
A PoUey Based Network Configuration Frainework

Zhifeng Xiao

School of Computer Science

McGill University, Montreal

June, 2002

A Thesis Submitted to the Faculty of Graduate Studies and Research

in Partial Fulfillment of the Requirements of

the Degree of Master of Science

Copyright© 2002 by Zhifeng Xiao

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 0-612-85837-5
Our file Notre référence
ISBN: 0-612-85837-5

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT

Networks and their services have been growing rapidly in recent years, so has the

complexity of configuring the network operations. fu order to manage the rapidly

expanding networks, new management protocols are thus needed to change the network

management from configuration of individual devices to automation of the whole

network. SNMPCONF, a policy-based configuration with SNMP protocol, is proposed

by IETF to meet this requirement.

SNMPCONF is suggested to configure networks with a policy MIB (Management

fuformation Base). However, deploying this protocol in existing network devices needs

more work, because the policy MIB defined by SNMPCONF is not implemented now in

the present network and no configuration MIB defined. Even if the configuration MIB

and policy MIB implemented by vendors in future, some existing devices may not be

upgraded to support these MIB for their hardware limitation (e.g., memory limit).

Another problem is found in the communication between a SNMP supported network and

the SNMP unsupported networks (e.g. telecommunication network where TU is used in

North America). In this study, CU and TLl are used to help solving these problems.

Based on Modular SNMP from University of Quebec at Montreal, a lAVA framework to

deploy SNMPCONF with this approach is implemented and tested on a network built

with Cisco routers (Cisco lOS 12.0, routers ranged from Catalyst 2600 to 2900). The

preliminary work shows the SNMPCONF can be implemented by wrapping CU

commands as accessory functions in policy language without configuration MID. As

shown in this work, another advantage of this approach is that policy execution is atomic

and persistent.

l

RESUME

De nos Jours, les réseaux et leurs services ainsi que la complexité de ses

opérations sont en train d'agrandir rapidement. Afin de gérer les réseaux agrandissants,

des nouveaux protocoles de gestion seront nécessaries pour changer le gestion du réseau

à une automation du réseau entier au lieu d'une configuration des dispositifs particuliers.

SNMPCONF, un type de configuration à base de règles et contient le protocole SNMP,

est présenté par le groupe de travail IETF pour satisfaire à ces exigences.

SNMPCONF est supposé de configurer des réseaux avec la base de données MIB

(Base d'informations de gestion). Cependant, déployer ce protocole dans les unités des

réseaux nécessitent plus de travail, car la base de données MIB définie par SNMPCONF

n'est pas mise en oeuvre dans le présent réseau et aucune configuration de MIB n'est

définie. Même si la configuration et la base de données MIB sont appliquées par des

marchands à l'avenir, quelques dispositifs ne peuvent etre implémentés pour appuyer ces

MIB à cause de leur limitation matérielle (e.g, limitation de mémoire). On trouve d'autre

problème dans la communication entre un réseau SNMP soutenu et les réseaux SNMP

non soutenus (c.g, le réseau de télécommunications où TU est utilisé en Amérique du

Nord). Dans cette étude, CU ct TU sont utilisés pour résoudre ces problèmes. Basé sur

le Modulaire SNMP de l'Université du Québec à Montréal, avec cette démarche, la

structure de JAVA est implémentée et éprouvée (expérimenter) sur un réseau développé

avec des routeurs Cisco (Cisco lOS 12.0, des routeurs qui variaient de Catalyst 2600 à

2900) pour déployer SNMPCONF. Le travail préliminaire nous explique que

SNMPCONF peut être implémenté au moyen d'un retour automatique aux commandes

CU comme des richesses fonctionnelles dans la langue des règles sans la configuration

II

MIB. Comme on a démontré dans ce travail, un autre avantage dans cette démarche est

que l'exécution de cette base de données est atomique et persistante.

III

Acknowledgements

This work could not be done without supervision and encouragement of Professor

Omar Cherkaoui at University of Quebec at Montreal and Professor Gerald Ratzer and

Professor Tim Merrett at McGill University. The author would like to express his deep

gratitude to his supervisors. People in Teleinfo Lab of University of Quebec at Montreal

offered much help to the author during this work. l would like to thank Ayoub Cherkaoui

for discussing Modular SNMP and a special example of a SNMP agent using Modular

SNMP. Thanks also to Jianlong Zuo, Tian Lin, Francois Bedard, Alan Sarrazin for their

helps and discussions.

IV

Con.ten.ts

Acknowledgements

4.3 PoEcy -basedNetwork Configuration Framework

ABSTRACT

RESUME

1.1 Element ofNetwork Management System

1.2 Policy-based Network Management

Cbapter 2 Simple Network Management Protocol (SNMP)

2.1 The SNMP protocol

2.2 SNMP Management Information

2.3 Evolution of SNMP

2.4 Implementation

Chapter 3 Policy-based Network Configuration with SNMP

3.1 Policy Language

3.2 Policy MIB

3.3 Policy Execution

3.4 Reference Models

Chapter 4 A policy-based Network Configuration Framework

4.1 Problems with Deploying SNMPCONF in Existent Network

4.2 CL! and TL1

1

II

IV

1

2

5

11

13

15

17

19

22

22

25

31

33

38

38

39

41

IntroductionCbapter 1

v

Chapter:5 Implementation of the PoHcy-based Network Configuration

Framework 48

5.1 Policy Interpreter 48

5.2 Wrapping CU Commands 52

5.3 Modification of Modular SNMP 56

Chapter 6 Managing Network by the PoHcy Framework and SNMP 58

6.1 A Simple Campus Network and Requirements for Configuration 58

6.2 CU Configuration 60

6.3 SNMP Approach 63

6.4 SNMPCONF Approach 67

6.5 Present Framework 71

Chapter 7 Discussion 75

7.1 Advantages and Disadvantages ofthe Framework 75

7.2 Cornparison with MIB Approach 77

7.3 Other Models 79

Chapter 8 Conclusions 83

References 84

Appendix A MIB-defined RFC 90

Appendix B JavaCC JJtree Spedation for the Policy Language 95

Appendix C Glossary 112

VI

List of Figures

Figure 1.1 Elements ofnetwork management system 4

Figure 1.2 The functional components ofpolicy framework 8

Figure 2.1 A simple SNMP model 12

Figure 2.2 The SNMP v3 message format 14

Figure 2.3 übject Identifiers in the Management Information Base 16

Figure 2.4 Application model of Modular SNMP framework 21

Figure 2.5 The structure ofModular SNMP framework 21

Figure 3.1 The four abstract levels ofpolicies for building management 37

Figure 4.1 The process to configure devices using CU commands 42

Figure 4.2 Wrapping CU commands into accessor function. 43

Figure 4.3 Implementation ofpolicy-based SNMP configuration 44

Figure 4.4 The structure of a compiler 46

Figure 4.5 Structure of the policy interpreter 47

Figure 5.1 The hierarchy ofthe policy interpreter 52

Figure 5.2 New structure of Modular SNMP framework 57

Figure 6.1 Management requirements for a campus network 59

Figure 6.2 A campus network configured by CU commands 62

Figure 6.3 A campus network managed by SNMPCONF 70

Figure 6.4 Manage student service sub-network using policy based SNMP 73

Figure 7.1 The house light control example 80

Figure 7.2. Network Management with SNMP and LDAP 82

VII

List of Tables

Table 3.1 Policy language definition 23

Table 3.2 The policy table for campus building management 27

Table 3.3 The policy code table for the campus building management 28

Table 3.4 A hypothetical air conditioner MIB 28

Table 3.5 A hypotheticallight controller MIB 28

Table 6.1 The private Access List MIB for Router 3 65

Table 6.2 The private timeJange MIB for Router 3 66

Table 6.3 The private network Interface MIB for Router3 66

Table 6.4 The policy table for the campus building management 68

Table 6.5 The policy code table for the campus building management 68

Table 6.6 The policy schedule table for the campus building management 69

VIII

Chapter 1

Introduction

Network management is used to monitor, control, and plan the resources and

components of network (Mellquist, 1997). A functional breakdown of requirements is

best defined by the international organization for Standardization (ISO). According to

ISO, there are five different kinds of management, including fauIt management,

accounting management, configuration and nammg management, performance

management, and security management (Stallings, 1996):

FauU management, which involves the detection, isolation, and correction of abnormal

operations.

Accounting management, which deals with issues such as billing, delivery, and logging

of accounting events and modeling of accountable resources.

Configuration management, which is concerned with configuration of network and

computational resources, software resources and components of distributed applications.

Performance management, which evaluates the behavior of managed objects and

effectiveness of communication activities

Security management, which manages issues such as authentication, access, control,

and partial trust relationships.

Among these management activities, configuration is one of the most important

parts of the network management. Due to the increasing demands for telecommunication

and the emerging of e-business, manually configuring network will soon become an

impossible task for network administrators. Therefore, new network management

applications are required ta deliver fast-responding and rich-automated functionalities

and easily accommodate new servIces. In this chapter, basic network management

concept will be introduced first and then the new policy based network management

paradigm will be discussed.

1.1 Element of Network Management System

A network management system is a collection of tools for network monitoring

and control. It has two integrated parts: an operator interface with a powerful but user­

friendly set of commands for perforrning most or an network management tasks and a

minimal amount of separate equipments. Most of the hardware and software required for

network management is incorporated into the existing user equipment (Stallings, 1996).

Network management can be implemented by utilizing various architectures

based on the network types and sizes. Two fundamental architectures, centralized

management and distributed management, can be used to achieve the same purpose

(Stallings, 1996). The centralized management is appropriate in the management of

small to medium size networks that are not geographically distributed. In this kind

system, all the devices are under the command of a central network manager. The

network manager must reside at the same point as these devices it managed. In oIder to

manage and monitor the networks actively, the manager must poU or query network

device found within each network. This produces management traffie on the network

connections.

2

In contrast to the centralized model, a distributed model distributes information

and control 50 that each network or geographically distributed site is responsible for

itself. In a distributed model, management is pushed down to its lowest level a!).d mid­

level managers are responsible for their own domain of management. Important

information pertinent to the entire network is forwarded to a manager of managers. This

model scales weil for networks that are large in size.

In the centralized management, Manager/Agent paradigm is often employed.

Figure 1.1 presents the detail architecture (manager/agent) of a network management

system. In this kind of system, at least one node is designed as the network control host,

or manager. Other parts of the network management system are generally referred as

agents. Each network node contains a collection of software devoted to the network

management task, called a Network Management Entity (NME). The network

management entity is responsible to collect and store information about communications

and network-related activities and respond to commands from the network control center.

The communication software handles the application-level network communication

between the manager and the agents.

In addition to NME, the manager includes a collection of software called the

network management application. The network management application responds to user

commands by displaying information and/or by issuing commands to network

management entities through the network. This communication is carried out using an

application-level network management protocol that employs the communications

architecture in the same fashion as any other distributed application.

3

Network Control Host (manager)

Network Management Application

Network Application
Management
Entity

Communication
Software

Operating
System

Server (agent)

Network Application
Management
Entity

Communication
Software

Operating System

Network

Figure 1.1 Elements of network management system

(modified from Stalling, 1996)(See text for details).

ln Figure 1.1, it is assumed that an managers and agents share a common network

management software. However, this assumption may not be practical or possible. For

example, a network may consist of sorne aIder systems, which do not support the CUITent

network management standards but are too expensive ta be replaced immediate1y. To

handle such cases, it is common to have one of the agents in the server as a proxy for one

or more other nodes. When an agent perforrns in a proxy role, it acts on behalf of one or

more other nodes. A network manager who wants to communicate with these nodes

4

should contact a proxy agent directly. Then, the proxy agent translates the management

protocol and uses an appropriate protocol to communicate with the target system.

Responses from the target system back to the proxy are simiJarly translated and passed on

to the manager.

The Manager/Agent paradigm is extensively deployed in the present network

management and proved to be very practical. For example, the widely supported SNMP

protocol, which will be discussed later, employs the manager/agent paradigm. However,

as pointed out by Stevens and Weiss (1999), most of present network management

systems only enable the administrator to configure individual network device remotely

and cannot actually manage networks at the network level due to the limitation of the

protocols or the lack of an infrastructure which wins extensive vendor supports.

1.2 Policy~based Network Management

Policy-based network management paradigm is aimed at managing the networks

as whole rather than the individual devices and is proposed to fulfill the new

requirements due to the increasing network services (Erfani et al., 1999). Policy-based

management is not an entirely new concept. With packet-filtering capability, firewal1s

and switches in effect implement the policy. Configuring specifie default routers and

establishing static routes for special circumstance are examples of simple policy

implementation (Stevens and Weiss, 1999a).

The purpose of a policy system is to manage and control a network as a whole, so

that network operations conform to the business goals of the organization that operates

5

the network. "Ultimately, achieving such control requires altering the behavior of the

individual entities that comprise the network. The policy framework represents an

alternative approach to controlling the operational characteristics of an IF network.

Unlike traditional network management approaches, the systems developed within the

policy framework implement policy by centralizing the storage of prescribed roles

instead of implementing policy by centralizing control functions into a single software

application. A policy system devised under this framework shifts the focus from

configuring individual devices to setting policy for the network in aggregate, and

controlling device behavior through network policy" (Stevens and Weiss, 1999a).

Policy-based network management is the practice of applying management

operations globaUy on aU managed network devices that share certain attributes.

"Policies always express in a notion of:

if (an object has certain characteristics) then (apply operation to that object)

Or in the following normal fonn:

if (policyFilter) then (policyAction)

"A policy filter is a piece ofprogram code which results in a boolean to determine

whether or not an network device (object) is a member of a special set upon which an

action is to be perfonned. A policy action is an operation performed on an object or a set

of objects " (Waldbusser et al., 2001). A policy filter and a policy action combined fonn

a policy rule.

A policy system may be broken down into the following functional elements

(Stevens et al., 1999b, see Figure 1.2):

6

1) A policy management too1, to enable an entity (e.g.: person, application) to

define and update policy roles and optionally, monitor their deployment, for example, a

graphical or command line/script interface.

2) A policy repository, for persistent storage and retrieve of policy roles.

3) A policy consumer, which is a convenient grouping of functions, is responsible

for acquiring policy roles, deploying policy mIes, and optionally translating policy mies

into a form useable by policy targets.

4) A policy target, which is a functional element whose behavior is dictated by

policy roles and carries out the actions indicated by the policy mIes.

Figure 1.2 is very similar to Figure 1.1 in terms of the architecture. If we take

policy specification as policy manger and the policy target as policy agent, then the

policy based network management system faH into the manager/agent paradigm. The

only difference might be the management information which is transported between the

agents and the manager. In case of policy system, most of the management information

would be the policies.

Recently, a lot of work has been done on the research of policy based network

management recently. The work of Dr. Sloman and his group in Imperial College

provided a framework for managing large-scale distributed systems. They used domains

as a means of partitioning responsibility, which provides a flexible means of introducing

boundaries of management responsibility and a framework for specifying management

policy. They have developed notations and tools support for specifying policies, and

analyzing them for conflicts within a role-based framework. They have also developed

techniques for specifying interaction and coordination between different roles and are

7

PoHcy Specifications

Policy Consumer

1

1

Policy Repository
(Directory Server,
Database, etc.)

,,,,,,
1,,,,

--------------------~

1

i-----------1r-------------------------~
1

: Policy Management Tool
1
1,,,,,,,,,,,,,,,,
1,,,,,,,,,,,,,
1 -----------

Policy target

Figure 1.2 The functional eomponents of a poliey framework

A policy framework consists of a policy management tool, a poliey repository,

and poliey consumers (Modified from Stevens et al., 1999b, see text for details).

working on tools and techniques for refining high level goals into implementable policies

(Marriott and Sloman, 1996; Lupu and Sloman, 1997; Sloman and Lupu 1999; Moffet

and Lupu, 1999)

Stevens and Weiss (l999a) discussed many aspects of policy-based management

for IP networks. They suggested that an infrastructure should be built in order to really

implement policy-based management. However, to build an infrastructure will be a very

difficult task given so many different network vendors in the world. The best and fastest

way to implement poliey-based network management is to combine this poliey idea with

8

the present network management protocol so that we can take advantage of policy-based

management now and develop new protocols or infrastmcture later. Three such

examples are: policy-based management with SNMP (Mahon et a1., 1999), policy-based

load management (Hossain et aL, 1999), and a policy-framework with integrated and

differentiated network (Rajan et aL, 1999).

These works have built a profound basis for studying policy based network

management. Most of these agreed that a common infrastmcture is needed to build a

policy based management protocol and SNMP was suggested to be used as such

infrastmcture. Due to its popular and broad vendor supports, SNMP was chosen by IETF

as the basic infrastmcture to build a new policy based network configuration system.

