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Abstract

One of the primary objectives of adaptive finite element analysis research is to
determine how to effectively discretize a problem in order to obtain a sufficiently
accurate solution efficiently. Consequently, a major research issue in adaptive finite
clement analysis is the feedback control system used to guide the adaption; essentially,
one needs to resolve which error data to feed back after each iteration, and how to use
it to initialize the next adaptive step. Currently, there exists substantial evidence sug-
gesting that the optimality of a finite element discretization plays a significant role in
the accuracy of computed solutions at given levels of problem refinement. Therefore,
in order to exploit the potential benefits in adaptive finite element methods, the char-
acterization of optimal finite element discretizations has been investigated extensively.
However, valid criteria for characterizing optimal finite element discretizations for a
sufficiently wide range of problem applications have not been reported. A theoreti-
cal formulation for the numerical study of optimal finite element solutions to partial
differential equations of macroscopic electromagnetics is presented. The formulation
is based on variational aspects of optimal discretizations for Helmholtz systems that
are closely related to the underlying stationarity principle used in computing finite
clement solutions to continuum problems. The optimal characteristics of approxi-
mate finite element solutions, as predicted by the theory and observed numerically,
have been employed to develop new optimal discretization-based feedback refinement
criteria for use with advanced strategy adaption models in finite element electromag-
netics. Numerical tests indicate that they are effective and economical for efficiently
and reliably guiding practical h-, p- and Ap-type adaption models towards accurate
solutions.

[n addition, a series of important benchmark adaption problems are introduced
to examine the validity of the theoretical concepts and the practical value of the
new refinement criteria. Moreover, many of the computational and theoretical diffi-
culties inherent in the currently available characterizations of optimal finite element
discretizations are explained and illustrated with numerical results computed for the

same benchmark problems.



Résumé

Un des objectifs principaux de recherche d’analyse des éléments finis adaptifs
est de déterminer comment discrétiser un probleme afin d’obtenir une solution ef-
ficiente et en meéme temps suffisamment précise. Par conséquent. une question de
recherche majeure dans I’analyse des éléments finis adaptifs est le systéme de contrdle
de rétroactions utilisé pour diriger I'adaption: essentiellement. il est nécessaire de
résoudre quelles données d’erreur a calculer aprés chaque itération, et comment les
utiliser afin d’initialiser ’étape adaptive subséquente. Il existe présentement des
évidences substantielles dans la revue de la documentation qui suggerent que 'opti-
malité d’une discrétisation des éléments finis joue un rdle significatif dans la précision
des solutions calculées a différents niveaux de raffinement de problemes. Donc, la
caractérisation des discrétisations optimales des éléments finis a été vastement ex-
aminé. afin d’exploiter les profits potentiels dans les méthodes des éléments finis
adaptifs. Cependant. les critéres valides pour caractériser les discretisations op-
timales des éléments finis n'a pas été rapporté pour une portée suffisament large
d’applications de problemes. Une formulation théorique est présentée pour [’étude
numérique des solutions optimales des éléments finis aux équations différentielles par-
tielles de “macroscopic™ électromagnétique. La formulation est basée sur les aspects
variationaux des discrétisations optimales pour les systemes de Helmholtz. qui ressem-
blent au principe fondamental de “stationarity™ utilisé afin de calculer les solutions
des éléments finis aux problemes de continuum. Les caractéristiques optimales des
solutions des éléments finis approximatives, comme prédit par la théorie et observé
numériquement. a été employé pour développer de nouveaux criteres de raffinement
de rétroactions basés sur les discrétisations optimales pour l'usage avec les modeles
d’adaption de stratégies avancées dans les éléments finis électromagnétiques. Les
résultats numériques indiquent qu’ils sont efficaces et économiques pour fiablement
diriger les modeles d’adaption pratique h-, p- et hp-type vers des solutions précises.

En plus. une serie de problemes importants d’adaption de référence est introduite
pour examiner la validité des concepts théoriques et la valeur pratique des nouveaux
criteres de raffinement. De plus, des difficultés computationnelles ainsi que théoriques
inhérentes aux caractérisations actuellement disponibles des discrétisations optimales

des éléments finis sont expliquées et sont illustrées avec des résultats numériques.
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Chapter 1

Introduction

The science of electromagnetism. from its origins in classical antiquity to its
contemporary study. has played a vital role in the intellectual development and the
technological progress of mankind [1-9]. The ancients. who were familiar with the
attractive power of loadstone and rubbed amber. contemplated the curious properties
of these two substances and speculated about their nature. Some of the earliest
observations of such magnetic and electric phenomena are attributed to Thales of
Miletus. who lived in the sixth century B.C. and reasoned that “the magnet has a
soul in it. because it moves the iron” [2]. One of the first practical applications of
magnetic phenomena was the use of the compass for navigation. with the earliest
written reference to it being by Alexander Neckam in A.D. 1186 [3]: undoubtedly. the
use of the earth’s magnetic field for guiding explorers and voyagers has had some of the
most significant consequences for mankind since the Middle Ages. With the advent of
the compass there also came further insight into the nature of the magnetic properties
of materials. For example. in A.D. 1269 Pierre de Maricourt announced the discovery
of the poles of a magnet: thus. giving rise to the theory of polarisation. which has
since played a role of fundamental importance in natural philosophy [4]. The modern
history of electricity and magnetism has its beginnings in the Renaissance, for it was
in A.D. 1600 that William Gilbert published De Magnete, a work highly regarded not
only for the significant findings presented therein. but also for the progress achieved by
its clear statement of the scientific method [5]. Of foremost importance were Gilbert’s
discoveries that (i) the earth itself is a great magnet; thus. explaining the action of
a compass. and (ii) that quite a large class of bodies could be induced by friction to

display effects similar to the attractive power of rubbed amber. Gilbert’s work helped



inspire a succession of experimental and theoretical investigations. culminating in the
formulation of Maxwell’s equations during the second half of the nineteenth century
[6]. The solid mathematical foundation formulated by Maxwell provided a unified
electromagnetic field theory, which has endured and has had profound implications
in areas ranging from communications technology to relativity theory [7.8]. Today,
the study of electromagnetism continues to be at the forefront of scientific inquiry.
where the electromagnetic field is considered one of the four fundamental force fields

essential for describing and understanding the nature of our universe [9].

1.1 Finite Element Methods in Computational Electromagnetics

Our ability to understand electromagnetic phenomena and to analyze and design
electric and magnetic devices. through the use of analytical and numerical meth-
ods. plays a vital role in modern society. [t is only necessary to consider that elec-
tromagnetics encompasses. in part. the generation. storage. transmission, reception.
transformation. and interpretation of electric and magnetic information and energy.
to realize just how expansive the range of areas involving electromagnetism is. For
instance. communications systems incorporating microwave and optical components.
biomedical applications such as nuclear magnetic resonance (NMR) devices, direct-
and alternating-current machines. high-voltage power distribution systems. and elec-
tronic computing systems represent only a fraction of the types of areas in which
electromagnetics analysis and design are essential. but illustrate clearly the poten-
tial need to solve a diverse assortment of sophisticated engineering electromagnetics
problems [10-13]. Mathematical models, such as Maxwell’s differential or integral
equations, which describe physical electromagnetic phenomena macroscopically, can
be used to obtain closed-form or quasi-analytical solutions to certain electrical en-
gineering problems in terms of their electromagnetic fields [14-17]. However. there
are many practical and important instances where only approximate solutions can be

obtained through the use of numerical methods. For example, consider the problem

[



of the scattering of radio waves by a metallic circular cylinder, which has a closed-
form solution in terms of trigonometric and Bessel functions. In contrast, the similar
problem involving a metallic rectangular cylinder necessitates the use of numerical
analysis methods for its solution [18].

The finite element method (FEM) is a powerful numerical analysis technique which
is well-suited to and appropriate for solving a large class of electromagnetics problems
computationally [19-27]. Essentially, in order to solve the differential or integral equa-
tions that mathematically describe a physical electromagnetic system by using the
FEEM, the problem region is first divided into a finite number of geometric sub-regions,
or elements. A model of the solution is then constructed over each individual element
by an approximating function, which is uniquely defined by the numerical values of a
set of parameters associated with it. These numerical values are subsequently com-
puted based on satisfying global constraints which are mathematically equivalent to
solving the original differential or integral equation describing the system. Amongst
the many methods used within computational electromagnetics [26-35], the FEM’s
ability to handle problems with complex geometries, as well as its applicability to
static, quasi-static, wave and transient problems and to problems containing material
regions that are nonlinear, inhomogeneous, and anisotropic make it one of the most
versatile and powerful computational techniques available today [23-27]. Moreover,
the solid theoretical foundations upon which the FEM is based, as well as the rigor-
ous mathematical analyses concerning the existence, convergence, and uniqueness of
finite element solutions that have been established, further justify its use in electro-
magnetics research and design [36-47]. Currently, finite element analysis (FEA) is
widely used in electromagnetics design and research — typically, FEA tools are used
to numerically simulate and evaluate the performance of a new device design before
building a prototype, or to computationally investigate the electromagnetic charac-
teristics of natural and man-made systems and their interaction with, or impact on,

their surrounding environments [13,48-51].



1.2 Adaptive Finite Element Methods

While finite element methods (FEMs) are presently emploved extensively for elec-
tromagnetics analysis and design [32.33]. the use of adaptive finite element methods
(AFEMs) has gained considerable attention in recent vears from numerical analysts
for solving problems more efficiently than standard FEMs allow for [54]. In gen-
eral. finite element solutions are inherently approximate: fundamentally, FEMs are
based upon the principle of representing solutions to continuum problems by finite-
dimensional approximations computed over finitely discretized domains [53]. There-
fore. the accuracy of a finite element solution is directly dependent on both the number
of free parameters used to mathematically model the problem. and on how effec-
tively those parameters. or mathematical degrees of freedom (DOF). are distributed
throughout the problem space. Furthermore. the computational cost associated with
obtaining a finite element solution is related to the number of DOF used in the dis-
cretization of the problem. Consequently. the most efficient distribution of degrees
of freedom for a problem is that which yields a sufficiently accurate solution for the
lowest number of free parameters. Currently. the only practical way to achieve this
objective is by using adaptive solution strategies which are capable of intelligently
evolving and improving an efficient distribution of DOF over the problem domain by
establishing solution error distributions. and then adjusting or adding DOF to the
discretization to correct them [36-58].

Standard FEMs increase the number of DOF throughout the problem domain
in a uniform fashion by augmenting the existing level of discretization in each sub-
region (clement) equally. Generally. this can result in an inefficient solution process.
since most field solutions rarely conform to the initial distribution of DOF over the
entire problem domain for electromagnetics problems with complicated geometries
and material properties, and uniform refinements do not allow for this distribution to

be changed. In other words, the rate of solution variation may vary over the problem



domain: therefore. for a given level of relatively uniform discretization. the error in
a finite element solution may also vary throughout the problem domain. Thus. by
increasing the number of DOF in the regions of higher solution error only. it is possible
to make the most significant improvement in the global accuracy of the finite-element
solution for the least additional computational cost. In contrast, uniformly increasing
the number of free parameters throughout the problem domain could provide an even
greater overall improvement in the computed solution accuracy: however, the per
capita increase in accuracy for each new DOF may not be as high. since new DOF
added to regions which were already sufficiently well refined would not necessarily
contribute to a significant improvement in the solution accuracy [36.57].

One of the primary objectives of AFEMs is to compute the solution to an engi-
neering problem to within pre-specified accuracy tolerances for the lowest possible
computational cost. In order to achieve this objective. the fundamental approach
underlying the majority of AFEMs involves the efficient. iterative improvement. of
a convergent sequence of increasingly accurate approximations of the true solution
to a given engineering problem. A simple conceptual framework which is meaningful
for the study of AFEMs is shown within the context of the general finite element
solution scheme in Figure 1.1. where the individual steps of an adaptive method are
constituents of one or the other of two major. procedural components: namely. the
adaption model and the feedback control system used to guide the adaptive finite
clement process. Simply put. the adaption model includes those steps involved with
updating a discretization. while the feedback control system is concerned with pro-
cedures related to resolving how to increase the level of discretization for a problem.
Consequently. the specification of an adaption model and a feedback control strategy
defines an adaptive method within this paradigm. More specifically, the procedure
followed by most adaptive solution schemes. as outlined in Figure 1.2 along the lines
described in [39]. is to first create an initial discretization for the problem (A). and

then solve the finite element problem based on this initial discretization (B). Once a

(1]



Adaptive Feedback Loop

o Finite Element : Feedback Control >

Solver System Post-Processor

Pre-Processor

Adaption Model

Figure 1.1: The adaption model and feedback control system framework for the study
of AFEMs, within the context of the general finite element solution scheme. The
general finite element solution process, usually. involves: (1) a pre-processing unit
for building a computational model of the problem. (ii) a finite element solver for
computing solutions to the discretized problems. and (iii) a post-processing unit for
analyzing the computed solutions.

solution has been obtained. an estimate of by how much it is in error from the true
solution with respect to a specific measure of error. will determine if a more accurate
solution is required (C). If the error is within acceptable limits, the computed solu-
tion may then be utilized for its intended purposes. If the accuracy of the solution is
unacceptable. however. the next steps in the adaptive scheme involve first. trying to
estimate in what parts of the problem domain the solution is most in error (D). then
determining the required refinement to most effectively improve the solution accuracy
(E). and subsequently. appropriately adding DOF in the inaccurate regions (F). The
finite element problem is then re-solved (B) to see whether the updated discretization
leads to a sufficiently accurate solution (C), or if further refinement is required (D-F).

AFEMSs are especially useful for solving complex problems efficiently, since the
computer resources required can increase at a significant rate with respect to the
problem size: for example. in some finite element implementations the approximate

computational cost can be O(n®), where n is proportional to the number of DOF used
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in the numerical model of the problem [23]. Today. many realistic problems require
a large number of free, or unconstrained, modeling parameters in order to compute
their solutions with sufficient accuracy. This has made the effective discretization of
the physical problem a tacit requirement of efficient modern finite element packages.
The need for such computational efficiency in finite element electromagnetics methods
has led to an increased demand for advanced adaptive solver technologies. Thus. the
research and development of optimized AFEMs proven to be effective. reliable. and
versatile enough for general application in electromagnetics analysis and design. is
considered to be a critical component of the state-of-the-art in FEA research.

As noted. an essential part of efficient FEMs is the effective discretization of the
continuum problem. which involves the construction of (i) a mesh consisting of a finite
number of geometric sub-domains. or elements. used to model the physical problem
region under study. and (ii) a set of finite-dimensional approximating functions defined
over the elements in order to compute the solution to the discretized problem. An
adaption modelis a set of well-defined procedures used in AFEMs for updating a finite
element discretization. Presently. four basic types of adaption models are under study
in the mainstream literature: (i) h-type. (ii) p-type. (iii) combined hp-type, and (iv)
r-type. Essentially. these models differ only in the techniques used to update the
finite element discretization within the adaptive feedback loop [57]. Briefly stated.
h-type adaption models add elements to the mesh to improve a discretization: p-
tvpe adaption models increase the degree of approximation over elements within the
mesh to improve a discretization: hp-type adaption models employ a combination of
both procedures: and r-type adaption models reposition element vertices in the mesh
to improve the solution accuracy. Each of these basic models have strong positive
attributes and disadvantages, which make their use in AFEMs highly effective under
different conditions, and all four are considered in this work. The basic adaption
models are described and discussed in greater detail in the following four sections. in

order to illustrate their importance in developing effective practical AFEMs.



1.2.1 The hA-type Adaption Model

[n h-type adaption models refinement of the finite element discretization is ac-
complished by adapting the size (k) of elements in the mesh. while keeping the order
(p) of the approximating functions over the elements constant. Consequently. in order
to improve the accuracy of a finite element solution using an A-type adaption model.
the number of free parameters used to compute the solution is increased by increasing
the total number of elements in the mesh: thereby, decreasing the overall average size.

havg. of elements in the mesh:
haug:_zhi- (l'l)

where h; is the size of the i** element in a mesh comprised of a total of V elements.
For example. Figure 1.3 shows a sample representation of four levels of uniform fi-
nite element h-refinement. using triangular elements, corresponding to four different
relative average element sizes.

[t has been proposed that the the point-wise error in a finite-element solution is.
approximately. O(h™"[P+1<]) for an element of size A and polvnomial order p. and
where ¢ is a number proportional to the intensity of any local singularities! that may
be present in the exact solution of the problem [55.65]. This estimate is based on
the argument that if a p**-order approximating function is used to model the solution
over an element of size h. then the dominant term in the difference between the Tavlor
series expansions. about a point within that element. of the finite-element and true

solutions will be O(hP*!) if no singularities® in the exact solution exist nearby [44.63].
g

'Solution singularities are primarily associated with sharp material edges and corners [60, 61].
The intensity of such singularities has been characterized mathematically as ¢ = Z. where a is the
interior angle (in radians) of a vertex where two line segments composing part of the boundary Q2 of
a problem domain Q meet [62]. Using this approach, the intensity of a singularity associated with a
270° reentrant corner is given by ¢ = 0.67; however, experimental results suggest that such a corner
would result in a singularity intensity closer to ¢ = 0.71 in terms of its effect on the solution error
convergence rate [63]. Despite this particular discrepancy. it is generally agreed that 0.5 < ¢ < 1 for
interior angles of the boundary 8 that lie within the range = < a < 2x radians [55,64].

2The local rate of solution error convergence for all values of p used in elements in the vicinity of
any singularity that may be present is dominated by the intensity (<) of the singularity. This behavior
has been explained, by some authors, to be caused by the presence of infinite coefficients associated



(a)

(c) (9)
Figure 1.3 An €Xample of fo, levels of uniform finjte element 4.
triangulap elementg correspondmg to four rejay;
(a) vy = [ (b) .
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For example. based on this estimate. the error in a finite element solution at a given
point in the problem domain will be reduced by a factor of four for a halving of the
element size. in a region where no singularities are present and first-order polynomial
approximating functions are used. Although this argument, based on concepts from
interpolation theory. is not completely theoretically justified in the context of finite-
clement approximations. estimates of solution error convergence rates based on it can
be achieved asymptotically in practice as element sizes tend to zero [55]: therefore.
such estimates are useful for understanding approximate error behavior in finite-
element solutions [66].

Based on the above estimates for the error in finite-element solutions. it is evident
that ~-tvpe adaption models may be used advantageously in AFEMs. For example. by
increasing the number of DOF in the regions of high solution error. through the use of
a larger number of smaller elements in those regions. it is possible to achieve significant
improvements in the global accuracy of the finite-element solution at lower compu-
tational cost in comparison with uniformly increasing the number of free parameters
throughout the entire problem domain. Conceptually. h-type adaptive refinement is
uncomplicated: however. the practical implementation of A-adaption models involves
certain complex issues that are addressed in the extensive literature on AFEMs. For
example. h-adaption models typically increase the level of discretization in a finite
element mesh by. first. introducing new vertices. which are then used to define addi-
tional elements. Consequently. the manner in which these new vertices are introduced
to the discretization and how new elements are subsequently defined. can affect the
quality of the resulting mesh: therefore. considerable attention has been given to these
issues over the past several vears [67-76].

Line segments, triangles, and tetrahedra are types of elements that are commonly

used in one-, two-, and three-dimensional electromagnetic finite element analyses.

with higher order terms in the Taylor series expansion of the difference between the computed finite
element solution and the true solution to the problem [55]. Furthermore, such infinite coeffictents
are argued to result from the presence of singularities in the true solution [55].
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respectively. While the meshing of vertices into line segments for one-dimensional
finite-element models is straightforward. the formation of meshes in two and three
space dimensions can be more complicated [67,.77-79]. One difficulty is that there is
usually more than one triangulation or tetrahedral subdivision possible for a given set
of vertices over a two- or three-dimensional domain. respectively: therefore. Delaunay-
type algorithms are frequently implemented in order to produce acceptable finite el-
ement meshes comprised of simplexes [67,69.70.75]. Accordingly. some of the most
successful h-type adaption models are those that employ a Delaunay-type algorithm
to re-mesh a set of vertices each time the discretization is updated within the adap-
tive feedback loop [69.70]: however. these types of h-adaption models also incur the
added computational expense of incorporating a Delaunay algorithm at each adaptive
iteration.

Although a Delaunay-type algorithm will produce the best possible mesh of sim-
plexes for a given set of vertices. the quality of the mesh produced may still not be
acceptable due to a poor set of vertices [70]. For example. Delaunay-based meshing
algorithms help prevent. but do not guarantee avoiding the formation of long. thin
elements that can lead to poorly conditioned matrices in finite element formulations.
which. in turn. can compromise the accuracy of the computed solution [80]. There-
fore. it is also important that a good set of vertices be defined before a finite element
mesh is created. An effective approach for achieving this objective is described in {70],
where the authors develop a new method for adding vertices to the problem domain.
The method for positioning new vertices uses a combination of: (i) criteria based
on the field solution accuracy; and (ii) a geometric criterion so that the quality of
the mesh that will result from a Delaunay triangulation of the complete set of ver-
tices is more likely to be acceptable than if only the field criteria had been used to
decide where to add the new vertices. When element shapes other than simplexes
are used to construct finite element meshes. approaches other than Delaunay-based

algorithms must be considered for ensuring good quality h-adapted meshes. For ex-
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ample. a “one-level” rule is described in [72] for obtaining smoothly graded meshes by
subdividing quadrilateral and hexahedral elements. However. the process results in
~one-irregular” meshes where adjacent elements can differ by up to one level of mesh
refinement: therefore. the computed solution must be properly constrained so that
continuity of the solution is maintained at the interfaces of such elements [61.72.81].

Adaptive finite element methods incorporating h-adaption models have been used
successfully for various types of electrical engineering applications [56.69. 76.82-93].
[n particular. for problems where singularities in the mathematical field solutions
exist. such as those at sharp material edges and corners [64]. h-type adaption models
have proven to be quite effective. where a large number of smaller elements are needed
close to the singularities, but fewer, larger elements of the same order suffice further
away [57.59.60.85.94]. Given that the approximate error in a finite element solution
is O(h™P+<ly and that ¢ < | in the vicinity of most singularities. it is evident that
reducing the element sizes (h) near a singularity may be more advantageous than
increasing the degree of approximation (p). Numerical studies have also shown that
h-tvpe refinement near singularities in finite element electromagnetics may result in

near optimal rates of convergence for certain levels of discretization [57].
1.2.2 The p-type Adaption Model

[n p-type adaption models refinement of the finite element discretization is ac-
complished by adapting the order (p) of approximating functions over elements. while
keeping the size (k) of the elements in the mesh constant. Standard Lagrangian ele-
ments require the same order of approximating functions throughout the entire mesh
to ensure a continuous finite element solution [23]; however. hierarchal elements per-
mit increasing the order of only certain elements in the mesh. while still ensuring C°
continuity of the computed solution. Thus. it is possible to evolve efficient distribu-
tions of DOF by raising the polynomial order of the elements only in the inaccurate

parts of the mesh. Based on the interpolation theory error model described in the
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previous section. the point-wise error in a finite element solution is approximately
O(hP*!) over regions of a problem domain where no singularities are present. There-
fore. if the finite element mesh is such that the element sizes are sufficiently small in
regions away from singularities, then the improvement in the accuracy of the com-
puted solution will be greater for an increase in the polynomial order (p) of the
approximating functions rather than a decrease in the element size (k). according to
the interpolation theory error model. Numerical studies have also shown that un-
der certain conditions. p-type refinement may result in better rates of solution error
convergence than those that can be achieved using h-adaption models [57].

In finite element electromagnetics, p-tvpe adaption models incorporating hierar-
chal elements have been shown especially useful in high frequency problems. where the
fields have a wave-like variation. and are better modeled in certain parts of the mesh
by high-order elements. whereas lower order elements provide a sufficiently accurate
approximation in other regions of the mesh [95]. As in low-frequency applications.
the objective in high-frequency problems is to obtain a distribution of degrees of free-
dom such that they are more densely concentrated where the field is varying rapidly.
and less so where the variation is slower. The meshes produced by automatic mesh
generators tvpically have larger elements away from complex material boundaries.
This type of mesh grading is usually satisfactory for static problems. where the fields
tend to become increasingly uniform further away from boundaries. In high frequency
devices. however. the wave-like fields away from material boundaries are particularly
well represented by high-order polynomial approximating functions, and p-type re-
finement can be an attractive alternative to h-type refinement since it avoids the cost
of re-meshing [55.59.95.96]. Finally, it is worth noting that the use of hierarchal finite
clements in p-type adaption models has also been shown effective for low-frequency
finite element electromagnetics [97).

The practical implementation of p-type adaption models involves key issues which
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must be addressed. For example. the choice of basis functions® used to form hierarchal
elements can play an important role in the effectiveness of a practical p-type adaption
model. Although different alternatives exist for the set of hierarchal basis functions
that can be used for a specific element shape and space dimension [33]. attention must
be paid to the linear independence of the basis functions. If the basis functions that
are used to form the approximating function over a given element are not linearly in-
dependent. or are nearly linearly dependent. the resulting finite element matrices used
to compute the numerical solution to the discretized problem will be ill-conditioned.
Depending on whether a direct or an iterative method is used to solve the matrix
problem that results from a finite element formulation. ill-conditioned matrices can
lead to inaccurate solutions and slow convergence rates. respectively [80]: therefore.
research on hierarchal basis functions has constituted an important component of the
literature related to p-type adaption models over recent vears [95]. One successful
approach that has been adopted in order to develop hierarchal elements that preserve
a reasonable degree of linear independence between their basis functions. has been to
use orthogonal polynomials in the formulation of the basis functions [98]. Finally. it is
interesting to note that. although Lagrangian elements can not be used as hierarchal
clements in two- and higher-dimensional formulations. they tend to result in finite
element matrices that have better condition numbers than those resulting from non-
Lagrangian elements. This is primarily due to the high degree of linear independence
that is inherent in the Lagrangian basis functions [98].

Adaptive finite element methods incorporating p-type adaption models are par-
ticularly valuable in the computational analysis and design of three-dimensional elec-
tromagnetic systems [38]. For example, the formation of a well-structured mesh
consisting of tetrahedral elements based on Delaunay or other types of algorithms, is

a complicated and relatively expensive task [67,73,99,100]; therefore, p-type adaptive

3Approximating functions (U) used in numerical methods can. usually, be described as a series
of basis functions (N;) weighted by coefficients (q;), so that U = 3_?_,a;N;. The number of terms
in the series (p) is related to the polynomial order of the approximating function.

-
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refinement using hierarchal tetrahedra is often considered more favorable than A-type
adaption for three-dimensional problems [58]. However, it may not be possible to
obtain a sufficiently accurate solution by increasing only the polynomial order of the
approximating functions defined over the elements in a mesh. if the mesh contains
too few elements or if the highest degree of approximation order available is too low:
thus. a sufficiently h-refined mesh is often a prerequisite for p-type adaption models

to be effective [59, 70].
1.2.3 The hp-type Adaption Model

In hp-type adaption models refinement of the finite-element discretization is
achieved by adapting both the size (k) and the order (p) of elements in the mesh. In
general. hybrid Ap-adaptive approaches combine h- and p-tvpe refinements in order
to exploit the advantages of both these fundamental adaption models. Numerical
results and theoretical work indicate that the ability to independently vary the two
basic discretization parameters. i and p. should afford adaptive methods which em-
ploy combined Ap-tvpe adaption models the possibility of realizing superior rates
of solution error convergence compared with those of methods that utilize pure h-
or p-type adaption models [62.94,101-103]. The putative enhanced performance of
combined Ap-type adaption-based systems derives from the fact that the solution ac-
curacy may be more greatly improved by decreasing the element size in certain parts
of the problem domain, whereas. increasing the order of approximating functions over
other parts of the solution realm may have the most significant effect on the solution
accuracy. Therefore. a hybrid adaption model capable of both types of refinements
should, theoretically, vield optimal rates of solution error convergence.

The theoretical analysis and practical performance of combined hp-type adaptive
methods have received a considerable amount of attention within the literature on
AFEMs during the last decade, since, in theory, optimal rates of solution error con-

vergence can be obtained by combining .- and p-type adaption models [94.101.104]:
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however, the implementation and control of a hybrid hp-type system are inherently
more complex than that of its simpler A- or p-type counterparts. Accordingly, in
addition to the issues that are relevant to the design and implementation of k- and
p-type adaption models. further concerns arise, related to the coupling of the k- and
p-type refinement procedures. when dealing with combined Ap-type adaption models.
For example, the increased generality of hybrid Ap-systems has practical implications
from a programming perspective; essentially, sufficiently sophisticated data-structures
and data management routines are required which can cope with arbitrary distribu-
tions of discretization parameters and the evolutionary interrelationships of these
parameters as the finite-element discretization is iteratively refined during the adap-
tive process [103]. Although these issues have been addressed. to a certain extent. in
the literature, the focus has been primarily on structured meshes, where the relation-
ships between the discretization parameters associated with consecutive iterations are
well-defined [72.81.101.102.106].

One major research problem that has emerged. associated with the implemen-
tation of hybrid Ap-type adaption models, has been the development of systematic
approaches for generating discretizations with optimized relative distributions of A
and p [57.61.104, 107. 108]. For example, in fully-coupled hp-type adaption mod-
els. where h and p can be adapted simultaneously within any given iteration of the
adaptive process. one of the primary difficulties is determining which parts of the dis-
cretization to enhance using h-refinement and where to employ p-refinement in such
a way that the greatest improvement in solution accuracy is attained for the given in-
crease in the total number of DOF used to compute the approximate solution {57.61].
Similarly. in decoupled hp-adaption models, where only one or the other of the two
basic types of refinements are exploited during a given iteration within the adaptive
feedback loop, the dilemma of which discretization parameter. 2 or p. to adapt at a
given iteration so as to achieve the maximal decrease in solution error per unit new

DOF exists [62,108-110]. These problems are tantamount to determining the optimal
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trajectory through the abstract space of admissible Ap-distributions. starting from an
initial discretization and given a final, desired solution accuracy; where. the set of
permissible trajectories is dependent upon the constraints of the specific adaptive
method under consideration. that is, the combination of a particular adaption model
and feedback control system. The optimal trajectory will be that which involves the
lowest cumulative computational cost [111].

Although some theoretical approaches have been suggested for determining op-
timal hp-trajectories. the resulting discrete optimization problems are not readily
solvable in a rigorous. analytical manner. if at all. for systems of realistic complex-
ity [61.107.112]; therefore. numerical experiments have also been relied upon to glean
insight on these problems {57,104.113]. Based. in part, on theoretical and numerical
investigations. practical techniques have been developed which can, although not nec-
essarily optimally. evolve distributions of the discretization parameters in such a way
that hybrid Ap-based adaptive methods out-perform pure A- or p-tvpe systems. In
general. such methods rely upon distribution criteria that are rooted in the principles
fundamental to the development of effective k- and p-type adaption models [102.114].
For example. a technique is described in [113] that uses h-refinements in regions of
the problem domain that contain strong discontinuities of the solution, and p-type
adaption over relatively smooth parts of the solution. Another approach which has re-
cently been developed and applied successfully to electromagnetic AFEA is described
in [116]. and is based on using parallel processing to assess different discretization
strategies at each hp-refinement step to help guide the evolution of the adaption. Fi-
nally. numerical studies have shown that despite the advantages of hp-type adaption
models. simpler adaption models may give superior results under certain conditions.
For example, a Helmholtz benchmark problem is described in [36]. and examined later
in this work. for which hp-adaption is inferior to the p-adaptive methods investigated
for that system. This occurrence is an artifact of the constraints of the particular

hp-adaptive method employed in that instance. Since the initial distribution of DOF
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was reasonably compatible with the spatial variation of the wave solution to the sys-
tem. an almost uniform p-type refinement was closer to the optimal hp-trajectory
than one involving significant modification of the initial distribution of A. However.
the hp-adaptive method considered for this case performed A-adaption initially. by

design. and. therefore. did not result in optimal rates of solution error convergence.
1.2.4 The r-type Adaption Model

In r-type adaption models the finite-element discretization is refined by adapting
the position (r) of element vertices in the mesh, in order to improve the accuracy of the
computed solution [117]. As noted earlier, the solution error distribution for a given
finite-eclement discretization will. in general. vary throughout the problem domain ac-
cording to the relative rate of solution variation and the corresponding concentration
of degrees of freedom (DOF). Therefore. r-type adaption models can evolve efficient
finite-element discretizations by repositioning element vertices such that there is a
sharper focus of DOF in regions where the solution variation is most rapid. The
r-type adaption model is most often emploved when maximal solution accuracy is re-
quired from discretizations with a given number of DOF [57.72.101.118.119]. Hence.
r-adaption has been primarily investigated in the context adaptive systems that are
based on evolving optimal finite element discretizations [56.57.117.120-137]. These
types of adaptive systems are discussed in greater depth in subsequent sections of
this chapter. along with the inherent advantages and related costs of using r-type

adaption models for their implementation.
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1.3 Motivation for the Research

Typically. electromagnetic field problems can be cast in the form of a general

operator equation such as

Lu=g. (1.2)

where. for example. £ is a linear operator which may be defined so that Eq. (1.2) can
represent any of Maxwell’s integral or differential equations of macroscopic electro-
magnetics. and u and g are symbolic representations of corresponding scalar or vector
fields [138]. In general. ¢ may be a given source of electromagnetic energy. and u is
the unknown electromagnetic field. or a related auxiliary potential field. which satis-
fies Eq. (1.2) subject to appropriate boundarv conditions for a specific problem under
consideration. When solving electromagnetic field problems numerically by FEMs.
the underlying approach is to define a space of admissible approximating functions,
say Vh. from which the closest function. say uy. to the true solution u. is eventually
computed. The notion of closeness of an approximation. ultimately. depends upon
the chosen measure of error in any given numerical formulation of the problem. Re-
gardless of the specific numerical technique and error measure employed. the problem
of finding the closest or best approximation to the true solution u can be pictured
geometrically as shown in Figure 1.4 (a).

The procedures for obtaining the best approximate solution u; from a given space
of admissible approximating functions Vj, are well established methods rooted in
functional and numerical analysis [38.41]. However. many of the prescriptions for
obtaining such solutions usually place certain restrictions on the spaces of admissible
approximating functions they employ, which can limit the potential accuracy of the
computed solutions. For example, some numerical methods, such as the FEM. use a
finite number of fired-position geometric sub-domains (elements), over which interpo-
lation functions are used to approximate the unknown field u. One of the restrictions.

in these cases, is the imposed, a priort distribution of some of the mathematical DOF
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used in numerically modeling the physical problem, due to the pre-assigned fixed
topology of the geometric sub-domains. Without this restriction, a higher level of
accuracy in the approximation could, possibly, be achieved by allowing for optimal
distributions of DOF through the optimal discretization of the problem domain. In
other words, if the specification of the geometric sub-domains were left unknown, and
solved for simultaneously along with the underiying field solution, then it might be
possible to model the true solution more accurately.

The increase in accuracy that may be possible by allowing for optimal discretiza-
tion of the problem domain can also be pictured geometrically, as shown in Fig-
ure 1.4 (b). Here, the space of admissible approximating functions, V}/, is larger than
the space associated with the pre-assigned, fixed-position subdomains, therefore, al-
lowing for the possibility of an approximate solution uj, to exist which is closer to
the true solution u. However, the computational cost associated with determining
optimal discretizations of the problem domain can be prohibitive, since the problem
then becomes a geometrically nonlinear one: the approximating functions are, gener-
ally, dependent on the spatial coordinates defining the geometric sub-domains [129)].
Therefore, rather than solving a system of simultaneous linear equations that would
otherwise result from a FEM formulation,* the optimization of the discretization
would lead to a system of simultaneous nonlinear equations to be solved. In theory,
such systems of equations can be solved, despite the added computational complexity
and cost; however, one complication which can arise in the context of computing op-
timal discretizations is that the solutions may not have valid physical meaning [129].
Most often, this can occur due to a phenomenon referred to as “mesh tangling”, which,
essentially, results from the overlapping of elements, in turn, leading to negative ele-

ment areas or an undefined solution in the overlap regions [126]. Another example of

4 Assuming no othier nonlinearities exist in the problem formulation, e.g., nonlinear magnetic ma-
terial regions in the problem domain. If the original problem already involves nonlinear components,
then the incorporation of optimizing the discretization will increase the degree of nonlinearity of the
resulting system of simultaneous equations to be solved.
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how incorporating the optimization of the problem discretization into the finite ele-
ment formulation can lead to non-physical solution characteristics. is when complex
material parameters are used to model lossy materials. In this instance, as well as
the previous one. unless preventive measures are built into the problem formulation.
non-physical or imaginary discretizations can ensue. Therefore. the additional math-
ematical freedom and. thus. potential accuracy that is possible by allowing for a finite
element discretization to be optimized. can also. unfortunately, lead to pathological
cases.

Solutions that are normally computed using standard FEMs are only optimal
under the given set of restrictions, i.e.. the pre-assigned element topology. Nonethe-
less. this restricted approach seems to be very successful in terms of implementing
practical computational methods. Yet, if certain characteristics of ¢ruly optimal ap-
proximate solutions. that is. the approximate solutions obtained with the restrictions
lifted. were known e priori. then practical algorithms could be employed to adaptively
compute solutions with similar optimal properties. but at a significantly lower cost
than a non-adaptive. geometrically nonlinear formulation. and without the compli-
cations mentioned previously. This would ensure that the computed solutions were
of maximal accuracy for a given level of problem discretization. while simultaneously
benefiting from the efficiency of AFEMs. Although AFEMs are well-suited to the task
of evolving finite element approximations with optimal-discretization solution prop-
erties. this can only be achieved through the effective use of appropriate feedback
refinement criteria for guiding the adaption process towards optimal discretizations.
Therefore. the characterization of solution properties associated with optimal finite

element discretizations is an essential first step towards this objective.
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Figure 1.4: Geometric interpretations of best approximate solutions: (a) standard
[FEM. and (b) optimal discretization FEM. In (a), the space of admissible approxi-
mating functions is symbolically represented by a line. whereas in (b) the represen-
tation is by a planar region. The exact and approximate solutions are represented as
vectors from some common origin. while the difference between them is drawn as a
vector from the approximate to the exact solution.



1.4 Classical Origins and Review of Recent Work

Recently. in the mathematics and engineering communities. there has been con-
siderable interest in the subject of optimal discretizations for numerical methods
[56.57.117.120-137]. Much of the work on this topic has been directly concerned
with. or relevant to. numerical methods for solving equations of mathematical physics.
such as the finite element method (FEM). The most prominent and enduring contri-
butions to emerge in the literature on optimal discretizations for numerical methods
have been based on the so called equidistribution principle (EP). and are discussed
in section 1.4.2. Some of the preliminary developments and earlier work that have
also playved significant roles in this research area are first described. briefly. in the

following section.
1.4.1 Preliminary Developments and Earlier Work

The concept of improving the accuracy of an approximate solution by optimizing
a discretization has origins in the relatively early stages of the evolution of numerical
methods during this century. For example. in 1903 L. V. Kantorovitch suggested a
variation of the classical full-domain Rayleigh-Ritz and Galerkin methods® in which
the coefficients of the basis functions were taken to be functions of the space-variables
rather than simply undetermined constants [139]. The formulation resulted in a
svstern of simultaneous differential equations from which the unknown coefficient
functions could be determined. In contrast with the simpler system of simultaneous
algebraic equations that occur in the standard full-domain Rayleigh-Ritz and Galerkin
methods. Kantorovitch’s variation could produce approximations of higher accuracy.
but with the trade-off of added complexity in obtaining the solution. His idea was
published again in 1942 [140]. however. as pointed-out in [141], the method could be

very sensitive to the choice of the first approximation. If this were carefully chosen,

5The classical full-domain Rayleigh-Ritz and Galerkin methods were the early precursors of
FEMSs.



a high degree of accuracy could often be attained with comparatively little numerical
calculation. but for a less fortunate choice a considerable amount of computational
labour could ensue. In fact. the method of finite differences (FD) was developed.
partially. in order to overcome the undesirable consequences caused by an unsuitable
choice of the approximating functions for full-domain Rayleigh-Ritz and Galerkin
methods. in general, as explained in [142].

During the early 1970’s. there was a resurgence of interest in optimal discretiza-
tions for numerical methods. Interestingly. one of the first works to be published in
the mainstream literature on the topic dealt with the concept of optimal node® spac-
ings for FD methods [120]. It was recognized that improved solution accuracy could.
potentially, be obtained by optimizing the node point distribution for a problem.
Given an initial nodal distribution {y}!} with associated truncation error distribution
{T!}. the problem was formulated as one of obtaining successive nodal distributions
{y*} for which {T*} — {0}. that is. the optimal node distribution. An explicit dif-
ference formula was developed for computing the successive nodal distributions. The
superscript (£) denotes the iterate number: iteration being required because the for-
mula is nonlinear. To illustrate the method. the equation u” + P(u.y)u'+ Q(u.y) =0
subject to the boundary conditions u(0) = 0 and u(l) = 1. was solved for three sets
of P and Q, corresponding to test examples from fluid dynamics. As evident from the
boundary conditions. the test problems were confined to one dimension. Nonetheless.
it was found that. indeed, maximal solution accuracy could be achieved by optimiz-
ing the node point distribution. One of the major implications of this finding was
that it would now be possible to extract more accurate expressions for derivatives of
the underlying field solution. Consequently, an important feature of optimizing the
FD discretization was that more accurate post-processing could be performed, since

many important engineering quantities are often computed from derivatives of the

SIn FD methods. the problem domain is discretized by a set of nodes. where difference formulae
are used to approximate derivatives of the unknown being solved for.

b
[}



field solutions.

The significance of characterizing solution properties associated with optimal dis-
cretizations for modern FEMs received a considerable amount of theoretical and ex-
perimental attention in a series of independent works published during the 1970’s
[121-124]. The first of these publications. put forth the basic hypothesis that the
computation of an optimal finite element solution must consider the problem dis-
cretization as a primary parameter in its formulation [121]. By using a simple one-
dimensional model. an inductive argument was presented. based on the monotonic
convergence property for the finite element method [143] and the extreme value theo-
rem of calculus. for the existence of an optimum sub-division of the problem domain.
One limitation of the argument was that it relied on the assumption that a single
parameter could be used to characterize a discretization. and that proving that an
optimal value of the parameter exists would. thus. also prove that an optimal dis-
cretization exists. Essentially, this assumption limited the argument to being useful
for proving the existence of optimal one-dimensional meshes of only two elements.
However, it was argued. by induction, that the concept should extend to meshes
of any number of elements. The idea was applied to a practical problem of elastic
displacement consisting of a cantilevered beam under different loading conditions.
Due to the inherent symmetry of the problem under investigation. no optimization
was considered in the y-direction. therefore. a one-dimensional analysis was possible
although a two-dimensional problem was being modeled. The solution of the opti-
mization equations could not be carried out explicitly due to the nonlinear manner
in which the discretization parameters appeared in these equations: therefore, the
authors adopted an iterative solution technique. This rendered the cost of solving
problems with fine, or highly-discretized meshes. impractical for the added accuracy
that could be achieved under such conditions. Given this high cost. it was concluded
that what might be more important is what could be gleaned about the characteris-

tics of optimal discretizations, rather than an actual technique for obtaining optimal
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discretizations for practical problems. It was found that the optimum geometry dis-
cretization for the problem considered was characterized by a uniform (equidistant)
mesh whenever a first-order mismatch occurred; for example, when the exact solution
was of order z° and the finite element representation was piecewise linear. [t should
be noted. however. that this type of characterization is of little practical value for
approximation methods such as the FEM. where the exact solution is not known.
Although the results were specific to the problem being considered and the type of
clements employed.” the work did establish the existence. if not uniqueness. of opti-
mal finite element discretizations. and thus set the stage for subsequent investigations
into the characterization of optimal finite element meshes.

