
National Lib,ary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and DIrection des acquisitions cl
Bibliographie Services Braneh des services bibliographiques

395 Wellinqlon Slrt..~l 395. ru~ WCllinqlon
Onawa.OnlJ,rlO On;,1wa iOnl.lno)
K1AON4 K'AON': ,.," ,.~. \ ,"'rf' r,.',.,,~ ...,·

• \ .. , <,l,. :\,',,:.... ,_r,"""''''

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

•

REGISTER ALLOCATION FOR

OPTIMAL LOOP SCHEDULING

by

Qi Ning

School of Computer Science

McGill University

Montréal, Québec

Canada

May 199:~

A DISSERTATION

SUBMITTED TO THE FACULTY OF GIlADUATE STUDIES AND RESEARCH

OF McGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

Copyright @ 199:3 by Qi Ning

..... National library
of Canada

Bibliothèque nationaie
du Canada

Acquisitions and Direction des acquisilions el
Bibliographie Services Branch des services bibliographiques

39S Wellinqlon StrèCt 395. rue Welhngton
Onawa.Ontano Onawa (Ontano)
K1AON4 K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in hisjher thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
hisjher permission.

ISBN 0-315-87946-7

Canada

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

•

•

•

Abstract

Olle of the major challellges in designing optimizing compilers, especially for scientific

computation, is to take advantage of the paralle1ism in loops in order to obtain ma.x­

imum sp,,.,,lup on parallel compnter architectures. Optimalloop scheduling is there­

fore oue of the most important topies studied by many computer scientists. However

how to allocate minimum number of registers to support optimalloop scheduling for

parallel architectures is less understood. In this thesis, wc propose a simultaneous

scheduling and register allocation approach for a parallelizing compiler, which will

Iind one among ail the time-optimal periodic schedules that uses minimum amount

of registers. Wc prove that the general problem of finding such an optimal scheduling

together with register allocation is NP-complete. Then wc propose a practical ap­

proach to divide the register allocation problem into two steps. The first step solves a

minimum buffer allocation problem, which will find a time-optimal periodic schedule

nsing minimum number of buffers. Wc give a polynomial time algorithm to solve this

problem. The second step analyzes the live ranges of the variables and uses coloring

algorithms to reduce the register requirement by sharing. The algorithm has been

implement",l and used to test se1ected loops in benchmark programs. Tcsting results

are reported in this thesis.

In order to allocate enough memory spaces to support optimal dynamic schedules,

we propose a cycle balancing scheme that allocates buffers to the arcs of the dataflow

graph representing a loop, 50 that it can allow a loop being scheduled dynamically to

achieve ma.ximum speedup. Wc show how to formulate the problem into an integer

programming problem. Practical polynomial time solution algorithms are given.

Il

•

•

•

Résumé

Un défi important dans le dévc10ppement de compilatcurs, spécialcn1l'nt. ,Iaus l,' C;L~

des calculs scientifiques, est d'exploiter au ma.ximum le parallaisme prl'Seut d,lIlS \,·s

boucles de façon à obtenir une plus grande vit.L'Sse d'exécut.iou sur It's ordiuat"lIrs

parallèles. L'ordonnanccmcnt optimal des iustructious daus Ics boudcs t'st donc un

sujet très important étudié par de nombreux chercheurs. Par cout.re, le probll'mc d,'

déterminer le nombre minimum de registres nécessaire pour supporter un OrdOlllHLllt'e·

ment optimal de tellt.'S boucles sur des machines parallNes est netLement moius hit'n

compris. Dans cette thèse, nous proposons une approche réalisant silllultauémt'nt

l'ordonnancement des instructions et l'allocation des regist.res, approche qui permd

d'identifier, parmi tous les ordonnancements périodiques optimanx, celui qui minimis·

era l'utilisation des registres, Nous prouvons que le problème géul'r,Li de trouver un

ordonnancement optimal tout Cil optimisant l'allocation dt.'S registres t.'St NP-comple1..

Ensuite, nous proposons une approche pratique qui décomposera 1" problème de

l'allocation des registres en deux étapes. La première étape trouve une solution a

un problème d'allocation minimum d'espace tampon, trouvant ainsi un ordonnance­

ment périodique optimal utilisant le nombre minimum de tampons. Nous donnons

un algorithme polynomial permettant de résoudre ce problème. La deuxième "tape

analyse ensuite les variables "vivantes" ct utilise des algorithmes de colorat.ion pour

réduire les besoins en registre par l'intermédiaire d'un partage de œs registr<..'S,

Dans le but d'allouer suffisamment d'espace mémoire pour supporter ,k'5 ordon­

nancements dynamiques optimaux, nous proposons aussi une approche de "balance­

ment de cycle", approche qui vise à. allouer l'espace tampon, sur les arcs d'un graphe

m

•

•

•

dt' lIux dt' dotllJ("('s n·pn~s('lIt.allt. 'III<' 1>oll("h', d(' façon il CP qllt' l"allocation obtPllue per­

Illl'l.tt' 11I1 ;u·f·roissl·IIH'1l1. nl(Lxin~lltn de la \'it.(~sse d"exécution. Kûns tllontrons cOllunent

fOrrl111I(~r Ct' prohl('IlH' via un pruhIt'na' dt.· pro~ranllnation linc..;aire t~ntit~re. Ensuite.

1I0llS dOllllolls 1111 ,,1~orit.hIlH· prat.ique permett.ant. de résoudre cc problème. algorithme

d" rOlllpl,·xit.<- puly"ollli,,"'-

iv

•

•

•

Statement of Originality

Here, wc summarize the original contributions of this dissertatiou:

• VVe prove that the problem of minimum re.e;ister allocation to support tin.\'­

optimal scheduling is NP-complete: Theorem :1.2.1 aud Theorem :1.:1.1 iu Chap­

ter :t

• Wc formulate thesimultaneous Optimal Scheduling and Bulfer Allocation (OSBA)

problem and develop a mathematical modcl for it: Section '1.:1 in Chapter .1.

• Wc propose an efficient polynomial time solution algorithm for OSBA prohlelll:

Section 4.4 in Chapter 4. This method is combincd with a graph colorin)!;

algorithm 1.0 map bulfers 1.0 physical registers: Section ~.ï in Chaptcr~.

• We propose and formulate the Cycle Balancing Scheme (CBS) of allocating

buffers 1.0 arcs of a dataflow graph in order 1.0 support mn-time optimal schcd·

ules: Section 5.4 in Chapter 5.

• We provide a polynomial algorithm that l'an solve the linear version of the Cydl'

Balancing problem: Section 5.5 in Chapter .'5.

• We show that the Cycle Balancing problem has the Totally Dual lntcgrality

(TOI) property, which allows il. 1.0 be solved by linear programming when the

right-hand-sides are rounded 1.0 integer ceilings: Section .5.6 in Chapter 5.

v

•

•

•

Acknowledgments

First 1would like to express my dœpest thank and appreciation to Professor Guang R.

Gao. During the years under his supervision, 1 have obtained enormons professional

aud financial support 1 needed to complete my Ph.D program. 1have always enjoyed

his numerous seminars, challenging courses and stimulating discussions.

Secondly 1 would like to thank Professor David Avis who co-supervised me, and

who pushed me to the "system side" of compnter science at the beginning of my Ph.D

program at McGill. Without his long-sighted view, 1 would have been working on a

totally dilferent subject.

Next 1wish to acknowledge the help and support received from the other ACAPS

group members at McGill. Especially 1 would like to thank Professor Laurie Hen­

dren. She has provided me with 50 many invaluable comments which have improved

my representation enormously. 1 thank V.C. Sreedhar, Philip Wong, Robert Yates,

Kevin Theobald, Chandrika Mukerji, Erik Altman, Cecile Moura and .Justiani Dhar­

mas for the useful discussions that in many ways improved my work. 1would also like

to thank the people who has worked as the system managers in the ACAPS lab for

thcir constant effort to improve and maintain a comfortable system: Robert Yates,

V.C. Srccdhar and Chris DOllawa.

During my Ph.D study at McGill, my wife, Wenqun Mao, who is also a graduate

student, has given me tremendous help and love. She has taken great effort to balance

between her own studies and taking care of our son Alex and house work. 1 express

my deepest appreciation of my wife. 1 greatly thank my mother-in-Iaw, Aiyu Han,

vi

•

•

•

who ha..... contrihutt'd ~o 1ll1H"h l)[hl~r lift' t.aking; l'an' ur In~' :,pll ..\Il'x. Fitl.dly 1 would

Iikl' tu thallk IllY part'Ilt.s. Ship;l1al1~ i\ill~ ô\tHl B01l1l'i \\';\l\~. f'lr l.!lt'ir Ill"\, .;\tIt! support

1 have n',"t'ived dllrill~ ail illY life.

vii

•

•

•

Dedication

10 Wcnqun and Alex.

viii

•

•

Contents

Abstract

Résumé

Statement of Originality

Acknowledgments

Dedication

1 Introduction

Il

III

v

VI

VIII

1

l.l ln tro<1'lction

•

1.2 Orgallization of the Thcsis

2 Background and Terminology

2.\ Introduction...

2.2 Notations on Sets

2.:! Graph Theoretic Terminology

2.4 Loop Model

ix

6

7

H

H

10

•
.) :"" J);L1.a 1>lï)('IHit'II("(' Craplis 1-[_.,)

:!,(i (~OI111)1lt(llioll Ratp 16

.) - Sdlt'dlllill~ SdwlIws . li_./

2.X Ar('hit.(·('t.lIr" :\'1<,,1,,1,; 20

:!.!l Liu('iLr ,,,"l IlIt.I·~"r Prup;mmmillg 2:1

:!.I0 Tut."l\y Ullimodlll"r M"trices _ 26

3 NP-Completeness Results 27

:1.1 IlItrodudioll 28

:1.2 Case of Acyclic DDG 29

• :l.:l Loop Versioll 46

SlItllm"ry 48:1.'1 .

4 Register Allocation 49

4.1 Introduction 50

4.2 Mot.ivatioll . 5:3

4.:l Formulation of the OSBA Problem: Step 1 59

4.'1 Solution of the OSBA Problem 62

4.4.1 Totally Unimodular Constraint Matrix 62

4.4.2 More Efficient Aigorithm for Solving OSBA 66

4.'1.:1 Back Snbstitution . -.)
1-

4.5 Example Continned .
.- 72

4.6 Code Generation
~.

74• . . .

j

x

•

-I.S.I C«l1ahan et <<l's ({,,,,ult.

5.1 Introduction .

.5.2 Dataf!ow Architectures

ï;ï

j~l

~1

~.).-
~.,••>

S·\

Sfi

!10

!l-l

96

!l;

99

\0:\

lOS

110

110

116

12:1

124

126

1:\0

1:\0

131Retiming Synchronous Circuits5.i.2

5.i.1 Loop Storage Optimization for Dataf!ow Machincs .

5.6.2 CB Problem Has the TOI Property

5.i Related Work .

5.4.1 Chain Replacement ...

·1.6.2 Seh"tll" Il: 0«1.« St.«t.ion«ry ('odin)!; .

·Ui.! Sd",tll" 1: ,\CCl'" St«tion«ry ('odin)!; .

5.4.2 Integer Programming Formulation.

-I.S.2 Loops without Loop C«rri..d D"lwnd,'n...",

5.6.1 CB Problem Docs Not Have TUM Property

5.5 Polynomial Time Solution of FCB .

5.6 Totally Dual Integrality .

5.4 Cycle Balancing Scheme (CBS)

.5.:3 Example and Motivation

4.11 Re1ated Work .

4.10 The Example frotll Rau Et AI's Pap..r

4.9 Experimentation Results .

·I.S Special C«s..' .

5 Cycle Balancing Scheme

•

•

xi

•
6 Conclusions 132

fi. 1

(..)
1.-

SlIllIlnary

Fut.ur<· Dir..diolls

•

•

Appendix

A A Modified OSBA Problem

Bibliography

xii

135

135

136

•

•

•

List of Tables

4.1 Execution dclays of the instruct.ions.

4.2 Experimental Results. . .

xiii

,,­,,'

llO

•

List of Figures

2.1 Data depelldellce graph of the example loop L.. 15

:l.l The initializatioll componellt. :32

:1.2 Vertex component for vertex Vi. :3:1

:3.:1 Edge component for edge Ci' .• :34

• :3.4 Component for controillodes C2, C3 and Col, and the bookkeeping chain

of 2n nodes. :35

:3..5 Overall structure of the construction for the instance of R-PRAP. :36

4.1 Data dependence graph of the example loop LI, .54

4.2 A multiple-head buffer............... 5i

4.:3 The live ranges of the variables for code generated by the ASC scheme. .58

4.4 How node i is split into i' and i". iD

4..5 Live range intervals for code generated by DSC scheme.. 82

4.6 Buffers and registers allocated to each loop. 88

4.i Average buffer queue length in each loop... 89

4.8 Number of functional units needed for each loop. 89

4.9 Data dependence graph of the low level code of Rau's example.. 91• xiv

•

•

•

.'i.1 Firing of a nod,' in dat.allo\\' graph. 11111

5.2 A condit.ional sch,'ma in a dat.allo\\' graph rt'pn's,'nt.ing "if x > Il t.h,'n

Z = x+y els<' z = x-y". .. 1111

,J.a A iteratiw schema in a dat.allo\\' graph represent.ing th,' 1001' in (["l). 10:!

.'i.4 A simplified version of 1001' schema. Ill:!

5.,) Datallow graph for 1001' L2 • • • • • lll.'i

5.6 Static datallow graph and its storage a\location. 1UG

5.i Storage Allocation by our cas uses 16 bulfers. . Iml

,).S An example of dataflow graph and its augmented dat.aflow graph. 112

,).9 An example of dataflow graph for which ca is not TUM. 12,)

xv

•

•

•

Chapter 1

Introduction

In this chapter we give an introduction of the subjects to be studied in this disserta­

tion. Problelll statelllents are inforlllally given as weil as the motivations.

1

• CHAPTER I. [STRODFCTIOS

1.1 Introduction

.)

•

•

High performancl' parallt'! computer architectur,,,, that ,'xploit tI", line.graiu,',l in·

struction levd paralldism. like Very Long Instruction \Nord (VLl\V) and Superscalar

architectures, are designed to issue multiple instrnctions in a singI.- dO"k (·yd,'. Ali

sorts of paralldism have to he exploited in order to mak,' the most ellkient. use of

the paralld hardware availahI.- in snch architectures, and t.o ad,iev,· the maximum

speedup of user programs. Sinet' loops are the most t.im,· conslllning part.s in a pro·

gram, the efficient exploitation of fine.grain parallc!ism in loops has iJl"'n a major

challenge in the design of optimizing compilers for high-performanœ computer archi­

tectures.

Software pipelining has heen proposed as one of the most important Iinl~grain

loop scheduling methods. It determines a parallcl schedule which may ovcrlap instruc·

tions of a loop body from dilferent iterations. Software pipc!ining can he applied to

high-performancc pipelined processor architectures, as weil as Supersealar allli VLIW

architectures [2, :l, 4, 29, :lO, .56, 70, 76, 78].

Although much progress has been made III finding time-optimal schedulcs for

software pipelining of loops, to determine an instruction schedule and a rl'gistl'r al­

location simultaneously is less understood and l'l'mains an open problcm. ln terms

of instruction scheduling for RISe processor architectures, it is weil rccognizcd that

performing register allocation before the instruction scheduling (poslpass schcdlLlil1g)

may introduce new constraints due to the rense of registers, which may limit pos­

sible reordering and parallelism of the instructions, as reported in [H, 50]. On thc

other hand, if the instruction scheduling is done before (and independent of) rl'gister

allocation (prcpa..... scheduling), more registers than necessary may he needed, which

may cause unnecessary regisler spills and severely degrade the performance of the

resulting code. Warren has described a technique for the IBM RS/6000 superscalar

workstation which applies instruction scheduling twice: once hefore and once after

the register allocation [78]. Altbougb it will he better tban the one pass approach,

it does not always do a good job. We believe that it also lacks tbe foundation to he

• (.'J 1:\ l'TE/{ 1. /i\TIWlJI i(.'T{()"

,I.!,(·rH~riLlbwd t.o other architectures.

