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ABSTRACT

Various generalizations of the Artin's Conjecture for primitive roots are consid-
ered. It is proven that for at least half of the primes p. the first log p primes generate
a primitive root. A uniform version of the Chebotarev Density Theorem for the field
Q(¢. 27" valid for the range | < logz is proven. A uniform asymptotic lormula for
the number of primes up to x for which there exists a primitive root less than s is
established. Lower bounds for the exponent of the class group of imaginary quadratic

fields valid for density one sets of discriminants are determined.

RESUME

Nous considérons différentes généralisations de la conjecture d’Artlin pour les
racines primitives. Nous démontrons que pour au moins la moitié des nombres pre-
miers p, les premiers log p nombres premiers engendrent une racine primitive. Nous
démontrons une version uniforme du Théoreme de Densité de Chebhotarev ponr le
corps Q({;,2'/") pour lintervalle { < logz. On établit une formule asymptotique
uniforme pour les nombres de premiers plus petits que z tels qu’ il existe une racine
primitive plus petite que s, Nous déterminons des minoranis pour 'exposant du
aroupe de classe des corps guadratiques imaginaires valides pour ensembles de dis-

criminants de densité 1.
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INTRODUCTION

The famous Artin Conjecture for primitive roots states that any integer ¢ # %1 which
is not a perfect square is a primitive root {or infinitely many primes. More precisely,

il V() is the sel of such primes up to z, then
Na(z) ~ Ala)w(z)

where Aa) # 0.

Artin also gave an explicit formula for A(a) and his intuition was based on the
following heuristic argument (see [1]):
[For any prime p less than z, let P.{q) be the probability that the prime ¢ divides the
index I} : {a)]; then,by considering such instances independent. we have
Ala) = [T(1 = Pu(q))-
q

In order to have ¢|[F; : {(a)], the two necessary and sufficient conditions
p = I(modgq) and a7 = 1(modp) (1)

must be satisfied,

Now consider the field L, = Q({,,a*/?), let p be a rational prime that splits
completely in L, and let P be a prime over p. The residue field at P has p elements,

therefore (1} holds. Conversely if {1) holds for p, then p splits completely in L.

The Chebotarev Density Theorem indeed states that the probability that p splits .

completely in a normal extension K, equals 1/[K : Q] and therefore the probability

Pulq)is 1/q(q—1) and ‘
1
Al =11 (1 qle- 1)) '




Later. calculations made by D. H. Lehmer and E. Lehmer (zee [33]) suggested tha
in some cases the expression of A(a) was not corvect and the factors ol the product
expansion of A(a) corresponding to the prime divisors of a had to be replaced by
other expressions.

In 1963, C. Hooley (see [26]) used the lincar sieve to prove that if the validity of
the Generalized Riemann Hypothesis is assumed for the Dedekind zeta funetion of
the fields L, then the Artin’s Conjecture is true, with the corrections indieated by

Lehmer.

The main tool used by Hooley is the effective version of the Chebotarey density
Theorem valid under the assumption of the Riemann Hypothesis for the Dedekind
zeta function of A'. That is

#{p < 2 | p splits completely in K} = gljli(x) + O *(log = + log rl}\(""')),

N

where ng = [ : Q] and dj; is the discriminant.

‘This version of the Chebotarev Density Theorem has been for a long time the
only effective one available until 1977 when J. C. Lagarias and A. M. Odlyzko proved

a version of the Theorem valid with the condition (see [29]):

log z

1 .
> max {d,\‘-’"" ,log rl;\-} ‘
ny

For a Kummer’s extension of the type L,, this is cquivalent to ¢ < log'" .

Such a discovery, unfortunately, does not allow one to eliminate the use of Lhe
Riemann Hypothesis on the proof of the Theorem of Hooley, however il gives a

uniform result for ¢ < log'/®z.

In 1984 R. Gupta and R. Murty (sce [13]) published the first resull, in which the
validity of the Artin Conjecture is established for at least one value of 4. Indeed.

they constructed a sel of 13 numbers for which at ieast one is primitive root for ::.ig
H

4 , 1

;
If
I
1
-
!



number of primes p up to @ which is K}—: This result was later sharpened by

Heath-Brown (see {21]) to a set of 3 elements.

The idea of Gupta and Murty also allowed them to deal with the analogous
statement of the Artin Conjecture for rational points on Elliptic Curves (see. [17]).
T'his is the Lang-Trotter Conjecture. From this they were led to consider a high-rank

version of the Artin Conjecture.

Given ay....,a, € Z, we say that ay....,a, are multiplicatively independent
if, whenever there are integers ny.....n, such that
wmo,, L N —
ay ayr =1,

we laven, =na=---=n, = 0.

It makes sense to ask if

for infinitely many primes p and to speculate whether the density of such primes can
be calculated. It is necessary to express the condition for a prime g to divide the
index of the group generated by ay...., a. in terms of splitting conditions on some

fields. The natural generalization of Artin’s original idea is in:

Theorem 1 Let {ay,...,a;) be the subgroup of F, genernted by the multiplicatively
independent ay,...,a.. For any prime q
PR P anlifa o . y - 1/'? 1/'?
q I[Fp t{ay,...,a0)] = psplits completely in Q (g,,,al seeesa,/7) .0

This result and the consequent application of the Chebotarev Density Theorem

suggests that the density of primes for which (2) holds equals



In Chapter 1 we prove that if the Generalized Riemann Hypothesis holds for the

fields iu Theorem 1. then
Nojoae (V=& {p Sa]{aooa)= e } ~ Ay Tk (1

where the constant A, .. equals the product in (3) up to Hnitely nany factors,
The complete formulas, with the analogous corrections of those suggested by Lehner
for the Artin Conjecture, arc worked out in Section 2.1 by the use ol some properties

of Kummer's extension.

The proof follows the original one of Hooley but now the estimate for the nmnher
of primes for which there is a large prime divisor of the index is made using & Lemuma
due to C.R. Matthews which is an application of the pigeon-hole principle.

The new parameter given by the rank. suggests to take » as a function of & and
try to adapt the proof to obtain a result independent of the Riemann Hypothesis.
This is done in Section 3.1 and the conclusion is that for a positive density of primes

p. F, can be generated by about log p multiplicatively independent integers.

The main ohstacle comes froin those primes for which the index

[F; : (0.1,.. .._Cl,-)]
has some prime divisor in the interval [log'/® z, log® z].

The range {log"/® z, log z] is dealt by using a version of Chebotarev Density Theo-
rem for the field Q(¢;, 2'/*) valid for a range of { up to log z/(log log x)? which is proven
in Chapter 2. Such a proof uses properiies of the single non-Abelian L-lunction of
Q(¢1, 29, and is of course stronger than the one of Lagarias and Qdlyzko of [29.

This establishes a Conjecture of H. Zassenhaus of 1969 (see [1]).

[n Section 3.3. we work out the hound of r > log® p for a sct. of density one of

primes p for which F is generated by r elements. Such a result is stronger than

6



the one that was known as a consequence of the work of Burgess and Elliot (see

Proposition 1.11) and uses the Large Sieve Inequality.

The Lemma of Matthews used in the proof of the asymptotic formula in (4) allows
one tu conclude that for almost all primes p the index
pr/(r+l)

logp

[F; : (ale'”sar)] 2
In Appendix A, we improve such a lower bound to
[F; : (ay,...,a,)] 2 p7*Y exp{log’ p}. (3)

This is done by deducing an upper bound fur the number of primes p for which p—1
has a divisor in the range (2%, z" exp{log® p}) which is due to Murty and Erdés (see
{14]) and proven here with the uniformity conditions that allow estimates of the type

(3) uniform with respect to r.

Next we take into consideration the problem of determining an asymptotic formula
for the number of primes for which two given numbers (or more in general s given

numbers) are simultaneously primitive roots. An heuristic argument similar to Artin’s

29-1 )
6= l - ————.
qz]::}m::( fr(q—l)

and again this is proven to be the right one up to finitely many factors. Complete

suggests a density

formulas are worked out in the case where the given numbers are primes. We later
discovered that a general version of this statement has been proven by K. R. Matthews
in his Ph.D. Thesis (see [36]). However, our proof is different and by the use of a

Tauberian Theorem, we get a better uniform error term.

This result has, as an application, a uniform asymptotic formula for the number
of primes for which the least prime primitive root is less than a parameter 3. Such a

formula has applications to the problem of the distribution of least primitive roots.

-]

)



In Appendix B, we cousider the problem of the exponent of the class group of

imaginary quadratic felds.
If e{d) is the exponent of the ideal classgroup ol the imaginary quadratic fields
Qi{v'—d). the Iwasawa Conjecture states that

lim e(d) = +oc.

—-+QQ

In 1972, D.W. Bovd and H. Kisilevsky (sce [3]) proved that if the Extended Riemann
Hypothesis holds for certain Dirichlets L-functions, then the Iwasawa Conjecture is

true.

The proof consists on noticing a link between the least prime p for which —d is a
quadratic residue and e(d) (this is p™¥ > d) and then use the Riemann Hypothesis

to prove that p < log®d. This argument establishes the bound

log d

e(d) > (6)

loglogd’

We prove unconditionally that (6) holds for a set of discriminants of density one,
by calculating uniform asymptotic formulas for the number of integers (resp. square-

free integers) d < z for which the least prime p with ('T‘i) = 1 is smaller than s.



1 ON HOOLEY’S THEOREM

1.1 A generalization of Hooley’s Theorem

Suppose ay, . .., a, are multiplicatively independent integers and let I be the subgroup
of Q* generated by ay,...,a,. For all but finitely many primes p, it makes sense to
consider the reduction of T' modulo p which we indicate by T, which can be viewed
as a subgroup of F.

In the case r = 1, Hooley has shown that if the generalized Riemann Hypothesis

holds for the Dedekind zeta function of the fields Q(g},a}ﬂ), with { prime, then the

set of primes p for which F = I', has non zero density (see [26]).

We will consider the following generalization first introduced by R. Gupta and R.

Murty in [15].

Theorem 1.1 Let I' be as above, np = [Q(Cm,at'™,... ,all™): Q] and let

=, p(m

m=1 Dm
if the Generalized Riemann Hypothesis holds for the Dedekind zeta function of the
fields Q(Q,aiﬂ), { prime,.then

Ne(z) = #{p < olF; =Ty} ~ o
Remark: a) Note that
nm 2 [Q(6m,@'™) : Q] > d(m)m, (1)

therefore §r is a convergent series and thus a well defined number. We will prove in

the second scction that &p % 0.



b) Theorem 1.1 can also be proven on the weaker assumption that there exists a € 1'
with the property that all the Dedekind zeta functions of the fields Q(¢r, ') (1 large
prime) have no zeroes in the region

1

>1 - .
7 r1

Proof: Let us assume r > 1. The first steps of the proof follow the original idea

of Hooley who considered the following functions:
Ne(z,y)=#{p <z |V, 1<y, 1 JF;: 1}]},

C Mre(zyy,2)=F{p<z |3 y <UL [F;: D))
Mr(z,z)=#{p<z |3, 1221 [F}: [,)},
where y = gz loglogz and 7= g/ og z.
Clearly,
1\-F($ay) 2 Np(m) 2 1\’1"(1‘,3}) - 11[[‘(&?,1 23) - I"]r(.’l’.‘, Z)s (2)

and establishing the following:

G) 'Nlr(m’ y) = 6!"1023 + o(io:r);

b Mr(z,y,2) = o)
& Mr(z,2) = (),

the Theorem would be proven.

In his original work, Hooley used the GRH to treat hoth the main term Np(z,y)
and the term Afr(z,y, 2). In this proof we will show that a choiceol y = -,;'q_-g log log =
enables to remove the GRH from the treatment of the main term. ‘This is a key

element for subsequent applications.

10



a) By the inclusion-exclusion formula.

Ne(z,9) = ¥ p(m)n(z)

™
where g is the Mabius function. the upper = means that the sum is extended to all
the integers m whose prime divisors are distinct and less than y (note that this forces
m € [leyq = ¥ < €%, the last inequality being implied by the Prime Number
Theorem) and

mm(z) = F#{p < ¢ | ¥q, qlm, q| [F}.Tpl}.
Now recall that
q | [F; : Ty} <= p splits completely in Q(Cq,a}f", o alf?),

and if a prime splits completely in two fields then it does also in their compositum.

Hence if L, = Q(g‘m,a}/m, ..., aX™), we have

wm(2) = #{p < x| p splits completely in Ln,}. (3)

The result that gives an asymptotic formula for (3) and makes possible to handle
this step without the use of the GRH is the Chebotarev Density Theorem, with the

error term described in page 243 of [39]:

Lemma 1.2 (Chebotarev Density Theorem): If L is a Galois ertension of Q

with discriminant dy, and degree ny, then there ezists an absolute constant ¢ such that
for
\/logx 2c niﬁ maX(log |dL|g |dL|1/nL),

one has

. i 2
#{p < x | p splits completely in L} = —TIi zexp—An}'*\flogz
#{p < x| p splits completely in L} o i{z) 4+ O(zexp—An; og &)
where A is constant depending only on ¢.0

11



Now, let d,, be the discriminant of L, and n,, its degree. The Heasel inequality
(see. page. 239 of [42]) states that
log |di| < nm Z log g. (1)
q‘dm
therefore

d,ln/“'“ < H gSmay...a, S ny <logd,
qldm

since indeed in any field log d 2> n. We can also prove the following.

Corollary 1.3 If m < (log :r)ﬁ then

li{z)

nm

wm(z) = + O(z exp —A(log r)'/®)

for some absolute positive constani A.

Proof of Corollary 1.3: The inequality assumed for m and the Hensel incqunality

in (4), imply (np, € m™+1):

" dra o
entlogdn <enyf? Y logg<m'T < (loge)'/
qldm

Hence, Lemma 1.2 gives

. JRNY
wm(2) — I:'E_x) =0 (a:exp (HA (Ic::r:) ))

=0 (:z: exp (—.-l(log m)%'ﬁ)) =0 (;,; exp (_-‘1(102; ;,_.):/s)) 0

The choice made for y allows us to apply Corollary 1.3 to all the m < e* =

e .
(log z)3*+%. Using the estimate (1) for the degree n,,, we get:

1

n li(z} + Ofxexp -—,-1(10,0,;”)”3)) —

Ne(e,) = 2 (m)

12



li(a:)) + O(e¥z exp — A(log z)!/?)

(litz)) + O({log z) zexp(—A(logz)!/?))

T z
= ér +0 .
logz (log 1:)

¢) To deal with the last term, we will make use of the following result due to

+
o

Matthews (see [37]):

Lemma 1.4
#{p |0 < 8 =0+ T logay)
where the constants involved in the O symbol do not depend on t nor v, nor on

{a;,...,a,.}.

Proof of Lemma 1.4: Consider the set S = {af*-...-a™ | 0 < n; L V7). As ‘

ay,...,a, are multiplicatively independent, the number of elements of S exceeds
{1+ 1) >t

If p is prime such that |[p| < ¢, then two distinct elements of S are congruent

(modp). Hence, p divides the numerator N of

ML g™Mr
ay ayr -1

for some my, ma,...,m, satisfying |m,] < tV/",1<i < r.
For a fixed choice of my, ma,..., m,, the number of such primes is bounded by
T
log N £ gir Z log a;
i=1

Taking in account the number of possibilities for m,, ma,....m,, the total number of

primes p cannot exceed

O(t'*'7 ¥ log a;).

i=!

13



This completes the proof of the Lemma.O

Now note that

J\Ir(m,:)ﬁ#{PS—‘r (31> =, Ill’l:-ll

Ty J
s#{pseiinicl)

and applying Lemma 1.4 (no dependence on r is required here), we get.
Me(z,5)= 0 PR VIEE V)R SVES "
2 I, I)= = — 1.
ris (log )1 +1/r 0 log =

b) For the middle term we assume the GRH which allows Lo state the following

version of the Chebotarev Density Theorem (a preof can be found in {26] or also in

(300):

#{p < « | p splits completely in Q((.a,'")} = ( )+ O(z'*logxl)  (5)

1(:

Now, as in the main term, {|[F; : T,] if and ouly if p splits completely in the

Kummer extension Q(Q,a}ﬂ, ,al’) and thus, in particular, p splits completely in

Q(¢, a}“). From this we get:
Mp(z,y,z) S #{p<z |31, y <1<z p splits completely in Q(Q,a}‘“)}

<> (!(1 )+0(a:‘f2|ogzz)).

y<i<z
As Ty 1(1171) is the tail of a convergent sequence and
L 1p1
> zzlogzl « £ logz,
i<s
for 7 > 1 this yields to an estimate of the Lype:

Mr(z,y,2) € }Ii(.r) + O(.?:%'i'# log ) (6)
Y

14



which is o(log z/z). and this completes the proof for r > 1.

For completeness we add the the proof of the remain case r = 1. Estimate (6)

has no meaning anymore. We have that
My(z,y, ' *log z) € Mr(z,y, 2%/ log® z) + Mr(z,z'*/ log® z, z'/*log z).

