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AB5TRACT

Yarions generalizations of the Artin's ConjCl"tufl' fùr pritniti\'t' f\l\ll:-; al't' c\)i\sld·

ered. It is prO\'en that for at least half of the primes /,. tht' lirsl lo~ /' prinlt's ,~"n"l'a!<'

a primitive root. .-\ uniform version of the Cl1t'botan~\' Dt'nsity Thl·.lI'.~11\ fllr th., liI'ld

Q((/, 21/1 ) valid for the range [ < log.r is pro\'en. :\ unifol'II\ asympl.lll.ï.- flll'll\nl" 1'''1'

the number of primes up to :r for which there exists a primil iVI' mol, h'ss I.han .< is

established. Lower bounds for the exponent of the class group of imagiual'Y ,\n'ltll"\1 ie

fields valid for density one ~ets of discriminants are dt'lel'Il\ined.

RESUMÉ

:\ous considérons différentes généralisations de la conjectnre d'Artin pour les

racines primitives. l'ious démontrons que pour au moins la moitié des nombres pre,

miers p, les premiers log p nombres premiers engendrent une racine primitive. Nous

démontrons une version uniforme du Théorème de Densité, de Cbchotarcv pOlir le

corps Q((" 21/ 1) pour l'inten'alle 1 < log .7;. On établit ulle formule asymptotiqne

uniforme pour les nombres de premiers plus petits que x tels qu'il existc ulle racine

primitive plus petite que S. l'ious détermillons des millorants pOlir l'exposallt dll

groupe de classe des corps qnadratiques imaginaires \'alides ponr ClIsernbh's de dis

criminants de densité 1.
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• INTRODUCTION

TI", fa 1110 Il S Artin Conjedure for primitiveroots states that any integer a", ±1 which

is Ilot a I"·rfecl. square is a primitive 1'001. for infinitely many primes. ~Iore precisely,

if i\'.(x) is the set of sllch primes up 1.0 x, then

Na(x) ~ A(a)r.(x)

where A(,,) '" O.

Artin also gave an explicit formula for A(a) and his intuition was based on the

fol1owing heuristic argument. (see [1]):

For any prime p less than x, let Pa(q) be the probability that the prime '1 divides the

index [F; : (a)]; then,by considering such instances independent, we have

A(a) = TI(l- Pa(q)).
'1

In order to have ql[F; : (a)], the two necessary and sufficient conditions

p == l(modq) and a(p-l)lq == 1(l7lOdp)

must be satisfied.

(1 )

•

1\ow consider the field Lq = Q((q, al/q ), let p be a rational prime that splits

completely in L'1 and let P be a prime over p. The residue field at P has p elements,

therefore (i) holds. Conversely if (1) holds fol' p, then p splits completely in Lq •

The Chebotarev Dcnsity Theorem indeed states that the probability that p splits

completely in a normal extension [{, equals 1/[1\ : Q] and therefore the probability

1~,('1) is 1/'1('1 - i) and

A(a) = TI (1 _ (1 )).
'1 '1'1-: 1

3



• Later. calculatious mali.' by D. H. Lduller and E. l.l'hnll'r (:'1'1' [:l,',j) :,u).',).',l':'k.\ 1h"l

in some cases the expression of .'((a) was !wt CllITel'1 and tll" f"I'I.'I':",r Ih,' 1'1'''.\11''1

expansion of A(a) corresponding to the prin\\' di\·isllr:, .)1' a h"d 1" hl' 1"'1'\""".1 hy

other expressions.

In 196.j, C. Hooley (sel.' [26]) used the linear sieve tll l'mve t.hat. if t.h., v,didily nI'

the Generalized Riemann Hypolhesis is assumed for t.he Dedddnd zL'la fllnl'linn nI'

the fields Lq then the Arlin's Conjecture is t.ruc, wit.h the COITl'di.,n:, indical.l'd by

Lehmer.

The main tool used by Hooley is the elTect.ive version of the Chcb.,t.aI'L'\· d.'nsity

Theorem va\id under the assumption of the Riemann Bypot.hcsis fol' tll" Dl,.it'kind

zeta function of 1\. That is

#{p S; xl P splits completely in 1\} = _l_ li (x) +O(x'/2(log.r + log d~!"")),
n!\"

where nE-: =[1\ : Q] and dl\ is t.he discriminant.

This ',ersion of the Chebot.al·ev Density TheOl'cm has becn fOI' a long t.ir\ll.' t.he

only effecti\'e one available until19ïï when ,). C. Lagarias and t\, M. Odlyzko proved

a version of the Theorem valid \Vith the condition (sec [2!l]):

lOg .7: { [l/nl' }
nl\ »max (1\ " log dl'; ,

For a Kummer's extension of the type Lq , this is equivalenl; ta q <: log'/" :r.,

Sueh a diseovery, unfortunately, does not allow one ta c1irninate t.he lise of tl",

Riemann Hypothesis on the proof of the Theorcm of Booley, howc\'cr it. givcs a

uniform result for q < [ogliO x.

In 1984 R. Gupta and Il. ?I!urty (sec [15]) pllblished t.hc fil'ot l'coliit. in which t!rc

validity of the AI,tin Conjecl.ul'e is est.ablishcd fol' at. least. onc mllic of Il. Iwh",,!.

•
they construeted a set of 1:3 numhers for whicl, at. leasl. onc is pl'imit.ivc l'Oot.

4
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• nllllll",r of I,rilli<'s l' "l' 1.0 ". whirh is ).;>,..2:,- This result was later sharpened bylog- r'

Il ..alh-Brown (sœ [:!l]) 1.0 a sd of:l elements.

Tli<' id"a of GlIpta alld ~lllrty aIso allowed them to deal with the analogons

slatelllent of th.. Artin COllject nre for rational points on Elliptic Cun'es (see. [1 'J).

This is the Lallg·Trou.er Conjecture. From this they were let! to consider a high·rank

version of the Artin Conjecture.

Gi,en ", .... ,1I r E Z, wc say that "1.' •• , a r are multiplicatively independent

iL whene,-er I.here are integers Il,, .•.• nr such that

a'
l
lt .•• an,. = 1.

r .

we !laye Tll = n;! = ... = n r = O.

It makes sense to ask il'

(2)

l'or inlinitely many primes p and to speculate whether the density of such primes can

hl' calculated. lt is necessary to express the condition for a prime q to didde the

index of the gronp generated by ah' .. , ar in terms of splitting conditions on sorne

lields. The natural generalization of Artin's original idea is in:

Theorem l Lel (a, •... , ar) be the subgroup of F; genernted by the multiplicatiuely

Ï/llifpe/ltfen/ a" ... , ar. For a/lY prime q

• I·t·· 1 t 1 . Q ( . '/7 11-1) 0P op 1 0 comp e e y Ln ~'/, a, , ... , a r •

•

This result and the consequent application of the Chebotarev Density Theorem

snggests t hat the density of primes for which (2) holds equals

.j
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III C'hapt,'r 1 we l'ml'" thal if lil<' G"II<'raliz,'d Hi,'IIl;1I11l IIYI'''IIi'',i' h"I,I, f",. Iii,'

fields ill Tllt'orem 1. 1h"1l

where the constant .·\.'1 l''Illals the pmdllct ill (:n. ul' lu lillill'Iy 1l1'IIIY t""·Il'I".

The complete formulas, wit hl he analogous correc\ ion, nf 1hu,,' 'Il)!,)!,l'slt'd hy 1."11111<'"

for the Artin Conjecture, ar,' worked out in Sect ion ::!, 1 hy t.lI" ilS<' uf 'l'Ill<' 1'1'''1'''1'1 it-s

of Kummer's extension.

The l'roof fol1ows the original one of Houl,'y bul now lh,' esl illlal,' t'Ul' t.Il<' tlllllll,,'1'

of primes for which there is a large prime dil'isor of the illdex is Illad,' Ilsill!', a 1."lllllla

due ta C.R. ~latthews which is an application of the pigeoll-hol" principl".

The new parameter gi\'en by the l'ank. suggests ta lak,' ,. as a fllnclioll nt' ,/. allt!

try ta adapt the l'roof ta obtain a result inuepenuenl of t.Il<' Hic'mann lIyp,)IIi,'sis.

This is done in Section :3.1 and the conclusion is thal for a positiv" d,'nsity nf prin\O's

p, F; can be generateu by aboul log p multiplicali\'e!y inu"l",nt!ent inl"1\"rs.

The main obstacle cames from those primes for which the index

has some prime dh'isor in the interval [logl/o; x, log~~-].

The range [logl/6 x, log xl is dealt by using a \'ersion of Chcbotarcv Dellsity Theo

rem for the field Q( (1,21/ 1) valid for a range of 1ul' 1.0 log.r/ (log log:r)~ wh ici, Îs (>l'Ol'pn

in Chapter 2. Such a l'roof uses properties of the single non-Abelinn L-fllnction of

Q((1,21/ 1), and is of course stronger than the one of Lagarias anu Odly7.l;o of [2!Jj.

This establishes a Conjecture of H. Zassenhaus of l!J(i!) (see [.1]).

ln Section :3.:3. we work ont the bonnd of ,. ~ log" p for il sel of densily olle of

primes p for which F; is gcnerated by ,. clements. Snch il rewll is sl.ron'gel' than

fi



• Ih" 011" th .. l 11";\5 knoll"n as a consequence of lhe work of Burgess and Elliot (sec

"rol'osil iOIl 1.11) and us,,, the Large Sie\'e Inequality.

Th,' 1.<'11 Il lia of ~Iall.hell"s IIsed in the proof of the asymptotic formula in U) allows

on" tu colldud" that for almast ail primes p the index

ln :\ppendix A, wc irnpra\'e such a lower bound to

(5)

•

This is donc by deducing an upper bound fv" the number of primes p for which p - 1

has a di\'isor in the range (x\ xh exp{logS p}) which is due to Murty and Erdos (see

[1.1]) and (HO\'en here with the uniformity conditions that allow estimates of the type

(.j) uniform with respect to r.

i\ext we take into consideration the problem of determining an asymptotic formula

for the number of primes for which two given numbers (or more in general s given

numbers) are simultaneously primitive roots. An heuristic argument similar to Artin's

suggcsts a density

é = TI (1 _ 2q - 1).
q prime q2(q -1) .

and again this is prO\'en to be the right one up to /initely many factors. Complete

formulas are worked out in the case where the given numbers are primes. We later

discovered that a general version of this statement has been proven by K. R. ~Iatthews

in his Ph.D. Thesis (see [36]). However, our proof is dilferent and by the use of a

Tauberian Theorem, we get a better uniform erraI' term.

This resull has, as an application, a uniform asymptotic formula for the number

of primes for which the least prime primili\'e root is less than a paramelel' JI, Such a

formula has applications to lhe problem of the distribution of least primitive roots.

7
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• In ,\ppendi~ B, we consider the prohh'm ,,1' the eX!,'lIll'nl ,,1' th., dass gr,,,,!, tif

imaginarO' quadratic fields.

If e(d) is the exponent of the ideal c1assgronp of tlll' imaginary qlladralÏt' li,'lds

Q( vl-d), the Iwasawa Conjecture states that

lim e(d) = +00.
d-+oo

In 19ï2. D.\\'. BoO'd and H. Kisilc\'skO' (sec [3]) proved that if the Exklltbl Bi"lllalln

Hypothesis holds for certain Dirichlets L-functions, lhen lhe Iwasawa (\lllj.'cllll't' is

true.

The proof consists on noticing a link belween lhe least pl'Ïme p for which -tl is a

quadratic residue and e(d) (this is p'(d) ~ d) and t.hen use t.he HÏl'lIlann llO'p"thesis

to pro\'e that p « log2 d. This argument establishes t.he bOUl"l

10" d
e(d) ~ 1 1

0
dog og

(fi)

•

"'e pro\'e unconditionally that (6) holds for a set. of discriminants of density one,

bO' calculating uniform asymptotic formulas for j,he number of illt.egers (resp, sqllare·

free integers) d < x for which the least prime p with (-;;1) = 1 is smaller t.hau " .

s



• 1 ON HOOLEY'S THEOREM

1.1 A generalization of Hooley's Theorem

Suppose ah" • , l!, are multiplicatively independent integers and let r be the subgroup

of QX gencrated by al, ... ,a,. For all but finitely many primes p, it makes sense to

consider the reduction of r modulo p which we indicate by r p which can be viewed

as a subgroup of F;.
ln the case r = l, Hooley has shown that if the generalized Riemann Hypothesis

bolds for the Dedekind zeta function of the fields Q((l. al/I), with 1prime, then the

set of primes l' for which F; =r p has non zero density (see [26]).

We will consider the following generalization first introduced by R. Gupta and R.

Murty in [15].

Theorem 1.1 Let r be as above, nm = [Q((m, al/m, ...• a~/m) : Qj and let

if the Generali::ed Riemann Hypothesis holds for the Dedekind zeta function of the

fields Q(("a:/1
), 1 prime,.then

Nr(x) = #{p ~ xlF; = r p } ~or-
1

x .
ogx

Remark: a) Note that

(1)

•
therefore Or is a convergent series and thus a well defined number. vVe will prove in

the second section that Or ;f O.

9



• b) Theorem 1.1 can also be pro\'en on the weaker asslllllptioll thal ther" t'xisls tt E l'

with the property that all the Dedekind zeta functions of the fil'!,ls Q((l, tl l/l ) (1 1<11')';<'

prime) ha\'e no zeroes in the region

1
(T> \- --.

r+\

Proof: Let us assume r > 1. The lirst steps of the proof follow the original idt'a

of Hooley who considered the following functions:

Nr(x, y) = #{p::; x l'VI, 1::; y, 1 l [F; : l'p]},

Mr(x,y,::) = #{p::; x 131, y::; 1::; ::,11 [F;: l'J']}'

Mr(x,::) = #{p::; x 131, 1~ ::, Il [F; : l'p]}, .

where y = 6r~8 log log x and z= xl/(rHl log x.

Clearly,

Nr(x, y) ~ Nr(x) ~ Nr(x, y) - Mr(x, y,::) - Mr(x, ::),

and establishing the following:

a) Nr(x,y) = 6rlo;r +o(lo;r);

b) lv1r(x,y,::) = o(lo;r)i

c) Mr(x,z) = o(lo;r)'

the Theorem would be proven.

(2)

•

In his original work, Hooley used the GRH to treat both the main term Nr(x,1I)

and the term Mr(x, y, z). In this proof we will show that a choicc of y = flr~8log log x

enables to remo\'e the GRH from the treatment of the main term. This is il. key

element for subsequent applications.

10



• a) By lhe inclusion-exclusion formula.

Nr(x, y) = :L fl(m);;m(x)
m

wher" Il is lhe ~liibius function. the upper * means that the sum is extended to ail

the Întegers 7Il whose prime dÏ\'isors are distinct and less than y (note that this forces

11> s; n,,<.q = eO(y) < e2., the last inequality being implied by the Prime Number

Theorelll) and

ll"m(X) = #{p s; x l 'fq, qlm, ql [F;, rp]},

Now recall that

1 [F" , r 1 -'--"- - l't - 1 t 1- - Q(t" t/q I/q)q p' p -.---.- p sp 1 , comp e e)- III ,q, al " •• , a r ,

and if a prime splits completely in two fields then it does also in their compositum.

Hence if Lm = Q((m,a:/m, ... ,a:1m ), we ha\'e

;;m(X) = #{p s; xl P splits completely in Lm}. (3)

•

The result that gives an asymptotic formula for (3) and makes possible to handle

this step without the use of the GRH is the Chebotarev Density Theorem, with the

error term described in page 2-13 of [39]:

Lemma 1.2 (Chebotarev Density Theorem): If L is a Galois extension of Q

with discriminant dL and degree nL, thw there exists an absolute constant c such that

for

olle has

#{p s; ,1' 1P splits completely in I} = ~li(x) +O(.1:exp-Anïl/2Vlogx)
nL

where fi is cOllstallt depending only on c.D

11



• ?\OIV, let d", he the discriminant of L", and 11", ilS dcgrc<'. TIlt' Ik.lSd int'qllality

(see. page. 259 of [42]) states that

log Id", 1 S n,. L logq.
qld",

therefore

d~n," ::5 II q ~ ntal ... Qr ::; 1l m ::; log dm

qldm

since indeed in any field log d ;::: n. We can al50 pro\'e the follolVing.

1
Corollary 1.3 [fm S (logx)"+' then

"",(x) = li(x) +O(xexp-A(logx)1/3)
. nm

for sorne absolute posilire constant A.

(1 )

•

Proof of Corollary 1.3: The inequality assumed for m and thc Hcnsel incqnalily

in (4), imply (n", S m'+I ):

c n~tlogd", S c n;(2 L logq S rn":' S (logx)1/2.
qldm

Hence, Lemma 1.2 gi"es

li(x) ( ( (louX)1/2))"",(x) - n", = 0 xexp -A n:

The choice made for y allows us lo apply Corollary 1.3 lo ail t.he ln < c
2y =

1

(log x) a.:+< • Using the estimate (1) for t.he degree n,., IVe get.:

Nr(x,y) = tf.l(m) (_1li (.1:) +O(:re;,p-A(logx)'/3)) =
m nm

12
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= t 1
1
(mLli(x)+0 (L: .~ )li(X)) +0(eYxexp-A(logx)1/3)

rn=1 ntn m>y mi? m

'" 11(m) x
= L: --1- +o(li(x)) +o((log x) xexp(-A(logx)1/3))

m=1 n rn og x

= lir_
x +0 (_x).

logx log x

c) 1'0 deal with thc last term, wc will make use of the following result due to

Mat.lhcws (scc [3i]):

Lemma 1.4

#{p Ilrpl:<:; t} = O(tl+l/r L: log a;)
;

where the cOllslanls involved in the 0 symbol do not depend on t no1' r, no1' on

{at, ... ,ar }.

Proof of Lemma 1.4: Consider the set S = {al' ..... a~r 10 :<:; ni :<:; tl/r }. As

at, ... , ar are multiplicatively independent, the number of elements of S exceeds

([t*] +1l' > t.

If 11 is prime such that Irpl :<:; t, then two distinct elements of S are congruent

(modp). Hence, p divides the numerator N of

for sorne nlt,m2, ... ,nlr satisfying Imll:<:; tl/r ,l:<:; i:<:; 1'.