:l

•

•

'l'Ill' ohjediV<' of this tlwsis is to develop a unified scheduling-allocation frame·

work to "<'termine a scheduling and a register allocation simultancously. Wc want

lite scl","ule to he time·optimal. Wc also want the rcgister allocation to use mini­

mum uumher of registers to support such time-optimal schedules. Our framework is

"ilfereul. from the conventional se'tuential approach, which tri..", to allocate minimum

nnmher of registers for a fixed se'tuential schedule. For example, many of these regis­

ter allocation algorithms are hased on the coloring of inlerfercncc graph.... representing

overlapping relations of the live ranges of program variables given a sequential exe­

cution schedule [1, 16, 15J. In that approach a schedule is fixed so that the meaning

of live ranges of variables is well defined. However a fixed schedule may not use the

minimum amount of registers necessary. In this thesis we will show that to find an

optimal scheduling and register allocation simultancously is NP-complete l'ven on a

machine with infinite computing resources. However, inspired by a seemingly different

rcsearch area from compiling, i.e., the earlier work on acyclic datafiow graph balanc­

ing by allocating storage buffers to data channels to support maximum computation

rate [:3i, :l9, 40], wc propose an approach which divides the simultaueous scheduliug

and register allocation problem iuto two steps. The first step is to allocate minimum

number of buffers to variables to support a maximum speedup schedule. Then the

second step analyzes the live ranges of the buffers and uses a coloring algorithm to

map the buffers to physical registers. The buffers allow the results produced by in­

structions to be retained in registers for several iterations, which makes it possible to

start a new iteration before the previous iterations finish. The class of schedules we

will consider in our first step is called periodic schedules. They are formally defiued

in Section 2.Î in the next chapter. The two steps will be explained more later in the

section. Let us first justify why we choose periodic scbeduling as our class of sched­

ules. Periodic scheduling attracts our attention because it shows many properties

listed below which are particularly suitable for a compiler to do register allocation:

• It allows the iteratious to be software pipelined, i.e. execution of differeut

iterations cau be overlapped, such that parallelism can be fully exploited and

• CH.·\PTER 1. INTRODI'CTfOS

optitnal SPl'f'dllp can hl' achit'\"l'd .

·1

•

•

• It lS sitnplt~ a.nd <"ollCiSt' b('causl' Wl' can descrilw slIch a sdh'duh' hy a vcry small

llulllber of paranleters.

• It is regular becanse tilt' timings of ditfercnt itl'rations show a strong rt'gnlar

pattern, which allows us to generate "ery compad code for tilt' loop.

ln the first phase of our simultancons schednling and rt'gister allocation sdll'nlt'. Wl'

try to find a schednle among ail time-optimal periodic sdlt'dnles that nSl"; minimnm

nnmber of buffers. The buffers are allocated 1.0 individnal variables delinl'd in th,' loop

and can be thought as virtual registers. Bulfers do not overlap wit.h each other, whid,

let us solve the minimum bulfer allocation problem in polynomial t.ime. The idea in

the first step comes from the the early research work on balancing acyclic datal10w

graphs by allocating bulfers to data channels [:17, :19, 40] to achieve ma.,imnm software

pipelining elfect. ln this thesis we not only generalize tll<' idea to loops which may

contain dependence cycles, we also solve the l'roblem of code generation for von

Neumann architectures that does not exist in the datallow stndy. In tilt' second

phase, we have fixed a schedule produced in the first phase, which is time optimal

and uses the minimum number of bulfers. Therefore we can apply the traditional

coloring algorithms to allow variables to share the physical registers.

We wiII consider the problem of allocating bulfer storage to support maximum rate

computation of loops represented by datallow graphs, to support a more gelteral class

of dynamic scheduling schemes, as compared to static periodic schedules for compilers.

The work is a direct generalization of the previous work on acyclic datal10w graphs

[:17, :19, 40]. We proposed a cycle balancing scheme which will allocat.e bulfers to

balance ail the cycles in a dataflow graph. The elfect of cycle balancing is to allocate

minimum number of bulfers to support at least one optimal schedule at run-time. Our

method is not only useful for generating instruction scheduling and bulfer allocation

for a compiler, it can also be applied to solve problems in other fields, like digital signal

processing, self-timed processor arrays, discrete-event systems and timed petri-nets,

etc.

•

•

•

('I/APTEU 1. I.VTJWIJ/i('TIOS

1.2 Organization of the Thesis

This st'l'I.ion dt'scrihes tht' orp;anization of the thesis. Wc l'l'ovide the notations and

ddinit.ions in Chaptcr 2. However only gcneral tenus are dcfincd there so that a reader

shollid feel cumfort"hle to l'l'ad most of t.he l'est chapters. More specific definitions

art' ddined in latt'r dmpters where they are llsed.

ln Chapter :l we l'l'ove that the simllitaneolls optimal schedllling and register allo­

c'Ltion problem for loops is NP-completeevenllnder an idealized parallel architecture.

Therdore we know the complexity of our problem in its most general fonu.

ln Chapter '1 we propose a two-step approach 1.0 solve the simultaneous opti­

mal scheduling and register allocation problem. The first step is called the Optimal

Scheduling and Buffer Allo~~ion (OSBA) problem. We present a polynomial time

algorit.hm 1.0 solve il.. The second step is 1.0 investigate the possibility 1.0 share the

buffers among different variables. Hence we have found a schedule in the first step,

now we only necd 1.0 analyze the live ranges of the variables and use a coloring al­

gurithm to color the ranges so that if two ranges do not overlap, their buffer entries

can I.e shared. We also propose code generation schemes 1.0 support our register al­

location method. Our algorithm has becn implemented. Testing results about loops

sclected from benchmarks are also reported in this chapter.

ln Chapter 5 we propose a cycle balancing scheme that will allocate buffers 1.0

arcs of a datallow graph so that run-time optimal schedules can I.e supported.

Chapter 6 contains a brief summary of the achievements in the thesis and a dis­

cussion of the fu'ure research directions.

•

•

•

Chapter 2

Background and Terminology

ln this chapter, we provide some background material and define the not.ations used

in !ater chapters. However only those that are "more" _important. are given Itere.

Loop models and their data dependence graph representation are defined here. Max­

imum computation rate and the periodic scheduling scheme that can achieve optirn;d

rate are introduced. Targeting architecture models are briefly defined. Sorne linear

programming and integer programming backgrounds are also provided.

6

•

•

•

(,'//:\l''!'EU:!. H:\(.'I\(;/WIiND :\;\'0 TEfUIINOLOG'l

2.1 Introduction

III tbis "b"pt.er, w" provi"e tbe ddillitions "nd notations nsed in subsequent chapters.

lIuwever not. "II tbe definitions and not"tions used in !ater chapters are defined here.

For ex"mple if " definition is very specific to " solution method in a chapter and is

nut rd"t.ed t.o other concepts in t.he thesis, then we will give that definition in that

ch"pt.er at tbe place it is nsed. 1hope that this will help the readers to get through this

ch"pter as fast a.< possible without worrying too much about the definition details.

W" first introduce some set thcoretic and graph thcoretic terminology as the basis

of onr mathematical notations. Then we introduce the generic loop mode! we will

concentrate on in this thesis. We will define the notion of a data dependence graph

which is a form of program representation using graph tbcoretic terms.

Once we cstablish our mathematical representation of the program structures, we

then consider the schedul 'lg problem for the instructions. An instruction may mean

a statement if the program is represented in a higb leve! programming language, or

it may mean an assembly level instruction if a Iow leve! representation is chosen.

We will first look at the structures in a data dependence graph tbat will limit tbe

ma.ximum speedup of paralle! executions of a loop. We will define wbat is a maximum

computation rate of a given loop. We will review tbe previous results conceruing the

ma.ximum computation rate of a loop. Then we introduce the periodic scheduling

scheme for loops, which can achieve the maximum computation rate. This is the basis

of the scheduling scheme for which our register allocation scheme will support. The

generaI simultancous scheduling and register allocation problem is formally studied

in Chapter :3 and Chapter 4.

We then discuss the superscalar and VLIW architecture models as representative

target architectures on which our scheduling and register allocation scheme is most

useflll. Dataflow architectures will be formally introduced later in Chapter 5.

We will also introduce the basics of linear and integer programming which we will

use extensively in the later chapters to solve our optimization problems.

•

•

•

CH.·\PTEH 2. !3M'!,(;[aWSO :\;\i0 TEU.\l1.'\01.0<;Y

2.2 Notations on Sets

A set, is colleetion of eletlwllt,s whkh ha\"«.' SUUlt' ('otll1l1ll11 rl'atul'l'S. Ir an (·h'l1wnt. cl

bdongs 1.0 a set A. then w,' say." is in A or :\ l"ontains Il. ,I,'nut"d hy Il E :1. IV,· nse

the notation. A E a. 1.0 indil"ate ail th,' sl'l,s A "'lllt"ininp; Il. \V,· will liS" Z to indic"t,·

the set of integers. i.e.

Z { '1') 1 0 l ')'1 }= - .. --~ - . . . -.' .' .. .

The set of positive integers is indicated by Z+:

The following operations are ddined on sets:

Union AU B of two sets A and B:

AU B = {ai a bc!ongs 1.0 A or belongs to 13. }

Intersection An B of two sets A and B:

An B = {ai a bc!ongs ta A and also bclongs to B. }

Cardinality lAI of a finite set A is the number of elements contained in it:

lAI = number of elements in A.

If a set contains an infinite number of clements, then its Cllrdinalit.y is simply

defined as infinity.

2.3 Graph Theoretic Terminology

We will use directed graphs 1.0 represent the data dependences of computer programs.

When graphs are used 1.0 represent the real world applications, they are often given

• ('I/APTEU 2. BA (,'!\(;JWFSn ASn TEW"Il.vOLOG'r' 9

•

•

Sl)l'cj,li ",,,",·S, This is alsu tnl<' jll this thesis, If graphs arc nsed to represent data

d"I)('lId"IICt's. 1.1"," tl",)' an' calbl data depelldellcc graphs (DDG). \Vhen graphs arc

Il,,'d t.u r"l'n·s(,lIt. dat'L nuw coml'lItat.iolls, the)' are called dat.\f1ow graphs.

III this sl,ct.iull we giv" tll<' lli~sic defillitiolls about the general graphs. Data De·

1'(,lId"II('" Graphs (00(;) alld datanow graphs will be introduced later. Most of the

graph t.heurdic tcrmillulogy has been adapted from [58J.

Definition 2.3.1 il dirccled graph or multigraph G = (N, A) eOll.sisL< of a set N of

IlOdes and a sct A of arcs. where N = {1I101l2'''',IIINI} and A = {eloe2,· .. ,eIAI}·

Eaeh arc ej eOII.si..sL< of two nodes: ej = (11/" IIk). where node n" Ï-< ealled the tail af

ej. and node 1r.k Ï-s ealled the head of ej. The direction of the arc ej = (n",lIk) Ï-< from

the I.ail 11." to the head "k' Multiple are..s betllleen a pair of nodes arc pos..<ible. It Ï-<

also pos..<ible thal. the tail and the head of an arc arc the same node. In that case the

arc is ealled a ..self·lool"

The definition of direeted graphs will be refined to aecommodate to our appli­

cations. Nodes and arcs can be annotated with one or more labels to carry sorne

physical information. However we will also use undirected graphs in later chapters,

main!y in the l'roofs and transformations in order to obtain the solutions. So we give

the defiuition of undirected graphs here. ln the following definition we use the words

"vertex~ and "cdge~ to distinguish them from the directed graph case.

Definition 2.3.2 A undireeted graph H = (V, E) eon.~isL< of a set V of vertiees and

a set E ofedge..s, ,ohcre V = {VIoV2, .. ·,vlVl}, and E = {eloe2,· .. ,eIEI}' Eaeh edge

Cj eOIr..<Ï-~L< of t,oo vertiees: ej = (11/" nk), where n,,, nk are ealled the end vertiees of

edge ej. Tltere Ï-< no direction a.<soeiated with the edge ej.

If we do not mention explicitly whether a graph is directed or undireeted, then we

mean it is direeted. When we use undirected graphs we will always have the adjective

"uudirected~ before the word "graph~.

lu practice, we ofteu have additional information associated with the nodes and .

arcs of the graph. We called such graphs with additiona! information weightcd graphs.

• CHAPTEH 2. B.·\C[\WWI·SD AS/) TEfO/lSOWCiY III

•

•

Definition 2.3.3 .-l II'figiltfd graph (i = (S. A: Il',. II'~."') cOII.'i.,I" (lf Il !ll'Ilph (.v.:\)

alld onf or morc Illbrl" W,.II'~.··· dl}illfd 011 Ihf lIodf.' IlI/d/"r ih Ilrc".

Similar situation also applies 1.0 t1udir,'ded ,c;raphs. N,'xt. w,' ,c;iv,' t.he d<'liuit.iolls

of some common structnres in graphs.

Definition 2.3.4 Gil'fn a graph G = (N. A).

• A path P in G is a "eql/enee of arcs: {ci" er.,···, ci,}' ,,"ch Ihal Ihc hmd of c"

is the tail of Cih+! ' for h = l"" k - 1. The lail of Ci, i" al.'o cl/l/ni lail (lf Ih,·

path and the head of Ci, Î.< cal/cd the h<:ad of the path.

• A path Î.< cal/cd a cycle if the tail and the head of UI<' palh arr I.hc "alll<'. Th,'

set of al/ cycles in G Î.< dwoted by C(G) .

• Given an arc (n" ni) E A, 1!i Î.< cal/cd an immediate predcces..'or of lIi' Similarly.

ltOde ni Î.< cal/ed an immediate succc-<sor of ni.

• For any given node lIi, IDe use ,5+(lIi) lo indieate lhe set of o1l.I.-going at·c" from

ni~ i.e.

We u..<e ,5-(11,) /0 indicate the set of in-coming arcs ofn" i.c.

,5-(n,) = {(ni, ni); sltch that (nj, n.) E A}.

• Given a nodc ni, iL.< out-degree is dejincd to be the mtmbcr of arcs in 0+(11,),

and ils in-dcgrcc Î.< defined to be the number of arcs in ,5-(71.).

2.4 Loop Model

10 this thesis we focus 00 the c1ass of iooer-most do loops, or white loops that cao

be traosfonned 1.0 do loops, containing no conditional tests in the 1001' body. Several

• ('1IA1'TEH 2, HA ('!\(:JWC-ND AND TE[UJINOLOG'{ 11

•

•

ll'cillli'l"es hav., 1,,,,," itl\'ellted tu diminat'· conditiuna! tests al. compile time, For

instance. [;;1 propoSl,d a nwthud tu con\'l'rt control flow dependenccs into dataflow

del><'nd.'nCl's, Hardwart' sllpported schemes also exist that uses "predicated" instruc­

tions [il. i:!] 1.0 allow a compiler 1.0 schedllie a conditional as a non-conditional, and

nllllify 1.1", lInt.aken brandI al. rlln-tinw. Hierarchieal reduction [56] is an approach

t.hat collapses a condit.ional test am! its branches into a single node so that it repr<~

sents the longest path for the <,ollapsed structure. Thercfore our focus of loops does

not. limit generality of our methods presented in this thesis.

We have chosen a high levcl representation of the loops for the purpose of easy

illustration. The methods developed in this thcsis l'an also be applied to intermediate

or lower levcl representations, such as three addrcss code or assembly code etc. Section

4.10 givcs an example in assembly level reprcsentation to show our method. The

generic fOrtll of the loops under consideration is:

for i =1 to U do

SI

S2

Sq

enddo

We assume that the generic form has the following propertics:

1. Each Sj is an assigllment instruction of the form:

Sj: x = E

where x is a variable and E an expression. Variable x can be either a scalar

variable or an element of an array variable. Expression E does the arithmetic,

logic, relational and other simple operations (Iike shifting bits, etc). In a low

level representation, E is an instruction which involves at most two operands.

So it is one of the forms: "opcodc operandl" or "operandl opcode operand!!' ,

• CHAPTER 2. BAC!,GRO{'SD ASD TEIUllS0LO(;Y I:!

•

•

wht'r<' opaalld 1and oprmlld2 ronhl Ill' "it.ht'r "'aJar \"ariabl", or "I,'nlt'nt.' of an

array. Therefon' all the follo\\'il1~ afe pussihh' fornlat.s of Îl1st.nu"t.iotls in 0111'

mode!:

x = -!I

rz[i] = !I

x = rz[i]

x=!I+=

x = y *a[i]

x = a[i]- b[i - 1]

a[i] =x +y

a[i] =x'" cri - :1]

a[i] =b[i] *cri - 2]

2. The 1001' bounds nccd not to be constants. We assume that the number of

iterations of a 1001' is unbounded in this thcsis to simplify the problem repre­

sentation.

:3. The 1001' may contain loop-carried dependellccs [6]. Loop-carried dependellccs

are those that across iteratiolls. They make the situation more difficult for the

scheduling of instructions across iteratiollS. We will show later that if the 1001'­

carried depelldences form dependence cycles, then the maximum computation

rate is bounded by a parameter determined by these cycles.

4. The data dependences between instructions are only 1l0w-dependellcl.'S. Other

kinds of dependences like anti-dependellces and output-dependenœs are causcd

by memory contention and can be eliminated by renaming techniqucs [IOJ. lt

should be pointed out that renaming of array variables mayinvolve copying

overhead. However our techniques in this these can he easily extended to han­

die anti- and output-dependences. In the literature, flow-dependences are also

caIIed the true dependences, which represent the data (or information) flow

• ('/I ..\PTEU:!. HM:J\(;/W[iND ;\;\'D TE/UII]liOU)(;Y

alon/\ tl\<' computational paths. In this thesis we simple cali the lIow dependenet'

-dat.a d"pend"n",," or "d,·pl'ndencc". whenever it is clear from the contents. The

t.l'rminolop;y we nse is adapted from [10].

!i. vVe ;~"nm" that any of the dependencc distanccs [10] betwt'Cn any pair of in­

structions is const.ant (i.e. independent of the iteration index il. This restric­

tion is necessary for a compile time static scheduler. On the other hand, if

son1<' dependences arc not independent of the iteration index, we l'an take the

l'onservativ,' approach and assume the shortest distance as a constant for ail

ikrations.

