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Abstract

Compact models are tools used by the semiconductor industry for digital prototyp-

ing of integrated circuits. They are analytical parametrizations of the current-voltage

characteristics of nanoelectronic devices in terms of hundreds or thousands of em-

pirical parameters. In this thesis, we present accurate compact models of ballistic

metal–oxide–semiconductor field-effect transistors using less than ten parameters, all

of which have a clear physical interpretation. In addition to having great predictive

power, the models that we present are important conceptual guides for device research

and development. We focus our attention on transistors composed of monolayer black

phosphorus, a two-dimensional semiconductor with unique electronic and mechanical

properties which make it a promising candidate for novel digital logic applications.

Résumé

Les modèles compacts sont des outils utilisés par l’industrie des semi-conducteurs pour

le prototypage numérique de circuits intégrés. Ces modèles décrivent, en utilisant des

centaines ou des milliers de paramètres empiriques, les caractéristiques des composants

nanoélectroniques. Dans cette thèse, nous présentons des modèles compacts précis de

transistors à effet de champ à grille métal-oxyde balistiques utilisant moins de dix pa-

ramètres, qui ont tous une interprétation physique claire. Ainsi, en plus d’avoir une

grande puissance prédictive, les modèles que nous présentons sont des guides concep-

tuels importants pour la recherche et le développement dans le domaine de la nano-

électronique. Nous concentrons nos efforts sur des transistors composés de phosphore

noire monocouche, un semi-conducteur bidimensionnel aux propriétés électroniques et

mécaniques uniques et prometteuses pour des applications technologiques novatrices.
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Preface and Statement of Originality

The manuscript for this thesis was entirely written by myself, Raphaël Prentki. Addi-

tionally, all figures presented in this thesis were designed by myself.

In this thesis, I explore the idea of compact modeling of nanoelectronic devices from

robust physical arguments and first-principles simulations, with a focus of ballistic monolayer

black phosphorus (ML-BP) metal-oxide-semiconductor field-effect transistors (MOSFETs).

Some of the original ideas that I present in this thesis are:

• An approximation formula for the capacitance of a parallel plate capacitor with rect-

angular plates exact within ∼ 1% for all values of the ratio of plate separation to plate

width, as exposed in Sec. 3.1.1.7,

• A threshold voltage extraction method based on the concept of ballistic mobility for

ballistic MOSFETs biased at drain voltages smaller than the thermal voltage, as ex-

posed in Sec. 3.2.2.1,

• The demonstration that the transfer and output characteristics of ballistic ML-BP

MOSFETs can be described accurately within the capacitor model, as exposed in

Sec. 4.2,

• The demonstration that the output characteristics of ballistic ML-BP MOSFETs can

be described accurately within the virtual source model, as exposed in Sec. 4.3

• An accurate semiphenomenological parametrization of the velocity of charge carriers

in the saturation regime in terms of the gate voltage and the threshold voltage, as

exposed in Sec. 4.3.
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1 Introduction

1 Introduction

Transistors and other semiconductor devices have undergone an uninterrupted minia-

turization over the past fifty years, and are now reaching the nanoscale. This represents

a fundamental barrier in the understanding of electronic devices: at the atomic scale, it is

quantum phenomena that dominate the physical properties of these systems. To understand

the experimental data and the physics of these nanoelectronic devices, it is important to

develop an appropriate theoretical formalism and associated modeling tools which are ca-

pable of making quantitative and material specific predictions of device characteristics from

first-principles (or “ab initio”). One of the most successful formalisms for atomistic mod-

eling of quantum transport is density functional theory (DFT) within the nonequilibrium

Green’s function (NEGF) formalism. Since its conception by Guo et al. [1], the NEGF-DFT

technique has emerged as a very powerful and practical method for predicting nonlinear and

nonequilibrium quantum transport properties of nanoelectronic devices.

A profusion of semiconductor devices is found in contemporary technologies, ranging

from microprocessors to photovoltaic cells. Numerical simulations most often guide the de-

sign and control of such devices. Ab initio physics-based simulations of nanoelectronic devices

take exceedingly large amounts of time to run, and are thus mostly impractical for the semi-

conductor industry. Instead, this industry uses compact models, which typically parametrize

electronic devices by the hundreds or even the thousands of empirical parameters that are

fitted from experimental data. However, these parameters become difficult to measure at

the nanoscale. Moreover, curve-fitting-based compact models offer little conceptual insight

on the physics of these devices, which is critical to guide our thinking in device research and

development.

The virtual source (VS) model, which was recently developed by Antoniadis et al. [2–4],

offers hope in this regard. In this model, nanoelectronic devices are parameterized by around

ten parameters, all of which have a clear physical interpretation, such as the charge car-

rier’s effective mass, mean free path, and effective mobility. By measuring these parameters
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1 Introduction

experimentally, the current-voltage characteristics of metal-oxide-semiconductor nanoscale

field-effect transistors (MOSFETs) can be modeled with surprising accuracy within the VS

model [2, 3].

My Masters research project consists in computing the parameters of the VS model

for various MOSFETs from first principles, as well as investigating first-principles compact

modeling more generally. I chose monolayer black phosphorus (ML-BP) MOSFETs as the

object of my investigation. Ever since few-layer BP was first obtained by scotch tape-based

mechanical exfoliation in 2014 [5], ML-BP has emerged as a promising material for na-

noelectronics applications [6, 7]. Indeed, ML-BP possesses critical advantages over other

two-dimensional layered materials that have been studied recently. First, unlike graphene,

ML-BP has a bandgap, making it suitable for transistors applications. Second, while they

do possess an appropriate bandgap, being compounds, monolayer transition metal dichalco-

genides are harder to fabricate with high purity than ML-BP; high purity is a requirement to

achieve an optimal charge carrier mobility [8]. Overall, my Masters thesis project fits within

the research and development of sub-10 nm technology, which as of yet has not been made

commercially available.

This thesis is organized as follows. First, in the remainder of Sec. 1, I further my in-

troduction of compact modeling, first-principles simulations, and two-dimensional semicon-

ductors. Second, in Sec. 2, I develop a brief and general tutorial exposition to the operating

principles of MOSFETs in terms of energy band diagrams, followed by a more thorough

description of charge transport in MOSFETs from the diffusive (long-channel) to the ballis-

tic (short-channel) limits. Additionally, I introduce the concept of ballistic mobility, which

describes ballistic MOSFETs in the language of diffusive transport, and I state the regime

of validity of this description. Third, in Sec. 3, I expose various calculation methods of four

crucial parameters for MOSFET modeling: the gate capacitance, the threshold voltage, the

subthreshold swing, and the drain-induced barrier lowering. These calculation methods are

either based on purely analytical arguments, or on extraction from current-voltage charac-

teristics. Fourth, in Sec. 4, I compare compact models based upon the ideas developed in

the two previous sections to current-voltage characteristics of ballistic ML-BP MOSFETs
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1 Introduction 1.1 Compact modeling

computed from first-principles simulations. Finally, in Sec. 5, I conclude by summarizing

this thesis and outlining a future project.

1.1 Compact modeling

A compact model is an analytical parametrization of the current through an electronic

device as a function of its input voltages. Compact models are used in circuit simulators

for the purpose of predicting the integrity and behaviour of large-scale circuits, in which a

great number of devices are interconnected. Compact models must therefore have the two

following characteristics:

• They must be sufficiently simple and stable for a large-scale circuit simulator to run

quickly and robustly.

• They must be sufficiently accurate to avoid any appreciable compounding of errors on

such a simulator.

The simplest example of a compact model, familiar even to most high school students, is

Ohm’s law, which states that the current I through a resistor is proportional to the voltage

V applied across its electrodes:

I = 1
R

V (1)

The coefficient of proportionality 1
R

is known as the conductance of the resistor. As

expressed in Eq. 1, the compact model parameter 1
R

can be thought of as being entirely

phenomenological. It can be obtained from linear fitting on the current-voltage characteristic

of a resistor, without any underlying understanding of the scattering processes ultimately

leading to the accuracy of Eq. 1. Alternatively, 1
R

may be defined and characterized more

formally within a physical theory. For example, semiclassically, the Drude model [9, 10]

relates 1
R

to material-specific parameters and physical quantities pertaining to the scattering

of electrons. Eq. 1 may also be derived from a microscopic approach based on dressed Green’s

functions and vertex corrections [11,12].
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1 Introduction 1.1 Compact modeling

Thus, we see that compact models may be either constructed from a theory based

on firm physics-based arguments, or from a purely ad hoc approach where the physical

phenomena dictating charge transport in the device are not considered. The former is often

referred as a bottom-up approach, while the latter is referred as a top-down approach. Top-

down approaches to compact modeling focus on intended applications rather than charge

transport properties of modeled device. As such, models based on this approach are most

often difficult to generalize. For example, a top-down model developed for a Si-channel

SiO2-oxide MOSFET may not be easily adapted to model a MOSFET of identical geometry

but built with different materials. Bottom-up compact models, in which all parameters have

a precise physical interpretation, do not suffer from this flaw. Furthermore, a particularly

desirable property of a compact model is scalability, namely the ability to properly model

devices of various dimensions. Top-down models may or may not be scalable. However,

bottom-up compact models all have this property, at least to a certain extent. This makes

bottom-up compact models important guides for device research and development in a field

governed by Moore’s law.

Compact modeling has become increasingly important for the semiconductor industry

in the past decades [13]. Indeed, transistors are becoming smaller in size, and more numer-

ous on integrated circuits. As such, manufacturing circuit prototypes using state-of-the-art

techniques such as photolithography has become prohibitively expensive. The semiconductor

industry has thus turned to compact modeling for the purpose of research and development

of complicated integrated circuits. Circuits are simulated and adjusted until the desired

operation is reached. Only then is the circuit prototype first manufactured. We note that

the most commonly used circuit simulation software is SPICE (Simulation Program with

Integrated Circuit Emphasis) [14].

The SPICE Level 1 model [15] was amongst the first compact models for very long

channel MOSFETs, and was developed in the early 1970s. This model was derived from a

careful examination of drift-diffusion transport and electrostatic effects in MOSFETs [16].

In the SPICE Level 1 model, the drain current of a MOSFET in expressed as a function of
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1 Introduction 1.1 Compact modeling

the drain voltage VDS and gate voltage VGS as:

IDS (VDS, VGS) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for VGS ≤ VT

β
(
VGS − VT − VDS

2

)
VDS for VGS > VT and VGS − VT ≥ VDS

β
2 (VGS − VT )2 (1 + λVGS) for VGS > VT and VGS − VT < VDS

(2)

where β, VT , and λ are the parameters of the model. The SPICE Level 1 model is of great

simplicity and based upon robust physics, but suffers from two important flaws:

• The drain current is approximated to be 0 for gate voltages VGS smaller than the

threshold voltage VT . This approximation is incorrect, and corresponds to ignoring an

important fraction of leakage currents and power dissipations.

• For VGS > VT , the drain current is approximated to be piecewise linear function of VDS.

In reality, the drain current of a MOSFET is a smooth function of VDS. Furthermore,

as a result of this approximation, the drain current in the SPICE Level 1 model is

systematically overestimated.

We note, however, that while these shortcomings alone would make the SPICE Level 1 model

unusable for the development of present-day integrated circuits, they were not considered to

be severe in the 1970s.

Over the years, more complicated compact models were developed [17, 18]. Currently,

typical MOSFET compact models used by the semiconductor industry include hundreds

or thousands of parameters, a significant fraction of which are purely phenomenological

in nature, and obtained from fits with experimental data. Synopsys Sentaurus ® is an

example of such a modern-day compact model, and requires approximately 750 parameters

to simulate a MOSFET [19]. We wish to give a flavour of the type of parameters used in this

compact modeling software. The University of Bologna bulk mobility model [20, 21] is used

in Synopsys Sentaurus ® to describe the temperature (T ) dependence of the contribution

of dopant scattering to the carrier mobility. In this model, the dopant-limited mobility is

parametrized as:

µdop (T ) = µ0 (T ) + µL (T ) − µ0 (T )
1 +

(
ND

Cr1

)α
+
(

NA

Cr2

)β − µ1 (ND, NA, T )
1 +

(
ND

Cs1
+ NA

Cs2

)−2 (3)
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1 Introduction 1.2 First-principles simulations

where ND and NA are respectively the donor and acceptor dopant concentrations, and where:

µL (T ) = µmax

(
T

300 K

)−γ+c( T
300 K)

µ0 (T ) = µ0dND + µ0aNA

ND + NA

µ1 (T ) = µ1dND + µ1aNA

ND + NA

(4)

The bulk dopant-limited mobility is thus parametrized by 13 (possibly T -dependent)

parameters that were fitted from experimental measurements of Hall mobilities [21]. These

parameters depend not only on the chemical nature of the host material (typically silicon),

but also the nature of the dopant atoms themselves. Hall mobility measurements and fitting

procedures must therefore be repeated for any desired combination of host material and

dopant atoms.

Moore’s law is a prime example of an epiphenomenon, namely a mathematically de-

scribed trend emerging from a swarm of events characterized by irregularity and sporadicity.

Those events are the small and great nanoelectronics breakthroughs driven by the thou-

sands of device engineers and physicists around the world. As transistors are made smaller,

the nature of the physical phenomena which most accurately describes charge transport

changes. Additionally, the industry requirements for compact models have become increas-

ingly strict [13]. This makes compact modeling an exciting and challenging research field for

device physicists and electrical engineers.

1.2 First-principles simulations

As we have seen, compact model parameters are typically obtained through fitting proce-

dures from experimental data taken on the material or electronic device to be modeled. One

of the goals of this thesis is to demonstrate the possibility of compact modeling from theoret-

ical arguments and first-principles simulations. Condensed matter systems are all composed

of positively charged nuclei and negatively charged electrons interacting electromagnetically.

Page 6



1 Introduction 1.2 First-principles simulations

In the nonrelativistic limit, their properties are best described by their quantum states, which

evolve according to the Schrödinger equation. A first-principles calculation of a condensed

matter system consists in describing its properties at the atomic level by its quantum state,

and calculating its dynamics by solving the Schrödinger equation. These calculations are

seldom tractable analytically, and thus most often require extensive numerical calculations.

In this latter case, we refer to this process as a first-principles simulation. These simulations

offer the greatest amount of predictive power available to us within our present theories

of physics about condensed matter systems. FETs are no exception to this rule: their be-

haviour is best predicted in silico. To properly simulate a FET, at least three ingredients

are required.

First, a formalism to describe the interactions between charges is required. FETs con-

tains free charges - such as electrons and holes - as well as bound charges - such as dopant

atoms. The electromagnetic interaction between these charges is most accurately described

by quantum electrodynamics (QED). However, due to its simplicity and validity down to

the atomic scale, classical electrodynamics is typically used to describe electromagnetic in-

teractions in nanoscale devices. Indeed, the lowest-order QED correction to the Coulomb

potential of the electric potential V (r) of an electron, known as the Uehling potential [22],

is exponentially suppressed over a lengthscale of the order of the Compton wavelength of the

electron λ ∼ 10−12 m:

V (r) = − e

4πε0

1
r

⎡⎢⎢⎣1 + α

4π2
e− 4πr

λ(
2r
λ

) 3
2

+ · · ·

⎤⎥⎥⎦ (5)

where r denotes the distance from the electron. Therefore, in the context of FET simulations,

Poisson’s equation for the electric potential φ is the descriptor of electromagnetic interactions

between charges:

∇ (ε∇φ) = −ρ (6)

where ρ and ε respectively denote the charge density and the permittivity. Note that in the

most general case, the permittivity ε = ε (q⃗, ω) is a function of electronic wavevector q⃗ and

electronic energy E = ~ω. Under such circumstances, Poisson’s equation is most readily
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1 Introduction 1.2 First-principles simulations

solved in Fourier space, in which it can be expressed as:

q2ε (q⃗, ω) φ (q⃗, ω) = ρ (q⃗, ω) (7)

The real-space potential can then be obtained by means of inverse Fourier transform. The q⃗

and ω dependences of the permittivity are of prime importance in condensed matter systems;

notably, the former describes the screening of electric fields by mobile charges in metals.

Second, a formalism to describe atomistic properties of charge carriers is required. Such

a formalism describes the interaction between mobile charges and the crystalline lattice,

namely the bandstructure of the material of which the simulated MOSFET is composed.

For example, in a semiconductor, the bandgap and carrier effective masses are described by

the chosen atomistic formalism. Quantum Monte Carlo [23] and density functional theory

(DFT) [24–26] are often used for this purpose. Another such formalism is the tight-binding

model, where electronic states are approximated as superpositions of finitely many orbitals

centered around each atomic site, which we label by i. In the tight-binding Hamiltonian

H, mobile charges are allowed to jump between neighbouring atomic sites i and j; the

probability of such events is quantified by the hopping parameters tij. Note that these

hopping parameters typically need to be computed from more elaborate atomistic formalisms,

such as density functional theory. The tight-binding Hamiltonian is given by:

H =
∑
⟨i,j⟩

tija
†
iaj − q

∑
i

Via
†
iai (8)

where ∑
⟨i,j⟩

denotes a sum over pairs of neighbouring sites, a†
i and ai respectively the creation

and annihilation operators on site i, and Vi the on-site energy on site i.

Third, a formalism to describe the transport properties of charge carriers under nonequi-

librium conditions is required. Biasing the leads of a transistor corresponds to introducing

a spatial dependence to the Fermi level of carriers across the device. Different Fermi levels

describe different occupation functions, and as a result, charges flow along Fermi level gra-

dients. In particular, electrons flow from regions of high Fermi level to regions of low Fermi

level. The Boltzmann transport equations [27] describe this flow of charges semiclassically.

On the other hand, the nonequilibrium Green’s functions formalism (NEGF) [1,28] describes
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1 Introduction 1.2 First-principles simulations

the same phenomenon on purely quantum mechanical grounds, and thus incorporates phe-

nomena such as quantum interference and quantum tunnelling. The central mathematical

object in NEGF is the Green’s function, defined for a device with two leads (which we will

refer to as the source and the drain) as a function of carrier energy E as:

G (E) = lim
η→0
η>0

[(E + iη) I − H − ΣS (E) − ΣD (E)]−1 (9)

where I denotes the identity matrix, H the Hamiltonian of the device channel (which could

be, for example, a tight-binding Hamiltonian as defined in Eq. 8), and ΣS (ΣD) the self-

energy operator quantifying the interactions between the channel and the source (drain)

lead [28]. One then defines the transmission function as:

T (E) = Tr
[
ΓS (E) G (E) ΓD (E) G† (E)

]
(10)

where ΓS,D (E) = i [ΣS,D (E) − ΣS,D (E)]. The transmission function can be thought as the

transmission probability through the channel of a carrier of energy E multiplied by the

number [29] of conduction modes at energy E. The current through the device (from the

source to the drain) is then obtained from the Landauer-Büttiker formula [12]:

I = −2e

h

+∞∫
−∞

T (E) [fS (E) − fD (E)] dE (11)

where fS (E) and fD (E) are respectively the source and drain Fermi distributions, and where

we have assumed spin degeneracy as well as coherent transport. Note that as expressed in

Eq. 10, the transmission function T (E) can describe transport under ballistic conditions,

as well as transport limited by some forms of impurity scattering and surface scattering

(if a self-energy term associated with scattering is included in the definition of the Green’s

function in Eq. 9). However, Eq. 10 and Eq. 11 cannot describe scattering in general;

notably, they are unsuitable to describe systems with phonon scattering and electron-electron

scattering. Fortunately, they can be generalized to describe more general charge transport

mechanisms [30].
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1.3 Two-dimensional semiconductors

Two-dimensional materials exhibit a number of surprising properties. Perhaps most sur-

prising to the theoretical physicist is their very existence. Indeed, according to the Mermin-

Wagner theorem [31], there is no stable long-range ordered continuous symmetry state with

finite-range interactions in 2D and at non-zero temperatures. The Mermin-Wagner theorem

thus forbids the existence of arbitrarily large 2D crystals. Nevertheless, finitely-sized 2D

crystals are possible, as long as their dimensions are sufficiently small. It is unlikely that

the limitation set by the Mermin-Wagner theorem will ever hinder real-world applications

of two-dimensional materials. Indeed, the magnitude of the fluctuations associated with the

instability of two-dimensional materials diverges logarithmically with their sizes; the slow

nature of this divergence makes it seldom prohibitive. Perhaps even more importantly, 2D

crystals are typically supported by substrates that, by their three-dimensional nature, quench

the out-of-plane phonons corresponding to the aforementioned fluctuations. As a proof of

concept, a 100 m long sheet of graphene was fabricated in 2012 by Kobayashi et al. [32].

Two-dimensional materials have been an active research topic since the isolation and

characterization of graphene in 2004 [33]. Since then, several two-dimensional materials have

been considered for digital logic applications. We consider three categories of such materials:

• Monolayer semimetals: graphene, silicene, and germanene,

• Monolayer transition metal dichalcogenides, such as molybdenum disulfide (MoS2) and

tungsten diselenide (WSe2),

• Monolayer black phosphorus.