For a fixed choice of mt, m2,' .. , nt., the number of such primes is bounded by
r

log N < t l/r~ loua'_ L... Cl 1

i=l

Taking in acconnt the number of possibilities for ml: m2,' .. , m r • the total number of

primcs Il cannot exceed
r

0(t1+1/r L: log a;).
i=l

13



• This completes the proof of the Lemma.O

Now note that

Mr(x,=)::; 0# {p ~ x 131 ~ =. li Jl

1G
.
1
\}

::; o#{P::; x Ilfpj::;~}

and applying Lemma 1.4 (no dependence on ris requil'et! here). we gel,

_ _ (x(I-I/{r+1))(l+l/r)) _ (---=---)
Jfr(x,_)-O (logx)l+l/r -0 logx .

b) For the middle term we assume the GRH which allows to state the following

version of the Chebotarev Density Theorem (a proof can be found in [261 01' also in

[30]):

#{p ::; x 1 P splits completely in Q((/, al/I)} = 1(1 ~ 1) li(x) +O(xl/~ log :/;1) (5)

Now, as in the main term, II(F; : fpl if and only if P splits completcly in the

Kummer extension Q((" a:/
I
, . .. , a~/I) and thus, in particulaI', JI splits complcl.ely in

Q((" a:/I
). From this we get:

Mr(x,y,z)::; #{p::; x 13 l, y::; 1::; z,p splits completely in Q((I,ll:/I)}

::; y~: C(I ~ l)li(x) +O(XI/~ log xI)) .
As LI~Y 1(1:'1) is the tail of a convergent sequence and

"""'" l 1 + 1L." x' log xl ~ x2 .... log x,
1<:

for r ;:,. 1 this yields to an estimate of the type:

•
1 1. 1

Mr(x, y, z) ~ -li(x) +0(.1;;"""" log :1:)
y

14
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•

whieh is o(logx/x), and this completes the proof for r > 1.

For Cülllpletcncss wc add the the proof of the remain case r = 1. Estimate (6)

has no IIlcaning anymore. 'vVe have that

Thc first. t.crm is lrealed as the general case and leads to the coresponding estimate

of (6) that. in lhis case is 0 (10;")' For the second term we proceed as Hooley and we

not.e that. :: =x l
/
210g x and

Mr(x,xl/2/log3x,xl/210gx) ~ L r,(x,l,l)
,,'/2/1og' ,,<1<,,'/' log"

~ _x_ L ~ = 0 (XIoglogx)'.
10 x 1 10 2 Xg "'/'/log' ,,<1<,,'/2 log" g

the lasl by the Brun-Titchmarsh Theorem and the Merten's formula.D

15
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• 1.2 Computation of the Densities

The density lr can always he expres,ed as an Enler prodliCt. Doing so olle cali l'roI'"

that the density is not zero. In this section we will calcul,\tL' 81' ill llw caSt' whl'II

ai = Pi is an odd prime for any i ~ l, we will also he ablc to 1'1'01'" lhal. ill t.his

particular case

lim Dr = 1.
r-Xl

The first step is to calculate the degrees of L,;.. ovel' Q.

Theorem 1.5 Let Pl, .. . ,Pr be odd primes, m a square-free integt:/' und lei

[Q( . II'" II") Q]n .. = ~.. ,PI , ... , Pr : .

Suppose (m,PI'" Pr) = Pi, ... pi" then Il .. = Q(~lm', where

Omis odd or t = 0

Q = t if Pi, == pi, == ... == pi, == 1 (mod 4)

•

t - 1 otherwise.

Proof: Fix m > 1, we may assume without loss of generality that. PI ... Pt =

(PI· .. p.,m), we let I\ = Q((.. ), A. = I\(pl/m, ... ,p:I '") and for any 1 :5 i:5 r -l,

let Bi = A(p:~~, ... ,P:t'). We hm that

nm = [Br-< : Q] = [B,_, : A][A: I\][I\ : Q]

and dearly [I\ : QJ =ç(m).

Step 1): We daim that [Br-< : A,] = mr-'.

Since the polynomial xm - p,+! splits completely in BI = A(p:~';'), I\'e Imol\' thal.

[BI: A] = 7' Let qld be a prime, lben [A(p:~l) : A] = 1 or fi. If it was fi, I\'C I\'ould

have q = [A(p:~l) : AlJ(BI : AJ = 7' which is a contradiction since m is square·frec.

16
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Therefore 1':~; E A, which impiies that l',+! ramifies in A/Q, but, from Kummer's

Theory, wc knolV that the only primes that ramify in A are Ph' , ,,1', and those that

di\'ide m, and sincc (1',+1> m) = 1, we conc1ude that d = 1. Now, by induction, we

have that

[8r_, : AI = [8r_, : Br-,-d[Br-t-l : Al = [Br_, : Br_t-ljmr-'-I,

and again, [Br_, : Br-,-d = !J- and since (1'" m) = 1, we conclude that d = 1. Hence

[8r _, : A] = mr -'.

Slep 2) Let Ai = 1\(p:/m, ... ,pi/ml, then Ai+! = Ai(1'i~';'), and for the same

rcason as above, [Ai+! : A;] = 7' We c1aim that e = 1 or 2.

Let qle be a prime divisor and consider Ai(pi~i), since m is square-free, wc have that

pi~; E Ai. If pi~; E 1\, then wc would have a cyclic extension or'prime degree (over

Q) Q(pi~i) c 1( and this is only possible when q = 2. Therefore we may assume

that 1'i~; ~ 1\, having extensions:

Note that Gal(Ad1\) is the direct product of cyc1ic groups and a general subgroup of

order q has as fixed field 1(((1'" ... P•• )1/9), with 1 ~ 51 ~ ... ~ 5k ~ i -1. Therefore,
l

1\(1':+1) = 1{((1'.\ ... 1'•• )1/9) and from Lemma 3 in page 160 of Cassels and Frohlich

[il, wc have that there exists 0 ~ i ~ q - 1 such that

(
Pi+! ) 1/9 E l'

(1"1 ... p•• )i 1.

and again this implies that q = 2.

Thercfore, if m is odd, [o4i+1 : Ai] = m for e\'ery i, and thus [A, : 1\] = m'.

From lhe TheOl'Y of Cyclotomie Fields, we know that the general quadratic sub

field of 1\ has the form Q (J(ri) D), where D is a positi\'e di\'isor of m, We gather

that if Pi == 1 (mod 4), 1 ~ i ~ i, then (~,I) = 1, hence jPi E l\' .

li
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Step 3) If PI == p~ == ... == P, == 1 (mod .1),

then let (m be a primitive m·th raot of uuity, th,'n Gal(A,/I\') i, !l,'n,'ral,'.! Ily CT :

I/m .0 I/m ('" h (=) ( 'lm)) 1" ( "') f" ('fm)(mf~) ) 1PI ...... ~;;'PI , "ote t at cr V Pl = cr(Pl m • = ~,;, m '1'1 = /Pt :lIll

hence. IGal(Ati1\)1 = [AI : 1\'] = !!]-.

Similarly Gal(Ai+l/Ai) is generated by cr: p)~';' l-> (,~.p!~';', thercfon' [:\,+, : Ad = !,'
and [A : 1\] = ';: .

Step -1) If it exists 1 :s i :s t such that p, == 3 (mod 4),

then we cau suppose without loss of generality that P, ==:l (mod .1). Let u, con,id.'r

Ai = 1\(p~/m). We have that [Al : 1\] = m (H not, we \\'ould ha\'" 1\( y'iii) = /l,

but this only happens when PI == 1 (mod ,1), which is a contradiction). No\\' consitlt'r

i > L and Ai = Ai_l(p)/m). We daim that [Ai: Ai-d = !!]-. lndeed eithel' ]', == 1

(mod -1) or Pi =3 (mod 4); in the first case JPï E 1\, in the second cas,~ Jiiïiïi E /1.

In any case, Gal(A;fAi-tl is always generated by cr : p!lm t-4 (~,P)/m. Finally we gel,

[A, . 4.. ] - !!!. and [A . 1\] - ..!!t..t • • 1-1 - 2 • - '2!-1'

This condudes the proof of the Theorem.D

Corollary 1.6 With the same notation of Theorem /..5, wc hn,'c

(where v(m) is the number of distinct prime diviso/'s ofm), fll)'thc)'l7lo)'c sllell IL IOIVr:1"

bound is the best possible.D

\Ye are now ready ta express the density as an Euler product. The case " =1 hns

been dealt with by C. Hooley in [26J. He proved that:

Lemma 1.7 Let P be a prime.. nm = [Q((n"pl/m): Q]IL71d Ir;!

A= n: (l-I(l~l))
1 prime

18



• /It //11. Al"lill'" COTlSIIlTlI., IhcTI IL'C hat'e:

if P ié 1 (mod 4),

if P == 1 (mod 4),

•

Proof: If p ié 1 (mod 4), then TI", = 1719(171) for every 171 and the result follows

from the definition of the Arlin's constant. We can therefore assume that p == 1

(mod '1), having:

f: p(m) = Eo +E"
m=l nm

where Eo is the sum extended to the odd values of 171 and E. to the e\'en values.

Clearly Eo = 21\ and E. = -~E~, with

E~ = f: p(m) ') f: p(m) =
mal 171 9(171) +- mal mrjJ(m)

(m,::l:p).,l plm,mOdd

') ,\ -1 " p(m) = ')A -1 2A _ ') 4. _ 2.4._. + ( ) L.., '() - + ( )( ) - _. 0 •P Jl - 1 m=1 1719 171 P P - 1 1 __1 - p- - p - 1
(rn,~p)=l p(p-i)

Finallv Eo +E. = Il (1 +~I)'O- p'-p-

The general case is similar but a little more complicated:

Theorem 1.8 Lei Ph .. "pr be odd primes, nm = [Q(çm,p:/m, ... ,p~/m) : Q], lei

Qi = pi(Pi - 1) - 1 and define Ihe r-dimensional incomplele Artin's constanl 10 be:

A(r) = II (1 _ 1 ),
1 odd prime Ir (l - 1)

I.heTl:

'" 11(171) { 1[r ( (-1) 1) r ( 1)]}L - = 1\(1') 1 - -.- II 1 - - - +II 1 - - ,
m=1 11.ftl 2r+1

i=1 Pi Qi i=1 Qi

19



• Proof: As in the case r = 1. not.' that if III is .llld. Ih.'n Il,,, = 11I"'\'11). thns ,l't'

can write:

f: 1
1
(11I) = .-\(1') - ~

rn;;: l 111ft

where E is the sum extended ta the el'en l'ahll'S of III.

Let P = Pl'" pr and P = ITi=1. 1',:\(") Pi, il' III is an ad" pnsil.il'l' int.,!',.·!' and CJ ""

(m, P) then, by Theorem 1.5. \l'e ha"e

other\l'isc.

For any QIP, let S(Q) = {m E NI (m, P) = Q}. vVe ha,'c that. N = UQI/' SIm, and

the union is disjoint. Therefore,

Now divide the set of di\'isors of Pinto t\l'O sets; the di"isors or /;, and ils cOlllple'III"1l1..

It follows that

=

_1_ {L .)"(Q) L 1l(2m) +L ?v(Q) L 1l(2111.)}
2r+1

QI? - mES(Q) m rr,6(m) QIP - mES(Q) rnr,fi( m.) .

The SUffi over m E S( Q) is easy to evaluatc,

L 1l~2m) = _ (-rl)V(Q) L ~(m)_
mES(Q) m r,6(m) Q 9(Q) (m,2P)=1 m r,6(m)

Substituting wc get:

(-I)"IQ) , ( 1 )-'
Qr '(Q) A(r) II 1 - -'-J

cp Î=I' 0, +

•
E = -,,\(1') IIr (1- _1_)-1 (L (-2)"(Q) + '" (-2),,(QI) =

2r +1
i=1 Qi + 1 Qli' Qrq,(Q) ~,Qr,fi(Q)

20
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"

-,;(r) tr (~) ( tr (1 -~) +tr (1 -~)l =
2

r
+

1
i=1 Qi PI~.1~4) Qi + l i=l Qi + 1

- A( r) ( '( 1)' ( 1 ) '( 1 )lII 1-- II 1+- +II 1-- .
2r+1

,al Qi i=l Qi i=l ai
",:51(t) pjl!!:3(4)

The daim is therefore deduced.O

Corollary 1.9 Let {a;}'>l be a sequence of odd primes and let 6, be the density of

the stOl of lJr';,neS p fOI' u'hich F; is generated by at, ... , a" then

lim 6, = 1.0
r-':'O

Remark:

The method just exposed can he easily extended to any set of r multiplicatively

independent numbers which are pairwise coprime. The first step of the induction

in the general form is in [:26]. It is aiso conceivahle that for any infinite sequence of

muitipiicative!y indepencient integers (that is a sequence of integers such that a; < ai+!

and for any r, ah"" a, are multiplicatively independent), one has that lim,_o:> 6, =

1. "Ol being able to pro"ide a proof of this property here, we will include it in the

hypot hesis when ever needed.

:21



• 1.3 The Main Problem

Suppose f(p) is a monotone function of l' that tends to inli nity wi 1h l'and Il'! {lin1n~N
be an infinite sequence of multiplicatively indl'pendent. inl,'!',"!'s, LL'!,

r J,v = (a; (mod 1')1 1 ~ i ~ /(1')),

Question:

DOfs a funciion fxist f SI/ch that, r J,v = F; fol' Illl1/.ost 11/1 primL' l' '?

Using Theorem 1.1, we can prove:

Theorem 1.10 Let {a;};eN be a sequellce of muitipliclztÎl.·c/y illdqJl:lldcllt illtcg,:""

such that limr _ oo Or = 1 (We noticed in the last sectio//. Ihat whcII the (Ii 's 111'''

aU primes this is true) suppose the Gcnemli::ed Riem'II/,II l/ypntheû, ho/d" Jo,' t/w

Dedekind function oJ the field Q((t,al/ I
), 1 prime, Ihen J'Jr III1Y mOllotolle J"llctioll

f(p) that tends to infinity, we hllve that

Proof: Let us fix l' E N. For al! but finitely many primes l', wc ha"e:

Therefore

From Theorem 1.1, we get:

•
-A
Hm X- ~ Or.
r-oo_

logr

1\ow let r tend to infinity and prove the stat.emcnt.D

22
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Our intention in the following Chapters is to pro\"e statements of the type of

'rll"orelll 1.10, restricting our assumptions only on the rate of growth of f. For

cxaluplc it is not difIicult to pro\"e:

Proposition 1.11 Let f(p) = 10gH' pihen liure exisls a sequence ofmultiplicatively

irll/"pwr!tnt intcge7's s71ch that, for a/most ail primes p, r J.P = F;.

Proof: This is a consequence of a Theorem of Burgess and Elliott (see [5]) on

the a\"(,rage of the lcast primitive reot. They proved that if g(p) is the least primitive

reot, then for large x,

1l"(xt l L:g(p)« log2 x(loglogx)2.
p~.r

If U is the number of primes up to x for which g(p) ~ f(p), we get that:

["log2+' x « L: g(p) +0 (..(x )log2+< x) « ..(x) log2 x(log log xf
~SpSz

which is equÏ\'aJent to saying that for almost ail primes g(p) ~ f(p).

Now let IL; = Pi be the i-th prime number, since g(p) ~ JogH <p, every prime that

divide g(p) is also Jess than f(p), therefore r J.P contains a primitive root for almost

ail primes p.O



• 2 ON THE ARTIN L-FUNCTIüNS OF Q((I, :21/1)

2.1 Introduction

Let L = Q((z, 21/ 1) and G = Gal(L/Q). If

T:L ----.L

21/ 1 1-+ (121/1

(1 1-+ (,

and v: L ----. L

(where gis a primitive root modulo pl, then G is gcnernted by T and v, more preLisdy.

is a presentation (here g" is any integer such that gg. == 1 mod p).

Rence G is the semidirect product of a cyclic group of order 1by a cyclic group of

order /-1. Kote also that T generates the Galois group of L/Q( (1) and the subgroup

generated by v has as fixed field, the non-Galois field l\ = Q(2 1/
1
).

For any t = 1, ... , /- 1: the mal'

X,: G --; G:T 1-+ Lv 1-+

is clearly a character and a quick computation shows that G has 1conjngat.e classes

and the remaining character of G can be calculated via the orthogonality relations.

That is
(1- 1)

o
-1

Ifa=b=O

Ifb';:O

If b = 0, and a .;: O.

•
Note also that XI is indllced by any non-trivial charadcr of the normal subgroup

generated by T and if rPl : v 1-+ e2dl/(I-I), t < /- 1 is a charactcr of t.he su bgroup (II),
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1 . IG 'tIen In< (v)"" = x. + \1.

Hence Xl,' .. , \1 is a complete list of the irreducible characters of G.

Let us no\\' tak~ a step back and describe the concept of non-Abelian Artin L-,
fllnction. Let El F be a Galois extension and p a representation of Gal(EIF), we

define the Artin L-function of p to be

L(s,p,EIF) = TI Lp(s)
p

where, if iJ does not ramify, the Artin symbol U p is the conjugacy c1ass in

Gal( Ef F) determined by the Frobenius automorphism of the residue field of any

prime of E over P (note also that, if iJ does not ramify in E, then u., = {I} if and

only if l' splits completely in E) and Lp(s) is the characteristic polynomial of U p

e\'aluated at N(pt', Le.

L.,(s) = det(I - N(pr'p(u,,))-l

and, if p is ramified, L.,(s) is the characteristic polynomial of the Frobenius element

at p acting on the subspace fixed by the inertia group 1., evaluated at N(s?t',

Simple arguments on the bounds oi the eigenvalues of the representation show

that L(s,p,EfF) converges absolutely for lR(s) > 1. Since the determinant of a

matrix is the product of its eigenvalues, we also have that:

logL(s,p, EfF) = L tr(p(u~t)
p,m ml'

Sometimes, we might indicate L(s, p, ElF) by L(s,X, EfF) where X is the character

of p.

"'e describe here the basic properties of L-functions, For a more complete picture,

sec [33J Chapter XII,

'O ..•••• _ ••__0 __• • __·' • __ -_.-------.