A typicalloop confined to the above properties is shown in (2.1):

L: for i = 1 to 100 do

• SI : X =X +cri - 1];
$2 : a[iJ = X +b[i - 2];

(2.1)
S3 : b[iJ =a[i] *F;
Sol : cri] =a[iJ/b[i];

enddo;

ln itcration i, instruction S] reads two operands X and cri - IJ. Both of them

are produced in the previous iteration. Actually X is produced by S] itself in the

prcvious itcration. Therefore there is a data dependence from S] to itself, and the

dependence distance is one iteration. The other operand cri - 1] is produced by S4 in

the previous iteration. Therefore there is a data dependence of distance 1 from 84 ta

•

Now let us consider instruction S2. Its two operands are X and b[i - 2]. The first

operand X cames from S) in the same iteration. Therefore there is a data dependence

from .s) to S2 with dependence distance O. The other operand b[i - 2] cornes from S3

in iteration i - 2. Hence there is a data dependence from S3 ta S2 with dependence

distance 2.

• CHAPTER 2. BAC/,GRO['"D AS/) TEU.\/ISOI.O(;)· 1·1

•

•

Therf' art' lHany rt.'st'ardt n'sllits on hu,," t.u ê\.uto1l1atkally dd.l'ct tlll' dat.a dl'lwll·

dene,' information for general loops for a ('01npil,'r [10. i!l, ~ol. lt. is not. our ~0,,1 t.o

describ(" thesl" lnethods herl'. \Vf' only a.....stltlH... lhal sonw \.001 can pn,wid,' us sud,

depcndenœ information. In the n,'xt. s<'dion we will int.I·",h,ce t.1lt' <lat.a <l''I,,'n<l''I1<'''

graphs to represcnt the loops in ahstract strndur,'s.

2.5 Data Dependence Graphs

"Vhen considering the schcduling and rcgister allocation prohl,'ms. th" adual compn·

tation performed is not important. Only the data <lependen"e and dday informat.ion

of the instructions are important to us. For a program represent.aLion, we choos<' Lo

use the data depcndcnec graph (DDG) [la] annotated with dependence dist.ance and

instruction de1ay information, since it is simple and contains enough information for

our scheduling and register allocation purpose.

Definition 2.5.1 Gil1en a generie loop, the eorrcsllonding Daia DellendwCl' Gmllh

(DDG) Ï-< a UJeighled directcd graph G = (N, A; 7/1., dl, lllilh lhe following inlerylTt'la.

lions:

J. N Ï-< lhe sel of nodes, eaeh reprcsenling an instruction in the 10011 body.

2. A Ï-< the set of ares, each reprcsenting a data dCIJendcnce belween a IJair of

instructions. That Ï-< to say, if node nk reads an oTlerand Ilrodneed by another

node n,,, then thc arc (n,,, nk) Ï-< in A.

:J. m = {m"k; (h, k) E A} Ï-< the dependenee dï.<tanee l1eclor dejined on lhe arc sr;!

A, such that m"k Ï-< a nonnegalil1e integer UJhieh indieates the item/.ion dï.<lanee

of the dependence (h, k). If the dependence (h, k) does not cross ileraliOT~<, t1u:n

m"k =O. Ifm"k > a then (h,k) ï.<called a loop-camed dCJlendenee.

4. d = {d,,; h E N} is the de/ay l1ector of instructiOTL< dejined on the node .<et N. th
is the number of clock cycles needed to complete onc execution of the irlStrudion

• (.'lIAI'TEU~. HA(.'!\(;JWli;\"/) AND TE[{[HliVOLO(:y' 15

h ...lltIuJ1L!lh Iht' ddaYlJt'ri07' i" givrn wilhoul "J)fCifying an archilrelurt', il i..,

a".'ul/I,·,llhal li,,· flLlLriiollal unil., arr pipelined and arc hardware ha=ard-frœ.

The J)DG of the "xlLInpl" 1001' Lin (2.1) in Section 2.4 is shown in Figure 2.1.

W" ;,ssunw in this t.111'sis that th" delay of (floating point) Addition is 1 clock cycle,

the delay of Multiplication is 2 and the delay of Division is li.

• m24=O

•

Figure 2.1: Data dependence graph of the exarnple 1001' L.

Although the delays are associated with the nodes of the DDG, il. is easy 1.0

generalize them 1.0 the arcs. One can simply define the delays of the output arcs of a

node 7Ii 1.0 be the delav of the node ni.

Definition 2.5.2 Given a DDG G = (N, A; m, dl, wc define a new delay vee/or 1

on lhe arc sel A:

1. = d,,, if e = (h, k) E A.

Very often we will consider the total delay and total dependence distance along a

path or a cycle in the DDG. Now we give sorne short hand notations for them.

• CHArTER 2. BACI\GlW1i!\D .-\SD TER.\II."\OI.O(;Y Ili

•

•

Definition 2.5.3 Gi,'''" a DDG (o' = (.\' ..-\:111 • .1). l.rt l' b.. a palh 0" a "!Id.. ;11 (o'.

• IVc dcjillc Ihc dday D(P) of l' ln b.. Ih .. -"/11 of Ih .. ,ir/ail" of 1,1/ lhe- ""'/"., ;11

P:
0(1') = I: dl..

her

• Wc dcjillc thc dcpclldwcc di.,ta"c.. M(P) of P tn b.. th .. -'''Ill of Il,,' .1"1"""/"11""

di",ta"cc.. of ail th .. arc", in P:

M(P) = I: lIthk·

(h.klEP

2.6 Computation Rate

A schedule of instructions is a function from the domain of instructions of a progr;L111

to the integers representing time clock cycles. If a computer architecture 1111S no limi·

tation on the number of processing units and other resourœs, theu the instructions ...an

be scheduled as early as possible subjectcd only to data dependenœs iu the program.

Furthermore, if there are no data dependenœ cycles, then a11 the instructions of ;Lll

the iterations can be scheduled in para11el and finished within L clock cycles, where

L is the length of the longest dependence path of the DOC, which is independent

of the iteration bounds. On the other hand if data dependences form cycles in the

DOC, then subsequent iterations can only be scheduled with a certain dday from the

previous iterations. Therefore instructions can only be scheduled al. a certain finite

rate. Different instructions may have a different computation rate depeuding on the

cycle or cycles in which they are located. However when the throughput of iterations

is considered, the rate is determined by the slowest rate of the instructions in the

1001' body, because an iteration is considered finished only when a11 t.he instructions

in it are finished. Now we give the formai definition of t.he computation rate of an

instruction and of the whole 1001',

Definition 2.6.1 Civen a schedu/e of a loop, the computation ratc of an i7L.~tntt:tion

h i..~ the average number of executi07ls over one unit of time observed during a long

• ('//:\/''1'1-:/1 2. !l..l(,'!\WWlitV[) ..lSD TE/UIINOLOC:'y' li

•

•

pn'i",l of till"'. 'l'hl' ('olllputatioll ratf R of a 1001' i" thf "loU'e"t of the computation

mir',' of titi' ill.,tnu·tion.' in it" lool' body. Th lIlaximum eOlllputation rate of the 1001'

i.' t"" lIuuilllU11t of f'OlIllJ'1ltation rates obtainablc over all fcasible schedules.

Heit"r [i:l] prowd a theorelll about the ma.ximum computation rate of any given

1001', ({Pfor" we stal<' the till'orem, we give some new definitions to simplify the

not,cLtioIIS.

Definition 2.6.2 Gillen a DDG G = (N, A; m, dl. Let C be a cycle in G: C E C(C).

The balancing ratio B(C) of C i.., defined by:

A cycle C' in G i., called critical if it ha..< the smallest balancing ratio among all the

cycles in G. i.e.
• . M(C)

B(C) = mm{ D(C) .. "IC E C(cn

Now we are ready ta give the ma.ximum rate theorem by Reiter.

Theorem 2.6.1 (Reiter 1968 [73]) The maximum (achiellable) computation rate

R of a gillen loop i..< equalto the balancing ratio of the eritical cycle(s) in the DOC of

a loop. i.e.
. M(C)

R = mm{ D(C) .. "IC E C(cn

2.7 Scheduling Schemes

Instruction schedlllillg for loops exploits the following special properties:

• The instructions are goillg to be executed repeatedly.

• CHAPTER 2. B.·\('/{WWFSn AS/) TE/O/J.'{O 1.0(;) , l~

•

•

These prop,'rti,'s allo\\" th,' sclll'dn\,'r 1.0 h,w,' more opporl.nnil.y 1.0 lind opl.ilnal

schcdules by exploiting I.he l"<'p,'at.ing Ill'ha\"ior. In this s"ns,'. scl"'dnling prohl"ms

for loops are dilferent l'rom the traditional sdwdnling theory \\"hicl. fo<"n,,'s on singl,'

pass schedules [19. 18, 12].

Cytron [21] proposed the do-across ml'l.hod. which tried t.o Iind a minimnm ,·on·

stant delay between consecut.ive itemt.ions so that snhse'lnent. it<-rat.ions may st.art.

beforc the previous iterations finish. However, Cyl,ron's do·a....o"' ,,"SllIn"d a lix,'cI

sequential ordering of the instructions in an it.emtion, whiclt limit,'d I,h,' ,'xploit.at.ion

of parallelism considerably.

Aiken and Nicolau [a, 4] devcloped a scheduling scheme called p,·rcolation. 1',,1'­

colation is a set of rules to move instructions in the dataOow or control Ilow graph so

that the semantics arc preservcd. They applied percolation to the inner-most 100ps

to obtain parallel scheduling. The algorithm emulates the execntion of the 1001' by

virtually nllrolling the 1001' unbounded number of timcs, and schedules the instruc­

tions as carly as possible, until a periodic pattern l'an appear, which oft.en consist.s

of instructions from a number of consecutive iterations. This technique is called OP­

Timalloop pamllelization (OPT) (a particular case of Perfect Pi/,clining). However

there is a problem with this approach: for loops with multiple critical cycles, no

polynomial time bound is known to occur for such a periodic pattern, caused by lhe

reason that the patterns may be exponential in size under the earlicsl firiug rule [6i].
Furthermore, the register allocation problern was not considered either.

Ebcioglu et al [29,28, :IOJ proposed several refinernents based on Aikcn ancl Nico­

lau's algoritbms. However their scbeduling scherne was still heurisl,ic and the regisl,er

allocation problem was not cOllz:dered.

Lam [56] proposed a scbeduling scbeme which used the nallle softlll(LT(; piT,clining.

In the method, both the data dependences and the number of processing units were

considered as fixed parameters. So Lam c1aimed the scheduling problem being NP­

complete. We notice bere that if the number of processing units arc assumed infinite,

• ('II:\l'TEII 2. HA (:J,(;JWliSJ) :\SJ) TEIUIISOLO(;Y 19

•

•

1.1 ..." 1.1,,· Sd"'<illiilll'; prol.l"lIl is 1101. NP-eolllpl<'1." alld ail optilllai seht'dul" l'an 1."

[ou"d ill poly"ollliai I.inw [n, ii].

111'11("(', ill t.his tl ...sis, Wt· will wnsider a scheduling schellle, in which only data de­

p"'I<I,·nc,·s an' wlIsid"n'd as constraint.s. This assumpt.ion allows us t.o achieve optimal

sp""dllp ;dlow"d by a prop;mm. Wc will inVl'stigate that. nnder this assumption. how

""UIY [lIl1diollal units and registers are enongh 1.0 snpport. most o[the typicalloops

in I",nchulilrks. Fllrth"rmore Lalll's scheduling mdhod did not take into account the

r"gister allucat.iun problelll, whi!" ours will.

Giwn a loop with its DDG G=(N, A; m, d), defined in Section 2.5, let us examine

what. is the minimnm requiremcnt for a schcdule 1.0 I.e feasiblc in the sense of not

violating any dcpendenCl' relations.

Definition 2.7.1 For a given DDG G=(N, A; m, dl, wc use th(i) to indieate the

lime when node II. in iteration i ï,< schcduIcd. fhcn a schcdulc t ï,< fca..<ibIc if and only

if lhe following ï,< ln,e:

Thal. is 1.0 say, because of the dependence distance mhk, the consumer node k

III iteration i + "'hk l'an only I.e scheduled after the producer node h in iteration i

finishcs. Many kinds of schedulcs can be feasible, but not ail of them are easy 1.0 work

with from the perspective of a compiler. ln the following we introduce the periodic

schcduling scheme that shows strong regularity and l'an achieve optimal rate.

lntuitively a scheduling for a loop is periodic if ail the instructions in ail iterations

arc scheduled with a fixed period. Formally we give the following definition.

Definition 2.7.2 A schednlc for a given loop is called periodic with period P if for

any Iwo consecutive iterations i and i + l, wc have

th(i + 1) -l'h(i) =P, 'tIh E N.

•

•

C/J.-\PTEH 2. B.-\CI\c:TWl 'Sl) :IS/) TEU.\IlS0LO(;)'

Helln" for (l Ill"rio«lic ~dH."dllh·_ t.lw S""OIHI itl'rat.hHl is jll:-ol a l't'pt',,t 'lf tilt' tin.. t

iteration aft,'r [' dock cyek~. and th,' thin! itl'ration i~ a n'p,'at of th,' lir~t ilt'r"tioll

aft.er '2P dock cyde~. ,'te. Thi~ In,'allS that the timin)!; of tIlt· in'trncl ion~ ill th,' lir~1

iterat.ion pln~ t.1\l' con~tant p,'riod l' will d"t"l"Inine 1.Ia' whol,' ,,·h,-dlll,-. TIIl'I'l-for,- "

periodïe ~chedu!e i~ "l'ry ~impl,' t.o d""'rilll' aud ~till powerfnlenoll)!;h 1.0 ~;,ti,fy tlll'

requiremellt. of producing a good paralle! cod,' al. l'oml'il,' t.ime. whkh i~ ,,,Idr,·,,,-d in

Section 4.6 in Chapter '1. Thi~ i~ a maill reasoll why we d,oo,,' perio,lk ~d,,'dlllill.C;

as our ~tarting point of doing regi~ter allocation.

For the re",on of easy referellCl'. we ~i"e the followill)!; c\dlnitioll:

Definition 2.7.3 Let t bc a /lel'iodic schcdttle of a Inn)!. Wr' u."· t" to inriiml,' Ih,'

sehedu!ing time of in..<I,ntetion h in the first itemtion. With this nolrtl,ioll. ill.<II·"dinll

h in itemtion..' 2, :J, ... arc sehednled at cloek cycles t" + P, t" + '21'." '. ",hr','" l' is

the /leriod.

With the above notation, we li~t the following propertie~ of a periodïe ~dll'dllle:

1. If the period is P, then the complltatioll rate i~ f,. Therdure the minimllm

period corresponds to the maximllm computatioll rate.

2. The schedule is fcasible according to Definition 2.7.'2 if and ollly if

('2.'2)

•

2.8 Architecture Models

In this section we ontline our target computer architecturc.'S on whic" our teclllliques

are most useflll. These incillde two classes of architectures: onc c11l.'S rcprc.'Sclltcc\

by the Very Long Instruction Word (VLIW) and S,qJerSC(ûar archit.ect.ures. The

other class is datafiow architectures which will be introduccd in d,'àptcr 5. Wc will

• ('/I:\l'TEU:!, H:\('!\(;fWr:SIJ ,-\;\,0 TEUA//;VOLO(;Y :21

•

•

ollly !!;iv., v..ry !.ri..f ,,"d hi!!;h 1.'v..1d..scriptiolls of thes.. "rchiter.tures, Dt'l.ails of the

<Lr('hit..c,tllrt'S th"t "rt' Ilot rd"tiv(' tu ollr sc.ill'dlllillg "nd register allor."tioll problems

art' 1101. tlll'lItioIWei.

Both VLI\V alld Sllpersr."lar "rr.hiter.tures [:14, 51, 5;, 5:2] are designed 1.0 exploit

l'''r"lIelism ,,1. t.111' Iille.!!;r"ill illstrud.ioll le\'e!. Their m"ill difrerellce is that superscalar

"r('hited.ufl'S '~'Sllme " se'l"elltial machille levd lallguage and depelld on a dynamic

sc.ill'duler 1.0 lilld the p'Lr"lIdism ill a window of instructions. VLI\V machines need

v('ry wide instructions each of which contains independent and parallcl subinstruc­

tiolls. With this dilferellœ, the superscalar architecture can run codes compilcd for a

se'luellti"lmachille without allY change, while for a VLIW architecture the sequential

code h,LS to be recompilcd by a compiler that can generate Very Long Instructions.

However, sinœ a superscalar machine uses a dynamic schedulcr which can only look

,,1. a small window of instructions 1.0 find parallel instructions, il. is conceivable that

a VLIW machine can exploit more parallelism by advanced compiling techniques.

A good compiler on a superscalar machine should also exploit parallelism so that

the dynamic. schednler can find parallel instructions easily or trivially in consecutive

seqllence of instructions.