One of the first analytical results to be published for characterizing optimal finite
element discretizations was based on investigating an example consisting of a linearly
tapered elastic rod that is fixed at one end and carries an axial load at the other [122].
Once again. a one-dimensional treatment was possible due to the symmetry of the
problem. By assuming a piecewise linear finite element approximation. and by estab-
lishing a formula for the average cross-sectional area of an element given its location
along the elastic rod. it was possible to derive an analytical expression characterizing
an optimal mesh. [t was found that the condition that must be satisfied by the op-
timal discretization is that the element boundaries should be defined such that the
cross-sectional area at a given element boundary is equivalent to the square-root of the
produict of the cross-sectional areas at the adjacent element boundaries. This result
was shown to correspond to each element containing the same amount of strain energy.
This was a rather remarkable finding. since it suggested a very intuitive method for
designing optimal finite element discretizations. simply by equidistributing the poten-
tial energy of the system throughout all of the elements. However, it was conjectured
that this result may be confined to the specific example of a linearly tapered rod,

and unfortunately, later studies would prove this to be the case [123.124]. One of the

"Bilinear and biquadratic rectangular elements were used in computing the results.
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most significant consequences of the finding was that it was the first successful practi-
cal characterization of optimal finite element discretizations. albeit only for a certain
class of problems. since it did not require a priori knowledge of the exact solution. and
prompted other researchers to probe further. For example. a more general character-
ization for optimal meshes was developed for elastic rods of any taper in [123]. The
result was basically an extension of that presented in [122]. and. therefore. included
the same mesh optimality criteria for a linearly tapered elastic rod. Although it was
now apparent that the equidistribution of potential energy amongst elements was no
longer a valid characterization of optimal discretization-based solutions. another in-
teresting characteristic of such solutions did emerge. Namely. it was found that the
first derivative of the solution computed at the element boundaries (vertices) as the
average of the derivative values in adjacent elements was exact for all tapers. Aside
from being a more general characterization, this latest finding also added support to
the notion that incorporating the optimization of the problem discretization into the
solution process could result in more accurate post-processing. Subsequently. another
study dealing with elastic rods under various loading conditions also concluded that a
universally valid optimality criterion in terms of the average potential energy per ele-
ment may not exist [124]. Noteworthy, the theoretical analyses developed in [122-124]
for characterizing optimal finite element discretizations were based on linear finite el-
ement formulations. Restricting the approximations to first-order functions, allowed
for critical simplifications in the derivations which would not have otherwise been
possible. More importantly. however. these analytically oriented early works demon-
strated the possibility of mathematically characterizing properties of optimal finite
element solutions, which in turn held great promise for practical applications in terms
of achieving improved solution accuracy and efficiency thro:ch adaptive refinements

guided by optimal solution characteristics.



1.4.2 Equidistribution Principles

One of the most prominent and enduring trends that eventually emerged in the
literature. in terms of analytically characterizing optimal discretizations for numerical
methods. centered around the so called equidistribution principle (EP) [117.125-127.
129-135.137]. Although it had been shown earlier that the equidistribution of energy
amongst elements in FEM discretizations was not a universally valid mesh optimality
criterion. there was a strong conviction amongst various analysts that there must
exist a universally valid mesh optimality criterion of some sort. One of the most
general and powerful formulations to be published in this area was given in [127]. and
introduced the concept of the grading function. which would. subsequently. become
a fundamental component of many of the future works to be published on the topic.
[n fact, a primary form of the grading function approach had been developed and
published earlier in [125], however. in a less general format which was valid under far
fewer conditions. By definition. a grading function is a function whose value changes
by a constant amount over each element in a discretization. It may be noted. that by
virtue of this basic definition. grading functions have most commonly been developed
in a one-dimensional setting, although some attempts have been made to extend their
application into higher-dimensional analyses [132, 134.136].

Mathematically. a grading function is a convenient means by which to describe.

or characterize. the placement of element vertices in a one-dimensional mesh. For a
mesh with V elements. a grading function £(z) must satisfy the following condition:
(zi) — E(zic) = [ €dr =<, (1.3)

2, N

where r;_; and z; are the coordinates of adjacent element vertices defining the *" ele-
ment over the sub-region €; of the discretized problem domain. The general approach
taken in [127] is to derive such a grading function that will minimize the approxima-
tion error in a computed finite element solution for a given problem. In other words.

the optimal discretization will be that which has element vertices positioned such that
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Eq. (1.3) is satisfied for the derived grading function. The first step in the derivation
involves the definition of a general class of error measures appropriate for interpola-
tion and approximation problems. The error is defined as the difference between the

exact solution. u, and approximate solution u;:
€=U — Up, (1.4)

and is measured in terms of the H™-seminorm. |el,.. over some interval [a.b] for the
one-dimensional case:

lef2, = /b(e‘"")zdx, (1.5)

a

where m is the order of differentiation involved. The objective is to then find the
grading function £(z) in terms of the approximate solution u,. such that Eq. (1.3) is
minimized with respect to variations in the mesh coordinates. The authors proceed
by representing the error in Eq. (1.4) and its m**-order derivative as a Fourier sine
series expansion over the sub-region Q; spanning the i** element. Parseval’s identity
is then used to write the H™-seminorm, |e|. as well as the H**!-seminorm. |€|4,. of

the error in terms of the Fourier series coefficients and the element length. h;, where:
hg =Ty — Lj—}. (1'6)

and where k represents the polvnomial order of the approximate solution u,;. By
doing so. it is possible to derive an inequality between the two different seminorms
|(‘[m and |e|k+l:

_2(k+1-m)

/Q‘ [et™)]2dz < h: /n [e:+V]2 dz. (1.7)
which is valid so long as the polynomial degree of the approximation is greater than
the order of differentiation in the H™-seminorm of the error. that is, for & > m. Since
the approximate solution uy is only of polynomial order k. it is then possible to write
the (k+1)*-derivative of the error in Eq. (1.4) solely in terms of the {(k+1)**-derivative

of the true solution u:

e(k-{»—l) — u(k+l)- (1~8)
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This allows the H™-seminorm of the error over the entire discretization to be expressed

as the following inequality:
N_ p. 2k+1-m)

el <3 S 0 da. (1.9)
[t is worthwhile to note that the approximate solution u; does not appear on the
right hand side of the inequality (1.9). nor do anyv of its derivatives: this has kev
implications for the final result from the derivation of the grading function being
sought. The basic condition in Eq. (1.3) which defines a grading function. is next used
to derive an expression for the length of the i** element, ;. in terms of the number of
elements in the mesh, V. and the first derivative of the unknown grading function, &'.
This is possible by using the mid-point quadrature rule to approximate the integral
of & over the i** element. which appears in Eq. (1.3). Similarly. the mid-point rule
is used to approximate the integral of [u**1]2 in the inequality (1.9). These two

approximations are then substituted into the right hand side of the inequality (1.9).

which results in:

2 L S [uH (i)

m S (ﬂ‘,\f)Z(k‘{'-l—m) po [E’(Ii~1/2)]2(k+l_m) e (1.10)

le

where z;_,/, represents the midpoint of the i"* element. By interpreting the expression
on the right in the above inequality as a Riemann sum. the summation is replaced by

definite integration. so that:

2 < 1 b [u(k+lj(~ri—1/2)]2 e (111)
m = (.‘T!‘V)Z(k+l—m) a [él(l.i_l/e)]ﬂk-{-l-m) - .

le

Finally. to determine the grading function £ that minimizes the integral in the above

inequality. the solution to the corresponding Euler equation.

d [u(kﬂ)]z

dr [E]2G+1-m)+1 =0. (1.12)

is found to be:
f:‘[u(k+l)]2/[2(k+l—m)+l] dr

= . (1.13)

- f:[u(k+l)]2/[2(k+l-m)+l]dl.
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The above result can be used to iteratively generate optimal discretizations by
adjusting element vertices until the grading function £ in Eq. (1.13) changes by the
constant amount | /:V over each element. as required by Eq. (1.3). It should be noted.
however. that an explicit knowledge of the exact solution. u. is required: whereas. no
knowledge of the approximate solution. us. is assumed. Thus. the grading function
in Eq. (1.13) may be well suited to determining optimal discretizations for interpola-
tion problems. but it is not appropriate for approximation problems where the exact
solution is not known in advance. Although the authors acknowledge this limitation
of their derivation, they, nonetheless. present an argument for the use of the grading
function of Eq. (1.13) in approximation methods such as the FEM. Their argument
asserts that finite element solutions computed to high levels of accuracy are close
to the true solution, and. therefore. may be considered as interpolatory on the true
solution. Although this may be true. under certain conditions. it is clearly not the
case for low accuracy finite element solutions computed from crude discretizations.
Furthermore. it will be shown later. that for certain finite element approximations it
is possible to compute solutions that are interpolatory at all levels of discretization.
but for which the above grading function in Eq. (1.18) does not correspond to the
optimal discretization. Moreover. it will be demonstrated that these interpolatory
finite element solutions do correspond to the optimal discretization of the problem
domain. and thus, ironically, there is no need to use the grading function approach
to optimize the finite element meshes under the exact conditions when it would be
most appropriate to do so.

[n evaluating the performance of the grading function approach developed in [127]
for an interpolation test problem, it was found that discretizations which were iter-
atively computed based on grading functions produced solutions of higher accuracy
than those computed on uniform meshes. However, it was found that the results were
highly dependent upon the specific error measure used. In other words, meshes that

were graded based on a specific norm or seminorm resulted in solution errors which
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differed significantly from those of meshes graded based on other measures of the
€error.

[t may be worthwhile to note. that although the derivation given in [127] is in
terms of the H™-seminorm of the error, it is possible to derive other grading func-
tions for the error in the full H™-norm. While such a derivation is not given in [127],
it is a valuable observation since many approximation problems are based on formula-
tions which involve the minimization of the error in terms of full norms. However. the
approximation test problems presented in [127] were chosen such that H™-seminorm
based grading functions could be used. Also. the test problems selected had known
analytical solutions. thus. it was possible to compare the relative performance of
grading functions based on both approximate and exact solutions. It was found that
the errors, measured in terms of the H'-seminorm. in the solutions computed from
meshes graded based on both approximate and exact solutions were lower than the
errors resulting from uniform meshes, as would be expected. However, it was also
shown that the meshes generated by using grading functions based on the exact solu-
tion were, in fact. the optimal meshes for the given formulation of the approximation
problems considered. This is significant since discretizations that were evolved using
grading functions based on the approximate solutions differed from the optimal dis-
cretizations. The reasons for this may lie in certain approximations that were made
in the derivation. Namely, the midpoint quadrature rule was used to approximate in-
tegrals of derivatives of the unknown grading function. £, and the solution, u. during
the formulation. Although this type of approximation can be quite accurate for linear
or low order functions. it is not exact for higher order functions. This implies that if
the exact solution, u, is of sufficiently high order relative to the polynomial degree. &,
of the approximate solution. us, the quadrature rule used in approximating certain
integrals in the formulation may be a source of error, since the k + 1-derivative of
the exact solution is involved. In addition, the interpretation of the summation in

Eq. (1.10) as a definite integral in Eq. (1.11) is based on the assumption that the
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element length, A;, is sufficiently small. Thus. the general grading function. £, given
in Eq. (1.13) will produce discretizations that are only asymptotically optimal in
terms of minimizing the solution error, in the sense that they should converge to the
truly optimal discretizations once the meshes contain a sufficiently large number of
elements. However, the numerical results given for the approximation test problems
in [127]. indicate that for the solutions computed with the largest number of elements
used. the meshes had still not converged to the optimal discretizations.

The grading function in Eq. (1.13) is general in the sense that it may be tailored
to different norms and seminorms used in interpolation and approximation methods.
However. there are certain restrictions and drawbacks to its use which have not vet
been mentioned. For example, in finite element electromagnetics the H'-seminorm
and H'-norm are often the measures of solution error that must be minimized in
order to solve problems appropriately. Since these two error measures involve the
first derivative of the underlying field solution. the approximation functions used
must. therefore. be of at least second-order or higher in order to apply the result in
Eq. (1.13). This follows from the condition & > m. that must hold., as described
previously. since m = 1 in these cases. Additionally. it is evident from Eq. (1.13)
that the order of differentiation of the solution. u. involved in the definition of the
grading function which is appropriate for use over a given element is dependent on
the polynomial degree. k. of the approximating functions employed over that element.
This order of differentiation is always equal to & + 1. and. therefore. always results
identically to zero since the approximation is of order &, which, in turn results in a
grading function equal to zero. To overcome this difficulty, the authors used extrap-
olation to increase the degree of the approximation for the test problems considered
in [127]. In particular, superconvergence theory was employed in order to compute
the higher-order derivatives necessary for evaluation of the grading functions. Recent
studies have shown, however, that superconvergence based derivatives of the under-

lying field solution, can give results with large errors for the values of the desired
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derivatives in finite element electromagnetics applications [144].

The approach defined in [127] is representative of a larger body of work in the
area of analytically characterizing optimal discretizations. as mentioned previously.
[n particular. the principle of equidistributing some quantity related to the problem
solution amongst all the elements in a mesh is embodied by the grading function ap-
proach developed in [127], and has been investigated in numerous other publications
including [117.125, 126, 129-135,137]. In fact. the formulation given in [125] was a
primary form of that developed in [127], as mentioned earlier. but was based strictly
on the assumption that optimal discretizations for only first-order finite element ap-
proximations were being sought. Thus. the resulting grading function used in [125] is
consistent with that presented in [127] for k = | and m = 1. Consequently. the results
of the computational tests presented in [125] for the one-dimensional approximation
test problems considered there. are consistent with the analogous results in [127]. in
that the optimally graded meshes do not correspond exactly to the actual optimal
discretizations for low numbers of elements, but. rather, tend to them asymptotically
as the element sizes decrease. It was also noted in [123] that the computation of the
optimally graded meshes was not stable under small perturbations in the correspond-
ing approximate solutions. Thus, the relative accuracy of an approximate solution
computed at a given level of discretization could affect the optimality of the mesh
determined from the grading function derived to compute the the optimal mesh.

In another publication dealing with optimal discretizations for first-order finite
clement methods, the authors adopted the approach of equidistributing the residual
of the governing partial differential equation for one-dimensional test problems [126].
Although no theoretical justification was given for the use of this equidistribution
principle. equidistribution criteria are often chosen heuristically. as pointed out in
the review of equidistribution methods given in [129]. The original intention in {126]
was to compute one-dimensional first-order finite element solutions based on the EP

mentioned above; however, the system of nonlinear equations resulting from the si-
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multaneous computation of the solution values and element vertex positions could not
be solved directly. due to the occurrence of mesh tangling. Instead, the authors intro-
duced fictitious “internodal viscosity™ and “internodal spring forces™ to keep element
vertices at least slightly separated. In order to do so, the values of certain parameters
associated with these fictitious terms had to be set empirically based on preliminary
trial runs. Subsequently. it was found that the ability of the method to produce valid
finite element meshes varied for different probiem types if the same empirical values
were used for these parameters. Also. it was observed that if these values were changed
for a given problem. the resulting accuracy of the computed solutions varied. since
the values of the parameters played a role in determining the problem discretization.
Aside from these computational concerns related to the method proposed in [126].
it is also important to note that without any theoretical basis for the choice of the
mesh optimality criterion employed. it would be difficult to justify its use in AFEMs
as a means of evolving optimal discretizations. Furthermore. counterexamples wiil
be given later in this work for which the residual of the governing partial differential
equation is not equidistributed amongst all of the elements in optimal discretizations
computed for simple one-dimensional electromagnetic systems.

The equidistribution of error principle was also investigated in [131] to study the
potential improvements in accuracy that could be realized by optimizing the prob-
lem discretization. The equidistribution criteria used in [131] to determine the ideal
meshes is based on interpolation theory error estimates analogous to those used in
superconvergence theory for finite element approximations [144]. Although these es-
timates are not strictly applicable to approximation methods such as the FEM. the
numerical results indicate that the solution accuracy was improved by using meshes
that equidistribute the (1/k)!* power of the H*-seminorm of the approximate solution
when &'*-order approximation functions were used, compared with the results for uni-
form meshes. It is interesting to note that while the equivalent grading function used

in [131] is similar to that developed in [127], there are slight differences between the
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two results. This is worthy of mention, since both formulations rely upon assumptions
based on interpolation theory. yet reach different conclusions.

More recently, the application of the grading function approach developed in [127]
to higher-dimensional problems has been considered in [132.134-136]. Specifically. it
is claimed in [132] that the grading function derived in {127] should extend to two-
and three-dimensional interpolation problems for determining optimal discretizations
in terms of minimizing the interpolation error. However, the claim was based on the
results from one-dimensional test problems given in [132.133]. and the preliminary test
results for two-dimensional interpolation problems. admittedly. suffer significantly
from mesh tangling. Furthermore. the techniques employed by the authors in [132.
133] to overcome mesh-tangling for one-dimensional problems. only partially work for
the two-dimensional cases examined.

The use of a grading function similar to that in [127] was considered for use in
two-dimensional approximation problems in [134]. The meshes employed consisted
of quadrilaterals. rather than triangles. and although mesh tangling does not occur.
it was found that the resulting optimal discretizations are not always unique. More
importantly. it should be noted that the two-dimensional test problems examined
in [134] were treated in a one-dimensional fashion: the optimization of the discretiza-
tions in the z- and y-directions were carried out independently. However. the use
of standard. non-orthogonal basis functions employed in [134]. would seem to not
justify the independent optimization in the two space coordinates. Moreover. it was
found that the approach was ineffective in terms of improving solution accuracy for
the two-dimensional test problems considered. In light of these findings, the authors
derived a modified version of their grading function which was based on including
higher-order terms of the truncation errors involved in the approximations used in
the original derivation. Overall, the results were found to be inconclusive, in that
under certain conditions the new grading function gave better results, whereas, for

other conditions the performance of the original grading function was superior.



Similarly. the grading function approach and EP were explored for use in two-
dimensional interpolation problems in [135.136]. It was found. however. that when
solving problems with large solution gradients. the meshes generated via equidistri-
bution could be very sensitive to small perturbations in the values of parameters used
to compute the discretizations. Furthermore. it was observed that the occurrence
of mesh tangling was quite sensitive to the initial mesh used to evolve an optimal
discretization. The idea of using “nodal forces™, as described earlier. to overcome
the negative consequences of mesh tangling is alluded to by the authors in [135]. but
is not pursued because of uncertainty as to how to apply this approach to higher
space dimensions than the one-dimensional context in which it had previously been
used in. Finally, as stated in [136], the efficiency of the proposed method relative to
standard. uniform methods was not considered due to the computational difficulties
encountered.

A slightly different EP approach is developed in [L17.137] for finite element formu-
lations. which involves the use of Lagrange multiplier methods in analytically char-
acterizing optimal finite element discretizations. Although the basic idea in [117.137]
is the same as that in [127]. in the sense that the optimal discretization which will
minimize a measure of the error in the approximate solution is the objective. the
formulation and results given in [117.137] are directly in terms of equidistribution
of the error measure itself. and not an auxiliary grading function. Specifically. it is
shown in [117] that the optimal finite element discretization for any problem will be
that which equidistributes the integral of the square of the solution error over each
element in the mesh, regardless of how the solution error is defined. This is a rather
impressive claim. but seems to suggest that for a given finite element formulation.
say one based on minimizing the global potential energy of the system. different error
criteria would lead to different optimal discretizations. However, for such a formu-
lation. there can only be one true minimum of the potential energy, which should

he associated with the true optimal discretization for a given problem. [t may be
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noted. that in the derivation of the optimality criterion given in [117], there was no
consideration given to the interdependence of elemental errors. In other words. the
derivation was based on the assumption that the error in each individual element
in a mesh could be minimized without influence from the minimization of the error
in other elements in the discretization. In general, such an assumption is not valid
for approximation problems. where it is essential that the approximate solution over
a given element is somehow related to that of, at least. adjacent elements:; thus. in
general. there is interdependence amongst elemental errors.

A mathematical formulation is given in [137] which is aimed at providing theoreti-
cal justification for the use of an EP published earlier in [130] based on equidistribut-
ing the energy norm of the error in finite element approximations. There are key
features of the formulation that may be worthwhile to note. First. error estimates
based on interpolation theory are used as the fundamental basis of the derivation.
As mentioned earlier, such estimates are not. in general, valid for finite element ap-
proximations. Nonetheless. based on these estimates. it is shown that given a finite
element discretization consisting of square elements, uniformly subdividing those el-
ements which will result in the energy norm of the error being equally distributed
amongst all the elements in the mesh. will produce the optimal finite element dis-
cretization for the problem. However. this result is to be expected. given that one of
the critical simplifications that occurs early in the formulation. implicitly constrains
the error to be equally distributed amongst the elements in subsequent refinements of
the mesh. Although. no numerical resuits are provided in [137] to support the theo-
retical findings. it was shown in [130] that while the approach of equidistributing the
energy norm of the solution error can provide benefits in terms of improved solution
accuracy under certain conditions. this criterion was unable to concentrate elements
in regions of high solution gradients for the problems examined. Unfortunately, it is
in just such regions that high concentrations of DOF are needed in order to compute

accurate finite element solutions to electromagnetics problems efficiently [57].
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As noted in the comprehensive review given in [129] of adaptive finite element
methods that involve the optimization of the problem discretization. most methods
move element vertices to equidistribute some quantity related to the computed solu-
tion or the approximation error associated with it. However, there has vet to be found
a universal equidistribution criterion appropriate for characterizing optimal finite el-
ement discretizations for a sufficiently wide range of problem applications. Since the
simultaneous computation of the problem discretization and the solution values con-
verts a linear problem into a nonlinear one, or usually makes a nonlinear problem
all the more difficult to solve. it is valid to question the value of expending the ad-
ditional effort required to solve such problems. Furthermore. given the considerable
amount of work that has been done to date. and the key issues which still remain to
be resolved, it is useful to recall the potential benefits of continued research in this
area. As pointed out in [129]. the field holds great promise for developing improved
adaptive methods. and. hence. the reduction of computational costs in many areas in
which the numerical solution of problems plays a vital role in modern day engineering

analyvsis and design.
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1.5 Thesis Objective

Currently. there exists substantial evidence suggesting that the optimality of a
finite element discretization plays a significant role in the accuracy of computed so-
lutions at given levels of problem refinement. To date. the characterization of mesh
optimality criteria in order to exploit the potential benefits most advantageously in
AFEMs have been investigated extensively. However. the approaches that have been
used have either. been inappropriate for finite element applications. or have not pro-
duced sufficiently conclusive findings. The objective of this work is to develop an
adequately general theoretical framework appropriate for the qualitative and numer-
ical study of optimal finite element discretizations for electromagnetic systems. and
to. ultimately, produce effective refinement criteria for reliably and efficiently guiding

adaptive finite element solvers towards optimal solutions.

1.6 Thesis Outline

The first step towards achieving the objective of the thesis will be to formulate the
problem of simultaneously solving for the electromagnetic field solution values along
with the optimal discretization parameters as a well-posed nonlinear optimization
problem. In Chapter 2, a general formulation, valid for the three common orthogonal
coordinate reference systems. will be given for one-dimensional finite element analysis
of electromagnetic systems possessing appropriate symmetry. Similarly, a derivation
for the optimization of two-dimensional finite element triangular discretizations and
the extension to tetrahedral meshes for three-dimensional problems will also be pre-
sented in Chapter 2. In all cases. the formulations will allow for the polynomial order
of the approximation to vary over a given mesh, so that the advantages of optimal
discretizations for h-, p- and hp-type adaption models may be explored. Subsequently,
the formulations will be used to compute truly optimal finite element solutions for a

series of important benchmark electromagnetic systems. In Chapter 3, the optimal so-
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lutions for one-dimensional finite element analysis of electromagnetic systems will be
used to investigate the validity and usefulness of currently available optimality crite-
ria: to propose a new set of characterizations for optimal finite element discretizations:
and to evaluate the potential performance advantages of the new characterizations
for the primary adaption models. In Chapter 4, the optimal solutions will be used to
extend the new concepts to two- and three-dimensional analyses of electromagnetic
svstems. and the value of the new characterizations for practical AFEMSs will be as-
sessed. Next. a formulation will be developed for second-order functional derivatives
which will be used to enhance the new characterizations for optimal finite element
discretizations, and the numerical performance of the enhanced characterizations will
be examined and evaluated in Chapter 5. Finally. the theoretical and practical value
of the new optimal discretization-based approach for AFEA will be concluded in

Chapter 6.



Chapter 2

Formulations for Optimal Finite Element Solutions

The review of the methods used for characterizing optimal finite element dis-
cretizations given in the previous chapter has revealed that the most reliable ap-
proaches for determining optimality criteria are those based on the principle of. first,
computing optimal solutions and. subsequently. analyzing the characteristics of such
solutions. The aim of this chapter is to present a set of nonlinear systems of equa-
tions which can be used to simultaneously compute optimal field solution values along
with optimal geometric discretization parameters corresponding to finite element for-
mulations for one-, two-. and three-dimensional scalar boundary value problems in
macroscopic electromagnetics. In order to derive such systems of equations which
can yield optimal finite element solutions. a mathematical formulation will be devel-
oped based on well-established variational principles. Moreover, the formulation will
be sufficiently general to allow for the consideration of a range of electromagnetics
problems including static and time-harmonic phenomena. In addition. finite element
discretizations with arbitrary distributions of element sizes and degrees of approxi-
mating functions will be assumed. so that there will be no restrictions imposed on the
possible distribution of DOF throughout the problem space. other than those inher-
ent in the types of elements and specific approximating functions used to discretize
the continuum problem.

Although several different choices exist for the shape of the elements to be used in
a finite element mesh, the most basic types of elements employed in finite element elec-
tromagnetics are simplexes. For example, line segments, triangles. and tetrahedra are
commonly used in one-, two-, and three-dimensional electromagnetics finite element

applications, respectively. The algebraic completeness property of the approximat-
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ing functions that can be defined over simplexes make such elements geometrically
isotropic, and therefore appropriate for modeling solutions of arbitrary variation over
different parts of problem domains [23.145]. Furthermore. any polygonal or poly-
hedral problem domain can be exactly decomposed into a set of simplexes. but not
necessarily into any other standard element shape [138]. For this work, simplex el-
ements will be emploved exclusively. however. the formulation will not be restricted
to specific approximating functions.

Ultimately. the equations derived from the mathematical formulation developed in
this chapter will be solved. using standard optimization methods. in order to compute
truly optimal finite element solutions to a series of benchmark electromagnetic sys-
tems. That is. the solutions computed in this manner will be of the highest accuracy
possible for a given level of problem refinement for the variational approach used. as
will be shown later. since the fundamental variational principle underlying the prob-
lem formulation is itself used as the basis for deriving the optimization equations.
Therefore. these solutions will permit for the reliable determination of theoretically

valid discretization optimality criteria for finite element electromagnetics applications.

2.1 Abstract Variational Problem

One of the standard approaches that is used for solving electromagnetic field prob-
lems numerically by FEMs is to reformulate the original continuum problem. cast in
terms of Maxwell’s field equations, using a variational principle that leads to a system
of algebraic equations. for the discretized problem. whose solution represents that of
the underlying continuum problem [138]. Although such variational reformulations of
electromagnetics problems are based on well established mathematical theory, a brief
description of some of the fundamental principles involved will be given here in order
to develop certain concepts that are necessary for the derivation of the optimization
equations to follow later in this chapter.

The mathematical formulation developed in this chapter for deriving the systems
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of nonlinear algebraic equations that will eventually be solved in order to compute
optimal finite element solutions for electromagnetic problems that can be cast in the
form of general operator equations such as Eq. (1.2), as explained in section 1.3, is
based upon the variational principle of finding the function u(z,y,z) which renders

the functional F(u) stationary, where:
1
F(u) = 5 (Lu,u) —(u,g). (2.1)

In Eq. (2.1) above, the notation (-, -) denotes the symmetric product defined over the

problem region (2 as:

(6,8) = [ dwan, (2.2)

where ¢ and 1 represent real or complex valued scalar functions.! Assuming that L,
together with its associated boundary conditions, represents a self-adjoint complex

operator, that is,

(Lo, ¥) = (9, L), (2.3)

then it can be shown [25] that for an arbitrary variation, du, in the function u(z,y, z),

the functional F(u + du) will be stationary about u if:
§F =0, (2.4)
where § F' is the first variation of F, and is given by:
§F = (bu,Lu —g). (2.9)

Thus, in order for the condition in (2.4) to hold, the following equation must be

satisfied:

Lu— g=0, (26)

'"The variational principle described in this section is also applicable to vector problems, for which
the inner product is defined as (a,b) = [; a-bdQ. However, only problems that can be expressed
in terms of scalar unknowns will be cousidered in this work.
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since the first variation of F must vanish for an arbitrary variation.? du, from Eq. (2.5).
Therefore, finding the function u(z.y. =) that renders the functional F(u), as defined
in Eq. (2.1), stationary. is equivalent to solving the original electromagnetics problem
in the form of an operator equation such as Eq. (1.2). Furthermore., it should be noted.
that for a given problem, the function u(z.y, =) for which F(u) is stationary. may be
determined uniquely since it must satisfy Maxwell’s equations subject to the specific
boundary conditions associated with the original electromagnetics problem [12].

In 'EMs that employ the variational principle described above. the functional F
is uniquely defined by the numerical values of a finite set of parameters that are. in
general, associated with the approximating functions used to model the solution over
the discretized problem domain. Thus. for the discretized finite element problem. the
stationarity requirement of Eq. (2.4) amounts to finding the stationary point of F
with respect to variations in these parameters. This can be achieved by the usual
methods of the differential calculus. namely. by setting to zero the first derivative of F
with respect to each of the parameters. and solving the resulting system of algebraic
equations [141]. It is a direct consequence of the fact that this type of stationarity
principle is required for the solution of finite element problems formulated using the
above variational approach, that such formulations can lead to theoretically justified

methods which are intrinsically suited to optimizing finite element discretizations [36].

2.2 Generalized Functional for Electromagnetic Systems

In the following, a generalized functional is presented which will be shown to be
appropriate for the variational finite element formulation of a range of one-. two-. and

three-dimensional scalar boundary value problems in macroscopic electromagnetics.

2In the discussion above, it is assumed that only admissible functions, i.e., functions which comply
with the boundary conditions and continuity requirements of the given electromagnetics problem,
and that are sufficiently differentiable to the degree required to evaluate the functional F as defined
in Eq. (2.1), are considered for determining the stationary point of the functional F. Thus, the
arbitrary variation du referred to above, must vanish on any boundaries of the problem domain for
which u is constrained, so that u +du may also be a member of the set of admissible functions [138].
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The approach taken is to begin with a sufficiently general differential equation, to-
gether with associated boundary conditions, and to apply the variational principle
described earlier in this chapter in order to derive the corresponding functional. A
merit of this type of approach is its generality, since such a formulation, which is valid
for the general differential equation considered here, allows problems in Laplace’s
equation. Poisson’s equation, the Helmholtz equation, and a diffusion equation to be
solved by simply dropping terms from the general equation. Thus. problems involv-
ing static. quasi-static. and wave-like phenomena may all be investigated with the
resulting formulation.

Consider the following general. second-order. scalar. partial differential equation:
V- (pVu)+ (k! + D)u =g, (2.7)

in the enclosed region ) bounded by the surface S. for which the solution u must

satisfy the boundary conditions:

u|s, = ugq. and.
(2.8)
du _
nls, = 0.

The symbols appearing in (2.7) and (2.8) have the following meaning:

u 1s the electromagnetic field unknown to be solved for:

1

p 1s a material-related parameter equal to c. p~". or 1:

is the permittivity;

¢ is the permeability;

k  is the free space wave number equal to w,/u€ or 0;
« is the frequency in radians/s;

D is a parameter equal to —jwoé;

7 is equal to v/—1;

o is the conductivity;

is equal to u, 1, or 0;
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g 1s a source function:
Sy represents Dirichlet surfaces; and.

S, represents Neumann surfaces;

where. Dirichlet surfaces are those parts of the problem domain boundary on which
the solution u must take on a prescribed value uy. Similarly. on Neumann surfaces
the component of the gradient of the solution in the direction normal to the surface.
du/dn. must take on a prescribed value. zero in this instance. In addition. it may
he noted that the surface bounding the entire problem region 2. is comprised of the
union of the Dirichlet and Neumann surfaces. i.e.. § = S; + S,.

The differential equation (2.7) above may be written in the form of the operator

equation (1.2). if the operator L is defined as:
L =V(pV)- +(k*+ D) (2.9)

However. due to the inhomogeneous Dirichlet boundary condition expressed in (2.8).
this operator is not self-adjoint for the unknown function u. It can be readily shown,

by introducing a new unknown function u,:
Uy = U — O (2.10)

where o is any function that satisfies the given inhomogeneous boundary condition.
that the operator L is self-adjoint for this new unknown function. Therefore. if u
is substituted by u, + @ in the criginal operator equation (1.2), then the variational
principle described earlier in this chapter may be applied to the resulting equation for
u,. Consequently. the corresponding functional, when expanded in terms of Eq. (2.10)
above, may be written as:

1

¢

F(u) = (Cu.u)——%(ﬂu.;o‘)+%(u.£a§)—(u,g). (2.11)

|

where terms that do not contain u have been discarded. since stationarity of F' is

sought with respect to variations only in the unknown function u. It may be verified.
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by using the self-adjoint property of L for u, = u — ¢. that the first variation of
F with respect to u is given by Eq. (2.5). Therefore, the function u which is the
solution to the electromagnetics boundary value problem defined by the differential
equation (2.7) and the boundary conditions (2.8), will render the functional F(u) of
Eq. (2.11) stationary.

The functional given above may be simplified. so that it can be expressed solely in
terms of the electromagnetic field solution required, u, by substituting the expanded

form of the operator L of Eq. (2.9) into Eq. (2.11). which after some cancellation of

terms renders:

Flu) = é/ﬂ {V-(pVu) + (k* + D)u} udQ
+ —;—/S; {uV-(pVe) — oV (pVu)} dQ

-/ ug d9. (2.12)
Q

Upon applying Green’s second integral identity to the middle term above, there re-

sults:

F(u) = %/;Z{V-(qu) + (k%2 + D)u}udﬂ

do .
+= f (an 0n) ds — fugdﬂ (2.13)

and. since both u and o satisfy the boundary conditions of Eq.(2.8), their application

to the above expression leads to:

Flu) = /{v (pVu) + (k* + D)u} ud®
y- f ( d—:——udg:‘l) dS—/nung. (2.14)

However. terms that do not contain the unknown function u may be discarded, since

they will not appear in the first variation equation (2.4) which must be satisfied in

49



order to determine the stationary point of the functional, whence it follows that:

F(u) = %/{; {V-(qu) + (k* + D)u}udQ—- %f; p(udg—:) dS_-/I; ug df). (2.15)

Next. applying Green’s first integral identity to the first term of the left-most integral
above. it may be written as the difference between a surface and a volume integration.

namely:

1 1 9 1
;/Q [V-(pVu)] udQ = ;){Su (pg%) ds — E/a Vu - (pVu) dQ. (2.16)

-~ -

Subsequently. the surface integral in (2.16) may be separated into two separate com-
ponents. one corresponding to the Dirichlet and the other to the Neumann surfaces of
the problem domain. Upon applying the appropriate boundary conditions of Eq. (2.8)
to each of the resulting surface integrals. it is readily seen that integration over Neu-
mann surfaces will result in zero. However, the remaining integral over Dirichlet
surfaces is identical, but opposite in sign, to that in Eq. (2.15) above. Thus. the
true solution to Eq. (2.7) over the problem domain  is the admissible function u for

which the following functional [’ is stationary.
1
F(u) = _E/s:z {qu -Vu — (k2 + D) u® + '.Zgu} dQ. (2.17)
or equivalently.
1
F(u) = 5/ﬂ{qu-Vu — (k2+D) 112+qu}dQ. (2.18)

since the leading minus sign does not play a role in the first variation equation (2.4)

which must be satisfied for stationarity to hold.

2.3 Nonlinear System Formulation for the Finite Element Equations

As alluded to earlier in this chapter, discretized forms of the functional defined by
(2.18) may be used to compute finite element solutions to electromagnetics problems

cast in terms of the general differential equation (2.7) and its associated boundary
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conditions (2.8). Furthermore. such discretized functionals are uniquely defined by
the numerical values of a finite set of unknowns. or solution parameters. The approach
followed in this study. is to. first. develop a nonlinear system of optimization equations
from a variational finite element formulation. which can then be solved using standard
optimization methods in order to compute optimal values of the solution unknowns.
The fundamental stationarity condition of the variational principle presented earlier.
is used as the basis of deriving the optimization equations.

The optimization equations which will be used to compute optimal finite element
solutions to the general differential equation (2.7) are derived from the first variation
expressions (2.4) for the functional F in (2.18). Conceptually. the dependence of the
functional F, for which a stationary point is required. on the solution unknowns may

be expressed as:

F = F(u(x).x). (2.19)

where the field solution is symbolically represented by the vector of field solution
parameters u. while x represents a vector whose elements correspond to the uncon-
strained geometric discretization parameters for a given problem. Moreover, any
dependence of the field solution parameters on the discretization parameters is ex-
pressed by:

u = u(x). (2.20)

Consequently. stationarity of the functional F’ with respect to variations in u, with the

geometric discretization held fixed. is achieved by satisfying the following condition:

ar
5| = 2.2
7ul 0, (2.21)

which is equivalent to the usual variational finite element formulation for fixed-

position geometric sub-domains. In addition, for finite element formulations in which

the geometric discretization for a problem can also vary. stationarity of the functional



with respect to variations in the geometric discretization implies:

oF JdF| Ju or
_— — — —_— = 2.22
I oul_ 3 + . 0. (2.22)
Thus. from (2.21) it follows that:
aF
—| =0. 2.2
ox |, (2.23)

represents the first variation equations corresponding to variations in the geometric
discretization of a problem.

The optimization equations which can be used to simultaneously compute optimal
field solution values along with optimal geometric discretization parameters for finite
element formulations, i.e. (2.21) and (2.23) may be expressed as a nonlinear system

of equations:

F(U)=0. (2.24)

where the individual elements of the vector F represent first-variation expressions of
the functional F' with respect to the corresponding elements of the unknown vector

U. For example. in a problem where AV is the number of unknowns to be optimized.

then:
F = [Fi.Fo.... Ful. (2.25)
U = (U lho...... Uy (2.26)

and.
F = gui (2.27)

Thus. the nonlinear system (2.24) will have the form:

fl(ul,u2.-. . ._L{A,') =

f2(ul~.u?.-- .- ,L(N') =0

(2.28)

and may be solved using standard optimization methods. The solution U of (2.28) is
the characterization of the best approximation, from the space of admissible approx-

imations. to the true solution u of (2.7).

(3]
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2.4 Finite Element Optimization Equations

Discretized forms of the functional (2.18) given earlier in this chapter, and the
finite element optimization equations derived from them, based on the first variation
expressions described above. are presented in the following. The discretized func-
tionals are developed using conventional approaches found in standard finite element
references: therefore, only the key steps and results are mentioned here. However, de-
tails differing from the usual treatments, or that are of significance in the derivation

of the finite element optimization equations. will be considered in greater depth.
2.4.1 One-Dimensional Systems

Electromagnetic systems which possess the appropriate type of geometric symme-
try may be analyzed using one-dimensional (1-D) finite element formulations. Con-
sider the 1-D element with vertex positions r. and z.4; such that (z.y; > z.). as
shown in Fig. 2.1. The location of a point P(z) within the element may be expressed

in terms of the simplex coordinates. {, and (,. which are defined as follows:

L — I, ) Le4y — L
G =————— (25—
LTegl — Te Loyt — Le

and which satisfy the relationship,
G +G =1 (2.30)

The purely Iocal nature of the simplex coordinates defined above, allows for the
development of certain parts of the finite element formulation that follows to be
accomplished in a manner independent of the global coordinate system. Thus, the
results developed for any given element can then be applied to any other element by
means of simple coordinate transformation rules. Furthermore. it may be noted that
although only one coordinate is needed, from Eq. (2.30), various quantities arising in
some stages of the formulation may be more conveniently defined in terms of both (;

and Cg.
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P(x)
—

Xe Xe x|

FFigure 2.1: Simplex coordinates for a 1-D finite element.

The required field solution u to the differential equation (2.7) may be approxi-
mated. over an individual 1-D element. e, using a linear combination of basis func-
tions. ;((;.¢2). such as:

u Y Uiei(Gr. ) (2.31)

=0

where the U; are real or complex. constant coefficients, that represent the n. + 1 field
solution unknowns associated with the element. The basis functions in Eq.(2.31) are
left general for the moment. however. explicit forms are specified in the next chapter
where numerical results are computed for the benchmark systems considered there.

Substituting the above approximation for u into the functional (2.18) yields:
1 ne Ne

Flo = 5—220’.—(»} -/9__ {pVa,- -Va; — (k* + D)aiaj} df

~ =0 ;=0

+i(_f,-/ ga; dQ. (2.32)
i=0 70
where Q. represents the portion of the problem domain associated with a single
clement, e. and F(®) represents the corresponding portion of the functional.

For one-dimensional systems where r represents the independent coordinate vari-
able over which the solution u(z) may vary, the following identity applies:
da; Oa;

% B2 (2.33)

Va,- . Va,- =
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Each of the partial derivatives of the basis functions with respect to the indepen-
dent coordinate variable in the above identity may be expanded in terms of partial
derivatives with respect to the simplex coordinates. by applyving the chain rule of

differentiation as follows:

aa,' . (')a,- aCI 00{,‘ 8C2

= . 2.34
dz 0¢ Oz + d¢; Ot ( )
where. from Eq. (2.29):
o 1 9G 1
2= = 2.35
dr h. Oz I’ (2.35)
in which A, represents the size of the one-dimensional element €. i.e..
he = Teqy — ZTe- (2.36)
Hence. the identity (2.33) may be rewritten as:
1 (da; do;\ (Oa; Ia;
Va;-Va, = 5 | =— — — ,f—__’). 2.37
% h? (()Ql dgz) (dh I ( )

and if the basis functions, o,((i, (2). are expressed only in terms of one of the simplex
coordinates. say (. by using the relationship (2.30). the above expression simplifies

to:
L 9ai Ja;

h2 8¢ 8¢, (2:38)

Va.' . Vaj -

Furthermore. for one-dimensional systems in which the independent coordinate vari-

able is represented by . the following coordinate transformation is applicable:

G, L S
d¢, = £ dr = y dr. (2.39)

Now, let
dQ =z"dx. (r=0,1.2). (2.40)

where the parameter r will be defined shortly. However. from the definition of ¢,

given in (2.29), and using (2.36). it is evident that,

T = Gihe + z.. (2.41)
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Thus. from Eqs.(2.39) through (2.41), it follows that
Q = (Clhc + Ie)rhc dCl$ (r = 07 172)' (2-42)

Therefore, upon substituting Egs. (2.38) and (2.42) into Eq. (2.32). the general form
of the discretized functional over a typical element e. for which a stationary point is

sought within the finite-dimensional space of admissible approximation functions. is

given by:
l & & U p. da; da;
Fe - = ((/ A i N R
Zo;go =0 h? 9¢ ¢ 8 x| o

l Ne e

- 33 uy; / (k2 + D.) aia;[Cihe + 2] he dCy

_ t=0 ;=0

ne. 1
+3°0 /( geaulGihe + 2. he d. (2.43)
= 1=

where p.. k.. D.. and g. represent the specific forms of p. k. D. and g in €).. respec-
tively. Moreover, these quantities are assumed to be expressed purely in terms of the
single simplex coordinate (;. In addition. the dependency of the functional on the
underlving coordinate reference system is determined by the value of the parameter

r as follows:

r=20 corresponds to a Cartesian coordinate system: (r.y.z):

corresponds to a circular cylindrical coordinate system: (p. ¢. z); and.

-~
3
y—

2  corresponds to a spherical coordinate system: (R.0.0).

.,
[
~J

Although the functional F(¢) defined above corresponds to a one-dimensional finite
element formulation, the relative contribution from each element in a discretization
to the functional over the entire three-dimensional volume associated with a given

problem, must be included in F{¢) in order to correctly apply the variational principle
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described earlier in this chapter. Hence. the Jacobian, ({ k. + z.) h.. in (2.43) corre-
sponds to transformations from the more familiar forms of the differential elements
of volume associated with the three common coordinate systems as defined above by
the value of the parameter r. However. it should be noted that any factors which do
not differ in the unit volume from one element to the next. for a particular coordinate
system. have not been included in the expression above for the elemental functional
F{<). Specifically. when considering one-dimensional problems defined with respect to
the three reference coordinate systems discussed above. the independent coordinate
variable will be taken to be either z. p. or R in each case. respectively. for the prob-
lems considered in this study. However. the independent coordinate variable in all
three cases will be consistently represented by the symbol . Thus. the volume corre-
sponding to each element in a given one-dimensional discretization is determined. to
within a common multiplicative factor, by considering the differential volume element
defined in (2.40). or alternatively. in (2.42).

