average and cumulative distribution metric types are
already defined. The average metric has three output values to produce, which are the
average, minimum and maximum, while the cumulative distribution metric type output
format is defined to be a hash table of key-value pairs. For instance, the clients
performance metric produces the output as a hash table with distinct client IP addresses as
the keys, and the total number of connections opened by each client as the values. Any
performance metric, extending one of these two already defined metric types, will by
default have their output data sent to the visualization frontend, using the message format
described above. However, new output formats can be defined as needed.

Defining a new performance metric with one of the existing types is quite easy. For
instance, a new metric to measure the request rate per client, i.e. the ratio of one client’s
requests to all received requests by the server per time unit, extends the cumulative
distribution metric type and implements the functions for the relevant events, such as the
arrival of new request, timer and interval expiration.

63

4.4 Evaluation

YCSB client(s)

Tomcat container

MySQL database
container

Memcached container
Monitoring agent

OVS Host 1

Host 2

Host 3

Controller container
Visualization Frontend

container

Host 4

Figure 4.5: Testbed architecture for MaaS prototype.

4.4 Evaluation

In this section we evaluate the overhead the MaaS prototype has in terms of the latency
perceived by the clients of the monitored application as well as resource consumption and
communication. Our evaluation uses the YCSB benchmark [CST+] described in Section
3.3. We have extended the setup illustrated in Figure 3.6 where four hosts are used to
accommodate the MaaS prototype components. That is, the YCSB client is deployed at
the first host while the YCSB application components are deployed in separate containers
in the second host together with the OVS software switch as illustrated in Figure 4.5. The
monitoring agent component of the MaaS prototype is co-located with the host of the OVS
switch that connects the YCSB components, i.e. host 2. The third machine hosts the
controller component and the fourth machine hosts the visualization frontend component
of the MaaS prototype. We use the same workload configuration as described in Section
3.3, that is 16GB of RAM are assigned to the YCSB cache component and the YCSB
read-only workload is used with 3 million scan requests and zipfian distribution for records
selection over a 10GB database (10 million records). We have tested with 30 client threads,
the maximum workload of the YCSB application in our configuration setup. In order to
evaluate the overhead of the MaaS prototype, we run our YCSB benchmark with and
without MaaS monitoring. For MaaS monitoring, we increase the monitoring overhead by
incrementally increasing the number of collected performance metrics. Table 4.3 shows
which application performance metrics are collected for each monitoring configuration. All
of the listed application performance metrics are collected for the YCSB web-server
component. We set the monitoring overall duration and the interval to 120 and 5 seconds,

64

4.4 Evaluation

Monitoring workload Application performance metrics
1 Service timea.

2 All of above.
Client.

4
All of above.
Throughput.
Connection rate.

6
All of above.
Request rate.
Error rate.

8
All of above.
Response status.
Request path.

10
All of above.
Request type.
Request method.

Table 4.3: Performance metrics extracted for each monitoring configuration.
aNote that we follow the approach depicted in Figure 3.2 for matching the responses with their requests

in order to calculate the HTTP request service time.

respectively.

The experiments are performed using DELL hosts with dual Intel(R) Xeon(R) CPU E3-
1220 v5 @ 3.00GHz CPUs (4 cores per socket), a Broadcom NetXtreme BCM5720 Gigabit
Ethernet Dual Port NIC, and 32.8GB memory with docker-ce version 18.03.1, OVS version
2.9.90, and MySQL 5.7.24 for the backend database system. All docker containers are
connected by 10 Gigabit Ethernet OVS ports.

4.4.1 Application Latency

We have examined the impact of the MaaS prototype on the latency at the YCSB client
(the blue line). Figure 4.6a shows the end-to-end latency observed by the YCSB client while
increasing the number of collected performance metrics. We run each configuration 5 times.
We report the latency average of 5 runs and show the error bars in Figure 4.6a.

As we can see in Figure 4.6a, initiating monitoring has a small impact on application
latency. That is, when the MaaS prototype is instructed to monitor one performance metric,

65

4.4 Evaluation

(a) Average latency reported by YCSB client
and the CPU utilization of the monitoring agent
for various monitoring configurations.

(b) Monitoring agent communication overhead
for various monitoring configurations.

Figure 4.6: The MaaS prototype overhead

the perceived latency at the YCSB client increases by 3.7%, compared to when no monitoring
is enabled. The reason becomes clear when we discuss the computational overhead in the
next section. However, the number of collected performance metrics has little further effect
on latency. Only a further increase of 1.4% can be observed when the MaaS prototype
collects ten performance metrics. The results are very promising and indicate that the MaaS
prototype has little client perceived performance impact even with high monitoring demands.

4.4.2 Computational Overhead

In this section we evaluate the computational overhead for the monitoring activity of the
MaaS prototype. We ignore the computational overhead of the controller and visualization
frontend components as they are remote activities with no impact on the monitored
application. We have measured the CPU consumption of the monitoring agent as it needs
to run on the OVS host, and in our setup it is the same host where the application
components are residing. The Linux top command is used to measure the CPU utilization
of the monitoring agent process while increasing the load on the monitoring agent.

The results shown in Figure 4.6a (orange line) indicate the base load of the agent with

66

4.4 Evaluation

only one performance metric requires 16% CPU utilization. This includes the parsing of the
messages and the maintenance of the various data structures, that does not change much
while increasing the number of collected performance metrics. Thus, when more and more
performance metrics are collected, the CPU utilization increases further but only slightly.
Interestingly, the deep packet inspection processing required for collecting some performance
metrics at loads 6, 8 and 10, such as error rate, request path and method increases the CPU
consumption not significantly. We note that our experiment in Chapter 3, Figure 3.8 shows a
CPU utilization of 13% for the offsite sniffer at similar workload (30 clients and collecting one
performance metric). The CPU increase we see here is due to the refactoring we performed
to allow for extensibility. Nevertheless, the CPU utilization of the monitoring agent has a
minimal impact on the monitored application as also shown in Figure 4.6a.

4.4.3 Communication Overhead

Here we analyze the communication overhead induced by the MaaS prototype. In
particular, we have collected the number of transmitted bytes by the monitoring agent
during the full 2-minutes monitoring duration. Figure 4.6b shows the number of
transmitted bytes while increasing the number of collected application performance
metrics. The number of transmitted bytes are linearly increasing with the number of
performance metrics as more performance data is reported to the controller for
visualization. Recall that at each monitoring interval, the monitoring agent serializes the
collected performance data to the controller. In our experiment, this interval was set to 5
seconds. Note that the monitoring agent is reporting three values for each requested
average type performance metric and a list of key-value for the cumulative distribution
metric type at the end of each monitoring interval as described in Section 4.3, and the size
of the latter list is depending on the distinct values collected for the performance metric.
For example, the reported list for the "client" performance metric equals the number of
connected clients during the monitoring interval. The maximum communication overhead
in our test setting is around 9KB for the 2-minute experiment and the monitoring interval
of 5 seconds and collecting the complete set of the currently implemented performance
metrics while running the maximum YCSB workload. Note that the communication
overhead takes place on a dedicated and separate communication link between the
monitoring agent and controller components, and only happens at the specific time
intervals. We consider this to be a very small number.

67

4.5 Summary

4.5 Summary

In this chapter we have presented the design and implementation of the MaaS prototype.
It is built with the network monitoring functionality proposed in Section 3.2 as core
building block, where monitoring agents are co-located with software switches in order to
extract performance metrics from the message flows between application components in a
non-intrusive manner and send the calculated metrics to the administrators for
visualization in near real-time. The developed MaaS prototype allows users to choose to
monitor different service types and performance metrics in a user-friendly manner.

The MaaS prototype has a distributed architecture that provides considerable flexibility
in the placement of the components within the cloud infrastructure. The MaaS prototype
is currently supporting a variety of common application metrics for request/reply-based
services. In addition, the MaaS prototype is built in a modular way that allows for the
integration of new services and performance metrics to be monitored that are not yet
supported. The evaluation results show that the MaaS prototype has little impact on the
monitored application latency that is around 5% for the maximum tested monitoring load,
has reasonable CPU utilization and imposes a small communication overhead. We believe
this monitoring overhead is acceptable since the MaaS prototype will be enabled for short
monitoring durations.

68

69

5
Flow-based service type Identification using

Deep Learning

One of the crucial features of our MaaS is to provide the application call graph of a distributed
application at run-time. One important aspect of such a call graph is to identify the service
type each of the components provides. While this is an easy task when instrumentation is
used, it is not trivial if we only want to rely on the message flows exchanged between the
components. In Section 2.6 we have provided an overview of a whole range of mechanisms
that were developed in the context of network traffic classification (NTC), and that can
potentially be used for service identification as is needed for an MaaS. The recent approaches
on using deep learning models (DLMs) seem the most promising as they do not require major
feature engineering or deep knowledge of the services that need to be identified. However,
the few approaches that we are aware of that have been proposed so far, have not been used
for exactly the same purpose that we envision, and differ significantly from each other in
regard to what information from the packets they use, and what assumptions they make
about the information available. Thus, we needed some guidelines on selecting the best
approach. Therefore, this chapter provides a detailed study of the trade-offs between the
many design options when building a DLM for service identification, considering, for instance,
what part of the message to take as input (header vs. payload-based), whether to choose
uni- or bidirectional flows, and whether including port information has an impact. We also

5.1 The Principles of Using Deep Learning for NTCs

analyze the impact of encrypted messages and what happens if we do not have available the
first messages in a flow that set up a connection. Furthermore, additionally to looking at a
range of DLMs that have been previously used for NTC, we also analyze a model based on
Bidirectional LSTM that we believe is particularly promising for service identification.

As such, this chapter provides first a short overview of the principle ideas of deep learning
for NTC. We then describe the message flows we have created for a wide range of service
types that are commonly used by distributed applications in the cloud. From there, we
describe in detail how we transform the message flows into input datasets for learning the
DLMs and discuss a wide range of parameters that we consider influential for model learning.
We then outline the different DLMs that we consider for our analysis. Finally, we provide a
performance comparison of these different deep learning approaches that demonstrates their
trade-offs, analyzing the sensitivity of the different approaches to crucial parameters such as
dynamic configuration of service port numbers, flow direction, the location of packets in the
flow stream and secured communications.

5.1 The Principles of Using Deep Learning for NTCs

As mentioned in Chapter 2, NTCs classify a network flow, that is a sequence of messages,
to be of a certain class which can be a service type, an application or an application type.
In most NTC approaches, a message flow is first transformed via feature engineering into
a feature vector where the individual features provide information about the characteristics
of the flow. Example features could be the total number of messages, message inter arrival
time, average packet size, etc.

The limited number of deep learning proposals we are aware of take a different
approach [LKH+] [LKK+19] [MCSL17] [WZZ+17]. Their idea is to consider the message
packet content itself as a feature vector. The sequence of message packets that make up a
network flow can then be considered as a matrix with the features as columns and the
messages building the rows building a pseudo-image that can be fed into learning
algorithms that take images as learning input. Or the flow can be considered as a sequence
of features, just as video frames or text, which can be fed to sequence-based learning
models. How approaches differ is in what information from the packets they take to build
each feature vector. Some approaches only use the packet header [MCSL17] [WZZ+17],
while others consider the payload of the packet [LKH+] [LKK+19].

In header-based approaches, the feature vector is extracted from the TCP/UDP header
information of the packet. Examples of header-based learning features include

70

5.2 Data Generation and Service Types

source/destination port numbers, number of transmitted bytes, and time passed since the
last packet was transmitted. The flows belonging to the same service type should have a
local similarity in the values of those header-based features, which enables the DLMs to
identify different service types. Header-based analysis has several advantages: (i) it
requires small model training time as the number of extracted features are small, and (ii) it
is a good option for secured communications since it uses only the packet header
information which is not encrypted. However, as the learning features are limited, the STC
accuracy might not be good enough. Additionally, when network settings change, a given
service type might have different header-patterns and hence retraining becomes necessary.
In particular, existing header-based approaches have shown to perform well when including
the service port numbers in the learning features. This works well for services with a
predefined port but performance is not clear if services are configured to use dynamic port
numbers.

In payload-based approaches, the learning features are extracted from the first bytes
of the message payload, i.e., the header information of the service type’s communication
protocol. Thus, the URL string can be found for HTTP-based protocols, and the put/get
headers for caching services, etc. This promises to find recurring patterns within the service
type’s communication protocol. However, the use of packet payload requires longer training
time and might have limited identification performance with encrypted payloads.

From here the basic principle is the same as with traditional ML approaches. The DLM is
trained by feeding it with a large set of labeled network flows. The trained model is then the
classifier with which unlabeled network flows can be classified. Clearly, the choice of DLM
has an impact on the classification accuracy of the NTC [PHW11,MCSL17,LKK+19,LKH+].

5.2 Data Generation and Service Types

In this study, we have built datasets by collecting Packet CAPture (PCAP) traces using
tcpdump from a wide set of applications that use various service types. From these traces
we generate the network flows with the corresponding service labels that are used to train
the DLMs. How exactly the network flows are extracted from the traces is described in the
next sections.

Having a traditional service architecture in mind, we have aimed at having classical
service types such as HTTP-based services, database systems, and caching services in our
repertoire. We also wanted to see how good the STC is if the services are conceptually
very similar. Overall, we have collected PCAP traces and extracted message flows that

71

5.2 Data Generation and Service Types

were labeled with the following service types: HTTP, the four relational database systems
PostgreSQL [Pos], MySQL [MyS], DB2 [DB2] and MonetDB [Mon], the distributed NoSQL
data store Cassandra [Cas], the two key-value caches Memcached [Mem] and Redis [Red],
and the distributed compute platform Spark [Spa]. As Cassandra is a multi-node system we
distinguish message flows between clients and Cassandra nodes and flows between Cassandra
nodes themselves that are caused by data and group maintenance.

We created these traces by running a wide range of applications. The TeaStore
benchmark [vKES+19] consists of six web-services offering functionality such as
recommendation, authentication, persistence, etc., and one MySQL database service The
YCSB benchmark [CST+] is a database benchmark that we adjusted so that it has a
web-based front-end, and we run it with the database systems PostgreSQL, MySQL, DB2,
and Cassandra. Furthermore, we developed in-house three small-scale database
applications: (i) a Netflix application that is mocking a video streaming service, (ii) a
University application that offers course registration for college students, and (iii) a Venues
management application that is used to host and organize events for institutions. Each
application has its own database, pre-populated with records for manipulation. We run a
variety of workloads with different combinations of READ, INSERT, and UPDATE queries
and created traces for PostgreSQL, MySQL, DB2, MonetDB, and Cassandra. In addition,
we have extended the YCSB and applications developed in-house to not only use database
backends but also caching services in order to get traces for Memcached and Redis. The
caching systems save a database query result in a key-value pair where the key is a hash
code of the database query itself and the value is the query result. The query result is
serialized in different formats such as JSON string (JS), LinkedList (LL) and Arraylist
(AL) in order to evaluate the capability of DLMs of recognizing the cache service despite
the usage of different data formats. Furthermore, we consider Spark as an example of a
distributed data processing service that is commonly used to efficiently store and process
large datasets in the cloud. For Spark, we do not use the aforementioned applications, but
have run several Spark-bench workloads [LTW+17], including machine learning, data
generation and heavy-computation workloads. Overall, we have created 15065 network
flows by running these applications in their different configurations. For HTTP traffic, we
additionally use the dataset provided by the UPC’s Broadband Communications Research
Group [CBB]. It contains traces for plain web traffic out of popular web applications,
including Facebook, Yahoo, Wikipedia, and others. We have extracted a subset of around
5000 unencrypted flows from the UPC dataset. All this data builds our base dataset that
we use for most of our evaluations.

In order to analyze the STC capability of identifying the service type in case of secured
traffic, we collected a significant number of additional flows for the relational database
systems PostgreSQL, MySQL and DB2, and for HTTP, which we assign a different set of

72

5.3 Dataset Preprocessing

service labels (e.g., SDB2 for encrypted DB2). To collect the traces for the database
systems, we ran our three in-house applications and the YCSB benchmark using TLS for
the client/database connection. TLS stands for Transport Layer Security and is the
primary encryption protocol used for HTTP connections, and the most common security
protocol when connecting to relational database systems. With TLS, the client and server
exchange a series of security parameters prior to a data transfer in what is known as the
handshake process which includes verifying each other through authentication TLS
certificates, establishing the encryption algorithms they will use, and agreeing on session
keys. We have used a variety of TLS versions across clients and databases to introduce
variability into our dataset. Newer versions of TLS introduce more secure options for
clients and new acceptable cipher-suites (encryption methods). For secured web-based
services, we use the public “ISCX VPN-nonVPN (ISCXVPN2016)” traffic dataset, that
consists of captured PCAP files for many different applications [DLMG]. We have
integrated all the "browsing" PCAP files, that include HTTP flows that are encrypted by
TLS (i.e. HTTPs) as well as unencrypted HTTP flows. The ISCXVPN2016 dataset
contains HTTPs traffic that is encrypted with different versions of TLS as well. For our
experiments analyzing service identification with encryption, we use both the base dataset
as well as these additional flows.

5.3 Dataset Preprocessing

After collecting the raw network traces, the next step is to transform them into a flow-based
dataset that can be fed into the algorithm that trains the DLM. In this section, we describe
this transformation and various crucial design parameters. We create network flows out of
the raw traces where each network flow and its service label becomes one input record for
the model learning process. A network flow is generated for a communication link, that
is a pair of two communication endpoints (client and server) defined by their IP addresses
and port numbers. This network flow consists of a sequence of feature vectors, where each
feature vector represents one of the packets exchanged between the two endpoints. Figure
5.1 illustrates such a network flow. The length N of the sequence, that is the number of
packets that are extracted from the traces, is a configurable parameter.

Should the raw network trace contain more than N packets then we extract N packets
either from the beginning of the trace, which includes the messages exchanged at the
connection setup, or somewhere in the middle of the trace and discard all other packages.
We use Min-Max Normalization to scale the feature values between 0 and 1 to enhance the
learning process.

73

5.3 Dataset Preprocessing

Feature vector

Packet 1

Packet 2

Packet 3

Packet N

F
ea

tu
re

 v
e

ct
o

r
se

qu
e

n
ce

Network
flow

Figure 5.1: The network flow composition in our flow-based dataset.

5.3.1 Header- and Payload-based data extraction

As mentioned in Section 5.1, we have formulated two main dataset types: header-based and
payload-based. In the header-based dataset, only information from the TCP/UDP packet
header is taken to create the feature vector. In contrast, for the payload-based data, the first
bytes of the payload are used for the feature vector as they contain the header information
of the communication protocol of the service type (e.g., HTTP headers).

To represent the network flow profile in the header-based approach, we follow a similar
approach to that of [MCSL17], and explicitly extract four meaningful features from each
packet’s header: the number of bytes in the packet payload, the TCP window size (set to
zero for UDP), the packet inter-arrival time, and the packet direction. The latter takes into
account that given two endpoints both can send messages to the other. Thus, we mark in
which direction the message travels.

In contrast to [MCSL17], our default evaluations use a dataset that does not include the
packet port number as a learning feature as we expect that including the port number might
lead to poor learning outcome when dynamic port numbers are deployed. However, we have
constructed a variant of the header-based dataset that considers the service port number as
a fifth feature to investigate its effect on the STC performance.

For our payload-based dataset, we adopt the pre-processing methodology proposed in
[LKK+19, LKH+], where each byte of the payload data of a packet is converted into an
image pixel (i.e., 256 possible values). According to a pre-defined image size value X, the
first X bytes of packet payload are extracted as the pixels of an image. In case the packet
payload data is less than X, we use zero-padding to match X. These X pixels thus represent

74

5.3 Dataset Preprocessing

the feature vector for that packet. We discard any packet with no payload such as the flow’s
control packets.

In both cases, the sequence of feature vectors can be structured as a matrix, with each row
representing one packet, and be considered as one pseudo-image, or it could be considered
as a sequence of N images. Each image has 4(5) pixels in the case of the header-based
approaches or X pixels for the payload-based approaches. This allows us to work with deep
learning algorithms that take as an input images, and with algorithms that take a sequence
of images.

5.3.2 General Design Parameters

When evaluating the performance of the approaches, we have considered a wide range of
parameters for flow extraction. We have fixed some of them after some preliminary testing,
the effect of others will be presented in detail in Section 5.5.

Number N of analyzed packets per flow: The length of the flow sequence has shown to
be an important parameter [MCSL17, LKK+19]. We considered 20, 60 and 100 packets
for each network flow for both header-based and payload-based datasets. Our preliminary
results show that longer sequences are good for payload-based models, while header-based
approaches work better with lower number of N . The more packets are considered per
flow, the more the header-based model has difficulty to distinguish between different service
types. It seems that the very few first packets of a flow are the ones that have most of
the information required to infer their service for the header-based approaches. The larger
number of packets considered per flow, the more the model matches with several service
types. Thus, N is set to 20 for the header-based dataset and 100 for the payload-based
dataset in the experiments presented here. Note that if there are not 20 resp. 100 packets
in the trace to create the flow, then we do not create a record for that flow in the dataset.

Extracted payload size X: For the header-based approach, X is fixed as we explicitly
extract the features. In contrast, X is a configurable parameter for the payload-based
datasets. Thus, we have tested with extracting the first 9, 12, 16, 20, 25, 36 and 1024 bytes
of each packet. Our preliminary results showed that a relatively large packet size is
beneficial. Therefore, X is set to 36 in the experiments presented in this chapter. However,
compared to [LKK+19], very large X values, such as 1024 bytes, were not beneficial for our
STC. We believe the reason is that [LKK+19] classifies different applications, most of them
running over HTTP, while we aim in classifying service types, such as HTTP or MySQL.
Thus, for us the relevant information can be found in the first few bytes of the payload,
which holds the header information of a service type, e.g., the HTTP or MySQL header.

75

5.3 Dataset Preprocessing

Larger payloads will have a larger portion of application-specific data which is good for
application identification, yet misleading for service type identification.