Now wc describe the two architectures in very brier terms, but t.he description will

be enough for our schcduling and register allocation scheme.

VLIW Architecture [34, 51] : A Very Long Instruction Word (VLIW) architec­

ture has several, say p, t.ightly coupled processing units. Each processing unit

may be pipelined. Wc assume that the pipeline has no hardware structural

hazard. Ali the processing units are equivalent in execution functions. Ali pro­

cessing units share a common main memory and a common register file and

probably a common data cache and/or a common instruction cache. At any

given time unit, a Long Instruction (LI) containing al. most l'instructions can

be fetched and the l'instructions can be processed simultaneously on the l'

processing units. Eachinstruction can be considered equivalent 1.0 be an as­

sembly instruction on a sequential von Newmann machine. The Instruction Set

• CI/APTEH 2. B..\("I\WWl".\·J) AXD TEIDIIXO!.O(;Y ".)

•

•

is HlS(' likl' and lilt' ollly il1:-,1 l"l1Cl.ilHlS which raH ~h'l't'S:-: d"t~, rl'lllll ;lIld hl tilt'

maill ml'mury <In' LO,\ll aud STOHE. Olh"r iuslrnctious lak,' th,';" o\",rau,1s

froln n·~i:-;tt·rs.

Superscalar Architecture [52] : A Sup"rsc"lar "rchil,·dm,· ;s ""ry ulI"'h Iik,' a

VLI\V él.fChitt'ctnfl' if only hardware or~êlnizêlt.i\J1l is l"ollsidt'l't'tl. i.t',. il. ha.... l'

fuuctiou<ll uuits. eadl uf them "<lU 1", pip,·lit\l't1. ,\1\ of t.h,· rU''''liou<l1 uuils

share a (~Onlnlon 1l1elllory. CL ('unlillun fl'p;istt'r IiIl\. a ('0111111011 inst.l'lll't.ÎtHl ,';u'llt,

and a COllltnon dat.a c(lelte. 110\\'\'\"(,'1' t.hl'fl' art' lIU l..on~ Inst.ruct.ions in SIIIH'r­

scalar tllachÏlH.:'.S. Instructions on a sUlu.-rscalar an·hit.l'd,llfl' may lu.' t'ollsi,lt,I't,d

t~quivalent tu t.Ilt' instructions on a sl'qul'utial von Nt'wlnallll ard.it.t'ct,lll't' Ina­

chiue. A dyuamic scheduler uuit. is used to sded p<lmlld iustructious. Al <luy

giveu time uuit. the dyu<lmic scheduler will look at. <1 wiudow uf iusLru,·l.ions ant!

choose among them at most p instrudions so thal. they c<ln 1", proe<·ss,·tI simul­

taneously by the p processing units. As in a VLl\V <lrchil.<~·tttre. <1 snpers."",,,·

architecture <llso h"" aRISe like instruction set, in whid, the only insl.nll'I.ions

which can <lCcess data l'rom the main memury <Ire LOt.!'> <lnd STORE.

To simplify the problem, we choose <In ide<llized architecture in whid, t.he numl...r

of processing units is assumed to be infinite. With this idealized ""snmption, we mn

always achieve maximum computation rate allowed by the data dcpcndenœs o[1.1Il'

loops since hardware puts no limits on the speed. If the number of proccssing uniLs ar..

assumed fixed at the beginning, just to determine Lhe maximum possible compnl.atiou

rate would be NP-complete, which will complicatc our problcm I.rellleutluusly. If 1.1",

code, generated with the ide<llizcd assumption, can noL be dircctly used on a fixet!

processor machine, mapping techuiques are needed to conver!. an idcalizc,l c,,,I.. 1.0

the real machine.

• ('//:\/'TEU:!. H:W!\(;Uor's/) :\S/) TElt\1I.'WLOGY

2.9 Linear and Integer Programming

\V•• bridly ft·vi ..\\' soml' ur tl\(' milin r..snlts in t.he t.heory or litlt'ar and integer program­

Inin!!; in tlris s.·t'l.ion. I)I'I,ilil..d t.heury Ciln b.. round in t.he excellent books by Chvatal

[I il 'LI Il1 Schrijv('r [i.1]. The rullu\\'ing optimization problem with a linear objective

runctiun ilnd il sl'l. or lin"ilr constraints is called a lincar programming problcm, where

ri. hj • liij_ i = 1,···,ll, j = 1,···.7n arc rational nUlllbcrs.

(2.:3a)

snbject to

•
Xi ~ O. "Ji E [Ln]

(2.:3b)

(2.:lc)

(2.:3d)

(2.:31')

We can use vl'ctors and matrices to obtain a more compact form of the linear

programming problem:

mm ex

subject to

Ax~ b

x~O

The lincar programming problcm in (2.:3) or its compact form is called the primaI

probll'm. Correspondingly it has dual problem:

• max' btYt + ~Y2 +... + bmYm (Ùa)

• C'HAPTER 2. B.·\CI'(;ROl".\ïJ AS/) TElüIlS0J.()(;Y

subj.... t. 1.0

•

alnYl + (l~n!l::. +... + (llllu!Jm :S <'u

Yj '=: 0, Vj E [1..11I]

or in the compact matrix form:

ma..X yb

subject 1.0

(:! ..lh)

(:!..t ..)

(:l..td)

(:l.·H

•

Il. is easy 1.0 set' that the dual problem (2.4) is also a linear programming problelll.

If we try 1.0 write down the dual of (2.4), we obtain the original problt'Ill (2.:1).

This duality of linear programming plays a very important roll' in ils solutions. The

following theorem states the relationship betwccn the primaI and the dual.

Theorem 2,9.1 The primallinear programming (2.:J) ha.~ a jinite 0IJtimal solution

if and only if the dual (2..f) has a jinite optimal solution. If tltc primal.dMl TJair ha..

optimal solution..., theu thcir objectivc valucs arc cqlLal.

There are many algorithms for solviug liuear programming prohlems. They can he

basically divided iuto three categories. Oue category is the simplex method (see for

example [Ii]). The method does not give a polynomial time algorithm. Thcoretically

il. is an expoueutial algorithm in the worst case. But in practice the spccd is very f;1"t

for the majority of application problems. Another category is the ellipsoid method

inveoted by Khachiao (55]. This method gives the first polynomial time algorithm

•

•

•

('J1A/'TEH:!. HAC/,(;JWU;\"f) AN/) TEH.JJlNOLOGY

rur sulvill)'; lil)('"r pro)';r"mmillg problems. But the complexity or the "Igorithm is

'Iuit.(' hi)';h, ,,"r1 it.s sp,'erl is ilOt. "t. "II comparable \\'ith the simplex met.hod. The last

e"t.e)';ory is the illt.erior poillt. mdhod ("Iso railcd projective mcthod) first invented

by K"rm"rk"r [''i4]. This lllt'thod also gives a polynomial time algorithm ror solving

lille"r pro)';r'lI11millg problems. The complexity or the method is better than that

or t.he dlipsoid method. Its practic,,1 computation speed is much better than the

dlipsoirl methorl. I-Io\\'ever, the simplex method is still much faster than the other

t\\'o lllethods for smail size problems, which indude the problems we are dealing in

t.his thesis.

011 the other hand, real application problems often show special structures which

m"y make them easier to solve than the general linear programming problem. Mini­

mum cost flow is such a special dass of applications for which much faster algorithms

(0(71.3) or better) exist. Another special property of the constraint matrix of the min­

imum cost How problem is that if the cost coefficients c and the bounds b in (2.:3) are

ail integers, then an integral optimal solution x cau always be found. This is partie­

ularly helpful if integer solutions are preferred. We will introduce the property which

the constraint matrix of the minimum cost f10w problem has in the next section.

An integer programming problem is a linear programming problem (2.:3) pins the

requirement that the variables Xi must be integers. lnteger programming problems

are uSllally much harder than their linear versions. The general integer programming

problem is NP-complete. However some particnlarly structured problems do have

polynomial time solutions, like the minimum cost f10w problem. For hard integer

programming problems, one of the heuristic approaches is first to solve the linear

version of the problem, then try to round the obtained fractionai solution to integers.

Often the linear version of an integer programming problem is called the lincar relax­

ation problem, because it rela.xes the integer requirement on the variables. In the next

section we introdllce a property which can guarantee a linear programming solution

to be integral, therefore is very important to solve integer programming problems.

• CHAPTER 2, BACI\WWl'SD :\;VD TETt\l/;'\OI.O(;Y

2.10 Totally Unimodular Matrices

•

•

ln this s<'ction w,' introduC<' Ih,' 101,,1 11IIimo<llll"rily pruP"rtY on matrÏl'I'S which has

a \'<,ry important 1'01<' in sol\'ing int.l'g<'r progrmllming prubll'ms,

Definition 2.10.1 A mlional1llal.1ir A is lolal/y Ilnimo<llll'II' (TFM) if Ihl' <Id,'/'mi­

nant of cach sqllaTf Sllbmalrix of A is cil//fT O. 0/' + f. or -f,

Since each entry of the matrix A l'an b<' considered a.~ a square submal.rix. a

immediate conseqnence is that each entry of the matrix A must Lw eith"r O. or +1.

or -1.

The following thcorem illustratcs the importancc of the TUM property, Il. impli<'s

that if a constraint matrix is TUM, il. sufficcs 1.0 solve the linear programming 1.0 lind

an integer valued solution.

Theorem 2.10.1 Let A be a toial/y unimodulaT matriz, and Id band c b,' inll'ffl'al

veetoTS. Then both the primaI and dual LineaT 71Togramming probLems

min{cxjAx ~ b,x ~ D} = max{yblyA S c,y ~ D}

have integTaL optimum solutions.

However only the simplex method can guarantcc 1.0 find such an optimal integral

valued solution. Neither the ellipsoid method nor Karmarkar's method can guarantcc

1.0 produce an integral valued optimal solution l'ven if the constraint matrix is TUM,

because the solutions obtained From thcse two methods are usually not the verticcs

of the polyhedron defined by the constraints,

•

•

•

Chapter 3

NP-Completeness Results

ln this chapter wc prove that the minimum register allocation problem to support a

timL~optimal parallcl schedule among ail such schedules, even on an idealized parallel

computer architecture, is NP-complete. The result holds for both the acyclic case

(straight-line codes) and the cyclic case (Ioops).

•

•

•

CHAPTER :1. .vP·COMI'LETE.\'ESS fŒS1'1.TS

3.1 Introduction

ln this chaptel' we l'l'ove that tlll' miuimum n'gist,'r allucatiuu pruhlem tu suppurt a

time-optimal paralld schedul,' among ail such schedul,'s. "\'l'U uu au id"aliz,'d parall"1

computer archit,'ctur,\ is NP·complete, The l'l'suIt holds fur huth th,' ,u'ydk ,',L't'

(straight·line codes) aud the cydi<- Ca.'l' (Ioops),

There are mauy versions of register allocation prohlems, hoth fur S"'1,"'utial alld

for parallcl computer architectures [.15], III [;5], Sethi proved that th,' millimum

register allocation l'l'obicm while allowing instruction reordering fur an al'ydi<- graph

on a sequential computer architecture is NP·compktc. Garey et. al [46] pruwd ail

NP-completeness result for a 1001' with a fixed sequcntial sdll'dule. lu this d",pter

wc consider the register allocation l'l'obicm for a paralld architecture without. Iixing

a l'articulaI' schedule. Thal. is 1.0 say, we want 1.0 find ail optimal fea.,ihle paralld

schedule which uses minimum uumber of registers among ail such sch",luiL'S. Our

results in this chapter generalize the results mentiolled ahove. We will l'l'ove the

following two NP-completeness results:

1. The minimum register allocation l'roblem 1.0 support au optimal schedule for a

program with an acyclic DDG l'l'presentation on an idealized parallel computer

architecture is NP-complete.

2. The minimum register allocation 1.0 support an optimal rate schedulc for a 1001'

with a cyclic DDG l'l'presentation on an idealized parallcl computer architecture

is also NP-complete.

In the next section we give the problem definition and l'l'ove an NP.completellcss

result for straight-line code 1.0 prepare for the result on loops. Then in Section :1.:1,

we l'l'ove our main result of the chapter that simultaneous optimal scheduling and

register allocation is NP-complete.

• (.'lJ:\I'TE/{ :1. NI'·(.'O.'vII'LETENESS f{ESlfLTS

3.2 Case of Acyclic DDG

29

•

•

Ldo us first. st...t.<' t.l\l' r<'gist.<'r ..I\o"..t.ion probl<'m as .. d<'cision problem. Then we

forrllul..k .. more rest.rided version. vVe will act.ually prove t.he restricted version of

t.he prohlem is NP.complete.

Pal"allel Registel" Allocation Pl"oblem (PRAP):

Given: An acydic 0 DG G = (N, A; nt =0, d = 1) representing a straight line code.

Assume that t~here are infinite number of processing units. Let R be the number

of availahle registers.

Question: Let L be length of the longest path of G. Is there a schedule of G which

finishes within L dock cydes and uses al. most R registers'!

The restricted version of the problem is 1.0 limit the DDG 1.0 have only one source

node and one sink node. This is formally stated below.

Restl"icted Parallel Registel" Allocation Pl"oblem (R-PRAP):

Given: A acydic DDG G = (N, A; nt = O,d = 1) representing a straight line code

in which il. has only one node having no input arcs and only one node having

no output arcs. Assume that there are infinite number of processors. Let R be

a given positive integer.

Question: Let L be the length of the longest path of G. Is there a schedule of G

which finishes within L dock cydes and uses al. most R registers'!

Theol"em 3.2.1 R-PRAP is NP-complete. Therefore PRAP is also NP-complete.

• CHAPTEl{ :1. SP·CCHIPLETESESS lŒSI 'l.TS :lll

•

•

Proof: \oVe ~how t.hat. t.he \ 'a/a Cnl'f/' pruhh'\ll [·\:.1 can Ill' ",'dn('('d lu H-I'IL\ l'. l.,·1

u~ lir~t ~tatt' the dl'iinition of tIti' V.'rtex (\)\'<'1' pruhl.'m.

Vertex Cover problem (VC):

Given: A undirectcd graph H = (\1. El where F i~ the ~.-t, uf \"'rti('('~ and /.: th,'

set of l'dges iu H. Let 1\ b,' a po~iti\'l' integ"r.

Question: Is thcre a vertex cover F' C I" of G who~e ~ize i~ ,'xadly K. i.•·.. 11"1 =

1\, such that \Je E E. al. le~t 01'" of the two eud \"'rti,"'" of ,. is iu F"!

Let the given undirected gmph Il h,\\'e the following ~ets of wrtice~ and "dg,,,,:

E = {Ct, C:h"', cm},

where an edge ek = (Vi, Vj) for some indices i and j. Here wc ;lS~lIlne that. there arl'

n vertices and m edges in H. We also assume that there are no i~olated vertice~ in

the given undirected graph H because they can be very e~ily treated.

Next we construct an instancc of the R-PRAP from the given in~tance of the VC.

We will adopt some convention on the terminology. In the YC problelll we arc given

an undirected graph, so we use the words vertex and edge 1.0 describe the object~ for

the instance of YC. We use the words 7lode and arc for the in~tanccof R-PRAP sincc

we have a directed graph.

In our construction, we will design a cOlllponent for each vertex and" cOlllponent

for each edge. We will cali them vertex components and edge cOlllponents. They will

be connected together (serially) 1.0 gel. a larger construct. Then wc will append other

structures 1.0 il. 1.0 form the whole instancc of R·PRAP. In the following we oft.cn use

the term a-nodes 1.0 indicate the set of nodes labeled with a, etc.

We will first describe ail the components individually: initialization component,

vertex components, edge components, c,ontrol C2-C3-<:.j component and bookkccping

• ('/1 ..\/''1'1'.'11 :1. SI'-(.'()AJJ)U~T1'.';\'ESS /ŒSULTS :11

•

•

('".,ill, '1'11<'11 we will form.dly defille til<'ir internai ~tructur"~ and ~ho\\' ho\\' they are

<"011111'('1.1'(1.

'l'II<' illiti.di?at.ion ('olllponellt i~ ~ho\\'n in Figure :l.I. It con~i~t~ of a ~tarting node

., of t.h,· whole g....ph. il/. + 2111 init.iali?ation node~:

and a l'ont.rol node CI' Starting node " is connected to each of the initialization

nodes and control node CI is connected Iro", each of the initialization nodes. The

inil.iali?at.ion nodes will also he connl'cted to other nodes in the other components,

which will he shown later. Control node l', will be connected to the starting node "1
of the first vertex component dt'Scribed next.

For each vertex Vi, the corresponding vertex component is shown in Figure :3.2.

ln the figure, the shaded nodes should not be considered as part of the vertex com­

l'onent, they are designed for initialization purpose. There are also other unshown

arcs from initialization g.nodes and h-nodes to the v-node and u-node in the verte.'(

component. The unshown initialization g-nodes and h-nodes are desigued for the

l'dge components and they are in I-to-I correspondence with the edge components.

They will be shown when we give the construction of the edge components later, while

each shown initialization node in the vertex component is design particularly for this

vertex component.