The first term is treated as the general case and leads to the coresponding estimate

I

of (6) that in this caseis o (m) For the second term we proceed as Hooley and we

nole that z = r'/?logz and

Me(z,2'*/log® 2,2 *log z) € > w(z,1,1)
=2 flog? zlazt 2 log o

T Z %= 0 (:z:loglog:r)'.

2
log o =2 flog? z<lz 2 logz lOg z

the last by the Brun-Titchmarsh Theorem and the Merten’s formula.O



1.2 Computation of the Densities

The density &r can always be expressed as an Euler product. Doing so one caun prove
that the density is not zero. In this section we will caleulate dp in the case when
a; = p; is an odd prime for any i 2> 1, we will also be able to prove that in this

particular case

’_121:1_’ 6[‘ =1.

The first step is to calculate the degrees of L, over Q.

Theorem 1.5 Let py,.... p- be odd primes, m a square-free integer and let

My, = [Q(Cmtpi/mv e 1p:/m) : Q]

Suppose (m,py---p;} = piy -~ Di,, then ny, = -é—(—'g,),ir, where

0 misoddort =10
a=11 iftp, =p,==p, =1 (mod )

t —1 otherwise.

Proof: Fix m > 1, we may assume without loss of generality that py---p, =
(pr-«-pr.m), welet K = Q((n). A = K(p}fm,...,p,l/m) and forany 1 <i<r—1I,
let B; = A(pf_‘il_'{', - ,p}_{_:n) We have that

N = [Br—e: Q) = [Broi : Al[A: K][K : Q]

and clearly [A" : Q] = ¢(m).

Step 1): We claim that [B.—;: A] = m™.
Since the polynomial ™ — p.s; splits completely in B, = A(p:,{,',"), we know thal
[B1: Al = &. Let g|d be a prime, then [.4(;3,1_{_";) :A] =1 orq Ifit was ¢, we would

have ¢ = [A(p:_ﬁj : AJj[B1 : A] = &, which is a contradiction since m is square-[ree.

16



Therefore p,‘f_"; € A, which implies that p,4; ramifies in A/Q, but, from Kummer’s
Theory. we know that the only primes that ramify in A are py,...,p; and those that
divide m, and since (py41,m) = 1, we conclude that d = 1. Now, by induction, we

have that
[Br—t : A] = [Br—t : Br—t—l][Br—t—l . A] = [Br—t : Br—!-l]mr—t_la

and again, [B;_; : By_—1] = % and since (p;,m) = 1, we conclude that d = 1. Hence
[Brat: Al =m",

Step 2) Let A; = K(p\/™,...,pi"™), then Ay = Ai(piiT), and for the same
reason as above, [Aijy 1 Aj] = Z. We claim that e =1 or 2.
Let gle be a prime divisor and consider A.-(p}_{_'i ), since m is square-free, we have that
p.liq; € A If p,l.':{ € K, then we would have a cyclic extension of prime degree (over

Q) Q(p},{_'{) C K and this is only possible when ¢ = 2. Therefore we may assume

that pi{% & K, having extensions:

K¢ K(pf) € Ax
Note that Gal(A;/K) is the direct product of cyclic groups and a general subgroup of
order g has as fixed field K'({p,, ---p,k)‘/"), with1 <51 £ --- € s < 7—1. Therefore,

L
R(pl1) = K((ps, -~ ps,)'/9) and from Lemma 3 in page 160 of Cassels and Frahlich
[7], we have that there exists 0 < ¢ < g — 1 such that

] 1/q
(P—+) € K.
(pu ttT p’k)‘
and again this implies that ¢ = 2.
Therefore, if m is odd, {Ai41 : Ai] = m for every i, and thus [A,: K] = m'.

From the Theory of Cyclotomic Fields, we know that the general quadratic sub-
field of A" has the form Q ( (-}—)‘-) D}, where D is a positive divisor of m. We gather
that if p; =1 (mod 4), 1 << ¢, then (;—l‘) = 1, hence \/p; € K.

17



Step) Ipp=p=---=p.=1{mod ),

then let {, be a primitive m-th root of unity. then Gal(4,/K) is generated by o ¢
P = Gpl™, (Note that of v = (c(pif’“))'"/- =GR = ) and

hence. |Gal( A, /)| =[41: A} =
Similarly Gal( =+l/ 4;) is gencrated by o : pilm s CApH™, therefore [ 1 o] = m
and [4: K] = Z-.

Step 4) If it exists 1 < ¢ €t such that p; = 3 (mod 4),
then we can suppose without loss of generality that p; =3 (mod {1). Let us consider
A = K(p'™). We have that [4: ¢ K] = m (Il not, we would have K{\/p1) = K,
but this only happens when py = 1 (mod 4), which is a contradiction). Now consider
i > 1, and A; = A;iq(p}’™). We claim that [A; : 4] = 2. Indeed cither p; = 1
(mod 4) or p; = 3 (mod 4); in the first case \/p; € K, in the second case VPipi € K.
In any case, Gal(A;/Ai-1) is always generated by o : pi™ s Rt Pinally we get

[Ai: Ais] =2 and [A: K] = &5

This concludes the proof of the Theorem.O
Corollary 1.6 With the same notation of Theorem 1.5, we have
Nm > mré(m)/gmin(r,u(m)-—l)

(where v(m) is the number of distinct prime divisors of tn), furthermore such a lower

bound is the best possible.D

We are now ready to express the density as an Luler product. The case r = | has

been dealt with by C. Hooley in [26]. He proved that:

Lemma 1.7 Let p be a prime, ny = [Q((m, pV/™) : Q) and let

1
A= 1 -
l}}mc( 1(1"1))

18




be the Artin’s constant, then we have:

i ﬂ(rn) _ A lfp £ 1\ (mOd 4)'
m=1 Tm A (l + ;;_:_—‘P:T) if p=1 (mod 4).

Proof: If p £ | (mod 4), then n, = m¢(m) {or every m and the result follows
from the definition of the Artin’s constant. We can therefore assume that p = 1

(mod 4), having:

i p(m)

m=1 m

=Eo+Eca

where X, is the sum extended to the odd values of m and ¥, to the even values.

Clearly £, = 24 and T, = —{E., with
e _#(m) )
L, = ——+2 =
2 mim) T2 L me(m)
(m,2p)=1 plm,mo
-1 i(m) _1 24 2.4
24 ¢ MM _gay =24 —2
p(p—1) Z’l mé(m) ple-1) (1 - L5) pPP=p-1
{m.2p)=1 plp-1)

nh , v 1
Finally S, 4+ £, = A (1 + ;.r:;-_—l) .0

The general case is similar but a little more complicated:

Theorem 1.8 Let py,...,p, be odd primes, ny = [Q(Cmrpd'™, ..., ™) : Q. let

a; = pi(pi — 1) — 1 and define the r-dimensional incomplete Artin’s constant to be:

= I (1= mm)

{ odd prime

then:

19



Proof: Asin the case r = L. note that if i is odd, then n,, = mToum). thus we
™m k

can write:

% ( n) =A(r)-X

where ¥ is the sum extended to the even values of m.

Let P=p-+p and P = [T\, pteh) P 10 mis an odd positive integer and Q =
(m, P) then, by Theorem 1.3. we have

armeln) p Q)P

v Té .
orindln) - giherwise,

Nam =

For any Q|P, let S(Q) = {m € N| (m, P) = Q}. We have that N = Ugp S(Q}, and

the union is disjoint. Therefore,

Z z p )m

QIPmes(Q) Mo

Now divide S ivisors into two sets: the divisors of P, and its commplement.,
Now divide the set of d of P into two sets; the d [P, and it | {

It follows that

#(2m)2+(@ p(2m )2 Q)~1
5= Z Z 7“m"o(m) T2 X rmr (m) -
QB mesqQ) 3}?, mes(Q@) -
1 (2m)
24(Q) Q) 8=
2r+l Z“ Z. m"q5 +2,2 2 mrp(m)
QP meS(Q) QP meS(Q)

The sum over m € S(Q) is easy to evaluate,

@m) _ (=D pm) (DM 1Y
mezS%Q) mr{m) Qr Q) (m.%’%:l m"¢(m) = Q" Q) /1( ) ([ o T ]) .

Substituting we get:

B Rl e i B
o+ 1}( 1) LWt and )

..-I
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L2015 | B (-6~ -

i=! 1=l =1
2 =14)
PET E 1 a; E l+a.~ "1} ! o
moEN) Py 304}

The claim is therefore deduced.O

Corollary 1.9 Lel {a;}i51 be a sequence of odd primes and let §, be the density of

the set of primes p for which F, is generated by ay... ., a., then

lim é, = 1.0
P00

Remark:
The method just exposed can be easily extended to any set of r multiplicatively
independent numbers which are pairwise coprime. The first step of the induction
in the general form is in [26]. It is also conceivable that for any infinite sequence of
mulliplicatively independent integers (that is a sequence of integers such that a; < a;y
and for any r, ay,...,a, are multiplicatively independent). one has that lim,_., §, =
1. Not being able to provide a proof of this property here, we will include it in the

hypothesis when ever needed.



1.3 The Main Problem

Suppose f(p) is 2 monotone function of p that tends to infinity with pand let {a,}en

be an infinite sequence of multiplicatively independent integers. Lot
Pyp=(a: (modp)|1<i< f(p)).

Question:

Does a function exist f such that, Uyp = F, for almost all primes p ¢

Using Theorem 1.1, we can prove:

Theorem 1.10 Let {a;};en be @ sequence of multiplicalively independenl integers
such that lim,_ & = 1 (We noticed in the last section thal when the a;’s are
all primes this is true) suppose the Generalized Riemann Hypothesis holds for the
Dedekind function of the field Q((,';,a}ﬂ), [ prime, then for any monolone funclion
f(p) that tends to infinity, we have that

#{p< | Trp =F}} ~w(a).

Proof: Let us fix r € N. For all but finitely many primes p, we have:
Lip DT ={ay,...,a).
Therefore
A=${p<z|Tp=F) 2 4{(p<e|T, =T} +0(1).

From Theorem 1.1, we get:

—r— > &,
A= 2 0
logz

Now let r tend to infinity and prove the stalement.O
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QOur intention in the following Chapters is to prove statements of the type of
Theorem 1.10, restricting our assumptions only on the rate of growth of f. For

example it is not difficult to prove:

Proposition 1.11 Let f(p) = log** p then there exists a sequence of multiplicatively

independent integers such that, for almost all primes p, Ty, = F.

Proof: This is a consequence of a Theorem of Burgess and Elliott (see {5]) on
the average of the least primitive root. They proved that if g(p) is the least primitive
root, then for large z,

w(z)™' Y 9(p) < log® z(loglog z)°.
psr

I[f U is the number of primes up to z for which g(p) > f(p), we get that:

Ulog*z g S g(p)+o (7.'(::) log*** a:) <& w(z)log? z(loglog z)*
Rz Spse

which is equivalent to saying that for almost all primes g(p) < f(p).
Now let a; = p; be the i-th prime number, since g(p) < log®™ p, every prime that
divide g(p) is also less than f(p), therefore I'j, contains a primitive root for almost

all primes p.0



2 ON THE ARTIN L-FUNCTIONS OF Q(¢;, 2/

2.1 Introduction

Let L = Q(¢1,2Y") and G = Gal(L/Q). If

r:L — L and v:L — L
Ul /! alfl o/t
G =G G =
(where g is a primitive root modulo p), then (7 is generated by 7 and v, more precisely,

-1

G=<nv|r=vl=1v'lro=1">

is a presentation (here g~ is any integer such that g¢" =1 mod p).

Hence G is the semidirect product of a cyclic group of order { by a cyclic group of
order [ —1. Note also that 7 generates Lthe Galois group of L/Q(¢;) and the subgroup
generated by v has as fixed field, the non-Galois field K = Q(2'/%).

Forany t=1,...,1—1, the map

2=t

xt:G—= G.7—= lLv— et=1

is clearly a character and a quick computation shows that G has { conjugate classes

and the remaining character of G can be calculated via the orthogonality relations.

That is
({-1) Ifa=b=0

x,('r“ub) =<0 fbo#0
-1 [f6=0, and a #0.

Note also that y; is induced by any non-trivial character of the normal subgroup

generated by 7 and if ¢, : v — e*™#U-1} { < I~ is a character of the subgroup (v},

24
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then indg,)rﬁ, = v¢+ AL

Hence x1,..., 7 is 2 complete list of the irreducible characters of G.

Lel us now take a step back and describe the concept of non-Abelian Artin L-
function. Let E/F be a Galois extension and p a representation of Gal(E/F), we
define the Artin L-function of p to be

L(s,p, B/ F) = T] Lols)

P

where, if @ does not ramify, the Artin symbol o, is the conjugacy class in
Gal(E/F) determined by the Frobenius automorphism of the residue field of any
prime of E over ¢ (note also that, if p does not ramify in F, then o, = {1} if and
only if p splits completely in E) and Ly(s) is the characteristic polynomial of o

evaluated at N(p)™*, i.e.

Ly(s) = det(I — N(p)™'p(a,,))™

and, if @ is ramified, L,(s) is the characteristic polynomial of the Frobenius element

at ¢ acting on the subspace fixed by the inertia group I, evaluated at N(p)™.

Simple arguments on the bounds of the eigenvalues of the representation show
that L(s,p, E/F) converges absolutely for R(s) > 1. Since the determinant of a

matrix is the product of its eigenvalues, we also have that:

log L(s, p, E/F) = T o))

e msgma
Sometimes, we might indicate L(s, p, B/ F) by L(s, x, E/F) where y is the character
of p.

We describe here the basic properties of L-functions. For a more complete picture,
see [33] Chapter XII.

2
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PROPERTIES:

A) If Zp(s) is the usual Dedekind zeta function of the field F, then

B) If x1, X2 are two characters of Gal(£/F), then

L(s,x1+ x2, E/F) = L(s,x1, E/F) + L(s.\a. E[ F):

C)IfE' O E D F,where E'/F is also Galois, then any character of Gal(£/F) can
be viewed as a character of Gal( £’/ F) (by composing Gal{ £'/F) — Gal(E/F) =
C), and we have

L(s,x, E[F) = L(s,x, E'/F);

D)If E > E' O F then Gal{E/E’) C Gal(E/F), therefore any character y of
Gal(E/E’) induces a character Ind(yx) of Gal(E/F) and one has:

L(s,Ind(x), B/ F) = L(s,x, E/ E'):
E)If E/F is an abelian extension then for every character v, L{s, x, £/ F) has an

extension to an entire function and verifies a functional equation:

F) If xreg is the character of the regular representation of Gal(£/F"), then
L(s, Xreg, E/F) = Z};(S).

(This is a consequence of the fact that the regular representation is induced by the
trivial character on the trivial identity subgroup which is the Galois group of L/L

therefore, D) and A) give this claim);

G) The Brauer Theorem for characters, states that any character is equal to a

sum with integer coefficients of characters induced [rom elementary subgroups (scc
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[46] Chapter X). By properties B), C), and D) this implies that any Artin L-function
can be written as product of powers with integer exponents of entire functions, and
therefore, any such a function is certainly meromorphic. Artin had actually conjec-
tured that these functions are always entire whenever y does not contain the trivial

character;

H) Whenever the Galois group of an extension has the property that every char-
acter is induced by the character of an abelian subgroups (such characters are called
monomials) then the Artin Conjecture holds for such an extension. This is the case

of nilpolent extensions (as well as supersolvable extensions).

2.2 Artin L-functions of L/Q

The Galois group G of L/Q is certainly supersolvable. Thus all the Artin L-functions
of G are entire and by the properties F), D} and A), we have the following factoriza-

tion:
22(6) = <(6) (T Lo, 11Q) o /)
On the other hand, if A = Q(2/Y),

=2

Zi(s) = L('sachgyL/I{) = Zk(s) H L(s,¢t, L/K) =
t=1

=2

S) H L(S, Xty L/Q)L(S, Xy L/Q):

t=1
the last identity being obtained noticing that Ind{¢,) = x. + x1 and applying prop-

erties B) and D). Putting the two together, we get
Zy(s)
(T2 Lis, xe: L/Q)) L, 1, L/ Q)
Q(S)( -2 L(S Xoo L/Q)) L{s,x1, L/Q) l i
( ;2 L(\‘-’!Ah L/Q)) L(S 1y L/Q)l_o

Zx(s) =

= ((s)L(s. x1, L/ Q).
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Therefore the zeroes of L{s,xi. L/Q) are in particular zeroes of Zx(s) and
L(ls XhL/Q) = Resa:lzf\'(b') % 0

The identity also allows us to compute the functional equation for L(s.\1, L/Q).