However, sorne problems have to be solved before this protocol can be implemented.

One problem with this approach is that the existing network devices do not support the

new policy MIE and there is no configuration MIE available now. Another problem is

how to communicate between the policy supported network and policy unsupported

network such as telecommunication network where TLl is stiU dominated (Lumos,

2001).

The object of the present study is to explore a new approach which can be used to

support the deploying of policy based configuration in the existing network and make

policy execution atomic. The thesis consists of eight chapters. Chapter 1, which is the

present chapter, reviews the progress in network management. Chapter 2 introduces

SNMP protocols. Chapter 3 presents policy - based network management with SNMP

(SNMPCONF). Chapter 4 shows the approach proposed by this study and its

implementation. Chapter 5 presents details of the present implementation. Chapter 6

9

shows how to use CL!, SNMP, and SNMPCONF to configure networks by an example

network. Chapter 7 diseuses the advantages of the present implementation. Finally,

Chapter 8 summarizes the results from the present study.

10

Chapter 2

Simple Network Management Protocol (SNMP)

SNMP is a management protocol originally designed for the management of

TCP/IP capable data communication network devices. It uses the manager/agent

paradigm. The guiding principle for its design was simplicity, to ensure agent

implementations could easily be made available.

The SNMP protocol is defined by a series of RFCs. The overall architecture of

SNMP framework is described in RFC 2571 (Harrington, Presuhn, and Wijnen, 1999).

As discussed by Stevens (1990, pp359~36l) and Waldbusser et al. (2001), the SNMP

protocol consists ofthree foundational specifications. These three foundations are

1) A Management Information Base (MID) to describe the network environment. The

information defined in the MID is accessible and changeable to the manager. A lot of

MIDs that can be used for different purposes have been defined since SNMP protocol

defined (see Appendix B for details)

2) A set of common structure and an identification scheme used to reference the

variables in the MID, which is called Structure of Management Information (SMI).

The first version is specified in RFC 1155 (Rose and McCloghrie, 1990). The second

version, called SMIv2, is described in STD 58, RFC 2578, 2579, and 2580

(McCloghrie et al., 1999a, 1999b, 1999c).

11

3) Message protocols for transferring management information between the manager

and the devices. The first version of the SNMP message protocol is called SNMPv1

and described in STD 15, RFC 1157(Case et al., 1990). A second version of the

SNMP message protocol is called SNMPv2c and described in RFC 1901 and RFC

1906 (Case et al., 1996a, b). The third version is called SNMPv3 and described in

RFC 1906 (Case et al., 1996b), RFC 2572 (Case et a1., 1999), and RFC 2574

(Blumenthal and Wijnen, 1999).

Manager Agent

Agent process
.r

Manager Process >t

1---

SNMP etc.

SNMP '--'

UDP
1 Central MIE

1
UDP

IP IP

Figure 2.1 A simple SNMP model

Figure 2.1 shows that the SNMP protocol employs the Manager/agent paradigm

(Modified from Stallings, 1996,p79, Figure 4.1).

The simple SNMP model is sketched in Figure 2.1. As shown in Figure 2.1, the

communication between the manager and the agent is controlled by SNMP. SNMP is

12

implemented on the top of TCP/IF. Each manager process controls access to a central

MIB at the management station and provides an interface to the network manager. Each

agent process interprets the SNMP messages and controis the agent's MIB. The shaded

portion in the figure depicts the operational environment-that which is to be managed.

The unshaded portions provide support to the network management functions (Stallings,

1996, p78).

2.1 The SNMP protocol

SNMP generally uses UDP to transport information. However ifnecessary, TCP

might be used to prevent information loss. Two ports, 161 and 162, are reserved for

SNMP. The manager sends its request to the agent through port 161 and the agent sends

the traps to the manager through port 162. Therefore a SNMP system can be ron as both

manger and agent by using two different ports.

SNMPvl defines five types of messages: the get-request operator, the get-next­

request operator, the set-request-operator, the get-response operator, and the trap

operator. The first three messages are sent from the manager to the agent, and the last

two are from agent to the manager. (The first three will be referred as the GET, GET­

NEXT, and SET operator later). SNMPv2 added two new operators: get-bulk-request,

which is more efficient than get-next-request, and information-request, which offers a

communication between the manager and the manger.

The SNMP message format has been changed from SNMP vI to SNMP v3. The

SNMP v3 message contains fields for global data (such as SNMP version, the message

13

identifier, the maximum message size, the security model and the level of security), fields

for the security model information, and fields for naming scope (context identifier and

name) and finaUy the PDU (Figure 2.2). The SNMP version identifies the version of the

SNMP protocol in use. SNMP engines use the message identifier (MsgID) to coordinate

the processing of the message by different portion of the framework. Max Size is the

. maxim message size supported by the sender of the message. Multiple security models

may exist concurrently in the SNMP entity, the Security Model specified which security

model used. The context ID and Context ID defines the engine which realizes the

managed objects referenced. Finally, the PDU (Packet Data Unit) stores the message.

Header Data Security Scoped PDU data
Parameters

SNMP MsgID Max Flags Security (Model
Context 1 Context 1 PDU data

verSlOn Size Model Specifie) EngineID Name

Figure 2.2 SNMPv3 message format (modified from Cherkaoui et al., 1999)

SNMP version

MsgID

Max Size

defines which module will decode the packet.

message identifier, used to match a request with a response.

Maximum size of the response packet, sorne equipment may have

limited buffers and don't respond weIl to large responses.

Flags indicate if a response is expected and a privacy module is used.

Security Model used to dispatch the packet to the right security module.

Security Parameter security protocol agreement.

Context EngineID identifies a context.

Context Name identifies a context.

PDU data actual payload, requested variables or repaired values.

14

2.2 Management Information Base (MIB)

Each SNMP agent maintains a Management Information Base or Mill. When

receiving a query from the manager, the agent must check the Mill, obtain or set Mill,

and then send the requested information to the manager. The Mill is defined and

constructed in according with the Structure of Management Information (SM!) specified

in RFC 1155 (Rose and McCloghrie, 1990). The SMI identifies the data types that can be

used in the Mill and specifies how resources within the Mill are represented and named.

Each managed object in Mill has a unique identifier, called an Mill abject

Identifier (OID). To reference an MIB object, the object identifier must be used. For

every Mill object there exists an Mill definition that defines the managed object. The

definition covers a variety of attributes, including the object identifiers, the syntax type,

access permission, description, and instance information (Stevens, 1990, p365).

An object identifier is a data type specifying an authoritatively named object and

is represented by a sequence of integers separated by decimal points. These integers are

linked by a tree structure, which is similar to the DNS or a UNIX file system. At the top

of this tree, the object identifiers start from an unnamed root (Figure 2.3). Each node in

the tree is also given a textual name. For example, the name corresponding to the object

identifier 1.3.6.1.2.1 is iso.org.dod.internet.mgmt.mib. However, these textuaI names are

used for human readability only. In the PDU exchanged between the manager and

agents, the numeric object identifiers, instead oftextual names, are used.

15

root

enterprises(1)

private(4)

1

joint-iso-ccit(2)

tcp(6) udp(7)

ccit(O) J(l)
1Or)

dod(6)
, ···..············..·· ..·········..················l·····.. · .

Internet(I)... 1.3.6.1

direct~t~periment(3)
mib(l

~
interface(2) at(3) ip(4) icmp(5)isystem(l)

... Internet SMI

Figure 2.3 übject Identifiers in the Management Information Base

(Modified from Stevens, 1990)

As shown in Figure 2.3, the internet node has the object identifier value of 1.3.6.1.

This value serves as the prefix for the nodes at the next lower level of the tree. The SMI

document defines four nodes under the internet node:

directory: reserved for future use with OSI directory(X>500).

mgmt: used for object identified in IAB-approved documents.

experimental: used to identify objects used in Internet experiments.

private: used to identify objects defined unilaterally.

16

The mgmt subtree contains the definitions of MIBs that have been approved by the lAB.

At present, two versions of the MIB have been developed, MIB-l and MIE-2. The

second MIB is an extension of the first. Both are provided with the same object identifier

in the subtree since only one of the MIBs wouid be present in any configuration. In the

mean time, a set of special MIEs are defined for special purposes (see Appendix A for

more infomlatîon). In the private sub tree, the vendors can define their own MIBs under

the node Enterprise.

2.3 Evolution of SNMP

Although the network management as an idea has been around as long as

networks, the SNMP did not come to life untii 1980. The process actually began in 1987

at a gathering of networking leaders (StaUings, 1996; Simuneau, 1999). Since then, the

protocol has been improved in many aspects and evolved from SNMP vI to SNMP v3.

SNMP vI had two advantages over the other management protocols:

1) SNMP, its associated Structure of Management Information (SMI), and its

Management Information Base (MIB) are quite simple and therefore can be easiIy

and quickly implemented.

2) SNMP is based on the Simple Gateway Monitoring Protocol (SGMP), for which a

great deal of operational experience had been gained.

But the SNMP vI protocol has the following deficiencies:

1) Inefficient to transfer a large amount of management information

2) Lack of error status codes

17

3) Lack of security and privacy control. SNMPv1 has no capability to authenticate

the source of a management message or to prevent eavesdropping.

SNMPv2 addresses many of the deficiencies of SNMPv1. The key enhancements

to SNMP that are provided in SNMPv2 faIl into the foUowing categories:

1) Extended the Structure of Management information (SMI) ofSNMPv1

2) Added Manager to manager capability

3) Added two new protocol operations: get-bulk-request and information­

request.

Although the SNMP v2 work took a large step in the right direction, it failed to

meet the original design goals of the project. The most noticeable gap was in security

and administration.

SNMPv3 added the following administrative features:

1) Expanded the authentication service to include privaey.

2) Specified a View-Based Access Control Model (VACM) whieh adds granular

aeeess control to aU managed devices, providing that control down to the MID

objects level. This lets each SNMP agent enforce access policies.

3) The alternative User-based Seeurity Model (USM) offers user-specifie

authentication of individual SNMP packets. It supports message digest to verify

packet integrity. It provides timestamp verification to protect against replay

attacks. By using DES encryption, it protects management data from

eavesdropping.

18

4) Added unique name (snmpEgnineID) for each SNMP device. This he1ps with

packet authentication and mapping the re1ationships between agents.

5) Let managers update SNMP device configurations automatically using SNMP.

2.4 Implementation

There are many different implementations of the SNMP protocol, but few with

the object-oriented approach. One of them is SNMP++ by Mellquist (1997) from

Hewlett-Packard Company. SNMP++ was implemented using C++ and has been tested

on Windows, Linux, HPUX, and Solaris environment. The source code for SNMP++ can

be downloaded from http://rosegarden.extemal.hp.com/snmp++. However, one

drawback is that this API needs to be compiler according to the operating system because

ofC++.

Another one lS Modular SNMP from Universite du Quebec a Montreal

(Cherkaoui et al., 1998). Modular SNMP was implemented in Java and supports SNMP

vI and SNMP v3. The advantage of this implementation is that the users can select

different modules and put them together to form a SNMP tool. The users can even create

their own modules and build a new SNMP framework. The architecture of Modular

SNMP can be represented by Figure 2.4 and Figure 2.5. From Figure 2.4, on the top of

this framework is the class SnmpSessionManger. When applied this framework, users

must first declare and create an instance of SnmpSessionManger as:

SnmpSessionManager ssmanager = new SnmpSessionManagerO:

19

Then he/she can configure the manager through the SnmpSessionManger API by the

following steps:

//Adding the vI processing module

Ssmanager.Enablev] (true);

Adding the SNMP v3 Processing Module with the appropriate encryption and

authentication modules:

Ssmanager.Enablev3(true, USM,MD5,DES);

//Adding the VACM for the access control Ssmanager.EnableVACM(true);

Then start to ron the program by:

//starts the session manager
ssmanager.startO;

Once we have a reference of a SnmpSessionManager (let's call it ssmanager), we can

create as many of SnmpSession as we need.

//creating Sessions

SnmpSession session] = new SnmpSession(ssmanager);

SnmpSession session2 = new SnmpSession(ssmanager,(SnmpClient)this);

Then, we can open a session:

ssmanager. OpenSession(session]) ..

As soon as a seSSIOn is built, we can use SNMP commands such as Get, SET to

manipulate MIEs.

It is evident that Modular SNMP can be easily extended to support any new

protocol based on SNMP, because of its module design and its excellent Implementation.

20

Modular SNMP Engine

Figure 2.4 The application modei of Modular SNMP framework

ln this framework, applications will need a session manager to manage SNMP

sessions which process SNMP requests or responses thorough a SNMP engine.

SNMPVI
Message
Processing
Module

SNMP V3
Message
Processing
Module

Figure 2.5 The structure of Modular SNMP framework

Modular SNMP processes the SNMP messages using a Dispatcher class that

sends the message to SNMP vI or SNMP v3 Module depending on the module of the

messages.

21

Cbapter 3

Policy Based Configuration witb SNMP (SNMPCONF)

SNMP protocol was chosen as the basis to implement policy based network

configuration due to its popularity and simplicity. SNMPCONF work group ofIETF was

formed to propose new MIBs which will perform policy based network configuration

using SNMP protocol. Up to now, three internet drafts (Best current practice, MacFaden

et al., 2001; po1icy MIB, Waldbusser et al., 2001; and DifferServ MIB, Hazewinke1 et al.,

2001) were proposed and improved with the work of the group progressing. We will

discuss these drafts in detai1s in the following sections.

3.1. Policy Language

In policy MIB draft, Waldbusser et al. (2001) define ten policy tables to register

policy related information and a policy language. The policy language is fonnally

defined as a subset of ISO C, but only allows simple data types (array, string, and

integer), loop and conditional structure, and a set of predefined accessor functions. This

language does not support function definition.

The definition expressed in the EBNF form as shown in Table 3.1:

22

Table 3.1 Policy language definition (from Waldbusser et al., 2001)

digit 'a' 'b' 1

'A' 'B' 1

'\' , 1 '\'" 1
'\a' 1 ' \b' 1
, \r' 1 ,\t' 1

'\ ' oct_digit+ 1

Lexical Grammar

letter: , , 'a'
'g' 'h'
'n' '0'
'u' 'v'
'A' 'B'
'G' 'H'
'N' '0'
'U' 'V'

non zero: 'l' '6 ' '7 ' '8 ' 1 '9 '

'5 ' '6' '7'

'd' 'e' 'f'
'D' 'E' 'F'

'd' 'e' 'f'
'k' , l' 'm'
'r' 's' 't'
'y' 'z'
'E' 'F'
'K' 'L' 'M'
'R' 'S' 'T'
'Y' 'Z'

'4 '
'9 '

'4'

'5 '

1 c'
'C'

'b' 'c'
'i' , j ,

'p' 'q'
'w' 'x'
'c' 'D'
'l' 'J'
'P' 'Q'

'W' 'X'

'2 ' '3 '
'7 ' '8 '

'3 ' '4 '

'2 ' '3 '

'1 '
'6 '

'2 '

'1 '

'0 '
'5 '

oct_digit: '0'

digit:

non_quote: Any character in the UTF-S character set
except single quote (') 1 double quote ("),
backslash ('\') or newline.

c char: '" 1

string_literaI: '"' s char* '"'

s char: , , ,

char constant: , " c char '"

decimal constant: non_zero digit*

octal constant: '0' oct_digit*

hex constant: ('Ox' l 'OX') hex_digit+

integer_constant: decimal_constant 1 octal_constant hex constant

identifier: letter (letter 1 digit)*

Phrase Structure Grammar

-- Expressions

23

identifier 1 integer_constant 1 char_constant
string_literal l '(' expression ')'

primary_expr
postfix_expr
postfix_expr
postfix_expr
postfix_expr

'(' argument_expression_list?
'++'
'--'
, [, expression ,],

') ,

argument_expression_list:
assignment_expr
argument_expression_list ',' assignment_expr

unary_expr:

unary_op: '+' 1 ! 1 '++' , __ V

binary_expr:

binary_op:

unary_expr 1 binary_expr binary_op unary_expr

, Il' '&&' , l' ,A, , &' , ! = 1

'==1 '>=' ~<=f '> ' '< ' 1»1

'«' '+ ' '% ' '/' '* ,

assignment_expr: binary_expr
unary_expr assignment_op assignment_expr

assignment_op: 1 = 1

'«='
'*='
'»='

'/='
'&='

1%=1

I
A

=1

'+='
, 1='

'_:1

expression:

-- Declarations

assignment_expr expression ' , assignment_expr

declaration: 'var' declarator list , . ,,

declarator list:

-- Statements

init declarator
declarator list ' init declarator

statement: declaration
compound_statement
expression_statement
selection statement
iteration statement
jump_statement

compound_statement: ,{, statement* 'l'

expression_statement: expression? , . ,,

selection statement:
'if' '(' expression ,), statement
, if' ,(, expression ')' statement 'else' statement

iteration statement:

24

'while' '(' expression 'l' statement
'for' '(' expression? 'i' expression?

statement

, • 1
1 expression? 'l'

jump_statement:

-- Root production

'continue l 'i'
'break l 'i 1

'return' expression? , • 1
1

PolicyScript: statement*

Basically, the policy language is a subset of the C language. Some features that

have been removed from the C/C++ language are: function definitions, pointer variables,

structures, enums, typedefs, floating point and pre-processor functions (except for

comments). Another characteristic of this language is that aU variables in a program are

in the same scope. In other words, the variables are global by default. In order to

enhance the functionality of this policy language, sorne accessor functions like ToString

have been added.