The "i node is called the starting node of the component and node Wi is the

('nding node of the component. Nodes Vi and Ui both correspond to the vertex Vi in

the YC instance. Later we will sel' that at most one of the two nodes Vi and Ui l'an be

scheduled dllring the first phase of the vertex component scheduling. The case that Vi

is scheduled in the first phase corresponds to the case where vertex Vi is in the vertex

cover. The case that Ui is scheduled in the first phase corresponds to the case where

vertex Vi is not in the vertex cover. We also calI the set of nodes {ai.I'···' ai,n-i+l}

the a-branell. Similarly the set {bi."···, bi.n-i+l} is called the b-branch.

• CHAPTER ;;. NP·('OAIPI.ETE:\'ESS IŒS{·I.TS 'h).,.

ln SI

n:m:s

marcs

h-nodcs:
hl'o hm

,-------_::=.=:::~.,

".'" r----, Il/ I,
1 I,

1 1 1
1 1 ,
1 1
Il'
1 1 1

1 ... 1
1

1
1

1
1
1
1
1
1
1
1
1
\
\

\
\ ..

' :. ~::;.JI

.... -----

".
".

".
/

1
1

1
1

1
1
1
1
1
1

•

Figure :U: The initialization component.

•

• {,1I ..\l'TEIt :1. N/'·(,OMI'LETESESS /ŒSlfLTS

•
1
1
1

biJ'ai+l 1-----
b-br.mch

10 cllntrol ROde~

Legend:

lniti:l1ization node: e

to lennîrl3l0r node t
--....,~

10 control node C3

•

1(3) Vcnc:x compaRent corresponding to veRa Vi· 1

1(hl Brief l'I:I'n:scnUllion of lbe 3bove slnIClute. 1

Figure :J.2: Vertex com]Jonent for vertex Vi.

• CHAPTEn ;:. SP·('CHIJ'LETESESS IIESl'LTS :1·1

fl\ln\ ~j.1

[
_....
LC'l~I."1'~:

Inilwi:t.atilln I\\llll': •

•

•

[la.) Edgc compone"1 corresromJing hl~ge ej' ,

Figure :ta: Edge component for edge Cj'

For each edge Cj = (vr , vu) in the instance of VC, its corresponding edge compo·

nent is shown in Figure :3.:t The two nodes 9j and hj are connected to the nodes in

the corresponding vertex components of the two end-verticcs ')r and ')y of ",Ige"j.

There are three snch arcs, one from 9j to vr : (9j, vr) and two from hj ta Ur and Vu:

(hj , ur), (hj , vu), They are so connected to ensure that exactly one 0~9j ami hj can

free its register, i.e. Cj is the last unscheduled snccessor of either 9j z'r hj, when we

schedule node Cj in the edge component.

Then we connect the vertex components and edge components sequentially (sec

Figure :t5). After that we will add sorne more control nodes in our consl.ruction of

the instance for R-PRAP.

The component containing control nodes C2, C3 and c. is d<.'Scribed in Figure :1.4.

Control nodes C2 and C3 will ensure that the vertex cover contains exactly J(verticcs.

Control node c. has the elfect that ail the registers on the nodes connected to it can

not be freed until C. is scheùuled, because it is the last S1Jccessor of s1Jch nodes. The

• ('//:\l'TEH ,ï, NI'·('O;\;1f'tETENESS IŒSUtTS :l5

•

purpos(' of ('" is 1,0 frc'p (~t1oll~h rc'gist(~rs sn that tilt' la."it. pha....t· of sdwtlllling l'an do

ils hookk....pillll; wurk.

1

-+()
20 bookk\.ocping nodes

(al Componcnt coclaining coctrol codc:s
c2' c3 and c4' and Ihc hookkccping chain.

1

~

•

1..(h.l.A.b.r.iC.f.rcp_=_C.lal.iO.C.O.f.lh.C.st.ru.C.lu.rc.i.n.(a.l'_...,jl

Figure :l.4: Component for control nodes C2, C3 and c." and the bookkeeping chain of
2n nodes.

After control node c" we append a chain of 2n nodes to do the bookkeeping work.

The last node in the chain is called t (terminator). See Figure :~.4.

These are ail the components for the instance of the R-PRAP. The overall con­

struction for the instance of R-PRAP is illustrated in Figure 3.5. Note thi!.tpot all
~

the arcs have been shown in Figure :~.5 for simplicity. lt is easy to check that only

the last t has no output arc and only the starting node s has no input arc,

Now we give the formai construction of the instance for R·PRAP:

•

•

('HA PTEH:1. .\"P·(,O,\1I'LETE.\"ESS lŒSl TfS

s

h-nodcs:
Itom

t

:\ti

•
Figure 3..5: Overall structure of the construction for the instance of R·PRAP.

• ('/I.-\I'TEII.'. SI'J'O,\/I'I.ETESESS IŒSFLTS

• IlIil.iaiizal.ioli ('OllPOI"'"1. (Fi~llr," :1.1. :I.:i):

1. :\ st.artin.c, llod('

:!. IlIiti:diz:Lt.ioIl Iloc!('s:

d"dz,···,d", /"/Z,"',/",

:\ï

•

•

where ", throllgh "" arc designcd to supply rcgisters to the starting nodes

.'1,' •. ,.<" of thc vertcx components. r"+1 throngh rz" are designed to SUI"

ply registcrs to the a·branches or the b-branches in the vertex components.

c.::" .. . , c.::" arc designed to supply registers to '::""','::" in the vertex

cOlllponcnts. cv""', cv" arc designed to supply registers to VI "',7)" in

the vcrtex cOlllponcnts. cu,,"', cu" are designed to supply registers to

Ill'" , Il,, in the vertex cOlllponents. d""" d" and /1,"', f" are desiglled

to control of the size of the vertex cover. 9,,92,'" ,9m and h" h2 , .. ·, hm

are designcd to make sure that the vertex cover indeed covers ail the edges.

Both the 9·nodes and the h·nodes are in l-to-l correspondence with the

III edges in the VC instance.

:1. The control node CI which is designed to force ail the initialization nodes

get schedulcd bcfore c"

4. Thcre is an arc from the starting node 5 to each of the initialization nodes:

(S,Ti), for i = 1,2,···,2n,

(.<. C.::.), (5, cv.), (5, CUi), (5, di), (5,/i), for i =1,2, .. ·, n,

(5,9j),(5,hj), for j = 1,2, .. ·,m.

• ('H.·\PTER :1. SP·('O.\IPLETEXfSS lŒSlï.TS

Tl. Thcn" j:-; éLll arc frolll t~a("h uf tht' itlitializatiotl thlti(':-; 1.0 nmt.rol t\Otlt· CI_

(",.<',). for i = I.:!..... :!II.

(CZi. cd. (r"i.<'d. (("lli. c,), (<1i .<'d. (fi. CI). for i = I.:!..... 11.

(gj.cd.(hj.<'tl. for j = 1.2.···.111.

• Vertex Components (Fignre :1.2):

:\~

•

•

I. For each \'ertex !Ji in the VC instanre. we ha\"(' t.1", rollowin~ \'t'rt.t·x Colll­

ponent: starting node Si. 11 - i +1 nodes in the a·branch: "i ... ··'. "i,.. -i+1o

11. - i + 1 nod", in the I...brand,: l'i,Io···. l>i,.._i+l. t.he entling notlt' /lOi allt!

three other nod", Zi, Vi, lIi.

2. There is an arc l'rom '<i to each of the a·nodes and each of t.he I... nodes:

('<i,aj), (.<,. bj), for j = 1,2, .. ·.11. - i + 1.

:1. There is an arc l'rom '<i to Zi: (Si. =,).

4. There is an arc l'rom the initialization node ,', t.o .,,: (,·"s;). "i is .Llso

connected to other nod", outside of this vertex COmpOll<'nt, we will descrihe

those arcs when those nodes are described later.

5. There is an arc l'rom each of the a-nodes to Vi: ("j. Vi). for j = 1,2,···,11­

i + 1.

6. There is an arc l'rom each of the b..nodes to lIi: (hj , li,), for j = 1,2"", 7/.­

i + 1.

i. There is an arc l'rom =, to the ending node l1Ji: (=i,1IIi). And t.here is ail

arc l'rom the initialization node C=i to =i: (C=i, =;).

8. There are two arcs (cv" t'.) and (cv.,1II') l'rom t.he initialization node ClJ, to

v. and 111,.

9. Ther<:: are two arcs (cu., li,) and (cu.,1II') l'rom the initialization node CIL,

ta 11. and 111••

10. There is an arc from initialization node d. ta lJ,: ((L" '1;) and there is ail arc

from initialization node J. to 11.: (f.,1I')'

• C'I/APTE/{ :1. ;\i/'-(:O;\;Il'LETE....ŒSS HESr:LT8

Il. Tlu'n' "rC' also "r'" from initialization nodes !Jj. h j to Vi.lli. No\\" \\"e de­

seri!>e tlu'ir "xad conn,'dions. Consider an edg;e <:j in the instance of VC.

If v('rtC'x /Ii is 01'" of the end-verticcs of "j. then the following three arcs

are added: (!/j, l'i), (h j .ll;) and (hj • Vi)'

12. Ther<' is "n "rc from t.he ending node Wi of the i'" vertex component to

the st"rting node -'i+1 of t.he (i + 1)'" vertex component: (Wi ••<i+ll, for

i = 1,2,·", n - 1.

1:1. There is an "rc from control node CI to the starting node '<1 of the first

vertex component: (c"sJl.

• Edge Components (Figure :J.:J):

There is an arc from the initialization node gj to Cj: (g), Cj) and there is

an arc from the initialization node hj to Cj: (h j , Cj).

There i. an arc from Cj to Cj+1: (C),Cj+1), for j = 1,2,· .. ,m-1.

For each edge Cj in the VC instance, we have an cdge component which

obtains a single node also named Cj.

There is an arc from the ending node w" of the last vertex component to

the first edge component CI: (w,,, CI)'

1.

• 2.

:l.

4.

• Component containing Control Nodes C2, C3, Col (Figure :lA):

1. Wc add threc new control nodes C2, C3, Col.

2. Wc add K p-nodes and n - K q-nodes:

•
:t There is an arc from C2 to each of the p-nodes: (C2,Pi), for i = 1"", I<.

4. There is an arc from each of the p-nodes to control node C3: (pi, C3), for

i=1.···,K.

• C/-/APTER:1. NP·CO.\IPLETESESS /ŒSlï.TS ·Ill

•

•

5. Tlll'r<' is an arc l'rom C:l 1.0 l'aeh of the 'l-nml,·s: ('·z. 'li). for i = 1.···. /1 - /\.

6. Th,'rl' is an arc l'rom l'ach of the 'l·nml,,,, to control notl,· ('.,: ('li'). for

i=1.···.lI-K.

ï. There is an arc l'rom ,·ach of th" p-notl"s 1.0 r.\: (/'i. ('" J. for i = 1.··· ./,'.

9. There is an arc l'rom each of initialization notll's di 1.0 rz: (di.rz). for

i = 1",·, n.

10. There is an arc l'rom each of t.he init.ialization notll's fi to ra: (fi. '-'al. for

i = l,···.n.

Il. There arc three more arcs l'rom each vertex component t.o r.,: ("0' r.. l.
(=i, Co,), (Wi, Co,), for i = 1.···,71..

• Bookkeeping Chain (Figures a.4, :1.5):

1. We add a chain of 2n nodes which terminates at node t.

2. There is an arc l'rom the last edge component Cm to the first notle in the

bookkeepiug chain.

:~. There are two arcs l'rom each vertex component to the terminating node

t: (v;,t),(u;,t), for i = l,.··,n.

Each node has a delay of 1 dock cycle. This completes the construet.ion of the

instance for the R-PRAP. Il. is easy 1.0 see that the length of the longcst path in the

constructed DDG is .5n +m + 7. One of the path is S -> rI -> CI -> SI -> =1

bookkeeping chain of 2n nodes.

We show in the remaining part of the l'roof that the given instancc of VC has a

vertex cover V' of size J(if and only if the constructed instance for R-PRAP c:<n be

scheduled in L = 5n + m + 7 time units and uses at most R = 7n + 2m rcgistcrs.

When anode i is scheduled al. the some time inst:<nce, node i c:<n release the registers

• (.'JJA/'TEU:1. !\1'·(.'Wvlf'LETENESS IŒSULTS 41

•

•

011 its pn'd"C('ssors if tll<' vahl<'s ill thosl' rl'gistl'rs will lIu longl'r hl' nSl'd after that

tilll" i"st""",,••",,1 1I0d,' i itself will nsl' on(' registl'r to hold its own cOlllpnted value.

,\ 1I0d(' """ Ilot hl' schednled if either olle of its predecessors has not been scheduled

y,·l.• or l'Vell if "II its predecessors h,,\'(' bt",n scheduled, no free register is avai!ab!e

.",,1 it c"n 1101. rele"se ""Y rl'gistl'r 011 its predecessors.

The "Ir' part. Snl'pose that YC has a vertex cover V' of size K.

ln the tirst tillle step the startillg node s is scheduled. In the second tillle step wc

s..hednle the in + 2", nodes:

Their results are put into the in +2m available registers. At the third time step,

the only node wc l'an schedule is the control node CI which will free the n registers

allocated to r,,+l.···, r2", because CI is the only successor of each of these nodes.

At the fourth time step wc schedu!e the starting node SI of the vertex component

corresponding to VI, which frees the register on rI' The resu!t of SI can be put into the

register allocated for rI. Therefore after SI is scheduled there are n free registers first

allocated to ""+10"', "2" which are not connected to other nodes in the rest of the

graph. At the fifth time step, =1 and one branch of {al.1o·'" al,,,} or {bl•1o · .. , bl...}

will be scheduled. If vertex VI is in the vertex cover V' then we schedule the a-branch.

If vertex Vi is not in the vertex cover V', we schedu!e the b-brancll. Without loss of

generality, we can assume that vertex VI is in the vertex cover V': VI E V'. The result

of =1 can be put into the register allocated to CZI and the results of the a-branch

nodes are put into the n free registers. At the sixth time step, we schedule WI and VI>

which will free the registers on CVI and on {al.I>···' al.,,}. The result of WI can he

put into the register of cv, and the resu!t of VI will occupy one of the n free registers.

The registers on SI, =1, WI, VI can not be freed during this first phase of the scheduling

•

•

•

•

CHAPTER :1. :'VP-CO.\/PLETESESS IŒSITrS

of the \'l'rtex and edg" compon,'nts (",,",,nse they are ,'olllll'ct,'d lu Ihe conlrol Ill,d,'

c" or th,' lerminating nod,' t which ar,' far away on th,' longt'st ,kpt'nde""t' pat.h. So

when IVI has Iwen sc1ll'dll!ed th,'n' an' 11 - 1 fn't' registers which art' not t'n'lIIgh tu

sc1ll'dllle the Il-hranch in t.he samt' "l'rtex compont'nt. At t,hl' Ilt'Xt ("'\','nth) timt' stq'

we schedllie the Ill'Xt. "ert.ex COmpOlll'nt corr,'sponding tu l'~ and th,'n' are /1 - 1 fr,,,'

registers at the heginning of tilt' sc111'dnlt' of that. t·ompollt'nt.

In general, just hefore we schedllle the "t'rtex component ù'rr"sponding 1.0 '';,

there are ft - ; + 1 frec registers. So when we schednle "i at t,Ill' (:Ii + 1)11< tinll' s!.t'p.

its reslllt l'an he put into the register allocated to l'i and th,'re are st.illn - i + 1 frt'"

registers. At the (:1; + 2)'" time step wc schedule node =i and one of t.he hmnches

{ai.h···' ai...-i+l} or {bi.h···, bi..._ i+1}. We choose to schedn\e t.he (I-hranch if "ertex

Vi is in the vertex cover V'. Ctherwise we choose to schedllie the b-hranc11. Assnme

that vertex Vi is not in the vertex cover. So wc choose 1.0 schednle the b·hranch. The

resiilts of the ft - ; + 1 nodes bi•h ···, bi..._i+l are put into the II. - ; + 1 frœ regist,ers

and the result of =i l'an he put into the register allocated for C=i. Al. the next, (:l; +:1)'"
time step we schedule nodes Wi and Ui. The result of Wi l'an he pnt into the regist,er

allocated to CUi and the result of Ui will occupy one of the ft - i+1 registers previonsly

allocated to the b-nodes. Since Si, Wi and Ui are connected to control node c., or the

terminator node t, their registers l'an not be freed before c., is schedllied.

When the last vertex component corresponding to v" has becn scheduled, that is,

when w.. has been schedllled, there are no free registers.

After w.. has been schedllled, wc now consider the edge componcnts. Al. I.he

(:l(n + 1) + 1)'" time step, we l'an schedllle Cl' Its resllit l'an he put illto one of the

registers allocated for 9\ and h" Which registers can be llsed to hold the rcsult of "1
wiII become c1ear after we state the general case below.

In general, at the (:l(n + 1) + j)'" time step, we schedule node "j. ft, resllit will he

put into one of the registers allocated to 9j or hj. To sec which one l'an he used let us

assume that Cj = (v"" Vy), and the three arcs from 9j and hj to the vertex component,

are: (9j,V",),(hj ,u",) and (hj,vy).