Flow direction: Given a pair of communicating endpoints (e.g., a client and a server), a
bidirectional flow reflects the sequence of the packets as they are exchanged in both directions.
In contrast, unidirectional flows consider only the packets that go in one direction, and there
are typically two such unidirectional flows for each endpoint pair. In our implementation we
build first the bidirectional flow for each endpoint pair from the trace containing all packets
in proper sequence. From there, we create the corresponding two unidirectional flows, each
of them containing all the packets in one direction. Unidirectional flows are guaranteed
to have the packets that belong to a single service request or response one after the other
in the sequence, while in bidirectional flows they might be interleaved with messages that
travel in the other direction. Bidirectional flows might better reflect the timing in handshake
protocols at the beginning of a connection or can better correlate requests and responses. In
the literature, [LKK+19,LKH+] only construct unidirectional flows and [MCSL17,WZZ+17]
only construct bidirectional flows. In contrast, we have created both unidirectional and
bidirectional datasets for both our header- and payload-based approaches.

Position of packets in the flow: In the published work both for header- and
payload-based datasets, the N packets constructing each flow are always extracted from
the beginning of the connection (i.e., when a client connects to the server and starts
sending requests). Thus, the flow contains the packets of the handshake protocol to set up
the connection. However, the service type identification might become necessary at a
random time after establishing a connection, and when sniffing the network packets to
create the flow only happens at that time, then the flow does not contain these handshake
messages. As this might influence the STC performance, our default datasets contain the
first messages exchanged for a connection while derived datasets do not contain these first
messages but are extracted from the middle of the flows missing the handshake messages.
To do that, we have discarded the first 20 packets of each flow. Note that in all cases we
take a consecutive sequence of packets as they occur in the trace.

Secured payloads: As the feature vectors are extracted from the packet header in the
header-based dataset, having encrypted payload will not have a serious impact on the STC
classification performance. On the other hand, having encrypted payloads in the payload-
based dataset might limit the STC classification performance. Thus, we take a step further
and have a preliminary look at how good the STC can detect the service type in case of
encrypted communication for the payload-based dataset. In our analysis we first look only
at non-encrypted datasets, but then also perform a study on encrypted data.

76

5.3 Dataset Preprocessing

Figure 5.2: Frequency distribution of service types.

5.3.3 Final Flow-based Datasets

Given those considerations, we have constructed two main datasets: one for the header-
based approach and the other for the payload-based one. Each flow in the header-based
datasets includes a sequence of 20 feature vectors, and each feature vector consists of four
features extracted from the packet’s header. Each flow in the payload-based dataset contains
a sequence of 100 payload images, and each payload image is constructed using the first 36
bytes of packet payload. We have constructed several variations of these two datasets that
take into consideration the different design parameters that we want to study such as flow
direction and position of extracted packets as just discussed.

In total, our dataset contains around 20,000 unencrypted unidirectional network flows
with 10 distinct labeled services, and around 7000 encrypted unidirectional network flows
with 4 additional service labels, and correspondingly half the numbers for the bidirectional
datasets. Figure 5.2 shows the frequency of each service type and the corresponding
percentage of encrypted traffic in our dataset. The flows are annotated with the ten service
labels shown at the X-axis in Figure 5.2, in addition to four labels for the secured HTTP,
PostgreSQL, MySQL and DB2 flows. HTTP flows, both encrypted and unecrypted, make
up around 38% of all our flows. Spark and data management flows between Cassandra
contribute less than 1%. The rest is equally distributed among other service types.

77

5.4 Deep Learning Models

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Packet 1
features

Packet 2
features

Packet 3
features

Packet N
features

Packets in a flow (N: number of packets per a flow)

LSTM layer 3

LSTM layer 1

LSTM layer 2

Input
(Flow dataset)

Fully connected layer

Output dimension

Figure 5.3: Three-layer Long Short Term Memory (LSTM) architecture (figure adapted
from [LKK+19]).

5.4 Deep Learning Models

This section describes the different DLMs that we deploy. We have chosen the best
performing models from the literature for NTC, namely, multi-layer Long Short Term
Memory (LSTM) [LKK+19] and a combined model of convolutional neural network (CNN)
and LSTM [MCSL17, LKK+19]. We also propose employing additional deep learning
architectures that have not previously been considered for NTC, namely,
CNN+Bidirectional LSTM and multi-layer Bidirectional LSTM. These models are widely
used for video classification, image classification, speech and text composition.

-Multi-layer Long Short Term Memory (LSTM): The LSTM model [HS97] is a
variant of recurrent neural network (RNN) that is well-suited for time-series data and easier
to train. The LSTM model captures important features from inputs and preserves this
information over a long period of time through their memory gates. Hence, LSTM utilizes
a circulation structure to reflect previous learning data into the current ones for sequential
data learning. According to [LKK+19], the three-layer LSTM model architecture provides
best application identification results. As LSTM is accepting input in sequence format, the
sequence of feature vectors representing the packets of the flow is fed to the input layer of
the multi-layer LSTM model where each feature vector is assigned to one cell of the first
LSTM layer as shown in Figure 5.3. From there, the data is processed by LSTM layers’ cells
sequentially until a final classification result is produced. As described in Section 5.3, the
feature vector itself is represented as image pixels that are extracted from the packet header

78

5.4 Deep Learning Models

Features

C
o

nv
ol

ua
tio

n
la

ye
r

1

C
o

nv
ol

ua
tio

n
la

ye
r

2

Te
ns

o
re

 r
es

ha
pe

LSTM layer

F
u

lly
 c

on
ne

ct
e

d
la

ye
r

N
u

m
be

r
of

 p
ac

ke
ts

Feature Maps

O
ut

pu
t

di
m

e
ns

io
n

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Number of filters

Figure 5.4: Combined convolutional neural network (CNN) and LSTM model architecture
(figure adapted from [MCSL17]).

or payload for header-based and payload-based datasets, respectively. We refer to this model
as 3-LSTM.

- Combined CNN and LSTM model: This architecture integrates CNN and LSTM
models. The feature maps of input data are first extracted through the convolution layer,
and then used as a refined sequential data input to the LSTM model as shown in Figure
5.4. CNNs are commonly used for image classification [MCSL17]. Thus, the input is a
single image and we use the matrix representation of a flow as input where each feature
vector of a message is one row in the matrix, as shown in Figure 5.4. A kernel (filter) action
is used to automatically produce feature maps by extracting location invariant patterns
from the image. Chaining several CNNs allows automatic extraction of complex features.
Interestingly, the matrix formed by the sequence of packets can present a correlated local
behavior, similar to traditional images. A reshaping process is then performed on the output
of the last convolution layer into a sequence of matrix-like feature maps that can act as the
input to the LSTM layer. According to [MCSL17], chaining two CNN layers and one LSTM
layer achieves good classification performance. We refer to this model as CNN+LSTM.

-Combined CNN and Bidirectional LSTM model: This architecture combines CNN
and Bidirectional LSTMs [GFS05]. The latter is an extension of the traditional LSTM that
can improve model performance on sequence classification problems. A Bidirectional LSTM
(BiLSTM) connects two hidden regular LSTM layers of opposite directions to the same
output as shown in Figure 5.5. The fist LSTM layer is applied on the input sequence (i.e.,

79

5.4 Deep Learning Models

Features

C
o

nv
ol

ua
tio

n
la

ye
r

1

C
o

nv
ol

ua
tio

n
la

ye
r

2

Te
ns

o
re

 r
es

ha
pe

Forward layer Backward layer

Bidirectional LSTM

F
ul

ly
 c

on
ne

ct
ed

 la
ye

r

N
u

m
be

r
of

 p
ac

ke
ts

Feature Maps

O
u

tp
ut

 d
im

en
si

on

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Number of filters

Figure 5.5: Proposed CNN and Bidirectional LSTM model architecture.

forward layer), while the reverse form of the input sequence is fed into the second LSTM layer
(i.e., backward layer). Applying the LSTM twice improves the model prediction performance
by having an additional layer of learning long-term dependencies in the sequential input, as
the Bidirectional LSTM’s output layer can get information from past (backward) and future
(forward) states. This can provide additional context to the network and result in better
learning on the relevant features. As the first layer is a CNN, we provide our input flows
again in the form of a matrix. This architecture is referred to as CNN+BiLSTM and is
illustrated in Figure 5.5.

-Multi-layer Bidirectional LSTM : Here, we propose chaining multiple layers of
Bidirectional LSTMs. In particular, we have constructed single, two and three layer
Bidirectional LSTM models to sequentially process the flow sequence data in the datasets,
where the output of each Bidirectional LSTM layer is fed as an input to the next
Bidirectional LSTM layer. Similar to the multi-layer LSTM model, the feature vectors
representing the packets in a flow are fed as a sequence into the input layer of the
multi-layer Bidirectional LSTM model where each feature vector is connected to one cell of
the forward and backward layers of the Bidirectional LSTM. We refer to this model
architecture as M-BiLSTM, where M is the number of layers.

80

5.5 Experimental Evaluation

5.5 Experimental Evaluation

This section reports on our experiments to evaluate the STC performance for the
header-based and payload-based datasets discussed in Section 5.3, while applying the
DLMs described in Section 5.4.

We start by giving a description of the training and validation process applied to our
models along with the complexity of the model training time, and subsequently present how
good the different models work with the different variations of the header- and payload-based
datasets. We first show the classification performance of the different DLM architectures
listed in Section 5.4 for both uni- and bidirectional versions of the header- and payload-
based datasets. Then we show the impact of including the service port as a learning feature
in the header-based dataset, the STC classification performance for each service type, and
the impact of the position of extracted packets on the STC performance for both header- and
payload-based datasets. All these experiments consider only the records in our flow-based
dataset with plain data, i.e. unencrypted payloads. We then take a step further and have
a preliminary look at how good the learning model can detect the service type in case of
encrypted communication for the payload-based dataset.

5.5.1 Model Training and Validation

In this section we describe the various methods we have used to train and validate the
considered models. In addition, we show the required training time for different models and
datasets.

Validation Environment The training and validation of the service type identification
models is performed on a Ubuntu 16.04 LTS machine with 64GB RAM and two GPU cards
(NVIDIA GTX 1080Ti 12 GB), using Keras 2.3.1, Numpy 1.19.5, Pandas 0.24.2, and scikit-
learn 0.20.3 with a TensorFlow-gpu 2.1 backend, operated with Python 3.7.7.

Dataset split The first step in our model training and validation process is to split the
constructed flow-based dataset into learning and testing datasets. The learning dataset is
used to train, tune and validate the model, while the test dataset is used to evaluate the
trained model performance. Table 5.1 indicates for each service type which applications are
used for training and which for testing. Note that for each service type, the testing dataset
uses traces of applications that are not used for training the DLM.

81

5.5 Experimental Evaluation

YCSB Teastore Netflix University Venues Public datasets
[CBB,DLMG]

Spark-bench
workloads [LTW+17]

HTTP Test. Test. - - -
Train (67%)
Test (33%)

(TLS 1.1 &1.2).
-

PostgreSQL Train/Test
(TLS 1.3) - Test

(TLS 1.2).
Train

(TLS 1.2).
Train

(TLS 1.2). - -

MySQL Train/Test
(TLS 1.3) Test. Test

(TLS 1.2).
Train

(TLS 1.2).
Train

(TLS 1.2). - -

DB2 Train/Test
(TLS 1.1) - Test

(TLS 1.1).
Train

(TLS 1.1).
Train

(TLS 1.1). - -

MonetDB - - Test. Train. Train. - -
Cassandra Train/Test. - Test. Train. Train. - -

Memcached Train/Test. - Test
(JS, AL and LL).

Train (AL)
Test(LL & JS)

Train (AL)
Test(LL & JS) - -

Redis Train/Test. - Test
(AL & JS).

Train (AL)
Test(JS).

Train (AL)
Test(JS). - -

Spark - - - - - -

Train (KMeans)
Train (SparkPi (67%))
Test (Linear regression)

Test (SQL)
Test (SparkPi(33%))

Table 5.1: Services and applications used for model training and testing.

For our learning dataset, the flows need to be labeled with the correct service. Since
the network flows are extracted from applications we deployed and developed, we are aware
of the port number assigned for each service in each application (the default port for the
service are used in most situations). For example, 3306 is used for MySQL. Thus, we label
flows with port number 3306 as MySQL. Furthermore, We have collected the PCAPs as
per each service type. With this in mind, we assume the output of our labeling tool is
a best approximation to the ground-truth service. Using such controlled and deterministic
environment to have a ground-truth labeling for network datasets is common in the literature
[Net12,ERP+21,CVW+21].

Models Tuning Each of the models has various hyper-parameters that determine the
network structure (e.g., number of filters) and how the DLMs are trained (e.g., type of
optimizer). The performance of a model can vary considerably according to the selected set
of hyper-parameters. Finding the optimal hyper-parameters is a time-consuming tasks for
any DLM. We use the sequential model-based optimization SMBO [TP12] to find the optimal
hyper-parameters for the aforementioned DLMs with respect to our datasets. SMBO is a
Bayesian optimization technique that uses information from past trials to refine the next
set of hyper-parameters to explore based on the given dataset. Since Bayesian optimization
is not a brute force algorithm as compared to manual, grid and random search, it is a
good candidate for efficiently performing hyper-parameter optimization while maintaining
the quality of the results.

82

5.5 Experimental Evaluation

Hyper-parameter Values
Number of filters 32, 64

Kernel size 3 × 3, 5 × 5, 7 × 7
Kernel initializer normal, uniform, glorot_uniform

Recurrent initializer normal, uniform, glorot_uniform
Kernel regularizer 0.0, 0.01, 0.03

Recurrent regularizer 0.0, 0.01, 0.03
Dropout rate 0.0, 0.2, 0.3, 0.4

Output activation type tanh, relu, softmax
Output size 64, 128, 256

Optimization type adam, rmsprop
Batch size 32, 64, 100
Epochs 50, 100, 200

Table 5.2: Examined parameter space

We have considered a total of ten common standard hyper-parameters as listed in Table
5.2 for SMBO optimization for all described models in Section 5.4. We have additionally
investigated two hyper-parameters for CNN+LSTM and CNN+BiLSTM, which are the
number of filters in each CNN layer and kernel size used in each filter.

Table 5.3 lists all hyper-parameters chosen by SMBO for the payload-based dataset and
the different models. The values for the header-based dataset are basically the same except
for the 1-BiLSTM model, where the LSTM layer units, output size and epochs values are
256, 128 and 200, respectively and the optimization method is Rmsprop.

Models validation We have validated the produced hyper-parameters by k-fold cross-
validation [TGB18]. In k-fold cross-validation, the dataset is randomly partitioned into k
sub-datasets. Then, a single sub-dataset is retained as the validation data for testing the
model, and the remaining k− 1 sub-datasets are used as training data. The cross-validation
process is then repeated k times, with each of the k sub-datasets used exactly once as the
validation data. The k results can then be averaged to produce a single estimation. The
advantage of this method is that all observations are used for both training and validation,
and each observation is used for validation exactly once. For all models, we set the CNN
layers’ activation function to Rectified Linear Units (ReLU), the hyperbolic tangent function
as the activation function of the LSTM layers, and the learning rate of the optimizer to 0.001.

In summary, we separate each flow-based dataset into learning and test datasets. Further,
we separate 20% of the learning data for validation, and the verification of the model is
performed on the basis of the given SMBO hyper-parameter set and the k-fold value. Then,

83

5.5 Experimental Evaluation

3-LSTM CNN+LSTM CNN+BiLSTM 1-BiLSTM 2-BiLSTM 3-BiLSTM
Kernel size of 1st layer NA 7X7 7X7 NA NA NA
Kernel size of 2ed layer NA 3X3 3X3 NA NA NA

Number of filters NA 64 64 NA NA NA
Kernel initializer G U U G G G

Recurrent initializer G U U G G G
Kernel regularizer 0.0 0.03 0.03 0.0 0.0 0.0
Bias regularizer 0.0 0.03 0.03 0.0 0.0 0.0

Recurrent regularizer 0.0 0.03 0.03 0.0 0.0 0.0
1st LSTM layer units 256 64 64 128 64 256
2ed LSTM layer units 256 NA NA NA 256 256
3rd LSTM layer units 128 NA NA NA NA 128

Dropout rate of 1st layer 0.2 0.4 0.4 0.2 0.2 0.4
Dropout rate of 2ed layer 0.3 0.2 0.2 NA 0.2 0.2
Dropout rate of 3rd layer 0.4 NA NA NA NA 0.3
Output activation type S S S S S S

Output size 64 256 256 256 256 64
Optimization type A A A A R A

Batch size 100 32 32 100 100 100
Epochs 100 100 100 100 200 100

Table 5.3: The optimal hyper-parameter values for the payload-based dataset (U: uniform,
N: normal, G: glorot uniform, S: softmax, R: rmsprop, A: adam).

Header-based dataset Payload-based dataset
Unidirectional flows Bidirectional flows Unidirectional flows Bidirectional flows

3-LSTM [8] 89.383 42.001 178.505 156.567
CNN+LSTM [1] 177.276 55.714 286.817 130.528
CNN+BiLSTM 183.835 56.225 373.106 169.644

1-BiLSTM 113.427 54.891 153.570 65.837
2-BiLSTM 304.489 104.17 568.37 253.859

Table 5.4: Training time (in seconds) of different DLMs for header-based and payload-based
datasets.

the model is trained by using the optimal hyper-parameters and the model performance is
evaluated using the test data.

Training time We have compared the time required for training the final models. Table
5.4 shows the training time for the different models on the different datasets. We can see
that the training time increases with the increase in the number of learning features (header-
based has 4 compared to 36 in payload-based), flows in the training dataset (unidirectional
has double as many flows as bidirectional) and model network complexity. In terms of model
network complexity, the number of model layers and their type influence the model training
time. While 3-LSTM and CNN+LSTM have the same number of layers, the latter requires
more model training time for most of the datasets. In general, the Bidirectional LSTM layers

84

5.5 Experimental Evaluation

are more complex to train than the regular LSTM because they require training double the
number of layers compared to regular LSTMs. For the bidirectional header-based dataset
using CNN+LSTM, replacing the LSTM layer with a Bidirectional LSTM increases the
training time by less than 1%, while the training time of CNN+BiLSTM is 30% higher than
that of CNN+LSTM for the bidirectional payload-based dataset, which has more learning
features. Looking at the approaches without CNN, adding more Bidirectional LSTM layers
significantly increases the training time for all datasets. 1-BiLSTM has lower learning time
for the payload-based datasets, but it has increased learning time for header-based datasets.

5.5.2 Performance Metrics

Before we show in the next sub-sections how good the different models predict the service
types, we introduce the performance metrics we have considered in our evaluation.

Our setup is, in principle, a multi-class classification problem. For each class label L, the
true positives TP are the flows of type L that are correctly identified and the true negatives
TN are all the flows of type L′ 6= L that are correctly identified as not being of type L. On
the other hand, the false negatives FN are flows of type L that are incorrectly labeled as
not L, and the false positives FP are flows not of type L that are wrongly classified as L.

The performance is measured using the following metrics: (i) accuracy which is the ratio
of all correctly classified flows to all flows, (ii) recall indicates the ratio between the correctly
identified flows of type L to all flows that actually belong to type L, (iii) precision is the
ratio of the correctly identified flows of type L to all flows that are identified of being of
type L, and (iv) F1-score which is the harmonic mean of precision and recall, and does
not include the number of true negatives. The following equations show the mathematical
representation of these four performance metrics:

Accuracy = (TP + TN)
(TP + TN + FP + FN) (1)

Recall = TP

TP + FN
(2)

Precision = TP

TP + FP
(3)

F1− score = 2× TP
2× TP + FP + FN

(4)

85

5.5 Experimental Evaluation

Among all metrics, the F1-score is considered more meaningful in scenarios where the
dataset is unbalanced, i.e. when there are classes with many samples and classes with few
samples. All the performance metrics have as best value 1 and as worst value 0. In many
of the figures in this section, we show the performance metrics aggregated over all possible
classes using a weighted average. Weighted average considers the number of samples in each
class when calculating the average. That is, a class with few samples has less of an impact
on the weighted average than other classes with more samples.

Weighted average(P) =
n∑

i=1
Piwi/

n∑
i=1

wi (5)

P is one of accuracy, precision, recall or F1-score, n is the number of different classes in
the dataset, Pi is the performance metric value for class i, and wi is the number of samples
in class i. The weighted average is a more accurate representation of the model aggregated
performance than the normal average, in particular for unbalanced datasets.

We have used scikit-learn1 to calculate the weighted F1, precision, and recall scores. We
run each test five times and report the average of those aggregated metrics. The standard
deviation of the reported averages are always below 0.1.

5.5.3 Performance Comparison of the Different DLMs

In our first experiment, we apply the different DLMs described in Section 5.4 to the
datasets discussed in Section 5.3 where the flows contain the first handshake messages that
are exchanged when the connection is setup, and we provide the performance metrics
averaged over all service types using Equation 5. This will give us a first impression how
well the different DLMs perform for header- and payload-based datasets. We do not report
the results of the 3-BiLSTM model given their similarity to those of the 2-BiLSTM model.

a) Header-based dataset: Figure 5.6 shows the aggregated service type identification
performance for header-based datasets with uni- and bidirectional flows. Using
unidirectional flows for the header-based dataset achieves maximum accuracy and F1-score
of around 52% using the CNN+BiLSTM model (Figure 5.6a). Meanwhile, the bidirectional
flows improve the STC performance to be higher than 72% accuracy and 75% F1-score for
all models as shown in Figure 5.6b. It seems that the correlation between the incoming and

1https://scikit-learn.org/stable/

86

https://scikit-learn.org/stable/

5.5 Experimental Evaluation

(a) Unidirectional datasets. (b) Bidirectional datasets.

Figure 5.6: Aggregated performance for the header-based datasets.

outgoing messages for a service type is crucial for better recognition of the service type in
the header-based dataset. Combining CNN with LSTM improves the classification
performance in terms of F1-score compared to the multi-layer LSTM model for both
variants of the header-based dataset, with more improvement seen in the bidirectional
variant. Replacing the LSTM layer by a BiLSTM layer in that combined model, i.e.
CNN+BiLSTM, further increases the F1-score by 12% and 7.8% for the uni- and
bidirectional header-based datasets, respectively. However, discarding the CNN layers and
having only the BiLSTM layer in 1-BiLSTM achieves around 11% and 6.7% lower F1-score
compared to CNN+BiLSTM for the uni- and bidirectional header-based dataset,
respectively. Adding more BiLSTM layers improves the F1-score for the unidirectional
flows while only a slight increase is seen for the bidirectional flows. Overall, 2-BiLSTM and
CNN+BiLSTM models provide the best results for the bidirectional header-based dataset
with accuracy and F1-score higher than 80%.