3.2 Policy MIB

In the same draft, IO policy related tables are defined to help policy-based

management. As presented in the foUowings, these MIB are useful to manage elements,

roles, and rules (policies) and their relations. Since the present implementation is focused

on the policy language interpreter, our discussion will mainly involve the first two tables,

i.e., the policy table and the policy code table. These 10 policy tables are:

1) Policy Table

2) Policy Code Table

25

3) Element Type Registration Table

4) Role Table

5) Capabilities Table

6) Schedule Table

7) Policy Tracking Table

8) Element-To-Policy Table

9) Policy Debug Table

10) Notification Registration Table

Among these tables, the policy table is used to register and hoId policy parameters

such as policy groups, schedules and pointers to the policy code table where policy mIes

(filter and action) are stored. Element registration table, as its name implied, is used to

record element types. When a new element is discovered, its type is registered using the

OID. The role table is a read-created table that organizes role strings and is sorted by

element. This table is used to create and modify role strings and their associations as

weB as to aHow a managed station to leam about the existence of roles and their

associations. The capabilities table contains a description of the system capabilities.

Policy script and the management station can apply polices to the system based on its

capabilities. The schedule table controis the policy schedule. The left four tables are

used to debugand trace policy.

To illustrate how to configure networksusing the above tables, Iet's take a look at

an example. This example is inspired by the building management exarnple given in the

best practice draft (MacFaden, Saperia, and Tackabury, 2001). Suppose that we want to

use policy-based network management to manage aU buildings in an university campus,

26

we would like to control the room temperature, light, humidity, and air quality (Carbon

Dioxide, Carbon Monoxide, üxygen and toxic gas content, etc.). The policies for

temperature and light control might be define as two groups:

Group 1 (temperature control)

1. If (a building temperature >20 OC) Then (turn on air conditioner)

2. If (a building temperature <15°C) then (turn on heating)

Group 2 (light control)

1. If (it is weekend night) then (tum off an lights in an class rooms)

Table 3.2 The policy table for campus building management

pmPolicyIndex , 1 2 3
pmPolicyGroup Temperature control Temperature control Lightcontrol
pmPolicyPrecedence 0 1 1
pmPolicySchedule 1 1 2
PmPolicyElementTypeFilter 1.3.6.1.4.1.1.1.1 1.3.6.1.4.1.1.1.1 \.3.6.1.4.1.1.1.2
pmPolicyConditionScriptIndex , 1 3 5
pmPolicyActionScriptIndex, 2 4 6
pmPolicyParameters
pmPolicyConditionMaxLatency , 10000 10000 10000
PmPolicyActionMaxLatency, 10000 10000 10000
pmPolicyMaxIterations , 1000 1000 1000
pmPolicyDescription If (a building 1f (a building If (it is weekend

temperature >20 oC) temperature <15°C) night) then (tum
Then (tum on air then (tum on off ail lights in
conditioner) heating) aU class rooms)

pmPolicyMatches 0 0 0
pmPolicyAbnormalTerminations 0 0 0
pmPolicyExecutionErrors 0 0 0
pmPolicyDebugging 0 0 0
pmPolicyAdminStatus 1 1 1
pmPolicyStorageType Non-volatile Non-volatile Non-volatile
PmPolicyRowStatus

27

Table 3.3 The policy code table for the campus building management

pmPolicyCodeScriptIndex pmPolicyCodeSegment pmPolicyCodeText pmPolicvCodeStatus
1 1 tl=GetO

Iftl>20 then Retum true
2 1 SnmpSet(1.3.4.1..4.1.1.1. 1

,2)
3 1 H=GetO

If t1 <20 then Retum true
4 1 SNMPSet(1.3.4.1 ..4.1.1.1.

l, 1)
5 1 If (day:Friday, Saturday,

or Sunday) and
time>19:00 pm

6 1 SNMPGET(oid, aH c1ass
room 1ight)
SNMSet (oid 1ight, 0)

Table 3.4 A hypothetical air conditioner (1.3.6.1.4.1.1.1.1) MID

AirConditionerStatus(l.3.6.1.4.1.1.1.1)

o

1

2

O-air conditioner off;

1-air conditioner is on and heating;

2-air conditioner is on and cooling

Table 3.5 A hypotheticallight control1er (1.3.6.1.4.1.1.1.2) MID

LightControllerStatus(1.3.6.1A.1.1.1.2)

o

1

1

O-hght off, 1-hght on

28

These policies should be registered in the policy tables (Table 3.2 and Table 3.3). Table

3.2 and 3.3 present the above policy groups and their policy scripts respectively. Table

3.4 and 3.5 show a faked MID for air conditioners and light switches. In Table 3.2, the

.pmPolicyIndex is a unique index for each policy entry in the table. We have three

policies defined and they are registered with pmPolicyIndex from 1 to 3 under two policy

groups (Table 3.2). The pmPolicyPrecedence is used to arbitrate the policy conflict. If

one element meets several policy conditions (policy filters) and thus several policy

actions should be executed against the same element. However, these policies might

have conflicts with each other. In this case, only the policy with the highest policy

precedence should be enforced. If a policy is enforced, its action can be deployed an the

time or at a certain time only. If the policy action is activated only at a certain time, then

the execution time is managed by the schedule table. In the policy table, the policy

schedule is not directly recorded, but only as an index (pmPolicySchedule) which points

to an entry in the schedule table. pmPolicyElementTypeFilter specifies the element types

on which the policy will be executed. In our example, for no standard MID defined, we

use a faked OID to indicate the temperature controllers (1.3.6.1.4.1.1.1.1) and light

controllers (1.3.6.1.4.1.1.1.2). These two OIDs are under enterprise node in the om tree

(see Figure 2.3). pmPolicyConditionScriptIndex and pmPolicyActionScriptIndex are

pointers which indicated where the scripts are stored in the script table (Table 3.3). Our

first policy:

If (a building temperature >20 OC) Then (tum on air conditioner)

29

is recorded as two entries in the policy script table (pmPolicyCodeScriptIndex=1 and 2,

Table 3.3) as policy conditions and policy action respectîvely.

pmPolicyConditionMaxLatency and pmPolicyActionMaxLatency define the

interval between the time policy will be re- executed and the time when the policy last

enforced in milliseconds. pmPolicyMaxIteration is used to limit the maximum times a

loop may be executed and prevent infinite loop. In the present example, we use 1000 as

the upper Emit. pmPolicyDescription explains the policy using the terms that the human

manger can understand. Normally, this is where we put the policy in plain English or

other naturallanguage. pmPolicyMatches indicates how many elements match the policy

condition in the most recent policy execution. Since our policy has not been executed,

this is set to O. pmPolicyAbnormalTermination and pmPolicyExecutionError record the

status of the policy execution such as how many times the policy abnormal terminated

and errors occur during the policy execution. pmPolicyAdminStatus indicates the

administrative status of the policy and will be changed as the pmPolicyRowStatus

changes. It IS an integer with value of 0 (Disenabled), 1 (Enabled), or 2

(EnableAuotremove). pmPolicyStorageType determines whether the policy is stored in

pennanent storage or in the volatile memory. pmPolicyRowStatus indicates the policy

status.

The policy scripts are recorded m the policy code table. The

pmPolicyScriptCodelndex is a unique index for each piece of policy code and presented

as pointers in the policy table. Following these pointers from the policy table, the related

policy code should be easily retrieved from the policy code table.

30

pmPolicyCodeSegment and pmPolicyCodeText store the policy segments and its scripts

respectively.

3.3 Policy Execution

Policy execution is performed in three steps: Element Discovery, Element

'Filtering, and Policy Enforcement.

l) Element Discovery

As defined in the draft, an element is a uniquely addressable entity on a managed

device. The manager should know each element it managed and has to "discovery" each

new element. The element type registration table is used for the manager to "remember"

what element types are being managed by the system and to register new types if

necessary. An element type is registered by providing the üm of an SNMP object (i.e.,

without the instance). Each SNMP instance that exists under that object is a distinct

element.

If a new type of air conditioners is installed in an office in our example, the

manger will discover this new element by routine check or by the notification sent by the

agent. The manager will then register this new element into the element type registration

table and check if any policy would be applicable to this new element type immediately.

If the element is a member of the set that the policy acts upon, the associated policy

action will be executed instantly.

31

2) Element Filtering

Element Filtering is used ta check which elements match the policy filter. To

evaluate a policy, the policy filter is first called for each element and ron ta complete.

This process is called "Element Filtering". The element address is the only state that is

passed to the filter code for each invocation. If any syntax or processing error occurs, the

filter will terminate immediatdy for this element. If the filter retums TRUE, the

corresponding policy action will be executed for this element.

If an element matches a filter and had not matched that filter in the last time it was

checked (or it is a newly-discovered element), the associated policy action will be

executed immediately. If the element had matched the fiUer at the last check, it will

remain in the set of elements whose policy action will be ron within the

pmPolicyFilterActionMaxLatency.

In the Element Filtering process, an the policy condition scripts in our building

management example will be ron against aU air conditioners and light controllers. For air

conditioners, those with temperature higher than 20 oC will retum TRUE when the policy

with pmPolicylndex 1 is applied, but win give a FALSE if the policy with

pmPolicylndex 2 is checked.

3) Policy Enforcement

For each element that has retumed TRUE from the policy filter, the corresponding

policy action is caUed. The element address is the only state that is passed to the policy

32

action for each invocation. If any syntax or processing error occurs, the action will

terminate immediately for this element.

In the given example, during Policy Enforcing process, aH the air conditioners

which meet the requirements (temperature higher than 20Ge or lower than 20GC) will he

tumed on to heat or cool the room.

3.4 The Reference Modeis

In order to release the network manager from details of the devices, the policy

management should present only the necessary infom1ation. However, to facilitate fault

resolution and performance management, the more information is offered the easier the

management would he. This requires the policy management to support different levels

of abstraction. From high level of abstraction to the low level, more details will he

revealed. The draft (Best current praetiee, MacFaden et al., 2001) presents four levels of

abstraction.

3.4.1 Domain-Specifie

Domain-specifie is the highest abstract level in present policy framework of

SNMPeONF. A domain is a general area of teehnology such as service quality or

security. When domain referred, they will most orten he diseussed with teehnology or

application-specifie examples. Examples of teehnieal domains include, IPSec and

Differentiated Services. When expressed in terms specifie to a partieular domain, a

poliey is said to be at the Domain Specifie level of detail.

33

3.4.2 Mechanism-Specific

Mechanisms are technologies used within a particular domain. For example, in

the differentiated services domain, RED (Random Early Detection) or WRED (Weighted

Random Early Detection) might be used as one of the mechanisms that devices employ to

realize a traffic conditioner, called a Dropper, in differentiated services (DS) and the

applications on which they rely. Policy descriptions that include the details associated

with a particular mechanism, are said to be Mechanism-specific.

3.4.3 Implementation-Specifie

hnplementation-specific gives details of parameters that a particular vendor might

use in an implementation to augment a standard set of mechanism-specific parameters.

Very often vendors add special capabilities to basic mechanisms as a way of meeting

special customer requirements or differentiating themselves from their competitors.

These special capabilities are related to the implementation approach that a vendor has

used, thus the term "implementation-specifie". For example, if a router vendor

implemented a particular routing protocol, they would have the mechanism-specific

parameters that control the behavior of that software. The vendor might have chosen to

mn severa! instances of that routing protocol, perhaps on different processors, for

performance reasons. The parameters that are used to control the distribution of work on

the different processors for that protocol would be implementation-specifie.

34

3.4.4 Instance-Specifie

Network operators are most familiar and comfortable with information of this

instance-specifie type. Instance-specifie information refers to parameter values that have

been associated with a specifie instance in a managed element.

For example, the Border Gateway Protocol is an exterior routing protocol that has

.a number of parameters to deseribe information other routers that is sharing information

with. One such parameter defined in the BGP MID module (BGPMID) is the desired

conneetion retry interval for a peer, bgpPeerConneetRetryInterval. An example value

would be 120 (seconds). When expressed with this level of speeificity, one would say

that this 1S mechanism-speeific data. However, if it 1S presented as

bgpPeerConnectRetryInterval 192.0.2.1 = 120 we would be looking at the retry interval

of the peer router found at IF address 192.0.2.1. The value for this instance is 120

seconds, instance-specifie data.

These four abstraction levels might be useful to help us design policy MID and

design poliey management software, but cannot be used as a standard, beeause there is no

clear boundary between these levels.

The building management described ln the above agam ean be served as an

example to explain the four abstract levels. In the Domain-Specifie level, we could have

Temperature, Light, Humidity, and Air Quality as the domains. In eaeh domain, we

might have different meehanism-specifie poliey. If we want control temperature, we at

least have two different mechanisms to change temperature: heating to inerease the

temperature and air-conditioning to lower temperature. In terms of heating, different

vendor implement different methods: electrie heating, oil-heating, gas-heating, etc

35

Even made by the same manufacture, the heating equipment might have sorne

parameters, for example, number of buttons, which are different from the other

equipments, because of the different models. These parameters (buttons, etc.) might be

used to manage instance-specifie polieies. Therefore, in the different levels, there are

different forms of the policies, even though the goals ofthese policies are the same. This

can be shown in Figure 3.1. Suppose that we want to define polices to control

temperature, in the Domain-specifie level, the policy may use the following form:

If (cool) Then (increase the temperature)

The same policy in the mechanism specific level can be represented as:

If (temperature is low) Then (heating until the temperature to normal)

If it is in the implementation specifie level, it will take the following form:

If (temperature <20 OC) Then (turn on electrie heating equipments until the

temperature to 20 OC)

Or more specifieally, in instance-specifie level:

If (temperature meter <20) Then (tum on the power of the electrie heating

equipments, connect the temperature meter, heat and measure the temperature until the

temperature >=20)

In this ehapter, the policy framework of SNMPCONF is presented. The core of

this dran is the policy script language and policy MIB. The application of policy MIB is

relied on the vendors' support and many other configuration MIBs have to be defined. In

the present network, there is no configuration MIB available. We need an approach to

36

support the SNMPCONF without defining new MIB if we want to deploy the

SNMPCONF to the existing network.

Domain-Specifie

Temperature
Light
Air Quality
Humidity

,ir

Meehanism-
Specifie

Heating

Cooling
Iv

Implementation-
specifie

Oil-heating
Gas-heating
Electricity-heating

"-
Instance-specifie

Buttons
Power
fans

Figure 3.1 The four abstract levels ofpolicies for Building management

Figure 3.1 shows that in different abstraction levels, the policy with the same goal

may have different forms using different MIBs (see text for details).

37

Chapter 4

A Policy-based Network Configuration Framework

As described in the prevlOus chapter, SNMPCONF drafts define the policy

. execution processes, policy language, two MIDs (Policy MID and differserv MID), and

application models. In this chapter, we will discuss our approach to support

SNMPCONF on the existing network and present the implementation of this approach.

4.1 Problems with Deploying SNMPCONF in Existed Network

From the discussions in the previous chapters, SNMPCONF basically is an

extension of the SNMP protoco!. It enhances SNMP protocol by providing new policy

MIDs and a script language to define the policy. The policy MID defined in the present

drafts can be used to manage the policies only. The policy enforcement is accomplished

through operations on MIB. Unfortunately, the MID in present SNMP (vI to v3) is

designed to monitor the network operation and not suitable to do configurations. A

preliminary search found about 78 RFCs defining MIB and about 58 different sets of

MIB have been defined so far (see Appendix A). From Appendix A, most of the defined

MID can be used to monitor the network status only. A set of configuration MID, which

has not been defined yet, has to be defined before the SNMPCONF can be utilized to

configure the network. However, even if the desired configuration MID is defined, we

still have to make the existed network to support these MIB, because the existing network

might not be able to support the new MID due to resource limits (for example, memory

limitation). On the other hand, the existing network devices have many different vendor-

38

specifie functions, which are handy to configure the device but cannot be used or is very

difficult to use through MIB. Thirdly, although the existing network devices are not

compatible with policy MIB or new configuration MIB, in the near future, these MIBs

would be supported by new devices. Therefore, if we can find an alternative solution to

utilize these vendor-specific functions to support the SNMPCONF, we may be able to

deploy SNMPCONF in the present network without purchasing new hardware and this

implementation can also be used without modification even new device deployed.