The functional corresponding to a typical element. e. given in (2.43) may be

expressed more concisely by first defining the following quantities:

1 do; da;
o / Pe 79: 99 e h. + 1.7k, dCy.
i ¢1=0 hg G 9G, [QIZ +I] le d()
L
BY = [ _(k+D.)aiaslGihe + 2.l dGi. and
¢1=0
1
O = /( gealGuhe + 2] he dGy. (2.44)
1=

Equation (2.43) may then be written as:

FO = LSS v - LSS ST 0, B + S U, (2.45)
~ (=0 j=0 = =0 j=0 =0

or. in matrix form as:

Fle) = %u(e)TV(e)u(e) _ ;u(e)TB(’)u(e) + uOTEE), (2.46)

N
=1



where. the vector u!®) consists of the field solution unknowns, U;. associated with a
specific element, e. of a one-dimensional finite element discretization comprised of N
elements in total. as shown in Fig. (2.2). Thus. the functional corresponding to the

entire discretization is given by:

N
F=Y F©. (2.47)
e=1

The optimization equations for the field solution parameters. u'®), associated with

a tvpical element. e, may be derived by considering the first variation equations

defined by:
o F (e
OBFL",- =0, (z=0.1.....n.). (2.48)
or. equivalently by:
AF
Sa@ = 0. (2.49)

Applying the following resuit:

d r _ (ou”

owT
Jdu u

_ owT

= W+ I u.

and from the symmetry of the matrices V(¢) and B(®), it can be readily shown that

(2.50)

Eq. (2.49) vields:

vyl —Bllgl) 4 £ = 0. (2.51)
1 2 e N-1 N
X1 X2 X3 Xe -1:t¢l . x;rx XN -l’jvu
— ————— e x

Figure 2.2: A 1-D finite element mesh of N elements.



Thus. similar treatment of all the elements in a discretization results in the set of

equations:

vyl B = £ (e=1,2.....N). (2.52)

which may be solved for optimizing the values of the entire set of field solution pa-
rameters. u, for a given problem. It may be noted, that in practical finite element
implementations some of the field solution parameters may be common to more than
one element. The optimization equations corresponding to any such parameters may
be consoiidated into a single equation by. first. consolidating any field solution param-
eter common to more than one element into a single unknown (see [138] for example).
The optimization equations for the geometric discretization parameters may be

derived by considering the first variation equations defined by:
aF

= =2.3.....: N 2.5:
oz, 0. (e=23, V), (2.33)

where the positions of the end vertices, | and z x4, are constrained to the boundaries
of the problem domain. and. therefore. are not permitted to vary. [t may be useful
to recall that.

N
F=Y F©, (2.54)
e=l1

where the dependence of F(¢) on the discretization parameters is such that:

Fle) — F(CJ(Ie-he($e~Ie+l))- (2.55)
Therefore. (2.55) implies:
Fle= = F(c—l)(-re—l-,he—l(re—lﬁre))' (2.56)
and. thus:
OF HF(e—1) gFe)
— 2.57
a.’l,'e a-’ﬂg + axc | ( ‘)
where.
H F(e—1) 7 frle—1) (e—1) ;
oF _oF aF Ohe—y (2.58)

oz oz. T h, Oz
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However, the first term on the right in Eq. (2.38) is equal to zero since z, does not

appear explicitly in F¢~1) and from (2.36), we have:

Bhe—l

=1. 2.5
3z, 1 (2.39)
Hence.
JF(e=1) QF(e=1)
= ] 2.
dz. Ohe_y (2.60)
Similarly.
AFE)  gFl)  9F© 9h,
p—tg .)
or, ~ 0z, T ok, oz (2.61)
but. from Eq. (2.36):
oh.
= - 2.62
oz, 1. (2.62)
Hence.
AF©)  gFe) R
= — . 2.6:
Jz. dz. oh, (2.63)
Finally. substituting (2.60) and (2.63) in (2.57) vields:
: GFe-1)  gpl)  gFte
dF 9 oFt . (2.64)

; = - +
01',3 ()he__[ ({)l‘e ahe
Thus. the set of optimization equations corresponding to the entire set of geometric

discretization parameters for a given problem is defined by:

F=1  gFe)  gFe

+ — =0. (e=2.3...... V. 2.65
Ohe_, dz. oh. ( ) ( )
which may also be expressed in matrix form as:
L (=) Tple=1)yyle=1) L ()T le)y(e)
> (u P u +u'9" 8§y )
L (yle=0TQte=1 yle=1) 4 y(a)Tple) yle)
—_;(u Q u +u'“" Tu )
+uleDTgle=l 4 y@Tple) = 0, (e=2.3.....N). (2.66)
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where. the matrices and vectors in the above equation are defined as follows:

d

P =

85 = [()C:,- - ai] Vi
Q" = 3/3_ By

Ty = [ai a(z] B3

4= = T lf(f‘” and.

) _ [()(Z a'h]f(c) (2.67)

Solving the combined set of equations (2.52) and (2.66) simultaneously for the field
solution unknowns, u. and the discretization parameters, x. will vield the optimal fi-
nite element solution for a given problem within the space of admissible solutions
which can be defined by the chosen sets of basis functions used to model the solution
over the problem domain. It may be noted that (2.32) is equivalent to the set of equa-
tions that can be solved for only the field solution unknowns in conventional finite
clement formulations which have fixed-position elements. Furthermore, it should be
noted that {(2.66) may not be solved independently of (2.52) for the discretization pa-
rameters. since the former have been derived based on the condition of stationarity of
the functional with respect to the field solution parameters. In general. stationarity of
the functional with respect to the field solution parameters is dependent on the values
of the discretization parameters, i.e., the element vertex positions. This dependence
is due to the fact that the approximating functions defined over individual elements
are defined uniquely by the values of both their associated field solution parameters

and the element vertex positions.
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2.4.2 Two-Dimensional Systems

Electromagnetic systems that possess translational or rotational symmetries may
be analyzed using two-dimensional (2-D) finite element formulations. For example. in
Cartesian problems where the field solution variation is independent of the coordinate
variable =, i.e.. u = u(z.y). a finite element discretization may be constructed in
the ry-plane. Consider the 2-D triangular element with vertex positions {z;.y;)-
{ = 1.2.3. as shown in Fig. (2.3). The location of a point P(z.y) within the element
may be expressed in terms of the simplex coordinates. (. (2. and (3. which are defined

as follows:

. Area(P23) _  Area(lP3) | Area(l2P) (2.68)
ST Rrea(123) * T Area(123) T Area(123)” =
¥
A
. - R - e e X
0

Figure 2.3: A triangular element with lines of constant ¢, shown. and the three sub-
simplexes P23, 1 P2, and 12P used in the definition of (i, {2, and (3.



and satisfy the relationship:

G+G+G=1" (2.69)

Just as in the 1-D case. the required field solution. u. to the differential equation (2.7)
may be approximated over each triangular element in a 2-D discretization. For ex-
ample. the following approximation may be used in element e:
Ne
u X z[»"iai(ChCzsCs)e (2.70)
i=0
where. now. the ;((;.¢;.¢3) are two-dimensional basis functions. Once again. the
('; are real or complex. constant coefficients. that represent the n. + 1 field solution
unknowns associated with the element e. Similarly, the source function. g. in Eq. (2.7)

may be approximated by

g= ZGiai(ChCLQ.S)a (2.71)

i=0
where. in this case. the G; are known real or complex. constant coefficients. Following
a similar line of derivation as in the 1-D case. substitution of the above approximations
for u and g in the functional (2.18) vields:

n. n.

F© = ;ZZ U:U; /n,. {Pvai Vo, — (k% + D)a;a,'} d?

= =0 3=0

—_—
(]
-;.I
8V}

—_

+Z’:ib,61/;2 a;a,-dﬂ.

i=0 ;=0
where €, represents the portion of the problem domain associated with a single
clement. e. and F(¢) represents the corresponding portion of the functional.

For two-dimensional systems where z and y represent the independent coordinate

variables. it follows that:

30,‘ 8aj + aa,' 6a,~

Veu - Vaj = Jz Oz dy dy

(2.73)

The partial derivatives of the basis functions with respect to the independent coordi-

nate variables in the above identity may be expanded in terms of partial derivatives
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with respect to the simplex coordinates. as follows:

and.

aai BCm

i')a,- 3

Bz = 2 30, x”

doi _
dy

m=1

——
o

-1
NN
N’

(2.75)

Furthermore. the partial derivatives of the simplex coordinates with respect to the

independent coordinate variables may be determined explicitly by. first. noting that

the area of a triangle, for example. the 2-D element depicted in Fig. (2.3). may be

expressed in determinant form as:

1 1 Iy Y
A=Area(123) =5 | 1 12 2
1l 3 oys

(2.

76)

Similarly. the remaining sub-triangle areas in (2.68) which define the simplex coordi-

nates may be expressed as:

Expanding the determinants in (2.76) and (2.77).

1 1l » vy
Area(P23) = 5 1l z, y2

"l r3 oys

1 1 I Y
Area(lP3) = 5 r y |: and.

Tl or3 oys

1 1 Iy Y
Area(12P) = 5 L z2 y2

11l r y

follows from (2.68) that:

1
G2

&

[(z2ys — z3y2) + (y2 — y3)T + (z3 — I2)y] [ 2A;
(zay: — x1y3) + (y3 — y1)T + (x1 — z3)y] / 2A:

[(z1y2 — zay1) + (Y1 — y2)T + (22 — 1)y} / 2A:

Therefore. it may be readily confirmed that:

O Yirr —Yi-r OC  Tioi — Tiqa

dz 24 ' 8y 2A
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where the subscripts progress modulo 3, i.e., cyclically around the three vertices of
the triangular element in Fig. (2.3). Thus. (2.74) and (2.75) may be rewritten as:

8a,— 1 3 aai

_= by —. 2.
or 2 mz=: OCm (2:80)
and.
da; 3 da;
—-— = \ 2.8
e =T e (2:81)
where b; and ¢; are defined. again in modulo 3 notation, as:
b; = Yiy1 — Yi—1: Ci = Ti—1 — Tigi- (2.82)
In addition. it may be shown that the coordinate transformation:
ey dey = 28-62) 4o g (2.83)
dHz.y)

vields the following differential element of area. df2, for integration in simplex coor-

dinates over a triangular element with area A.:
Q =2A,d¢ d¢,. (2.84)

Hence. by substitution of (2.80) and (2.81) in (2.73). the general form of the discretized
functional over a typical element. €. for which a stationary point is sought within the
space of admissible approximation functions, may be written as:

FO = L3S [ S 3 (bmbn + emen) IS,

2 (=0 j=0 m=1 n=1

ne. n. Ne Ne

- 52 Y UiU2A BS + S S UGRA HY. (2.85)

1=0 =0 1=0 ;=0
where,

e 1-< () da; 9 )
[z(Jr)nn = / / l bl d¢y d¢a:
¢1=0J¢ Q

2=0 Gm

1-(1
() — 2 4+ D.Yaja; d(, dC d,
B;; f(l_O/Q (k? + D.) aic; dCy d{z and,
1-(y
H,(;) = ] / Q,‘(decldCQ. (2.86)
G1=0J(2=
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It should be noted, that p.. k., and D, represent the specific forms of p, k, and D. in
Q.. respectively. Moreover. it is assumed that p.. k.. D.. as well as the basis functions
a,. may all be expressed entirely in terms of the two simplex coordinates ((;.(2) by
using the relationship (2.69). Although such an assumption implies that the third
terms in the summations over m and n in (2.80). (2.81). and (2.85) need not be
included. they are left intact since. in some instances, it may be more convenient to
first express derivatives of the basis functions in terms of all three simplex coordinates.

The functional corresponding to a typical element. e. given in (2.85) may be

written in matrix form as:

l L
FO = —u@TyEul) - —u@T(24, BO)ul) + u7 (24, HE)gl, (

[
%
=1

N—

where. u(®) and g(®) are the vectors of the field solution and source term parameters.
respectively, associated with a specific element. e, of a two-dimensional discretization;
and the entries of the matrix V(¢ are defined by:

| 3.3

ﬂ Z Z(bmbn +crncn)[:(;r)nn (2.

¢ m=1n=1

I
[0 4]
oL

~le) __
‘fij -_—

Thus. the functional corresponding to a discretization over the entire problem domain

comprising :V elements is given by:
N
F=3 F"“. (2.89)
e=1

The optimization equations for the field solution parameters. u'¢). associated with
a tvpical element. e, may be derived in an analogous manner to that presented earlier

for one-dimensional systems: namely, by considering the first variation equations:

S

_ 24
5o = O (2.90)

By applying the result (2.50), and from the symmetry of the matrices V(¢) and B(®,

it can be readily shown that that Eq. (2.90) vields:

VEutl — (24, B@)ul + (24, H)g = 0. (2.91)
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Thus. similar treatment of all the elements in a discretization results in the set of

equations:
vieyl) — 24, B@)pul) = —24. HO)gld, (e=1.2....,N). (2.92)

which may be solved for optimizing the values of the entire set of field solution pa-
rameters. u, for a given problem. if the geometric discretization is held fixed. [t may
be noted that. any optimization equations corresponding to field solution unknowns
which are common to more than one element. may be consolidated into a single
optimization equation by, first. consolidating the common unknowns into a single
unknown parameter.

The optimization equations for the geometric discretization parameters. i.e.. the
element vertex positions. associated with an element. say e. may be derived by con-

sidering the first variation equations defined by:

AF©)
—— =0. (I =1.2.3). 2.93
51 ( ) (2.93)
and.
AF)
o = 0. ({=1.2.3). (2.94)
ayl

where. .7:,(8) and y,(e) represent the r and y coordinate values of the position of vertex
[ ({ = 1.2.3) for element €. respectively. In the 1-D formulation presented earlier.
where the mesh topology was known a priori, it was possible to show that only that
portion of the discretized functional for the entire problem corresponding to the two
elements sharing a common vertex were functions of the position of their common
vertex. This a priori knowledge allowed the first variation equations for the geometric
discretization parameters to be derived in a global fashion over the entire problem
discretization. However, in two-dimensional meshes composed of triangular elements.
several elements may share a common vertex. In general. it is not possible to pre-

determine the topology of a 2-D mesh; therefore. it is necessary to derive the first

variation equations for the 2-D geometric discretization parameters in a local manner,
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i.e.. element-wise, just as for the field solution parameters. [t should be noted. that for
a specific 2-D system, the first variation expressions corresponding to a discretization
parameter common to more than a single element may also be consolidated into a
single optimization equation.

More explicit forms of (2.93) and (2.94) may be derived as follows. First. consider:

81‘}6) a:z:fe)

—u@Tyieyle) _ éu(e)T(QAe B u® 4+ uIT (2.4, H‘f’)g(‘-"] . (2.95)

IF g Tl
5

Since uf?). g¢). B}, and H(® are independent of the geometric discretization param-

eters. the above identity may be rewritten as:

IF Lu(c)r( 9 V‘e)) @ _ Ly 9CA) oy 4 ot 9CA) oy i

arl" 2 dz!” 2 9 o™

(2.96)
Furthermore. it follows from (2.88) that the component-wise partial derivatives of

(e)

V) with respect to z;,*' are given by:

91 (e) 3 3 3 NG
= 2 23 fa (L) Aenel) g 4 e 2 1,
1 Iy

81‘56) 4"43 m=1n= aI;e) a‘rfc)
(2.97)
which may be simplified upon noting from (2.82) that:
Q-(ﬁ‘(—b,"—) =0. (m.n.l=1.2.3). (2.98)
dz)°
In addition. it may be confirmed from (2.76) and (2.82) that:
209
()("(4;) =b. ({=1.2.3). (2.99)
az;*
Thus. applying the simplifications (2.98) and (2.99) to (2.97) vields:
vl = - [54 Hemen) (e) :
—'(-)—1? = Af :V:_:l nzz:, —-—-(e—)_ ~ (bmbn + cmen) 0| [imn- (2.100)
Similarly, it can be readily shown that:
v 1 & & O(bmbn) ]
J] 24, — 2 bmbn + 1) 2.101
FHCEREv D IPY [ FRCR R I (2101



after noting from (2.82) that:

a——(c"?f)") =0. (m.n.l=1.23), (2.102)
dy
and from (2.76) and (2.82) that:
2
02A) _ o (=1.2.3) (2.103)
dy,

Therefore, the set of optimization equations for the geometric discretization parame-
ters associated with a given triangular element. €. in a two-dimensional finite element

mesh is given by:

1 b
STy _ SyTBEE 4 g uTHEE =0, (I=1.2.3) (2.104)
and.
%u(c)TT(“’u(‘) _ %lu‘c)TB(")u(" +oquOTHOES) =0 (1=1.2.3).  (2.105)
where the entries of the matrices S{¢) and T{(¢) are defined as follows:
P ‘/'.(.C)
5',-(;) = 9 ¢ and.
31‘18
. vt
Y = —5- (2.106)
09:

[t may be noted that the partial derivatives of (b,,b,) and of (¢ c,) with respect to the
element vertex positions, which appear in (2.100) and in (2.101), can be determined
directly from (2.82) and are given in Table 2.1 and Table 2.2 for reference. where they
are expressed in terms of b; and c;.

The combined set of equations (2.92), (2.104), and (2.105) may be solved simul-
taneously for the optimal values of all the unconstrained field solution and geometric
discretization parameters in a given problem. Once again, it may be noted that
the optimization equations for the geometric discretization parameters may not be

solved independently of those for the field solution parameters, for the same reasons
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as those given for the 1-D case. Furthermore, the formulation for two-dimensional

systems presented above. has been developed independently of specific basis functions

and. therefore. is valid for any choice of legitimate finite element basis functions.

Table 2.1: Explicit forms of B(bmb")/ay,(e) in terms of b; for m. n. { = 1,2.3.

(m,n)/! 1 2 3
(1.1) 0 2b, —2b,
(1,2). (2.1) —b, b, by — by
(2.2) —2b, 0 2b,
(1,3), (3,1) by bs — by —bs
(2.3). (3.2) by — b3 —b, bs
(3.3) 2b —2by 0




Table 2.2: Explicit forms of d(emen)/d2\) in terms of ¢; for m. n. [ = 1.2.3.

(m.n)/l 1 2 3
(1.1) 0 —2¢, 2cy
(1.2), (2.1) < —cz c2 — ¢y

(2.2) 2c, 0 —2¢;
(1.3). (3.1) —c cL—c3 c3
(2.3). (3.2) 3 —C2 ca —c3

(3.3) —2c3 2¢3 0

2.4.3 Three-Dimensional Systems

Many practical electromagnetic systems do not possess the appropriate symmetry
to allow for one- or two-dimensional treatments. and. therefore. must be analyzed
using full three-dimensional (3-D) formulations. For example. in problems where
the field solution variation is described in terms of the coordinate variables. r. y.
and z. i.e.. u = u(z.y.z). the 3-D counterparts of the optimization equations given
above for 2-D systems may be derived following an exactly analogous procedure in
three dimensions. Consider the tetrahedral element with vertex positions (z;. y:. zi).
! = 1.2.3.4, as shown in Fig. (2.4). The location of a point P(z.y.z) within the
clement may be expressed in terms of the simplex coordinates (. (2, (3, and (4,

which are defined as follows:

. _ Volume(P234) _  Volume(1P34)
o= Volume(1234) 2= Volume(1234) °
.') .
G = Volume(12P4) _ Volume(123P) (2.107)

~ Volume(1234) ° '~ Volume(1234)
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~(x1y12t)

.y

-4
(x3.¥4.24)

(x3.¥3.23) = 7 (x2.¥2.22)

Figure 2.4: A tetrahedral element and the sub-simplex P234 used in the definition of
Ci-

and satisfy the relationship:

Gt +¢+G+¢ =1 (2.108)

Furthermore. the volume of a tetrahedron. for example. the 3-D element depicted in

Fig. (2.4). may be expressed in determinant form as:

l =,y =1

V=Volume(1'234)=é i iz ? w2, (2.109)
3 3 ~3
Il T4 ya =4

Similarly. the remaining sub-volumes in (2.107) which define the simplex coordinates

2



may be expressed as:

1 =z y =

1 I z2 y2 =2
Volume(P234) = =

( ) 6|1 z3 ys =3

I 4y ys =

1 =y y1 =

. L1 =z y =
Volume(1P34) = =

( ) 6 |1 z3 ys =z3

1 x4 ys 24

| S VT

LT 22 2 =2

9 — - -

Volume(12P4) sl1 z y =

I x4 ys =4

Il oy 35 =

. 1 1 T2 Y2 22
Volume(123P) = -

el ) 6 |1 o3 ys =23

Il » y =

; and.

(2.110)

Expanding the determinants in (2.109) and (2.110), and after some rearranging, it

follows from (2.107) that:
1
6V = Z a;,
=1

and.

Ci=lai+bix+cy+diz]/6V, for i=1.2.3.4.

(2.111)

(2.112)

where. a;. b;, ¢;, and d; can be defined as follows with the subscripts progressing

modulo 4:

Tit+1l Yi+l <itl
a; = (=1)'*" | riyz Y2 Zigo
Tic1 Yi-1 =1
Al Y zia
bi =(—=1) | 1 yiy2 zip2
1 yic1 zia

1 Zigr Zip

ci=(=1)*" |1 zipy2 =zi42 |. and,

1l ziy =i
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T Yin
di = (=1)" | | Tiy2 Yis2 |- (2.116)
I ziot yior

[n addition. it may be shown that the coordinate transformation:

a(Clv CZ? (’.3)

d¢, d¢; d@z = Az.g.2)

dxdydz, (2.117)

vields the following differential element of volume. dQ. for integration in simplex

coordinates over a tetrahedral element with volume V.:
dQ) = 6V, d¢, d¢; d(s. (2.118)

Subsequently. if the required field solution. u. to the differential equation (2.7) and
the source function, g, therein. are approximated over each tetrahedral element anal-
ogously to the 2-D case. it may be shown that the general form of the discretized
functional over a typical element, €. for which a stationary point is sought within the

space of admissible approximation functions. may be written as:

1

. | 2o 2 o
FO = 522U [614

= =0 y=0

4 4
3" S (bmbn + cmen + dmdy) IS,

m=1 n=1

1 e TNe e Tle

=52 U6V B + 33 UGi6V. Hy;). (2.119)

= i=0 ;=0 i=0 j=0

where.

! -G [1=G=G  da; da;
[(t:) — / f . _.' -J d- d- d_ .
i €1=0 J(2=0 J(3=0 p I Cm OCn G1 dG2 d(3:

1 1-¢; I-(1—¢2
(e) _ .2 DT
B = [omofumo Juma 85 D)o i da s and,

2:0 =0
13 1= pl=(1=¢2
HS = / / / aiay; dCy dCy des. (2.120)
’ G=0J¢=0 J¢=0
It should be noted that the integrands in (2.120) are assumed to be expressed purely
(e) (e)
Bij N a.nd H‘J

in terms of the three simplex coordinates (¢, (2, ¢(3). Therefore, 5

gymn?
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are all quantities that are independent of both the size and shape of a specific tetra-
hedral element. in that they do not involve the geometric discretization parameters
associated with an element. i.e., the element vertex positions.

The functional corresponding to a typical element, e. given in (2.119) may be

written in matrix form similar to that for the 2-D case. i.e..

F = éu(")TV(C)u(C) - éu(‘”T(m& Bt + u) 76y, H*)gl). (2.121)

where. u{®) and g(*) are the vectors of the field solution and source term parameters.
respectively. associated with a specific element. e. of a three-dimensional discretiza-
tion: and the entries of the matrix V(¢) are defined by:

@_ 1 55 (e)

, (.4 5 I3

Vil = = D Y (bmbn + cmcn + dndy) [0 (2.122)
Gv'f m=1 n=1

As before. the functional corresponding to a discretization over the entire problem

domain comprising NV elements is given by:
N

F=3 F. (2.123)
e=l

The optimization equations for the field solution parameters. uf®). associated with
a typical element. e. may be derived by. once again. considering the first variation

equations:
JF(e)
au(e)

Applying the result (2.50), and by the symmetry of the matrices V(¢ and B(®, it is

=0. (2.124)

readily seen that Eq. (2.124) yields:
vEu — 6V, B + 6V, H gl = 0. (2.125)

Thus. similar treatment of all the elements in a discretization results in the set of

equations:

Ve — 6V, BlHul® = —(6V.H)gl®), (e=1,2,...,N), (2.126)
g

b |
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which may be solved for optimizing the values of the entire set of field solution pa-
rameters. u, for a given problem, if the geometric discretization is held fixed. Of
course. any optimization equations corresponding to field solution unknowns which
are common to more than one element. may be consolidated into a single optimiza-
tion equation by, first. consolidating the common unknowns into a single unknown
parameter.

The optimization equations for the geometric discretization parameters. i.e., the
element vertex positions. associated with a tetrahedral element. e. may be derived by

considering the first variation equations defined by:

O F (€}

—=0. ({{=1.2.3.4). (2.127)
JF (e}

— = 0., ({=1.2,3.4). (2.128)
ay,

and.

3 F(e)

0F(e) =0, ((=1.2.3.4). (2.129)
dz;

where. .rfe). y,(e). and :,(c) represent the r. y. and = coordinate values of the position

of vertex [ ({ = 1,2.3.4) for element e. respectively. In three-dimensional meshes
composed of tetrahedral elements, several elements may share a common vertex. In
general, it is not possible to pre-determine the topology of a 3-D mesh: therefore, it is
necessary to derive the first variation equations for the 3-D geometric discretization
parameters in a local manner, i.e., element-wise, just as for the field solution parame-
ters. [t should be noted. that for a specific 3-D system, the first variation expressions
corresponding to a discretization parameter common to more than a single element
may be consolidated into a single optimization equation.
To derive more explicit forms of (2.127), (2.128), and (2.129). first consider:

dz!" - Az

dFe) J [lu(c)TV(c)u(e) _ :})_u(c)T(Gvc B(e))u(e) + u(e)T(Gve H(c))g(cl] .

2
(2.130)



Since ul®), g¢}, B{¢)_ and H!®) are independent of the geometric discretization param-
eters. the above identity may be rewritten as:

IF© 1 I(6V.
__u(e)T( 9 V(e)) (@ _ Lyer 96Ve) gy ) 4 yorr a(GV)H(e)g(e)

oz 2 oz 2 dz(® ozl

(2.131)

Moreover. it may be seen from (2.122) that the component-wise partial derivatives of

V() with respect to z\°! are given by:
v 1 A [ (B(b by)  B(cmcn)  Odmdn ))
= 6. — + +
01'(’) 3612 Elg dz(” 9z oz
(b + e +dmdn)‘)(6“)] 1., (2.132)
or'® !
l

which may be simplified upon noting from (2.114) that:

d(bmbn)

=0, (m.n,l=1,2.3,4). 2.133
o ( ) (2.133)
[n addition. it may be confirmed from (2.109) and (2.114) that:
a(6V.) . a1
92 =b. ({=1.2.3.4). (2.134)
Thus. applying the simplifications (2.133) and (2.134) to (2.132) yields:
A g Henen) | Admdy) (0
! — 6v bl - bmbn + dmdn b [1 emn
i = s B [V (Tt 2ot - o o ]

(2.135)

Similarly. it can be readily shown that:

1A Abmbn)  I(dmd, .
o 361/2 z: Z |:61, ( ( ) + ()( )) — (bmbu + ¢mcn +dmdn)cl] [x(_;r)nn

8.7/1(6) e m=ln=1 dJ(e) ayl(e)
(2.136)
after noting from (2.115) that:
a(c'"(f)") =0. (m,n,{=12.34), (2.137)
Ay,
and from (2.109) and (2.115) that:
a(6V.
—;(—c)) —a, (I=1,2,3,4). (2.138)
Yi
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Also. it may be confirmed that:

v N . [ O(bmb,)  O(cmen) (e)
&)~ 36V2 > |6V. 9= T 9:-0 | (brbn + emen + dmdn)di| Ly
~ e m=1n=l ~{ <!

(2.139)
since. from (2.116), it may be noted that:
M(:l;n) =0. (m.n.[=1.2,3.4). (2.140)
dz
and from (2.109) and (2.116), it may be shown that:
A6V,
( }’)) =d;, ([ =1.2.3.4). (2.141)
9z°

Therefore, the set of optimization equations for the geometric discretization param-
eters associated with a given tetrahedral element, e. in a three-dimensional finite

clement mesh is given by the following three equations:

éu(ﬂ”s(”u“’ - %‘uWB‘f’u(f’ + 5 ul9THg®) =0, (1 =1.2,3,4). (2.142)

-~

i ,
Su@TTEE — Sy @OTBEYE 4 quTHO) =0, (I=1.2.3.4). (2.143)

and.

éu(*”w(e’u“) - i;u(”’TB(E’u[" +du@TH g =0, (1 =1.2.3,4). (2.144)

< -

where the entries of the matrices S}, T(¢), and W{*) are defined as follows:

a1/(¢)

S(e) = 0‘{] .

M azfc)'
1/(¢)

Ti(f) = ZV’(JC) and,
Y
V(F)

wh = v, (2.145)
9z
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It may be noted that the partial derivatives of (6,0, ), (cmcn ). and (dmdy, ) with respect
to the element vertex positions, which appear in (2.133). (2.136), and (2.139). can be
determined directly from (2.114) through (2.116), and are given for reference in Table

2.3 through Table 2.8, where the quantities X;;. };;, and Z;; are defined as follows:

Z,'J' = i :J' (2.148)

Finally. the combined set of optimization equations (2.126), and (2.142) through
(2.144). for all e. may be solved simultaneously for the optimal values of the field
solution and geometric discretization parameters that are not constrained for a given
problem. As in the 1-D. and 2-D cases. the formulation presented above is valid for

any choice of legitimate finite element basis functions.



Table 2.3: Explicit forms of 8(bmbn)/8y,(°) in terms of b; and Z;; form, n. [ =1.2,3.4.

(m.n)/l 1 2 3 4
(1.1) 0 26, 243 2by 294 26, 23,
(1.2). (2.1) by Za4 by 243 b2Z94 + 01241 by 235 + 01213
(1.3). (3.1) by 242 b3Z43+ 61244 03244 b3Z3; + b1 22

(1.4). (4.1) b1 293 by 243 + by 23, bsZqy + 61212 by Z32
(2.2) 2by 234 0 2b, Z41 20,23
(2.3). (3.2) b3 23, + 6224, by Z14 b3 Z4, 3213 + b2 221

(2.4). (4.2) b1Z34 + b2 223 by Z3, bsZ4 + 6222 64213
(3.3) 263242 2052, 0 20529,

(3.4). (4.3) b4 Z42 + b3 223 biZ\4 + 6323 b3Z,2 by Za
(4.4) 204223 2b4Za, 204212 0

80



Table 2.4: Explicit forms of d(bmb,)/8z in terms of b; and V;; for m. n, [ = 1,2.3.4.

(m.n)/l I 2 3 4
(1.1) 0 26, Va4 261 YVs2 26, Vo3
(1.2). (2.1) b1 Vs b2Ya4 b2Ya2 + b1 )14 b2 Y23 + b1 Va1
(1.3). (3.1) b1 Yoy b3)34 + b1V 6342 b3Yaz + 6112
(1.4). (4.1) b1Ys2 b4Y34 + 6113 b1z + 612 bsY23
(2.2) 2b2Ya3 0 26214 26 Y31
(2.3). (3.2) b3 Va3 + b2)24 b2 Va1 b3 Y14 b3Ya1 + 62Q)12
(2.4). (4.2) b1z + b2)s2 b2 13 by + 62V by
(3.3) 2b3)74 2b3 Y 0 2b3)12
(3.4). (4.3) b4Yay + 6332 bsYa + b33 6321 bsd12
(1.4) 2b:Ys2 26413 2b4)51 0
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Table 2.5: Explicit forms of d(emcn)/8z'® in terms of ¢; and Z;j form. n. | = 1.2.3.4.

(m.n)/! 1 2 3 4
(L.1) 0 2¢, 234 2¢1 242 2¢1 223
(1.2). (2.1) 1243 c2 234 22+ 12 223 + €1 231
(L.3). (3.1) c1 224 323+ a1 Za c3Z42 c3Zx+ a2
(L4). (4.1) c1Z32 c4Z3 + 1213 caZa2 + 1 22 c1Z23
(2.2) 2¢,243 0 2c 214 2¢y 231
(2.3). (3.2) 3243 + 2224 2241 c3Zyy 3231 + 2212
(2.4). (4.2) 1243 + 2 23 223 421y + 224 ciZa
(3.3) 2¢3244 2¢3241 0 2c3212
(3.4). (4.3) c4Z24 + 3232 csZ41 + 3213 c3Za c1Zy2
(4.4) 2¢4 23, 2¢4213 2¢c4 29,1 0




Table 2.6: Explicit forms of &(cme,)/d=!) in terms of ¢; and X;; for m, n. [ = 1.2,3.4.

(m.n)/l 1 2 3 4
(1.1) 0 e, Xis ¢ Xoa ¢, Xz
(1.2). (2.1) c1 X34 c2 X3 c2X4 + 1 Xy c2 X3 + c1 X3
(1.3). (3.1) c1 X2 c3 X4z + ¢, X1y c3 X4 c3Xag + 1 X2
(1.4). (4.1) c1Xa3 ca Xz + o1 A5y csd2s + 1 X2 c4X32
(2.2) 2¢2 X34 0 2¢, Xy, 2c, X3
(2.3). (3.2) c3 X34 + 2 X2 ca X4 c3Xq c3 X3 + 2 A%
(2.4). (4.2) cyX3q + ooz ¢ X3y csXq1 + co X2 caX13
(3.3) 2c3 X2 2¢3 X4 0 2¢3 X1
(3.4). (4.3) cyXy2 + c3Xaz cq X4 + ¢k, caX2 cqX21
(4.4) 2¢c4 X3 2¢c4 X5 2¢4 X2 0
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Table 2.7: Explicit forms of 3(dd,)/dz}" in terms of d; and Y;; for m,

n,l=1,234.

(m.n)/! . 2 3 !

(1.1) 0 2, Via 2d, Vau 2d, Vs
(1.2). (2.1) d1 Va4 d2Yas d2Y2q +d1 Vi d2 Va2 + di 3
(1.3). (3.1) d\ Va2 d3 Y3 + d1 Y1, d3 Yo, d3 V32 + d1 Y2y
(1.4). (4.1) di1 )23 di Yz + 1 YV daYou + d1 )2 d4 Y32

(2.2) 2d; Vay 0 2d YV 2d, V13
(2.3). (3.2) d3)ss + d2 )z d2 D14 d3 Va1 d3)13 + d2
(2.4). (4,2) dsYss + d2Ya3 d2 Y3 dyYa + d2 )2 dids

(3.3) 2d3 Y2 2d3 Y14 0 2d3 )2
(3.4). (4.3) dsVaz + d3Yas dadrg + d3ds d3J2 dsYn

(4.4) 2d4Yo3 2d4 Y3 2d4 )2 0




Table 2.8: Explicit forms ofé)(dmdn)/ayl(c) in termsof d; and X, form. n, [ =1.2,3.4.

(m.n)/! 1 2 3 4
(1.1) 0 2dy X3y 2d Xy 2d, Aoz
(1.2). (2.,1) dy Xy3 da Xay da Xy + di X4 da X3 + dy A3,
(1.3). (3.1) dy Xy dyXay + d Xy d3 Xy d3 X3 + d X2

(1.4). (4.1) dy X3, dyXay + d, Xy dy Xy + dy Xy dy X3
(2.2) 2dy Xy 0 2d, X4 2dy X3y
(2.3). (3.2)  daXys + daXna dy Xy, d3 X4 ds Xt + daXia

(2.4). (4.2) dyXin + dy X5y dy X3 d X3 + da Xy dq X3,
(3.3) 2d3 X5, 2d3 X 0 2d3X)

(3.4}, (4.3) dsXoy + d3 X3z di X + d3X3 dz A2, dy X2
(4.4) 2d,4 X5, 2d4 X3 2d4 A5, 0
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Chapter 3

Numerical Evaluation of the One-Dimensional Finite Element
Optimization Equations

As previously noted. there exists substantial evidence suggesting that the op-
timality of a finite element discretization plays a significant role in the accuracy of
computed solutions at given levels of problem refinement. Furthermore, it is believed
that characterizations of optimal finite element solutions which are known a priorz,
can be used in adaptive finite element methods to compute solutions with similar
optimal properties in a cost-efficient and reliable manner. The major goal of the
thesis is to develop effective optimal discretization-based refinement criteria for effi-
ciently and reliably guiding practical adaptive finite element solvers towards accurate
solutions. Unfortunately. very little research on the optimality of finite element dis-
cretizations for electromagnetic systems is available, and. therefore. a very limited
amount of insight on how to achieve the main thesis goal is available. Moreover, the
review of currently available characterizations of optimal finite element discretizations
presented in section 1.4 has revealed that there are serious shortcomings with these
characterizations. [t was concluded that some of the most commonly used approaches
are derived based on principles and using assumptions which are not completely the-
oretically justified. In addition. while some of the other optimality criteria reported
in the literature appear to work well for very specific types of problems, they have
not been found to be appropriate for characterizing optimal finite element discretiza-
tions for a sufficiently wide range of problem applications to be of practical value.
[Ffurthermore. many of the investigations in this area which report theoretical char-
acterizations of optimal finite element discretizations with confidence, fail to support

their claims with sufficiently conclusive numerical results.
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In this chapter, important benchmark electromagnetic problems are introduced in
order to achieve a threefold objective. First, the validity and the fundamental value
of the nonlinear system of one-dimensional finite element optimization equations, de-
rived in the previous chapter. are confirmed numerically. In order to achieve this
objective. the equations are used to compute a series of optimal finite element solu-
tions. that is. solutions with both optimal field solution values and optimal geometric
discretization parameters. for the benchmark problems considered. The results are
confirmed using techniques which are described in subsequent sections of this chapter.
The second objective of this chapter is to use the computed optimal discretization
benchmarks to investigate the validity of the reported difficulties with the currently
available characterizations of optimal finite element discretizations. to determine to
what extent these problems are present in electromagnetic applications. and to decide
the usefulness of the existing optimality criteria for electromagnetic systems. The fi-
nal objective of this chapter is to provide practical support for the hypothesis that
the optimality of a discretization is strongly related to the solution accuracy that can
be achieved for a fixed number of free modeling parameters used at a given itera-
tion within an adaptive finite element solution process. This last objective is directly
related to the main goal of the thesis, and is achieved by using the finite element op-
timization equations and the analysis of the benchmark results computed to develop
a theoretically justified, efficient. reliable and practical optimal discretization-based
refinement criterion for one-dimensional AFEA. Finally, the performance of the new
refinement criterion is evaluated with a series of studies involving the primary adap-
tion models in order to investigate the potential benefits of using the finite element
optimization equations, derived in section 2.4, for practical electromagnetic AFEA.

The primary motivation for this chapter is that the optimization equations for
one-dimensional electromagnetic systems can be directly solved more readily. and
with fewer obstacles, than the corresponding two- and three-dimensional equations.

Consequently, the more comprehensive investigations of one-dimensional systems that
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are possible may. potentially, provide more useful insight into the practical value of
optimal discretization-based AFEA for electromagnetics than may be gleaned from
the necessarily less exhaustive analyses of two- and three-dimensional systems that

are possible.

3.1 Optimal Discretization Benchmark Systems

In order to confirm the validity of reported problems with existing optimality
criteria. to examine the basic value optimal finite element discretizations for electro-
magnetic analysis. and to evaluate the potential value of developing practical optimal
discretization based refinement criteria for AFEMs, two informative numerical bench-
mark systems are examined comprehensively. Specifically. the fundamental electro-
magnetic point and line singularity models are used to compute a series of finite
clement solutions with both optimal field solution and optimal geometric discretiza-
tion parameter values. Subsequently. these optimal benchmark solutions are used in
section 3.2 to examine the optimality criteria reported in the literature and discussed
earlier in this work. As stated in Chapter 2. it is generally accepted that the most
reliable approaches for evaluating the usefulness of optimality criteria are those based
on the principle of. first. computing optimal solutions and. subsequently. analyzing
the characteristics of such solutions. Accordingly, the approach used in this work to
conduct these types of investigations is based on this principle.

Although there are several possible choices for one-dimensional benchmark sys-
tems which can be used in the principal investigations of this chapter, the point and
line singularity models where chosen for the following important reasons. First, these
two fundamental electromagnetic systems are sufficiently simple to be amenable to
solution by the optimization techniques appropriate for solving the corresponding
nonlinear systems of finite element optimization equations derived in section 2.4.1.
Second, as with many one-dimensional electromagnetic systems, analytical expres-

sions for the field solutions and other relevant quantities associated with the point
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and line singularity models can be used to assess the accuracy, efficiency, validity,
or reliability of the key optimality criteria or related procedures considered in this
work. Third, the field solutions associated with the point aud line singularity models
contain singularities characteristic of those associated with the sharp material edges
and corners which are present in many practical systems [64, 138]. Typically, the
presence of sharp material edges and corners can drastically decrease the convergence
rate of the finite element method if appropriate measures are not taken [55, 138];
therefore, the accurate and efficient resolution of the singularities associated with
sharp material edges and corners is an important challenge for all types of finite el-
ement analyses and has been addressed by various researchers. One approach has
been to develop specialized finite element approximating functions which incorporate
appropriate singular basis functions [146-148]. This type of approach has been shown
to work well for certain test problems, but can also suffer from some disadvantages
related to its use as described in [138]. The reduced convergence rate of the finite
element method when field singularities are present may also be improved by using
discretizations which have strongly focussed distributions of DOF close to the sin-
gularities. This second approach can be achieved by AFEMs which can recognize
and refine the regions of rapid solution variation near singularities [57,59]. However,
before AFEA can be developed and applied effectively and reliably to practical prob-
lems in which singular field behavior is a significant factor, it is important to first
study the characteristics of optimal finite element discretizations of electromagnetic
systems where this type of behavior is prevalent and its eflects on the convergence
of the finite element method can be isolated from other possible contributing factors.
To this end, the point and line singularity models are ideal choices for computing
the one-dimensional benchmark results described and discussed in the following two

sections.

89



3.1.1 Benchmark System 1

The first benchmark system is based on the classical free-space point charge model.
The objective for this benchmark system is to compute the functional value based on
the resolution of a radial neighborhood close to the point charge and spanning a 100-
fold decay in electric scalar potential: the point charge, of magnitude 107%/9 (C). is
located at the origin. and the two boundaries of the problem domain are set at radial
distances of 0.1 (m) and 10 (m) away from the charge. The primary feature of this
system is the rapid field solution variation close to the singularity. This feature is
common to many practical devices that contain sharp material corners, and has been
shown to drastically reduce the convergence rate of the finite element method.

The electrostatic system used to establish the optimal discretization benchmark re-
sults of this section was analyzed for electric scalar potential using the one-dimensional
finite element formulation and the corresponding finite element optimization equa-
tions derived in section 2.4.1. Standard Lagrangian basis functions were employed
to approximate the unknown field solution over the elements [23]. Specifically. first-.
second-. fourth- and eighth-order finite element approximations were considered. The
optimal values of the field solution parameters and geometric discretization parame-
ters were computed by solving the nonlinear system of optimization equations with
a Gauss-Newton method [149} using double-precision arithmetic. The solutions were
computed using termination criteria of 107!% for both the unknown equation vari-
ables and the residuals of the nonlinear equations. Finally, the functional values
were calculated from the computed scalar potentials using exact differentiation and
integration.

The optimal discretization benchmark results for this electrostatic system were
computed and confirmed using two independent approaches. First, the results were
obtained using explicitly derived analytical expressions for the entries of all the el-

ement matrices required to form the complete system of one-dimensional nonlinear
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finite element optimization equations. It should be noted that these matrix entries
are not independent of the placement of an element relative to the global coordinate
system; therefore, they can only be evaluated numerically once the element vertex po-
sitions are specified numerically. Furthermore, the specific matrices required for the
optimal discretization-based analysis of the point-charge model have not previously
been published. Thus. the correctness of the explicit analytical matrix entries could
not be guaranteed. Hence. the computed optimal discretization benchmark results
were confirmed with additional independent calculations of the unknown variables.
Specifically, a symbolic mathematics software package [150] was used to express the
finite element optimization equations symbolically, and these were evaluated numeri-
cally at each iteration of the solution optimization process. The optimal discretization
results computed by this second method were in complete agreement with those com-
puted using the first approach.