•

•

•
~-
~--_.

Cl/:\I'TEU ,>, NI'·(.'OMI'I.ETENESS J{ESUI.TS

Case 1: V"rtl'x or is ill t.11l' "l'rt.ex cover, thell by t.11l' schedulillg stmtegy for tlll'

vert."x "olnpo!l<'nt.s we h..ve s..heduled "r whell we weill. through the vertex

mlllpOlll'lItS. Tlll'rdore whell Cj is scheduled, the register on 9j l'an be freed sa

th..t. itII 1", lIsed to huld the result of l'j,

Case 2: Vertex V r is Ilot in the vertex caver, then v. must be in the vertex caver

I""",use the vertex cuver should caver edge Cj' Since by the strategy on the

Sc!ll'dlllillg of the vertex components, wc have scheduled Ur and v.. Hence

when Cj is scheduled, the register on hj l'an be freed to hold the result of node

When ail the edge components have been scheduled, wc schedule the control node

c~ at timestep :l(n+ 1)+711+ l. C2 l'an free J(registers on the d-nodes belonging ta the

vert.ex components which correspond ta the vertices in the ver~ex caver. Therefore

aft.er c~ is scheduled, wc l'an schedule the J(p-nodes folluwing it. These p-nodes use

ail t.he J(free registers ta hold their results until control node c.. is scheduled. ln the

next time step wc schedule the control node 1'3 which will free n - J(registers from the

J-nod.", in the vertex components. Then wc are able ta schedule the n - J(q-nodes

following it. Then wc schedule c.. at time step :l(n + 1) + 711 + 05 which will free ail the

registers on the tv-nodes, :-nodes, p-nodes and q-nodes. Therefore we now have at

least :ln fr<-'C registers. At the next 2n time steps, we schedule the next 2n nodes in

the bookkeeping chain. While during the same 2n time step period, we l'an use the

free registers ta schedule the remaining branches left in the n vertex components.

This gives a scbedule for the constructed instance of R-PRAP within the longest

patb length time :l(n + 1) + 711 + 05 + 2n - 1 = Sn + 711 + i and uses at most in + 2711

registers.

The "Only If" part. Now wc show the reverse, that is, if we can schedule the

constructed instance of R-PRAP within the length of the longest dependence path

and uses at most in + 2711 registers, then we can flnd a vertex caver V' of size J(for

the VC instance.

•

•

•

CHAPTER ;;. XP·('(HIPLETEXESS lŒSI'LTS

Sine<' .< i, th" only no<1,' which ha..' nu inpnt. arc. il. lllll't. Il<' "'I\l',llll,~1 in t.h,· lir'l

tiuw'tep. ln 01'<1,,1' for cont.rol nu<1,' l', tu Il<' "'11('<1111,,<1. all t.h,· init.ializin~ no<1,·,:

must be schedulcd before CI because they all have arcs direl'ted to CI' The,,' inil.ializin~

nodes use all the in + 2m registers available. ln order for the whole ,che<1l1le to Il<'

finished within the length of the longl'st dependence path. t.hey mn,t he ,che<1l1bl

in the same time step because each of t.hem is on sonw long,,,,t. path. Following

the initializing nodes, one must have scheduled control node Ch ,ince it. i, the only

uode that can be scheduled at that moment. Note that CI l'an free n regi,ter, on

r,,+I,·· .. ,7·2" because CI is their last successor. Next time '" is t.he only node t.hat

can be scheduled. Note that SI does not reduce the number of free register, hecause

it can free a register on r, .. So after '<1 is scheduled, there are exact.ly n fret' regi,ters

that can be used in the next. time step. In the next two time steps, =" Wl mnst be

scheduled because they are on a longest path. In addition to =" w" at most one

branch of the a-nodes or b-nodes plus either v, or U, (bllt not both) could heen

scheduled since there are only n free registers. Node =. occupies oue regist.er unt.il

control node C-j is scheduled, but it also frees a register on C=" Node Wl will occupy

a register until control node C4 is scheduled. Now if v, (or u,) is scheduled, it will

also occupy a register until the terminate noâe t is scheduled. But sincc VI and 1111

are both scheduled, the register on CVI can be freed. Therefore the number of free

registers available before S2 is scheduled is n - a+ 2 =n - 1. If neither 'JI nor UI is

scheduled, then W, will use one free register. So the number of frcc registers after 1111

is scheduled is n - 1.

In general, suppose that we are at the moment that Si is scheduled and there are

n - i + 1 free registers just before Si is scheduled. After Si is scheduled its rcsult

• ('lIA1'TEU ;l. NI'·(.'Otdl'LETE8ESS IŒSULTS ·15

•

•

wili"....ul'y ul1<' n-p;ist<-r hut it ,.Iso fn-es the register on l'i. Sine<' tlwre are Il - i + 1

fre(' n-p;ist,'rs fur th,- next t.inw st<-p_ only =i and at most om' of the t.wo branches

{Ili,h' ", Ill,..-i+d or {!Ji,h .. ·• !Ji,..-i+d could possibly be scheduled. And the next

time step, unly "'. and possibly one of Vi or 'IL. can be scheduled. If none of Vi or

'" is sdlt'duled. "'i must uCCoupy one of the free registers so that the number of free

r,-gist.ers (after tIIi bdng scll,'duled) is reduced to Il - i. On the other hand if one of

Vi (ur 'lLi) is scheduk"Cl, then although it will occupy one register, the register on CVi

(or cou;} can be frced, so st.ill wc have 71 - i free registers.

When the last vertex component has been scheduled. i.e., w.. has been scheduled,

there can not. be any free register left. ln order to be able to schedule edge component

Ch there must be a register on one of YI or hl that can be freed by scheduling CI'

This is t.rue only if one of the end vertices of CI is scheduled before. Generally we are

able to schedule ,mge component Cj only if one of the registers on either Yj or hj can

be freed by scheduling Cj. Let us assume that edge Cj = (v"' Vy) and the three arcs

from Yj and hj to the vertex components are: (Yj, v,,), (hj, 'Il,,) and (hj, Vy). In order

for the register on Yi to be re1eased when scheduling Cj, v" must have been scheduled

before. ln order for the register ou hj to be released when scheduling Cj, 'Il" and Vy

must have been scheduled before. In both of tbese two cases we see that at Ieast

one of v" and Vy is scheduled. The one that is scheduled will be put into the vertex

cover set V' for the VC instance. Since Cj can be any edge, the V' we constructed is

indeed a vertex cover for ail the edges in the VC instance. Later when we go on to

the control nodes C2, C3 and C.l we will see that such defined vertex cover V' contains

exactly [{ vertices.

After the last edge component Cm is scheduled there are still no free registers. In

order to schedule control node C2 and its [(following nodes PI," " PK, there must be

[{ free registers to hold the results of PI," • ,PK. These free registers can only corne

from the d-nodes which have the v-nodes as successors as weil. Hence for the d-nodes

to release [(registers when scheduling PI, • ",PK, at least [(of the v-nodes must have

been already scheduled. For the same reason, when scheduling the control node C3

and its n - [(following nodes qi,' ", qn-K, there are must be at least n - [(u-nodes

• CHAPTER :1, iliP·(.'O.\If'LETESESS RES1TrS ·Ili

•

•

that han' lw,'n sc\ll'dul,',l. Sinc,' only on,' of th, brandl"s iu th,' ",'rt."x <'Illlll"lII,'nt.s

could hav" lWl'n sc\lt'dul"d $0 far, c~ and c" gnarantl'l' t.h"t. t.h,' nUllllwr of t.h" ,··n",I"$

which hav,' bl't'n schedull'll is exact.ly /,'. lu anot.hl'r WOl'll. tilt' ,','rt.,'x <'Il",'r \ " ,'ont."in$

l'xactly 1\ vertin"" whidl is l'xadly what, Wl' wautl'll t.o pro,'". 0

3.3 Loop Version

ln the last section we proved that the register allocation problelll for the acydic C<l.'"

is NP-complete l'ven for a restricted c1ass of programs. In this $edion, w,' giw the

definition of the register allocation for 100l'S, and prove that it is al$o NP.complete.

Parallel Register Allocation for Loops (PRAL):

Given: A DDG G = (N, A; m, d = 1) representing a loop, where N is the no"e $et,

A is the arc set, m ={mij,(i,j) E A} is the dependence distancc vector with

mij > 0 meaning a loop-carried dependencc. Assume thal. there are infinite

number of processing units. Let R be a given positive integer.

Question: Let P be a given feasible computation rate. Is there schedllle of the DDG

which will l'un at a rate P for the iterations and uses at mast R regi$l.ers'!

Theorem 3.3.1 PRAL i.. NP-complete.

Proof: From Theorem :l.2.1, we know that R-PRAP is NP-complete. Here we show

that R-PRAP can be reduced to PRAL.

Suppose that an instance D of the R-PRAP is given. Let Q he a longest path in

D. Let L be the length of Q. Let s be the starting node and t the end node of Q.
Then s must be the node without input arc and t must he the node without output

• CI/APTE/{ :1. NIJ·CWvII'LETENESS IŒSULTS 4;

•

•

MI", ol.lll"rwiSl· Cd would not 1)(' the long"st path in D. Add an are from t to s to form

an instan...· (o' of l'ItAL. where tlll" Il''wly added arc is a loop·carried dependence and

1,,", l1/.,., = 1 and d,., = 1. Let tlll" nnu.l"'r of availablt' registers R in PRAL be the

same '"' in the given instance of R·PRAP.

It. is e.",y t.o se" that. ail t.he cyde, in t.he newly fornwd G must pass through the

lIew arc (t,s). Tlwrefore the optimal computation rate of Gis t, where L is the length

of q. W,· choose this rate for the instance of PRAL.

Now we show that the instance of the R·pRAp has a solution then the constructed

instance of PRAL also has a solution. Let us note that s must be scheduled at time

1 and t mllst be scht>duled at timt' L in the R·pRAp schedule. Therefore if wc use

the schedule of R· l'RAI' and rep"at it after every L cycles, then wc obtain a schedule

for the 1001' Gand at the same time the register allocation l'an be used by such a

schedule for PRAL as weil. Hencc PRAL l'an use R registers.

For the reverse direction of the l'roof, wc show next that if the constructed instance

of PRAL has a solution then the given instance of the Restricted R·pRAp also has

a solution. Consider an arbitrary iteration of the constructed instance of PRAL.

Sincc t is the only node without output arc in R·pRAp, and by the structure of the

constructed instancc of PRAL, aIl the instructions of an iteration in the instance of

PRAL must be finished before the last instruction t in the same iteration. Since the

rate is t- an iteration of PRAL must finish in L cycles. Note that $ is the only node

in the R·pRAp that has no input arc. Hence s must be the only first instruction

to be scheduled before ail the other instructions in the same iteration get scheduled.

Thcrefore any given iteration i must be finished between time steps (i - 1) * L + 1

and i * L inclusive. Thus the scheduling of one iteration in the PRAL is a1so a valid

schednling for the R·pRAp which If,·' the same amount of registers.

Hence wc have shown that the given instance of R·PRAP has a solution if and

only if the constructed instance of PRAL has a solution. This completes the l'roof of

the theorem. 0

•

•

•

CHAPTEH :1, t\P·COMPLETE,\'ESS lŒSl'LTS

3.4 Summary

ln this chapter w,' pro,"ed that tl\<' minimnm n'~ister allo,'at.ion prohl!'m of an acydic

1001' is NP-complete if instrnctions l'an Ill' arhitrarily mo\"'<! an<! rt'st,ri("\,"<!only hy

data dependences, e,"en if an id,'aliz,'<! inlinit.e compnt"r architect.ll1'l' is provi<!t"\

which can always support tin\<'-opt.imal sch,'<!nlt's. V....• alsu show!',l t.hat. t.h,· sam,'

minimum register allocation prohlem for inner most loops with <!t'P!'IHI"n\'t' "yd,'s is

NP.complete with the same architecture Msnmption. Th,'rdor!' t.ht' rl').(ist.t'r alloca­

tion for a parallc1 architectul"l' is hard in the sense that no polynomial t.imt' al~orit,lnns

could likcly be found. The hardness of the l'roblem is caused by the sh:u-ing of physical

registers if variable live rauges do not overlap. However if tl\<' sharing of t.he r,'gist.ers

by different variables is limite<!, the restrictcd situation l'an giw a polynomial t.ime

solvable problem. ln next chapter, wc will show that wc can allocat.!' minimum num·

ber of buffers to variables in polynomial t.ime, and we will show how 1.0 ns,' colorin~

method ta mal' the buffers ta registers. In Chapter 5 wc show that. if wc only allow

the registers to be shared by the instructions on a chain, thcn an optimal alloc..tion

of registers can be done in polynomial time ta support nw..xinmm cOlllput..tion rat.e.

•

•

•

Chapter 4

Register Allocation

The objective of this chapter is to develop a unified framework to do scheduling

and register allocation simultaneously to support time-optimal software pipelining on

superscalar-like architectures. Our register allocation approach for software pipelining

is solved in two steps. The first step determines the time-optimai schedule and allo­

cates symbolic registers organized as FIFO buffer queues, one queue for each variable

dcfined in the 1001'. Wc show that the minimum buffer allocation and the time­

optimal scheduling problem can be formulated together as an integer programming

problem, called Optimai Scheduling and Suffer Allocation (OSBA) problem, which

has il polynomial time solution. The second step is to map the symbolic registers of

the FIFq bulfers into physical registers. Since a time-optimai schedule is derived from

the solution of the OSBA problem, a coloring algorithm can be applied to minimize

'ti:e number of physical registers required to implement the buffers. Code generation

schemes with or without special hardware support are discussed.

49

•

•

'.

('HAPTER·1. REWSTER .·\I.WC..ITIOS

4.1 Introduction

ln the l'l'l'vions chapt"r \\,,' ha\'<' pro\','(! t,hat 1.IIl' minimnm r<,)!;isl.<'l' .<lI"<'al.i,,n 1'1'"h.

lem 1.0 snl'Port tinH' opt.imal sdl<'dnling is NP-wmJlI,'t", in it.s)!;,'n<'1'<l1 form. ,'\','n if an

idealized architectnl'e modd is il..'snnll'd. Ho\\','\'<'r simult.an,'ous sdl<'dlllill)!; .ull!I"')!;is.

tel' allocation is more importaut in pamllel instruct.ion sdll'dlllin)!; t.h.,n it.s s<''1lh'nl.ial

counterpart, becat1s(~ a:; the schetlllle g('t.s nlon' paralld. il. l"uIISlltlll'S tlllH'p l't'gis!','rs

than the seqnentia! execntion mode1. Thel'l'for,' "had" optimall'al'all,'! sd\l'dul,' <'llllid

consume snbstantially more registers than necessary.

The traclitionai register allocation approach assnmes that. a Iixed Sdll'du!e is giVl'n.

Thell the allocator tries 1.0 allocate a minimum nlllnber of regist<-rs t.o support. t.he

given schecluie. Usually the schecInle is procIncecI by opt.imizing t.he l'Od<, Sil t.hat.

minimum cIelay is illtrocIucecI clue t.o varions connict.ing dat.a or rl'SOllrce depell.It'nc<'s.

However the scheclule producecl has no cont.rol over t.he use of regist.ers. III allot.hel'

worcI, it totally cIepellds on the register allocator 1.0 calculat.e ho\\' mallY regist.ers ill'<'

going to be usecl. Therefore the schedule procIucecI may lise more t.han it. really I\l"'lls.

Ifthe nlllnber of available regist.ers is not ellough, spill code mllst be int.rodllced, which

will change the schecluie. So the traclitionai approach will t'it.her try t.o minimize t.he

spill cocIe, or after the spill code is illtrocIucecI, the code will be sent back t.o t.he

schecluler 1.0 do another phase of schecluling and 1.0 cIo register allocation again. This

process may be repeated several times until the scheclule and regist.er allocat.ion are

acceptable.

However this traclitional approach cIoes not have a theoret.ic foundat.ion thilt, will

point out when it should do this ancl when il. shollld do that, and what. rcslllt. we can

expect.

Despite the NP.completeness results in Chapter :1, the objective of t.his chapter is

to cIevelop a unified schecluling·allocation framework 1.0 determine a scheduling and

a register allocation simultaneously. This is quite cIifferent l'rom the conventional

approach, which is 1.0 millimize the number of registers under a given schedule. For

example, rnany of these register allocation algorithms are based on the coloring of

• ('1/:\ l'TE/{·1. IŒWSTE/{ :\LU)(.':\TIOS .'51

•

•

illhrftr('1/f'" !Jrtll'h.- rt'prt'S"ntinl; o\'('r\apping rdations of the live ranges of program

variahl"s l;iVt'lI hy a "''1'1<'ntial "xerll1.ion srhedule [16, 15, 1].

Th" nlt'1.h"d in I.his rhap1.er is also different from other work on register allocation

for 1001' variahl<'S with or withollt software pipe1ining. [n particular, the current

nlt'1.hod g"tlt'ra[izes tl1<' work by Callahan, Carr and Kennedy on scalar replacement

'L'a rel;ister allocation method for snbscript variables [!:l], the work by Lam on

I/lodular lIariablc rxpansion for software pipelincd loops [56], and thc work by Rau et.

al. on register allocation for modulo scheduled [oops [i2]. A comparisoll with related

work is out[ined in Section 4.11.