Service port as a learning feature: Recall that by default, we do not consider the
endpoint’s port numbers as a feature. To understand their impact, we have regenerated our
bidirectional training data to include the default port numbers for each service and
retrained our models.

We consider two types of test data; the first contains the same service port numbers as
of the training dataset, while the second has alternative standard port numbers for each
service, e.g., 8079 instead of 8080 for HTTP and 33060 instead of 3306 for MySQL. We run
the two tests against CNN+BiLSTM, the best model in our previous experiment. The first
test data results in 94% accuracy and 93% F1-score, while using slightly alternative standard
port numbers for the services negatively affects the model performance and decreases the
identification accuracy and F1-score to around 60% and 57%, respectively, that is worse than
if the port numbers are not part of the feature vector at all. This shows that the performance

87

5.5 Experimental Evaluation

(a) Unidirectional datasets. (b) Bidirectional datasets.

Figure 5.7: Aggregated performance for the payload-based datasets.

of header-based DLMs that consider the service port numbers is tightly correlated to the
static service configuration, and if production systems do not use standard ports, it is better
to not include them in the learning process.

b) Payload-based dataset: Figure 5.7 shows the aggregated service type identification
performance of the evaluated DLMs for payload-based datasets with unidirectional (Figure
5.11a) and bidirectional flows (Figure 5.11b). In general, for all models, the classification
performance of unidirectional and bidirectional flows is quite similar. The CNN+BiLSTM
achieves the highest performance for both variants of payload-based dataset with accuracy
and F1-score always higher than 99%. Employing one BiLSTM layer performs better than
using three-layer regular LSTM. Adding more BiLSTM layers only slightly improves the
classification performance for both variants of the payload-based dataset. However,
combining one BiLSTM layer with CNN increases the classification performance by around
2% and 5% for most of the performance metrics compared to 1-BiLSTM and CNN+LSTM,
respectively.

c) Summary: In general, payload-based approaches significantly outperform the
header-based ones with accuracy and F1-score always higher than 93%. Furthermore, for
header-based approaches, working on bidirectional flows that correlate the incoming and
outgoing messages of the service type is important for high service type identification
accuracy, which is not so important for payload-based approaches to work well. Adding
CNN and BiLSTM layers boosts the classification performance compared to the multi-layer
regular LSTM model for both variants of the header- and payload-based datasets.
CNN+BilSTM can achieve the best service type identification performance with F1-scores
above 87% and 99% for the bidirectional header-based dataset and both variants of the
payload-based dataset, respectively.

88

5.5 Experimental Evaluation

With service port Without
service port

Header-based dataset Payload-based dataset

Bidirectional Unidirectional

Figure 5.8: The impact of the extracted packets’ position in the flow in both header-based
and payload-based datasets.

5.5.4 The Impact of the Packet Position in the Flow

The results so far have used the datasets where the flows are extracted from the beginning
of the connection, that is, they contain the packets exchanged for connection setup. We now
want to compare this with the case when the service identification is required at random time
after establishing a connection as detailed in Section 5.3.2. To have a fair evaluation for the
header-based dataset, we have considered two scenarios: 1) The feature vectors include the
standard service port numbers both for training and test data, thus evaluating the impact
of the packet position in the best case for header-based models, and 2) the feature vectors
do not contain the port information, which is the better solution if applications generally
do not use standard ports. Figure 5.8 shows the aggregated accuracy and F1-score for the
bidirectional variant of the header-based dataset, and both the uni- and bidirectional variants
for the payload-based dataset, employing the CNN+BiLSTM model. We denote results for
when the flow contains the first handshake messages as "First", and when it does not contain
those handshake messages as "Middle". We have excluded the unidirectional header-based
dataset from this and all further experiments, as we have shown in Section 5.5.3 that its
classification performance is considerably worse than the bidirectional variant.

In the header-based dataset that considers port numbers, not having the first messages of

89

5.5 Experimental Evaluation

(a) Unidirectional dataset. (b) Bidirectional dataset.

Figure 5.9: F1-score for individual service types for the payload-based datasets.

a flow decreases the F1-score by 23%, while around 75% F1-score loss happens in the header-
based dataset that excludes the port numbers. This shows that header-based approaches
in scenarios with dynamic ports can only work reasonably well if they can learn the service
type’s flow characteristics from the first handshake packets between the service and client.
Once the model misses those first packets from the service flow, it is no more able to recognize
the service type. But even if standard ports are used and the model learning considers them,
not having access to the handshake messages significantly reduces performance. On the
other hand, the payload-based dataset performance is only slightly affected when skipping
the first packets in the flow. This is because the model can infer the service type from the
service type headers in the request and response messages. This holds for both uni- and
bidirectional formats.

5.5.5 Performance on a Per-service Basis

We have now a closer look at the performance of the individual services.

a) Payload-based dataset: Figure 5.9 shows the F1-score for each service label achieved
by the different models for both the uni- and bidirectional variants of the payload-based
dataset. We had seen in Figure 5.7 that the average F1-score over all service types for the
payload-based dataset is high for all models. Figure 5.9 now shows that for both uni- and
bidirectional payload-based datasets most models have relatively little variation among the
different services with CNN+LSTM being an exception as it has poor performance for
Spark in both unidirectional and bidirectional variants. 3-LSTM also has low classification
performance for Spark in the unidirectional payload-based dataset (Figure 5.9a).
Nevertheless, the majority of services are classified correctly most of the time. This is

90

5.5 Experimental Evaluation

Actual

Predicted
HTTP PostgreSQL MySQL DB2 MonetDB Cassandra Cassandra-MG Memcached Redis Spark Sum F1-score

HTTP 193 3 0 0 1 0 0 1 1 0 198 0.987
PostgreSQL 0 252 0 0 0 0 0 0 0 0 252 0.906
MySQL 0 0 200 0 0 0 0 0 0 0 200 1
DB2 0 42 0 158 0 0 0 0 0 0 200 0.882
MonetDB 0 7 0 0 193 0 0 0 0 0 200 0.982
Cassandra 0 0 0 0 0 402 0 0 0 0 402 0.995
Cassandra-MG 0 0 0 0 0 0 22 0 0 0 22 1.0
Memcached 0 0 0 0 0 0 0 336 115 0 451 0.853
Redis 0 0 0 0 0 0 0 0 738 0 738 0.927
Spark 0 0 0 0 0 4 0 0 0 8 12 0.800

Overall F1-score 0.949

Table 5.5: Confusion matrix for 3-LSTM with bidirectional payload-based dataset.

Actual

Predicted
HTTP PostgreSQL MySQL DB2 MonetDB Cassandra Cassandra-MG Memcached Redis Spark Sum F1-score

HTTP 198 0 0 0 1 0 0 0 0 1 198 1
PostgreSQL 0 200 52 0 0 0 0 0 0 0 252 0.884
MySQL 0 0 200 0 0 0 0 0 0 0 200 0.884
DB2 0 0 0 200 0 0 0 0 0 0 200 1
MonetDB 0 0 0 0 200 0 0 0 0 0 200 1
Cassandra 0 0 0 0 0 402 0 0 0 0 402 1.0
Cassandra-MG 0 0 0 0 0 0 22 0 0 0 22 1.0
Memcached 0 0 0 0 0 0 0 451 0 0 451 1
Redis 0 0 0 0 0 0 0 0 738 0 738 1
Spark 0 0 0 0 0 0 0 0 0 12 12 1

Overall F1-score 0.976

Table 5.6: Confusion matrix for 1-BiLSTM with bidirectional payload-based dataset.

interesting as all database systems are exchanging similar content (they all receive the
same SQL queries and return the same results). The same holds true for the two caching
systems that have been analyzed, where their communication protocols have sufficient
differences for the DLMs to distinguish between them.

Most of the models perfectly identify the Cassandra management and Spark flows despite
the very few number of flows for learning given for these two classes. One reason for this might
be that the communication between Cassandra nodes is likely very different to standard
request/reply protocols, and thus, identifiable even with the low number of training records.

It is also interesting to have a closer look at some of the incorrectly classified data. Table
5.5, 5.6 and 5.7 show confusion matrix examples with the bidirectional payload-based dataset
for 3-LSTM, 1-BiLSTM and CNN+BiLSTM, respectively. The rows correspond to the true
values for each flow, and the columns correspond to the predicted values. All numbers
on the diagonal are correctly predicted values (true positives). Any number off a diagonal
has been incorrectly classified as the column service type while true service type is the row
value. This can be thought of as the false positives for the column service type, and the false
negatives for the row service type.

We can observe that the FNs of some database systems went to other database systems.
For example, 21% of DB2 flows were misclassified as PostgreSQL by the 3-LSTM model

91

5.5 Experimental Evaluation

Actual

Predicted
HTTP PostgreSQL MySQL DB2 MonetDB Cassandra Cassandra-MG Memcached Redis Spark Sum F1-score

HTTP 198 0 0 0 0 0 0 0 0 0 198 1
PostgreSQL 0 252 0 0 0 0 0 0 0 0 252 1
MySQL 0 0 200 0 0 0 0 0 0 0 200 1
DB2 0 0 0 200 0 0 0 0 0 0 200 1

MonetDB 0 0 0 0 200 0 0 0 0 0 200 1
Cassandra 0 0 0 0 0 402 0 0 0 0 402 1

Cassandra-MG 0 0 0 0 0 0 22 0 0 0 22 1
Memcached 0 0 0 0 0 0 0 451 0 0 451 0.950

Redis 0 0 0 0 0 0 0 47 691 0 738 0.967
Spark 0 0 0 0 0 0 0 0 0 12 12 1

Overall F1-score 0.992

Table 5.7: Confusion matrix for CNN+BiLSTM with bidirectional payload-based dataset.

Figure 5.10: F1-score for individual service types for the header-based bidirectional dataset.

(Table 5.5), while around the same percentage of PostgreSQL flows were misclassified as
MySQL by the 1-BiLSTM model (Table 5.6). We found a similar pattern for Memcached
and Redis. For instance, the CNN+BiLSTM model misclassified around 6% of Redis cases
as Memcached (Table 5.7) while the 3-LSTM model misclassified around 25% of Memcached
flows as Redis (Table 5.5). While still being a false negative, classifying a service as being
of the "same kind", in our case a database system or a cache, might be viewed as more
acceptable than classifying it as something completely different.

b) Header-based dataset: For the header-based dataset, Figure 5.10 shows a lot more
variation, and Cassandra management flows are not well classified by most models. Here,
the lack of a large number of flows might make it harder to learn the proper patterns. When
inspecting the misclassification cases, we found them to happen across all services with no
clear preferences for services that are similar. It appears that the header data does not reveal
too much commonality among services of the same kind.

92

5.5 Experimental Evaluation

(a) ∆1 dataset. (b) ∆2 dataset.

Figure 5.11: Aggregated performance for the encrypted bidirectional payload-based
datasets.

5.5.6 Secured Payloads

In this section we have a look at how good the learning models can detect the service type
in case of encrypted communication for the payload-based dataset as detailed in Section
5.2. We took the bidirectional payload-based dataset and considered both the dataset that
extracts the messages from the beginning of the connection, denoted as ∆1, as well as the
one that extracts the messages from the middle of the connection, denoted as ∆2.

a) Aggregated Performance: We first apply the different DLMs described in Section 5.4
to both datasets ∆1 and ∆2, and we provide the performance metrics averaged over all
service types using Equation 5. This will give us a first impression how well the different
DLMs perform for classifying secured traces. Figure 5.11 shows the aggregated accuracy,
F1-score, recall and precision for each of the two datasets and the five DLMs we consider.
The models that contain at least one BiLSTM layer have a F1-score at least 5% higher than
the other models for the two datasets and outperform CNN+LSTM by more than 12% for all
metrics on ∆2. CNN+LSTM and 3-LSTM have similar performance when they have access
to the handshake messages (i.e., ∆1). However, CNN+LSTM performs significantly worse
on mid-flow traces (∆2). All models perform worse when the packet payload is encrypted
and when handshake messages are missing; yet the models with at least one BiLSTM layer
remain above 87% for all performance metrics, which is significantly higher than the other
competing models. The models with only one BiLSTM layer are performing slightly better
than the models with more BiLSTM layers for both ∆1 and ∆2 datasets. The reason is not
clear to us. We would like to note that the performance for ∆2 is still considered better than
the header-based approaches for middle-flow packets.

b) Performance on a per-service basis We have now a closer look at the performance

93

5.5 Experimental Evaluation

for the individual services. Figure 5.12 shows the F1-score results for the different models
and the individual services while learning from the first packets of traffic flows, i.e., ∆1.
Interestingly, most of the models are still capable to identify most service types with a F1-
score of more than 91%. Spark flows got a lower F1-score with most of the models compared
to what we saw in Figure 5.9b where there is no encrypted data at all. We believe that
Spark identification performance is highly related to the number of its learning records in
the dataset. The ∆1 dataset has more records as well as service classes compared to the
dataset used in Section 5.5.5, while the number of Spark learning flows is still low. On the
other hand, Cassandra management flows are still well recognized in the ∆1 dataset despite
the small number of Cassandra management records. It seems that Cassandra management
communication protocol is quite different from the other service types in our dataset so that
the model can perfectly identify it.

When looking at the confusion matrices (not shown), we could determine mainly two
types of misclassifications:

• Misclassifications between database systems: Again, some of the
misclassifications happened between the database systems as seen before in Section
5.5.5. For instance, 3-LSTM wrongly classifies PostgreSQL flows as Cassandra, which
in turn lowers the F1-score of Cassandra. The CNN+LSTM model does a
misclassification between the SMySQL and SPostgreSQL, where around 66% of
SPostgreSQL flows went to SMySQL while 4% of SMySQL flows are misclassified as
SPostgreSQL ones. Again, miscalssification between different database systems might
be more acceptable than misclassifying, for instance, PostgreSQL as a HTTP-service.

• Misclassifications between HTTPS and HTTP All the models have
misclassified some of the HTTPS flows as HTTP. For instance, around half of the
HTTPS flows are classified as HTTP by the CNN+LSTM model, while around 26%
and 35% of the secured HTTP flows are misclassified as plain HTTP by 1-BiLSTM
and CNN+BiLSTM models, respectively. We consider misclassifications that happen
between the secured and unsecured version of the same service type are acceptable in
our context even more than misclassifying one database system for another.
According to an analysis performed in [RKL20] to investigate why the secured traffic
of HTTP is still identifiable by a multi-layer CNN model, the results show that
unencrypted TLS handshake fields, including cipher information and other security
parameters which are part of the payload information, reveal enough information for
identifying such secured HTTP traffic.

Figure 5.13 shows the F1-score results of the different models while learning from the
middle packets of traffic flows, i.e., ∆2. The classification performance of all models

94

5.5 Experimental Evaluation

Figure 5.12: F1-score for individual service types using ∆1.

Figure 5.13: F1-score for individual service types using ∆2.

95

5.5 Experimental Evaluation

remains quite similar to their performance for the ∆1 dataset for most service types.
Spark’s F1-score are not quite as high and are, in fact, around 10% lower than when
handshake packets are available. In other words, a fair amount of Spark traces are not
identified as such. One reason could be the insufficient training data. The performance
appears also worse for PostgreSQL and SPostgreSQL. All models have a significant
decrease in the classification performance for these two service types in terms of F1-score
with the maximum identification performance achieved by CNN+BiLSTM with 73.2% and
64.3% for PostgreSQL and SPostgreSQL, respectively. In general, CNN+BiLSTM performs
very well for most of the service labels, including secured services such as SMySQL and
SDB2, with F1-score higher than 97%.

- Misclassifications between database systems: Similarly to the ∆1 dataset, some
misclassification also happened between different database systems for the ∆2 dataset by
most of the DLMs. For example, around 20% of PostgreSQL flows are wrongly classified
as MySQL by the 3-LSTM and 1-BiLSTM models and 67% of SMySQL flows are identified
as SPostgreSQL by the CNN+LSTM model, while 44.5% of DB2 flows are misclassified as
PostgreSQL ones by the 3-LSTM model.

- Misclassifications between the secured and unsecured version of the same
service type: A significant number of PostgreSQL’s flows are now wrongly classified as
SPostgreSQL. This leads to a low recall and F1-score for PostgreSQL and a low precision and
F1-score for SPostgreSQL. However, classifying unencrypted PostgreSQL flows as encrypted
ones might not be as bad as classifying them as a completely different service; CNN+BiLSTM
still determines that the flow is for a PostgreSQL database. A similar situation occurs
in the other DLMs. For instance, around 79% of PostgreSQL flows are misclassifed as
SPostgreSQL and around 66% of SPostgreSQL are misclassified as PostgreSQL by the 3-
LSTM, CNN+LSTM, 1-BiLSTM and 2-BiLSTM models. Similarly, HTTPS F1-score has
also shown a significant decrease by all the models when excluding the handshake packets
(including the TLS ones). For instance, the CNN+BiLSTM has about 10% decrease in the
HTTPS F1-score by having around 44% of HTTPS traces wrongly classified as unencrypted
HTTP. However, the CNN+BiLSTM still detects that the service is a web-service.

c) Summary We were quite surprised by the encouraging results given the difference in
message content between encrypted and nonencrypted data. The misclassification is not bad
and often happens within the "same kind" of the service type. Of course, we have tested only
with four different encrypted services for a preliminary evaluation and it might well be that
if we add more encrypted services, that similarities between different encrypted services will
occur, leading to more misclassifications. In addition, using the same kind of applications
and workloads for collecting the traces of both the secured and unsecured database systems
might be the reason behind the DLMs capability to classify secured database flows quite well.

96

5.6 Summary

However, we used different datasets for the HTTPS flows and still the DLMs can identify
them as HTTP service.

5.6 Summary

In this chapter, we have provided a comprehensive study of the use of DLMs in service
type identification of network flows. We have compared the performance of LSTM and a
combination of LSTM and CNN models, some of them already proposed in the literature
for NTC and some proposed by us, while using header-based and payload-based data for
training. We have highlighted the trade-offs and the impact of various parameters on the
classification performance such as the flow direction and the position of extracted packets
in the flow. For instance, the results show that for header-based approaches, having access
to the first handshake packets in the flow stream and working on bidirectional flows that
correlate the incoming and outgoing messages of the service type are both important for high
service type identification accuracy. Both these things are not so important for payload-based
approaches to work well. We have also conducted a preliminary evaluation of how good the
DLMs can detect encrypted communication for the payload-based dataset. The results show
that the DLMs can identify the encrypted services with good accuracy.

In general, for both dataset types, DLMs with at least one BiLSTM layer provide the
best performance with reasonable overhead. For instance, 1-BiLSTM always yields better
identification performance than three layers of regular LSTM, i.e. 3-LSTM, and
CNN+BiLSTM always performs better than CNN+LSTM for both header- and
payload-based datasets. The additional backward layer in the BiLSTM makes it more
capable of capturing additional features associated with the learning data than a regular
LSTM. For example, CNN+BiLSTM has 10% better performance than CNN+LSTM for
the bidirectional header-based dataset while having less than 1% more training time as
shown in Table 5.4 and Figure 5.6b. However, adding more BiLSTM layers significantly
increases the training time for all datasets with a moderate increase in the DLM
performance. For instance, 2-BiLSTM triples the training time required for the
unidirectional variant of payload-based dataset while enhancing the identification
performance by only one percentage compared to 1-BiLSTM (see Table 5.4 and Figure
5.11b). For the payload-based dataset containing some encrypted network flows, having
more than one BiLSTM layer does not improve at all the classification performance. Thus,
it is not clear that adding more BiLSTM layers is beneficial.

In addition, DLMs with CNN layers perform as well as or even better than the ones
without CNN layers for most of the evaluated header- and payload- based datasets. The

97

5.6 Summary

kernel in the CNN layer can perfectly locate the similarity between the constructed images
of the network flows that belong to the same service type.

Overall, CNN+BiLSTM yields excellent classification performance and boosts the service
type identification performance in terms of F1-score by at least 5% for both encrypted and
unencrypted flows and up to 10% for unencrypted flows compared to the models proposed in
the literature with reasonable training time overhead. It is able to support a wide variety of
applications, handles well encrypted network flows and does not require handshake messages.

In many payload based datasets, should data be mislabeled, the wrong label often belongs
to a "similar" service type, e.g., another caching system or another database system, or even
to the (un)secured version of the same service type. In contrast, the misclassification in
the header-based datasets happen across many service types with no clear preferences for
services that are of the same kind.

As such, we believe that for the service type identification that we are looking for in our
MaaS using payload-based data is crucial as monitoring can start at any time and access to
the handshake messages is unlikely. Furthermore, CNN+BiLSTM appears to be the most
promising approach as it handles all kinds of datasets very well.

98

99

6
Dynamic Application Call Graph Formation

and Service Identification Platform

In Chapter 1 we outlined three important features that a monitoring framework for
distributed applications should provide: (1) a real time analysis of the call graph that
shows how the different components call each other, (2) the service types each of the
component offers, (3) and a wide range of performance measurements for each of the
individual components and in regard to each other. In Chapter 4 we have shown a
network-based MaaS that can provide performance measurements for the individual
components using monitoring agents that sniff messages at the network switches. In this
chapter, we show how we can extend this sniffer-based approach to provide the remaining
functionality.

Recall that this thesis is aimed at monitoring service-oriented architectures, where the
execution of an external client request leads to calls to various components, each of them
providing a different service, resulting in a complex call graph. Knowing the structure of
running applications and understanding how the different components call each other can
help cloud providers in optimizing their resources and application administrators in
monitoring the health of their applications at run-time [HLZ+]. We believe that the cloud
infrastructure should be able to infer the overall structure and dependencies between
distributed components of the cloud applications, and the service type of each component

6.1 DyMonD Overview

without the need for any application-specific support, in order to serve an arbitrary
number of different services and platforms.