It is indeed a classical result that if A is any number field, and

Fiele) = AT (3) Do) 2t ()

—rp M2 —npe .
(where A =277 dh‘f #~"&/2 . and r, are respectively the number of real and complex
embeddings of K, dx is the absolute value of the discriminant of K and ny its degree

over Q) then Fr(s) = Fr(l — s).

Inourcase dg =2, np =L, =1, ro=(1-1)/2, and

ZI\'(S) = C(S)L(sz Xi L/Q)1

so we get:

(1/2)s |
Fic(s) = (é) [ (2) D)7 () s, v L/ Q).

Using the fact that the value of #%/°T (%) ¢(s) does not change if we substitute s
with 1 — s, we get that if

(/M)
G(s) = (i) =/2L(s) 5 L(s, 1, L/Q) 2)

—
i

then G(s) = G(1 — s), which is the functional equation.

An asymmetric functional equation can also be deduced using the formula:

Ta'

L)1 —s) = sinms’
which is
ll(:-l/?) ) / . |
L1 —s,x1, L/Q) = m(sm ‘-"'5)( -Uf-]_‘(s) HIL(S: xi: L/Q) (3)
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These results can be used to determine all the zeroes of L(s, xi, L/Q) outside of the
critical strip. Indeed L(s,xi, L/Q) has just a zero of order "T’ fors =0,-1,-2,...

and is non-vanishing elsewhere (outside the critical strip).

We conclude this Section with a classical general result that we will use later (this
result can be found in [31], in that version, though, are missing all the uniformity

conditions which are necessary for subsequent applications).

Lemma 2.1 Let K be a number field, n = [K : Q], d the absolute value of the
discriminant and let Zy(s) be its Dedekind zeta function. There exists a positive

absolute numerical constant ¢, such that in the region

C1

> ]t
i P T

120

Zi(s) has no zeroes.

Proof of Lemma 2.1: We will follow the classical proof for the Riemann Zeta
function (See. [6] §13). Let Hr(s) = 3s(s — 1)Fk(s) where Fx(s) has been defined
in (1). Hr(s) is an integral function of order 1, verifies Hy (1 — s) = Hg(s) = Hg(5)
and admits the following Weierstrass product expansion:

Hi(s)= e ]] (1 B %) e (4)
o

where the product is extended to all the non-trivial zeroes of Zx(s).

Taking the logarithmic derivative and using the functional equation, we get

Hi, ( 1 1) ( 1 1) Hi
=(s)=b+> +-)==b-3 | 7——+ <) =—==(1-3).
HI\’( ) p \§—¢f p o \l—-s—7 p HI\'( )

Since, if p is a root then also 1 — 5 is, we deduce that

f}i'(b-r%zp:(%-l-%)) =0,

29
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therefore

|

Substituting inside the real part of the logarithmic derivative of (1), we have the

H;\'- - 3 .._1_._
Hlf(é))_ZR(S—P)'

P

identity:

el L Yopf{ly d nD(s/2) | D(s) | Zls) .
XD:S%(S_P)—R(S+S_1+logA+ 5 T T ) (5)

Now consider this expression for s = 0,0 +it,o+2il, 1 <o <2t >0 Since

?R( ! ): a_ﬁq > 0,
s—p) |s=pI

there exist three absolute positive constants ¢;, ¢, ¢4 such that il we take { = % to be

log(A) < log d and since

the ordinate of the zero p = 8 + i, then

Zklo) 1 :
fRZ;\-(a) <= + co log(d);
Zi:(g +1it) I
R d(t +2)") — ——;
R e < SR 2 o
. .
k(o + 2it) n
R t+2
Zlo v 20 < log(d(t + 2)")
because of the Stirling formula for the Gamma function. Finally the standard in-
equality
Zp(o) Zi(o +it) Zi(o +2it)
] it A N RSP Sl i AL ~REE T >
[ ZK(G):I + [ §RZK(O‘+it) Z;.;(ar-{-Qzl] -
implies

' 3

£+ 2)).
- < + ¢5 log(d(t +2)")
A choiceof e =1+ l-og—ﬁ{f_i_—zy,) yields, for an opportune é

€y

P gl v o

which is equivalent to the statement.D
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2.3 On the non-Abelian L-function of Q((. 2'/)

Just for this Section. we will use the notation L{s) = L{s.\;.L/Q), the main goal of

this Section is to prove the following:

Theorem 2.2 1Vith the same notations as above, there ezists a positive absolute

constant A such that uniformly

fl )
m(z.\) = Z xi(op) < zlexp (—_--1 g .
piz

Proof: In the spirit of the classical Prime Number Theorem (See. Davenport
[6]), if we define

xi(op)logp if n is a power of a prime p
:\[(n) =

otherwise,

then it is sufficient to prove that

vlroy) = Z A(n) € zlexp (—A logz

ngx

for some absolute positive constant A.

We will need some lemmas.

Lemma 2.3 Let N(T,x1) be the number of zeroes o + it of L(s.xt, L{Q) such that
0<c =< 1land0 <t <T then if di is the absolute value of the discriminant of
[\, = Q(Q[ﬂ)’

T Y
N(T,x1) = (I - 1)-10«— (- 1))T_ + (1°)d’

-t

) T + O(log dx T).
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Proof of the Lemma: If Np(T) and N(T) are respectively the number of
zeroes of Zx(s) and ¢(s) in the region in question. then we have that N(7,\) =
N (T)— N(T) and since, from the classical theory, we know that
ol
=2

(T)-:l —)1 O(log T).

It is enough to show that

Ne(T) = I—T- log -T— - 137-:- + ('°)f") T + O(log di T1).

Also, in the same way as in the classical result, we can write
Hi ot
daNpg(T) =S —(s)ds (6)
R Hy

where Hz(s) is the function defined during the proofl of the lemma in the last Section

and R is the rectangle, described counterclockwise, having as vertices:
5/2—14T, 5/24:iT, =3/2+:T, -3/2-iT.
Since Hy(s) = 3s(s — 1)Fr, by the residue theorem, we can write that (6) is equal

1 1 Fr g T
(fn(zh_l*ﬁ( ))ds)-4--+3(/ r,\(“"“") (7)

If £ denotes the line from 5/2 to 5/2-+:T and then to 3 +:T', then using the functional

to

w

equation, we quickly get that (7) equals:

& e T(s/2) | TYs) /\ )
.4n+4 ,/-F[\(s db-—4n+4TlO 4.-*—4\[.[ (rl/_r( /)) 4 7 "F ‘,) + <N s))

and, by the Stirling formula we know that

I'(s/2) N _oa Y A W A (_l_
3( F(S/O)ds)—2Jlogf(z+12)_Tlo°2—f’ L0 1)

["(s) 1, . . .. )
Cx = <ilor - = o
q(cr(s)ds)—\s’!ocf‘(z—rzl'") Tlog? — J-i-O(T

L

and




This yields

log d ! 4
Ny (T) = 1 T ;+(o§ h)r+ Sr +0(T)+4%( Zigd)

it

The problem amounts to proving that

Zy(s) o
s}( m)d) O(log dx T*). (S)

Since Zy(s) is real on the reals, we have that Ay arg(Zu(s)) = arg Zx (3 + iT). As

in the classical case:

Lemma 2.4 For all T > 0, we have that

1
Z m = O(log d;\(T - 2)1)
P

where p runs over all the non-trivial zeroes of Zp:(s).

Proof of Lemma 2.4: From the same argument used in the proof of Lemma 2.1,
we know that for 1 < ¢ £ 2 and ¢ > 0, there exists an absolute positive constant cg

such that
Zj(s)
—ER N
Zr(s)

Since for a choice of s = 2 4 iT, we have

< colog(dp(t +2)") —
P

-8

ZI\

Zk E@o+ zr)l <& logdy.

we obtain

>R L 5 < culog(dx(T + 2)).

p
Finally note that

S Y 1
Ry Rl sy

and prove the Lemima.O

As in the classical case we have the following implications:
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Corollary 2.5 For T > 2, we have that .

a) N(T+1)—=N(T —1) = O(logdpT™);

1
b) = O(logdxT™).O
T TR

Now we are ready to prove (8). Take the identity (5) for s = o -+ 1" and s =2 477",
subtract and get:

Bilo +iT) _ Zi(2+:T) ; 1 Y
‘ = 2k O(log T - <
Zio D) - Zerm) Ol L s, T, < W

P

O(logdnTH+ ¥ L

pif <t 7 H =P
the last estimate because for |[T" — 4| > 1,
1 3 1 < 3

g+iT—p 24T —p|~ =TV
and

1

Y S N({T +1)=N(T = 1) = O(log dxT").
o1 2 T = p

Finally,

Z4.(s) WT 74 (g +iT) 2T 71.(s)
o sl =S — Junt £ S0 S X3 s,
"( c z,\-(s)d") "( ]=5+;r Zne +i7)0) +S j Zi(s)
By (9), the absolute value of the second integral is < than

>

24T .
| Sle+iT = p)
2| T==l<t

Lo

2

do +O(logdxT™) = 3 |arg(o +iT - p)|THT,
plT -l !

<7 (N(T +1) = N(T = 1)} + O(log diT™),

while the first integral is in absolute value
llog (1Zx(2 +iT)|/1Zx(2)])]

which is O(!).0




Lemima 2.6 Let & be an inleger and 2 < T < z, then
) z?f xl 9 . g2y 2
Cla)=—- Y =+0 T(Iog lxT) + Flog™l}. (10)
[+<T

where the sum is exlended over all those zeroes p whose imaginary part + s in absolute

value less or equal than T

Proof of Lemma 2.6: As in the classical case of the zeta function, ¥(z, x1) is
Lthe suin of the coeflicients of the logarithmic derivative, more precisely, if ¢ > 1 and

T is large, then the Lemma in §17 of [6] gives that if:

e T) = 1 eiT [_Lf(s)] -t_:ds

2zt Je—it | L(s)
then
Pz, ) = J(2.T)+0 (2 (A:(n) (‘z‘)c T|log1(g:/n)[) + CJ\IIIE‘I')) +0(llog z) (11)

Il we choose ¢ = 1+ 1/log z (z° = ez) and we treat the four ranges separately:
m<irn23r) (r<n<z-2) (¢-2<n<z+2) (z+2<n< 22).

For the values of n, the first range, we have that |log(z/n)| 3> 1 therefore the

contribution of these terms in the sum in(11) is

5[4«

T

Tllogl, (12)

where we just noticed that for ¢ > 1

LF((:) _ Z’\-(C) C'(C) B 1 1 N )
B L(C) - _ (Zi\-(c) - C(c)) - c—1 - e—1 +O(logd1\) = 0(“031).

and that dy = 21§,




For the values of n, the second range, set [x] — n = r, and note that 1 < r < 2/

therefore
x r !

loa --) o —_— > —_

o5 () = os ([-r] ) s (‘ m) =2
Ve gather that the contribution of these terms in (11) is

rlHoe® ¢
<<% z Az -yl € a:“;:” Z rl z h}%' ! ()
1grgrfd t<rsefa )

Analogously, for the values of n in the fourth range, set n — [2] = ' (now 2 <

r' < £41) and thus
‘T n-—i T
-] =-1 (1 - ) > -
log (n)' °8 n iy

and the contribution of these terms in {11) is

zllog® x

L =7 (14)

Finally for the (at most five) values of n in the third range, we have a contribution
which is « llogr. Putting this together with the estimates in (12), (13) and (14),

we get: :
L.
oz, i) =J(z,T)+ 0 (%(log‘ z + log 1’)) . (15)
Now we replace the vertical segment of integration by the other three sides of the
rectangle with vertices
c—1iI, c+il, =U+:iT, =U-=:T
where U is a large hal! integer (i.e. U = m/2, m odd integer). If T # = for any zero

p = 8 + i of L{s) is the critical strip, the residue Theorem gives

_ z?  Res z* ['(8) [—-1 & g
w0 = - S50 () - T RS

(?(log z + log l)) + (16)
1 —U—;r N -u+gr T\ L(s)a?
T{( a=iT - U-iT +/—U-—i'l‘) L(s) .-;}
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since by the functional equation in (2), the integrand in J(z,T) has simple poles at
s = p, poles of order ({ —1)/2 at s = —m (m 2 1), and an extra pole of order 2 at

s=0.

The residue at s = 0 can be estimated as follows: Since L(s) = Zi(s)/¢(s), and

since z°fs = 1/s +logz + ..., we have

S (FT) = S (Eg) rowes

From the functional equation in (1) and the Weierstrass product expansion in (4) we

gol. that
Res _1_2;\'(3) N _ 9 F'(l) _ TMao Q
o (sZ;\-(s)) = b-log A+ 1~ (/2) gy = b+Q(llo°!). (18)

Il we substitute s = 2 in (4), use the functional equation again and note that
Z21:(2)/ZK(2) < 1, we deduce that

1 1
b=>3" (5——+—) + O{llog ). (19)
p \=— P P
For the terms of this series with |y] 2 1, we have
1
> |l5—+= —-Z <Y < llogl. (20)
bzt 12~ o hiz1 1P ( =l TG R-al

The last sum being estimated as O{log d;.) using Lemma 2.4 with ¢t = 0. The same

estimate applies to

Z____

M=~ P
since for [y] < 1 we have [2 — p| > |2 — p|%

Finally, for |7] < 1, we know that cs/ logdr < 8 < 1 — ¢/ log dy;, therefore

p~ & logdy,
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and being the number of zeroes in question < logdyx by Lemma 2.3 with 7' = 1, we
have

) L 0log? dic) = O log? ). (21)

Jvl<1 P

Putting together the estimates (17), (18), (19), (20) and (21) we gather
Res f(z° L'(s)

s=0\s L{s)

) = O(*log* 1) + Olog x). (2

From Corollary 2.5, we see that the number of non-trivial zevoes p ol Zp(s)
for which |y — T'| < 1 is O(llog!T), thus the differences of the ordinates of these
zeroes cannot be all o(1/({log{T)). Hence, we can choose T’ (varying it by a bounded
amount, if necessary) so that [y—T| 3> ({log{T)~! for all the zeroes p. This allows us
to determine a good bound for —L'(s)/L(s) for s = ¢ +iT, T large and —1 < o < 2,
that is

Ls) _2s) _ ¢ls) 1 g e
To) = 209) G0 2, 7op tOlsdkT) <lloghil - (23)

where we have used (9), the fact that by our choice of T we have |y — T >

(logdxT')~! for all p and the fact that the number of summands is here < log dy 7"

To obtain a bound for o £ —1, we use the asymmetric functional equation (3)

whose logarithmic derivative is

Il-s)

-1 !
— p—— ) |
T(i=s) llog !+ 5 (Hlogvr+7rcot.7rs+ ))-l-

We know that cot 75 is bounded if |s — m| 2 1/3, that is if

(1=s)+(m+1)| 2

L=

If 1 — o < -1, then I'(s)/T'(s) = O(log 2|1 — s|) by the Stirling formula, while the
last term (24) is O({). Thus

L'(s)
L(s)

& log?2|s| +llogl (o< 1), (25)
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provided that circles of radius 1/3 around the trivial zeroes s = —m of L(s) are

excluded.

Using (23) and (23) we have

ckiT ]]0g2 IT e o :sllogz T
/_U:tn‘<< T ~/—oom do < Tlogz '

while (23) gives

~U4iT [l°g2 I 7 v T“ng i B
/—U-rr < U ,[_Tm-dt < W—O(l), (for U — o0).

Inserting these estimates in (16) we get the wanted claim.O

Proof of Theorem 2.2: The zero-free region proved for Zz(s) in Lemma 2.1

holds also for L(s), therefore, if p = 8+ i is 2 zero of L(s) with ¥ < T < z we have

that
f<l- llo; T
where ¢ is an absolute positive constant.
We gather that
|z?] = z? < zexp (—cl—iz——%) . (26)

The sum 3. .7 % extended over all the zeroes with |y] > 1 can be estimated by

partial summation as follows

> 1 t"dv +f 2Nt

¥l<T 7 0
& log T(llog T + log di) <& Plog?IT.
The same sum over the zeroes p with |y| € 1 is O(/*log?{) as we noted in (21).

Putting these two facts and (26) together with Lemma 2.6 we get

i 21002 17 o log z al o
(e, x1) K 2l log chxp( cllog lT) + T(log lzT). (27)
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We minimize it by choosing T such that
llog*IT = log z,

and we get that (27) is
log

{

which by partial summation is equivalent to statement.O

& rlexp (—c/‘z

Remark: If we assume the strong Hypothesis that for any prime {, the Dedekind
zeta function Zx(s) has the zero-free region

¢
Sle—0 T3>0
7 logT -

then, using exactly the same method we would be able to prove that uniformly for

w{z, 1) L zlexp (—c\/log z) . (28)

l<z

2.4 An Application to Chebotarev Density Theorem

In this Section we apply Theorem 2.2 to the Chebotarev Density Theorem, obtaining
for the special case of Q((;.2'/") a stronger result than Lemma 1.2. This will be used

later in Theorem 3.1, which is actually a motivation for such a result.