4.2 CLI and TLl

As pointed out by McFaden et al. (2001), CLI is one of most extensively used

methods to configure data network today. CLI stands for Command Line Interface,

which allows users to perform network operations for any device in the data network

through Telnet or TFTP. However, CU is generaHy vendor specifie, i.e., similar devices

from different vendors may have very different CLI.

A typical process to configure network device using CU commands generally­

involves the following three steps:

1) Login with a proper password. Depending on the users' privilege determined

by users' password, the user may have no right to configure the device at aH.

2) Execute a series commands to enter the right mode and configuration

commands to configure or reconfigure the device. In Cisco router, if one

wants to configure an interface, he/she should first login as privileged user,

enter Privileged Exec Mode using "Enable"; then enter Global Configuration

39

Mode and finally the Interface Configuration Mode; only in the Interface

Configuration Mode, the user can enter commands to configure.

3) Use "Show" command to check if the parameters are changed to the desired

values

This process can be shown in Figure 4.1. From the sketch (Figure 4.1), a series of

CU commands to configure the device can be wrapped into an accessor function in the

policy language just like the other accessor functions specified by SNMPCONF. The

idea is that if we can store password and the other parameters to be changed as the

arguments of the function and the information obtained from "SHOW" as a retum from

the function, then a series of CU commands can be represented as a specified function in

policy language.

After comparing CU from Cisco with that from Nortel network, we found that the

above observation is true for devices from both vendors. Considering most network

devices in the market nowadays made by these two vendors, if CU commands are

represented as accessor functions, then they can be used to define policies directly. A

policy interpreter is needed to translate the functions into specified CU commands

according to the network devices for this purpose. This process can be shown as Figure

4.2.

If CU can be used to support SNMPCONF, we may need also to support TU for

TL1 is extensively applied in the telecommunication network. TL1 (Transaction

Language 1) is a set of ASCII-based instructions, or "messages", that an operation

support system uses to manage a network element and its resources in

telecommunications network. TL1, developed by Belleore, is the dominant management

40

protocol for controlling telecommunications networks in North America nowadays and

remams the only widely-implemented, vendor-independent telecommunications

management protocol (Lumos, 2001), just like SNMP in the enterprise network. Given

the fact that TLI and CU dominate the network devices, ifwe can implement this idea to

wrap CU and TLI commands, we can realize policy configuration without defining a

configuration MlB.

4.3 A Policy Based Network Configuration Framework

As discussed in the above, in order to deploy SNMPCONF in the existed network

where no configuration MIB is currently supported, we may need to wrap CU commands

and TLl, therefore a policy interpreter should be defined. For SNMPCONF, SNMP

should be used as the basic protocol and SNMPCONF is an application of SNMP.

Bence, in a framework to implement SNMPCONF in the present network, an ideal

structure might be described by Figure 4.3. As presented in Figure 4.3, the policy MlB

and CU commands are both supported by the interpreter. If a network device does not

support SNMPCONF, the policy configuration will be transformed into CU commands

that the device embedded. Through CU commands, the policy configuration will be

enforced in this device in the same fashion as in the other devices that support the policy

MIB.

41

Login Password
~

Log in Success or Fail
A...

Enable
"-Enter ..

Proper
Privileged EXEC ModeMode

And --'...
Commands

Verify

User

A11

Show

Deviee

Figure 4.1 The process to configure devices using CU commands

If CU is used to configure a device, the user should take three steps: login,

change parameters, and verify the changes through a Telnet session. These steps can be

wrapped as a function in which the parameters are taken as the function arguments and

verified result as the retum from the function.

42

CLI- and TU re1ated Accessor Functîon

Policy interpreter

Cîsco
Router

Nortel network
devices

Other devices

Figure 4.2 Wrapping CU and TLl commands into accessor functions

CU commands from different vendors with different syntax hut similar

functionality might he wrapped into one accessor function. During policy execution, this

function will he interpreted by the policy interpreter, in accordance with the device which

the policy interpreter talks to.

In this design (Figure 4.3), the network administrator will design and input

policies into the Policy Manager. The Policy Manager will then send the policies to the

Policy Gateway through SNMP. In the Policy Gateway, the policy will he interpreted to

CU commands and these CU commands will he sent to the managed devices to execute

if the devices support no policy Mill or configuration Mill. However, if the policy Mill

and configuration Mill are implemented in the device, the policy actions w~n he taken to

these devices directly.

43

Poliey
Manager

SNMPCONF
Supported

SNMP Poliey Gateway

Policy
~

Interpreter

1
1

1 SNMP rCU

= -- = --
Q a C .a Q Cl 0 Q- -- -o Q a c a Ct Cl C

SNMPCONF
Unsupported

Figure 4.3 The architecture of a policy-based network configuration framework

SNMP is used as a basic link between the policy manager and policy gateway

which will take SNMPCONF messages and send them to SNMPCONF-supported

devices or translate them into CU commands to SNMPCONF-unsupported devices.

44

In the above design, the Policy Interpreter is the key part of the framework. More

details should be specified for the interpreter. An interpreter is a special kind of compiler

(Aho et aL, 1974,1986; Mak, 1996, Appel, 1997). As summarized by Aho et aL, 1986) a

compiler consists ofthe following parts (Figure 4.4):

1. Lexer, which breaks the source code into tokens;

2. Parser, which analyzes the phrase stmcture of the program;

3. Intermediate generator, which uses the stmcture produced by parser to create a

stream of simple instmctions;

4. Code optimizer is an optional phase designed to improve the intermediate

code so that the uitimate object program mns fast and or/take less space;

5. Code generator, produces the object code by deciding on the memory

locations for data, select code to access each data and the registers in which

each computation to be done.

Source programs are taken as input to the compiler and the compiler produces a target

program. In contrast, an interpreter just simply executes the source code or intermediate

code and will not produce any target program. Normally, the interpreter will not do any

optimizing.

The Policy Interpreter should have the same structure. However, as specified by

the SNMPCONF, the policy interpreter is not necessary to process any error and the

policy execution should stop immediately if any error occurs. Therefore our Policy

Interpreter should be very simple. It will consist of a lexer, a parser and a code executor

as shown in Figure 4.5.

45

Symbol Table

SOURCEPROGRAM

Parser: Syntax Analysis

Intermediate Code
generator Error Handling

Figure 4.4 The basic structure of a compiler

As shown in Figure 4.4, a compiler should have five components Lexer, Parser,

Interrnediate code generator, Code optimization, and Code generator. It may have a

syrnbol table and error handling components.

46

SOURCE CODE

1 Symbol Table

Figure 4.5 The structure of the policy interpreter

The policy interpreter is much simpler than a compiler (comparing with Figure

4.4), but it still needs a lexer, a parser, a code executor, and a symbol table.

As far as SNMP concemed, we need a SNMP implementation which is modular

and supports SNMPvl to v3. If the SNMP implementation is modular, then it should be

very easy to extend with new MIB and easy to add SNMPCONF as a new modular. If

the implementation supports SNMPvl to v3, it can be deployed in any SNMP-supported

network. We need a SNMP implementation which supports all versions of SNMP so that

our framework can communicate with aU devices.

47

Cbapter 5

Implementation of tbe Policy-based Network Configuration Framework

In this chapter, the solution presented in Chapter 4 will be implemented as a

framework. The implementation will use JAVA and Modular SNMP (Cherkaoui et al.,

1998). In the following, the details of each part will be presented

5.1 Policy Interpreter

PoEcy interpreter is the core of the policy framework which will take policy code

from policy table and execute it. As in the present study, because ofpopularity of JAVA

and implementation of Modular SNMP, the interpreter is programmed in Java. There are

many java parser tools available, to name a few, JavaCup, a YACC type implementation

in JAVA by Scott Hudson (2001) of Georgia Institute of Technology; ANTL (Another

Tooi for Language Recognition), which functions like YACC, but is significantly more

powerful, flexible, and easy to understand and is designed by Parr (2001); JavaCC, ajava

parser generator from Sun Microsystem (2001).

JavaCC is written in Java and it has been mn on a variety of Java platforms.

Moreover, JavaCC cornes with a lot of grammars including Java 1.0.2, Java 1.1, and Java

2 as weB as a couple of HTML grammars. It has the following characteristics (Sun

Microsystem, 2001):

1) "JavaCC generates top-down (recursive descent) parsers as opposed to bottom­

up parsers generated by YACC like tools. This allows the use ofmore general

48

grammars. Besides more general grammars, top-down parsers have other

advantages such as being easier to debug, the ability to parse to any non­

terminal in the grammar, and the ability ta pass values (attributes) bath up and

down the parse tree during parsing. This is very useful for us ta design and

implement a policy interpreter. Further more, JavaCC cornes with a tool,

JJTree, which is a very powerful tree building preprocessor.

2) "By default, JavaCC generates an LL(l) parser. However, there may be

portions of the grammar that are not LL(l). JavaCC offers the capabilities of

syntactic and semantic lookahead to resolve shift-shift ambiguities local1y at

these points. i.e., The parser is LL(k) only at such points, but remains LL(l)

everywhere else for better performance. Shift-reduce and reduce-reduce

conflicts are not an issue for top-down parsers. JavaCC al10ws extended BNF

specifications - such as (A)*, (A)+, etc. - within the lexical and the grammar

specifications.

3) "The JavaCC release includes a wide range of examples including Java and

HTML grammars. The studying of examples along with their documentation

is a great way to get acquainted with JavaCC. JavaCC error reporting is

among the best in parser generators. JavaCC generated parsers are able ta

clearly point out the location of parse errors with complete diagnostic

information."

Base on the above characteristics and its popularity, JavaCC is chosen to build the

policy interpreter.

49

The first step toward building a interpreter is ta define the grammar. The poliey

language grammar defined by Poliey MID draft (Waldbusser, Saperia, and Hongal, 2001)

was used as a basic grammar. In arder ta support CLI, sorne CU commands are

ineorporated as accessor functions into the grammar. Details of the CU command

implementation will be discussed later. In this implementation, the grammar was

transformed ta a JJTree specification file (SPL.jjt; where SPL stands for Simple Poliey

Language and the file is shawn in the Appendix B) according ta JavaCc.

Normally, the grammar specification for the parser generator is defined using

Regular Expression. Even Regular Expression is employed, there are still problems of

ambiguity. For example, how to deal the famous "dangling else" problem. The problem

is dealing with a statement like the following:

IfAl IfA2 S2 else SI

and if the grammar for "if' statement looks like:

Void IjStmO

{

"if' CO SO ["else" SO J

}

Then, we can bound the "else" statement to either of the "If" statement. Should we

parse it like:

IfAl (IfA2 S2 else SI)

Or

IfAl (IfA2 S2) else SI

50

In this case, JavaCC offered a "LOOKAHEAD" method and we should define the

"If' statement in the following ways:

Void JjStmO

{ "if' CO SO [LOOKAHEAD (1) "e/se SO] }

On the same ground, "LOOKAHEAD" is used in several places (See Appendix B).

After JJTree specification is done, a parser framework can be produced with the

help of JavaCC and JJTree which is a tool from JavaCC and used to build a parser tree

from SPL.jjt. The parser generated from above has to be transformed into a interpreter.

This is done by adding one method INTERPRET with a vector as an argument:

public void interpret(Vector param)

to each node of the parsing tree. The interpreter will interpret each function with

parameters stored in the vector.

In order to make the interpreter function properly, we also need a symbol table to

hold variables and constants, and a stack to execute functions or expressions. The

structure of interpreter is shown in Figure 5.1. The stack is used to help the interpretation

of the functions. The symbol table is used to hold variable values. When the value of a

variable is changed the new value will be recorded into the symbol table. For example, if

A=b+c is executed, the parsing tree can be presented as the following:

le

51

First, this aH nodes of simple tree are pushed into the stack. Then, Band C will be

popped from the stack. If Band C are constants, their value will be taken from the

symbol table. Otherwise, their value will be calculated first. Aner their values are

obtained, (B+C) is calculated and the value is pushed back to the stack. Finally, A is

popped out and the value of (B+C) is assigned to A and the symbol table is updated.

Policy Interpreter Parser Tree

NODE

InterpretO

Symbol
Table

l
LJ

Logieal and
arthematie
expression

Standard
Aeeessor
function

CU eommand
wrapper

Modular
SNMP ..

Managed Deviee

1 Telent 1

Managed Deviee

Figure 5.1 The hierarchy of the policy interpreter

52

5.2 Implementation of CLI Commands

Command Line Interface (CU) is vendor-dependent. The different vendors' CU

has different syntax and hierarchy, but most of them support Telnet access. Therefore,

CU commands may be wrapped as accessor functions in policy language and executed

through Telnet session.

Here CISCO lOS (Internet Operating System) (Cisco System, 1998) was taken as

a example to illustrate how to wrap CU commands in policy language. In order to

execute a CU command, a proper command mode should be entered first. There are two

primary command modes and many sub-modes. The hierarchy of Cisco command modes

can be presented as a tree. One has to travel through from the root to a node in order to

get the desired command mode. This tree is presented as:

User Exec Mode

Privileged Exec Mode

Global configuration Mode

Interface Configuration Mode

Controller Configuration Mode

Hub Configuration Mode

Map_list Configuration Mode

Map_Class Configuration Mode

Line Configuration Mode

Router_Configuration Mode

IPX-Router Configuration Mode

Router_Map Configuration Mode

53

Key Chain Configuration Mode

Response Time reporter Configuration Mode

Access_list Configuration Mode

ROM Monitor Mode

A typical configuration process using CU from telnet session can be described (lS

the following steps:

1) TraversaI to the desired command mode.

For example, if we want to define an access-list, we may do so in the global

configuration mode. However, if we want to change parameter of a interface,

we need to enter privilege mode first.

2) Execute the command with necessary parameters

3) Press CTRL-Z to exit from the present mode

4) Use SHOW command to check if the new configuration takes effect.

5) Ifthe new configuration is desired, we save the configuration to non-flash

memory.

Therefore, lU our implementation, the CU commands will be wrapped as aecessor

funetions. Eaeh funetion is presented as a class whieh implements the abstraet class

NODE in the interpreter and the details of the four steps are eoded inside the funetion

lnterprtO. The parameters will he passed as the functions arguments.

Aecess Lists in Cisco lOS is used to control traffie over routers and networks.

With Access List, administrators can implement access control polieies or traffic routing

54

policies. Taking configuring Access List as an example to illustrate how to wrap CU

commands into an accessor function, we have to do the followings:

a. Connect to the router by telnet

b. Change to global configuration mode

c. Enter command :

access-list [access-list-number] [permitideny] [ip] [ipmask]

d. Show access-list to confirm if the access-list configured.

These steps can be wrapped as one function as

Booi Accesslist (devieeIP, AceessParameters)

{

Telenet connect the deviee with devieeIP

Enter the commands with aceessParameters supplied

Using show command to confirm if the configuration set

Ifyes return true

Eise return false

}

Where the device IP specifying the IP of the device (router) and AccessParameters

supplying aIl the parameters that needs to configure an access list such as aceeslist

number, permit or deny, IP address, ip mask.

Because the Access List is numbered, and the number of the Access-list tells the

format it should have. For a standard Access-list, it should use anynumberbetween 1-99.

Extended Access-list should be denoted any a number in the range from 100-199. In

order to make this function more intelligent, we may let the function found the access list

55

number used and what is the next number available. So the function can be changed into

the following:

Booi Aceesslist (devieeIP, AceessParameters)

{ Telenet connect the device with deviceIP

Using SHOW to get information about access lists

Check the resultfrom SHOW

and get the highest access list number using regular expressions

Enter the commands with aceessParameters supplied

Using show command to confirm ifthe configuration set

Ifyes return true

Eise return false

}
In the present Implementation, the user has to give the access Est number.

