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Abstract

Localized Surface Plasmon Resonance (LSPR) sensors have attracted substantial interest in

various applications due to their plasmonic properties, low cost instrumentation, and small

sample requirement. LSPR is a photon–driven oscillation of the conduction electrons in

metallic nanostructures. It features a short electromagnetic (EM) decay length, increasing

the specificity to the bound analytes and reducing artefacts due to the variations in bulk

refractive index (RI). However, the short EM decay length degrades the signal to noise

ratio (SNR) of LSPR sensors, thereby reducing the accuracy of the results. To improve the

SNR and accuracy of LSPR sensors, this thesis introduces new signal processing methods,

including the projection method, the linear maximum likelihood estimation (linear–MLE)

and the nonlinear–MLE method. These methods are validated numerically and applied to

label free sensing experiments.

A numerical study is undertaken in the first part of the thesis to investigate the plasmonic

properties of various nanostructures. The cost–effective side–wall lithography method is

adopted here to fabricate the nanostructures, yielding reproducible resonance curves with

negligible deviations in their resonance wavelengths (2–5 %). The projection method is

shown to improve the SNR for nanostructures with broad resonance curves. It provides

a direct measurement of the refractive index, and improves the SNR by a factor of 10

when compared to the dip-finding method. Compared to other advanced signal processing

methods, the projection method achieves the best combination of SNR and limit of detection.

The linear–MLE method is proposed to improve the established linear response model
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used in self–referenced sensors. Based on streptavidin-biotin binding experiments, the linear–

MLE method improves the accuracy and precision by a factor of 4 when compared to the

linear response model. This method can serve as a powerful means to distinguish surface

binding events from the bulk RI change.

Finally, the thesis presents the nonlinear–MLE method. This method employs the MLE

technique alongside a nonlinear response model to obtain accurate quantitative results of

binding events. Compared to the established linear response model, the nonlinear–MLE

method improves the precision of the estimated adlayer thickness and bulk RI change by

factors of 5 and 36, respectively.



Abrégé

Les capteurs à résonance plasmonique de surface localisée (LSPR) ont suscité un intérêt

important pour diverses applications en raison de leurs propriétés plasmoniques, de leur

instrumentation à faible coût et de leur besoin minime en volume d’échantillon. Le LSPR est

une oscillation par impulsion photonique des électrons de conduction dans les nanostructures

métalliques. Il comporte une courte longueur de décroissance électromagnétique, augmentant

la spécificité aux analytes liés et réduisant les artéfacts en raison des variations de l’indice

de réfraction du tampon. Cependant, la courte longueur de décroissance électromagnétique

dégrade le ratio du bruit sur le signal (SNR) des capteurs LSPR, réduisant ainsi la précision

des résultats. Pour améliorer le SNR et l’exactitude des capteurs LSPR, cette thèse présente

de nouvelles méthodes de traitement du signal, comprenant la méthode de projection, la

méthode d’estimation linéaire de vraisemblance maximum (linéaire–MLE) et la méthode

non-linéaire–MLE. Ces méthodes sont validées numériquement et appliquées aux expériences

de détection sans étiquettes.

Une étude numérique est entreprise dans la première partie de la thèse pour enquêter

les propriétés plasmoniques de diverses nanostructures. La méthode de lithographie à paroi

latérale rentable est adoptée ici pour fabriquer les nanostructures, ce qui donne des courbes

de résonance reproductibles avec des écarts négligeables dans leurs longueurs d’onde de

résonance (de 2 à 5 %). Il est démontré que la méthode de projection offre une mesure directe

de l’indice de réfraction, et améliore le SNR d’un facteur de 10 comparé à la méthode de

détection de minimum. Par rapport à d’autres méthodes de traitement de signaux avancées,
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la méthode de projection atteint la meilleure combinaison de SNR et de limite de détection.

La méthode linéaire–MLE est proposée pour améliorer le modèle de réponse linéaire utilisé

pour les capteurs d’autoréférence. Sur la base des expériences de liaison streptavidine-biotine,

la méthode linéaire–MLE améliore l’exactitude et la précision d’un facteur de 4 lorsque

comparé au modèle de réponse linéaire. La méthode peut servir d’un moyen puissant pour

distinguer les événements de liaison de variations dues à l’indice de réfraction de la solution

tampon.

Finalement, la thèse présente la méthode non-linéaire–MLE. Cette méthode utilise le

technique MLE avec un modèle de réponse non-linéaire pour obtenir des résultats quantitatifs

précis des événements de liaison. Par rapport au modèle de réponse linéaire établi , la

méthode non-linéaire–MLE améliore la précision des estimations de l’épaisseur de la couche

d’adsorbat d’un facteur de 5 et l’indice de réfraction de la solution tampon d’un facteur de

36.
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Thank you Sandrine Filion Côté and Mohamed Najih for discussing the projection

method, and helping with the French translation of the thesis abstract. To Minh Tran,

Chen Shen and Margaret Burns, thank you for the great time we had working together on

LSPR sensing and the arduino micro-controller during your undergraduate projects. I thank

all my former and present colleagues at McGill: Amin, Amir, Andra, Graham, Imran, Matt,

Mehrnoosh, Phil, Rania, Roy, Samira, Sara, Songzhe, and Venkat.

I would like to thank Professor David Juncker for discussing the integration of microfluidic

channels with LSPR sensing bio-chips, and providing access to the fabrication facilities. I

sincerely thank Ayo Olanrewaju for the help with the PDMS replica moulding method. I

also thank Pammy, Grant, Milad and Phillipe for their help.

I also acknowledge CMC Microsystems for the provision of COMSOL Multiphysics and

OptiFDTD design tools.

My deepest gratitude goes to my mother and my wife for their prayers and support

throughout my PhD. studies.

Dedicated to the memory of my father,

to my mother, my wife and children

Ahmed Abumazwed

April 2017

vi



Contents

Abstract i

Abrégé iii

Acknowledgements v

List of Figures xi

List of Tables xxiii

Abbreviations xxv

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Collaboration and author contributions . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical background and concepts 9

2.1 Comparison between propagating and localized surface plasmon resonances . 9

2.2 Permittivity of gold and silver . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Methods for light scattering calculation . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Mie theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.3.2 Discrete Dipole Approximation (DDA) . . . . . . . . . . . . . . . . . 23

2.3.3 Finite Element (FEM) and Finite Difference Time Domain (FDTD)

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Spectroscopy techniques for LSPR measurement . . . . . . . . . . . . . . . . 26

2.4.1 Bright and Dark field Microscopy . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Reflection measurement . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Direct transmission of light . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Sensor performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Figure of Merit (FoM) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Signal to Noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.4 Refractive index resolution and Limit of Detection(LoD) . . . . . . . 34

2.6 Previously demonstrated nanostructures and LSPR sensors . . . . . . . . . . 37

2.7 Established data extraction methods . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Self–referenced SPR and LSPR sensing . . . . . . . . . . . . . . . . . . . . . 42

2.8.1 Nanorod structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.2 U-shaped nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.3 Self-referenced sensor based on plasmon waveguide resonance biosensor 44

2.9 Kinetics analysis for binding events . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Numerical and experimental study of the fabricated structures 47

3.1 Validation of FEM and FDTD models based on Mie theory . . . . . . . . . . 48

3.2 Gold nanotube structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Multiple-resonance nanostructures . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Nanocrescent structures . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Nanorods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Projection Method for Improving Signal to

viii



Noise Ratio of Localized Surface Plasmon Resonance Biosensing 70

4.1 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Comparison to established methods . . . . . . . . . . . . . . . . . . . 75

4.3.2 Bulk RI and surface binding sensing results . . . . . . . . . . . . . . 77

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Linear Maximum Likelihood Estimation
Method for Improving Self–referenced Biosensing 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Concept of self referencing based on multiple resonances . . . . . . . . . . . 90

5.3 Concept of the Maximum likelihood estimation method . . . . . . . . . . . . 90

5.4 Corrected sensitivity matrices for the linear response model . . . . . . . . . . 93

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Measured results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Nonlinear–MLE method for estimating adlayer
thickness and change in bulk refractive index 108

6.1 Nonlinear model for sensor response . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.2 Simulated results and validation of the estimation method . . . . . . 114

6.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusion 125

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Future work and potential improvements . . . . . . . . . . . . . . . . . . . . 127

Appendices 130

ix



A Derivation of the integral form of the binding kinetics 131

B Side-wall lithography fabrication method 134

C Fabrication of Nanocrescent structures 136

D Fluidic channel fabrication using PDMS-replica moulding 138

x



List of Figures

2–1 SPR biosensor layout, based on the Kretschmann configuration, illustrating

the surface plasmon propagation along the surface, and the evanescent wave

penetration into the ambient medium. The evanescent field has its maxi-

mum at the metal surface and decays exponentially into the ambient medium

(biological layer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2–2 Schematic for a typical LSPR sensor based on a metal nanoparticle with di-

electric permittivity ε, surrounded by a medium of a relative permittivity εb.

LSPR mode can be excited with an unpolarized wave with an arbitrary inci-

dence angle, but a polarized wave is considered here to illustrate the local EM

field profile. The maximum electric field is induced at (θ = 0), decaying along

the particle surface, and approaching zero as θ = π/2. The electric field also

decays away from the surface of the nanoparticle into the ambient medium.

The dipole potential Φout due to dipole p at a distant point (r, θ) is also

demonstrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2–3 (a) Mechanism of LSPR, illustrating the oscillation of the electron cloud ex-

cited with a normal incident wave. (b) Equivalent electric dipole to a nanopar-

ticle in a uniform static electric field. . . . . . . . . . . . . . . . . . . . . . . 13

xi



2–4 Behaviour of metal over a frequency range relative to plasma frequency. The

point [A] represents a perfect conductor where the electric field cannot pene-

trate into the metal, and point [B] is where the frequency equals the plasma

frequency and the E-field penetrates more in to the metal surface. The metal

becomes plasmonic when ω << ωP and transparent for ω > ωp. . . . . . . . 18

2–5 Real and imaginary part of the dielectric permittivity for (a,b) gold, and (c,d)

silver. The blue line represents the calculated values using the Drude model,

and the red line represents the measured data from Johnson and Christy [48].

The Drude model does not take into account the interband transition. . . . . 20

2–6 The corrected real and imaginary parts of the dielectric permittivity for gold,

calculated using the Drude Lorentz model, and compared with the results

obtained from the Drude model and the measured values by Johnson and

Christy [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2–7 Modeling of periodic nanostructures by DDA . . . . . . . . . . . . . . . . . . 24

2–8 Schematic for Bright field (a) and Dark field (b) microscopy concepts. . . . . 27

2–9 LSPR spectroscopy based on reflection measurements, employing (a) reflecting

probe, and (b) integration sphere. . . . . . . . . . . . . . . . . . . . . . . . . 28

2–10 LSPR spectroscopy based on the direct measurement of transmitted light. . . 29

2–11 (a) Schematic for a metal nanoparticle surrounded by an adlayer of a refractive

index (na) and buffer (nB). The short EM decay length associated with metal

nanoparticles increases specificity to the adlayer and reduces the effect of bulk

RI change. (b) A comparison between LSPR with SPR sensor in terms of EM

decay length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2–12 Typical Response of LSPR sensor (extinction in the figure, but it can be

transmission). The red shift is due to change in the bulk refractive index. . . 32

xii



2–13 (a) Real time LSPR sensing of bulk RI change.(b) A sensogram for LSPR

sensor kinetics. Req is the equilibrium response when the association and

dissociation become equal, corresponding to an analyte concentration Aeq. (c)

Determining the LoD based on 3σR and the slope SA of the sensor response to

various sample concentrations, which is proportional to the adlayer sensitivity

∼ SA ∝ Sd. (d) PDF of sensor response to a blank sample (no analyte is

present) with zero mean and standard deviation σR. A sensor response with

σR is obtained with analyte concentration [A] = A0, exhibiting 30% error

representing either false negative β− or false positive β+ results (the shaded

area under the overlapped normal distributions). (e) PDF of sensor response

without analyte (blank) and with analyte of a concentration [A] ≈ LoD,

causing a response ∼ 3σR. Here, the probability of obtaining false negative

β− or false positive β+ results decreases to 5%, justifying the adoption of the

LoD in characterizing different sensors. In some cases, a concentration of the

LoQ is used based on 10σR response to increase the accuracy of the results. . 36

2–14 Periodic nanohole structures in a thick metal film, illustrating the extraor-

dinary transmission of light. The resonance peak can be controlled by the

diameter and the pitch of the nanoholes. . . . . . . . . . . . . . . . . . . . . 38

2–15 (a) A multiplexed SPR platform based on multiple resonant angles associated

with a special prism, yielding (b) a multiple resonance curve. (c) A multiple

resonance curve based on a LSPR sensor, employing metal nanorod structures. 38

2–16 Typical sensograms for sensing kinetics of different values for the association

and dissociation constants and analyte concentration. . . . . . . . . . . . . . 45

3–1 Energy flux Pinc of an incident EM field on a metal nanoparticle with volume

Vp. The rate by which the incident field is scattered is obtained by integrating

the energy flux of the scattered field Pscat over the surface of the imaginary

sphere Ω. The vector n̂ normal to the imaginary sphere is also shown. . . . . 49

xiii



3–2 FEM results and Mie calculations of (a) extinction, (b) absorption and (c)

scattering cross sections for a gold sphere with a diameter of 80 nm. (d, e, f)

Repeated calculations for a sphere with 120 nm diameter. . . . . . . . . . . . 51

3–3 Schematic for the simulation domain used in OptiFDTD to calculate reflection

and transmission efficiencies of periodic gold nanoparticles. Periodic bound-

ary conditions were enforced along the x and y direction boundaries of the

simulation domain, whereas PML boundary conditions were enforced along

the boundaries in z direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3–4 (a) Extinction, (b) absorption and (c) scattering efficiencies, associated with a

60 nm–radius gold sphere, calculated by different methods in order to validate

their accuracy based on Mie theory. . . . . . . . . . . . . . . . . . . . . . . . 53

3–5 SEM image of the fabricated nanotubes. The inner diameter, height and the

pitch are 200 nm, 90 nm, and 400 nm, respectively. . . . . . . . . . . . . . . 54

3–6 (a) Topography of the fabricated nanotube structures. (b) NSOM image,

showing the near field behaviour of the fabricated nanotube structures. The

image is obtained based on the cantilever resonance frequency of the NSOM

probe, indicating the transmitted intensity through its aperture and collected

by the objective lens beneath the sample. The NSOM detector provides a

feedback to tune the resonance frequency with respect to the transmitted light.

The nanotubes support LSPR at 1100 nm, hence the EM field is not high at

the operating wavelength of the laser source, 570 nm. The bright spots denote

the light transmission through the sample, whereas the dark spots indicate the

absorption and scattering of the light beam by the nanotubes. (c) A diagonal

line scan from the topographic image in (a), showing the walls of a nanotube

and the pitch between them. (d) SEM image of the fabricated structures. . . 55

3–7 (a) Measured versus simulated normalized extinction efficiency for nanotube

structures. (b) A dipole-like EM field pattern driven by a linearly polarized

incident plane wave at the resonant wavelength (1100 nm). COMSOL Multi-

physics was used to obtain the local electric field distribution. . . . . . . . . 56

xiv



3–8 Calculated absorption, scattering and extinction cross sections for a single

nanocrescent, excited by a normal incident plane wave polarized (a) along the

x-axis, and (b) along the y-axis. The FEM simulation domain is surrounded

by a PML of 5 absorbing layers. The results are compared to those based on

the optical theorem (OT) are also shown. . . . . . . . . . . . . . . . . . . . . 58

3–9 Illustration of (a) the wedge angle, and (b) etching depth that were used in

the FEM model to study their effect on the extinction curves. . . . . . . . . 59

3–10 Effect of wedge angle and etching depth on (a, b) the first and second reso-

nance wavelengths (800 nm, and 1450 nm), (c, d) the third resonance (1100

nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3–11 Local electric field distributions (V/m), associated with the nanocrescent

structure, driven by an incident plane wave polarized in (a, b) x–axis and

(c) y–axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3–12 (a) Topography and (b) NSOM images for the fabricated nanocrescent struc-

tures on a COP substrate. The intensity is modulated in terms of the can-

tilever resonance frequency (KHz), which is changed relative to the collected

signal amplitude, and thus the dimensions are normalized to their maximum

values to obtain (c) a 3D visualization for the AFM and NSOM data (Mat-

lab was used to overlap both images), the bright (red) spots represent the

maximum transmitted light, and the blue part indicates a decreased intensity

due to absorption or scattering of light by the nanocrescent structures. (d)

Surface topography and transmitted light, scanned a long a line crossing the

nanocrescents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3–13 SEM image of nanocrescent structures on a COP substrate, fabricated by side-

wall lithography method. The overall structure is arrayed on a COP substrate

of 1 cm2 surface area and 150 µm thickness. . . . . . . . . . . . . . . . . . . 62

xv



3–14 Measured extinction efficiency for two samples of the fabricated nanocrescents

excited by a normal incident EM wave polarized (a) horizontally, and (b) ver-

tically. The PDF distribution of (c) PDF (λ1) (d) PDF (λ2) and (e) PDF (λ3)

based on the dip finding and dynamic baseline centroid methods, showing the

uncertainty in each resonance wavelength over multiple measurements for five

randomly selected fabricated samples. The simulated resonance wavelengths

are plotted to evaluate the accuracy of the dip-finding and dynamic baseline

centroid methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3–15 Optical cross sections of gold nanorod structures in the case of (a) the trans-

verse mode, and (b) longitudinal mode. The nanorod major and minor axes

(in x-y plane, see the inset) are 150 nm and 70 nm, respectively, the thickness

is 30 nm (along z-axis in the inset). . . . . . . . . . . . . . . . . . . . . . . . 64

3–16 The electric field distribution (V/m) associated with gold nanorod structure,

supporting LSPR in the case of (a) transverse mode, and (b) longitudinal mode. 65

3–17 SEM images of nanorod structures fabricated by side–wall lithography method

on a glass substrate. The rods have the same width, 70 nm, and the length

varies as follows: (a) 200 nm, (b) 170 nm, (c) 150 nm, and (d) 120 nm . . . . 66

3–18 Measured extinction efficiency curves for the fabricated nanorod structures at

(a) 625 nm, (b) 700 nm, and (c) 890 nm. The PDF distributions, based on

five randomly selected samples from the fabricated structures, showing the

mean and the standard deviation of (d) λ1, (e) λ2 and (f) λ3 determined by

the peak tracking and dynamic baseline centroid methods. The results based

on these methods are compared to the simulated counterparts. . . . . . . . . 68

4–1 A 3-D representation of the projection reference matrix (obtained from the

FDTD simulation) for a set of refractive indices spanning the RI range (1.318–

1.4), Simulation used 750 wavelength data points (0.2 nm resolution). . . . . 72

xvi



4–2 (a) Normalized transmission vectors for unknown samples (A and B): the

curves are affected high frequency interferences (ripples) that complicate track-

ing the transmission dip and reduce the sensor accuracy. (b): Interpolated

curves for the solution row vectors for unknown samples (A and B) revealing

estimated refractive indices of 1.3346 and 1.3361, respectively: the entire mea-

sured curve in (a) was used here instead of using a single resonance wavelength

as in the dip-finding method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4–3 (a) Calculated error in the estimated RI change with respect to the RI inter-

val in the reference set, (b) error in estimated RI change, calculated as the

difference between the estimated RI changes and the ideal values (1 × 10−5

and 5× 10−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4–4 Calculated error with respect to the noise level added to the simulated trans-

mission curves, the projection method is superior to the other methods in

terms of accuracy (1×10−7RIU error) and stability against noise as the error

is as low as 5×10−6 (10% error) even with noisy transmission curves (SNR≈ 3). 77

4–5 (a): Experimental sensing set-up: Cary 5000 spectrometer was used in the

sensing experiment, a baseline with PDMS channel and buffer solution is taken

first, then the measurements were performed on the functionalized nanotube

structures, the solutions were injected using an automatic pump (Harvard

Apparatus-PicoPlus) with 200 µL/min flow speed. The inset shows the PDMS

fluidic channel: the grooved part is bonded to the surface of the COP (sand-

wiching the nanostructures between the PDMS and COP, the inlet/outlet are

punched using a biopsy puncher to insert the fluidic tubes). (b): SEM image

of the fabricated structures: inner diameter= 200 nm, gold layer thickness=

60 nm, and pitch= 400 nm. The gray scale measures 3 µm and 400 nm with

respect to the outer image and the inset, respectively. . . . . . . . . . . . . . 78

xvii



4–6 Real time sensing measurements for ethanol solutions with different concen-

trations ([1]: 0%, [2]: 2%, [3]: 4%, [4]: 16%, [5]: 30%, [6]: 50%, [7]: 80%, [8]:

100%) in the case of: dip-finding method (left Y-axis); and projection method

(right Y-axis) where the refractive index is directly extracted. . . . . . . . . 79

4–7 (a): Calculated refractive index based on the fitted Cauchy parameters in table

4.1, and the improved Cauchy formula [Eq. (4.6)] at 20 ◦C and 589.29 nm

wavelength: the estimated values agree well with those of reference [128].(b):

Sensor response to bulk solutions of different ethanol concentrations using the

projection and dip-finding methods: the error bars correspond to repeated

measurements (at 20 ◦C, and 1247 nm resonance wavelength), the reference

curve was obtained using the Cauchy empirical formula, Eq. (4.6), and the

fitted Cauchy parameters in table 4.1 — calculated using the polynomial curve

fitting — at the same temperature and sensor operating wavelength (20 ◦C

and 1247 nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4–8 RI change measured by the projection method for ethanol solutions of differ-

ent concentrations. The RI change estimated by the reference methods are

also shown: the measured response of each method in Fig. 4–6 was used to

calculate the RI change using Eq. (4.5) for a better comparison with the

projection method. The standard deviation of the measured refractive indices

are represented by error bars for each method, and by the line width for those

based on the Cauchy formula. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xviii



4–9 (a) Measured RI change based on sensor response to bioten-streptavidin sur-

face binding events. The projection method provides the RI change directly,

and the other methods use the sensitivity to translate their response into RI

changes (dividing each response to its sensitivity factor). The scale, over the

figure, denotes the sequence of flushing the solutions as [1]: Tris buffer solution

was injected for the first 15 minutes to create a baseline, then streptavidin

solutions – with [2]: 0.6 mg/mL and [3]: 0.8 mg/mL concentrations – were

injected sequentially. Tris buffer silane was injected as a final step to flush

unbound streptavidin. (b) Measured RI change for various streptavidin con-

centrations based on all the methods. The standard deviation of the measured

RI change by each method σRI is used to plot 3σRI (the horizontal lines) on

the measured ∆n graph. Each 3 σRI horizontal line intersects with the mea-

sured ∆n graph at the minimum detectable streptavidin concentration (LoD).

The vertical arrows point out the LoD based on each method. . . . . . . . . 86

5–1 SEM images for the fabricated nanorod structures with 70 nm in width and

various lengths as (a) 120 nm, (b) 150 nm, and (d) 210 nm. . . . . . . . . . . 95

5–2 (a) Schematic for a COMSOL Multiphysics model to simulate periodic array

of nanorods after introducing adlayer thickness and bulk RI nB. Periodic

boundary conditions were enforced such that the nanorods are periodic in

the x-y plane. The structure is excited using port 1 (lower x-y plane), and

the transmitted light wave is collected using port 2 (upper x-y plane). (b)

Simulating a single nanorod using PML boundary condition and integrating

sphere to calculate the extinction efficiency. The nanorod is excited by a plane

wave polarized along the z axis, propagating in the negative x direction. . . . 96

5–3 Simulated transmission curves, demonstrating the dependence of the reso-

nance wavelengths on the bulk RI (a) λ1 = 705nm, (b) λ1 = 821nm, and

(c) λ1 = 1000nm. The sensitivity curves for these resonance wavelengths are

presented in (d) SB1, SB2 and SB3 correspond to λ1, λ2 and λ3, respectively. 97

xix



5–4 Resonance shift against adlayer thickness change, based on the simulated re-

sults shown in the insets, for (a) the first resonance, (b) the second resonance,

and (c) the third resonance. The EM decay length (ld) for each resonance is

extracted such as Eq. (5.16) provides the best fit to the resonance wavelength

shift vs adlayer curves, and the sensitivity to adlayer thickness change (Sd)is

calculated as the slope of each curve at the linear regime (d ∼ ld/10). . . . . 98

5–5 Top panel: calculated SNR based on (a) the estimated adlayer thickness to its

standard deviation, and (b) the estimated bulk RI change to its standard de-

viation. The linear response model and the linear–MLE method were applied

to the simulated shifts in resonance wavelengths ∆λi with added uncertainties

σλi such that SNR(∆λi) = ∆λi/σλi. Bottom panel: the percentage error as-

sociated with each method in (c) the estimated adlayer thickness and (d) the

bulk RI change using Eq. (5.20) based on the true values used in the simulation. 99

5–6 Experimental set-up for measuring the transmission spectra of the nanorod

structures. The inset shows an exploded view for the PDMS fluidic channel

integrated with the gold nanorod substrate (for injecting the biological samples).100

5–7 Real time response to bulk RI changes and biotin-streptavidin binding events

based on three-resonance nanorod structures. The cycles on the graph rep-

resent the following: [1] DI water, [2] 8% ethanol solution, [3]16% ethanol

solution, [4] Buffer, and [5] Streptavidin solution. The time step is 6 minutes,

which was required by the Cary 5000 spectrometer for a single scan of the

entire wavelength range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5–8 Top panel: simulated versus measured shift in resonance wavelengths against

bulk RI changes. The bulk RI sensitivities, SB and S ′B (nm/RIU), were de-

termined as the slope of each graph. Bottom panel: simulated and measured

resonance shifts versus the adlayer thickness based on the simulated (Sd) and

corrected (S ′d) adlayer sensitivities. Each corrected sensitivity (S ′d) was ob-

tained using Eq. (5.19) based on the measured bulk RI sensitivity S ′B for each

resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xx



5–9 Estimated adlayer thickness (left y-axis) and bulk RI change (right y-axis)

based on the measured results after applying (a) LM1(λ1, λ2), (b) LM2(λ1, λ3),

(c) LM3(λ2, λ3), and (d) the linear–MLE method. The cycles on the graph

represent the following: [1] DI water, [2] 8% ethanol solution, [3]16% ethanol

solution, [4] Buffer, and [5] Streptavidin solution. . . . . . . . . . . . . . . . 104

5–10 (a) Error in the estimated RI change after applying the linear response model

(LM1, LM2, LM3), and the linear–MLE method to the measured results. The

error was calculated as the difference between the estimated RI changes and

the reported counterparts based on refractometer results for ethanol solutions

of different concentrations (0%, 8%, and 16 %). The data is obtained from the

first five steps in Fig. 5–9 (steps: 1, 2, 1, 3, 1). (b) Estimated adlayer thickness

and (c) bulk RI change after applying the linear response model (LM1, LM2,

LM3)and the linear–MLE method to the surface binding experimental results.