• PROPERTIES:

A) If ZF(S) is the usual Dedekind zeta function of the field F. then

ZF(s) = L(s, 1, ElF):

B) If Xl> X2 are two characters of Gal(EIF), then

C) If E' :> E :> F, where E'1Fis also Galois, then any character of Gal( El F) can

be viewed as a character of Gal(E'IF) (by composing Gal(E'IF)~ GalCEI F') 2..,

Cl, and we have

L(s,X,EIF) = L(s,X,E'IF);

D) If E:> E':> F then Gal(EIE/) C Gal(EIF), therefore any charaeler X of

Gal(EIE') induces a character Ind(x) of Gal(EI F) and one has:

L(s, Ind(x), ElF) = L(s, X, ElE'):

E) If E IF is an abelian extension then for e\'ery character x, L(s, X, E; F) has an

extension 1.0 an entire function and verifies a functional equation:

F) If Xreg is the character of the regular representation of Gal(EI F), thcn

L(s, Xreg, ElF) = Zid·s).

(This is a consequence of the fact that the rcgular reprcsentation is induccd by thc

trivial character on the trivial identity subgroup which is the Galois group of LI L

therefore, D) and A) give this daim);

G) The Brauer Theorem for characters, statcs that any charactcr is cqual 1.0 a.

sum \Vith integer coefficients of characters induced from elementary subgroups (sec.

26
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•

['HiJ Chapter X). By properties B), Cl, and D) this implies that any Artin L-function

can be written as product of powers with integer exponents of entire functions, and

therefore, any such a function is cerlainly meromorphic. Artin had actually conjec

turer! that thesc functions arc always enlire whenever X does not contain the trivial

characterj

H) \Vhene\'er the Galois group of an extension has the property that e\'ery char

acter is induced by the character of an abelian subgroups (such characters are called

monomials) then the Artin Conjecture holds for such an extension. This is the case

of nilpotent extensions (as weil as supersolvable extensions).

2.2 Artin L-functions of L/Q

The Galois group G of L/Q is certainly supersolvable. Thus aU the Artin t-functions

of Gare entire and by the properties F), D) and A), we have the following factoriza

tion:

(

1-2 )
ZL(S) = ((s) gL(S,XI,L/Q) L(S,XhL/Q)I-l.

On the other hand, if K = Q(21/ 1),

1-2

ZL(S) = L(s,Xreg,L/K) = ZK(S) II L(s, rPt> L/K) =
/=1

1-2

ZK(S) II L(s, Xt> L/Q)L(s, Xh L/Q),
t=l

the last identity being obtained noticing that Ind(.p,) = x, + Xl and applying prop-

erties B) and D). Putting the two together, we get

Z[\(s) = ZLls)
(l1:;;;i L(s, XI, L/Q)) L(s, XI, L/Q )1-2

((s) (l1~~i L(s,Xt> L/Q)) L(S,XI,L/Q)I-1
= (l1~;;;i L(s, XI, L/Q)) L(s, \1, L/Q)I-2 = ((s)L(s, :\1, L/Q) .



• Therefore the zeroes of L(5, XI, LIQ) are in particular zel'ocs of ZK(5) and

The identity also a110ws us 1.0 compute the funetional eqnation for 1.(." \h L/Q).

It is indeed a classical result that if I{ is any number field, and

(1)

(where A = 2-r, d~2,,-n,,/2, rI and r2 are respectively the nllmber of real and COlllp1t'X

embeddings of 1\, d[{ is the absolute \'alue of the discriminant of 1\ and 11 Kits degrœ

over Q) then F[{(s) = F[{(l - s),

ZK(S) = ((s)L(s, Xt, L/Q),

so we gel.:

(

/ ) (1/2).
F[{(s) =;;: [(~) r(5)(/-I)/2((5)L(s,XI,L/Q).

Using the faet that the value of "./2[ (~) ((5) does not change if we substit.ul.c"

with 1 - s, we get that if

•

(

/ ) (//2).
G(s) =;;: ,,'/2[(S) I~' L(s, XI, L/Q)

then G(s) = G(l - s), which is the functional equal.ion.

An asymmetric functional equation can also be deduced using the formula:

7r
[(s)[(l-s) = -.-;

sm ïiS

which is

/ ,(.-1/2)

( / ( • (1-1)/2 ( )'-1 ( l/Q)L 1 - s, XI, L Q) = _/1-1). sm "s) [s L S, x/, -
"

28
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• These results can be used to determine ail the zeroes of L(s, XI, L/Q) outside of the

critical strip. Indeed L(s, XI. L/Q) has just a zero of order /'21 for s = 0, -1, -2, ...

and is non'\'anishing elsewhere (outside the critical strip).

We conclllde this Section with a c1assical general result that we will use later (this

reslllt can be found in [31], in that \'ersion, though, are missing ail the uniformity

conditions \\'hich are necessary for subsequent applications).

Lemma 2.1 Lf! 1{ be a number field, n = [1{ : Q], d the absolute value of the

discrimina ni and let Zi\(s) be ils Dedekind zeta function. There exists a positive

absollLie numerical constant Cl such tha! in the region

Zfds) has no zel·oes.

Proof of Lemma 2.1: We will folio\\' the classicaI proof for the Riemann Zeta

function (See. [6] §13). Let HK(S) = !s(s -l)FK(s) where FK(S) has been defined

in (1). Hfds) is an integral function of order 1, verifies HK(l- s) = Hfds) = Hg(s)

and admits the following Weierstrass product expansion:

(4)

•

where the product is extended to ail the non-trivial zeroes of Zg(s).

Taking the logarithmic deri\'atÏ\'e and using the functional equation, we get

H1-(s) = b+I: (_1_+.!.) =-b-I:( 1 -+~) =_HK(l_s).
Hg p s - PPp 1 - s - P P Hg

Since, if p is a root then also 1 - fi is, we deduce that
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• therefore

~(HK(S))=L~(_1).
HI\ p 8 - P

Substituting imide the real part or the logarithmic (krÎyatil"l' or li), WL' ha,'" th,'

identity:

"'''' ( 1 ) '" (1 1 1 • ri 1"(8/2) 1"(8) Z;,(8))LJ:I1. -- =:11. -+--+ og,.,,+ +1',.--+--
p s-p 8 8-1 . 21'(8/2) -1'(8) 7./ds)·

(;i)

•

Now consider this expression for 8 = a, a + it, a +2il , 1 < a ::; :l, 1 :::: O. SinCl'

log( A) « log d and since

",( 1) a-{3 ·0
:11.--- >8- P - 18 _ pl~ 1

there exist three absolute positive constants C~l Ca, C'I such that ir wc lake 1 = Î lo IlL'

the ordinate of the zero p = (3 +i;, then

Zi«a) 1
-~Z ( ) < --1 +C~ log(d);

I< a a-

",ZHa +it) 1 (d( '9)") 1.
-'11. Z ( , ) < Ca og t T - - --(3'

I< a +1t a-

Z1«a+2it) ')"
-~Z ( 2') < C4 10g(d(t +-) )

I< a + 1t

because of the Stirling formula for the Gamma function. Finally the standard in-

equality

implies
4 3

a - (3 < a -1 +cslog(d(l +2)").

A choice of a =1+ IOS(d(~+~)n) yields , for an opportune 0

(3 < 1 _ Cl

log(d(l +2)")

which is equÎ\'alent to the statement,D
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• 2.3 On the non-Abelian L-funetion of Q((I. 21/1)

.Just. for t.his Section. we willllse the notation L(s) = L(s. \1. L/Q). the main goal of

this Section is to prO\'e the following:

Theorem 2.2 Wilh Ihe sarne notations as abot'e, there exists a positive absolute

COIIS/lwt A st/ch Ihal t/niforrnly

Proof: ln the spirit of the c!assical Prime Number Theorem (See. Da\'enpo.·t

[6]), if we define

if n is a power of a prime p

otherwise:

•

then it is sufficient to prO\'e that

( fi90ax
l·(X.\/l = L I\I(n)« xlexp -A T .

nS=

for some absolute positi\'e constant A.

We will need some lemmas.

Lemma 2.3 lei :\'(T.XI) be the number of zeroes 17 + it of L(s,;(l,L/Q) such that

o ::; 17 ::; 1 and 0 < t ::; T then if dg is the absolu/evalue of the discriminant of

l\ = Q(2 1/'),

T T T (loadl\) 1N(T:\,) = (1-1)2;;- log 2;;- - (1-1)2;;- + ~;;- T +O(logdl\T) .
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• Proof of the Lemma: If Nh'(T) and S(T) are respectively the nnmber of

zeroes of ZK(S) and ((s) in the region in question. thL'n wc have that 1\'('1', \:1 "'

1\'K(T) - J\"(T) and since. from the classical thcory, wc kno\\' that

N(T) = I-Io.. I- - I..- +O(log 'l').?_ 0.)_ .)_
... ll _fi _ ••

It is enough to show that

'\"1\(1') = lI-logI- -II- + (logdK
) '1'+ O(logc/l/r1).

2~ 2n 2« 2«

AIso, in the same way as in the c1assical result, we can write

(6)

•

where H1\(s) is the function defined during the proof of the lemma in the last Section

and n is the rectangle, described counterclockwise, ha\'ing as vertices:

5/2 - iT, 5/2 +iT, -3/2 +iT, -3/2 - iT '

Since H1\(s) = ~s(s - l)F1\, by the residue theorem, we can write that (6) is cqnal

to

8' (r (~+ _1_ + FFI, (S)) dS) = 4;;- + 8' (r F
p
' l, (S)I1S) (i)

J'R S S - 1 1< Jn- 1\

If.c denotes the line from 5/2 to 5/2+iT and then to ~+iT, then using the fnncl.ional

equation, we quickly get that (7) equals:

'" { FI- ~ { ( . ['(05/2) r'(o5) ZI,(.s))
4rr+4'l'1ch(s)ds=4rr+4Tlog.4.+.hr 1c 1'1/2 [(.s/2) +1'2 r (8) + ZJdo5) d.s

and, by the Stirling formula wc know that

8' (r ['(s/2) dS) = 28'log[ (~+?) = 1'10" l' _ l' _.: - 0 (.!:.)
Je [(s/2) 4 2 0 2 4 T'

and
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• This yiclds

[Ii/dT) = 1T log!..- -l!..- + (log dl{) T + 8 - ri +0 (.!.-) + ols:>' ( rZk(s) da) .
2... 2... 2... 2... 8 '1' Je ZJ{(s)

The problern amonnts to proving that

(8)

•

Silice ZJ{(s) is real on the reals, we have that ûLarg(Z/ds)) = argZI{(! + i'1'), As

in the classical case:

Lemma 2.4 For ail '1' > 0, wc have that

)' 1 17 1+('1'-,)2 = O(logdl{('1'+2))

,dlere P "UIIS ol'er alllhe 1I01l-tf'ivial ze1'Oes of ZI{(s).

Proof of Lemma 2.4: From the same argument used in the proof of Lemma 2.1,

we know that for 1 < a ::; 2 and t > 0, there exists an absolu te positive constant CO

snch that

ZI'(S) l '" 1-iR-- < Co log(dl{(t +2) ) - L iR--.
ZI{(s) p a-13

Since for a choice of S = 2 + i'1', we have

I

ZI. 1
Z;~ (2 + i'1') «log dl{.

we obtain
1I: iR--

13
< ctlog(dr;('1' + 2)/).

ap

Finally note that

iR_1_ = 2 - f3 » _-=1_=
a - ,8(2 - f3)2 + ('1' -.,.p 1+ ('1' - .,.)2

and prove the Lemma.O

As in the classical case we have the following implications:

33

. , .. "--.-~~. . .



• Corollary 2.5 Fol' l' ~ 2, IL'f !lal'f /11111 '

a)

b)

N(1' + 1) - 1\"('1' - 1) =O(logdI\T");

'" 1 _ 0(1 ,,1 ,'Z''') 0
L, (1' _ F - og' 1\ '

p,h-TI>t 1

•

Now we are ready to prove (8). Take the idcntity (5) fol''' = a + i'1' ant! ,s = ~ +iL

subtract and get:

ZI,(a + iT) _ ZI,(2 + iT) 0(1 T') L (1 1) ,. (!l)
Zg(a + i1') - Zg(2 + iT) + og + p a + iT - f' - 2 +il' -1' ""

l '" 1O(log dgT ) + L, 'T'
p,IT-,!<l a + 1 . - f'

the last estimate because fol' 11' - Il > 1,

1

1 1 1 3
a + iT - P - 2 + i1' - p :::; Il - TI'

and

L ? ,~ :::; N(T + 1) - N(T - 1) = O(log dI\T").
p,IT-,I<l - +1 - P

Finally,

~ ( ( lf.;(s) ds) = ~ (_ j2+iT lUa + i1') da) +~ ( (+iT ZI'(s) ds)
Je 19(s) ~+iT 19(a + iT) J2 ZI\(s)"

By (9), the absolute value of the second integral is «: than

:::; 7r (N(T + 1) - N(1' - 1)) +O(logtll.;'f"),

while the first integral is in absolute value

which is 0(1),0,
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Lemmn 2.6 L,t.r h, lin in/fger IInd 2 :::; T < x, then

, '" x
P (Xl 2" )L·(X. "Il = - L.. - +0 T (log lxT) + l-log-l .

hl:>T P
(l0)

u:lw,., Il,, SUII/ i.< cri ouled ovel' IIll those :croes p u:hose i11laginnry part"f is in absolu!e

value ltss or equnl than T

Proof of Lemma 2.6: As in the classical case of the zeta function. ~'(x, XI) is

the SUlll of the coefficients of the logarithmic derivative, more precisely, if e > 1 and

l' is large. then the Lcmma in §17 of [6] gives that if:

1 jC+iT [ LI(S)] x'
J(x,T) =?.:: . --L() -ds,

.... 11 l c-tT S S

then .

(

<X> ( (X)C 1 ) cA/lX)),p(x,:I.I) = J(x,T)+O ~ A/(n) ;; Tl\og(xfn)l + T +O(/logx) (11)

If we choose e = 1 + 1flog x (XC = ex) and we treat the four ranges separately:

(n:::;~.r, n~~.r) dx<n<x-2) (x-2:::;n:::;x+2) (x+2<n<~x).

For the values of n, the first range, we have that JIog(xfn)l

contribution of these terms in the SUffi in(l1) is

x [LI(e)] x
«T - L(e) «T/log l,

whcre we jusI notieed that for e> 1

» 1 therefore the

(12)

•
and that (Ir: = 2/- 11' .



(1.5 )

• For the values of n, the second range, set [.rl- Il = r, and not" !.hat 1 :5 r ~ ... ;'1

therefore

log (:.) = log ( x ) ~ 110" (1 - ~)I?:~.n [x]- .. 0 [ ... ] 2.1'

We gather that the contribution of these terms in (Il) is

x xllo" J' _\ ~~ xllog·l.r
~T L AI(x-r)r-l~ 1'0 L r "T (1:1)

1:5:-:5,r/., l:Sr~.r;'I·

Analogous!y, for the \'alues of n in thc fourth range, sct n - [J:I = r' (UOIl' 2 :5

r' < ~ + 1) and thus

Ilog (;)1 = -log (1- n:x) ~;
and the contribution of thesc tcrms in (11) is

xllo,,2 x
~ 0

l'

Finally for the (at most five) values of n in thc third rangc, ll'e ha\'c a contribution

which is ~ /log.r. Putting this together \Vith the estimates in (12), (1:1) and (14),

we get:

i>(X,XI) = J(x,T)+ 0 (~(lOg2 x + log 1)) .
XOII' ll'e replace the vcrtical segment of integrat.ion by t.he ot.her t.h ..ee sides of the

rectangle with vertices

c- iT, c+ iT, -u +iT, -U -iT

•

where U is a large hal: integer (i.e. U = m/2, m odd integer). If T'I, for any zero

p = 8 + h of L(s) is the critical strip, the residuc Thcorcm givcs

xP Rcs (X' LI(S)) /-1 U .7:-
m

1,b(x,XI) = - L - - -- - - L - +
hl<T P s = 0 s L(s) 2 "'=1-111-

+0 C~(lOg2x+logl))+ (IG)

+~ {( rU-i'r + j-u+i'r + jC+iT ) _ U( .• ) :I;"}
2iil JC- iT -U-iT -U-i7' L(.s).li
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• sinfe by the fundional eqllation in (2), the integrand in J(x, T) has simple poles at

.• == p, poles of order (1- 1)/2 at 5 = -m (m ;:: 1), and an extra pole of order 2 at

s = o.

The rcsidllt' at 5 = 0 l'an be estimated as fo11ows: Sinee L(5) = 7.k(5)/((8), and

sinet' x'/s = 1/05 + log x +..., we ha\'e

Res (x' L'(8)) _ Res (1 Zk(8)) 0(1 )--- - --- + ogx
8 =0 5 L(8) 8 = 0 8 ZK(8) .

(li)

From the fUlIctional equation in (1) and the Weierstrass product e:o,:pansion in (4) we

geL that

Res (~Z/,(8)) = b-I ,. 1- (1/·))r'(l) = b 0'11 al)
8=0 8Zf\(8) og ..,,+ - r(1) + l °0 . (18)

If we substitute 8 = 2 in (4), use the functional equation again and note that

Z/,(2)/Zf\(2) ~ l, we deduee that

b = L (.) ~ +~) +o(/log 1).
p - p p

For the terms of this series with 171 ;::: l, we have

1

1 1\ 1 1L -?- +- = 2 L? ~ L 2 ~ /log 1.
hl~l - - P P hl~l Ip(- - p)1 p \2 - pl

(19)

(20)

•

The last sum being estimated as O(log dk ) using Lemma 2.4 with t = O. The same

estimate applies to
1L -?-,

hl<1 - - p

sinee for iii < 1 we have 12 - pl ~ \2 _pj2.

Fina11y, for 171 < l, we know that cs/logdf\ < /3 < 1- cs/logdf\, therefore

3;



• and being the number of zeroes in question <..< log dl\" by Lcnlllla 2.:\ \l'il h T = 1. \l','

have
'" 1 ., .,.,
L.. - = O(log" dl\") = OU" log" 1).
hl<1 p

Putting together the estimates (li), (18), (19), (20) and (21) \\'e gatlll'r

Res (X' L'(S)) .,--- = OW log"/) + O(log~·).
s = 0 5 L(s)

(2\ )

•

From Corollary 2.5, we sec that the numher of non"tri\'ial 7.ero<'s l' 01' Zld.')

for which l, - TI < 1 is 0(1 log 11'), thus the dilferences of the ort1itllttL's 01' t.hese

zeroes cannot be ail 0(1/(1 log 11')). Heuce, wc can choosc l' (varyiug it by a hOllnded

amount, ifnecessary) so that 17-1'1 ~ (/logITt l for ail the zeroes p. This allo\\'s us

to determinea good bound for -L'(s)/L(s) fol' S = CT+iT, T large and -1 ~ CT ~ 2,

that is

L'(s) = Z'(s) _ ('(s) = L _1_ + O(logdlâ'I)« /log2 lT (2:1)
L(s) Z(s) ((s) p.h-TI<I 5 - P

where we have used (9), the fact that by our choice of T wc ha\'() h - TI ~
(log dI\"TI)-1 for ail p and the fact that the number of summands is here « log dl/J'I.