5.3 Modification of Modular SNMP

Modlilar SNMP from Universite du QlIebec a Montreal (Cherkaolli et al., 1998) is

chosen as the basic SNMP structure to implement our policy framework as discllssed in

Chapter 4. Although Modular SNMP is an excellent implementation of SNMP, because

the Policy Based Management with SNMP is an extension of the SNMP protocol, sorne

modifications are thus necessary in the present study to imp1ement p01icy based

management:

First of aH, modify the Dispatcher Class so that a policy request can be handled

properly.

56

Secondly, implement a new application model PolicyApp which will process

Policy related PDU including dispatch and receiving.

Thirdly, add the minimal Policy MIB (as discussed in Chapter 3) to the Modular

SNMP to handle the policy request.

-The stmcture ofthe modified Modular SNMP is shown in Figure 5.2.

SNMPVl
Message
Processing
Module

PolicyAPP
Policy Interpreter

SNMP V3
Message
Processing
Module

Figure 5.2 New structure ofModular SNMP framework

A new application and MIB are added to the original Modular SNMP and the

corresponding changes are also made to the Dispatcher.

57

Chapter 6

Managing Network by the Policy Framework

In this Chapter, we will show how to use the policy-based SNMP to manage a

network and compare it with the traditional CU and SNMP approach.

6.1 A Simple Campus Network

Suppose a very simple network consists of four Cisco routers and numerous

computers. Four computers are attached to router as SNMP agent and the routers are

used to control the data flow between the computers and the internet. The architecture of

this network is shown in Figure 6.1. The four routers control four sub-networks with

different access policies. In the Library subnet, everyone is allowed to access 24

hours/per day, 7 days a week using HTTP. In the Financial Service subnet, only intranet

access using HTTP is allowed within lime period from 9:00am to 5:00pm Monday to

Friday; the Student Service allow every student access from 8:00 am to 6:pm Monday to

Friday; the Teaching LAB allows students access from 8:am to 6:00 pm Monday to

Friday (see Figure 6.1 for details). AlI routers use Ethernet interface 0 for TCIP/IP

network.

58

Financial Service

Router 1 (216.18.124.169)

8:00 am -5:00pm M - F

http from 216.18.124.1 - 254

Student Service

Router3 (216.18.124.171)

Library

Router2 (216.18.124.170)

24 hours M-F

Di! il hltp from any IP address

Network Manager

Teaching LAB

Router 4 (216.18.124.173)

8:00 am -6:00 pm M - F

Any TCP/IP from any IP address

8:00 am - 6:pm M- F

Any TCP/IP from any IP address

Figure 6.1 Management requirements for a campus network

In Figure 6.1, the intranet is divided into four subnets managed by four Cisco

routers respectively, and each router is controlled by a computer which in tum is

controHed by a central computer manager. These computers support SNMPCONF. M-F

represents weekdays (Monday to Friday) (see text for details).

59

6.2 CLl Configuration

In thiscampus network, if a traditional management approach, e.g. CU, is used to

configure these routers, the administrator will have to configure the routers one by one.

We will show how to use CU to configure the network in this section. And then we will

describe how to use SNMP to do the configuration next. In order to simplify our task, we

assume an routers are made by Cisco and Access List of Cisco lOS can he used. Since

we need to filter the data packets according to TCP/IP protocol, e.g., HTTP for Router 1

and 2, the extended access list should he used.

The Cisco lOS commands to configure Router 2 toallow http for every day, 24

hours access can be presented as the followings:

Aecess-list 105 permit tep 0.0.0.0255.255.255.255 eq 80

interface ethernet 0 ip aecess-graup 105 in

The first command presents a numhered extended access list with a numher 105.

This list permits TCP/IP traffic from any IP address (IP address =0.0.0.0 with wildcard

255.255.255.255, it matches any IP address) and the port used is 80 (HTTP). Here we

choose 105 as the access list number with no special meaning. It could he any integer

between 100 and 200 as long as it is not presently used in the Router 2 (In the following

router configuration, the access list numher is chosen on the same ground without any

special meaning). The last command applies this access list 105 to Ethernet interface O.

The CU commands to configure Router l can he presented using extend access

list as:

lime-range Time2 periadic weekdays 8:00 ta 17:00

60

Access-list 101 permit tep 216.18.124.0 0.0.0.255 216.18.124.169 O. O. O. 0 eq 80 lime-range

Time2

Access-list 101 deny ip 0.0.0.0255.255.255.255216.18.124.1 0.0.0.0

interface ethernet 0 ip access-group 101 in

The first entry defines a time frame from Monday ta Friday (weekdays) and 8:00

am ta 5:00 pm (8:00 ta 17:00) with a name Time2. This name can be used in the later

commands as a reference. The second command allows every http data packet (from port

80) from the intranet with IP 216.18.124.0/24 ta be transported the destination

216.18.124.1 during the time defined by the timeJange Time2. The first address/mask

pair (216.18.124.0 0.0.0.255) means 216;18.124.any because the 255(11111111) is a

wildcard in the last byte; the second address/mask pair (216.18.124.169 O. O. O. 0)

indicates the destination address 216.18.124.169. We place "eq 80" at the end of IP

address/mask pairs, meaning "allow packets with the destination port 80". In the end of

this command, time range Tùne2 is used ta activate the command in the period specified

by Time2. The third command denies every packet from any other IP address. Every

packet other than HTTP from the intranet will be denied implicitly. The last command

forces this access list ta be applied to the Ethemet interface O.

For router 3, the standard access list is enough:

lime-range Time3 periodic weekdays 8:00 to 18:00

Access-list 5 permit 0.0.0.0255.255.255.255 time-range Time3

interface ethernet 0 ip access-group 5 in

61

This is similar to the CU commands for Router 1 and 2, but we do not distinguish the

source and destination address and specify the protocols.

Financial service Library

ôQ QÔ
Router 1 (216.18.124.16~ /< Router2 (216.18.124.170)

aoco" M 101 ~ Aoc",·!'" 105

Router3 (216.18.124.171)

Access -Iist 5

Router 4 (216.18.124.173)

Access -list 10

Figure 6.2 A campus network configured by CU commands

Under this kind of management, if a new Library subnet is added ta the network,

the manager should configure Library 2 manually. In the best case, he/she only need

copy the configure file from Router 2. See text for more detail discussions and Figure 6.1

for the requirements.

For Router 4, again, the standard access list is used:

62

time-range Time3 periodic weekdays 8:00 to 18:00

Access -list 10 permit 0.0.0.0 255.255.255.255 time-range Tirne3

interface ethernet 0 ip access-group lOin

In order to configure these four routers, the network administrator has to login to

each of the four computers attached to the routers, use telnet to access the routers, and

type the commands listed in the above to complete the task. Even though the commands

are similar or identical (commands for Router 4 and Router 3), the administrator has to

repeat tying these commands for each router.

6.3 SNMP Approach

If SNMP is used to do the configuration, we first need to design and implement

new MIBs because the standard MIB and the MIB defined by other RFCs (see Appendix

A for a list of MIBs defined) cannot be used to configure the Ethemet interface with a

time frame. We need at least three tables: a standard access list table or an extend access

list table, an interface table, and a time range table. These tables will store parameters for

standard access list or extend access list, interface, and timeJange commands. For

example, the standard access list table may be defined as:

AccessListEntry ::= SEQUENCE {

AccessListIndex

AccessListIP

AccessListWildCard

Unsigned32,

UTF8String,

UTF8String,

63

AccessListPermission

AccessListTimeRange

}

INTEGER

Unsigned32

The time range table should be very similar to that of Policy Schedule Table

defined in the policy MIB draft (Waldbusser et al., 2001). After these tables are defined,

the SNMP protocol can be used to send SN'MP commands from the SNMP manager to

the SNMP Agent. It is obvious that this approach is similar to that of SNMPCONF

discussed in the above.

In order to illustrate the idea, we make these three MIBs tables (Table 6.1, Table

6.2 and Table 6.3) for router 3. Table 6.1 presents a private MIB for Access List and the

contents for Access List 5 on router 3 in the above section. As their names imply, the

user may figure out that Table 6.1 is actuaUy a direct representation of CU Standard

Access List commando The AcessListIndex represents access list number; AccessListIP

shows the source IP; the AccessListWildcard holds the wild card used in the access list;

the acessListPermission indicates "permit" or "deny"; and the AcessListTimeRange

points to timeJange entry in the TimeJange Table and the actual time_range is defined

in the TimeJange Table (Table 6.2). Table 6.2 is used to store information about the

time_range command on router 3 and Table 6.3 is a MIB translation of the CU interface

command (the third command in the above section for Router 3). The following SNMP

commands should be used to set router 3, instead of CU commands:

SNMPSET(AccessListindex.O, 5)

SNMPSET(AccessListIP.O,O.O.O.O)

SNMPSET(AccessListWildCard.0,255.255.255.255)

64

SNMPSET(AccessListPermission.O, permit)

SNMPSET(AccessListTimRange.Time3)

SNMPSET(TimeRangeName.Time3)

SNMPSET(TimeRangePeriod.O,Periodic)

SNMPSET(TimeRangeRange.O,Weekday)

SNMPSET(TimeRangeStratrtTime.0,8:00)

SNMPSET(TimeRangeEndTime.O,18:00)

SNMPSET(NIFIndex.O, 1)

SNMPSET(NIFName.O, Ethemet 0)

SNMPSET(NIFAccessList.O, 5)

These commands should be execute either completely or no one at an, because we cannot

have a partial access list or partial time-range enforced on an interface, but this is a very

difficult task.

Table 6.1 The private access list MIB for Router 3

AccessList- AccessList- AccessList- AccessList- AccessList-

Index IP Wi1dCard Permission TimeRange

1.3.6.1.4.1.9.2.1 1.3.6.1.4.1.9.2.2 1.3.6.1.4.1.9 .2.3 1.3.6.1.4.1.9.2.4 1.3.6.1.4.1.9.2.5

5 0.0.0.0 255.255.255.255 Permit Time3

65

Table 6.2 The private time_range MID for Router 3

TimeRange- TimeRage- TimeRagne- TimeRagne TimeRange- TimeRange

Index Name Period 1.3.6.1.4.1.8 Starttime -EndTime

'1.3.6.1.4.1.8.2.1 1.3.6.1.4.1.8.2. 1.3.6.1.4.1.8.2. .2.4 1.3 .6.1.4.1.8.2. 1.3.6.1.4.1.

2 3 5 8.2.6

1 Time3 Periodic Weekdays 8:00 18:00

2 Tim10 Periodic Weekend 12:00 14:00

Table 6.3 The private network Interface MID for Router3

NIFIndex NIFName NIFAccessList

1.3.6.1.4.1.7.2.1 1.3.6.1.4.1.7.2.2 1.3.6.1.4.1.7.2.3

l Ethemet 0 5

2 Ethemet l 20

If a new router is added ta the network, the network manager may copy sorne

configuration file from router to router and save sorne work. However, if a new router is

added, he /she has to repeat the task again. Given that the network grows very fast, the

administrator's work will increase with the network size growth and more network

administrator will be needed if the network is too big for the CUITent administrators to

66

handle. In other words, the device by device configuration increases the work load for

the administrator when the network grows.

6.4 SNMPCONF Approach

If policy based SNMP (SNMPCONF) is used in this network, the configuration

task will be reduced to define different policies and the system will automatically

perform the configuration task. When a new router is added, we may register it as the

existent element type and enforce the existing policies or we register it as a new type and

add new policies to manage it.

The first step to configure this campus network with policies is to define policies

for it in accordance with the requirements. The policies for this campus network are

described by Table 6.4, 6.5, and 6.6. In Table 6.4, four routers are registered as four

different element types as represented by the prefix oftheir OID such as 1.3.6.1.4.1.1.2.1.

These OIDs are not defined by the standard MID, but under the private enterprise node in

the MID tree (see Chapter 2) and we suppose that these OIDs are not used by the network

device vendors (this may not be true, but it should not be of any harm for the illustration

purpose). Three policies are registered with index from 1 to 3 under policy group

"Access Control". The policies contents are shown under "pmPolicyDescription" and the

policy scripts as indexes which points to Table 6.5 under pmPolicyConditionScriptIndex

and pmPolicyActionScriptIndex for policy action and filter respectively. The policy

script codes are stored in Table 6.5 and linked to the Table 6.4 through the indexes

(pmPolicyCodeScriptIndex in Table 6.5 equals pmPolicyConditionScriptIndex or

pmPolicyActionScriptIndex in Table 6.5. The policy schedules for these policies are

67

stored in the Policy Schedule Table (Table 6.6) and linked to the policies in Table 6.4 by

the index (pmSchedIndex in Table 6.6 equals pmPolicySchedule in Table 6.4). In Table

6.6 a time period for a specified policy to be executed is set by changing the value of the

bits at the desired position. For example, seven bits are used to represent the weekdays

from Sunday to Saturday. Because Policy #1 is scheduled to run from Monday to Friday,

then the bits to represent this schedule can be set as 0111110. The first bit represents

Sunday and the last bit represents Saturday. Both of tem are set as 0 because the poliey

is not active on Sunday and Saturday. The second to sixth bit are set as 1 for they

represent weekday from Monday to Friday and the poliey is active on Monday to Friday.

Table 6.4 The policy table for the campus building management

pmPolicylndex , 1 2 3
omPolicyGroup Access control Access control Access control
pmPolicyPrecedence 0 1 1
pmPolicySchedule 1 2 3
PmPolicvElementTypeFilter 1.3.6.1.4.1.1.2.1 1.3.6.1.4.1.1.3.1 1.3.6.1.4.1.1.1.2
pmPolicyConditionScriptlndex 1 3 5
pmPolicvActionScriptIndex, 2 4 6
pmPolicyDescription Http access is permit Http access is access is permit for

for ail intranet from permit for every one from 8:00
8:00am to 5:00 pm everyone 24 hours am to 6:00pm
Monday to Friday everyday seven Monday to Friday.

days a week

Table 6.5 The policy code table for the campus building management

PmPolicy- PmPolicy- pmPolicyCodeText pmPolicy-
CodeScriptIndex CodeSegment (1.3.6.1.3.107.2.2) CodeStatus
1 1 Vl=SNMPGET(1.3.6.1.4.1.1.2.1)

Ifvl!= null then Retum true else retum false
2 1 Extended_access_list (permi tcp

216.18.124.10.0.0.2555.216.18.124.10.0.0.
oeq 80)

3 1 Vl=SNMPGET(1.3.6.1A.l.l.3.1)
If vi! = null then Retum true else retum false

4 1 Extended_access_list (permit permit tcp
0.0.0.0255.255.255.255 eq 80

5 1 VI =SNMPGET(1.3.6.1.4.1.1.1.2)
Ifvl!= null then Retum true else retum false

6 1 Permit 0.0.0.0255.255.255.255

68

·Table 6.6 The policyschedule table for the campus building management

PmSchedlndex 1 2 3 4

PmSchedGrouplndex 1 1 1 l

pmSchedDescr 8:00am to 5:00 24 hours 8:00am to 8:00am to 6:00 pm
pm Monday to everyday 6:00pm Monday to Friday
Friday Monday to

Friday
pmSchedTimePeriod

PmSchedMonth

PmSchedDay

PrnSchedVVeekI)ay 0111110 1111111 0111110 1111111

(1.3.6.1.3.107.8.5)

PmSchedTirneOfDay 000000001111 111111111111 000000011111 000000011111

(1.3.6.1.3.107.8.8) 111111 000000 111111111111 11111100000 111111111111

PrnSchedLoca10rUtc

PmSchedStorageType

PmSchedRowStatus

69

ôQ
Router 1 (216.18.l24.16~
policy #1 ~

Financial service

(pmPolicyIndex=1) no

Library

1 Router2 (216.18.124.170)

policy #2

(pmPolicyIndex=2)

Student Service / Teaching LAB

Router3 (216.18.124.171)

policy #3

(pmPolicylndex=3)

Router 4 (216.18.124.173)

policy #3

(pmPolicyIndex=3)

Figure 6.3 A campus network managed by policy-based SNMP (SNMPCONF)

Under policy-based SNMP management, the configuration is done through

policies enforcement. If a new Library (Library 2) is added to the network, the manager

just needs to register this element and automaticaUy deploys the policies related. This

70

simplified the network management. See text for more detail discussions, Table 6.4 and

Table 6.5 for policies, and compare this approach with that of Figure 5.4.

6.5 Present Framework

The present implementation can be set up to do the policy-based configuration as

shown in Figure 6.6. In Figure 6.6, Student Service router is taken as an example.

Because the policy Mill is not fully implemented at present, especially the policy

schedule table, we need to divide the simple policy #3 into two sub-policies for the

schedule convenient. Policy #3 can be decomposed as:

1) Permissions will grant to everyone from 8:00am to 6:00pm Mondayto Friday

2) Accesses will be denied from 6:pm to 8:am next day on Monday to Friday and

the whole day on Saturday and Sunday.