The error bars denote the standard deviation of the estimated values obtained

from the last three steps in Fig. 5–9 (steps: 4, 5, 4). . . . . . . . . . . . . . . 106

6–1 (a) Schematic representation of a nanocrescent, surrounded by an adlayer with

thickness d. (b) Refractive index distribution showing the negative refractive

index of the nanocrescent nc from −hc < z < 0, the adlayer refractive index

na from 0 < z < d, and the bulk RI nB for z > d . . . . . . . . . . . . . . . . 110

6–2 (a) Simulation layout used in COMSOL multiphysics to model periodic nanocre-

scent structure of a hexagonal lattice, by enforcing periodic boundary condi-

tions. (b) Experimental set-up to measure transmission spectra for the fabri-

cated nanocrescent structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6–3 Dependence of the first mode (1100 nm) on (a) the bulk RI change, and (b)

variations of the adlayer thickness. The results obtained from the nonlinear

response model and the FEM calculation follow a similar trend. The following

parameters were used in the FEM model:nB = 1.3, na = 1.4. . . . . . . . . . 115

xxi



6–4 (a) Resonance wavelength shift versus bulk RI change associated with the

second mode (1450 nm) based on the FEM model. (b) Resonance wavelength

shift against adlayer thickness with nB = 1.3, and na = 1.4, showing a close

agreement with the non-linear response model results. . . . . . . . . . . . . . 116

6–5 (a) Probability density function representation of the calculated shift in the

first and second resonance wavelengths, with added errors σλ1 = 0.9, σλ2 =

1.3. The FEM used the following parameters: nB = 1.33, na = 1.43, d =

6nm. (b) Adlayer thickness and (c)change in bulk RI change, estimated by

the nonlinear–MLE (red) and linear response model (blue) methods. The

precision for the nonlinear–MLE results: σd = 0.09nm, σn = 1.6 × 10−4RIU ,

The precision of the LM:σd = 0.25nm, σn = 6.14× 10−4RIU . . . . . . . . . 118

6–6 (a) Error in the estimated adlayer thickness based on the nonlinear–MLE

method (red bars) and the linear response model (blue bars). The follow-

ing parameters were used in the FEM model: na = 1.43, nB = 1.33, and

d = {6nm, 15nm, 25nm}. The shifts in the resonance wavelengths were

determined, and each resonance was added uncertainty σi, such that each

∆λi/σi = 10 (SNR=10). The error was then determined as the difference be-

tween the true and estimated values. (b) The error associated with estimated

∆n based on the same simulated results used in (a). . . . . . . . . . . . . . . 119

6–7 (a) shifts in the measured resonance wavelength employing the dip-finding

method during streptavidin-bioten sensing experiments. (b) Estimated Ad-

layer thickness (left y-axis) and bulk RI change (right axis) based on the

nonlinear–MLE method, (c) estimated adlayer thickness and bulk RI change

based on the linear response model. The cycles on the graph represent the

following: [1] Buffer, [2] Streptavidin solution, and [3] Buffer. . . . . . . . . . 121

xxii



6–8 (a) Shifts in the resonance wavelengths (λ1 = 1100nm, λ2 = 1450nm), deter-

mined by the dynamic baseline centroid method. (b) Adlayer thickness (left

y-axis) and bulk RI change (right y-axis) estimated by the nonlinear–MLE

method. (c) Estimated adlayer thickness (left y-axis) and bulk RI change

(right y-axis) based on the linear response model. The solutions were intro-

duced to the nanocrescents in the following order: [1] Buffer, [2] Streptavidin

solution, and [3] Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B–1 Side-wall lithography fabrication method based on nanoimprinting COP poly-

mer. An array of nanoholes (200 nm diameter, 20 nm-pitch) were already

patterned on the silicon mold. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C–1 Fabricating nanocrescent structures based on the side-wall lithography method.137

D–1 Fabrication of fluidic channel based on the PDMs replica moulding method . 139

xxiii



List of Tables

2.1 Comparison between LSPR and propagating SPR characteristics (Adapted

from [6] with modification). . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Characterisitics of reported LSPR sensors . . . . . . . . . . . . . . . . . . . 40

3.1 Calculated versus measured resonance wavelength and sensitivity for nanorods

of various aspect ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Fitted Cauchy parameters for all the tested ethanol solutions at 20 ◦C . . . . 80

4.2 Comparison between the projection method and the published counterparts. 84

6.1 Modes supported by the nanocrescent structure and their sensing characteris-

tics, calculated by the dip-finding method and the dynamic baseline centroid

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Modes supported by the nanocrescent structure and their sensing character-

istics based on measured results. The dip–finding method and the dynamic

baseline centroid method were used to extract the resonance wavelengths. . . 120

6.3 Estimated adlayer thickness and bulk RI change based on the nonlinear–MLE

method and the linear response model. The resonance wavelength shifts were

determined by the dip-finding and dynamic baseline centroid methods. . . . 123

B.1 Nanoimprint lithography fabrication recipe for imprinting a COP substrate

using silicon mold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xxiv



Abbreviations

AFM Atomic Force Microscopy

COC Cyclic Olefin Copolymer

COP Cyclic Olefin Polymer

DDA Discrete Dipole Approximation

DI Deionized

EM Electromagnetic

EOT Extra-ordinary Transmission

FDTD Finite Difference Time Domain

FEM Finite Element Method

FoM Figure of Merit

FWHM Full Width at Half Maximum

GNRMP Gold Nanorod Molecular Probe

ITO Indium Tin Oxide

xxv



L-Mode Longitudinal Mode

LM Linear response Model

LoD Limit of Detection

LoQ Limit of Quantification or Quantitation

LSPR Localized surface plasmon Resonance

MLE Maximum Likelihood Estimation

NA Numerical Aperture

NDIR Normalized Difference Integrated Response

NIR Near Infrared

NSOM Near field Scanning Optical Microscope

OT Optical Theorem

PDF Probability Density Function

PDMS Polydimethylsilane

PML Perfect Matched Layer

RI Refractive Index

RIU Refractive Index Unit

SEM Scanning Electron Microscopy

SERS Surface-Enhanced Raman Scattering

SPR Surface Plasmon Resonance

SPRI Surface Plasmon Resonance Imaging

xxvi



T-Mode Transverse Mode

TE Transverse Electric

TM Transverse Magnetic

TUC Target Unit Cell

UV Ultra-violet

VSWFs vector spherical wave functions

xxvii



1
Introduction

1.1 Problem statement

Over the past three decades, researchers have developed many classes of sensors for different

applications such as medical diagnosis, drug detection, and environmental monitoring. These

biosensors can be classified into electrical impedance sensors , electrochemical sensors and

optical sensors [1]. Optical sensors have several advantages including their high sensitivity

and immunity to the electromagnetic interference. Optical biosensors also span a wide range

of platforms including surface plasmon resonance (SPR), interferometers, and ring resonators

[2]. SPR biosensors exploit the phenomenon of the osillation of conduction electrons at metal-

dielectric interface when their momentum matches that of an incident polarized wave [3]. To

meet this condition, SPR platforms require complex instrumentation, using diffractive optical

elements (including prism and grating coupling techniques) If the lateral dimensions of the

1
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metallic film are decreased to a sub-wavelength scale, the phenomenon of localized surface

plasmon resonance is observed, and it can be excited without diffractive optical elements

[4, 5]. Metal nanostructures support this LSPR mode, as the conduction electrons can be

coherently excited by a normal incident plane wave. The simple excitation approach used

in LSPR sensors has overcome the vibration and mechanical noise incurred in conventional

SPR sensors based on scanning elements. Moreover, the electromagnetic field is localized

close to the surface of nanoparticles, and the resonance is perturbed mostly by the change

in refractive index (RI) close to the metal surface due to the short electromagnetic (EM)

decay length. This implies that LSPR sensors are more sensitive to molecular binding than

to changes in the refractive index of the buffer solution, mitigating artifacts due to bulk RI

changes and temperature drift [6]. Conventional SPR sensors require at least 10µm× 10µm

surface area for sensing [7,8], whilst a single nanoparticle footprint can be achieved based on

LSPR sensors [9, 10]. Although LSPR sensors feature a lower bulk RI sensitivity than that

for SPR sensors, they provide similar surface sensitivity [11]. Due to the short EM decay

length, metallic nanostructures are limited to small biological samples. However, the EM

decay length can be increased by exciting other modes, such as the guided mode based on

parallel nanorods excied by the Kretchman configuration, which achieved an improved limit

of detection when compared to conventional SPR sensor (300 nM vs 30 µM) [12]. These

characteristics have attracted a great interest in nanoparticles to detect small analytes (less

than 500 Da), which is challenging in conventional SPR platforms [13]. In addition, the

miniaturized dimension of the LSPR sensors makes them good candidates for point of care

applications, as they can be easily integrated with other bio–nanotechnology applications

[14,15].

The low SNR of LSPR sensors has motivated tremendous effort towards improving the

sensitivity of LSPR sensors. Engineering the shape of metallic nanostructures has occupied

a considerable attention, including nanospheres and nanorods [16–23], nanodisks [24, 25],

and nanoshells [26–30]. Less attention has been previously paid to the signal processing

methods to improve the SNR and fully benefit from the plasmonic properties of metallic

nanostructures.
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This thesis is focused on signal processing methods to improve the signal to noise ratio

of LSPR sensors. Moreover, the thesis provides an accurate method to extract quantitative

information from the measured data, including the adlayer thickness and bulk refractive

index change. The thesis also presents an improved method in self-referenced LSPR sensing.

1.2 Objectives and Contributions

The following describe the main objectives of this thesis:

• To improve signal to noise ratio (improved RI resolution and limit of detection) for LSPR

sensors.

• To improve self-referenced LSPR sensing, and distinguish between the binding events and

bulk RI changes in both bulk and surface binding sensing experiments.

• To estimate the adlayer thickness and bulk RI changes in molecular binding experiments.

Following are the main contributions to achieve the above objectives

• SNR improvement: including the following:

– A simple and accurate method (the projection method) is developed to improve

the signal to noise ratio, and hence improve the limit of detection of LSPR biosen-

sors with broad resonance curve. The method is validated by FDTD simulated

results and compared to established signal processing methods based on simulated

and measured results.

• Improving the accuracy for self-referenced sensing, employing the following:

– Developing a method to correct for the sensitivity matrix, used by the linear

response model (LM), based on true values for the experimental bulk RI and

adlayer thickness sensitivities.

– Using multiple-resonance nanorod structures and applying the maximum likeli-

hood estimation to improve accuracy and precision of the results.
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• Extract the adlayer thickness and bulk RI changes: including the following

– The maximum likelihood estimation method (MLE) and a nonlinear response

model–for the refractive index profile along the nanostructures – is used to provide

an accurate estimation to the adlayer and RI changes in surface binding sensing

experiments.

– The method was validated by employing the FEM and applied to experimental

data. Gold nanocrescent structures were fabricated by the side-wall lithography

and used as a LSPR sensor. Each resonance is considered in the bulk refractive

index and surface binding experiments.

The following publications are related to the above objectives and contributions

• A. Abumazwed, W. Kubo, C. Shen, T. Tanaka, and A. G. Kirk, ”Projection method

for improving signal to noise ratio of localized surface plasmon resonance biosensors,”

Biomed. Opt. Express 8, 446-459 (2016).

• A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk, ”Towards accurate LSPR

biosensors based on the projection method: a direct measurement for refractive index,”

accepted for oral presentation, Photonics north (June 2017).

• A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk, ”Improved self-referenced

biosensing with emphasis on multiple-resonance nanorod sensors,” submitted to Opt.

Express (2016).

• A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk, ”Combination of the Maximum

likelihood estimation and nonlinear model for improved accuracy and precision of es-

timating adlayer thickness and bulk RI change,” To be submitted to scientific reports

(2017).

• A. Abumazwed, W. Kubo, T. Tanaka, A. G. Kirk, Numerical and experimental inves-

tigation of plasmonic properties of silver nanocrescent structures for sensing applica-

tions,” Proc. SPIE, 9371, 937127–937127–7 (2015).
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• A. Abumazwed and A. G. Kirk, ”Plasmonic properties of suspended nanodisc struc-

tures for enhancement of the electric field distributions,” Proc. SPIE, 9288, 92880Z–

92880Z–7 (September 2014).

• A. Abumazwed, W. Kubo, T. Tanaka, A. G. Kirk, ”Study and measurement of plas-

monic properties of gold double nanotube structure arrayed on a polymer substrate, ”

Proc. IEEE Photonics Conference, 318–319 (2013).

• A. Abumazwed, W. Kubo, T. Tanaka, A. G. Kirk, ”Simulation and experimental

studies on plasmonic properties associated with gold nanofin array on a polymer film,

” Proc. IEEE Photonics Conference, 324–325 (2013).

• A. Abumazwed and A. G. Kirk, ”Study of Plasmonic Properties of Gold Nanoparticles

of Different Shapes with emphasis on Gold Nanopyramids, ” Proc. of SPIE, 8412,

84121D–84121D–7 (2012).

• A. Abumazwed, W. Kubo, T. Tanaka, A. G. Kirk, ”Design and fabrication of plasmonic

nanostructures for optical biosensing by nanoimprint lithography,” Photonics north,

Montreal, May 2014 (Invited presentation).

1.3 Collaboration and author contributions

The fabrication of metallic nanostructures was a result of a collaborative work with Pro-

fessor Takauo Tanaka and Dr. Wakana Kubo, RIKEN (Institute for physical and chemical

research), Japan. Following describe the aspects of this collaboration:

• Dr. Kubo provided the nanocrescent and multiple-resonance nanorod structures.

• Professor Tanaka supervised me during my work at RIKEN.

• Professor Tanaka and Dr. Kubo helped in editing the published and submitted conference

and journal papers.

I have done the following, under the supervision of the thesis advisor, Prof. Andrew Kirk
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• Modeling the nanostructures using COMSOL multiphysics, OptiFDTD, and validation of

the results with Mie theory.

• The fabrication of single and double nanotube structures at RIKEN, Japan.

• Spectroscopy measurements including the biosensing experiments at McGill. Chen Shen

helped with sensing experiments for the nanotube structures.

• Near field and surface characterization of the fabricated samples at McGill.

• The fabrication of the Polydimethylsiloxane (PDMS) fluidic channels at McGill.

• The single projection method including reference matrix generation using FDTD calcula-

tions, and its application to simulated and measured data.

• Developing a method based on the MLE and the nonlinear response model for LSPR sensor

response, to estimate the adlayer and bulk RI change in surface binding experiments.

• Developing a self–referencing method based on the maximum likelihood estimation and

generalized linear response model.

• Data analysis and paper writing.

1.4 Thesis organization

The remainder of the thesis is structured as follows:

Chapter 2: reviews background material and published work, related to the proposed

methods in this dissertation. Theoretical and practical challenges of LSPR sensors and

available data processing methods (mostly established for conventional SPR platform) are

also highlighted in this chapter.

Chapter 3: presents numerical and experimental studies for metallic nanostructures

that will be used in the forthcoming chapters. The simulated results are based on the

finite difference time domain and finite element methods. The chapter also undertakes

surface characterization of the nanostructures fabricated by the nanoimprint lithography
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technique. As well, the chapter investigates the reproducibility of the measured extinction

curves and resonance wavelength. Surface characterization of the fabricated structures, using

scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their near

field distribution is investigated by near field scanning microscopy (NSOM).

Chapter 4: stresses the projection method and its application in improving the signal to

noise ratio of noisy LSPR transmission curves. The method is validated numerically by the

FDTD simulation, and compared to the most established signal processing methods. The

proposed method is then applied to bulk and surface-binding (Streptavidin-Biotin) sensing

experiments. Moreover, this chapter provides a method for fitting the Cauchy parameters

for ethanol and DI water to obtain values for the mixture and use them along with the

improved Cauchy formula to determine the refractive indices for mixtures of different ethanol

concentrations. The measured results are then validated based on the fitted RI values.

Chapter 5: investigates the application of the MLE method to improve self-referencing

LSPR sensors. The chapter employs the three-resonance characteristic of gold nanorods in

estimating adlayer and bulk RI change. The method is compared to an established method

based on the same simulated and measured data. The chapter provides a solution to the

previously introduced approach which required repetitive simulation in order to generate

the sensitivity matrix for the linear response model. The proposed method considers the

measured sensing parameters rather than the simulated counterparts. This method provides

a direct measure for adlayer thickness and bulk RI changes. Each resonance is used with

the other resonances to estimate the adlayer and bulk RI change, obtaining three estimates

for the adlayer thickness and bulk RI change. The maximum likelihood estimation is finally

applied to the values estimated based on the three LM systems, maximizing the likelihood

of obtaining accurate estimates.

Chapter 6: presents an accurate method for estimating the adlayer thickness and RI

change based on the MLE and the nonlinear response model (the sensor response vs adlayer

thickness). This chapter employs the multiple resonance characteristic, associated with the

nanocrescent structures. The nanoimmprint lithography was used to fabricate the struc-

tures. The chapter underlines the theoretical details, the validation of the method, and a
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comparison to the established linear response model.

Chapter 7: concludes the thesis by a general discussion and provides recommendations

for future research directions.



2
Theoretical background and concepts

This chapter reviews conceptual background related to Localized Surface Plasmon Resonance

(LSPR) sensors and metallic nanostructures. The chapter also presents a brief description

of propagating Surface Plasmon Resonance (SPR) sensors, stressing the motivation for the

adoption of metallic nanostructures as an alternative solution in some applications.

2.1 Comparison between propagating and localized surface plasmon resonances

Surface plasmon resonance is an optical phenomenon that occurs at a metal-dielectric in-

terface where the metal free electrons oscillate with respect to an incident electromagnetic

(EM) wave whose momentum matches that of the free electrons. Exciting the propagat-

ing SPR mode– for various SPR configurations– requires optical components to match the

momentum of the incident wave to that associated with the plasmon wave, such as optical

9
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waveguides [31], grating couplers [32], and prism coupling [33]. Prim coupling is commonly

used with numerous sensing platforms, including SPR imaging (SPRI), angular or wavelength

sensing platforms. Kretschmann [34] and Otto [35] configurations have been previously pro-

posed as prism coupling for SPR sensors. Fig. 2–1 illustrates the Kretschmann configuration

as the evanescent wave penetrates the biological layer and change in the refractive index of

the ambient medium can be detected by measuring the reflectivity as shown in Fig. 2–1. The

intensity of the reflected wave decreases as the angle of incidence approaches the resonance

angle. When analytes interact with the binding ligands, the surface concentration increases,

and the resonance angle increases. The refractive index sensitivity is defined as the shift

in these measured quantitities (angle, wavelength, intensity) with respect to the change in

refractive index. The evanescent wave propagates about 500 nm away from the metal surface

and a few microns along the metal surface, providing a RI sensitivity of 100 − 300◦RIU−1

and 5500−7500nmRIU−1 for the angular and spectral SPR platforms, respectively [36,37].

Figure 2–1: SPR biosensor layout, based on the Kretschmann configuration, illustrating the
surface plasmon propagation along the surface, and the evanescent wave penetration into
the ambient medium. The evanescent field has its maximum at the metal surface and decays
exponentially into the ambient medium (biological layer).

In contrast to the situation in propagating SPR, when a light wave impinges a metal

nanoparticle, it can excite its conduction electrons without prism or grating coupling, as

shown in Fig. 2–2. Consequently, light is either scattered or absorbed by the metal nanopar-
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ticle when the wavelength of the incident light wave matches the resonance wavelength of the

metal nanoparticle. Table 2.1 compares the characteristics of SPR and LSPR as biosensors.

Figure 2–2: Schematic for a typical LSPR sensor based on a metal nanoparticle with dielectric
permittivity ε, surrounded by a medium of a relative permittivity εb. LSPR mode can be
excited with an unpolarized wave with an arbitrary incidence angle, but a polarized wave is
considered here to illustrate the local EM field profile. The maximum electric field is induced
at (θ = 0), decaying along the particle surface, and approaching zero as θ = π/2. The electric
field also decays away from the surface of the nanoparticle into the ambient medium. The
dipole potential Φout due to dipole p at a distant point (r, θ) is also demonstrated.
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Table 2.1: Comparison between LSPR and propagating SPR charac-
teristics (Adapted from [6] with modification).

SPR LSPR

Label-free detection Yes Yes
Bulk sensitivity (nmRIU−1) ≈ 106 ≈ 102

Probe depth (nm) ≈ 1000 10− 30
Temperature control Yes Noa

Chemical identification SPR Raman LSPR-SERSb

Spatial resolution 10µm× 10µm Single nanoparticle
Small molecule sensitivity Good Better
Nonspecific binding Minimal Minimal
Multiplex capabilities Yes Yes

a LSPR features a short EM decay length and short probe depth, making it
immune to interfering effect from change in RI of the buffer due to changes
in temperature.
b SERS: Surface-Enhanced Raman Scattering.

For a nanosphere of a small radius when compared to the wavelength of the incident light

wave (a� λ), the incident field can be assumed to be uniform, E0, the EM field inside and

outside the particle can be derived from scaler potentials, Φin(r, θ) and Φout(r, θ) as follows

Ein = −∇Φin, Eout = −∇Φout

where ∇2Φin = 0 for (r < a), and ∇2Φout = 0 for r > a. At the sphere–medium interface

(r=a), the potentials must satisfy the following

Φin = Φout, ε
∂Φin

∂r
= εb

∂Φout

∂r

where εb is the bulk (medium) relative permittivity, and ε is the particle dielectric permit-

tivity ε(ω) = εr(ω) + i εi(ω).

As well, at a large distance (r→ ∞), the electric field is the same as the unperturbed

applied field

lim
r→∞

Φout = −E0 r cos θ = −E0 z

.
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The scaler potentials can be obtained by solving the Laplace equation based on the above

conditions

Φin = − 3 εb
ε+ 2εb

E0 r cos θ

Φout = −E0 r cos θ +
ε− εb
ε+ 2 εb

E0 a
3 cos θ

r2

Under the quasistatic condition, the nanosphere can be represented by a dipole of two

point charges separated by the diameter of the sphere, as shown in Fig. 2–3 (b). The moment

(p), exerted by the incident EM field on these charges, depends on the polarizability (α) as

follows

p = εbαE0 (2.1)

α = 4πa3 ε− εb
ε+ 2εb

(2.2)

Figure 2–3: (a) Mechanism of LSPR, illustrating the oscillation of the electron cloud excited
with a normal incident wave. (b) Equivalent electric dipole to a nanoparticle in a uniform
static electric field.

The absorption and scattering cross sections are directly related to α as follows

σext ≈ σabs = k Im(α) (2.3)
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σscat =
k4

6π
|α|2 (2.4)

where k = 2π
√
εb/λ is the wave number outside the nanosphere. Eq. (2.4) represents

Rayleigh scattering, as the scattering of light by nanospheres is inversely proportional to

the fourth power of wavelength and increases with the square of the particle’s volume. The

absorption cross section contributes more than the scattering to the total extinction cross

section, and it depends only on the volume of the nanoparticle. However, scattering becomes

dominant for nanoparticles larger than 100 nm.

For nanoparticles of other shapes, the shape factor should be taken into account in

calculatig the polarizability. For example, the surface of oblate or prolate spheroids is defined

by x2/a2 + y2/b2 + z2/c2 = 1, where a, b, and c are the axes of the spheroid, and the

polarizability α of the dipole associated with such particles is given by [38]

α =
4πa b c

3

ε− εb
εb + ρ (ε− εb)

(2.5)

where ρ is the shape factor that can be calculated for for oblate spheroids (a = b < c) as

follows [38]

ρ =
g(ec)

2 e2
c

[
π

2
tan−1g(ec)

]
(2.6)

g(ec) =

(
1− e2

c

e2
c

)1/2

, e2
c = 1− c2

a2
(2.7)

where ec is the eccentricity. For prolate spheroids (a > b = c), the shape factor is given

by [38]

ρ =
1− e2

c

e2
c

(
1

2 ec
ln
(1 + ec

1− ec

)
− 1

)
, e2
c = 1− b2

a2
(2.8)

Intuitively, the eccentricity ec can be expressed in terms of the aspect ratio (AR) for

nanorods (the ratio of major to minor axes) as 1− AR−2, and by substituting in Eq. (2.8),

the following equation is obtained for the shape factor for the nanorods
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ρ =
AR−2

1− AR−2

(
1

2
√

1− AR−2
ln
(1 +

√
1− AR−2

1−
√

1− AR−2

)
− 1

)
(2.9)

This is equivalent to the formula reported for the shape factor ρ with respect to the AR

of the nanorods [39–41]

ρ =
1

AR2 − 1

[
AR

2
√
AR2 − 1

ln
(AR +

√
AR2 − 1

AR−
√
AR2 − 1

)
− 1

]
(2.10)

which can be further simplified to ρ ≈ (1 + AR)−1.6 for AR < 8 [42]. For a spheroid, the

shape factors along the principle axes satisfy ρx + ρy + ρz = 1, where the subscripts denote

the x, y and z axes. This suggests a shape factor of ∼ 1/3 for a sphere.