To obtain a bound for CT ~ -l, we use the asymmetric functional eqnat.ion (:1)

whose logarithmic derivative is

L'(l- s) /-1 ( r'(5)) L'(.5)
- L(l-s) =/logl+-2- 210g7l'+7I'cot.7I'S+ [(5) + L(5)'

We know that cot 71'S is bounded if 15 - ml ~ 1/3, that is if

1
\(1 - 05) +(m + 1)1 ~ 3'

If 1 - CT ~ -1, then r'(s)/[(s) = 0(10g2jl - sI) by the Stirling formula, while t.he

last term (24) is 0(1). Thus

L'(05) 1 ?I 1+Il 1 ( < 1) (2,",))L(s)« og~s . og CT_, -
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• prol"idcd lhal cirdcs of radius 1/3 around the trivial zeroes s = -m of L(s) are

exduded.

CSillg (2:J) and (25) wc ha\'c

j d:iT Ilog2 IT je xllog2IT
~ xadrJ ~ ,

-U±iT T -CQ T log X

while (25) givcs

j

-U+iT IIog21U jT U TIlog2 /U
-U-iT ~ U -T X dt ~ UxU = 0(1),

lllscrling thesc estimates in (16) we get the wanted claim.O

(for U -> 00),

Proof of Theorem 2.2: The zero·free region proved for Zi\(s) in Lemma 2.1

holds also for L(s), therefore, if p = (3 +Îj is a zero of L(s) with "'1 < T < X we have

thal
C

(3 < 1- 1l0giT

where Cis an absolute positive constant.

We gather that

1
p {J (log x )xl = x < xexp -ClloglT . (26)

•

The surn L~<T ; extended over ail the zeroes with hl > 1 can be estimated by

partial summation as follows

The same sum over the zeroes p with 1"'11 :5 1 is O(l210g21) as we noted in (21).

Pulling these two faets and (26) together with Lemma 2.6 we get

(27)
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• We minimize it by ehoosing T sueh that

1l0g2 IT = log;r,

and we get that (2;) is

( ,~
~ ri exp -c/2y1-1-)

whieh by partial summation is equi\'alent to statemcnt.D

Remark: If we assume the strong Hypothesis that for any prime l, the D,~dekind

zeta function ZK(S) has the zero-free region

e
0' > 1 - log T' T;:: 0

then, using exactly the same method we would bc ablc to PI'O\'C that, unifol'mly fOI'

1< x

2.4 An Application to Chebotarev Density TheOl'em

(28)

•

In this Section we apply Theorem 2.2 to the Chebotarev Density Theol'em, ohtaining

for the special case of Q((/, 2111 ) a strongel' result than Lcmma l.2. This will bc user!

later in Theorem 3.1, which is aetually a motivation for such a result.

Theorem 2.7 There exists a constant B such t/wl uniformly for ail 1 wilh

1 logx
< B(loglog,r)2'

we have

P(x,l) = ;7{P:S xl P splits complctcly in Q((1,21/1 )}

= I(/~ l)li(x)+O (rcxp (-AI-1/Vlog;r)),

'where A is an absolule positive constant.
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•

•

Proof Let XG be the character of the regular representation. That is:

{
IGI = 1(1- 1) if x = 1,

XG(x) =
a otherwise.

Wc havc that

l(l ~ 1) L XG(O"p) = #{P:5 x 1 O"p is trivial} = #{P:5 xl p splits completely in L}.
p~.r

On the other hand, XG = Xl +...+XI-l +(l-I)x1 is the canonical decomposition

of the regular charaeter, therefore:

The orthogonality relations for the characters of the subgroup H < G give:

1 1-1 {1 if h = 1,
-LX.(h) =
1- 1 .=1 a otherwise.

Therefore, the first 1- 1 characters count the number of primes up to x such that

their Artin symbol is trivial modulo H. These are the primes that split completely

in the Cyclotomie field Q«(tl (whose Galois group is isomorphic to H). Finally, if

..(x, l, 1) = {P:5 x 1P == 1 mod Il. then

1
P(x,l) =Y(..(x, 1,1) +..(x, XI))'

The Siegel·Walfisz Theorem (see [6] in §22) states that given any positive constant

C, if 1:5 (logxf, one has

..(.d, 1) = #{p:5 xl P == 1 moc1l} = 1~ lli(x) +O(xexp(-AVlog x))

for some constant .4 = A(Cl, llnifol'mly in 1.
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•

•

This result with C = 2 and Theorem 2,2 gi\'es the wanted claim,O

We conc1ude with the following statement whose proof is a conseq\h'n,'p of th"

Remark at the end of the last Section,

Theorem 2.8 Assuming the strong Hypolhesis Ihal for allY pr'illlc 1 (li/cl for' lIay /lOn

trivial zero {3 +h, of the Dedekind zela fUIle/ion ZI,.(S) , ,8 < 1- I..~~, tlu'n gh'fa an!!

positive constant C, uniformly for 1::; (log x)e, we hare

P(x,l) = lU ~ l)li(x) +0 (x exp ( -"h.!logx)) ,

for sorne constant A = A(C).O
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• 3 ON THE NUMBER OF PRIMES GENERAT-

3.1 Extending Hooley's Method

ln this Section we will extend the ideas illustrated in Chapter 1 proving the following

Theorem 3.1 Suppose f p is the subgroup ofF; genemted by the classes of the first

log p primes, let

then

-l·-N(x) > 1-1 ?lm ,,_ og_."-00 _
logz

Proof: If we assume P ~ x l / 2 , then, for every x,

f p ;2 f r.p = (Pb'" ,Pr), with r = [~logx]

and

N(x) ~ li'(x) = #{p ::; x 1 f r•p = F;}.

l'iow. as in the standard Hooley's case, we define for given 7/1 and 7/2:

it(x, 7/1) - #{p::; x 1VI, 1::; 7/1> 1 ,tIF; :f r•p]};

M(x, 7/1> 7/2) - #{p::; x 131, 7/1 ::;1::; 7/2, IIIF; : fr.p]};

M(x, 1/2) - #{p::; x 1 31, 1~ 7/2, IHF; : f r•p ]},

and clearly

(1)

•
where ~1 = If·lJloglogx, e2 = B(I~;~~")' and e3 = (log2 x)(loglogxJ2 and B is a

fixed positi\'e number to he chosen later.
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• • The last term of (2) can he treated as in Theorelll 1.1 n~ing Lel1\lIla \..\. \\'1'

have that

M(x,6) ::; # {p::; x Ilf"p\ ::; (1 2 )(;r 1 )" \)og;r og og .1' •

and since Li log Pi = O(p,) = O(dOgl'), Lel1\lIla LA gi\'e~

x ( x ) 1/'
., ) l "1" l' log "(log" x ( og log ,r)" (log" x )(log log X)2

X 1
~

log x log log x •
(:1 )

• '1'0 handle the third term of (2), we will make use of the ah'eady qnoted Siegel

Walfisz Theorem, which states that given any positive constant C, then if 1 :::;

(log x)e, one has

,,(x, 1, 1) = #{p::; x 1P=1 mod 1} = 1~ 1li(x) +O(xexp( -AJlog x)) (-1)

for sorne constant A = A(C), uniformly in 1.

This l'l'suit yields to,

M(x,6,6) :::; #{p:::; X 1.31, 6 < 1< Ç3, P=1 mod I}::; L "lx,I,l)
<2<1«3

L C~ 1 li(x) +O(xexp(-AJlogx)))
<2<1«3

where we have chosen C = 3 say.

(5)

•

Now recall the Merten's Theorem that states that for any t.wo positi\'c nnmbcrs

a and h,

1 (log b) (1)L -=log - +0 - .
o<l<b 1 log a log b

It follows that:

L _1_= L!+ L 1 = log (10g b) +0 (_J_.). (6)
0</<& 1- 1 o<l<b 1 0</<& I(1- 1) log a log b
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(i)

• U"ing this l'l'SUit in (5), we gel

x ( (1 + loa loa 102: x/log log x )) (x)< -- loa .) + 10 " " - +0 --
- log x " - g 1 - (log B + 2 log log log x) /log log x log x

x . ( x )= --log2+0 --
log x log x

• ThcorelU 2. j in Chapter 2 is the ingredient to the estimate of the second term

of (2). Indeed, 1< 6 yields to

M(x,çl.6.)::; L #{p::; xl p splits completely in Q(/,21/1)}
~l <1<~2

= L ( 1 li(x) +O(xlexp (-.4.1-1/2JIogx))
~1</<~2 1(/ -1)

~ :lli(x) +xçiexp (-.4.ç;1/2JIog.x)

1 1'( ) X log2 X ( X )
~ -IX+ =0--

Çl (log log x)410g·4B/2x log x '

where B has been chosen to be larger than 6/.4., say.

• 1'0 treat the main term of (2), let us ~et t = [(log r)1/2], and note that if

then JV(x.çt1;:::: No(x,6), and

.
iV(x,çtl = L:>(m)"m(X),

m

(8)

•

where again the sum is extended to ail the square free integers m whose prime

divisors are le» then Çl (Nole m ::; €~t), and

.) .. { < 1 l' 1 l' Q(' Ilm Ilm)};;- III lx = 'ff' p _ x p sp 1ts comp ete y lU ~m, PI , ... , Pt •
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(9)

)

•

•

FinaUy. the Hensel inequality (sec (.1) of Section 1.1) gi\'es

c Il~e log dm ::; nJ ~!+1 (log m +L log pd ::; 1II~' ::; e'~<I' ::; Jlo!!, ,l',
iSt

Therefore the Chebotare\' Density Theorem (sec Lemma l.~ of S<'ction 1.1)

gi\'es

NO(X,6)=t Jl(nJ)(_lli(X)+o(.rexp (-.-1 10g;r)))
m ttm nfll

c.: II(m) x ( " 1 ') ( (= L ----+0 L.J l+ïh(x) +0 e('xexp -A
m=1 Ilm log x m><, m

x (1 x )=8r --+O ---
log x el log ,'1: '

where 8r is as in Section 1.1 and where we used the faet that in this l'ange of

Putting together the estimates (3), (7), (8) and (9) and using (1) and (2), we gel.

2: 8r-x +o(_x)_log2_
X +o(_x),

log x log x log x log x

Therefore. by CoroUary 1.9

lim ~(x) 2: lim (8r -log2 +0(1)) 2: 1-log2
:z:-oox og X 2:'-00

which is the wanted claim.D

The estimate in (8) is the real obstacle to achieve an asymptot,ic fOl'mnln for N(x).

Such estimate is connected \Vith the range of validity of the Chebotarev Densil.y

Theorem of the field f{ = Q((,,21/1). As IVe hnvc scen in Chnpl.er 2, sneh a range

depends on the determination of zero-free regions fol' L(s, X,) and thus of the Dedekind

zeta function Z1\(o5). Indeed we have
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•

Theorem 3.2 Assuming in the strong Hypothesis that for uny prime 1 and for uny

non-trivial =el'll (3 + i-I of the Dedekind =eta funetion Z/ds), fi < 1 - lo;T' then for

rt!most ail primes p, F; is gene1'llted by the first [2 log pl primes.

Proof. Using exactly the same notation of Theorem 3.1, we now choose 6 

1/4v'log Iogx, 6 = log2 x and 6 = (log2 x)(loglogx)2.

The estimate of the main and last terms in (2) is the same, for the third term,

again we use the Siegel-Walfisz Theorem (4) and Merten's formula (6),

M(x,6,6)::; 2: C~ l li (x) +0 (x exp (-AJlogx)))
6<I<e,

-=-10 (2 log log x+ log log log x) +0(-=-)
< log x g 2 log log x . log x

- 0 Co:x)'
Finally for the second term we use Theorem 2.8, and gather that

and this concludes the proof.O

Remark: It can be proven that the minimal assumption necessary to pro\'e that

N(x) - ..(x) in Theorem 3.1 is that the Dedekind zeta function ZK(S) has a zero-free

region of the type
c

q > 1 - II/ ' T:?: 0,
Ilf2log dK T

for any prime 1 large enough and for sorne absolute posith'e constant c.

lndeed this \l'ould yield to a \'ersion of Chebotarev Density Theorem for I\ \'alid

up to 1 < (log.1:)\ and the l'est of the proof would work as in Theorem 3.2.
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• Finally note thar using this approach impro\'enlt'nts. in t,'nns of d"I,'nninin1'. "

significantly smaller set of geuerators of F; for almos! ail l', art' nol. possibh', Th,'

choice l' = log pis in facr imposed by the statt'n1l'lll of Lt'mma lA. 'l'Ill' llt'Xl S,'l'l ion

is devoted to analyzing rhis aspect in a more detailed manner.

3.2 Relaxation of the Hypothesis and Improvemcllts

Our first intention is to prO\'e a version of Theorem :3.1 in \\'hich thc nUIllIll'r of

generators is optimal with respect to thc method uscd. As wc ha\'c ah'catly l'l'marl,ct!,

the choice of the minimal number of generators of F; fol' a positÏ\'c proportion of l''S

is imposed by Lemma 1.-1. Precisely

Theorem 3.3 a) Let f be a (monotone) functio1l of l' lrith f(p) -> +00 fo/'p -> ex:

and let r p be the subgroup of F; geuerated by the classes of the jil'sl

f(p) logp
log log p

primes, then for a set of prîmes of density greater thn1l l - log 2, wc halle l'p = F;.

b) Let a be a l'ml number tL'ith 0 < a < e - 2 and lfl l'~ 11t~ Ihe 811/'g1"01Ip of 10';,

generated by the classes of the ]irst

log l'

a log logp

primes, then for a set of primes of density grcater thon l-log(2 +a), iljo/lollJs thnt

r~ = F;.

Proof: a) The proof starts in the same way as in Thcorcm :J.l, whcrc wc asslJlllcd

l' ;:: X
1
/
2 and n,?ticed that, fOl' e\'ery x,
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ilud

wh"I"I' li", noi<llions. ç, ami 6 are the same as in Theorem 3.1 and Ô will be chosen

tnt(·f.

The eslimale of lhe main term and the second term are exact!y the same, while

this time th" estimale of the last term of (10) using Lemma 1.4 is the following:

where we have put f = f(X) = 2/J(x) + (log J)/Iog log X and assumed that J(x) «:

log log x, say.

If we now choose 6 = (log x )2+< log log x, we get that (11) is

X

«: 1 .
lo~x oglogx

Finally we deal with the third term similarly as we did in Theorem 3.1, using the

Siegel-Walfisz Theorem and the filerten's Formula:

M(x,6,ô) < L C~lli(x)+O(xexP(-AJlogx)))
~,<I<~J

< li(x) (log G::~~) +O((IOgÇ2)-I)}+O (ôxexp-cJlog:r)

x (1 .) 1 ( 1+ f(x)/2 )) (x)~ -- og + og + 0 --
log x - 1-1og(B(loglogx)2)/loglogx log x

.r ( x )= --10" 2 +0 -- .
log .r 0 log .r. .

and this concllldes the proof of a) .
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h) In this case we need to he a little morc careful with the ,kliuili,lll of l'. \\",.

can assume that p 2:: x l
-'(:) wherc «x) is a gi\'cu fnuct.inu which is n( ~I~'~';::)' aud

therefore we deRne

[
100' l" ]

1'= (l-f(X)) ".
a log log x

and the rest is as in a).

The last term is

M(x,6):5 ,:' {P:5 x Ilr~,pl:5 :}« : (:)'/' l' log l' «:: (Iog.l")l+,./(I-,(,·)).
,3 ,3 ,3 ,3

and choosing Ç3 = (logx)2+«/(t-«:))loglogx. we would makc il. o(:l"/Iog:t'). Fiuall}'

the estimate for the third tet'm is:

M(x,6,6) < li(x) (lOg G:~~:) +O((IOg6)-'l) +0 (6.r.cx p -cVlogJ')

:5 _x 100' (9 -'- a ) -'- 0(_x)
logx " -, 1- «x) , log x

_ _x_ 1oO'(2 +a) +0 (-.!..-)
100' x " 100' X

" "
and this completes the proof.D

Now we turn our attention to another aspect. Notc thal. ncithcr the praof of

Theorem 3.1 nor the one of Theorem 3.3 use in any way the facl that cach l'" i~

generated hy the first [log pl primes except for the fact thatthc ~urn of thcir logaril,\lln~

is « log plog log p and that lim,_oo ér = 1. The statement rcmains truc if wc considcr

a sequence ab a2 .. , of multiplicatÎ\'ely independent illtcgers snch that for any l',

r

L log a, « r log r and ).!..~ ér = l.
i=l

It is concei\'ahle to ask if a choice of a[, ... ,a, exists for which wc could prave il.

str,mger Theorem. That would amount to having a bel,ter cstilllal.c for the slIIn of

.the logarithms, For this pm'pose one could set

T(r) = min {t log ai 1 a[, .. " (t" multiplicativcly ind,)blldcflt l'-tUPI,,}' .
1=0 .
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TI", f,,\l!lIVing holds:

Proposition 3.4

1(1') = l' log l' +0(1').

Proof: roI' any multiplicatively indepelldent ail" ., arl we can assume

al ~ l, ... , a r ~ l', therefore

r r

L log ai ~ L log i =log l'! = l' log l' - l' +O(log l')
&=1 i=l

the last idelltity, by the Stirling formula. Thus

1(1') ~ l' log l' +0(1').

The choice al = 2, ... , ar = P.. the l'th prime, and the Prime Number Theorem,

pro\'e that

1(r):::; tlogPr = Pr +O(Prexp-AVlogpr) =rlogr +0(rexp-AV1ogr).o
Î=D

Although many of the results that we will state can be extended ta any sequence of

multiplicatively independent integers, from now on we will only consider the sequence

of the prime numbers.