Therefore, in this chapter, we first outline a generic application call graph and service
type identification framework, referred to as DyMonD, that Dynamically Monitors an
application, Discovers the service components, and visualizes application component call
graphs, providing a global view of an application in the cloud at run-time. DyMonD also
provides some application performance metrics such as the throughput and response time
in order to show how it relates to the MaaS we presented in Chapter 4. DyMonD has
basically the same architecture as the MaaS of Chapter 4, while extending the functionality
of the monitoring agent and controller components to provide dynamic service
identification and the visualization of the application components’ call graph. Then, we
describe how the DLM that we proposed in Chapter 5, namely CNN+BiLSTM, is adapted
for DyMonD to classify the service type of each component. In addition, we show an
additional module of DyMonD that uses natural language processing (NLP) to perform a
deep-packet inspection, if possible, to determine more application-specific service types
(e.g., "authentication" or "recommender") for microservice-based architectures. Finally, we
provide a comprehensive evaluation for DyMonD in terms of its accuracy in detecting the
correct call graph and service types as well as its overhead on the monitored application.
We also present representative use cases that show DyMonD’s usefulness.

6.1 DyMonD Overview

DyMonD is a network-based monitoring framework that observes network messages to
provide information about how an application is executing at run-time. As an input,
DyMonD requires the IP address of any component of the application as an entry point,
e.g., the web-server to which external clients connect, a caching server or even the IP
address of an external client. Then, DyMonD determines the components with which this
entry component communicates, and iteratively, the components communicating with these
components, in order to build the application call graph. For each node (component) in the
call graph, DyMonD attempts to determine the service type, i.e. HTTP-based server,
MySQL server, etc., and captures some performance metrics.

In this section we illustrate the capabilities of DyMonD using several distributed
applications, and then show the overall architectural design of DyMonD.

100

6.1 DyMonD Overview

HTTP
YCSBWEB/YCSB

Client

TH: 12623920, RST:8.8

Client

Same address

TH: 935418, C: 2

TH: 9824771, RST: 0.5 TH: 334140, C:1

Memcached

Figure 6.1: Call graph for three-tier web application.

6.1.1 Sample Application Call Graphs

Here we show the output that DyMonD provides for three different distributed applications
and illustrate the iterative process used to determine the call graphs.

Simple three-tier web application We use here the extended version of YCSB
benchmark we described in Section 3.3, where a web-server makes calls to a MySQL
database server and a Memcached server. We use a workload of HTTP requests, where the
web server first checks whether the requested data is in the Memcached, and only if it is
not there, the web-server retrieves it from the MySQL database. The database schema and
the query requests follow the YCSB benchmark.

Figure 6.1 shows the call graph that DyMonD generates for this application. DyMonD
uses the visualization tool WebVOWL [WEB] with some minor changes to the source code

101

6.1 DyMonD Overview

as we will discuss in more detail in Section 6.4. The call graph is represented as directed
graph where the colored nodes in the call graph represent the application components and
the communication paths are shown as arrows, i.e. edges, between two nodes. Nodes with
the same color indicate the same IP address and consequently refer to the same component.
Each node is either labeled with the service type or as a client to another service. That
is, the component represented by the green nodes is a HTTP server as well as a client
to Memcached. The arrows between nodes of different colors show the average message
throughput (TH) in byte/sec over the monitoring period. Additionally, an arrow from a
server to a client indicates the average response time (RT) in microseconds, while an arrow
from a client to a server indicates the number of open connections (C) to the service. As not
all information might be nicely visible within the graph itself, users can click on individual
nodes and edges and will see more detailed information in a side window.

In Figure 6.1, the database server is not included in the call graph because we started
monitoring after the application was already running for a while. Therefore, all query results
were already cached in Memcached and no further accesses to the database were needed
during the monitoring period.

TeaStore, a microservice application The TeaStore benchmark [vKES+19] is an
online storefront application that follows the microservice architecture where the different
components use the REST API. TeaStore contains six microservices based on HTTP: A
Web UI, an image provider, authentication, a recommender service, persistence, and a
registry. Furthermore, it has a MySQL database system. All microservices as well as the
MySQL server are deployed as separate containers and the HttpLoadGenerator [vK] is used
to generate user requests.

Figure 6.2 shows the call graph produced by DyMonD. As mentioned before, in
microservice-based architectures most components use the HTTP protocol and by default,
are recognized as a HTTP service. Upon request, DyMonD can perform a deeper analysis
(through natural language processing) and suggest more specific service types which we
have enabled in this example.

To understand the process that DyMonD uses, assume that the IP address of the Web UI
service was given as a starting point. Thus, during the first iteration, DyMonD detects that
the given IP (depicted as brown node) is a web-server for a client host (red), and a client
to 5 other web-servers. It suggests the specific service type to be "WebUI/...". The other
web-services correspond to the image provider, recommender, authentication, persistence,
and the registry services. In the second iteration, DyMonD considers the called services and
finds what they themselves call. For example, the persistence service (pink) is identified

102

6.1 DyMonD Overview

HTTP
WEBUI/CATEG..

HTTP
RECOMMEND..

HTTP
AUTH/USERAC..

HTTP
PERSISTENCE..

HTTP
IMAGES/GETW..

HTTP
REGISTRY/SER.. MYSQL

Client

Client

Same address

Client

Same address

Client Client Client

Same address Same address Same address

Figure 6.2: Call graph for TeaStore (Edge information is hidden for better readability).

as a client for the MySQL service (yellowish) and the registry service (green), while the
authentication service (blue) is identified as a client for the persistence and registry services.
Furthermore, the image provider (beige) and recommender (dark purple) are both clients of
the registry service. The registry service is not a client to other entities.

SockShop, a further microservice application The SockShop [Weab] is another
example of a microservices-based application that simulates an e-commerce website that

103

6.1 DyMonD Overview

HTTP
cart/category/ca..

HTTP
Orders

HTTP
Carts

HTTP
Catalogue

HTTP
Customers

MYSQL

Client

Client

Same address

Client

Same address

Client Client Client

Same address Same address Same address

MongoMongoMongo

HTTP
PaymentAuth Unknown

HTTP
Shipping

Client

Same address

Unknown

Figure 6.3: Call graph for SockShop (Edge information is hidden for better readability).
104

6.1 DyMonD Overview

sells socks. Sockshop has 12 microservices: 7 HTTP-based services (front-end, catalogue,
orders, payment, users, carts and shipping), 4 database systems and one queuing system.
Each microservice is individually containerized and a Locust [HBHH] based load test
script is used to simulate user traffic to Sock Shop.

Figure 6.3 shows the call graph produced by DyMonD where the IP address of the front-
end service is given as the starting point. At first iteration, DyMonD detects that the given
IP (depicted as brown circle) is a web-server to one client host (yellow), and a client to 4 web-
services: customers, orders, carts and catalogue services. At the second iteration, DyMonD
displays the services called by these 4 services. For example, the orders service is identified as
a client to other 5 services: customers (light orange), carts (green), shipping (red), payment
authentication and Mongo DB (light blue), while the catalogue, carts and customers services
are all identified as clients to one DB service. At the third iteration, DyMonD detects that
the shipping service (red) is calling another service (the grey one). As the service type is not
recognized by DyMonD, the "Unknown" label is displayed. At the fourth iteration, the grey
service is detected to have a communication with one component with un-recognized service
type (blue). The two un-identified services are a queue and a queue master service to handle
the processing of the shipping orders. The queue master service itself is not a client to any
other services. Note that if DyMonD cannot identify a service, it is marked as "Unknown".
This may happen if the underlying communication protocol was not part of the training set
of DyMonD’s DLM or the service type prediction score does not reach a preset threshold as
we will describe in Section 6.5.

6.1.2 Design

Figure 6.4 illustrates the overall DyMonD architecture and its deployment inside the cloud
network. DyMonD has the same architecture as the MaaS prototype described in Section
4.1. However, the functionality of the agent and controller have been extended to achieve
DyMonD’s functionality. As shown in Figure 6.4, a DyMonD agent is attached to each
software switch in the cloud network and is responsible for capturing the messages of flows
that are relevant for a particular call graph, followed by collecting messages from these
flows in order to detect service types and measure performance. The DyMonD controller
orchestrates the discovery process and controls the search for the application call graph. It
finds the component locations with the help of DyMonD agents, asks the agents to monitor
certain flows, collects and aggregates the results and outputs the call graph information. The
visualization frontend receives the monitoring input information from the user such as the IP
of the starting component and monitoring duration and renders the call graph information
for visualization. In the following sections we explain each of the components in detail.

105

6.1 DyMonD Overview

SW switch

Rack 1 Rack 2 Rack n-1 Rack n

…...

DyMonD
Agent

DyMonD
Controller

A3

ToR switches

A1

DyMonD
Agent

DyMonD
Agent

DyMonD
Agent

A4 A5

A2
DyMonD
Agent

A4/A5Visualization
Frontend

Figure 6.4: DyMonD architecture overview

We envision DyMonD to be used in two operation modes. In the offline mode, DyMonD
monitors the traffic of the targeted application components for a certain predefined duration
after which it produces the application call graph. In contrast, the online mode keeps
monitoring the encountered application components and updates the detected call graph
periodically. This includes adding any new components, and updating performance metrics
as detected in the last time interval.

Assumptions Just as for the MaaS prototype presented in Chapter 4, we assume that
each component can be identified by a unique IP and that each message flow goes through
at least one software switch as this allows us to observe message flows with the sniffer
approach presented in Chapter 3. Moreover, each component under consideration can be a
client to several services, server for several clients, or both. We assume that each service is
uniquely identified by both the IP address of the component where the service is running
and the service port, while the client components are identified only by the IP address. In
other words, each component can have at most one service port and/or one or more open
client ports to other service(s). For instance, assume that A2 in Figure 6.4 is a web-server
that is also a client to A3, which is a Memcached server. In this case, A2 should have only
one service port opened to receive web requests, while one or more ports can be opened to
the Memcached service deployed at A3.

106

6.2 DyMonD Agent

Flow list

Filtered PacketsFlow
Detector Listener

Service
Identifier

Performance
Analyzer

DLMData
Extractor

Packet capture module

Input IP
OVS
port

OVS flow table

Figure 6.5: DyMonD agent architecture includes flow detector, packet capture, service
identifier, and performance analyzer

6.2 DyMonD Agent

The DyMonD agent is basically an extension of the MaaS monitoring agent that was
presented in Section 4.1. DyMonD agents are in charge of detecting flows and their service
types, as well as measuring performance. An agent is deployed on the host of the software
switch it is observing, in order to inspect incoming and outgoing messages, as shown in
Figure 6.4. In this way, DyMonD conducts non-intrusive message monitoring at the
software switch level. We describe the implementation of the DyMonD agent within OVS.

Figure 6.5 provides a high level overview of the DyMonD agent which consists of the
following four modules: (i) the flow detector module, (ii) the packet capture module, (iii) the
service type detector model, and (iv) the performance analyzer module. We can see that the
DyMonD agent extends the sniffer design depicted in Figure 3.3. The packet capture and
performance analyzer modules have been extended compared to the originally sniffer, while
the flow detector and service identifier are new modules.

6.2.1 Flow Detector

The first task of the DyMonD agent is to detect all flows the switch handles that are related
to a given IP, that is, where the component associated with the IP is either sender or receiver.
This is how DyMonD finds all the components a given component communicates with, and
from there iteratively the call graph. To detect the flows, the agent maps the IP of the
component to the OVS port name (which is the basic input for the next packet capture
module). As described in Section 2.1, when component C sets up a connection with another

107

6.2 DyMonD Agent

component that goes through a particular switch, the switch assigns one of its ports P to C.
All messages to and from C go through P . The mapping between the IP address of C and
P can be found in the OVS flow table. Thus, the flow detector accesses the OVS flow table
to determine whether the switch it is attached to handles one or more of C’s connections
and if so, determines the associated port(s). For virtual switches implemented by network
bridges on the host, the DyMonD agent runs a script to grab the virtual network interface
associated with the IP from the host’s IP routing table. The flow detector then passes it to
the packet capture module. Note that in Sections 3.2 and 4.1 the focus was on the capability
of our switch-based monitoring approach to deduce several application performance metrics,
and thus, we assumed that the switch port to sniff is already known. However, the flow
detector module could also be integrated into MaaS prototype agent to find the switch port
that is connected to the application component if it is unknown to the MaaS service.

6.2.2 Packet Capture

This module sniffs all messages of the flows associated with a given port/network interface
similar in concept to what was presented in Section 3.2. This time, the agent sniffs until
a predefined number of packets have been captured or a predefined monitoring duration
has passed. The number of packets should be sufficient to reliably determine the service
type as required by the DLM (i.e., the 100 data packets required by the payload-based
CNN+BiLSTM model) as well as to deduce the performance measurements.

The packet capture module itself inherits the multi-threaded architecture of the sniffer
that is presented in Section 3.2 and runs separately from service detection and performance
analysis modules to avoid interference. This is needed in order to work at the OVS port speed.
The packet capture module has two main threads; the listener and the data extractor as
depicted in Figure 6.5. The listener thread keeps sniffing on the given switch ports and saves
the captured packets into a shared memory space. From there, the data extractor thread
parses the packets, and extracts the needed information to construct the communication
flows. The data extractor thread extracts information from each filtered packet as a 6-tuple:
timestamp, source IP, source port, destination IP, destination port, transport protocol (i.e.
TCP/UDP). If the packet has payload data, a portion of the payload is also stored in form
of a flow record; such a record will be used by the service identifier as we explain below.
The packets are then classified into distinct unidirectional flows, one for outgoing and one
for incoming messages. For instance, in Figure 6.4, if component A1 makes requests to
component A2, then a flow from A1 to A2 contains the requests, and a flow from A2 to
A1 transmits the responses. Each unidirectional flow is uniquely identified by the source
IP/port pair, destination IP/port pair and transport protocol (i.e. TCP/UDP).

108

6.2 DyMonD Agent

Furthermore, the data extractor thread keeps track of aggregated traffic volume sent on
this flow. This kind of information will be analyzed later for performance measurements.
All this information is compiled in the "flow list" shared memory space as shown in Figure
6.5.

6.2.3 Service Identifier

The service identifier is implemented as a separate parallel thread that analyzes packet entries
for each constructed flow in the "flow list" shared memory space. In particular, for each flow,
the service identifier module performs the following tasks:

(1) Service type identification: The service identifier module determines the service type
of each flow, e.g. MySQL, HTTP, etc. It first tries to recognize the flow’s service type by
standard ports (e.g., “if it’s on port 80, it must be HTTP”). We keep a database with the
most common services and their standard ports. If the port is not typically reserved for
these well-known services, the service identifier feeds the stored flow’s packet payloads to
a pre-trained DLM, and the flow is labeled with the service type the DLM predicts. The
learning model also indicates a prediction score which represents the confidence level of the
prediction. The service detection module can be configured with a threshold T , in which
case the flow is labeled as the "Unknown" service type if the prediction score is less than T .

(2) Server/client classification: To build a proper application call graph similar to the
ones illustrated in Figure 6.1 - 6.3, DyMonD has to know for each flow, which end point is
the server and which is the client. In case of the usage of the standard port, the position
of the service port in the flow identifies the server entity. For instance, if a flow contains
port 8080 as a source port, that means that the source IP is the server component for that
flow. On the other hand, it is more challenging to differentiate between the server and client
entities of the flows that do not use standard ports. Towards this end, we have extended the
payload-based CNN+BiLSTM DLM presented in Chapter 5 to not only predict the service
type of a unidirectional flow but also to predict weather a flow goes from a client to a server,
referred to as client flow or from a server to a client, referred to as server flow. We will
describe the details in Section 6.5.

(3) Fine-grained service type classification: Furthermore, the service identifier module
optionally runs an NLP-based detection module to identify the application-specific service
type for web-based services. The details of that NLP approach are given in Section 6.5.

109

6.3 DyMonD Controller

6.2.4 Performance Analyzer

At the end of the monitoring duration, the performance analyzer uses the data gathered
by the packet capture module as input to produce relevant performance metrics for each
detected service. The performance analyzer provides a subset of the performance metrics
listed in Table 4.1. In particular, DyMonD currently tracks three performance metrics for
all service types, namely throughput, connection rate, and service time. For the latter,
we follow the approach of observing time intervals between the server’s ACK messages to
estimate the server’s response time as previously described in Section 3.1.2. As this approach
does not require a deep packet inspection, it can be applied for services with and without
secured payloads. If the message data is accessible to DyMonD, an alternative way to
measure the service time is through matching requests and responses pairs as also described
in Section 3.1.2. However, recognizing the requests/responses of each service requires the
knowledge about the structure of the service type’s communication pattern. We have already
implemented the average service time using that approach of constructing request/response
pairs for some common service types such as HTTP, Memcached and MySQL as described
in Chapter 4. Defining the request/response message structure of other service protocols is
possible through the API that allows for dynamic integration of code snippets as described
in Section 4.3. Moreover, further performance metrics can also be added through the same
API.

6.3 DyMonD Controller

The DyMonD controller is the broker between a user and the DyMonD agents. We first
discuss the controller tasks assuming a single OVS switch connects all components, i.e., only
one agent. Then, we describe how the controller handles multiple agents deployed on OVS
switches across the cloud network.

6.3.1 Controller with a Single Agent Configuration

Figure 6.6 provides a high level overview of the DyMonD controller and Algorithm 1 outlines
the iterative process that finds relevant information in a breadth first search. It consists of
three main steps: (i) iteratively collecting all flows that will determine the call graph (lines
2-11), (ii) clean the flows from any inconsistencies (line 12), (iii) and then create the actual
call graph data (line 13 with details in Algorithm 2).

110

6.3 DyMonD Controller

Next component
 extractor

Call graph
data generator

Flow list

Call graph data

DyMonD
agent

IP

Clean
flow list

Figure 6.6: DyMonD controller architecture.

Collect the flows The DyMonD controller receives the IP of a start component from the
user. It represents the entry point for the call graph. The controller adds the received entry
IP to a queue (line 1) and forwards this entry IP to the DyMonD agent for analysis (lines
2-4). The agent performs the analysis for the received IP as described in Section 6.2. For
each detected flow that has the IP as a source or destination, the agent sends the flow ID
together with the detected service type, flow direction (i.e. client or server flow), prediction
score and performance measurements back to the controller. The controller then consolidates
the received flow information to one flow list (line 5). From here the controller executes the
next component extractor to get further flows and with it further components (lines 6-11).

The next component extractor analyzes the flows it just received to infer the next
components, i.e., it extracts the IP addresses with which the current component interacts
and appends them into the queue. For the IP addresses that have not yet been previously
considered, the steps are repeated and the agent is asked to collect the corresponding flows.
The steps are repeated until no further components are detected. Alternatively, we can
also indicate a depth d of the call graph, and when it is reached the analysis stops, even if
further components are detected. Thus, the DyMonD controller follows a breadth first
search with a depth of d levels. We note that a flow might be detected twice (once for the
source IP and once for the destination IP). The controller will note that and only keep one
record (line 5). Note that the information for the flow might be different in the two
instances, e.g. different performance measurements and also different service labels. In
regards to performance measurements, the controller will keep the latest values. In regard
to the service labels, it will perform a cleaning as discussed next.

Clean the flows Once all flows have been detected, a "clean" function detects any
inconsistent service labels in the flows and consolidates them. First, there could be different
flows referring to a particular IP as a service, but the service types identified are different.
For instance, some flows could label a component as a DB2 database service while others
label it as MySQL. Even for the same flow as it is detected twice (once when searching for

111

6.3 DyMonD Controller

Algorithm 1: Pseudo code of the DyMonD Controller
input : Start IPstart
output : Call graph G of IPstart
Data : Empty queue Q, empty lists ComponentF lows and AllF lows, empty sets

IPnext and IPvisited
1 Q.enqueue(IPstart);
2 while Q is not empty do
3 CurrentIP=Q.dequeue();
4 ComponentF lows← Agent(CurrentIP);
5 AllF lows← (AllF lows ∪ ComponentF lows);
6 IPvisited← (IPvisited ∪ CurrentIP);
7 IPnext← Next component extractor (ComponentF lows, CurrentIP);
8 for IP in IPnext \ IPvisited do
9 Q.enqueue(IP);

10 end
11 end
12 AllF lows← Clean Flows (AllF lows);
13 G← call graph producer (AllF lows);
14 return G;

flows of the client, and one when searching for flows for the server) there might be a
mismatch. Finally, some flows might be wrongly labeled as a client resp. server flow leading
to confusion of who is client and who is the server. Our clean function unifies the service
labels. In particular, for each detected service SIP/port identified by its IP/port number,
the clean function checks whether all the client and server flows of SIP/port have been
labeled with the same service type. And if not, the clean function unifies the service type
label by choosing the service type that has the highest prediction score, or the highest
frequency among all the SIP/port flows. The latter means that if for instance a total of 10
client and server flows are detected for SIP/port and seven of these flows are labeled as
"DB2", two flows are labeled as "MySQL" and one flow is labeled as "Unknown", then the
clean function changes the service types of the "MySQL" and "Unknown" flows of SIP/port
to be of "DB2" service type. Furthermore, in this cleaning process the controller validates
the client/server labeling in each pair by checking the position of the service in the flow.
That is, a flow with a service SIP/port as a source end-point will have the "server" label
and a flow with a service SIP/port as a destination end-point will have the "client" label.
At the end of the cleaning process, for each IP/port pair identified as a service, the flows
involving this pair have the same service label, and all flows that have this pair as
destination (resp. source) are labeled as client flows (resp. server flows).

112

6.3 DyMonD Controller

Call graph creation The final step of the controller is to produce the call graph (line 13).
The details if the graph producing algorithm are depicted in Algorithm 2. As described in
Section 6.1, the call graph is a colored directed graph G(N,E) that contains N as the set of
colored vertices and E as the set of edges, where the colored vertices represent the application
components identified by their IP address and the edges are the detected communication
flows between them identified by the IP address pair of the two communicating nodes. Each
vertex is labeled as a client or a server. The server component can have many connected
clients and might be itself a client to other servers. Therefore, each application component
can be represented by a maximum of two vertices in the call graph with same color, one
labeled as a server and the other labeled as a client. For instance, there are two brown
circles for the WebUi service of the TeaStore benchmark in Figure 6.2, one being a web-
service and the other one being a client to four other services. The edges are labeled with
the performance metrics as discussed in Section 6.1.1.