Eq. (2.5) can be employed to calculate the polarizability of nanorods along a specific

axis (i=x, y or z) by considering their volume V as follows

αi = V
ε− εb

εb + ρi (ε− εb)
(2.11)

This reduces to Eq. (2.2) for a nanosphere with a shape factor of 1/3. The average cross

sections 〈σext〉 and 〈σscat〉 for randomly oriented spheroids or nanorods (in the quasistatic

regime) can also be determined as follows [38]

〈σext〉 = k Im{1

3
αx +

1

3
αy +

1

3
αz}

〈σscat〉 =
k4

6π
{1

3
|αx|2 +

1

3
|αy|2 +

1

3
|αz|2}

Now, assuming that the imaginary part of the dielectric function of a metal is small or

its frequency dependence is negligible εi(ω) ≈ 0, the polarizability α has its maximum value

when equating the denominator of Eq. (2.11) with zero, revealing the following

εr = εb (1− 1/ρ) (2.12)

Consequently, light interacts strongly with the nanoparticle, causing the conduction elec-

trons to oscillate in resonance with the electric field of the incident light. This oscillation is
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described as localized surface plasmon resonance. Some metals (gold, silver, copper) meet

this condition at optical frequencies as the real part of their dielectric constant εr is negative.

Their dielectric function can be expressed in terms of frequency ω by Drude free electron

model as [38]

ε(ω) = ε∞ −
ω2
p

ω2 + jγω
(2.13)

where ε∞ is the high frequency contribution to the dielectric function, γ = vF/l is the bulk

electron collision frequency, or the bulk scattering rate, which is related to the Fermi level

vF and the electron mean free path l, ωp is the metal plasma frequency given by [38]

ωp =

√
N e2

ε0me

(2.14)

where N is the electron density of the metal, ε0 is the permittivity of vacuum, and me is the

effective electron mass.

In light of the scattering rate, it has been hypothesized that the scattering is enhanced

for small nanoparticles (relative to the electron mean free path l) [43], and the scattering

rate becomes [43,44]

γD = γ + Asc
vF
l′

(2.15)

where l′ is the reduced electron free path, which is related to the diameter of the spherical

nanoparticles, and Asc is an enhancement factor related to the particle surface scattering [45]

From equation (2.13) and neglecting the effect of γ in the visible region (i.e. γ � ω)

ω =
ωp√
ε∞ − ε

(2.16)

Now, if ε meets the resonance condition in Eq. (2.12), then εi ≈ 0, ε ≈ εr = εb (1 − 1/ρ)

and ω = ωr. Substituting in Eq. (2.16), we obtain the resonance frequency ωr as follows
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ωr =
ωp√

ε∞ − εb(1− 1
ρ
)

(2.17)

The resonance wavelength can be obtained as follows

λr = λp

√
ε∞ − εb(1−

1

ρ
) (2.18)

This equation implies that the resonance is redshifted by increasing the ambient refractive

index or reducing the shape factor (increasing AR). The application of an external electro-

static field can also decrease or increase the charge density, leading to redshift or blue shift

of the resonance wavelength, respectively [46]. The dielectric function of metal has been

electrochemically tuned, altering the charge density and surface damping. Indium Tin Ox-

ide (ITO) substrates were employed as top and bottom electrodes with electrolyte for the

capacitive electrochemical cell, and gold particles were immobilized on the bottom substrate

(electrode). The top electrode was grounded and the bottom electrode was biased by a DC

voltage source (swept from 0 to 2.25 V, and then -2.25 V to 0 V). This causes a redshift with

the positive applied bias, and a blueshift and increased absorption with the negative applied

bias [47]. Metallic nanorods support two principal plasmonic modes; transverse mode (T-

Mode), due to light interaction along the short axis of the nanorod at the visible band (520

nm), and the longitudinal mode (L-Mode) which corresponds to light interaction of the long

axis of a nanorod. The longitudinal mode can be tuned from visible to near infrared (NIR)

region of the spectrum by controlling the aspect ratio of the nanorods. For a nanorod array

on a substrate, both T-Mode and L-Mode LSPR can be excited, and a new guided mode is

yielded, which has a strong and narrow resonance [12]. Therefore, the charge density and

the resonance wavelength can be tuned by engineering the shape of metal nanostructures.

This thesis will use nanostructures with different shapes to excite multiple resonances and

exploits this characteristic in improving signal to noise ratio, quantitative analysis, and self-

referencing for LSPR sensors. A thorough study for the dielectric properties of noble metals,

emphasizing gold and silver, is presented below.
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2.2 Permittivity of gold and silver

The dielectric properties for metal nanoparticles presented above considered the Drude model

to determine their resonance wavelength. The model can also interpret the behaviour of

noble metals in terms of their dielectric properties. Fig. 2–4 shows the characteristics of a

metal interacting with a light wave of different frequencies. Some metals meet the plasmon

condition at the visible and NIR range, because their plasma frequencies are located in the

Ultra–violet (UV) band. However, gold and silver support sharper resonances than other

metals such as Aluminum and Copper. Silver supports a sharper resonance than gold due to

its lower electron collision frequency. This can be observed by comparing the imaginary part

of gold and silver in [Fig. 2–5 (b) and (d)]. However, silver is not resistant to oxidation and

may be toxic for some biological materials. The oxidation also alters the material properties

of silver, degrading its plasmonic properties. Therefore, gold is the most practical metal used

in biosensing due to its bio-compatibility and resistance to the oxidation effect.

0 ω<<ω
p

ω
p

ω>ω
p

frequency
-∞

0

ǫ
r

R
e(
ε
)

|A|←   Plasmonic  →|B|←   Transparent    →

Figure 2–4: Behaviour of metal over a frequency range relative to plasma frequency. The
point [A] represents a perfect conductor where the electric field cannot penetrate into the
metal, and point [B] is where the frequency equals the plasma frequency and the E-field
penetrates more in to the metal surface. The metal becomes plasmonic when ω << ωP and
transparent for ω > ωp.

Due to the fast response of the conduction electrons (the free electron or intraband

transitions) compared to the frequency of an incident EM wave with a short wavelength



Chapter 2 Theoretical background and concepts 19

(6 600nm), the EM wave cannot penetrate the metal (εi ≈ 0) [49], and the Drude model

can fit the experimental dielectric permittivity of gold as shown in Fig. 2–6. However, for

shorter wavelngths (6 600nm), the EM wave can penetrate the metal due to the interband

transitions, and the real part of the dielectric permittivity decreases and its imaginary part

increases (accounting for the dissipated EM energy in the metal). In this case, the Drude

model becomes inaccurate for fitting the experinetal dielectric permittivity for gold, because

it does not take into account the interband transitions. Therefore, the dielectric function for

gold deviates from the measured counterpart for wavelengths (6 600nm) as shown in Fig.

2–6. The multiple oscillator model (Drude-Lorentz model) was suggested to overcome the

limitations of the Drude model by considering not only the intraband transitions, but also

the interband transitions (bound electrons) [38]. This model adds one or several Lorentzian

terms to Eq. (2.13). For simplicity, we use the improved dispersion law, based on the

Drude Lorentz model, that was introduced to further improve fitting the permittivity of

gold [50]. It was recommended to add only one Lorantzian term to the model to reduce

the memory requirements (which increase linearly with the number of terms used in the

dispersion model) [50]. Thereofore, the permittivity of gold can be expressed as follows [50]

ε(ω) = ε∞ −
ω2
p

ω(ω + iγD)
− ∆ε.ω

2
L

(ω2 − ω2
L) + iγL ω

(2.19)

where ωL and ∆ε are the strength and the spectral width of the Lorentz oscillators, respec-

tively, and γL is a weighting factor. For gold, ωL ∼ 650 THz, ∆ε ∼ 1.09, and γL ∼ 104.86

THz. Fig. 2–6 compares the Drude and Drude Lorentz models with the experimental values

from Johnson and Christy [48]. The Drude Lorentz model based on a single lorentzian term

provided an improved fit to the experimental values, but it did not correct for wavelengths

below 420 nm. This can be improved by adding more lorentzian terms to account for more

interband oscillations. Five Lorentzian terms were previously used to fit the permittivity of

various metals for energies between 0.1 and 5 eV [51]. Adding more lorentzian terms can

improve the precision, but it would also increase memory requirement for calculating permt-

tivities. Nevertheless, the LSPR wavelength for gold nanostructures is located towards the

red to NIR region, indicating that adding a single lorentzian term can be sufficient to model
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Figure 2–5: Real and imaginary part of the dielectric permittivity for (a,b) gold, and (c,d)
silver. The blue line represents the calculated values using the Drude model, and the red
line represents the measured data from Johnson and Christy [48]. The Drude model does
not take into account the interband transition.

the permittivity. The FDTD results presented in this thesis are based on the Drude-Lorentz

model, whereas the FEM considered the experimental values from Johnson and Christy [48].
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Figure 2–6: The corrected real and imaginary parts of the dielectric permittivity for gold,
calculated using the Drude Lorentz model, and compared with the results obtained from the
Drude model and the measured values by Johnson and Christy [48].

2.3 Methods for light scattering calculation

In order to study the optical properties of the fabricated nanostructures, a proper numerical

method has to be used. This section presents a review of various analytical and computa-

tional techniques to model metal nanoparticles of various shapes.

2.3.1 Mie theory

In 1908, Gustav Mie solved Maxwell’s equations for scattering of light by a homogeneous

sphere [52]. The solution consists of a number of modes according to the size of the sphere

relative to the wavelength [53]. Considering an incident plane wave on an isotropic spherical

particle embedded in a nonabsorbing isotropic medium, Maxwell ’s equations can be written

as [54]

∇× E (r, t) = − ∂H (r, t)

∂t
(2.20)

∇×H (r, t) = ε(r)
∂E (r, t)

∂ t
(2.21)

∇.E (r, t) = 0 (2.22)
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∇.H (r, t) = 0 (2.23)

The time harmonic fields in an isotropic medium satisfy the wave (Helmholtz) equations

∇2 E + k2 E = 0 (2.24)

∇2 H + k2 H = 0 (2.25)

Where k2 = ω2 ε µ0. The scattered fields can be expanded in vector spherical harmonics

because of the symmetry of the sphere. Therefore, the field vectors E and H can be replaced

by ML and NL where the subscript, L, implies that the scattered field Esca can be described

by different spherical harmonics, L=1(dipole), 2(quadrapole).

Esca =
∞∑
L=1

EL (i aLNe1L − bLMo1L) (2.26)

Hsca =
k

ω µ

∞∑
L=1

EL (i bLNo1L + aLMe1L) (2.27)

EL = inE0
2L+ 1

L(L+ 1)
(2.28)

where E0 is the incident field, and N and M represent the first order Legendre and Bessel

functions whereas the subscripts, o and e, represent the odd and even branches of the solution

to the vector form of the Helmholtz equation. The relative amplitudes of the vector spherical

harmonics of the scattered fields are determined by Mie coefficients, aL and bL that are given

by

aL =
n̄ψL(n̄ x)ψ′L(x)− ψL(x)ψ′L(n̄x)

n̄ψL(n̄ x)ξ′L(x)− ξL(x)ψ′L(n̄x)
(2.29)

bL =
ψL(n̄ x)ψ′L(x)− n̄ ψL(x)ψ′L(n̄x)

ψL(n̄ x)ξ′L(x)− n̄ ξL(x)ψ′L(n̄x)
(2.30)

where n̄ = np/nB, np and nB are particle and medium refractive indices, respectively, µ =

µp/µb , x = 2πnpa/λ, is the size parameter, a is the radius of the sphere, λ is the vaccum

wavelength, and ψL and ξL are Riccati-Bessel functions of order L.
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The coefficients aL and bL can be calculated by computer codes and the scattered fields

can be calculated using equations (2.26) and (2.27). The scattering and extinction cross

sections can also be calculated by

Q(L)
sca =

2

x2
(2L+ 1)(|aL|2 + |bL|2) (2.31)

Q
(L)
ext =

2

x2
(2L+ 1)Re(aL + bL) (2.32)

2.3.2 Discrete Dipole Approximation (DDA)

Discrete dipole approximation is a volume integral equation method that is used to simulate

light scattering by particles with sizes comparable with wavelength. DDA or the coupled

dipole method was introduced by Purcell and Pennypacker in 1973 [55]. In this method,

the particle is divided into a number of dipoles (dN). A system of linear equations (N) can

be written in N fields exciting the N dipoles and the solution is used to compute the total

scattering. For particles of dimensions comparable to wavelength, the method requires 10

dipoles per wavelength inside the particle. This number increases with the refractive index of

the particle (np), slowing down the convergence of the iterative solver. The validity criteria

for the size of dipoles dN becomes [56]

dN =
λ

10|np|
(2.33)

For smaller particles (compared to wavelength), the method requires at least 10 dipoles

for the smallest dimension of the nanoparticle. The accuracy of the method is affected by

increasing the refractive index rather than the dimension of the nanoparticle as long as the

above criteria are met [56, 57]. The polarization of each dipole is affected by the incident

plane wave and the electric fields induced by the other dipoles. The superposition of the

fields of all dipoles is considered to be the far field. The method can be extended to deal

with periodic structures of a target unit cell (TUC) consisting of a number of N polarizable

points as shown in Fig. 2–7. Draine and Flatau developed a public program based on this
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technique (DDSCAT 7.1) [58].

The DDA is applicable to arbitrary shape and orientations of particles. It can be applied

in the case of inhomogeneous and anisotropic particles. In this case, it has a limited numerical

accuracy. It converges slowly as the number of dipoles increase. Recalculation is required as

the angle of incidence is changed.

Figure 2–7: Modeling of periodic nanostructures by DDA

2.3.3 Finite Element (FEM) and Finite Difference Time Domain (FDTD) Meth-

ods

For nanostructures of complex shapes, the Mie theory and quasistatic approximation are not

applicable. Alternatively, the solution of Helmholtz Maxwell equations is obtained by the

Finite Element Method (FEM) or Finite difference Time Domain (FDTD) method.

The FEM is a differential equation method solving the vector Helmholtz equation where

the scatterer and the domain are discritized into cells (elements) [59]. The values of unknown

fields are specified at the elements’ nodes and, by enforcing the boundary conditions, are

solved by Gaussian elimination or conjugate gradient method. This technique is suitable to

model arbitrary shaped and inhomogeneous particles. The main drawback of this method is

that it is computationally expensive as the computations are spread over the entire discretized

space (domain) not just the scatterer.
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The FDTD method was first introduced by Yee [60]. It solves Maxwell’s time varying

curl equations. Space and time derivatives are approximated by a finite difference scheme

(space and time discretizations). Particles are embedded in a computational domain and

absorbing boundary conditions are forced to model the particle in open space. In the case of

periodic structures, the periodic boundary conditions are enforced along the periodic planes.

OptiFDTD is a commercial software that is based on this technique [61].

Other methods can be used for simple nanostructures. For example, the multiple mul-

tipole method is widely used in near field problems for spherical and axially symmetric

particles [62]. The T-matrix method was introduced by Waterman in 1965 [63] for a single

homogeneous particle. It was used to compute the scattering characteristics of arbitrary

clusters of nonspherical particles by Peterson and Ström [64]. This method is based on the

vector spherical wave functions (VSWFs) of the incident and scattered fields. The T-Matrix

method depends on the particles size parameter, its shape, its refractive index, and on the

particles orientation with respect to the coordinate system. Thus, the scattering by a ro-

tated particle or orientation averaged scattering can be computed. The standard T-matrix

method is restricted to particles with aspect ratio of about 1–4 [65].

Choosing a proper technique depends on the particle size, shape, the dielectric constant

of the material, and if the particle is homogeneous or inhomogeneous. Since the FDTD and

FEM are capable to model nanoparticles with arbitrary shapes without restrictions (such as

DDA), these methods are adopted in this thesis to handle modeling the proposed metallic

nanostructures. COMSOL multiphysics, based on the FEM, is used to study the plasmonic

properties and the electromagnetic field distribution associated with the nanostructures [66];

and OptiFDTD, which is based on FDTD method [61], to calculate transmission curves

(reference matrix) for the projection method. The results of both methods are first compared

with those based on Mie calculations to validate the modeling accuracy, then the FDTD and

FEM will be used in the forthcoming chapters.
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2.4 Spectroscopy techniques for LSPR measurement

Unlike propagating SPR, simple methods can be used to excite the LSPR. The LSPR mode

can be simply excited by illuminating the nanostructures with a light source, regardless of

the incident angle. This does not require a complex instrumentation or scanning optics as

those used with propagating SPR sensor. There are many platforms that are used in LSPR

detection, including bright field microscopy, dark field microscopy and spectroscopy, and

direct illumination of LSPR sensor, which is the simplest form. This section addresses these

platforms in some detail.

2.4.1 Bright and Dark field Microscopy

Bright field microscopy provides a direct measurement of extinction (absorption and scat-

tering) of nanostructures, as shown in Fig. 2–8 (a). It can probe an area that is orders

of magnitude smaller than that probed in the spectrometer set-up. To reduce the effect of

the scattered light from the substrate, an objective lens with low numerical aperture (NA)

should be used. However, the unwanted scattered light may dominate if the density of the

nanoparticles is extremely low (such as single particle detection). This can be improved by

using a dark field microscope.

Dark field microscopy has been widely used in protein association [67]. The advantage of

dark field microscopy is that it reduces the effect of background noise and it can measure the

scattering from even a single nanoparticle. Intuitively, the absorption cross section dominates

over the scattering cross section for small nanoparticles (< 100nm). Therefore, bright field

microscopy is adopted instead of dark field microscopy for absorption measurements. Fig.

2–8 (b) demonstrates a basic dark field microscopy. A condenser lens shines a hollow light

cone on the nanostructures, and only the scattered light is collected by the objective. The

direct light rays are blocked by an opaque central screen. The NA of the dark field objective

should be adequately high to collect enough photons. Oil immersion objectives can be used

as they satisfy this condition (high NA). However, the NA of the objective should be smaller

than that of the condenser to avoid collecting the direct light from the source (the light
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cone). An aperture stop can also be used to reduce the working aperture in the case of

high NA objectives. A recent study has reported advances of dark field microscopy in LSPR

imaging [68].

Figure 2–8: Schematic for Bright field (a) and Dark field (b) microscopy concepts.
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2.4.2 Reflection measurement

Similar to dark field microscopy, measuring the reflection from the nanoparticles can be

adopted when the scattering cross section dominates over the absorption cross section, and

therefore contributes significantly to the total extinction efficiency of the nanoparticle. The

reflection measurement can be performed by using a diffuse reflectance probe, where the

central fiber optic carries the incident beam, and the scattered light is collected by fiber

optics arranged around the circumference of the probe, and analyzed by a spectrometer, as

shown in Fig. 2–9 (a). The reflection measurement can also employ an integration sphere,

where the nanostructures are placed inside a reflecting sphere, facing the incident light beam,

and the scattered light is collected through a probe placed at 90◦ from the main optical path

to avoid collecting photons from the direct incident light. A schematic for this platform is

shown in Fig. 2–9 (b).

Figure 2–9: LSPR spectroscopy based on reflection measurements, employing (a) reflecting
probe, and (b) integration sphere.
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2.4.3 Direct transmission of light

This platform represents the simplest method to excite the LSPR mode, but it is impacted

by noise. A schematic, illustrating this method, is shown in Fig. 2–10. The measured

results presented in this thesis are based on this approach, as the nanostructures are directly

excited by the light beam and the transmitted light is collected by a photodetector, within a

monochromator-based spectrometer (Cary 5000 spectrometer). An aperture is used to limit

the direct light from the source and hence reduce the noise.

Figure 2–10: LSPR spectroscopy based on the direct measurement of transmitted light.

2.5 Sensor performance characteristics

This section defines sensor characteristics that are used in comparing different sensing plat-

forms. These characteristics are related to the bulk RI sensitivity and adlayer sensitivity. As

illustrated in Fig. 2–11 (a) the bulk RI sensitivity relates the sensor response to refractive

index changes in the buffer, whilst the adlayer sensitivity is directly related to the adlayer

thickness in surface binding experiments. The adlayer and bulk RI sensitivities are related

to the EM decay length. Short EM decay length indicates a broad resonance curve and low

bulk RI sensitivity due to the short sensing probe depth. However, the effect of EM decay

length may be less pronounced in the case of sensitivity to adlayer thickness, especially for

small analytes. Fig. 2–11 (b) illustrates this concept based on SPR and LSPR sensors.

The EM decay length also affects other characteristics, such as the signal to noise ratio, RI

resolution and limit of detection. The remainder of this section provides more details about



Chapter 2 Theoretical background and concepts 30

these characteristics.

Figure 2–11: (a) Schematic for a metal nanoparticle surrounded by an adlayer of a refractive
index (na) and buffer (nB). The short EM decay length associated with metal nanoparticles
increases specificity to the adlayer and reduces the effect of bulk RI change. (b) A comparison
between LSPR with SPR sensor in terms of EM decay length.

2.5.1 Sensitivity

Sensitivity is the primary characteristic of a sensor. However, in some applications, we are

mainly concerned with sensitivity to changes in bulk refractive index, whereas for others

(in particular for biosensing) we are mainly concerned with sensitivity to binding of adlayer

molecules to the surface. For bulk refractive index sensing we can express the bulk RI

sensitivity as the rate of change in the sensor response to the changes in bulk refractive

index (nB), as shown in Fig. 2–12.

SB =
∂R

∂nB
(2.34)

Based on the quasistatic approximation, the sensitivity for a metal nanosphere is given

by [69]

SB =
−4
dεr
dλ

nB (2.35)

Here, the sensitivity for a nanoparticle of an arbitrary shape and dielectric constant is to be
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determined. The resonance occurs when εr = (1−1/ρ) εb [Eq. (2.12)]. Substituting εb = n2
B,

this becomes

εr = (1− 1/ρ)n2
B

Differentiating both sides with respect to λ, we obtain

dεr
dλ

= 2nB(1− 1/ρ)
dnB
dλ

(2.36)

where SB(λ) = dλ/dnB is the bulk RI sensitivity. Substituting in Eq. 2.36

dεr
dλ

= 2
nB
SB

(1− 1/ρ)

This can be solved for SB as follows

SB(λ) =
2nB
dεr
dλ

(1− 1

ρ
) (2.37)

The bulk RI sensitivity can also be derived from Eq. (2.18)

λ2
r

λ2
p

= ε∞ − εb(1− 1/ρ) ≡ ε∞ − n2
B(1− 1/ρ) (2.38)

Differentiating both sides with respect to λr, we obtain

λr
λ2
p

= −nB
dnB
dλr

(1− 1/ρ)

Substituting SB(λr) = dλr/dnB, we obtain

SB(λr) = nB(
1

ρ
− 1)

λ2
p

λr
(2.39)

This equation relates the RI sensitivity to the shape factor regardless of the dielectric prop-

erties of metal nanoparticles, explaining why nanorods exhibit higher sensitivity than that

of nanospheres.

From Eq. (2.38), (1−1/ρ) = (λ2
r/λ

2
p−n2

∞)/n2
B. Substituting in Eq. (2.39), the sensitivity
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of metal nanoparticles–regardless of their shapes– can be obtained as follows [70]

SB(λr) =
λr
nB

(1−
λ2
p

λ2
r

n2
∞) (2.40)

where λp ∼ 136nm is the plasma wavelength for gold and silver, and n∞ ∼ 1.9, 3.1 for silver

and gold respectively, is the background refractive index originating from the polarizability

of the bound electrons in the d-band. Therefore, silver always provides a higher sensitivity

than that of gold for nanoparticles of the same shape. The effect of the shape factor is

included in the resonance wavelength, λr in Eq. (2.40) as reducing the shape factor (high

AR) increases λr, and hence increases the sensitivity.

Wavelength [nm]
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nB

nB+∆ nB

∆ λ

Figure 2–12: Typical Response of LSPR sensor (extinction in the figure, but it can be
transmission). The red shift is due to change in the bulk refractive index.

The sensitivity to a biological adlayer thickness d; and the sensitivity to the adlayer

refractive index na can be determined as follows

Sna =
∂R

∂na
, Sd =

∂R

∂d
(2.41)

In a sense, the thickness of a bimolecular adlayer causes a shift in the resonance wave-

length, but its RI determines the amount of that shift, and hence it is important to take the

adlayer RI into account when comparing different sensors based on the adlayer sensitivity.
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The adlayer thickness, the adlayer refractive index na and bulk refractive index nb contribute

to the effective refractive index neff . Therefore, the adlayer sensitivity can be given by [71]

∂R

∂d
=

∂R

∂neff

∂neff
∂d

This equation suggests that the adlayer sensitivity is determined by the bulk RI sensitivity

and at what rate the adlayer thickness contributes to the effective refractive index neff . The

above equation can be rearranged as follows

∂neff
∂d

=
Sd
SB

(2.42)

where Sd = ∂R/∂d, and SB = ∂R/∂neff This equation will be used in Chapter 5 to compare

the LSPR modes associated with gold nanocrescent structures.

2.5.2 Figure of Merit (FoM)

Figure of merit provides the ratio of a sensor’s sensitivity to the line width: the full width

at half maximum (FWHM) of resonance curve. Therefore, FoM can be used to compare

different sensors as higher FoM is desirable. Referring to Fig. 2–12, the spectral full width

at half maximum response (FWHM) is used to calculate the sensor FOM as follows [72]

FoM =
SB

FWHM
(RIU−1) (2.43)

The FWHM has been previously determined based on the quasistatic approximation [69]

FWHM =

∣∣∣∣∣ 2 εi(λr)

dεr
dλ

∣∣∣
λ=λr

∣∣∣∣∣
The denominator can be substituted with the differentiation of Eq. (2.13)

FWHM =
∣∣∣− εi(λr)λ2

p

λr

∣∣∣ (2.44)
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The FoM for metal nanoparticles can be determined as

FoM =
∣∣∣ SB
FWHM

∣∣∣ ≡


2nB

εi(λp)
, nanosphere

nB

εi(λr)
(1
ρ
− 1), spheroid or nanorod.

(2.45)

Therefore, the FoM is directly related to the material properties of the metal used to syn-

thesize the nanoparticles, as metals with high losses (large imaginary dielectric constant)

yield broad resonance curves and degrade the FoM. Silver nanoparticles support a sharper

resonance curve than that associated with gold nanoparticles, due to the lower imaginary

dielectric constant and higher bulk RI sensitivity. Nanorods and spheroids possess a higher

FoM than that of nanospheres, due to their increased bulk RI sensitivity and size (shape

factor). However, as the dimension increases, radiation damping arises, broadening the

resonance curve.