Il is now clear that the problem amounts to estimating the number of those primes

P :::; x for which [F; : r r] has a prime divisor in the range (logl-<,(r) x, log2+<,(r) x)

whcl'e fi(X) = 0(1). We note that it is enough to restrict our attention to those

primes for which the prime divisor is in (log·x, log2 x), since by the argument we

already used more than once (the Siegel-Walfisz Theorem and the Mertens FormuJà),

that the number of l,rimes P for which P-1 has a prime divisor in (logl-<JCr) x, log x)

oriit (log2.1:,log2+<,lr) x) is 0( ... (.1:)) .
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• We can also assume that [F; : l',] has exactly on,' prinl<' di"isor in (Ill)!; .,·.Ill)!;·' .").

Indeed, if pis a prime in the set under consideration fol' whieh this is Ih,t t Il<' ""SI"
we would have

and an application of Lemma 1.-1 shows that the number of such l't'iln,'s is 0(11'(.1')).

Finally for the same reason we can assume no divisors of [F; : l', l "\'(' > lo)!;~ .1'.

Putting these remarks together, we have the following

Proposition 3.5 Hïth Ihe same notatioll of Theol'em 3.3, fol' allllo.<1 ail l'l'illll''< l'

up ta x either

or the index [F;: l',] has exactly one prime divisaI' in Ihe ranyr: (log"" log" ;e) and Ill)

divisaI' > log2 x, i.e.

S(x) = _x_ _ A(x) +0 (_x_) ,
log x log x

'Ichel'e

A(x) = {p:::; xl 3!1 E (logx,log2 x), lI[F;: r,j, and [F;: 1',1::; log2 x}.O

This fact will be used in Section 3.3. vVe conc1ude the Section mentioning how

this argument can he extended to the case of any l' --; 0:;, in particlliar t.he following

holds:

Theorem 3.6 Let l' he a funclioTl of p that tends /0 00, then fol' almost ail TJri1ltts

p, cilhel' r T = F; 01'

3!1, 1I[F;: l',] u:ilh 1 E (logp,l' p1f'logp) , (!luI [F;: r,] < rp1f'logl'.0

.52
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Corollary :1.7 LcI () > 0 b,. ji;;:cd. For almost ail primes p eithe!' F; is generated by

1/" das."" of tI,,: fil'sl l~,'''l' primes, 01'
l,l os 'Jgp

:\s we hitve seen in Proposition 3.5, the problem is noll' to determine upper bounds

for tll<' qllantity:

.-\(x) = {p ~ :c 1 3!1 E (log X, log2 x) , II[F; : rr], and [F; : rrl ~ log2 x}

where we Citn suppose,'» log x, We already noticed that the Siegel-Walfisz Theorem

and the :\lerten's Formula, gi\'e:

A.(x) ~ log2-1x +0 (-1x ),
ogx ogx

The idea that allows one to improve this upper bound is coming from the Brun's

Sie\'e, more precisely we will use the following result:

Lemma 3,8 Let Bn(x) be the numbel' of primes up /0 x for uohich p-1 is not divisible

by any of the primes in the in/el'eal (logx,logn x), then we have

1
Bn(x) ~ - ...(x).

n

Proof: It is an application of the version of the Brun's Sieve that is on Theorem

2..j' at page 83 of [lSJ to the set:

.A = {p -11 p is primes,p ~ x}.

Hypothesis (Ro) and (R1(k,a)) are easily satisfied, the latter using the Bombieri

\ ï nogrado\' Thcorcrn. 0

The application to ollr problem with the following:
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Corollary 3.9 \Fith the same notatioll as abot'e. for allY l',

1 x (x)A(x) :5 ;--- + 0 -- •
210gx log.r

Proof: We ha\'e that

A(x):5 {p:5 x 131 E (logx,log2 x) 1 II[F;: f,]} = ;;-(x) - B2(x) ~ ~;;-(.,,).D

'Ne conclude with

Theorem 3.10 a) Let f be a (monotone) fllllc/.ioll ofp /Vith f(p) -> +00 fol' P -. 00

and let rp be the sllbgrollp ofF; genemterf by the classes of tilt: first

f(p) logp
log logp

primes, then fOI' at least half of the primes p, u'c have f p = F;.

b) Let Q; be a l'cal numbe!' with 0 < Q; and let f~ be Ihe sllbyroap of F; gCllcmtul

by the classes of the first
logp

aloglogp

primes, then for a set of primes of density grea/el' than 2~a' it l'CSll/lS r;, =F;..D

Proof of b): The proof goes as the one in Theorem 3.3, except. thal. to esl.imal.e

the third term we make use of Lemma 3.8 with n = 2 +a.D
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3.3 A Density One Result

Wc will disCllSS in this section a method to find an estimate for the size of lhe set

{
P-I}I-Im.,(.r) = p:S; J: Ilr,1 = -;;-

wlwrc TT! is a given inleger greater than one and ra function of p that tends to infinity.

The idea is lhat r, is a subgroup of lhe cyclic group F; and therefore is itself

cyclic. For any inleger m, m == I( modp). the subgroup of m-th powers is a subgroup

of F; of order (p-I)/m and since a fini te cyclic group has a unique subgroup for every

divisor of ils order, we deduce thal r, is lhe group of m-th powers mod p. Since a

group is made out of m-th powers if and only if it is generated by m-th powers. this

imp!ies:

H....,(x) = {p:S; x 1 p == I(modm) and p; is an rn-th power (modp) Vi = I, ... ,r}.

If n... (p) is the least prime which is not congruent to an m-th power (modp), then

we can also wri te:

H....,(x) = {p:S; xl p== I(modm) and nm(p) > p,}.

As l' grows, the possibility that aIl the Pi'S are rn-th powers becomes less probable.

The idea is 10 find the minimum l' such that Hm.,(x) is o(;;;..(x)). We will do this

making use of lhe large sieve, the proof of which can be found in [6] or [2], lhat is:

Lemma 3.11 (The Large Sieve)

[cl Ar bE, n sfi of inlcgers conlnil1Ed in IhE inlErval {l, ... 1 z} and for any p"ime

p:S; x, lEI nI' = {h(modp) 1 "In E N,n ~ h(modp)} and

L = :~:>2(q) II Inpi 1

qSr rlq p -inpi
lhcn
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In our case, let N = {n:S: =1 V'qin,q < l',} and note that if l' E Hm .,( •..). I.hl'Il

!1p ~ {h(modp) 1h is not an m-th power (motlp)}

therefore, for such p's, j!1p l :2 l' - 1 - (p- 1)Im and

l!1p l m - 1
L:2 L P-1!1

p
l :2 ~IH,".r(:r.lI.

peHm.,(z)

Applying the Large Sieve \Vith == x 2 , we get:

Theorem 3.12 Let 111 (s, t) = #{n $; sil V'qln, q < tl, thcn

S.r2

Hmr(x) < •.0, - (m -l)l1I(x·,Pr)

Estimating the function 111(=, y) is a classical problem in Numhcr Theory. In 1!J8ii,

D. Hensley pro\"ed (see [22]) the following:

Lemma 3.13 Let u = :~g~ and let plu) be the function de/amine" by:

{
plu) = 1 if 0 $; u :5 1;

up'(u) = -plu -1) if u> l,

then, for 1 + log log =$; log y $; (log log =f, and f > 0,

l1I(z, y) ~ zp(u)exp(-uexp(-(logy)(3/S-'»)).0

In our case, this gives:

Corollary 3.14 Letr be afunetion oJx sueh that logPr E [l+loglogx2, {log log:r.2)2]

and let u = 21ogx/logPr, then

Hm,r(x) ~ m-1ptu) exp (Il exp (-IlCXP (-log(3/-'-') Pr))).O

.56
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• An asyrnplotic formula for p( u) \Vas found by de Bruijn in [la] and is the following:

Lemma 3.15 Lcl u > O. thw

{ (
(log log u) - 1 ((lOg log U)2))}

p( Il) = ex p - u lo!!; u + log log u - 1 + 1 +0 l' .0
- og 1L og" U

ln Olll" case we get the fol1owing:

Theorem 3.16 If p, ;::: log2 x then

1 x
Hm.r(x) ~ - -~{-I-~} = o(..(x)).

nl exp o."
. 21oglogr

Pro of: From Corol1ary :3.14 and the asymptotic formula of Lemma 3.15, we can

wrile the estimate:

1 . (lOg log u)Hm.r(x) ~ - exp(u(logu + log2 u - 1 + 0 1 )).
m ~u

where u = 21
10U

• Kow. take p, > log2 x, and note thatog;ol" -

u = l~~g::; log u = IOg2 X - log3 Xj log2 U = log3 x +log (1 - :~:::)

and . log Il :=: log2 :1'; 10g2 U ::; 10g3 x.7" :~:;: :=: IOg3 x.

Therefore < '('

•

{
log x ( IOg3 X (log3x))}m H",.,(.7:) ~ exp -1-- log2 x - log3 x + (log3x - -1--) - 1+ 0 -1-- ~
~2X ~x ~x

eXP{IOgX(1--1 1_+0(log~x))}~ {~ } =o(..(x)).O
og, X log2 x exp 0""
-- '21oglog.r

Remal'k:

The choice of p, = log2 X is not optimal in Theorem 3.16. A simple but long calcu

la lion shows thal if p, = Co~rf, then the asymptotic formula on Lemma 3.15 gives

the estima!.e
1 (t+O(~))__ // X lo, ... ~

p( u) ....... . -,
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which is uselcss to our purposc. \-Iowel'cr. if wc Iix 8 <: 1 ilnd st'! /', = (!';~;:f. tl\t'n

the samc ca1culation gi\'cs

( , ("))1 \- 1-.\ -~~O ~__ « x tOlli~ ~ 10":.r' lo,,~ %

p(u) •

which is il valid estimate and is the optimal onc.

\Ve are now ready to prol'e:

Theorem3.1'i Let r, = (1'1,,,,,1',) be the SlIbgrnllp of F;' gWt:I'at ..d f,!! al/ th ..

primes up to l', = log~ l' (1' - 1~~1::v)' theu for almost al/ lJl·iluf.~ /'.

Proof: We want to estimate the size of the set

S={p::;xl [F;':f,]>1}.

The index.[F;' ': f,] can be at most x sinee it is a di\'isor of JI - 1.

.Binee we may suppose l' > x1-<, we can take l', = log2 p > (l - cr log";l' and

apply Theorem 3:16, ta S,

= (Z 1) x
S = L Hm.,(x) = L:; . { 10': } =o(7l"(;r)).O

m=l m=l exp 21oglogr

Remarks:

a) This is an imprO\'etilent with respect ta the l'l'suit of Burgess and Elliot of [51

deduced in Proposition 1.11 where for almost ail primes::; x, the size of ]J, (Icasl.

primitive root) \\'as pro\'en to be ~ log2 x(log log X)'I;

b) Improvements to this l'l'suit using this approach do not sl.ay in the possibilil.y 1.0

apply a stronger version of Lemma3,13 (which exists in the literature, sel' for examplc

the work of A. Hildebrand in [2:l] or Canfield, Erdos and Pornerance in [81l. II. is the

asymptotic formula of De Bruijn for the function p(u) I.hat forces a choir:e p, of siZl:

close ta log2 x .
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• 4 MORE ON PRIMITIVE ROOTS

•

'l'hi, Chapler is de\"oled to lhe problem of finding a uniform asymptotic formula for

llw nunlher of primes l' up to x such that s distinct numbers (which for simplicity

we sllppose to be prime) are ail at the same time primitÏ\'e rools (modp). It turns

Ollt lhal, under the assumption of the G.R.H., there is always a positÏ\'e density of

primes with such a property.

Heuristically, lhe probability that a prime / divides one the indexes [F; : (Pl)]

or [F; : (p2)] is the probability that p sp!its comp!etely in the fields Q((/,p;ll)

and Q((I, pt), minus the probability that p splits complete!y in the compositum

Q((I.p:ll,p~/I}. By tile Chebotare\' density Theorem, we get that the probability

thal/ does not divide both the indexes is

( 1 1 1)
1 - . 111 • + . 111 - III 111 •

[Q(C",pl):Q] [Q(C,I,p2 }:Q] [Q((I,Pt ,1'2 }:QJ

~lultiplying for ail primes 1. we get the formula:

(
2/- 1 )

6 = II 1 - 12(1- 1) .
1 prune

:\ natura! generalizalion of this argument to the case of r distinct primes with the

application of an inclusion exclusion princip!e, yie!ds to:

\re will pro\'e that this heuristic argument is correct with the assumption of the

Generalized Riemann Hypothesis and sorne adjustments of the same type of those

noticed by Lehmer in the case of the Artin Conjecture for primitive roots. This will

he applied in Section .1.:3 to the problem of determining the least prime primitive raot

modp for almost ail primes p.
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• 4.1 Another Generalization of Hooley's Theorem

\Ve present in this section a very nalmal gencralizalion "[ H"oky', Th"')l'l'lll [,)1'

primitive roots,

Theol'em 4.1 Lei P = {Pt. ... ,JI,} bE Il sd of odd I,,·imrs. Lldl .... ,.1..) br th,

compositum field: ,
L(dl, ... ,d,) = II Q((J,.p!/J,),

i=1

<:<>

61' = L
dl =lt.·..d,=l

•

Define

N1'(x) = #{p::; x 1 Vi = 1,.,.,s Pi is Il primilive rool (IllOt! Il)}.

Then, if the Generali::ed Riemanll Hypothesis holds fa" lhc fir.lds L(dl , ... , li,). m,

have that

, • () < X 0 (x log log x'~I )
11' x = v1'-I- + 1 ~2 Cu L., ogPi

og X 0 0 X i=l

for some absolute constanl Cu, uniformly ,'cspeci la s =11'1 and PI, ... , p,.

Remark: It is not straightforward to see that 61' is weil defined nol' thal. il. is non

zero, Indeed, the series defining the density, converges absollll.e1y. We will assnme il.

for the moment and prove it in the next section in Corollary 4.12,

Proof: We will follow the saIlle approach of Hoolcy who fil'sl. nol.ice" I.hal. III

order Pll ... , P, be ail primitive roots for the same prime p, one has 1.0 have I.hal.

VI prime, 1 t!'[F; : (Pi)], Vi = 1, ... ,.5,

thel'efol'e

N-p(x) = N-p(.7:,y) + M-p(x,y)
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W 11"1'''

Np{x,y) = # {p:::;:r 1 VI prime, 1< y and Vi = 1. .... 8 1 JjF;: (Pi)]}

Mp(x,y) = # {P:::; x 131 prime, 1> y with II[F;: (Pi)], for same i = 1, ... ,s}.

Wc chaose y = il; log x for a reason that will become clear later.

x log la" x '
Step 1): Mp(x,y) ~ 2

0 sLlogpi.
log X i=1

Clearly ,
Mp(x,y):::; LM{p,)(x,y),

i=l

therefore it is enough to show that, uniformly with respect to P,

x log logx
M{q)(:r,y) ~ 1 ., slogq.

og- x

'l'bis was proven already by Haoley in his original paper [26], and we will report it

here just fOl' completeness.

1\ote that

M{q}(x,y):::; lAI + IBI +ICI,

where

A = {p E M{q}(x,y)131I[F;: (q)J,1 > x I/2 10gx};

B = {p E M{q}{x,yJl3li[F;: (q)], 1~~~2r < 1:::; x I/2 10gx};

C = {p E M(q)(.r,y)131I[F;: (q)],y:::; 1:::; 1~~2J.

lAI can be estimated as follows:

II[F; : (q)] implies that

E::lq' == 1 (mod pl.
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Therefore. since 1 > xl/~ log.r and p :5 x, any prim" in .-\ mu,t ,lil·id,· th,· I,,'sil il"<'

product

II ('lm - 1).
m:S.rl/~ log-l,r

!\ow note that the number of di\'isors of a natmal numh,'!' ,y is 0(1')f\ .\'). thl,l't'f,)r,·

:r
IAI« " mlogq«--.,-logq.

L." lo!!;' rm:5r1/2 lûg-t:r '-. .

IBI can be estimated as follows:

Retaining only the condition IIp - 1 for the primes pE H, we gel.

"(x, 1, 1).
1/2

~<I<rl/21o'·r
101;-% - <:l

By the Brun·Titchmarsh Theorem, we know that

x
rr(x, 1, 1)« (/ -1) log(x/I)

We therefore deduce that

from which it follows from the easier Merten's formula. that

x (( ) ( X'/2 ) ) (xlo"log.l')IBI« -12 log x l
/
2 10gx -log -2- +0(1) = 0 . 1 0 ~ • •

og x log x og x

ICI can be estimated as follows:

We have already not.iced that II[F; : ('1)] is equivalent to the statemellt that p splits

completely in the field Q((" '1 1/'), the version of the Chebotarev Densil.y Theol''''''

lhat assumes the validity of the Generalized Hiemanll Hypotil"sis fol' sll(:h fields is:

P(x,l) = ;{P:5 xl p spliLS completcly in Q(("ql/'J} =
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• 1 1'. 0 ln 1 11(1_1)1(.1:)+ (.1' og.r· .q).

Ir Wl' liS" Ihis forlllllla wc gel:

o (~-=-) + 0 (~Iogq).
y log x log'~'-

,[,,,king intll "crollnt that y = ;t log ;c , wc get

ICI = 0 (~sIOgq) l
lorr' x
"

which is the desireà estimate.

Step 2): \\'1' can now turn our attention to -,"p(x.y). \\'1' claim that

-,"p(x.y) = L'" LIl(ad· .. ,/(a,)P(x.al .... ,a,)
111 a,

(1)

•

where the * O\'er the sums means that the sums are extended to those values of ai for

which ail its prime di\'i,ors are less than y (note that this impiies ai < e2y = X 1/
3
'),

and

P(.r.al, .... a,) = #{P::O; x 1 ail[F;:(Pil] vi=L ... ,s}.
This claim can h.' prO\'en by induction on s: If s = 1 then wc have the standard

inclusion-exclusion principle:

N{p,} (.r, y) = :c(.r) - L P(x, 1) + L P(x.//') - ... = L I/(ad P(~', alj.
f<!i f<y.!'<y 0.1=1

Simiiarly, for a ~ t ~ ", ddine

Clearly

PO(;r.al, ... ,a,) = P(.r,al .... ,a,)
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•

•

and the recursive relation holds:

P,lJ··a,+I, .... a.,) = LI/l",)I"_I(.I·.tl, ..... Cl.,) .
••

Hence inductively

Np(x,y) = P,(x) = LI/(a,) ... LI/(tll)l'o(.r.al .... ,tl.,).
li, tJl

!\o\\' note that the condition ai I[F~: IPi)] is eqni\·i.!ent tü

P splits completely in Q((".,I'~/.').

and that a prime splits completely in a set nf fields if and only if il. splitS coll!pll'\dy

in their compositum.