In the case of MOSFET applications, the dimensionality of those materials offers two

principal advantages. First, due to the subnanoscopic thickness of two-dimensional semi-

conductors, the position of the inversion layer in a MOSFET channel composed of a two-

dimensional semiconductor will inevitably be extremely close to the gate oxide layer. The

capacitive coupling between the gate and the channel will thus be enhanced, leading to a

smaller subthreshold swing, and therefore smaller leakage currents and power dissipations.
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Second, due to their out-of-plane structural flexibility, two-dimensional semiconductors offer

new prospects for bendable electronics.

Composed of carbon atom on a monolayer honeycomb lattice, graphene is a semicon-

ductor with no bandgap [34], namely a semimetal. The corresponding “low effective mass”

of electrons and holes in graphene leads to extremely high charge carrier mobilities [35] of

the order of 15 000 cm2 · V−1 · s−1 [36]. For this reason, graphene has been considered as a

promising surrogate to silicon in transistors [37]. However, the lack of bandgap of graphene

leads to transistors with rather poor ON-OFF ratios [38]. This significantly decreases the

power efficiency of graphene-based transistors, thus hindering the adoption of graphene to-

wards digital logic applications. A solution to this problem would be create a bandgap

in graphene [39], but such procedures typically decrease the charge carrier mobility. Other

group-IV semiconductor monolayers, silicene [40] and germanene [41], have similar electronic

properties. Importantly, we note that the bandgap of silicene is tunable through appropriate

doping [42].

Transition metal dichalcogenide (TMDC) monolayers are atomically thin materials with

chemical formula MX2, where M is a transition metal, and X is a chalcogen. TMDC mono-

layer are direct bandgap semiconductors [43], making them appropriate candidates for tran-

sistor applications [44]. Notably, a MoS2-based MOSFET with a 1 nm channel length was

fabricated in 2016 [45]. Despite these exciting prospects, TMDCs suffer from low charge

carrier mobilities, typically ranging from ∼ 10 cm2 · V−1s−1 to ∼ 200 cm2 · V−1s−1 [46–48].

Monolayer black phosphorus (ML-BP), or phosphorene, is a two-dimensional allotrope

of phosphorus. Few-layers BP, which is composed of a small number of phosphorene layers

bound by Van der Waals forces, was first isolated in 2014 by means of mechanical exfoliation

from bulk black phosphorus [5,49]. Due to its large bandgap of ∼ 1.8 eV [50,51], ML-BP is a

strong competitor to graphene for FET applications. Charge carrier mobility in few-layers BP

FETs were measured to be of the order of 102 cm2·V−1s−1 to 103 cm2·V−1s−1 [52–55]. Further

theoretical investigations produced similar results, together with similarly high charge carrier

mobility in ML-BP [8, 56]. ML-BP is thus seen to be a two-dimensional material solving
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the shortcomings of graphene and TMDC monolayers for FET applications: it possesses a

bandgap, and has large charge carrier mobility [57]. Furthermore, ML-BP is anisotropic; the

two principal axes of the ML-BP crystal structure are known as the armchair direction (AD)

and the zigzag direction (ZD). As such, the charge carriers effective masses (relative to the

free electron mass) are direction-dependent, varying from ∼ 0.17 (AD) to ∼ 0.87 (ZD) in

the case of electrons, and from ∼ 0.19 (AD) to ∼ 1.17 (ZD) in the case of holes [58]. This

effective mass anisotropy has been shown to provide means towards low OFF-state currents

and low switching times for ML-BP MOSFETs [59]. Few-layers BP and ML-BP were also

shown to have good mechanical flexibility [60, 61], making it a good candidate for bendable

electronics. We thus believe ML-BP to be a very promising two-dimensional material for

transistor and digital logic applications [6, 7, 62].

Parenthetically, we note that the saga of few-layers BP is one where the relevance of

first-principles simulations is particularly outstanding. Indeed, in practice, few-layers BP is

difficult to isolate and manufacture into nanoelectronic devices, as it is particularly prone to

photooxidation [63]. Few properties of this novel material could be probed experimentally

after it was first isolated, especially in the monolayer case. The quick response of computa-

tional physicists [56] bridged this gap in our knowledge; to this day, three years later, much

of what we know about few-layer BP still comes from first-principles simulations.

1.4 Goals

In this thesis, we aim to build a bottom-up compact model for nanoscale ML-BP MOS-

FETs. The “empirical” data to which we will compare our model was obtained from first-

principles simulations based on the TB-NEGF formalism [6]. The TB Hamiltonian used in

these simulations considers up to third-nearest neighbour hopping; the hopping parameters

and on-site energies were computed using DFT and the GW approximation [58,64].

We focus our attention on four particular ML-BP MOSFETs: one with a 10 nm channel

oriented along AD, one with a 10 nm channel oriented along ZD, one with a 5 nm channel
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Figure 1 – Device structure of the MOSFET under consideration throughout this thesis.

oriented along AD, and finally, one with a 5 nm channel oriented along ZD. The source

and drain of these devices is taken to be ML-BP oriented along the same direction as the

channel. The channel is undoped, while the source and drain are n-doped at a concentration

of 7.0×1013 cm−2. Furthermore, the devices are taken to be double-gated, with gate lengths

identical to the channel length. The oxide layers are 2 nm thick and composed of HfO2,

a dielectric material with relative permittivity εr ≈ 25. Finally, the device is taken to be

periodic along the axis perpendicular to the transport direction in the channel plane. The

geometry of these devices is illustrated in Fig. 1.
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2 From the Diffusive to the Ballistic Limit

This section starts with a brief overview of the operating principles of MOSFETs, tied

with an exposition of some of the standard terminology used in the study of MOSFETs

and transistors in general. We then introduce the fundamentals of diffusive transport in

MOSFETs, a description valid in the long-channel limit. Two formalisms for ballistic trans-

port are then exposed: one based on the Landauer-Büttiker formalism, and one based on

self-consistent MOS electrostatics. We conclude this section by introducing the concept of

ballistic mobility, which relates the ballistic transport and diffusive transport formalisms.

2.1 Operating principles of MOSFETs

A transistor is an electronic device composed of a semiconducting channel and three

electrodes for connection to an external circuit. Charge transport in the channel occurs

between two of these electrodes, usually known as source and drain, or emitter and col-

lector. The current through a transistor increases with the voltage applied between these

two electrodes, which is known as the drain voltage (and denoted by VDS) in the context

of MOSFETs. The conduction through the channel is modulated by the voltage applied on

the third electrode, known as the gate, which is capacitively coupled to the channel. The

voltage applied between the gate and the source is known as the gate voltage, and denoted

by VGS. In what is known as an enhancement mode n-channel transistor, the conductivity

increase as VGS increases. Therefore, in such a transistor, the drain-to-source current IDS is

only “high” if both the drain and gate voltages are high. Informally, in terms of digital logic,

an enhancement mode transistor can therefore be thought of as an AND gate in which VDS

and VGS are the gate input and IDS is the gate output.

As a side note, n-channel transistors have for principal charge carriers electrons, while p-

channel transistors have holes as principal charge carriers; conduction through the transistor

channel increases with VGS in the n-channel case, and decreases with VGS in the p-channel
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case. Furthermore, an enhancement mode transistor is one where the conduction through

the channel is minute at VGS = 0, while a depletion mode transistor is one where this

conduction is significant at VGS = 0. For the remainder of this thesis, we will solely consider

enhancement mode n-channel transistors.

2.1.1 Field effect

The field effect is the physical mechanism by which the conduction through the channel

of a transistor is modulated by the applied gate voltage. Applying a gate voltage to a

transistor induces an electric field orthogonal to the channel plane. Given the small free

charge carriers densities in semiconductors, the screening of this field within the channel is

relatively small, resulting in the penetration of this field into the channel. Electric fields

alter the energy states available for charge carriers and therefore their occupancies. This

shows how an applied gate voltage affects the conductivity of a transistor channel.

2.1.2 Band diagrams

Band diagrams are useful tools to study charge transport in semiconductor devices. By

definition, they are plots of the Fermi level and energy band edges (such as the conduction

band minimum and valence band maximum) as a function of some spatial dimension through

the structure of interest. It is important to note that the concept of a band diagram is only

appropriate in the regime of validity of band structure theory. Thus, for devices with features

of very small sizes, in which Bloch’s theorem is not applicable, band diagrams are not suitable

tools.

Herbert Kroemer’s 2000 Nobel Lecture [65] best epitomizes the importance of band

diagrams in semiconductor physics.

Kroemer’s Lemma: If, in discussing a semiconductor problem, you cannot draw an energy

band diagram, this shows that you don’t know what you are talking about.
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Kroemer’s Corollary: If you can draw one, but don’t, then your audience won’t know

what you are talking about.

(a) VDS = VGS = 0 (b) VDS > 0 and VGS = 0

(c) VDS > 0 and VGS > 0

Figure 2 – Pictorial band diagrams of a MOSFET with degeneratively doped source and

drain and intrinsic channel, under equilibrium conditions in (a) and out of equilibrium in

(b) and (c).

Following Kroemer’s sagacious advices, we show typical band diagrams of a MOSFET

in Fig. 2. We assume that the channel of the MOSFET is intrinsic, while the source and

drain are degeneratively doped. At equilibrium (namely for VDS = VGS = 0), the Fermi

level is constant throughout the entire device. The doping profile of this MOSFET imposes

the conduction band minimum EC to be below the Fermi level in the source and drain, and
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above the Fermi level in the channel; charge rearrangement effects make the transition of

EC from its source/drain value to its channel value smooth. Thus, the equilibrium band

diagram resembles that shown in Fig. 2a. By applying a drain voltage VDS > 0, the drain

Fermi level is brought down relative to the source Fermi level, resulting in a band diagram

akin to that of 2b. Finally, by further applying a gate voltage VGS > 0, the value of EC in

the channel is decreased, by virtue of the field effect, as shown in Fig. 2c.

The principal charge transport mechanism in MOSFETs is thermionic emission: elec-

trons in the high-energy thermal tail of the source and drain Fermi distributions may be

injected over the potential barrier formed by EC in the channel, resulting in charge trans-

port through the device. If VDS = 0 the injection probabilities of electrons in the drain and

source over the barrier are identical: the net drain current is IDS = 0. These probabilities

are no longer identical for VDS ̸= 0, resulting in a drain current IDS ̸= 0. Furthermore, given

the exponential nature of the thermal tail of Fermi distributions, the injection probability

of electrons over the barrier is significantly increased by lowering the barrier height. As a

result, given VDS > 0, IDS is significantly increased by increasing VGS. This picture of charge

transport in MOSFETs is why they are sometimes referred to as barrier controlled devices.

Finally, we mention two of the many caveats to the discussion above. First, thermionic

emission is not the sole charge transport mechanism in MOSFET. Indeed, low-energy elec-

trons can undergo quantum mechanical tunnelling from the source to the drain and vice

versa. This effect becomes more important as the channel length is decreased. However,

even for sub-10 nm MOSFETs, the contribution of the tunnelling current to the total current

is very modest, especially for large values of VGS and VDS. It is nevertheless not completely

negligible, as the induced leakage currents can increase power consumption. As a side note,

tunnelling is not readily described by the Boltzmann transport equations, making NEGF a

more appropriate formalism for studying charge transport in nanoscale MOSFETs. Second,

we have so far assumed that VGS was the sole voltage controlling the barrier height. How-

ever, this is not the case, especially in short-channel MOSFETs. Indeed, when the capacitive

coupling between the drain and channel is not negligible, as VDS is increased, the barrier

height is lowered. This effect is known as drain-induced barrier lowering (DIBL), and will
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be explored in greater depth in Sec. 3.4.

2.1.3 Current-voltage characteristics

As its name suggests, a current-voltage characteristic of a device is a graph of the cur-

rent through the device as a function of one or several of its input voltages. Beyond the

physical mechanism that dictate what this current might be, it is the current-voltage charac-

teristics that ultimately define the nature of a device, and how it can be used for real-world

applications. For transistors, we distinguish two types of current-voltage characteristics: the

transfer characteristics, and the output characteristics. Transfer characteristics are graphs of

IDS as a function of VGS and fixed VDS. On the other hand, output characteristics are graphs

of IDS as a function of VDS and fixed VGS. We illustrate these two types of current-voltage

characteristics in Fig. 3.

0

(a) Transfer characteristic at a fixed VDS > 0

0
0

(b) Output characteristics at fixed VGS > 0

Figure 3 – Pictorial representations of the current-voltage characteristics of MOSFETs akin

to those assumed in the making of the band diagrams of Fig. 2.

2.1.3.1 Transfer characteristics

Typical transfer characteristics are illustrated in Fig. 3a. As VGS is increased, due to the

facilitation of thermionic emission over the barrier, IDS increases. For small values of VGS,
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the dependence of the barrier height on VGS is linear [66], and hence IDS is an exponential

function of VGS. For large values of VGS, as the amount of free charges in the channel is

made larger, the electric field induced by the gate is screened. Therefore, the dependence of

the barrier height on VGS is logarithmic, and thus, IDS is an algebraic function of VGS.

The value of VGS at the crossover between the exponential and algebraic regimes is

known as the threshold voltage, and is denoted by VT . We thus refer to the regime of

exponential dependence of IDS upon VGS < VT as the subthreshold regime, while we refer

to the regime of algebraic dependence of IDS upon VGS > VT as the superthreshold regime,

or the inversion regime. Typically, in the inversion regime, IDS ∝ (VGS − VT )m, where

1 ≤ m ≤ 2.

When DIBL is present, transfer characteristics are shifted horizontally to the left as

VDS is increased. DIBL can thus be thought of as a modification of the threshold voltage:

VT → VT0 − δVDS, where VT0 is the threshold voltage at VDS ≈ 0, and δ is the DIBL

parameter.

2.1.3.2 Output characteristics

Typical output characteristics are illustrated in Fig. 3b. For small values of VDS > 0, as

VDS increases, the injection probability of electrons in the drain over the barrier decreases.

The overall dependence of IDS on VDS is linear, and for this reason, this regime is called

the linear regime, or triode regime. Now, as VDS is made larger and larger, eventually, the

injection probability of electrons from the drain is completely suppressed. The drain current

then saturates to a constant value. This regime is thus referred to as the saturation regime,

or pentode regime. A MOSFET can therefore be thought of as a resistor in the triode regime,

and as a constant current source in the pentode regime.

When DIBL is present, IDS is no longer constant in the pentode regime. Instead, the

pentode regime current exhibits a positive and roughly constant slope.
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2.1.4 Modeling the current-voltage characteristics of MOSFETs

The starting point for any analytical calculation of the current-voltage characteristics of

a MOSFET is to parametrize the drain current as the product of charge and carrier velocity:

IDS = WQ (x) v (x) (12)

It is important to properly define the terms in the formula above. First, W represents the

width of the channel. The number of conduction modes in a MOSFET channel is proportional

to its width [28], which in turns implies that IDS ∝ W . This relationship only fails for channel

with very small widths, in which quantum confinement effects become important. This limit

is, however, very rarely reached, even in the smallest modern-day MOSFETs. Second, Q (x)

represents the areal charge density at position x along the transport direction in the channel.

Third, v (x) represents the mean velocity of charge carriers at position x.

The current, as expressed in Eq. 12, does not depend on the parameter x. This fact

is a consequence of current continuity [12], an assumption which is exact even when charge

carrier recombination or generation effects take place. Depending on the problem at hand,

calculations of the drain current might be easier to carry out at a specific position x.

2.2 Diffusive transport

The first complete, physical, analytical models for the current-voltage characteristics of

MOSFETs were proposed by Hofstein and Heiman in 1963 [67], and by Sah in 1964 [16].

Both models rely on the drift-diffusion theory for charge transport. Within this fully classical

theory, at or near equilibrium, electrons are frequently scattered and thus move erratically:

they undergo diffusion. Out of equilibrium, on the other hand, electrons acquire a net motion

in the direction opposite to that applied electric field, on top of their Brownian motion. This

net motion along the field line is known as the drift motion. The average speed of electrons
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can then be modeled as:

v (x) = µE (x) (13)

where µ is the electron mobility, and E (x) the norm of the electric field at position x along

the channel.

Using Eq. 12, the drain current can thus be expressed above threshold as:

IDS = WCG (VGS − VT ) µES (14)

where we have chosen x to be the position of the source-channel interface, so that

E (x) = ES, and have parametrized the channel charge to be CG (VGS − VT ). CG denotes

the total gate capacitance.

In the triode regime, the gradual channel approximation holds, so that given an applied

drain voltage VDS, the electric field is uniform throughout the channel: ES = VDS

L
. Hence,

the triode regime current is:

IDStriode = W

L
µCGVDS (VGS − VT ) (15)

In the pentode regime, a careful analysis of MOS electrostatics [16, 67] indicates that

the electric field at the source is ES = 1
2L

(VGS − VT ). The pentode regime current is thus

given by:

IDSpentode = W

2L
µCG (VGS − VT )2 (16)

The mean speed of charge carriers at the source in the pentode regime is thus seen to

be:

vSpentode = µ

2L
(VGS − VT ) (17)

Eq. 17, however, fails to consider the increased levels of interaction with the lattice that

arise once the charge carrier kinetic energy is large enough. Most prominent is the scattering

of electrons by optical phonons once the field ES = 1
2L

(VGS − VT ) is large enough [68].

Therefore, in the limit of small channel length L or particularly large gate voltage VGS,
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the pentode regime carrier speed must be replaced by a material-specific constant known

as the saturation velocity vsat [69]. Typically, the electron velocity saturates at fields of

E ∼ 5 × 106 V · m−1, which given a typical applied drain to source of VDS ∼ 1 V, occurs for

a channel length of L ∼ VDS

E
∼ 200 nm. Velocity saturation is thus an important effect to

consider for current-day MOSFETs modeling. Heuristically, the saturation velocity can be

estimated as the speed of an electron with kinetic energy equal to the typical optical phonon

energy Eop:

vsat ∼
√

2Eop

m⋆
t

∼ 105 m · s−1 (18)

where m⋆
t denotes the carrier effective mass along the transport direction.

The pentode regime drain current is then given by:

IDSpentode = WCG (VGS − VT ) vsat (19)

From Eq. 16 and Eq. 19, we note that IDSpentode ∝ (VGS − VT )m with 1 ≤ m ≤ 2, and

that the exact value of the exponent m depends upon the importance of velocity saturation,

and thus on the channel length L.

Finally, we note that the triode and pentode regime currents, as expressed in Eq. 15,

Eq. 16, and Eq. 19, are divergent for L → 0. This calls for revised models for short-channel

devices, which we explore in Sec. 2.3.

2.3 Ballistic transport

As MOSFETs approach the nanoscale, the mean free path of charge carriers between

scattering events approaches channel lengths. Electrons traverse entire devices without un-

dergoing any scattering: they are undergoing ballistic transport. In this regime, the diffusive

transport model of Sec. 2.2 is not an appropriate modeling framework anymore. Most no-

tably, the concept of mobility breaks down in the ballistic limit. Indeed, as explained in

Sec. 2.4, mobility is intimately linked to the timescales associated with scattering events.

When no scattering events take place, such as for ballistic transport, this concept loses its
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meaning. Eq. 15 and Eq. 16 for the drift-diffusion triode and pentode regimes drain current

are thus not valid. Furthermore, velocity saturation effects do not occur in ballistic transis-

tors [70]. Indeed, without optical phonon scattering, there is no velocity saturation. Eq. 19

for the drift-diffusion pentode regime current is thus also not valid.

One of the first complete and consistent ballistic transport model was introduced by

Natori in 1994 [71]. The two ballistic transport frameworks that we expose in this section

are based to a great extent on Natori’s theory.

The development of these models relies heavily on complete Fermi-Dirac integrals, which

we introduce in Appendix A.

2.3.1 Landauer-Büttiker approach to ballistic transport

First, we present a ballistic transport model based on the Landauer-Büttiker formalism,

within which the current is expressed as [28]:

IDS = e

h

+∞∫
−∞

T (E) M (E) [fS (E) − fD (E)] dE (20)

Several terms in Eq. 20 need to be defined. First, fS,D (E) =
[
1 + exp

(
E−EFS,D

kBT

)]−1

represent the source and drain Fermi distributions, with EFS,D
the source and drain Fermi

levels, and T the temperature of the device. Second, T (E) represents the probability

(0 ≤ T (E) ≤ 1) that an electron of energy E will transmit from the source to the drain, or

vice versa. We note that the assumption that the source-to-drain and drain-to-source trans-

mission probabilities are equal is in the most general case not valid, but will be appropriate

for the purpose of our analysis. Third, M (E) represents the number of transverse modes of

energy less than E. We include spin degeneracy in M (E), which explains the discrepancy

between Eq. 11 and Eq. 20.

For ballistic transport, tautologically, T (E) = 1. Furthermore, for a semiconductor

channel with parabolic conduction band, M (E) is obtained by integrating [72] the 1D density
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of states [73] along the width of the device channel:

M (E) = W

E∫
EC

gV

π~

√ 2 (m⋆)2

m⋆
t

(E − EC)dE

= W
2gV

π~

√2(m⋆)2

m⋆
t

(E − EC)

(21)

where m⋆, m⋆
t , EC , and gV are respectively the density of states effective mass, effective

mass along the transport direction, conduction band minimum, and valley degeneracy of the

channel electron gas.