Theorem 2.7 There erists a constant B such thal uniformly for all { uilh

log z
B{loglog z)?’

[ <

we have

P(z,l) = #£{p <z | psplits completely in Q(C;,.’Zl‘”)}

= _1_' o - Ny —_— "]/2 ,,-.))
= 1({_1)11(1) L O(::,c:\p( A7V flog e )

where A is an absolule positive constant.
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Proof Let yg be the character of the regular representation. That is:

IGl={{l-1) if z=1,
xe(z) =

0 otherwise.
We have that

=] l 0 Y xalop) = #{p < | oy is trivial} = #{p < z | p splits completely in L}.
N &
On the other hand, xg = x1+...+Xxi-1+({=1)x: is the canonical decomposition

of the regular character, therefore:

{(0p) + ZX! (Tp)-

p<.r.- ( p<.r i=1 paz
The orthogonality relations for the characters of the subgroup H < G give:

1 if k=1,
1_12\() {

i=1 0 otherwise.

Therefore, the first [ — 1 characters count the number of primes up to z such that
their Artin symbol is trivial modulo H. These are the primes that split completely
in the Cyclotomic field Q(¢;) (whose Galois group is isomorphic to H ). Finally, if
m{z,,1)={p<z|p=1modl}, then

P(z,1) = 7 (#(2, 1, 1) + 7z x0)-

The Siegel-Walfisz Theorem (see [6] in §22) states that given any positive constant

C, il < (logz)®, one has

.l D=&{p<z|p=1lmodl}= -1—1—111( )+ Oz exp(—Ay/log 7))

for some constant A = A(C), uniformly in /.
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This result with € = 2 and Theorem 2.2 gives the wanted claim.D

We conclude with the following statement whose proof is a consequence of the

Remark at the end of the last Section.

Theorem 2.8 Assuming the strong Hypothesis that for any prime | and for any non-

trivial zero B+ iy of the Dedekind zeta function Zy(s). 8 <1 — then given any

£
log~?

positive constant C, uniformly for | < (log )¢, we have

P(z,l)= l(ll— l)li(a:) +0 (mexp (-—:‘1\/@)) ,

for some constant A = A(C).O




3 ON THE NUMBER OF PRIMES GENERAT-
ING F;

3.1 Extending Hooley’s Method
In this Section we will extend the ideas illustrated in Chapter 1 proving the following

Theorem 3.1 Suppose T, is the subgroup of F} generated by the classes of the first

log p primes, let
N@)=#{p<z|T, =F;}

then

N(z)
i
logr

Jim 21-log2.
Proof: If we assume p > z!/2, then, for every z,
[, 20, ={p1,...,p:), withr = [%Iog:r]
and
N@) 2 Nz)=#{p<z|T,, =F}. (1)
Now, as in the standard Hooley’s case, we define for given 5, and 75
N(z,m) = #{p<e|VL1<m, LfF;:Tolh
M(z,m,m2) = #{p<z |3, m 1< m, |[F;: Tyl
M(z,pz) = #{p<=z {3, 12, |[F;: T}

and clearly
N(2) 2 N(z,6) = M(z,6,6) — M(z,6, &) — M(z, &) (2)

where § = 1/4/Toglogz, & = ﬁ—éﬁ and & = (log® z)(loglog z)* and B is a

fixed positive number to be chosen later.
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¢ The last term of (2) can be treated as in Theovem 1.1 using Lemma L. We
have that
€,
(log” 2)(log log +)* |
and since 3 ;log p; = O(p,) = O(rlog r), Lemma L4 gives

M) S #{p <z Tl S

T

T 1/r
(log'l m)(lOg IOg ,1:)'-! ((log"’ :L‘)(log |0g‘;x:)'~') 1 logn
z 1

M(z,&) <

logzloglogz’ 7 (3)

o To handle the third term of (2), we will make use of the already quoted Siegel-
Walfisz Theorem, which states that given any positive constant C, then il { £

(log )€, one has

w(z,L,l)=#{p<z|p=1modi} = [ i 1li(m) + O(z exp(—Ay/logz)) (1)

for some constant A = A(C), uniformly in [.

This result yields to,

M(z,£2,63) < #{p<z|I &<i<b, p=lmodl}< Y ={z,l1)
£2<I<Es

Z (ﬁh(m) + O(z exp{—Ay/log :v))) (3)

&<t

where we have chosen C = 3 say.

Now recall the Merten’s Theorem that states that for any two positive numbers

1 log b) ( 1 )
-=1lo 4+0|—].
szb ! & (log a log b
It follows that:

5= it st (m) o

a<i<h a<i<h Iog @ log

a and b,




Using this result in (3), we gel

M(e.62.65) < i) (log (}°§§3) +0O((log sz)-‘)) +0 (Gesp—cyloga)

r o 1+ logloglog x/loglog x 2
= Tog. (10°'+l°g(1 — (log B + 2log log log z)/ log log = to logz

<)
o=
o]

T : T
= ——log2+o0| — 7
logz gt (log .r) (M
o Theorem 2.7 in Chapter 2 is the ingredient to the estimate of the second term

of (2). Indeed, I < & yields to

M(r,6.6.) < Y. #{p < z|psplits completely in Q(¢;,2"")}
1<

= 3 (IU 1_ 1)li(:r) + O(zlexp (—Al“m\/loga:))

&1 <i<t
1. ) -1/2
& E—li(:z:) + &5 exp («—.—Lfg 1""\/loglx)
1

1 zlog’ r z
—li = = —, s
< &1 i(=) + (loglog z)*log*f/% ¢ © (log m) (8)

where B has been chosen to be larger than 6/, say.

¢ To treat the main term of (2), let us set ¢ = {(log r)*/?), and note that if
No(z. &) =#{p<z |VL 1< &, I fIF;:Tepl}s

then N(z.&) > No(z, &), and

N(z,&) =Y p(m)rm(z),

m

where again the sum is extended to all the square free integers m whose prime

divisors are less then £ (Note m < €%), and

m(r) = #={p £ x| p splits completely in Q(g‘m,p}/"‘, ™).
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Finally. the Hensel inequality {see {4) of Section 1.1) gives

1 n ne
¢ ”:,{2 log dm < m3**'{logm +Zlogp.-) <m* < et < Jlogr
i<t

Therefore the Chebotarev Density Theorem (see Lemma 1.2 of Section t.1)

gives
No(z, &) = ; p(m) (;}:H(m) +0 (.n exp (—.-l l(::i:r) ))
= i plm) 2 +0 (z ! li(m)) +0 (ef':r:exp (—.-’ __l-o_g_l_i )
mo1 Pm logz mog M (logx)!/
= érlo‘;m +0 ({i,lo:m) ! (9)

where ér is as in Section 1.1 and where we used the fact that in this range of
m.n, < e < logz.

Purtting together the estimates (3}, (7), (8) and (9) and using (1) and (2), we gel

N(z) 2 No(z, &) — M(z,&,8&) — M(z, 6, &) — M(z, &)

T z T z
> b ~log2 .
- rlog:: +°(logz) log logz +o(log:r)
Therefore. by Corollary 1.9

N(z) > lim (6r —log2 +0{1)) > 1 — log?2

z~ogpflogy — T

which is the wanted claim.O

The estimate in (8) is the real obstacle to achieve an asymptotic formula for N(z).
Such estimate is connected with the range of validity of the Chebotarev Densily
Theorem of the field K = Q(¢;,2/"). As we have seen in Chapter 2, such a range
depends on the determination of zero-free regions for L{s, x;) and thus of the Dedekind

zeta function Zg(s). Indeed we have

2
4
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Theorem 3.2 Assuming in the strong Hypothesis that for any prime ! and for any
non-trivial zero 3 + iy of the Dedekind zeta function Zp(s), 8 <1 — ﬁf, then for

almost all primes p, F, is generated by the first [2log p] primes.

Proof. Using exactly the same notation of Theorem 3.1, we now choose §; =
1/4/Toglogz, & =log?z and & = (log® z)(log log x ).
The estimate of the main and last terms in (2) is the same, for the third term,

again we use the Siegel-Walfisz Theorem (4) and Merten’s formula (6),

M(z,6,&5) < > (lllli(m)-l-O(mexp(wA Iog:c)))
ba<i<e ¥
2loe loz
< z 1 2loglogz + logloglog = +0 T
logz 2loglogz “\logz

_ T
=0 logz /"

Finally for the second term we use Theorem 2.8, and gather that

Mebne) € 3 (m—_l_—l)li(:c)-i-O(z:lexp(—A logx)))

& <i<tn

= of 2
B logz/’
and this concludes the proof.0

Remark: It can be proven that the minimal assumption necessary to prove that
N(z) ~ 7(z) in Theorem 3.1 is that the Dedekind zeta function Z(s) has a zero-free
region of the type

c
- _—! T 2 07
12 log d¥'T

for any prime [ large enough and for some absolute positive constant c.

o>1

[ndeed this would yield to a version of Chebotarev Density Theorem for A valid

up to ! < (log2)?, and the rest of the proof would work as in Theorem 3.2.
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Finally note that using this approach improvements. in terms of determining a
significantly smaller set of generators of F, for almost all p. are not possible. The
choice r = log p is in fact imposed by the statement of Lemma L4, The next Section

is devoted to analvzing this aspect in a more detailed manner.

3.2 Relaxation of the Hypothesis and Improvemeuts

Qur first intention is to prove a version of Theorem 3.1 in which the number of
generators is optimal with respect to the method used. As we have already remarked,
the choice of the minimal number of generators of F}, for a positive propartion of p's

is imposed by Lemma 1.4. Precisely

Theorem 3.3 a) Let f be a (monolone) function of p with f(p) — +20 forp — o
and let Ty be the subgroup of F, generated by the classes of the first

f(p) log p

log log p

primes, then for a set of primes of densily grealer than 1 ~ log2, we have I, = F},

-

b) Let a be a real number with 0 < o < e =2 and lel T, be the subgroup of T,
generated by the classes of the first
log p
aloglogp

primes, then for a sef of primes of density grealer than 1 ~log(2 + o), i follows thal

I, =F;,

Proof: a) The proof starts in the same way as in Theorem 3.1, where we assumed

p = ='/* and noticed that, for every z,

[p2T,, =< pryeeeypr >, withr = [f__(-‘-‘) log ]

2 loglog
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and

#lp<a| T, =F) 2 N2.&) -~ M(.6.6) - M(z,6,6) - M{z.&)  (10)

where the notations, & and &, are the same as in Theorem 3.1 and &; will be chosen

later.

The estimate of the main term and the second term are exactly the same, while

this time the estimate of the last term of (10) using Lemma 1.4 is the following:
z z [\
M(z,&) < #{P Sz |[Trp) < —} L = (-—-) rlogr
& &\

(1 14¢(z)
< i([og I)z”(’)f(:)log:c < M
& €3

where we have put € = ¢(z) = 2/ f(z) + (log f)/loglog z and assumed that f(z) <

(11)

log iog =, say.
Il we now choose & = (log z)**¢ log log x, we get that (11) is

. z
log zloglogz”

Finally we deal with the third term similarly as we did in Theorem 3.1, using the

Siegel-Walfisz Theorem and the Merten’s Formula:

M(z,6,86) £ X ([illi(x)+O(1‘e.\'p(—A\/loga:)))

E2<i<ts

< li{r) (log (}Zig) + O((logfg)'l))-+ 0 (Eg:cexp—c\/log .1')
T

1+ e(z)/2 T
< 2
= logx (log * log (1 — log(B(loglog z)?)/ log log :r)) o (log ;r)

p=]
T z
= log2 + o0 .
logz ° logr )’

o

and this concludes the proof of a).
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b) In this case we need to be a little more careful with the definition of r. We

can assume that p > r!=*) where ¢(r) is a given function which is (3("—“—‘“53-), and

logr

therefore we define

roa= [(1 - c(.r))—-lo—g'r-—]

aloglog x
and the rest is as in a).

The last term is

I I I W .

M(z,&) < # {P <zl |F;,pl < ;"} < - (c—) rlogr < T(log.r)”"”'“‘"”.
&3 §3\& &3

and choosing & = (logz)*+*/(-4=Dloglog z. we would make it ofx/logx). Finally

the estimate for the third term is:

M(z.£.6) < li(z) (log (:Z‘Ei) + O((logf-:)"l)) +0 (E;,.r exp—cy/log 'J‘)

(=2

T a T
< o |2t — ]+ —_—
=~ logz log ( 1 - e(r)) ° (log :r)

and this completes the proof.O

Now we turn our attention to another aspect. Note that neither the proof of
Theorem 3.1 nor the one of Theorem 3.3 use in any way the fact thal cach T, is
generated by the first [log p] primes except for the fact that the sum of their logarithins
is < log plog log p and that [im,_... r = 1. The statement remains true if we consider

a sequence a;.a» ... of multiplicatively independent inlegers such that for any r,

r
Zlogcq < rlogr and rli-rggﬁl. = l.

=1

It is conceivable to ask if a choice of a,...., a, exists for which we could prove a

~ stronger Theorem. That would amount to having a better estimate for the sum of
the logarithms. For this purpose one could set

r i i .
T(r) = min {Zlog a; | ay,...,a;, multiplicatively indeplendent r—l.uple} .o



The following holds:

Proposition 3.4
T(r)=rlogr 4+ O(r).

Proof: For any multiplicatively independent a,...,a,, we can assume
ay > t,...,a, 2 r, therelore
r T
> loga; > > logi=logrt =rlogr —r + O(logr)
=1 =1

the last identity, by the Stirling formula. Thus

T(r) 2 rlogr + O(r).

h

The choice a; = 2 a. = p,, the 1 prime, and the Prime Number Theorem,

Se ey

prove that

T(r) < Zlogﬁ, = p- + O(p, ex‘p —A\/logp,.) =rlogr + O(rexp—-A4y/logr).0

i=0

Although many of the results that we will state can be extended to any sequence of
multiplicatively independent integers, from now on we will only consider the sequence

of the prime numbers,

It is now clear that the problem amounts to estimating the number of those primes
p < z for which [F; : T';] has a prime divisor in the range (log!' =) g, log®*+e2(e) z)
where €;(z) = o(l). We note that it is enough to restrict our attention to those
primes for which the prime divisor is in (logz,log?z), since by the argument we
already used more than once (the Siegel-Walfisz Theorem and the Mertens Formula),

1-e(r)

that the number of Lrimes p for which p—1 has a prime divisor in (log z,log z)

ot in (log® x, log?**1) 2) is o #(x)).



We can also assume that [F} : I';] has exactly one prime divisor in (log.r, log® £).
Indeed, if p is a prime in the set under consideration for which this is not the case,

we would have

A e L

[F; : Ty)

= |0 s =<

= Wy T |0g"‘.l‘

and an application of Lemma 1.4 shows that the number ol such primes is o(x ().

N . . - Bk
Finally for the same reason we can assume no divisors of [F} : I';] ave > log™ .

Putting these remarks together, we have the following

Proposition 3.5 With the same notation of Theorem 3.3, for almost all primes p

up to x either

F;-—-F,

or the index [F} : T;] has exactly one prime divisor in the range (log x,log* x) and no

divisor > log? z, i.e.

N(z)=

- A(z) +o (loz;r:) ,

log z

where
Alz)={p <z |3 € (logz.log?z), [F;:T,], and F;: ;] < log’x}.0

This fact will be used in Section 3.3. We conclude the Section mentioning how

this argument can be extended to the case of any r — oc, in particular the following

holds:

Theorem 3.6 Let r be a function of p thal lends Lo oo, then for almosl all primes

p, either T, =F or
3N, U{F,:T.] with 1 € (log p,rp'" log p) , and [Fp:T] < rpt" log p.O
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Corollary 8.7 Let o > 0 be fized. For almost all primes p either F) is generated by
the classes of the first &ln—;']-“:%; primes, or

AL ES  Tyf with Le (log p, log*** P) , and [F;:T,] <log*** p.0

As we have seen in Proposition 3.3, the problem is now to determine upper bounds

for the quantity:
Alz)={p <o | e (logz,log’z), I|[F}: Ty, and [F}: ] < log’z}

where we can suppose r 3> log 2. We already noticed that the Siegel-Walfisz Theorem

and the Merten’s Formula, give:

T T
; < log2 — .
A(z) < log +o (logz)

logz
'The idea that allows one to improve this upper bound is coming from the Brun’s

Sieve, more precisely we will use the following result:

Lemma 3.8 Let B,(z) be the number of primes up to x for which p—1 is not divisible

by any of the primes in the interval (logz,log™ z), then we have

Ba(z) ~ %W(m)

Proof: It is an application of the version of the Brun’s Sieve that is on Theorem
2.5" at page 83 of [18] to the set:
A={p—1]|pisprimes,p < z}.