Therefore ai I[F; : (Pi)] for ail i = 1, ... , s, if and only if P splits cOlllplet.dy in

,
II Q( . 1/.,) _ Q( . 1/., 1/",)

~a"Pi - ~[al .....a,IoPI ... ·.P, .
i=l

We gather that

P(x.al, ... ,a,) = #{p ~ x 1 P splits colllpletely il! L(III, ... ,a,)}

and the Generalized Riemann Hypothesis allows us to write the Chehot.i1l't'v ()"nsil.y

formula:

P( ) 1 1·()..l- 0 ( II' (1 . log D", ))x,aJ, ... ,a3 = 1 X 1. x" OgXï .
n ll1 •..••11J 1I,JI .. · .. ·1.

where Da, .....a, is the discriminant of L(lll," .,ll,). Recall thilt by the Hellsd 11I"'1uII1·

ity (See page 2.59 of [42]) we can II'rite

,
:::; log[fLl:'" ,0 ...1+ L !fJgpi.

i=1
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(2)

• since onl)' PI. ... 1 l'" and the primes di\'iding [ah" . 1 as] ramif)' in L(ah ... 1 as)' !'iow

.;ubsl.il.nl.e inside (1) and gel.:

~ ~ () (){ li(x) o( 1/ 2(1 10gDa•.....a.))}NI' (:r, y) = L.. ... L.. l' a t ••• l' a. n + X og x + n =
ftl Q, (11,....(1' l21,· ...a.'

opli(x) + 0 C..~.)es J12(a~a:.· ..:.~.2(a.)) li(x)+

oC<"'~a.<", X
1/2

(log x+t log Pl + log[ah"" a.]) )
where S is the set of s-tuples of positive integers where at least one of the component

is gl·e.t1.er tbat y. Wc will prove later in Proposition 4,4 that

J12(at)'" J12(a.) «: ci,
na11... ,Q., Y

for some absolutc congt.ant Cl • In our case I/y «: si log x therefore (2) is equai tù

Finally note that if a" ... ,a. are square-free numbers with prime divisors less than

Y, then "Iso [ah"" a.] has the same property, thus

Hence

al <e~II ••.af <e:!!/ Ct <e::!Y •••a.,<e::!lI

•

. ~. (x. . )
J\'p(x,y)=Op-j ". +0 -12 coLlugpi .

0 0 X og X .=1

which, togcthcr with st<"p 1) pwves the Theorem.O
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• 4.2 Calculation of the Del1sities

'Ye can now gi\'e the expression for the dcnsity 8p • and as wc did in S,·ct illn I.~. Ill\'

first step is to calcul?te the dimension of the fields

•
L - L - II Q (. I/U,) - Q( . 1/"1 1/"')- al •...•a, - ~a,·P - ~(at •....a,l·Pl , ... ,1'.. ,

1=1

for any s-tuple a" .. . , a. of square-free integers. This is done in the fol\'l\\'ing:

Theorem 4.2 Lei n = n., ....,u, = [L: Q] ,l\[ = [a" ... ,a,jllnd Sll/,/""e l' i,lhl'

product of Ihose Pi such thal l'dM and ai is erell. Ld 1 hl' tlll: 1111111/"'1' of l'I'illll'

factors of P, then

161h

{

1
a-

1-1

if \lqlP, '1 == 1 (mod 4),

if :lqlP, with '1 ==:3 (mod ·1).

Proof: The argument is similar to the one in the proof of Theorcm 1.5. \Ve mn

suppose. with out loss of generality, that P = PI .• , Plo and define

Clearly L = C. and

Co = Q((I/), C' C (II.,)
'j = "i-I Pi .

•

[L : Q] = [Co : C.-Il··· [C2 : Cdç,(M).

Step 1): For 1 ~ i ~ s, it results [Ci: Ci-Il = ai or a;/2 .
'l·

Since x·, - Pi splits ioto linear factors O\'er Ci-" we have that [Ci: Ci-Il = ,;' if '1 Ir!
is a prime, then we have the fields:
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(
Pi ) 11,

7"(_..:..:..--,)""' E Co,
P" ... P,••

•

-'.;

."-':;"-

1\ow, "ither '1 = 1 or

[C - (plI')' C- ll[C-' c- 11 _ ai1-1 i • ,-1 ',. t- - d

l
and since ai is square-free, we deduce that Pi' E Ci- l . Either Pi E Co which imply

'1 = 2 sincc the only subficlds of a cyclotomie field of the type Q(p)/,) are quadratic,

or Co(p)/") is a Kummer extension of degree q of Co. Now by Galois Theory, we get

that. such an extension has to be of the following type:

where 1 ~ SI ~ S2 ••• ~ Sk ~ i - 1 Finally, the Theory of Kummer extensions, (See

Lernma 3 at page 160 of Cassels and Frohlich li]) implies that there exists 0 ~ i ~ '1-1

such that

whieh again implies q = 2.

Sl.ep 2): [Ci: Ci-Il = ai for t < i ~ s,

In the case ai odd then clearly Step 1) implies Step 2), thus suppose ai is el'ea and

[Ci: Ci-d = ai/2. In this case, we hal'e that .jPi is in Ci- 1 because ai is square

free ([Ci-l(.jPi) : Ci-d la;/2). This implies that Pi ramifies in Ci-il but since, by

t.he Kummer Theory, the only primes that ramify in Ci-l are Pl,'" ,Pi-l and those

dividing M, we get a contradiction and conclude that [Ci: Ci-d = ai.

This also implies that [C, : Cd = at+! ... a,.

Step 3): If el'ery prime dividing Pis == 1( mod4), then [Ci: Ci-d = a;/2 for every

1 ~ i ~ t.

From the Theory of Cyclotomic fields we know that a generic quadratie subfield of

Co = Q((u) is of the following type:

Q (J(-;]) D) , where 1) lM,
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•

•

since (~l) = 1 if and only if q == I( mod4), wc deduCl' that v"ii E Cu and tlll' G.Ii"i,

group of Ci oYer Ci - l is gcnerated by the map

(note that 0'(y'Pi) = (O'(p:/a,) ):,i~ = Jiii), which has clearly order ad'2.

In this case we have [C, : Co] = al ... ad2'.

Step 4): Ifit exists q IP Wilh q == 3( mod 4) (wc assume, withollt los, of gelll'rality,

that q = pd, then [Cl: Co] =al and [Ci: Ci-il = a;/2 for l'very 1 < i :;:; 1.

The assumption [Cl: Co] = ad2 would imply again that v'Pï C Co. By the S<lIIll'

argument of Step 3). this implies that the Legendre symbol (;,1) = 1: which i, il

coutradiction. Therefore we are left to show the second pal·t of the stalel1ll'llt of this

Step.

If 1 < i :5 t then Jiii E Cl because, either Pi == 1(mod4) and thlls .jjîi E Cu CCl,

or Pi == 3(mod4) and ';P1Pi E Co hence Jiii = ';11111;/ VPï E Cl' ln bolll cases, t.he

Galois group of Ci O','er Ci- l is generated by the map

which again has order a;/2.

Finally, in this case we hal'e [C, : Col = al . " at/2'-1 and this concludes the prooLO

Corollary 4.3 I·Ve haL'e thE follou:ill!J [ower bO/lnti for the tii"WIISioll 11", .....". of Ih,

jifid La, .....a• over Q:

"'e hal'e no\\' enollgh 10015 to prove the property wc llsed dnring t.he pl'Oof of

Theorem -1.1.
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• Proposition 4.4 /lwli/ that S = {(ah ... ,a.) E N' 13i \Vith ai > y}. ft resu/ts

thal

for SOUlt flb.-;ol/llt: C()fl.';/a1l1 CI_

Berore proving Proposition 4.4, we need the fol1owing technical Lemma:

(3)

•

Lemma 4.5 COllsirler the mu/tiplicatilJc function d,(n) defined as the number of !L'ays

10 lLTite n as Jl7'Oriud of 1 lIaluml nll/nbers, and denole:

'Wc hat'c:

O"(t) :5 ((2)2'.

(
d(/2) d(l4j )2 ( 1 1 )2'< 1+_'_'+_'_+'" = 1+-+-+···- J2 l" J2 14

Hence

Proof of Proposition 4.4: First note that from Corol1ary 4.3, we get that

1. hcrdore (:3) is
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• But the sum on (.J.) is completely symmetric on the' ll,'S, the'l'd,m' is

«: 2$8 L JL~(U) I: . l . ('1)
01>" a ( le'!.I-l Q',2" '1l.1<.'>((a~, ... , fI,])" 11: •...•:1, ....

Using the multiplicative function defilled abow and the fnnclion 1 ';l'!ilh'd as

",(n) =IIp.
pin

we can write that (5) is equal to:

2', L Jl~(a) f: d.~)(b) = 2$~ I: Jl~(a) t d.,_db)o((a,iJ)).
o>y a ;=1 </>(,(ab)) a>y o(a)a ;=1 </>h(b))

Since ail functions inside the second sum are multiplicative, we can writc (!i) as

')'." Jl2(a) II { .L 6((a.I)) (d._ I (/) d'_l(/~) ...)} r
- - L.- 6(a)a . 1, 0(1) 1 + 12 + 0:;:,

:l>Y . 1 prime .

If we can proye the estimate:

•

" J(a ) --,0'(_~----".1)
L.- -,- «:-
a>!J a" y

where

J(a) = a/~2(a) III: d'_I.~lh) = ,,2(11) (_a_)",
<;>(a) lia h~O 1" q,(a)

then the estimate for the 'function 0'(1) of Lemma 4..5 would imply tlte clailn.

From the Theory of Dirichlet series, we know tltat (G) is

j '" F(x)«: --,!Jo.
X 3 .

y

ïO
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• whe", F(~') = L:,,~x J(1l) is the average of f, If we could pro\'e the asymptotic

forlllllla:

F(x) - 'T(s - l)x,

for.r that t.ends lo infinily, then wc would have that (6) is

100 a(s - l)x
d

a(s - 1)
~ 3 X = .

y x y

1'0 pro\'e (T). we lIlake use of the Dirichlet series:

H(=) = f: f(~).
n=l n-

(T)

(8)

where

•

Since f(lI) ~ (log log Il)' 1 we know that H(=) con\'erges in the semi-plane ~(=) > 1

and we can write the Euler product expansion:

H(=) = II (1 + 1. _1_ L d'~l) = ((=)K(=)
1 1· 1- 1 k;::O 1

l';(=) = II (1+ .!.._l~ d'_l) (1 - .!..)
1: 1- 1 L lk 1:

1 k;::O

con\'erges for ~(=) > 0, This decomposition gi\'es an analytic continuation for H(=)

and lherefore we can calculate the residue at == 1 of H(=) which is going to be

!~n(z - 1)((=)/\(=) = K(I) = II (1 -7 +7(1 +L d,_;t))) = a(s -1),
- 1 1 k~l

The lkehara Tauberian Theorem (sec [3:31. page :311) implies the daim of (T) and the

Proposition results pro\'en.O

Remark: The details used in the last part of the proof of Proposition 4.4 are

missing from the original proof of Hooley in the case s = 1. In that circumstance

the k'\'e1 of precision that we need here for the application on Section 4.:3 was not

required.
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• If nd" ...•d. is the dimension o\"cr Q of 0:=1 Q((J.,I':/'l,) thl'II wc ha l',' S,','II t.hal.

whenever ([db' .. ,d.],Pl···P.) = 1, il. rl'sults

this leads us 1.0 consider the function:

Our goal is 1.0 show thal. 6.. =1- 0 and that, lim._oo D = 0, the bcst. way to do t,his

is again 1.0 express 6.. as an Euler product. This will also cOllfirl1l th~ hl'lII'isl.ic

argument illustrated al. the beginning of this Chapter.

Proposition 4.6

6..= n (1-1~1[1-(I-T)·]).
1 prime

We need two lemmas:

Lemma 4.7 For any prime I, let il he given a Junclion al. and defillc

(note that r.(I/(I- 1)) =6..) then:

rt+I(al)=rt(alll~l) n (l-~q).
Ctl q prune 7

Proof: The right hand side of (9) is equal 1.0:

(!) )
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•

•

II'IWfe we jusl fenallled a,+, lo he x. Note that fOf any multiplicative function I(n)

and 1/ EN, if wc dcfiue

F(n) = /l(n)J([H, nlfH),

theu F(n) is again llluitiplicative. If we take H = [al> ... ,a,] and J(n) =TIllnal, we

gel. l,hal. (10) is cqual to

Siuce II [lii'li if and only if 1= q and q IH, we gather that (11) is equal to:

f ... f(/l(ad"'/l(a t
) II al) II (1-~) II (l_ aq ).

41=1 111=1 al'" at 11[4 11"'141] ll[ah...•lle] 1 q prime q
ql(O'l.···. lIti

/ool'.tltiplying and dividing by the missing terms, we get the claim.D

Lemma 4.8 Defille inductilleiy the Junciions {3i =(3i(l) in the JollotL'ing :

1 1-1
{3l = -- and {3 - {31- 1 n - n-11 - {3n-l '

Ihen:

boa = II TI (1 _(3n(l)) .
1 prime n=l l

Proof: By induction on s, the case s = 1 being the definition of the Artin

constant. Lemma 4.7 implies that:

f,({3.• ) n: [n(l-{3i;/))].
1 prime 1=1
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• Finally

fiCS,) = f= Il(a) II ,8,(1) = II (1 _13"Y)\ ,
a=l a 1111 1 prim~ )

and the daim follo\\"s.O

First Proof of Proposition 4.6: Note that. by thc inl1udi,'c ddinit.illn nt' th·

(3i's, we have that

and, more in general

Finally

Substitute (31(1) = 1/(1- 1), and get the daim.O

Second Proof of Proposition 4.6: If we define

J(m) =
°1.···,oj

(al ...·,QJ1=rn

•

then it results

6., = f= 11
2
(",')J(m)

m~1 9(m)
since the lowest common multiple of square·free integers is it.sclf squarc-fl'ce,

We now daim that J(m) is multiplicati,'e, which irnply:

6., = II (1 + J(I)) .
1 prime 1- 1

Î-l

(12)



• IlId,·",1. if TIL ancl m'are coprime integers, then the map

is a bijectioll from the set of s-tllples of integers with lowest common multiple m cross

t.he ;iel of ,·-tllpbs of integers with 10IVest r.ommon multiple m' to the set of s-tuples

of inlcgcrs with lowest common multiple mm', whose inverse map is given by:

(Ch"" c,) >--> «e" m), ... , (e" ml), «Ch m'), ... , (e" m')).

\\'e gather that

f(m)J(m') =
<11,· .. ,4J bl ""Ib,

[ul ... ·,I1,]=m [bl .... ,b,]=m'

cl,···.e,
(C) , ....c,]='"m'

~JL(c...:el.!....)._.'~JL.l...(e::.!.,) = J(mm').
Cl'" CoS

•

Finally. if [al •... , a,] = p, then each ai can be equal to 1 or to p, and each possibility

is possible except ai = llii = l, ... ,s. Hence

-1 (s) 1 ( s) (_l)k (-1)' ( 1) ,J(p) = s- + -:;- +... + -.- +... +-- = 1 - - - 1.
p 2p· k pk p' P

Subst.itute in (12) and get the claim.D

Corollary 4.9 With the same notation of Theorem .f.l, TCF. hal'e that:

Proof: For any fixed N > 0, IVe have that:
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•

•

where f(l) = (1 - (1 - ~)'). "ole lhat. in sneh a range for 1 il rl'sults

as N tends ta infinity. Hence

2·~. ~ exp {~IOg (1- {~vn}« exp- {~C~ JJ(N)} <
l:pl::! l';I!~

eXP-{(loglogN)(I- c- N)}.

Now take N = s/log sand get

2'~.« -11 exp (log log(s/ log 5)5-
1

) « -1_1_.0
~s ~s

Theorem 4.10 Let P = {Pl, ... ,P.} be a set of odd p7'imes, sUJlJlose'P is Ihe subsd

ofP ofthose primes cong"ucnt to l(mod4). With the S/Lllle nO/IL/ion oJ TI",o,'''''' 4.~

and Proposition 4.6, it results

8p = f: ... f: /l(al)···ll(a.) = ~~, {II 1 + II 1+0" - (7) Ill'},
Ql=1 4 ..=1 na11..••!l, 2 pEP l + O:p pE'P l + 0'1'

where Op = P:I ((1- ~r -1).

Proof: To make the notation lighter, we will indicate the s-tnple ((lI,'" ,Il,,) hy

g, the product al'" a. bya and /l(ad" '/l(a,) by /l(gJ Wc al50 say thal. !L is od" if

a1l its components are odd.

Furthermore, for any subset J of [.s]d:f {I, ... s}, wc denole by PI t.he prodllct. of

elements in J and by j the subset of J of Lhose i's for which Pi == 1(mod4). Now cali

[aji the set of s-tuples of integers for which ai is even for ail i E f and ai is od" f'lr

a1l i ~ J. It is dear that {[aV} IE['! is a partition of N", t.herefore

8p ="L 11 (g.) = "L "L Il(gJ = "L (~~t "L 2·J~JI((/)
1< nI< I>;[.J I<Ela11 nI< />;[,1 2 1< odd 0I,,(l!L])
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•
3

r
={V(Q) ifQIPi

II( Q) - 1 olherwise

li", ptlssibilit.y Q = 1 belonging to t.he first case. We gather that

= ~lL 2V (P;) L ~(a) + L 2V(P;) L ~((l)) .
- Jci • odd utp([g.l) Jçr • odd utp([g.l)

- PJ=( PI .[cl) PJz:(Pl.(cl)

Z\ow nole that for .J ç J. the condition PJ = (PI, [a]) is equivalent to PJ 1[a] and

([iLl, Pr- J ) =J. As we did during the second proof of Proposition 4.6, we can write

m=l
m odd'PJlm,(m'PI_J)=l

(13)

again the function imide is multiplicative, thus we can write that (13) is equal to

f: ~.2(m) II [(1 - ~)' - 1]
m=1 tp(m) 'Im 1

m odd.P;lm.(rn'Pl_J)=1

1 [( 1)'] co ~2(m) [( 1)' ]=-II 1-- -1 L II 1-- -1 =
ç(PJ ) IIP; 1 m=' ç(m) llm 1

m odd. (Pi,m)=1

'),.\ II II 1... oU.$ op .
1+0pIP; piPI p

Pllt.ting evcrything logelher,

Finally

iï



• and similarly

(_1)111 J 1 (-1)111 . 1
L 'JIll L 2 TI op TI 1+0 = L 'JIll TI(1 + 2o,.) TI -- =
IÇ[.] - Jçi PIPI plP, p IÇ['] - 1'\1"/ l'i/', 1 +",.