This chapter proposes a framework in whieh register allocation for software pipe1in­

ing is solved in two st.eps.

Step 1: Optimal Scheduling and BufFer Allocation: The first step determines

the time-optimal schedule for a software pipelined loop and allocates symbolic

registers organized as FIFO buffer queues, one butfer queue for each variable

defined in the loop. Intuitive[y, such a buffer queue is used to ~extend" the

lifctimc of the corresponding loop variable generated in successive iterations,

pcrmitting multiple itcrations to be overlapped in concurrent executions. It

is shown that the minimum buffer allocation and the time-optimal seheduling

problem can be formulated together as an integer programming problem called

the Optimal Sehcduling and Buffcr Allocation (OSSA) problem. An efficient

polynomia[time solution is presented based on a transformation of the OSSA

problem into min-cos; fiow problcm.

Step 2: Mapping bufFers to physical registers: The second step is to map the

symbolie registers of the buffers into physical registers. Since a schedule is

derived from the solution of the OSSA problem, a coloring algorithrn can be

applied to minimize the number of physical registers required to irnplernent the

buffers. ID particular, a recently proposed rnethod b.;sed on coloring of eyclie

intcroal graphs [49] can be applied. Code generation schernes with or without

special hardware support are diseussed. .'

•

•

•

CHAPTER·1. REGlSTER ALW('.-\T/O.'i

The Illt'thod devdoped in this chapt,'r is applicabll' t.o machin,'S sllch ;L' VLI\\'

(Very Long Instruction Word) [:l.l]. snperscalar [52] and sl'llt'rpip,'lil\l'd archit"ctllr,'s

[5a).

Sinet' the register colorin)!; method is wdl Ilnd,'rstood. our diSt'llssion ...·nt'·rs un

the hlltfer allocation step and the code)!;em'ration sd\l'n\l's. Sun\l' prl'Iiminary l't·SIlIt.S

also appeared in the paper [6·1]. \Ve organizl' thl' sllbSt''lllent. St'l,tions ;L' fullows. In

Section 4.2 wc present a simple l'l'ample 1001' 1.0 mot..ivate t.hl' cUIH·l'pl. of bnlfl'rs and

the two step approach for cOllcurrent schedllling and register allocat.ion. In Sedion

4.a wc formulate the Optimal Schednling and Butfer Allocation (OSBA) problem.

A polynomial time solution is stated in Section 4.4. We rdnrn to our motivatin)!;

el'ample in Section 4.5 1.0 illustrate the formnlation and solution of the corresponding

OSBA l'roblem. In Section 4.6, wc propose two schemes of code gener<ttion for our

(OSBA) scheme. Olle of the schemes is 1.0 shift the registers t.o simulate the e1fl'd.

of a FIFO (First-In-First-Out) butfer. This scheme is called Acccss Statiollary Cod"

(ASC) where the accessing mode is fil'ed. The other scheme nses sclf-modifying code

(if hardware supports il.) 1.0 e!iminate the burden of register shifting. This second

approach is called Data Stationary Code (OSC) where the data are not moved huI.

they have 1.0 be written into ditferent locations for ditferent iter<ttions. In Section 4.;,

wc show how 1.0 reduce the register requirement further through coloring techuique.

This is the second phase in our register allocation scheme. In Section 4.8 wc consider

two special cases. Wc show that Callahan et a!'s rcsult [1:1] can he viewed as a special

case of the OSBA formulation. Wc will also point out that if a 1001' contains no

loop-carriel:l dependences, then the OSBA prohlem is easier 1.0 solve. So il. gencralizes

our earlier results in [6:1]. In Section 4.9 we give some elCperimentation results on

some benchmarks. In Section 4.10 we apply the OSBA scheme ta an example taken

from [;2]. In Section 4.11 we compare our approach with related work.

•

•

•

f:/fM'TE/{ 1. flEG/STE/{ ALLOCATION

4.2 Motivation

ln t.his section, we mot.ivat.c our approach by st.udying register allocation for a simple

1001' L, under software pipclining. Although a high Ievcl language representation

of t.he 1001' is dlOSCIl here, it is intended only to give a simple description of our

technical framework. There is no difliculty in applying our frarnework to a lower level

representation of the code. As shown bclow, 1001' LI contains three instructions in

its body.

LI: for i = 1 to n do

$1 : a[i] =X +cri - 2];

S2 : b[i] =a[i] * F; (4.1)

B3 : cri] =a[i] +b[i];
enddo;

L, contains a foop-carricd dcpc71dc71cC of distance 2 from S3 1.0 SI' For instance, the

value cri] generated by S3 in iteration i is only used two iterations later by statement

"1 in iteration i +2. The other data dependences in the 1001' are ail within the same

iteration. For instance, S2 reads a[i] which is produced by SI in the same iteration.

And 83 reads a[i] and b[i] produced by SI and S2 in the same iteration. The DOC of

L, is shown in Figure 4.1

Under software pipelining, the iterations are permitted to overlap so that the

subsequent iterations may start before the previous iterations finish. Since there

exist loop-carricd dependences, we have to work out a proper initiation delay interval

P betwccn successive iterations so that when the next iteration starts P c10ck cycles

after the previous iteration started. no loop-carried dependences are violated.

In our example, assuming that the delay for Add is 1 c10ck cycle and the delay

for Multiply is 2 c10ck cycles, then a delay of P = 2 c10ck cycles between the starting

times of two consecutive iterations is optimal in the sense that the scheduled 1001'

achieves the ma.ximum computation rate. A possible maximum computation rate

• CHAPTER '1. REG/STEU ALLO('.·\T/OS

Figure 4.1: Data dependence graph of the l'l'ample loop LI,

schedule is shown below, in which we have nsed the second index t.o indicat..· t.he

iteration, i.e. "2,1 means node S2 in iteration 1:

• itcrlLtiol1 t iterAtion 2 itern.tion 3 iterntion .,

0 '1,1: .[I]=X+c[-I]
1 ",1: b[I]=.[I]-F
2 '1,': .[2]=X+c[OJ
3 '3,1: c[I]_.[I]+6[1] ",,: 6[2J-.[2J-F

4 '1,3: .[3]=X+c[IJ
5 '3,': c[2J=.[2]+6[2J ",3: b[3]=.[3J-F
6 051,4: 'l[41-X +0:(2)

7 '3,30 c[3J-.[3J+b[3J ",,: /.[4]=.[4J-F

8

9 '3,': c[4]_.[4J+6[4J

(4,2)

•

Note that iteration :3 starts after iteration 1 produces c[I], and iteration 4 starts

after iteration 2 produces c[2], etc. 50 tbe loop-carried dependence is not violated.

The schedule expJoits parallelism since there are two instructions scheduled in parallcl

at clock cycle :3 (5, i etc.). Under the above time-optimal schedule, SI is executed

twice before its successor S3 is scheduled for the first time in clock cycle :l. Hence, in

order to support tbe schedule, conceptually it is natural to provide a storage buffer

of size more than one between the generator "1 and its successors "2, s'l' And ta

enforce the correct order of the values produced, the buffers should behave like a

first-in-first-out (FIFO) queue.

"

• ('Jl;\I'TEH 4. lŒ(;[STEH A/-/-OCATION 55

•

•

Ld us ('xamille lhis ill son", ddai\. Suppose that a FIFû buffer queue of two

symbulic re~isters {"D, "1} is allocated to n. such that (10 is the tail and al is the head.

Each of t.he utber variables is allocatcd a buffer of size 1. which is a single register.

Fur collvenicllce wc will use the variable name as its register allocated if the buffer

sizc is Olle. Whcn a[OJ is produccd by '<1 in clock cycle 0, it is written into the tail

"0 uf the buffer queue. At clock cycle 2, a new iteration starts and a[2] is produced

beCore tI[!] is <.onsulllcd at clock cycle :1. At this moment, the new value can not

I.e wrilten into tlo, otherwise it would have overwritten a value (a[O]) which is still

nl'Cdcd ill clock cycle :1.

Now since we allocated two registers and organized them as a FIFû buffer queue,

wc l'an continue to write to the queue at the tail at clock cycle 2. But bcfore we do

lhat we have to assume that the queue has a mechanism to shift its contents towards

its head so that the tail (aD) is ready to get a new value. ln our case, we can assume

that the old value in aD is shifted to a) at beginning of clock cycle 2. So at clock cycle

2, tI[l] is in a) and a[2] is in aD.

At the code generation phase, we should generate appropriate code ta implement

the FIFû addressing mechanism. For example, to implement the FIFû buffer queue

mechanism allocated for a, we have to figure out how the successors obtain the correct

values of a[i] at the buffer. The followiug pseudo code may be generated ta ensure

the correct accesses of the buffer queue positions, in which the "b-shift" means buffer

shift.

• CH.·\PTER·1. REG/STEn ALLOCATION

Let us see how the successors .'2, s3 of SI access the buffer queue of a. Sine<' "2.1 is

scheduled at clock cycle l, when it reads the vaine of a[I], we can ,,-,sume il. is still in

register ao. Therefore, the actual code for "2.1 in iteration 1 could be b = ao * F. Ou

the other band, if we assume that the queue shifts its contents al. c10ck cycle 2, thell

at dock cycle :3 when 053.1 is executed, the value of a[1] is shifted ta a. in the queue,

hence S3,1 should read from al. Therefore the code for "3.1 should be c[l] = al + b.
Hence 052•• always reads from the tail ao and 053,. a(ways reads from the head al.

This phenomenou is c..used by the different scheduled timings of the successors. We

dl sncD a buffer queue multiple-hcad fIFO queue because the successors read the

contents of the queue at different places. The multiple·head buffer queue is ill ustrated
. F' 4?lU 19ure ._.

•

iteration 1 itt·rat.ion :! Îtt'rat.iotl :\ it.t'rat.inn ·1

0 b·shift: (It = Un

"'1.1 : no = X + r

1 '''2,1 :b=ao*F

2 b·shift: al = ao

"'1.2: au =X + c

3 S3,1 : c = n, +6 '''2.2 : 6 =ua * F

4 b-shift: n, =atl

St.3 : ao = X + c-

S s3,2 : c =al + b s2,3 : b = ao .. F

6 h.shift: '" = Uo

SI," :ao =X+r
j s3,3 : c = ni + b "'2,,1 : b = aD • If'

8

9 S:lA : c = al +6

(.1.:1)

•

The concept of FIFO buffer plays an important role here, as il. captures the notion

of lifetime of a loop variable "extended" into successive iterations. In Section 4.:J, wc

formulate, as the first step of our method, the optimal scheduling and buffer allocation

problem by relating tbe schedule ofea.cb producer and its successors 1.0 the size :of

the corresponding FIFO buffer queue aIIoca.ted ta tbe generator. The solution of the

probJem is a time·optimal scbedule whicb uses minimal number of bulfers among ail

• (.'1/:\ l'TEl{ '1. IŒWSTEH A LL()(.'ATION

1:lQo411 i... the bufTcrfor a.
b rc:xL.. (rom the uil "0 Md

c: ~b (rom the be:ad :II'

•

•

Figure 4.2: A multiple-head bulfer.

time-optimal periodic schedules. In our example, the repeating pattern between dock

cycles 2 and :l in (4.:l) is, in fact, the time-optimal schedule for software pipelining

Wl' expect to derive.

So far, we are assuming that the bulfers are represented by symbolic registers.

We notice that the bulfers allocated to individual instructions can share the same

physical registers if their live ranges in the produced schedule are non-overlapping.

ln our example loop LI and its given schedule (4.:3), the live ranges of the variables

in the repeating pattern are indicated in Figure 4.:3. Since the live ranges of loop

invariants F and X are the whole range of the loop, they are not shown in Figure

4.:3. As shown in Figure 4.:3, the live range of c does not intersect with the live

range of al. So they can share the same physical register. Thus, the mapping of

bulfcrs to physical registers (step 2 of our method) is similar to the traditional register

allocation problem. In Section 4.i, we describe how to apply the register allocation

method based on cydic interval graphs for this step. After this procedure the code

does not need the extra register c, which is replaced by ah as shown in (4.4) where

the symbolic register names now represent physical registers.

• CH.·\PTER·1. fŒGlSTER :\LLOC':\TIO;\,

1..('.l.L.iv.e.=.8.cs.".dr.,.w.".rro.m_Ih.c.rc.JlC'l_I.i".8.pal.I.e.m••_...,j'

Dclinition rnint: •
Ln."t use roint:)(

Lq:cmls:- ---.---

-----H---__________ t.._

Icycle! l'! :

~---I------~- -----
!cycle 3 1

----:tJ-U-
•

1cycle 3 ~ 1cycle ! _

1(b) Live ranges drawn as cirlular arcs on a MIe. ,

Figure 4.3: The live ranges of the variables for code generated by the ASC scheme.

4.3 Formulation of the OSBA Problem: Step 1

•

•

('l/:\ l'Tlm '1. lŒWSTEH Al.U)(,:\TIOi'i

ill-ration 1 ilt'raLion 2 itl'ration a itcration 4

0 b·sbirt: (l, = CIo

·'iI,1 : t1u=X+1I1

1 S2.1 :b=tlo·F

~ b-shift: al = "a

sI,:!: 110 = X +al

:l .<0;:1,1 : fll = a, +b ,';2,2 : b =00 ... F

4 b-shirt: al = ao

81,3: 00 = X + al

" '~3,2: al = al +6 82,3 : b = flO .. F

6 b-shift: al =ao

s'.4 : ao =X +a,
i s3,3 : al = al + b 82.4 : b = 00 .. F

8

9 sa,4 : al = al + b

59

(4.4)

•

ln this scction wc givc a mathcmatical formulation of thc simultancous schcduling

and buffcr allocation problem. Suppose that we are given a DDG G = (N,Ajm,d)

rcpre.scnting an inncr-Illost loop, where N is the node set, A is the dependence arc

sct, m is thc dcpcndence distance vector on A and d is the delay vector on N. In

general, there are many time-optimal periodic schedules. One of our goals in this

thcsis is to find the best schedule ti such that it computes the loop at the optimal

computation rate and will nccd the least number of registers. In this section we

look at the problem of providing the minimum number of buffers so that successive

itcrations can be initiated at the desired optimal rate. We do not assume that a fixed

schcdulc is given. Instead we will find one that can achieve both time-optimality and

space-optimality. The time.optimal property is enforced by using an optimal period

while not fixing the timings of the individuaI nodes.

A schedule may produce different numbers of results at different time instances

•

•

•

CHAPTER·1. lŒGISTEU ALLOC:\T/OS

during the t'xecntion. So our tir~t ohj"l"ti\"l' i~ 1,0 minimiz,' th.. 1IIl1nl"'r of hnlf,'I'~

required at dilferent tinlC.' instancf'S durinp; tlH' t'Xl'l"Ut.ioll.

\-'Iie will alloeat.. a ~et of hntr..r~ for ,'adl nod,' in DDG, ~l) that th,' hntr..l'~ 'li'"
orgauiz.'d as a FIFO queul' and tlwy l'an rt'tain th" re~lIlt~ for ,,',','ral il.t'l'ation~ lwfol'l'

th., con~nmer~ read these reslllts. Let. i b., a nod.' in DDG whit-h will prudllt'l, l'l'sllit.

data. \-Ve want to know how many hllifers we shonld alloeat.., t.o a nod.. i. This nllmlwl'

depends on the timings of i's sucœs~ors and also on th., re~.'rvation ~('llt'm,' for th,'

registers. Here we take a conservative assumption that a rt'gistel' is r,'s"l'ved at. t.h..

issue time of the instruction. However our analysis can he applied t.o ot.llt,r r..~ervat.ion

schemes with on\y minor modification. For instanœ. if wc i~<snm(' t.hat. a regi~t...1' i~

reserved only at the output stage of the pipeline, then a modified formnlat.ion i~ ~hown

in Appendix A.

Let us consider one node j of such successors, so t.hat (i,jl is an arc from node i

to node j .

Recall l'rom Chapter 2 Section 2.ï that wc use P to represent the pel'iOlI of a

periodic schedule. For node i, its scheduled time in the first iteration is indicated by

ti. A periodic schedule is one such that the scheduled times of the node i in iter"tion~

2, :~, ... etc, are ti + P, ti +2P, ... etc. A periodic schedule is feilSible if and only if

it satisfies (2.2) in Section 2.ï.