By Eq. 20, Eq. 21, and Eq. 128, the drain current can then be expressed in terms of

complete Fermi-Dirac integrals as:

IDS = We
N2

2 vT

[
F 1

2
(ηFS

) − F 1
2

(ηFD
)
]

(22)

where N2 = gV m⋆kBT
π~2 , vT =

√
2kBT
πm⋆

t
, ηFS

= EFS
−EC

kBT
, and ηFD

= ηFS
− eVDS

kBT
.

Now, we wish to express Eq. 22 in terms of the charge density at the top of the barrier Q0.

In the ballistic limit, the top of the barrier is populated by two categories of electrons: right-

moving electrons in equilibrium with the source, and left-moving electrons in equilibrium

with the drain. In both cases, the density of states of these electrons is given by [73]

ρ2 (E) = m⋆

2π~2 θ (E − EC). Using Eq. 128, the charge density at the top of the barrier is then

given by:

Q0 = −e

∞∫
EC

m⋆

2π~2 [fS (E) + fD (E)] dE

= −e
N2

2 [F0 (ηFS
) + F0 (ηFD

)]

(23)

Combining Eq. 22 and Eq. 23, we then obtain:

IDS = W |Q0|
[
vT

F 1
2

(ηFS
)

F0 (ηFS
)

] ⎡⎢⎢⎢⎢⎣
1 −

F 1
2
(ηFD)

F 1
2
(ηFS )

1 + F0(ηFD)
F0(ηFS )

⎤⎥⎥⎥⎥⎦ (24)
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The first term between square brackets in 24 represents the saturation-regime injection

velocity of electrons at the top of the barrier. In the nondegenerate limit, it equals the unidi-

rectional thermal velocity vT , while it equals the Fermi velocity in the degenerate limit. The

second term between square brackets quantifies the saturation of the current as a function of

the drain voltage VDS: for VDS = 0, this factor equals 0, while it approaches 1 as VDS → ∞.

Note that the drain current, as expressed in Eq. 24, depends on ηFS
, a parameter which

a priori is unknown, and can only be calculated after a full bandstructure analysis. Thus,

for each value of the drain voltage VDS and the gate voltage VGS, to obtain ηFS
, one must

first compute the charge at the top of the barrier Q0 (for example, above threshold, this

charge can be parametrized as |Q0| = CG (VGS − VT )), and use Eq. 23 to extract ηFS
. Eq. 24

can then be used directly to compute the drain current. In the nondegenerate limit, the

procedure described in this paragraph is not necessary. Indeed, using the asymptotic form

of Fermi-Dirac integrals exposed in Eq. 134, it can be shown that the right-hand side Eq. 24

is independent of EFS
.

To obtain the scaling of IDS on (VGS − VT ) in the inversion regime, we first note that

Q0 ∝ (VGS − VT ). In the degenerate limit ηFS
≫ 0, by Eq. 23 and Eq. 135, Q0 ∝ ηFS

, so

that (VGS − VT ) ∝ ηFS
. Furthermore, by Eq. 24 and Eq. 135, given that ηFS

≥ ηFD
, at the

most, IDS ∝ η2
FS

∝ (VGS − VT )2. On the other hand, in the nondegenerate limit ηFS
≪ 0,

the drain current IDS is independent of ηFS
, and hence IDS ∝ (VGS − VT ). We deduce that

in ballistic MOSFETs, IDS ∝ (VGS − VT )m, with 1 ≤ m ≤ 2, and that the exact value of the

exponent m depends upon the degree of degeneracy of the inversion channel 2DEG.

The model developed in this section can be extended to account for scattering [74],

resulting in a description of transport continuous from the drift-diffusion limit to the bal-

listic limit. In this model, the expression for the drain current is similar to that of our

Landauer-Büttiker approach-based model, with an additional parameter r (with 0 ≤ r ≤ 1)

representing the backscattering coefficient of electrons from the drain back to the drain. It
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is given by:

IDS = W |Q0|
[1 − r

1 + r

] [
vT

F 1
2

(ηFS
)

F0 (ηFS
)

] ⎡⎢⎢⎢⎢⎣
1 −

F 1
2
(ηFD)

F 1
2
(ηFS )

1 +
(

1−r
1+r

)(F0(ηFD)
F0(ηFS )

)
⎤⎥⎥⎥⎥⎦ (25)

Finally, while our analysis assumed that the main charge carriers were electrons, we

note that it can be adapted to model hole transport [75].

2.3.2 Capacitor model

The model of Sec. 2.3.1 has the advantage of being completely analytical, in the sense

that the current can be evaluated directly from Eq. 24, without the need of any iterative

numerical procedure. However, it fails to consider certain effects crucial in the modeling

of short-channel ballistic MOSFETs, such as DIBL, the quantum capacitance effect (see

Sec. 3.1.3), and the floating source effect (see Sec. 2.3.2.1). The first two effects can be

included ad hoc within Eq. 24 by defining the charge at the top of the barrier |Q0| to be

CG (VGS − VT ), with CG including a quantum capacitance correction term, and VT a DIBL

correction term. However, this procedure can only be carrier out above threshold. Moreover,

there is no easy way to adapt Eq. 24 to account for the floating source effect. For these

reasons, we will introduce a model for ballistic MOSFETs, called the capacitor model, which

includes a simple iterative calculation accounting self-consistently for MOS electrostatics,

with great predictive power [76].

The first step in developing the capacitor model is to appreciate the fact that the top

of the barrier is a distinguished position along the channel to carry out calculations of the

drain current. Indeed, at the top of the barrier, left-moving states are in equilibrium with the

source, while right-moving states are in equilibrium with the drain (as illustrated in Fig. 4).

The top of the barrier is the sole point in along the channel with this property. The charge

at the top of the barrier Q0 depends upon the source and drain Fermi levels EFS
and EFD

,

as well as the top of the barrier energy, which we will call the self-consistent potential USCF .
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The heart of the capacitor model is to consider the capacitive coupling between the top of

the barrier and the source, drain, and gate electrodes respectively, as illustrated in Fig. 5.

Figure 4 – Illustrative band diagram for MOSFETs studied in the capacitor model. At the

top of the barrier, the right-moving states are in equilibrium with the source (represented

by a red overline on the dotted dispersion), while the left-moving states are in equilibrium

with the drain (represented by a green overline on the dotted dispersion).

The equilibrium charge density at the top of the barrier is given, according to Eq. 128,

by:

Q0eq = −eN2F0

(
EF − USCFeq

kBT

)
(26)

where USCFeq is the equilibrium self-consistent potential. Out of equilibrium, EFS
̸= EFD

,

so that the top of the barrier is populated by left-moving electrons in equilibrium with the

source and right-moving electrons in equilibrium with the drain. The top of the barrier
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CS

CG

CD

VGS

VDSQ0

Figure 5 – Circuit diagram for the ballistic transport capacitor model. The top of the barrier,

on which the areal charge density is given by Q0, is capacitively coupled to the source, drain,

and gate with capacitances CS, CD, and CG respectively. The drain and gate biases are

respectively VDS and VGS. Note that CG is a purely electrostatic capacitance, and thus does

not include quantum capacitance corrections (see Sec. 3.1.3).

charge density is then given by Q0 = Q0L
+ Q0R

where Q0L
and Q0R

are the charge densities

associated with the two aforementioned populations of electrons:

Q0L
= −eN2

2 F0

(
EFS

− USCF

kBT

)
Q0R

= −eN2

2 F0

(
EFD

− USCF

kBT

) (27)

Finally, we define the induced charge density at the top of the barrier to be:

∆Q0 = Q0L
+ Q0R

− Q0eq

=⇒ ∆Q0 = −eN2

2 F0

(
EFS

− USCF

kBT

)
− eN2

2 F0

(
EFD

− USCF

kBT

)
+ eN2F0

(
EF − USCFeq

kBT

) (28)

It is thus seen that the induced top of the barrier charge ∆Q0 can be found if the self-

consistent potential USCF is known. On the other hand, USCF is found by solving Poisson’s
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equation. Being linear, Poisson’s equation can be solved by superposition. First, we ignore

the contributions to USCF due to the charge induced at the top of the barrier ∆Q0. Defining

the drain and gate control parameters to be respectively:

αD = CD

CS + CD + CG

αG = CG

CS + CD + CG

(29)

we find the contribution to USCF due to the applied voltages to be:

USCF1 = −e (αDVDS + αGVGS) (30)

Note that we have assumed the source electrode to be grounded. The second contri-

bution to USCF due to the induced charge ∆Q0 is simply the capacitive charging energy

associated with ∆Q0:

USCF2 = − 1
CS + CD + CG

∆Q0 (31)

By superposition, the net self-consistent potential is then given by:

USCF = USCF1 + USCF2

=⇒ USCF = −e (αDVDS + αGVGS) − 1
CS + CD + CG

∆Q0

(32)

It is thus seen that the self-consistent potential USCF can be found if ∆Q0 is known.

The current can then be found using Eq. 22:

IDS = We
N2

2 vT

[
F 1

2

(
EFS

− USCF

kBT

)
− F 1

2

(
EFD

− USCF

kBT

)]
(33)

Overall, we obtain an iterative algorithm, whose steps are as follows:

1. Guess the value of the self-consistent potential USCF .

2. Compute the induced charge density ∆Q0 using USCF and Eq. 32.

3. Compute the self-consistent potential USCF using ∆Q0 and Eq. 28.

4. Repeat Step 2 and Step 3 until convergence is attained.

5. Compute the current using Eq. 33.
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2.3.2.1 Floating source effect

Fig. 6 shows that as the gate voltage VGS is increased, the conduction band minimum

in the source ECS
decreases. This phenomenon is characteristic of ballistic MOSFETs and

can be explained as follows. When both the drain voltage VDS and the gate voltage VGS are

non-zero, the source electrode is populated by three groups of charge carriers:

• Right-moving carriers with energy higher than the barrier height USCF that emanated

from the source and are heading towards the drain. This group is in equilibrium with

the source.

• Left-moving carriers with energy lower than the barrier height USCF that emanated

from the source and were reflected by the barrier. This group is in equilibrium with

the source.

• Left-moving carriers with energy higher than the barrier height USCF that emanated

from the drain and are heading towards the source. This group is in equilibrium with

the drain.

Thus, given a doping density in the source of NDS
, charge neutrality guarantees that:

NDS
=

USCF∫
−∞

ρ2 (E − ECS
) f (E − EFS

) dE

+ 1
2

∞∫
USCF

ρ2 (E − ECS
) [f (E − EFS

) + f (E − EFS
− eVDS)] dE

NDS
= N2 log

⎡⎣ 1 + exp
(

EFS
−ECS

kBT

)
1 + exp

(
EFS

−USCF

kBT

)
⎤⎦+ N2

2 log
[
1 + exp

(
EFS

− USCF

kBT

)]

+ N2

2 log
[
1 + exp

(
EFS

+ eVDS − USCF

kBT

)]

(34)

It is thus seen that as VGS increases, which correspond to decreasing USCF , the source

conduction band minimum ECS
must decrease to ensure that the right-hand side of Eq. 34

remains constant. Equivalently, ECS
can be kept fixed, while EFS

increases.

To account for the floating source effect, the algorithm presented in Sec. 2.3.2 must be
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Figure 6 – Band diagrams of a 10 nm channel ML-BP MOSFET oriented along AD, calcu-

lated using self-consistent TB-NEGF simulations. The drain voltage is fixed at VDS = 0.4 V,

and the gate voltage is swept from VGS = 0.725 V to VGS = 0.975 V in steps of ∆VGS =

0.05 V. We note that the conduction band minimum in the source decreases ∼ 10 mV as

VGS increases from 0.725 V to 0.975 V. This phenomenon is known as the floating source

effect. Note that the undulations displayed by these band diagrams are a sign of the decline

of the validity of Bloch’s theorem: peaks and troughs correspond to individual atomic sites.

repeated for various values of EFS
until one that ensures charge neutrality in the source is

found.
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2.4 Mobility

By the Lorentz force law, in a vacuum, an electric field E⃗ has the effect of accelerating a

charge q of mass m with acceleration a⃗ = qE⃗
m

. However, in a typical bulk solid, moving charges

(electrons or holes) are constantly being scattered (by crystal defects, phonons, impurities,

etc.), and are thus not indefinitely accelerated by an external electric field. Instead, the

motion of such charges can be described by their average velocity, called the drift velocity,

which points in the same (opposite) direction of E⃗ if q > 0 (if q < 0), and whose magnitude

is given by Ohm’s law:

vD = µE (35)

The constant of proportionality µ between the drift velocity vD and the magnitude of

the external field E is known as the mobility, and is a material property depending on a

number of factors such as the electronic and phononic bandstructures, the impurity and

crystal defect densities, and temperature.

2.4.1 Relationship between mobility and scattering time

Let us consider electrons/holes in a crystal with effective masses m⋆ and charge q. We

make the two following assumptions about the scattering of these charges:

• Charges move freely between two scattering events. We define the mean time between

two scattering events as τ , and will henceforth refer to it as the relaxation time or the

scattering time.

• Scattering events are memoryless, in the sense that the distribution of directions of the

motion of a charge after a scattering event is isotropic.

Now, let n (t) denote the number of charges that undergo a scattering event at time t.

Then, at time t + dt, the size of this population of charges has decreased by an amount dn =

− 1
τ
n (t) dt. It follows that the amount of charges that have not undergone any scattering
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event since an arbitrary time t0 follows an exponential distribution:

n (t) = n (t0) exp
(

−t − t0

τ

)
(36)

Under the semiclassical approximation [77], under the application of an external electric

field E⃗, charges’ velocities v⃗ satisfy:

m⋆ d

dt
v⃗ = qE⃗

=⇒ v⃗ (t) = v⃗ (t0) + q

m⋆
(t − t0) E⃗

(37)

and by isotropy of scattering events, v⃗ (t0) = 0⃗.

Averaging out, the drift velocity of charges in response to the external field is:

vD = 1
n (t0)

0∫
n(t0)

q

m⋆
(t − t0) E⃗dn

= q

m⋆
E⃗

∞∫
t0

1
τ

(t − t0) exp
(

−t − t0

τ

)
dt

=⇒ vD = qτ

m⋆
E⃗

(38)

Thereupon, using Eq. 35 and Eq. 38, we find that the mobility µ and scattering time τ

are related through:

µ = qτ

m⋆
(39)

2.4.2 Matthiessen’s rule

Consider n ∈ N scattering mechanisms with associated scattering times τ1, τ2, · · · , τn.

Assuming that all of these mechanisms are independent from each other, using Eq. 36, the

probability that a charge carrier will be scattered at some time t > t0 is:

P ∝ exp
(

−t − t0

τ1

)
exp

(
−t − t0

τ2

)
· · · exp

(
−t − t0

τn

)
∝ exp

[
− (t − t0)

( 1
τ1

+ 1
τ2

+ · · · + 1
τn

)] (40)
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Thus, as a whole, the scattering mechanisms can be described by a single scattering

time, given by:

τ =
( 1

τ1
+ 1

τ2
+ · · · + 1

τn

)−1
(41)

Using Eq. 39 and Eq. 41, we then obtain the following important result:

Matthiessen’s rule: If charge carriers in a material are under the influence of n ∈ N

independent scattering mechanisms with mobilities µ1, µ2, · · · , µn, then their drift velocities

can be described by the single mobility:

µ =
(

1
µ1

+ 1
µ2

+ · · · + 1
µn

)−1

(42)

2.4.3 Ballistic mobility

As we have seen, ballistic transport consists in the transport of charge carriers with

little or no scattering. This idealized regime of conduction is attained in nanoelectronic

devices with dimensions smaller than the mean free path of charge carriers (namely the

distance travelled by charge carriers during a scattering time). The concept of mobility thus

breaks down in the ballistic regime: charge carriers are accelerated by an external electric

field without being scattered, and their motions cannot be described by a drift velocity.

Nevertheless, in nanoelectronic devices with small dimensions, transport of charge carriers

can still effectively be described by a mobility known as the ballistic mobility, which was

first introduced by Shur [78,79].

2.4.3.1 Derivation of the ballistic mobility in the nondegenerate limit

Consider a MOSFET with channel length L and width W having for main charge

carriers spin-degenerate electrons of density-of-states effective mass m⋆, effective mass along

the transport direction m⋆
t , and valley degeneracy gV . Furthermore, let T be the temperature

of the system. Let EC denote the conduction band minimum in the channel. Let EFS
and
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EFD
respectively denote the Fermi levels in the source and drain of the MOSFET. Assume

that the charge carriers obey nondegenerate statistics, so that their areal densities in the

source and drain are:

nS,D = gV m⋆kBT

π~2 exp
(

EFS,D
− EC

kBT

)
(43)

In the nondegenerate limit, assuming that there are no applied biases on the termi-

nals of the MOSFET, the velocity distribution for charge carriers is a Maxwell-Boltzmann

distribution:

P (v⃗) d2v⃗ = α

π
e

− m⋆
x

2kBT
v2

x−
m⋆

y
2kBT

v2
yd2v⃗ (44)

where m⋆
x and m⋆

y are respectively the effective masses along the Cartesian principal axes x

and y of the effective mass tensor of the channel two-dimensional electron gas (2DEG). By

the equipartition theorem, α = m⋆

2kBT
. The unidirectional thermal speed of charge carriers

along the transport direction t is thus given by:

vT = ⟨|vt|⟩ = α

π

∫∫
R2

|vt| e
− m⋆

x
2kBT

v2
x−

m⋆
y

2kBT
v2

ydvxdvy

=⇒ vT =
√

2kBT

πm⋆
t

(45)

where mt is the effective mass along t. The unidirectional thermal speed corresponds to the

speed of charge carriers in moving from the source to the drain, and vice versa.

The fundamental assumption underlying ballistic transport is that charge carriers re-

main in thermal equilibrium with the electrode from which they emanate as they travel

through the channel of the MOSFET. The current through the MOSFET is thus given by:

I = −eW (nSvT − nDvT )

I = WQvT
1 − (nD/nS)
1 + (nD/nS)

(46)

where we have used the fact that the charge in the inversion channel is Q = −e (nS + nD).

Now, let x = nD

nS
= exp

(
EFD

−EFS

kBT

)
by Eq. 43. We note that the applied drain to

source voltage is by definition VDS = 1
e

(EFS
− EFD

). Assuming that VDS ≪ kBT
e

, by Taylor

expansion:

x ≈ 1 − eVDS

kBT
(47)
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1 − x

1 + x
≈ eVDS

2kBT
(48)

Combining Eq. 46, Eq. 47, and Eq. 48, we find that the ballistic current for small VDS

is:

Iball = WQ
eVDSvT

2kBT
(49)

On the other hand, the corresponding drift-diffusion current for small VDS can be de-

scribed by a mobility µ:

Idiff = WQ
µVDS

L
(50)

Thus, an effective mobility, namely the ballistic mobility, can be found by setting Iball =

Idiff. From Eq. 49 and Eq. 50:

µball = vT L

2kBT/e
= eL

πm⋆
t vT

(51)

Physically, µball describes scattering at the source/channel and channel/drain interfaces.

Now, suppose that the channel of the MOSFET under consideration is made of a material

with bulk mobility µbulk. Then, according to Matthiessen’s rule (Eq. 42), the net mobility

of the channel is given by:

µtot =
(

1
µbulk

+ 1
µball

)−1

(52)

We can conclude that for VDS ≪ kBT
e

, the mobility of the channel has a supremum, the

ballistic mobility µball, set by the channel length L, the carrier effective mass m⋆
t , and the

temperature T . This is illustrated in Fig. 7.

2.4.3.2 Derivation of the ballistic mobility for any level of degeneracy

In the drift-diffusion regime, the drain current under low drain bias is expressed as

(Eq. 15):

IDS = WQµ
VDS

L
(53)
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Figure 7 – µtot as a function of µbulk, where we have set µball = 1. The total mobility µtot is

seen to be bounded above by µball. Note that this conclusion is only valid for VDS ≪ kBT
e

.

On the other hand, in the ballistic limit, the drain current is (Eq. 24):

IDS = WQvT

F 1
2

(ηF ) − F 1
2

(ηF − UD)
F0 (ηF ) + F0 (ηF − UD) (54)

where ηF = EFS
−EC

kBT
and UD = − eVDS

kBT
. For low drain biases VDS ≪ kBT

e
, one has UD ≈ 0, so

that the ballistic drain current becomes:

IDS = WQvT
1

2F0 (ηF )
∂F 1

2
(ηF )

∂ηF

UD

= WQvT
1

2F0 (ηF )F− 1
2

(ηF ) eVDS

kBT

(55)

As before, we simply equate the drift-diffusion current to the ballistic current (Eq. 54

and Eq. 55) to extract the ballistic mobility:

µball = eL

πm⋆
t vT

F− 1
2

(ηF )
F0 (ηF ) (56)

Note that Eq. 56 reduces to Eq. 51 in the nondegenerate limit, by Eq. 134.