The simplifications arising from the physical symmetry of the benchmark system
considered here. namely. that its field solution behavior can be characterized mathe-
matically by one space variable, is of definite value in computing the desired numerical
results. Nevertheless. an immense amount of computational effort can still be required
to solve for the optimal solution parameters due to the nonlinearities associated with
incorporating the optimization of the finite element geometric discretizations. More-
over, the required computational effort increases rapidly with both the number of
elements and the order of the finite element approximation used. Consequently, the
maximum nurabers of unconstrained parameters used in each of the investigations
described and discussed in this section were determined, primarily. by the following
two important considerations. First, a sufficient range of accuracy in the computed
functional values was required in order to objectively and reliably assess the con-
vergence of the FEM when used with optimal discretizations. Second, as relatively
high solution accuracy levels are achieved with increasingly refined discretizations,

the incremental improvement in functional value accuracy versus the corresponding
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incremental computational effort required can become extremely expensive. Hence.
the range of optimal discretization benchmark results reported next were computed in
order to satisfy the above requirement subject to this computational cost constraint.

A series of 20 optimal first-order finite element solutions were computed for the
first benchmark system by solving the appropriate systems of nonlinear optimization
equations derived in section 2.4.1. The optimal values of the geometric discretization
parameters, ;. and the field solution parameters, U,. for each of the optimal solutions
computed for meshes ranging from 1 to 20 elements are reported in Tables 3.1-
3.3. It should be noted. that each first-order element used in these meshes has two
geometric discretization parameters associated with it which define the element’s
vertex positions, and two field solution parameters which correspond to the electric
scalar potential multiplicative coefficients of the first-order basis functions defined
over the element. Furthermore. the boundary conditions were enforced by fixing the
positions of the first and last vertices in the mesh to the corresponding geometric
boundaries of the problem domain. and by setting the the values of the field solution
parameters at the problem boundaries to correspond to the analytical values of the
electric scalar potential there.

The percent error in the functional values computed from the 20 first-order optimal
discretizations specified by Tables 3.1-3.3 is shown in Figure 3.1. Also shown. for com-
parison. is the percent error in functional values computed from a series of 20 solutions
corresponding to uniform first-order finite element discretizations. For both cases. the
percent errors were calculated using the analytical functional value of 9.9000 (Jm/F)
for this benchmark system. This functional value is, simply. twice the electrostatic po-
tential energy of the system divided by 4we,, where ¢, = 8.854187817 x 107'*(F/m)
is the permittivity of free space. The superior accuracy in the functional values
computed from the first-order optimal discretization solutions relative to the uni-
form results for this benchmark system is directly related to the relative distribution

of DOT over the problem domain: the optimal discretization-based formulation fo-
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Table 3.1: Optimal computed values of the geometric discretization parameters, z;.
and field solution parameters, U;. for first-order finite element solutions for Benchmark

System 1 using NV elements, where N =1,2,...,8.
PN I 2 3 4
I U; I U; T; U; I U;
| 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 10.0000 0.1000 0.2725 0.6707  0.2028 3.7814 0.1740 5.1705
3 N/A N/A 10.0000 0.1000 0.5485 0.4860 0.3502 2.0713
4 N/A N/A N/A N/A 10.0000 0.1000 0.9306 0.4098
5 N/A N/A N/A N/A N/A N/A 10.0000 0.1000
i/N 5 6 7 8
Iy U" I U; T; U,' I U;
| 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1578 6.0080 0.1473 6.5862 0.1398 7.0155 0.1344 7.3486
3 0.2724  3.1863 0.2305 4.0209 0.2044 4.6746 0.1866  5.2018
4 0.5404 1.3595 0.3930 2.1938 0.3166 2.9041 0.2704 3.5087
b} 1.3926 0.3600 0.7643 0.9958 0.5318 1.6312 0.4141 2.2189
6 10.0000 0.1000 1.8884 0.3221 1.0097 0.7838 0.6842 1.2820
¥ N/A N/A 10.0000 0.1000 2.3772 0.2921 1.2657 0.6480
S N/A  N/A  N/A  N/A 10.0000 0.1000 2.8358 0.2681
9 N/A  N/A  N/A  N/A  N/A  N/A 10.0000 0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m).
and electrostatic scalar potential values for U; with units (V).
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Table 3.2: Optimal computed values of the geometric discretization parameters. z;.

. and field solution parameters, U;, for first-order finite element solutions for Benchmark
System 1 using N elements, where NV = 9,10,...,16.
/N 9 10 11 12
z; U,' Ly U',‘ I U,‘ xI; U,'
1 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1060 10.0000
2 0.1302 7.6150 0.1268 7.8330 0.1242 8.0147 0.1220 S8.1683
3 0.1739 5.6359 0.1643 5.9994 0.1568 6.3079 0.1509 6.5728
4 0.2398 4.0262 0.2182 4.4720 0.2022 4.8591 0.1898 5.1976
5 0.3443 2.7494 0.2987 3.2241 0.2669 3.6478 0.2435 4.0265
6 0.5209 1.7694 0.4250 2.2285 0.3627 2.6535 0.3195 3.0438
T 0.8461 1.0498 0.6350 1.4583 0.5112 1.8556 0.4311 2.2334
3 1.5244  0.5547 1.0140 0.8868 0.7547 1.2337  0.6021 1.5793
9 3.2559 0.2489 1.7805 0.4872 1.1851 0.7673 0.8784 1.0658
10 10.0000 0.1000 3.6367 0.2331  2.0306 0.4362 1.3574  0.6768
11 N/A N/A 10.0000 0.1000 3.9807 0.2202 2.2726 0.3965

12 N/A  N/JA  N/A  N/A 10.0000 0.1000 4.2916 0.2094
13 N/JA  N/A  N/A  N/A  N/A  N/A 10.0000 0.1000
i/N 13 14 15 16
I, U; T; U; T U; I; U
l 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1201 8.3000 0.1186  8.4141 0.1172  8.5139 0.1161 S.6019
3 0.1461 6.8028  0.1421 7.0041 0.1387  7.1818 0.1358  7.3398
4 0.1801 5.4956  0.1722  5.7598 0.1657  5.9955 0.1603  6.2068
3 0.2256  4.3659 0.2116 4.6711 0.2003  4.9466 0.1910 5.1961
6 0.2879 3.4010 0.2639  3.7277 0.2452 4.0267 0.2301 4.3008
7 0.3756  2.5883 0.3332 2.9195 0.3046 3.2277 0.2808  3.5139
S 0.5033 1.9150 0.4349  2.2363  0.3851 2.5411 0.3475  2.8287
9 0.6966 1.3687  0.5786 1.6679  0.4968 1.9586 0.4373  2.2382
10 1.0048 0.9366 0.7941 1.2041 0.6566 1.4720  0.5612 1.7355
11 1.5293  0.6062 1.1329  0.8348  0.8937 1.0728 0.7369 1.3139

12 2.5053 0.3649 1.6995 0.5498 1.2618 0.7529 0.9950 0.9663
13 4.5733  0.2002 2.7282 0.3390 1.8671 0.5040 1.3908  0.6860
14 10.0000 0.1000 4.8293 0.1924 29413 0.3176 2.0315 0.4660

15 N/A N/A 10.0000 0.1000 5.0628 0.1837 3.1445 0.2996

16 N/A N/A N/A N/A 10.0000 0.1000 5.2763  0.1798

17 N/A  N/A N/A N/A N/A  N/A 10.0000 0.1000
. Note: The table entries represent radial distance from the origin values for z; with units (m),

and electrostatic scalar potential values for U; with units (V).
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Table 3.3: Optimal computed values of the geometric discretization parameters. ;.
and field solution parameters, U;, for first-order finite element solutions for Benchmark
Svstem 1 using N elements, where N = 17, 18,19, 20.

i/N 17 18 19 20
I; U; I; U; T U; I; U;
l 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1151 8.6801 0.1142 8.7500 0.1134 8.8129 0.1127 S.8698
3 0.1333 7.4811 0.1311 7.6083  0.1292 7.7233 0.1275 7.8278
B! 0.1556  6.3974 0.1517 6.5700 0.1482 6.7270 0.1452 6.8705
5 0.1832 5.4231 0.1767 5.6302 0.1711 5.8199 0.1662 5.9942
6 0.2178  4.5525 0.2076  4.7841 0.1989 49978 0.1915 5.1955
T 0.2617  3.7798  0.2461 4.0269 0.2332  4.2567 0.2223  4.4708
3 0.3182  3.0993  0.2949 3.3536 0.2758  3.5923  0.2600 3.8164
9 0.3924  2.5053 0.3574 2.7594  0.3295 3.0005 0.3068 3.2290
10 0.4916 1.9920 0.4390 2.2395 0.3981 24773 0.3655 2.7048

11 0.6275 1.5535 0.5477 1.7890 0.4873  2.0183 0.4403  2.2404
12 0.3188 1.1843 0.6956 1.4030 0.6054 1.6196 0.5370  1.8322
13 1.0973 0.8785 0.9022 1.0766 0.7650 1.2769 0.6644 1.4766
14 1.5193 0.6303 1.2002 0.8051 0.9866 0.9861 0.8357 1.1701
15 2.1923  0.4341 1.6469 0.53835 1.3034 0.7431 1.0717  0.9091
16 3.3382 0.2842  2.3490 0.4071 1.7731 0.5437 1.4064 0.6901
17 5.4723  0.1747  3.5227  0.2709 2.5017 0.3838 1.8977  0.5094
18 10.0000 0.1000 5.6528 0.1701 3.6985 0.2593 2.6501  0.3637

19 N/A  N/A 10.0000 0.1000 5.8196 0.1661 3.8660  0.2492
20 N/A  N/A  N/A  NJ/A 10.0000 0.1000 5.9740 0.1625
21 N/JA  N/A  N/A  N/A  N/A  N/A 10.0000 0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
and electrostatic scalar potential values for U; with units (V).
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cuses DOF close to the point charge where the field solution variation is very rapid;
whereas. the DOF are equally distributed over the entire problem domain in the uni-
form case. For example, Figure 3.2 illustrates the placement of the element vertices
for corresponding optimal and uniformn meshes with two, three and four elements.
The comparison of optimal and uniform meshes ranging from five elements to eight
elements is shown in Figure 3.3. Furthermore. it may be noted from the numerical
values reported Table 3.2 and Table 3.3 that the balance of the optimal first-order
discretizations computed for Benchmark System 1 also have element vertex positions
effectively distributed for efficiently resolving the rapid field solution variation close
to the singularity.

Figure 3.4 shows the results of a basic computational experiment designed to con-
firm the validity of the one-dimensional finite element optimization equations used
to compute the optimal first-order finite element discretization results in this sec-
tion. This simple numerical experiment was based on resolving the electrostatic
benchmark system using the most fundamental discretization. Specificallv. a series
of 100.000 two-element first-order meshes were used to compute individual functional
values corresponding to fixing the unconstrained element vertex common to both of
the elements in the mesh at 100.000 regularly spaced positions between the two end
vertices defining the boundaries of the problem domain. It should be noted that for
each of the meshes defined by this method. the single unknown scalar electric po-
tential value at the common vertex was computed using the standard finite element
formulation with the geometric discretization held fixed. The results confirmed those
obtained by solving the finite element optimization equations directly: the position
of the free vertex which yielded the smallest possible functional value was the same
as that obtained by direct optimization, with an error tolerance of £4.95 x 10~> (m).
Furthermore, the functional value corresponding to the mesh defined by this optimal
vertex position represents the minimum electrostatic potential energy configuration

of the two-element first-order finite element model for this benchmark system, as il-
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Figure 3.1: The variation of percent error in functional value with discretization
level for first-order finite element solutions for Benchmark System 1 is illustrated.
The triangle knot resuits correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.
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First-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analysis of Benchmark System 1 are illustrated:
(a) 2 element optimal mesh: (b) 2 element uniform mesh; (c) 3 element optimal mesh:
(d) 3 element uniform mesh; (e) 4 element optimal mesh: (f) 4 element uniform mesh.
The radial discretizations are plotted on a logarithmic scale because of the proximity
of the element vertices to each other near the singularity in the optimal meshes. Note:
the positions of the element vertices in the optimal meshes are specified in Table 3.1.
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Figure 3.3: First-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analysis of Benchmark System 1 are illustrated:
(a) 5 element optimal mesh; (b) 5 element uniform mesh: (c¢) 6 element optimal mesh;
(d) 6 element uniform mesh; (e) 7 element optimal mesh; (f) 7 element uniform mesh;:
(g) 8 element optimal mesh; (h) 8 element uniform mesh. The radial discretizations
are plotted on a logarithmic scale because of the proximity of the element vertices
to each other near the singularity in the optimal meshes. Note: the positions of the
element vertices in the optimal meshes are specified in Table 3.1.
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lustrated by Figure 3.4. This is wholly consistent with the underlying stationarity
principle fundamental to the variational finite element formulation used throughout
this work. Finally. the error tolerance stated above is. simply, one-half of the inter-
val used to define successive vertex positions for computing the range of functional
values used to confirm the results obtained by solving the finite element optimization
equations directly.

A series of 16 optimal second-order finite element solutions were computed for
Benchmark System 1 using the same techniques described for the first-order results.
The optimal values of the geometric discretization parameters. z;. and the field solu-
tion parameters, U;, for each of the optimal solutions computed for meshes ranging
from | to 16 elements are reported in Tables 3.4-3.6. It should be noted, that each
second-order element used in these meshes has two geometric discretization param-
eters associated with it which define the element’s vertex positions. and three field
solution parameters which correspond to the electric scalar potential multiplicative
coefficients of the second-order basis functions defined over the element. The bound-
ary conditions used to compute the second-order results were enforced in the same
manner as in the first-order case. [Furthermore. the second-order optimal discretiza-
tion benchmark results for this electrostatic system were computed twice. using the
same approach described for confirming the accuracy of the first-order results.

The percent error in the functional values computed from the 16 second-order
optimal discretizations specified by Tables 3.4-3.6 is shown in Figure 3.5. Also shown
in Figure 3.5. is the percent error in functional values computed from a series of 16
solutions corresponding to uniform second-order finite element discretizations. The
superior accuracy in the functional values computed from the second-order optimal
discretization solutions relative to the uniform results is, again, directly related to the
more efficient relative distribution of DOF over the problem domain. For example,
the placement of the element vertices for corresponding optimal and uniform second-

order meshes with two, three and four elements is illustrated by Figure 3.6. The
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Figure 3.4: The variation in functional value with choice of free vertex position for a
first-order two-element mesh is illustrated for Benchmark System 1. The plot is based
on 100.000 functional values computed by fixing the unconstrained element vertex
at 100.000 uniformly spaced positions between the two geometric boundaries of the
problem domain. Logarithmic axes are used for the plot in order to adequately resolve
the variation in the functional value near the optimal vertex position corresponding to
the true minimum in the electrostatic potential energy of the discretized, first-order,

two-element finite element model. Note: the optimal vertex position is specified in
Table 3.1.
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. Table 3.4: Optimal computed values of the geometric discretization parameters, z;,
and field solution parameters, U;, for second-order finite element solutions for Bench-
mark System 1 using N elements, where ¥V =1,2,...,8.

aY 1 2 3 4
Iy U; I U; T; U; I; U,
1 0.1000 10.0000  0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 10.0000 1.9723  0.4072  3.2685 0.2717  5.2942 0.2155  6.3345
3 N/A  0.1000 10.0000 1.0033 1.0153 3.3226 0.5427  4.5240
4 N/A N/A N/A  0.2759 10.0000 1.3463 1.7622  2.5685
5 N/A  N/A  N/A  0.1000  N/A  0.6544 10.0000  1.7067
6 N/A  N/A  N/A  N/A N/A 02156 N/A  0.8122
7 N/A  N/A  N/A  N/A  N/A  0.1000 N/A  0.4754
8 N/A  N/A  N/A  N/A  N/A  NJ/A N/A  0.1861
9 N/JA. N/A  N/A  N/A N/A  N/A  N/A  0.1000
/A 5 6 g 8
oy U',' Iy U,‘ I; U,’ Ty U,‘
i 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1855 7.0098 0.1675 7.4833  0.1555 7.8316 0.1471 8.0974
3 0.3779  5.3434 0.2984 5.9504  0.2528 6.4196 0.2236  6.7930
4 0.8762 3.5246  0.5757  4.2837 0.4337  4.8946 0.3536  5.3937
b} 2.4742  2.5857 1.2369  3.3220 0.7970 3.9406 0.5864  4.4633
6 10.0000 1.5649 3.1026  2.2731 1.6025 2.9057 1.0321 3.4610
T N/A 1.0878 10.0000 1.7074  3.6475  2.2888 1.9599  2.8183
S N/A  0.5798 N/A 1.0903 10.0000 1.6169 4.1194  2.1228
9 N/A  0.3721 N/A  0.7849 N/A  1.2394 10.0000 1.6955
10 N/A 01687  N/A 04548  N/A  0.8274 N/A  1.2313
11 N/A  0.1000 N/A  0.3090 N/A  0.6125 N/A  0.9606
12 N/A  N/A  N/A 01573  N/A  0.3787 N/A  0.6654
13 N/A N/A N/A  0.1000 N/A  0.2679 N/A  0.5041
14 N/A  N/A  N/A  N/A  N/A 0.1494  N/A  0.3281
15 N/JA  N/A  N/A  N/A  N/A 0.1000 N/A  0.2395
16 N/JA N/A  N/A N/A N/A NJA  N/A 0.1434
17 NJA N/A N/A N/A N/A N/A  N/A  0.1000

Note: The table entries represent radial distance from the origin values for r; with units (m),
and electrostatic scalar potential values for U; with units (V).



Table 3.5: Optimal computed values of the geometric discretization parameters. z;.
and field solution parameters. U;. for second-order finite element solutions for Bench-
mark System 1 using N elements, whereN = 9,10, 11, 12.

YN 9 10 11 12
I; U; I U; I; U; x; U;
1 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1408 8.3064 0.1360 8.4748 0.1322 86132 0.1292  8.7288
3 0.2035 7.0969 0.1889 7.34883  0.1778 7.5610  0.1691 7.7421
4 0.3030 5.8074 0.2685 6.1550 0.2436 6.4508 0.2250 6.7051
3 0.4672 4.9084 0.3921 5.2908 0.3411 5.6219 0.3045 59110
6 0.7517  3.9465 0.3911 4.3714  0.4895  4.7448 0.4204 5.0744
7 1.2735  3.2944  0.9253 3.7205 0.7229 4.1017 0.3936  4.4433
S 2.3025  2.3937 1.51539  3.0256 1.1041 3.4191 0.8603 3.7766
9 4.5300 2.1339 2.6269 2.5460 1.7357  2.9287 1.2853  3.2820

10 10.0000 1.6378 4.8894 2.0320 2.9322 24065 1.9904 2.7581
11 N/A  1.3246 10.0000 1.6876 5.2060 2.0401 3.2182  2.3767
12 N/A  0.9851 N/A 13170 10.0000 1.6483 5.4867 1.9714
13 N/A  0.7804  N/A 10771 N/A  1.3807 10.0000 1.6826
14 N/A 05577  NJA  0.8I78 N/A  1.0935 N/A 13747
15 N/A  0.4308  N/A  0.6567 N/A  0.9034 N/A  1.1606
16 N/A 02924  NJ/A  0.4819 N/A  0.6985 N/A  0.9314
17 N/A 02189  N/A  0.3786 N/A  0.3677 N/A  0.7765
18 N/A  0.1388  N/A  0.2660 N/A  0.4262 N/A  0.6100
19 N/A  0.1000 N/A  0.2034 N/A 03397  N/A  0.5012
20 N/JA  N/A  N/A  0.1351 N/A  0.2458 N/A  0.3837
21 N/JA  N/JA  N/A  0.1000 N/A  0.1914 N/A  0.3099
22 N/A  N/JA  N/A N/A N/A  0.1321 N/A  0.2298
23 N/JA N/A  N/A  N/A N/A  0.1000 N/A  0.1818
24 N/A  N/A  N/A N/A N/A  N/A  N/A  0.1296
25 N/A  N/JA  N/A  N/A N/A  N/A  N/A  0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
and electrostatic scalar potential values for U; with units (V).
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. Table 3.6: Optimal computed values of the geometric discretization parameters, z;.
and field solution parameters. L;, for second-order finite element solutions for Bench-
mark System 1 using N elements, where N = 13, 14, 15, 16.

i/N 13 14 15 16
Ty U,‘ Iy (/-,' I, L”,' I U.'
1 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.1266 8.8268 0.1245 89108 0.1226 8.9839 0.1211  9.0477
3 0.1622  7.8982 (0.1565 8.0342 0.1517 8.1542 0.1477  8.2603
4 0.2105 6.9259 0.1989 7.1193 0.1895 7.2905 0.1816 7.4425
5 0.2771 6.1651 0.2559 6.3902 0.2391 6.5913 0.2254 6.7713
6 0.3708 5.3668 0.3338  5.6277 0.3052 5.8622 0.2825 6.0733
T 0.5054 4.7501 0.4420 5.0266 0.3945 5.2775  0.357 5.5050
S 0.7031 4.1013  0.5951 4.3967 0.5172 4.6667 0.4589 4.9131
9 1.0017  3.6071 0.8168 3.9061 0.6887 4.1818 0.5960 4.4354

10 1.4669  3.0860 1.1456  3.3908 0.9334 3.6743 0.7855 3.9371
11 2.2184  2.6952 1.6475 2.9946 1.2906 3.2758  1.0523  3.3387
12 3.4858 22819  2.4388  2.5775  1.8254 28579  1.4358  3.1224
13 5.7371 1.977: 3.7359 2.2615 2.6508  2.5339  2.0004  2.7931
14 10.0000 1.6543 5.9617 1.9279  3.9694  2.1933  2.8545  2.4482

15 N/A 14208 10.0000 1.6792 6.1640 1.9327 4.1879  2.1786
16 N/A 11725  N/A  1.4160 10.0000 1.6581 6.3473  1.8956
17 N/A  0.9970  N/A  1.2233 N/A  1.4512 10.0000 1.6772
18 N/A  0.8096  N/A 10187  N/A 1.2326  N/A  1.4474
19 N/A 06806  N/A  0.8720 N/A 10706  N/A  1.2725
20 N/A 05423  N/A 07157  N/A 0.8990  N/A  1.0880
21 N/A 04499  N/A 06063  N/A 07742  N/A  0.9498
22 N/A  0.3505 N/A 04892  N/A 06416  N/A  0.8036
23 N/A 02863  N/A  0.4094 N/A 05473  N/A  0.6960
24 N/A 02169  N/A 0.3238  N/A 04467 N/A  0.5819
25 N/A 01740  N/A 02673  N/A 03768  N/A  0.4995
26 N/A  0.1274 N/A 02063  N/A  0.3021 N/A 04119
27 N/A 0.1000 N/A 0.1675 N/A 02516  N/A  0.3500
28 N/A  N/A  N/A 01255  N/A 0.1974  N/A  0.2840
29 N/A N/A  N/A 0.1000 N/A 0.1621 N/A  0.2386
30 N/JA  N/A  N/A N/A  N/A 0.1239  N/A  0.1899
31 N/J/A  N/A  N/A  N/A  N/A 0.1000 N/A 0.1574
32 N/J/A  N/A  NJ/A N/A N/JA  N/A  NJ/A  0.1225
33 N/J/A° N/A N/A N/A N/A N/A  N/A 0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
. and electrostatic scalar potential values for U; with units (V).
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comparison of optimal and uniform second-order meshes ranging from five elements
to eight elements is shown in Figure 3.7. Furthermore, it may be noted from the
numerical values specified in Table 3.5 and Table 3.6 that the balance of the optimal
second-order discretizations computed for Benchmark System 1 also have effectively
distributed element vertices for efficiently resolving the rapid field solution variation
close to the point charge.

The results of the same basic computational experiment used to confirm the va-
lidity of the optimal first-order discretization results are shown for the second-order
case in Figure 3.8. It should be noted, however. that for each of the meshes used to
compute the functional values for the second-order experiment, three unknown scalar
electric potential values were computed using the standard finite element formulation
with the geometric discretization held fixed: one potential value uniquely associated
with each element: and one potential value defined at the common vertex. Finally.
the position of the free vertex which yielded the smallest possible functional value
was the same as that obtained by direct optimization, again with an error tolerance
of +£4.95 x 10~ (m) as defined for the first-order case.

[n addition to the first- and second-order optimal discretization results presented
for Benchmark System 1. a series of eight optimal fourth-order finite-element solu-
tions were computed using the same techniques described above. The optimal values
of the geometric discretization parameters. ;. and the field solution parameters. U;.
for each of the optimal fourth-order solutions are reported in Table 3.7 and Table
3.8. It should be noted that each element in the fourth-order meshes has two geo-
metric discretization parameters associated with it which define the element’s vertex
positions, and five field solution parameters which correspond to the electric scalar
potential multiplicative coefficients of the fourth-order basis functions defined over
the elements. The boundary conditions were enforced as in the previous cases, and
the accuracy of the fourth-order optimal discretization benchmark results were con-

firmed with two independent calculations analogous to those used for the first- and
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Figure 3.5: The variation of percent error in functional value with discretization
level for second-order finite element solutions for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.

106



(a) o

(b) o

(c) ©

(d) &

—0 o)
o o

o— o- o)
-O0——O0—0

O Oo— o)

-+

-+

-+

“+

-+

-+

s

Radial Distance from Origin (m)

Figure 3.6: Second-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analvsis of Benchmark System | are illustrated:
(a) 2 element optimal mesh: (b) 2 element uniform mesh; (c) 3 element optimal mesh;
(d) 3 element uniform mesh: (e) 4 element optimal mesh; (f) 4 element uniform mesh.
The radial discretizations are plotted on a logarithmic scale because of the proximity
of the element vertices to each other near the singularity in the optimal meshes. Note:
the positions of the element vertices in the optimal meshes are specified in Table 3.4.

107



(b)o O O—0—0—0
(C)eﬁc O O- O O O
(d) © —C —O0—O0—0—00
(e)o——o———o———o————o O -0 o)
(f)c O O——O0—0—0-00
(g)o—o—o———o—-o —O- —O O ’0)
(h)o O O—O0—0—0-000

| T L . e

| ' — T ! AR

0.1 1 10

Radial Distance from Origin (m)

Figure 3.7: Second-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analysis of Benchmark System 1 are illustrated:
(a) 5 element optimal mesh: (b) 3 element uniform mesh; (c) 6 element optimal mesh;
(d) 6 element uniform mesh; (e) 7 element optimal mesh; (f) 7 element uniform mesh;
(g) 8 element optimal mesh; (h) 8 element uniform mesh. The radial discretizations
are plotted on a logarithmic scale because of the proximity of the element vertices
to each other near the singularity in the optimal meshes. Note: the positions of the
element vertices in the optimal meshes are specified in Table 3.4.
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Figure 3.8: The variation in functional value with choice of free vertex position for
a second-order two-element mesh is illustrated for Benchmark System 1. The plot
is based on 100.000 functional values computed by fixing the unconstrained element
vertex at 100.000 uniformly spaced positions between the two geometric boundaries
of the problem domain. Logarithmic axes are used for the plot in order to adequately
resolve the variation in the functional value near the optimal vertex position corre-
sponding to the true minimum in the electrostatic potential energy of the discretized,
second-order, two-element finite element model. Note: the optimal vertex position is
specified in Table 3.4.
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second-order cases.

The convergence in percent error of the functional values computed from the eight
fourth-order optimal discretizations specified by Table 3.7 and Table 3.8 and the cor-
responding uniform discretizations is illustrated in Figure 3.9. The superior accuracy
in the functional values computed from the fourth-order optimal discretizations rel-
ative to the uniform results is., once more, attributed to the more efficient relative
placement of the element vertices illustrated in Figure 3.10 and Figure 3.11. Finally.
Figure 3.12 shows the results of the two-element basic computational test used to
confirm the validity of the fourth-order optimal discretization results. It should be
noted that for each of the meshes used to compute the functional values for the fourth-
order experiment. seven unknown scalar electric potential values were computed using
the standard finite element formulation with the geometric discretization held fixed:
three potential values uniquely associated with each element; and one potential value
defined at the common vertex. The results of the experiment confirmed. with an error
tolerance of £4.95 x 10~> {m). that the optimal position of the free vertex computed
by direct solution of the finite element optimization equations correctly corresponds
to the smallest possible functional value for a fourth-order two-element mesh.

The final set of optimal discretization results computed for Benchmark System 1
consists of a series of four optimal eighth-order solutions specified by the optimal val-
ues of the geometric discretization parameters. z;, and the field solution parameters.
U;. reported in Table 3.9. The eighth-order optimal results were computed following
completely analogous procedures used to compute the first-. second- and fourth-order
results described in the preceding paragraphs. However, it may be noted that each
element in the eighth-order meshes has two geometric discretization parameters as-
sociated with it which define the element’s vertex positions, and nine field solution
parameters which correspond to the electric scalar potential multiplicative coefficients
of the eighth-order basis functions defined over the elements.

The convergence in percent error of the functional values computed from the
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Table 3.7: Optimal computed values of the geometric discretization parameters. z;.
and field solution parameters. (';, for fourth-order finite element solutions for Bench-
mark System 1 using .V elements, where N = 1,2,3.4.

TAY 1 2 3 4
Iy U',‘ I; L".,' I L’r,' I; (/',‘
1 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 10.0000 1.5845 0.6345 4.1645 0.3477 6.1571 0.2539 7.2153
3 N/A  0.4090 10.0000 2.4872 1.5341 4.4437  0.7246 5.6471
4 N/A 0.3567 N/A 1.8138 10.0000 3.4992 2.4142 4.6462
5 N/A  0.1000 N/A 13195 N/A  2.8563 10.0000 3.9365
6 N/A N/A N/A  0.3545 N/A  1.5358 N/A  2.6861
n N/A N/A N/A  0.1796 N/A  1.0436 N/A  2.0398

8 N/A N/A  N/A  0.1434 N/A  0.8022  N/A  1.6489
9 N/A  N/A  N/A  0.1000 N/A  0.6374 N/A 13777
10 N/A  N/A N/A  N/A  N/A  0.2734 N/A  0.8688
11 N/A N/A  N/A  N/A  N/A  0.1706 N/A  0.6345
12 N/A  N/JA  N/A N/A N/A 01300  N/A  0.5027
13 N/A N/A  N/A  N/JA  N/A 0000 N/A 04128
14 N/A N/A  N/JA  NJA  N/A N/A  N/A 02312
15 N/A N/A  N/A  N/A  N/A N/A  N/A  0.1603
16 N/A N/A  N/A  N/A  N/A N/A N/A  0.1244
17 N/JA  N/A  N/A  N/A  NJ/A N/A  N/A  0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
and electrostatic scalar potential values for U; with units (V).
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Table 3.8: Optimal computed values of the geometric discretization parameters, r;.
. and field solution parameters, U;, for fourth-order finite element solutions for Bench-
mark System | using N elements. where V = 5.6,7, 8.

PN 5 6 7 8
I U; I; Ui; xI; U; I; U;
1 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 0.2101 7.8391 0.1852 8.2420 0.1694 3.5213 0.15387 8.7196
3 0.4735 6.4484 0.3596 7.0110 0.2967 7.4243 0.2581 7.7303
4 1.1626  5.4794 0.7376  6.1009 0.5399 6.5779 0.4314 6.9428
5 3.1791 4.7594 1.6148 5.3980 1.0269 5.9039 0.7439 6.3004
6 10.0000 3.6219 3.8260 4.3688 2.0556 4.9695 1.3298 5.4474
T N/A 2.9246 10.0000 3.6700 4.3719 4.2911 2.4770 4.7982
3 N/A  2.4544 N/A  3.1648 10.0000 3.7760 4.8396 4.2875
9 N/A 2.1115 N/A 2.7804 N/A 3.3705 10.0000 3.8745
10 N/A 1.5471 N/A 2.2013 N/A 2.7968 N/A 3.3175
11 N/A 12215  N/A  1.8224  N/A 23904  N/A  2.9008
12 N/A 10105 NJ/A 15554  N/A 20874 N/A 25772
13 N/A 0.8597 N/A 1.3356 N/A 1.8520 N/A 2.3183
14 N/A 0.5991 N/A 1.0445 N/A 1.5110 N/A 1.9626
15 N/A 0.4600 N/A 0.8499 N/A 1.2764 N/A 1.7017
16 N/A 03743  N/A 07169  N/A 11050  N/A  1.5022
17 N/A 0.3143 N/A 0.6192 N/A 0.9738 N/A 1.3443
18 N/A 0.2044 N/A 0.4610 N/A 0.7786 N/A 1.1230
19 N/A 0.1515 N/A 0.3674 N/A 0.6487 N/A 0.9644
20 N/A 0.12069 N/A 0.3057 N/A 0.5562 N/A 0.8452
21 N/A 0.1000 N/A 0.2613 N/A 0.4864 N/A 0.7520
22 N/A N/A N/A 0.1861 N/A 0.3794 N/A 0.6185
2 N/A  N/A  N/A 0.1446  N/A 03111  N/A  0.5253

N/A  N/A  N/A 0.1184 N/A 0.2638  N/A  0.4567
N/A  N/A  N/A 0.1000 N/A 02287  N/A  0.4037
N/A  N/A  N/A N/A  N/A 01730  N/A 0.3259
N/A  N/A  N/A  N/A  N/A  0.1391 N/A  0.2733
N/JA  N/A  N/JA  N/A  N/A 01165  N/A 02354
N/JA  N/A  N/A  N/A  N/A 01000 N/A  0.2066

[ OV VI VI (VI SV
O~ O O Wit

30 N/JA  N/A  N/A N/A  N/A  N/A  N/A 0.1631
31 N/A N/A  N/A N/A N/A N/A  N/A 0.1348
32 N/A  N/A N/JA N/A N/A N/A  N/A 0.1149
33 N/JA  N/A  N/A N/A  N/A  N/A  N/A  0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
. and electrostatic scalar potential values for U; with units (V).
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Figure 3.9: The variation of percent error in functional value with discretization
level for fourth-order finite element solutions for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.
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Figure 3.10: Fourth-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analysis of Benchmark System 1 are illustrated:
(a) 2 element optimal mesh; (b) 2 element uniform mesh; (c) 3 element optimal mesh:
(d) 3 element uniform mesh; (e) 4 element optimal mesh; (f) 4 element uniform mesh.
The radial discretizations are plotted on a logarithmic scale because of the proximity
of the element vertices to each other near the singularity in the optimal meshes. Note:
the positions of the element vertices in the optimal meshes are specified in Table 3.7.
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Figure 3.11: Fourth-order optimal and uniform radial discretizations for the one-
dimensional electrostatic potential analysis of Benchmark System 1 are illustrated:
(a) 5 element optimal mesh; (b) 5 element uniform mesh; (c) 6 element optimal mesh;
(d) 6 element uniform mesh; (e) 7 element optimal mesh; (f) 7 element uniform mesh;
(g) 8 element optimal mesh: (h) 8 element uniform mesh. The radial discretizations
are plotted on a logarithmic scale because of the proximity of the element vertices
to each other near the singularity in the optimal meshes. Note: the positions of the
element vertices in the optimal meshes are specified in Table 3.8.
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Figure 3.12: The variation in functional value with choice of free vertex position for
a fourth-order two-element mesh is illustrated for Benchmark System 1. The plot
is based on 100,000 functional values computed by fixing the unconstrained element
vertex at 100.000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the r-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the electrostatic potential energy of
the discretized. fourth-order. two-element finite element model. Note: the optimal
vertex position is specified in Table 3.7.
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four eighth-order optimal discretizations specified by Table 3.9 and the correspond-
ing uniform discretizations is illustrated in Figure 3.13. The efficient placement of
the element vertices for the optimal discretizations is contrasted with the correspond-
ing uniform discretizations in Figure 3.14. Finally. the results of the two-element
basic computational test used to confirm the validity of the eighth-order optimal
discretization results are shown in Figure 3.15. It should be noted that for each of
the meshes used to compute the functional values for the eighth-order experiment.
thirteen unknown scalar electric potential values were computed using the standard
finite element formulation with the geometric discretization held fixed: six potential
values uniquely associated with each element: and one potential value defined at the
common vertex. The results of the experiment confirm the optimal position of the
free vertex computed by direct solution of the finite element optimization equations.
with an error tolerance of £4.95 x 10~ (m).

[n summary. a total of 48 optimal finite element solutions were computed for
Benchmark System 1 using first-. second-. fourth- and eighth-order standard La-
grangian basis functions. The accuracy of the computed optimal geometric discretiza-
tion and field solution parameters was confirmed using two independent calculations.
and the validity of the results was verified with basic computational experiments.
These optimal discretization benchmark results will be employed in section 3.2 to
analyze previously reported finite element optimality criteria and. subsequently. in
section 3.3 to evaluate the performance of practical adaption models in resolving

Benchmark System 1.



Table 3.9: Optimal computed values of the geometric discretization parameters. z;.
. and field solution parameters. U;. for eighth-order finite element solutions for Bench-
mark System | using NV elements, where V =1,2.3,4.

PN i 2 3 4
T U; T Ui T U: T; Ui
l 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000 0.1000 10.0000
2 10.0000 1.0430 0.8096  5.2785 0.4020 7.2385 0.2804  3.1600
3 N/A 0.7112 10.0000 3.6149 1.8374 5.6989 0.8490 6.8921
4 N/A  0.3891 N/A  2.7253 10.0000 4.6890 2.7919  5.9650
5 N/A  0.2479 N/A  2.1922 N/A  3.9839 10.0000 5.2578
6 N/A 02393 N/A  1.8408  N/A 34636  N/A  4.7006
7 N/A  0.1442 N/A 1.5750 N/A  3.0625 N/A  4.2501
3 N/A  0.1337 N/A  1.3844 N/A  2.7455 N/A  3.8784
9 N/A  0.1000 N/A  1.2308 N/A  2.4876 N/A  3.5665
10 N/A N/JA N/A 05039 N/A L7194  N/A  2.8452
i1 N/JA  N/JA  N/A 03255  N/A 13147 N/A  2.3667
12 N/A  NJA  N/A 02343 N/A 10633  N/A  2.0259
13 N/A N/A  NJA 01841  N/A 08930  N/A L7709
14 N/A N/A NJA 01539 N/A  0.7699  N/A  1.5730
15 N/JA  N/A  N/A 01291  N/A 06762  N/A  1.4148
16 N/A  NJA  N/A 01134  N/A 06032  N/A  1.2855
17 N/A NJA N/A 01000 N/A 05442  N/A 11779
8 N/A  NJA  N/A  N/JA  N/A 03497  N/A  0.9159
19 N/A  N/A  N/A  N/A  N/A 0258  N/A  0.7493
20 N/A  N/A NJA  N/A  NJA 02041 N/A  0.6339
21 N/JA  N/A N/JA  N/A NJA 01689  N/A  0.5493
22 N/A  N/A N/A  N/A  NJA  0.442  N/A 04847
23 N/A N/A  N/A  N/A  NJ/A 01256  N/A  0.4336
24 N/JA N/JA N/A N/A N/A 0114 N/A 03923
25  N/A N/A  N/A  N/A  N/A 0.1000 N/A 0.3582
26 N/A N/A N/A  N/A N/A N/A  NJA 0.2708
27 NJA  N/JA N/A N/A  N/A  N/A  NJ/A 02177
23 N/A N/A N/A  N/A N/A NJ/A  N/A  0.1820
29 N/A N/A N/A  N/A  N/A  N/A  N/A  0.1563
30 N/A  N/JA  N/A  N/JA  N/A  N/A  NJ/A 0.1371
31 N/A  N/A  N/JA  N/A  N/A  N/A  N/A 01220
32 N/JA N/A N/A  N/A  N/A  N/A  N/A  0.1099
33 NJA N/A N/A  N/A N/A N/A  N/A  0.1000

Note: The table entries represent radial distance from the origin values for z; with units (m),
. and electrostatic scalar potential values for U; with units (V).

118



1.0E+02

1.0E+01 —
=
_5 1.0E+00 —
g
5 1.0E-01 =
[
=
= 1.0E-02 =
=
M 1.0E-03 -
=
>
= 1.0E-04 =
Qq-) H H
1.0E-05 - ------------------------------ .
1.0E-06
1

Number of Elements

Figure 3.13: The variation of percent error in functional value with discretization
level for eighth-order finite element solutions for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.
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dimensional electrostatic potential analysis of Benchmark System | are illustrated:
(a) 2 element optimal mesh: (b) 2 element uniform mesh; (c) 3 element optimal mesh:
(d) 3 element uniform mesh; (e) 4 element optimal mesh; (f) 4 element uniform mesh.
The radial discretizations are plotted on a logarithmic scale because of the proximity
of the element vertices to each other near the singularity in the optimal meshes. Note:
the positions of the element vertices in the optimal meshes are specified in Table 3.9.
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Figure 3.15: The variation in functional value with choice of free vertex position for
an eighth-order two-element mesh is illustrated for Benchmark System 1. The plot
is based on 100.000 functional values computed by fixing the unconstrained element
vertex at 100.000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the z-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the electrostatic potential energy of
the discretized. eighth-order. two-element finite element model. Note: the optimal
vertex position is specified in Table 3.9.



3.1.2 Benchmark System 2

The second benchmark system is based on a straight, infinitely long, uniform,
static line current in free space. The objective for this benchmark system is to com-
pute the functional value based on the resolution of a radial neighborhood close to the
line current and spanning a 100-fold decay in magnetic vector potential magnitude:
the line current. of magnitude 5 x 10° (A), is directed along the positive z-coordinate
axis in a circular-cylindrical reference coordinate system, and the two boundaries of
the problem domain are fixed at radial distances of 0.1 (m) and 10 (m) away from
the current. The primary feature of this system is the rapid field solution variation
close to the singular current source distribution. This feature is common to many
devices that contain sharp material edges. and has been shown to drastically reduce
the convergence rate of the finite element method.

The magnetostatic system used to establish the optimal discretization bench-
mark results of this section was analyzed for magnetic vector potential using the
one-dimensional finite element formulation and the corresponding finite element op-
timization equations derived in section 2.4.1. The optimal discretization benchmark
results for this magnetostatic system were computed using exactly the same proce-
dures that were used for Benchmark System 1. Furthermore. the same range of results
were computed. and the same measures were taken to confirm the accuracy of the
numerical results that were computed and the validity of the formulation and the
solution methods that were employed to compute these results. Unlike Benchmark
Svstemn 1. the analytical magnetic vector potential field solution for Benchmark Sys-
tem 2 is. formally. a vector field. However. the physical symmetry inherent in the
magnetostatic system results in a single, =-directed. field component for the magnetic
vector potential corresponding to the system. Moreover, the field solution variation
of the system can be characterized mathematically by one space variable. Therefore.

the same scalar one-dimensional finite element formulation presented in section 2.4.1



and used in section 3.1.1 for the analysis of Benchmark System 1, was also used for
the analysis of Benchmark System 2 in this section.

The optimal values of the geometric discretization parameters. r;, and the field
solution parameters, U/;. for the series of 20 optimal first-order finite element solutions
that were computed for Benchmark System 2 are reported in Tables 3.10-3.12. The
convergence in percent error of the functional values computed from these optimal dis-
cretizations and the corresponding uniform discretizations is illustrated in Figure 3.16.
The results of the two-element basic computational test which was used to confirm
the validity of the first-order optimal discretization results for Benchmark Svstem
2 are shown in Figure 3.17. Similarly. the series of 16 optimal second-order finite
element solutions computed for Benchmark System 2 are reported in Tables 3.13-
3.15; the convergence in the percent errors of the optimal discretization-based and
uniform discretization-based functional values are compared in Figure 3.18; and the
results of the second-order two-element numerical validation experiment are shown in
Figure 3.19. The analogous set of fourth-order results for Benchmark System 2 are
presented in Tables 3.16-3.17. Figure 3.20 and Figure 3.21. In addition. the equivalent
set of eighth-order results are given in Table 3.18. Figure 3.22 and Figure 3.23. The
superior accuracy in the functional values computed from the optimal discretization
solutions relative to the uniform results for this benchmark system may be noted for
the first-. second-, fourth- and eighth-order cases in Figure 3.16, Figure 3.18, Fig-
ure 3.20 and Figure 3.22, respectively. Finally, all of the first-. second-. fourth-. and
cighth-order numerical validation experiments confirmed, with the same error toler-
ance reported for Benchmark Systemn 1. that the optimal position of the free vertex
computed by direct solution of the finite element optimization equations correctly
corresponds to the smallest possible functional value in each case, as illustrated by
Figure 3.17, Figure 3.19. Figure 3.21 and Figure 3.23, respectively.