Hypothesis (fg) and (R((k.a)) are easily satisfied, the latter using the Bombieri-

Vinogradov Theorem.O

The application to our problem with the flollowing:
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Corollary 3.9 IVith the same notation as above, for any r,

T T
<
Alz) = log z o (log.r) '

| —

Proof: We have that
A(z) £ {p <z|de (Iogm,log'“' .1:)  A|[F; F,]} = 7(x) — Ba(x) ~ =x(x).0
We conclude with

Theorem 3.10 a) Let f be a (monotone) function of p with f(p) — +oc forp — oo
and let Ty be the subgroup of F, generaled by the classes of the first

logp
loglog p

f(p)
primes, then for at least half of the primes p, we have T, = F,.

b) Let a be a real number with 0 < a and let T}, be the subgroup of F, gencrated

" by the classes of the first
log p
aloglogp

primes, then for a set of primes of density greater than 5-_‘;;, i oresults I', = F,.0

Proof of b): The proof goes as the one in Theorem 3.3, except that to estimate

the third term we make use of Lemma 3.8 with n = 2 4+ .0



3.3 A Density One Result

We will discuss in this section a method to find an estimate for the size of the set

-1
Hoo(2) = {p < 2110 = ==}

where m is a given integer greater than one and r a function of p that tends to infinity.

The idea is that I is a subgroup of the cyclic group ¥, and therefore is itself
cyclic. For any integer m, m = 1( mod p). the subgroup of m-th powers is a subgroup
of F} of order (p—1)/m and since a finite cyclic group has a unique subgroup for every
divisor of its order, we deduce that I, is the group of m-th powers mod p. Since a
group is made out of m-th powers if and only if it is generated by m-th powers. this

implies:
Hur(2) = {p £ 2 | p= 1l{modm) and p; is an m-th power (modp) Vi=1,...,r}.

If n,,(p) is the least prime which is not congruent to an m-th power {modp), then

we can also write:
Hos(z)={p £z | p = 1(modm) and n,(p) > p:}.

As r grows, the possibility that all the p;’s are m-th powers becomes less probable.
The idea is to find the minimum r such that Hml_,.(:c) is o(tw(z)). We will do this

making use of the large sieve, the proof of which can be found in [6] or [2], that is:

Lemma 3.11 (The Large Sieve)
Let A" be a set of integers conlained in the interval {1,...,z} and for any prime
p<z, let Q, = {h{modp) | Vn € A",n & h(modp)} and

2 Q,l
L= ZF'(Q)H;'_—IPQ:I,

qsr pla

then

s 3

A < 0




In our case, let N = {n < = | Vqln,q < pr} and note that il p € H,,(r). then
Q, D {h(modp) | k is not an m-th power (modp)}

therefore, for such p's, [, 2 p—1—(p—1)/m and

0 —
> ¥ I-fslz 2 =  Ho ()]
PEHm.r(I) P P -

Applying the Large Sieve with = = 2%, we get:

Theorem 38.12 Let U(s,t) = #{n < s|| Vqln, q < t}, then

8r?
< .a
= (m—1)¥(z?, pe)

Hy (2)

Estimating the function ¥(z,y) is a classical problem in Number Theory. In 1985,

D. Hensley proved (see [22]) the following:

Lemma 3.13 Letu = 'ﬁ;; and let p(u) be the function delermined by:

plu) =1 f 0Su<gl;
up'(u) = —p(u—1) if u>1,

then, for 1 +loglogz < logy < (loglogz)?, and € > 0,

U(z,y) > zp(u) exp(—u exp{—(log y)?¥/*-9)).0
In our case, this gives:

Corollary 3.14 Leir be a function of z such that log p, € [L+loglog 22, (log log =*)*]

and let v = 2log z/log p,, then

Hap lz) € m"-p(l—u)exp (u exp (—u exp (— log(*/3- p,))) .0
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An asymptotic formula for p(u) was found by de Bruijn in [10] and is the following:

Lemma 3.15 Lef u > 0. then

- 2
plu) = exp{—u (lor.: u+loglogu — 1 + (log logu) — 1 10 ((loglongu) ))}.D
- log u log® u

In our case we get the following:

Theorem 3.16 If p. > log” z then

1 T
Ho(2) € — ——— = o{x(2))
exp 2Inglogr}

Proof: From Corollary 3.14 and the asymptotic formula of Lemma 3.15, we can.

wrile the estimate:

! 1 . log log u :
Horlz) € r—n-exp(u(logu +log,u—14+0 ( log u )))

where u = 71"’“‘ Now. take p, > log? z, and note that

. logz , _ . - loga
u= e logu = log, z — logz z; log,u =log,z + log (l - @)
- e - log,
and log u = log;, z; - logau < log_;a: Fél":' = logy z.
Therefore o

log, z 2 log,

1 log; z
xpyl 1— —=3 —_—— = o(r(z)).0
e\p{ ogx ( ozaz +0 (loggz))} < e\p{ T } o(m(z))

2loglogx

mlt, . (z) € e\p{ logz (Ioggm —logs z + (logy = — }Zési) -1+0 (logaw))} <

Remark:
The choice of p, = log” r is not optimal in Theorem 3.16. A simple but long calcu-
lation shows that if p, = (13:—:)“, then the asymptotic formula on Lemma 3.15 gives

1 (40(E).
plu)

the cstimate

-1

[y ]



which is useless to our purpose. However, if we ix & < L and set p, = ('—}) then
the same calculation gives
- 1 =ad Iogz.x
1 << _.(l Iug‘-l.' Iog- +O(1o;:&:))
plu)
which is a valid estimate and is the optimal one.

bl

We are now ready to prove:
:fIheoféln-'S.lT Let T, = {pl,...,p,} be the subgroup of T, ye nerated by uH the
primes up to p, = log*p (r ~ luglo p), then for almost all primes p,
[.=F,
Proof: We want to estimate the siz'e_lo_f the set
| s={p<z| {F;:T.]>1}.
The mde\[F; ’:'I"‘,]-cau be at most z since it is a divisor of p — L.

“Since we may suppose p > z'7¢, we can take p, = log"p > (1 — ¢)*log* & and

apply Theorem 3:18. to S,

S = i Hoo(z) = (Z i) ﬁ-‘“} = o(7(x)).0
m=1 m=1 € Yloglog =

Remarks:

a) This is an improvement with respect to the result of Burgess and Elliot of [3]
deducéd in Proposition 1.11 where for almost all primes < z, the size of p, (least,

primitive root) was proven to be > log® z{log log z)*;

b) Improvements to this result using this approach do not stay in the possibility Lo
apply a stronger version of Lemn'la 3.13 (which exists in the literature, see for example
the work of A. Hildebrand in [23] or Canfield. Erdds and Pomerance in (8]). It is the
asymptotic formula of De Bruijn for the function p(u) that forces a choice p, ol sizc

close to log® z.



4 MORE ON PRIMITIVE ROOTS

This Chapter is devoted to the problem of finding a uniform asymptotic formula for
the number of primes p up to z such that s distinct numbers (which for simplicity
we suppose Lo be prime) are all at the same time primitive roots (modp). It turns
out that, under the assumption of the G.R.H., there is always a positive density of
primes with such a property.

Heuristically, the probability that a prime ! divides one the indexes [F} : {p)]
or [F; : (pa)] is the probability that p splits completely in the fields Q(Q,p{‘“)
and Q(Q,py’), minus the probability that p splits completely in the compositum
Q((,';.p}ﬂ,p;ﬂ). By tue Chebotarev density Theorem, we get that the probability

that ! does not divide both the indexes is
. ( 1 , 1 _ 1 )
[QGm™): Q" [QUer) Rl [QUap) : Q]
Multiplying for all primes . we get the formula:

{ prime

A natural generalization of this argument to the case of r distinct primes with the
application of an inclusion exclusion principle, yields to:
1 1\*
o= 1 (- - (-9)]).
We will prove that this heuristic argument is correct with the assumption of the
Generalized Riemann Hypothesis and some adjustments of the same type of those
noticed by Lehmer in the case of the Artin Conjecture for primitive roots. This will
be applied in Section 4.3 to the problem of determining the least prime primitive root

modp for almost all primes p.



4.1 Another Generalization of Hooley’s Theorem

\We present in this section a very natural generalization of Hoolev's Theorem for

primitive roots.

Theorem 4.1 Let P = {p1,...,ps} be a set of odd primes, L(dv, ... d,) be the

composdum fleld:
3

L(dys....ds) = [] QUCu. 2™,

=1

Ndyyndy = [L{d1, ..., dy) : Q], and let

.

5p = i pldy)--- p(d,)

di=1,mds=1 My ,eds

Define
Np(z)=#{p<z|Vi=1,...,8 p is a primilive rool (mod p}}.

Then, if the Generalized Riemann Hypothesis holds for the fields L(dy,...,d,), we
have that

. log log 2
Ne(z)=6p Ioz - +0 (I—o-._f)iq’, > log p,-)

log € i=1

for some absolute constant co, uniformly respect fo s = |P| and py, ..., p,.

Remark: It is not straightforward to see that ép is well defined nor thal it is non
zero. Indeed, the series defining the density, converges absolutely. We will assume it

for the moment and prove it in the next section in Corollary 4.12.

Proof: Ve will follow the same approach of Hooley who first noticed that in

order py,...,ps be all primitive roots for the same prime p, one has to have that,
Vi prime, ! fiF, : (p)l.Vi=1,....3,
therefore
JV'P(I) = I\r'P(m:y) T -‘”'P('T:y)
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where
Np(z,y) = # {p <a|Viprimel<yandVi=1l.....sl fIF :(p )]}
and

Mp(z,y) = # {p < z | 3 prime, ! > y with {|[F} : (pi})], for some i =1,... ,s}.

We choose y = L log z for a reason that will become clear later.

3
Step 1) Mp(z,y) € %ileogp;.

i=1

Clearly
.r‘fp(l‘, y) < Z -f\:[{p.}(-r.' y)!

i=1

therelore it is enough to show that, uniformly with respect to P,

I‘J{q}(it, y) (\’< E—lo—g.lo_gf

slog q.

log® x
This was proven already by Hooley in his original paper [26], and we will report it
here just for completeness.
Note that

Mgy(z,y) S A + Bl +[C],

where
A={p € Mz, y)| A|[F; : ()], 1 > 2/ *logz};
B ={p € My(z.y)| H[F; : (q)], 5= < I < 2/logz};

og- =z

C = {p € Mg (2.y)] 3[F;: () ]J<1<hg_;}

| 4| can be estimated as follows:

HIF, : {g)] implies that

r,rLl‘ =1 {(mod p)
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Therefore, since [ > r'/*log.r and p < r, auy prime in A must divide the positive
product
H (qm - I)
m<rtlog™! »

Now note that the number of divisors of a natural number N is O(log V). therefore

|Al <« 3 mlogq < ul

m<et?log™ r

— log 4.
log* & s

| B| can be estimated as {ollows:

Retaining only the condition {[p — 1 for the primes p € B, we got

Bl Y w@l).

1/2
;—E§?<15:‘12 log z

By the Brun-Titchmarsh Theorem, we know that

T

Tz, 1) < ({ = Dlog(x/l)’

VWe therefore deduce that

T 1 T log{
IBl < - K 3 '
o5z 2 T Tz . & z
: 08T ip . 08" T 12 1
F(ls.r: logr t-;-—_v-;(fs.t “logr
E= T 4

from which it follows from the easier Merten’s formula that

z z!/? z log log
B — | log (z!/2 - ] = -
|B| < v ( g (:c log .’L‘) log (logzx) + O( )) 0 ( )

log* x

|C| can be estimated as [ollows:

We have already noticed that {|[F; : {¢)] is equivalent to the statement that p splits
completely in the field Q((, ¢'/!), the version of the Chebotarev Density Theorem

that assumes the validity of the Generalized Riemann Hypothesis for such fields is:
Pz, 1) = #{p < z | p splits completely in Q(G, 4"} =
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12 | ey
i) + O oz e 1 -q).

Il we use this formula we get:

— | S 2
1] = }_‘ Plel)y= [1”_1)11(:)-:-O(.r”'logr-l'q)}=

O(l - )-‘-O( logq).
ylogz log”r

Taking into account that y = L log z, we get

61=0 (i ssiona).

which is the desired estimate.

Step 2): We can now turn our attention to Np{z.y). We claim that

Z Z,u ay) - pla)P(r.ay.... a;) (1)

where the * over the sums means that the sums are extended to those values of a; for
which all its prime divisors are less than y (note that this implies a; < €% = r/39),

and

This claim can be proven by induction on s: If s = 1 then we have the standard
inclusion-exclusion principle:

Npg(@) =5 =S Ple. )+ S Pladly— = pla)) Ple, as).

<y Iy bl'<y gy=1

Similarly, for 0 < t < s, define

h-(m,am ..... as) = #{p € Nep, .oz 9) |a,~ l[Fp {p)] Vi=t+1.....8}
Clearly
Polir.ay as) = P{z.ay..... )
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and the recursive relation holds:

Pr.agpy, ... a,) = Z pla) Py (roan ... ).

Hence inductively

Np(z,y) = Py(x) = z ilag). .. Z;t(«n)l‘u(.z‘.al. ey dy)
a, a4y

Now note that the condition a; |[Fp s apid] is equivadent to

p splits completely in Q(Cu,,pl/“‘),

and that a prime splits completely in a set of ficlds if and only il it splits completely

in their compositum.

Therefore a; l[F; :{pi)] for all i = 1,...,s, if and only if p splits completely in
H Q(Cunp}/m) = Q(C[ﬂlu--..ushp:,al . Dllu’)-
=1

We gather that
P(r.a1,...,a5) =#{p <z | psplits completely in L{ay,...,a,)}

and the Generalized Riemann Hypothesis allows us to write the Chebotarey Densily

formula:

P(I,ﬂl,...,a,) = L li(x)+ O (_,L.l/'-! (Iog:r: < log Du:,....u.)) '

where Dy, ..., is the discriminant of L{ay,...,a,). Recall that by the Hensel inequal-

ity (See page 239 of [42]) we can write
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since only gy, ..., p, and the primes dividing [ay, ..., a,] ramify in L{ay,...,a;). Now
substitute inside (1) and get:

Np(a,y) = L Lﬂ ){ l(z) +O(x"2(logx+——-10gD“‘ """ °’))}=

n“‘l. pernrily

5pli(z) + O ( ) #2(a1)-..p2(as)) li(z)+

(ﬂ]...-.n;)ES nal....,na

O ( Z i (log.r + ilog;ﬂ: + log[a:,---,aa])) (2)
i=1

<ol etV

where S is the set of s-tuples of positive integers where at least one of the component

is greater that y. We will prove later in Proposition 4.4 that

Z par) - - ¢*(as)

(@rrmas)eS  Taieenas y

for some absolute constant ¢; . In our case 1/y <« s/logz therefore (2) is equal to

(10&, Sclzlom) ("’ > log[al,...,a,]).

or

IOE, T i=1 a1 <eTV..a, LedYy

Finally note that if ay,..., e, are square-free numbers with prime divisors less than

y, then also [ay,...,a,] has the same property, thus

> logla,,...,a,] < > y L yet¥ « zPlogx

oy <eY.a, eV a1 <el, q,LeY

Hence

Np(z.y) = br

& T 0
+0 — o legp; | .
log 2 (Iog' a:co g; 8 p,)

which, together with step 1) proves the Theorem.O



4.2 Calculation of the Densities

We can now give the expression for the density §p. and as we did in Section 1.2, the
first step is to calculate the dimension of the fields
3 'l'!
— — N V/ayy - a 1fu,
L= Lal,...,a, = H Q (Qu.-P /e ) = Q(Q[ah....u,l'pl Yo aP,/l )1
i=1

for any s-tuple a),...,a, of square-free integers. This is done in the [ollowing:

Theorem 4.2 Let n = ngy,..0, = [L:Q]. M = [a1,... 0] and suppose P is the
product of those p; such that pi|M and a; is even. Let £ be the number of prime

factors of P, then

. ¢(_U)a|-~a,’
da

with
{ ifVglP,g=1 (mod 4),
t—1 if 3¢]P.withq=3 (mod ).

Proof: The argument is similar to the one in the proof of Theorem 1.5. We can

suppose. with out loss of generality, that P =p, .- p, and define

Co = Q(Cur)s Ci = Cia(pi™).

Clearly L = C, and
[L:Q]=[Cy:Csut] - [Ca:Ci]a(M).

Step 1): For 1 < < s, it results {C: Ci—y] = @i or a;f2 .
a4
Since z* — p; splits into linear factors over Ci_;, we have thal [C;: Cio)] = L i q|d

is a prime, then we have the fields:
' T /4 C C:
Ci-1 € Ci(p"") € Ch
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Now, cither ¢ =1 or
a;

[Ciar(p’?) : Gim] |[Ci: Ci] = i

1
and since a; is square-free, we deduce that p} € Ci_;. Either p; € Co which imply
g = 2 since the only subfields of a cyclotomic field of the type Q(p}"") are quadratic,
or Co(p,!/") is a Kummer extension of degree g of Cy. Now by Galois Theory, we get

that such an extension has to be of the following type:

CU(P;!M) =Gy ((ps: " ‘Pak)llq) »

where | € 8; € 83+-- < 8, <1 —1 Finally, the Theory of Kummer extensions, (See

Lemma 3 at page 160 of Cassels and Frohlich [7]) implies that there exists 0 £ ¢ < g—1

1/q
b
— € Co,
((pﬂl.‘.p-’k)‘) °

Step 2): [Ci: Cinq] =a; fort <i <.

such thai
which again implies ¢ = 2.