We conclude that under ballistic conditions, the current through a device can still be

described in terms of the drift-diffusion formalism, but this procedure only works for drain

biases smaller than the thermal voltage. At room temperature, this voltage equal kBT
e

≈

25.8 mV. Since typical applied drain biases in MOSFETs are in the range ∼ 0 V − 2 V, the

2.4.3 Ballistic mobility Page 37



2 From the Diffusive to the Ballistic Limit 2.4 Mobility

concept of ballistic mobility has a highly limited applicability in the modeling of MOSFETs.

However, it can be used to extract low bias quantities, such as the channel conductivity
∂IDS

∂VDS

⏐⏐⏐⏐
VDS=0

[80]. In Sec. 3.2.2, we use the concept of ballistic mobility to extract the threshold

voltage from the transfer characteristics of MOSFETs biased at VDS ≪ kBT
e

.
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3 Important Parameters for MOSFET Modeling

In this section, we develop methods to compute four important parameters in the mod-

eling of MOSFETs: the gate capacitance, the threshold voltage, the subthreshold swing, and

the DIBL. The gate capacitance CG is calculated analytically by considering fringing field

effects, wavefunction penetration effects, and quantum capacitance effects. The threshold

voltage VT is extracted from transfer characteristics; 7 different methods are compared, two

of which are promoted as being more appropriate for modeling purposes. The subthreshold

swing S and DIBL δ are also extracted from transfer characteristics. Finally, we examine

how the gate and drain control parameters αG and αD, that were introduced in Sec. 2.3.2,

vary as a function of VDS.

3.1 Gate capacitance

The (areal) gate capacitance CG is a crucial physical parameter in the modeling of the

current-voltage characteristics of MOSFETs. Indeed, for gate voltages VGS larger than the

threshold voltage VT , the absolute value of the (areal) charge density Q at the top of the

potential barrier of a MOSFET is given by:

Q = CG (VGS − VT ) (57)

While Eq. 57 is not exact, it is accurate enough for the purpose of our compact modeling.

A naive expression for CG is simply the (areal) capacitance of a parallel plate capacitor with

infinite plane plates:

CG = ε

t
(58)

where ε and t respectively denote the permittivity and thickness of the oxide layer between

the metal gate and the semiconductor channel. Nevertheless, this expression fails to consider

a number of physical effects which affect the capacitive coupling between the gate and the

channel. In the following pages, we introduce some of these effects, and attempt to quantify

their contributions to CG.
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3.1.1 Fringing fields

Deriving Eq. 58 is an exercise typically done in undergraduate classes on electrostatics.

From Gauss’ law, the electric field produced by an infinite plane with uniform areal charge

density σ immersed in a medium of permittivity ε is equal to σ
2ε

in norm, and points away

from (towards) the plane when σ > 0 (when σ < 0). Consequently, when two such planes

with opposite areal charge densities ±σ are placed parallel to each other and separated by

a distance t, the field between them has norm σ
ε

(and points from the plate of positive areal

charge density towards the plate of negative areal charge density), and is 0⃗ everywhere else.

Integrating this field between the two planes, we find that the potential difference between

them is σt
ε

. Therefore, by definition, the capacitance of the capacitor formed by the two

planes is ε
t
, as stated in Eq. 58.

The derivation above assumes that the field lines are entirely located between the two

planes, and are strictly orthogonal to them. However, when the dimensions of the planes

are finite, fringing fields appear. Fringing fields are fields that curl around the edges of the

plates of a finitely sized capacitor. Their existence is guaranteed by Gauss’ law. Indeed,

consider the closed loop γ illustrated in Fig. 8. If the electric field E⃗ remained orthogonal

to the planes and terminated abruptly near their edges, then the line integral
∮

γ E⃗ · d⃗l could

not be equal to 0, thus violating Gauss’ law. The effect of fringing fields is to increase the

value of the capacitance compared to that calculated from Eq. 58.

3.1.1.1 Statement of the problem and outline of its solution

Consider two metallic plates, P1 and P2, of infinitesimal thickness immersed in an envi-

ronment of permittivity ε. These plates are both of infinite extent along the z dimension, and

finitely sized along the x dimension. We define the width w of the plates to be their extent

along the x dimension. Finally, the two plates are placed parallel to each other, separated
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Figure 8 – Fringing fields near the edges of a finitely sized parallel plate capacitor. The

capacitor represented has plates of width w = 8 separated by a distance of t = 2, and with

electrostatic potentials ±1
2 .

by a distance t along the y dimension, so that we can formally define P1 and P2 to be:

P1 =
{

(x, y, z) ∈ R3
⏐⏐⏐⏐ − w

2 ≤ x ≤ w

2 , y = t

2

}

P2 =
{

(x, y, z) ∈ R3
⏐⏐⏐⏐ − w

2 ≤ x ≤ w

2 , y = − t

2

} (59)

We set the electrostatic potentials on P1 and P2 to be respectively V
2 and −V

2 . The

problem that we now aim to solve is the following: what is the capacitance of the capacitor

formed by the plates P1 and P2? This problem could, of course, be solved numerically

by discretizing space on a lattice L and casting Poisson’s equation into a matrix equation

on L. However, following our philosophy that complicated numerical procedures are not
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appropriate for the purpose of compact modeling, we will instead attempt to solve this

problem analytically.

Calculating analytically the capacitance of a finite parallel plate capacitor, taking fring-

ing fields into consideration, is a problem that has been approached by Maxwell [81], who

used a number of simplifying approximations. Thomson [82] later suggested an exact ap-

proach to the problem making use of conformal mappings, which was worked out by Love and

Bromwich [83], and promoted by Palmer [84]. It is this approach that we will expose. We

will ultimately obtain an exact analytical expression for the capacitance under investigation,

expressible entirely in terms of the ratio R = w
t

and the permittivity ε.

As a reminder, a harmonic function is a function satisfying Laplace’s equation, and that

can therefore be expressed in terms of a scalar potential. Conformal mappings are angle-

preserving transformations between subsets of the complex plane C. Given a harmonic

function f defined on a connected, open subset of C, the composition of any conformal

mapping with f is also harmonic. This fact makes conformal mappings particularly useful

tools for solving problems in electrostatics with convoluted geometries. Indeed, with an

appropriate choice of conformal mapping, such problems can be cast into geometrically

simpler forms. The solution can then be mapped back to the original space using the inverse

of the chosen conformal mapping. It is this line of thought that we will follow.

Conformal mappings and Schwarz-Christoffel are introduced in greater depth in Ap-

pendix B. Furthermore, our calculation will involve elliptic integrals, the basic properties of

which are exposed in Appendix C.

3.1.1.2 Definition of the complex domains to be used for our calculation

The first step for the purpose of our calculation in nondimensionalization. We set

the width of the two plates of the capacitor under investigation (defined in Eq. 59) to be

w = 2R, their separation to be t = 2, and the potential on the plates to be ±1
2 . Under these

assumptions, the capacitor can be represented by the Z = x + iy plane, as show in Fig. 9a.
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(a) Domain Z = x + iy (b) Domain ζ = ξ + iη (c) Domain W = V + iU

Figure 9 – Definition of the three complex domains that shall be mapped to each other

through Schwarz-Christoffel transformations for the purpose of our calculation. Polygon

edges are represented by red lines, and polygon vertices are labelled by the letters a-f . The

black dots in (c) depict vertices a and b. The domain Z represents real space, and the domain

W represents potential-flux space.

By virtue of the reflection symmetry of the system along the y axis, we can further simplify

the problem by only considering the right half of the Z plane (namely the x ≥ 0 half). Thus,

the capacitor plates can be viewed as a polygon with vertices a-f that has collapsed such

that the sides ac and ec on the one hand, and the sides bd and fd on the other hand, overlap.

In the Z plane, fringing field lines are present, making the calculation of the capacitance of

the capacitor a geometrically complex problem.

The ζ = ξ + iη plane is illustrated in Fig. 9b, and will be the domain of definition of

our Schwarz-Christoffel mappings (see Eq. 136). The real axis of ζ will be mapped to the

polygonal edges of the capacitor in Z. The precise meaning of the constants k and k1 will

be made explicit later.

Finally, the W = V + iU plane is illustrated in Fig. 9c. V and U respectively represent

electric potential and electric flux. Um represents half of the total amount of electric flux

between the two plates of the capacitor. In the Z plane, field lines and equipotential lines

cross each other at right angle, as is well known from elementary electrostatics [85]. Likewise,

these lines also cross each other at right angle in the W plane, but they possess the additional

property of being straight lines. Our goal will thus be to obtain a conformal mapping from
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Z to W , compute the investigated capacitance in W , and map the problem back to Z using

the inverse mapping.

3.1.1.3 Schwarz-Christoffel mapping from ζ to Z

The Schwarz-Christoffel transformation f1 : ζ → Z can be found using Fig. 9a and

Fig. 9b. In the notation of Eq. 136, the interior polygonal angles α, β, γ, δ, ϵ, and φ

corresponding to vertices a, b, c, d, e, and f respectively are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = π
2

β = π
2

γ = 2π

δ = 2π

ϵ = π
2

φ = π
2

(60)

Thus, from Eq. 136, we obtain:

f1 (ζ) = A1

∫ ζ w2 − 1
k2

1√(
w2 − 1

k2

)
(w2 − 1)

dw

= A1
[
k2

1E (φ, k) −
(
k2

1 − k2
)

F (φ, k)
]

+ B1

(61)

where sin φ = ζ. We now impose appropriate boundary conditions to find the values of the

constants A1 and B1:

f1 (0) = 0 =⇒ B1 = 0 (62)

f1 (±1) = ±i =⇒ A1 = i

k2
1E (k) − (k2

1 − k2) K (k) (63)

f1

(
±1

k

)
= ±i =⇒ k2

1 = K ′ (k)
E ′ (k) k2 (64)
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The final boundary condition is f1
(
± 1

k1

)
= R ± i, from which it follows that:

R = K ′ (k) E ′ (β, k) − E ′ (k) F ′ (β, k)
[E ′ (k) − K ′ (k)] K (k) + K ′ (k) E (k)

= 2
π

[K ′ (k) E ′ (β, k) − E ′ (k) F ′ (β, k)]
(65)

where we have used Legendre’s relation (Eq. 145), and where:

sin2 (β) = K ′ (k) − E ′ (k)
(1 − k2) K ′ (k) (66)

Thus, given a value of the plate width to plate separation ratio R, the elliptic modulus

k can be computed using Eq. 65 and Eq. 66.

3.1.1.4 Schwarz-Christoffel mapping from ζ to W

The Schwarz-Christoffel transformation f2 : ζ → W can similarly be calculated to be:

f2 (ζ) = A2

∫ ζ 1√(
w2 − 1

k2

)
(w2 − 1)

dw

= A2F (φ, k) + B2

(67)

where sin φ = ζ. We now impose appropriate boundary conditions to find the values of the

constants A2 and B2:

f2 (0) = 0 =⇒ B2 = 0 (68)

f2 (±1) = ± i

2 =⇒ A2 = i

2K (k) (69)

The inverse mapping f−1
2 : W → ζ of f2 then is:

f−1
2 (W ) = − sin [am (2iK (k) W, k)] (70)

where am denotes the Jacobi amplitude function, defined as the solution am (u, k) = φ of

the equation F (φ, k) = u.

3.1.1 Fringing fields Page 45



3 Important Parameters for MOSFET Modeling 3.1 Gate capacitance

3.1.1.5 Field lines

Using the results of Sec. 3.1.1.3 and Sec. 3.1.1.4, the fringing field lines in real space can

easily be calculated. Indeed, it suffices to map straight vertical lines in W to Z through the

mapping f1 ◦ f−1
2 . This procedure was carried out for four different values of the capacitors

plates width to plates separations ratios R, and the results are plotted in Fig. 10. We note

that the fringing of the field near the edges of the capacitor becomes more pronounced as R

is made smaller, as expected.

3.1.1.6 Exact capacitance calculation

From Fig. 9c, it is apparent that the point e in the W domain has for real part half of

the total flux between the plates of the capacitor, and for imaginary part half of the potential

difference between the two plates. Fig. 9b indicates that the value of ζ that is mapped to e

by f2 is ζ = 1
k
. We deduce from Eq. 67 that in the W plane, the coordinates of the point e

are:

e = K ′ (k)
2K (k) + i

2 (71)

From Gauss’ law and by definition of the capacitance, it follows that the capacitor under

investigation has capacitance (per unit length along z):

CExact = ε
K ′ (k)
K (k) (72)

This formula takes into account all fringing field effects, and is thus exact. To summarize

the procedure of finding the capacitance of a finitely size parallel plate capacitor, one must:

1. Compute the plate width to plate separation ratio R.

2. Compute the value of the elliptic modulus k using Eq. 65 and Eq. 66.

3. Compute the capacitance using Eq. 72.

3.1.1 Fringing fields Page 46



3 Important Parameters for MOSFET Modeling 3.1 Gate capacitance

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) R = 0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) R = 1

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) R = 2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) R = 4

Figure 10 – Field lines of finitely sized capacitors calculated using Schwarz-Christoffel trans-

formations. The calculations were repeated for four different values of the capacitor plate

width to plate separation ratio R.

3.1.1.7 Approximative formulas for the capacitance

While Eq. 72 is exact and analytical, it involves elliptic integrals, which can be difficult

to evaluate. As such, a number of physicists and engineers have suggested approximations

of 72 in terms of elementary functions. Maxwell [81] suggested the following approximation,

valid in the large R limit:

CMaxwell = εR
[
1 + 1

πR
{1 + log (1 + πR)}

]
(73)
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Bromwich and Love [83] suggested the following similar but improved approximation,

valid again in the large R limit:

CBromwich = εR
[
1 + 1

πR
{1 + log (2πR)}

]
(74)

Finally, Palmer [84] suggested the following approximation, valid in the small R limit:

CPalmer = πε

log
(

4
R

) (75)

An approximation CApprox of CExact (Eq. 72) valid for all values of R must satisfy the

two following properties:

lim
R→0

CApprox = 0 (76)

lim
R→∞

(CApprox − CInfinite plates) = 0 (77)

where CInfinite plates is the capacitance obtained without considering fringing field effects (as

in Eq. 58):

CInfinite plates = εR (78)

Note that none of the three approximations presented in Eq. 73, Eq. 74, and Eq. 75

simultaneously satisfy both of the boundary conditions of Eq. 76 and Eq. 77. To remedy to

this issue, we propose the following model for CApprox:

CFitted = εR
(

1 + a

Rb

)
(79)

where a ∈ R and 0 < b < 1. We have computed the best-fit values of the parameters a and

b using a linear fitting algorithm. The resulting approximation is surprisingly accurate, as

can be seen in Fig. 11 and Tab. 1. In particular, the absolute percentage difference between

CFitted and CExact (namely
⏐⏐⏐CExact−CFitted

CExact

⏐⏐⏐) is no larger than ∼ 1% for any value of R, and of

the order of 0.1% for most values of R.
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Figure 11 – The exact capacitance CExact (Eq. 72) was fitted over the range 0 ≤ R ≤ 5 in (a)

and (b), and over the range 0 ≤ R ≤ 40 in (c) and (d), resulting in an approximation CFitted

(Eq. 79). The various approximations CMaxwell, CBromwich, and CPalmer (Eq. 73, Eq. 74, and

Eq. 75) of the exact fringing field capacitance CExact are plotted in (a) and (c), and compared

to CFitted. The percentage differences CExact−CFitted
CExact

are plotted in (b) and (d).

Fit Range a b Adjusted r2

0 ≤ R ≤ 5 1.1205 ± 0.0002 0.8243 ± 0.0001 1 − 3.5297 × 10−6

0 ≤ R ≤ 40 1.1305 ± 0.0008 0.8306 ± 0.003 1 − 6.6322 × 10−7

Table 1 – Values of the fitting parameters a and b of Eq. 79, and corresponding fits coefficients

of determination r2 adjusted for the number of degrees of freedom. The resulting fits are

plotted in Fig. 11.
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3.1.1.8 Extensions of the fringing field capacitance formula

In deriving Eq. 72, we have assumed that the plates of the capacitor were finite along

one dimension, but infinite along the other. What if the plates were, instead, finite along

both dimensions? Consider such a capacitor with rectangular plates. Let w and t denote

respectively, as before, the width of the plates of the capacitor and their separation, and l

their length. Define R1 = w
t

and R2 = l
t
. Then, to a first-order approximation and according

to Eq. 79, the capacitance of the rectangular plates capacitor is given by:

C = εwl

t

(
1 + a

Rb
1

)(
1 + a

Rb
2

)
(80)

where a and b are defined in Tab. 1. The capacitance in Eq. 80 only takes into account

field lines in planes orthogonal to the edges of the capacitor plates, and thus ignores field

lines curling around the vertices of the plates. To take into account all fringing fields in

the capacitance calculation, the conformal mappings that we have introduced in Sec. B can

be extended to have for domains subsets of C2 rather than C. A procedure similar to that

exposed in Sec. 3.1.1.6 can then be carried out to compute the capacitance. Even more

complicated geometries can also be handled by means of conformal mappings [86].

In the TB-NEGF simulations upon which we base our compact modeling, periodicity

was assumed in the z dimension. Thus, Eq. 59 effectively describes the channel 2DEG of a

MOSFET. The results obtained in Sec. 3.1.1.6 and Sec. 3.1.1.7 are therefore appropriate.

We mention two additional potential corrections to Eq. 72 for the modeling of the gate

capacitance of MOSFETs. First, we have assumed the capacitor’s plates to have infinites-

imal thickness. While this assumption is reasonable for the channel 2DEG, it is decidedly

inaccurate for the gate electrode. Second, we have assumed the permittivity ε to be constant

throughout space. This assumption is inaccurate, as the oxide layer of a MOSFET is typi-

cally restricted to the region between the gate electrode and the semiconductor channel. We

believe both effects to be relatively unimportant. Indeed, the corrections induced by these

effects manifest themselves in the field lines above the top plate and below the bottom plate.

As can be seen in Fig. 10, the density of those field lines is comparatively small, regardless
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of the value of R.

Finally, we note that we have assumed a two-plate capacitor thus far. Nevertheless,

our final goal is to model the gate capacitance of double-gated MOSFETs. Thanks to the

linearity of Poisson’s equation, this can be achieved by superposition. Assuming the two

gates and two oxide layers to be identical, it suffices to multiply Eq. 79 by 2.

3.1.2 Wavefunction penetration

Quantum mechanically, the wavefunctions of charge carriers can penetrate into the oxide

layer, thus effectively reducing the thickness to of the oxide layer [87]. This effect can be

modeled by an “effective penetration length” tp, a parameter commensurate to the spread

of carriers’ wavefunctions within the oxide layer, such that:

to → to − tp (81)

Within the effective mass approximation [73], the Schrödinger-Poisson algorithm [88] can

be used to compute these wavefunctions along axes orthogonal to the channel 2DEG [89]. In

cases, where the effective mass approximation in not valid, such as for very thin oxide layers

and semiconducting channels, one must rely on more elaborate formalisms (see Sec. 1.2).

Regardless of the procedure being used, these wavefunctions are prohibitive to compute

within the context of compact modeling. Furthermore, even after such a calculation, it

would not be obvious how to extract from wavefunctions a penetration length that accurately

models the gate capacitance through Eq. 81.

Note that the tp depends, in principle, on VGS. Indeed, VGS controls the shape of the

inversion layer and the inversion charge density, both of which are directly related to the

wavefunctions of carriers in the channel. Moreover, through DIBL, tp also depends upon

VDS.

Wavefunction penetration effects are not of concern for our purposes. Indeed, the TB-

NEGF calculations upon which we base our compact modeling restricted the wavefunctions
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of charge carriers to lie entirely within the semiconductor channel.

3.1.3 Quantum capacitance

In Sec. 3.1.1 and Sec. 3.1.2, we have exposed how fringing fields and wavefunction

penetration effects might influence our classical notion of capacitance. We will hereby refer

to the capacitance calculated from the considerations above as the electrostatic capacitance

CE.

However, in the limit where (at least) one of the plates of the capacitor under consid-

eration has a low density of states, the electrostatic capacitance CE alone is not a suitable

descriptor for the gate capacitance CG. Indeed, as the charge on the plates of the capacitor in-

creases, the negatively charged plate gains high-energy electrons, while the positively charged

plate loses low-energy electrons. Thus, in the low density of states limit, the bandstructure

as well as the band-filling of the plates must be carefully examined in order to properly

describe the charging energy of the capacitor. This inherently quantum phenomenon, which

is ultimately due to the Pauli exclusion principle, has the net effect of decreasing the capac-

itance, as if there were another capacitor in series with CE. We will refer to the capacitance

of this additional virtual capacitor as the quantum capacitance CQ. The concept of quantum

capacitance was first introduced by Luryi [90].

Figure 12 – Diagram of the three-plate capacitor described in Sec. 3.1.3. The top and bottom

plates (drawn in blue) are metallic, and the middle plate (drawn in green) has low density

of states at the Fermi level.