Although the analyses of Benchmark System 1 and Benchmark System 2 are very

similar. there are some important differences which are discussed next. First, the
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Table 3.10: Optimal computed values of the geometric discretization parameters. ;.
and field solution parameters. U/;. for first-order finite element solutions for Benchmark
System 2 using N elements, where N =1.2,... 8.

(/N 1 2 3 4

x; U; I; U; T; Ui T; U;

1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 10.0000 0.0465 1.0000 2.3491 0.4642 3.1166 0.3162 3.5004
3 N/A  N/A 10.0000 0.0465 2.1544 1.5816 1.0000 2.3491
1 N/A  N/A  N/A  N/A 10.0000 0.0465 3.1623 1.1978
5 N/A  N/A  N/A  N/JA  N/A  N/A 10.0000 0.0465

i/\ 5 6 7 8
I, U',‘ I U',' I; U,' I, (f,‘

1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.2512 3.7306 0.2154 3.8842 0.1931 3.9938 0.1778 4.0760
3 0.6310 2.8096 0.4642 3.1166 0.3728 3.3359 0.3162 3.5004
4 1.5849 1.8886 1.0000 2.3491 0.7197 2.6780 0.5623 2.9247
5 3.9811 0.9675 2.1544 1.5816 1.3895 2.0202 1.0000 2.3491
6 10.0000 0.0465 4.6416 0.8140 2.6827 1.3623 1.7783 1.7735
T N/A N/A 10.0000 0.0465 5.1795 0.7044  3.1623 1.1978
8 N/A  N/A N/A  N/A 10.0000 0.0465 5.6234 0.6222
9 N/A  N/A N/A  N/A  N/A N/A 10.0000 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m),
and vector magnetic potential values for U/; with units (Wb/m).
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Table 3.11: Optimal computed values of the geometric discretization parameters. z;,

‘ and field solution parameters, U;, for first-order finite element solutions for Benchmark
Svstem 2 using .V elements. where N =9,10,...,16.
/N 9 10 11 12
I; U,' Iy U,' I; U,' I U,'
I 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.1668 4.1400 0.1585 4.1912 0.1520 4.2330 0.1468 4.2679
3 0.2783 3.6283  0.2512 3.7307 0.2310 3.8144 0.21534 3.8842
4 0.4642 3.1166 0.3981 3.2701 0.3511 3.3957 0.3162 3.5004
b) 0.7743 2.6049 0.6310 2.8096 0.5337 29771 0.4642 3.1166
6 1.2915 2.0933 1.0000 2.3491 0.8111 25584 0.6813 2.7329
n 2.1544 1.5816 1.5849 1.3886 1.2328 2.1398 1.0000 2.3491
S 3.5938 1.0699 25119 1.4281 1.8738 1.7211 1.4678 1.9653
9 5.9948 0.5382  3.9811 0.9676  2.8480 1.3025 2.1544 1.5816
10 10.0000 0.0465 6.3096 0.5070 4.3288 0.8838 3.1623 1.1978
11 N/A N/A 10.0000 0.0465 6.5793 0.4652 4.6416 0.8140
12 N/A N/A N/A N/A 10.0000 0.0465 6.8129 0.4303
13 N/A N/A N/A N/A N/A N/A 10.0000 0.0465
(/N 13 14 15 16
Ly (./'g Iy U ,' Iy L",' I; U H
l 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.1425 4.2974  0.1389 4.3227  0.1339 4.3447 0.1334 4.3639
3 0.2031 3.9432 0.1931 3.9938 0.1848 4.0377 0.1778 4.0760
4 0.2894 3.5890 0.2683 3.6649 0.2512 3.7307 0.2371 3.7882
5 0.4125 3.2347 0.3728 3.3359 0.3415 3.4236 0.3162 3.5004
6 0.5878 2.8805 0.5179 3.0070 0.4642 3.1166 0.4217 3.2126
N 0.8377 2.5262 0.7197 2.6780 0.6310 2.8096 0.5623 2.9247
8 1.1938 2.1720 1.0000 2.3491 0.8577 2.5026  0.7499 2.6369
9 1.7013 1.8177 1.3895 2.0202 1.1659 2.1956 1.0000 2.3491
10 2.4245 1.4635 1.9307 1.6912 1.5849 1.8886 1.3335 2.0613
11 3.4551 1.1092 2.6827 1.3623 2.1544 1.5816 1.7783 1.7735
12 4.9239 0.7550 3.7276 1.0333 29286 1.2746  2.3714 1.4856
13 7.0170 0.4008 5.1795 0.7044 3.9811 0.9676 3.1623 1.1978
14 10.0000 0.0465 7.1969 0.3755 5.4117 0.6605 4.2170 0.9100
15 N/A N/A 10.0000 0.0465 7.3564 0.3535 5.6234 0.6222
16 N/A N/A N/A N/A 10.0000 0.0465 7.4989 0.3343
17 N/A N/A N/A N/A N/A N/A 10.0000 0.0465
. Note: The table entries represent radial distance from the origin values for £; with units (m),

and vector magnetic potential values for U; with units (Wb/m).
125



Table 3.12: Optimal computed values of the geometric discretization parameters. z;.
and field solution parameters, U;, for first-order finite element solutions for Benchmark
Svstem 2 using NV elements., where NV = 17, 18,19, 20.

iIN 17 18 19 20
I; U; T; U; z; U; T; U;
1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.1311 4.3808 0.1292 4.3958 0.1274 4.4093 0.1259 4.4214
3 0.1719 4.1099 0.1668 4.1400 0.1624 4.1669 0.1585 4.1912
4 0.2254 3.8390 0.2154 3.8842 0.2069 3.9246 0.1995 3.9609
5 0.2955 3.5681 0.2783 3.6283 0.2637 3.6822 0.2512 3.7307
6 0.3875 3.2972 0.3394 3.3725 0.3360 3.4398 0.3162 3.5004
T 0.5080 3.0263 0.4642 3.1166 0.4281 3.1974 0.3981 3.2701
3 0.6661 2.7554 0.5995 2.860S8 0.3456 2.9550 0.5012 3.0399
9 0.8733 2.4845 0.7743 2.6049 0.6952 2.7127 0.6310 2.8096
10 1.1450 2.2137 1.0000 2.3491 0.8859 2.4703 0.7943 2.5794
11 1.5013 1.9428 1.2915 2.0933 [.1288 2.2279 1.0000 2.3491
12 1.9684 1.6719 1.6681 1.8374 1.4384 1.9855 1.2589 2.1188
13 2.5809 1.4010 2.1544 1.5816 1.8330 1.7432 1.5849 1.8886

14 3.3839 1.1301  2.7826 1.3275  2.3357 1.5008 1.9953 1.6583
15 4.4367 0.8592  3.5938 1.0699 2.9764 1.2584  2.5119 1.4281
16 5.8171 0.5883  4.6416 0.8140 3.7927 1.0160 3.1623 1.1978
I7 7.6270 0.3174 5.9948 0.5582 4.8329 0.7736 3.9811 0.9676
18 10.0000 0.0465 7.7426 0.3024 6.1585 0.5313 5.0119 0.7373

19 N/JA  N/A 10.0000 0.0465 7.8476 0.2889  6.3096 0.5070
20 N/A N/A  N/A N/A 10.0000 0.0465 7.9433 0.2768
21 N/JA N/A  N/A N/A  N/A N/A 10.0000 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m),
and vector magnetic potential values for U; with units (Wb/m).
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Figure 3.16: The variation of percent error in functional value with discretization
level for first-order finite element solutions for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.
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Figure 3.17: The variation in functional value with choice of free vertex position for
a first-order two-element mesh is illustrated for Benchmark System 2. The plot is
based on 100,000 functional values computed by fixing the unconstrained element
vertex at 100,000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the r-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the magnetostatic potential energy
of the discretized, first-order, two-element finite element model. Note: the optimal
vertex position is specified in Table 3.10.



’ Table 3.13: Optimal computed values of the geometric discretization parameters,
r;. and field solution parameters, U;. for second-order finite element solutions for

Benchmark System 2 using NV elements, where NV =1,2.....8.
i/N 1 2 3 1
I; U; I l; T; U; T; U;
1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 10.0000 1.2206 1.0000 3.0294 0.4642 3.6364 0.3162 3.9265
3 N/A 0.0465 10.0000 2.3491 2.1544 3.1166 1.0000 3.5004
4 N/A N/A N/A 0.7268 10.0000 2.1014 3.1623 2.7752
5 N/A N/A N/A 0.0465 N/A 1.5816 10.0000 2.3491
6 N/A N/A N/A N/A N/A 0.5663 N/A 1.6239
T N/A N/A N/A N/A N/A 0.0465 N/A 1.1978
8 N/A N/A N/A N/A N/A N/A N/A 0.4726
9 N/A N/A N/A N/A N/A N/A N/A 0.0465
VA 5 6 7 8
I; U ‘ I; U, N I; (/"g I; U,'

| 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.2512 4.0920 0.2154 4.1977 0.1931 4.2705 0.1778 4.3235
3 0.6310 3.7307 0.4642 3.8842 0.3728 3.9938 0.3162 4.0760
4 1.5849 3.1710  1.0000 3.4302 0.7197 3.6126 0.5623 3.7479
5 3.9811 2.8096 2.1544 3.1166 1.3895 3.3359  1.0000 3.5004
6 10.0000 2.2500 4.6416 2.6626  2.6827 2.9548 1.7783 3.1723
T N/A 1.8886 10.0000 2.3491 5.1795 2.6780  3.1623 2.9247
S N/A 1.3289 N/A 1.8951 10.0000 2.2969 5.6234 2.5966
9 N/A 0.9676 N/A 1.5816 N/A 2.0202 10.0000 2.3491
10 N/A 0.4079 N/A 1.1276 N/A 1.6390 N/A 2.0210
11 N/A 0.0465 N/A 0.8140 N/A 1.3623 N/A 1.7735
12 N/A N/A N/A  0.3601 N/A 0.9811 N/A 1.4453
13 N/A N/A N/A 0.0465 N/A 0.7044 N/A 1.1978
14 N/A N/A N/A N/A N/A 0.3232 N/A 0.8697
15 N/A N/A N/A N/A N/A 0.0465 N/A 0.6222
16 N/A N/A N/A N/A N/A N/A N/A 0.2940
17 N/A N/A N/A N/A N/A N/A N/A 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m),
and vector magnetic potential values for U; with units (Wb/m).



Table 3.14: Optimal computed values of the geometric discretization parameters,
r;. and field solution parameters, U;, for second-order finite element solutions for
Benchmark System 2 using N elements., where N =9.10.11.12.

/N 9 10 11 12

Iy U; T U, N I; U; T U;
1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.1668 4.3638 0.1585 4.3954 0.1520 4.4208 0.1468 4.4416
3 0.2783 4.1400 0.2512 4.1912 0.2310 4.2330 0.2154 4.2679
4 0.4642 3.8521 0.3981 3.9349 0.3511 4.0021 0.3162 4.0579
3 0.7743 3.6283 0.6310 3.7307 0.5337 3.8144  0.4642 3.8842
6 1.2915 3.3404 1.0000 3.4743 0.8111 3.5835 0.6813 3.6741
T 2.1544 3.1166 1.5849 3.2701 1.2328  3.3957 1.0000 3.35004
S 3.5938 2.8288  2.5119 3.0138 1.8738 3.1648 1.4678 3.2903
9 5.9948 2.6049 3.9811 2.8096 2.8480 2.9771 2.1544 3.1166
10  10.0000 2.3171 6.3096 2.5533  4.3288 2.7462  3.1623 2.9066
11 N/A 2.0933 10.0000 2.3491 6.5793 2.5584 4.6416 2.7329
12 N/A 1.8054 N/A 2.0928 10.0000 2.3275 6.8129 2.5228
13 N/A 13816  N/A 1.8886  N/A 2.1398 10.0000 2.3491
14 N/A 12037 N/A 16323 N/A 1.9089  N/A 2.1390
15 N/A 1.0699  N/A 1.4281  N/A 17211 N/A 1.9653
16 N/A 07820  N/A L1718 N/A 14902  N/A 1.7553
17 N/A 05582  N/A 09676  N/A 13025  N/A 1.5816
18 N/A 02703  N/A 0.7112  N/A 10716  N/A 13715
19 N/A 0.0465  N/A 05070  N/A 0.8838  N/A 1.1978
20 N/A  N/JA  N/A 02507  N/A 06529  NJ/A 0.9877
21 N/A  N/A  N/A 00465  N/A 04652  N/A 0.8140
22 N/A  N/A N/A  N/A  N/A 02342 N/A  0.6040
23 N/JA  N/JA  N/A  N/A  NJ/A 00465  N/A 0.4303
24 N/JA  N/JA N/A N/A  N/A N/A  N/A 0.2202
25 N/A  N/A  N/A N/A  N/A N/A  N/A 0.0465

Note: The table entries represent radial distance from the origin values for r; with units (m),
and vector magnetic potential values for U/; with units (Wb/m).
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. Table 3.15: Optimal computed values of the geometric discretization parameters.
r;. and field solution parameters, U;, for second-order finite element solutions for
Benchmark System 2 using /N elements, where N = 13, 14, 15, 16.

/N 13 14 15 16
I U; I; U; T; U; r; U;
l 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.1425 4.4590 0.1389 4.4738 0.1359 4.4865 0.1334 4.4975
3 0.2031 4.2974  0.1931 4.3227 0.1848 4.3447 0.1778 4.3639
4 0.2894 4.1048 0.2683 4.1449 0.2512 4.1795 0.2371 4.2097
3 0.4125 3.9432 0.3728 3.9938 0.3415 4.0377 0.3162 4.0760
6 0.3878 3.7506 0.5179 3.8159 0.4642 3.8725 0.4217 3.9218
T 0.8377 3.5890 0.7197 3.6649 0.6310 3.7307 0.3623 3.7882
S 1.1938 3.3963 1.0000 3.4870 0.8577 3.5655 (0.7499 3.6340
9 1.7013  3.2347 1.3895 3.3339 1.1639 3.4236 1.0000 3.5004
10 2.4245 3.0421 1.9307 3.1580 1.53849 3.2584 1.3335 3.3462
11 3.4551 2.8805 2.6827 3.0070 2.1544 3.1166 1.7783 3.2126
12 4.9239 26878 3.7276 2.8291 2.9286 2.9514 23714 3.0584
13 7.0170 2.5262 5.1795 2.6780  3.9811 2.8096 3.1623 2.9247

14 10.0000 2.3336 7.1969 2.5002 5.4117 2.6444 4.2170 2.7706

15 N/A 2.1720 10.0000 2.3491 7.3564 2.5026 5.6234 2.6369
16 N/A 1.9793  N/A 2.1712 10.0000 2.3374 T7.4989 2.4827
17 N/A L8177 N/A  2.0202 N/A 2.1956 10.0000 2.3491

13 N/A  1.6251 N/A 1.8423 N/A  2.0304 N/A  2.1949

— = = = = BN Y N N

19 N/A 1.4635  N/A 1.6912  N/A 1.8886  N/A 2.0613
20 N/A 12708  N/A 15133 NJ/A 17234  N/A 1.9071
21 N/A 11092  N/A 1.3623  N/A 15816  N/A 1.7735
22 N/A 09166  N/A 1.1844 N/A 14164  N/A  1.6193
23 N/A 07550  N/A 1.0333  N/A 12746  N/A  1.4856
24 N/A 05624  N/A 08555  N/A 1.1094  N/A 1.3314
25 N/A 0.4008 N/A 0.7044  N/A 09676  N/A 1.1978
26 N/A 02081  N/A 05265  N/A 08024  N/A 1.0436
27 N/A 0.0465 N/A 03755  N/A 06605 N/A 0.9100
28 N/A N/A  N/A 0.1976  N/A 04953  N/A 0.7558
29 N/A N/A  N/A 0.0465 N/A 03535  N/A 0.6222
30 N/A  N/A  N/A  N/A  NJ/A 0.1883  N/A 0.4680
31 N/A N/A N/A N/A  N/A 00465 N/A 0.3343
32 N/J/A N/A N/A N/A N/A N/A  N/A 0.1801
33 N/A N/A N/A N/A N/A N/A  N/A 0.0465

Note: The table entries represent radial distance from the origin values for z; with units {m),
‘ and vector magnetic potential values for U; with units (Wb/m).
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Figure 3.18: The variation of percent error in functional value with discretization
level for second-order finite element solutions for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.
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[Figure 3.19: The variation in functional value with choice of free vertex position for
a second-order two-element mesh is illustrated for Benchmark System 2. The plot
is based on 100.000 functional values computed by fixing the unconstrained element
vertex at 100.000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the z-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the magnetostatic potential energy of
the discretized, second-order, two-element finite element model. Note: the optimal
vertex position is specified in Table 3.13.
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Table 3.16: Optimal computed values of the geometric discretization parameters,
r;. and field solution parameters, U;, for fourth-order finite element solutions for
Benchmark System 2 using V elements, where NV = 1,2, 3, 4.

/N 1 2 3 4

I; U; I; U; T; U; I; U;
1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 10.0000 1.6198 1.0000 3.4682 0.4642 4.0021 0.3162 4.2188
3 N/A 0.8568 10.0000 2.9485 2.1544 3.6144 1.0000 3.9187
4 N/A  0.4307 N/A 26137 10.0000 3.3369 3.1623 3.6834
5 N/A 0.0465 N/A  2.3491 N/A 3.1166 10.0000 3.5004
6 N/A  N/A  N/A 11656  N/A 24671 N/A  3.0675
7 N/A  N/A  N/A 0.6459  N/A 2.0794 N/A  2.7674
8 N/A  N/A N/A 03111 N/A 1.8018  N/A 25371
9 N/JA  N/A  N/A 0.0465 N/A 15816  N/A 23491
10 N/JA  N/A  N/A  N/A  N/A 09320 N/A 1.9162
11 N/JA N/A  N/A N/A  N/A 05443  N/A 1.6161
12 N/JA  N/A  N/A  N/A  N/A 02667  N/A 1.3858
13 NJA  N/A  N/A N/A  N/A 00465 N/A 1.1978
14 N/JA  N/A  N/A N/A N/A N/A  N/A 0.7649
15 N/A N/A  N/A N/A  N/A N/A  N/A 0.4648
16 NJA  N/A  N/A N/A N/A NJ/A  N/A 02345
17 N/A N/A  N/A N/JA N/A N/A  N/A 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m),
and vector magnetic potential values for ; with units (Wb/m).

134



Table 3.17: Optimal computed values of the geometric discretization parameters.
r;. and field solution parameters. U;, for fourth-order finite element solutions for
Benchmark System 2 using NV elements, where N =5,6.7,8

i/N 5 6 7 8

I; Ui Iy U,' Iy U; oy U,'
1 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 0.2512 4.3308 0.2154 4.3980 0.1931 4.4425 0.1778 4.4740
3 0.6310 4.0887 0.4642 4.1960 0.3728 4.2696  0.3162 4.3232
4 1.5849 3.8939 1.0000 4.0281 0.7197 4.1223 0.5623 4.1922
5 3.9811 3.7307  2.1544 3.8842 1.3895 3.9938 1.0000 4.0760
6 10.0000 3.4098 4.6416 3.6305 2.6827 3.7846 1.7783 3.8986
T N/A 3.1676 10.0000 3.4285 5.1795 3.6117 3.1623 3.7478
S N/A 29729 N/A 3.2605 10.0000 3.4644 5.6234 3.6168
9 N/A  2.8096 N/A 3.1166 N/A 3.3359 10.0000 3.5004
10 N/A 24887 N/A  2.8630 N/A  3.1267 N/A  3.3232
11 N/A  2.2466 N/A 2.6610 N/A 29338 N/A 3.1723
12 N/A 2.0519 N/A  2.4930 N/A 2.8065 N/A 3.0413
13 N/A 1.8886 N/A  2.3491 N/A 2.6780 N/A  2.9247
14 N/A  1.5677 N/A  2.0954 N/A 2.4688 N/A 2.7476
15 N/A 1.3255 N/A 1.8934 N/A  2.2959 N/A 2.5967
16 N/A 1.1308 N/A 1.7255 N/A 2.1486 N/A  2.4656

N/A 0.9676 N/A 1.5816 N/A  2.0202 N/A  2.3491
18 N/A  0.6467 N/A 1.3279 N/A 1.8108 N/A 2.1719

19 N/A  0.4045 N/A 1.1259 N/A 1.6380 N/A  2.0210
20 N/A  0.2098 N/A  0.9580 N/A 1.4906 N/A  1.8899
21 N/A  0.0465 N/A 0.8140 N/A  1.3623 N/A 1.7735
22 N/A  N/A N/A  0.5604 N/A  1.1529 N/A 15961
23 N/A  N/A N/A  0.3584 N/A  0.9800 N/A  1.4452
24 N/A  N/A N/A  0.1904 N/A  0.8327 N/A  1.3141
25 N/A  N/A N/A  0.0465 N/A  0.7044 N/A 1.1978
26 N/A  N/A N/A  N/A N/A 0.4951 N/A  1.0204
27 N/A  N/A N/A  N/A  N/A 0.3222 N/A 0.8695
28 N/A  N/A N/A  N/A  N/A 0.1750 N/A 0.7384
29 N/A  N/A N/A  N/A N/A  0.0465 N/A 0.6222
30 N/A  N/A N/A  N/A  N/A  N/A N/A  0.4446
31 N/A  N/A N/A N/A  N/A N/A N/A  0.2936
32 N/A  N/A N/A  N/A  N/A  N/A N/A 0.1625
33 N/A  N/A N/A N/A  N/A NJ/A N/A 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m),
and vector magnetic potential values for U; with units (Wb/m).

135



1.0E+02

LOE+01 =\
-—“- H
[ ==
.2 1.0E+00
&)
=
(S
= 1.0E-01 —
S
= 1.0E-02 -
S a
=
& 1.0E-03 -
)
o
1.0E-04 -
1.0E-05 I I i I I i
1 2 3 4 5 6 7 8
Number of Elements

Figure 3.20: The variation of percent error in functional value with discretization
level for fourth-order finite element solutions for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-

cretizations.
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Figure 3.21: The variation in functional value with choice of free vertex position for
a fourth-order two-element mesh is illustrated for Benchmark System 2. The plot
is based on 100.000 functional values computed by fixing the unconstrained element
vertex at 100.000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the r-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the magnetostatic potential energy
of the discretized. fourth-order, two-element finite element model. Note: the optimal
vertex position is specified in Table 3.16.



‘ Table 3.18: Optimal computed values of the geometric discretization parameters.
r;. and field solution parameters. U;, for eighth-order finite element solutions for
Benchmark System 2 using N elements, where N = 1.2.3,4.

PN 1 2 3 4

I; (,/',' Ty U',' Iy U,' I U,‘
I 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517 0.1000 4.6517
2 10.0000 2.0911 1.0000 3.8969 0.4642 4.2764 0.3162 4.4127
3 N/A 1.4880 10.0000 3.4740 2.1544 4.0043 1.0000 4.2199
4 N/A 1.0319 N/A 3.1752 10.0000 3.7905 3.1623 4.0584
5 N/A  0.7548 N/A  2.9469 N/A 3.6145 10.0000 3.9193
6 N/A  0.5411 N/A 2.7613 N/A 34650  N/A 3.7973
T

N/A 0.3319  N/A  2.6036 N/A 3.3348  N/A 3.6885

8 N/A 0.1899  N/A 24687  N/A 32197  N/A 3.5905
9 N/A 0.0465  N/A 2.3491 N/A 3.1166  N/A 3.5004
10 N/A  N/JA  N/A 15943 N/A 27415 N/A 3.2612
11 N/A  N/A  N/A 11714 N/A 24695  N/A 3.067S
12 N/A  N/A  N/A 08727 N/A 22558  N/A  2.9058
13 N/A  N/A  N/A 06443  N/A 20799  N/A 2.7665
14 N/A N/A  NJA 04537  N/A 1.9303  N/A  2.6442
15 N/A  N/JA  N/A 03010 N/A 1.8002  N/A 2.5352
16 N/A N/A  N/A 0.1661  N/A 1.6851  N/A 2.4370
17 N/A  N/A  NJ/A 0.0465  N/A 1.5816  N/A 2.3491
18 N/JA  N/A  N/A N/A  N/A 12066 N/A 2.1086
19 N/JA  N/A  N/A N/A  N/A 09344  N/A 1.9158
20 N/A  N/A  N/A  N/A  N/A 0.7206  N/A 1.7543
21 N/A  N/A  N/JA N/A  NJ/A 05446  N/A 1.6152
22 N/A  N/A N/A  N/A N/A 03950  N/A  1.4932
23 N/JA  N/A  N/JA  N/A N/A 02648 N/A 1.3844
24 N/A  N/A  N/A  N/A  N/A 0.1498  N/A 1.2863
25 N/A N/A  N/A  N/A  N/A 0.0465 N/A 1.1978
26 N/A  N/A  N/A N/A  N/A  N/A  N/A 0.9580
27 N/A N/A N/A N/A  N/A N/A  N/A 0.7653
28 N/JA N/A N/A N/A N/A N/A  N/A 0.6037
29 N/A N/A  N/A N/JA  N/A  N/A  N/A 0.4647
30 N/A N/A N/A N/A N/A N/A  N/A 0.3427
31 N/JA N/A N/A N/A N/A N/A  N/A 02339
32 N/JA N/A N/A N/A N/A N/A  N/A 0.1358
33 N/J/A N/A N/A N/A N/A N/A  N/A 0.0465

Note: The table entries represent radial distance from the origin values for z; with units (m).
‘ and vector magnetic potential values for U; with units (Wb/m).
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Figure 3.22: The variation of percent error in functional value with discretization
level for eighth-order finite element solutions for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on uniform discretizations. The circle knot results correspond
to percent error in functional values computed from solutions based on optimal dis-
cretizations.

139



4.75

Functional Value (JH/m)
H
N

4.65

4.6 ~ N ; co . i e
10 10 10
Free Vertex Position (m)

Figure 3.23: The variation in functional value with choice of free vertex position for
an eighth-order two-element mesh is illustrated for Benchmark System 2. The plot
is based on 100,000 functional values computed by fixing the unconstrained element
vertex at 100,000 uniformly spaced positions between the two geometric boundaries
of the problem domain. A logarithmic scale is used for the z-axis of the plot in order
to adequately resolve the variation in the functional value near the optimal vertex
position corresponding to the true minimum in the magnetostatic potential energy
of the discretized. eighth-order. two-element finite element model. Note: the optimal
vertex position is specified in Table 3.18.
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boundary conditions used in Benchmark System 2 for the magnitude of the magnetic
vector potential were 4.651687057 (Wb/m) at z = 0.1 (m) and 4.651687057 x 10~2 at
r = 10.0 (m), which correspond to the analytical values at the problem boundaries
when the arbitrary zero reference potential is chosen to be at r = 10.47615753 (m).
Second. the analytical functional value of 4.6052 (JH/m) was used to calculate the
percent errors in functional values computed from the finite element solutions con-
sidered for Benchmark System 2. This functional value is. simply, twice the mag-
netostatic potential energy per unit length of the system multiplied by the factor
io/27. where p, = 47 x 1077 (H/m) is the permeability of free space. Third. the
optimal discretizations for Benchmark System 2 have the interesting property that
the optimal vertex positions for a mesh comprised of a given number of elements is
independent of the order of the finite element approximation used (for the specific or-
ders considered in this work). For example. the optimal two-element first-order mesh
has exactly the same vertex positions as the optimal two-element second-. fourth- and
eighth-order meshes. The optimal values of the geometric discretization parameters
reported in Tables 3.10-3.18 may be examined to confirm that this interesting prop-
erty holds not only for the two-element case. but also for the full range of optimal
meshes with equivalent numbers of elements. Hence. the placement of the element
vertices for corresponding optimal and uniform meshes with two. three and four el-
cments in each of the first-. second-. fourth- and eighth-order cases is illustrated by
Figure 3.24: and the comparison of optimal and uniform meshes ranging from five ele-
ments to eight elements for each of the first-. second- and fourth-order cases is shown
in Figure 3.25. It may be noted that the superior accuracy in the functional values
computed from the optimal discretization solutions relative to the uniform results
for Benchmark System 2, is directly related to the more efficient relative distribution
of DOF over the problem domain, as illustrated by Figure 3.24 and Figure 3.25 for
the meshes represented therein. Furthermore, the numerical values specified in Ta-

bles 3.10-3.18 indicate that the balance of the optimal discretizations computed for
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Benchmark System 2 also have effectively distributed element vertices for efficiently
resolving the rapid field solution variation close to the line current. The fourth. and
final. important distinction between the optimal discretization-based finite element
solutions computed for the two benchmark systems is that the first-order optimal
magnetic vector potential solutions computed for Benchmark System 2. and reported
in Tables 3.10-3.12. are interpolatory on the true solution to the continuum prob-
lem. The value of this interesting feature of the first-order optimal results computed
for the magnetostatic system will be discussed in Section 3.1.2. It may be noted
from Tables 3.13-3.18 that the optimal second-. fourth-, and eighth-order solutions
for Benchmark System 2 also have exact analytical values for the magnitude of the
magnetic vector potential at the positions of the element vertices in any given mesh.
but not at the interpolation points within the elements themselves: therefore. only
the first-order optimal solutions are interpolatory on the true solution.

In summary. a total of 48 optimal finite element solutions were computed for
Benchmark System 2 using first-. second-. fourth- and eighth-order standard La-
grangian basis functions. The accuracy and validity of the results were confirmed
using exactly the same methods used for Benchmark System 1. The optimal dis-
cretization benchmark results presented in this section will be employed in section
3.2 to analyze previously reported finite element optimality criteria and. subsequently.
in section 3.3 to evaluate the performance of practical adaption models in resolving

Benchmark System 2.
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Figure 3.24: First-, second-. fourth-. and eighth-order optimal and uniform radial dis-
cretizations for the one-dimensional vector magnetic potential analysis of Benchmark
System 2 are illustrated: (a) 2 element optimal mesh: (b) 2 element uniform mesh; (c)
3 element optimal mesh: (d) 3 element uniform mesh: (e) 4 element optimal mesh: (f)
1 element uniform mesh. The radial discretizations are plotted on a logarithmic scale
because of the proximity of the element vertices to each other near the singularity
in the optimal meshes. Note: the positions of the element vertices in the optimal
meshes are specified in Table 3.10, 3.13, 3.16 and 3.18.
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Figure 3.25: First-. second-. and fourth-order optimal and uniform radial discretiza-
tions for the one-dimensional vector magnetic potential analysis of Benchmark System
2 are illustrated: (a) 5 element optimal mesh: (b) 5 element uniform mesh: (c) 6 el-
ement optimal mesh; (d) 6 element uniform mesh: (e) 7 element optimal mesh; (f) 7
element uniform mesh; (g) 8 element optimal mesh; (h) 8 element uniform mesh. The
radial discretizations are plotted on a logarithmic scale because of the proximity of
the element vertices to each other near the singularity in the optimal meshes. Note:
the positions of the element vertices in the optimal meshes are specified in Table 3.10,

3.13, and 3.17.
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3.2 Finite Element Optimality Criteria Evaluations

In this section. reported problems with currently available finite element optimal-
ity criteria will be investigated with the optimal discretization results computed for
the two benchmark systems considered above. The objective is to determine to what
extent the problems are present in electromagnetic applications. and to evaluate the
usefulness of the optimality criteria that are examined for AFEA of electromagnetic
systems. The specific optimality criteria that are studied in this section were consid-
ered based on the following important reasons. First, optimality criteria which have,
potentially. the most significant implications for AFEA of electromagnetic systems,
but that have not been previously evaluated with optimal finite element solutions for
electromagnetic benchmark systems are considered in this work. Second, optimality
criteria which have previously been found to be ineffective based on conclusive numer-
ical evidence are not considered in this work. Finally, many of the most commonly
used optimality criteria rely on approximations based on superconvergence theory;
therefore. the validity of certain relevant superconvergence concepts is evaluated in
this section. in order to assess the implications for the broad range of optimality

criteria which rely upon the correctness of those concepts.
3.2.1 Benchmark System 1

As noted in the review of currently available characterizations of optimal finite
element discretizations presented in section 1.4, one of the most general and pow-
erful formulations to be published in the mainstream literature is the grading func-
tion approach developed in [127]. In fact, this grading function approach has been
used as the basis for developing and investigating numerous other optimality crite-
ria [125.132-136], also discussed in section i.4. [ts popularity has been attributed.
mainly, to the rigorous mathematical analysis used in its derivation, and to the wide
range of problem types to which it may be applied. However. as previously noted,

there are certain key assumptions used in the derivation and specific approximations
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that must be used when the grading function approach developed in [127] is applied
to finite element approximate solutions of continuum problems. which may limit the
effectiveness of related optimality criteria. In order to address this concern. the ap-
propriate forms of the grading function reported in [127] were analyzed using the
optimal discretization results computed for Benchmark System 1. Specifically, the
grading function corresponding to the H'-seminorm of the solution error was exam-
ined. which is consistent with the variational finite element formulation used in this
work [125.127]. Furthermore. the analytical field solution for Benchmark System 1
was used. as ideally prescribed in [127]. to evaluate the grading functions suitable for
the first-. second-. fourth- and eighth-order optimal finite element solutions computed
for the electrostatic benchmark system. [t may be noted that the use of the analytical
field solution in evaluating the grading functions eliminates the reliance on supercon-
vergence and extrapolation methods that would otherwise be required to compute the
necessary derivatives of the finite element approximate field solutions. To this end.
the existence of an analytical field solution for the electrostatic benchmark system
extinguishes the adverse affects that these auxiliary procedures might introduce. The
results of the numerical evaluation of the grading functions examined for Benchmark
Svstem 1 are discussed next.

The average percent errors in the grading function optimality criteria computed
for the first-order optimal discretizations for Benchmark System 1 are shown in Fig-
ure 3.26. The percent errors were caiculated based on satisfying the fundamental
equidistribution principle of Eq. (1.3) in section 1.4.2, which is also the definition of
a grading function: a function that must change by the same amount. 1/, over each
element in a mesh comprised of V elements. Hence, for each of the optimal first-order
solutions considered, the average percent error in the grading function optimality cri-
teria was calculated as the mean of the percent error in satisfying this basic definition
over each individual element. It should be noted that the general form of the grading

function that was examined (given by Eq. (1.13) in section 1.4.2), will, by definition,
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change by an average amount of 1/N over each element in any N-element mesh:
however. for an optimal N-element mesh the grading function should change by the
exact amount of 1/.V over each element. As illustrated by Figure 3.26, the average
error in equidistributing the change in the grading function over each element in a
mesh ranged from approximately 28 to 57 percent for the optimal first-order solutions
computed for meshes ranging from 2 to 20 elements. It should be noted that the H'-
seminorm form of the grading function developed in [127]. and examined here. is not.
strictly. applicable to the case of first-order approximations according to the deriva-
tion presented in [127]; however. since exactly the same form of the grading function
was derived in [125] specifically for first-order finite element solutions. it is evaluated
in this section for the first-order optimal discretization-based solutions computed for
Benchmark System 1. The average percent errors in the grading function optimality
criteria computed for the second-order optimal discretizations for Benchmark System
l are shown in Figure 3.27. These percent errors were computed using exactly the
same procedure that was used for the first-order case described above. The average
error in equidistributing the change in the grading function over each element in a
mesh is shown to lie in the range from approximately 22 to 41 percent for the optimal
second-order solutions computed for meshes ranging from 2 to 16 elements. Similarly.
a range of average errors from approximately 17 to 24 percent for the grading function
optimality criteria corresponding to the fourth-order optimal solutions computed for
Benchmark System 1 is shown in Figure 3.28. Finally, the analogous eighth-order re-
sults are shown in Figure 3.29. where the average error in equidistributing the change
in the grading function over each element in a mesh is shown to be within the range
of approximately 11 to 13 percent.

The relatively high percent errors reported above for the grading function optimal-
ity criteria evaluated for Benchmark System 1 confirm that there are serious problems
associated with using these optimality criteria for electrostatic AFEA. Namely, for the

optimal finite element discretizations considered. the corresponding grading functions
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did not change by the same amount over each of the elements comprising the optimal
meshes. Furthermore, it should be noted that the error in equidistributing the change
in the grading functions over all of the elements in a mesh did not improve with in-
creasing numbers of elements (i.e.. with increasing finite element solution accuracy)
in the optimal meshes over each of the first-. second-. fourth- and eighth-order series
of optimal discretizations computed for Benchmark System 1. In fact, the grading
functions appear to change more uniformly over the elements in the optimal meshes
comprised of the smallest numbers of elements! This is in contrast with the findings
reported in [125.127], where the change in the grading functions over the elements
in a mesh asymptotically approached a uniform distribution with increasing solution
accuracy: however, the test cases examined in [125.127] did not involve the same type
of singular field solutions as those corresponding to Benchmark System 1. Therefore.
the principle of equidistributing the change in the grading function. examined in this
work. over each element in a mesh cannot be recommended for use as an optimal
refinement criterion for adaptively evolving efficient distributions of DOF in order to
effectively resolve regions of rapid field solution variation in electrostatic AFEA.

A second type of optimality criterion, which is based on the principle of equidis-
tributing the residual of the governing partial differential equation (PDE) of a physical
system, is considered next. Unlike the grading function optimality criteria discussed
above. the approach of equidistributing the residual of the PDE governing the field
solution behavior of a physical system has not been justified with rigorous theoreti-
cal analyses, but rather, has most often been employed heuristically. as pointed out
in [129]. Nevertheless, PDE residual based optimality criteria have, potentially, signif-
icant implications for AFEA of electromagnetic systems for the following important
reason. One of the strongest positive attributes of PDE residual based optimality
criteria is the direct measure they can provide of how well the computed approximate
solutions satisfy the equations used to mathematically model a physical system. This

mathematically intuitive and simple approach is more often well understood and
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readily accepted by finite element engineering communities than more mathemati-
cally abstract optimality criteria. for example. those based on the grading function
approach described above. Thus, PDE residual based refinement criteria have been
developed and investigated extensively for AFEA [151]; however. PDE residual based
optimality criteria have not been previously evaluated with optimal finite element
solutions for electromagnetic benchmark systems. The results of the numerical eval-
uation of the PDE residual optimality criteria examined for Benchmark System 1 are
discussed next.

The average percent errors in the PDE residual optimality criteria computed for
the first-order optimal discretizations for Benchmark System 1 are shown in Fig-
ure 3.26. The percent errors were calculated based on equidistributing the residual of
the PDE corresponding to the electrostatic benchmark system (the approach devel-
oped and recommended in [126]). Hence. for each of the optimal first-order solutions
considered. the average percent error in the PDE residual was calculated as the mean
of the percent error in equidistributing the PDE residual over each individual ele-
ment. As illustrated by Figure 3.26, the average error in equidistributing the PDE
residual over each element in a mesh ranged from approximately 83 to 98 percent for
the optimal first-order solutions computed for meshes ranging from 2 to 20 elements.
The average percent errors computed for the second-order optimal discretizations for
Benchmark System 1 are shown in Figure 3.27. These percent errors were computed
using exactly the same procedure that was used for the first-order case described
above. The average error in equidistributing the PDE residual over each element in a
mesh is shown to lie in the range from approximately 90 to 96 percent for the optimal
second-order solutions computed for meshes ranging from 2 to L6 elements. Similarly,
a range of average errors from approximately 89 to 94 percent for equidistributing
the PDE residual corresponding to the fourth-order optimal solutions computed for
Benchmark System 1 is shown in Figure 3.28. Finally, the analogous eighth-order

results are shown in Figure 3.29, where the average error is seen to be within the
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range of approximately 85 to 95 percent.

In the course of evaluating the PDE residual optimality criteria described and
discussed above. it was noted that a minor modification in how the optimality criteria
are defined had interesting consequences. Specifically, when the PDE residual over an
clement scaled by the size of that element was evaluated for the optimal discretization-
based solutions computed for Benchmark System 1. it was observed that, overall, the
error in equidistributing this modified criterion was significantly reduced compared
to the unscaled version considered above. Figure 3.26 shows that the average error
in equidistributing the PDE residual scaled by the element size over each element
in 2 mesh ranged from approximately 0.27 to 37 percent (compare with 83 to 98
percent for the unscaled version) for the optimal first-order solutions computed for
meshes ranging from 2 to 20 elements. The corresponding second-order errors are
shown by Figure 3.27 to lie in the range from approximately 0.05 to 17 percent
(compare with 90 to 96 percent for the unscaled version): a range of average errors
from approximately 0.31 to 0.94 percent (compare with 89 to 94 percent for the
unscaled version) corresponding to the fourth-order case is shown in Figure 3.28: and
the eighth-order results are shown in Figure 3.29. where the average error is seen
to be within the range of approximately 1.6 to 3.0 percent (compare with 85 to 95
percent for the unscaled version).

The relatively high percent errors reported above for the PDE residual optimality
criteria evaluated for Benchmark System | confirm that there are serious problems
associated with using these optimality criteria for electrostatic AFEA. Namely, for
the optimal finite element discretizations considered, the corresponding PDE residual
was not equidistributed over each of the elements comprising the optimal meshes.
Furthermore, it should be noted that the error in equidistributing the PDE resid-
ual over all of the elements in a mesh did not improve substantially with increasing
numbers of elements (i.e., with increasing finite element solution accuracy) in the

optimal meshes over each of the first-, second-. fourth- and eighth-order series of op-
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Figure 3.26: Evaluation of optimal discretization properties for optimal first-order
discretizations for Benchmark System 1. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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Figure 3.27: Evaluation of optimal discretization properties for optimal second-order
discretizations for Benchmark System 1. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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Figure 3.28: Evaluation of optimal discretization properties for optimal fourth-order
discretizations for Benchmark System 1. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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Figure 3.29: Evaluation of optimal discretization properties for optimal eighth-order
discretizations for Benchmark System 1. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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timal discretizations computed for Benchmark System 1. However. it may be noted
from Figure 3.26 and Figure 3.27. that the error in equidistributing the PDE residual
scaled by the element size over all of the elements in a mesh did improve signifi-
cantly with increasing numbers of elements in the optimal meshes over both of the
first- and second-order series of optimal discretizations, respectively. Moreover. the
average error in equidistributing this scaled version of the PDE residual was always
less than 1 and 3 percent for the fourth- and eight-order optimal meshes. respec-
tively. Therefore, the following may be concluded from the findings revealed by these
investigations. First. the principle of equidistributing the PDE residual over each
element in a mesh cannot be recommended for use as an optimal refinement criterion
for adaptively evolving efficient distributions of DOF in order to effectively resolve
regions of rapid field solution variation in electrostatic AFEA. Second. the princi-
ple of equidistributing the PDE residual scaled by the element size appears to be
more effective for characterizing optimal finite element discretizations for Benchmark
Syvstemn 1; however, it would not be prudent to recommend this modified principle as
the basis for developing refinement criteria without providing theoretical justification.

and without further investigating its effectiveness for a wider range of problems.
3.2.2 Benchmark System 2

The grading function and PDE residual optimality criteria examined with the
optimal discretization results for Benchmark System 1, are also evaluated in this sec-
tion with the optimal finite element solutions computed for Benchmark System 2. In
addition. the first-order optimal discretization results for Benchmark System 2 are
used to evaluate derivative superconvergence properties emploved in the derivation
and application of many commonly used optimality and refinement criteria for AFEA.
The significance of evaluating both the grading function and PDE residual optimality
criteria has been addressed, in the preceding section, in terms of the implications that

these optimality criteria hold for electromagnetic AFEA; therefore, the results from
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the numerical evaluation of these criteria for Benchmark System 2 are presented in
this section without further elaboration. However. the implications of the evalua-
tion of derivative superconvergence properties will be explained. since they have not
previously been discussed in sufficient detail. Moreover. the features of the optimal
first-order finite element solutions corresponding to the magnetostatic benchmark
system which provide the ideal experimental evidence required to rigorously examine
the fundamental claims of superconvergence theory will be elucidated.