2.5.3 Signal to Noise ratio

Signal to noise ratio is defined as the average measured response (R) to its standard deviation

(σR). The measured sensor response can be the resonance shift, the change in measured

intensity, or the change in estimated refractive index (which is the case in the projection

method, undertaken in this thesis). Mathematically,

SNR =
R

σR
(2.46)

2.5.4 Refractive index resolution and Limit of Detection(LoD)

Sensing platforms yield different quantities (wavelength, intensity, angle) as a response to

changes in refractive index or biding events. It is proper to characterize these sensors based

on the minimum detectable change in refractive index (indicating the RI resolution) if the

sensor is intended for bulk RI sensing experiments, or the minmum detectable concentration

of a target analyte (LoD) for surface binding sensing applications. The RI resolution can

then be predicted as the RI change that corresponds to a sensor response equivalent to the
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standard deviation of the sensor response to the base sample. This can be expressed as [73]

σRI =
σR
SB

(2.47)

Here the sensitivity is used to translate the sensor response (intensity difference, wavelength

shift, or angle shift) into bulk refractive index resolution (in RIU). Similarly, the LoD can be

predicted as the minimum concentration of analyte that produces a sensor response equal to

3 times the standard deviation of a response to a blank sample (buffer) [73]. Mathematically,

this can be expressed as follows

RLoD = 3 σR (2.48)

The LoD can be predicted in real time sensing experiments based on low concentrations of

analyte and determining their standard deviation σR. It can also be determined based on

the slope of a sensor response against various concentrations of the analyte, as shown in Fig.

2–13 (c)

LoD =
3 σR
SA

(2.49)

where SA = dR/dA is the sensitivity with respect to the analyte concentration, which is

proportional to the adlayer sensitivity Sd defined in Eq. (2.41). This suggests that the limit

of detection can be improved by increasing the sensitivity and the RI resolution σRI of a

sensor.

In terms of SNR, the RI resolution and limit of detection are determined when SNRσR =

1, and SNRLoD = 3, respectively. This suggests that a higher SNR is used to determine

the LoD to tolerate the uncertainties due to different sensing experimental conditions, such

as surface chemistry (ligand immobilization) and ligand–analyte binding. A lower SNR is

used in determining RI resolution as it is extracted from bulk RI sensing experiments, which

are not impacted by the aforementioned effects (surface chemistry and binding events). Fig.

2–13 (e) shows the PDF distribution of the sensor response with and without the presence

of analyte when using σR as a reference. The probability of obtaining false negative or

positive results is 30%, whereas this uncertainty can be reduced to ∼ 5% when the LoD
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(corresponding to 3σR) is used as a reference, as shown in Fig. 2–13 (e). Therefore, the

limit of detection is chosen in characterizing a biosensor to increase the precision. To obtain

even a higher precision, the limit of quantitation or quantification LoQ can be used, as it

corresponds to a sensor response of 10 σR/SA.

Figure 2–13: (a) Real time LSPR sensing of bulk RI change.(b) A sensogram for LSPR sensor
kinetics. Req is the equilibrium response when the association and dissociation become equal,
corresponding to an analyte concentration Aeq. (c) Determining the LoD based on 3σR and
the slope SA of the sensor response to various sample concentrations, which is proportional
to the adlayer sensitivity ∼ SA ∝ Sd. (d) PDF of sensor response to a blank sample (no
analyte is present) with zero mean and standard deviation σR. A sensor response with σR
is obtained with analyte concentration [A] = A0, exhibiting 30% error representing either
false negative β− or false positive β+ results (the shaded area under the overlapped normal
distributions). (e) PDF of sensor response without analyte (blank) and with analyte of a
concentration [A] ≈ LoD, causing a response ∼ 3σR. Here, the probability of obtaining false
negative β− or false positive β+ results decreases to 5%, justifying the adoption of the LoD
in characterizing different sensors. In some cases, a concentration of the LoQ is used based
on 10 σR response to increase the accuracy of the results.
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2.6 Previously demonstrated nanostructures and LSPR sensors

The plasmonic properties of metal nanoparticles have driven considerable advances in a wide

range of fields including biosensing. This section reviews the progress in LSPR sensing.

Although the phenomenon of light interaction with nanoparticles was discovered by

Michael Faraday in 1857 [74], and a physical understanding was provided by Mie in 1908 [52],

the first sensor, exploiting the plasmonic properties of metal colloids, was reported in 1998

by Englebienne [75]. Since 2000, the field has witnessed an explosive growth, starting

from the synthesis of gold nanorods, improving the sensitivity and tunability of LSPR reso-

nance [76–81], as metal nanoparticles and nanorods have represented the first sensing plat-

forms for a wide range of sensing applications.

Due to the progress in nanofabrication and engineering metal nanostructures, metal

nanostructures have exhibited attractive optical phenomena, such as the extra–ordinary

transmission of light (EOT). When a light wave strikes a periodic structure of subwave-

length aprtures in a metal film, the transmitted light can be orders of magnitude larger

than that expected by standard aperture theory [83–86]. This phenomenon has fueled an

explosion of interest in biosensing applications [87–89], a hybrid biosensing platform molding

the flow of light and fluidics was demonstrated in [89], where suspended plasmonic nanohole

arrays were used as plasmonic sensors and nanofluidic channels, connecting both sides of the

metal film to transport biological samples, as shown in Fig. 2–14. This sensor features 630

nm/RIU bulk RI sensitivity, and its main advantage is the analyte transport through the

nanoholes, maximizing the ligand–analyte binding events.

Other platforms based on metallic nanostructures have emerged to improve the FoM

and bulk RI sensitivity. A nanorod metamaterial has improved the sensitivity based on

the guided mode, stemming from the excitation of the transverse and longitudinal modes

together. Similar to propagating SPR, the guided mode excitation requires a controlled angle

of incidence and maintaining p-polarization of the incident light wave [12]. Gold nanoshells

were previously used to excite a hypridized mode, featuring increased sensitivity to bulk

refractive index [29].



Chapter 2 Theoretical background and concepts 38

Figure 2–14: Periodic nanohole structures in a thick metal film, illustrating the extraordinary
transmission of light. The resonance peak can be controlled by the diameter and the pitch
of the nanoholes.

The advantage of tunable resonance of metallic nanostructures has paved the road to-

wards more applications, such as multiplexing and self-referencing. Spectral multiplexing is

challenging in the case of propagating SPR. A wavelength division multiplexed SPR sesnor

was established by locating a dielectric layer over a part of the SPR surface or using a spe-

cial prism as shown in Fig. 2–15, exciting two resonances [90]. Such system is complex and

provides a limited number of sensing channels (only two channels).

Figure 2–15: (a) A multiplexed SPR platform based on multiple resonant angles associated
with a special prism, yielding (b) a multiple resonance curve. (c) A multiple resonance curve
based on a LSPR sensor, employing metal nanorod structures.
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Unlike the wavelength division mutiplexed SPR sensor, gold nanorods can yield more

sensing channels with simpler instrumentation by tuning their aspect ratio [91–93]. The

nanorods were fabricated by the seed-mediated growth [77], and then surface activated by

alkanethiols to attach the antibodies to produce gold nanorod molecular probes (GNRMP).

The nanorods had aspect ratios 2.1, 4.5, and 6.5, and each was functionalized to a different

target analyte, as illustrated in Fig. 2–15 (b). Aggregation and cross talk are the main

disadvantage of such multiplexed sensor as the rods are not stable in the solution.

A recent work has overcome the aggregation of nanorods, where antibodies were thiolated

and used to functionalize nanorods of different aspect ratio [93]. The functionalized nanorods

were then bound to different locations on a glass substrate. The antigens were then injected

to the sensing chip, binding with their capturing antibodies. The number of channels can be

increased by using the micro-channel spectroscopy system. The multiple nanorods presented

in this thesis can be used for multiplexed sensing with improved isolation and reduced surface

chemistry procedure (used in [93]) as the nanorods are imprinted directly on a substrate

using the side wall lithography method. However, this thesis will use the multiple resonance

nanostructures in self-referenced LSPR sensing and leave the multiplexing for future work.

Table 2.2 summarizes the characteristics of reported LSPR sensors based on synthesized and

patterned nanostructures.
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Table 2.2: Characterisitics of reported LSPR sensors

structure Dimension λLSPR characteristic SB Ref.
[nm] [nm] [nm/RIU ]

Au spheres 15 – 50 450 – 600 shape dependent 44 – 76 [26]
Ag spheres 35 450 – 700 shape dependent 161 [9]
Ag triangles 35 450 – 700 shape dependent 197 [9]
Nanostars core:30 – 50 550 – 750 multiple- 218 [94]

cone tip:10 – 60 resonance
Nanodisks pitch:162,340 500 – 1000 Anisotropic 170,174 [95]

property
Nanorods L:40 – 74, 653 – 846 longitudinal 195 – 288 [26]

w:17 mode
Hollow Au Diameter:3.5 550 – 750 shape dependent 408 [26]
nanoshell wall thick:4.5

Nanocubes 100, 350 – 650, sharp– 165, [96]
40 538 quadrupole mode 83 [20]

Au pyramids 27 – 189, 645 – 1096, shape dependent 150 – 540 [20]
Ag nanoprism 21 – 22 940 shape dependent 470 [97]

coated Au
Au nanorings 75 – 150 1058 – 1545 shape dependent 880 [98]
Au nanorice 9.8 – 27.5 1160 hybridized- 800 [28]

hematite core mode

2.7 Established data extraction methods

Metallic nanostructure-based sensors can operate either in wavelength or intensity interro-

gation modes; in the wavelength interrogation mode, the sensor is excited by a broadband

light beam and the spectrum is collected in real time; for the intensity interrogation mode,

a monochromatic laser beam excites the nanostructures, and the transmitted beam is fo-

cused on a photodetector that measures the change in the intensity with respect to changes

in bulk refractive index or surface binding events. The latter is more impacted by noise

due to the intensity fluctuations of the light source, and hence the detection error is more

pronounced in this case. The dip-finding method can be used to process the sensor data

where the dip of the resonance curve is tracked simultaneously and a sensorgram can be

generated for binding events in real time [99]. Several data processing methods have tar-
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geted SNR improvement of conventional SPR sensors: the centroid and full-width-at-half-

maximum tracking method [100,101], principle component and locally weighted parametric

regression [102], optimal linear data analysis [103], polynomial curve-fitting of the measured

curve [104], statistical hypothesis testing [105], and a double projection method [106]. The

integration method was applied to nanohole-structure sensors [88] — based on the extraor-

dinary transmission of light arising from the propagating surface plasmon resonance [83–86],

and the normalized-difference integrated-response method was used to improve the sensitiv-

ity of multispectral thin film biosensing imaged with 3-D photonic crystals [107].

The dynamic-baseline centroid method [101] uses a threshold value (usually the FWHM)

to estimate the resonance wavelength (λr) as follows

λr =

∑
j j (Rthresh −Rj)∑
j(Rthresh −Rj)

(2.50)

where Rj are the transmission values below the threshold value (Rthresh), and (j) correspond

to the wavelength data points. The fixed boundary method uses the same wavelength range

over which the centroid calculations– for all the measured spectra–are performed. This

simplifies the calculations as follows [108]

λr =

∑
j j Rj∑
j(Rj)

(2.51)

where Rj spans the response (transmission) values over the wavelength range. The integrated

response method was introduced in order to improve the performance of a nanohole SPR

sensor and has previously been compared to the peak shift method (dip-finding method) and

normalized difference integrated response [88]. The integrated response method is based on

intensity difference calculations, Iint, using the following equation [88]

Iint =

(ˆ λ2

λ1

∣∣D2(λ)−D2(λ)
∣∣ dλ)1/2

(2.52)

where D(λ) = Rref (λ)−R(λ) is the difference between the reference and measured signals,

and D2(λ) is the mean of the total squared differences. The normalized difference integrated
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response (NDIR) technique uses data within a wavelength range (λ1 − λ2) by applying the

following equation [107]

NDIR =

ˆ λ2

λ1

∣∣∣∣Rref (λ)−R(λ)

Rref (λ)

∣∣∣∣ dλ (2.53)

where Rref (λ) and R(λ) are the reference and measured signals, respectively.

In chapter 4 I will introduce the projection method to extract the refractive index directly

from measured data with increased accuracy and precision, and compare it to the methods

described above.

2.8 Self–referenced SPR and LSPR sensing

This section explores methods used in implementing self-referenced sensors. In propagating

SPR sensors, a reference channel is required to compensate for artifacts due to temperature

drift and bulk RI change [109]. However, the reference sensing channels are not identical

(for example: different metal thickness) due to fabrication imperfections, the difference in

analyte transport in both channels [110], and the uncorrelated effects in each channel during

the binding events (presence of air bubbles and changes in speed of fluid flow in either

channel [111]). These artifacts have motivated many researchers to seek for alternative

methods where the reference channel can be abandoned to avoid any external or intrinsic

effects in the two-channel sensing platforms. A self referenced SPR sensor has previously

employed the excitation of a dual mode SPR (with different penetration depths) using two

laser sources [112]. This can be challenging as it further increases the complexity of the

instrumentation. A dual-mode SPR platform was used as reference/sensing channels, but

each mode was excited at a different location on the metal surface, degrading the accuracy

of the system [113]. Alternative approaches exploited the excitation of the long range and

short range surface plasmons on the same location of the SPR surface [114] [115] based on

the linear resonse model. Similarly, the linear response model was applied to gold nanorod

structures, U-shaped structures and propagating plasmon waveguide resonance biosensor to

achieve self-referenced sensing [116–118]. Although various approaches have been introduced
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for self-referencing SPR platforms, less effort has been previously paid to self-referenced

LSPR sensors. This section highlights the established progress in LSPR self-referencing and

presents the linear response model, that will be revisited in the remainder of the thesis.

2.8.1 Nanorod structures

Gold nanorods have been used in distinguishing surface binding interactions from interfering

bulk interactions by utilizing the longitudinal and transverse modes [116]. Assuming that

the longitudinal and transverse surface plasmon resonances are linearly dependant on the

changes in the solution refractive index and to the surface coverage of bound analyte. The

response at each resonance can be expressed as follows

∆λL = SλL∆nB + SsL∆Cs (2.54)

∆λT = SλT∆nB + SsT∆Cs (2.55)

where SλL and SλT represent the sensitivity of each mode to the bulk refractive index, ∆nB;

and SsL and SsT represent the sensitivity to surface binding, ∆Cs, of the longitudinal and

transverse plasmon modes respectively. Provided that the bulk and surface sensitivities and

transverse and longitudinal resonance wavelength shifts are known, the surface coverage and

bulk index changes can be calculated directly from the above equations.

2.8.2 U-shaped nanostructures

Similar to nanorod structures, U-shaped structures support three plasmon resonances that

can distinguish the nonspecific and specific interactions from the bulk interations [117].

Assuming a linear relationship between each LSPR wavelength shift ∼ ∆λi and surface

coverage of specific , nonspecific binding, and the bulk refractive index of the solution [117].

∆λi = SB,i ∆nB + SS,i ∆CS + SNS,i ∆CNS
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The bulk RI change (∆nB), the specific surface coverage (∆CS) and non-specific surface

coverage ∆CNS can be directly calculated from three equations (i=3), corresponding to

the three resonance shifts employing the bulk sensitivity (SB,i), and specific and non-specific

surface binding sensitivities, SS,i and SNS,i. This model assumes that the nonspecific binding

occurs on the substrate of the sensing substrate and the specific binding corresponds to the

binding events on the functionalized metal surface and the nonspecific binding at a distant

location from the metal surface (on the substrate). However, this assumption ignores any

nonspecific binding that may occur at the metal surface with interfering biomolecules. In

addition, the fabrication of such structures has required an expensive and time-consuming

fabrication methods; electron beam lithography was used in [117].

2.8.3 Self-referenced sensor based on plasmon waveguide resonance biosensor

A plasmon waveguide resonance biosensor was introduced as a self-referenced SPR sensor

[118]. Its configuration consists of a conventional SPR sensor loaded with a dielectric layer.

This dielectric layer guides transverse electric (TE) along with transverse magnetic (TM)

modes supported by the conventional SPR. The dual–mode platform was used as a self-

referenced sensor, assuming a linear dependence of the angular shift (at each polarization)

on the adlayer and bulk RI change. Similar to the system of equations developed for the

gold nanorods (section 2.8.1), the adlayer and bulk RI change can be estimated.

In chapters 5 and 6, novel methods, based on the maximum likelihood estimation, will

be introduced to improve self–referencing and enhance the precision and accuracy of the

estimated adlayer and bulk RI change.

2.9 Kinetics analysis for binding events

This section presents a brief overview of the principles of kinetics in real time biosensing.

The response of an affinity biosensor can be represented by three phases: (1) the association

phase, when the analyte binds with the biorecognition element (Ligand); (2) equilibrium

phase, or the steady state of the sensor response; and (3) the dissociation phase, when the

concentration of the analyte in the flow cell becomes zero, and the sensor response starts to
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decay exponentially with time.

Mathematically, the sensor response as a function of time for a given analyte concentra-

tion [A] can be expressed by the following relationship [119]

R(t) =


Rmax[A]
KD+[A]

[
1− exp(−kon [A] + koff ) t

]
association

R0 exp(−koff (t− t0)) dissociation

(2.56)

where kon and koff are the association and dissociation constants. Rmax denotes the maxi-

mum sensor response, which is reached when all the immobilized ligands bind with the target

analyte, and t0 and R0 represent the initial time and sensor response when the analyte is

washed out of the flow cell. KD is the affinity constant, KD = koff/kon. This can be used

to reproduce sensograms published by Biacore [120], illustrating the effect of the binding

coefficients kon and koff , and different concentrations on the the sensing kinetics, as shown

in Fig. 2–16.
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Figure 2–16: Typical sensograms for sensing kinetics of different values for the association
and dissociation constants and analyte concentration.
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2.10 Summary

This chapter navigated through the basic concepts related to the plasmonic properties

of metallic nanoparticles, and highlighted the advantages of adopting metal nanos-

tructures for numerous sensing applications. The chapter reviewed the analytical and

numerical methods used to calculate the optical cross sections of nanoparticles and

other complex nanostructures. The results indicate that metallic nanostructures and

nanoparticles possess remarkable plasmonic properties, such as the tunable resonance

wavelength and multiple resonance excitation. Their advantages as biosensors include

cost–effectiveness, simple instrumentation, and the miniaturized dimension (requiring

reduced sample volume and motivating towards a Lab on Chip or point of care sensing

applications). The chapter manifested a diverse range of sensing applications based

on metallic nanostructures. Lastly, the chapter provided brief definitions for sensor

parameters that will be employed throughout the remainder of the thesis.



3
Numerical and experimental study of the

fabricated structures

This chapter presents a complete study of the fabricated nanostructures, including the simu-

lated and measured extinction cross sections, and their surface characterization using Scan-

ning Electron Microscope (SEM). The fabricated nanostructures are also characterized by

Near Field Scanning Optical Microscope (NSOM) that also provides Atomic Force Micro-

scope (AFM) imaging. This chapter first validates the numerical methods by comparing the

results to the calculated Mie solution for a sphere. COMSOL-Multiphysics v5.2, a commer-

cial package based on the Finite Element Method (FEM), is used to calculate the absorption,

scattering and extinction cross sections, as well as the local electric field distributions sup-

ported by the nanostructures. The Finite Difference Time Domain (FDTD) modeling is

47



Chapter 3 Numerical and experimental study of the fabricated structures 48

based on the Drude Lorentz model for the dielectric properties of gold, whereas the FEM is

based on the reported refractive index (RI) values by Johnson and Christy [48].

3.1 Validation of FEM and FDTD models based on Mie theory

This section describes the modeling of the nanostructures based on the FEM and FDTD

methods, and compares the results with reference data. The extinction, scattering, and

absorption cross sections for gold nanoparticles calculated using Mie theory and the quasi-

static model are used as a reference.

The FEM simulation used a far field sphere surrounding the nanoparticle, and five per-

fectly matched layers to model free space (eliminating the reflections from the boundary).

The dielectric permittivity for gold is obtained by interpolating the reported values by John-

son and Christy [48]. The magnetic field is related to the incident electric field by

Hinc =
1

η
k̂× Einc (3.1)

where k̂ is the propagation direction of the incident plane wave, and η ∼
√
µ/ε is the medium

characteristic impedance, ε and µ are the electric permittivity and magnetic permeability

of the medium. The Poynting vector provides the incident energy flux density for time

harmonic EM field

Pinc =
1

2
Re{Einc ×H∗inc} ≡

1

2η
|Einc|2k̂, (W/m2) (3.2)

The total energy losses by the particle includes the conduction, polarization and magnetic

losses, and is expressed as follows

Qloss =
1

2
Re{Jt.E

∗ + jωB.H∗}, (W/m3) (3.3)

where the total current density Jt includes the conduction and displacement currents, Jt =

σE + jωD, and σ denotes the conductivity. The absorption rate can be calculated by
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Figure 3–1: Energy flux Pinc of an incident EM field on a metal nanoparticle with volume
Vp. The rate by which the incident field is scattered is obtained by integrating the energy
flux of the scattered field Pscat over the surface of the imaginary sphere Ω. The vector n̂
normal to the imaginary sphere is also shown.

integrating the energy losses over the nanoparticle as follows

Wabs =

˚

Vp

Qloss dV, (W ) (3.4)

The scattering rate is calculated by integrating the Poynting vector for the scattered field

Pscat over the surface of an imaginary sphere around the particle Ω, as shown in Fig. 3–1

Wscat =

‹

Ω

Pscat · n̂ dΩ (3.5)

=
1

2

‹

Ω

Re{Escat ×H∗scat} · n̂ dΩ, (W ) (3.6)

where Escat and Hscat are the scattered electric and magnetic fields, respectively, and n̂ is

a unit vector normal to the imaginary sphere. The scattering and absorption cross sections

can be calculated as the ratio of scattering and absorption rates by the incident energy flux
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as follows

Cscat =
Wscat

Pinc

, Cabs =
Wabs

Pinc

(3.7)

where Wscat and Wabs are the rates at which the energy is scattered and absorbed by the

nanoparticle, respectively, and Pinc is the irradiance of the incident intensity flux (W/m2).

The extinction cross section was also calculated based on the optical theorem (OT), by

using a reference point along the forward direction of the incident plane wave (Einc e
−kz).

The wave amplitude in the far field region is related to both incident and scattered waves as

∼ [e−kz + f(θ)e−jkr/r], where f(θ) is the scattering amplitude at a certain scattering angle

(θ). The optical theorem calculates the extinction cross section based on the scattering in

the forward direction (θ = 0) as follows

Cext =
4π

k

Im{f(0)}
Einc

(3.8)

Fig. 3–2 compares the results obtained by COMSOL Multiphysics and Mie theory. The

results match each other, confirming the damping effect associated with nanoparticles larger

than 100 nm as scattering becomes dominant. Absorption cross section contributes more

than the scattering cross section to the extinction cross section in the case of the small

particle, 80 nm diameter sphere, as expected by the quasistatic approximation.
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Figure 3–2: FEM results and Mie calculations of (a) extinction, (b) absorption and (c)
scattering cross sections for a gold sphere with a diameter of 80 nm. (d, e, f) Repeated
calculations for a sphere with 120 nm diameter.

The OptiFDTD was also used to estimate the absorption, scattering and extinction

efficiencies associated with the gold sphere, as OptiFDTD can calculate only transmission

and reflection efficiencies. Fig. 3–3 shows a schematic for the simulation domain used in

OptiFDTD to model periodic nanospheres, as a single nanosphere is placed in the simulation

domain (a cube in this case), and periodic boundary conditions were enforced along the

boundaries in x and y directions. To minimize reflections from the simulation domain,

Perfect Matched Layer (PML) boundary conditions were enforced along the boundaries

in z direction (behind the input and output observation areas). The observation areas

(rectangles) are placed behind and in front of the nanoparticle to collect the reflected and
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transmitted power, respectively.

Figure 3–3: Schematic for the simulation domain used in OptiFDTD to calculate reflection
and transmission efficiencies of periodic gold nanoparticles. Periodic boundary conditions
were enforced along the x and y direction boundaries of the simulation domain, whereas
PML boundary conditions were enforced along the boundaries in z direction.

The extinction efficiency is estimated as Qext ∼ (1 − T )/max(1 − T ), where T is the

calculated transmission efficiency, T = (Ptrans/Pinc, where Ptrans and Pinc are the transmitted

and incident power, respectively. The scattering efficiency Qscat was then calculated as

Qscat ∼ R/max(1− T ), where R is the reflection efficiency, calculated at the reflection port

in optiFDTD as R = Pref/Pinc, where Pref is the reflected power, received at the reflection

port, which is placed in the far field region. The absorption efficiency Qabs can then be

estimated as Qabs = Qext − Qscat. Fig. 3–4 compares the FDTD results to those obtained

from the FEM, Mie, and optical theorem. The FDTD revealed wide resonance curves at

the same resonance wavelength location obtained by the other methods. The cubic mesh

used in FDTD method is responsible for broadening the curves (staircase effect along the

curved structures). The tetrahedral mesh, employed in the FEM, mitigates for this effect and

improves the results as shown in Fig.3–4. However, the fabricated structures themselves yield

broad resonance curves due to their surface roughness (effect of fabrication imperfections).
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Mie theory is used here mainly to validate the FEM and FDTD modeling. The FDTD and

FEM methods are advantageous in modeling more complex nanostructures, and they will be

used in the remainder of the thesis.
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Figure 3–4: (a) Extinction, (b) absorption and (c) scattering efficiencies, associated with a
60 nm–radius gold sphere, calculated by different methods in order to validate their accuracy
based on Mie theory.

3.2 Gold nanotube structures

Nanotube structures support a tunable LSPR mode, and exhibit a high sensitivity (580

nm/RIU). This section investigates their plasmonic properties based on numerical and ex-

perimental to the fabricated nanotube structures, investigating the reproducibility of their

measured extinction spectra and their close agreement with the simulated counterparts. The

structures were fabricated using the side-wall lithography method [121], characterized by the

SEM and NSOM microscopy, and measured using the Cary 5000 spectrometer. The sensing

results will be discussed in chapter 4, where the projection method is introduced to improve

the signal to noise ratio.