Consider a capacitor formed by three parallel infinite plane plates. Two of these plates,

the bottom and top ones, are metallic, while the middle plate has a low density of states.
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The top and middle plates are separated by a dielectric of permittivity ε1 and thickness

t1, while the middle and bottom plates are separated by a dielectric of permittivity ε2 and

thickness t2. We further assume that the middle and bottom plates are grounded. This

capacitor is illustrated in Fig. 12. According to Eq. 58, the electrostatic capacitances (per

unit area) of the capacitors formed by the top and middle plates on the one hand, and the

middle and bottom plates on the other hand, are respectively:

C1 = ε1

t1

C2 = ε2

t2

(82)

Now, let σ1, σ2, and σQ respectively be the areal charge densities on the top, bottom

and middle plates. By charge neutrality, one has:

σ1 + σ2 + σQ = 0 (83)

This condition may be parametrized by an angle 0 ≤ φ < π as:

σ2 = −σ1 sin2 (φ)

σQ = −σ1 cos2 (φ)
(84)

The electric field energies (per unit area) [85] above and below the middle plate are

respectively U1 and U2, where for i = 1, 2:

Ui = εi

2

ti∫
0

(
σi

εi

)2
dt = σ2

i ti

2εi

(85)

The Fermi degeneracy energy [91], ignoring electronic correlation effects, is given by:

UQ =
σ2

Q

2ρ (EF ) e2 (86)

where ρ (EF ) denotes the density of states (per unit area) of the electron gas in the middle

plate at the Fermi level. Note that Eq. 86 is only valid at zero temperature. Assuming

that the middle plates is composed of a nondegenerate semiconductor 2DEG, under the free

electron approximation, the density of states is given by:

ρ = gSgV m⋆

2π~2 (87)
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where gS, gV , and m⋆ respectively denote the spin degeneracy, valley degeneracy, and density

of states effective mass of the 2DEG.

Thus, the total energy (per unit area) of the system is:

U = U1 + U2 + UQ = σ2
1

[
t1

2ε1
+ t2

2ε2
sin4 (φ) + π~2

gSgV m⋆e2 cos4 (φ)
]

(88)

By energy minimization, we obtain:

dU

dφ
= 0 =⇒ tan2 (φ) = 2π~2ε2

gSgV e2m⋆t2
= C2

CQ

(89)

where:

CQ = gSgV e2m⋆

2π~2 (90)

Using trigonometric identities, it follows that:

σQ = − CQ

C2 + CQ

σ1

σ2 = − C2

C2 + CQ

σ1

(91)

Eq. 91 implies that the circuit under consideration can be viewed as the equivalent three

capacitor circuit illustrated in Fig. 13.

C1

C2 CQ

Figure 13 – Circuit diagram equivalent to the three-plate capacitor illustrated in Fig. 12.
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Eq. 90 assumes a constant density of states, as well as an electronic dispersion relation

well-described by an effective mass tensor. Several materials of interest in nanotechnologies,

such as graphene, do not satisfy these properties, and thus have quantum capacitances [92]

that cannot be described by Eq. 90. The assumptions underlying Eq. 90 can easily be

relaxed, following a derivation almost identical to ours, leading to a more general expression

for the quantum capacitance:

CQ = e2ρ (EF ) (92)

Eq. 86 can further be generalized to non-zero temperatures, leading to the following

expression for the quantum capacitance:

CQ = e2
+∞∫

−∞

(
−∂f (E − EF )

∂E

)
ρ (E) dE (93)

where f denotes the Fermi-Dirac distribution f (E) = 1
2

[
1 − tanh

(
E
2

)]
.

We note that in a MOSFET, the 2DEG in the semiconductor channel has low density of

states, being nondegenerate. The nondegenerate approximation only fails for extremely high

doping densities in the channel. Thus, the concept on quantum capacitance is important for

the modeling of MOSFETs. From Fig. 13, setting C1 to be the electrostatic gate capacitance

CE, and taking the limit C2 → 0, we find that the net gate capacitance of a MOSFET is

given by:

C−1
G = C−1

E + C−1
Q (94)

It is thus apparent from Eq. 82 and Eq. 92 that quantum capacitance effects only become

important in MOSFETs when either:

• The capacitor oxide layer has very high permittivity or very small thickness, so that

the electrostatic capacitance CE is large.

• The density of states in the semiconductor channel at the Fermi level EF is very low,

so that the quantum capacitance CQ is low.
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3.2 Threshold voltage

There does not exist a precise and universal definition for the threshold voltage VT of

a transistor. However, there is a universal, albeit somewhat ambiguous, notion of what VT

should be. In the subthreshold regime, the dependence of the drain current upon the gate

voltage is exponential, whereas it is algebraic above threshold. The threshold voltage is the

value of the gate voltage at the crossover between these two regimes. Ultimately, VT is used

to model the (absolute value of the) charge Q in the channel of a MOSFET above threshold

through the relation:

Q = CG (VGS − VT ) (95)

where CG is the gate capacitance, and VGS > VT the gate voltage.

In this section, we introduce 7 threshold voltage extraction methods [93] utilizing MOS-

FET transfer characteristics. We consider the first five of these methods to be arbitrary and

prone to numerical instabilities, and will hereby refer to them as numerical methods. It is

nevertheless important to introduce these methods as they are very commonly used in the

semiconductor industry. On the other hand, the last two methods are based on physical

arguments, and are more stable under deviations from exact transfer characteristics. We

will hereby refer to these two methods as physics-driven methods.

3.2.1 Numerical methods

3.2.1.1 Constant current method

The constant current method [94] is the simplest threshold voltage extraction method,

and arguably the most commonly used method by the semiconductor industry. It consists in

defining the threshold voltage VT as the value of the gate voltage corresponding to specified,

arbitrary value of the drain current ICC :

VT = I−1
DS (ICC) (96)
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Each researcher may use a different value of ICC . However, to make the constant current

method less arbitrary, the following value of ICC , depending on the device geometry, has been

suggested [95]:

ICC = 10−7 A
L

(97)

where L represent the channel length. It is this value of the constant current that we will

use in our analysis.

The constant current method is illustrated in Fig. 14, where it has been applied to

the transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at

VDS = 1 mV. The extracted value of the threshold voltage is:

VT = 1.25 ± 0.03 V (98)

3.2.1.2 Maximal slope method

The maximal slope method [96], also known as the extrapolation in the linear regime

method, consists in finding the tangent to the transfer characteristic with maximal slope,

and then finding the intersection of this tangent with the gate voltage axis. The threshold

voltage is then defined as the gate voltage at this intersection point.

The maximal slope method is illustrated in Fig. 15, where it has been applied to the

transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at VDS =

1 mV. The extracted value of the threshold voltage is:

VT ∼ 0.74 V (99)

Note that the value of the threshold voltage in Eq. 99 is quoted without uncertainties.

Indeed, VT is extracted using numerical differentiation, a procedure which leads to very high

uncertainties.

3.2.1 Numerical methods Page 57



3 Important Parameters for MOSFET Modeling 3.2 Threshold voltage

0 0.2 0.4 0.6 0.8 1 1.2

10-10

10-8

10-6

10-4

10-2

100

102

Figure 14 – Constant current method for threshold voltage extraction. The blue curve

represents the transfer characteristic of a 5 nm channel ZD ML-BP MOSFET biased at

VDS = 1 mV. The horizontal dotted line represents the constant current ICC = 10 A · m−1,

and the vertical dotted line represents the associated gate voltage, corresponding to the

extracted threshold voltage.

3.2.1.3 Transconductance method

The transconductance method [95], also known as the transconductance extrapolation

method in the linear regime, is similar to the maximal slope method. It consists in finding

the tangent to the transconductance (defined as gm = ∂IDS

∂VGS
) with maximal slope, and then

finding the intersection of this tangent with the gate voltage axis. The threshold voltage is

then defined as the gate voltage at this intersection point.
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Figure 15 – Maximal slope method for threshold voltage extraction. The blue curve

represents the transfer characteristic of a 5 nm channel ZD ML-BP MOSFET biased at

VDS = 1 mV. The dotted line represents the tangent to the transfer characteristic where

its derivative is maximal. The intersection of the dotted line with the axis of abscissas

corresponds to the extracted threshold voltage.

The transconductance method is illustrated in Fig. 16, where it has been applied to

the transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at

VDS = 1 mV. The extracted value of the threshold voltage is:

VT ∼ 0.68 V (100)

Note that the value of the threshold voltage in Eq. 100 is quoted without uncertainties, for

identical reasons as those mentioned after Eq. 99.
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Figure 16 – Transconductance method for threshold voltage extraction. The blue curve

represents the transconductance of a 5 nm channel ZD ML-BP MOSFET biased at VDS =

1 mV. The dotted line represents the tangent to the transconductance where its derivative

is maximal. The intersection of the dotted line with the axis of abscissas corresponds to the

extracted threshold voltage.

3.2.1.4 Second derivative method

The second derivative method [97] consists in defining the threshold voltage as the

gate voltage at which the second derivative of the transfer characteristic is maximal. It

is interesting to note that the second derivative method is guaranteed to produce results

distinct from the transconductance method (they would produce identical result only if the

second derivative of the transfer characteristic were to diverge to ∞).
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The second derivative method is illustrated in Fig. 17, where it has been applied to

the transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at

VDS = 1 mV. The extracted value of the threshold voltage is:

VT = 0.75 ± 0.03 V (101)
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Figure 17 – Second derivative method for threshold voltage extraction. The blue curve

represents the second derivative of the transfer characteristic of a 5 nm channel ZD ML-BP

MOSFET biased at VDS = 1 mV. The dotted line represents the gate voltage at which the

second derivative of the transfer characteristic is maximal, corresponding to the extracted

threshold voltage.
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3.2.1.5 Second derivative of the logarithm method

The second derivative of the logarithm method [98] is similar to the second derivative

method. It consists in defining the threshold voltage as the gate voltage at which the second

derivative of the logarithm of the transfer characteristic is minimal.

The second derivative of the logarithm method is illustrated in Fig. 18, where it has

been applied to the transfer characteristic of a 5 nm ML-BP with transport direction ZD,

and biased at VDS = 1 mV. The extracted value of the threshold voltage is:

VT = 0.78 ± 0.03 V (102)

3.2.2 Physics-driven methods

3.2.2.1 Ballistic mobility method

The ballistic mobility method is a linear optimization-based procedure that we propose

for the extraction of threshold voltage from transfer characteristics of nondegenerate MOS-

FETs for drain voltages VDS much smaller than the thermal voltage kBT
e

. It can be thought

of as a combination of Karlsson’s nonlinear optimization method for threshold voltage ex-

traction [99] and of the ballistic mobility formalism [78]. The idea is the following: from

Sec. 2.4.3, the current in a ballistic MOSFETs for gate voltages VGS larger than the threshold

voltage VT and drain voltages VDS smaller than the thermal voltage kBT
e

can be expressed

as:

IDS = WCG (VGS − VT ) µball
VDS

L
(103)

where µball = evT L
2kBT

is the ballistic mobility (Eq. 51) and vT =
√

2kBT
πm⋆

t
is the unidirectional

thermal velocity (Eq. 45).

The drain current is seen to be a linear function of VGS under the assumptions of

validity of Eq. 103. We note that the assumption of nondegeneracy is valid under relatively

low values of VDS and VGS, as in such cases, the barrier height is high compared to the
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Figure 18 – Second derivative of the logarithm method for threshold voltage extraction.

The blue curve represents the second derivative of the base 10 logarithm of the transfer

characteristic of a 5 nm channel ZD ML-BP MOSFET biased at VDS = 1 mV. The dotted

line represents the gate voltage at which the second derivative of the base 10 logarithm of

the transfer characteristic is maximal, corresponding to the extracted threshold voltage.

source Fermi level. The drain current IDS should then indeed be a linear function of VGS for

VGS ' VT . Deviations from this linear behaviour should only arise when VGS ≫ VT , where

the assumption of nondegeneracy fails. This is precisely what we observe in Fig. 19. Thus,

by performing a linear fit to transfer characteristics, one can not only extract the threshold

voltage VT , but also the gate capacitance CG. The extracted values of the latter parameter

are presented in Tab. 2.

The ballistic mobility method is illustrated in Fig. 19, where it has been applied to the
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Transport direction Armchair Zigzag

Channel length 10 nm 5 nm 10 nm 5 nm

CG (mF · m−2) 43.2 ± 0.1 41.4 ± 0.2 44.16 ± 0.08 43.60 ± 0.06

Table 2 – Values of the gate capacitance for the four studied ML-BP MOSFETs extracted

from their VDS = 1 mV transfer characteristics using the ballistic mobility method.

transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at VDS =

1 mV. The extracted values of the threshold voltage and gate capacitance are respectively:

VT = 0.742 ± 0.002 V

CG = 43.60 ± 0.06 µF · m−2
(104)

To obtain the desired linear fit, we start by isolating the subset of the transfer character-

istic corresponding to values of VGS between 0.7 V and 1 V into a vector D with N entries.

We define D to be the set of all subsets of at least 3 adjacent entries of D. For example, if

D = {1, 2, 3, 4}, then D = {{1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}. Note that the cardinality of D is
1
2 (N2 − 3N + 2). Linear fits are then performed on all elements of D. The coefficients of

determination (adjusted for the number of degrees of freedom) of all of those fits are com-

puted. We define the minimal acceptable coefficient of determination to be R2
min = 0.9999.

The desired linear fit is then defined as the element of D with the greatest number of entries

whose linear fit has a coefficient of determination greater than R2
min. If several such elements

of D exist, the one whose linear fit has the greatest coefficient of determination is chosen.

We note that the concept of ballistic mobility is not crucial in the present context.

Indeed, Eq. 49 could be used directly, without invoking the ballistic mobility. Nevertheless,

the analogy of our method with Karlsson’s method is more apparent by using the ballistic

mobility. We also note that while our method can be used to extract the value of the gate

capacitance CG, Karlsson’s method (being applicable to non-ballistic MOSFET) can only

be used to extract the product µCG of the channel mobility µ and CG. This is because the

exact value of µball can be readily calculated from Eq. 51, assuming the MOSFET channel

2DEG to be nondegenerate.
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Figure 19 – Ballistic mobility method for threshold voltage extraction. The blue curve

represents the transfer characteristic of a 5 nm channel ZD ML-BP MOSFET biased at

VDS = 1 mV. The dotted line represents the linear fit to the transfer characteristic. Its slope

is µballCGVDS

L
, and its intersection with the axis of abscissas is the extracted threshold voltage.

3.2.2.2 Amorphous channel method

The amorphous channel method [93, 100, 101] was originally devised for the extraction

of threshold voltage in non-crystalline MOSFETs, for which the saturation drain current in

strong inversion can be modeled as:

IDSsat = K (VGS − VT )m (105)

where K is a constant empirical parameter with units of A · V−m, and m is dimensionless

exponent. As shown in Sec. 2.2, in the drift-diffusion limit, Eq. 105 best models long-channel
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MOSFETs for m = 2, and shorter channel MOSFETs where velocity saturation effects are

important for m = 1. In the case of ballistic transport (Sec. 2.3), Eq. 105 also correctly

models the saturation current, with an exponent typically in the range 1 ≤ m ≤ 2. As such,

the amorphous channel method is also applicable to ballistic MOSFETs.

The idea behind the amorphous channel method is the following: first, consider the fol-

lowing function computed from the transfer characteristic in the saturation regime IDS (VGS):

H (VGS) = 1
IDS (VGS)

VGS∫
0

IDS (VGS) dVGS (106)

Since IDS (VGS) ≈ 0 for VGS < VT , we can write, using Eq. 105, ∀VGS > VT :

H (VGS) = 1
IDS (VGS)

VGS∫
VT

IDS (VGS) dVGS

H (VGS) = VGS − VT

m + 1

(107)

The function H (VGS) is seen to be a linear function of VGS for VGS > VT . Thus, by

performing a linear fit of H (VGS), the threshold voltage VT and the exponent m can be

computed. The extracted values of the latter parameter are presented in Tab. 3. We note

that the extracted exponents m are all consistent with the ballistic transport formalisms

presented in Sec. 2.3, in the sense that 1 ≤ m ≤ 2. Furthermore, we note that the value of

m seems to only depend upon the transport direction, with m ≈ 1.7 along AD, and m ≈ 2

along ZD. This is expected, since the MOSFETs under consideration in this thesis operate

at the ballistic limit.

With regards to the linear fitting procedure, we use the same method as that exposed

in Sec. 3.2.2.1, with two caveats. First, we only perform fits that end at the maximal value

of VGS, namely 1.3 V. This is because the approximation of Eq. 105 is more accurate for

larger values of VGS. Second, we use R2
min = 0.99.

The amorphous channel method is illustrated in Fig. 20, where it has been applied to

the transfer characteristic of a 5 nm ML-BP with transport direction ZD, and biased at
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VDS = 0.6 V. The extracted values of the threshold voltage and exponent are respectively:

VT = 0.67 ± 0.01 V

m = 2.00 ± 0.02
(108)
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Figure 20 – Amorphous channel method for threshold voltage extraction. The blue curve

represents the function H (VGS) defined in Eq. 106 obtained from the transfer characteristic

of a 5 nm channel ZD ML-BP MOSFET biased at VDS = 0.6 V. The dotted line represents

the linear fit to the function H (VGS) for VGS > VT . Its slope is 1
m+1 , and its intersection

with the axis of abscissas is the extracted threshold voltage.
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Transport direction Armchair Zigzag

Channel length 10 nm 5 nm 10 nm 5 nm

Extracted exponent m 1.68 ± 0.03 1.73 ± 0.04 1.97 ± 0.04 2.00 ± 0.02

Table 3 – Values of the exponent m for the four studied ML-BP MOSFETs extracted from

their VDS = 0.6 V transfer characteristics using the amorphous channel method.

3.2.3 Comparison of the methods and discussion

Except from the constant current method, all of the threshold voltage extraction meth-

ods presented in Sec. 3.2.1 rely on the calculation of numerical derivatives. Whether they

are obtained from experimental measurements or from in silico simulations, transfer char-

acteristics inevitably exhibit some amount of noise. Numerical derivatives are particularly

sensitive to such noise. As such, threshold voltages extracted from the methods of Sec. 3.2.1

are inherently prone to inaccuracies. A potential solution to this problem would be to de-

vise a numerical threshold voltage extraction method based on a procedure that is more

numerically stable. The integral method [102] is an example of such a method, but was

unfortunately found to be wildly unsuccessful in determining the threshold voltages of our

devices.

On the other hand, the two physics-driven threshold voltage extraction methods pre-

sented in Sec. 3.2.2 rely on much more numerically stable calculations, namely numerical

integration and linear fitting. Hence, we believe these methods to be most reliable.

In Tab. 4, we compare the values of the threshold voltage extracted using the 7 different

methods that we have presented in Sec. 3.2.1 and Sec. 3.2.2, for the four different ML-BP

MOSFETs that we study in this thesis. We note that for all devices, the maximal slope,

second derivative, second derivative of the logarithm, and ballistic mobility methods pro-

duce results consistent with each other. By law of majority, it is thus likely that these four

methods are most accurate in estimating VT . The fact that the constant current method pro-

duces erroneous results is unsurprising, due to the blatant arbitrariness of this method. The
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transconductance method is also seen to produce results inconsistent with those obtained

from the other methods: as explained in Sec. 3.2.1.4, this method must produce results

distinct from the second derivative method; we believe the second derivative method to be

more reliable than the transconductance method. Finally, we note that the results of the

amorphous channel method differ from those obtained from the other methods. This is ex-

pected. Indeed, the amorphous channel method is only applicable for transfer characteristics

in the saturation regime (which was taken as VDS = 0.6 V for the purpose of this analysis),

whereas the other methods are only applicable in the linear regime [93] (which was taken

to be VDS = 1 mV). Since for higher drain voltages, DIBL reduces the effective threshold

voltage, it should come as no surprise that the results obtained from the amorphous channel

method are lower than those obtained from the other methods.

To summarize, we advocate for the ballistic mobility method and the amorphous channel

method. Indeed, these methods are based on both robust physical derivations and numerical

implementations. The ballistic mobility method is further seen to produce results similar to

methods that stood the test of time within the semiconductor industry, notably the maximal

slope method. Finally, it is important to recall that the ballistic mobility method is only

applicable for VDS ≪ kBT
e

, while the amorphous channel method is only applicable in the

saturation regime.

3.3 Subthreshold swing

3.3.1 Definition and theoretical value

The subthreshold swing of a transistor is defined as:

S =
(

∂ log10 IDS

∂VGS

)−1

(109)

where we assume the VDS to be fixed. Thus, 1
S

is simply the slope of the graph of the

decalogarithmic drain current as a function of the gate voltage. Note that in the subthreshold

regime, namely for VGS ≪ VT , this slope is approximately constant, and it is the reciprocal
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VT extraction method
Armchair Zigzag

10 nm 5 nm 10 nm 5 nm

Constant current 0.88 ± 0.03 0.93 ± 0.03 0.98 ± 0.03 1.25 ± 0.03

Maximal slope ∼ 0.78 ∼ 0.76 ∼ 0.76 ∼ 0.74

Transconductance ∼ 0.71 ∼ 0.67 ∼ 0.71 ∼ 0.68

Second derivative 0.78 ± 0.03 0.78 ± 0.03 0.78 ± 0.03 0.75 ± 0.03

Sec. der. of the log. 0.8 ± 0.03 0.75 ± 0.03 0.80 ± 0.03 0.78 ± 0.03

Ballistic mobility 0.775 ± 0.004 0.755 ± 0.005 0.754 ± 0.002 0.742 ± 0.002

Amorphous channel 0.75 ± 0.02 0.70 ± 0.02 0.71 ± 0.02 0.67 ± 0.01

Table 4 – Threshold voltage extracted from the 7 methods presented in Sec. 3.2.1 and

Sec. 3.2.2, for the four different ML-BP MOSFETs that we study. All voltage values are

quoted in units of V. The threshold voltages were all extracted from transfer characteristics

at VDS = 1 mV, except from those for the amorphous channel method, for which VDS =

0.6 V.

of this value of the slope which is usually referred to as the subthreshold swing.