In the case a; odd then clearly Step 1} implies Step 2), thus suppose g; is evea and
(Ci : Cic1] = a;/2. In this case, we have that /p7 is in Ci; because a; is square-
free ([Cima{y/Pi) : Ciz1]|@i/2). This implies that p; ramifies in Ci-;, but since, by
the Kummer Theory, the only primes that ramify in C;_; are py,...,p;-1 and those
dividing M, we get a contradiction and conclude that [C; : Ciy] = a;.
This also implies that [C, : C¢] = a4+ - as.

Step 3): If every prime dividing P is = 1{ mod 4}, then [C: : Ci_,] = a;/2 for every
1<t <L,
From the Theory of C.yclovtomic fields we know that a generic quadratic subfield of

Co = Q(Car) is of the féii;\\'ing type:

Q ( (IDl) D) . where D1 ,
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since (_Tl) =1 if and only if ¢ = I{mod4), we deduce that /g € Cy and the Galois

group of C; over C'i_y is generated by the map

. lj'h .2 ll‘h
gip = t;.pt'

(note that o(\/pi) = (o(pi/™))=i® = VD), which has clearly order a;/2.

In this case we have [Cy: Co] = ay - a2

Step 4): If it exists ¢ | P with ¢ = 3( mod 4) (we assume, without loss of generality,
that ¢ = py), then [C) : (o} = q; and [C;: Ciny] = ai/2 for every | < ¢ < 1.
The assumption [C) : (o] = a,/2 would imply again thal /pr € Co. By the same
argument of Step 3). this implies that the Legendre symbol (::':':l‘) = 1; which is a
coutradiction. Therefore we are left to show the second part of the statement of this
Step.
If 1 <i £tthen /p; € C because, either p; = 1(mod4) and thus /i € Cy C C,
or p; = 3(mod4) and /pip: € Co hence \/pi = /mipi//Pr € C1. In both cases, the

Galois group of C; over C;_; is generated by the map

o p = ™

which again has order q;/2.

Finally, in this case we have [C,: Co] = a1 -+ 4,2 and this concludes the prool.O

Corollary 4.3 We have the following lower bound for the dimension n,,

field Lq, .o, over Q:

a, of the

.....

> é([ah v sas])al )

..... 2, =
23

.a

We have now enough tools to prove the property we used during the prool of

Theorem 4.1.
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Proposition 4.4 Recall that § = {(ay,...,a,) € N*| 3 with a; > y}. i results
that

5 wila) - ples) oo 3)

(ul....,a,)ES na;,...,a, y

Jor some absolule constant ¢,.
Before proving Proposition 4.4, we need the following technical Lemma:

Lemma 4.5 Counsider the multiplicative function di(n) defined as the number of ways

to wrile n as product of t natural numbers, and denote:

oty= ] (1+12d‘1(i )).
{ prime k21

we have:

(1) < C(2)2

Proof: Note that d,{{**~1}) < d,({**), therefore

1+l(d*“+"‘“g)+ )<1+o(au( dfl) , dl) )

{ {z 2 M
d(1?) (1) 2 1 2
< d
_(1+ B + T + (1+12+l4+ ) .
Hence
1 P
a(t) < H (1+ g i + .. ) = ({(2)*.0
{ prime

Proof of Proposition 4.4: First note that from Corollary 4.3, we get that

#(la1,...,a4))a; - ay

yoomylly 2 o3 1
A

therefore (3) is

& gsz #2(“1)"';‘2(“:) , (-‘l-)

s @1+ 'asqé([al:-- . ,(13])
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But the sum on (4) is completely symmetric on the «,’s, therefore is

2 2
& s z pr{ay) - pe(ay)
ay >y al‘-.(ISO([(ll,,,_!”’)
(B2..adEN=1

o 3 ) (vl 3 ! _ ()

ar>y (a1 0270 @s0(lan s ai])

Using the multiplicative function defined above aud the function v defined as

_

pin
we can write that (3) is equal to:
9o 5 AHO) S dor(B) _ o (@) 5= dsma (B}t (a, D))
.;, E ¢(7(ab)) g a; d(v(b))

Since all functions inside the second sum are multiplicative, we can write {3) as

i 'O((ﬂ”) da—l(” ds—I(F) o
; a)a]'_.'[{l-r o(l) ( [ + 2 + )}Q

{ prime

tlyr |
2"30(5—1)22(;0 (HZ : )

ary {|]z k>0

If we can prove the estimate:

where

= w(a) dor() _ o (__9__)

then the estimate for the function o(t) of Lemma 4.5 would imply the claim.

From the Theory of Dirichlet series, we know that (6) is

A
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where F(r) = ¢ f(n) is the average of f. If we could prove the asymptotic
forinula:

F(z) ~ (s — 1)z, (7)

for r that tends to infinity, then we would have that (6) is

~g(s—1)z, o(s—1)
<</M = dr = P

T'o prove (7}, we make use of the Dirichlet series:

H(z) = i fr(l'_f).

(8)

Since f(n) < (loglogn)*, we know that H(z) converges in. the semi-plane R(z) > 1

and we can write the Euler product expansion:

H(z)=T] (1 + ziﬁ 3 d;;‘) = ((2)K(z)

where

converges for R(z) > 0. This decomposition gives an analytic continuation for H(z)

and therefore we can calculate the residue at z = 1 of H(z) which is going to be

)) =t

The Ikehara Tauberian Theorem (see [33], page 311) implies the claim of {7) and the

lim(z = 1){(z)K(z) = K(1) = II (1 - % + -:— (1 +>, d"lk([k)

i i !

Proposition results proven.O

Remark: The details used in the last part of the proof of Proposition 4.4 are
missing from the original proof of Hooley in the case s = 1. In that circumstance
the level of precision that we need here for the application on Section 4.3 was not

required.



If ng, .4, is the dimension over Q of [T}, Q(Cd.,p}/'i') then we have seen that

whenever ([dy,...,d],p1+ - ps) = 1, it results
Ndyeady = dl "‘dS.é({dh-"sd.!n:

this leads us to consider the function:

E Z #(ay) - - pla,) -

ay=1 a,=1 ar: a-"fﬁ([ah ey “.1})

Qur goal is to show that A, # 0 and that lim, & = 0, the best way to do this
is again to express A, as an Euler product. This will also confirm the heuristic

argument illustrated at the beginning of this Chapler.

Proposition 4.6

bom I (-6 03]

| prime

We need two lemmas:

Lemma 4.7 For any prime l, lel il be given a function oy, and define

e () Z i (F(al pla) H 0!1) 1 (9)
| CYPReCYIRY |

a1=1 ag+1—-l \ Qi1

|||||

(note that T)(1/(1 — 1)) = A, )} then:

-1
Tip1(e) =T (afl—a;) H ‘(1 - ‘_’:{1) :

g prime

Proof: The right hand side of (9) is equal to:

£ (ot )

o=l a=l T tfagea)
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where we just renamed a4 to be z. Note that for any multiplicative function f(n)
and /f € N, if we define

F(n) = p(n) J(H, ]/ H),
then £(n) is again multiplicative. If we take H = [a1,...,a;] and f(r) = [Ty, i, we

get that (10) is equal to

5 f(“'l—”m H]m) I [t=2| I |

i i CTo g prime 1 | lrsaat
. a7 jsan g

if and only if { = q and q fH, we gather that (11) is equal to:

£oE (s me) n 60 1 (%)

a) =1 ar=l ay TG ll[u] ....,a;] l|[n|,....ug] q prime

Multiplying and dividing by the missing terms, we get the claim.O

Lemma 4.8 Define inductively the functions §; = ﬁ;(l) in the following :

1 -1
[._ 1 and ﬁn ﬁﬂ."‘]l - ﬁn_l

_II (I_ﬂn(l))

! prime n=1

P =

then:

Proof: By induction on s, the case s = 1 being the definition of the Artin

constant. Lemma 4.7 implies that:

_ - _BO)Y _
As"Fs(ﬁl)_Fa—l(ﬁ‘.’.) ]___[ (1 I )—

! prime
Ly-a(f) l;Imc (1 - ﬁlTU)) (1 B gzlﬂ) )
C1(8:) H [H (1 - Eﬂ)]
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Finally

AR SO FEXOR (u 97_)
a=1 {la { prime

and the claim follows.O

First Proof of Proposition 4.6: Note thal by the inductive delinition of the
Bi’s, we have that

() (-249)- (- -1

and, more in general

(1 Al )) (1—ﬁ.+1(1)( (1 —%)L)) = (1 —B(D) (1 - (1 - %)W)) :

Finally
o (-8 - 0) -2 -

IL[0-5) (- 258) (oo (- (-4))
L5 (-0 0-7)

Substitute £1(I) = 1/(I — 1), and get the claim.O

Second Proof of Proposition 4.6: If we define

f(m) — IIZ #(al) — (aS)

then it results

since the lowest common multiple of square-free integers is itself square-free.

We now claim that f(m) is multiplicative, which imply:

A= ] (1+%I)f). (12

{ prime

T4



Indecd, i mand ' are coprime integers, then the map
(21, .« s @)y (bryeevyby) — (a1dy, ..., asby)

is a hijection from the set of s-tuples of integers with lowest common multiple m cross
the set of r-tuples of integers with lowest common multiple m’ to the set of s-tuples

of integers with lowest common multiple mm’, whose inverse map is given by:

(€15--+y€5) > ((€1:m), ., (c5,m)), ((€1, ™), ..., (c5, m)).

We gather that

N #(albl)"'p(asbs) _
‘ f(m)f(m') = MZ‘;’ b1§b= arhy -+ - azb, =
lageeiard=m (b . by]=m’ '

a;c, #(r.‘;z__i:(ce_)_ = [(mm').

fey v ts]=mm!
Finally, if [ay,...,e,] = p, then each a; can be equal to 1 or to p, and each possibility

is possible except a; = 1Vi = 1,...,s. Hence

-1 8 1 S _1k —1)* 1 s
f(p)=s—+ = 4ot (—,;)-+---+L,) =(1—-—) ~1.
p 2 | P k P p

-

Substitute in (12) and get the claim.O

Corollary 4.9 With the same notation of Theorem .1, we have that:

A,=0 (o L) .
log s

Proof: For any fixed N > 0, we have that:

o9, f{)
»A, <1 (1—?-_—1)

<N
[E)

-1
ot



VY - . .
where f(l) = (1 - (1 - 7) ) Note that in such a range for [ it results

iz (1-(1-5) ) ~ 1=t

as /N tends to infinity. Hence

BA, < e.\:p{Zlog (1 — %—g_l\—?)} & exp — {Z (Ti—l) f(r\")} &

12 g2
exp— {(loglog N)(1 — e %)}

Now take N = s/logs and get

VA, L

0

exp (log log(s/ log s)s'l) K

log s log s

Theorem 4.10 Let P = {p1,...,ps} be a set of odd primes, suppose P is the subset

of P of those primes congruent to 1(mod4). With the same notation of Theorem §.2

and Proposition {.6, it results

el kol ai)---pla, 40, - _—_)l_ y,
6P=Z...ZM=%A’{H 1 +H "i‘. (:) },

ay=1 a,=1 nﬂq.-...u, peP 1 + Ctp

where o, = -1 ((1 - l)s - 1).

r

Proof: To make the notation lighter, we will indicate the s-tuple (a),...,a,) by
¢, the product a; - --a, by @ and p(a;)--- pe,) by pu{e). We also say that a is odd il

all its components are odd.

Furthermore, for any subset I of [s]%/{1,...5}, we denote by P; the praduct of
elements in I and by [ the subset of J of those i's for which p; = 1{mod4). Now call
[a]! the set of s-tuples of integers for which a; is even for all i € [ and a; is odd for
all i € I. Tt is clear that {[a]'},e(q is 2 partition of N, therefore

ta t{a — (-1 3%yl a
p=S M8 _ 5 v M) g DT g 200l

Ne  cqeepy e g 20 o T9((a))

76



3=
v((Q) — 1 otherwise

where, if Q = (P, la]).
{ WQ) QP

the possibility @ = 1 belonging to the first case. We gather that

3
1a) _ < gu(py) u(a) LY S PP ARS #
ok sy MO

o odd ao(

(L]

—~ 27u(a)
nzm'm @g([a]) .% e%d @o([al) Jol a odd E)) 1gi
Py Pplal} - PJ_(PJ' RE)) JEl PJ—(PI lal)
2 Z Su{Py) Z #(_) Z o P; )Z P (a)
3 s odd “9([“]) Jci a odd ao([“])
Pr=(P; lal)

Jei
- Py=(Pyld)
(Pr,[a]) is equivalent to Pjl[g] and

Now nole that for J C [. the condition F; =
lal, Pr-s} = 1. As we did during the second proof of Proposition 4.6, we can write

u(a) e Kim) — pa)
7 = = (13)
ﬂ%;d ao([al) mz-_-l é(m) ,%:d g’
PJ:.-\ Pyl m Odd.PJlm,(m,P!_J)=1 @=m
again the function inside is multiplicative, thus we can write that (13) is equal to
oc 2 3
S # (m) I [(1 _ l) _ 1]
me=l ?’(m) l[m l
m odd.Pylm.im. Pl p)=1
1 ive hacd #ﬂ(m) 1\$
= 1-=+) =1 > =—=TIl1-5) -1 =
WP, 11 [( 1) - 5(m [( I) ]
Q\ J) 1P modd:n(—ll[.m)=l Q( ) ‘[m
1
2°A, H ap [ .
TR
Putting everything together,
o s GRS o 0 T sy e T ]
IC[4) JCI rIPs rlPr - + Qp Jgf P olP; 1+ ap [
Finally
1

S Hellyre=2 2l pl,,!1+o,,_2a,.1;111+am

7
it iR rIle+a" cls




and similarly

(D" - o L e
2 i [l e Il =Y S TT0+200 T
IC[s] 2 Jci plPr plP L+ IC(s) 21 plHy Pl U+ a,
l - 1 . 1 : —1 ,,
—_ 9 - = | - | = p
2s :.[._.I, 1+ap E ( 1+ OP) i=1 ( ( p ) 1+ np)
Py S1modt P1 Edmod4 .

therefore the claim.O

We conclude this Section with two Corollaries:

Corollary 4.11 Under tha same assumptions of Theorem 4.1, if every prime in P

is congruent to 1{mod4) then the density of primes for which all elements of P are

primilive roots, s

[[0+a).0

gp

Corollary 4.12 For any set of odd primes P, p is a well defined number.0

=1
o



4.3 An Application to the Least Prime Primitive Root

In this last section we apply Theorem 1.1 to the classical problem of the study of
the function G(p) defined as the least prime primitive rost {modp}. \ore precisely,
by the use of the inclusion exclusion principle, we delermine a uniform asymptotic

formula for the number of primes p £ = such that G{p) < r.

Theorem 4.13 With the same notation end hypothesis of Theorem J.1, let q, be the

n-th odd prime,
T(z)=#{p <z | 3i<r]|q is a prime primitive root (mod p)},,

and
b = v (-1)Flsp
C PCprepe)

(s =1). We have that

Ti(z) = (1= §,) xm +0 (‘mgbg"rcg)

log log® &

Jor some absolute constant Ca, uniformly respect to r.

Proof: Let S, be the number of primes p up to = such that none of the first »

primes is a primitive root modp.
As a straightforward application of the inclusion exclusion principle, we get that

So= > (=1)FINp(2)

PC{prvmpr}

where as in Theorem 4.1,

Np =#{p <z |Vq€P,qis a primitive root (moclq)}'?‘-

and Ny(z) = 7(2).



i«

Applying Theorem 4.1, we get for a suitable positive constant ¢,

S= T (—pF (g.p z _.ro(“i""c‘;*_"cg'm)) _

PC{prmatr) log r log™ »

5T 40 (mloglogrcr)

r 3
log = tog” r
where we have taken C = 2¢, say. Finally, noticing that 7, = () — &,, we got the

claim.O

Corollary 4.14 Let f(z) be any monotone function of T that lends to infinily. Sup-
pose also that f(z) = o(loglog z), then, if the generalized Riemann Hypothesis holds,
we have that G(p) £ f(z) for all primes with the exception of u sel of primes of size

. loz los .
b+ (282

log = log” z

Proof:lt is enocugh to notice that by the assumption made on f, the error term

is o(w(z)).0

The problem now amounts to estimating the behaviour of the function §,. Com-

puter calculations suggest that §, = O (lolr), but we do not hazard in any precise

claim.