To create the call graph the controller iterates over the list of flows (lines 2-13). It
extracts the IP addresses of the client and server end-points of each flow and creates the
corresponding client (line 6 and 11) and server nodes (line 7 and 10). The process in both
cases is similar. If no node is previously created with the extracted client resp. server IP, a
new node is created with a unique color and labeled as client resp. server (lines 17-20 and
32-35). If a client node Nclient is to be created and there is a server node Nserver with
the same IP as Nclient, Nclient is created with the same color of Nserver and an edge
of "same address" is added between Nclient and Nserver (lines 21-26). The same happens
for server nodes. That is, if a client node Nclient already exists with the same IP address
of server node Nserver to be created, Nserver is created with the same color of Nclient
and a "same address" edge is added between them (lines 36-41). If a client resp. server node
already exists, nothing has to be done.

From there, for each client resp. server flow, the controller creates a new edge between the
two nodes of that flow and labels it with the performance metrics collected for that flow (line
8 and 12). If the edge already exists, the controller only updates the edge labels according
to the performance metrics of the current flow. Recall that the edges are identified by the
IP addresses of the two communicating nodes. Therefore, all the client resp. server flows
between two communicating components are represented by one client resp. one server edge.
For the client edges the number of the client flows originating from a client to a server node
are represented by the edge’s "C" label. For instance, the two client flows detected between
the external client of the YCSB web-server in Figure 6.1 are depicted by one edge that goes
from the client node (red circle) to the web-server node (green circle) while C is 2 to indicate
the two detected client flows. The same also applies to the edges between the different
components that apply multi-threading or connection pooling for their communication. For
instance, six client flows are detected between the SockShop front-end and customer web-

113

6.3 DyMonD Controller

Algorithm 2: Pseudo code for call graph producer
input : List of flows AllF lows
output : Call graph G
Data : Empty list of Nodes N and Edges E

1 Function Main(AllF lows):
2 for F low in AllF lows do
3 IP src← Source IP of Flow;
4 IP dst← Destination IP of Flow;
5 if F low is a client flow then
6 Nclient← Client Node (IP src);
7 Nserver ← Server Node (IP dst);
8 E ← Create/Update Client Edge(Nclient, Nserver, F low);
9 else if (flow is a server flow) then
10 Nserver ← Server Node (IP src);
11 Nclient← Client Node (IP dst);
12 E ← Create/Update Server Edge(Nserver, Nclient, F low);
13 end
14 G← Graph(N , E);
15 return G;
16 Function Client Node(IP):
17 if Node with IP not in N then
18 C ← Choose Unique Color();
19 Nclient← Create Client Node(IP , C);
20 N ← (N ∪Nclient);
21 else if (A node Nserver with IP in N of type server && Nclient with IP of type client not in N) then
22 C ← Get Color of(Nserver);
23 Nclient← Create client Node(IP , C);
24 N ← (N ∪Nclient);
25 Edge← Create Edge(Nclient, Nserver, "Same address");
26 E ← (E ∪ Edge);
27 else
28 Nclient← Get Client Node(IP , N);
29 end
30 return Nclient;
31 Function Server node(IP):
32 if Node with IP not in N then
33 C ← Choose Unique Color();
34 Nserver ← Create Server Node(IP , C);
35 N ← (N ∪Nserver);
36 else if (A node Nclient with IP in N of type client && Nserver with IP of type server not in N) then
37 C ← Get Color of(Nclient);
38 Nserver ← Create Server Node(IP , C);
39 N ← (N ∪Nserver);
40 Edge← Create Edge(Nserver, Nclient, "Same address");
41 E ← (E ∪ Edge);
42 else
43 Nserver ← Get Server Node(IP , N);
44 end
45 return Nserver;

service (Figure 6.3). Similarly, all these six client flows are represented by one edge from the
client node of the front-end component (brown circle) and the customers web-service (orange
circle) with C label of 6 (not shown in Figure 6.3). For the server edges, the "RST" label
represents an average of the service time of all server flows between a server and client node.

114

6.3 DyMonD Controller

Finally, the constructed nodes and edges are consolidated into a graph data file G (line
14) that is sent to the visualisation frontend for visualization.

The complexity of the controller process depends on the number of different IP addresses,
the number of flows that connect them and some configuration parameters such as the given
monitoring duration for each detected application component. At every iteration the agent
captures all flows for an IP address and repeats until enough messages are captured or a
timeout of the monitoring duration occurs. The controller iterates over these flows to detect
new IPs and generates the graph, which is a fast process. For instance, to form the call graph
for the YCSB, TeaStore and SockShop applications in Figures 6.1-6.3, the controller needed
0.3, 0.5 and 0.8 seconds, respectively, to execute its functions (excluding the time taken by
the agent). A more detailed evaluation of the complexity of the agent and controller analysis
functions will be presented in Section 6.6.

6.3.2 DyMonD in a Multi-agent Settings

To cover a large cloud network, we propose the deployment of a DyMonD agent with each
software switch, i.e., all top-of-rack software switches or software switches within larger end
hosts that hold many containers or virtual machines. Looking back to Figure 6.4, each ToR-
switch as well as the large host in rack 8 should hold a DyMonD agent. We are assuming
that the DyMonD controller knows and is able to communicate with all deployed DyMonD
agents. This can be through periodical heartbeats sent by the agents to the controller.

In addition to the steps described in the previous section, for each component C to
be visualized in the graph, the controller has to first determine the switches that handle
the flows of C. One option could be that DyMonD consults the control plane of the SDN
technology to determine the switches that handle flows of a given IP [ESEFAM21]. When
C starts sending packets to the network and no rule match is found for those first packets,
the SDN switch forwards them to the SDN controller to request a new rule. That flow
rule request message contains information such as the IP address of C (i.e. IPC), the SDN
switch identifier and switch port number that is connected to that host. This way, the SDN
controller can identify the connected components to any SDN switches.

As an alternative, the DyMonD controller can multicast the IP address, IPC , of C to all
agents. The agents run the flow detector module as described in Section 6.2 and only the
DyMonD agents whose switch handles flows involving IPC will respond to the controller.
Once the controller receives the confirmation message from the agent(s), it will command
to the respondent agent(s) to start packet capturing and service detection as described in
Section 6.2. Note that a connection might go through several switches. For example, in

115

6.3 DyMonD Controller

Figure 6.4 when component A1 communicates with A2 the agents of ToR switches on both
racks 1 and 2 will observe the message exchange. The DyMonD controller will detect the
duplication and show the relevant information only once in the graph as described in the
previous section.

As there may be hundreds of DyMonD agents in a cloud network, especially if it consists
of many large machines that all have their own software switches installed, a hierarchy of
DyMonD controllers can be provided for scalability. For example, an intermediate DyMonD
controller can be deployed inside each rack. This will form a small cluster of DyMonD agents
with one DyMonD controller as a cluster head, that will in turn communicate with one main
DyMonD controller, reducing the number of nodes this main controller has to communicate
with. Many different communication protocols can be used to route the traffic between the
various controller levels in this hierarchy [ACA+15]. In addition, a fault tolerant mechanism,
e.g., [SBS], can be employed to prevent the main controller from being a single point of failure.

6.3.3 Other Practicality Considerations

As mentioned in Section 6.1, we assume that each application component has one unique IP
address as an identifier. In reality, application components may have multiple IP addresses.
For example, application components that reside in a virtual private cloud, may have both
public and private IP addresses. By default, DyMonD will show these two IPs as two different
components in the call graph. Nonetheless, this issue can be resolved if DyMonD can have
access to IP mapping information, as also assumed in other related work [J. 17,LTRW].

On the other hand, call graphs may span more than one application. For instance, two
applications could have components that call a general purpose service, e.g., a spelling
service, translation service, storage service, etc. If DyMonD starts with a component of one
application, it will eventually reach the common service and from there it can reach the
clients of the other applications. This can lead to privacy violations. Therefore, if a user
wants to get the call graph of only their application, DyMonD should stop generating the
call graph as soon as it reaches components that are no more in the application’s domain.
The cloud provider is typically aware of the owner domain of components as it is often the
owner of these multi-tenant services. Thus, DyMonD would need access to such
information.

116

6.4 Visualization Frontend

6.4 Visualization Frontend

The visualization frontend is implemented as a web-server. Users connect via a web-browser
to the frontend where they can indicate the IP address of the starting component and
the monitoring duration the DyMonD agent should spend for capturing messages for each
application component. The latter should be carefully configured for each application. That
is, the applications with a low communication rate would need longer monitoring time to get
enough packets for the DyMonD agent service identification module and build a complete
call graph of the application.

Once the application call graph data is available for visualization, the frontend visualizes
it. Currently DyMonD uses WebVOWL [WEB] as a visualization tool. As building a graph
visualization tool is out of the scope of this thesis, we have experimented with several existing
tools and found WebVOWL the most appropriate. WebVOWL has been designed for the
visualization of ontologies but has served our very different purposes very well after some
minor adjustments to the source code1.

6.5 Dynamic Service Identification

Our investigation in Chapter 5 has shown that using the packet payload is more beneficial
than using the information in the packet header in the context of the service type
classification we are aiming at. Recall that the header-based protocols do work well if the
service uses one of the standard ports, and if the handshake message exchange at the
connection setup is captured. However, in dynamic cloud environments and when
applications need to be monitored on demand, neither of the two options can be
guaranteed. Furthermore, we have seen that for the graph creation we need to classify
uni-directional flows as we have to also distinguish between clients and servers. But
header-based approaches work worse with uni-directional flows. Thus, we decided to
employ payload-based DLM in the service identification module of the DyMonD agent,
namely the CNN+BiLSTM due to its superior performance compared to the other
evaluated DLMs. The CNN+BiLSTM itself is trained offline and then deployed in the
service detection module of the DyMonD agent.

In the following sections, we first describe how we have adapted the payload-based
CNN+BiLSTM DLM described in Section 5.4 so that we do not only receive the service
type label but also whether a flow is a client flow or a server flow. Then, we will describe

1Adjusted WEBVOWL source code: https://github.com/qqqqyyy/webvowl1.1.7SE.

117

https://github.com/qqqqyyy/webvowl1.1.7SE

6.5 Dynamic Service Identification

the details of the NLP approach we used for fine-grained service type identification that
DyMonD can optionally provide for microservice-based architectures.

6.5.1 Training CNN+BiLSTM DLM for DyMonD

As just mentioned, the client/server classification of each flow is crucial for DyMonD
functionality to deduce a proper application call graph. Therefore, we have to use the
unidirectional variant of the payload-based dataset described in Section 5.3 that separates
the client and server flows into different records. However, in the original version of that
unidirectional payload-based dataset, the client and server flows are labeled with the same
label, e.g. "HTTP". Thus, in order to train the DLM for the purpose of DyMonD, we
modified the labeling of the unidirectional payload-based dataset by assigning different
labels to the client and server flows of each service type. For instance, the HTTP requests
flows are labeled with "HTTP-C"; where "C" stands for client, while the HTTP response
flows are labeled as "HTTP-S"; where "S" stands for service. We have applied the same
labeling strategy to all the service types DyMonD currently supports including the secured
services. This increases the number of service classes in the unidirectional payload-based
dataset with secured traces from 14 to 26 (each service of those 14 ones, except Spark and
Cassandra management flows, has two labels, one for the client flows and the other for the
server flows). Note that for training we only use the dataset with middle flow messages as
DyMonD has to support service identification at any point during the run-time of the
application.

In summary, one record in the extended dataset is a sequence of 100 images representing
consecutive messages extracted from a single unidirectional flow, and each image is of size
36 (6x6) corresponding to the first 36 bytes extracted from a packet’s payload. Note that
once the pre-trained CNN+BiLSTM is used in the DyMonD agent for service identification,
it needs again as input flows with 100 packets. Thus, if the agent captures less than 100
packets during the pre-defined monitoring time duration, the flow needs to be discarded and
cannot be considered.

6.5.2 Service Identification for HTTP-based Microservices

Since most microservices use HTTP, our basic DyMonD service identification will classify
them all as HTTP. While this might be sufficient for cloud administrators, application
administrators might want to have more information about the components. Therefore,
here we describe how DyMonD can optionally provide a more fine-grained classification of

118

6.5 Dynamic Service Identification

HTTP-based services.

Microservice standard is to use the REST API, where the service exposes its methods
via URL resources. Thus, when a client makes a request, the URL string embedded in the
HTTP message contains the name of the URL resource to be called. Often, these resources
have meaningful names in the context of the application, that indicate what the
service/method is actually doing, such as "persistence" or "authentication". However, a
microservice might offer a whole range of methods as its API where each method can have
also various input parameters. Thus, there might be many different URLs associated with a
microservice, although they will likely all have some common substrings. For instance,
examples of the URL strings found in the HTTP requests of the persistence service in
Figure 6.2 are: "/tools.descartes.teastore.persistence/rest/users/name/user82",
"/tools.descartes.teastore.persistence/rest/products/110", and
"/tools.descartes.teastore.persistence/rest/orderitems". Thus, an analysis of such URL
strings is needed to choose the resource name that is common between them as a
fine-grained service label for the microservice component.

Algorithm 3 outlines this process. First, the agent maintains a list of URLs for each
detected web-service. Then, a language processing tool [NLT] is used to return the most
frequent REST resource names appearing in the URLs of each HTTP-based service. In
particular, the DyMonD agent iterates over the flow list, extracts the URL strings from the
HTTP request messages of the flows that are labeled as "HTTP-C" (lines 1-3), extracts the
web-service identifier (IP/port number) (line 4) and builds up a list of web-services with
their associated URLs (lines 5-8).

Then, the DyMonD agent iterates over the constructed web-service list, uses an NLP
function to extracts the resources and calculates the use frequency of each appearing resource
(lines 9-10). In particular, the DyMonD agent calculates the use frequency of each resource
r as the number of times r occurs in URLs of packets sent from a client to the HTTP-based
service divided by the total number of packets with URLs that the service receives.

Freq(r) = Number of occurrences of r in URLs
Total number of URL requests received (1)

Note that there are some words that should be ignored when found in a URL string
such as the extension name of a file (e.g. .css, .xml, .html, etc.) and the communication
protocol identifier such as "http://". The resource frequency should reach a preset threshold
TH to be selected for the web service type (line 11). We set TH to be 50%, which means the
chosen resource should appear in at least half of the requested URLs to be chosen for the
web-service application specific type. If the frequency of more than one resource reaches that

119

6.5 Dynamic Service Identification

Algorithm 3: Pseudo code for fine-grained service type identification for HTTP-based
services
input : List of flows FlowsList and Threshold TH
Data : List of stop words StopWords, empty list of web-services

WebServicesList and empty resource-count pair list for resource count
ResourceCount

1 for Flow in FlowsList do
2 if Flow service label is "HTTP-C" then
3 URLs← Extract URLs(Flow);
4 WebService← Extract Web-service(Flow);
5 WebService.URLs← (WebService.URLs ∪ URLs);
6 if WebService not in WebServicesList then
7 WebServicesList← (WebServicesList ∪WebService);
8 end
9 for WS in WebServicesList do

10 WS.ResourceCount← NLP (WS.URLs, StopWords);
11 WS.Label← Get web-service label (WS.ResourceCount, TH);
12 end

preset threshold, we output them all for the web-service label. If none of the resources reaches
the threshold, we label the web-service with the most frequent three resources along with
an "Unknown" tag to acknowledge the low frequency of the produced labels. The visualized
graphs of the TeaStore and the SockShop shown in Figures 6.2 and 6.3 show the labels
DyMonD has produced for the detected HTTP-based services.

The complexity of the fine-grained service type identification process depends on the
number of detected HTTP client flows F (HTTP−C) and number of HTTP request messages
that contain the HTTP header where the URL is located. Given that the DyMonD agent
collects N packets for each flow, and in the worst case all the collected N packets for those
HTTP client flows have the HTTP header (e.g. for small HTTP request messages that
span only one packet), the asymptotic run-time complexity of the fine-grained service type
identification process is O(N ∗ F (HTTP − C)). In our evaluation, determining the label
for a single HTTP-based service takes a maximum of 0.3, 13 and 6 milliseconds in YCSB,
TeaStore and SockShop applications (Figures 6.1-6.3), respectively.

120

6.6 Evaluation

6.6 Evaluation

In this section, we evaluate the performance of DyMonD. We first analyze how well
CNN+BiLSTM performs in terms of the prediction accuracy, precision, recall and F1 score
now where the flows are not only labeled with the service type but also as client or server
flows. We also analyze how good our fine-grained analysis for web-services works. Then, we
evaluate the performance of DyMonD in terms of: (i) the accuracy of the formed call
graph, (ii) the imposed overhead and (iii) the complexity of DyMonD analysis in terms of
the time duration required by DyMonD modules to infer the application call graph.
Finally, we present two use cases to show how DyMonD detects application performance
bottlenecks and captures changes in the application’s architectural patterns during
run-time.

6.6.1 Service Identification Evaluation

In this section, we first evaluate how effective our CNN+BiLSTM model is in identifying
certain service types as well as the direction of the flow as either client or server flow, using the
extended unidirectional payload-based dataset described in Section 6.5.1. We first evaluate
the training time of CNN+BiLSTM for the modified dataset and the overall classification
performance. We then report the performance for individual services. Finally, we assess the
quality of our fine-grained classification for microservices.

Model training and validation We have used the same validation environment as well
as the validation and parameter tuning approaches described in Section 5.5.1 for training
the CNN+BiLSTM using the extended dataset. In particular, we separate our flow-based
dataset into learning and test datasets as indicated in Table 5.1. Further, 20% of the learning
data is separated for validation, and the verification of the model is performed on the basis of
the SMBO [TP12] hyper-parameter set listed in Table 5.2 and the value of the k-fold cross-
validation [TGB18]. Then, the model is trained by using the optimal hyper-parameters and
the model performance is evaluated using the test data. We note that SMBO has produced
the same hyper-parameters values listed in Table 5.3 for the CNN+BiLSTM DLM using the
extended dataset.

Training time We measured the average training time taken by the CNN+BiLSTM
for the extended dataset for five runs. It takes 392 seconds on average to train the
CNN+BiLSTM on the modified dataset with standard deviation below 0.1. This represents
around 5% increase in the training time required by the CNN+BiLSTM model of the

121

6.6 Evaluation

Figure 6.7: Middle-flow classification performance of the CNN+BiLSTM model for the
client/server flows of encrypted and unencrypted service types in terms of Precision, Recall
and F1-score.

original unidirectional payload-based dataset listed in Table 5.4. This increase is due to the
increased number of classes in the extended dataset, almost the double of the number of
classes in the original dataset. Note that the number of records and features have not been
changed in the modified dataset, just the labels. We believe this is a reasonable overhead
given the enhanced classification capability the CNN+BiLSTM now has by further
distinguishing between the client and server flows for each service type. It is important to
note that the DLM is trained offline as mentioned in Section 6.5, and hence, training has
no impact on the execution time of DyMonD.

Classification performance We first evaluate the performance of DyMonD’s DLM (i.e.,
CNN+BiLSTM model) in terms of the weighted average of accuracy, precision, recall and
F1-Score metrics. Interestingly, DyMonD achieves a classification performance of around
89% for all the aforementioned performance metrics, which is almost the same performance
as CNN+BiLSTM DLM for the original dataset. That is, increasing the number of labels, i.e.
DLM classes, does not have a significant impact on the CNN+BiLSTM DLM performance.

Performance on a per-service basis We have a closer look at the performance of the
CNN+BiLSTM DLM for the individual classes.

Figure 6.7 shows the F1-score, recall and precision results for all service types and flow

122

6.6 Evaluation

direction. CNN+BiLSTM performs very well for most of the service labels, including
distinguishing between the client and server flows of secured services such as SMySQL and
SpostgreSQL, with F1-Score higher than 85%, except for the client flows of HTTPS and
Spark, where the F1-score is below 80%. In other words, a fair amount of HTTPS-C and
Spark traces are not identified as such. One reason could be the insufficient training data
that is below 1% for each in the training dataset.

We observe that most of the misclassifications are between the server and client flows
of the same service type. For instance, one third of the DB2-S traces are misclassified as
DB2-C, 12.5% of Redis-S traces went to Redis-C and 2% of HTTPS-S traces are wrongly
classified as HTTP-C and HTTPS-C. This kind of misclassifications can be corrected by the
clean function outlined in Section 6.3 as soon as the service type is identified consistently
and the position of the service in the communication flow, i.e. source or destination, is used
to correct the server and client labeling.

There are also some misclassifications between the cache systems. For instance, about
12.5% of the Redis-S traces are misclassifed as Memcached-S. As we have mentioned before
misclassification between different caching systems might be more acceptable in the context of
DyMonD functionality than misclassifying it as something completely different, for instance,
Redis as HTTP-service.

Identification for HTTP-based microservices To validate the ability of DyMonD for
fine-grained classification of HTTP-based microservices, we compare the
"application-specific" service labels automatically created by DyMonD with the actual ones
described in the evaluated benchmark documentation. Table 6.1 shows the service labels
predicted by DyMonD, as described in Section 6.5.2, against the actual ones for
HTTP-based components in the YCSB, TeaStore and SockShop benchmarks. As shown,
DyMonD provides very close categorization of the service types for most HTTP-based
components under the three evaluated benchmarks. For "Front-end" services such as the
one in the SockShop benchmark and "Web UI" in TeaStore, DyMonD provides three labels
plus an "Unknown" because none of them has produced label frequency reaching the set
threshold as described in Section 6.5. However, the diversity in the produced service labels
can serve as an indication that the associated HTTP-component might be a load-balancer
or a front-end service for the monitored application.