The subthreshold swing is a critical parameter which quantifies how to easily it is to turn

ON and OFF a transistor, and is therefore commensurate with leakage currents and power

dissipations. In MOSFETs, in which the main charge transport mechanism is thermionic

emission, the subthreshold swing possesses a physical limit, which can be derived from

electrostatics and thermodynamics [103]:

S = log (10) kBT

αG

(110)

where αG denotes the gate control parameter αG = CG

CΣ
, as introduced in Sec. 2.3.2. Hence, at

room temperature, the subthreshold swing of a MOSFET must be greater than 60 mV/dec.

To derive this fundamental switching limit of MOSFETs, we first introduce the barrier

height ΦB, illustrated in Fig. 21, which equals to difference between the top of the barrier

energy and the source Fermi level. In the subthreshold regime, ΦB ≫ kBT . The Fermi-

Dirac distribution of electrons in the source can thus be approximated by an exponential
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Figure 21 – Illustrative band diagram of a MOSFET in the subthreshold regime and pictorial

definition of the barrier height ΦB.

for energies of the order of ΦB. Thus, given a slowly varying non-zero density of states for

electrons in the source near ΦB, the drain current, due to thermionic emission, satisfies [104]:

IDS ∝ exp
(

− ΦB

kBT

)
(111)

We deduce that ∂ log10 IDS

∂ΦB
= − 1

ln(10)kBT
. Furthermore, the barrier height ΦB is controlled

by the gate voltage VGS. In the ideal case where the channel is solely capacitively coupled

to the gate, ∂ΦB

∂VGS
= −e. When this is not the case, instead, ∂ΦB

∂VGS
= −eαG. Thus, by the

chain rule, we obtain Eq. 110.

3.3.1 Definition and theoretical value Page 71



3 Important Parameters for MOSFET Modeling 3.3 Subthreshold swing

3.3.2 Computation from transfer characteristics

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-12

-10

-8

-6

-4

-2

0

2

4

Figure 22 – Transfer characteristic of a 10 nm channel ML-BP MOSFET oriented along ZD

at VDS = 0.6 V. The red dots represent data computed from TB-NEGF simulations, and

the blue line represents the line fitted to the data in the deep subthreshold regime. The

slope of the fitted line was used to compute the subthreshold swing S and the gate control

parameter αG.

We extract the subthreshold swing S and the gate control parameter αG directly from

the transfer characteristics, using respectively Eq. 109 and Eq. 110. The linear fitting method

used for this purpose is identical to that exposed in Sec. 3.2.2.1, and is illustrated in Fig. 22

for a 10 nm ZD ML-BP MOSFET biased at VDS = 0.6 V, for which it yielded:

S ≈ 61.8 mV · dec−1

αG ≈ 0.963
(112)
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Figure 23 – Subthreshold swing S (a) and gate control parameter αG (b) of a 10 nm ML-

BP MOSFET oriented along ZD. The red dots represent the values of S and αG extracted

from transfer characteristics for various values of the drain voltage VDS, and the blue lines

represents the means of those extracted values.

In Fig. 23, we plot the extracted values of S and αG as a function of VDS, for a 10 nm

ZD ML-BP MOSFET. Both S and αG are found to be roughly constant functions of VDS.

We also compute the mean of S and αG across all values of VDS. These means are reported

in Tab. 5.

Transport direction Armchair Zigzag

Channel length 10 nm 5 nm 10 nm 5 nm

S
(
mV · dec−1

)
62.2 ± 0.3 80.1 ± 0.2 62.7 ± 0.5 67.8 ± 0.9

αG 0.956 ± 0.004 0.743 ± 0.002 0.948 ± 0.008 0.88 ± 0.01

Table 5 – Mean extracted subthreshold swings S and gate control parameters αG for the

four MOSFETs studied.

3.4 Drain-induced barrier lowering

Drain-induced barrier lowering (DIBL) is the phenomenon by which the barrier height

of a MOSFET is reduced by increasing the drain voltage VDS. Being due to the existence of
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Figure 24 – Transfer characteristics of a 5 nm ML-BP oriented along AD, obtained from

TB-NEGF simulations. Note that as VDS is increased, transfer characteristics are shifted

to the left. This phenomenon leads to an effective reduction of threshold voltage as VDS is

increased, and is known as DIBL.

a sizeable capacitive coupling between the drain electrode and the channel 2DEG, DIBL is

typically more significant for MOSFET of small channel lengths. As illustrated in Fig. 24,

one of the effects of DIBL is to shift transfer characteristics to the left as VDS is increased.

Equivalently, DIBL reduces the threshold voltage, through the relation:

VT = VT0 − δVDS (113)

where VT0 is the limit of the threshold voltage as VDS → 0, and δ is the DIBL parameter.

The charge at the top of the barrier then becomes Q = CG (VG − VT0 + δVD). Hence, it
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is easy to see that:

δ = CD

CG

= αD

αG

(114)

where αD and αG are respectively the drain and gate control parameters, as defined in

Sec. 2.3.2.

To compute the value of the DIBL parameter δ at a particular value of VDS, we use

the following procedure. First, we obtain, from TB-NEGF simulations, three sets of transfer

characteristics in the range 0.7 V ≤ VGS ≤ 1.2 V, one with fixed drain voltage VDS, and the

two others with fixed drain voltages VDS ±1 mV. Second, we consider members of any pair of

this set of three characteristics, and shift them horizontally as to obtain the maximal amount

of overlap between them. This was achieved using a golden-section search algorithm. The

optimal value of the horizontal shift ∆VT is then recorded, together with the drain voltage

difference ∆VDS between the two characteristics under consideration. Third, we plot ∆VT as

a function of ∆VDS, as illustrated in Fig. 25a. We model ∆VT as a linear function of ∆VDS

with 0 intercept, namely: ∆VT = δ∆VDS. Finally, the extracted δ is what we define as the

value of the DIBL parameter at the considered value of VDS, which we plot in Fig. 25b. We

computed the mean δsat of the DIBL parameter in the saturation regime, namely between

VDS = 0.3 V and VDS = 0.6 V. The values of δsat are reported in Tab. 6.

We note, perhaps surprisingly, that the DIBL parameter δ is far from being a constant

function of VDS, as can be seen in Fig. 25b. Indeed, δ appears to decrease with VDS, and tends

to a constant in the saturation regime. Note that the three other MOSFET studied in this

thesis display precisely the same behaviour. We conclude that Eq. 113 cannot accurately

describe the inversion charge of a MOSFET. To remedy to this problem, we suggest the

following model for the threshold voltage:

VT = VT0 −
VDS∫
0

δdVDS

δ = δlinI[0,VDSsat ] (VDS) + δlinI]VDSsat ,∞[ (VDS)

(115)
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Figure 25 – DIBL of a 5 nm ML-BP MOSFET oriented along AD. In (a), we illustrate

the extraction procedure for δ at VDS = 0.6 V. In (b), we plot the extracted values of δ

as a function of VDS, and display the mean value of δ in the pentode regime, namely for

0.3 V ≤ VDS ≤ 0.6 V.

where for an interval I, II is defined as:

II (VDS) =

⎧⎪⎪⎨⎪⎪⎩
1 for VDS ∈ I

0 for VDS /∈ I

(116)

To motivate Eq. 115, we note that the effect of DIBL on current-voltage characteristics of

MOSFETs is most manifest in the positive slope that it induces in the output characteristics

in the saturation regime. To properly model this slope, the saturation regime value of the

DIBL parameter δsat must be used. However, δsat is smaller than the value of the DIBL

parameter in the linear regime. This is why we choose to model DIBL with the additional

parameter δlin in the linear regime. Indeed, without δlin, the inversion charge would be

systematically underestimated.

To compute δlin, we do not simply take the average of the extracted values of δ in the

linear regime. Indeed, in the linear regime, IDS depends on VDS not merely through the

DIBL effect, but also and more importantly through current saturation. As such, the values

of δ extracted in the linear regime using the procedure described in this section are unreliable.
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Transport direction Armchair Zigzag

Channel length 10 nm 5 nm 10 nm 5 nm

δsat (mV · V−1) 42 ± 2 68 ± 10 51 ± 7 67 ± 21

αDsat 0.040 ± 0.002 0.051 ± 0.007 0.049 ± 0.007 0.059 ± 0.018

δlin (mV · V−1) 49 ± 54 132 ± 71 95 ± 58 181 ± 39

αDlin 0.046 ± 0.052 0.098 ± 0.052 0.090 ± 0.055 0.159 ± 0.034

Table 6 – Extracted values of δsat and δlin for the four MOSFETs studied in this thesis. The

extraction procedures of these two parameters are described in Sec. 3.4. We also list the

corresponding values of the saturation and linear regimes drain control parameters αDsat and

αDlin . Note that we have defined αDsat = δsatαG, where αG is listed in Tab. 5. The parameter

αDlin was defined analogously.

Instead, to compute δlin, we set VDSlow = 1 mV, VDSsat = 0.3 V, and VDShigh = 0.6 V. We

then compute VT0 using the ballistic mobility method, as described in Sec. 3.2.2.1. We also

compute the value of the threshold voltage at VDShigh , which we denote as VThigh , using the

amorphous channel method (Sec. 3.2.2.2). Eq. 115 can then be used to compute the value

of δlin:

δlin = −
VThigh − VT0 + δsat

(
VDShigh − VDSsat

)
VDSsat

(117)

This procedure was carried out; the resulting values of δlin are listed in Tab. 6.

3.5 Lead control parameters

Using the methodologies of Sec. 3.3 and Sec. 3.4, we are now able to plot the gate and

drain control parameters αG and αD as a function of the drain voltage VDS. This is shown

in Fig. 26.

We note, as previously stated, that αG is high and roughly independent of VDS. On

the other hand, αD strongly depends upon VDS. Why might that be the case? We believe

that the floating source effect to be the culprit for this peculiar behaviour (Sec. 2.3.2.1).
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Figure 26 – Gate and drain control parameters plotted as a function of VDS for the four

MOSFETs studied in this thesis. The extraction methods for αG and αD are respectively

described in Sec. 3.3 and Sec. 3.4. We note that αG is roughly constant and αD decreasing.

Indeed, as shown in Fig. 27, in ballistic MOSFETs, as the drain voltage increases, the top

of the potential barrier is pushed closer and closer to the source electrode. Therefore, the

capacitive coupling between the source and the channel 2DEG, and hence αD decreases as

VDS is increased.

We conclude that the floating source effect is an important phenomenon to consider in

the modeling of ballistic or nearly ballistic MOSFETs. Indeed, it leads to:
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Figure 27 – Band diagrams of a 5 nm channel ML-BP MOSFET oriented along AD, calcu-

lated using TB-NEGF simulations. The gate voltage is fixed at VGS = 0.8 V, and the drain

voltage is swept from VDS = 0.1 V to VDS = 0.6 V in steps of ∆VDS = 0.1 V. These band

diagrams are magnified near the top of the barrier in the inset. We note that the position

of the top of the barrier shifts towards the source as VDS is increased. For clarity, the band

diagrams presented in this figure were smoothed using a moving average filter.

• A reduction of the conduction band minimum in the source electrode as VGS is in-

creased, as shown in Sec. 2.3.2.1,

• The emergence of a dependence of the DIBL parameter upon VDS.
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4 Compact Modeling

In this section, we combine the analytical models that we presented in Sec. 2 with the

parameters extraction methods that we developed in Sec. 3 to produce compact models for

the four ML-BP MOSFETs under investigation in this thesis. We find that the Landauer-

Büttiker model is rather unsuccessful, due to its failure to consider the floating source effect.

On the other hand, the capacitor model is surprisingly accurate in predicting both transfer

and output characteristics. We also present the virtual source model, and show that it has

good predictive power at an extremely low computational cost.

4.1 Landauer-Büttiker model

To compute IDS in the Landauer-Büttiker model for given values of VDS and VGS, we

use the algorithm presented in Sec. 2.3.1, namely:

1. Parametrize the inversion layer charge as:

Q0 = −CG

(
VGS − VT0 +

∫ VDS
0 δdVDS

)
Note that DIBL is treated as in Sec. 3.4.

2. Compute ηFS
from Eq. 23:

Q0 = −eN2
2 [F0 (ηFS

) + F0 (ηFD
)]. Note that ηFD

= ηFS
− eVDS

kBT

3. Compute IDS from Eq. 24:

IDS = W |Q0|
[
vT

F 1
2
(ηFS )

F0(ηFS )

] ⎡⎢⎢⎢⎢⎣
1−

F 1
2
(ηFD)

F 1
2
(ηFS )

1+
F0(ηFD)
F0(ηFS )

⎤⎥⎥⎥⎥⎦
Since ηFS

can only be computed if Q0 is known, the Landauer-Büttiker can only be used

to compute the IDS in the inversion regime.

The Landauer-Büttiker, as presented in this thesis, is a 7 parameters compact model.

Two of those parameters, the density-of-states effective mass m⋆ and the effective mass

along the transport direction m⋆
t , pertain to the atomistic properties of the semiconductor
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channel material, and were computed from DFT [58]. Four of those parameters pertain to

the electrostatic properties of the device. The gate capacitance CG and the threshold voltage

VT0 were computed using the ballistic mobility method introduced in Sec. 3.2.2.1. DIBL was

taken into account using the formalism of Sec. 3.4, and is parametrized by two parameters,

δsat and δsat. The last parameter of the Landauer-Büttiker model is the device temperature,

which was set to be T = 300 K.
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Figure 28 – Output characteristics of the four ML-BP MOSFETs studied in this thesis.

The gate voltage is swept from VGS = 0.8 V to VGS = 1.1 V in steps of ∆VGS = 0.05 V.

We compare the results obtained from TB-NEGF simulations to those obtained from the

Landauer-Büttiker (LB) model introduced in Sec. 2.3.1.

Page 81



4 Compact Modeling 4.2 Capacitor model

In Fig. 28, we compare the output characteristics of the four ML-BP MOSFETs under

investigation in this thesis calculated from TB-NEGF simulations and from the Landauer-

Büttiker model. The drain current IDS tends to be vastly underestimated in the Landauer-

Büttiker model, especially for high values of VDS and VGS. This is not surprising, as the

Landauer-Büttiker model does not consider the floating source effect, which increases IDS and

becomes increasingly important under higher biases (see Sec. 2.3.2.1 and Sec. 3.5). Perhaps

more surprising is how drastic are the corrections due to the floating source effect.

While the Landauer-Büttiker model is too unreliable for compact modeling purposes,

it nevertheless seems to predict the linear regime drain current to a reasonable degree of

accuracy. Furthermore, the scaling of IDS upon (VGS − VT ) as predicted from the Landauer-

Büttiker model seems to roughly match the predictions of the more elaborate TB-NEGF

simulations.

4.2 Capacitor model

To compute IDS in the capacitor model for given values of VDS and VGS, we use the

algorithm presented in Sec. 2.3.2, namely:

1. Guess the value of the self-consistent potential USCF . To this end, we use a value of

USCF = −10−19 J in our algorithm.

2. Compute the induced charge density ∆Q0 using USCF and Eq. 32:

USCF = −e (αDVDS + αGVGS) − 1
CS+CD+CG

∆Q0

3. Compute the self-consistent potential USCF using ∆Q0 and Eq. 28:

∆Q0 = − eN2
2 F0

(
EFS

−USCF

kBT

)
− eN2

2 F0
(

EFD
−USCF

kBT

)
+ eN2F0

(
EF −USCFeq

kBT

)
4. Repeat Steps 2 and 3 until convergence is attained. The chosen criterion for con-

vergence is that USCF changes by less than 10−26 J from one iteration to the next.

5. Repeat Steps 2 to 4 with various values of EFS
until one such value that guarantees

charge neutrality in the source electrode is found. The charge neutrality condition is

described by Eq. 34:
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NDS
= N2 log

⎡⎣ 1+exp
(

EFS
−ECS

kBT

)
1+exp

(
EFS

−USCF

kBT

)⎤⎦+ N2
2 log

[
1 + exp

(
EFS

−USCF

kBT

)]
+ N2

2 log
[
1 + exp

(
EFS

+eVDS−USCF

kBT

)]
To do so, we increase EFS

in steps of 10−23 J until the right-hand side of the above

equation is greater than or equal to NDS
.

6. Compute the current using Eq. 33:

IDS = WeN2
2 vT

[
F 1

2

(
EFS

−USCF

kBT

)
− F 1

2

(
EFD

−USCF

kBT

)]

As a preliminary step, we compute EF − USCFeq by finding its value such that the

capacitor model presented above best fits the VDS = 1 mV transfer characteristic between

VGS = 0.4 V and VGS = 0.6 V. The conduction band minimum in the source can they be

calculated as:

ECS
− USCFeq = EF − USCFeq − kBT log

[
exp

(
NDS

N2

)
− 1

]
(118)

Furthermore, the sum of the source, drain, and gate capacitances can be calculated as:

CS + CD + CG = CG

αG

(119)

where CG is the electrostatic capacitance of the gate electrodes.

The capacitor model, as presented in this thesis, is an 8 parameters compact model.

One of these parameters specifies the design of the device: the source doping density NDS
.

Three of those parameters are atomistic: the density-of-states effective mass m⋆, the effective

mass along the transport direction m⋆
t , and the equilibrium barrier height with respect to the

Fermi level EF −USCFeq . Three of those parameters pertain to the electrostatic properties of

the device: the gate capacitance CG, the gate control parameter αG, and the drain control

parameter αD. The gate capacitance CG was computed from Eq. 79 by considering all

fringing field effects. The gate control parameter αG was computed using the method exposed

in Sec. 3.3. Finally, the drain control parameter was set to αD = αDlin (as defined in Sec. 3.4).

Indeed, we found that in the capacitor model, having a VDS-dependent DIBL parameter made

little difference. Thus, by virtue of Occam’s razor, we favour a one-variable parametrization
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of DIBL. The last parameter of the capacitor model is the device temperature, which was

set to be T = 300 K.
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Figure 29 – Transfer characteristics of the four ML-BP MOSFETs studied in this thesis. The

drain voltage is set at VDS = 1 mV and VDS = 0.1 V. We compare the results obtained from

TB-NEGF simulations to those obtained from the capacitor model introduced in Sec. 2.3.2.

In Fig. 29 and Fig. 30, we respectively compare the transfer and output characteristics

of the four ML-BP MOSFETs under investigation in this thesis calculated from TB-NEGF

simulations and from the capacitor model. The drain current IDS is modeled surprisingly well

within the capacitor model, both in the subthreshold and inversion regimes, and both in the

linear and saturation regimes. By describing electrostatics and Fermi-Dirac statistics self-
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Figure 30 – Output characteristics of the four ML-BP MOSFETs studied in this thesis.

The gate voltage is swept from VGS = 0.8 V to VGS = 1.1 V in steps of ∆VGS = 0.05 V.

We compare the results obtained from TB-NEGF simulations to those obtained from the

capacitor model introduced in Sec. 2.3.2.

consistently, while taking into account the floating source effect, we have accurately modeled

ballistic MOSFETs. Furthermore, the slope of the transfer characteristics in the subthrehsold

regime is well-described by the capacitor model. This shows that the αG extraction method

that we presented in Sec. 3.3 is reliable. Likewise, the fact that the slopes of the output

characteristics in the saturation regime are well described by the capacitor model shows that

the αD extraction method that we presented in Sec. 3.4 is reliable.
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A concern that one might have is whether the drain current IDS can be calculated

quickly within the capacitor model. Indeed, the algorithm described at the beginning of this

section contains a self-consistent calculation nested into an iterative procedure. However,

calculations within the capacitor model are fast enough for the purpose of compact modeling.

To give a sense of scale, to calculate all of the TB-NEGF-based data presented in Fig. 29

and Fig. 30, approximately 3 core-years of computing time were needed. On the other hand,

approximately 15 core-seconds were needed to obtain the corresponding capacitor-model-

based data.

Finally, we mention a caveat to the discussion above. The electrostatic gate capacitance

computed from Eq. 79, namely CG = 2ε
t

(
1 + a

(L
t )b

)
, lead to poor fits of the capacitor

model to the TB-NEGF data. Instead, we used one third of the above value, namely CG =
2ε
3t

(
1 + a

(L
t )b

)
. We believe this mismatch between our theoretical prediction for the gate

capacitance and its best-fit value to be at least partly due the way that Poisson’s equation is

handled in the TB-NEGF simulations. Indeed, the space grid onto which Poisson’s equation

is solved in these simulations terminates at the exterior boundaries of the oxide layers. As

a result, much fewer field lines are considered within the simulations than those that were

considered in deriving Eq. 79.