The side-wall lithography method was used to imprint a uniform array of gold nanotubes
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over a large–scale Cyclic Olefin Polymer (COP) substrate (1 cm2), as shown in Fig. 3–5.

Appendix (B) provides details about the fabrication process.

Figure 3–5: SEM image of the fabricated nanotubes. The inner diameter, height and the
pitch are 200 nm, 90 nm, and 400 nm, respectively.

The topography and NSOM images were obtained using alpha300 imaging system from

WITec. Transmission mode was chosen with a green laser source, and a NSOM probe with

an aprture of 80 nm in diameter. The distance between the NSOM probe and the sample is

controlled by a feedback based on the resonance frequency of the NSOM probe (cantilever

resonance frequency), at which it oscillates. Since the resonant frequency oscillates with the

largest signal amplitude, changed distance (between the probe and the surface of the sample)

decrease the amplitude, and consequently shift the frequency. The reduced signal amplitude

is used with a feedback system to adjust the distance between the NSOM probe and the

surface of the sample. Simultaneously, the changes in the amplitude signal is employed to

obtain the topography of the sample in a similar manner as the AFM [122]. The NSOM

results, displaying both the surface topography and the near field characteristics, are shown

in Fig. 3–6. Despite the mismatch between the LSPR and the operating wavelength of

the laser source (570 nm), The NSOM results show regions of high EM fields (dark spots).

This can be due to the wide extinction curve, associated with the nanotubes. However, the



Chapter 3 Numerical and experimental study of the fabricated structures 55

wide curve degrades the FoM of the nanotubes as sensors. This is considered as the main

disadvantage of the nanotube structures. Chapter 4 will present the projection method to

improve the SNR for these structures.

Figure 3–6: (a) Topography of the fabricated nanotube structures. (b) NSOM image, show-
ing the near field behaviour of the fabricated nanotube structures. The image is obtained
based on the cantilever resonance frequency of the NSOM probe, indicating the transmitted
intensity through its aperture and collected by the objective lens beneath the sample. The
NSOM detector provides a feedback to tune the resonance frequency with respect to the
transmitted light. The nanotubes support LSPR at 1100 nm, hence the EM field is not
high at the operating wavelength of the laser source, 570 nm. The bright spots denote the
light transmission through the sample, whereas the dark spots indicate the absorption and
scattering of the light beam by the nanotubes. (c) A diagonal line scan from the topographic
image in (a), showing the walls of a nanotube and the pitch between them. (d) SEM image
of the fabricated structures.
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The nanotubes support a dipole–like resonance as shown in Fig. 3–7, and yield a res-

onance wavelength at 1250 nm, resulting in a higher sensitivity, when compared to nanos-

tructures in the visible region. However, the FoM associated with the structures remains

low. This is attributed to the lossy nature of gold, as discussed in Chapter 2. The measured

extinction curve agrees well with the simulated counterpart, as shown in Fig. 3–7.

Figure 3–7: (a) Measured versus simulated normalized extinction efficiency for nanotube
structures. (b) A dipole-like EM field pattern driven by a linearly polarized incident plane
wave at the resonant wavelength (1100 nm). COMSOL Multiphysics was used to obtain the
local electric field distribution.

Comparing the measured and simulated transmission efficiency curves reveals that the

side-wall lithography method provides not only cost-effective means in fabricating nanos-

tructures, but also precise and high throughput capabilities.

3.3 Multiple-resonance nanostructures

This section presents a comprehensive study to the multiple-resonance nanostructures fab-

ricated by the side-wall lithography method. The FEM was used to understand the origin

of the modes, and to calculate the optical cross sections. The section also provides the ex-

perimental results for the fabricated nanostructures and compares them with the simulated

counterparts.
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3.3.1 Nanocrescent structures

Due to their shape anisotropy, metallic nanocrescent structures can yeild multiple reso-

nances, and the number of modes is dependent on the polarization of the incident plane

wave [123]. Herein, the extinction curves were measured for both TE and TM polarizations.

The experiments were repeated for 5 samples to investigate the reproducibility of the results.

This thesis will employ the multiple resonance characteristc in estimating the adlayer

thickness and bulk RI changes [Chapter 6]. The advantage of such sensing platform is that the

EM decay length depends on the resonance wavelength, as the sensor probe depth is different

for each mode. This can be used in distinguishing the effects of adsorbed analyte from those

due to bulk RI change. U-shaped nanostructures reported low sensitivities [117], and the

fabrication of such structures typically requires expensive and time consuming electron beam

lithography. Here, the side-wall lithography method is used to fabricate the nanostructures

on a large-scale substrate (1 cm2). The FEM was used to calculate the optical cross sections

and the EM field distributions associated with each resonance. The extinction cross section

was also calculated using the optical theorem and compared to the FEM results, as shown

in Fig. 3–8, demonstrating that the extinction cross sections for the three resonances are

dominated by scattering rather than absorption.

Fig. 3–8 (a) shows a single LSPR mode associated with nanocrescents at 1100 nm,

when excited by a plane wave polarized along x-axis (the axis of the shape symmetry of the

nanocrescent). However, a dual-resonance mode is supported when the structure is excited by

a plane wave polarized along y-axis, as shown in Fig. 3–8 (b). This mode is originated from

the shape asymmetry of the nanocrescent along the y-axis and the resonance wavelengths

are located at 800 nm and 1450 nm.

To investigate the effect of the wedge angle of the crescents and the etching depth dur-

ing the fabrication process, FEM modeling was performed considering a hexagonal lattice

and periodic boundary conditions. Fig. 3–9 shows a schematic for the simulation domain,

illustrating the tilt angle and etching depth, the first two resonances can be excited with a

plane wave polarized along x-axis and the third resonance can be excited with a plane wave

polarized along y-axis. The results for the first and second resonances (800 nm and 1450
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Figure 3–8: Calculated absorption, scattering and extinction cross sections for a single
nanocrescent, excited by a normal incident plane wave polarized (a) along the x-axis, and
(b) along the y-axis. The FEM simulation domain is surrounded by a PML of 5 absorbing
layers. The results are compared to those based on the optical theorem (OT) are also shown.

nm) demonstrate that increasing the tilt angle or the etching depth increases the resonance

wavelengths, as shown in Fig. 3–10 (a) and (b). In the case of the y-polarized plane wave, a

single resonance is obtained due to the symmetry of the structure along the y-axis. However,

as the wedge angle and etching depth increase, another mode can be excited in the lower part

of the spectrum (800 nm), as shown in Fig. 3–10 (c) and (d). However, this mode features

a broad extinction curve and weak efficiency, and hence it can be ignored when compared

to the main mode at (1100 nm). A dipole-like mode is excited if the polarization is along

y-axis due to the shape symmetry, as shown in Fig. 3–11 (c). On the other hand, an incident

wave polarized along x-axis can excite a dual-resonance mode with a distinct field profile at

each resonance wavelength. This suggests that the bulk RI and adlayer sensitivities can be

spatially distinguished as the EM decay length is dependent on the resonance wavelength.

The side-wall lithography method was used to fabricate the nanocrescents [Appendix C],
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Figure 3–9: Illustration of (a) the wedge angle, and (b) etching depth that were used in the
FEM model to study their effect on the extinction curves.

Figure 3–10: Effect of wedge angle and etching depth on (a, b) the first and second resonance
wavelengths (800 nm, and 1450 nm), (c, d) the third resonance (1100 nm).

and the absorption spectra were measured by the Cary 5000 spectrometer. The fabricated

nanocrescent structures were characterized by NSOM imaging to investigate their surface

topography and near field profile, as shown in Fig. 3–12. The surface topography image

reveals an average height of 90 nm for the nanocrescents. However, due to the wedges, the

thickness of the crescent is not uniform. This was taken into account in the FEM calculation.

Fig. 3–12 (b) shows the near field profile as the transmitted light was captured by a NSOM

beneath the substrate. The bright spots indicate no interaction between the light and the
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Figure 3–11: Local electric field distributions (V/m), associated with the nanocrescent struc-
ture, driven by an incident plane wave polarized in (a, b) x–axis and (c) y–axis.

nanotubes, whereas the dark spots represent the location of the field associated with the

nanostructures. The near field shown in the graph is associated with the lowest mode, since

its resonance wavelength is closer to the operating wavelength of the laser source used with

NSOM. Fig. 3–12 (c) overlaps the NSOM and topography images in a 3-D plot, indicating

the correlation between them.

More details about the structures were obtained by SEM, as shown in Fig. 3–13. The

wedge is due to the angled etching employed by the side-wall lithography method. This

required more investigation about the results reproducibility for the extinction curves. Five

sample were measured using the Cary 5000 spectrometer, and the average of each resonance

location and its standard deviation were calculated to provide an estimate of the error due
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Figure 3–12: (a) Topography and (b) NSOM images for the fabricated nanocrescent struc-
tures on a COP substrate. The intensity is modulated in terms of the cantilever resonance
frequency (KHz), which is changed relative to the collected signal amplitude, and thus the
dimensions are normalized to their maximum values to obtain (c) a 3D visualization for the
AFM and NSOM data (Matlab was used to overlap both images), the bright (red) spots rep-
resent the maximum transmitted light, and the blue part indicates a decreased intensity due
to absorption or scattering of light by the nanocrescent structures. (d) Surface topography
and transmitted light, scanned a long a line crossing the nanocrescents.

to the fabrication imperfections. For clarity, only two measured extinction curves are shown

in Fig. 3–14 (a) and (b), but the standard deviation was based on five measured curves for

each resonance.

It can be observed that the peak at the second and third resonances (1100 nm and

1450 nm) are broadened and weakened while the resonance locations are unchanged when

compared to the simulated results. This could be due to the thin metal part, connecting the

tips of the crescents, where the electrons are excited by these modes, as shown in Fig. 3–11
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Figure 3–13: SEM image of nanocrescent structures on a COP substrate, fabricated by side-
wall lithography method. The overall structure is arrayed on a COP substrate of 1 cm2

surface area and 150 µm thickness.

(b) and (c). This effect can alter the dielectric function of gold due to size dependent electron

scattering [124]. It is more pronounced when the metal size is small relative to the electron

mean free path, as explained in Chapter 2 [Eq. (2.15)]. A similar trend has been previously

observed for gold nanocups [125]. The broadening in the resonance curve can reduce the

accuracy of the dynamic-baseline centroid method, as the resonance wavelength is exracted

from a wide wavelength interval. The peak tracking method [99] and the dynamic-baseline

centroid method [101] are employed here to extract the resonance wavelength. The calculated

mean and the standard deviations of the resonance wavelengths are represented by the PDF

distributions, shown in Fig. 3–14 (c), (d) and (e). The dual-resonance mode is less affected

by fabrication imperfections as shown in Fig. 3–14 (c) and (d), because their extinction

curves are stable over the five tested samples. Due to the broad extinction curves associated

with the third mode (1100 nm), the dynamic-baseline centroid method yielded inaccurate

resonance wavelength as shown in Fig. 3–14 (e). However, this can be improved by using a

narrower wavelength range in determining the resonance wavelength, but the precision will

be reduced (approaching the results obtained by the peak-tracking method).
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Figure 3–14: Measured extinction efficiency for two samples of the fabricated nanocrescents
excited by a normal incident EM wave polarized (a) horizontally, and (b) vertically. The PDF
distribution of (c) PDF (λ1) (d) PDF (λ2) and (e) PDF (λ3) based on the dip finding and
dynamic baseline centroid methods, showing the uncertainty in each resonance wavelength
over multiple measurements for five randomly selected fabricated samples. The simulated
resonance wavelengths are plotted to evaluate the accuracy of the dip-finding and dynamic
baseline centroid methods.
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3.3.2 Nanorods

Gold nanorods possess attractive plasmonic characteristics, making them good candidates

for sensing applications. They support transverse and longitudinal modes. The longitudinal

mode can be tuned over a wide wavelength range. This characterisitc has been useful mul-

tiplexed sensing applications [91–93], and self-referencing LSPR sensing application, where

the longitudinal and transverse modes were utilized in differentiating between bulk and sur-

face effects in during sensing experiments [116]. In this work a three-resonance nanorod

structures will be adopted to estimate the adlayer and RI changes in surface-binding sensing

experiments.

This section highlights the plasmonic properties of gold nanorods, including the absorp-

tion, scattering and extinction cross sections, and the electromagnetic field distributions

supported by the transverse and longitudinal modes. COMSOL Multiphysics (FEM based

package) is used here in the calculations.
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Figure 3–15: Optical cross sections of gold nanorod structures in the case of (a) the transverse
mode, and (b) longitudinal mode. The nanorod major and minor axes (in x-y plane, see the
inset) are 150 nm and 70 nm, respectively, the thickness is 30 nm (along z-axis in the inset).

The transverse mode can be excited by an incident light wave polarized along the short
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axis of the nanorods. This resonance is located in the blue part of the visible spectrum, and

absorption contributes more than scattering to the extinction cross section. The longitudinal

mode results from the excitation of the electrons along the major axis of the nanorods by

a vertically-polarized incident light wave. In this case, the resonance wavelength is red-

shifted and scattering becomes the main contributor to the total extinction cross section.

The resonance wavelengths and the optical cross sections associated with them are shown

in Fig. 3–15 (a) and (b). The EM field distributions associated with the transverse and

longitudinal modes are shown in Fig. 3–16.

Figure 3–16: The electric field distribution (V/m) associated with gold nanorod structure,
supporting LSPR in the case of (a) transverse mode, and (b) longitudinal mode.

The amplitude of the extinction also depends on the volume of the nanorods that is

determined by the effective radius (the radius of a sphere of equivalent volume to the

nanorods) [126]. Based on the quasistatic approximation, the calculated values for the LSPR

wavelength supported by gold nanorods can be obtained as follows

λr = λp

√
ε∞ + n2

B(
1

ρ
− 1) (3.9)

where λp = 2π c0/ωp, is the plasma wavelength for gold ∼ 136 nm, and c0 is the speed of

light. The shape factor for a nanorod can be determined with respect to its aspect ratio
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Figure 3–17: SEM images of nanorod structures fabricated by side–wall lithography method
on a glass substrate. The rods have the same width, 70 nm, and the length varies as follows:
(a) 200 nm, (b) 170 nm, (c) 150 nm, and (d) 120 nm

(AR) as follows [Eq. (2.10)]

ρ =
1

AR2 − 1

[
AR

2
√
AR2 − 1

ln
(AR +

√
AR2 − 1

AR−
√
AR2 − 1

)
− 1

]
(3.10)

The sensitivity of the nanorod structures was measured as the ratio of the shift in reso-

nance wavelength to the RI change. The RI change corresponds to various concentrations

of the ethanol solutions that were introduced to the nanorods. The sensitivity values were

compared to the calculated counterparts. The results are compared to the sensitivity of small

nanorods (compared to the wavelength), which can be calculated using Eq. (2.40) based on

the quasi-static approximation. For a fair comparison between the two regimes, the aspect

ratio of the small nanorods is kept the same as that for the fabricated nanorods. The results

are given in Table 3.1.
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Table 3.1: Calculated versus measured resonance wavelength and sensitivity
for nanorods of various aspect ratios.

AR ρ Quasi-statica FEM Measured values

2 0.3144
λ1 (nm) 470.7 625 626

SB1 (nm/RIU) 93 212.92 268.15

2.5 0.2217
λ2 (nm) 496.2 700 684.3

SB2 (nm/RIU) 138 303.36 331.06

3 0.1674
λ3 (nm) 523 860 905

SB3 (nm/RIU 182.7 316.28 382.37

a Calculations for nanorods with equivalent AR’s, but their sizes satisfy the
quasi-static approximation (major axis< 100nm).

The stability of each resonance wavelength was investigated based on the measured ex-

tinction curves for five fabricated samples. For clarity, only two measured curves are shown

in Fig. 3–18 (a), (b) and (c). The mean and standard deviation of the measured resonance

wavelengths were determined and used to produce a PDF distribution for each resonance

wavelength, as shown in Fig. 3–18 (d), (e) and (f). The resonance wavelengths were de-

termined by the peak-tracking method and dynamic-baseline centroid method. The latter

provided more stable results, as the averaged error was 4.33 nm and 5.9 nm based on the

dynamic-baseline centroid and peak-tracking method, respectively. The nanorods provided

more stable and repeatable measured resonance wavelengths, when compared to the nanocre-

scent structures. Their multiple-resonance characteristic will be employed for a quantitative

study for binding events and self-referenced LSPR sensing in Chapter 5.
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Figure 3–18: Measured extinction efficiency curves for the fabricated nanorod structures at
(a) 625 nm, (b) 700 nm, and (c) 890 nm. The PDF distributions, based on five randomly
selected samples from the fabricated structures, showing the mean and the standard deviation
of (d) λ1, (e) λ2 and (f) λ3 determined by the peak tracking and dynamic baseline centroid
methods. The results based on these methods are compared to the simulated counterparts.
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3.4 Summary

This chapter compared among various analytical and numerical methods used in light

scattering by nanoparticles. The results, obtained from the FDTD and FEM models

were validated based on the exact solution for optical cross sections of metal nanoparti-

cles. Both the FDTD and FEM methods provided accurate results in determining the

resonance wavelength. The FDTD yielded a wider curves due to the use of the cubic

mesh in discretizing the simulation domain and the Drude-Lorentz model in calculat-

ing the dielectric permittivity for gold. The FEM is considered to be computationally

faster than the FDTD for calculating the EM field at single or few wavelength steps. As

the calculation is repeated for a wider wavelength range, the processing time increases

dramatically in the case of the FEM (the simulation is repeated for each step). The

FDTD provides the solution for a pulse in time domain, and uses Fourier transform

to obtain the full spectrum solution in frequency domain.

The chapter also investigated the fabricated nanostructures based on the surface char-

acterization (SEM and NSOM imaging) and measured extinction curves. The chapter

provided simulated results for each nanostructure including the optical cross sections

and near field distributions. Lastly, the fabricated structures were investigated for

resonance wavelength reproducibility based on the extinction measurement for many

fabricated samples.
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Projection Method for Improving Signal to

Noise Ratio of Localized Surface Plasmon

Resonance Biosensing

This chapter presents a simple and accurate method (the projection method) to improve

the signal to noise ratio of localized surface plasmon resonance (LSPR). The finite difference

time domain method is used to simulate the structures and generate a reference matrix for

the method. The results are validated against experimental data and the proposed method

is compared against several other methods [section 2.7]. The projection method is also

applied to biotin-streptavidin binding experimental data and determine the limit of detection

(LoD). The method improves the signal to noise ratio (SNR) by one order of magnitude,

and hence decreases the limit of detection when compared to the direct measurement of the

70
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transmission-dip. The projection method outperforms the established methods in terms of

accuracy and achieves the best combination of signal to noise ratio and limit of detection.

4.1 Projection method

The double projection method, on which the proposed method is based, was introduced to

improve the signal to noise ratio of a spectro-angular SPR sensor [106]. Its principle of

operation is briefly explained here; Spectro-angular reflectance maps for a set of different

refractive indices were numerically calculated in advance. Singular value decomposition was

then used to extract a basis set from these 2-D images. Two projections were performed

against the basis set: i) the normalized simulated images were projected against the ba-

sis matrix yielding a weight matrix; ii) the measured spectro-angular images (arising from

samples with unknown refractive indices) were projected against the basis set to form a set

of weight vectors (the name of the method was given based on the second projection pro-

cess). The weight vectors were then projected against the simulated weight matrix yielding

a solution vector. The solution vector was then interpolated to improve precision of refrac-

tive index estimate. The method achieved a 3-order of magnitude improvement in signal

to noise ratio (in numerical simulation) [106]. However, the experimental complexity of the

spectro-angular interrogation SPR system may be an issue if a simple platform is desired.

The single projection method, proposed here, simplifies the double projection method

by projecting the normalized measured data (normalized vectors) onto a simulated refer-

ence set and interpolating the solution vector to estimate unknown refractive indices of the

measurands. The remainder of this section provides more details about the new approach.

The finite difference time domain was used to calculate the transmission spectra of the

nanotube structures: we used OptiFDTD commercial software [61] to model the nanostruc-

tures and optimize their dimensions to match the performance of the fabricated structures.

The simulation was then repeated to obtain a set of transmission spectra spanning the re-

fractive index (RI) range (nmin − nmax) with 1 × 10−3 resolution. The simulation vectors

representing the simulated spectra were normalized by dividing each transmission vector (T)
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by its Euclidean norm, and concatenating them to build the reference matrix (M) as follows

Tn =
T

||T||
(4.1)

M =


Tn11 Tn12 Tn1j

Tn21
. . . . . . Tn2j

. . . . . .

Tni1 Tni2 Tnij

 (4.2)

where the rows (i) span the RI range of interest, and the columns (j) correspond to the

wavelength data points (We used 750 data points, and 0.2 nm wavelength resolution) as

illustrated in Fig. 4–1.

Figure 4–1: A 3-D representation of the projection reference matrix (obtained from the
FDTD simulation) for a set of refractive indices spanning the RI range (1.318–1.4), Simula-
tion used 750 wavelength data points (0.2 nm resolution).

To estimate the refractive index of an unknown sample, the measured transmission spec-

trum from the sample is represented by a vector (v) that is divided by its norm to reduce

the effect of intensity fluctuations.



Chapter 4
Projection Method for Improving Signal to

Noise Ratio of Localized Surface Plasmon Resonance Biosensing 73

vn =
v

||v||
(4.3)

Now the normalized vector (vn) for the unknown RI is projected onto the reference

matrix (M) vector by vector to obtain the solution row vector (s) whose elements provide

the degree of similarity between the measured and the simulated spectra.

s = M.vn (4.4)

The solution row vector, s, can be interpolated over the RI range. This approach is

illustrated in Fig. 4–2: Fig. 4–2 (a) shows two measured transmission curves (affected by

high frequency interference) corresponding to two different bulk refractive indices. Fig. 4–2

(b) shows the solution row vectors calculated for each. Interpolating the curve improves

the precision of the method, and the abscissa of the maximum provides the RI estimate.

Therefore, each measured transmission curve (providing the resonance wavelength shift)

was transformed into a smooth curve, extracting the refractive index of unknown solutions

directly.
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Figure 4–2: (a) Normalized transmission vectors for unknown samples (A and B): the curves
are affected high frequency interferences (ripples) that complicate tracking the transmission
dip and reduce the sensor accuracy. (b): Interpolated curves for the solution row vectors for
unknown samples (A and B) revealing estimated refractive indices of 1.3346 and 1.3361, re-
spectively: the entire measured curve in (a) was used here instead of using a single resonance
wavelength as in the dip-finding method.

4.2 Methods

Commercial OptiFDTD design tool [61] was used to simulate the nanotube structures and

optimize them to have their transmission curve match the measured counterpart. A single

structure unit is used in the simulation, and periodic boundary conditions were forced to

simulate the infinite number of nanotubes. The Drude Lorentz model was used for the gold

material properties, and a value of 1.53 refractive index was used for the COP substrate. A

Gaussian-modulated continuous wave was used to excite the nanostructures with a normal

incidence. Numerical optimization has been performed to the simulated structure to match

the simulated spectra with the measured counterparts. The simulation was repeated for the

entire refractive index range. The sensitivity of the sensor can be calculated as the ratio of

the resonance wavelength shift with respect to the refractive index change, the calculated
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sensitivity was 582.9 nm/RIU.

Side-wall lithography technique [121] was used to fabricate the nanotube structures. The

fabrication procedure is described in Appendix B. The fluidic channel was fabricated by

using Polydimethylsiloxane (PDMS) replica molding method, described in Appendix C.

The functionalization process included the preparation (cleaning) of the sensing chip,

incubation, and post-cleaning of the chip before any sensing experiments: the sensing sur-

face was cleaned by isopropyl alcohol and deionized (DI) water, then plasma treated to

remove any organic objects. The sensing chip was then incubated, for biotin labeling, in

10 mM phosphate buffer solution (pH 7.2) of 200 µM of Formula-(6-[biotinamido]hexyl)-

3′(2′ -pyridyldithio)propionamide. The streptavidin solutions were prepared by dissolving

streptavidin powder in a 50 mM Tris buffer (pH 8) [117].

4.3 Results and discussion

This section presents comparative results based on simulated results and bulk and surface

binding sensing results.

4.3.1 Comparison to established methods

This section compares the projection method to the published signal processing methods,

described in chapter 2, based on simulated results. The FDTD simulation was used to obtain

transmission curves, corresponding to known changes in bulk RI. In order to determine the

accuracy of the methods, I applied each method to the simulated data to estimate the RI

change used in the simulation. To investigate the effect of noise on the accuracy of each

method, I introduced a Gaussian noise to the simulated transmission curves, and used each

signal processing method in estimating the RI change.

First, the accuracy of the projection method is determined with respect to the RI interval

in the reference matrix as shown in Fig. 4–3 (a), the medium RI is changed by 1 ×10−5 and

5×10−5 in the simulation, and the corresponding transmission curves were projected against

reference matrices of different RI step size. An accuracy of 10−7 RIU can be obtained using
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a reference matrix with a 1 × 10−4 RI step size. A Gaussian noise was also introduced to

the simulated transmission curves to investigate the stability of the method with respect to

noise levels, as shown in Fig. 4–3 (b), the error in the estimated RI change based on a noisy

transmission curve can be as low as 0.2%.
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Figure 4–3: (a) Calculated error in the estimated RI change with respect to the RI interval
in the reference set, (b) error in estimated RI change, calculated as the difference between
the estimated RI changes and the ideal values (1× 10−5 and 5× 10−5).

Now all the methods are applied — as described in section 2.7— to the same simulated

noisy datain order to estimate the RI change. The reference set is used to obtain a calibration

curve for each method, and the slope of each curve provides the sensitivity factor used in

determining the RI change (known in this case to test the accuracy of each method).