Because Access list command is implemented as accessor function in the present work,

we need to use accesor functions to represent the above sub policies:

1) Monday to Friday 8:00 am, execute

noaccess list 5

stdaccesslist 5 permit any

The first line code will remove the existing access list 5 and second line adds a

new access list 5 which allow every one access. After executing these two hne codes, the

system now allows every one to access. Therefore, every one will get access until we

change access list 5. Because this policy is valid until 6:00pm, we have to enforce the

foUowing code.

71

2) Monday to Friday 6:00pm, execute

noaccess list 5

stdaccesslist 5 deny any

After executing these two lines of codes, the system will deny anyone to access. The

combination of the above two sub policies (or four lines of codes) actually enforces

policy#3.

The user may set up the policies through the SNMP manger repeating the

following SNMP command five times:

{

SnmpSet(ip address, 1.3.6.1.3.107.8.5, weekday)

SnmpSet(ip address, 1.3.6.1.3.107.8.8, 8)

SnmpSet(ip address 1.3.6.1.3.107.2.2, policycode1)

SnmpSet(ip address, 1.3.6.1.3.107.8.5, weekday)

SnmpSet(ip address, 1.3.6.1.3.107.8.8,20)

SnmpSet(ip address 1.3.6.1.3.107.2.2, policy code2)

}

policy code 1= { no accesslist 5;stdaccesslist 5 permit 0.0.0.0 255.255.255.255}

policy code 2= { no accesslist 5;stdaccesslist 5 deny 0.0.0.0 255.255.255.255}

where the weekday=Monday to Friday. IP addres8 in the present example 18

216.18.124.171 (see Figure 6.4). The OrD 1.3.6.1.3.107.8.5 and 1.3.6.1.3.107.8.8 are

defined in the policy MIB for weekdays and time of the day; the om 1.3.6.1.3.107.2.2 is

used for the policy code. Because in the present implementation, a Java thread is used to

72

schedule the policy, we have to set it up for every weekday, this why we need to send this

policy code five tÎmes. After SNMP commands executed, the SNMP agent will execute

the policy accordingly on the router it managing as scheduled.

SNMP Pohcy Manager

oR7 et<...)

SNMP Policy Agent

Router3 (216.18.124.171)

Figure 6.4 Manage student service sub-network using policy based SNMP

The policies are sent from the SNMP Policy Manger to the SNMP Policy Agent

and The SNMP Policy Agent will execute the Policy according to the schedule.

In the above, a simple campus network with four routers was used as an example

to show how to configure network using three different approaches, CU, SNMP, and

SNMPCONF. It is evident that CU commands are easy to use when single device is

concemed. SNMP is not good to configure network devices, because new MIEs have to

he designed and too many parameters needed to do a simple configuration. Another

disadvantage of the SNMP approach is that atomicity of the configuration can not be

73

guaranteed, because 50 many MIB object have be set in order to perform a very simple

configuration. SNMPCONF is so far the best protocol to configure the network as whole

and easy to be adapted as new device added.

74

Chapter 7

Discussions

In Chapter 4 and 5, a solution is proposed to implement SNMPCONF in the

existed network where no configuration MIB is supported. Chapter 6 compares the CU,

SNMP, and SNMPCONF approach to configure a very simple network. In this chapter,

the advantage and disadvantage of the present implementation will be discussed.

7.1 Advantages and drawbacks of the present solution

It is evident that from the description in the above, the present implementation

overcomes the obstacle of lack MIBs using CU commands. In the transient stage from

SNMPCONF-unsupported to SNMPCONF implemented, the present approach works in

the existed network and will be useful for future applications. Because even

SNMPCONF is fully implemented in the new network device, the support from the old

device is still need in order to deploying SNMPCONF. The present study presents a

solution to this kind ofproblems.

After examining the definition, deployment, and management of policies re1ated

to QoS (Quality of Service) in an IP network, Rajan et al. (1999) found that it would be

difficult to exchange information between two neighboring administrative domains.

They suggested a service level agreement should be specified before hand. The same

problem may exist in the policy configuration. If there are two different administrative

75

domains in a network, one deploys SNMPCONF, but the other one does not even support

SNMP (e.g., telecommunication network). How can them exchange information? The

possible answer is using CU or TLl as presented in this work.

Another advantage of this approach is that it makes the policy execution atomic

and persistent easily. In other words, the policy execution in the present framework can

. be rollback as a transaction.

As defined, a transaction IS a collection of actions conformed with ACID

properties (Orfali et al., 1998). ACID stands for Atomicity, Consistency, Isolation, and

Durability. Atomicity means that a transaction is an indivisible unit of work: AH of its

parts succeed or they an fail. Consistency means that after a transaction executes, the

system should be in a correct state or the transaction should be aborted. Isolation

accounts that a transaction's behavior is not affected by the other transaction that execute

concurrently. Durability represents that a transaction's effect are permanent after it

commits. Its changes should survive system failure.

If we use CU command to do policy configuration for Cisco routers, the policy

execution could be transactional. In Cisco routers, aU running configuration is hold in the

RAM, which is erased if the device loses the power. The configuration change through

CU commands is placed in the RAM, too. Ifwe want to save these changes we made, we

have to copy them to the Non-Volatile RAM or NVRAM. Otherwise, the changes will

be lost if the devices reboot or lose power. This characteristic make our configuration be

of transactional. If we figure out that for sorne reasons the policy script is partiaUy

executed through the "SHOW" command, we may reboot the device or re-execute the

script from the beginning. On the other hand, if we are sure that the configuration change

76

is correct and completed, we may copy the present configuration to the NVRAM and

make the change take effect perrnanently. This shows that the accessor function wrapped

from CU commands has atomicity and durability. However, in the present

implementation, the property consistency and isolation are not guaranteed.

The third advantage is that the present implementation can use many vendor­

specifie characteristics. In CISCO router, standard access list can be used to filter IP

traffic by IP address, but extend access list can be more specifie, it can be used to filter

traffic by their protocols

The limitation of the present implementation is that the policy conflict is not

checked. Policies are stored in the policy MID as scripts and the present framework has

no way to "understand" the meaning of the policies or the consequences of executing the

policies. If policy A contradicts to the policy B, the policy interpreter will execute both

and is not aware of their conflicts. Therefore, the network manager should avoid the

policy conflicts before entering the policies into the system.

The second shortage of the present implementation is that the implementation

does not coyer aIl CU commands and TLl is not implemented beeause of its

unavailability.

7.2 Comparison with th.e MIB Approach.

The framework presented in the thesis uses CU commands instead ofMID, which

does not conform to the SNMPCONF. As discussed before, Si\TMPCONF uses SNMP

77

plus new MID. Beeause the poliey MID is a standard to aU vendors, policy defined by

the policy MID can be executed across aIl networks. In contrast, if the present approach

is used, special attentions should be foeused on the different devices from different

vendors, even device from the same vendor with different version of CLI. This is the

biggest problem as compared with the standard SNMPCONF. However, the present

<framework is intended to present a solution to the problem that no configuration MID is

available rather than replacing SNMPCONF. This problem with configuration MID

occurs only during the transition stage from present to the whole support of SNMPCONF

or the devices which can not be upgrade to support SNMPCONF.

Another problem with the present implementation is how to build policy in

different abstraction levels according to the different requirements. Aceording to the

drafts, four levels of policy abstraction are deseribed from the lowest level of abstraction

to the highest, Instance-specifie, Meehanism-speeifie, Implementation-Specifie, and

Domain specifie. In order to build poliey abstraction in the different level, one approach

is to use MID as shown by the house light example (MacFaden, Saperia, and Tackabury,

2001). In the lower level, more deviee-specifie MIB that presents more details about the

device need to be defined. In the higher level, the common MIB or general purpose MID

might be used. In the house light example (Figure 7.1), the objective is to control the

light and temperature of a large building. In the implementation-specifie level, a

'standard' house lighting-MIB module is defined in which every parameter needed to

control the heating and air conditioning are presented as an MIB object. This module

contains both configuration and counter objects that allow operators to see how much

cooling or heating a particular configuration has consumed. At a mechanism specifie

78

level, a poUcy table that represents the configuration infonnation 1S also included. This

table in combination with the policy MIB Module will allow operators to configure many

rooms aIl at once, change the configuration parameters based on time of day, and make a

number of other sophisticated decisions based on policy. Therefore, using MIBs can

handle problems with policy abstraction, but the present solution cannot handle the policy

abstraction. In the high or low level, the accesor function wrapped from CU are the

same.

7.3 The Other Models

Sorne models other than SNMPCONF have been suggested to perfonn policy­

based network management (Mahon et al., 1999; Rajan et al., 1999) in recent years. It

would be interesting to compare these models with the present solution, we will compare

these related to SNMP with SNMPCONF.

Mahon et al. (1999) have discussed the sorne possible policy based approaches

with different protocols such as LDAP, S1'-.TMP, and HTTP. Because SNMPCONF is the

object ofthe present study, we only discuss the architecture ofLADP with SNMP (Figure

7.2).

In the architecture of LDAP, SNMP could be used as a transport method to

provide the notification using a 'Set' operation on a MIB, with infonnation about what

policy is to be used for each Policy Target for which the Policy Consumer is responsible.

The Policy Consumer in retum could send the status infonnation back to the Policy

79

SNMPAGENT

Instanee­
specifie

ImplementatlOn­
specifie

Â~ ,

1 b'

House Lighting
Policy MIB Module

,1"

f--

1 House Lighting MIB
Module

tL.-.-_

Policy-Based
Management MIB

Module

Figure 7.1 The house light control example

This example shows that with the abstraction level decreased from meehanism-

specifie to implementation-specifie, instance-specifie, them MIB modules inereased from

poliey Mill to House lighting Poliey Mill and House Lighting Mill Module (from

MaeFaden, Saperia, and Tackabury, 2001)

Management Application at any time using SNMP traps. In this case, SNMP is better to

be built on TCP than UDP, because ofreliability offered by TCP.

80

If SNMP could be used on an of the data paths in Policy-Based Management

(Figure 7.2) not only notifying the Policy Consumers of new Policy Data, but delivering

Policy Data as well, this will eliminate the need for the Policy Consumer to query the

Policy Repository.

Figure 7.2 shows how an an SNMP solution would look while still using an

LDAP enabled directory as an export mechanism to other PoUcy Management

Applications. Undetermined is any mechanism (or requirement) for notification to other

Management Applications ofnew policy.

This solution is similar to SNMPCONF, but use LDAP as a policy repository and

SNMP as a transport protoco!. LDAP is a protocol and stands for the Lightweight

Directory Access Protoco!. Lightweight, as opposed to its ancestor, the X.500 DAP

protocol (Wilcox, 1999). LDAP is basically a specialized database. Some of the

characteristics are:

1. H consists of entries organized in a hierarchy.

2. H favors reading over writing.

3. Every entry has a primary key called the Distinguished Name (DN).

4. Hs notion of schema is much more flexible than that of a RDBMS.

A typical use of an LDAP directory is to store information about entities like

people, offices, machines and that sort. But one could equaUy weU store most other

relatively static information in there, e.g. information about books or movies or cars, or

anything can describe by a set of attributes.

The obvious problem with this architecture is that LDAP is good at storing static

information, but not good to updating dynamic information. As we know, policy, on the

81

other hand, is dynamic and should he updated very often. Another prohlem is using

SNMP. One advantage of SNMP is its MID. If MID is not used, then SNMP is not

necessarily to he employed in this architecture. Besides, SNMP is not efficient to

transport information over network. It seems that this LDAP with SNMP solution is

using the shortage of each protocol.

In the ahove, the advantage of the framework present here is that it offers a way

for SNMPCONF to communicate with SNMPCONF unsupported network or devices and

many vendor-specific characteristics can be efficiently utilized.

Pohey Mmgt App.
Policy

-Pohey DI AI 1 LDAP 1
Repository

-Confliet deteet (Directory
-Notification Server)
-Mgmt repos.

;.

SNMP SNMP
Configuration and Poliey Data
status information

,
Pohey

Target .. Consumer Pohey Target...
B

Pohey
A

Figure 7.2. Network management with SNMP and LDAP and Policy

(modified from Mahon, Bernet and Herzog, 1999)

82

Cbapter 8

Conclusions

In this work, we proposed a Java framework to solve the problem how to

communicate between a SNMPCONF network and a SNMPCONF-unsupported network

or devices and implemented this framework with the help of Modular SNMP. Sorne

conclusions can be drawn:

1) CU and TL1 can be used to help deploying SNMPCONF in an existing

network where no configuration MID available.

2) A Java framework, which consists of a policy interpreter that supports the

policy language and functions wrapped from CU commands, and Modular

SNMP which is modified to support agent, is built to deploying SNMPCONF.

3) The modification of Modula SNMP is done through adding new PolicyMP

application and policy MIB to process policy messages.

4) Present study shows that policy configuration with CU can take advantage of

special characteristics of the device, because the CU commands best represent

the characteristics of vendors. The disadvantage is that special attention

should be placed on the different format and syntax of similar CU commands

by different vendors and different versions ofthe CU from the same vendoL

5) This study presents a possible solution to exchange management information

between a telecommunication network where TLl is used and an enterprise

network in which SNMP and CU are extensively deployed.

83

References

Aho AV. and ULLman, lD., 1974 PrirIciple of Compiler Design. Addison-Wesley

Reading, M.A. 644pp.

Aho AV., Sethi, R, and ULLman, J.D., 1986 Compilers: Principles, Teclmiques, and

Tools. Addison-Wesley Reading, M.A. 866pp.

Appel, AW., 1997, Modem Compiler Implementation III Java: Basic Teclmique.

Cambridge University Press. 398 pp.

Blumenthal, u., and B. Wijnen, 1999, User-based Security Model (USM) for version 3 of

the Simple Network Management Protocol (SNMPv3), RFC 2574.

Case, J., Fedor, M., Schoffstall, M. and Davin, J., 1990, A Simple Network Management

Protocol (SNMP). RFC 1157.

Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, 1996a, Introduction to

Community-based SNMPv2. RFC 1901.

Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, 1996b, Transport Mappings for

Version 2 of the Simple Network Management Protocol (SNMPv2). RFC 1906.

84

Case, J., Harrington D., Presuhn R., and Wijnen B., 1999, Message Processing and

Dispatching for the Simple Network Management Protocol (SNMP). RfC 2572.

Cherkaoui, Omar, Hillaire, Y. S., Mili, H., Serouchi, A., 1998, Towards a Modular and

interoperable SNMPv3. IEEE, 391-394.

Cisco System, 1998, Cisco lOS configuration Fundamentals. Cisco Press. 1448pp.

Erfani, Shervin, Lawrence, V. B., Malek, M., and Sugla B., 1999, Network Management:

Emerging Trends and Challenges. Bell Labs Technical Journal vA, NoA, 3-22.

Feit, Sidnie M. 1994, SNMP: A Guide to Network Management. McGraw Hill. 674pp.

Hazewinkel, H., and Partain, D., 2001, The DiffServ Policy MIB. Draft-ietf-snmpconf­

diffpolicy-04.txt. http:://www.ietf.org

Hossain, Ashfaq, Shu, H.F., Gasman, C. R., and Royer, R. A., 1999, Policy-based

Network Load Management. Bell Labs Technical Journal VA, NoA, 75-94.

Hudson, Scott, 2001, CUP User's Manual.

http://www.cs.princeton.edu/~appel/modem/java /CUPImanual.html

Lumos, 2001, TL1 Beginne s Guide. http://www.tl1.com/library/TLl/Overview/.

85

Lupu, E. and Sloman, M., 1997, Conflict Analysis for Management Policies. Fifth

IFlP/IEEE International Symposium on Integrated Network Management IM'97, San­

Diego, May 1997, Chapman & Hall Publishers, pp 430-443.

Lupu, E. and Sloman, M., 1999, Confiicts in Policy-based Distributed Systems

Management. IEEE Transactions on Software Engineering - Special Issue on

Inconsistency Management, Vol 25, No. 6, Nov. 1999, pp.852-869

MaeFaden, M., Saperia l, and Tackabury, W., 2001, Configuring Networks and Deviees

With SNMP. Draft-ietf-snmpeonf-bcp-05.txt. http://www.ietf.org.

Mahon, H., Bernet, Y., Herzog, S., 1999, Requirements For A Policy Management

System. Draft-ietf-plolicy-req-01.txt, http://www.itef.org/.

Mak R., 1996. WritingCompilers and Interpreters. (2nd edition) John Wiley & Sons Ine.