The average percent errors in the grading function optimality criteria computed
for the first-order optimal discretizations for Benchmark System 2 are shown in Fig-
ure 3.30. The percent errors were calculated in exactly the same way as described
for Benchmark System 1. As illustrated by Figure 3.30. the average error in equidis-
tributing the change in the grading function over each element in a mesh ranged from
approximately 35 to 37 percent for the optimal first-order solutions computed for
meshes ranging from 2 to 20 elements. These first-order results are extremely inter-
esting for the following important reason. As noted in section 3.1.2. the first-order
optimal magnetic vector potential solutions computed for Benchmark System 2 are
interpolatory on the true solution to the continuum problem: therefore. according to
the arguments presented in [127]. these first-order finite element approximate solu-
tions are ideally suited for use with the approach of equidistributing the change in
the grading function over each element in a mesh in order to determine the optimal
discretization of the problem domain. However. since these interpolatory finite ele-
ment solutions do correspond to the optimal discretization of the problem domain.
there is. ironically. no need to use the grading function approach to optimize the finite
element meshes under the exact conditions when it would be most appropriate to do
so. The average percent errors in the grading function optimality criteria computed
for the second-order optimal discretizations for Benchmark System 2 are shown by
Figure 3.31 to lie in the range from approximately 21 to 23 percent for meshes ranging

from 2 to 16 elements. Similarly, a range of average errors from approximately 12 to

156



13 percent for the grading function optimality criteria corresponding to the fourth-
order optimal solutions computed for Benchmark System 2 is shown in Figure 3.32.
Finally, the analogous eighth-order results are shown in Figure 3.33. where the aver-
age error in equidistributing the change in the grading function over each element in
a mesh is shown to be within the range of 6 to 7 percent.

The relatively high percent errors reported above for the grading function op-
timality criteria evaluated for Benchmark System 2 confirm that there are serious
reliability problems associated with using these optimality criteria for magnetostatic
AFEA. Namely. for the optimal finite element discretizations considered. the corre-
sponding grading functions did not change by the same amount over each element
comprising the optimal meshes. Furthermore, it should be noted that the error in
equidistributing the change in the grading functions over all of the elements in a
mesh did not vary by more than approximately 2 percent with increasing numbers
of elements (i.e.. with increasing finite element solution accuracy) in the optimal
meshes over each of the first-. second-, fourth- and eighth-order series of optimal dis-
cretizations computed for Benchmark System 2. This is in contrast with the findings
reported in [125.127]. where the change in the grading functions over the elements
in a mesh asymptotically approached a uniform distribution with increasing solution
accuracy. as previously noted. Therefore. the principle of equidistributing the change
in the grading functions examined in this work over each element in a mesh cannot be
recommended for use as an optimal refinement criterion for adaptively evolving effi-
cient distributions of DOF in order to effectively resolve regions of rapid field solution
variation in magnetostatic AFEA.

The average percent errors in the PDE residual optimality criteria computed for
the first-order optimal discretizations for Benchmark System 2 are shown in Fig-
ure 3.30. The percent errors were calculated based on equidistributing the residual of
the PDE corresponding to the magnetostatic benchmark system over each element in

a mesh. As illustrated by Figure 3.31, the average errors ranged from approximately
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82 to 92 percent for the optimal first-order solutions computed for meshes ranging
from 2 to 20 elements. The average error in equidistributing the PDE residual over
each element in a mesh is shown to lie in the range from approximately 82 to 95
percent for the optimal second-order solutions computed for meshes ranging from 2
to 16 elements. Similarly, a range of average errors from approximately 88 to 92
percent for equidistributing the PDE residual corresponding to the fourth-order op-
timal solutions computed for Benchmark System 2 is shown in Figure 3.32. Finally.
it should be noted that the analogous eighth-order results could not be computed for
this benchmark system.!

Figure 3.30 shows that the average error in equidistributing the PDE residual
scaled by the element size over each element in a mesh was identically zero for the
optimal first-order solutions computed for meshes ranging from 2 to 20 elements
(compare with 82 to 92 percent for the unscaled version). The corresponding second-
and fourth-order errors are shown by Figure 3.31 and 3.32, respectively, to also be
identically zero for all of the optimal discretizations considered (compare with 82 to
95 and 88 to 92 percent for the unscaled second- and fourth-order versions. respec-
tively). Finally. it should be noted that the analogous eighth-order results could not
be computed for this benchmark system, for the same reason stated above.

The relatively high percent errors reported above for the PDE residual optimality
criteria evaluated for Benchmark System 2 confirm that there are significant reliabil-
ity problems associated with using these optimality criteria for magnetostatic AFEA.
Namely. for the optimal finite element discretizations considered, the corresponding
PDE residual was not equidistributed over each of the elements comprising the opti-
mal meshes. Furthermore it should be noted. that the error in equidistributing the
PDE residual over all of the elements in a mesh did not improve with increasing num-
bers of elements (i.e.. with increasing finite element solution accuracy) in the optimal

meshes over each of the first-, second- and fourth-order series of optimal discretizations

!Due to a commercial software configuration dilemma not yet resolved by the manufacturer.
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computed for Benchmark System 2. However, it may be noted from Figures 3.30-
3.32 that the PDE residual scaled by the element size was exactly equidistributed
over each of the elements in a mesh for all of the first-. second- and fourth-order
optimal discretizations computed for Benchmark System 2. Therefore. the following
may be concluded from the findings revealed by these investigations. First. the prin-
ciple of equidistributing the PDE residual over each element in a mesh cannot be
recommended for use an an optimal refinement criterion for adaptively evolving effi-
cient distributions of DOF in order to effectively resolve regions of rapid field solution
variation in magnetostatic AFEA. Second. the principle of equidistributing the PDE
residual scaled by the element size appears to be entirely sufficient for characteriz-
ing the first-, second- and fourth-order optimal discretizations for Benchmark System
2. Finally. it would not be prudent to recommend developing refinement criteria
based on this modified principle without providing theoretical justification for its use
and without further examining its effectiveness for a wider range of magnetostatic
problems.

In addition to the grading function and PDE residual optimality criteria eval-
uated for Benchmark System 2. the usefulness of superconvergence phenomena in
finite element magnetics is investigated in this section. Specifically. reports on the
superconvergent characteristics of potential-based derivatives at the Gauss-Legendre
quadrature points of first-order elements are tested. In recent vears. the develop-
ment and application of superconvergence concepts for FEA error estimation and
control has attracted a good deal of interest in the research community [152.153]. In
essence. superconvergence theory states that a finite element solution is inherently
more accurate at certain points in the discretization than it is at others - and that
these high accuracy locations are known a priori [154]. The computational analysis
and design of magnetic devices frequently involves quantities related to derivatives of
the underlying potentiai field solutions; therefore, superconvergence of derivative val-

ues of finite element potential solutions could have significant implications [155-157].
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Figure 3.30: Evaluation of optimal discretization properties for optimal first-order
discretizations for Benchmark System 2. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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Figure 3.31: Evaluation of optimal discretization properties for optimal second-order
discretizations for Benchmark System 2. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot resuits correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.

161



I PO e SIS S
S A S S
7 I b U IO
= 50 : : ; : s :
R . . [ N _— N o
= A M A SN O N
-V O U A :

25 e e e oo oo — —

B T R LT S ecedesmccasemccmcdmec e aam

[0 Y S— A —A A A /-‘: '5—‘—_?
i T ' T ' 1
2 4 6 8

Number of Elements

Figure 3.32: Evaluation of optimal discretization properties for optimal fourth-order
discretizations for Benchmark System 2. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element
in a mesh. The circle knot results correspond to the error in equidistributing the
residual of the partial differential equation over each element in a mesh. The triangle
knot results correspond to the error in equidistributing the residual of the partial
differential equation scaled by the element size.
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Figure 3.33: Evaluation of optimal discretization properties for optimal eighth-order
discretizations for Benchmark System 2. The plot illustrates the variation of equidis-
tribution error with the number of elements in a mesh. The square knot results
correspond to the error in equidistributing the grading function over each element in
a mesh. Note: only the equidistribution errors for the grading function were computed
for the eighth-order optimal discretizations of the line singularity benchmark.
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Moreover, some of the most general and powerful optimality criteria, for example. the
grading function criteria developed in [127], rely on superconvergence based deriva-
tives of the underlying field solution in order to compute the necessary derivatives
from the approximate finite element solutions. Furthermore, other very general op-
timality criteria are derived primarily from principles that are directly related to
derivative superconvergence concepts [131]. In fact. recent theoretical analyses on
finite element superconvergence have focused on the development of superconvergent
derivatives. Under certain assumptions. a number of these studies have determined
that quantities related to first-derivatives of finite element potential solutions should
possess superconvergent properties. Further. these studies have concluded that the
most accurate derivative values over a given finite element are to be found at the
Gauss-Legendre quadrature points of that element [138]. Specifically. it has been ar-
gued that when a finite element potential solution computed over first-order elements
is interpolatory on the true solution to the continuum problem. the derivatives will
be most accurate at the midpoints of the elements [154,158]. [t can be shown. with
the mean-value theorem of calculus. that this is not true in general, but may be valid
under certain conditions. However, the objective here is to investigate the practical
value of superconvergence phenomena in finite element magnetics using computa-
tional experiments. in order to better understand the true impact and merit of the
concept.

Using the magnetostatic benchmark system, exact derivatives of first-order. poten-
tial-based. finite element solutions were examined for properties characteristic of su-
perconvergence. The series of 20 optimal and 20 uniform first-order finite element
discretizations were used to compute the results for these investigations. Figure 3.34
illustrates the optimal discretization test results. The triangle knot curve shows the
distance between the theoretical derivative superconvergence points (element mid-
points) and the actual ones, expressed as a percentage of half the element length.

The circle knot curve shows the error in the computed flux density at the theoretical
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superconvergence points. Both curves are derived from a series of 20 solutions and are
graphed as functions of FEA functivnal error. These error quantities do not vary from
clement to element over any optimal mesh. Further, the computed potential values
are exact at the element vertices for the optimal discretizations: the first-order FEA
solutions are interpolatory on the true solution to the continuum problem. Therefore,
according to superconvergence theory, the Gauss-Legendre quadrature points should
provide the most accurate derivatives within the elements. However, as described
by IFigure 3.34, the computed derivatives are exact at other locations within the ele-
ments. which vary with global solution accuracy. Also, by superconvergence theory,
the error in the computed flux density at these Gauss-Legendre points should con-
verge more rapidly than the global solution error. But, as seen in Figure 3.34, the
ratio of these two errors is unity. The results given in Figure 3.35 for the uniform
meshes are similar, except the error in the position of the theoretical superconver-
gence points (triangle knot results) varies from element to element within each mesh:
ounly the minimum value is plotted.

The results of the above experimental studies indicate that superconvergence phe-
nomena, as commonly defined for first-order FEA applications, are not apparent in
Benchmark System 2. In particular, these investigations have demonstrated that, for
the first-order FEA cases considered, derivatives of potential-based solutions are not
generally more accurate at the Guass-Legendre points. Nevertheless, it was observed
that, the properties attributed to superconvergence for FEA applications appear to
become increasingly evident with increasing solution accuracy. This secondary result
suggests that further theoretical and experimental studies may be useful to clearly
establish the practical value of superconvergence in engineering FEA applications.
However, based on the results from the investigations of the simple magnetostatic
system considered here, the following conclusion is inevitable. Optimality criteria
which rely on the validity of derivative superconvergence concepts, either for their

derivation or for their application, cannot be recommended for practical first-order
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IFEA of magnetostatic systems with regions of rapid field solution variation. For
example, the grading function approach discussed above has been recommended for
use with finite elemnent approximate solutions [127]; however, its effectiveness can be
contingent on the accuracy of the superconvergence-based derivatives of the finite
element field solutions which are required and recommended for its application. Fur-
thermore, it should be noted that the specific grading function optimality criteria in
question, were prone to serious reliability problems when evaluated with the first-
order optimal discretizations computed for Benchmark System 2. Also, recall that
the analytical field solution was used to compute the derivatives required to evaluate
the grading functions. However, the superconvergence derivatives computed from the
same interpolatory first-order optimal finite element solutions displayed large errors
in approximating the true derivative values. Thus, if these erroneous superconver-
gence derivative values were substituted for the analytically computed derivatives
in order to evaluate the grading function optimality criteria, the results of such an
evaluation would be unreliable. Moreover, analytical field solutions corresponding
to practical systems that are typically analyzed with FEMs, are not usually known;
otherwise, there would be no need to use FEMSs to analyze the systems! Therefore, on
a practical level, the use of field solution superconvergence-based derivatives to eval-
uate a grading function, which, in turn, is used to determine optimal finite element
discretizations, could have serious adverse implications. I[n particular, the grading
functions examined in this work were designed to be most effective when used with
analytical derivatives or with derivatives computed from finite element solutions of
high accuracy (ideally, interpolatory finite element solutions). However, based on the
serious accuracy problems that have been shown to exist with superconvergence-based
derivatives computed from interpolatory finite element solutions, it is reasonable to
question how effectively grading function and other types of optimality criteria that
rely on the accuracy of superconvergent derivatives can be used to compute optimal

finite element discretizations for practical systems.
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Figure 3.34: Evaluation of derivative superconvergence properties for optimal first-
order discretizations for Benchmark System 2. The plot illustrates the variation
in error of two superconvergence properties with functional value accuracy. The
triangle knot results correspond to the distance between the theoretical derivative
superconvergence points (element midpoints) and the actual ones, expressed as a
percentage of half the element lengths. The circle knot results correspond to the error
in the computed magnetic flux density at the theoretical superconvergence points.
Note: both results are derived from a series of 20 solutions computed from the optimal
meshes specified by Tables 3.10-3.12. The two error quantities do not vary from
element to element over any optimal mesh in this study.
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Figure 3.35: Evaluation of derivative superconvergence properties for uniform first-
order discretizations for Benchmark System 2. The plot illustrates the variation
in error of two superconvergence properties with functional value accuracy. The
triangle knot results correspond to the distance between the theoretical derivative
superconvergence points (element midpoints) and the actual ones. expressed as a
percentage of half the element lengths. The circle knot results correspond to the error
in the computed magnetic flux density at the theoretical superconvergence points.
Note: both results are derived from a series of 20 solutions computed from uniform
meshes ranging from 1 to 20 elements. In cases where the error quantities vary from
element to element over any uniform mesh in this study, only the minimum value is
plotted.
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3.2.3 Discussion

[n summary. the validity of commonly used finite element optimality criteria has
been evaluated with the optimal discretization benchmark results computed for both
the electrostatic and magnetostatic systems considered in section 3.1. In addition, the
implications of using optimality criteria that rely on the accuracy of superconvergent
derivatives of finite element approximate solutions, have been elucidated based on the
numerical results of very simple. yet very revealing, experiments involving the optimal
first-order finite element solutions computed for the magnetostatic benchmark system.
[t should be noted that some of the findings reported for the specific optimality criteria
examined in this work, also have implications for other optimality criteria that were
not explicitly investigated. For example. a number of optimality criteria which have
been reported in the literature [132-136] are based directly on the grading function
approach originally deveioped in [127], and examined comprehensively in this work.
Also. the optimality criteria reported in [125.127] are identical in form to grading
functions examined in this work. under certain conditions. Specifically. the grading
functions developed in [125.127] are equivalent to the grading function used in this
work to evaluate first-order finite element solutions.

It is worth noting that the optimality criterion based on equidistributing the
potential energy of a system over each of the elements in a finite element discretiza-
tion was also examined for both the electrostatic and the magnetostatic benchmark
svstems. However. the results from these potential energy investigations were not
presented because they do not represent new knowledge: it was confirmed that the
optimal solutions for Benchmark System | did not have a uniform distribution of
potential energy over each of the elements in any of the given meshes corresponding
to all of the first-, second-. fourth- and eighth-order series of optimal discretizations:
however, the equidistribution of potential energy was indeed apparent in each of the

corresponding meshes for Benchmark System 2. Thus, equidistribution of poten-
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tial energy is not a universally valid optimality criterion. as previously noted in the
literature.

Based on the conclusions reported in this section, it is apparent that the need for
optimality criteria appropriate for characterizing optimal finite element discretizations
over a sufficiently wide range of problem applications still exists. Moreover. it is
also manifest that such optimality criteria should not be developed heuristically. but

rather, should be based on well-founded and theoretically justified approaches.



3.3 Benchmark Adaption Studies

The numerical evaluation of currently available optimality criteria presented in
sections 3.2.1 and 3.2.2 has revealed that universally valid characterizations of op-
timal finite element discretizations for electromagnetic systems are needed. which
can be used to develop well-founded and theoretically justified refinement criteria for
practical AFEA. Moreover. it was shown in sections 3.1.1 and 3.1.2 that the finite ele-
ment optimization equations of section 2.4.1 can be successfully employed to directly
compute optimal discretizations for electromagnetic systems. The purpose of this
section is to investigate the potential benefits of using new refinement criteria based
on the finite element optimization equations for practical electromagnetic AFEA. The
approach used to achieve this objective was to investigate the effectiveness of the pri-
mary adaption models. when guided by a new optimal discretization-based refinement
criterion. in resolving the two benchmark systems developed above. Hence. in order to
evaluate the potential performance advantages of optimal discretization-based practi-
cal AFEA. results from a series of adaption studies involving h-. p-. and hp-adaption
models are reported for both benchmark systems considered previously. Furthermore.
the usefulness of the benchmark adaption studies presented in this section for the anal-
vsis and design of optimal hp-adaption strategies will be demonstrated. However, the
adaption benchmark results are first preceded by a brief description of how the finite
element optimization equations are used to develop an optimal discretization-based

refinement criterion for AFEA.
3.3.1 An Optimal Discretization Based Refinement Criterion for AFEA

The perennial challenge for all types of adaption in FEA has been the efficient use
of well-defined optimal solution properties as feedback refinement criteria for guiding
the solution process towards accurate results [159]. One potential route to successful
adaption is to employ local error measures that are closely related to the variational

principle used to determine the solution to the finite element problem. The purpose
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of the present section is to introduce a new refinement criterion for k-. p-, and hp-
adaption. which is based on the variational properties of optimal discretizations for
the FEA of electromagnetic systems.

As previously noted, the ideal mesh for a given number of DOF'. that is. the mesh
that produces the most accurate solution. will exhibit optimal element vertex loca-
tions. For such an ideal discretization, the functional corresponding to the variational
formulation of the problem. will not only be stationary with respect to the field solu-
tion parameters — but also with respect to variations in the geometric discretization
parameters. that is. the element vertex positions. Therefore. one possible way to
detect and rank regions of inferior discretization in a finite element mesh may be to
evaluate the sensitivity of the functional to differential displacements of the element
vertices: a small perturbation of the position of an element vertex in a region of ade-
quate discretization should result in a relatively small change in the functional value:
however, in a region of relatively poor discretization. a small perturbation in vertex
positions may vield a significantly larger change. Thus, by computing the gradients
of the functional with respect to element vertex positions, it is possible to determine
where to improve the discretization, based on a purely local error indicator that is
closely related to the variational principle of the solution. Furthermore, it should
be noted that these functional gradients may be computed directly from the finite
clement optimization equations derived in section 2.4. In fact. the finite element
optimization equations corresponding to the geometric discretization parameters are
precisely the gradients of the functional. with respect to element vertex positions,
equated to zero! Therefore, a refinement criterion for identifying regions of inferior
discretization in a finite element mesh may be defined by the degree to which the
finite element optimization equations are satisfied when evaluated with fixed. but not
necessarily. optimal values of the element vertex positions; that is, based on the mag-
nitudes and directions of the functional gradients with respect to the element vertex

positions. Hence, for the one-dimensional discretizations considered in this chapter,



the elements in a mesh can be ranked for refinement based directly on the magni-
tudes and directions of the functional gradients computed from the two optimization
equations corresponding to the two geometric discretization parameters associated
with each element which define its vertex positions. The eflectiveness of this optimal
discretization-based refinement criterion is evaluated in the following two sections.

and its implications for practical AFEA are discussed in section 3.3.4.

3.3.2 Benchmark System 1

In order to evaluate the effectiveness of the optimal discretization-based refine-
ment criterion described above, results from a series of studies involving the primary
adaption models are reported in this section for Benchmark System 1. Specifically.
the convergence of h-, p- and hp-adaption strategies are investigated when the op-
timal discretization-based refinement criterion is used to guide the adaption. While
h-adaption has become increasingly popular in electromagnetic FEA research during
the past 15 years [85,160.161]. and more recently. effective p-adaption codes have
started to emerge [59. 113], practical hp-adaption strategies for electromagnetic FEA
are more rare. One important reason for this slow progress — aside from the inherent
complexity of implementing and controlling hp-adaption - is the lack of objective
benchmarks by which to measure the merits and flaws of adaptive strategies. As
noted earlier. one of the most important challenges for all types of adaption in FEA
is the accurate and efficient resolution of the singularities associated with sharp mate-
rial corners [61,81,162]. Thus, a secondary purpose of this section is to illustrate the
usefulness of the adaption benchmark studies in the analysis and design of optimal
hp-adaption strategies. The different types of adaption techniques considered in this
section are intended to represent a range of the basic methods most commonly used
in practice for electromagnetic AFEA. Finally, it should be noted that in order to
obtain the best possible resolution in the rate of convergence for the adaption meth-

ods studied in this work, each adaptive iteration was based on increasing the number
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of DOF in a discretization by the minimal increments appropriate for the type of
adaption being considered.

The convergence of the percent error in functional value for an h-adaption strat-
egy based on element bisection applied to the electrostatic benchmark system is illus-
trated in Figure 3.36 for first-order elements. The initial mesh consisted of a single
element which was bisected. resulting in a uniform mesh of two elements. At each
subsequent adaptive iteration, one element in the mesh was selected for refinement
by element bisection: the optimal discretization-based refinement criterion described
above was used to rank the elements, and the element with the highest ranking was
chosen for bisection. It should be noted that the elements were ranked in ascend-
ing order of increasing magnitudes of the functional gradients with respect to the
element vertex positions. The uniform h-refinement baseline and the optimal first-
order discretization functional convergence results are also shown in Figure 3.36 for
comparison. The convergence of the h-adaption element bisection scheme guided by
the optimal discretization-based refinement criterion has the following interesting fea-
ture. [nitially. the element bisection h-adaption strategy produces discretizations with
functional accuracy levels superior to those of the uniform discretizations with corre-
sponding numbers of elements, but inferior to the optimal first-order discretizations
with equivalent numbers of elements. However. after approximately seven adaptive
steps the functional accuracy achieved by the optimal discretization-based element
bisection scheme is seen to be remarkably close. and almost equivalent, to that of the
optimal discretizations. The practical significance of this result is amplified by the
relative computational cost of the two approaches used to compute the corresponding
finite element solutions. The element bisection h-adaption scheme only entails the
evaluation of the nonlinear finite element optimization equations for a given set of
fixed element vertex positions in order to compute the functional gradients required
for the optimal discretization-based refinement criterion, and is relatively inexpensive

compared to solving the same set of nonlinear equations for the optimal values of the
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element vertex positions which are necessary to determine the optimal discretizations.

The analogous second-order h-adaption results for Benchmark System | are shown
in Figure 3.37. The fourth- and eighth-order h-adaption results are shown in Figure
3.38 and Figure 3.39. respectively. For each case, the results were computed us-
ing exactly the same procedures as for the first-order h-adaption results described
above. It may be noted that for the second- and fourth-order cases, the functional
accuracy of the element bisection strategy after approximately seven adaptive steps
is almost equivalent to that of the optimal discretizations. which is consistent with
the first-order results reported above. The eighth-order h-adaption results were not
computed bevond three iterations; however. the element bisection strategy produced
discretizations with functional accuracy levels superior to those of the uniform dis-
cretizations with corresponding numbers of eighth-order elements. Therefore, based
on the complete set of first-, second-. fourth- and eighth-order h-adaption results com-
puted for the electrostatic benchmark system, it is apparent that the new optimal
discretization-based refinement criterion is effective for evolving efficient distributions
of DOF over the problem domain for Benchmark System 1. Moreover. based on the
first-. second- and fourth-order i-adaption results reported for Benchmark System 1.
it is suggested that the new optimal discretization-based refinement criterion can be
used to efficiently and reliably guide adaptive finite element solvers towards optimal
solutions for electrostatic systems with regions of rapid field solution variation.

The convergence of the percent error in functional value for two p-adaption strate-
gies applied to a range of uniform initial meshes for the electrostatic benchmark sys-
tem is illustrated in Figure 3.40. Specifically, uniform and mixed-order p-adaption
schemes were investigated using first-, second-, fourth- and eighth-order elements.
The functional convergence based on uniform p-adaption for initial meshes of four.
eight and iwelve elements is shown by curves A, B and C, respectively. In each
case, the uniform meshes were initially comprised of first-order elements. These ini-

tial meshes were refined by successively increasing the element orders uniformly to

175



1.0E+04
=
=
=
15}
=
=
S
=
— 1.0E+02 —=:
o
=
88
=
>
= 1.0E+01 -
Dd_‘) q
1.0E+00

Number of Elements

Figure 3.36: The convergence of percent error in functional value with discretization
level for first-order h-adaption studies for Benchmark System 1 is illustrated. The
triangle knot results correspond to percent error in functional values computed from
solutions based on first-order uniform A-refinement discretizations. The asterisk knot
results correspond to percent error in functional values computed from solutions based
on first-order element bisection h-adaption discretizations evolved using the new op-
timal discretization-based refinement criterion. The circle knot results correspond
to percent error in functional values computed from solutions based on first-order
optimal discretizations.

176



1.0E+01 =

1.0E+00 -

Percent Error in Functional

1.0E-01 =

l0B-02 44—+ 1 & o 8 f P b

Number of Elements

Figure 3.37: The convergence of percent error in functional value with discretiza-
tion level for second-order h-adaption studies for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on second-order uniform h-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on second-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on second-order optimal discretizations.
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IFigure 3.38: The convergence of percent error in functional value with discretiza-
tion level for fourth-order h-adaption studies for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on fourth-order uniform A-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on fourth-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on fourth-order optimal discretizations.
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Figure 3.39: The convergence of percent error in functional value with discretiza-
tion level for eighth-order A-adaption studies for Benchmark System 1 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on eighth-order uniform A-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on eighth-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on eighth-order optimal discretizations.



second-, fourth- and eighth-order. The functional convergence for the corresponding
mixed-order p-adaption scheme is shown by curves D, E and F for the four, eight
and twelve element meshes, respectively. For the mixed-order p-adaption scheme,
one element in the mesh was selected for refinement at each adaptive iteration: the
optimal discretization-based refinement criterion described above was used to rank
the elements, and the order of the element with the highest ranking was augmented.
It should be noted that the elements were ranked in exactly the same way that was
used for the h-adaption studies described above. Moreover, the order of an element
selected for refinement was increased successively to second-, fourth- or eighth-order
each time the element was selected to be refined: however. if an eighth-order element
was chosen for refinement. the highest ranking lower-order element was refined in-
stead. Based on the convergence of the percent errors shown in Figure 3.40 for the
two p-adaption schemes considered. it is evident that when starting from uniform
initial meshes the mixed-order p-adaption scheme results in a significantly faster rate
of convergence relative to the uniform p-adaption strategy for Benchmark System 1.
[n fact. for the four element case investigated. the same maximal functional accuracy
level was achieved with 13 DOF by the mixed-order p-adaption scheme compared
with 33 DOF required by the uniform method (a relative savings of approximately 61
percent in the number of DOF). Similarly, for the eight element case a relative reduc-
tion of approximately 66 percent in the number of DOF required to achieve maximal
functional accuracy was observed when the mixed-order p-adaption scheme was used
rather than the uniform method. Analogously, a 68 percent economy in DOF was
achieved for the twelve element case. Therefore. it is suggested that the new optimal
discretization-based refinement criterion is effective for evolving efficient distributions
of DOF by p-adaption over the problem domain for electrostatic systems with regions
of rapid field solution variation.

The h- and p-adaption results presented above for Benchmark System 1 have il-

lustrated the effectiveness of the optimal discretization-based refinement criterion for
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Figure 3.40: The convergence of percent error in functional value with discretization
level for the p-adaption studies for Benchmark System 1 is illustrated. Curve A, B,
and C results correspond to percent error in functional values computed from solutions
based on uniform p-discretizations for initial meshes of four, eight and twelve elements,
respectively. Curve D. E, and F results correspond to percent error in functional
values computed from solutions based on mixed-order p-discretizations evolved using
the new optimal discretization-based refinement criterion for initial meshes of four,
eight and twelve elements, respectively.
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these two types of adaption models. It is logical to consider the implications of this
criterion for hp-adaption models next. Specifically, integrated. decoupled and uniform
hp-adaption models are investigated. The objective for these hAp-adaption studies is
not only to evaluate the effectiveness of the optimal discretization-based refinement
criterion for hp-adaption, but also to determine which specific type of hp-adaption
model is more efficient for resolving the singularity associated with Benchmark Sys-
tem 1. At each adaptive step, the integrated hp-adaptive strategy improved the dis-
cretization by either bisecting an element or increasing the order of an element. The
decoupled hp-adaptive strategy considered here. first refined the first-order mesh by
element bisection for the first six adaptive steps. and then improved the discretization
by increasing the order of an element in each subsequent adaptive step (i.e.. mixed-
order p-adaption). For both adaption models, elements were ranked for refirement us-
ing the optimal discretization-based refinement criterion in the same way as for the A-
and p-adaption methods described above. Furthermore, the mixed-order p-adaption
refinements were achieved using exactly the same procedures as described previously
for the p-adaption studies. The uniform hp-adaption results were determined using
both an integrated and a decoupled approach. For the integrated approach. all of the
elements in a mesh were bisected and their orders augmented alternately at succes-
sive iterations of the adaption. For the decoupled approach. the first-order mesh was
refined by element bisection for the first three adaptive steps. and the order of the
elements was then uniformly increased at each successive adaptive iteration. Finally.
all of the hp-adaptive studies considered in this section were based on first-, second-,
fourth- and eighth-order elements only; the results follow.

The convergence of the percent error in functional value for the the hp-adaption
strategies described above in resolving the electrostatic benchmark system is illus-
trated in Figure 3.41. It may be noted that the integrated and decoupled schemes
result in superior rates of convergence relative to the uniform hp-adaption strate-

gies for Benchmark System 1. Therefore, it may be concluded that the new optimal
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discretization-based refinement criterion is effective for evolving efficient distribu-
tions of DOF by hp-adaption over the problem domain. Furthermore, the decoupled
approach is seen to provide a faster rate of convergence relative to the integrated
hp-adaption. Theoretically, decoupled hp-adaption should not produce better conver-
gence performance than fully integrated hp-adaption. However, based on the results
presented for the analysis of Benchmark System 1. the decoupled approach is more
effective for electrostatic systems with regions of rapid field solution variation. The
superior hp-adaption performance results of the decoupled approach may be explained
as follows. The two types of hp-adaption produce rather different evolving discretiza-
tions which are compared in Figure 3.42. The integrated approach, initially, attempts
to resolve the singularity by increasing element order rather than by element bisection.
The decoupled approach results in a superior distribution of DOF since it produces
meshes with a higher density of DOF near the singularity. compared with the more

uniform distribution produced by the integrated approach.
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Figure 3.41: The convergence of percent error in functional value with discretization
level for hp-adaption studies for Benchmark System 1 is illustrated. The triangle knot
results correspond to percent error in functional values computed from solutions based
on integrated hp-discretizations evolved using the new optimal discretization-based
refinement criterion. The circle knot results correspond to percent error in functional
values computed from solutions based on decoupled Ap-discretizations evolved using
the new optimal discretization-based refinement criterion. The asterisk knot results
correspond to percent error in functional values computed from solutions based on
uniform integrated hp-refinement discretizations. The square knot results correspond
to percent error in functional values computed from solutions based on uniform de-

coupled hp-refinement discretizations.
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Figure 3.42: Evolving radial discretizations for Ap-adaption for one-dimensional elec-
trostatic potential analysis of Benchmark System | are illustrated: (a) integrated
hp-adaption discretizations; and {b) decoupled hp-adaption discretizations. The ra-
dial discretizations are plotted on a logarithmic scale because of the proximity of the
clement vertices to each other near the singularity. Note: the positions of the element
vertices in the meshes are determined by element bisection: the orders of the elements
are specified above each element; and the number of DOF in each mesh is shown to
the right of each discretization.
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3.3.3 Benchmark System 2

The effectiveness of the new optimal discretization-based refinement criterion is
evaluated in this section for Benchmark System 2 with a series of studies involving
the primary adaption models. Specifically, the convergence of the same range of A-.
p- and hp-adaption strategies that were investigated for Benchmark System 1 are also
examined for Benchmark System 2 when the optimal discretization-based refinement
criterion is used to guide the adaption. As noted earlier, one of the most important
challenges for all types of adaption in FEA is the accurate and efficient resolution of
the singularities associated with sharp material edges [61.81, 162]. Moreover. it has
been noted that the slow progress in developing practical hp-adaption strategies is.
partially. due to the lack of objective benchmarks by which to gauge the strengths
and weaknesses of adaptive strategies. Therefore, the usefulness of the adaption
benchmark results reported in this section for the analysis and design of optimal /p-
adaption strategies will be illustrated. Finally. it should be noted that the adaption
methods employed in this section were implemented using exactly the same procedures
that were used for Benchmark System 1.

The convergence of the percent error in functional value for an h-adaption strat-
egy based on element bisection applied to the magnetostatic benchmark system is
illustrated in Figure 3.43 for first-order elements. The optimal discretization-based
refinement criterion was used to rank the elements. and the element bisection refine-
ments were executed in exactly the same way as described for Benchmark System 1.
The uniform A-refinement baseline and the optimal first-order discretization functional
convergence results are also shown in Figure 3.43 for comparison. The convergence of
the h-adaption element bisection scheme guided by the optimal discretization-based
refinement criterion is seen to have the same interesting feature that was noted for
Benchmark System 1. Initially, the element bisection h-adaption strategy produces

discretizations with functional accuracy levels superior to those of the uniform dis-

186



cretizations with corresponding numbers of elements; moreover. after approximately
six adaptive steps the functional accuracy achieved by the optimal discretization-
based element bisection scheme is seen to be remarkably close, and approximately
equivalent. to that of the optimal discretizations. This similarity in functional ac-
curacy levels for the element bisection h-adaption discretizations and the optimal
discretizations is significant for the same important reason discussed in the preced-
ing section: namely, the element bisection scheme is relatively inexpensive compared
to solving the the set of nonlinear finite element optimization equations required to
compute the optimal discretizations.

The analogous second-order h-adaption results for Benchmark System 2 are shown
in Figure 3.44. The fourth- and eighth-order h-adaption results are shown in Figure
3.45 and Figure 3.46, respectively. It may be noted that for the second- and fourth-
order cases, the functional accuracy of the element bisection strategy after approx-
imately six adaptive steps is relatively close to that of the optimal discretizations.
which is consistent with the first-order results reported above. The eighth-order h-
adaption results were not computed bevond three iterations; however, the element
bisection strategy produced discretizations with functional accuracy levels superior
to those of the uniform discretizations with corresponding numbers of eighth-order
elements. Therefore, based on the complete set of h-adaption results computed for
the magnetostatic system, the new optimal discretization-based refinement criterion
is effective for evolving efficient distributions of DOF over the problem domain for
Benchmark System 2. Moreover, based on the first-, second- and fourth-order h-
adaption results reported for Benchmark System 2. it is suggested that the new
optimal discretization-based refinement criterion can be used to efficiently and reli-
ably guide adaptive finite element solvers towards optimal solutions for magnetostatic
systems with regions of rapid field solution variation.

The convergence of the percent error in functional value for two p-adaption strate-

gies applied to a range of uniform initial meshes for the magnetostatic benchmark
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[Figure 3.43: The convergence of percent error in functional value with discretization
level for first-order h-adaption studies for Benchmark System 2 is illustrated. The
triangle knot results correspond to percent error in functional values computed from
solutions based on first-order uniform h-refinement discretizations. The asterisk knot
results correspond to percent error in functional values computed from solutions based
on first-order element bisection h-adaption discretizations evolved using the new op-
timal discretization-based refinement criterion. The circle knot results correspond
to percent error in functional values computed from solutions based on first-order
optimal discretizations.
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Figure 3.44: The convergence of percent error in functional value with discretiza-
tion level for second-order h-adaption studies for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on second-order uniform h-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on second-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on second-order optimal discretizations.
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Figure 3.45: The convergence of percent error in functional value with discretiza-
tion level for fourth-order h-adaption studies for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on fourth-order uniform A-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on fourth-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on fourth-order optimal discretizations.
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Figure 3.46: The convergence of percent error in functional value with discretiza-
tion level for eighth-order h-adaption studies for Benchmark System 2 is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on eighth-order uniform hA-refinement discretizations. The as-
terisk knot results correspond to percent error in functional values computed from
solutions based on eighth-order element bisection h-adaption discretizations evolved
using the new optimal discretization-based refinement criterion. The circle knot re-
sults correspond to percent error in functional values computed from solutions based
on eighth-order optimal discretizations.
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system is illustrated in Figure 3.47. Specifically, the same uniform and mixed-order p-
adaption schemes that were investigated for Benchmark System 1 were also considered
for Benchmark System 2. The functional convergence based on uniform p-adaption
for initial meshes of four, eight and twelve elements is shown by curves A, B and C. re-
spectively. The functional convergence for the corresponding mixed-order p-adaption
scheme is shown by curves D, E and F for the four. eight and twelve element meshes
respectively. In each case. the uniform meshes were initially comprised of first-order
clements. which were successively refined using second-, fourth- and eighth-order el-
ements. For the mixed-order p-adaption scheme. the optimal discretization-based
refinement criterion was used to guide the adaption using exactly the same proce-
dures that were described for Benchmark System 1. Based on the convergence of the
percent errors shown in Figure 3.47 for the two p-adaption schemes considered, it is
evident that when starting from uniform initial meshes the mixed-order p-adaption
scheme results in a significantly faster rate of convergence relative to the uniform
p-adaption strategy for Benchmark System 2. In fact, for the four element case in-
vestigated. the same maximal functional accuracy level was achieved with 17 DOF
by the mixed-order p-adaption scheme compared with 33 DOF required by the uni-
form method (a relative savings of approximately 48 percent in the number of DOF).
Similarly. for the eight element case a relative reduction of approximately 58 percent
in the number of DOF required to achieve maximal functional accuracy was observed
when the mixed-order p-adaption scheme was used rather than the uniform method.
Analogously. a 64 percent economy in DOF was achieved for the twelve element
case. Therefore, it is suggested that the new optimal discretization-based refinement
criterion is effective for evolving efficient distributions of DOF by p-adaption over
the problem domain for magnetostatic systems with regions of rapid field solution
variation.

The same hp-adaption studies that were used to evaluate the effectiveness of the

optimal discretization-based refinement criterion for Benchmark System 1, were also
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Figure 3.47: The convergence of percent error in functional value with discretization
level for the p-adaption studies for Benchmark System 2 is illustrated. Curve A, B.
and C results correspond to percent error in functional values computed from solutions
based on uniform p-discretizations for initial meshes of four, eight and twelve elements,
respectively. Curve D. E, and F results correspond to percent error in functional
values computed from solutions based on mixed-order p-discretizations evolved using
the new optimal discretization-based refinement criterion for initial meshes of four,
cight and twelve elements, respectively.
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conducted for Benchmark System 2. The convergence of the percent error in func-
tional value for the hp-adaption strategies in resolving the magnetostatic benchmark
system is illustrated in Figure 3.48. It may be noted that the integrated and decou-
pled hp-adaption schemes result in superior convergence rates relative to the uniform
hp-refinements for Benchmark System 2. Therefore. it may be concluded that the new
optimal discretization-based refinement criterion is effective for evolving efficient dis-
tributions of DOF by hp-adaption over the problem domain. Furthermore, the decou-
pled approach is seen to provide a faster rate of convergence relative to the integrated
hp-adaption, for the same reasons explained for Benchmark System 1: namely. the de-
coupled approach produces meshes with a higher density of DOF near the singularity,
compared with the more uniform distribution produced by the integrated approach.
Therefore, based on the hp-adaption results presented for Benchmark System 2, the
decoupled approach is more effective for magnetostatic systems with regions of rapid

field solution variation.
3.3.4 Discussion

The results presented in the two preceding sections demonstrate the value of
employing optimality properties of finite element discretizations to develop effective
feedback refinement criteria for guiding adaptive systems efficiently and reliably to-
wards accurate solutions. The significance of this is directly related to the implications
that it holds for the development of advanced strategy feedback control systems for
AFEA: currently, one of the major research issues in AFEMs for electromagnetics.
Essentially, the perennial challenge has been to resolve which error data to feedback
after each iteration, and how to use it to initialize the next adaptive step. The hy-
pothesis tested and validated in this section was that the underlying, or fundamental,
variational principle on which the finite element method itself is based, could also
be used as the basis for deriving new refinement criteria for adaptive finite element

solvers. In fact. a new refinement criterion was shown to be quite valuable for both
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Figure 3.48: The convergence of percent error in functional value with discretization
level for hp-adaption studies for Benchmark System 2 is illustrated. The triangle knot
results correspond to percent error in functional values computed from solutions based
on integrated hp-discretizations evolved using the new optimal discretization-based
refinement criterion. The circle knot results correspond to percent error in functional
values computed from solutions based on decoupled hp-discretizations evolved using
the new optimal discretization-based refinement criterion. The asterisk knot results
correspond to percent error in functional values computed from solutions based on
uniform integrated hp-refinement discretizations. The square knot results correspond
to percent error in functional values computed from solutions based on uniform de-
coupled hp-refinement discretizations.
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its generality and reliability: it was effective when used with A-, p- and hp-adaption
models for the AFEA of both electrostatic and magnetostatic systems.? Both of these
assets are directly linked to the fundamental and theoretically justified principle used
to derive the new refinement criterion. Furthermore. this underlying principle embod-
les a stationarity property. which is entirely dependent on the optimality of a finite
element discretization. Therefore, the refinement criterion developed from this princi-
ple possesses the desirable benefit of intrinsically guiding an adaptive process towards
optimal finite element solutions. Hence. this new criterion represents an important
milestone in developing efficient practical adaptive methods for evolving sufficiently
accurate solutions.

The two preceding sections also established a set of primary adaption benchmark
results for the two fundamental electromagnetic singularity models. and illustrated
their usefulness in the analysis and design of optimal adaption strategies. This is of
particular importance, since one of the most challenging problems of AFEA in electro-
magnetics over the past 15 years has been the accurate and efficient resolution of the
singularities associated with sharp material edges and corners. The ability to compute
a series of optimal singularity benchmarks has permitted the primary adaption pro-
cedures and control schemes to be evaluated and compared on both a relative and an
absolute performance scale for two of the most demanding electromagnetic adaption
scenarios. This represents a significant advancement over the heuristic assessment
approaches that had formerly been relied upon. In fact, prior to this work, it has
been recognized that an important reason for the slow development in this research
area was the lack of objective standards for judging emerging AFEA methods.

The optimal discretization-based refinement criterion examined in this section. is

2The validity of the one-dimensional finite element optimization equations was also confirmed for
a Helmholtz system based on the free-space plane-wave model. In addition, optimal discretizations
computed for the one-dimensional wave model displayed superior functional accuracy levels relative
to corresponding uniform discretizations, suggesting that optimal discretization-based adaption for
Helmholtz systems may be advantageous as well. A related two-dimensional Helmholtz system is
considered later in this work.
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defined by the simple principle of evaluating the finite element optimization equa-
tions in order to assess the degree to which they are satisfied by a given set of fixed
clement vertex positions. This principle, in turn, is based on the optimality crite-
rion that the optimization equations will be satisfied exactly by the ideal mesh for a
given number of DOF. that is, the mesh that produces the most accurate solution.
This optimality criterion has been confirmed numerically for the one dimensional
svstems considered, and the one-dimensional results presented above for the optimal
discretization-based refinement criterion represent an important contribution to the
study and development of feedback control systems for AFEA. The application of
similar optimal discretization-based refinement criteria for the AFEA of two- and

three-dimensional electromagnetic systems is considered in the next chapter.