Summary The employed CNN+BiLSTM DLM yields excellent classification performance
for server/client flows of a variety of service types, both encrypted and unencrypted, even if
it does not have the handshake messages. Most of the misclassifications happen within the

123

6.6 Evaluation

Application Deduced web-service label(s) Actual web-service label
YCSB benchmark YCSBWeb/ycsb YCSB web-server

TeaStore benchmark

webui/category/cartaction "Unknown" Web UI
images/getwebimages Image provider
Auth/useractions Authentication
recommender/recommend Recommender
persistence/products Persistence
registry/services Registry

SockShop benchmark

cart/category/catalogue "Unknown" Front-end
catalogue catalogue
Orders orders
paymentAuth payment
customers users
carts carts
Shipping shipping

Table 6.1: Detected service labels for HTTP-based microservice vs. the actual ones

same service type or between the same "kind of" service type, in our case a cache system.
For HTTP-base services, the proposed methodology to infer the fine-grained service type
provides good predictions.

6.6.2 Validating Call Graph Accuracy

To assess the accuracy of the actual call graphs produced by DyMonD, we use logging
tools that instrument the application and/or platform in order to collect all communication
exchange between components and compare the results with what DyMonD produces. We
denote as Nboth the number of flows that are detected by both mechanisms, Not the number
of flows detected by the other tool but not DyMonD, and by NDyMondD the number of flows
detected by DyMonD but not the other tool. We generate call graphs for both the TeaStore
and SockShop benchmark applications. For the TeaStore benchmark, we use the version that
is instrumented with Kieker [HvH20], which is a software-based monitoring tool that invokes
an application log-service whenever an application component makes a call. For DyMonD, we
activate the monitoring after 60 seconds of warm-up time. The resulting DyMonD graph is
slightly different from what is shown in Figure 6.2 where no application instrumentation was
enabled. In this test scenario, we getNboth of 12 flows, Not of 4 flows andNDyMondD of 15 flows.
The 4 flows that are not shown by DyMonD take only place at the application startup (with
the image provider and the recommender both communicating with the persistence service).
Thus, DyMonD is correct in not showing them since it produces the graph on demand when

124

6.6 Evaluation

these communications are no longer active. Furthermore, DyMonD shows two additional
components that are not presented by TeaStore’s monitoring tool: the registry service and
the log service. TeaStore does not generate logs for these two components considering them as
external support services. However, all 5 microservices in fact communicate with the registry
in a request/reply fashion and with the log-service in an unidirectional way (generating
overall 15 unidirectional flows); thus DyMonD displays them. We believe this is the desired
behaviour when monitoring an application during execution.

For the SockShop’s call graph comparison (Figure 6.3), we have enabled Weavescope
[Weaa] to visualize the application call graph by instrumenting the docker platform. Again,
we run the application for 60s as warm-up time before enabling DyMonD. In this case study,
the values of Nboth, Not and NDyMondD are 29, 0, 0, respectively, which means that both
systems detect exactly the same flows and yield the same call graph.

6.6.3 DyMonD Overhead

In this section we present the overhead of DyMonD during run-time and compare it with
other monitoring tools. Kieker [HvH20], Weavescope [Weaa] and SysDig [sys] are chosen for
such comparison as they represent examples for both software instrumentation- and network-
based application monitoring that provide a similar functionality that DyMonD aims at.
As described in Section 2.5, Kieker instruments the application to create logs during run-
time that are sent to a logging-server for analysis, Weavescope monitors the network of the
container platform to deduce dependencies between components running on the same host,
while SysDig sniffs the messages among components and logs them in files; the information
can then be used to deduce inter-dependencies.

Test environment Our basis for evaluation has been the YCSB benchmark on an
extended architecture that is described in Section 3.3, and the TeaStore and SockShop
benchmarks. For YCSB, we have used the same workload specifications mentioned in
Section 3.3. For the TeaStore and SockShop benchmarks, we use a workload that sends
HTTP requests emulating users browsing the store and purchasing items. For each
application, we grow the workload by increasing the number of clients up until an
application saturation is reached even without enabling application monitoring.

The experiments are performed using four DELL machines. The hardware and software
configuration of those four machines are quite similar to the ones listed in Section 3.3.
The clients of the YCSB, TeaStore or SockShop application are deployed on one machine, all
server components on another machine in separate containers, and the visualization frontend

125

6.6 Evaluation

YCSB client(s)

Webserver container

MySQL DB container

Memcached container

OVS

OVS

Physical SW

DyMonD agent

DyMonD controller container

DyMonD-Dis

Kieker Service Container
Visualization frontend

WeaveScope Container

Kieker-Dis

Kieker Service Container

DyMonD controller container

Figure 6.8: Testbed architecture for DyMonD.

on a third machine. Figure 6.8 shows an example of the setup for the YCSB benchmark. All
server components are connected by 10 Gigabit Ethernet OVS ports.

Furthermore, we have two setups for the DyMonD and Kieker monitoring tools as they
both have a separate controller/ logging-server. For DyMonD the agent is either connected
to a remote controller deployed on the fourth machine, referred to as "DyMondD-Dis", or
to a controller that resides on the same host, referred to as "DyMonD". Similarly, we have
"Kieker-Dis" where the logging messages are sent to a remote Kieker logging service on
the fourth machine, and "Kieker", where the logging service is local. We run all tests for a
duration that ensures that for DyMonD monitoring is active for the full test duration. This
time ranges from around 1 to 2 minutes for the evaluated applications.

Impact on latency of the monitored application Figure 6.9 shows the end-to-end
latency observed for the YCSB, SockShop and TeaStore applications with increasing load in
terms of number of concurrent clients without monitoring and with the various monitoring
options enabled. Note that Kieker was only used for the TeaStore application. For the three
applications, DyMonD has the smallest impact among all evaluated monitoring approaches.
Figure 6.9a shows that YCSB experiences only a small latency increase when activating
DyMonD/DyMonD-Dis. Both versions have a similar impact on the monitored application
because the DyMonD controller is lightweight and does not consume much resources (in our
test configurations, the controller has 3% CPU utilization and almost no memory overhead).
Weavescope performs similar to DyMonD; yet, DyMonD provides more context as described
in Table 2.1. SysDig is significantly worse, in particular at higher loads.

Figures 6.9b and 6.9c show that monitoring has more impact on the SockShop and
TeaStore client, respectively. DyMonD performs significantly better than the other tools for

126

6.6 Evaluation

(a) Average latency reported by YCSB client. (b) Average latency reported by SockShop client.

(c) Average latency reported by TeaStore client.

Figure 6.9: Overhead of different monitoring tools for YCSB, TeaStore and SockShop.

both applications. For the SockShop application (Figure 6.9b), the maximum overhead
experienced by DyMonD is around 13% with the DyMonD-Dis setup at 100 clients,
compared to around 52% and 67% overhead experienced by Weavescope and SysDig,
respectively. A higher monitoring overhead is observed with the Teastore application
(Figure 6.9c) where we could run a higher number of concurrent clients. For example, at
300 clients, the TeaStore application experiences a 15% latency increase with DyMonD and
DyMonD-Dis, while Kieker, SysDig and Weavescope increase the latency by 120%, 125%
and 140% respectively. Kieker-Dis affects the application latency more than Kieker. This is
due to the high communication overhead of Kieker-Dis as we will show later in this section.

Weavescope, SysDig and DyMonD capture the messages asynchronously, that is, their
actions are not within the execution path of the client request. However, they do reside on
the same host as the application, thus impacting it to some degree. We assume that

127

6.6 Evaluation

DyMonD’s decoupled architecture and the selection of only specific flows for monitoring at
any given time make it more light-weight as we will discuss later in this section.
Furthermore, DyMonD allows to dynamically switch monitoring on and off, thus providing
very competitive performance.

A possible reason why Sysdig has such a high impact on response time could be because
handler functions are triggered whenever certain system events such as network connections
occur. They copy the event information into shared memory for further analysis, and the
original system call execution is “frozen” until the handler returns, leading to delays. For
Kieker, tracing and logging takes place within the application. Again it might be done
synchronously, which directly impacts response time.

Computational overhead We have measured the CPU and memory utilization of the
DyMonD agent in comparison to Weavescope and SysDig at their hosting node. In TeasStore
with 300 clients (where the maximum monitoring overhead is observed), Weavescope and
SysDig utilize 35% and 33% of the CPU and 28% and 12% of the memory capacity of the
host node, respectively. Both Weavescope and SysDig sniff and log all the internal traffic on
the host to infer the dependency information, which we assume contributes to this overhead.
In contrast, the DyMonD agent consumes only around 16% of the host CPU and 0.1% of
the host memory capacity. A large part of this consumed memory is used by the DLM to
predict the service type as we will describe later in this section.

Communication overhead The communication between the DyMonD agent and
controller is light-weight, as the controller only sends small request messages to the agent
and the agent provides compact flow information to the controller. For instance, for our
TeaStore experiment with 300 clients, only 72 TCP packets are exchanged between agent
and controller. In contrast, 39,000 packets were sent from the Kieker-instrumented
TeaStore application to the logging server, because Kieker traces and sends information
about all individual method calls performed within Teastore. This fine-grained logging
leads to a considerable communication overhead for Kieker-Dis, which is probably the
reason why Kieker-Dis performs worse than Kieker in our experiment.

Location of the DLM The default DyMonD setup has the DLM deployed along with
the DyMonD agent. In terms of space overhead, our DLM consumes 2.7MB disk space on
the agent’s host for the current 26 classes. We believe this is a reasonable footprint with the
system capabilities of the host. In our experiments, we have observed that the number of
classes does not significantly increase the space overhead of the model. Our deep learning

128

6.6 Evaluation

Figure 6.10: Execution time of DyMonD agent and controller analysis functions.

model has a basic size of 1.2MB even if it only classifies 2 services. Classifying 13X number
of classes only doubles the basic model size. Should the DLM become significantly large, if a
more complex model architecture is pursued for service classification, and storing it at every
agent in the system becomes a concern, an alternative solution could be holding the DLM
only at the controller. In that case, the agents send the input to the DLM (the 36 first Bytes
of the 100 messages) to the controller for service identification. However, this will increase
network traffic and the load on the controller and also possibly on the agent, because the
model lookup might be faster than sending so many messages to the controller. To understand
the trade-off, we evaluated both options with TeaStore when running 300 clients. Indeed,
offloading the DLM to the remote controller in the DyMonD-Dis setup increased the observed
client latency by 23.6% (which is still less than the overhead of the other monitoring tools)
and increased the number of exchanged TCP packets between DyMonD agent and controller
from 72 to 175. Nonetheless, this overhead increase is still much better than the other
approaches (see Figure 6.9c). Thus, it might be an alternative for very large models where
label lookup might be more expensive and memory might become a concern.

6.6.4 Analysis Complexity

Here we evaluate the complexity of the DyMonD in terms of the analysis time, i.e. the time
spent by DyMonD agent and controller to analyze the collected network flows to infer the
application call graph. In particular, we measured the time taken by the DyMonD agent

129

6.6 Evaluation

Figure 6.11: The breakdown of the execution time of DyMonD controller analysis functions.

to infer the service types and calculate the performance metrics of the collected flows, i.e.
the time taken by both the service identifier and performance analyzer modules described in
Section 6.2. We exclude the execution time of the flow detector and packet capture modules
as they do not perform significant analysis functions and the latter’s execution time mainly
depends on the configured monitoring time, as described in Section 6.4. For the DyMonD
controller, we measure the time taken by its functions described in Section 6.3, including
extracting the call graph components, cleaning the flows and producing the call graph data.
We have created a set of test flows of different sizes and contents using the YCSB, TeaStore
and SockShop applications. Note that we only consider the flows with sufficient packets for
the service identifier module, i.e. with 100 messages.

Figure 6.10 shows the results. Considering the test flows used, DyMonD analysis time
seems to scale linearly with the number of collected flows for both the agent and controller.
In general, the DyMonD agent analysis time is higher than the controller analysis time. This
is expected as the agent performs more complex analysis functions than the ones executed
by the controller, such as the service identification. In fact, most of the agent analysis time
is consumed by the service identifier module, where on average the DLM takes around 11
milliseconds to predict the service label of one flow in our test configuration. The performance
analyzer module’s execution time consumes around 0.2% of the agent’s execution time. At
the maximum tested flow size in our configuration, which is 1.5K, the DyMonD agent and
controller spent around 22 and 1 seconds, respectively to execute their analysis functions.

130

6.6 Evaluation

Figure 6.11 zooms in the execution time of the most compute intensive functions of the
controller, which are the flow cleaning and the graph producer functions. As we can see, the
execution time for clean up is almost double that of producing the graph. This is expected as
the clean up function iterates over the flow list twice, one time for finding all the service type
labels assigned for each service while the other for consolidating them over all the service’s
flows. On the other hand, the graph producer function iterates over the flow list only once
to extract the graph nodes and edges. Consolidating the service type labels as well as the
server/client labeling for 1.5k flows takes around 0.6 seconds.

6.6.5 Use-Cases

In this section, we describe two sample use cases for DyMonD: detecting and understanding
performance problems and visualizing architectural changes during run-time.

Multi-Tier Performance Debugging Our first use case demonstrates how DyMonD can
detect performance issues and highlight bottlenecks at run-time through the visualization of
the call graph and associated application performance metrics. We have used the same YCSB
application depicted in Figure 6.8 and injected a misconfiguration, by reducing the memory
size for Memcached, which forced most of the web-server requests to be served by the MySQL
database instead of the much faster cache. Figure 6.12 shows the call graph generated by
DyMonD, where the web-server IP is given as the starting point and is activated after the
application has been up and running for 5 minutes. As a result of the injected Memcached
misconfiguration, the MySQL component appears in the call graph produced by DyMonD
and the throughput between the web-server and MySQL is much higher than the one to
Memcached (17.4Kbps vs. 5.8Kbps), leading to the substantially longer overall web-server
response time compared to the one shown in Figure 6.1 (24.2µs vs. 8.8µs). Note that such
cache misconfiguration causes unnecessary long delays and is not detectable by monitoring
the resource utilization metrics of each component unless the database is overloaded; yet it
can easily be detected when looking at each component throughput within the call graph.

Detecting application architectural patterns Here we consider a richer setting where
we show how DyMonD can be used to continuously monitor the application structure which
might dynamically change based on the workload data. In dynamically scalable platforms, as
the application workload changes, the cloud applications are scaled up or down to meet the
demands of the current workload without wasting resources. This is often done by replicating
individual components and adding or removing replicas depending on need. We show here

131

6.6 Evaluation

TH: 17415, RST: 15 TH: 5805, RST: 0.2

HTTP
YCSBWEB/YCSB

Client

TH: 125290, RST: 24.2

Client

Same address

TH: 2207, C: 11

MemcachedMYSQL

TH: 132, C: 1 TH: 44, C: 1

Figure 6.12: The call graph for a YCSB application with Memcached-misconfiguration,
where the MySQL service (light blue) has a higher throughput towards the web-server than
the Memcached service.

how DyMonD can be used to provide the administrator with an up-to-date state of the
application topology at run-time. To illustrate the potential for this situation, we use the
TeaStore benchmark and enable DyMonD in the online mode while giving the IP address
of the Webui service as a starting point. Shortly after, we added one replica of TeaStore’s
authentication service. Figure 6.13 shows the part of the call graph that changed after the
replica has been added. The second authentication service appeared in the call graph (the
gray oval) and the Webui service is distributing its requests between the two identified
authentication services (the gray and blue). We note that the TeaStore benchmark has a
built-in client-side load balancer for each of its services.

132

6.7 Summary

HTTP
WEBUI/CATEG..

HTTP
AUTH/USERAC..

HTTP
PERSISTENCE..

Client

Client

Same address

HTTP
AUTH/USERAC..

Client

Same address

Client

Same address

TH:7639, C:5 TH:7631, C:6

TH:12867, C:6 TH:12867, RST:9.7

TH:4762, RST:1.1 TH:4418, RST:3.3

TH:1719, C:6

TH:766, RST:1.5

TH:1111, C:5

TH:1088, RST:1.7

TH:20072, C:22 TH:37206, RST:1.9

Figure 6.13: A part of TeaStore call graph with replicated authentication service.

6.7 Summary

We have presented DyMonD, a network-based framework for application call graph discovery
and service identification based on the software switch-based monitoring approach proposed

133

6.7 Summary

in Chapter 3 and the deep learning mechanisms presented in Chapter 5. We show some
use cases that show DyMonD’s usefulness for providing both the cloud and application
administrators with the global view of the running application that is needed to diagnose
and resolve performance issues.

DyMonD captures the communication flows between different application components
and provides application-level performance metrics with acceptable overhead. A DLM is
employed to efficiently detect the service type of each flow as well as distinguishes between
the client and server flows of the service. Should some misclassifications happen, DyMonD
runs a validation algorithm to best correct such misclassifications. Additionally, DyMonD
uses an NLP-based approach to do a fine-grained service type classification for microservices-
based architectures.

Our evaluation results confirm that DyMonD can infer the proper call graph and
identify the services at run-time with acceptable overhead and good accuracy. For instance,
DyMonD’s overhead is 83-89% lower than that of the Weavescope and Sysdig monitoring
tools, and up to 87.5-91% lower than that of the Kieker monitoring tool. In addition, it
requires half of the CPU usage and around 1% of the memory usage compared to the other
monitoring tools. Furthermore, DyMonD imposes less than 1% of the communication
overhead caused by Kieker. Finally, DyMonD requires only a few seconds to infer the
application call graph given a moderately large application traffic. We believe this is an
acceptable overhead as DyMonD should be enabled for a short duration.

In contrast to the software instrumentation-based and system monitoring tools, DyMonD
has some limitations. For example, DyMonD will miss the inner communications between
the processes of the same application component that do not go through the network. In such
case, coupling DyMonD with one of the system tracing tools [DD08, sys,ENOP21] listed in
Section 2.5 would be beneficial to provide a deeper insight into the application performance.

134

135

7
Final Conclusions & Future Work

In this chapter, we will briefly recap the research motivation and contributions presented in
this thesis, and outline the possible research directions for future work.

7.1 Conclusions

Many cloud applications follow a distributed service-oriented architecture, where the
execution of an external client request leads to calls to various components, each of them
providing a different service. A basic example is a multi-tier architecture with a web-server
front-end, a Memcached-based caching service, and a MySQL database. But more and
more applications are further divided into smaller components with tens of microservices.
These architectures have further expanded to include replicated and/or distributed services
for scalability and reliability, e.g. a multi-node Cassandra key-value store. The complexity
of these cloud applications demands advanced application monitoring to detect
performance bottlenecks and help troubleshoot faulty applications. In this thesis, we first
reviewed the various monitoring aspects required for such distributed applications,
including system, network and application layer performance metrics. From there, this
thesis focused on the latter one.

7.1 Conclusions

We have identified major features to be provided by application performance
monitoring tools to be able to monitor a distributed application holistically. This includes
providing some component-level performance metrics, such as response time and
throughput, information about the dependency of components during run-time in form of a
call graph as well as identifying the service type provided by each component. To provide
such monitoring functionalities, performance related data collection and analysis are
needed. Common approaches to collect the relevant data are to instrument the application
or the underlying platform to create log messages. An obvious disadvantage is the
application and/or platform dependency. A different approach is to look at the messages
exchanged between components to derive some application specific measures in
non-intrusive manner that can be applied in a wide range of settings. Moreover, new
networking paradigms such as SDN and NFV are exploited in some of these network-based
monitoring approaches to enable dynamic instantiation of the monitoring functionalities.
However, many of these network-based application monitoring approaches do not provide a
holistic application monitoring functionality and/or impose a considerable overhead.

As such, we provided a holistic solution for dynamic application level monitoring, that
overcomes the shortcomings of existing work and enables the application monitoring
functionality to be provided as a service by the cloud infrastructure with acceptable
overhead. Towards this end, we make three important contributions.

Our first contribution is the "sniffer", a switch-based application monitoring approach that
does not introduce any direct delay at the switch, enhances the possibilities of conducting
some of the analysis at the network components and significantly reduces the communication
overhead compared to other network-based monitoring approaches.

To illustrate how the sniffer-based approach can be embedded into a MaaS platform, we
designed and implemented a MaaS prototype with the sniffer as its core component. A user
interface allows clients to initiate monitoring requests which are delegated to the appropriate
switches which in turn extract and analyze the relevant application messages using our
monitoring approach, and send the calculated measures to the client for visualization in near
real-time. In addition, we have designed the MaaS software so that new types of services
and new performance measures can be added to the MaaS in an incremental manner. Our
performance evaluations show that MaaS has a reasonable computational and communication
overheads, as well as a little impact on the monitored application.

The third contribution, DyMonD, provides a dynamic application call graph discovery
framework that dynamically discovers and visualizes dependencies between application
components, providing a global view of the application at run-time along with some
application performance metrics. DyMonD has the same architecture as the MaaS

136

7.2 Future Work

platform, while extending the functionally of the backend monitoring agents to support
DyMonD functionality. In particular, in addition to analyzing the network flows between
the application components to deduce application performance metrics such as response
time and throughput, DyMonD deduces the dependency information between the
application components and identifies the service type of each network flow by analyzing
the network messages exchanged between the application components. Moreover, DyMonD
has the option to use an NLP-based approach to perform a further fine-grained service type
identification by determining more application-specific service types (e.g. "authentication"
or "recommender"), which is particularly useful for microservice-based architectures.

DyMonD employs a novel BiLSTM-based deep learning model (DLM) to dynamically
classify the service type of network flows as well as the flow direction being a client or
server flow. In this prospective, we first performed a through analysis to evaluate the use of
various DLMs and design parameters in the context of service type identification of network
flows. In particular, we generated a large flow-based dataset of several service types and
the performance of LSTM- and CNN-based DLMs as well as the proposed BiLSTM-based
DLMs are compared, while using header-based and payload-based data for training. The
trade-offs and the impact of various parameters on the classification performance are also
investigated. Our results show that header-based approaches do not work well if the captured
flows do not contain the handshake messages at connection setup and when uni-directional
flows are considered, two aspects which are important for DyMonD. Therefore, DyMonD
uses unidirectional payload-based data to train a combined CNN and BiLSTM DLM, i.e.
CNN+BiLSTM, that provides the best classification results for a wide range of service types,
even if encryption is used. Our performance evaluation results confirm that DyMonD can
infer the proper call graph and identify the services at run-time with good accuracy. DyMonD
is lightweight as it requires few resources, and has little communication overhead and impact
on the monitored application compared to competing approaches.