8383pp.

Marriott, D. and Sloman, M., 1996, Management Poliey Service for Distributed Systems.

Proc. IEEE Third International Workshop on Service in Distributed and Networked

Environments (SDNE 96), Macau, 2-9.

McCloghrie, K. and Rose, M., 1991, Management Information Base for Network

Management of TCP/lP-based Internets: MIB-II. RFC 1213.

86

McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser,

1999a, Structure of Management Information Version 2 (SMlv2). STD 58, RFC 2578.

McCloghrie, K., Perkins, D., Sehoenwaelder, J., Case, J., Rose, M., and S. Waldbusser,

1999b, Textual Conventions for SMlv2. STD 58, RFC 2579.

McCloghrie, K., Perkins, D., Schoenwae1der, J., Case, J., Rose, M., and S. Waldbusser,

199ge, Conformance Statements for SMlv2. STD 58, RFC 2580.

Mellquist, Peter Erik, 1997, SNMP: An Objeet-Oriented Approach To Developing

Network Management Applications. Prentice Hall. 239p.

Moffett, J.D. and Lupu, E.C., 1999, The Uses of Hierarchies in Aeeess ControL Fourth

ACM Role Based Aecess Control (REAC) Workshop, Fairfax, Virginia, USA, Oct. 28­

29, 1999.

Orfali R., Harkey D., and Edwards J., 1994, Essential Client/Server Survival Guide. John

Wiley & Sons Ine. 527pp.

Parr T.J. , 2001, What's An ANTLR? http://www.antlr.org /peets133.html.

87

Rajan, R., Verma, D., Kamat, S., Felstaine, E., Herzog, E., 1999, A Policy Framework for

Integrated and Differentiated Services In The Internet. IEEE Network Sept/Oct., 36-41.

Rose, M. and McCloghrie, K., 1990, Structure and Identification of Management

Information for TCPIIP-based Internets. RFC 1155

Simuneau, Paul, 1999, SNMP Network Management. McGraw-Hill. 477pp.

Sloman, M. and Lupu, E., 1999,Policy Specification for Programmable Networks.

Extended version of paper in Proceedings of First International Working Conference on

Active Networks (IWAN'99). Berlin, June 1999, ed. S. Covaci, published by Springer

Verlag Lecture Notes in Computer Science

Stallings, William, 1996 SNMP, SNMPv2, and RMüN: Practical Network Management.

2nd Edition, Addison-Wesley Pub Co. 478pp.

Stevens M. L. and Weiss Walter J., 1999a, Policy-Based Management for IP Network.

Bell Labs Technical Journal v4, No.4, 75-94.

Stevens M. L., Weiss Walter J., Mahon, H., Moore, B., Strassner, J., Waters, G.,

Westerinen, A., and Wheeler, J., 1999b, Policy Framework. Draft-ietf-policy­

framework-OO.txt, http://www.itef.org.

88

Stevens, W. Richard, 1990, UNIX Network Programming. Prentiee Hall, Englewood

Cliffs, NJ, 772pp.

Sun Mierosystem, 2001, JavaCC The Java Parser Generator.

http://www.webgain.eom/produets/metamataljava_doe.html.

Waldbusser S., Saperia, J., and Hongal T., 2001, Poliey Based Management Mill. Draft­

ietf-snmpconf-pm-06.txt, http://www.itef.org.

Wileox, Mark, 1999, Implementing LDAP. Wrox Press Ud., 493pp.

89

Appendix A RFCs which defined MID

Number 'rWe Author or Ed. Date More 10fo
(Obs&Upd)

RFC3144 Remote Monitoring MIB Extensions for Interface D. Romascanu August
Parameters Monitoring 2001

RFC3014 Notification Log MIB R. Kavasseri November
2000

RFC2982 Distributed Management Expression MIB R. Kavasseri (Editor of October
'this version) 2000

RFC2981 EventMIB R. Kavasseri (Editor of October
this version) 2000

RFC2934 Protocol Independent Multicast MIB for IPv4 K. McCloghrie, D. October
Farinacci, D. Thaler, B. 2000
Fenner

RFC2933 Internet Group Management Protocol MIB K. McCloghrie, D. October
Farinacci, D. Thaler 2000

RFC2932 IPv4 Multicast Routing MIB K. McCloghrie, D. October
Farinacci, D. Thaler 2000

RFC2922 Physical Topology MIB A. Bierman, K. Jones September
2000

RFC2896 Remote Network Monitoring MIB Protocol A. Bierman, C. Bucci, R. August
Identifier Macros Iddon 2000

RFC2895 Remote Network Monitoring MIB Protocol A. Bierman, C. Bucci, R. August Obsoletes
Identifier Reference Iddon 2000 RFC2074

RFC2864 The Inverted Stack Table Extension to the K. McCloghrie, G. June 2000
Interfaces Group MIB Hanson

RFC2863 The Interfaces Group MIB K. McCloghrie, F. June 2000 Obsoletes
Kastenholz RFC2233

RFC279ü Host Resources MIB S. Waldbusser, P. Grillo March 2000 Obsoletes
RFC1514

RFC2789 Mail Monitoring MIB N. Freed, S. Kille March 2000 Obsoletes
RFC2249,
RFC1566

RFC2788 Network Services Monitoring MIB N. Freed, S. Kille March 2000 Obsoletes
RFC2248

RFC2737 Entity MIB (Version 2) K. McCloghrie, A. December Obsoletes
Bierman 1999 RFC2037

RFC272ü Traffic Flow Measurement: Meter MIB N. Brownlee October Obso1etes
1999 RFC2064

RFC2708 Job Submission Protocol Mapping R. Bergman November
Recommendations for the Job Monitoring MIB 1999

RFC27ü7 Job Monitoring MIB - Vl.O R. Bergman, T. Hastings, November
S. Isaacson, H. Lewis 1999

RFC2669 DOCSIS Cable Deviee MIB Cable Deviee M. St. Johns, Ed. August
Management Information Basefor DOCSIS 1999
comvliant Cable Modems and Cable Modem

90

Termination Systems

RFC2667 IP Tunnel MIR D. Thaler August
1999

RFC2621 RADIUS Accounting Server MIR G. Zorn, B. Aboba June 1999

RFC2620 RADIUS Accounting Client MIR B. Aboba, G. Zorn June 1999

RFC2619 RADIUS Authentication Server MIR G. Zorn, B. Aboba June 1999

RFC2618 RADIUS Authentication Client MIB B. Aboba, G. Zorn June 1999

RFC2613 Remote Network Monitoring MIB Extensions for R. Waterman, B. Lahaye, June 1999
Switched Networks Version 1.0 ,D. Romascanu, S.

Waldbusser

RFC2605 DirectOlY Server Monitoring MIB G. Mansfield, S. Kille June 1999 Obsoletes
RFC1567

RFC2593 Script MIB Extensibility Protocol Version 1.0 1. Schoenwae1der, J. May 1999
Quittek

RFC2564 Application Management MIB C. Ka1hfleisch, C. May 1999
Krupczak, R. Presuhn, J.
Saperia

RFC2562 Definitions ofProtocol and Managed Objects for K. White, R. Moore April 1999
TN3270E Response Time Collection Using
SMIv2 (TN3270E-RT-MIB)

RFC2493 Textual Conventions for MIB Modules Using K. Tesink, Ed January
Performance History Based on 15 Minute 1999
Intervals

RFC2438 Advancement ofMIB specifications on the IETF M.O'DeU,H. October
BCPOO27 Standards Track Alvestrand, B. Wijnen, S. 1998

Bradner

RFC232ü Definitions ofManaged Objects for Classical IP M. Greene, J. Luciani, K. April 1998
and ARP Over ATM Using SMIv2 (IPOA-MIB) White, T. Kuo

RFC2249 Mail Monitoring MIB N. Freed, S. Kille January Obsoletes
1998 RFC1566,

Obsoleted by
RFC2789

RFC2248 Network Services Monitoring MIB N. Freed, S. Kille January Obsoletes
1998 RFC1565,

Obsoleted by
RFC2788

RFC2233 The interfaces Group MIB using SMIv2 K. McCloghrie, F. November Obsoletes
Kastenholz 1997 RFC1573,

Obsoleted by
RFC2863

RFC2096 IP Fonvarding Table MIB F. Baker January Obsoletes
1997 RFC1354

RFC2ü74 Remote Network Monitoring MiB Protocol A. Bierman, R. Iddon January Obsoleted by
Identifiers 1997 RFC2895

RFC2ü64 TrajJic Flow Measurement: Meter MIB N. Brownlee January Ohsoleted by
1997 RFC2720

RFC2039 Avvlicabilitv ofStandards Track MIBs to C. Kalhfleisch November

91

Management of WorId Wide Web Servers 1996

RfC2037 Entity MIB using SMIv2 K. McCloghrie, A. October Obsoleted by
Bierman 1996 RFC2737

RFC202ü IEEE 802.12 [nte/face MIB J. Flick October
1996

RfC1792 TCPIIPX Connection Mib Specification T.Sung April 1995

RfC1759 PrinterMIB R. Smith, F. Wright, T. March 1995
Hastings, S. Zilles, J.
GyUenskog

'RFC1749 IEEE 802.5 Station Source Routing MIB using K. McCloghrie, F. Baker, December Updates
SMIv2 E. Decker 1994 RFC1748

RFC1748 IEEE 802.5 MIB using SMIv2 K. McC1oghrie, E. December Obso1etes
Decker 1994 RFC1743,

RFC1231,
Updated by
RFC1749

RFC1743 IEEE 802.5 MIB using SMIv2 K. McCloghrie, E. December Obsoletes
Decker 1994 RFC1231,

Obsoleted by
RFC1748

RfC1724 RIP Version 2 MIB Extension G. Malkin, F. Baker November Obsoletes
1994 RFC1389

RfC1697 ReIationaI Database Management System D. Brower, Editor, B. August
(RDBMS) Management Information Base (MIB) Purvy, RDBMSMIB 1994
usingSMlv2 Working Group Chair, A.

Daniel, M. Sinykin, J.
Smith

RFC1696 Modem Management Information Base (MIB) 1. Bames, L. Brown, R. August
usingSMlv2 Royston, S. Waldbusser 1994

RFC1612 DNS Resolver MIB Extensions R. Austein, J. Saperia May 1994

RFC1611 DNS Servel' MIB Extensions R. Austein, J. Saperia May 1994

RFC1593 SNA APPN Node MIB W. McKenzie, J. Cheng March 1994

RFC1573 Evolution ofthe 1nterfaces Group ofMIB-Il K. McCloghrie, F. January Obsoletes
Kastenholz 1994 RFC1229,

Obsoleted by
RFC2233

RFC1567 X.500 DirectOlY Monitoring MIB G. Mansfield, S. KiHe January Obsoleted by
1994 RFC2605

RFC1566 Mail Monitoring MIB S. KiIle, N. Freed January Obsoleted by
1994 RFC2249,

RFC2789

RFC1565 Network Services Monitoring MIB S. KiIle, N. Freed January Obsoleted by
1994 RFC2248

RFC1559 DECnet Phase IV MIB Extensions 1. Saperia December Obsoletes
1993 RFC1289

RFC1514 Host Resources MIB P. Grillo, S. Waldbusser September Obsoleted by
1993 RFC279ü

92

RFC1513 Tokai Ring Extensions to the Remote Network S. Waldbusser September Updates
Monitoring MIB 1993 RFC1271

RFC1461 SNMP MIE extension for Multiprotocol D. Throop May 1993
Interconnect over X25

RFC1447 Party MIB for version 2 ofthe Simple Network K. McCloghrie, J. Galvin April 1993
Management Protocol (SNMPv2)

RFC1414 Identification MIB M. St. Johns, M. Rose February
1993

RFC1389 RIP Version 2 MIB Extensions G. Ma1kin, F. Baker January Obsoleted by
1993 RFC1724

RFC1382 SNMP MIB Extension for the X25 Packet Layer D. Throop November
1992

RFC1381 SNMP MIB Extension for X25 LAPB D. Throop, F. Baker November
1992

RFC1369 Implementation Notes and Experience for the F. Kastenholz October
Internet Ethernet MIB 1992

RFC1354 IP FOlWarding Table MIB F. Baker July 1992 Obsoleted by
RFC2096

RFC1289 DECnet Phase IV MIB Extensions J. Saperia December Obsoleted by
1991 RFC1559

RFC1239 Reassignment ofexperimental MIBs ta standard J.K. Reynolds Jun-Ol- Updates
MIBs 1991 RFC1229,

RFC1230,
RFC1231,
RFC1232,
RFC1233

RFC1238 CLNS MIB for use with Connectionless Network G. Satz Jun-01- Obsoletes
Protocol (ISO 8473) and End System to 1991 RFC1162
Intermediate System (ISO 9542)

RFC1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, May-Ol- Obsoleted by
E. Decker 1991 RFC1743,

RFC1748,
Updated by
RFC1239

RFC1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox May-01- Updated by
1991 RFC1239

RFC1229 Extensions to the generic-inte1face MIB K. McCloghrie May-01- Obsoleted by
1991 RFC1573,

Updated by
RFC1239

RFC1227 SNMP MUXprotocol and MIB M.T.Rose May-Ol-
1991

RFC1213 Management Information Base for Network K. McCloghrie, M.T. Mar-01- Obsoletes
STDOO17 Management of TCPIIP-based internets:MIB-II Rose 1991 RFC1158,

Updated by
RFC2011,
RFC2012,
RFC2013

93

RFC1212 Concise MIB definitions
STD0016

M.T. Rose, K.
McCloghrie

Mar-Ol­
1991

RFC1158 Management Information Basefor network M.T. Rose
management ofTCPIIP-based internets: MIB-II

Data source:http:// www.ietf.org

May-Ol­
1990

Obsoletes
RFC1065
Obsoleted by
RFC1213

94

Appendix B JavaCC JJtree speciation for PoHcy Language

//simple polciy language

options {
MULTI=truei

PARS ER_BEG IN (SPLParser)

public class SPLParser {
}

PARSER_END(SPLParser)

Il "

SKIP :
{

l "\t"
l "\n"
l "\r"
l "\f"
}

/* WHITE SPACE */

TOKEN : /* Types */
{

< INT: "int" >
1< BOOL: "boolean" >
1<STRING: "string">
1 <FLOAT: "float" >

}

< INTEGER LITERAL: «DIGIT»+ >

TOKEN
{

}

: /* LITERALS */

TOKEN: /*snmp general function name*/
{
<GETVAR: "getvar" >
I<EXISTS:"exists">
1 <SETVAR: "setvar" >
1 <SEARCHCOLUMN: "searchcolumn" >
I<SETROWSTATUS:"setrowstatus">
!<COUNTERRATE:"counterrate">
1 <COUNTER32DELTA: "counter32Delta">
1 <NEWPDU: "newpdu" >
1<WRITEVAR: "writevar">
1 <READVAR: "readvar">
1 <SNMPSEND: "snmpsend">
1 <ROLEMATCH: "roleMatch">
1<CAPMATCH: "capMatch">
1<ELEMENTNAME: "elementName" >
I<IC;"ic">

95

1<IV: "iv">
1 <SETSCRATCHPAD: "setScratchpad">
1<GETSCRATCHPAD:"getScratchpad">
1<SIGNALEXCEPTION: "signalException">
1<GETPARAMETERS:"getParameters">
1<REGEXP: "regexp">
!<REGEXP_REPLACE:"regexp_replace">
1 <OIDLEN: "oid_len" >
I<OIDNCMP:"oidncmp">
1 <INSUBTREE: "insubtree">
1 <SUBID: "subid">

·1 <SUBIDWRITE: "subidwrite">
1 <OIDSPLICE: "oidsplice">
1 <PARSEINDEX: "parseindex" >
1<STRINGTODOTTED:"stringToDotted">
//I<STRIING:"String"> not implemented in this version, because we use
string as a type
//I<INTEGER:"integer"> not implemented in this version, because we use
string as a type
\<TYPE:"type">
1<CHR: "chr">
I<SUBSTR:"substr">
I<STRNCMP:"strncmp">
1<STRNCASECMP: "strncasecmp">
I<STRLEN:"strlen">
I<RANDOME:"randome">
I<SPRINTF:"sprintf">
1<SSCANF: "sscanf">
\<STDACCESSLIST:"stdaccesslist">
}

/*
* Program structuring syntax follows.