After applying these methods on the simulated data to determine a RI shift of 5× 10−5,

a Gaussian noise was added to the extinction curves and the effect was also investigated. As

shown in Fig. 4–4, the projection method outperforms the established methods as the error is

in the range of 1×10−7 that is one order of magnitude improvement to the dynamic-baseline

centroid and NDIR methods, and two orders of magnitude improvement to the integrated

response and fixed-boundary centroid methods, and three orders of magnitude improvement

to the conventional dip-finding method.
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Figure 4–4: Calculated error with respect to the noise level added to the simulated trans-
mission curves, the projection method is superior to the other methods in terms of accuracy
(1×10−7RIU error) and stability against noise as the error is as low as 5×10−6 (10% error)
even with noisy transmission curves (SNR≈ 3).

4.3.2 Bulk RI and surface binding sensing results

This section presents sensing results based on the projection method and provides a compar-

ison to the published methods in terms of SNR improvement and computational complexity.

Fig. 4–5 (a) shows the experimental set-up, and the inset illustrates the PDMS channel

integration with the fabricated nanostructures, as the grooved part of the PDMS can be

bonded to the sensing substrate, flushing the fluids through the in/outlets. Fig. 4–5 (b)

shows SEM image of the fabricated nanotube structures, which are uniformly distributed on

the COP substrate.

Multiple transmission spectra were obtained for ethanol solutions of different concentra-

tions. The measured sensitivity, S, and the figure of merit, FoM, for the nanostructures are

∼ 582.9 nm/RIU, and 1.2 /RIU, respectively. The FoM was calculated as FoM=S/FWHM,

where FWHM is the full width at half maximum of the measured transmission curve. The

low figure of merit resulted in a significant uncertainty in determining the location of the

resonance minimum when the dip finding method was used, as shown in Fig. 4–6 (left

Y-axis). The projection method improved the results as the entire measured spectra were
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Figure 4–5: (a): Experimental sensing set-up: Cary 5000 spectrometer was used in the
sensing experiment, a baseline with PDMS channel and buffer solution is taken first, then
the measurements were performed on the functionalized nanotube structures, the solutions
were injected using an automatic pump (Harvard Apparatus-PicoPlus) with 200 µL/min flow
speed. The inset shows the PDMS fluidic channel: the grooved part is bonded to the surface
of the COP (sandwiching the nanostructures between the PDMS and COP, the inlet/outlet
are punched using a biopsy puncher to insert the fluidic tubes). (b): SEM image of the
fabricated structures: inner diameter= 200 nm, gold layer thickness= 60 nm, and pitch=
400 nm. The gray scale measures 3 µm and 400 nm with respect to the outer image and the
inset, respectively.

transformed into normalized vectors and projected on the reference matrix (shown in Fig.

4–1) by using Eq. (4.3) and Eq. (4.4). This also provided a direct measurement to the

refractive index of the ethanol solutions as shown in Fig. 4–6 (right Y-axis).

To provide a fair and complete comparison, the measured resonance wavelengths obtained

by the dip-finding method are translated into refractive indices by using the FDTD calculated

sensitivity (SB=582.9 nm/RIU) as follows

n = n0 +
∆λr
SB

, ∆λr = λr − λ0 (4.5)

where n is the calculated refractive index based on the measured resonance wavelength, λr;

n0 is the buffer refractive index; and λ0 is the resonance wavelength when buffer solution is

injected.

To validate the results of the FDTD sensitivity calculations and the projection method,

we had to compare the experimentally determined refractive indices with reported values

in the literature. However, the reported values for ethanol-water mixture are at 589.29
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Figure 4–6: Real time sensing measurements for ethanol solutions with different concentra-
tions ([1]: 0%, [2]: 2%, [3]: 4%, [4]: 16%, [5]: 30%, [6]: 50%, [7]: 80%, [8]: 100%) in the
case of: dip-finding method (left Y-axis); and projection method (right Y-axis) where the
refractive index is directly extracted.

nm [128], whereas the values determined here are at 1247 nm. We used the improved Cauchy

formula [129] to estimate the correct index values at the sensor’s resonance wavelength (1247

nm)

n2(λ) = C0 +
C1

λ2
+
C2

λ4
+ C3λ

2 (4.6)

The Cauchy parameters for Deionized (DI) water and ethanol are known. However, this is

not the case for the ethanol-DI water mixture. This motivated us to estimate the Cauchy

parameters for all the tested ethanol solutions (0%− 100%). Since the refractive indices for

the 50% and 100% ethanol solutions are approximately equal, we can use the known Cauchy

parameters for pure DI water and ethanol (0%, 50%, and 100%) in curve fitting each Cauchy

parameter for the mixtures and write these parameters in terms of fitting coefficients of the

form

CK = F0 + F1w + F3w
2 (4.7)

where the subscript (K = 0, 1, 2, 3) denotes the order of the Cauchy parameters, (w) is

the concentration of ethanol in percent weight, and (F0,F1,F3) are the fitting coefficients.
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Table 4.1: Fitted Cauchy parameters for all the tested ethanol solutions at 20 ◦C

%w
C0 C1 C2 C3

×10−3 ×10−3 ×10−3 ×10−3

0 1768.80±1.34 2.37±0.93 0.87±0.17 -16.51±0.48
2 1772.63±1.38 2.619±0.96 0.84±0.175 -15.74±0.49
4 1776.35±1.42 2.85±0.98 0.80±0.179 -14.99±0.51
16 1796.53±1.62 4.13±1.12 0.63±0.204 -10.94±0.58
30 1815.36±1.80 5.33±1.25 0.47±0.227 -7.16±0.65
50 1833.47±1.99 6.48±1.38 0.31±0.25 -3.52±0.71
80 1841.23±2.07 6.97±1.43 0.24±0.26 -1.96±0.74
100 1833.47±1.99 6.48±1.38 0.31±0.25 -3.52±0.71

Therefore, we obtained four equations to calculate the four Cauchy parameters for all ethanol

solutions (of different concentrations) as shown in table 4.1.

To validate the fitted Cauchy parameters, we used them along with the Cauchy formula

[Eq. (4.6)] to calculate refractive index of ethanol solutions at 589.29 nm, and the results

agree well with those reported in [128], as shown in Fig. 4–7 (a).

For ethanol-DI-water mixture, the peak refractive index occurs at 80 − 82%; the peak

location is insensitive to wavelength as it occurred at 77% ethanol solution measured at dif-

ferent wavelengths ∼589 nm, 1310 nm and 1550 nm, at 25 ◦C [130]. The drop in refractive

index (for concentrations higher than the peak location) is attributed to the ethanol water

dissociation and molecular repulsive forces: a close packing of water ethanol increases with

concentration and reaches its maximum at 82% where the mixture volume reaches the min-

imum. As the concentration of ethanol exceeds 82%, the repulsive forces between water and

ethanol molecules increase the intermolecular spaces, and the RI decreases as a result [131].

The peak location is slightly influenced by the temperature: it occurs with 82.86% ethanol

solution at 20 ◦C ; with 77.35% ethanol solution at 30 ◦C; and with 82.86% ethanol solution

at 35 ◦C [131]. The refractive indices reach their maximum values at 20 ◦C; this effect has

been taken into account in fitting the Cauchy parameters as we based the calculations on

the Cauchy parameters for DI-water and ethanol at 20 ◦C.

Now, we can use the fitted Cauchy parameters and the Cauchy formula to calculate the

refractive indices of the ethanol solutions at the sensor operating wavelength (1249 nm), and
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compare them with the measured sensing results. Fig. 4–7 (b) suggests that the measured

results and the calculated counterparts follow a similar trend, with a discrepancy at around

the 30% concentration.
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Figure 4–7: (a): Calculated refractive index based on the fitted Cauchy parameters in table
4.1, and the improved Cauchy formula [Eq. (4.6)] at 20 ◦C and 589.29 nm wavelength: the
estimated values agree well with those of reference [128].(b): Sensor response to bulk solutions
of different ethanol concentrations using the projection and dip-finding methods: the error
bars correspond to repeated measurements (at 20 ◦C, and 1247 nm resonance wavelength),
the reference curve was obtained using the Cauchy empirical formula, Eq. (4.6), and the
fitted Cauchy parameters in table 4.1 — calculated using the polynomial curve fitting — at
the same temperature and sensor operating wavelength (20 ◦C and 1247 nm).

Now we compare the projection method with the methods discussed in earlier sections,

we translate the response of each method to a refractive index value using Eq. (4.5); how-

ever, each method provides a different value as a response (centroid methods estimate the

resonance locations and the NDIR and integrated response methods provide normalized in-

tensity based responses). The centroid methods reveal different resonance locations due to

the asymmetrical shape of the resonance curves. Therefore, the sensitivity has to be recalcu-

lated according to the response of each method, the calculated values for the sensitivity are

as follows: 525.7 nm/RIU for the fixed-boundary centroid method; 577.9 nm/RIU for the

dynamic-baseline centroid method; 0.4/RIU for the integrated response method; and 5478.4

/RIU for the NDIR method. The RI change can be estimated as the ratio of the response

of each method to its sensitivity SB

∆n =
∆R

SB
(4.8)
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where ∆ R denotes the response change with respect to the ethanol concentrations (∆λ in

the case of the centroid methods, and ∆ Iint, or ∆ NDIR in the case of integrated response

and NDIR methods). Fig. 4–8 compares the projection method with the reference methods.

Signal to noise ratio is calculated based on the mean (signal) and standard deviation (noise)

of the measured data at each step (representing the change in ethanol concentration in the

bulk solution) as follows

SNR(dB) = 10× log(
∆n

σRI
) (4.9)

where ∆n and (σRI) are is the steady state mean and standard deviation (due to noise)

of the refractive index shift. The sensor refractive index resolution can be estimated as ∆

n∼ σRI , corresponding to SNR∼ 1.
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Figure 4–8: RI change measured by the projection method for ethanol solutions of different
concentrations. The RI change estimated by the reference methods are also shown: the
measured response of each method in Fig. 4–6 was used to calculate the RI change using
Eq. (4.5) for a better comparison with the projection method. The standard deviation of
the measured refractive indices are represented by error bars for each method, and by the
line width for those based on the Cauchy formula.

The error was calculated as the average of the percentage error in the measured RI
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changes over the entire range of ethanol concentrations

ε =
1

m

m∑
i=1

|∆ni −∆ntrue, i|
∆ntrue, i

where ∆ni are the measured RI changes, and ∆ntrue, i are the true values for the RI changes

corresponding to the ethanol concentrations. Table 4.2 provides a complete list of the calcu-

lated values of SNR, RI resolution and error in RI change. The projection method outper-

forms the dip-finding method, the fixed-boundary centroid method, the integrated response

method and the NDIR method in terms of SNR improvement, and it provides essentially the

same SNR performance as the dynamic-baseline centroid method. The projection method

provides a more accurate estimation of the refractive index changes based on simulated and

measured results. Based on the FDTD results [Fig. 4–4], the error was about 0.2% and

10% for the projection and dynamic-baseline centroid methods respectively; and based on

the measured data, the error was ∼ 14% and ∼ 33.97% for the projection and the dynamic-

baseline centroid method, respectively. The projection method also provides the lowest RI

resolution along with the NDIR method. The high error values revealed by the fast centroid

method are attributed to the wide boundaries (wavelength range) that were used in the

calculations. A narrower boundary would decrease the sensor RI dynamic range as an upper

limit of refractive index has been previously reported to be 1.35 RIU [108]. Providing a direct

measurement for the refractive index is considered as another advantage of the projection

method.

Temperature fluctuations and spectral resolution also have significant effects on the sensor

performance; the spectral resolution of the spectrometer used in our experiments was (0.2

nm); this limited the refractive index resolution to ∼ 2.5× 10−4 RIU. However, this is close

to the value that was reported for a high resolution LSPR sensor ∼ 3 × 10−4 RIU [132].

In a recent work, a LSPR sensor, based on metallic nanostructures, achieved a FOM ∼108

(narrow FWHM ∼ 9.5 nm, and high RI sensitivity ∼1,015 nm/RIU) [133]. Although this

FOM is much higher than that of the nanotube structures, the resolution was only ∼ 2×10−4

RIU due to the limited spectral resolution of the spectrometer ∼0.1 nm, and the measured
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Table 4.2: Comparison between the projection method and the published counterparts.

Method
SNR RI resolution

Error in estimated ∆n
[dB] [RIU]

Proposed Projection method 32.07 7.5 ×10−4 14.62%

Dip-finding method [99] 8.95 1 ×10−2 33.94%

Dynamic-baseline centroid [101] 32.97 1.95 ×10−3 33.97%

Fixed-boundary centroid [108] 24.34 1.35×10−3 48.46%

Integrated response [88] 21.47 7.5×10−4 27.92%

NDIR method [107] 24.22 4 ×10−4 27.58%

signal was constrained to a specific angle to excite the mode of the nanostructures [133].

The proposed projection method achieved the same RI resolution although the measured

curves were extremely broad and noisy. Moreover, the spectra were generated by a direct

transmission measurement set-up.
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We also conducted surface binding experiments to determine the performance of the

projection method in estimating the effective refractive index change due to surface binding.

We adopted the functionalization protocol used in [117] for biotin functionalization and

prepared the streptavidin solution (as explained in section 4.2). The measured RI change,

based on each method, was obtained using the sensitivity factor for each method (∆n =

R/SB) [Eq. 4.8], as shown in Fig. 4–9 (a). The sensograms are based on the averaged

response for repeated experiments (6 experiments). Repeating the experiments plays a key

role in determining the stability of the results based on each method. The published results

for the surface binding experiments are based on only one sensing experiment [134] and thus

deviate from the results shown in Fig. 4–9 (a). The LoD can be determined as the minimum

detectable change in streptavidin concentration, corresponding to 3 σR/SB of the sensor

response based on each method. These values (3σR/SB) are plotted as horizontal lines,

intersecting the measured ∆n graphs at the minimum detectable streptavidin concentration

(LoD), as shown in Fig. 4–9 (b). The least LoD was achieved by the NDIR method and

integrated response methods, followed by the proposed projection method and then by the

fixed-boundary centroid method and the dynamic-baseline centroid method, as shown in Fig

4–9 (b). The dip-finding method revealed the highest LoD (233 µg/mL), explaining why a

change of 200 µg/mL in streptavidin concentration was undetectable by this method [steps:

2 and 3, Fig. 4–9 (a)]. These results confirm the findings of our published work [134].

The sensor LoD depends on the analyte to be detected, its molecular weight, and the

binding conditions during the experiment. Thus, the bulk RI resolution is used here to com-

pare the projection method with the previously published approaches. The results suggest

that the NDIR and integrated response methods can be adopted if a qualitative study of

binding events is of importance, whereas the proposed projection method can be employed

for mapping the effective refractive index during sensing experiments. Although the NDIR

method provided an improved response here, it has previously incurred a response instability

and yielded a distorted real time sensogram based on surface binding experiments [88].
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Figure 4–9: (a) Measured RI change based on sensor response to bioten-streptavidin surface
binding events. The projection method provides the RI change directly, and the other meth-
ods use the sensitivity to translate their response into RI changes (dividing each response
to its sensitivity factor). The scale, over the figure, denotes the sequence of flushing the
solutions as [1]: Tris buffer solution was injected for the first 15 minutes to create a baseline,
then streptavidin solutions – with [2]: 0.6 mg/mL and [3]: 0.8 mg/mL concentrations –
were injected sequentially. Tris buffer silane was injected as a final step to flush unbound
streptavidin. (b) Measured RI change for various streptavidin concentrations based on all
the methods. The standard deviation of the measured RI change by each method σRI is used
to plot 3σRI (the horizontal lines) on the measured ∆n graph. Each 3σRI horizontal line in-
tersects with the measured ∆n graph at the minimum detectable streptavidin concentration
(LoD). The vertical arrows point out the LoD based on each method.

It is also important to consider computational complexity; the reference methods de-

scribed above have a computational complexity that grows as ∼ O(j) where j is the number

of wavelength samples. During operation, the proposed projection method projects the

measured spectrum against a set of pre-calculated spectra, indicating a computational com-

plexity of ∼ O(i j) where i is the number of reference spectra, which were used to produce

the reference matrix M (typically 40). As a result, it does require more computation than

the other methods, but given the power of even modest current microprocessors, this does

not impact the ability to use it for real-time measurement (as shown in our measurement of

binding kinetics).
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4.4 Summary

This chapter introduced a new signal processing technique to improve signal to noise

ratio of localized surface plasmon resonance biosensors. The method provided the

refractive index directly from extremely broad and noisy transmission spectra. The

measured refractive indices agree well with those calculated using the fitted Cauchy

parameters with a slight discrepancy at 30% ethanol concentration. The projection

method improved the SNR by one order of magnitude (∼ ten-fold increase compared to

the absolute SNR with the dip-finding method), and hence improved the RI resolution

from 1 × 10−2RIU in the case of dip-finding method to 7.5 × 10−4RIU . The pro-

jection method provided a comparable SNR relative to the dynamic-baseline centroid

method; however, it outperforms the dynamic-baseline centroid method in terms of

accuracy, based on both simulated and measured results. The projection method pro-

vides a higher SNR compared to the integration technique and normalized difference

integrated response methods, although the latter provided the same RI resolution. The

projection method avoids some of the previously reported limitations of the reference

methods, such as the introduction of distortions to the sensogram (reported for the

NDIR method [88]) or reductions in dynamic range (reported for the fixed-boundary

centroid method [108]). The projection method does however require a modest increase

in computation. Although the measured RI resolution achieved by the proposed pro-

jection method is 7.5 × 10−4RIU , the simulated results reveal that the method can

resolve a RI change of ∼ 1 × 10−5RIU . This limit is due to the spectral resolution

of the spectrometer (0.2nm). The results can be improved by using a temperature

controller and a photodiode array detector with improved resolution.



5
Linear Maximum Likelihood Estimation

Method for Improving Self–referenced

Biosensing

5.1 Introduction

Chapter 4 proposed the projection method to improve signal to noise ratio (SNR) based on

the measured refractive index (RI). The method was limited by external sources of noise,

such as temperature and analyte transport into the fluidic channel. This chapter introduces a

method based on the maximum likelihood estimation (MLE) that reduces the effect of noise

on the measured results. The method also improves self-referencing for localized surface

plasmon resonance (LSPR) biosensors.
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In propagating SPR sensors, a reference channel is required to compensate for artifacts

due to temperature drift and bulk RI changes [109]. However, the reference sensing channels

are not coincident (for example: different metal thickness) due to fabrication imperfections,

the difference in analyte transport in both channels [110], and the uncorrelated effects in each

channel during the binding events (presence of air bubbles and changes in speed of fluid flow

in either channel [111]). These artifacts have motivated many researchers to seek alternative

methods where the reference channel can be abandoned to avoid any external or intrinsic

effects in the two-channel sensing platforms. A self–referenced SPR sensor has previously

employed the excitation of a dual mode SPR (with different penetration depths) using two

laser sources [112], which increases the instrumental complexity. Alternative approaches

included the excitation of dual-mode SPR and use it as reference/sensing channels based

on a linear response model. This was achieved by either exciting dual modes at different

locations on the metal surface [113], or exciting the long range and short range SPR modes

on the same location of the SPR surface [114,115]. The linear response model assumes that

each resonance wavelength shift (∆λ) is a linear function of both adlayer thickness (d) and

bulk RI change (∆n):

∆λi =
∂λi
∂n

∆n+
∂λi
∂d

d (5.1)

The same approach (i.e. a linear response model) has been applied to gold nanorod

structures, U-shaped structures and propagating plasmon waveguide resonance biosensor

[116–118]. Although various approaches have been introduced for self-referencing SPR plat-

forms, less effort has been previously paid to self–referenced LSPR sensors and improving

the linear response model. The maximum likelihood estimation (MLE) approach presented

in this thesis improves the precision of the results based on the linear response model. The

thesis also provides a method to overcome the repetitive simulation to determine the sen-

sitivity to adlayer thickness for various analytes and correct it based on the measured bulk

RI sensitivity. In the next chapter I will show that further improvement can be obtained by

moving beyond the linear response model.
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5.2 Concept of self referencing based on multiple resonances

As described above, estimating the unknown quantities (adlayer thickness and bulk RI

change) requires at least two-resonances. The multiple resonance characteristic of nanorod

structures can be employed to generate multiple resonances each of which provides solutions

for the estimates. Herein, a three-resonance nanorod structures is considered as the first

resonance is used with the second and third resonances to generate three systems of linear

equations based on the linear response model [Eq. (5.1)], and the adlayer and bulk RI change

can be estimated accordingly as follows

∆n12

d12

 =

∂λ1∂n
∂λ1
∂d

∂λ2
∂n

∂λ2
∂d

−1 ∆λ1

∆λ2


︸ ︷︷ ︸

LM1:fromλ1, λ2

,

∆n13

d13

 =

∂λ1∂n
∂λ1
∂d

∂λ3
∂n

∂λ3
∂d

−1 ∆λ1

∆λ3


︸ ︷︷ ︸

LM2:fromλ1, λ3∆n23

d23

 =

∂λ2∂n
∂λ2
∂d

∂λ3
∂n

∂λ3
∂d

−1 ∆λ2

∆λ3


︸ ︷︷ ︸

LM3:fromλ2, λ3

For a system based on more resonances, we can obtain i number of estimates (di and

∆ni) from the linear response models (LMi), which are related to the true values (d̂ and

∆̂n) by

di = d̂± εdi (5.2)

∆ni = ∆̂n± εni
(5.3)

where εdi and εni
represent the errors (due to the noise) in the adlayer thickness and bulk

RI change estimated by the multiple resonance linear response model.

5.3 Concept of the Maximum likelihood estimation method

The maximum likelihood estimation method is employed to improve both the accuracy and

precision of the estimated adlayer thickness and bulk RI change determined by a linear
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response model here and a nonlinear response model in the forthcoming chapter. Herein,

the general concept of the MLE method is explained. Suppose that x̂ represents the estimates

(d̂ or ∆̂n), and yi, indicating the measured quantities by the LSPR sensor, is related to the

estimates as follows

yi = Ci x̂± εyi (5.4)

where C is a weighting coefficient that relates the measured results to the estimates, and εy

represents the error in the measured quantities (y). Considering that the noise in the system

follows a normal distribution, each error term can be represented by a Gaussian distribution

with zero mean and a variance, εyi ∼ N (0, Ryi). It is evident that the calculations consider

the noise associated with the measured resonance wavelength shifts in real time, and the

errors include covariances that account for a system of correlated noise sources. In matrix

notation, this can be represented by the following symmetric matrix

Ry =


Ry11 . . . Ry1i

...
. . .

...

Ryi1 . . . Ryii

 (5.5)

where the main diagonal of this matrix represents the variance of each measured quantity,

and the covariances among them are symmetrically distributed above and below the main

diagonal, i.e. Ryij = Ryji . This matrix is directly based on the real time experiments (the

variance of the measured quantity, such as wavelength shift).

Now, we apply the MLE method employing yi and the errors associated with them as

presented in Eq. (5.2) and Eq. (5.3). Since we have considered a normal distribution for the

noise, the likelihood of obtaining the true values represented by x̂ given those determined

by the measured quantities (represented by yi) can be obtained by multiplying the normal

distributions for these estimates. In matrix notation this can be expressed as follows

P (y1, ...yi|x̂ C1, ...x̂ Ci, Ry) =
∏

i

1

(2π)i/2|Ry|1/2
exp

(
− 1

2Ry

(yi − x̂ Ci)2
)

(5.6)

=
1

(2π)i/2|Ry|1/2
exp

(
− 1

2Ry

∑
i

(yi − x̂ Ci)2
)

(5.7)
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The above multivariate likelihood can be expressed in matrix notation as follows

P (y|x̂C) =
1

(2π)i/2|Ry|1/2
exp

(
− 1

2
(y − x̂C)TR−1y (y − x̂C) (5.8)

According to the MLE, the estimate that maximizes the likelihood of obtaining the true

value is obtained when the derivative of the above likelihood with respect to the true value

approaches zero [135]. For simplicity, we obtain the log of the above likelihoods as follows

ln P (y|x̂C) = − i
2
ln(2π)− 1

2
ln|Ry| −

1

2
(y −C x̂)TRy

−1(y −C x̂) (5.9)

Now, the true value can be estimated such that the derivative of the log likelihood with

respect to this true value is equal to zero [135].

∂

∂x̂
ln P (y|x̂C) ≡ ∂

∂x̂
(yT R−1y y − yT R−1y C x̂−CT x̂R−1y y + CT x̂R−1y C x̂) = 0 (5.10)

⇒ −yT R−1y C−CT R−1y y + 2 CT R−1y C x̂ = 0 (5.11)

Since yT R−1y C = CT R−1y y, Eq. (5.11) can be solved for the estimate x̂

x̂ =
CT R−1y y

CT Ry−1 C
(5.12)

C =


C1

...

Ci

y =


y1

...

yi

R−1y =


R−1
y11

. . . R−1
y1i

...
. . .

...

R−1
yi1

. . . R−1
yii

 (5.13)

In the case of the three-resonance nanorod structures, proposed here, the system is un-

biased, CT = [1 1 1], substituting for i=3 and x̂ → d̂ or ∆̂n, y → d or ∆n and using Eq.

(5.12), the adlayer thickness and bulk RI change can be estimated as follows
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d̂ =
(R−1

d11 +R−1
d12 +R−1

d13) d1 + (R−1
d12 +R−1

d22 +R−1
d23) d2 + (R−1

d13 +R−1
d23 +R−1

d33) d3

R−1
d11 +R−1

d22 +R−1
d33 + 2 (R−1

d12 +R−1
d13 +R−1

d23)
(5.14)

∆̂n =
(R−1

n11 +R−1
n12 +R−1

n13)∆n1 + (R−1
n12 +R−1

n22 +R−1
n23)∆n2 + (R−1

n13 +R−1
n23 +R−1

n33)∆n3

R−1
n11 +R−1

n22 +R−1
n33 + 2 (R−1

d12 +R−1
d13 +R−1

d23)

(5.15)

5.4 Corrected sensitivity matrices for the linear response model

The sensitivity to adlayer thickness depends on the refractive index of the adlayer (na) and

the bulk RI sensitivity of the nanorods. Therefore, it needs to be recalculated if other bi-

ological samples are considered. Established methods based on the linear response model

have previously considered specific analytes, and employed sensitivity factors based on sim-

ulating that specific analyte (using reported values for size and RI). [117, 118]. However,

this requires tedious numerical modeling to obtain new values. Here, we present a method

to avoid the repeated numerical calculations, by calculating the adlayer sensitivity based on

the measured data.