We are not even able to present a direct proof of the fact thal

lim 4, = 0,

T—0

which, of course would imply that G(p) < f(p) for almost all p (J — oc), under the
Riemann Hypothesis.

The latter assertion has been proven by L. Murata in [38] and is equivalent, under

the Riemann Hypothesis, to b, = o(1).

Upper and Lower estimates for §, would allow to determine (under the Riemann

Hypothesis) Qu-type of estimates for the size of set of primes p for which G(p) < J(p).
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We do feel that such a problem is not too difficult and we are planning to address

these questions in the near future.

Finally we would like to mention that in principle this approach could be extened
to the analogous problem for the function g(p), the least primitive root {modp). We
found out just recently that a general form of Theorem 4.1 has been found by K. R.
Matthews in [36]. The asymptotic formula found by Matthews is not uniform and
provides a weeker error term than Theorem 4.1, however the proof can be adjusted to
vield to an analogous result of Corollary 4.14 for g(p). The expression for the density
in this case would be much more complicated and even computer calculations seem

at the moment very hard to perform.
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APPENDIX A: ON DIVISORS OF p-1

We recall that Lemma 1.4 states that for any given sequence of multiplicatively
independent integers, the number of primes for which the group generated by the

first r elements of the sequence is smaller than ¢ is
0 (t"*’l"'rlog r) ,

uniformly with respect tor.

(Note that we are using the statement of Proposition 3.1 according to which the sum
of the logarithms of the first r elements of a sequence of multiplicatively independent
numbers in asymptotic to rlogr). A consequence of this is that, if r is fixed, then

for almost all primes, ]

pret

logp

Indeed, if we take t = 2™/("+1)/log z, in Lemma 1.4, we get that the number of primes

ITe| 2

for which |T;| < p/"+1) /log p < t is O(x()/ log"'" z), therefore for almost all primes
we have the desired inequality. It is natural to ask what would be an estimate of |I,]
uniform respect to r? Using the same method of the fixed r case, we get that, il f(p)

is any divergent function, then

T, > ( P )
f(p)logp rlogr

for almost all primes, uniformly respect to r. We need of course Lo ensure cerlain

growing conditions to be met.

The goal of this section is to improve the preceding results making use of the

following:



Theorem A. 1 [t crist, 3 and § positive such that, for all b € [log™ z,1 - log™ ],

h

and y = x*, onc has uniformly on h:

i {H S| 3ulp-1, withue [%yexplo*g%]} - (10:::)
=]

where the constant implied by the o symbol is absolute.

Before starting the proof of the Theorem we need some preliminary lemmas:

Lemma A. 2 (Erdds) Let Q(n) be the number of prime divisors counted with mul-
tiplicity of a natural number n than the normal order of Q(p — 1) is loglog p; more

preciscly, for every € > 0, it erists n = n(e) such thai the number of p up to z for

T
° logz/ "

which Q(p — 1) > eloglog p is

Proof: See [12].0

Lemma A. 3 (de Bruijn) Let W(z,y) be the number of natural numbers up to z

whose grealest prime divisor is less than y, then

U(z,y) € zexp {—cllo—g{} .

log y

Iroof: See [11].0

Lamma A. 4 (Hardy-Ramanujan) For any 0 < € < 1 there exists v > 0 such

that the number of integers n up to z such that Q(n) < eloglogz is

0 (L) .
log™

Proof: See [19].0



Lemma A. 5 Murty (Weak Brun’s sieve) For any natural numier m < &, de-

note by N(x,m) the number of solutions of
p—=1=qm

where p and q are prime numbers < x. Then for some absolule constant B > 0, we

have
Ba(loglog x/m)*
¢(m)log*(x/m)

N{z,m) <

Proof: See [43].0

We are now ready to prove Theorem A.l:
Proof: Let S = {p <z | Julp~ 1, with u € [y, yexplog’ .r]} Without loss, we can
assume that p > é;, and for a suitable § to be chosen later, p € & means that

p—1=uv with U e [y,yexplog‘s :1:] and v € [":'7 exp log? J—} .

Y

If (u) > Zloglogz and Q(v) > %logloga: then Q(p — 1) > Floglogx, the unmber
of p € § for which this holds is certainly less then

#{p <z |Q(p-1)> : loglog;r}

3
and for Lemma A.2, this is o(x(z)).
Remark: A stronger statement than Lemma A.2 can be found in [39]. Using

such a statement, our proof would vield to |S| « z/log” z. For the purpose of Lhe

application that will follow, our assumption is enough.

On the other hand, for a fixed u, the number of ¥’s for which the maximum prime

divisor is less then z is, by Lemma A.3,

0 (:-;-cxp {-CIM}) .

log =
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Fix ¢ > 0, let 7 > 0 be a number to be chosen later and put logz = log!~?~*x.
\We notice that u < yexplog® ¢ = zhexplog® z and thus we get that the number we

are estimating is

logm—logy—log‘sz}

—3=

I
&« —expq—c
u p{ t log' "~z

(1 - h)logz —log’ =

T Z ¢
€ cexpy—e < ;exp{—cslog z}.

log'=?=*z
{Note that this put the constraint 1 — 8 > §.)

Therefore, the number of p € § for which this holds is

1
<> '% exp {—c3log’ z} < zexp{~czlog'z}D_ ';
u %

& zexp {—cylogt z}

(here the dash on the sum sign means that the sum is extended to all the values
of u for p € §). A similar argument shows that & > log™ z implies that we can
also exclude the possibility that the maximum prime divisor of u is smaller than
exp (log‘“ﬁ“ 'r:) Therefore we can assume that

p—1=1uv4q, with u; and v, in the desired range, ¢ > exp (logl""’“e 3:) and Q(u,)

or Q(vy) is less than £ loglog .

From Lemma A.5, we get that for fixed u; and v;. the number of possible solutions

is

s(oglog ) a(logloga)?

wrylog? (zfuivy)  wyvy log®(z/ugny)’

As wyvy < zexp(—log' =% ) and (log log z)* < log® z, the number is

T

< .
uqvy log? =2 ~3 ¢

. As applications of Lemma A. we know that

9 .
#{n <2| Q)< §loglog.~c} =0 ( ? )

log" z
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for some 7 > 0. Partial summation implies that, i{
S(t) =# {n <t Qn) < %Ioglogt}. then
1 - = S(t
3 —=.‘_-(r)/.r—f —(,‘—)dt < log' ",
Q(n)<(2/3)loglog s 1 F

therefore the number of p € § with the required properties is

Sy > ET—L)

z (Q(v:)<(‘-‘13)losios: w1V <23 ogloge L HLEL

T .1 1 x
< 1+r—2,13—3£:r (Z " +Z !-_) < logl—'.le—ﬁz-!-r—b '

log el S Wl ) Iy

<W

So that if we take § + 28 <  (for example 5 = § = }r) we obtain the desived result

and this completes the proof of the Theorem.O

Remark: The result just proven is a p — l-version of a Theorem of Erdos (See
[13]). For a general statement on estimates of the number of n < & with a divisor in

a given range see [49].

We are now ready to give a good estimate of |I'.| = |{p1,...,p)|. More precisely:

Theorem A. 6 Lel r be a fized positive number, then il exists § > 0 such that for

almost all primes,

Ty > p™ exp (log‘s p) .
Proof: From Lemma 1.4, we know that

#{p<a| 0| <t} =0(HF),

if we take t = 77/ log z, then

' P"—;'-f 'r:’% A
#ip<z| Il |< don<zgl| [, < Z = o(7(x)).
loseiinl< It «plpselini< 22}« o ~olsto)
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r

&
mee |1 [
I[(nu.||,.|2 [

for almost all p's.

Now sct

.’E""i'_‘ _r _latloxx
y = = Irr+! log =
log @

. . . r loglog 1 ) : \ fra
and note that o7 — === <1 - = for = large enough. Theorem A.2 gives that

there exists & such that if

I""".'_l L §
T = {p <e|3Ap-1, e oo e (log m)]}
then | 7| = o(w(x)). Finally, since

T+

T T P
_ {pg:nl IT-| € [Iogm’m +T exp (Iog x)]} cT,

we gel that for almost all primes p,
ITy| > 277 exp(log® &) > p™7 exp(log’ p).0
The case in which » grows with p can be treated in an analogous fashion. The

only care is to consider the version of Lemma 1.4 which is uniform with respect to r.

in particular:

Theorem A. 7 Therc exist § and § such that if r < (log® p) — 1, then for almost all
primes p, |

IP,| > p™ exp(log’ p).
Proof: The uniform version of Lemma 1.4 states that

#{p<a| || <t)=0(t*rrlogr),

o 1
0y - = Z 1 -
if we take { = TheTsr We get

2 {n S| |r] <p } « ————r~Flogr = o((z)).

log 2 logr 2

1)

rlog p

(v s]
-1



Now set .
ITr+t r__ 2laglog e lagr
1 Tog, + fog T = _rh = y

— = T
rlog” r
—_ _r _ Yoeloer _ logr 4y 1
and note that h = -5 Togr " locr < T

if 7 < (log” p) — 1 and r is large enough.

Therefore Theorem A.l gives

|

+

< |0y < p™T exp(log® p)} = of{w(r))

[E]

p"
rlog”p

#{psxl

which clearly implies the claim.O
Remark: If [|[F} : |I';|], then Theorem A.7 puts the constraint

-1 . X
2 < p~ T exp(~log’ p)

for almost all primes p.
Unfortunately the position r = (log p)? — 1 and the constraint 8 +§ < 1 remarked

during the proof of Theorem A.l. implies that

]
I < exp (log"™" p —log® p) < exp (3 log! " p)

Such a bound is too high to make possible the use of any of our techniques for tl

range of »’s under consideration.
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APPENDIX B: ON THE EXPONENT OF THE
IDEAL CLASS GROUP OF Q(v/—d)

Lot o he a positive square-free integer and let m(d) denote the exponent of the
clags aroup of Q(v/—d), i.e. m(d) is the least positive integer m, such that z™ =1

for every x in the class group.

n 1972 D.W. Boyd and H. Kisilevsky (see [3]) proved that il the Extended Rie-
mann Hypothesis holds, then for any 5 > 0, and d sufficiently large,

logd

m(d) > (2 + n)loglogd

(1)
which of course implies that m(d) — o0 as d — 0.

The goal of Lhis note is to establish unconditional inequalities of the type (1) for
density-one sets of values of d. Before doirs thic, let us review the method used by

Bovd and Kisilevsky to prove (1).

First they noticed that if « is an integer of Q(v/—d) which is not in Z, then

N(a) = d/4 and that if p is a rational prime that splits in Q(v/—d) and = is a prime

ideal above p, then =™ is a principal ideal () thus

J!\r(:)m(d) =pmd = N(a)m(d) 2 (d/4)m(d)'

In conclusion,
~d
(?‘) =1 = p>(d/4)md (2)
Then they proved that

If the Ertended Riemann Hypothesis holds then, for any integer d, there exists a

Cprime less then log™" d for which —d is a quadratic residuc and this gives (1),

[#7]
Y=



Now, let us take p = 3 and ask how often is a square-free o a quadratic residue
(mod3)? This happens when d = 1 mod 3. and the density of such s is certainly

positive

For a positive proportion of squarc-free integers d,
g

In general we will be able to prove that

Theorem B. 1 For anyd < z there exists a prime < logd for which d is a yuadratic

. . > oy o} =1 .
residue with at the most O (;1:""‘“"51"5”) ) erceplions.
This is an consequence of Theorem B.3 below and by (2) implies

Corollary B. 2 For all discriminant d < z, we have thai

log d/4

log log d

m(d) >
with at most O (m“-“("’g '°3")'1) exceptions.
For an integer n, let M(n) be the least prime for which n is quadratic residue,

M(n) = min {p p is prime and (%) =1 }

Let K(z,s) (respectively K(z,s)) be the set of numbers (resp. square-free nunthers)

i.e.

up to x such that M(n) > s. We have that

Theorem B. 3 Lei k{z,s) = |[K(x,s)| and ky(z,s) = [K(x,5)], then

T 1 2 A og®

6 = | a0
b) m(m,s)=;sg:(.,;H(“‘r"—,+1)*°(2=f-ﬂ|~gs '



uniformily with respect fo s (where as usual 7(s) and 0(8) are respectively the numbe r

of primes up to s and the sum of the logurithms of the primes vp fo s,

Proof: Let us define P to be the product ol all primes up to s.

b) In order for a square-free number n < 7 to be in Al s), one must have
< |

(1;-) =0 or =1 for all primes p up to s. For any divisor Q of P, let Ay be the set of

n € Ky(r.s) such that

n n P
— | =0 for any p|@ and (-—) = —| for any :}—~,
( p) pl P MG

Clearly
Ry(r,s)= ] 4q (1)
Qe
where the union is disjoint. Note also that
p]
|Agl == {n < —5— (n,@) = 1, n square-free, (:—i) = — (%) for any p :—2 } (1)
=3 "# {n < % | (r, @) = 1,n square-lree, n = g{modg;),i=1,... .t}

where we have put g = q -+ q and 3 ° means that the sum is extended to all the

t-tuples (gr....,4:), g being a congruence class modg; such that (f,L.) = - (%)

By the Chinese remainder Theorem, for each t-tuple (g;...., gi), there exists a

unique congruence class M = M(gy,.. .,gt)(modg) such thal

)
n = gi(modg;),Vi=1,....,0 = n=M (modé—)
therefore (4) equals

Now we need the following two Lemmas:

; .
(n,Q) = 1.n square-lree, n = M (mor_l %) } . (5)
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Lemma Bo 4 Lot By, 1, Ry be positive inlegers with (R, R3) = (Ra, Ra) = | and
define
Bie, o (y) =#{n <y | (n,R) =1, n= Ra(modHy) }

then, uniformly with respect to Ry, Ra, Ry < y, we have

‘P(Rl)
Bpryryry(y) = O (W (),
Ry, RauRs () yR133+ (V(Ry))

where J(1y) ts the number of square-free divisors of Ry.
Lemima B. 5 Lel Q),Q2, Q3 be positive integers with (Q1,@2) = (@2, @3) =1 and
define

C0,.0:.0:(2) = # {n £ = | n square-free, (n,@1) =1, n = Qa(modQ,)},

then, uniformly respect to @, @2, @3 < z, we have

L6 _¢(Q) _L)‘l T
Cortnen(s) = 5! T (1 1) +o ().

Remark: Lemma B.4 and B.5 are due respectively Cohen (See [9]) and to Landau
(See p. 633-636 of [30]). Their version is slightly less general though the proof is
similar. One might think that a stronger version of Lemma B.4, say valid on a range
of R} of the same order of the range given by the Brun’s Sieve, would vield a better
error term in Theorem B.3. On the contrary, it will become clear how this is not

influential to the main goal of our discussion.

Proof of Lemma B.4: We have that

Br ko (#) = D p(d)#{n <y | dln, and n = Ry(mod R3)}

dIR,

= T uld)i {n <¥ns= Rgd'(modR;;)}
dIR;

- i
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where d” is the unique congruence class mod Hy defined by dd™ = 1 mod B (Such a
class exists since we have assumed that (R, R3) = and J| W), Finally
Brimany) = 2 a(d) ( - 0(1))
im d s
1
(R )
= HR
J R!I‘)S ( ( l))

Proof of Lemma B.5: This is based on the identity

=3 pld),

&n

We have that

Caieaas(s) = > Bm)= > )

ne: a4
(n)=1 (4.9)=(8q))=1
n=Q3(modQa) ARzl modQg)
= > wld X 1=
ds:lf: 5'::?.—
(d.Qy)=(d,Q2)=1 (8.91)=1
S=Qad® -[mu-lQ-_-)
“ '-! »
= > wd)Bo, 0unq.(z/d) (6)
dg:t/2

(d,Q1)= d\Q2)=1

where the condition (@2, @2) = 1 implies (d,(2} = 1 and d* has the same meaning

as in the proof of Lemma B.4. Now 1pply Lemma B.4 and get that (6) equals

> ) (552 o) -

dgz1/?
{d.q) Q2)=t
2, ) 3 M zp(Q)) YL
QIQ (aqd%)-; @ +0 (d>z:::/z szle) +O( N ))

and since clearly gt} I() and

=T
. . -1
pld) 6 1
Z o2 "‘.2 3 (I 2) !
122

d=i '
(4.1 Q)= 7




the claim s dednced. G

Now we can apply Lemma B.5 to (4) with Q1 = Q Q2 = P/Q.Q3 = M and

2 =z /(). Note that the number of sumniands in ( )/1) ), therefore

_#la) [6 z4(Q) (__1_)_1 ((E)m 7
"‘Q'“a(g){wecz P U-z) *Ol(g) M@ 2

N'9Q) | (2 Q) &
_) —+0 (2.-.(=) QV22(Q) logs)

Q
where we just noticed that #(P) = 279 and ¢(P) < f::l. Now use (3) and get

ki(z,s) = ). |Ag]

QP
6 = 1\ 9(Q) o2 ) . J¥(Q)

= ooy llil+-= ——+0| 5 2 S
s ll(145) 270+ 0 (g T omatey) ©
= EDREH R

= Sl {1+2] II1+2)+0 5
w270 1 T p 27(2) log s

The last identity follows since Yo\ srsa oL ;-.-,,(Q, converges as § — oc. This concludes the
proofl of b).0

a) This is simpler than b). For any Q|P, define Ag to be the set of n € K(z, s)

such that
n

n P
—] =0 for anv and |—]| = -1 for any p|—=
(P) vl (P) Fla

Again
fen]

and now

|.-1q|=z-:#{n$%] = (modq.)z—l....,t}
<

ns M(modg-)}.



where the g;.: = 1....,¢t and Al = M(qg..... ge) are delined as above. Now apply

Lemma B4 with By =Q, Ry =M. Ry=P/Q and y = é and get

12 EE 22 | gaioml 2 ammia [LEEIQ) | ()
I-‘lQl—ﬂ(g){'@" B +0(J(Q))}—- ”(-"T 0 +0( —--~-)).

Finally by (9).

bars) = 2770 [ T] (1 1) (1 2) o[22 (1 ! )
(e, 8) =277 Ly - + 31+ +o—
' s P 2 log s ot p—1

2

= 9-(s) (m 11 (1 + % - ;) + 0 {e" log’ ))

psa
Which is the claim of a).0

Proof of Theorem B.1: We want to estimate
#{d <z | M(d) > logd} (10)

Note that, since the contribution for d < z'/? is O(z!/?), we have that (10) equals

Ik

{d 2P <d <z | M(d) > logd} +O(x'?)