*/

void CompilationUnit()

String namej

VarDeclaration()

Statement ()

) *
<EOF>

void VarDeclaration()
Token tj }

Il. If
/

"boolean" { jjtThis.type "BOOL" j }

96

"int" { jjtThis.type = "INT"; }
l''string'' {jjtThis.type = "String";

)

t = <IDENTIFIER>
{ jjtThis.name = t.imagei }

/*
* Expression syntax follows.
*/

. void Expression() #void:
{ }
{
LOOKAHEAD(PrimaryExpression() "=" <STRING LITERAL>

StringAssignment()

1
LOOKAHEAD(PrimaryExpression() "="

Assignment ()

ConditionalOrExpression()
1

}
void

{}
{

StringAssignment() #StringAssignment(2)

PrimaryExpression () "=" <STRING LITERAL>

void Assignment() #Assignment(2)
{}
{

primaryExpression() ":" Expression()

void ConditionalOrExpression() #void
{}
{

ConditionalAndExpression()
("II" ConditionalAndExpression () #OrNode (2)) *

void ConditionalAndExpression() #void
{}
{

InclusiveOrExpression()
("&&" InclusiveOrExpression() #AndNode (2)) *

void InclusiveOrExpression() #void
{}
{

ExclusiveOrExpression()
("1" ExclusiveOrExpression() #BitwiseOrNode (2)) *

97

void ExclusiveOrExpression() #void
{}
{

AndExpression ()
(""',, AndExpression () #BitwiseXorNode (2)) *

void AndExpression() #void
{}
{

EqualityExpression()
("&" EqualityExpressionO #BitwiseAndNode(2)) *

void EqualityExpression() #void
{}
{

RelationalExpression()
(

"==" RelationalExpressionO #EQNode(2)

"!=" RelationalExpressionO #NENode(2)
) *

void RelationalExpression() #void
{}
{

AdditiveExpression()
(

"<" AdditiveExpressionO #LTNode(2)

">" AdditiveExpressionO #GTNode(2)

"<=" AdditiveExpression 0 #LENode (2)

">=" AdditiveExpression 0 #GENode (2)
) *

void AdditiveExpression() #void
{}
{

MultiplicativeExpression()
(

"+Ii MultiplicativeExpression() #AddNode(2)

"_Ii MultiplicativeExpression() #SubtractNode(2)
) *

void MultiplicativeExpression() #void
{}
{

UnaryExpression()
(

98

"*" UnaryExpression() #MulNode (2)

"/" UnaryExpression() #DivNode (2)

" %" UnaryExpre s sion () #ModNode (2)

) *

UnaryExpression() #NotNode(l)

UnaryExpression() #BitwiseCompINode(l)

Il ! H

"_II

void UnaryExpression() #void
{}
{

1

1

PrimaryExpression()

String name;

void PrimaryExpression() #void
{

}
{
function ()

1 Literal()

1
Id ()

"(,, Expression() ")"

void Id () :

Tbken t;

t = <IDENTIFIER> {jjtThis.name t. image; }

void Literal() #void

Token ti

jjtThis.val = Integer.parseInt(t.image);

{

}
{

(

t=<INTEGER LITERAL>
{

}
)#IntConstNode

1
BooleanLiteral()

1 (t=<STRING_LITERAL>
{

jjtThis.val = t.toString();

99

}
)#StringConstNode

void BooleanLiteral() #void
{}
{

"true" #TrueNode

"false" #FalseNode

/*
* Statement syntax follows.
*/

li ~ il
1

void
{}
{

1

Statement() #void

LOOKAHEAD (2)
LabeledStatement()

Block ()

StatementExpression()

IfStatement ()

WhileStatement()

IOStatement ()

LabeledStatement() #void

<IDENTIFIER>

void
{ }
{

}
If. Il Statement()

Il { Il

void
{}
{

}

Block ()

(Statement ()) * "},,

void StatementExpression () ":

/*
* The last expansion of this production accepts more than the legal
* SPL expansions for StatementExpression.
*/

{}
{

100

Assignment () Il 4 fi,

void IfStatement(} :
/*
* The disambiguating algorithm of JavaCC automatically binds dangling
* else's to the innermost if statement. The LOOKAHEAD specification
* is to tell JavaCC that we know what we are doing.

*/
{ }
{

"if" ,,(" ExpressionO ")" StatementO [I,.OOKAHEAD(l} "else"
"Statement 0]

}

"while"

void
{}
{

}

WhileStatement ()

"(" Expression() li}" Statement(}

ReadStatement(}

Wri teStatement ()

void IOStatement() #void
{ String name i }

{

1

}

void ReadStatement(}
Token t i }

"read" t = <IDENTIFIER>
{ jjtThis.name = t.imagei

void writeStatement()
Token t i }

"write" t = <IDENTIFIER>
{ jjtThis.name = t.image;

}
//added to test functions, zhifeng
void function()#void :
{
}

{
GETVARFUNCTION()
1EXISTSFUNCTION()
1SETVARFUNCTION()
ISEARCHCOLUMNFUNCTION()
1SETROWSTATUSFUNCTION()
1 COUNTERRATEFUNCTION()
1 NEWPDUFUNCTION()
IWRITEVARFUNCTION()
1READVARFUNCTION ()
1SNMPSENDFUNCTION()

101

1ROLEMATCH ()
1CAPMATCH ()
1ELEMENTNAME ()
1IC()
IIV()
1SETSCRATCHPAD ()
1GETSCRATCHPAD ()
ISIGNALEXCEPTION()
1GETPARAMETERS ()
1REGEXP ()
1REGEXP_REPLACE()
1OIDLEN ()
IOIDNCMP ()
1INSUBTREE ()
1SUBID ()
1SUBIDWRITE ()
1OIDSPLICE ()
1PARSEINDEX ()
ISTRINGTODOTTED()
Il 1<STRIING: "String"> not implemented in this version, because we use
string as a type
Il 1<INTEGER: "integer"> not implemented in this version, because we use
string as a type
1TYPE ()
1CHR ()
ISUBSTR()
1STRNCMP ()
1STRNCASECMP ()
1STRLEN ()
IRANDOME ()
1SPRINTF ()
1SSCANF ()
1STDACCESSLIST ()
}
void GETVARFUNCTION() ;

{ Token ti}

{
t=<GETVAR>
Il 1<EXISTS>1 <SETVAR>1 <SEARCHCOLUMN>1 <SETROWSTATUS>1 <COUNTERRATE> 1<NEWPD
u> 1 <WRITEVAR>
Il 1<READVAR> 1<SNMPSEND»

{ jjtThis.name = t.imagei} "(" Id() ")"

}
void EXISTSFUNCTION() ;

{Token ti

}

{
t= <EXISTS>
Il 1<SETVAR> 1<SEARCHCOLUMN> 1<SETROWSTATUS> 1<COUNTERRATE> 1<NEWPDU> 1<WRITE
VAR>
Il 1<READVAR> 1 <SNMPSEND»

{ j j tThis . name = t. image i} "(" Id () ("," Id ()) * ")"

102

}
void SETVARFUNCTION() :

{Token ti
}

{
t= <SETVAR>
1/1 <SEARCHCOLUMN> 1 <SETROWSTATUS> 1 <COUNTERRATE> 1 <NEWPDU> 1 <WRITEVAR>
1/1 <READVAR > 1 <SNMPSEND»

jjtThis.name = t.image;} Ii(" Id() (Il il, Id ()) * ")"

void SEARCHCOLUMNFUNCTION() :
{Token ti

}

{
t= <SEARCHCOLUMN>
//1 <SETROWSTATUS> 1<COUNTERRATE> 1<NEWPDU> 1<WRITEVAR>
I/I<READVAR>I<SNMPSEND»

j j tThis . name = t. image i} li (Ii Id () (", li Id ()) * li) li

void SETROWSTATUSFUNCTION() :
{Token ti

}

{
t= <SETROWSTATUS>
//<COUNTERRATE> 1<NEWPDU> 1<WRITEVAR>
//I<READVAR>I<SNMPSEND»

jjtThis.name = Limage;} 1i(1i Id()

void COUNTERRATEFUNCTION() :
{Token ti

}

{
t= <COUNTERRATE>
//<NEWPDU> 1 <WRITEVAR>
//I<READVAR>I<SNMPSEND»

li," Id()) * li) li

{jjtThis.name = t.imagei} li (Ii Id() (1i,1i Id())* 1i)1i

}
void NEWPDUFUNCTION() :

{Token ti
}

103

{
t= <NEWPDU>
I/<NEWPDU>1 <WRITEVAR>
Il 1<READVAR>1 <SNMPSEND»

{ jjtThis.name = t.imagei} il (JI Id () (" " Id ()) * ") Il,

}
void WRITEVARFUNCTION() :

{Token ti
}

{
t= <WRITEVAR>
Il <NEWPDU> 1<WRITEVAR>
Il 1<READVAR>1<SNMPSEND»

{ jjtThis.name = t.imagei} Il (Il Id () (Il Il Id ()) * li) Il,

}

void READVARFUNCTION() :
{Token ti

}

{
t= <READVAR>
//<NEWPDU>1 <WRITEVAR>
//1 <READVAR>1<SNMPSEND»

{ jjtThis.name = t.image;} Il (n Id () (" " Id ()) * 11) 11
1

}
void SNMPSENDFUNCTION() :

{Token ti
}

{
t= <SNMPSEND>
//<NEWPDU> 1<WRITEVAR>
//I<READVAR>I<SNMPSEND»

jjtThis.name = t.image;} Il (Ii Id () (" Il Id ()) * ") if
1

void ROLEMATCH() :
{

Token ti

}

{
t= <ROLEMATCH>

jjtThis.name t. image;} "(Il Id () (", Il Id ()) * "),,

104

void CAPMATCH() :
{

Token t;
}

{
t= <CAPMATCH>

{ jjtThis.name

, }

t. image;} Il (" Id () (", Il Id ()) * ") Il

void ELEMENTNAME():
{

Token t;
}

{
t= <ELEMENTNAME>

jjtThis .name = t. image;} Il (" IdO (", Il Id()) * ") Il

void IC () :
{

Token t;
}

{
t= <IC>

jjtThis.name

void IV() :
{

Token t;
}

{
t= <IV>

t. image i} Il (" ") Il

{ jjtThis.name = t.image;} "(" PrimaryExpression{) ") Il

//here PrimaryExpression() should be an int

void SETSCRATCHPAD() :
{

Token t;
}

{
t= <SETSCRATCHPAD>

105

{ j j tThis. name = t. image;} "(" primaryExpression () " , "
PrimaryExpression()"," PrimaryExpression()")"

void GETSCRATCHPAD() :
{

Token t;
}

3
t= <GETSCRATCHPAD>

{ jjtThis.name = t.image;} "(" PrimaryExpression()","
PrimaryExpression () " ," PrimaryExpression () ,,) "

}

void SIGNALEXCEPTION() :
{

Token t;
}

{
t= <SIGNALEXCEPTION>

jjtThis.name = t.image;} "(" ")"

void GETPARAMETERS():
{

Token t;
}

{
t= <GETPARAMETERS>

jjtThis.name = t.image;} "(" ")"

void REGEXP() :
{

Token t;
}

{
t= <REGEXP>

{ j j tThis. name = t. image; } " (" primaryExpression () " , "
PrimaryExpression() "," PrimaryExpression()

("," PrimaryExpression ()) *") "

106

void REGEXP REPLACE():
{ -

Token t;
}

{
t= <REGEXP REPLACE>

{ jjtThis.name = t.image;} "(,, PrimaryExpression() ","
PrimaryExpression() "," PrimaryExpression() ")"

void OIDLEN() :
{

Token t;
}

{
t= <OIDLEN>

{ jjtThis.name

void OIDNCMP() :
{

Token t;
}

{
t= <OIDNCMP>

t.image;} "(" PrimaryExpressionO il) li

{ jjtThis.name = t.image;} "(" PrimaryExpression()","
primaryExpression()"," PrimaryExpression()")"
jj(string,string, int)
}

void INSUBTREE() :
{

Token t;
}

{
t= <INSUBTREE>

jjtThis.name

void SUBID() :
{

Token t;

t . image;} li (" Id () "," Id ()) * ")"

107

}

{
t= <SUBID>

{ j j tThis. name

}

t. image;} "(Il Id () (li Il
J Id ()) * ")"

void SUBIDWRITE();
{

Token t;
}

{
t= <SUBIDWRITE>

{jjtThis.name = t.image;} "(" Id() (

}

void OIDSPLICE() :
{

Token t;
}

{
t= <OIDSPLICE>

Il ", Id()) * ")"

{ jjtThis.name

}

t. image;} ,,(Il Id () (11 If
J Id ()) * ")"

void PARSEINDEX() :
{

Token t;
}

{
t= <PARSEINDEX>

jjtThis.name = t.image;} Il (" Id() (

void STRINGTODOTTED() :
{

Token t;
}

{
t= <STRINGTODOTTED>

{ jjtThis.name = t.image;} Il (" Id() (

Il 11,

Il "J

Id ()) * ") Il

Id ()) * ")"

108

//I<STRIING:"String"> not implemented in this version, because we use
string as a type
//I<INTEGER:"integer"> not implemented in this version, because we use
string as a type
void TYPE () :

{
Token t;
}

{
t= <TYPE>

jjtThis.name

void CHR(}:
{

Token ti
}

{
t= <CHR>

jjtThis.name

void SUBSTR(} :
{

Token ti
}

{
t= <SUBSTR>

jjtThis.name

void STRNCMP () :
{

Token t;
}

{
t= <STRNCMP>

jjtThis.name

t.image;} "(" Id()

t. image i} Il (" Id ()

t. image i} Il (" Id ()

t. image;} Il (" Id ()

"," Id()) * ") Il

", Il Id(} }* ") Il

"," Id(} }* "}"

", Il Id () } * ")"

void STRNCASECMP(} :

109

Token t·,
}

{
t= <STRNCASECMP>

{ jjtThis.name = t. image; } n (if Id () (" " Id ()) * n) 11
1

}

void STRLEN() :
{

Token t;
}

{
t= <STRLEN>

{ jjtThis.name t.image;} ,,(Il Id () (" Il Id()) * Il) Il
1

}

void RANDOME() :
{

Token ti
}

{
t= <RANDOME>

jjtThis.name t. image;} " (" Id () (" Il Id ()) * Il) Il
1

void SPRINTF() :
{

Token ti

}

{
t= <SPRINTF>

{ jjtThis.name

}

void SSCANF() :
{

Token ti

}

{
t= <SSCANF>

{ jjtThis.name

}

t. image i} "(,, Id () (

t . image;} Il (" Id () (

" Il1

Il Il
1

Id ()) * "),,

Id ()) * ")"

110

void STDACCESSLIST() ;
{

Token t;
}

{
t= <STDACCESSLIST>

{ jjtThis.name = t.image;}
PrimaryExpression() "),,

"(" PrimaryExpression() il H,

< IDENTIFIER: <LETTER> «LETTER>!<DIGIT»* >

TOKEN ; /* IDENTIFIERS */
{

1
<STRING_LITERAL: "\"" (-["\"","\\","\n","\r"] l "\\"

(["n","t","b","r","f","\\","\''',''\''''] 1 ["0"-"7"] (["0"-"7"])?
"3"] ["0"-"7"] ["0"-"7"])* "\"">

< #LETTER: ["a"-"z", "A"-"Z"] >

< #DIGIT: ["0"-"9"] >

[" 0"-

III

Appendix C Glossary

ASN.l
BGP
Bep
CCITT
Cisco lOS
CU
DN
DES
DNS
DS
FTP
HTTP
IAB
IETF
IP
ISO
LDAP
MID
MD5
NME
NVRAM
om
PDU
QoS
RAM
RDBMS
RED
RFC
SMI
SNMP
SNMPCONF
TCP
TLI
UDP
USM
VACM
WRED
X.500
YACC

Abstract Syntax Notation 1
Border Gateway Protocol
Best CUITent Practice
International Telegraph and Telephone Consultative Committee
Ciseo Internet Operating System
Command Line Interface
Distinguished Name
Data Encryption Standard
Domain Name System
differentiated services
File Transfer Protocol
Hyper Text Transfer Protocol
Internet Architecture Board
Internet Engineering Task Force
Internet Protocol
Internet Standard Organization
Lightweight Directory Access Protocol
Management Information Base
message-digest algorithm version 5
Network Management Entity
Non voltaile RAM
Object ID
Protocol Datagram Unit
Quality of Service
Random Access Memory
Relational Database Management System
Random Early Detection
Requests for Comments
Stmcture and Identification ofManagement Information
Simple Network Management Protocol
Policy Based Configuration with SNMP
Transmission control protocol
Transaction Language 1
User Datagram Protocol
User-based Security Model
View-based Access Control model
Weighted Random Early Detection
A CCITT specification for directory services
Yet Another Complier Compiler

112