1
2'

•

therefore the claim.O

"Ve conclude this Section \Vith two Corollaries:

Corollary 4.11 lin der tha same assumplions of Theorem .1./, if e"'f1'y prilll" il1 P

is congruenl 10 1(mod4) then the density of primes fo,' which ail elrlllf1lls of P "''1'
primitive rools, is

TI (1 +0/) ,0
lEP

Corollary 4.12 For any set of odd p"imcs P, 61' is a weil r/I'ji,wi IlIllll/iU'.O
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•

4.3 An Application to the Least Prime Primitive Root

III this 1'''1 s...dioll we apply Theorem 4.1 to the c1assical problem of the stuuy of

th" f11lcli,," G(/') ddilled as the least prime primitive roet (moùp). :'Ilore precisely,

by 1h·, ,,,,, of tlHO inclusion exclusion principle, we determine a uniform asymptotic

fOl'lllula for the n11l1lber of primes p :::; x such that G(p) < r.

Theorem 4.13 lVilh lhe sllme nolalion and hypolhesis of Theorem .f.l. Id qn be lhe

71.-111 or/d pl'Îmc,

T,.(x) ,= #{p:::; xl 3i:::; ri qi is a prime primitire 7'001 (mod p)}"

and

8r = L (-1}I'PI8p

po;; {P, .....Pr}

(8~ = 1). II'c IInL'c III'!!

T,.(x) = (1 _ 8r)_x_ +0 (x log :ogx cr)
log x log- x 2

for SCJllle absolule conslalll c~, uniformly respecl 10 r.

Proof: Let Sr be the llumber of primes p up to x such that none of the first r

primes is a ()rimitive root modp.

As a straightforward application of the inclusion p:~dusion principle, wc get that

Sr= L (-l)IPlj\'p(x)
Po;;{P"....Pr}

where as in Theorem 4.1.

Sr = # {p :::; ,1' lV'q E 'P, q is a primit.ive root (modrJ}},

and ,\'~(.r) = ;;(x).

;9
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•

•

Applying Theorem ·1.1, we get for a sllilable positi\'e constanl t'lI.

Sr= L (_I)IPI(8p-=-+O(.rlog~og;rt'!:I))
lorr x lo,r~ J'

PÇ{p' .....Pr} " "

'x (x 10<' 10<' .r )8r-- +0 " 0 " cr
log x log- :r

where we have taken C =2co, say. Fillally, nolicing that Tr =11"(.1') - Sr. w,' gd II",

daim.D

Corollary 4.14 Let f(x) he any monotolle fUllclioll of x lita/. /.e'1I1" 10 iuji"ily. Sai"

pose a/so titat f(x) =o(log log x), Ihcn, if Ihe gfllf7'<lli=ed Rit~Ulllll/l l!ypo/.itr:.'i" /roids,

lL'e have tilal G(p) S; f(x) fo,' aIl primes u-ilil Ihe erccplioll of a set of primfs of si=r:

< x 0 (x log log :rCJ(x»
oJ(x)-1- + -1-"-- 2 •

ogx og' x

Proof:It is enough to notice that by the assumption made on f, t.he en'or term

is o(..(x)).D

The problem now amounts to estimating the beha\'iour of the fllnet.ion lir • Com·

puter calculations suggest that 6r = 0 Co~r)' but we do not. hazard in any precise

daim.

We are not e\'en able to present a direct proof of the faet. lhat.

lim 6r = O.
T-OO .

which, of course would imply that. G(p) < f(p) for almost ail p (J -7 oc), IInder t.he

Riemann Hypothesis.

The latter assertion has been proven by L. Mllrata in [381 and is c'I"ivalenl., lInder

the Riemann Hypolhesis, to 6r = 0(1).

t.:pper and Lower estimates for 6r wonld allow to dcterminc (nnder the H.ieIJJ:uIJJ

Hypothesis) f1:!;-type of estimates for the size of set of prime', fi for which (;(1') < f(p) .
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W" do f,,'" that such a problem is nol tao difficult and we are planning ta address

tlll'S" '1 "''5 1. iOlls in the ncar future.

l-'illl1l1y w" would like ta mention tbat in prineiple this approach eould be extened

1.0 the analogous problem for the funclion g(p), the least primitive raot (modp). We

found oul jusl recently that a general form of Theorem 4.1 has been found by K. R.

~Iall.hews in [:36]. The asymptolie formula found by filatthews is not uniform and

provides a wecker error term than Theorem 4.1, however the proof can be adjusted to

yic!d lo an analogous result of Corollary 4.14 for g(p). The expression for the density

in this case would De mueh more complicated and even computer ealculations seem

at the momeul very hard to perform.

SI



for almost al! primes,

•

•

APPENDIX A: ON DIVISORS OF p - 1

We recal! that Lemma 1.-1 states that for any giyen sequenCl' of 1lI11ilipiiratil"t'ly

independent integers, the number of primes for which lhe gl'llnp g,'n"I-a!t'd 1>y th,'

first l' elements of the sequence is smal!er than t is

uniformly with respect to r.

(Note that we are using the statement of Proposition 3.-\ according to which the SlllU

of the logarithms of the !irst l' elements of a sequence of mulliplicatiye\y independ,'n!.

numbers in asymptotic to r log l'). A consequence of this is that, if l' is fixed, t1>"n

-'pr+l
1f,I ~ -[-.

ogp

Indeed, if Wil take t = X'/I.+I)1log x, in Lemma lA, we get that. the number of primes

for which Il:'.1 < 1',/(,+1)1 log l' ::; t is O( r,(:c)1 logl/r x), therefore for almos!. ail primes

we have the desired inequality. It is naturaJ to ask what \Voulu be an estimate of \1'.1
uniform respect to l"? Using the same method of the fixeu l' case, wc gel lhat, if !(l')

is any divergent function, then

(
p ) .~,

Ir.1 ~ 1(1') log l' l' log l'

for almost al! primes, uniformly respect to r. We need of cOllrse 1.0 ensllr,' certain

growing condi tions to be met.

The goal of this section is to improye the preceding results making Ilse of 1./1"

fol!o\Ving:
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Theorem A. 1 It txist. ;3 aTlt! 0 positive such that, for ail h E [log-:J x, 1-log-iJ x],

Il/Ill y = xh, OTlt has Il Tl ifol'TIl Iy OTl h:

# {JI $ x 13111J1-1: wilh u E [y,yexplogS xl} = 0 Co:x)

who'c tlll: cml.;/aTlt impliet! by the 0 symbol is absolute.

Before slarli ng the pl'oof of the Theol'em we need some preliminal')' lemmas:

Lemma A. 2 (Erdèis) Let n(lI) be the lIumber of prime dit'isors counted u'ith mul

tiplicity of a natlll'ai nllmber Il than the normal arder ofn(p -1) is IoglogPi more

precisciy, fol' cuel'Y ( > 0, it exists '1 = '1(e) sllch that the nllmber of P up ta x for

ll'hich n(p - 1) > dog log P is

Proof: See [12].0

Lemma A. 3 (de Bruijn) Let \lI(x:y) be the number of natllral numbers up ta x

!l'hose gl'catest prime dit'isor is less thnn y, then

{
log x}

\li (;t': y) ~ xexp -Cl log y .

l'roof: Sec [111.0

Lcmma A. 4 (Hardy-Ramanujan) For any a < e < 1 there exists T > a such

t""t Ihc I/llmber of iTltegers 11 IIp ta x sllch that n(n) < doglog.1: is

( x)o -_- .
log' .1:

Proof: See [191.0
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• Lemma A. 5 l\lurty (\Veak Brun's sieve) Fo;" ail!! llalul'uiIlUllllf" III -.: .1'. cl .. ··

note by N(x, m) Ihe IIlHllbel' of soluliolls of

p - 1 = qlll

whel'e p alld q are prime nllmbel's ~ x. Theil fo,' saillI' ab.,,,lulf CrJIl"lalll lJ > n. "',.
have

"( ) B;r(log log ,l'/m)2
h X.1Il < " .

. - rP(m) 10g'(;I'/IIl)

Proof: See [43].0

We are no\\" ready to praye Theorem A.l:

Proof: Let S = {p ~ x 13ulp-l, \Vith u E [y, yexp log· xl}. Wit.hollt. loss, \l'" l'ail

assume that p 2:: loiz' and for a suitable <5 to be cbosen lat.cr, p ES mcalls t.hat.

p-l = uv \\"ith
[

X J']and v E - exp log'\ ;r, - .
!I !I

•

Iffl(u) > ~ log log x and 11(v) > ~ log log x thcn l1(p - l) > ~ log log ,1" t.h .. lIlIllllwl'

of p E S for which this holds is certainly lcss then

# {p ~ x1 l1(p - 1) > ~ log log x}

and for Lemma A.2, this is 0(7l'(x)).

Remark: A stronger statement than Lemma A.2 cali be foulld ill [:J!l]. U"ill~

such a statement, our proof \Vould yield to ISI ~ xl logO x. For t.he pli l'pO';" or t.he

application that will follow, our assumption is enough.

On the other hand, for a fixed u, the number or v's for which the maximum prime

divisor is less then :; is, by Lemma A.3,

O (
X • { 10g(·'l:lu) 1)
-exp -CI 1 f'
U ogz

84



art' (·st.illlatillg is

•

•

Fix ( > 0, Ict /' > 0 be a number to be chosen later and put log ~ = log'-il-'x.

"'1' lloli .." t.hat li < y exp log' x = x h exp log' x and thus we get that the number we

x. { log x - 10" y - 10'" x }« - exp -CI 1 10 3, 0
li og . X

X { (1 - h) log x- log' x} x« _. exp -C' « - exp {-c310g' x} .
Il "iogi-ll-' x U

(.'\ote that this put the constraint 1 - (3 > 8.)

Therefore, the number of p E S for which this holds is

« x exp {-c., log' x}

(here the dash on the sum sign means that the sum is extended to ail the values

of li fol' p ES). A similar argument shows that h > log-Il x implies that we can

also exclude the possibility that the maximum prime divisor of u is smaller than

exp (logI-Il-, x). Therefore we can assume that

l' - 1 = Il,Vlq, with UI and 1-'1 in the desired range, q> exp (logl-I3-' x) and n(ud

01' n( l'tJ is less than ~ log log x.

From Lel11ma A.5, we gd that for fixed UI and Vlo the number of possible solutions

'5
x(:.og log -=-)2 x(lo" log X)2« ,.'.'« O

2
•

Ull'llog"(x/u,vtJ ulvllog (X/UIVI)

As !lI l', ~ :r exp( - !og'-3-' x) and (log log x)2 « log' :r, the llUmber is

:\5 applications of Lel11ma .-\..1 we know that

# {Il ~ xl n(ll) < ~ 10glog.1:} =0 Co;,J
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for sorne T > 0, Partial summation implies that, if

5(t) = #{n ~ t 1 !1(n) < ~Ioglogf}, then

1 ],' Ç( t)" - = S(:r)/:r - :""dl ,< Ing ' -' ,l',
L. 11 1 t·

{lI")«1/3) log log r

therefore the number of p E S with the requircd propcrtics is

-;c-:;x.,....,- ( I: I:III: I: 1 1 )~ 1 O_OJ_3, - + -
0"" X Il V Il l'o O(vsl«2f3)loglog: U1 1 1 O(ud«:!/31Iuglu~.l' 1:1 1 1

~ logt+T~2;J 3, X (~ 'I~l +~ 1:1) ~ logl 2iJ ~1'+' 'x'

So that if we take é +2,8 < T (for example ,8 = 8 = ~T) wc obtain thc desirl'd resllit

and this completes the proof of the Theorem,O

Remark: The result just proven is a p - l·\'crsion of a Thcnrclll of Erdiis (S"l~

[13]), For a general statement on estimates of the number of 11 ~ x wilh il divisnr in

a given range see [49],

We are now ready to give a good estimate of ILl = I(pl>'" ,p,}I, r-Iorc pr<.:cisdy:

Theorem A. 6 Let r be a flud positire number, tlzen il cxisls é > 0 slteh lhal Jor

aimost ail pr'imes,

Proof: From Lemma lA, we know that

#{p ~ xl Ir,l < t} =0 (ll+~),

if we take t = ,Tr~1 / log x, then

r

X r:t:T } 3'1[,1<-1"- ~ . 1/' =0( ..(:1:)).
OJ!; 3: log :1: log x
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1It'lIet' 1r, 1 > '1,;Tr for almasl. allfl's.
- 0v.p

No\\' sl.'!, ,
xr+ï _,,_~

y = -- = X,"+l IOK~

logx

alld 1101." I.hal. r+r 1 - ~ < 1 - ....l,- for x large enough. Theorem A.2 gives that
In!!,l logP r

T= {P::; x13/lp-l, / E [~o;~~'X'~1 exp (log" x)]}
I.h"l1 ITI = 0(1I"(;r)). Fillally, since

{II S xl Ifrl E [~~~,xr~1 exp (log" x)]} CT,

we gel. I.hal. for almosi. an primes p,

The C'L~C in which )' grows with pean he treated in an analogous fashion. The

only carc is to considel' the version of Lemma 1.4 which is uniform with respect to r.

III parl.icular:

Theorem A. 7 There exist (3 and 6 sueh that ifr ::; (log'o p) -l, then for almost ail

prim.es p,

Pl'oof: The Ilniform version of Lemma lA states that

#{p::; xl Ifrl < t} = 0 (ti+~rlogr),

'l' 1 t x;Tr1 wc I.a <c = ~I ' we gel.r os· x

rI} X 1Ifrl<]I';Tt l " ~ , r-'Iogr·=o(;;(x)).
)' og- p log2 X log' x

Si
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Now set ,
xr.tï _r _~lpl"5 r_~ Il--:--..""_ = X,,+l Il''.r lll';f =.1' = Y

7' 10'" ;r
"

and note that h = _r_ _ ~Io<lo." lo<r ~ 1 1
r+t log: - lo~.r...... - tuv/ ~

if r :5 (logiJ p) - 1 and ;r is large enough.

Therefore Theorem A.l gi\"es

{ ' }p~ r 5# p:5 xl 1 0 :5 IJ'rl :51';::;:1 exp(lug;' l') = o(;r(.I'))
r og- p

which clearly implies the claim.D

Remark: If [HF; : Ifrll, then Theorem A.7 puts the constl1tint

p -1 1 1[ < T < p-;::;:I exp( -log;' l')

for almost ail primes p.

Unfortunately the position r = (log p)13 - 1 and the constrainl, fJ + ,5 < 1 renla!'k,'"

during the proof of Theorem A,L implies thal.

Such a bound is too bigh to make possible the use of any of 0111' techniqllcs [')1' t\:

range of 7"S undel' consideration .
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• APPENDIX B: ON THE EXPONENT OF THE
IDEAL CLASS GROUP OF Q(V d)

1...1 ti bO' il pOSili\'" square-free inleger and IcI. m(d) denote the cxponent of the

dass group of Q( V-dl, i.c. m(d) is the leasl positive intcger m, such that xm = 1

for e\"p.ry :r ill t.h .. c1ass group.

III l!lï2 D. W. Boyd and H. Kisilevsky (see [3]) pl'oved that if the Extcnded Rie

mann Hypot.hcsis bolds, tben for any 1/ > 0, and d sufficiently large,

(d) -,--,........,lo:::-g_d...,--;m >-;::
(2 +1/) log logd

\\'hicb of course impiies tbat m(d) -+ oc as d -+ 00.

(1)

The goal of this nole is 1.0 establish unconditional inequalities of the type (1) for

dcnsily-onc scts of values of d. Before doi!'~ t.hi~, let us review the method used by

Boyd and Kisilc\"sky to pro\"e (1).

First. they noticed tbat if a is an integer of Q(V-dl which is not in Z, then

:\"(0) ? d/4 and lhat if pis a rational prime that splits in Q(v-d) and cv is a prime

ideal above p, thcn ::;;m(d) is a principal ideal (a) thus

ln conclusion,

Then lhey pro\'cd lhat

(-d)- =1
p

(2)

•
If /he f:;rlcllticti lliemllllll ffypo/hcsis holds /heu, Jor allY in/Eger d, there e.ris/s (l

prim" ft.~8 /h,;11 log~+'J d Jor whieh -d is Il ,!Iladra/ie re~itille and this gi\-es (l) .
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1\0\\", let us take p = 3 and ask ho\\" oft,'n is a square-fn',' d a qlhldlal i,' r"sidll"

(mod3)? This happens \\"hen d == 1 mod ;l, and th,' d"llSitl' "f sllch d's is ""ri "illl~'

positi,'e

FOI' a positire proportion of sql/Ilrc-fl'ec in/cy"r., d.

la" d/-I
m(d);::: I~O';I .

'"
In general \\"e \\"ill be able ta pro,-e that

Theorem B. 1 For anyd < x there exists a prime: < logdf"" ",/,i,,11 d is a 'll/Ill/m/il'

residue with at the most 0 (xl-A(lostogr)-I) e.rccp/i"'1S,

This is an consequence of Theorem 8.3 helo\\" and hl' (2) implies

Corollary B. 2 Fol' aIl disc7'iminant d < x, UT Iral'e tirai

m(d) > log d/4
100' la" d
" '"

with at most 0 (xl-,-l(toslosr)-') exceptions.

For an integer n, let .M(n) be the least prime fol' whic!! Il is ""adm!'i,, residlll·.

Le.

J\Il(n) = min {p 1 pis prime and (~) = 1 }.