4.3 Virtual source model

We now come back to the virtual source (VS) model, the compact model that we

commended in the introduction of this thesis, and cherished for its distinctively bottom-up

character. This model [2–4] is continuous from the drift-diffusion to the ballistic limit, and is

hence an important conceptual guide in designing MOSFETs approaching the ballistic limit.

In essence, the VS model for the output characteristics of a MOSFET is constructed

as follows. First, an expression for the linear regime drain current IDSlin is obtained. In the

case of nondegenerate ballistic MOSFETs, Eq. 49 and Eq. 56 can be used to this end:

IDSlin = CG (VGS − VT0 + δVDS) µballVDS

L
(120)
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Second, an expression for the saturation regime current IDSsat is obtained. For ballistic

MOSFETs, Eq. 24 can be used to this end:

IDSsat = CG (VGS − VT0 + δVDS) vI

vI = vT

F 1
2

(ηFS
)

F0 (ηFS
)

(121)

The parameter vI is known as the injection velocity of charge carriers. In Fig. 31a, we plot
vI

vT
as a function of ηFS

= EFS
−EC

kBT
.

Third, the drain voltage Vsat at which the linear regime current of Eq. 120 equals the

saturation regime current of Eq. 121 is calculated. In the present situation, this voltage,

known as the saturation voltage, can easily be computed to be:

Vsat = LvI

µball
(122)

Fourth, given β > 0, we define the saturation function as:

Fsat (VDS) =
VDS

Vsat[
1 +

(
VDS

Vsat

)β
] 1

β

(123)

The velocity of charge carriers is then expressed as vIFsat (VDS). The saturation function

Fsat describes the transition of the velocity of charges carriers from their linear regime value

of µballVDS

L
to their saturation regime value of vI , as can be seen by examining the behaviour

of Fsat in the limits VDS → 0 and VDS → ∞. The parameter β is phenomenological, and

quantifies the sharpness of the transition from the linear regime to the saturation regime. In

Fig. 31b, we plot Fsat for various values of β.

Overall, in the VS model, the drain current in the inversion regime is expressed as:

IDS = CG (VGS − VT0 + δVDS) vIFsat (VDS) (124)

As presented in Ref. [4], the VS model injection velocity vI is left as a free parameter.

In this thesis, it is expressed within the Landauer-Büttiker model as vI = vT

F 1
2
(ηFS )

F0(ηFS ) . The

exact value of the parameter ηFS
= EFS

−EC

kBT
is, however, unknown. It thus remains to express
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Figure 31 – Injection velocity (a) and saturation function (b) for the virtual source model.

The injection velocity normalized by the thermal velocity vT , is plotted as a function of

ηFS
= EFS

−EC

kBT
. The saturation function is plotted for three different values of β as a function

of the drain voltage VDS normalized by the saturation voltage Vsat.

ηFS
as a function of VGS. First, it is known from electrostatics that the barrier height EC is

a linear function of the gate voltage [66,105]: EC ∝ eVGS

k
, where k ≈ 1. We can thus write:

ηFS
= e

kBT

1
k

(VGS − VT0) + ηT0 (125)

where ηT0 is a constant. Somewhat arbitrarily, we demand that ηFS
= −2 for VGS = VT0 ,

from which we can deduce that ηT0 = −2. We motivate this choice as follows. The threshold

voltage VT0 is defined as the value of VGS at the onset of high conductivity within the MOS-

FET channel. The drain current through a ballistic MOSFET is proportional to F 1
2

(ηFS
)

(see Eq. 33). Since this complete Fermi-Dirac integral of order 1
2 only starts to strongly de-

viate from 0 at ηFS
= −2, as can be seen in Fig. 33, we require that ηFS

= −2 for VGS = VT0 .

Setting ηT0 = −2 thus corresponds to the statement that the MOSFET channel becomes

conductive when the barrier height EC is within 2kBT of the source Fermi level EFS
.

Hence, to compute IDS in the virtual source model for given values of VDS and VGS, we

use the following algorithm:

1. Compute ηFS
from Eq. 125:
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ηFS
= e

kBT
1
k

(VGS − VT0) + ηT0

Note that ηFS
only depends upon VGS within our parametrization.

2. Compute the injection velocity from Eq. 121:

vI = vT

F 1
2
(ηFS )

F0(ηFS )
3. Compute the drain current from Eq. 124:

IDS = CG (VGS − VT0 + δVDS) vIFsat (VDS)
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Figure 32 – Output characteristics of the four ML-BP MOSFETs studied in this thesis. The

gate voltage is swept from VGS = 0.8 V to VGS = 1.1 V in steps of ∆VGS = 0.05 V. We

compare the results obtained from TB-NEGF simulations to those obtained from the virtual

source (VS) model.
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The virtual source model, as presented in this thesis, is an 8 parameters compact model.

One of those parameters is atomistic: the effective mass along the transport direction m⋆
t .

Three of those parameters pertain to the electrostatic properties of the device: the gate

capacitance CG, the threshold voltage VT0 , and the DIBL parameter δ. The gate capaci-

tance CG and threshold voltage VT0 were computed using the ballistic mobility method of

Sec. 3.2.2.1. The DIBL parameter was set to δ = δlin (as defined in Sec. 3.4). Three of

these parameters are phenomenological: β, k, and ηT0 . The parameter β was set to β = 3,

the parameter k to k = 3
4 , and ηT0 to ηT0 = −2, as those values lead to good fits. The

last parameter of the virtual source model is the device temperature, which was set to be

T = 300 K. Note that the channel length L is not a parameter of the virtual source model,

as whenever it appears in the equations that define the VS model, it is cancelled out by

another factor of L hidden in µball.

In Fig. 32, we compare the output characteristics of the four ML-BP MOSFETs under

investigation in this thesis calculated from TB-NEGF simulations and from the virtual source

model. The drain current IDS is modeled fairly well with the VS model, both in the linear

and saturation regimes. While the VS model is not as successful as the capacitor model

presented in Sec. 4.2, it has the power of calculating IDS essentially instantaneously. Indeed,

the most computationally heavy component of the virtual source model is the calculation

of the complete Fermi-Dirac integrals defining the injection velocity (see Eq. 121), which

merely needs to be done once for each sampled value of the gate voltage VGS. The virtual

source model would thus likely be more appropriate than the capacitor model for simulations

of circuits of great scale.
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5 Conclusion

We conclude this thesis by a brief summary, followed by the description of a potential

future research project in the same vein as the work presented in this thesis.

5.1 Summary

In this thesis, we have developed two accurate bottom-up compact models for bal-

listic MOSFETs. These models, the capacitor model and the virtual source model, both

parametrize current-voltage characteristics using 8 parameters, which stand in striking con-

trast with the hundreds or thousands of parameters that are found in compact models typi-

cally used by the semiconductor industry.

Our models find their foundation in the Landauer-Büttiker formalism of ballistic trans-

port. This formalism has strong physical footing, thus making our models inherently bottom-

up. As such, while we have focused our attention on ML-BP MOSFETs, we strongly believe

that our models can be used without any major alteration for ballistic MOSFETs composed

of various other semiconductors.

In developing our models, we have shown the floating source effect to be of great im-

portance in ballistic MOSFETs. Additionally, we have shown how to obtain the parameters

of our models, be it from theoretical arguments, from ab initio simulations, or by extraction

from current-voltage characteristics.

State-of-the-art MOSFETs have been operating near or at the ballistic limit for more

than a decade. Nevertheless, the field of compact modeling, and more generally the field

of nanoeletronics, are still to a great extent dominated by ideas stemming from the drift-

diffusion transport theory. Concepts such as that of ballistic mobility serve to bridge the gap

between these ideas, in term of which scientists and engineers tend to think about MOSFETs,

and the actual operating principles of MOSFETs. However, such concepts are fallacious; a
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fresh, simple ballistic transport formalism needs to be canonized within the device research

community. We believe the Landauer-Büttiker formalism to be the best candidate to take

this role. Not only does it provide a clear and coherent description of MOSFETs and many

other electronic devices, but it can also, with a few adjustments, be used to build accurate

compact models.

5.2 Future research direction

Ever since the invention of the integrated circuit, MOSFETs have been the most preva-

lent building blocks for digital logic and complex computations. They, along with other

semiconductors devices, have undergone an uninterrupted miniaturization over the past fifty

years, following a trend known as Moore’s law [106]. Now that the channel lengths of MOS-

FETs are reaching the nanoscale, it is quantum phenomena that dominate their physical

properties. Notably, short-channel effects such as DIBL depreciate the power efficiency of

MOSFETs. Consequently, researchers have to juggle between these physical constraints,

which lead to increased power dissipation, and economic constraints on acceptable power

dissipation. This dilemma has hindered the progression of Moore’s law over the past five

years [107]. An urgent task is thus to devise a device which breaks this power dissipation

bottleneck.

The subthreshold swing (SS) is a device parameter which quantifies how difficult it is

to turn off a transistor, and is therefore commensurate with leakage currents and power

consumption. Electrostatics and thermodynamics dictate that at room temperature, the SS

of a MOSFET must be greater than 60 mV · dec−1. A number of potential successors to

the MOSFET with sub-60 mV · dec−1 SS have been studied, the most promising of which is

the tunneling field-effect transistor (TFET) [108]. While thermionic injection is the physical

mechanism for electronic transport in MOSFETs, TFETs rely on quantum tunneling. Since

quantum tunneling is a temperature-independent process, sub-60 mV ·dec−1 SS can easily be

achieved in TFETs [109]. However, the ON-state currents of TFETs are typically ∼ 2 orders

of magnitude smaller than those of MOSFETs, thus making their adoption on large-scale logic
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circuits impractical. Very recently, a potential surrogate to the TFET was introduced. This

device, called the Dirac field-effect transistor (DFET), is composed of a monolayer graphene

source, an intrinsic monolayer molybdenum disulfide (MoS2) channel, and a n-doped MoS2

drain. By virtue of the linear density of states of graphene near its Dirac points, the DFET

effectively behaves as a TFET in the OFF-state and a MOSFET in the ON-state. This

transistor was shown to break the 60 mV · dec−1 SS limit while maintaining a high ON-state

current, both experimentally [110] and theoretically [111].

The goals of this research project are twofold. First, the unusual behavior of the

DFET is believed to be due to the formation of a gate-modulated Schottky barrier at the

graphene/MoS2 interface, due to the semimetallic character of graphene [111]. I will in-

vestigate the universality of this phenomenon by simulating a similar device with another

Dirac material in place of graphene in the source (for example, silicene [112]), and another

two-dimensional semiconductor in place of MoS2 in the channel (for example, ML-BP [5]).

To do so, I will use first-principles calculations based on density functional theory (DFT)

within the nonequilibrium Green’s function formalism (NEGF), which has emerged as one

of the most powerful and practical methods for predicting nonlinear and nonequilibrium

quantum transport properties of nanoelectronic devices [1]. Additionally, the effects of dis-

order and impurity scattering can be taken into account within the nonequilibrium coherent

potential approximation (NECPA) [113]. The NEGF-DFT-NECPA formalisms have been

implemented in Nanodsim, a software package developed by Guo et al. that I will use for

this part of the project.

Second, I will construct a compact model for the DFET. Compact models are analytical

parametrizations of the current-voltage characteristics of electronic devices, which are used

by the semiconductor industry in large-scale circuit simulations. Such a compact model could

then be used to study DFET-based circuits of interest (for example, a static random-access

memory cell) to investigate if the use of DFETs does lead to decreased power dissipation at

the circuit level. Overall, this research project is one of the first theoretical investigations

of a promising successor to the MOSFET, and fits within the research and development of

low-power nanoelectronics.
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A Complete Fermi-Dirac Integrals

The complete Fermi-Dirac integral of order i ∈ Q is defined for η ∈ R as [114,115]:

Fi (η) = 1
Γ (i + 1)

∞∫
0

ti

1 + exp (t − η)dt (126)

Complete Fermi-Dirac integrals of order −1
2 , 0, and 1

2 are plotted in the range −4 ≤

η ≤ 10 in Fig. 33 for illustrative purposes.
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Figure 33 – Plots of the complete Fermi-Dirac integrals Fi (η) of order i = −1
2 , i = 0, and

i = 1
2 as a function of η. The integrals were computed numerically using Eq. 132.

These integrals often arise in semiconductor-related calculations. For example, consider

a n-dimensional semiconductor (n ∈ N) with a parabolic conduction band. The density of
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states ρn (E) of conduction band electrons (where E denotes energy) satisfies, for E ≥ EC

[73]:

ρn (E) = gn (E − EC)
n−2

2 θ (E − EC) (127)

where EC is the conduction band minimum, gn is a material-specific constant independent

of E, and θ the Heaviside step function. Hence, the density n of conduction band electrons

is:

n =
+∞∫

−∞

ρn (E)
1 + exp

(
E−EF

kBT

)dE = gn

∞∫
EC

(E − EC)
n−2

2

1 + exp
(

E−EF

kBT

)dE (128)

where EF and T are respectively the Fermi level and temperature of the semiconductor. By

making the substitution t = E−EC

kBT
and defining ηF = EF −EC

kBT
, Eq. 128 can be re-expressed in

terms of a Fermi-Dirac integral as:

n = gn (kBT )
n
2 Γ

(
n

2

)
Fn−2

2
(ηF ) (129)

While the Γ function included in the definitions of complete Fermi-Dirac integrals

(Eq. 126) might first seem unnecessary, it guarantees the desirable property that ∀i ∈ Q

and ∀η ∈ R:
∂Fi (η)

∂η
= Fi−1 (η) (130)

The complete Fermi-Dirac integral of order 0 can be computed analytically to be:

F0 (η) = log [1 + exp (η)] (131)

There exist analytical approximations to the Fermi-Dirac integrals of order i for −1
2 ≤

i ≤ 5
2 [116–118], as well as quickly-converging series expansions for −1

2 ≤ i ≤ 7
2 [119, 120].

However, for greater accuracy, one must resort to numerical methods. A standard approach

[121], valid for i > −1 and η . 15 is to make the substitution t = exp (x − e−x), so that

Eq. 126 can be written as:

Fi (η) = 1
Γ (i + 1)

b∫
a

t
(
1 + e−x

) tj

1 + exp (t − η)dx (132)

where a and b are chosen in such a way that the integrand in Eq. 132 is almost 0 for x = a

and x = b. Typical values for the parameters a and b are respectively −5 and 5. The
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complete Fermi-Dirac integral as expressed in Eq. 132 has the advantage of being readily

computable using the easily implemented trapezoidal rule, despite the fact that the domain

of integration of a complete Fermi-Dirac integral is infinite (Eq. 126).

Finally, we examine the asymptotic behaviour of complete Fermi-Dirac integrals in the

limit η ≪ 0 (which for obvious reason can be referred to as the nondegenerate limit). In this

limit, one has:

Fi (η) = 1
Γ (i + 1)

∞∫
0

ti

exp (t − η)dt (133)

and hence, by definition of the Γ function, ∀i ∈ Q, one obtains:

Fi (η) → eη as η → −∞ (134)

It can also be shown [122] that in the degenerate limit η ≫ 0:

Fi (η) → ηi+1

Γ (i + 2) as η → +∞ (135)
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B Conformal Mappings and Schwarz-Christoffel Trans-

formations

We expose some important mathematical background on conformal mappings and

Schwarz-Christoffel transformations [123].

Definition: Let U and V be open subsets of C. A mapping f : U → V is said to be conformal

if ∀u ∈ U , f preserves the oriented angles between all pairs of curves going through u.

The Riemann mapping theorem guarantees the existence of a conformal mapping be-

tween the Poincaré upper half-plane H = {ζ ∈ C | Im (ζ) > 0} and the interior of any

polygon in the complex plane. Such mappings are called Schwarz-Christoffel mappings.

Definition: Let S ⊂ C. Then, the closure of S, which we denote as cl (S), is defined to be

the unique smallest closed subset of C containing S.

As an example, if S = {z ∈ C | |z| < 1}, then cl (S) = {z ∈ C | |z| ≤ 1}.

Definition: Let P ⊂ C be an open simple polygon with interior angles (α, β, γ, · · · ). Let

a, b, c, · · · ∈ R be such that a < b < c < · · · and A ∈ C a constant. Then, a Schwarz-

Christoffel mapping is a mapping f : cl (H) → cl (P ) defined by:

f (ζ) =
∫ ζ A

(w − a)1− α
π (w − b)1− β

π (w − c)1− γ
π · · ·

dw (136)

The mapping f defined above has the property that it maps the real axis R to the edges

of the polygon cl (P ). Furthermore, given appropriate choices of A and of the constant of

integration in Eq. 136, f maps (a, b, c, · · · ) to the vertices of cl (P ). Finally, the restriction

f |H of f to H is a conformal mapping from H to P .
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C Incomplete and Complete Elliptic Integrals of the

First and Second Kinds

Elliptic integrals often arise in the calculation of conformal mappings and Schwarz-

Christoffel transformations. Notations surrounding these integrals are numerous in the lit-

erature. For this reason, we wish to set the notation that we will use in this thesis.

The incomplete elliptic integral of the first kind is defined for −1 < ζ < 1 and 0 < k < 1

as:

F (ζ; k) =
∫ ζ

0

1√
(1 − w2) (1 − k2w2)

dw

=
∫ φ

0

1√
1 − k2 sin2 θ

dθ := F (φ, k)
(137)

where sin φ = ζ with −π
2 < φ < π

2 . The parameter k is sometimes referred to as the elliptic

modulus, or eccentricity.

The complete elliptic integral of the first kind is defined to be the value of the above

integral in the limit ζ → 1, or equivalently φ → π
2 :

K (k) =
∫ 1

0

1√
(1 − w2) (1 − k2w2)

dw =
∫ π

2

0

1√
1 − k2 sin2 θ

dθ (138)

The incomplete elliptic integral of the second kind is defined for −1 < ζ < 1 and

0 < k < 1 as:

E (ζ; k) =
∫ ζ

0

√
1 − k2w2

1 − w2 dw

=
∫ φ

0

√
1 − k2 sin2 θdθ := E (φ, k)

(139)

where sin φ = ζ with −π
2 < φ < π

2 . The complete elliptic integral of the second kind is

defined to be the value of the above integral in the limit ζ → 1, or equivalently φ → π
2 :

E (k) =
∫ 1

0

√
1 − k2w2

1 − w2 dw =
∫ π

2

0

√
1 − k2 sin2 θdθ (140)
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We note that the complete elliptic integral of the second kind has the following math-

ematical interpretation: given an ellipse with semi-major axis sa and semi-minor axis sb

(which yield a value of e =
√

1 − s2
b

s2
a

for the elliptic eccentricity), then the circumference of

the ellipse is given by 4aE (e). This fact is the namesake of elliptic integrals.

The complementary incomplete elliptic integrals of the first and second kind are respec-

tively defined for −1 < ζ < 1 and 0 < k < 1 to be:

F ′ (ζ; k) = F
(
ζ;

√
1 − k2

)
(141)

E ′ (ζ; k) = E
(
ζ;

√
1 − k2

)
(142)

while the complementary complete elliptic integrals of the fist and second kinds are respec-

tively defined for −1 < ζ < 1 and 0 < k < 1 to be:

K ′ (k) = K
(√

1 − k2
)

(143)

E ′ (k) = E
(√

1 − k2
)

(144)

The parameter
√

1 − k2 is sometimes called the complementary modulus.

We note that by means of analytic continuation, the domains of definition of the all of

the elliptic integrals can be extended to larger regions of C (in the case of complete elliptic

integrals) or C2 (in the case of incomplete elliptic integrals). For example, the elliptic

integrals of the second kind defined in Eq. 139, Eq. 140, Eq. 142, and Eq. 144 are analytic

in C or C2.

Elliptic integrals cannot be expressed in terms of elementary functions. However, they

can readily be calculated using tables [124] or softwares such as MATLAB [125] and Mathe-

matica [126]. In Fig. 34, we plot, for illustrative purposes, the four complete elliptic integrals

that were introduced in this appendix.

We finish this section by quoting an important result [127]:
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Figure 34 – Plots of the complete elliptic integrals defined in Eq. 138, Eq. 140, Eq. 143, and

Eq. 144, as a function of the elliptic modulus k.

Legendre’s relation: For any value of k ∈ ]0, 1[, one has:

[E ′ (k) − K ′ (k)] K (k) + K ′ (k) E (k) = π

2 (145)

After analytic continuation, Legendre’s relation still holds for values of k ∈ C where the

elliptic integrals appearing in Eq. 145 are defined.

Page VII



References

[1] J. Taylor, H. Guo, and J. Wang. Ab initio modeling of quantum transport properties

of molecular electronic devices. Physical Review B, 63(24):245407, 2001.

[2] A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis. A simple semiempirical short-

channel MOSFET current–voltage model continuous across all regions of operation

and employing only physical parameters. IEEE Transactions on Electron Devices,

56(8):1674–1680, 2009.