Chapter 4

Numerical Evaluation of the Two- and Three-Dimensional
Finite Element Optimization Equations

In this chapter, important benchmark electromagnetic problems are introduced
in order to achieve a twofold objective. First, the validity of the nonlinear systems of
two- and three-dimensional finite element optimization equations. derived in Chap-
ter 2. are confirmed numerically. In order to achieve this objective, the equations are
used to compute a series of optimal finite element solutions. that is. solutions with
both optimal field solution values and optimal geometric discretization parameters,
for the benchmark problems considered. The results are confirmed using techniques
which are described in subsequent sections of this chapter. The second objective
of this chapter is to develop theoretically justified. efficient. reliable and practical
optimal discretization-based refinement criteria for two- and three-dimensional elec-
tromagnetic AFEA. Thus. the optimal solutions are used to extend the new concepts
developed in the previous chapter to two- and three-dimensional analyses of electro-
magnetic systems. The performance of the new refinement criteria are evaluated for
the primary adaption models and compared with those of some of the best refine-
ment criteria currently available. In addition, two computational analysis and design
application examples are presented to help illustrate the practical value of the new

optimal discretization-based approach for AFEA.

4.1 Two-Dimensional Systems

The findings from the one-dimensional studies, reported in the previous chapter,
suggest that the new optimal discretization-based refinement criterion possesses the
required properties to be effective, reliable and efficient for practical AFEA of electro-

magnetic systems. The purpose of this section is to investigate the potential benefits
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of using the finite element optimization equations. derived in section 2.4.2, to de-
velop analogous optimal discretization-based refinement criteria for two-dimensional
clectromagnetic AFEA. The approach used to achieve this objective is to. first. val-
idate the two-dimensional formulation of section 2.4.2 using a set of numerical tests
on translationally symmetric electromagnetic systems. Subsequently, results from a
series of studies on Laplace and Helmholtz benchmark systems involving the primary
adaption models are analyzed. in order to evaluate the effectiveness of the proposed
two-dimensional optimal discretization-based refinement criteria for practical AFEA.
For both cases. the performance of the new optimal discretization-based refinement
criteria are examined with h-, p- and hp-adaptive solvers. [n addition, the practical
significance of the new approach is evaluated using performance comparisons with
some of the best adaptive solvers currently available. Finally, it should be noted
that the hierarchal basis functions developed in [95] are employed to approximate
the unknown field solutions over triangular elements for all of the studies reported

throughout this section.
4.1.1 Validation of the Optimization Equations

In order to validate the two-dimensional finite element optimization equations
derived in section 2.4.2, the z- and y-components of the functional gradients with
respect to element vertex positions were tested with a range of numerical benchmark
evaluations. Specifically, three translationally symmetrical coaxial transmission line
models were used to compute a series of first-. second-. fourth- and eighth-order
finite element solutions with both optimal field solution and optimal geometric dis-
cretization parameter values. The three models are distinguished by their differently
shaped cross-sections and, hence, the corresponding included angles at the sharp
reentrant corners of the two-dimensional problem domains used for the finite element
analyses. These coaxial transmission line systems will be discussed and described

in greater detail subsequently. Although there are several possible choices of two-
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dimensional benchmark systems which can be used for the purpose of this section,
the coaxial transmission line models were chosen for the following important reason.
In two-dimensional electromagnetic systems, the electric field becomes singular at
sharp reentrant corners where the included angle exceeds 180 degrees [23]. Conse-
quently. finite element solutions will suffer inaccuracy principally from their inability
to model the local field behavior near the reentrant corners: typically. the presence
of sharp material edges in three-dimensional physical systems which give rise to such
sharp corners in two-dimensional finite element models, can drastically decrease the
convergence rate of the finite element method, as noted previously. Therefore. the
accurate and efficient resolution of the singularities associated with sharp material
corners is an important challenge for all types of finite element analysis. As noted
carlier. the finite element method can be made more efficient for problems of this sort
by using specialized elements that incorporate basis functions with the right type of
field solution singularities [146-148]; however, the reduced convergence rate of the
finite element method when field singularities are present may also be improved by
using discretizations which have strongly focussed distributions of DOF close to the
singularities. Thus, AFEMs which can recognize and refine the regious of rapid solu-
tion variation near the singularities will be effective in producing sufficiently accurate
solutions efficiently. In order to ensure the effectiveness and reliability of new refine-
ment criteria that are developed. when applied to practical two-dimensional problems
in which singular field behavior is a significant factor. it is valuable to first study the
characteristics of optimal finite element discretizations of electromagnetic systems
where this type of behavior is present and its effects on the convergence of the finite
element method can be isolated from other possible contributing factors. To this
end, the coaxial transmission line models described and discussed in the following

sections represent ideal systems for validation of the two-dimensional finite element



optimization equations.!
4.1.1.1 Benchmark System 3(a)

The first benchmark system used to validate the two-dimensional finite element
optimization equations derived in section 2.4.2 is defined by Figure 4.1. It consists
of an infinitely long, air-filled, uniform. square coaxial line in cross-section. The
objective for this benchmark system is to compute the functional value corresponding
to the electrostatic potential energy per unit length stored in the air region between
the two ideal conductors of the system. The primary feature of this system is the
rapid field solution variation close to the sharp reentrant corners with included angles
of 270 degrees at the intersections of the edges of the inner conductor. This feature is
common to many practical devices that contain sharp material edges. and has been
shown to significantly reduce the convergence rate of the finite element method [23].

The electrostatic system used to establish the optimal discretization benchmark
results of this section. was analyzed for electric scalar potentials using the two-
dimensional finite element formulation given in section 2.4.2. and the correspond-
ing finite element optimization equations were used to test the r- and y-components
of the functional gradients with respect to element vertex positions for a series of
numerical benchmark evaluations based on the geometry and eight-element mesh de-
fined by Figure 4.2. It is one-quarter of the square coaxial line in cross-section - the
standard “L” problem. The conductor boundary conditions (Dirichlet) are 1V and
0V as indicated: and the symmetry planes are labeled N (Neumann). There are six
free geometric discretization parameters corresponding to the r- and y-coordinates
of the positions of the element vertices in the mesh labeled 1, 2 and 3. Moreover.

it may be noted that the optimal positions of the vertices labeled 1 and 3 are each

It may be noted that the two-dimensional finite element optimization equations for Helmholtz
systems are validated equally by the results reported for the coaxial transmission line models. This
follows from the fact that the wave and source terms in the two-dimensional optimization equations
involve only the same derivatives of the simplex area with respect to the z- and y-coordinates of
the element vertices which appear in the Laplacian component of the equations (see Eqs. (2.96) and
(2.97), for example).
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constrained by the problem geometry to lie along the Neumann boundaries of the
problem domain. Furthermore. the optimal position of the vertex labeled 2 must lie.
by symmetry, along the diagonal line segment joining the upper right corners of the
inner and outer conductor boundaries. Finally, for the first-, second-, fourth- and
eighth-order finite element approximations that were computed for this benchmark
system, the corresponding functional values were calculated from the computed scalar
potentials using exact differentiation and integration.

The basic computational experiment that was performed in order to confirm the
validity of the two-dimensional finite element optimization equations used to define
the optimal discretization-based refinement criteria later in this section, is described
next. This simple numerical experiment was based on resolving the electrostatic
benchmark system using the elementary discretization described above and shown
in Figure 4.2. Specifically, a series of 127.200 eight-element meshes were used to
compute individual functional values corresponding to fixing the element vertices
labeled 1 and 3 at 300 regularly spaced positions along the Neumann boundaries and
the vertex labeled 2 at 424 regularly spaced positions along the diagonal line joining
the upper right corners of the inner and outer conductor boundaries. It should be
noted that for each of the meshes defined by this method, the unknown scalar electric
potential values for the finite element model were computed using the standard finite
element formulation with the geometric discretization held fixed.

Figure 4.3 shows the optimal first-order eight-element mesh for one-quarter of
the cross-section of the square coaxial line. The results confirmed those obtained by
evaluating the finite element optimization equations directly: the positions of the free
vertices which vielded the smallest possible functional value were the same as those
which yielded the smallest functional gradients along the permissible directions of
optimization described above, with an error tolerance of +£5.0 x 10™® (m). Further-
more, the functional value corresponding to the mesh defined by these optimal vertex

positions represents the minimum electrostatic potential energy configuration of the
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eight-element first-order finite element model for this benchmark system. This is
wholly consistent with the underlying stationarity principle fundamental to the vari-
ational finite element formulation used throughout this work. It may be noted that
the error tolerance stated above is, simply. one-half of the interval used to define suc-
cessive vertex positions for computing the range of functional values used to confirm
the results obtained by evaluating the finite element optimization equations directly.
Similar results were computed for second-. fourth- and eighth-order meshes. In each
case. the functional gradients with respect to element vertex positions correctly iden-
tified the optimal positions of the free element vertices. to yield the smallest possible
functional value. The optimal second-, fourth-, and eighth-order meshes are shown in
Figure 4.4. 4.5 and 4.6. respectively. It is interesting to note the increasingly sharp
focus of DOF near the reentrant corner with increasing element order. The improved
finite element model of the field solution over the outer elements. afforded by the
higher-order approximations, allows for this to occur. Finally. the optimal positions

of vertices 1. 2 and 3 are specified in Table 4.1 for each of the cases examined.

Table 4.1: Optimal vertex positions for Benchmark System 3(a).

Order / Vertex | 2 3
1 0.4667 0.3433 0.4667
2 0.3333 0.1700 0.3333
4 0.2167 0.0933 0.2167
8 0.1700 0.0367 0.1700

Note: The table entries represent the ratios of the optimal vertex posi-
tions along the length of the line segments in the directions of optimization.
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Figure 4.1: A cross-sectional view of Benchmark System 3(a) is illustrated. The two-
dimensional view depicts an infinitely long, air-filled, uniform, square coaxial line in
cross-section. The shaded annular area represents the air region between the two
ideal conductors. The boundary of the inner conductor is prescribed to be a 1V
equipotential line, and the boundary of the outer conductor is prescribed to be a 0V
equipotential line.
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Figure 4.2: The geometry and finite element mesh configuration for the two-
dimensional electrostatic potential analysis of Benchmark System 3(a) are illustrated.
Eight triangular elements are used to model one-quarter of the square coaxial line in
cross-section. The conductor boundary conditions (Dirichlet) are labeled 1V and 0V';
the symmetry planes are labeled N (Neumann). The positions of the vertices labeled
1. 2 and 3 correspond to the six free geometric discretization parameters for the finite
element model. The sharp reentrant corner at the intersection of the edges of the
inner conductor boundary has an included angle of 270 degrees.
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Figure 4.3: The first-order optimal cight-element mesh for the two-dimensional elec-
trostatic potential analysis of Benchmark System 3(a) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry, to lie
along the diagonal line segment joining the upper right corners of the inner and outer
conductor boundaries. Note: the optimal positions of the element vertices labeled 1.
2 and 3 are specified in Table 4.1.
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Figure 4.4: The second-order optimal eight-element mesh for the two-dimensional
electrostatic potential analysis of Benchmark System 3(a) is illustrated. The vertices
labeled 1 and 3 were each constrained. by the problem geometry. to lie along the
Neumann boundaries; the vertex labeled 2 was constrained. by symmetry, to lie
along the diagonal line segment joining the upper right corners of the inner and outer
conductor boundaries. Note: the optimal positions of the element vertices labeled 1,
2 and 3 are specified in Table 4.1.
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Figure 4.5: The fourth-order optimal eight-element mesh for the two-dimensional
electrostatic potential analysis of Benchmark System 3(a) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry, to lie
along the diagonal line segment joining the upper right corners of the inner and outer
conductor boundaries. Note: the optimal positions of the element vertices labeled 1,
2 and 3 are specified in Table 4.1.



4.5 T T 1] T T Ad T L v
4+ 4
3.5 -
3r -
251 =
§ e2r ]

>
15} 1 ,
2

1 4
05 .
of 3 .

_0.5 1 L 1 1 1 1 L A1 L

-0.5 o] 0.5 1 1.5 2 25 3 3.5 4 45
x(cm)

Figure 4.6: The ecighth-order optimal eight-element mesh for the two-dimensional
clectrostatic potential analysis of Benchmark System 3(a) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry. to lie along the
Neumann boundaries; the vertex labeled 2 was constrained. by symmetry. to lie
along the diagonal line segment joining the upper right corners of the inner and outer
conductor boundaries. Note: the optimal positions of the element vertices labeled I,
2 and 3 are specified in Table 4.1.



4.1.1.2 Benchmark System 3(b)

The second benchmark system used to validate the two-dimensional finite element
optimization equations derived in section 2.4.2 is similar to Benchmark System 3(a).
and is defined by Figure 4.7. It also consists of an infinitely long, air-filled. uniform
coaxial line. however, having an equilateral triangular cross-section in this case. The
objective for this benchmark system is, once again, to compute the functional value
corresponding to the electrostatic potential energy per unit length stored in the air
region between the two ideal conductors of the system. The primary feature of this
system is the rapid field solution variation close to the sharp reentrant corners with
included angles of 300 degrees at the intersections of the edges of the inner conductor.
It will be interesting to note the effect on the optimal discretization results. if any. of
the increased sharpness of the reentrant corner relative to Benchmark System 3(a).
The optimal discretization results for this electrostatic system were computed using
exactly the same procedures that were used for Benchmark System 3(a). Furthermore.
the same range of results were computed. and are discussed next.

The finite element optimization equations of section 2.4.2 for two-dimensional
svstems were used to test the r- and y-components of the functional gradients with
respect to element vertex positions for a series of numerical benchmark evaluations
based on the geometry and eight-element mesh defined by Figure 4.8. It is one-third
of the equilateral triangular coaxial line in cross-section. The conductor boundary
conditions (Dirichlet) are 1V and OV as indicated; and the symmetry planes are
labeled .V (Neumann). There are six free geometric discretization parameters corre-
sponding to the z- and y-coordinates of the positions of the element vertices in the
mesh labeled 1, 2. and 3. Moreover. it may be noted that the optimal positions of the
vertices labeled 1 and 3 are each constrained by the problem geometry to lie along the
Neumann boundaries of the problem domain. Furthermore, the optimal position of

the vertex labeled 2 must lie, by symmetry, along the vertical line segment joining the
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uppermost corners of the inner and outer conductor boundaries. A series of 180.000
eight-element meshes were used to compute individual functional values correspond-
ing to fixing the element vertices labeled 1 and 3 at 300 regularly spaced positions
along the Neumann boundaries and the vertex labeled 2 at 600 regularly spaced po-
sitions along the vertical line segment joining the uppermost corners of the inner and
outer conductor boundaries. Figure 4.9 shows the optimal first-order eight-element
mesh for one-third of the cross-section of the equilateral triangular coaxial line. The
corresponding second-. fourth- and eighth-order optimal meshes are shown in Figure
4.10. 4.11 and 4.12, respectively. In each case, the results confirmed those obtained
by evaluating the finite element optimization equations directly: the positions of the
free vertices which yielded the smallest possible functional value were the same as
those which vielded the smallest functional gradients along the permissible directions
of optimization described above, with an error tolerance of £5.0 x 10~® (m). This
error tolerance is one-half of the interval used to define successive vertex positions
for computing the range of functional values used to confirm the results obtained by
evaluating the finite element optimization equations directly. As with Benchmark
System 3(a). it is interesting to note the increasingly sharp focus of DOF near the
reentrant corner with increasing element order. Once again. the improved finite ele-
ment model of the field solution over the outer elements, provided by the higher-order
approximations. allows for this to occur. In addition. the sharper focus of DOF near
the reentrant corner of Benchmark System 3(b) relative to that of Benchmark System
3(a) for corresponding element orders may be noted. The stronger intensity of the
field solution singularity associated with the increased sharpness of the reentrant cor-
ner relative to Benchmark System 3(a), requires a more focussed distribution of DOF
in order to efficiently resolve the more rapid field solution variation for Benchmark
System 3(b). Finally, the optimal positions of vertices 1, 2 and 3 are specified in

Table 4.2 for each of the cases examined.

211



{deal Conductor

y(cm)

-

’a
-8 -6 -4 -2 0 2 4 6 8
x(cm)

-
=

Figure 4.7: A cross-sectional view of Benchmark System 3(b) is illustrated. The two-
dimensional view depicts an infinitely long, air-filled, uniform, equilateral triangular
coaxial line in cross-section. The shaded annular area represents the air region be-
tween the two ideal conductors. The boundary of the inner conductor is prescribed
to be a 1V equipotential line, and the boundary of the outer conductor is prescribed
to be a 0V equipotential line.
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Figure 4.8: The geometry and finite element mesh configuration for the two-
dimensional electrostatic potential analysis of Benchmark System 3(b) are illustrated.
Eight triangular elements are used to model one-third of the equilateral triangular
coaxial line in cross-section. The conductor boundary conditions (Dirichlet) are la-
beled 1V and 0V’; the symmetry planes are labeled N (Neumann). The positions of
the vertices labeled 1, 2 and 3 correspond to the six free geometric discretization pa-
rameters for the finite element model. The sharp reentrant corner at the intersection
of the edges of the inner conductor boundary has an included angle of 300 degrees.
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Figure 4.9: The first-order optimal eight-element mesh for the two-dimensional elec-
trostatic potential analysis of Benchmark System 3(b) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry, to lie along
the vertical line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1. 2 and 3
are specified in Table 4.2.
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Figure 4.10: The second-order optimal eight-element mesh for the two-dimensional
clectrostatic potential analysis of Benchmark System 3(b) is illustrated. The vertices
labeled 1 and 3 were each constrained. by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry. to lie along
the vertical line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1, 2 and 3
are specified in Table 4.2.
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Figure 4.11: The fourth-order optimal eight-element mesh for the two-dimensional
clectrostatic potential analysis of Benchmark System 3(b) is illustrated. The vertices
labeled 1| and 3 were each constrained. by the problem geometry. to lie along the
Neumann boundaries; the vertex labeled 2 was constrained. by symmetry, to lie along
the vertical line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1, 2 and 3
are specified in Table 4.2.
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Figure 4.12: The eighth-order optimal eight-element mesh for the two-dimensional
clectrostatic potential analysis of Benchmark System 3(b) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry, to lie along
the vertical line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1. 2 and 3
are specified in Table 4.2.

o
p—
-~



Table 4.2: Optimal vertex positions for Benchmark System 3(b).

Order / Vertex 1 2 3
1 0.5033 0.2863 0.5033
2 0.3700 0.1363 0.3700
4 0.2700 0.0863 0.2700
8 0.2367 0.0363 0.2367

Note: The table entries represent the ratios of the optimal vertex posi-
tions along the length of the line segments in the directions of optimization.

4.1.1.3 Benchmark System 3(c)

The final benchmark system used to validated the two-dimensional finite element
optimization equations of section 2.4.2 is similar to Benchmark System 3(a) and 3(b).
and is defined by Figure 4.13. [t is an infinitely long. air-filled. uniform, hexagonal
coaxial line in cross-section. As per the previous two benchmark systems considered.
the objective is to compute the functional value corresponding to the electrostatic
potential energy per unit length stored in the air region between the two ideal con-
ductors of the system. The primary feature of this system is the rapid field solution
variation close to the sharp reentrant ccrners with included angles of 240 degrees at
the intersections of the edges of the inner conductor. For this benchmark system. it
will be interesting to note the effect on the optimal discretization results, if any, of the
decreased sharpness of the reentrant corner relative to both Benchmark System 3(a)
and 3(b). The optimal discretization results for this electrostatic system were com-
puted using exactly the same procedures that were used for Benchmark System 3(a)
and 3(b). Furthermore. the same range of results were computed. and are discussed
next.

The finite element optimization equations of section 2.4.2 for two-dimensional
systems were used to test the z- and y-components of the functional gradients with

respect to element vertex positions for a series of numerical benchmark evaluations

218



based on the geometry and eight-element mesh defined by Figure 4.14. It is one-sixth
of the hexagonal coaxial line in cross-section. The conductor boundary conditions
(Dirichlet) are 1V and 0V as indicated; and the symmetry planes are labeled N
(Neumann). There are six free geometric discretization parameters corresponding to
the z- and y-coordinates of the positions of the element vertices in the mesh labeled 1.
2 and 3. Moreover. it may be noted that the optimal positions of the vertices labeled
1 and 3 are each constrained by the problem geometry to lie along the Neumann
boundaries of the problem domain. Furthermore. the optimal position of the vertex
labeled 2 must lie. by symmetry. along the diagonal line segment joining the upper
right corners of the inner and outer conductor boundaries. A series of 103,800 eight-
clement meshes were used to compute individual functional values corresponding to
fixing the element vertices labeled 1 and 3 at 300 regularly spaced positions along
the Neumann boundaries and the vertex labeled 2 at 346 regularly spaced positions
along the diagonal line segment joining the upper right corners of the inner and outer
conductor boundaries. Figure 4.15 shows the optimal first-order eight-element mesh
for one-sixth of the cross-section of the hexagonal coaxial line. The corresponding
second-. fourth- and eighth-order optimal meshes are shown in Figure 4.16. 4.17 and
4.18. respectively. In each case. the functional gradients with respect to element
vertex positions correctly identified the optimal positions of the free element vertices,
1o vield the smallest possible functional value. with an error tolerance of £35.0 x 10~
(m). This error tolerance is one-half of the interval used to define successive vertex
positions for computing the range of functional values used to confirm the results
obtained by evaluating the finite element optimization equations directly. Once again,
it is interesting to note the increasingly sharp focus of DOF near the reentrant corner
with increasing element order. As with both Benchmark Systems 3(a) and 3(b), the
improved finite element model of the field solution over the outer elements, furnished
by the higher-order approximations, allows for this to occur. It may also be noted

that the focus of DOF is less sharp near the reentrant corner of Benchmark System
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3(c) relative to that of both Benchmark Systems 3(a) and 3(b) for corresponding
element orders. This is consistent with the weaker intensity of the field solution
singularity associated with the reduced sharpness of the reentrant corner relative to
both Benchmark Systems 3(a) and 3(b). Finally, the optimal positions of vertices 1.

2 and 3 are specified in Table 4.3 for each of the cases examined.

Table 4.3: Optimal vertex positions for Benchmark System 3(c).

Order / Vertex 1 2 3
1 0.4367 0.3782 0.4367
2 0.3033 0.2338 0.3033
4 0.1700 0.1184 0.1700
S 0.1367 0.0606 0.1367

Note: The table entries represent the ratios of the optimal vertex posi-
tions along the length of the line segments in the directions of optimization.

4.1.2 Benchmark Adaption Studies

The numerical validation of the two-dimensional finite element optimization equa-
tions presented in sections 4.1.1.1. 4.1.1.2 and 4.1.1.3 has shown that the functional
gradients with respect to element vertex positions can correctly identify the optimal
positions of the free element vertices in a finite element discretization to produce the
most accurate approximate solution for a given number of DOF. The purpose of this
section is to investigate the potential benefits of using new refinement criteria for prac-
tical electromagnetic AFEA based on the two-dimensional finite element optimization
equations. Hence, the effectiveness of the primary adaption models, when guided by
the new optimal discretization-based refinement criteria, in resolving two benchmark
systems is investigated. Specifically, the performance of the new criteria are examined
with k-, p- and hp-adaption models for Laplace and Helmholtz systems. Furthermore,

performance comparisons with some of the best adaptive refinement criteria currently
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Figure 4.13: A cross-sectional view of Benchmark System 3(c) is illustrated. The
two-dimensional view depicts an infinitely long, air-filled, uniform, hexagonal coaxial
line in cross-section. The shaded annular area represents the air region between the
two ideal conductors. The boundary of the inner conductor is prescribed to be a 1V
equipotential line, and the boundary of the outer conductor is prescribed to be a 0V
equipotential line.
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Figure 4.14: The geometry and finite element mesh configuration for the two-
dimensional electrostatic potential analysis of Benchmark System 3(c) are illustrated.
Eight triangular elements are used to model one-sixth of the hexagonal coaxial line
in cross-section. The conductor boundary conditions (Dirichlet) are labeled 1V and
0V': the symmetry planes are labeled N (Neumann). The positions of the vertices
labeled 1. 2 and 3 correspond to the six free geometric discretization parameters for
the finite element model. The sharp reentrant corner at the intersection of the edges
of the inner conductor boundary has an included angle of 240 degrees.
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Figure 4.15: The first-order optimal eight-element mesh for the two-dimensional elec-
trostatic potential analysis of Benchmark System 3(c) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry. to lie along
the diagonal line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1. 2 and 3
are specified in Table 4.3.
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Figure 4.16: The second-order optimal eight-eclement mesh for the two-dimensional
electrostatic potential analysis of Benchmark System 3(c) is illustrated. The vertices
labeled 1 and 3 were each constrained. by the problem geometry. to lie along the
Neumann boundaries; the vertex labeled 2 was constrained. by symmetry, to lie along
the diagonal line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1, 2 and 3
are specified in Table 4.3.
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IFigure 4.17: The fourth-order optimal eight-element mesh for the two-dimensional
clectrostatic potential analysis of Benchmark System 3(c) is illustrated. The vertices
labeled 1 and 3 were each constrained. by the problem geometry, to lie along the
Neumann boundaries; the vertex labeled 2 was constrained, by symmetry, to lie along
the diagonal line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1, 2 and 3
are specified in Table 4.3.
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Figure 4.18: The eighth-order optimal eight-element mesh for the two-dimensional
electrostatic potential analysis of Benchmark System 3(c) is illustrated. The vertices
labeled 1 and 3 were each constrained, by the problem geometry. to lie along the
Neumann boundaries; the vertex labeled 2 was constrained. by symmetry, to lie along
the diagonal line segment joining the upper corners of the inner and outer conductor
boundaries. Note: the optimal positions of the element vertices labeled 1. 2 and 3
are specified in Table 4.3.
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available are presented. However, the adaption benchmark results are first preceded
by a brief description of how the two-dimensional finite element optimization equa-
tions are used to develop optimal discretization-based refinement criteria for AFEA
analogous to the one-dimensional criterion developed earlier.

4.1.2.1 Two-Dimensional Optimal Discretization-Based
Refinement Criteria

As noted previously, the efficient use of well-defined optimal solution proper-
ties as feedback refinement criteria for guiding the solution process towards accurate
results has been an important research challenge for all types of adaption in FEA.
Furthermore. one route to adaption which was shown to be successful in section 3.3
for one-dimensional systems. is to employ local error measures that are closely re-
lated to the variational principle used to determine the solution to the finite element
problem. The purpose of the present section is to describe analogous two-dimensional
refinement criteria for k-, p- and hp-adaption, which are also based on the variational
properties of optimal discretizations for the FEA of electromagnetic systems.

One way to detect and rank regions of inferior discretization in a finite element
mesh. as explained in section 3.3.1. is by computing the gradients of the functional
with respect to element vertex positions. Furthermore, it has been noted that these
functional gradients may be computed directly from the finite element optimization
cquations derived in section 2.4. Once the gradients of the functional with respect
to vertex positions have been computed, they may be used in various ways as error
indicators within two-dimensional adaptive solvers. One simple approach is to assess
a weighted sum or an average value of the vertex-based functional gradients for each
element. then use these values to rank the elements for refinement (Type-A). A more
directed approach is to employ a weighted sum or an average value of the projections of
the vertex-based functional gradients onto vectors directed from the vertices towards

the centroids of the elements (Type-B). Unlike the first approach, this scheme depends
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upon both the directions as well as the magnitudes of the functional gradients. Both
of these types of methods are investigated in the following two sections in order to
illustrate some of the possible wayvs to exploit the new two-dimensional refinement

criteria proposed for adaptive finite element solvers.
4.1.2.2 Benchmark System 3(a)

In order to evaluate the effectiveness of the optimal discretization-based refine-
ment criteria described above. results from a series of studies involving the primary
adaption models are reported in this section for Benchmark System 3(a). Specifically.
the convergence of h-, p- and hp-adaption strategies are investigated when optimal
discretization-based refinement criteria are used to guide the adaption. The differ-
ent types of adaption techniques considered in this section are intended to represent
a range of the basic methods most commonly used in practice for two-dimensional
electromagnetic AFEA. Finally. it should be noted that all of the adaption studies
for this Laplace benchmark system were based on the analysis of one-quarter of the
square coaxial line in cross-section. shown in Figure 4.2.

The convergence of the percent error in functional value for an h-adaption strategy
applied to the Laplace benchmark system is illustrated in Figure 4.19 for first-order
clements. The initial mesh used for the h-adaption studies is defined by Figure 4.2.
At each subsequent adaptive iteration, the optimal discretization-based refinement
criteria described above (Type-A) were used to rank the elements. and the elements
with the highest rankings were chosen for refinement. Moreover, a 50 percent incre-
ment in the number of DOF per adaptive step was used to update the discretizations.
[n addition, it may be noted that all of the A-refinements were based on either element
bisections or uniform subdivisions of elements into four similar triangles; however, the
resulting set of new element vertices were retriangulated at each adaptive step using
a Delaunay algorithm {70]. The uniform h-refinement baseline functional convergence

result is also shown in Figure 4.19 for comparison. The analogous second-order h-
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adaption results for the Laplace benchmark system are shown in Figure 4.20. The
fourth- and eighth-order f-adaption results are shown in Figure 4.21 and Figure 4.22,
respectively. For each case, the results were computed using exactly the same proce-
dures as for the first-order h-adaption results described above. It may be noted that
the h-adaption strategy guided by the optimal discretization-based refinement crite-
ria produced discretizations with functional accuracy levels superior to those of the
uniform discretizations with corresponding numbers of DOF. for the first-, second-.
fourth- and eighth-order analyses. Finally. an example h-adapted mesh is presented
in Figure 4.23 to illustrate the sharp focus of DOF produced by the new refinement
criteria near the reentrant corner.

The performance results for a range of p-adaption strategies applied to Benchmark
System 3(a) are summarized in Table 4.4. Specifically, uniform and mixed-order p-
adaption schemes were investigated using elements which ranged from orders one
through ten. The initial mesh of 128 first-order elements defined by Figure 4.24 was
used for the p-adaption studies. and is based on uniformly subdividing the eight el-
ement mesh shown in Figure 4.2. In addition to the uniform p-refinement baseline,
the hierarchal coefficient p-adaption result [59] is presented for comparison. It may
be noted that the hierarchal coefficient-based refinement criteria developed in [59]
have been shown to be amongst the most effective for p-adaption models {116]. For
the new mixed-order p-adaption, the optimal discretization-based refinement criteria
described above (Type-A) were used to rank the elements. and the elements with the
highest rankings were chosen for refinement. Furthermore. the order of an element
selected for refinement was increased successively from first- through to tenth-order
cach time the element was selected to be refined; however. if a tenth-order element
was chosen for refinement the highest ranking lower-order element was refined in-
stead. Moreover. a 50 percent increment in the number of DOF per adaptive step
was used to update the discretizations for the p-adaption methods considered for

this benchmark problem, excluding the uniform refinement procedure. Based on the
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Figure 4.19: The convergence of percent error in functional value with discretiza-
tion level for first-order h-adaption studies for Benchmark System 3(a) is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on first-order uniform discretizations. The circle knot results
correspond to percent error in functional values computed from solutions based on
first-order h-adaption discretizations evolved using the new optimal discretization-
based refinement criteria (Type-A).
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Figure 4.20: The convergence of percent error in functional value with discretization
level for second-order h-adaption studies for Benchmark System 3(a) is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on second-order uniform discretizations. The circle knot results
correspond to percent error in functional values computed from solutions based on
second-order h-adaption discretizations evolved using the new optimal discretization-
based refinement criteria (Type-A).
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Figure 4.21: The convergence of percent error in functional value with discretization
level for fourth-order h-adaption studies for Benchmark System 3(a) is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on fourth-order uniform discretizations. The circle knot results
correspond to percent error in functional values computed from solutions based on
fourth-order h-adaption discretizations evolved using the new optimal discretization-
based refinement criteria (Type-A).
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Figure 4.22: The convergence of percent error in functional value with discretization
level for eighth-order h-adaption studies for Benchmark System 3(a) is illustrated.
The triangle knot results correspond to percent error in functional values computed
from solutions based on eighth-order uniform discretizations. The circle knot results
correspond to percent error in functional values computed from solutions based on
eighth-order h-adaption discretizations evolved using the new optimal discretization-
based refinement criteria (Type-A).



Figure 4.23: An example refinement due to the new h-adaption is illustrated for
Benchmark System 3(a). The second-order discretization shown was evolved using
the new optimal discretization-based refinement criteria (Type-A). The initial mesh
used for the h-adaption is the eight-element discretization defined by Figure 4.2.
The h-refinements at each adaptive iteration were based on element bisections and
uniform subdivisions of elements into similar triangles. The resulting set of new
clement vertices were retriangulated using a Delaunay algorithm.



convergence of the percent errors reported in Table 4.4, it is evident that when start-
ing from uniform-order meshes the new mixed-order p-adaption scheme results in a
significantly faster rate of convergence relative to the uniform p-adaption strategy
for Benchmark System 3(a). In fact. the same maximal functional accuracy level
reported for this Laplace benchmark system was achieved with 700 DOF by the op-
timal discretization-based mixed-order p-adaption scheme compared with 1670 DOF
required by the uniform method (a relative savings of approximately 58 percent in
the number of DOF). At the same time. it may be noted that the new mixed-order
p-adaption performance results reported in Table 4.4 are comparable to the hierarchal
coefficient results for Benchmark System 3(a). Therefore. it may be concluded that
the new optimal discretization-based refinement criteria are effective for evolving ef-
ficient distributions of DOF by p-adaption over the problem domain for electrostatic
systems with regions of rapid field solution variation. Finally, an example p-adapted
mesh is presented in Figure 4.25 to illustrate the effectiveness of the new optimal
discretization-based refinement criteria by the strongly focussed and efficient place-
ment of the higher-order elements near the reentrant corner.

Table 4.4: Discretization level versus percent error in functional for p-adaption strate-
gies applied to Benchmark System 3(a).

Method / #DOF 1.00% 0.50% 0.10% 0.05%
uniform p-adaption 230 290 1050 1670
hierarchal coeff. p-adaption 230 290 530 675
new p-adaption 110 200 530 700
new hp-adaption 100 120 280 375

The performance results for an hAp-adaption strategy applied to the Laplace bench-
mark system are also reported in Table 4.4. The decoupled hp-adaptive strategy con-
sidered here, first refined the initial first-order eight-element mesh shown in Figure 4.2

by h-adaption for the first three adaptive steps, and then improved the discretiza-
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Figure 4.24: The initial mesh used for the p-adaption studies for Benchmark System
3(a) is illustrated. The initial discretization was comprised of 128 first-order elements,
and was evolved by uniformly subdividing the eight-element mesh shown in Figure
4.2.
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Figure 4.25: An example refinement due to the new p-adaption is illustrated for
Benchmark System 3(a). The mixed-order discretization shown was evolved using
the new optimal discretization-based refinement criteria (Type-A). The initial dis-
cretization used for the p-adaption is the 128 element first-order mesh defined by
Figure 4.24. The range of element orders used in the discretization are shown in the

legend accompanying the figure.
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tion by mixed-order p-adaption in each subsequent adaptive step. For both adaption
models. elements were ranked for refinement using the optimal discretization-based
refinement criteria (Type-A) in the same way as for the k- and p-adaption methods
described above. Furthermore, the A- and p-adaptive refinements were achieved us-
ing exactly the same procedures as described previously for the k- and p-adaption
studies. respectively. It may be noted that the convergence rate of the percent error
in functional value for the decoupled Ap-adaption strategy is superior relative to all
of the p-adaption strategies investigated for Benchmark System 3(a). Therefore, it
may be concluded that the new optimal discretization-based refinement criteria are
effective for evolving efficient distributions of DOF by hp-adaption over the problem
domain for electrostatic systems with regions of rapid field solution variation.

The comparison of performance results for first-order h- and hp-adaption studies
on functional convergence is presented in Figure 4.26. In addition to the uniform
h-refinement baseline, a practical field discontinuity h-adaption result is included
for comparison [38]. It may be noted that the field discontinuity-based refinement
criteria described in [58] have been shown to be amongst the most effective for h-
adaption models [116]. For both the new h- and hp-adaption, elements were ranked
for refinement using the optimal discretization-based refinement criteria (Type-4) in
the same way as for the A- and hp-adaption methods described above. Furthermore.
the h- and hp-adaptive refinements were achieved using exactly the same procedures as
described previously for the h- and Ap-adaption studies, respectively. It may be noted
that the new h-adaption performance results shown in Figure 4.26 are comparable to
the field discontinuity results for Benchmark System 3(a). Moreover, the convergence
rate of the percent error in functional value for the new hp-adaption strategy is

superior relative to all of the methods represented in Figure 4.26.
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Figure 4.26: The convergence of percent error in functional value with discretization
level for first-order h- and hp-adaption studies for Benchmark System 3(a) is illus-
trated. The triangle knot results correspond to percent error in functional values
computed from solutions based on first-order uniform discretizations. The circle knot
results correspond to percent error in functional values computed from solutions based
on first-order h-adaption discretizations evolved using the new optimal discretization-
based refinement criteria (Type-A). The asterisk knot results correspond to percent
error in functional values computed from solutions based on first-order h-adaption
discretizations evolved using field discontinuity-based refinement criteria. The square-
knot results correspond to percent error in functional values computed from solutions
based on first-order k- followed by mixed-order p-adaption (i.e., hp-adaption) dis-
cretizations evolved using the new optimal discretization-based refinement criteria
(Type-A). Note: the cumulative computational cost of adaption was calculated based
on using a preconditioned conjugate gradient algorithm to solve the finite element
matrix equations.



4.1.2.3 Benchmark System 4

The effectiveness of the new optimal discretization-based refinement criteria are
evaluated in this section for a Helmholtz benchmark system with a series of studies
involving the primary adaption models. Specifically, the convergence of a range of
h-. p- and hp-adaption strategies similar to that investigated for Benchmark System
3(a) are also examined for Benchmark System 4. when optimal discretization-based
refinement criteria are used to guide the adaption. Thus, the different types of adap-
tion techniques considered in this section are also intended to represent a range of
the methods most often used for practical two-dimensional electromagnetic AFEA.
[t should be noted that the adaption methods employed in this section were imple-
mented using exactly the same procedures that were used for Benchmark System 3(a),
unless otherwise specified.

The Helmholtz benchmark system is described by Figure 4.27. It is an octagonal
microstrip patch of size d (34mm), where A = 0.616d (A is the wavelength in the
dielectric substrate below the patch). The device has only one port. at the end of
the microstrip transmission line connected to the left hand side of the patch. In
this study. the boundaries have been modeled as perfect magnetic walls to yield a
two-dimensional electric field system. The objective for this benchmark is to find the
phase angle of the reflection coefficient at the input port labeled P. Finally, it may
be noted that the initial mesh of 44 elements defined in Figure 4.27 was used for all
of the adaption studies considered in this section.

The comparison of performance results for h- and hp-adaption studies on phase
angle convergence for Benchmark System 4 is presented in Figure 4.28. In addition
to the uniform h-refinement baseline, a practical field discontinuity h-adaption result
is included for comparison [38], for the same reason given in the previous section. For
both the new h- and hp-adaption, elements were ranked for refinement using the op-

timal discretization-based refinement criteria (Type-B) in the same way as for the h-
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Figure 4.27: The geometry and initial 44 element mesh for the electric field analysis of
Benchmark System 4 are illustrated. The two-dimensional view depicts an octagonal
microstrip patch. The device has one port labeled P at the end of the microstrip
transmission line connected to the left hand side of the patch. The remaining bound-
aries of the problem domain are modeled as perfect magnetic walls. The electric field
wavelength in the dielectric substrate below the patch is 0.616d, where d = 34 (mm).



and hp-adaption stratcgies employed for the analysis of Benchmark System 3(a). Fur-
thermore, the A- and hp-adaptive refinements for the Helmholtz system were achieved
using exactly the same procedures as described for Benchmark System 3(a). with the
following exception: a 100 percent increment in the number of DOF per adaptive step
was used to update the discretizations, excluding the uniform refinement procedure.
For this benchmark system. h-adaption results for second-order meshes are reported.
However, as per the hp-adaption in the Laplace study, only the more efficient decou-
pled first-order A- followed by p-adaption performance is presented for the Helmholtz
system. [t may be noted that the new h-adaption performance results shown in Figure
4.28 are comparable to the field discontinuity results for Benchmark System 4. More-
over. the convergence rate of the phase angle error for the new hp-adaption strategy
is superior relative to all of the methods represented in Figure 4.28. for phase error
levels less than two degrees. Therefore. it may be concluded that the new optimal
discretization-based refinement criteria are effective for evolving efficient distributions
of DOF by h- and hp-adaption over the problem domain for the Helmholtz system
considered.

The performance results for a range of p-adaption strategies applied to Bench-
mark System 4 are summarized in Table 4.5. Specifically, the same uniform and
mixed-order p-adaption schemes that were investigated for Benchmark System 3(a)
were also considered for the Helmholtz system using elements which ranged from
order one through ten. In addition to the uniform p-refinement baseline, the hi-
erarchal coefficient p-adaption result [39] is presented for comparison, for the same
reason given in the previous section. For the new mixed-order p-adaption, the op-
timal discretization-based refinement criteria (Type-B) were used to rank elements
for refinement in exactly the same way as for Benchmark System 3(a). Furthermore,
the p-adaptive refinements for the Helmholtz system were achieved using exactly the
same procedures as described for the analysis of Benchmark System 3(a), with the

following exception: a 100 percent increment in the number of DOF per adaptive
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Figure 4.28: The convergence of reflection phase error with discretization level for
second-order h- and hp-adaption studies for Benchmark System 4 is illustrated. The
triangle knot results correspond to phase error values computed from solutions based
on second-order uniform discretizations. The circle knot results correspond to phase
error values computed from solutions based on second-order h-adaption discretiza-
tions evolved using the new optimal discretization-based refinement criteria (Type-B).
The asterisk knot results correspond to phase error values computed from solutions
based on second-order h-adaption discretizations evolved using field discontinuity-
based refinement criteria. The square-knot results correspond to phase error values
computed from solutions based on first-order A- followed by mixed-order p-adaption
(i.e., hp-adaption) discretizations evolved using the new optimal discretization-based
refinement criteria (Type-B). Note: the cumulative computational cost of adaption
was calculated based on using a sparse Gaussian elimination algorithm to solve the
finite element matrix equations.



step was used to update the discretizations. excluding the uniform refinement pro-
cedure. Based on the convergence of the phase angle errors reported in Table 4.5,
it is evident that when starting from uniform-order meshes the new mixed-order p-
adaption scheme results in a faster rate of convergence relative to both the uniform
p-adaption strategy and the hierarchal coefficient-based strategy that were consid-
ered for Benchmark System 4. Therefore, it may be concluded that the new optimal
discretization-based refinement criteria are effective for evolving efficient distributions
of DOI" by p-adaption over the problem domain for this Helmholtz systems. It is in-
teresting to note that the hp-adaption result reported in Table 4.5 is inferior to all
the p-adaptive methods examined for this benchmark system. This result, however.
is not inconsistent with the undulating nature of the wave solution to the system: a
plot of the electric field over the patch is illustrated in Figure 4.29. Since the spatial
variation of the field is not overly rapid anvwhere over the device. and it is reasonably
compatible with the DOF distribution provided by the initial p-mesh, methods which
can efficiently evolve a relatively uniform distribution of DOF may be expected to
vield the best results. Finally, an example p-refined mesh is illustrated in Figure 4.30.
The selectivity of the new refinement criteria, and the way it efficiently distributes
the DOF over the problem domain. may be observed by comparing the relative field

variations to the relative densities of DOF assigned to the finite element analysis.

Table 4.5: Discretization level versus phase error in degrees for p-adaption strategies
applied to Benchmark System 4.

Method / #DOF 1.5° 1.0° 0.5° 0.1°
uniform p-adaption 400 530 690 865
hierarchal coeff. p-adaption 385 465 550 851
new p-adaption 367 405 445 677

new hp-adaption 587 750 920 1100




:

[igure 4.29: An approximate electric field solution for Benchmark System 4 is illus-
trated. The plot is based on the finite element solution computed using tenth-order
clements for the mesh defined by Figure 4.27.