7.2 Future Work

7.2.1 Scalability evaluation

Our MaaS solutions are fully implemented, but additional work is required for using them
to monitor cloud data center traffic at scale. This includes evaluating the multi-agent setup
described in Section 6.3.2 and handling the lack of synchronization among the distributed
agents’ clocks. In addition, it would be interesting to explore how to extend MaaS
performance analysis functions to support an efficient aggregation of monitored data in

137

7.2 Future Work

case the network infrastructure allows for multi-path routing. In this case, the application
network flows’ data might be captured from multiple monitoring agents deployed along
those paths. For example, if the messages of the same network flow are distributed over
multiple network paths, multiple monitoring agents will send information about that flow
to the controller, and the throughput performance metric in the current implementation
would update the value with the latest received one, while a summation of those results
would be the correct calculation for the throughput in that case.

Moreover, the performance and overhead of our monitoring agent should be evaluated
for intensive workloads, for example, when many applications are to be monitored
simultaneously. In this prospective, evaluating the performance of integrating our
monitoring agent with fast packet processing libraries such as [DPD] and XDP [XDP] to
support such high traffic volumes would be also an interesting future direction to explore.

Furthermore, extending our MaaS solutions to services that use different communication
protocols, other than the currently supported request/reply ones, such as the pipeline and
publish/subscribe protocols should be considered.

7.2.2 Monitoring Using a P4-based Switch

Currently, we have the monitoring agent of the MaaS and DyMonD systems deployed as
a software process on the host of the software switch. For hardware switches, one of the
selective mirroring approaches presented in Section 3.1 can be used to forward the relevant
packets to the monitoring agent. An alternative solution is to realize the monitoring agent
functionality using a P4-based switch. As mentioned in Chapter 2, P4 [KCBH21] is a Domain
Specific Language (DSL) that specifies the packet processing pipeline of a network device,
such as a switch or router, designed to be protocol independent and to abstract from the
variability of network hardware and interfaces. A P4 program tends to be concise, and
expresses exactly the processing behaviour of a target (usually network switches). In contrast
to a general purpose programming language such as C or Python, P4 is a unified abstraction
that is optimized around data forwarding, with only basic computation capabilities enabled,
such as arithmetic operations. P4 is receiving high attention in the network management
research community as it enables the dynamic programming of the network at its lowest
level of the forwarding elements. This flexibility of changing the networking behavior is cost
effective and allows for more rapid response to the frequent change requirements in today’s
networks. The network administrators can remove any unused routing logic that is embedded
in the vendor switches and/or change it according to their needs without the necessity of
purchasing new hardware or being only limited by the vendor programming tools.

138

7.2 Future Work

Given the existence of such flexibility in programming the switch internal functions, we
envision that some if not all of the functionality of the sniffer and monitoring agent can
be integrated with any hardware/software switch that is supporting P4. For instance, the
listener and data extractor functions in Figures 3.4 and 6.8 that filter out certain packets
that are relevant to the monitoring request and extract some data to construct individual
flows can be implemented using P4 functions. The performance analyzer function of the
monitoring agent of DyMonD can also be realized as P4 functions. For example, per flow
data can be monitored such as the number of sent bytes and packets in order to deduce
some performance metrics such as throughput. Moreover, the payload data required by the
service identifier module of the DyMonD agent can also be extracted using P4 function. All
the extracted data could then be forwarded to the controller to perform the further analysis.

However, as we mentioned in Chapter 2, P4 performance is not yet well studied.
Therefore, an extensive performance evaluation of such implementation should be
conducted. For example, we already saw that moving the service identification using DLM
from the DyMonD agent to the controller can lead to overhead. Moreover, analysis
functions that require deep packet inspection, such as the request path and methods
provided by the MaaS framework or the fine-grained classification of microservices
performed by the DyMonD agent, would be challenging to be performed using P4 as it
mainly handles fixed-length data. Thus, functionality that requires deep packet inspection
would require mirroring the packet data to a software process to perform the required
analysis. As mentioned in Chapter 2 and 3, having the switch doing more processing
functions on each packet, such as extracting x bytes of the first 100 packets required by the
service identifier module or mirroring the packet data to a remote process, may interfere
with the main switching function and hence lead to switching latency that could also
impact the performance of the monitored application. A comprehensive evaluation of this
approach can reveal such interesting observations and trade-offs.

7.2.3 Spicy Integration

Spicy [SAH] is a network-specific programming language that was developed for dissecting
wire format data and file formats. Given a message sent using a specific communication
protocol, e.g. MySQL, Spicy employs a type-based style that expresses elements at the
semantic level of to dissect the message and transform it into a generic message format. Spicy
has a just-in-time compiler toolchain that creates C++ code for developed Spicy modules,
which in turn, can be integrated with any external tool that parse network packets. For
example, Sommer et. al. [SAH] show a use case of integrating a Spicy module to parse DNS
packet with Wireshark.

139

7.2 Future Work

Similarly, Spicy modules could be developed to replace the MaaS protocol parser API
described in Section 4.3. The integration of those Spicy modules with the MaaS framework
could be as following: At startup, the MaaS agent compiles the user-defined Spicy modules
for each protocol just-in-time. For each received protocol’s packet, the spicy parsing
module is executed, and needed information for performance metrics is returned back to
the agent. However, as far as we are aware of, Spicy’s performance has not yet been
thoroughly evaluated. Therefore, a performance evaluation and comparison of such
integration with the original MaaS parser API is still needed.

7.2.4 Optimization of DyMonD’s Service Identifier Module

The main functionality of the DyMonD’s monitoring agent is implemented in C++ because
of the need for performing monitoring and capturing application data at high speed, while
Python libraries are used to implement the DLM for service identification. Our evaluation
results in Section 6.6 show that most of DyMonD’s execution time at the agent is taken by the
DLM to predict the service type of the flows (around 11 milliseconds per flow). We believe
that is because interpreted languages such as Python are inefficient for computationally
intensive tasks such as the ones executed by the DLM layers.

As future work, we would like to explore more efficient APIs to realize the service
identifier. For instance, TensorFlow not only provides the Python API but also APIs for
other languages such as C, Java, Go, etc. Although the Python API has the most complete
functionality, it is still possible to load and use a pre-trained TensorFlow DLM in other
languages such as C/C++. Another option is using a library that can implement the DLM
layer functions in more efficient language such as C/C++. For example, the Keras2c
library1 performs automatic mapping of each layer in a DLM to C functions. These C
functions can then be compiled into a static library and used by the service identifier
module. However, the accuracy of such mapping and prediction of the converted DLM
needs to be validated.

Furthermore, we plan to extend DyMonD to enable automatic updates to the service
identification module should more services be added over time or the number of "unknown"-
labeled services exceeds a certain limit [ZLWY19,RYCW21].

1Kera2c https://github.com/f0uriest/keras2c

140

 https://github.com/f0uriest/keras2c

7.2 Future Work

7.2.5 Performance Monitoring for Serverless Applications

Serverless (or function as a service (FaaS)) is a cloud computing execution model that allows
developers to build and run applications without having to manage servers. There are
still servers in serverless, but they are abstracted away from application development. The
cloud provider dynamically manages the allocation, provisioning and scaling of the servers.
Serverless applications are broken up into individual functions that can be invoked and
scaled individually. In particular, developers can simply package their code in containers for
deployment. Once deployed, serverless functions are executed on demand and automatically
scale up and down as needed. Serverless functions are usually metered on-demand through
an event-driven execution model. As a result, when a serverless function is sitting idle, it
does not cost anything. The concepts of serverless architecture and FaaS have grown along
with the popularity of containers and on-demand cloud offerings.

Serverless application monitoring allows developers to gain important insight on what
happens during each execution and event, and errors become more easily visible. Example
of performance metrics of interest to be collected for serverless applications’ components (i.e.
functions) are: latency, cold starts (i.e. time required to start a new function instance), and
invocation errors. However, increased complexity, loss of control over software layers, the
large number of participating functions and backend services complicate the task of collecting
such performance metrics for serverless applications. There are a lot of units to monitor, the
life cycles are short, and configuring monitoring agents directly contributes to latency and
cost overhead.

Many of the FaaS platforms, such as AWS Lambda2, provide a variety of performance
metrics, such as system related ones (i.e. disk space, CPU, and network I/O), as well as
large log files. A tedious but widespread strategy is the manual analysis of such log data.
However, finding all mandatory parameters in such large log files is challenging and some
are often missing. Thus, there is a need for an automated monitoring analysis tool.

Another area that is significantly lacking in support at present is distributed monitoring
that enables understanding what is happening for a business request as it is processed by a
number of serverless functions. This kind of monitoring is challenging due to the
heterogeneity and vendor lock-in of the FaaS platform providers. Many of the offered
monitoring approaches are poorly documented, or at least poorly understood by most
users. Therefore, an interesting research direction would be a unified distributed
performance monitoring framework for serveless applications.

2https://aws.amazon.com/lambda/

141

https://aws.amazon.com/lambda/

7.2 Future Work

7.2.6 Employing MaaS in Network-based Solutions for Other
Domains

The flexibility and programmability of today’s networks open new research directions for
implementing some of the traditional application semantics into the network to achieve
better and real-time performance, while having the advantage of implementation and
deployment flexibility independently of the application or platform. For example, there
already exists work to provide application-level load balancing as a network service by
leveraging NFV technology [ZWH16]. In particular, a NFV-based middlebox can be
deployed in the network to automatically redirect packets to appropriate servers and route
the responses from servers directly to clients. Moving such application-level functionalities
to the network should enhance throughput and latency compared to a load balancer that is
completely implemented as an application or platform component. Another example is
building the caching layer into the network providing something like a cache-as-a-service
(CaaS), where the caching service can be added to any application, as well as enhancing
the caching service performance. This can be again achieved by leveraging the power and
flexibility of programmable networks to cache data in the network. For instance, a network
function is implemented in [JLZ+17] to detect, index, store, and serve key-value items.
This leverages the fact that switches are already placed on the data path and have access
to all cache queries through the system. Furthermore, if a ToR switch is employed as the
cache for a key-value storage rack, this would incur little to no overhead in terms of latency
and cost.

The integration of the MaaS functionality into such systems could further enhance its
performance and capability. For instance, collecting performance metrics such as the
frequency of each request and the estimated number of total requests for the in-network
load balancer can be used to periodically adjust the replication factor for popular contents
based on changing workloads on predefined intervals, adding on-demand elasticity for load
balancing services. Similarly, performance metrics such as request rate for each cached
item can help identifying which contents are hot at a particular time optimizing the
in-network caching service.

Finally, our MaaS architecture can also be employed to reduce the cost of real-time
monitoring of data centers. Data center’s monitoring is a broad process that focuses on
monitoring the entire data center infrastructure. This includes providing end-to-end visibility
across all data center components: computers, storage, network, power, heating and security.
As data centers can host over a hundred thousand servers, the potential number of data points
is in the order of hundreds of millions. The communication overhead induced by such real-
time monitoring is huge enough to influence the performance of a data center. One method

142

7.2 Future Work

to reduce this overhead is bringing the computations closer to the source of the data. This
reduces the amount of hops required for the data to reach their destination, and in turn
limits the communication overhead. ToR switches are excellent candidates for that purpose
due to their proximity to the servers that are being monitored. Deploying the monitoring
agents of the MaaS framework at each ToR switch, while extending the monitoring agent
functionality to support the monitoring demands in that context, will reduce the spectrum of
the monitoring data transfer to the range of one rack. In particular, every monitoring agent
would be responsible for processing and analysing the data of their rack only. Therefore,
the monitoring agent would only have to handle the network traffic of a limited amount of
servers. We envision such implementation as an interesting area of future work as well as
conducting a quantitative performance evaluation of the MaaS architecture, compared to
monitoring based on a traditional cloud computing approach.

143

144

Bibliography

[ACA+15] Sara Ayoubi, Yiheng Chen, Chadi Assi, Tarek Khalifa, and Khaled Bashir
Shaban. Multicast tree repair and maintenance in the cloud. In Proceedings
of IEEE International Conference on Cloud Computing, (CLOUD’15), USA,
pages 829–835, 2015.

[ADP+] Pedro Amaral, João Dinis, Paulo Pinto, Luís Bernardo, João Tavares, and
Henrique S. Mamede. Machine learning in software defined networks: Data
collection and traffic classification. In Proceedings of 24th IEEE International
Conference on Network Protocols (ICNP’16), Singapore, 2016, pages 1–5.

[ama] Cloudwatch. https://aws.amazon.com/de/cloudwatch/, [March 2022].

[App] Appdynamics. https://www.appdynamics.com, [March 2022].

[ASRC14] Diego Adrada, Esteban Salazar, Julián Rojas, and Juan Carlos Corrales.
Automatic code instrumentation for converged service monitoring and fault
detection. In Proceedings of 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, pages 708–713, 2014.

[azu] Microsoft azure monitor. https://docs.microsoft.com/en-us/azure/mon
itoring-and-diagnostics/monitoring-overview, [March 2022].

[CAR] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. Supporting fine-grained
network functions through intel DPDK. In Proceedings of Third European
Workshop on Software Defined Networks, (EWSDN’14), Hungary, 2014, pages
1–6.

[Cas] Apache cassandra. https://cassandra.apache.org, [March 2022].

[CBB] Valentín Carela-Español, Tomasz Bujlow, and Pere Barlet-Ros. Is our ground-
truth for traffic classification reliable? In Proceedings of 15th International
Passive and Active Measurement Conference, (PAM’14), USA, 2014, pages
98–108.

https://aws.amazon.com/de/cloudwatch/
https://www.appdynamics.com
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://cassandra.apache.org

Bibliography

[CC16] Jiajia Chen and Weiqing Cheng. Analysis of web traffic based on HTTP
protocol. In Proceedings of 24th International Conference on Software,
Telecommunications and Computer Networks, (SoftCOM’16), Croatia, pages
1–5, 2016.

[CFAI17] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A survey
of runtime monitoring instrumentation techniques. In Proceedings of Second
International Workshop on Pre- and Post-Deployment Verification Techniques,
(PrePost@iFM’17), Torino, Italy, volume 254, pages 15–28, 2017.

[CLKdR16] ChoongHee Cho, JungBok Lee, Eun-Do Kim, and Jeong dong Ryoo. A
sophisticated packet forwarding scheme with deep packet inspection in an
openflow switch. In Proceedings of IEEE International Conference on Software
Networking, (ICSN), South Korea, pages 1–5, 2016.

[CMF+14] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The mystery
machine: End-to-end performance analysis of large-scale internet services. In
Proceedings of 11th USENIX Symposium on Operating Systems Design and
Implementation, (OSDI’14), USA, pages 217–231, 2014.

[CMLX15] Tommy Chin, Xenia Mountrouidou, Xiangyang Li, and Kaiqi Xiong. Selective
packet inspection to detect dos flooding using software defined networking
(SDN). In Proceedings of IEEE 35th International Conference on Distributed
Computing Systems Workshops, (ICDCS) Workshops, USA, pages 95–99,
2015.

[CST+] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of 1st ACM
Symposium on Cloud Computing, (SoCC’10), USA, 2010, pages 143–154.

[CVW+21] Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Aidmar Wainakh, Max
Mühlhäuser, and Simin Nadjm-Tehrani. On generating network traffic datasets
with synthetic attacks for intrusion detection. ACM Transactions on Privacy
and Security, 24(2):8:1–8:39, 2021.

[Dat] Datadog. https://www.datadoghq.com, [March 2022].

[DB2] IBM. https://www.ibm.com/ca-en/products/db2-database, [March 2022].

[dCRCG+16] Guilherme da Cunha Rodrigues, Rodrigo N. Calheiros, Vinicius Tavares
Guimaraes, Glederson Lessa dos Santos, Márcio Barbosa de Carvalho,
Lisandro Zambenedetti Granville, Liane Margarida Rockenbach Tarouco, and
Rajkumar Buyya. Monitoring of cloud computing environments: concepts,

145

https://www.datadoghq.com
https://www.ibm.com/ca-en/products/db2-database

Bibliography

solutions, trends, and future directions. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, Italy, pages 378–383, 2016.

[DD08] M. Desnoyers and M. Dagenais. Lttng: Tracing across execution layers, from
the hypervisor to user-space. In Linux Symposium, page 101, 2008.

[DFC+16] Lautaro Dolberg, Jérôme François, Shihabur Rahman Chowdhury, Reaz
Ahmed, Raouf Boutaba, and Thomas Engel. A generic framework to
support application-level flow management in software-defined networks. In
Proceedings of IEEE NetSoft Conference and Workshops, (NetSoft’16), South
Korea, pages 121–125, 2016.

[DLMG] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. Characterization of encrypted and VPN traffic
using time-related features. In Proceedings of International Conference on
Information Systems Security and Privacy, (ICISSP’16), Italy, 2016, pages
407–414.

[DP11] Vladimir Deart and Alexander Pilugin. HTTP traffic model for web2.0 and
future webx.0. International Journal of Wireless Networks and Broadband
Technologies, 1(1):50–55, 2011.

[DPD] Data plane development kit (DPDK). http://www.dpdk.org, [March 2022].

[Dyn] Dynatrace. https://dynatrace.status.io, [March 2022].

[EFK21] Mona Elsaadawy, Laetitia Fesselier, and Bettina Kemme. Demo: Application
monitoring as a network service. In Proceedings of 41st IEEE International
Conference on Distributed Computing Systems, (ICDCS’21), USA,, pages
1091–1094, 2021.

[Els19] Mona Elsaadawy. Monitoring as a service for SDN based cloud data centers.
In Proceedings of the 20th International Middleware Conference Doctoral
Symposium, (Middleware’19), USA, pages 36–40, 2019.

[ELW+21] Mona Elsaadawy, Aaron Lohner, Ruoyu Wang, Jifeng Wang, and Bettina
Kemme. Dymond: dynamic application monitoring and service detection
framework. In Proceedings of the 22nd International Middleware Conference:
Demos and Posters, (Middleware’21), Virtual Event / Canada, pages 8–9,
2021.

[ENOP21] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. CAT: content-
aware tracing and analysis for distributed systems. In Middleware ’21: 22nd

146

http://www.dpdk.org
https://dynatrace.status.io

Bibliography

International Middleware Conference, Québec City, Canada, December 6 - 10,
2021, pages 223–235, 2021.

[ERP+21] Ismael Essop, José Carlos Ribeiro, Maria Papaioannou, Georgios Zachos,
Georgios Mantas, and Jonathan Rodriguez. Generating datasets for anomaly-
based intrusion detection systems in iot and industrial iot networks. Sensors,
21(4):1528, 2021.

[ERR18] Silvia Esparrachiari, Tanya Reilly, and Ashleigh Rentz. Tracking and
controlling microservice dependencies. ACM Queue, 16(4):98–104, 2018.

[ESEFAM21] Ahmed M. El-Shamy, Nawal A. El-Fishawy, Gamal Attiya, and Mokhtar A. A.
Mohamed. Anomaly detection and bottleneck identification of the distributed
application in cloud data center using software–defined networking. Egyptian
Informatics Journal, 22(4):417–432, 2021.

[ESn16] ESnet. iperf - the ultimate speed test tool for tcp, udp and sctp, 2016.

[FDN14] Hamid Farhadi, Ping Du, and Akihiro Nakao. User-defined actions for SDN.
In Proceedings of International Conference of Future Internet 2014, (CFI’14),
Japan, pages 3:1–3:6, 2014.

[FEAD] Quentin Fournier, Naser Ezzati-Jivan, Daniel Aloise, and Michel R. Dagenais.
Automatic cause detection of performance problems in web applications.
In Proceedings of IEEE International Symposium on Software Reliability
Engineering Workshops, (ISSRE’19), Berlin, Germany, 2019.

[Fes] Laetitia Fesselier. Application monitoring as a network service. McGill
COMP400 report: https://www.cs.mcgill.ca/~lfesse/doc/Applica
tion%20Monitoring%20As%20A%20Network%20Service-v2.pdf, [May-2019].

[FLH+00] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic
routing encapsulation (GRE). RFC, 2784:1–9, 2000.

[FRR+14] Michael Finsterbusch, Chris Richter, Eduardo Rocha, Jean-Alexander Muller,
and Klaus Hanssgen. A survey of payload-based traffic classification
approaches. IEEE Communications Surveys & Tutorials, 16(2):1135–1156,
2014.

[GAM15] Brian R. Granby, Bob Askwith, and Angelos K. Marnerides. SDN-PANDA:
software-defined network platform for anomaly detection applications. In
Proceedings of 23rd IEEE International Conference on Network Protocols,
(ICNP’15), USA, pages 463–466, 2015.

147

https://www.cs.mcgill.ca/~lfesse/doc/Application%20Monitoring%20As%20A%20Network%20Service-v2.pdf
https://www.cs.mcgill.ca/~lfesse/doc/Application%20Monitoring%20As%20A%20Network%20Service-v2.pdf

Bibliography

[GEJD21] Loïc Gelle, Naser Ezzati-Jivan, and Michel R. Dagenais. Combining
distributed and kernel tracing for performance analysis of cloud applications.
Electronics, 10(21), 2021.

[GFS05] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional
LSTM networks for improved phoneme classification and recognition. In
International Conference on Artificial Neural Networks, ICANN’05, pages
799–804. Springer, 2005.

[GKK+19] Sahil Garg, Kuljeet Kaur, Neeraj Kumar, Georges Kaddoum, Albert Y.
Zomaya, and Rajiv Ranjan. A hybrid deep learning-based model for anomaly
detection in cloud datacenter networks. IEEE Transactions on Network and
Service Management, 16(3):924–935, 2019.

[Goo19] Google. Stackdriver monitoring for applications running on google cloud
platform and amazon web services., 2019.

[Goo22] Google. Google cloud’s operations suite, Last accessed: March 2022.

[GS20] Marcello Guarro and Ricardo G. Sanfelice. Hyntp: An adaptive hybrid network
time protocol for clock synchronization in heterogeneous distributed systems.
In 2020 American Control Conference, ACC 2020, Denver, CO, USA, July
1-3, 2020, pages 1025–1030, 2020.

[Ham14] Hamid Farhadi and Ping Du and Akihiro Nakao. Enhancing openflow actions
to offload packet-in processing. In Proceedings of the 16th Asia-Pacific Network
Operations and Management Symposium, (APNOMS’14), Taiwan, pages 1–6,
2014.