[3] L. Wei, O. Mysore, and D. Antoniadis. Virtual-source-based self-consistent current

and charge FET models: From ballistic to drift-diffusion velocity-saturation operation.

IEEE Transactions on Electron Devices, 59(5):1263–1271, 2012.

[4] M. S. Lundstrom and D. A. Antoniadis. Compact models and the physics of nanoscale

FETs. IEEE Transactions on Electron Devices, 61(2):225–233, 2014.

[5] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang.

Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5):372–377, 2014.

[6] F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo. Ballistic transport in monolayer black

phosphorus transistors. IEEE Transactions on Electron Devices, 61(11):3871–3876,

2014.

[7] F. Liu, Q. Shi, J. Wang, and H. Guo. Device performance simulations of multilayer

black phosphorus tunneling transistors. Applied Physics Letters, 107(20):203501, 2015.

[8] S. Bohloul, L. Zhang, K. Gong, and H. Guo. Theoretical impurity-limited carrier

mobility of monolayer black phosphorus. Applied Physics Letters, 108(3):033508, 2016.

[9] P. Drude. Zur elektronentheorie der metalle. Annalen der Physik, 306(3):566–613,

1900.

[10] P. Drude. Zur elektronentheorie der metalle; II. Teil. Galvanomagnetische und ther-

momagnetische effecte. Annalen der Physik, 308(11):369–402, 1900.

[11] G. D. Mahan. Many-particle physics. Springer Science & Business Media, 2013.

VIII



[12] H. Bruus and K. Flensberg. Many-body quantum theory in condensed matter physics:

an introduction. Oxford University Press, 2004.

[13] G. Gildenblat. Compact modeling: principles, techniques and applications. Springer

Science & Business Media, 2010.

[14] L. Nagel. SPICE (Simulation Program with Integrated Circuit Emphasis). https:

//embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm. Accessed on

2017-07-12.

[15] S. K. Saha. Compact models for integrated circuit design: conventional transistors and

beyond. CRC Press, 2016.

[16] C.-T. Sah. Characteristics of the metal-oxide-semiconductor transistors. IEEE Trans-

actions on Electron Devices, 11(7):324–345, 1964.

[17] J. Song, B. Yu, Y. Yuan, and Y. Taur. A review on compact modeling of multiple-gate

MOSFETs. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8):1858–

1869, 2009.

[18] D. E. E. Rodriguez and A. G. A. Bernal. Development of a bottom-up compact

model for Intel’s ® high-K 45 nm MOSFET. In IAENG Transactions on Engineering

Technologies, pages 123–134. Springer, 2013.

[19] Sentaurus Device User Guide Version D-2010.03. Synopsys Inc., Mountain View, CA,

USA, 2010.

[20] S. Reggiani, M. Valdinoci, L. Colalongo, and G. Baccarani. A unified analytical model

for bulk and surface mobility in Si n- and p-channel MOSFETs. In Proceeding of

the 29th European Solid-State Device Research Conference, volume 1, pages 240–243.

IEEE, 1999.

[21] S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker,

F. Illien, N. Felber, W. Fichtner, and L. Zullino. Electron and hole mobility in silicon

at large operating temperatures. I. Bulk mobility. IEEE Transactions on Electron

Devices, 49(3):490–499, 2002.

[22] M. E. Peskin and D. V. Schroeder. An introduction to quantum field theory. Westview

Press, 1995.

IX

https://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm


[23] A. Korzeniowski, J. L. Fry, D. E. Orr, and N. G. Fazleev. Feynman-kac path-integral

calculation of the ground-state energies of atoms. Physical Review Letters, 69(6):893,

1992.

[24] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,

136(3B):B864, 1964.

[25] W. Kohn and L. Sham. Quantum density oscillations in an inhomogeneous electron

gas. Physical Review, 137(6A):A1697, 1965.

[26] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation

effects. Physical Review, 140(4A):A1133, 1965.

[27] N. Ashcroft and N. Mermin. Solid state physics. Brooks Cole, 1976.

[28] S. Datta. Electronic transport in mesoscopic systems. Cambridge University Press,

1997.

[29] Euclid of Alexandria. Euclid’s elements. Oxyrhynchus Papyri, 300 BC.

[30] H. Haug and A.-P. Jauho. Quantum kinetics in transport and optics of semiconductors,

volume 2. Springer, 2008.

[31] L. D. Landau and E. M. Lifshitz. Course of theoretical physics, volume 5: Statistical

physics. Pergamon Press, 1969.

[32] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara,

S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara. Production of a

100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical

vapor deposition and transfer process. Applied Physics Letters, 102(2):023112, 2013.

[33] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,

I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films.

Science, 306(5696):666–669, 2004.

[34] P. R. Wallace. The band theory of graphite. Physical Review, 71(9):622, 1947.

[35] J.-C. Charlier, P. Eklund, J. Zhu, and A. Ferrari. Electron and phonon properties

of graphene: their relationship with carbon nanotubes. In Carbon nanotubes, pages

673–709. Springer, 2007.

X



[36] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials, 6(3):183–191,

2007.

[37] K. S. Novoselov, V. Fal’ko, L. Colombo, P. Gellert, M. Schwab, and K. Kim. A roadmap

for graphene. Nature, 490(7419):192–200, 2012.

[38] F. Schwierz. Graphene transistors. Nature Nanotechnology, 5(7):487–496, 2010.

[39] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie,

Y. R. Shen, and F. Wang. Direct observation of a widely tunable bandgap in bilayer

graphene. Nature, 459(7248):820, 2009.

[40] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray.

Epitaxial growth of a silicene sheet. Applied Physics Letters, 97(22):223109, 2010.

[41] M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a novel

two-dimensional germanium allotrope akin to graphene and silicene. New Journal of

Physics, 16(9):095002, 2014.

[42] Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo, Y. Wang, M. Ye, J. Yang, J. Shi, and

J. Lu. Tunable band gap and doping type in silicene by surface adsorption: towards

tunneling transistors. Nanoscale, 6(13):7609–7618, 2014.

[43] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz. Atomically thin MoS2: a new

direct-gap semiconductor. Physical Review Letters, 105(13):136805, 2010.

[44] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer

MoS2 transistors. Nature Nanotechnology, 6(3):147–150, 2011.

[45] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn,

G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey. MoS2 transistors

with 1-nanometer gate lengths. Science, 354(6308):99–102, 2016.

[46] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey. High-

performance single layered WSe2 p-FETs with chemically doped contacts. Nano Let-

ters, 12(7):3788–3792, 2012.

[47] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong,

and T. Palacios. Integrated circuits based on bilayer MoS2 transistors. Nano Letters,

12(9):4674–4680, 2012.

XI



[48] M. S. Fuhrer and J. Hone. Measurement of mobility in dual-gated MoS2 transistors.

Nature Nanotechnology, 8(3):146–147, 2013.

[49] S. P. Koenig, R. A. Doganov, H. Schmidt, A. Castro Neto, and B. Ozyilmaz. Electric

field effect in ultrathin black phosphorus. Applied Physics Letters, 104(10):103106,

2014.

[50] Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang,

X.-F. Yu, and P. K. Chu. From black phosphorus to phosphorene: basic solvent

exfoliation, evolution of Raman scattering, and applications to ultrafast photonics.

Advanced Functional Materials, 25(45):6996–7002, 2015.

[51] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. C. Neto. Phosphorene:

from theory to applications. Nature Reviews Materials, 1:16061, 2016.

[52] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and D. Y. Peide. Phosphorene:

an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4):4033–4041,

2014.

[53] X. Chen, Y. Wu, Z. Wu, Y. Han, S. Xu, L. Wang, W. Ye, T. Han, Y. He, Y. Cai, and

N. Wang. High-quality sandwiched black phosphorus heterostructure and its quantum

oscillations. Nature Communications, 6:7315, 2015.

[54] D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee. High-performance n-type black

phosphorus transistors with type control via thickness and contact-metal engineering.

Nature Communications, 6, 2015.

[55] D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee. Corrigendum: High-performance

n-type black phosphorus transistors with type control via thickness and contact-metal

engineering. Nature Communications, 7, 2016.

[56] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji. High-mobility transport anisotropy

and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 2014.

[57] F. Xia, H. Wang, and Y. Jia. Rediscovering black phosphorus as an anisotropic layered

material for optoelectronics and electronics. Nature Communications, 5:4458, 2014.

[58] A. N. Rudenko and M. I. Katsnelson. Quasiparticle band structure and tight-binding

model for single-and bilayer black phosphorus. Physical Review B, 89(20):201408, 2014.

XII



[59] H. Ilatikhameneh, T. Ameen, B. Novakovic, Y. Tan, G. Klimeck, and R. Rahman.

Saving Moore’s law down to 1 nm channels with anisotropic effective mass. Scientific

Reports, 6, 2016.

[60] Q. Wei and X. Peng. Superior mechanical flexibility of phosphorene and few-layer

black phosphorus. Applied Physics Letters, 104(25):251915, 2014.

[61] G. Wang, G. Loh, R. Pandey, and S. P. Karna. Out-of-plane structural flexibility of

phosphorene. Nanotechnology, 27(5):055701, 2015.

[62] F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang, and H. Guo. Negative capacitance

transistors with monolayer black phosphorus. npj Quantum Materials, 1:16004, 2016.

[63] A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L.

Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel. Photooxidation

and quantum confinement effects in exfoliated black phosphorus. Nature Materials,

14(8):826, 2015.

[64] L. Hedin. New method for calculating the one-particle Green’s function with applica-

tion to the electron-gas problem. Physical Review, 139(3A):A796, 1965.

[65] H. Kroemer. Quasi-electric fields and band offsets: Teaching electrons new tricks.

International Journal of Modern Physics B, 16(05):677–697, 2002.

[66] Y. Tsividis and C. McAndrew. Operation and modeling of the MOS transistor. Oxford

University Press, 2011.

[67] S. Hofstein and F. Heiman. The silicon insulated-gate field-effect transistor. Proceedings

of the IEEE, 51(9):1190–1202, 1963.

[68] P. Y. Yu and M. Cardona. Fundamentals of semiconductors: Physics and materials

properties. Springer, 2010.

[69] C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta. A review of some charge

transport properties of silicon. Solid-State Electronics, 20(2):77–89, 1977.

[70] D. Frank, S. Laux, and M. Fischetti. Monte Carlo simulation of a 30 nm dual-gate

MOSFET: How short can Si go? IEDM Technical Digest, 553, 1992.

[71] K. Natori. Ballistic metal-oxide-semiconductor field effect transistor. Journal of Ap-

plied Physics, 76(8):4879–4890, 1994.

XIII



[72] M. M. Tai. A mathematical model for the determination of total area under glucose

tolerance and other metabolic curves. Diabetes Care, 17(2):152–154, 1994.

[73] J. H. Davies. The physics of low-dimensional semiconductors: An introduction. Cam-

bridge University Press, 1997.

[74] A. Rahman and M. S. Lundstrom. A compact scattering model for the nanoscale

double-gate MOSFET. IEEE Transactions on Electron Devices, 49(3):481–489, 2002.

[75] R. Venugopal, Z. Ren, and M. S. Lundstrom. Simulating quantum transport in

nanoscale MOSFETs: Ballistic hole transport, subband engineering and boundary

conditions. IEEE Transactions on Nanotechnology, 2(3):135–143, 2003.

[76] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom. Theory of ballistic nanotransis-

tors. IEEE Transactions on Electron Devices, 50(9):1853–1864, 2003.

[77] J.-P. Colinge and C. A. Colinge. Physics of semiconductor devices. Springer Science

& Business Media, 2005.

[78] A. Kastalsky and M. Shur. Conductance of small semiconductor devices. Solid State

Communications, 39(6):715–718, 1981.

[79] M. S. Shur. Low ballistic mobility in submicron HEMTs. IEEE Electron Device Letters,

23(9):511–513, 2002.

[80] J. Wang and M. Lundstrom. Ballistic transport in high electron mobility transistors.

IEEE Transactions on Electron Devices, 50(7):1604–1609, 2003.

[81] J. C. Maxwell. A treatise on electricity and magnetism, volume 1. Clarendon press,

1881.

[82] J. Thomson. Notes on recent researches in electricity and magnetism. Mercury,

8(10):18, 1893.

[83] A. E. H. Love. Some electrostatic distributions in two dimensions. Proceedings of the

London Mathematical Society, 2(1):337–369, 1924.

[84] H. B. Palmer. The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel

transformation. Electrical Engineering, 56(3):363–368, 1937.

[85] D. J. Griffiths. Introduction to electrodynamics. Pearson, 2005.

XIV



[86] A. Bansal, B. C. Paul, and K. Roy. An analytical fringe capacitance model for inter-

connects using conformal mapping. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 25(12):2765–2774, 2006.

[87] A. Haque and M. Z. Kauser. A comparison of wave-function penetration effects on gate

capacitance in deep submicron n- and p-MOSFETs. IEEE Transactions on Electron

Devices, 49(9):1580–1587, 2002.

[88] I.-H. Tan, G. Snider, L. Chang, and E. Hu. A self-consistent solution of Schrödinger-

Poisson equations using a nonuniform mesh. Journal of Applied Physics, 68(8):4071–

4076, 1990.

[89] S. Mudanai, L. F. Register, A. F. Tasch, and S. K. Banerjee. Understanding the effects

of wave function penetration on the inversion layer capacitance of n-MOSFETs. IEEE

Electron Device Letters, 22(3):145–147, 2001.

[90] S. Luryi. Quantum capacitance devices. Applied Physics Letters, 52(6):501–503, 1988.

[91] D. J. Griffiths. Introduction to quantum mechanics. Cambridge University Press, 2016.

[92] J. Xia, F. Chen, J. Li, and N. Tao. Measurement of the quantum capacitance of

graphene. Nature Nanotechnology, 4(8):505–509, 2009.

[93] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue.

A review of recent MOSFET threshold voltage extraction methods. Microelectronics

Reliability, 42(4):583–596, 2002.

[94] D. K. Schroder. Semiconductor material and device characterization. John Wiley &

Sons, 2006.

[95] M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, and M. Hirose.

Physically-based threshold voltage determination for MOSFETs of all gate lengths.

IEEE Transactions on Electron Devices, 46(7):1429–1434, 1999.

[96] H. Haddara. Characterization methods for submicron MOSFETs, volume 352. Springer

Science & Business Media, 2012.

[97] H.-S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth. Modeling of transcon-

ductance degradation and extraction of threshold voltage in thin oxide MOSFETs.

Solid-State Electronics, 30(9):953–968, 1987.

XV



[98] K. Aoyama. A method for extracting the threshold voltage of MOSFETs based on

current components. In Simulation of semiconductor devices and processes, pages

118–121. Springer, 1995.

[99] P. Karlsson and K. Jeppson. An efficient method for determining threshold voltage,

series resistance and effective geometry of MOS transistors. IEEE Transactions on

Semiconductor Manufacturing, 9(2):215–222, 1996.

[100] G. Merckel and A. Rolland. A compact CAD model for amorphous silicon thin film

transistors simulation. I. DC analysis. Solid-State Electronics, 39(8):1231–1239, 1996.

[101] G. Merckel and A. Rolland. A compact CAD model for amorphous silicon thin film

transistors simulation. II. Transient non-quasi-static analysis. Solid-State Electronics,

39(8):1241–1245, 1996.

[102] A. Ortiz-Conde, E. G. Fernandes, J. Liou, M. R. Hassan, F. Garcia-Sanchez,

G. De Mercato, and W. Wong. A new approach to extract the threshold voltage

of MOSFETs. IEEE Transactions on Electron Devices, 44(9):1523–1528, 1997.

[103] S. M. Sze and K. K. Ng. Physics of semiconductor devices. John Wiley & Sons, 2006.

[104] K. P. Cheung. On the 60 mV/dec at 300 K limit for MOSFET subthreshold swing. In

International Symposium on VLSI Technology Systems and Applications, pages 72–73.

IEEE, 2010.

[105] M. Miura-Mattausch, H. Ueno, M. Tanaka, H. Mattausch, S. Kumashiro, T. Yam-

aguchi, K. Yamashita, and N. Nakayama. HiSIM: a MOSFET model for circuit simu-

lation connecting circuit performance with technology. In International IEDM Electron

Devices Meeting, pages 109–112. IEEE, 2002.

[106] G. E. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82–85, 1998.

[107] T. N. Theis and P. M. Solomon. In quest of the “next switch”: prospects for greatly

reduced power dissipation in a successor to the silicon field-effect transistor. Proceedings

of the IEEE, 98(12):2005–2014, 2010.

[108] A. M. Ionescu and H. Riel. Tunnel field-effect transistors as energy-efficient electronic

switches. Nature, 479(7373):329–337, 2011.

XVI



[109] J. Appenzeller, Y. Lin, J. Knoch, and P. Avouris. Band-to-band tunneling in carbon

nanotube field-effect transistors. Physical Review Letters, 93(19):196805, 2004.

[110] C. Qiu, F. Liu, M. Xiao, B. Deng, L. Xu, Z. Zhang, J. Wang, H. Guo, H. Peng, and

L. Peng. Sub-60 mV/dec carbon nanotube field-effect transistor with a height-tunable

Schottky barrier at source. 2017.

[111] F. Liu, C. Qiu, Z. Zhang, L. Peng, J. Wang, and H. Guo. Dirac electrons at the source:

breaking the 60 mV/dec switching limit. 2017.

[112] L. Matthes, O. Pulci, and F. Bechstedt. Massive Dirac quasiparticles in the optical ab-

sorbance of graphene, silicene, germanene, and tinene. Journal of Physics: Condensed

Matter, 25(39):395305, 2013.

[113] Y. Zhu, L. Liu, and H. Guo. Quantum transport theory with nonequilibrium coherent

potentials. Physical Review B, 88(20):205415, 2013.

[114] R. Dingle. The Fermi-Dirac integrals. Applied Scientific Research, 6(1):225–239, 1956.

[115] J. Blakemore. Approximations for Fermi-Dirac integrals, especially the function

F 1
2

(η) used to describe electron density in a semiconductor. Solid-State Electronics,

25(11):1067–1076, 1982.

[116] D. Bednarczyk and J. Bednarczyk. The approximation of the Fermi-Dirac integral

F 1
2

(η). Physics Letters A, 64(4):409–410, 1978.

[117] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan. An analytical approximation for

the Fermi-Dirac integral F 3
2

(η). Solid-State Electronics, 24(10):981–982, 1981.

[118] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan. A generalized approximation of

the Fermi-Dirac integrals. Journal of Applied Physics, 54(5):2850–2851, 1983.

[119] P. Van Halen and D. Pulfrey. Accurate, short series approximations to Fermi-Dirac

integrals of order −1
2 , 1

2 , 1, 3
2 , 2, 5

2 , 3, and 7
2 . Journal of Applied Physics, 57(12):5271–

5274, 1985.

[120] P. Van Halen and D. Pulfrey. Erratum: Accurate, short series approximations to

Fermi-Dirac integrals of order −1
2 , 1

2 , 1, 3
2 , 2, 5

2 , 3, and 7
2 . Journal of Applied Physics,

59(6):2264–2265, 1986.

XVII



[121] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes:

The art of scientific computing. Cambridge University Press, 2007.

[122] J. McDougall and E. C. Stoner. The computation of Fermi-Dirac functions. Philosoph-

ical Transactions of the Royal Society of London. Series A. Mathematical and Physical

Sciences, 237(773):67–104, 1938.

[123] E. M. Stein and R. Shakarchi. Princeton lectures in analysis. II. Complex analysis.

Princeton University Press, 2003.

[124] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig. Handbook of math-

ematics. Springer, 2015.

[125] MATLAB version R2017a. The MathWorks Inc., Natick, MA, 2017.

[126] Mathematica version 11.1. Wolfram Research Inc., Champaign, IL, 2017.

[127] P. Duren. The Legendre relation for elliptic integrals. In Paul Halmos: Celebrating 50

years of mathematics, volume 50, pages 305–315. Springer, 1991.

XVIII


	Introduction
	Compact modeling
	First-principles simulations
	Two-dimensional semiconductors
	Goals

	From the Diffusive to the Ballistic Limit
	Operating principles of MOSFETs
	Field effect
	Band diagrams
	Current-voltage characteristics
	Modeling the current-voltage characteristics of MOSFETs

	Diffusive transport
	Ballistic transport
	Landauer-Büttiker approach to ballistic transport
	Capacitor model

	Mobility
	Relationship between mobility and scattering time
	Matthiessen's rule
	Ballistic mobility


	Important Parameters for MOSFET Modeling
	Gate capacitance
	Fringing fields
	Wavefunction penetration
	Quantum capacitance

	Threshold voltage
	Numerical methods
	Physics-driven methods
	Comparison of the methods and discussion

	Subthreshold swing
	Definition and theoretical value
	Computation from transfer characteristics

	Drain-induced barrier lowering
	Lead control parameters

	Compact Modeling
	Landauer-Büttiker model
	Capacitor model
	Virtual source model

	Conclusion
	Summary
	Future research direction

	Complete Fermi-Dirac Integrals
	Conformal Mappings and Schwarz-Christoffel Transformations
	Incomplete and Complete Elliptic Integrals of the First and Second Kinds