T
1

20

15

10

15+

A

-10 -5 0 5 10 15 20 25 30 35
x(mm)

i L 1 1 1 L | Ll i

Figure 4.30: An example refinement due to the new p-adaption is illustrated for
Benchmark System 4. The mixed-order discretization shown was evolved using the
new optimal discretization-based refinement criteria (Type-B). The initial discretiza-
tion used for the p-adaption is the 44 element first-order mesh defined by Figure
4.27. The range of element orders used in the discretization are shown in the legend
accompanying the figure.



4.1.2.4 Discussion

The results presented in the two preceding sections demonstrate the value of em-
ploving optimality properties of two-dimensional finite element discretizations to de-
velop effective feedback refinement criteria for efficiently and reliably guiding adaptive
svstems towards accurate solutions. Briefly stated, new two-dimensional refinement
criteria. based on variational aspects of optimal discretizations for scalar Poisson and
Helmholtz FEA. have been introduced and evaluated for the primary adaption mod-
els. Stationarity of the functional corresponding to the variational formulation is the
fundamental principle essential to the development of the new refinement criteria.
Specifically. the gradients of the functional with respect to element vertex positions
were used to determine the sensitivity of the functional to differential displacements
of the element vertices. in order to distinguish and rank regions of insufficient dis-
cretization in a finite element mesh.

[t is worth noting that the new two-dimensional optimal discretization-based re-
finement criteria are inexpensive to compute, since they are closely related to the
underlying variational principle used to determine the finite element solution. In
fact. the only extra terms that are required have been tabulated in Table 2.1 and Ta-
ble 2.2 of section 2.4.2. and involve quantities which, at any rate, must be evaluated
in order to compute the finite element solution to a problem. Moreover, the entries
of the matrices in Eqgs. (2.104) and (2.105) that are required for the new refinement
criteria. are very similar to those of the matrices in Eq. (2.92), the matrix equation
that must be solved for the finite element problem. Furthermore, careful examination
of Egs. (2.88), (2.100) and (2.101) reveals that, in effect, the new refinement criteria
can be computed extremely efficiently since they involve exactly the same mathemat-
ical operations required to determine the entries of standard finite element matrices,
modified only by the addition of or multiplication by the extra terms described above.

The performance results for the benchmark systems that were investigated show



that the proposed refinement criteria can be successfully used in adaptive finite ele-
ment solvers to effectively and economically distribute DOF over the problem domain.
In comparison with the state-of-the-art two-dimensional refinement criteria that were
evaluated. the new approach produced results that were as good or better. suggesting
that further studies involving the application of new optimal discretization-based cri-
teria for the AFEA of three-dimensional electromagnetic systems is warranted. First.
two computational analysis and design application examples are presented in the next
section to further illustrate the practical value of the new optimal discretization-based

approach for AFEA.
4.1.3 Computational Analysis and Design Application Examples

The two-dimensional benchmark problems examined in the previous sections of
this chapter are typical electromagnetic systems that AFEA may be applied to. For
cxample. the coaxial transmission line models of section 4.1.1 may be of interest to
the microwave engineer who will. no doubt, need to determine the capacitance and
inductance per unit length of the lines, or the maximum field strengths occurring
between the inner and outer conductors. The correctness of computed values for
such quantities is directly dependent on the accuracy of the underlying finite element
field solutions for the devices. Similarly. the microstrip patch model examined in
section 4.1.2.3 will be of interest to the antenna designer. who may need to determine
the radiation field patterns of the device. The radiation fields may be calculated from
the current distributions along the antenna structure. Therefore, accurate current
distributions must be known in order to precisely evaluate the far fields. However, in
order to know the current distributions, the field structure of the patch must be accu-
rately determined. The results of the adaption studies presented in section 4.1.2 have
demonstrated the value of the new optimal discretization-based AFEA for efficiently
computing accurate solutions to such two-dimensional electromagnetics problems.

The purpose of this section is to introduce two additional electromagnetic systems in
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order to further illustrate the practical value of the new approach for computational
analysis and design. The primary objective is not to provide comprehensive analy-
ses of the systems considered. but rather, to provide simple demonstrations of the

effectiveness of the new method.
4.1.3.1 Switched-Reluctance Motor

In this section, the new optimal discretization-based refinement criteria devel-
oped earlier are employed for the two-dimensional AFEA of a switched-reluctance
motor (SRM) model, in order to provide additional support for their practical value.
Specifically, the performance of the new refinement criteria (Type-A) are examined
with an h-adaptive solver for the SRM design represented in Figure 4.31. Switched
reluctance motors rely on changes in the reluctance of their magnetic circuits with
position for torque production, and are commonly found in applications requiring
precision movements.

Although standard. non-adaptive, magnetostatic FEMs may be employed for the
analysis of the SRM shown in Figure 4.31, there are key features of such devices that
render the accurate determination of their field solutions challenging and computa-
tionally intensive. For example. the design of SRMs requires the calculation of the
magnetic flux linkage of the motor as a function of both rotor position and excitation
current [88]. Therefore. to calculate the full behavior of 2 SRM design reasonably well,
in general, at least eight solutions are required at different angular positions of the
rotor, and at each of these positions, at least eight different excitation current levels
must be considered [88]. Thus, a typical design cycle may involve a minimum of 64
solutions, and for each of the eight different positions. a new adequate finite element
discretization must be created. Furthermore, the accurate calculation of the field
solutions demands that the complex geometric details of the machine be adequately
resolved by the finite element discretizations of the problemm domain. For example,

the narrow air gap regions and the curved material boundaries of the design must be
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Figure 4.31: The geometry for the magnetic vector potential analysis of a switched
reluctance motor is illustrated. The two-dimensional view depicts one-quarter of the
cross-section of a 12/10 switched reluctance motor in an unaligned position {70]. The
air gap between the stator and rotor is 0.5 (mm), and the total diameter of the motor
is 165 (mm). The stator and rotor relative permeabilities are each 1000, and the coil
labeled A was excited with a uniform current density of 1.0 (A/m?) .



sufficiently well-modeled with appropriate numbers and sizes of elements. Moreover,
several refinements of an initial discretization may be necessary in order to converge
the finite element field solution errors to within pre-specified engineering tolerances.
Consequently. a large number of DOF can be required to compute each of the 64
field solutions with sufficient accuracy. For these reasons. AFEMs are essential for an
efficient SRM design cycle based on finite element analysis. since the computation of
these several fields can consume considerable computer time.

The convergence of the percent error in functional value for an h-adaption strategy
applied to the SRM design considered in this section is illustrated in Figure 4.32. The
initial mesh used for the h-adaption was comprised of 257 first-order elements. At
each subsequent adaptive iteration. the new optimal discretization-based refinement
criteria (Type-A) were used to guide 50 percent increments in the number of DOF
in order to update the discretizations. The uniform h-refinement baseline functional
convergence result based on the same starting mesh is also shown in Figure 4.32 for
comparison. For both the new h-adaption and the uniform refinement procedures. a
termination criterion of 2.5 percent error in the functional value was used. [t may
be noted that the new h-adaption performance results indicate a considerable savings
in computational cost relative to the uniform refinement approach. For example. a
functional accuracy level of approximately 2.8 percent is achieved by the new approach
after four adaptive steps and at a relative computational cost of 24.452; whereas,
the error in the functional value after three uniform refinements is approximately 3.4
percent and was obtained with a relative computational cost of 109.869. These figures
represent approximately a 78 percent reduction in the computational effort required to
converge the finite element field solution to a functional accuracy level below 5 percent
error, when the new optimal discretization-based adaptive approach is used rather
than employing uniform refinements. Similarly, a savings of approximately 94 percent
in required computational effort can be achieved by using the new h-adaption in place

of uniform refinement for functional accuracy levels of less than 2.5 percent error. The
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significance of the computational efficiency of the new optimal-discretization based
approach is amplified by the fact that 64 finite element field solutions are, typically.
required for the analysis of a SRM design. Therefore, the substantial improvement
in the time required to complete the overall design cycle for a SRM, when the new
approach is used. can be of great practical benefit to the design engineer. Finally, a
plot of the magnetic flux density over the SRM is illustrated in Figure 4.33, where
the highly non-uniform variation of the field solution over the problem domain may

be noted.
4.1.3.2 Microelectronic System Interconnections

In this section. the new optimal discretization-based refinement criteria developed
earlier are employed for the two-dimensional AFEA of a microelectronic system inter-
connection (MSI) model, in order to further demonstrate their practical value. Specif-
ically. the performance of the new refinement criteria (Type-B) are examined with an
h-adaptive solver for the MSI structure represented in Figure 4.34: a cross-sectional
view is shown for part of a MSI structure with three rectangular strip-line conductors
buried within a dielectric substrate and between two solid conductor planes [163].
This type of MSI structure is common in multi-chip module (MCM) technology used
for modern electronic packaging [164].

With today’s shrinking feature sizes and increasing clock frequencies, the limit-
ing factor for many high-performance microelectronic systems is now being set by
interconnection delays rather than device switching speeds. Further. interconnec-
tion effects such as reflection, cross-talk, dispersion and attenuation are now leading
sources of signal corruption and a significant cause of system performance degradation
at higher operating speeds. Standard circuit analysis techniques are not sufficient for
accurately predicting the performance of microelectronic systems when these condi-
tions prevail. Today. the state-of-the-art in MSI research lies in the development of

efficient numerical methods capable of accurately and reliably simulating the intercon-
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Figure 4.32: The convergence of percent error in functional value with discretization
level for first-order h-adaption studies for the switched reluctance motor model of
Figure 4.31 is illustrated. The triangle knot results correspond to percent error in
functional values computed from solutions based on first-order uniform discretiza-
tions. The circle knot results correspond to percent error in functional values com-
puted from solutions based on first-order h-adaption discretizations evolved using the
new optimal discretization-based refinement criteria (Type-A). Both results are based
on the same initial mesh. Note: the cumulative computational cost of adaption was
calculated based on using a preconditioned conjugate gradient algorithm to solve the
finite element matrix equations.



Figure 4.33: An approximate field solution for the switched reluctance motor model
of Figure 4.31 is illustrated. The plot is based on the finite element solution computed
using an adaptively refined mesh with 1.847 second-order elements.
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Figure 4.34: The geometry for the electrostatic potential analysis of a microelectronic
interconnection structure is illustrated. The two-dimensional view depicts the cross-
section of a structure with three rectangular strip-line conductors buried within a
dielectric substrate and between two solid conductor reference planes. The strip-lines
labeled A and C are each at a potential of 25 (mV) higher than the two reference
planes: and the strip-line labeled B is at a potential of 100 (mV) above the reference
planes. The dashed vertical lines represent symmetry planes for the MSI structure.



nection electromagnetic fields within the sophisticated microfabricated structures of
modern microelectronic systems. The main difficulty with computational MSI anal-
vsis is that a very large number of free modeling parameters are needed to compute
accurate and reliable simulations for realistic systems. Sufficient mathematical DOF
are required to both resolve the geometric and material features of a MSI structure.
and represent the fields of the electromagnetic system. The computational effort re-
quired for the electromagnetic analysis of the complex. dense. and irregularly routed
arrays of high-speed interconnections that comprise modern MSI structures can of-
ten be prohibitive. Yet such analysis are critical if MSI system performance is to be
simulated with confidence. Currently, the only practical way to overcome this type
of computational barrier is by using adaptive solver technologies.

The convergence of the percent error in functional value for an h-adaption strat-
egy applied to the upper one-half of the MSI structure considered in this section is
illustrated in Figure 4.35. The initial mesh used for the h-adaption was comprised
of 54 first-order elements. At each subsequent adaptive iteration. the new optimal
discretization-based refinement criteria (Type-B) were used to guide 50 percent in-
crements in the number of DOF in order to update the discretizations. The uniform
h-refinement baseline functional convergence result based on the same starting mesh.
is also shown in Figure 4.35 for comparison. For both the new h-adaption and the
uniform refinement procedures. a termination criterion of 1.0 percent error in the
functional value was used. It may be noted that the new h-adaption performance
results indicate a considerable savings in computational cost relative to the uniform
refinement approach. For example, a functional accuracy level of approximately 2.4
percent is achieved by the new approach at a relative computational cost of 4,474;
whereas. for a similar error in the functional value of approximately 2.2 percent, the
relative computational cost of uniform refinement was 13,406. These figures represent
approximately a 67 percent reduction in the computational effort required to converge

the finite element field solution to a functional accuracy level below 2.5 percent error,
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when the new optimal discretization-based adaptive approach is used rather than
employing uniform refinements. Similarly, a savings of approximately 81 percent in
required computational effort can be achieved by using the new h-adaption in place
of uniform refinement for functional accuracy levels of less than 1.0 percent error.
Ultimately. this type of approach is intended to benefit the microelectronics engi-
neer by providing effective computer-aided analysis and design tools that can be used
with confidence to predict the electromagnetic performance of a newly proposed MSI
structure to within the designer’s specified tolerances. Finally, an equipotential plot
for the MSI structure is illustrated in Figure 4.36, where the non-uniform variation

of the field solution over the problem domain may be noted.
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Figure 4.35: The convergence of percent error in functional value with discretization
level for first-order h-adaption studies for the upper one-half of the MSI structure
shown in Figure 4.34 is illustrated. The triangle knot results correspond to percent
error in functional values computed from solutions based on first-order uniform dis-
cretizations. The circle knot results correspond to percent error in functional values
computed from solutions based on first-order h-adaption discretizations evolved using
the new optimal discretization-based refinement criteria (Type-B). Both results are
based on the same initial mesh. Note: the cumulative computational cost of adaption
was calculated based on using a preconditioned conjugate gradient algorithm to solve
the finite element matrix equations.
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Figure 4.36: An approximate equipotential plot for the upper one-half of the MSI
structure represented in Figure 4.34 is illustrated. The plot is based on the finite
element solution computed using an adaptively refined mesh with 796 second-order

elements.
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4.2 Three-Dimensional Systems

The findings from the one- and two-dimensional studies reported in previous
sections suggest that the new optimal discretization-based refinement criteria, de-
rived from functional gradient concepts, are well-equipped to be effective, reliable,
and economical for practical AFEA of electromagnetic systems. The objective of this
section is to investigate the potential benefits and related costs of using the finite
element optimization equations, derived in section 2.4.3, to develop analogous op-
timal discretization-based refinement criteria for three-dimensional electromagnetic
AFEA. Hence, the formulation of section 2.4.3 is, first., validated in the next sec-
tion using a set of numerical tests on three-dimensional electromagnetic benchmark
systems. Subsequently, results from studies involving selected finite element analysis
refinement models are reported for a three-dimensional benchmark system, in order
to evaluate the effectiveness of a proposed three-dimensional optimal discretization-

based refinement criterion for practical AFEA.
4.2.1 Validation of the Optimization Equations

In order to validate the three-dimensional finite element optimization equations
derived in section 2.4.3. the z-. y- and z-components of the functional gradients with
respect to element vertex positions were tested with a range of numerical benchmark
evaluations. Specifically. the geometry and mesh defined by Figure 4.37 (Benchmark
System 5) were used to compute first-order finite element solutions with both optimal
ficld solution and optimal geometric discretization parameter values for three bench-
mark evaluations. Each system consisted of a base “bowl” (Figure 4.37) joined to a
top “cap” (mirror image of Figure 4.37) across a shared hexagonal plane. For these
Laplace tests. all exterior, ideal conductor cap facets were set to 1V (Dirichlet): the
equilateral triangular, ideal conductor base of the bowl was set to 0" (Dirichlet}; and
all the remaining exterior bowl facets were left unconstrained (Neumann). The three

different benchmark evaluations were defined by fixing the bowl base and cap top at
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z =0 and z = 1.6330 (cm), respectively, and varying the position of the hexagonal
plane between them. Specifically, the normalized height of the hexagonal plane be-
tween the bowl base and cap top was set to: (A) 0.25, (B) 0.5, and (C) 0.75. The
objective for these benchmark evaluations is to compute the functional value corre-
sponding to the electrostatic potential energy stored in the air region of the problem
domain.

The electrostatic systems used to establish the optimal discretization benchmark
results of this section. were analyzed for electric scalar potentials using the three-
dimensional finite-element formulation given in section 2.4.3. and the corresponding
finite element optimization equations were used to test the z-, - and z-components
of the functional gradients with respect to element vertex positions. For each of the
three benchmark tests described above. there are three free geometric discretization
parameters corresponding to the z-, y- and z-coordinates of the interior vertex in the
mesh. Moreover, it may be noted that the optimal position of the interior vertex must
lie, by symmetry, along the vertical line segment joining the centers the triangular top
and base of the systems. Finally, the functional values for the three benchmark evalu-
ations were calculated from the computed scalar potentials using exact differentiation
and integration.

The basic computational experiment that was performed in order to confirm the
validity of the three-dimensional finite element optimization equations used to define
an optimal discretization-based refinement criterion later in this section, is described
next. This fundamental numerical experiment was based on resolving Benchmark
System 5 using the elementary discretization defined by Figure 4.37. A series of 1.000
20-clement meshes were used to compute individual functional values corresponding
to fixing the interior vertex at 1,000 regularly spaced positions along the vertical line
segment joining the centers of the triangular top and base of the systems. It should be
noted that for each of the meshes defined by this method, the unknown scalar electric

potential values for the finite element models were computed using the standard finite
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Figure 4.37: The geometry and finite element mesh configuration for the lower half
of Benchmark System 5 are illustrated. Ten tetrahedral elements are used to model
one-half of the problem domain for three electrostatic systems. Each system con-
sists of a base “bowl” (shown above) joined to a top “cap” (mirror image of the
geometry and mesh shown above) across a shared hexagonal plane. Three different
systems were defined by fixing the bowl base and cap top at = = 0 and = = 1.6330
(cm). respectively, and varying the position of the hexagonal plane between them at
normalized heights of: (A) 0.25; (B) 0.5; and (C) 0.75. For each of the three elec-
trostatic systems, all exterior, ideal conductor cap facets were set to 1V (Dirichlet);
the equilateral triangular, ideal conductor base of the bowl was set to OV (Dirichlet);
and all remaining exterior bowl facets were left unconstrained (Neumann). The dark
tetrahedral region is shaded to aid in visualizing the three-dimensional finite element
mesh configuration.
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element formulation with the geometric discretizations held fixed.

Figure 4.38 shows the variation of the functional value with the position of the
interior vertex along the vertical line segment joining the centers of the triangular top
and base of the three systems described above. In each case, the functional gradients
with respect to element vertex positions correctly identified the optimal height for
the interior vertex. to yield the smallest possible functional value. In particular, the
optimal height of the interior vertex which yielded the smallest possible functional
value, for each of the three cases examined, was the same as that which yielded the
smallest functional gradients along the permissible direction of optimization described
above, with an error tolerance of £8.1650 x 10~ (m). Furthermore. the z- and y-
components of the functional gradients were confirmed to evaluate numerically to
zero for all three benchmark evaluations, as expected from the symmetry inherent
in the zy-plane of these test problems. Finally, it may be noted that the error
tolerance stated above is, simply, one-half of the interval used to define successive
vertex positions for computing the range of functional values used to confirm the

results obtained by evaluating the finite element optimization equations directly.
4.2.2 Benchmark Adaption Studies

The numerical validation of the three-dimensional finite element optimization
equations presented in section 4.2.1 has shown that the functional gradients with
respect to element vertex positions can correctly identify the optimal positions of the
free element vertices in a finite element discretization to produce the most accurate
approximate solution for a given number of DOF. The objective of this section is to
investigate the potential benefits and related costs of using a new refinement criterion
for practical electromagnetic AFEA based on the three-dimensional finite element
optimization equations. Hence, the effectiveness of an h-adaption model, when guided
by the new optimal discretization-based refinement criterion, in resolving a Laplace

benchmark system is investigated.
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Figure 4.38: The variation in functional value with vertical position of the interior
vertex is illustrated for the three electrostatic evaluations based on Benchmark System
5. Each of the three plots is based on 1.000 functional values computed by fixing
the interior vertex at 1,000 regularly spaced positions along the vertical line segment
joining the centers of the triangular top and base of the systems. Note: the functional
value is scaled by &,.
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By computing the gradients of the functional with respect to element vertex
positions, it has been demonstrated for one- and two-dimensional systems that it
is possible to detect and rank regions of inferior discretization in a finite element
mesh. Functional gradient error indicators associated with three-dimensional opti-
mal discretization-based refinement criteria are also defined in terms of derivatives
with respect to tetrahedral vertex positions. Furthermore. these derivatives may be
computed directly from the finite element optimization equations derived in section
2.4.3. As in the two-dimensional case, once the gradients of the functional with re-
spect to vertex positions have been computed, they may be used in various ways as
error indicators. One simple approach is to assess a weighted sum of vertex-based
functional gradients for each element, then use these values to rank the elements for
refinement. In this section, this method is investigated to illustrate one possible way
to exploit the new three-dimensional optimal discretization-based refinement criteria
proposed for scalar adaptive finite element solvers.

The proposed three-dimensional optimal discretization-based refinement criterion
was evaluated using a second electrostatic problem (Benchmark System 6), which is
described by Figure 4.39. One-eighth of an air-filled, concentric, cuboidal capacitor
is shown- the 3-D analog to the standard 2-D “L”problem. The conductor boundary
conditions are 1V on the smaller. inner, ideal conductor cube and 0V on the outer.
ideal conductor cube. The symmetry planes defined by z =0, y = 0, and =z = 0 were
left unconstrained (Neumann) between the two ideal conductors. The objective for
this benchmark system is to compute the functional value corresponding to the elec-
trostatic potential energy stored in the air region between the two ideal conductors.
The primary feature of this system is the rapid field solution variation close to the
sharp reentrant edges and corners at the intersections of the boundaries of the inner
conductor. This feature is common to many practical devices that contain sharp ma-
terial edges and corners, and has been shown to significantly reduce the convergence

rate of the finite element method [76,165).
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Figure 4.39: The geometry used for the three-dimensional electrostatic potential anal-
ysis of Benchmark System 6 is illustrated. The figure depicts one-eighth of an air-
filled. concentric, cuboidal capacitor. The conductor boundary conditions are 1V
(Dirichlet) on the smaller, inner, ideal conductor cube and 0V (Dirichlet) on the
outer, ideal conductor cube. The symmetry planes defined by z = 0, ¥y = 0, and
z = 0 were left unconstrained (Neumann) between the two ideal conductors.



The convergence of the percent error in functional value for an h-adaption strategy
applied to Benchmark System 6 is illustrated in Figure 4.40 for first-order elements.
The initial mesh used for the h-adaption studies was comprised of 144 tetrahedra.
At each subsequent adaptive iteration, the optimal discretization-based refinement
criterion described above was used to rank the elements, and the elements with the
highest rankings were chosen for refinement. Moreover, a 100 percent increment
in the number of DOF per adaptive step was used to update the discretizations.
In addition, the k-refinements were achieved using the tetrahedral mesh refinement
algorithms described in [166]. The uniform A-refinement baseline functional conver-
gence result is also included in Figure 4.40 for comparison. It may be noted that the
h-adaption strategy guided by the optimal discretization-based refinement criterion
produced discretizations with functional accuracy levels superior to those of the uni-
form discretizations for corresponding computational costs. For example, for a level of
solution accuracy close to one percent, more than a ten-fold savings in computational
cost is achieved by the h-adaption based on the new three-dimensional refinement cri-
terion relative to the uniform h-refinement scheme. Therefore, it may be concluded
that the new optimal discretization-based refinement criterion is effective for evolving
efficient distributions of DOF by h-adaption over the problem domain for electrostatic
systems with regions of rapid field solution variation. Finally, an example h-adapted
mesh is represented in Figure 4.41, in terms of the distribution of tetrahedra vertices,
to illustrate the sharp focus of DOF produced by the new refinement criterion near

the reentrant edges and corners of the inner conducting cube.
4.2.3 Discussion

The results of the preceding section illustrate the usefulness of employing the
three-dimensional finite element optimization equations of section 2.4.3 to develop
effective and reliable feedback refinement criteria for efficiently guiding adaptive sys-

tems towards accurate solutions. Furthermore, it is worth noting that the new three-
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Figure 4.40: The convergence of percent error in functional value with discretization
level for first-order h-adaption studies for Benchmark System 6 are illustrated. The
triangle knot results correspond to percent error in functional values computed from
solutions based on first-order discretizations evolved using uniform h-refinements.
The circle knot results correspond to percent error in functional values computed from
solutions based on first-order h-adaption discretizations evolved using the new optimal
discretization-based refinement criterion. Note: the cumulative computational cost of
adaption was calculated based on using a preconditioned conjugate gradient algorithm
to solve the finite element matrix equations.
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Figure 4.41: An example refinement achieved using the new h-adaption is illus-
trated. in terms of the distribution of tetrahedra vertices, for Benchmark System
6. The first-order discretization represented above was evolved using the new optimal
discretization-based refinement criterion. The initial mesh used for the h-adaption

was comprised of 144 elements.
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dimensional optimal discretization-based refinement criterion is inexpensive to com-
pute. since it is closely related to the underlying variational principle used to deter-
mine the finite element solution. In fact, the only extra terms that are required have
been given in Tables 2.3-2.8 of section 2.4.3. Moreover. the entries of the matrices
in Egs. (2.142), (2.143) and (2.144) that are required for the new refinement crite-
rion. are very similar to those of the matrices in Eq. (2.121). the matrix equation
that must be solved for the finite element problem. In addition, careful examination
of Egs. (2.122), (2.135), (2.136) and (2.139) reveals that, in effect, the new refine-
ment criterion can be computed extremely efficiently since it involves exactly the
same mathematical operations required to determine the entries of standard finite el-
ement matrices. modified only by the addition of or multiplication by the extra terms
described above.

[n summary. the three-dimensional finite element optimization equations were
validated by tests based on a simple three-dimensional electrostatic system.? Fur-
thermore, the h-adaption performance results for the benchmark system that was
investigated. show that the new optimal discretization-based refinement criterion can
be successfully used in three-dimensional adaptive finite element solvers to effectively

and economically distribute DOF over the problem domain.

2It may be noted that the three-dimensional finite element optimization equations for Helmholtz
systems are validated equally by the results reported for the electrostatic system. This follows from
the fact that the wave and source terms in the three-dimensional optimization equations involve
only the same derivatives of the simplex volume with respect to the z-, y- and z-coordinates of the
element vertices which appear in the Laplacian component of the equations (see Egs. (2.131) and
(2.132), for example).
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Chapter 5

Second-Order Functional Derivatives in
Optimal Discretization Based AFEA for Electromagnetics

As noted previously. the study of error estimation for finite element adaption
in electromagnetics has been the focus of a great amount of work over the past ten
vears. and now represents a well-established research area [57.84]. Today, a variety
of error indicators are used. and many of the most effective ones are based on lo-
cal derivatives of the approximated fields [56.167]. Common examples include field
discontinuity, PDE residual and local energy error indicators, as well as the func-
tional gradient measures introduced in this work. As with all local error estimation
methods. derivative-based approaches can yield misleading results when used with
insufficient or unbalanced discretizations [144.159]. It is not uncommon for evolving,
unconverged finite element models to give rise to locally smooth regions of high rel-
ative error, which yield well-behaved first-order derivatives. The difficulty with error
estimation is that well-behaved first-order derivatives are primarily correlated with
indicators of stability and low error. The purpose of this chapter is to introduce and
investigate the use of second-order functional derivative indicators, which are largely
unaffected by such problematic error distributions. Hence, the potential advantages
and related costs of using second-order functional mesh discretization derivatives for
error estimation in AFEA for electromagnetics are considered. In particular, second-
order functional derivative-based refinement criteria for two-dimensional AFEA are
proposed to identify and stabilize erroneous first-order error distributions that arise
in insufficient or unbalanced discretization regions. Finally, effective combined first-
and second-order derivative estimators are introduced and evaluated in practical two-

dimensional applications.



5.1 Two-Dimensional Second-Order Functional Derivatives

In previous chapters, functional gradient error indicators associated with optimal
discretization based refinement criteria, have been employed successfully in AFEMs
for electromagnetics. Despite their demonstrated eflectiveness. these first-order func-
tional derivative based indicators are not immune to the problems associated with
guiding adaptive methods reliably and efficiently when used with insufficient or unbal-
anced discretizations. Under such conditions, ineffective discretizations may evolve
during the course of the adaption. Consequently, poor adaption performance results
may be observed over part, or throughout the entire adaptive process. if problematic
error distributions due to unstable first-order functional derivative error indicators
are not detected and corrected.

The hypothesis tested in this chapter is that second-order functional deriva-
tives can be used to analyze the stability and estimate the reliability of first-order
derivative-based local error assessments. More specifically. it is proposed that locally
smooth regions of high relative error in finite element models are usually unstable.
and therefore, easy to detect with second-order derivative tests. Electromagnetic
systems that possess translational or rotational symmetries may be analyzed using
two-dimensional finite element formulations. and second-order functional derivative
based error indicators are defined in terms of derivatives with respect to element vertex
positions for such two-dimensional systems in this section. For example, in Cartesian
problems where the field solution variation is independent of the coordinate variable
z.i.e.. u = u(z,y), the second-order functional derivatives may be computed directly
from the finite element optimization equations derived in section 2.4.2. Consider a
scalar triangular element with vertex positions (z;,y), { = 1,2,3. For Helmholtz
systems the z- and y-components, of the second-order functional derivatives may be

readily determined from the matrix forms:

éuTPu, (5.1)

r4

N
-J
N



and

1
su’Qu, (5.2)

respectively. evaluated over the elements that share the vertex in question. Here.
u is the field solution vector. The square matrices P and Q contain the z and y
second-order derivative information. respectively, that corresponds to the Laplacian
part of the functional for vertex [({ = 1,2,3) of the triangular element. The entries

of the matrices P and Q are defined by:

I K| 9emen) A(bmby) 0*(cmen)
= — 9 mom .
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1
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and
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1
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where A is the element area: and b; and ¢; are geometric parameters related to an
element’s vertex positions. previously defined in section 2.4.2. [;jmn is the elemental
integral (in homogeneous coordinates) of the product of the derivatives of the :th
and jth basis functions, with respect to the mth and nth simplex coordinates. also
previously defined in section 2.4.2. It should be noted that the “mixed” second-order
functional derivative terms with respect to both the r and y element vertex positions
are incorporated into the definitions of matrices P and Q in (5.3) and (5.4) above.
Furthermore, S;; and T;; are the ij-entries of the first-order functional derivative
matrices, with respect to element vertex positions, as defined in Eq. (2.106) in section
2.4.2. It may also be noted that the second-order partial derivatives of (b,b,) and
(e¢mcn) with respect to the element vertex positions, which appear in (5.3) and (5.4)
may be readily determined from Eq. (2.82), Table 2.1 and Table 2.2 of section 2.4.2,

and evaluate to simple numerical constants (1, -1 and 0).
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[t has been shown in Chapter 4 that first-order functional derivative quantities
are efficient to compute because they are closely related to the variational principle
used to determmine the solution to the finite element problem. Similarly, the new
second-order quantities are inexpensive to compute since the only extra terms required
are numerical constants which can be tabulated once and for all. As in the first-
derivative case, the second-order functional derivative formulas derived above are
valid for any choice of legitimate finite element basis functions. Furthermore. the
functional derivatives may be computed for uniform- or mixed-order meshes as may
be required by specific refinement models such as h-. p-. or hp-adaptive methods.
Although the above formulation has been derived for scalar Helmholtz systems. it is
interesting to note that the second-order derivatives of the wave and source terms
of the functional, with respect to the vertex positions, are zero. This suggests that
two-dimensional Laplace systems may benefit most from error estimation based on
using both first- and second-order functional derivatives.

5.2 Numerical Evaluation of Second-Order Functional Derivative
Indicators

Two benchmark systems are examined in this section to illustrate the error es-
timation pitfalls that can occur with insufficient or unbalanced discretizations, and
the potential value of using second-order derivative methods to avoid them. Specifi-
cally, a two-dimensional Laplace system and a two-dimensional Helmholtz system are

examined in order to investigate the practical significance of the new approach.

5.2.1 Benchmark System 3(a)

The two-dimensional Laplace benchmark system examined in this section, and
the initial mesh used for the A-adaption studies were defined by Figure 4.2 in section
4.1.1.1. It is one-quarter of a square coaxial line in cross-section — the standard “L”
problem previously considered in section 4.1. Performance results for second-order A-

adaption studies on functional convergence are presented in Figure 5.1. The uniform
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h-refinement baseline (A) is included for comparison with h-refinement based on a
first-order derivative error estimator (B) and a combined first- and second-order error
estimator (C). A 50 percent increment in the number of DOF per adaptive step was
used to update the discretizations for these studies, excluding the uniform refinement
procedure. For the specific type of error estimator examined here (Type-A), and for
the given amount of DOF update used per adaptive step, these results demonstrate
a marginal improvement in performance for functional accuracy levels between 1 and
0.1 percent when the combined error estimator is used (C) versus the first-derivative
estimator (B), and a more significant improvement for functional accuracy levels
beyond 0.1 percent.

The performance results for second-order h-adaption studies based on a second
type of error estimator (Type-B) are presented in Figure 5.2. In this case. a 20 percent
increment in the number of DOF per adaptive step was used. These results clearly
demonstrate the practical value of the new approach and support the hypothesis
that second-order functional derivatives can be used to analyze the stability and
estimate the reliability of first-order derivative based local error assessments: curve
(A) shows the uniform h-refinement baseline for comparison; curves (B) and (C) show
the relative h-adaption performance for the first-order and the combined first- and
second-order based error estimation methods, respectively. In addition. two example
h-refined meshes corresponding to curve (B) and curve (C) are presented in Figure
5.3 and Figure 5.4, respectively, to further illustrate the potential bercfits of using

the combined-derivative approach.
5.2.2 Benchmark System 4

The two-dimensional Helmholtz benchmark system examined in this section, and
the initial mesh used for the p-adaption studies were defined by Figure 4.27 in section
4.1.2.3. It is the octagonal microstrip patch of size d (34mm), where A = 0.616d (A

is the wavelength in the dielectric substrate below the patch), previously considered
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Figure 5.1: The convergence of percent error in functional value with discretization
level for second-order h-adaption studies with 50 percent DOF updates for Benchmark
System 3(a) is illustrated. The curve (A) results correspond to percent error in func-
tional values computed from solutions based on second-order uniform discretizations.
The curve (B) results correspond to percent error in functional values computed from
solutions based on second-order h-adaption discretizations evolved using a first-order
derivative error estimator (Type-A). The curve (C) results correspond to percent error
in functional values computed from solutions based on second-order h-adaption dis-
cretizations evolved using a combined first- and second-order error estimator (Type-
A). Note: The cumulative computational cost of adaption was calculated based on
using a preconditioned conjugate gradient algorithm to solve the finite element matrix
equations.
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Figure 5.2: The convergence of percent error in functional value with discretization
level for second-order h-adaption studies with 20 percent DOF updates for Benchmark
System 3(a) is tllustrated. The curve (A) results correspond to percent error in func-
tional values computed from solutions based on second-order uniform discretizations.
The curve (B) results correspond to percent error in functional values computed from
solutions based on second-order h-adaption discretizations evolved using a first-order
derivative error estimator (Type-B). The curve (C) results correspond to percent error
in functional values computed from solutions based on second-order h-adaption dis-
cretizations evolved using a combined first- and second-order error estimator (Type-
B). Note: The cumulative computational cost of adaption was calculated based on
using a preconditioned conjugate gradient algorithm to solve the finite element matrix
equations.



Figure 5.3: An example of an ineffective A-refinement discretization due to unstable
first-order derivative-based error estimation for Benchmark System 3(a) is illustrated.
The mesh shown above corresponds to the adaption performance results represented
by curve (B) of Figure 5.2. Note: the discretization is comprised of 84 second-order

clements.



Figure 5.4: An example of an effective h-refinement discretization due to combined
first- and second-order derivative-based error estimation for Benchmark System 3(a)
is illustrated. The mesh shown above corresponds to the adaption performance results
represented by curve (C) of Figure 5.2. Note: the discretization is comprised of 84

second-order elements.

279



in section 4.1. Performance results for p-adaption studies on phase angle convergence
are reported in Table 5.1. The uniform p-refinement baseline result is presented for
comparison. The p-discretizations ranged from orders 1 through 10, and a 20 per-
cent increment in the number of DOF per adaptive step was used to improve the
discretizations for the methods considered. excluding the uniform refinement proce-
dure. For the type of error estimator investigated (Type-B), an average savings of
approximately 20 percent in the number of DOF required to achieve phase error lev-
els between 5.0 and 0.5 degrees was observed for the combined-derivative approach.

relative to the first-order derivative method.

Table 5.1: Discretization level versus phase error in degrees for Benchmark System 4.

Method / #DOF 5.0° 2.5° 1.25° 1.0° 0.75° 0.5°

Uniform 360 385 440 490 530 380
First-order 320 390 450 490 540 600
Combined 265 322 400 420 435 450

This data corresponds to the p-adaption resuits for the 2-D mesh described
in Fig.4.27. Uniform indicates uniform p-adaption. First-order indicates first-
order functional derivative based error indicators were used to guide the p-
adaption. Combined indicates both first- and second-order functional derivative
based error indicators were used.

5.3 Discussion

New error estimators, based on combined first- and second-order functional
derivatives for scalar 2-D Poisson and Helmholtz FEA, have been introduced and
evaluated for adaption. The performance results for the benchmark systems investi-
gated demonstrate that second-order derivative indicators can identify and stabilize
erroneous first-order error distributions, and that combined derivative error estima-
tion methods can be successfully used in adaptive finite element solvers to more

reliably and economically distribute DOF over a problem domain.
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Chapter 6

Conclusions

The objective of this work has been to develop effective refinement criteria based
on optimal solution properties for efficiently and reliably guiding electromagnetic
adaptive finite element solvers towards accurate solutions. To achieve this goal. a
new theoretical formulation for optimal finite element solutions to partial differen-
tial equations of macroscopic electromagnetics has been derived. The theory was
validated with a set of comprehensive numerical benchmark evaluations, and the
increased solution accuracy furnished by the formulation was judged to be quite
valuable. The optimal characteristics of approximate finite element solutions, as
predicted by the theory, and observed numerically, were employed to develop new op-
timal discretization-based feedback refinement criteria for use with advanced strategy
adaption models in finite-element-based electromagnetics. Specifically, variational as-
pects of optimal discretizations for Helmholtz systems, that are closely related to the
underlying stationarity principle used in computing finite element solutions to contin-
uum problems, were essential to the development of the new refinement criteria. In
comparison with the state-of-the-art refinement criteria that were evaluated, perfor-
mance results from benchmark adaption studies show that the new refinement criteria
are effective and economical for efficiently and reliably guiding practical h-, p- and
hp-adaption models towards accurate solutions. Ultimately, the proposed refinement
criteria represent a vital solution to the practical engineering problem of effectively
discretizing a system with adaptive methods for efficiently computing sufficiently ac-
curate fields in finite-element-based electromagnetic analysis and design.

The original contributions of this work are summarized in the next section, fol-

lowed by suggestions for possible future work.
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6.1 Original Contributions

The theory developed in this work on optimal discretization-based refinement cri-
teria is an important contribution to the study and development of feedback control
systems for AFEA. Specifically, this work clearly demonstrated the value of employ-
ing optimality properties of finite element discretizations to develop effective practical
feedback refinement criteria for guiding adaptive systems efficiently and reliably to-
wards accurate solutions. The new practical refinement criteria presented in this
work are quite valuable for both their generality and reliability. Both of these assets
are directly linked to the fundamental and theoretically justified principle used to
derive them. Furthermore, this underlying principle embodies a stationarity prop-
erty, which is entirely dependent on the optimality of a finite element discretization:
therefore, the refinement criteria computed from this principle possess the desirable
benefit of intrinsically guiding an adaptive processes towards optimal finite element
solutions. Hence, these new criteria represent an important milestone in developing
efficient practical adaptive methods for evolving sufficiently accurate solutions in a
cost-effective manner.

This work also represents a valuable contribution to the research and develop-
ment of adaptive finite element analysis theory and practice for the following reason.
The inception of the theoretical and numerical study of optimality in electromagnetic
AFEA by this work is of principal importance to the research area. Specifically, this
research established a set of primary adaption benchmarks for the fundamental elec-
tromagnetic singularity models, and illustrated their usefulness in the analysis and
design of optimal adaption strategies. This is of particular importance, since one of
the most challenging problems of AFEA in electromagnetics over the past decade has
been the accurate and efficient resolution of the singularities associated with sharp
material edges and corners. The ability to compute a series of optimal singularity

benchmarks permitted the primary adaption procedures and control schemes to be
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evaluated and compared. for the first time, on both a relative and an absolute per-
formance scale for some of the most demanding electromagnetic adaption scenarios.
This represents a significant advancement over the heuristic assessment approaches
that had formerly been relied upon. In fact. prior to this work, it has been recognized
that an important reason for the slow development in this research area was the lack of
objective standards for judging emerging AFEA methods. Hence, one of the key ob-
stacles that had previously hindered progress in realizing practical advanced-strategy
AFEA has now been overcome.

Also in this work. many of the theoretical and computational difficulties inherent
to the currently available characterizations of optimal finite element discretizations
were explained and illustrated with numerical results. In particular, the validity of
commonly used finite element optimality criteria have been evaluated with optimal
discretization benchmark results computed for the fundamental electromagnetic sin-
gularity models. In addition, the implications of using optimality criteria that rely on
the accuracy of superconvergent derivatives of finite element approximate solutions,
have been elucidated. In recent years, the development and application of super-
convergence concepts for AFEA error estimation and control has attracted a good
deal of interest from the research community. The implications of the findings pre-
sented in this work are especially significant for finite element adaption. since many
feedback control systems used in AFEA are currently based on refinement criteria
derived from superconvergence theory [152,153]. Moreover, it should be noted that
some of the most convincing experimental evidence supporting the conclusions pre-
sented in this work were based on error data computed from optimal finite element
discretizations. This is particularly important, since the specific optimal discretiza-
tions that were examined possessed the key interpolatory property fundamental to
superconvergence theory. Thus, the results computed under these conditions could
not be refuted. Furthermore, this key property is not, in general, evident in finite

element approximations, and can only be achieved asymptotically with increasing
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numbers of degrees of freedom for non-optimized discretizations. Therefore, previ-
ous studies published on typical, or arbitrary, test systems had failed to provide the
rigorous experimental evidence required to examine the fundamental claims of su-
perconvergence theory. The use of optimally discretized systems in this work was a
critical element in obtaining the necessary evidence. Furthermore. the implications
for other optimality criteria that were not explicitly investigated, were explained by
showing the connections amongst the different techniques reported in the literature
for characterizing optimal finite element discretizations. In essence, the defining char-
acteristics of the fundamental techniques examined were used to gauge the relative
merits and disadvantages of the theoretical concepts and practical techniques related
to the development of finite element optimality criteria, and to clarify their usefulness
for practical adaptive finite element analysis. Based on the conclusions reported in
this worlz, it was apparent that criteria appropriate for characterizing optimal finite
element discretizations over a sufficiently wide range of problem applications were
needed. Moreover, it was also manifest that such optimality criteria should not be
developed heuristically. but rather, should be based on well-founded and theoretically
justified approaches.

Finally. new error indicators. based on combined first- and second-order functional
derivatives for scalar two-dimensional Poisson and Helmholtz FEA, have been intro-
duced and evaluated for adaption. Second-order derivative indicators were shown to
be important because they can identify and stabilize erroneous first-order error dis-
tributions due to unbalanced or insufficient discretizations, and combined derivative
error estimation methods can be successfully used in adaptive finite element solvers

to more reliably and economically distribute DOF over a problem domain.

6.2 Future Work

Three interesting research directions for future work which may have signifi-

cant implications for AFEMs are discussed in this section. First, the development of
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algorithms suitable for implementing the new refinement criteria in parallel process-
ing architectures are recommended in order to investigate the potential benefits and
related costs for parallel adaptive finite-element-based electromagnetic analysis and
design. Second, the development of analogous theoretical formulations for the nu-
merical study of optimal vector finite element solutions are recommended to further
explore the performance of the new optimal discretization-based refinement criteria
approach. Finally, research towards the development of convergence criteria for adap-
tive finite element methods based on functional derivative concepts is recommended.
This third line of investigation is. perhaps, the most ambitious and will probably
require substantial effort; however, the potential benefits of an effective. efficient and
reliable method for assessing the accuracy of finite-element-based field solutions are

very valuable for AFEMs.
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