The maximum sensor response, ∆λmax, at each resonance is achieved when the adlayer

thickness reaches the saturation, d� ld, where ld is the electromagnetic (EM) decay length

associated with these resonances. The sensor response is related to the adlayer thickness by

the following equation [136,137]

∆λ(d) = ∆λmax[1− exp(−2 d/ld)] (5.16)

Therefore, the linear response model is valid for thin adlayer thickness, d ≤ ld/10, and the

sensor response can be related to the adlayer thickness based on the sensitivity to adlayer

thickness ∼ Sd as follows

∆λ(d) = Sd d (5.17)

Substituting d = ld/10 in Eq. (5.16) and Eq. (5.17), the wavelength shift can be determined
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as follows

∆λ(ld/10) = Sd ld/10

= 0.18 ∆λmax

from which the sensitivity to the adlayer thickness can be evaluated as follows

Sd = 1.8 ∆λmax/ld (5.18)

This can be related to the bulk RI sensitivity and the refractive indices for the buffer and

analyte as follows

Sd = 1.8 (na − nB)
SB
ld

(5.19)

where na and nB are the refractive indices for the adlayer and the buffer solution. It is

evident that the adlayer sensitivity is proportional to the ratio of the bulk sensitivity to the

EM decay length, interpreting the similar adlayer sensitivity for propagating and localized

SPR sensors, as SB/ld|SPR ≈ SB/ld|LSPR.

5.5 Methods

The FEM method was used to model the gold nanorods and obtain the bulk RI and adlayer

sensitivities, as well as the EM decay length for each resonance. The dielectric properties

for gold were obtained from Johnson and Christy experimental data [48]. The longitudinal

mode was excited by an incident plane wave polarized along the major axis of the gold

nanorods. The rods were modeled based on both perfectly matched layer and periodic

boundary conditions. An adlayer of thickness (d) was introduced to calculate the EM decay

length as the resonance wavelength shift was tracked with changing the thickness until the

shift is saturated. The simulation domain was discretized using triangular mesh and the

nanorods and the adlayer were discretized using hexagonal mesh of 1 nm element size.

The gold nanorods were fabricated using the side–wall lithography method: a glass sub-

strate was coated by 50 nm thick cyclic olefin copolymer (COC) by spin coating, and the
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coated substrate was imprinted by Si mould under 8 MPa pressure and 150 ◦C for 300 sec-

onds. The imprinted substrate was then coated with 5 nm and 30 nm thick Cr and gold,

respectively. The nanorods were formed after lift-off process. Fig. 5–1 shows a micrograph

for the fabricated noanords. Replica moulding method was used to fabricate the fluidic

channels based on polydimethylsiloxane (PDMS), described in chapter 4 and Appendix C.

The fabricated substrate was then cleaned by DI water and ethanol solution, blown dry

with nitrogen, and plasma treated to remove any biological contaminant. The substrate was

then incubated in 10 mM phosphate buffer solution (pH 7.2) of 200 µM biotin-hpdp for biotin

immobalization as instructed in [117,139]. A 0.2 mg/mL streptavidin solution was prepared

in a 50 mM Tris-buffer solution (pH 8.0) according to [117, 139]. The Tris buffer was also

used as a baseline for the sensing experiment. Both streptavidin and hpdp reagents were

obtained from [140]. Cary 5000 spectrometer was used to measure the extinction curves

while injecting different samples by an automatic pump (Harvard Apparatus −PicoPlus)

with 200µL/min flow speed.

Figure 5–1: SEM images for the fabricated nanorod structures with 70 nm in width and
various lengths as (a) 120 nm, (b) 150 nm, and (d) 210 nm.
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5.6 Numerical validation

COMSOL Multi-physics was used to calculate the shifts in resonance wavelengths with vari-

ous bulk refractive indices to calculate the sensitivity at each resonance. Fig. 5–2 (a) shows

the simulation layout based on the periodic boundary condition and ports to calculate the

scattering parameter S21, which can be translated into transmission efficiency as 10S21/20.

The simulation was validated by simulating only the glass substrate using a refractive index

of 1.5, and calculating the transmission efficiency. Another verification was performed by

comparing the results based on nanorods without a substrate to those obtained based on

nanorods in a sphere with perfectly matched layer shown in Fig. (b).

Figure 5–2: (a) Schematic for a COMSOL Multiphysics model to simulate periodic array of
nanorods after introducing adlayer thickness and bulk RI nB. Periodic boundary conditions
were enforced such that the nanorods are periodic in the x-y plane. The structure is excited
using port 1 (lower x-y plane), and the transmitted light wave is collected using port 2
(upper x-y plane). (b) Simulating a single nanorod using PML boundary condition and
integrating sphere to calculate the extinction efficiency. The nanorod is excited by a plane
wave polarized along the z axis, propagating in the negative x direction.

After validating the simulation set-up, the sensitivity to bulk RI change (SB) was calcu-
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lated based on the corresponding transmission dip locations for all the resonances as shown

in Fig. 5–3. As expected, the third resonance wavelength (1000 nm) exhibited the highest

sensitivity to bulk RI changes which is attributed to the long EM decay length. To estimate

the EM decay length, the adlayer thickness was varied from 6–25 nm, and the corresponding

shift in each resonance wavelength was tracked to plot the resonance shift against adlayer

thickness. The EM decay lengths are then estimated by fitting the simulated data using Eq.

(5.16), as shown in Fig. 5–4. As well, the simulated adlayer sensitivity can be determined

as the slope of the curves in the linear regime (0 < d < ld/10).
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Figure 5–3: Simulated transmission curves, demonstrating the dependence of the resonance
wavelengths on the bulk RI (a) λ1 = 705nm, (b) λ1 = 821nm, and (c) λ1 = 1000nm. The
sensitivity curves for these resonance wavelengths are presented in (d) SB1, SB2 and SB3

correspond to λ1, λ2 and λ3, respectively.

To investigate the effect of the noise on the results, an adlayer of 5 nm thickness and 1.4

refractive index was introduced to the nanorods in the periodic simulation layout, and the

corresponding shifts in the resonance wavelengths were determined. Last, noise (with differ-

ent levels) was simulated by adding uncertainties (various σλ) to the simulated wavelength

shifts. The linear response models and the proposed linear MLE method were then employed

to estimate the input parameters used in the FEM model. The SNR of the estimates were

calculated as the ratio of the mean to the standard deviation of the estimates. The SNR
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Figure 5–4: Resonance shift against adlayer thickness change, based on the simulated results
shown in the insets, for (a) the first resonance, (b) the second resonance, and (c) the third
resonance. The EM decay length (ld) for each resonance is extracted such as Eq. (5.16)
provides the best fit to the resonance wavelength shift vs adlayer curves, and the sensitivity
to adlayer thickness change (Sd)is calculated as the slope of each curve at the linear regime
(d ∼ ld/10).

based on the estimated adlayer thickness and bulk RI change are shown in Fig. 5–5 (a) and

(b), respectively, revealing that the MLE can improve the precision of the linear response

model results; the MLE method is less affected by the fluctuations in the resonance wave-

lengths as the overall variance becomes lower than any variance associated with the linear

response models. The accuracy of the methods can be determined based on the percentage

error in the estimates compared with the true values used in the simulation as follows

εx̂ % =
x̂− x
x
× 100 (5.20)

where εx̂ % is the percentage error in the estimates x̂ (d̂ or ∆̂n) with respect to the true

values x , representing d or ∆n. The averaged errors in the adlayer thickness and bulk RI

change are shown in Fig. 5–5 (c) and (d). These averaged errors were estimated based on

different SNR(∆λ) [Figs. 5–5 (a,b)], and suggest that the linear–MLE achieves the best

accuracy among the linear response models, based on the simulated data.
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Figure 5–5: Top panel: calculated SNR based on (a) the estimated adlayer thickness to its
standard deviation, and (b) the estimated bulk RI change to its standard deviation. The
linear response model and the linear–MLE method were applied to the simulated shifts in
resonance wavelengths ∆λi with added uncertainties σλi such that SNR(∆λi) = ∆λi/σλi.
Bottom panel: the percentage error associated with each method in (c) the estimated adlayer
thickness and (d) the bulk RI change using Eq. (5.20) based on the true values used in the
simulation.

5.7 Measured results

This section presents the measured results based on bulk RI change and surface binding

experiments. Fig. 5–6 shows the experimental set–up used for the sensing experiments.

Transmission curves were obtained while introducing the solutions into the nanorod struc-

tures via the PDMS fluidic channel. The resonance locations (centroids) were determined

based on the dynamic-baseline centroid method [101].

Fig. 5–7 shows the measured results for the three–resonance nanorod structures based

on ethanol solution and biotin-streptavidin binding. The shift of each resonance is tracked



Chapter 5
Linear Maximum Likelihood Estimation

Method for Improving Self–referenced Biosensing 100

Figure 5–6: Experimental set-up for measuring the transmission spectra of the nanorod
structures. The inset shows an exploded view for the PDMS fluidic channel integrated with
the gold nanorod substrate (for injecting the biological samples).

in real time to investigate the self-referencing with bulk and surface binding experiments.
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Figure 5–7: Real time response to bulk RI changes and biotin-streptavidin binding events
based on three-resonance nanorod structures. The cycles on the graph represent the fol-
lowing: [1] DI water, [2] 8% ethanol solution, [3]16% ethanol solution, [4] Buffer, and [5]
Streptavidin solution. The time step is 6 minutes, which was required by the Cary 5000
spectrometer for a single scan of the entire wavelength range.

The sensor was calibrated for the bulk RI and adlayer sensitivities, as the bulk RI sensi-
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tivity was calculated based on the ethanol solutions of known concentrations and refractive

indices. The measured sensitivities are lower than the calculated counterparts due to the

biotin layer as the distance between the nanorods and the ethanol solutions is increased

after functionalizing the nanorods. A similar behaviour was previously observed for the

nanorods [141]. We propose a method to correct for this discrepancy as the sensitivity to

adlayer thickness is directly related to the bulk RI sensitivity. This can be achieved by using

Eq. (5.19). The simulated and measured sensitivities are shown in Fig. 5–8 (a), (b) and

(c), whereas the corresponding calibration curves for the simulated and corrected adlayer

sensitivities are shown in Fig. 5–8 (d), (e) and (f).
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Figure 5–8: Top panel: simulated versus measured shift in resonance wavelengths against
bulk RI changes. The bulk RI sensitivities, SB and S ′B (nm/RIU), were determined as the
slope of each graph. Bottom panel: simulated and measured resonance shifts versus the
adlayer thickness based on the simulated (Sd) and corrected (S ′d) adlayer sensitivities. Each
corrected sensitivity (S ′d) was obtained using Eq. (5.19) based on the measured bulk RI
sensitivity S ′B for each resonance.

Now, we obtain sensitivity matrices based on the true values, accounting for the changes
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due to fabrication and experimental conditions, in the form

S =

S ′B1 S ′d1

S ′B2 S ′d2


These matrices must be non–singular and well conditioned to be valid for the LM calculations

[142]. The determinant of each sensitivity matrix is nonzero, hence non-singular. We also

calculated the condition number κ(SLM) by first normalizing the columns of each sensitivity

matrix, obtaining a normalized matrix sLM , and then multiplying the norm of the normalized

matrix and the norm of its inverse as follows

κ(SLM) = ‖sLM‖ ‖s−1
LM‖

The calculated condition numbers of the sensitivity matrices are 25.6, 13 and 25.8 for LM1(λ1,

λ2), LM2(λ1, λ2) and LM3(λ2, λ3), respectively. These values mean that the matrices are

well conditioned (κ(SLM) < 100). Since the adlayer sensitivities have been corrected based

on the measured bulk RI sensitivities using Eq. (5.19), the condition number based on

the measured and simulated sensitivity matrices are in close agreement with each other.

The calculated condition numbers of the simulated sensitivity matrices are ∼25.6, 13, 25.7,

implying that correcting for the adlayer sensitivity results in stable condition numbers, and

hence improved numerical accuracy. This can be useful in optimizing the nanorod structures.

It is also important to investigate the sensor figure of merit based on the full width at

half maximum (FWHM) given by ∼ FoM = SB/FWHM . The calculated FoMs for the

first, second and third resonances are 3.1, 2.7 and 2.6, respectively. These values exceed

those associated with gold nanorods fabricated by the electron beam lithography ∼ 1.9

[116]. However, these values are comparable to the FoM reported for chemically synthesized

nanorods, ∼ 1.7 − 2.6 [143]. This is attributed to the increased sensitivity of the nanorods

presented in this thesis 289− 382.37nmRIU−1 due to the increased width of the nanorods,

as increasing the rods minor axes was previously linked to increasing the EM decay length

and improving the bulk RI sensitivity [141].
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Another interesting parameter to consider is the figure of merit based on adlayer–bulk

RI differentiation that can be determined as χ = |SB1/Sd1 − SB2/Sd2| [114, 116]. The pro-

posed multiple resonance nanorod structures revealed the following based on the measured

sensitivities: 0.18 with LM(λ1,λ2), 0.38 with LM(λ1,λ3) and 0.17 with LM(λ2,λ3) compared

to 0.18, 0.38 and 0.17 based on the simulated sensitivities, exhibiting an improved stablity

system when compared to established dual–resonance nanorod structures whose measured

figure of merit differed from the simulated counterpart ∼ 0.25 vs 1, respectively [116].

The estimated adlayer thickness and the bulk RI change using the linear response model

based on the corrected sensitivity matrices are shown in Fig. 5–9 (a–c). The estimates

based on the linear–MLE were obtained by applying Eq.(5.14) and Eq. (5.15) to the results

obtained from the linear response models; in particular, the mean and variance of the adlayer

thickness and bulk RI change determined by the linear response models. The results based

on the linear–MLE method are shown in Fig. 5–9 (d), as it can be observed that the linear–

MLE method improves the accuracy and precision based on both bulk RI and surface binding

experiments.
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Figure 5–9: Estimated adlayer thickness (left y-axis) and bulk RI change (right y-axis) based
on the measured results after applying (a) LM1(λ1, λ2), (b) LM2(λ1, λ3), (c) LM3(λ2, λ3),
and (d) the linear–MLE method. The cycles on the graph represent the following: [1] DI
water, [2] 8% ethanol solution, [3]16% ethanol solution, [4] Buffer, and [5] Streptavidin
solution.

Since ethanol solutions with known refractive indices were used in the first part of the

experiment, as shown in Fig. 5–9, their reported refractive indices [128] can be used as a

reference to calculate the errors in the estimated RI change based on each method. Fig.

5–10 (a) shows both the error and standard deviation of the bulk RI change estimated by

the linear response model and the linear–MLE. The linear–MLE improved the accuracy in

estimating RI changes of 0, 5.1 × 10−3 and 1.1 × 10−2 with improved precision (improved

RI resolution); the averaged error is 6.1 × 10−3, 1.7 × 10−3, 2.2 × 10−3 and 9.1 × 10−4 for

LM1, LM2, LM3 and the linear–MLE, respectively. This indicates that the accuracy can

be increased by one order of magnitude employing the linear–MLE method. The averaged

standard deviation of the estimated RI change by the LM1, LM2, LM3 and the linear–MLE

method was 3.6× 10−3, 1.9× 10−3, 5.4× 10−3 and 1.2× 10−3, respectively.
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Based on the adlayer thickness and bulk RI change estimated by each method for the

biotin-streptavidin binding experiment, steps 4 and 5 in Fig. 5–9, the mean and standard

deviation of the estimated d and ∆nB were calculated at each step to investigate the preci-

sion of each method, as shown in Fig. 5–10 (b) and (c). The linear–MLE method exhibits a

decreased standard deviation based on the estimated adlayer thickness and bulk RI change

during the baseline phase, as well as during the association and dissociation phases. The

estimated adlayer thickness was 6 nm and 4 nm during the association and dissociation

phases, respectively. This suggests that the gold nanorods were not completely function-

alized, and there were empty locations that have not been occupied by biotin. The linear

response models with higher condition number and lower cross sensitivity figure of merit, χ,

revealed the worst results in terms of accuracy and precision. This, however, did not impact

the results based on the linear MLE method. The averaged standard deviation was 1.3 nm,

0.54, 1.22 nm and 0.37 nm for LM1, LM2, LM3 and the linear MLE method, respectively.

Therefore, the linear MLE method improves the precision and accuracy by factors of 3 and

3.7, respectively.
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Figure 5–10: (a) Error in the estimated RI change after applying the linear response model
(LM1, LM2, LM3), and the linear–MLE method to the measured results. The error was
calculated as the difference between the estimated RI changes and the reported counterparts
based on refractometer results for ethanol solutions of different concentrations (0%, 8%, and
16 %). The data is obtained from the first five steps in Fig. 5–9 (steps: 1, 2, 1, 3, 1). (b)
Estimated adlayer thickness and (c) bulk RI change after applying the linear response model
(LM1, LM2, LM3)and the linear–MLE method to the surface binding experimental results.
The error bars denote the standard deviation of the estimated values obtained from the last
three steps in Fig. 5–9 (steps: 4, 5, 4).
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5.8 Summary

This chapter presented a method to improve the accuracy of estimating the adlayer

thickness and bulk RI change. The method is based on multiple resonance sensors

to generate more than a single system of linear equations, and applies the linear–

MLE method to the solutions obtained by these systems (multiple values for adlayer

thickness and bulk RI change) to maximize the likelihood of the estimates with lower

variance. The chapter also introduced a method to generate sensitivity matrices based

on the experimental conditions, reducing errors due to the mismatch between the cal-

culated and measured sensitivities. This can also reduce the numerical calculations if

different biological samples are measured, or if the number of resonances is increased.

The linear response model is limited to biological adlayers of a maximum thickness

of (∼ ld/10). However, LSPR biosensors are aimed to detect such small biological

samples. Although the sensing experiments yielded noisy results (based on resonance

shift) when compared to some reported measurements, the linear–MLE method im-

proved the results based on the estimated adlayer thickness and bulk RI change. The

precision and accuracy were improved by factors of 3 and 3.7 when compared to the

averaged results obtained by the linear response model, proving that the method can

leverage self-referencing LSPR sensors. Increasing the number of resonances would

improve both accuracy and precision of the estimates. The averaged FoM associated

with the fabricated nanorods was 2.8 RIU−1 and the averaged figure of merit based

on the adlayer/bulk RI cross sensitivity, was 0.24; increasing the FoM would further

improve the precision, and increasing the bulk RI cross sensitivity figure of merit can

achieve improved accuracy. Additional improvement in the precision and accuracy can

be achieved by optimizing the nanorods based on these parameters.



6
Nonlinear–MLE method for estimating adlayer

thickness and change in bulk refractive index

Chapter five employed the maximum likelihood estimation (MLE) based on a linear response

model, assuming that the sensor response is a linear function of the adlayer thickness and

change in bulk refractive index (RI). Nevertheless, the linear response model is valid only for

extremely low adlayer thickness (∼ ld/10). This chapter improves the accuracy of the results

by applying the MLE to a nonlinear response model. The results presented here estimate the

changes in adlayer thickness and bulk refractive index based on nanostructures supporting

multiple resonances (particularly nanocrescent structures).

U-shaped nanostructures have been used in differentiating between specific and nonspe-

cific bindings based on the multiple-resonance characteristic and streptavidin-bioten binding

events [117]. The study assumed that specific binding mostly occurs at the metal surface,

108
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and the nonspecific binding occurs at a distant location (on the substrate), and ignored any

non-specific binding that may occur at the metal surface. However, the method requires

repetitive simulation in order to determine the sensitivity matrix based on other biological

samples, which is a practical limitation of the method. Alternatively, a model that distin-

guishes bulk RI and adlayer thickness changes is a more practical solution, as it can decouple

the effects associated with them. The sensor response — at each resonance — is related to

the adlayer thickness and bulk RI changes, as discussed in chapter 2, and the effects can

be determined by solving the two equations (corresponding to the number of resonances).

Surface plasmon resonance and plasmon waveguide resonance were used as a self-referenced

spectroscopy sensor, employing the linear response model, as the effects due to adlayer thick-

ness and bulk RI change were determined [118]. However, the sensitivity matrix (including

the adlayer and bulk RI sensitivities for both resonances) must have a low condition number

to avoid any numerical errors, which may not be the case for many sensing platforms. This

chapter presents a method based on the maximum likelihood estimation to improve the ac-

curacy of the estimated quantities. This implies that the bulk RI resolution and the limit of

detection are improved accordingly.

6.1 Nonlinear model for sensor response

The EM field decays exponentially from the surface of the nanostructures with a factor of

exp(−z/ld). Since the intensity is the square of the electric field strength, it decays with

a factor of exp(−2z/ld) away from the nanostructure surface (z = 0). Accordingly, the

effective refractive index along the z direction can be weighed by using the same decay

factor exp(−2d/ld). Fig.6–1 (a) shows a schematic of the nanocrescent structure and Fig.6–

1 (b) ilustrates the RI distribution around the structure. The effective refractive index can

be obtained by integrating the refractive indices along z direction as follows [136]

ne = (2/ld)

ˆ ∞
0

n(z)exp(−2z/ld)dz
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where n(z) changes along the z axis as

n(z) =

na, if 0 < z < d,

nB, if d < z <∞.
(6.1)

where na and nB are the adlayer and bulk refractive indices, respectively.

Figure 6–1: (a) Schematic representation of a nanocrescent, surrounded by an adlayer with
thickness d. (b) Refractive index distribution showing the negative refractive index of the
nanocrescent nc from −hc < z < 0, the adlayer refractive index na from 0 < z < d, and the
bulk RI nB for z > d

This gives

ne = na[1− exp(−2d/ld)] + nBexp(−2d/ld) (6.2)

= nB + (na − nB)[1− exp(−2d/ld)] (6.3)

The resonance shift can be determined by ∆λ = S∆n, where ∆n = ne − nB is the

refractive index change. From Eq. (6.3), the following is obtained for the resonance shift

∆λ = S(ne − nB) = S(na − nB)[1− exp(−2d/ld)] (6.4)

Equation (6.4) can be used to estimate the changes in the adlayer refractive index ∆n
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and thickness d. First, the sensitivity factor S is measured. The buffer solution is injected

to obtain the sensing baselines for the three resonances. Hence the resonance wavelength

shift ∆λ can be obtained directly from the measured data.

The maximum response occurs when a thick adsorbate layer is reached d −→ ∞, and

equation (6.4) becomes

∆λmax = S(na − nB) (6.5)

Dividing equation (6.4)by equation (6.5), the following is obtained

∆λ

∆λmax
= [1− exp((−2d/ld)] (6.6)

Equation (6.6) can be rearranged as follows

ln(1− ∆λ

∆λmax
) =
−2

ld
d (6.7)

Intuitively, the EM decay length is dependent on the resonance wavelength, and thus the

sensor response for a multiple–resonance sensor can be obtained based on equation (6.7) as

follows

y = Cd d ±Ry (6.8)

where the elements of y can be obtained from the shifts in the measured resonance wave-

lengths ∆λi as yi = ln(1 − ∆λi/∆λi,max). Cd contains the coefficients related to the EM

decay length as −2/ldi, whereas Ry represents the variance and covariance associated with

the resonance wavelengths. For a two-resonance sensor ∼ i = 2, we obtain

y =

y1

y2

 ; Cd =

Cd1

Cd2

 ; and Ry =

Ry11 Ry12

Ry12 Ry22

 (6.9)



Chapter 6
Nonlinear–MLE method for estimating adlayer
thickness and change in bulk refractive index 112

Applying the MLE [Eq. 5.12]

x̂ =
CT R−1y y

CT Ry−1 C
, R−1y =

R−1
y11 R−1

y12

R−1
y12 R−1

y22


the adlayer thickness can be estimated as follows

d̂ =
(Cd1R

−1
y11 + Cd2R

−1
y12)y1 + (Cd2R

−1
y22 + Cd1R

−1
y12)y2

C2
d1R

−1
y11 + C2

d2R
−1
y22 + 2Cd1Cd2R

−1
y12

(6.10)

If the noise is uncorrelated, the variance Ry12 = 0, and the estimate becomes

d̂ =
(Cd1R

−1
y11)y1 + (Cd2R

−1
y22)y2

C2
d1R

−1
y11 + C2

d2R
−1
y22

(6.11)

Likewise, the refractive index change can be estimated with an improved accuracy using

the nonlinear–MLE. The shifts in resonance wavelengths can be obtained from Equation

(6.4) as follows

∆λ1 = Cn1 ∆n±Rλ1

∆λ2 = Cn2 ∆n±Rλ2

where Cn1 = S1(1− e−2d̂/ld1), and Cn2 = S2(1− e−2d̂/ld2), are the sensitivity coefficients, and

d̂ is the value estimated by equation (6.10) or (6.11). Rλi is the variance associated with the

measured wavelength shift ∆λi.

The estimated ∆̂n that maximizes the likelihood of the above probability assuming cor-

related noise can be obtained using the MLE equation [Eq. 5.12]

∆̂n =
(Cn1R

−1
λ11

+ Cn2R
−1
λ12

)∆λ1 + (Cn2R
−1
λ22

+ Cn1R
−1
λ12

)∆λ2

C2
n1R

−1
λ11 + C2

n2R
−1
λ22 + 2Cn1Cn2R

−1
λ12

(6.12)

For the uncorrelated system (Rλ12 = 0), this simplifies the above equation to

∆̂n =
Cn1R

−1
λ11

∆λ1 + Cn2R
−1
λ22

∆λ2

C2
n1R

−1
λ11

+m2
2R
−1
λ22

(6.13)
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6.1.1 Methods

The FEM method was used to calculate the sensor response to changes in bulk RI and

adlayer thickness, and to validate nonlinear–MLE method. Periodic boundary conditions

were enforced along the sides of a hexagonal simulation domain created with commercial

COMSOL Multiphysics simulation package, as shown in Fig. 6–2 (a). The refractive index

for gold was obtained from Johnson and Christy [48]. The nanocrescents and the adlayer

were discretized using a tetrahedral mesh, and the rest of the domain was discretized using

triangular mesh. The transmission efficiency was obtained from the scattering parameter S21,

as input and output ports were assigned to the bottom and top boundaries of the simulation

domain, shown in Fig. 6–2 (a). The results were compared to those based on the linear

response model. The non–linear response model along with the MLE method were applied

to pre–calculated FEM results to estimate the known adlayer thickness and RI change (used

in the simulation). To investigate the performance of the method in the presence of noise,

each shift in a resonance wavelength ∆λi was perturbed by adding random variations with

zero mean and σλi standard deviation such that SNR = ∆λi/σλi . Different SNR levels can

be obtained by using various σλi .