[HBHH] Jonatan Heyman, Carl Byström, Joakim Hamrén, and Hugo Heyman. Locust:
An open source load testing tool.

[HLZ+] J. Hwang, G. Liu, S. Zeng, F. Y. Wu, and T. Wood. Topology discovery
and service classification for distributed-aware clouds. In Proceedings of IEEE
International Conference on Cloud Engineering, USA, 2014, pages 385–390.

[HRW15] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High
performance and flexible networking using virtualization on commodity
platforms. IEEE Transactions on Network and Service Management, 12(1):34–
47, 2015.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

148

Bibliography

[HSG+] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang. Net-cohort: detecting
and managing VM ensembles in virtualized data centers. In Proceedings of 9th
International Conference on Autonomic Computing, (ICAC’12), USA, 2012,
pages 3–12.

[HvH20] Wilhelm Hasselbring and André van Hoorn. Kieker: A monitoring framework
for software engineering research. Software Impacts, 5:5, 2020.

[J. 17] J. Thalheim et al. Sieve: actionable insights from monitored metrics in
distributed systems. In Proceedings of 18th ACM/IFIP/USENIX Middleware
Conference, USA, pages 14–27, 2017.

[Jae] Jaeger. https://www.jaegertracing.io/, [Feb. 2022].

[JG17] Ravi Shankar Jha and Punit Gupta. Clock synchronization in iot network
using cloud computing. Wirel. Pers. Commun., 97(4):6469–6481, 2017.

[JKW17] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Performance
monitoring and root cause analysis for cloud-hosted web applications. In
Proceedings of the 26th International Conference on World Wide Web,
(WWW’17), Australia, pages 469–478, 2017.

[JLZ+17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value
stores with fast in-network caching. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages
121–136. ACM, 2017.

[JMD14] Yosr Jarraya, Taous Madi, and Mourad Debbabi. A survey and a layered
taxonomy of software-defined networking. IEEE Communications Surveys and
Tutorials, 16(4):1955–1980, 2014.

[KAB+14] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram,
Ethan J. Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li, Amar
Padmanabhan, Justin Pettit, Ben Pfff, Rajiv Ramanathan, Scott Shenker,
Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander
Yip, and Ronghua Zhang. Network virtualization in multi-tenant datacenters.
In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation, (NSDI’14), Seattle, WA, USA, pages 203–216, 2014.

[KCBH21] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications, challenges,
and future trends. IEEE Access, 9:87094–87155, 2021.

149

https://www.jaegertracing.io/

Bibliography

[KRV+15] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, 103(1), 2015.

[KSK21] Ouassim Karrakchou, Nancy Samaan, and Ahmed Karmouch. Ep4: An
application-aware network architecture with a customizable data plane. In
Proceedings of IEEE 22nd International Conference on High Performance
Switching and Routing, (HPSR), pages 1–6, 2021.

[Lam14] M. Lamourine. Openstack. login Usenix Mag., 39(3), 2014.

[Lin19] Linux. Linux programmer’s manual: Bpf, 2019.

[LKC+16] F. Li, A. M. Kakhki, D. R. Choffnes, P. Gill, and A. Mislove. Classifiers
unclassified: An efficient approach to revealing IP traffic classification rules.
In Proceedings of ACM on Internet Measurement Conference, (IMC’16), USA,
pages 239–245, 2016.

[LKH+] Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun
Hong, and Youn-Hee Han. Packet-based network traffic classification using
deep learning. In Proceedings of International Conference on Artificial
Intelligence in Information and Communication, (ICAIIC’19), Japan, 2019,
pages 46–51.

[LKK+19] Hyun-Kyo Lim, Ju-Bong Kim, Kwihoon Kim, Yong-Geun Hong, and Youn-
Hee Han. Payload-based traffic classification using multi-layer lstm in software
defined networks. Applied Sciences, 9(12):16, 2019.

[LLL+12] George Lee, Jimmy J. Lin, Chuang Liu, Andrew Lorek, and Dmitriy V.
Ryaboy. The unified logging infrastructure for data analytics at twitter.
PVLDB, 5(12):1771–1780, 2012.

[Llo] I. Llorente. Opennebula - latest innovations in private cloud computing. In
Proceedings of 4th International Conference on Cloud Comp. & Serv. Sci.,
Spain, 2014.

[LTRW] Guyue Liu, Michael Trotter, Yuxin Ren, and Timothy Wood. Netalytics:
Cloud-scale application performance monitoring with SDN and NFV. In
Proceedings of 17th International Middleware Conference, Italy, 2016, pages
1–14.

150

Bibliography

[LTW+17] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura.
Sparkbench: a spark benchmarking suite characterizing large-scale in-memory
data analytics. Cluster Computing, 20(3):2575–2589, 2017.

[LW15] G. Liu and T. Wood. Cloud-scale application performance monitoring with
SDN and NFV. In IEEE International Conference on Cloud Engineering,
(IC2E’15), USA, pages 440–445, 2015.

[MAB+08] Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M. Parulkar,
Larry L. Peterson, Jennifer Rexford, Scott Shenker, and Jonathan S.
Turner. Openflow: enabling innovation in campus networks. Computer
Communication Review, 38(2):69–74, 2008.

[MAR+14] João Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Andrei Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art
of network function virtualization. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation, (NSDI’14),
USA, pages 459–473, 2014.

[MCSL17] Manuel López Martín, Belén Carro, Antonio Sánchez-Esguevillas, and Jaime
Lloret. Network traffic classifier with convolutional and recurrent neural
networks for internet of things. IEEE Access, 5:18042–18050, 2017.

[MDD+14] Mallik Mahalingam, Dinesh G. Dutt, Kenneth Duda, Puneet Agarwal,
Lawrence Kreeger, T. Sridhar, Mike Bursell, and Chris Wright. Virtual
extensible local area network (VXLAN): A framework for overlaying
virtualized layer 2 networks over layer 3 networks. RFC, 7348:1–22, 2014.

[Mem] Memcached. https://memcached.org, [March 2022].

[MFP+22] Francesco Musumeci, Ali Can Fidanci, Francesco Paolucci, Filippo Cugini,
and Massimo Tornatore. Machine-learning-enabled ddos attacks detection in
P4 programmable networks. Journal of Network and Systems Management,
30(1):21, 2022.

[MHM+14] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and T. V.
Lakshman. Application-aware data plane processing in SDN. In Proceedings
of the 3rd Workshop on Hot Topics in Software Defined Networking,
(HotSDN’14), USA, pages 13–18, 2014.

[MKK17] Mehrnoosh Monshizadeh, Vikramajeet Khatri, and Raimo Kantola. An
adaptive detection and prevention architecture for unsafe traffic in SDN
enabled mobile networks. In Proceedings of IFIP/IEEE Symposium on

151

https://memcached.org

Bibliography

Integrated Network and Service Management (IM), Portugal, pages 883–884,
2017.

[MN15] Ibrahim Ben Mustafa and Tamer Nadeem. Dynamic traffic shaping technique
for HTTP adaptive video streaming using software defined networks. In
Proceedings of 12th Annual IEEE International Conference on Sensing,
Communication, and Networking, (SECON’15), USA, pages 178–180, 2015.

[Mon] Monetdb. https://www.monetdb.org, [March 2022].

[MSG+16] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, and Raouf Boutaba. Network function virtualization: State-of-the-
art and research challenges. IEEE Communications Surveys and Tutorials,
18(1):236–262, 2016.

[MyS] Mysql. https://www.mysql.com/, [March 2022].

[Net] Building netflix’s distributed tracing infrastructure. https://netflixtechb
log.com/building-netflixs-distributed-tracing-infrastructure-b
b856c319304, [March 2022].

[Net12] Toward developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers Security, 31(3):357–374, 2012.

[New] Newrelic. https://newrelic.com/, [March 2022].

[NLT] Natural language toolkit. https://www.nltk.org, [March 2022].

[Ope] openQRM. http://www.openqrm-enterprise.com, [Sept-2021].

[Ovi] ovirt. https://www.ovirt.org, [March 2022].

[PHW11] Byungchul Park, James W. Hong, and Young J. Won. Toward fine-grained
traffic classification. IEEE Communications Magazine, 49(7):104–111, 2011.

[Pos] Postgresql. https://www.postgresql.org/about/, [March 2022].

[PPN+20] Yashwant Singh Patel, Aditi Page, Manvi Nagdev, Anurag Choubey, Rajiv
Misra, and Sajal K. Das. On demand clock synchronization for live VM
migration in distributed cloud data centers. J. Parallel Distributed Comput.,
138:15–31, 2020.

152

https://www.monetdb.org
https://www.mysql.com/
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://newrelic.com/
https://www.nltk.org
http://www.openqrm-enterprise.com
https://www.ovirt.org
https://www.postgresql.org/about/

Bibliography

[PSkJ17] M. R. Parsaei, M. J. Sobouti, S. R. khayami, and R. Javidan. Network
traffic classification using machine learning techniques over software defined
networks. International Journal of Advanced Computer Science and
Applications, (IJACSA), 8(7), 2017.

[ptr] ptrace. https://man7.org/linux/man-pages/man2/ptrace.2.html, [June.
2022].

[Red] Redis. https://redis.io, [March 2022].

[Riz12] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In Proceedings
of USENIX Annual Technical Conference, USA, pages 101–112, 2012.

[RKL20] Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. Large-scale mobile app
identification using deep learning. IEEE Access, 8:348–362, 2020.

[RYCW21] Wei Rang, Donglin Yang, Dazhao Cheng, and Yu Wang. Data life aware model
updating strategy for stream-based online deep learning. IEEE Transactions
on Parallel Distributed Systems, 32(10):2571–2581, 2021.

[SAH] R. Sommer, J. Amann, and S. Hall. Spicy: a unified deep packet inspection
framework for safely dissecting all your data. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, (ACSAC’16), USA,
2016, pages 558–569.

[SAR14] M. Omair Shafiq, Reda Alhajj, and Jon G. Rokne. Handling incomplete
data using semantic logging based social network analysis hexagon for
effective application monitoring and management. In 2014 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM’14, China, pages 634–641, 2014.

[SBB+] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper,
a large-scale distributed systems tracing infrastructure. Technical report,
Google, Inc. https://research.google.com/archive/papers/dapper-
2010-1.pdf, [March 2022].

[SBS] Liran Sidki, Yehuda Ben-Shimol, and Akiva Sadovski. Fault tolerant
mechanisms for SDN controllers. In Proceedings of IEEE Conference on
Network Function Virtualization and Software Defined Networks, (NFV-SDN),
USA, 2016, pages 173–178.

153

https://man7.org/linux/man-pages/man2/ptrace.2.html
https://redis.io
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

Bibliography

[SBZ+] Mona El Saadawy, Petar Basta, Yunjia Zheng, Bettina Kemme, and Mohamed
Younis. Flow-based service type identification using deep learning. In
Proceedings of IEEE International Conference on Network Softwarization,
(Netsoft’21), Japan, 2021.

[SCP14] JaeSeung Song, Cristian Cadar, and Peter R. Pietzuch. Symbexnet: Testing
network protocol implementations with symbolic execution and rule-based
specifications. IEEE Transactions on Software Engineering, 40(7):695–709,
2014.

[SDGK21] Sogand SadrHaghighi, Mahdi Dolati, Majid Ghaderi, and Ahmad Khonsari.
Softtap: A software-defined TAP via switch-based traffic mirroring. In
Proceedings of 7th IEEE International Conference on Network Softwarization,
(NetSoft’21), Japan, pages 303–311, 2021.

[Sin] H Singh. Performance analysis of unsupervised machine learning techniques
for network traffic classification. In Proceedings of International Conference
on Advanced Computing & Communication Technologies, USA, 2015, pages
401–404.

[SKY] Mona El Saadawy, Bettina Kemme, and Mohamed Younis. Enabling efficient
application monitoring in cloud data centers using SDN. In Proceedings of
IEEE International Conference on Communications, (ICC’20), Ireland, 2020,
pages 1–6.

[SMX+15] Meral Shirazipour, Heikki Mahkonen, Ming Xia, Ravi Manghirmalani, Attila
Takács, and Veronica Sanchez Vega. A monitoring framework at layer4-7
granularity using network service headers. In Proceedings of IEEE Conference
on Network Function Virtualization and Software Defined Networks, (NFV-
SDN’15), USA, pages 54–60, 2015.

[Sol] Solarwinds. https://www.solarwinds.com, [March 2022].

[Spa] Apache spark. https://cassandra.apache.org, [March 2022].

[sys] Sysdig. http://www.sysdig.org, [March 2022].

[SYW16] Muhammad Shafiq, Xiangzhan Yu, and Dawei Wang. Network traffic
classification techniques and comparative analysis using machine learning
algorithms. In Proceedings of 2nd IEEE International Conference on Computer
and Communications, (ICCC), pages 2451–2455, 2016.

154

https://www.solarwinds.com
https://cassandra.apache.org
http://www.sysdig.org

Bibliography

[SYWK22] M. El Saadawy, M. Younis, J. Wang, and B. Kemme. Dynamic application
call graph formation and service identification in cloud data centers. IEEE
Transactions on Network and Service Management, 2022.

[SZL+12] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia.
Precise, scalable, and online request tracing for multitier services of black
boxes. IEEE Transactions on Parallel and Distributed Systems, 23(6):1159–
1167, 2012.

[TGB18] Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis.
Bootstrapping the out-of-sample predictions for efficient and accurate cross-
validation. Machine Learning, 107(12):1895–1922, 2018.

[TP12] Arit Thammano and Patcharawadee Poolsamran. SMBO: A self-organizing
model of marriage in honey-bee optimization. Expert Systems with
Applications, 39(5):5576–5583, 2012.

[Tsh] Tshark. www.wireshark.org/docs/man-pages/tshark.html, [March 2022].

[vADK14] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon: Network
monitoring in openflow software-defined networks. In Proceedings of IEEE
Network Operations and Management Symposium, (NOMS’14) , Poland, pages
1–8, 2014.

[vK] Jóakim v. Kistowski. Http load generator for variable load intensities. https:
//github.com/joakimkistowski/HTTP-Load-Generator, [Sept-2021].

[vKES+19] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer,
Johannes Grohmann, and Samuel Kounev. Teastore: A micro-service reference
application for benchmarking, modeling and resource management research. In
Proceedings of Software Engineering and Software Management, SE/SWM’19,
Germany, pages 99–100, 2019.

[Weaa] Weaveworks. Introducing weave scope. https://www.weave.works/docs/s
cope/latest/introducing/, [March 2022].

[Weab] Weaveworks. Sock shop: A microservices demo application. https://micros
ervices-demo.github.io, [March 2022].

[WEB] Webvowl. http://vowl.visualdataweb.org/webvowl.html, [March 2022].

[WEG] Coburn Watson, Scott Emmons, and Brendan Gregg. A microscope on
microservices. https://netflixtechblog.com/a-microscope-on-micr
oservices-923b906103f4, [March 2022].

155

www.wireshark.org/docs/man-pages/tshark.html
https://github.com/joakimkistowski/HTTP-Load-Generator
https://github.com/joakimkistowski/HTTP-Load-Generator
https://www.weave.works/docs/scope/latest/introducing/
https://www.weave.works/docs/scope/latest/introducing/
https://microservices-demo.github.io
https://microservices-demo.github.io
http://vowl.visualdataweb.org/webvowl.html
https://netflixtechblog.com/a-microscope-on-microservices-923b906103f4
https://netflixtechblog.com/a-microscope-on-microservices-923b906103f4

Bibliography

[WGH+15] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen. UMON: flexible
and fine grained traffic monitoring in open vSwitch. In Proceedings of 11th
ACM Conference on Emerging Networking Experiments and Technologies,
(CoNEXT’15), Germany, pages 15:1–15:7, 2015.

[WYKH15] Q. Wang, A. Yahyavi, B. Kemme, and W. He. I know what you did on your
smartphone: Inferring app usage over encrypted data traffic. In Proceedings
of IEEE Conference on Communications and Network Security, (CNS), 2015.

[WZXG20] Tao Wang, Wenbo Zhang, Jiwei Xu, and Zeyu Gu. Workflow-aware automatic
fault diagnosis for microservice-based applications with statistics. IEEE
Transactions on Network and Service Management, 17(4):2350–2363, 2020.

[WZZ+17] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang
Sheng. Malware traffic classification using convolutional neural network
for representation learning. In Proceedings of International Conference on
Information Networking, (ICOIN’17), Vietnam, pages 712–717, 2017.

[XDP] Xdp. https://developers.redhat.com/blog/2021/04/01/get-started-
with-xdp, [June 2022].

[Zip] Openzipkin. https://zipkin.io, [March 2022].

[ZJYP21] Jingjing Zhao, Xuyang Jing, Zheng Yan, and Witold Pedrycz. Network traffic
classification for data fusion: A survey. Information Fusion, 72:22–47, 2021.

[ZKC+15] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert G. Greenberg, Guohan Lu, Ratul
Mahajan, David A. Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and
Haitao Zheng. Packet-level telemetry in large datacenter networks. Computer
Communication Review, 45(5):479–491, 2015.

[ZLWY19] Jielun Zhang, Fuhao Li, Hongyu Wu, and Feng Ye. Autonomous model update
scheme for deep learning based network traffic classifiers. In IEEE Global
Communications Conference, (GLOBECOM), pages 1–6, 2019.

[ZWG+18] Zili Zha, An Wang, Yang Guo, Doug Montgomery, and Songqing Chen.
Instrumenting open vSwitch with monitoring capabilities: Designs and
challenges. In Proceedings of the Symposium on SDN Research, (SOSR’18),
Los Angeles, USA, pages 16:1–16:7, 2018.

[ZWH16] Wei Zhang, Timothy Wood, and Jinho Hwang. Netkv: Scalable, self-
managing, load balancing as a network function. In Proceedings of IEEE
International Conference on Autonomic Computing, (ICAC’16), Germany,
pages 5–14, 2016.

156

https://developers.redhat.com/blog/2021/04/01/get-started-with-xdp
https://developers.redhat.com/blog/2021/04/01/get-started-with-xdp
https://zipkin.io

Bibliography

[ZXW+13] Jun Zhang, Yang Xiang, Yu Wang, Wanlei Zhou, Yong Xiang, and Yong Guan.
Network traffic classification using correlation information. IEEE Transactions
on Parallel Distributed Systems, 24(1):104–117, 2013.

[ZZZ+] X. Zhang, Y. Zhang, X. Zhao, G. Huang, and Q. Lin. Smartrelationship: a
VM relationship detection framework for cloud management. In Proceedings
of 6th Asia-Pacific Symposium on Internetware, China, 2014, pages 72–75.

157

158

Acronyms
API Application Programming Interface
CPU Central Processing Unit
DB Database
DLM Deep Learning Model
DPDK Data Plane Development Kit
DSL Domain-specific Language
GRE Generic Routing Encapsulation
HTTP HyperText Transfer Protocol
IP Internet Protocol
JSP Java Server Pages
JVM Java Virtual Machine
MAC Media Access Control
ML Machine Learning
NFV Network Function Virtualization
NLP Natural Language Processing
OVS Open vSwitch
P4 Programming Protocol-independent Packet Processors
PCAP Packet CAPture
QoS Quality of Service
SDN Software Defined Networking
SLA Service Level Agreement
TCP Transmission Control Protocol
ToR Top of Rack
UDP User Datagram Protocol
UI User Interface
URL Uniform Resource Locator
VM Virtual Machine
VXLAN Virtual Extensible Local Area Network
YCSB Yahoo! Cloud Serving Benchmark

	Introduction
	Motivation
	Thesis Contributions
	Publications
	Thesis Organization

	Background and Related Work
	Networking Paradigms
	SDN
	NFV

	Cloud Architecture
	Performance Monitoring in the Cloud
	Network Monitoring
	Application Monitoring
	Software Instrumentation-based Application Monitoring
	Network-based Application Monitoring

	Network-based Service Identification
	Rule-based NTCs
	Traditional Machine Learning based NTCs
	Deep Learning-based NTCs

	Application Monitoring as a Network Service
	Collecting Application Monitoring Data via Port Mirroring
	Port Mirroring Principles
	Using Mirroring Techniques for Application Monitoring

	Sniffer
	Design

	Evaluation
	Application Latency
	Computational Overhead
	Switch Overhead
	Communication Overhead

	Summary

	Monitoring as a Service (MaaS)
	Overall Architecture
	Performance Metrics
	Extensibility
	Integrating New Communication Protocol Parsers
	Integrating New Performance Metrics

	Evaluation
	Application Latency
	Computational Overhead
	Communication Overhead

	Summary

	Flow-based service type Identification using Deep Learning
	The Principles of Using Deep Learning for NTCs
	Data Generation and Service Types
	Dataset Preprocessing
	Header- and Payload-based data extraction
	General Design Parameters
	Final Flow-based Datasets

	Deep Learning Models
	Experimental Evaluation
	Model Training and Validation
	Performance Metrics
	Performance Comparison of the Different DLMs
	The Impact of the Packet Position in the Flow
	Performance on a Per-service Basis
	Secured Payloads

	Summary

	Dynamic Application Call Graph Formation and Service Identification Platform
	DyMonD Overview
	Sample Application Call Graphs
	Design

	DyMonD Agent
	Flow Detector
	Packet Capture
	Service Identifier
	Performance Analyzer

	DyMonD Controller
	Controller with a Single Agent Configuration
	DyMonD in a Multi-agent Settings
	Other Practicality Considerations

	Visualization Frontend
	Dynamic Service Identification
	Training CNN+BiLSTM DLM for DyMonD
	Service Identification for HTTP-based Microservices

	Evaluation
	Service Identification Evaluation
	Validating Call Graph Accuracy
	DyMonD Overhead
	Analysis Complexity
	Use-Cases

	Summary

	Final Conclusions & Future Work
	Conclusions
	Future Work
	Scalability evaluation
	Monitoring Using a P4-based Switch
	Spicy Integration
	Optimization of DyMonD's Service Identifier Module
	Performance Monitoring for Serverless Applications
	Employing MaaS in Network-based Solutions for Other Domains

	Bibliography
	Acronyms