Let [((x,s) (respectively [(I(X,S)) be the set of numbcrs (rcsr. square-fret' nUIl~I)f'r:i)

up to x such that J\Il (n) > s. vVc ha"c that

Theorem B. 3 Let k(x,s) = fJ\(x,s)l anef k1(x,sJ = /f\"1(X,S)1, Ihc:n

a) k(x,s) = 2:') Il-. (1 + ~ - :2) +0(cO('~;~f .,);
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• uniformly lcilil rrsprct 10 s (11'1111''' as 11.'11111 ;;(.') and 0(.,) 111''' 1',·sl',<'Iil·"'.I/ fh .. I/1III1b, l'

of P"irlltS 111' fo s and the S/lm of tile Il1yal'ifilms of fil .. I,,·;m ...' 1'1' f" .,1.

Pro of: Let us define P to be thl' prodUl'1 'lr ail prinws up 1.0 s.

b) In order for a square-free I1\lmber Il :5 x \,0 h.. in 1,',(.1'",). on,' nlllst. h'\\'t'

(~) = 0 or -1 for ail primes p up ta s. For any divisor q of l', kl :1<,) 1,,· t.Ill' St't ,,[

11 E I\d.r.s) snch that

(;) = 0 for any plQ and (~) = -llor any "I~;.

Clearly
o

l\'I(J',S) = UAQ
QIP

where the union is disjoint. Note also that

I..lQI = .:' {n:5 ~ 1 (n,Q) = l,n sqnare-fre.., (~) = - (~) for any III:;} (.1)

=L .,:' {n :5 ~ 1 (n, Q) = l, TI squarc-free, Tl :; 9,( mad,,;), i = 1, .... / }

where we ha"e put G= q1 ... q, and L . means that the snm is exl.c11lbl 1.0 ail th ..

t-tuples (gl .... ,gtl, gi being a congruence dass mod'/i sllch thnl. (II.» = - (2).. 71 q,

By the Chinese remainder Theore:m, for each t-tllplc (91,'" ,g,), tht~r" t"i,ts "

unique congruence dass IV! = M(g" ... ,gtl(modG) sllch thal.

n:; gi(modqi), Vi = l, ... , /

therefore (-1) equals

1 (n, Q) = Ln square-free, n:; M (mûd ~) }. (.i)

•
Now we need the followillg two Lemmas:
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• ""IIHllôl n. 4 I.fi Il,,R,,I!.,, be positirc inlcgc1's wilh (R I ,R3 ) = (R"R~) = 1 and

d,]il'"

wh",.., 11( R,) is th" Il/llllber of squa1'e-frce diL'isors of RI,

Lemma B. 5 fA QIoQ"Q3 be positire inlegers wilil (QI>Q~) = (Q~,Q3) = 1 and

d!!fine

CQ"Q,.Q,(=) = # {II. ~ Z 1 n square-free, (n, Qtl =1, n == Q3(modQ~)},

t"'en, ,wiformly l'espccl to QI> Q~, Q3 < z, we hare

C (-) - 6 _'P(Qtl TI ( _~) -1 0 (-I/~iJ(Q ))
Q"Q"QJ - - 2- Q Q 1 ~ + - l'

71' 1 2 pIQ,Q, P

Remark: Lemma BA and B.5 are due respectÎ\'ely Cohen (See [9]) and to Landau

(Sec p. 6:3:3·6:36 of [:30]). Theil' version is slightly less general though the proof is

silllilar. One might think that a st ronger version of Lemma BA, say valid on a range

of RI of the saille order of the range given by the Brun's Sieve, would yield a better

erraI' term in Theorcm B.3. On the contrary, it will become c1ear how this is not

inflllcntial to thc main goal of our discussion.

Proof of Lemma B.4: vVe have that

BIl , ,1l"RJ (y) = L Il(d)# {n ~ y 1 dJn, and n == R2(modR3)}
dlll,

= L}'(d)#{n~~ 1 n==R2d"(modR3)}

dlR,

= L }l(d) [d~ ]
dlll, 3
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• where d" is the unique congruence class Illod I?" d"'iul~d by .Id" 0" 1 Uhld 1>'" \~ul'h "

class exists since we IU"'e assullled that (H" Rtl = and dl1>':tl. Fin"lIy

BIlI.Il,.ll,(iJ) = L /1(.1) (l'j'', +0 (1))
dlll, ( l,\

.,:( Rd ,
=iJ RJ?3 +O(d(Rd),O

Proof of Lemma B.S: This is based on the ident.ity

/1
2 (n) = LP(d),

.'In

\Ye haye that

=

n<:
(n,QÏ)=t

n=:QJ(moo1Q2)

p(d)

lJ2,s<:
(.I,QI )=(J:QI )=1
,t2 .s=:QJ( lnodQ2)

1=

=

d<:l/'
(d,QJl';.( d,Q:l;)""

d<:I/"J.
(d,QI )';,1 d,(2)cl

Ii$fr
(,s,Qt)=1

";::QJ,j-2( m",IQ2)

(li)

•

where the condition (Q2,Q3) = 1 implies (d,Q2) = 1 and d" has the saillI' Iu""nillg

as in the praof of Lemma BA. Now "lpply Lemma BA and gel that. (fi) t"l'liils

and since clearly "~~tl < l?(Qd and



• ,h.. daim Îs <I,,<lIIC..<I.O

i':ow w.. can apply Lelllrna. B.5 lo (4) with QI = Q, Q2 = P/Q, Q3 = 1\1 and

~ = :r/Q. 1\ote lha.l lh.. number of sumr.,ands in (.5) is cp(G)!ù(G), therefore

lA 1 = cp( &) {~.::. cp(Q) II (1 _2-) -1 + 0 ((.::.) 1/2 d(Q)) } (7)
Q 1}(~) 11"2 Q P plP p2 Q

6 x ( 1)-l d(Q) (X 1
/
2 d2(Q) e9(.»)

= --II 1+- - +0
...22"(') plP p Q 2~(') QI/2:ç(Q) log s '

wherc wc jusl noliced tha.l 17( P) = 2*} and cp(P) « f:~'~' Now use (3) and get

The last idcntity follows since LQIP Q~/',(~bJ converges as s --;. oc. This concludes the

l'roof of b).0

a) This is simpler than b). For any QIP, define AQ to be the set of nE K(x,s)

such that

(~) = 0 for any plQ and (~) = -1 for any pl~.
Again

•

and now

k(x,s) = L IAQI
QIP

IAQI=t#{n:::;~ 1n=9j(modlJi),i= 1, ... ,t}

= L "# {Il :::; ~ 71 =M(mod ~) } .
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• where the gi.i = L ... ,1 and,\[ = .\[(91 ..... 9') arl' ddinl'd as ab,,\·,'. :\"W''1'1'11"

Lemma BA Wilh RI = Q, R~ = Jl. R3 = l'/Q and y = ~ and ~t'l.

lA 1:: <,:(5) {.::. ;,:(Q) +O(O(Q))} = :!--(.,\ (.r'::'([O) tJ(ql +0 (,"1,,1 ~'(~~)).
Q 11 (G) Q P P q lo~ -' .,:\ (2\

Finally by (9),

( ( 1) ( 'J) (tO
(,) ( .1 )))k(x,s)=2-*l xII 1-- 1+:' +0 -II 1+-

.$3 P fi log -' 1'$.. l' - 1

= 2-·(3) (x II (1+ ~ - ~,) +0 (eO(3) log' 8))
.$3 P P

Which is the daim of a).O

Proof of Theorem B.l: vVe want to eslimate

# {d ~ xl JIIl(d) > logd} (10)

Note that, since the contribution for d < x 1/ 2 is O(.r l / Z), wc ha\"(~ I.hal. (10) "'l'litls

# {d: x l
/
Z ~ d ~ xl ..1Il(d) > logd} + 0(:r:'/"2)

< # {d~xIM(d»~logx}+O(xl/Z).

Now apply Theorem 3 a), with s = ~ logx and get that (Il) is « I.!t'm

« x exp(-A log xl log log x)

where we took A < ! log 2, say, and this proves thc ciaim.O

(Il)

•

Remark: Xote that although in Thcorem B.l wc consider discriminanb of imag

inary quadratic fields which arc by definition squarcfrce numbers, sl.ateru"lIt hJ of

Theorem B.:3. does not gi\'e anything more than stalcmcnl a). Thi,; i,; ciu" 1.0 th" fad

that square-free numbers have non-zero densily.
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•

'l'1,,,on:ln !J.:l Il) can 1", imprO\'ed using a version of Lemma B.5 in which the error

I.<:nn ""[)Pnrls on Q". This h"s been done by K. Prachar in [45] for the case QI = 1,

1IIH! his l'roof can arlapt.ed to l'roof the following:

LCllll1ln B. 6 lVilh lhe S(IT/le no/ntions of Lemma 8.5 we hare lhat, uniformly re-

sJlt:t:1 to Ihe p"mmetcrs,

C (-) = ~-<p(Qtl II (1- ~)-I +0((_1/2Q-I/H< +QI/H<)I9(Q ))
Q"Q"Q, - 7f2-Q Qo p2 - 2 2 1 1

1 • pIQ,Q,

for' Ilny ( > 0.0

COl'ol1ary B. 7 !-Vith lhe same notation as above, we have that

6 ( 1) (( 1/2 ) 8(01)k x s - _-=- 1 __ 0 x e8(0)(1/2+<) e
1(. 1 ) - ,,22*1 !l. + p +1 + e8(0)(1/4-<1 + 2*1 log .5 •

Proof: lt is similar to the proof of TheOl'em B.l b), but in this case we have

6 x ( 1)-II9(Q)IAQI = -:;--.-II 1+- -+_ ••) .. (0) p Q
Il _ plP

((
XI/2 PI/H<) 192(Q) e8(0»)o p-1/H< 1/4-<
QI/2 Q + Ql/2+< 2*1<p(Q) log s

and therefore

kl(x,s) = L IAQI
QI?

6 x ( 1)=-- 1+-- +
_2 ?"(o) II p +1
Il... 1'$-'

( (
XI/2 192(Q) 192(Q) ) e8(0) )+0 pl/2+<

p-I{-I+<~ QI/2-1{-I+<\,(Q) + ~ QI/2+<\,(Q) 2*llogs

6 x ( 1) (( X
I

/
2

) e
8

(01 )= --- 1 -- 0 e8(0)(1/2+')
,,22*1 !l. + p +1 + e8(0)(1/4-<) + 2*1 log s .
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The last identity because both the series LQ[P QI/';'+I~')IQI and I:QII' ~lI,,~'}.~+.:l"'1

converge as s -> oc.D

Remark A general form of Theorem 13.1 can ais" b.· pmn·n. It is a IInif"l'l1l

asymptotic formula for km_I(.r.s), the number of III-l'l'ce numbcl's d IIp hl." l'.". \\'hid,

.\4(d) < s. The m-free version of Lemma 13.6 is also in [.151. Finally, th., l't'slIlts ,,l'

Prachar have been imprO\'ed by Haoley in [2.1] amI the nse of this lasl Iln.' \\'11111.1 gin'

a further improvement of Theorem 13.3.
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• APPEl\-DIX C: OPEN QUESTIONS AND
FUTURE RESEARCH

Variants of the Bombieri-Vinogradov Theorem

A forrn of the famous Bombieri-Vinogradov Theorem for primes in arithmetic

progression stiltes that

For al/Y "fUI lilI/lib",. A > 0, it exists aB> 0 sueil that

L I~'(X' m, 1) - f(1 )xl «:: 1 ~
1/2 'fi m og X

m<.L....r-
-101\:"1 z

wilerc ~'(.r. Ill. 1) =I: p';z log p,
p31motlm

This important result provides us with an estimate on average of the error term for

the prime number Theorem for primes in arithmetic progressions which is as strong

as the one that could be deduced useing the Extended Riemann Hypothesis for the

Dirichlet L-functions of ail the charaeters modm.

Such a Theorem can be interpreted as an estimate on average of the error term of

the Chebotare\' Density Theorem for cyclotomie fields. More precisely, let us consider

the following Hatement:

For Ct'cry integer m, let us suppose Km is a given finite Galois extension of Q

and let n(m) = [Km: Q], Furtire,., set

logp,
p<.=

p splits completel}' in Km

Wc 1lIIt'c lirai

•
L Ilt.(:r,!im) - _(1)xl« ~

1/2 Il m· log Xm<_z_
-Ios"\ Z

Let us note the following faets:
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• If the Generalized Riemann HYPllt\wsis holds f,)r "II llll' (n'lII·,dwii,,") '\l'lill

L-functions of J\'m then the statement is tnll'.

• If, for any ni, /\'m is the cyclotomie lkld Q('·m). tlwn lh,' st "tl'Il Il'II 1 is" COliS.'

quence of the famous Bombieri· \ïnogr"do\' Th"orem.

• If, for any m, Km is the Galois Exll'nsion Q((m.al/"') and th" "t,lII'IIII'1I1. i"

true, then the Artin Conjecture for primitiw 1'001" is t1'1I1' for th" 1llIllIh"r Il.

The last fact has been noticed by R. Murly in his thesis and h" ga"I' a. l'<'sllii.

which is in the spirit of this approach.

\Ve can l'l'fer to (1) as the gener-al non-abelian BOlllbicri-1 ïllO!lrado,' Th,'orl'III ,,1101

ask for which families Km it holds

A proof of the general statements is certainly a very difliclIll problelll, and 100111'

knowledge, the Theorem of R. i\Iurty and K. ~[urty in [.11] is the only "ignificalli.

contribution toward this direction and il stales lhat:

If "K(X, q) is the number of primes p up 10 x slIch Ih"l [J splil., cOlllplddy ill Il

gÎt'en fixed Galois exlension K of Q and p == l(rno<1q) (i.e. p $[J/ils r:olllphidy ill

I«(q)), then for any A > 0, lhere exisls B = B(A) SlIch Ihlll

I: "K(X, q) - [K(' \ : Qjli(x)1 ~ lo~'.\ x
q~z.(logz)-8 ~q 0

where c> = min C/Qr ~) and Ihr. Sllm is exlcndul 10 ol! Ihe ,:,,111'-, ofq J'JI' IIll,id,

K n Q((q) = Q.

In general, one could try to set lie for something less and rcstrict. the silln ill (1) 1,0

m ::; l<JgC x for sorne fixed positive integer C. We would gel a wcaker s!.i1tellll:JIL lm!.

with still quile a few inleresting arithrnctical consequences. Fox exarnple, if wc pro\'(,
1
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1.1", ,I;'l.elll(,lll. ll'il.h C = 2 (G = 1 is actually Theorem 2.7), then it cao be prO\'en

1.1", folloll'illg slIbsl.illllial improo\'ement of Theorem 3.1:

/-'JI' IImo.,/ ail l'I'imes 1', the ....!2S.L.I 1°1< pl'imes genemte Fp••og ugp

SlIch a problem admit,s an analogous situation where we substitute the Artin

IAlIllcl.ioll with the L-series altached to modular forms.

The Lang-Trotter Conjecture for Abelian Varieties

III 1977 J.-P. Serre (see [47]) has prO\'en the following result:

Lei E be ail elliptie e1Ll've defined over Q and let J{n = Q(E[n]) whel'e by E[n] we

'/<:lIotc the sd ofn-points of E (i.e. Q E E sueh that [n]Q = 0). Let us put

'0 J1(n)
6=2:::[, ,

n=1 An: Q]

1I.'h",." /,(n) dwoles the J.L fILlIction of Mobius. If the Generalized Riemann Hypothesis

hoMs fol' J\n, thell

#{p ~ x 1 Ë(F;) is eye/ie} ~6-
1

x
ogx

This result has been reconsidered by R. Murty and R. Gupta. In 1990 (see [16])

withoul any unproved hypothesis they have characterized elliplie curves for which

E(F;) is eyclic for infinitely many values of p.

Gupta and ~[urty considered as weil a similar problem to Serre's Theorem. namely

The Lang-Trotter Conjecture (see [34]):

Lel E be ail elliptie eurve defined ove,· Q and let P be a rational point of E wilh

illjillile arr/el'. ure denote by N(x, P) the number of p"imes p up ta x sueh thut

(1') = E(F;L Ihell
x

N(x, P) ~ 6E(P)-,,-
100 .1:
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U'hErE 8E(P) can br apnssEd in lemls of Ih .. d"COIllPO"illVl1 of l'ril1l'''' il1 th,' <'J'l, ".

siDas Q(E[n], n-1P) Dt'Er Q.

Both this result and the stalèment of S"rrc's Theol'l'm art' analllg"l1~ t..) 1II" ..\rlill·s

Conjecture for primitive roots.

~Iany of these conjectnres admit a very uat.ural gt'neraliz.lIion t." t.h" ca,,' ,,1'

abelian varieties. The problem cau be statcd as [ollows:

Let ,4. be an abelian \'ariety defined over Q and let. P E JI be a ral.j.mal l'.)inl

(with infini te order). For ail (but finitcly many) prime numbers l', it mak,'s St'ns" t."

consider the reduetion of A modulo p that we can denote by A(F;).

A(F;) is a finite group and we can indicate with P E A(F;) the rednd i"n or l'

modulo p. Various questions can be formu!ated, for example:

• Vnder which conditions A(F;) is cydic (or more particularly (Î') = :I(F;')) for

infinitely many i?

• What is the distribution of the prime numbers with this property '1

• Is it possible to write a formula for thc density of such sets of primes?

In the case dimA = L (i.e. A is an elliptic curve), then the Laug·Trot.l.er cOllj.·c

ture toghether with the Theorem of Serre and the contribution of Gupt.a and ~llIrl.y,

pro\'ide with a precise indication on what should be the answer 1.0 1. 11 es" '1u',sliolls_

In the case dimA > l, there are not, at the moment in the lit.eral.llre cOlljectllres

that gi\'e any answer to this question, nevertheless it is natural 1.0 suspeel thal. mallY

of the arguments that worked in the case of elliptic curves, ex tend to I.he geJl""al Cil:;"

and the first pt'ohlem is as usual to express, for any prime number 1, the cOlldil.i"JI
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in t'-rIns of p"rriclliilr d"cornposilions of pin algebraic extensions K(/' P),

Sirnilarlyas in th" case of elliptic clln'cs in which il has been necessary to dis

t.ingllish be1.ween Cornplex :\Iultiplication cun'es and curves withoul Complex :\lul

t.iplicat.ion (see [li]), it is aat.ural to expect that the properties under consideration

r1"p(~nrl hea,'ily on the structure of the ring EndQA,
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