< {ds:z: | M(d) > élogx}+0(r”2). (1)

Ik

Now apply Theorem 3 a), with s = Zlogz and get that (11) is < then
9=(3log=) (-1: loglog z + 318N (1op log :1:)‘1)
& rexp(—Alogz/loglogz)
where we took A < 7log2, say, and this proves the claim.D

Remark: Note that although in Theorem B.1 we consider discriminants of imag-
inary quadratic fields which are by definition squarefree numbers, statement b) of
Theorem B.3. does not give anything more than statement a). This is due to the fact

that square-free numbers have non-zero density.
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‘Theorem B.3 b) can be improved using a version of Lemma B.3 in which the error
term depends on Q. This has been done by K. Prachar in [43] for the case @, = 1,

and his proof can adapied to proof the following:

Lemma B. 6 With the same notations of Lemma B.5 we have that, uniformly re-

speet Lo the paramelers,

_(_5___,‘.9(@1
53
T Qle pliC1Q2

L

-1
CQ|.Q:.Q3(:) = p'.!) +0 ((:1/2Q;l/'t+c + Qé/?-l-c)ﬂ(Ql)) ,

—
—
—
|

forany ¢> 0.0
Corollary B. T With the same nolation as above, we have that
6 =z 1 Z21/? . ' £f(s)
A - —_ —_ (shafae) ) =
ki(z,s) = =2 5(s) IT (1 + P 1) +0 ((68(31(1/4-e) +e 2l logs )

Proof: It is similar to the proof of Theorem B.1 b}, but in this case we have

-1
0
| Aol = %-‘)23) (1 + %) ﬁ-i—

-V Q
p1f? "’ Pl/?-]—z 192(@) 89(.1)
= _p-llidenlfi—c
0] ((ngp ¢ + Q;/a-;-:) 270)(Q) logs)

and therefore

kl(mvs) = Z |AQ|

Q|P
_ 6 ¢z 14— )+
- -"22-(") p<s p+1
P12 02(@) 1?2(@) £8(3)
+0 _ gy T X B
((P-lf.1+e QZ“; Ql/--l[el-rc.p((‘)) q%g Q"""“S’(Q) 9=(s) log s

6 = 1 £1/2 . c0ls) :
= - - (sM1f24e) ) _—
22RO (l o 1) 0 ((e""’“f"-fl e 27 ogs ) -
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. . . I — 17
The last identity because both the series g p Q—l;'—f“—jw—) and ¥ p AT‘T-‘"}‘"’(T%QM)'

converge as § — oc.0

Remark A general form of Theorem B.l can also be proven. 1t is a uniform
asymptotic formula for &, -;(x. 3}, the number of m-free numbers o up to & lor which
M(d) < s. The m-free version of Lemma B.6 is also in [43]. Finally, the results of
Prackar have been improved by Hooley in [24] and the use of this last one would give

a further improvement of Theorem B.3.

g7



APPENDIX C: OPEN QUESTIONS AND
FUTURE RESEARCH

Variants of the Bombieri-Vinogradov Theorem

A form of the famous Bombieri-Vinogradov Theorem for primes in arithmetic

progression states that

For any real number A > 0, it exists a B > 0 such thal

> |e(z,m, 1)~ L | K :z;
o é(m) log® 2
e e

where 2(zom. 1) =3 e logp.

S lmodm

This important result provides us with an estimate on average of the error term for
the prime number Theorem [or primes in arithmetic progressions which is as strong
as the one that could be deduced useing the Extended Riemann Hypothesis for the

Dirichlet [-functions of all the characters modm.

Such a Theorem can be interpreted as an estimate on average of the error term of
the Chebotarev Density Theorem for cyclotomic fields. More precisely. let us consider

the following statement:

For cvery integer m, let us suppose K, is a given finite Galois extension of Q
and let n(m) = [K,, : Q). Further, set

Pz, Nn) = > log p.

PS=
p splits completely in Km

We have that

1 z
W(z, Km) - | K —5— : 1
gn (2. Km) n(m)”| T logfz (1
St

Let us note the following facts:



o If the Generalized Riemann Hypothesis holds for all the (non-abelian) Artin

L-functions of Ay, then the statement is true.

o If, for any m, A, is the cyclotomic field Q¢ ). then the statement is a conse

quence of the famous Bombieri- Vinogradov Theorem.

o If, for any m, K, is the Galois Extension Q(Cu.a'/™) and the statement, is

true, then the Artin Conjecture for primitive roots is true for the number «.

The last fact has been noticed by R. Murty in his thesis and he gave a result

which is in the spirit of this approach.

We can refer to (1) as the general non-abelian Bombicri-Vinogrador Theorem and

ask for which families A, it holds

A proof of the general statements is certainly a very diflicult problent, and to our
knowledge, the Theorem of R. Murty and K. Murty in [11] is the only significant

contribution toward this direction and it states that:

If =x(z,q) is the number of primes p up lo x such that p splits completely in
given fired Galois eztension K of Q and p = l(modgq) (i.e. p splilts complelely in
K(¢{;)), then for any A > 0, there exists B = B{A) such that

l T
iz, q) — == li(2)| € ——
I DI okl XA R TR e

where @ = min ([fﬁ:ﬂ %) and the sum is exlended lo all the values of ¢ for which

EnQ() = Q.

In general, one could try to settle for something less and restrict the sumin (1) to
m < log© 2 for some fixed positive integer €. We would get a weaker statement b
with still quite a few interesting arithmetical consequences. Fox example, il we prove

L
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the statement with 0 = 2 (€ = 1 is actually Theorem 2.7}, then it can be proven

the following subsiantial improovement of Theorem 3.1:

For amost all primes p, the g 2525 primes generale Fy.

Such a problem admits an analogous situation where we substitute the Artin

L-Tunction with the L-series attached to modular forms.
The Lang-Trotter Conjecture for Abelian Varieties

In 1977 J.-P. Serre (see [47]) has proven the following result:
Let I be an elliplic curve defined over Q and let K = Q(E[n]) where by En] we
denolc the set of n-points of E (i.e. Q € E such that [n]Q =0). Let us put
o n
where p(n) denotes the p function of Mdobius. If the Generalized Riemann Hypothesis
holds for K, then
#{p <z | E(F;)

: . T
oy is cyclic} ~ 6[—

ogzx

This result has been reconsidered by R. Murty and R. Gupta. In 1990 (see [16])
without any unproved hypothesis they have characterized elliptic curves for which

E(F}) is cyclic for infinitely many values of p.

Gupta and Murty considered as well a similar problem to Serre’s Theoreni. namely

The Lang-Trotter Conjecture (see [34]):

Let I be an elliptic curve defined over Q and let P be a rational point of E with

infinite order. We denote by N(x, P) the number of primes p up to z such that
(P) = E(F}), then

"
log x

N(z, P) ~ 5(P)
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where Sg(P) can be expressed in terms of the decomposition of primes in the extea-

sions Q(E[n],n™'P) over Q.

Both this result and the statement of Serre’s Theorem are analogous to the Artin's

Conjecture for primitive roots.

Many of these conjectures admit a very natural generalization Lo the case ol

abelian varieties. The problem can be stated as [ollows:

Let A be an abelian variety defined over Q and let P € A be a rational point
(with infinite order). For all (but finitely many) prime numbers p, it makes sense to
consider the reduction of A modulo p that we can denote by A(F}).

A(F}) is a finite group and we can indicate with P € A(F;) the reduction of P

modulo p. Various questions can be formulated, for example:

o Under which conditions A(F}) is cyclic (or more particularly (P) = A(F})) for

infinitely many p?
e What is the distribution of the prime numbers with this property 7

¢ Is it possible to write a formula for the density of such sets of primes?

In the case dim A = 1. (i.e. A is an elliptic curve), then the Lang-Trotler conjec-
ture toghether with the Theorem of Serre and the contribution of Gupla and Murty,

provide with a precise indication on what should be the answer o these questions.

In the case dim A > 1, there are not, at the moment in the literature conjectures
that give any answer to this question, nevertheless it is natural to suspect that many
of the arguments that worked in the case of elliptic curves, extend to the general case

and the first prohlem is as usual to express, for any prime number L, the condilion

! |[A[F;,] : (P)]
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in terms of particular decompeositions of p in algebraic extensions A'(I. P).

Similarly as in the case of elliptic curves in which it has been necessary to dis-
tinguish between Complex Multiplication curves and curves without Complex Mul-
tiplication (see [17]), it is natural to expect that the properties under consideration

depend heavily on the structure of the ring Endqfl.

® ' 102



References

[1] E. Artin, Collected Papers, Reading, MA: Addison-Wesley (1965).

[2] E. Bombieri, Le grande crible dans la théoric analytique des nombres - Astérisque 18,
(1974).

[3] D.W. Boyd and H. Kisilevsky, On the exponent of the Meal Cluss Groups of Compler
Quadratic Fields Amer. Math. Soc. Proc. (1972) 133-136.

4] H. Brown and H. Zassenhaus, Some Empirical Obscreations on Primitive Roots, .
Number Theory 3(1971) 306-309

[5] D.A. Burgess and T. A. Elliott, The average of least primitive rool - Mathematika 15
(1968), 39-50.

[6] H. Davenport, Multiplicative Number Theory - GTM T4 - Springer Verlag, (1980).
[7] J. W.S. Cassels and A.Frohlich. Algebraic Nuniber Theory, Academic Press. (1967).

[8] E.R. Canfield, P. Erdds and C. Pomerance, On a problem of Oppenhecim concerning
?Faclorization Numerorum™, J. Number Theory 17{1983}), 1-28. -

[9) E. Cohen, Remark on a Set of Integers, Acta Sci. Math. (Szeged) 25 (196:1). 179-180.

[10] N.G. de Bruijn. The asymplotic behavior of a function occurring in the theory of
primes, J. Indian Math. Soc. (N. S5.) 15 (1951), 25-32.

[11] N.G. de Bruijn. On the number of positive inlegers < z and free of prime factors > y.
Indag. Math. 13, (1951) 50-G0.

[12] P. Ecdés, On the rormal number of prime factors of p — 1 and some related probleins
concerning Fuler’s ¢-function, Quarterly Journal of Mathematics, (Oxford Ser.) 6
(1935), 205-213.

[13] P. Erdds and R. R. Hall, On the Mébius function, J. reine angew. Math. 315, (1950).

[14] P. Erdés and M. R. Murty, On the order of a(modp), unpublished.

[15] R. Gupta and M. R. Murty, A remark on Artin’s Conjecture, Inventionss Math. 78
(1984), 127-130.

[16) R. Gupta and M. R. Murty, Cyelicity and generation of points mod p on clliplic curves.
Invent. math. 101, (1990) 225-235.

{17] R. Gupta and M. R. Murty, Primitive points on elliptic curves, Comp. Mathemalica
58, (1986) 13-4,

(18] H. Halberstam and H.E. Richert, Sieve Methods, Academic Press, London/New York
(1974).

(19] G. H. Hardy and S. Ramanujan, Quarterly Journal of Mathematies, (Oxford Ser.) 48
(1917), 76-92.

103



[20] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, second Ed.
Oxford at the Clarendon Press, (1943).

21] D. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford (2)
37 (1986), 27-38.

22} D.R. Hensley, The number of positive integers € T and free of prime divisors > y. J.
Number Theory 21(1985), 286-298.

[23] A. Hildebrand, On the number of positive integers < z and free of prime divisors > y.
J. Number Theory 22(1986}, 289-30%.

[24] C. Hooley, A note on Square-Free Numbers in Arithmetic Progressions, Bull. London
Math. Soc., T (1973}, 133-138.

[25] C. Hooley, Application of Sieve methods to the Theory of Numbers, Cambridge Uni-
versity Press - (1976).

[26) C. Hooley, On Artin’s Conjectures - J. Reine Angew. Math. - 226 (1967), 207-220.
(27] A. Lvié, The Riemann Zeta-function, Jobn Wiley & Sons, (1983).

(28] J.C. Lagarias, H.L. Montgomery, A.M. Odlyzko, A Bound for the Least Prime Ideal
in the Chebotarev Density Theorem - Inventiones math. - 54{1979}, 271-296.

[29] J.C. Lagarias and AM. QOdlyzko, Effective versions of the Chebotarev Density Theorem
in Algebraic Number Fields, Ed. A. Fréhlich. Academic press, New York, (1977) 109-
464.

[30] E. Landau, Algebraische Zahlen Verlag und Druck Von B. G. Teubner, Leipzig (1927).

[31] E. Landau, Einfihrung in die Elementare und Analytische Theorie der Algebraischen
Zahlen und der ideale. - Verlag und Druck Vonr B. G. Teubner, Leipzig und Berlin
(1918). :

[32] S. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig und Berlin
(1909), Vol. 2.

[33] 5. Lang, Algebraic Number Theory - GTM 110- Springer Verlag. (1986).

[34] S. Lang and H. Trotter, Primitive points on elliptic curves, Bull. Amer. Math. Soc.
83, (1977) 289-292.

(35] D. H Lehmer and E. Lehmer Heuristics Anyone? - Selected Papers, Vol 1. Winnipeg.
Canada (1981). '

[36] K. R. Matthews, A generalisation of Artin’s conjecture for primitive roots, Acta Arith-
metica XXIX (1976), 113-146.

[37] C.R. Matthews, Counting points modulo p for some finitely generated subgroups of
algebraic group - Bulletin London Math, Soc. 14 (1982), 149-154.

[338] Leo Murata, On the magnitude of the least prime primitive rool, J. Number Theory
37, (1991) 47-G6.

104



[39] M. R. Murty, An analogue of Artin's conjecture for Abelian extensions - ). of Num,
Theory - 18 (19384}, 2-11-248.

[40] M. R. Murty, Finitely Generated Groups  (mod p), to appear in Proc. Amer. Math.
Soc.

[41] M. R. Murty and V. K. Murty, A variant of the Bombieri-Vinogrador Theorent -
Canadian Math. Soc. Conference Proceedings - 7 (1987), 2.43-271.

[42] M. R. Murty, V. K. Murty, N. Saradha, Modular forms and Chebotarce density Theo-
rem - Am. J. of Math. - 110 (1988}, 252.281.

[43] M. R. Murty and N. Saradha On the Sicve of Eratosthenes Can. J. Math, Vol. XXXIX,
5 (1987), 1107-1122.

[44] V. K. Murty, Ezplicit Formulae and Lang-Trotter Conjecture Rocky Mountain J. of
Math. 15(1983), 535-551.

[43) K. Prachar, Uber die kleinste quadratfreie Zahl einer arithmetishen Reihe, Monatsh.
Math, 62 (1958), 173-176.

[46] I.-P. Serre, Linear Representations of Finite Groups - GTM 42 - Springer Verlag,
(1982).

[47] J. -P. Serre, Resumé de cours (1977), See: Qeuvres. Berlin-Heidelberg- New York:
Springer (1936).

[48] D. Survanarayana and R. Sita Rama Chandra Rao Uniform O-estimaies for k-free
inteyers, J. Reine Angew. Math. 261, 146-152,

[49] G. Tenenbaum, Sue la probabilité qu’un entier posséde un diviseur dans un intervafle

donné. Corap. Math. 51(1984) 243-263.

%