The experimental sensing method is based on measuring the extinction efficiency in real

time by using Cary 5000 spectrometer, illustrated in Fig. 6–2 (b). The nanocrescents were

fabricated by the side–wall lithography method, described in Appendix C, and functionalized

by biotin-hpdp according to the established surface chemsitry protocol [117, 139] and as

explained in the previous chapter. Streptavidin solutions were prepared as discussed in the

previous chapters.
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Figure 6–2: (a) Simulation layout used in COMSOL multiphysics to model periodic nanocre-
scent structure of a hexagonal lattice, by enforcing periodic boundary conditions. (b) Exper-
imental set-up to measure transmission spectra for the fabricated nanocrescent structures.

6.1.2 Simulated results and validation of the estimation method

This section compares the nonlinear–MLE method with the established linear response model

based on FEM simulated results, and presents a FEM based evaluation of the accuracy of

the measured results based on each method with respect to deviated resonance wavelengths

(representing the effect of noise on each resonance wavelength).

The simulated results show distinct values for the sensitivity to bulk RI and adlayer

thickness changes. Inspecting both modes based on the adlayer and bulk RI sensitivities can

provide an insight into the sensing efficiency for each mode [Eq. (2.42)]
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∂neff
∂d

=
Sd
SB

(6.14)

Referring to Fig. 6–3 and Fig. 6–4, the first mode (1100 nm) exhibits a lower bulk RI

sensitivity, comparing to that associated with the second mode ∼1450 nm (325.25 nm/RIU

versus 787.35 nm/RIU). These modes yield adlayer sensitivities of 1.47 and 2.2, respectively.

Therefore, the calculated adlayer sensing efficiency is 4.5 × 10−3 RIU/nm and 2.8 × 10−3

RIU/nm. In other words, changing the adlayer thickness by 1 nm would alter the effective

RI by 4.5× 10−3 RIU based on the first mode and 2.8× 10−3 RIU in the case of the second

mode, although the second mode features a higher bulk RI sensitivity than that of the first

mode. Here, a combination of linear systems (based on the linear response model) is used

with the MLE technique to improve the accuracy and precision of the sensing results.
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Figure 6–3: Dependence of the first mode (1100 nm) on (a) the bulk RI change, and (b)
variations of the adlayer thickness. The results obtained from the nonlinear response model
and the FEM calculation follow a similar trend. The following parameters were used in the
FEM model:nB = 1.3, na = 1.4.

The linear response model relates the resonance wavelength shift to the biological adlayer

thickness and the bulk RI change by the following relationship
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Figure 6–4: (a) Resonance wavelength shift versus bulk RI change associated with the second
mode (1450 nm) based on the FEM model. (b) Resonance wavelength shift against adlayer
thickness with nB = 1.3, and na = 1.4, showing a close agreement with the non-linear
response model results.

∆λ1

∆λ2

 =

SB1 Sd1

SB2 Sd2


︸ ︷︷ ︸

S

∆n

d

 (6.15)

The elements of the sensitivity matrix are given in table 6.1. The method used in determining

the resonance affects these parameters as the LSPR curves are not symmetric.

The application of the linear response model is valid only if: (i) the sensitivity matrix

(S) is not singular, and (ii) the normalized sensitivity matrix (S ′) is well conditioned. The

normalized sensitivity matrix is calculated as follows

S ′ =


SB1√

S2
B1

+S2
B2

Sd1√
S2
d1

+S2
d2

SB2√
S2
B1

+S2
B2

Sd2√
S2
d1

+S2
d2

 (6.16)

This matrix meets the above conditions if it has a non–zero determinant and low condition

number.
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S =

325.25 1.02

787.38 1.51


︸ ︷︷ ︸
|S|=−366.256=0

⇒ S ′

0.38 0.55

0.92 0.84


︸ ︷︷ ︸
κ(S′)=10.49<100

From Eq.(6.15), the adlayer thickness and bulk RI change can be calculated as

∆n

d

 = S−1

∆λ1

∆λ2

 (6.17)

Now the nonlinear–MLE method is compared to the linear response model based on

simulated data with additive white Gaussian noise. The results are based on two methods

for determining the dip location, the dip-finding method and dynamic-baseline centroid

methods. The elements of the sensitivity matrix depend on each method as shown in Table

6.1.

Table 6.1: Modes supported by the nanocrescent structure and their sensing characteristics,
calculated by the dip-finding method and the dynamic baseline centroid methods

Dip-finding Dynamic-baseline centroid
λ1 = 1100 λ2 = 1450 λ1 = 1100 λ2 = 1450nm

SB [nmRIU−1] 325.25 787.35 374.25 828.95

ld 40 65 40 65

Sd 1.02 1.51 1.15 1.58

The nonlinear–MLE method is now employed to estimate the bulk RI change and adlayer

thickness—that were used in the simulation— based on the noisy simulated spectra as shown

in Fig. 6–5 (a). The resonance wavelength shifts are used to determine the corresponding

values for ln(1 − ∆λ/∆λmax), which are then used in Eq. (6.11) to determine the adlayer

thickness, as shown in Fig. 6–5 (b). The adlayer thickness is then used to determine the

sensitivity coefficient, Cn = S [1 − exp(−2/. ld)], to estimate the bulk RI change using Eq.

(6.13). The estimated adlayer thickness and bulk RI change are shown in Fig. 6–5 (c). The
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results obtained based on the LM are also shown in Fig. 6–5 (b,c). The nonlinear–MLE

method revealed the following for the estimates: d=5.95 nm, ∆nB ≈ 0, with 0.47 nm and

1.4 × 10−3 RIU uncertainties, respectively. Under the same conditions, the linear response

model revealed 5.5 nm and 1.3 × 10−3 for the estimated adlayer thickness and refractive

index change with uncertainties of 1.8 nm and 6× 10−3, respectively. This suggests that the

nonlinear–MLE can improve the accuracy of the estimated adlayer thickness by one order of

magnitude, and the precision by a factor of 4, as shown in Fig. 6–5.
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Figure 6–5: (a) Probability density function representation of the calculated shift in the
first and second resonance wavelengths, with added errors σλ1 = 0.9, σλ2 = 1.3. The FEM
used the following parameters: nB = 1.33, na = 1.43, d = 6nm. (b) Adlayer thickness and
(c)change in bulk RI change, estimated by the nonlinear–MLE (red) and linear response
model (blue) methods. The precision for the nonlinear–MLE results: σd = 0.09nm, σn =
1.6× 10−4RIU , The precision of the LM:σd = 0.25nm, σn = 6.14× 10−4RIU .

Fig. 6–6 compares both methods in terms of accuracy and precision based on adlayer

thickness ranging from 6 nm to 25 nm. The percentage error in the estimated adlayer

thickness ranges from 0.83–1.96% based on the nonlinear–MLE method, and 8.3–71.6%,

based on the linear response model. This indicates that the nonlinear–MLE method can

improve the results by a factor of 36 as compared to those based on the linear response

model, when the adlayer thickness approaches ∼ ld/2. The error in the estimated refractive

index tends to be negligible based on the nonlinear–MLE-nonlinear method and increases
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drastically based on the linear response model, as shown in Fig. 6–6 (b). The nonlinear–

MLE method and the linear response model reveal 5×10−3 and 1.5×10−2 RIU uncertainties

when the adlayer thickness approaches 25 nm, as shown Fig. 6–6 (b).
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Figure 6–6: (a) Error in the estimated adlayer thickness based on the nonlinear–MLE method
(red bars) and the linear response model (blue bars). The following parameters were used
in the FEM model: na = 1.43, nB = 1.33, and d = {6nm, 15nm, 25nm}. The shifts in the
resonance wavelengths were determined, and each resonance was added uncertainty σi, such
that each ∆λi/σi = 10 (SNR=10). The error was then determined as the difference between
the true and estimated values. (b) The error associated with estimated ∆n based on the
same simulated results used in (a).

6.1.3 Experimental results

This section provides the experimental results based on Bioten-Streptavidin binding events.

Before being used in sensing experiments, the fabricated nanocrescent structures were cleaned

by DI water and ethanol solution, blown dry with nitrogen, and plasma treated to remove any

biological contaminant. Ethanol solutions of different concentrations were used in the bulk

RI sensing experiment. The bulk RI sensitivity at each resonance was determined based on
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resonance shift against RI change due to changing the concentration in ethanol solution. The

measured adlayer sensitivities were determined by using the measured bulk RI sensitivities

in correcting the simulated adlayer sensitivities using Eq.(5.18) [Chapter five]. Table 6.2

provides the sensing parameters based on the measured results. The bulk RI sensitivity

is used along the EM decay length in Eq. (6.11) and Eq. (6.13) to estimate the adlayer

thickness and bulk RI change, respectively, based on the nonlinear–MLE method. This

section also compares these results to those obtained based on the linear response model.

The linear response model uses the bulk and adlayer sensitivity factors, presented in Table

6.2, in Eq. (6.15) to estimate the adlayer thickness and bulk RI change.

Table 6.2: Modes supported by the nanocrescent structure and their sensing characteristics
based on measured results. The dip–finding method and the dynamic baseline centroid
method were used to extract the resonance wavelengths.

Dip-finding Dynamic-baseline centroid
λ1 = 1100nm λ2 = 1450nm λ1 = 1100nm λ2 = 1450nm

Sensitivity 330 780 365 800

ld 40 65 40 65

∂λ/∂d 1.57 2.28 1.73 2.34

Fig. 6–7 (a) shows the shifts in resonance wavelengths based of the measured extinction

curves for streptavidin biotin sensing experiments. These shifts were translated into the

logarithmic normalized quantity, ln(1−∆λ/∆λmax), and used in Eq. (6.11) and Eq. (6.13)

to estimate the adlayer thickness and bulk RI change, as shown in Fig. 6–7 (b and (c).

Now the linear response model is used based on the same measured data, shown in Fig.

6–7 (a) in estimating the adlayer thickness and bulk RI change using the sensitivity factors,

given in Table 6.2, in Eq. (6.15). Fig. 6–7 (c) shows the results based on the linear

response model. The limit of detection and bulk RI resolution can be determined based on

the standard deviation of the estimated adlayer thickness and bulk RI change, respectively.

When compared with the linear response model based on these results, the nonlinear–MLE
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method reduces the limit of detection based on the adlayer thickness by a factor of 4, and

improves the bulk RI resolution by a factor of 22 based on the bulk RI change.
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Figure 6–7: (a) shifts in the measured resonance wavelength employing the dip-finding
method during streptavidin-bioten sensing experiments. (b) Estimated Adlayer thickness
(left y-axis) and bulk RI change (right axis) based on the nonlinear–MLE method, (c) esti-
mated adlayer thickness and bulk RI change based on the linear response model. The cycles
on the graph represent the following: [1] Buffer, [2] Streptavidin solution, and [3] Buffer.

Now, the dynamic baseline centroid method is used to determine the resonance and

generate the sensogram shown in Fig. 6–8 (a). This decreases the noise of the measured

data and further improves the estimated results. The sensitivity factors are changed in

accordance to the method used in determining the resonance location. The new sensor

characteristics are also given in Table (6.2). In a similar manner, the resonance shifts are

translated into a logarithmic scale, ln(1−∆λ/∆λmax), which is used to estimate the adlayer

and bulk RI change as shown in Fig. 6–8 (b)and Fig. 6–8 (c), respectively. As can be

observed in the figure, the nonlinear–MLE method improved the limit of detection by a

factor of ∼ 5 and the bulk RI resolution by a factor of ∼ 36 when compared to the linear

response model results. Therefore, the nonlinear–MLE method can be used not only to

improve the accuracy of the results, but also to improve the limit of detection and bulk RI

resolution. Employing the dynamic baseline centroid method provided improved results for

determining the resonance wavelengths, and applying the nonlinear–MLE method to these



Chapter 6
Nonlinear–MLE method for estimating adlayer
thickness and change in bulk refractive index 122

results shows that the nonlinear–MLE method provided more accurate results compared to

those based on the linear response model. The estimated values for the adlayer thickness and

RI change based on the linear response model and the nonlinear–MLE method, considering

both the dip-finding method and dynamic-baseline centroid method, are given in Table(6.3)
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Figure 6–8: (a) Shifts in the resonance wavelengths (λ1 = 1100nm, λ2 = 1450nm), deter-
mined by the dynamic baseline centroid method. (b) Adlayer thickness (left y-axis) and bulk
RI change (right y-axis) estimated by the nonlinear–MLE method. (c) Estimated adlayer
thickness (left y-axis) and bulk RI change (right y-axis) based on the linear response model.
The solutions were introduced to the nanocrescents in the following order: [1] Buffer, [2]
Streptavidin solution, and [3] Buffer.
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Table 6.3: Estimated adlayer thickness and bulk RI change based on the nonlinear–MLE
method and the linear response model. The resonance wavelength shifts were determined
by the dip-finding and dynamic baseline centroid methods.

Adlayer thickness Adlayer SD ∆nB resolution
[nm] [nm] [RIU]

Dip-finding
LM 2.16 0.24 1.3× 10−3

Nonlinear–MLE 1.78 0.06 6× 10−5

Dynamic-baseline
LM 1.34 0.11 4.0× 10−4

Nonlinear–MLE 1.69 0.023 1.1× 10−5
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6.2 Summary

This chapter presented the nonlinear–MLE method. It is a statistical method, combin-

ing the MLE method with a nonlinear response model, to extract the adlayer thickness

and bulk refractive index change with improved accuracy. The method not only pro-

vided a quantitative information about the binding events, but also improved the

precision of LSPR sensors. The nonlinear response model is adopted because it repre-

sents the real scenario for the sensor response to adlayer thickness in typical sensing

experiments, following a similar trend to that based on the association/dissociation

constants [section 2.9]. The nonlinear response model used the EM decay length and

sensitivity for each resonance to estimate the adlayer and bulk RI change, whilst the

linear model used bulk and adlayer sensitivities that need to be recalculated or cor-

rected for other target analytes. The latter represents a substantial disadvantage of

the linear response model. In contrast to the linear response model, the nonlinear

response model avoids the redundant calculation of the sensitivity to adlayer thickness

for different analytes. Based on the simulated and measured results, the nonlinear–

MLE method improved the bulk RI resolution by a factor of ∼ 36 when compared to

the linear response model (1.1×10−5 RIU vs 4×10−4 RIU), and achieved an improved

limit of detection (based on the adlayer thickness) by a factor of ∼ 5 when compared

to that achieved by the linear response model (0.023 nm vs 0.11 nm uncertainty in the

estimated adlayer thickness)



7
Conclusion

7.1 Summary

Plasmonic biosensors have attracted considerable attention in many applications, including

medical diagnosis, drug discovery, and gas sensing. Due to growing demand for low cost

and compact biosensors, metallic nanostructures have been of great interest. Apart from

their miniaturized dimension, metallic nanostructures do not require complex instrumenta-

tion to excite the localized surface plasmon resonance. However, LSPR sensors yield broad

extinction curves due to the short electromagnetic decay length, decreasing the signal to

noise ratio. Therefore, techniques to improve SNR are needed. This thesis presented signal

processing methods to improve the signal to noise ratio for LSPR sensors. The thesis also

presented statistical methods to estimate quantitative information about binding events,

distinguishing between the effects due to the adlayer thickness from those due to RI change

125
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of the buffer.

The thesis employed the FDTD and FEM to model the nanostructures and validate the

signal processing methods . The FDTD and FEM models provided accurate results when

compared to the exact Mie solution for optical cross sections of metal nanoparticles. The

FDTD method was employed for generating the reference matrix for the projection method

as the computational cost is not affected with the number of frequency steps.

The thesis also provided results based on the fabricated nanostructures ranging from

surface characterization (SEM and NSOM imaging) to the measured extinction curves as

the fabricated structures were investigated for LSPR reproducibility based on repeating the

measurement for multiple samples. The nanostructures displayed extinction curves with

∼2–5 % errors in the resonance wavelengths.

The projection method, introduced in chapter 4, increased the SNR of the nanotube struc-

tures by one order of magnitude, when compared to the conventional dip–finding method.

It provided more accurate results, when compared against other advanced signal processing

methods. Moreover, the projection method provided the best combination of LoD and SNR,

as it exhibited the least error in the measured refractive index ∼ 14 % with a comparable

SNR as that for the dynamic–baseline centroid method ∼ 32 dB. The latter incurred 33%

error in the estimated refractive index, whilst the maximum error was associated with the

fixed boundary centroid method ∼ 48%. Chapter 4 also provided a fitted Cauchy formula

to estimate the refractive index for mixed solutions of known Cauchy parameters.

In chapter 5, the maximum likelihood estimation method was used alongside a linear

response model to improve the accuracy and precision of self–referenced LSPR sensors. The

linear response model assumes that the sensor response is a linear function of the bulk RI

change and adlayer thickness. The linear–MLE method was validated based on the FEM

results, and then applied to measured results associated with the fabricated multiple reso-

nance nanorod structures. This included both bulk and surface binding experiments. The

thesis provided a means to overcome the disadvantages of the linear response model in self–

referenced sensing, including the requirement for repetitive numerical simulations in order to

determine the sensitivity to adlayer thickness. This was achieved by using the measured bulk
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RI sensitivity directly to correct for the adlayer sensitivity. Employing the three–resonance

nanorod structures yielded three systems of linear response models, providing multiple es-

timates for the adlayer thickness and bulk RI change (3 values for each estimate). The

MLE method was then applied to these values to improve the accuracy and accuracy of the

results, The linear–MLE method improved the accuracy and precision by a factor of 3 ad 4

respectively. This can be further improved by optimizing the nanorods based on the cross

sensitivity to bulk and adlayer thickness figure of merit.

The thesis finally presented an improved LSPR sensor for estimating adlayer thickness

and bulk RI change based on the nonlinear response model and the MLE method. The

fabricated nanocrescent structures were employed in the experiments. Compared to the

established linear response model, the nonlinear–MLE method improved both the accuracy

and precision of the results. Estimated adlayer thickness was achieved with a precision

of 0.023 nm and 0.11 nm, based on the nonlinear–MLE method and the linear response

model, respectively, indicating an improvement factor of ∼ 5. The bulk RI resolution for the

estimated bulk RI change was also improved by a factor of 36 based on the nonlinear–MLE

method, as a change of 1.1 × 10−5 was detectable based on the nonlinear–MLE method,

whilst the linear response model exhibited 4 × 10−4 RIU uncertainty. Therefore, careful

adoption of signal processing techniques can significantly improve the performance of LSPR

sensors.

7.2 Future work and potential improvements

The proposed methods provided improved resolution and limit of detection at least one

order of magnitude based on noisy extinction/transmission spectra. This can be further

improved according to the simulated results. The following recommendations would improve

the experimental results based on the proposed signal processing methods

• Using a spectrometer with improved spectral resolution and photodiode array detector.

This features a shorter acquisition time as compared to the Cary 5000 spectrometer,

improving the temporal resolution in the real time measurements.
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• The signal to noise ratio for the measured extinction spectra can be increased by

averaging more scans. However, this will increase the acquisition time, which can be

estimated as the number of averaged scans by the integration time of the detector.

The integration time should also be kept below a threshold (the maximum integration

time) over which the percentage noise reaches 50 % of the total detected signal.

• The optical path length is an important factor in determining the SNR. In this thesis,

PDMS fluidic channels with 1 mm thickness were employed in the experiments. Al-

though PDMS is transparent, impurities due to fabrication imperfections may disturb

the optical path and cause scattering of the light beam. An improved system would use

an acrylic chamber with decreased volume, hence decreased losses. As well, the depth

of the microfluidic channels was 80 µm, which can be further reduced to decrease the

losses and improve the SNR.

• The multiple resonance structures can be optimized for the figure of merit based on the

cross sensitivity to bulk RI and adlayer thickness to improve the accuracy of the esti-

mates. The nanocrescent structures exhibited a better cross sensitivity figure of merit

than the nanorods. However, the nanocrescent structures should also be optimized for

the operating wavelength range while maintaining an acceptable cross sensitivity figure

of merit.

• Although LSPR sensors are less sensitive to temperature changes when compared to

propagating SPR sensors, the refractive index of the sample changes with temperature,

and a temperature controlled environment would provide improvement in the results.

This is also important if the detector does not have a thermoelectric cooler as the noise

increases with increased detector temperature. These improvements would increase the

overall signal to noise ratio for the LSPR sensor and achieve an improved RI resolution.

• The methods based on the maximum likelihood estimation method, namely the linear–

MLE and nonlinear–MLE methods, can be applied to simpler LSPR sensing systems,

employing spectrometers of a narrow spectral range. Further improvement could be
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achieved based on measuring the intensity change at a few fixed wavelengths by employ-

ing the integration response or normalized difference integration response (described

in chapter 2), and then applying the linear–MLE method to improve the accuracy of

the results.

• The linear response model, presented in chapter 5, is only valid for estimating thin

adlayer thickness (ld/10). Although this was improved by the nonlinear response model,

presented in chapter 6, the maximum adlayer thickness that can be estimated by LSPR

sensors is limited by the short EM decay length (ld). For larger analytes, the same

methods can be applied to other sensors of longer EM decay lengths.
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Appendix A

Derivation of the integral form of the binding kinetics

The binding of streptavidin of concentration [A] with biotin of concentration [B] can be

represented by the following association-dissociation relationship [119]

[A] + [B]
kon


koff

[AB] (A.1)

where [AB] is the concentration of the compound. The affinity dissociation constant (KD)

can be used to determine the binding strength: it is related to the association (kon) and

dissociation (koff ) constants by

KD ≡
koff
kon

(A.2)

The rate of compound formation is related to affinity constants by ∂[AB]
∂t

= kon[A][B] −

koff [AB], where [A] is the initial molar concentration of streptavidin, [A0], [AB] is the

compound concentration that can be represented by the sensor response, [AB] ∝ R(t); and

[B] is the biotin concentration that can be represented by [B] ∝ Rmax − R(t), where R(t)

is the sensor response with time. Consequently, the rate of compound formation can be

determined by

dR(t)

dt
= kon[A0](Rmax −R(t))− koffR(t) (A.3)

= kon[A0]Rmax −R(t)(kon[A0] + koff ) (A.4)
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We can solve the differential equation by parts

u(t) = kon[A0]Rmax −R(t)(kon[A0] + koff ) (A.5)

du(t)

dt
= −(kon[A0] + koff )

dR(t)

dt

dR(t)

dt
= − 1

(kon[A0] + koff )

du(t)

dt
(A.6)

Substituting Eqs. (A.5) and (A.6) in Eq.(A.4), we obtain

− 1

(kon[A0] + koff )

du(t)

dt
= u(t)

Rearranging
du(t)

du
= −(kon[A0] + koff )dt

ln (u(t)) = −(kon[A0] + koff )t+K

where K is a constant

Taking the exponential to both sides

u(t) = Ke−(kon[A0]+koff )t (A.7)

substituting the value of u from Eq. (A.5), and K = kon[A0]Rmax in Eq. (A.7)

kon[A0]Rmax −R(t)(kon[A0] + koff ) = kon[A0]Rmaxe
−(kon[A0]+koff )t

(kon[A0] + koff )R(t) = kon[A0]Rmax − kon[A0]Rmaxe
−(kon[A0]+koff )t (A.8)

Rearranging, the integral form of the kinetics equation is obtained
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R(t) =
kon[A0]Rmax(1− e−(kon[A0]+koff )t)

kon[A0] + koff
(A.9)



Appendix B

Side-wall lithography fabrication method

The nanostructures presented in this thesis were fabricated by the side wall lithography

technique, which is based on the nanoimprint lithography method [121]. A silicon mold

is used to replicate nanopillars on a cyclic olefin copolymer by applying pressure and

temperature according to Table (B.1). Other steps are then followed to create the final

nanostructure, including metal coating and reactive ion etching (RIE). For the double

nanotube structures, Pentacene was used as a spacing material as it is introduced by

tilted dry coating (evaporation), and a second layer of gold was then coated. The top

gold layer was removed by RIE.

Table B.1: Nanoimprint lithography fabrication recipe for imprinting a COP substrate using
silicon mold

Step 1 Step 2 Step 3 Step 4 Step 5

Pressure (MPa) 0 2 2 2 0

Lower temperature (C°) 150 150 150 100 70

Upper temperature (C°) 150 150 150 100 70

Time (sec) 10 60 600 150 30
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Figure B–1: Side-wall lithography fabrication method based on nanoimprinting COP poly-
mer. An array of nanoholes (200 nm diameter, 20 nm-pitch) were already patterned on the
silicon mold.



Appendix C

Fabrication of Nanocrescent structures

A silicon mold was used to imprint an array of polymer nanopillars based on the side-

wall lithography, described in Appendix A. The nanopillars were then placed on a

tilted stage (50 degree-tilt angle) and coated by gold evaporation in order to introduce

a wedge angle to the wall thickness around the pillars. The thin part of the gold wall

was removed by reactive ion etching (Argon) and the inner polymer pillars were then

removed under a vertical oxygen plasma shower and nanocrescents were formed. Fig.

C–1 illustrates this procedure.
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Figure C–1: Fabricating nanocrescent structures based on the side-wall lithography method.



Appendix D

Fluidic channel fabrication using PDMS-replica moulding

The hot embossing technique is a well established microfabrication method that has

been widely used in fabricating polymer microfluidic channels. Here I outline the

fabrication process of the fluidic channels employed in the sensing experiments: UV

photolithography is used to pattern SU-8 negative resist on a silicon wafer, then im-

mersed in the SU-8 developer, blown dry with Nitrogen gun, and postbaked to form

the stamp that can be used to replicate the channels on PDMS as outlined in Fig.

D–1. More details can be obtained from [127].
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Figure D–1: Fabrication of fluidic channel based on the PDMs replica moulding method
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