When node i is scheduled for the first time, it is li. If the dependence distancc

between i and j is mij, then the result value produced by node i will be consumed by

node j in iteration mij at time tj + Pmij. Therefore the live time span of the l't'Suit

value is at least tj + Pmij - ti. During this period of time, node i will be scheduled

every P clock cycles. Ali these new results produccd by node i have to be saved

in buffers so that node j in later iterations can read them. Hence the number bi of

buffers for node i should satisfy the following inequality, in which j belongs to the set

of immediate successors of node i:

(4.5)

• ('11 ..\ l'TE/{ ·1. lŒWSTE/{:\ [,[,O('..\'!'IO;'I: 61

Nol' l'" COl1\hill(' t.11<' t.imillp; colIst.millt.s (:L!) for f.....sihle sch..dllies st...ted ill Sec­

t.ioll 2.; ","d t.11<' hlllf..r sizl' cOllstr...ints in ('1.;'). Together these two sets of constraints

ddill(' ;"1 t.h.. fl';L,ibll' seh..dnles with optim...1specdllp ...nd ail supporting buffer allo­

c.,tion schelll"s. Then l''' W","t. Lo Illinimize the total sum of buffers among ail these

f";L,ihl(' sdll'dnl..s. PnLLing ...1I t.op;dher. IVe obL...in Lhe following integer programming

probl..m:

ln t.he following wc rewrite the above formulation (4.6) so that ail the variables

appear ou the left sides of the inequalities. We name il. as Optimal Schedule and

Buffcr Allocation (OS8A) Problcm.

•

snbject 1.0

min L bi
ieN

t· - t·
bi ~ J P • + mij, V(i,j) E A

tj ~ ti +di - Pmij, V(i,j) E A

ti, bi integers, Vi E N.

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

•

Optimal Scheduling and Buffer Allocation (OSBA) Problem:

min L bi
ieN

subject Lo

Pbi + ti - tj ~ Pmij, V(i,j) E A

tj - ti ~ di - Pmij, V(i,j) E A

ti, bi integers, Vi E N.

(4.ïa)

(4.7b)

(4.7c)

(4.ïd)

(4.7e)

• CH.·\PTER·1. lŒWSTEH AU.OCA'/'IOS

4.4 Solution of the OSBA Problem

l"))-

ln previous StxtiOll Wl~ obt.ail1l'd an illtl'gc.'r progranltllillg fonullltlt.Ïlm (·1.7) of t.ht'

OSBA problem. ln this section we inn·sti)!;at..· its solnt.ion.

ln (4.ie), bi is reqnired to Lll' an intt'ger. Howl'\'l'r t.h.· l'<)ellil'i,·nt. !>.-fo...· b, nI

constraint (4. il') is the period P which in genl'ral l'an Lll')!;rt'atl'r t.han 1. Ther.-for.·

that creates some dillkulty when we want to solVI' (·I.i) diredly t.o o!>t.ain int.l')!;,·r

solutions. To overcome the diHiculty, we do a variable snbst.it.nt.ion:

•

bi = Pbi

and transform the formnlation (4.i) int.o the fol\owing form:

OSBA Problem with Variable Substitution (4.8)

Juin I: b~
iEN

subject to

b: + li - lj ::: Pmij, V(i,j) E A

lj - /'i ::: di - Pmij, V(i,j) E A

bi, li integers , Vi E N

(.u')

(4.!Jb)

(4.!Jc)

('I.!lt\)

•

In the next subsection we l'l'ove that the constraint matrix in (4.H) is total\y

ullimodular, which enables us to solve the integer programming problem (4.H) as

a linear programming problem. Then in Subsection 4.4.2 wc prescnt an efficient

algorithm based on a transformation to the minimum cost How problem.

4.4.1 Totally Unimodular Constraint Matrix

In this subsection, we l'l'ove that the constraint matrix in (4.H) is total\y uni modulaI')

a concept defined in Section 2.10. In order to l'l'ove that, wc nccd to givc sorne

definitions.

•

•

•

('lI:\l''J'[O;/{·/. lŒ(:IS'['[o;/{ :\LLO(':\'['f();\"

Definition 4.4.1 Th,' Oul-Î7wid"lIa mal1';x u+ of (din'cl,.d) gral'll (i i" a malrix

",i/h Ill,. ""/ilS iwlt:Xnl by arrs alld Ih,. roh/IIlII" indexed by nodes and Ille enlrie.'

d,}intll by

u+, = +1. "In E N. "le E A and i i" the tail 01 arc c.ri ' ,

Th,' In-illrùl""a m,tl,·ix 1j- of gral'h (i i" a ma/.rix 1I1ith r01l1" illdexed by arc" and

Ill(' rolumn" illdrxed by 110""" and the entrie" defined by

ft;'; = -1. "In E N, "Ic E A and j is the head of arc c.

With these definitions, we can sec that each row of U+ (or U-) has exactly one

+1 (-1) at the column indexed by the tail (head) of the arc. And for each column

of U+ (or {/-), the number of +l's (-l's) is the out-degrec (in-degrec) of the node

indexing that column.

Definition 4.4.2 The nsnal incidence matrix of graph G i..< jus/.

U = U+ + U-.

So for a row in U not indexed by a self-Ioop it has one +1 and one -1 at the

columns indexed hy the tailnode and head node of that arc. respectively. If a row in

U is indexed by a self-Ioop, then the row contains 0 values only.

Testing whether a given matrix having the Total Unimodularity (l'UM) property is

not "asy in gencral although sophisticated procedures have been developed to do this

in polynomial time [i4]. l'here are several known necessary and suflicient conditions

in the literature for testing the l'UM property. Here wc only list one which we will

use later iu our proof.

Definition 4.4.3 A submatrix of a {O,±I} matrix i..< called Eulerian if the sum of
./;~

the entries in each r01l1 and in cach ci 'itmn of the submatrix i..< cven.
;-;

• CII.·\PTER·1. IŒc:ISTEH .·\I.WC.-\T/OS

Theorem 4.4.1 (Camion (1965) [14]) .-\ {O.±I} lIIall-i.r i.' lo/all!1 ll/Iill/Oc/Ill",. if

and ollly ,f tlu ."'Ull nf fu/,.if ill fCl('" J~,:·lllfl'iau ubmal,.i.r cau lit' dir·if/nl 1.,11 .;.

No\\' \\'t~ al"c'~ n"ady t.o prO\'l' 0111' tllt'Ort"lll.

Theorem 4.4.2 'l'hl' fOll"lrai1l1 lIIal";x ill (.I ..'J) is /"/Illly Ill/illloc/Illlll". Ih,,1 i" /0 .'1'y.

farh of il., squarf sulmwl,.irf" h"s a dfll'l"l1Iilllllll "quail" fit/liT Il 0,. 1 0,. -1.

Proof: The constraint matrix in (·U)) has \'ery "tron~ relation wit.h t.he in.-iti,'nn'

matrix U of the graph. Actnally the fonst.raint mat.rix is t.h,' followin.c: mat.t·ix:

(1]
-(1

(.1.10)

•

•

where 0 is a submat.rix of proper size in which ail ent.ries are Zl'ro, /1+ is thl' Ont.·

incidence matrix and U t.he incidence matrix.

Although it is weil known that. the incidence mat.rix of a dirl'ct.ed ~raph is t.o·

tally unimodular, il. is not generally true that t.he combinat.ion of t.ot.ally nnimodular

matrices preserves the total unimodularity property. Howcvcr, wc show nl'xt. t.h'L1.

the constraint matrix of (4.9) is tot.ally unimodular. In fad., Wl' will show t.hat t.11l'

condition in Theorem 4.4.1 is satislled.

Let us index the constraint matrix (4.10) in the following way: the first. INI
columns are indexed by v;, v~"'" vINl' and the remaining INI columlls are index,,,1

by Vlo V2,"', VINb where INI is the number of nodes in the graph; the lirst. lAI rows

are indexed by c;, C~'"'' CIAl' and the next lAI rows are indexed by "h "2,'" , "lAI'

where lAI is the number arcs in the graph. Here we assume that v: ;wd Vi represcnl.

the same node i in the DOC representing the loop. A similar ;~'sumpl.ioll for ares is

also true.

Therefore the v"s index the columns of the submatrix (~+) in the eonsl.rainl.

matrix (4.10). Similarly, v's index the columns of the submatrix (_~), ClOS index

the rows of the submatrix (1[+ U), and c's index the rows of the submatrix (0 - U) .

•

•

•

CII ..II'TEH·1. IŒ(;[STEH ALU)(.'ATION

Ld. Il 1... a" arbit.rary Euh'riau sulnllat.rix of the cunstrai"t matrix (.1.10). III

,!!;«"II('rat \.... (. nUi assutlle.' t.ltal. sollle rows of Il art:" indcxed by sallte c"s and son1C C·s.

Sillliiarly, W(' can .L....SUllW that. sonH~ rOIlltllllS of H arc indcxed by saIlle uns and Saille

.,,'s.

Sin...· "ach row of the constraint matrix contains at most two +1's and one -l,

a"y row of Il c()"t.ainin~a non-zero dement must contain either +1, +1 or +1, -1, by

the Eul"rian condit.ion. The rows of the latter case sum to zero and can be removed

frolll furt.her cousideration since their SUIll is divisible by 4.

The remaining non-zeros iu fi are aIl +1's and each row contains exactly two +l's

bec,mse the S'JIll of each row has to be l'Ven. The columns containing these two +l's

IllUst be labeled by pair vi, v; corresponding to the same node i. These two columns

are identiû'tl UlJ(ler our assumption that aIl the -l's have been removed from fi.

Since the SUIll of each of these two columns is divisible by 2, the sum of these two

colulllns is divisible by 4.

Since we have counted aIl the non-zero entries in fi, we conclude that the sum

of aIl the l'ntries in fi can be divided b)' 4. Hence by Camion's Theorem 4.4.1, the

constraint matrix of (4.9) is totally unimodular. 0

The right hand sides of (4.9) are a11 integers. From !inear programming theory [74]

if the constraint matrix is totally llnimodular and the right hand sides are integral,

then the integer programming problem can be solved as a linear programming prob­

lt,m. in which no intcger constraints have been put on the variables, and the optimal

solution is guaranteed to be integral. Thus we obtain the following corollary:

Corollary 4.4.1 11'7,cn (4.9) i..< solved as a linear programming problem (dropping

thc integer requiremcnt), the optimal solution obtained is always integral, i.e. it is the

intcgcr programming solution of (4.9).

By Coro11ary 4.4.1, to solve (·1.9), we can use general linear programming algo­

rithms like the simplex method [17], or the ellipsoid method [55] or the interior point

• CHA PTER 4. fŒGISTEU A L!.O('..\ J'lOS titi

n1l'thod [54J. But th.' ,impl,'x nwthod i, not a polynomial tim.· al~oril hm althou~h

in practice il. mn' \",'ry fast.. TIlt' "lIi,,"oid nwthod and tlll' inl.<'rior point llwthod ar,'

polynomial algorithm, but arl' ,Iow for ,mali ,iz., prohl"m, in praeticl' allll ha,',· tim,·

compl"xiti." in thl' ordl'r of OlINI"). \V,· pn''''nt an mon' "lIicil'ut al~orithnl n,·xt.

which r"duc,," the probl.'m to a minimum co,t lIow probll'm on a u,'twork. and whieh

can be sol\"ed by an O(INI3 Iog INI) algorithm.

4.4.2 More Efficient Aigorithm for Solving OSBA

•

ln this subsection. we show a more efficient algorithm 1.0 solve th" OSBA probl"m aft"r

variable substitution, which is (4.9). Th" algorithm is a numllt'r of tmnsformiLl.ions

of the problem 1.0 the minimum cost fiow problem. Sine<' the minimum cost lIow

problem cau be solved more efficiently by the so-callcd combiuatorial algorithms, this

will imply that our original (4.9) l'an also be solved more efficiently.

Let us !irst write down the linear programming dual of (4.9):

max L {(PmijÀij + (di - Pmij)1I'ij}
(iJ)E'\

(4.lla)

subject 1.0

(4.11 h)Vi ENL Àij=l,
(iJ)E6+(i)

L (Àij -1I';j) - L (Àji -1I'ji) = 0, Vi EN (4.llc)
(:,j)E5+(;) (j,i)E5-(i)

Àij ~ 0, 1I'ij ~ 0, V(i,j) E A (4.11<.:)

where S+(i),S-(i) are the sets of out-going and in-coming arcs of i, rL'Spectivcly.

If we reorganize the variables in the objective ['mction, then il. can be writtcn 'L':

• L {Pm;jÀ;j + (d; - Pmij)1I'ij}
(iJ)EA CCc'"-=.: . ~~

(4.12a)

• (·'II:\l'TEH 1. JŒ(;/STEU :1J.LO('ATJO!\

= 2:: /)7II')(>.'j - "ij) + 2:: d'''ij
(i,j)EA (i.j)EA

= 2:: /)1It ij(À ij - "ij) + 2:: 2:: di"ij
(i,j)EA iEN (i,j)Eô+(i)

= 2:: P71Iij(Àij - "ij) + 2:: di 2:: "ij
(i,j)EA ieN (iJ)ES+(i)

67

(.l.i2b)

(4.12c)

(4.12d)

Wit.h t.he lIew fOrln of t.he objective fUllction, the dual problelll (4.11) can be

writ.t.ell ill the following fortn:

V(i,j) E A (4.1:ld)•
Illax 2:: Pmij(Àij - "ij) + 2:: di 2:: "ij

(i,j)EJ\ iEN (i,j)Eô+(i)

subject 1.0

2:: Àij = l,
(i,j)Eô+(i)

2:: (Àij - "ij) - 2:: (Àji - T.'ji) = 0,
(i,j)EH(i) (j,i)EÔ-(i)

Àij ;:: 0, "ij;:: 0,

Now we do a variable substitution for formulation (4.1:3):

!ij = "ij - Àij , V(i,j) E A.

ViE N

ViE N

(4.laa)

(4.1:3b)

(4.1:k)

(4.14)

With this variable substitution, the objective function in (4.1:3a) becomes:

•

2:: Pmij(Àij - "ij) +2:: di 2:: "ij
(i,j)EA iEN (i,j)ES+(i)

= - L; Pmiilij +2:: di 2:: (fij + Àij)
(i,j)EA iEN (i,j)ES+(i)

=- 2:: Pmij!ij + L: L: ddij +L: di L: Àij
(i,j)EJ\ iEN (i,j)ES+(i) iEN (i,j)ES+(i)

=- L: (Pmij - di)!ij +L: di
(i,j)EA iEN

(4. 15a)

(4.15b)

(4.15c)

(4.lSd)

• CHAPTER·1. JŒc:ISTER :\LU)(,:\T/OS

!l:ot" that tIlt' la$t terIn in (1.1 ;,d) is a constant an<1 can Il<' <1iscar<1e<1 from th,' oh·

jl'dive function. Thl'n th" formnlation (·1.1:1) Il<'conll's th,' fo\lowin)!; with t.1t" vari,.I>I,'

snbstitntion (·LI·I):

subject to

max - L (l'mii - di)f'i
(.,j)eA

L (1Oii - fii) = l, 'Vi E N
(i.i)e.+(i)

L fii - L Iii = 0, 'Vi E N
(i.i)e.+(i) (i.i)e,'-(i)

fii ~ -l, 10ii ~ 0, 'V(i,j) E:\

(.1.\ lia)

(·l.llih)

(.I.\lk)

('l.lli<1)

•
Formulation (4.16) is not yd a minimum cost 1I0w problem. Later we show that

(4.16) can be further reduced to a minimum cost n.)W l'roblem. Now let us notice that

in (4.16) the objective function does not contain variahkos 1Oi/S, which only appcar

in constraints (4.16b). Therefore we can simplify constraints (4 .16b) so that the

variables 1Oi/S do not appcar in any constraints, that is, wc want to e1iminatc th"ll1.

Lemma 4,4.1 Infonnulation (4./6), the c07l••trainL. (4./6b) "an bc ,·c]ll.zcd bll tEu:

following equivalent constrainL.:

L fii ~ -l, 'Vi EN.
(i,j)e.+(i)

Proof: By moving the terms, (4.16b) can be rewrittcn a.~:

L fii = L 10ii - 1
(i.ile.+(il (i,j)e6+(i)

(4.17)

(4.Hl)

•
Since 1Oi/S are non-negative variables, it is immediate to sel' that. if fi/s satisfy (4.18),

then they must also satisfy (4.17).

• ('Jl:\I'TEU '1. lŒ(;ISTEU :\I.U)('.-\T10N 69

'1'0 show 1.1Il' r<'\'l'r"', 1Pl. liS '"""1111' I.hal. fi;'s sal.isfy (4.1i), \'i,' wanl. 1.0 find a sel.

of V,.IIII'S for 1.1", 7.i;'S so I.hal. I.IIl'Y "'I.isfy (4.18). For any gin'II nod,' i, wc ch':lose a

fixl'd olll.'l'olllinp; arc: (i,j;) E '\+(i). Then we dl'fine:

•

7.ii,= L fii-l,
(i,j)e·+(i)

7.ii = 0, V(i,j) E '\+(i) - {(i,ji)}'

Then hy (4.1 i) and I.he ahove definil.ion, we have:

7.ii :::: 0, V(i,j) E A.

By (4.19a) we have:

L 1iij = iiij, + L 7iij = L Iii - l,
(i,j)e.+(i) (i,j)eS+(i)-{(iJ,)) (iJ)eS+(i)

wh icI. is exactly (4.18). Thus wc prove the equivalence.

(4.19a)

(4.19b)

o

Hence formulation (4.16) is equivalent to the following (4.20) in which 7.ii 's do not

appear.

subject to

mm " (Pm" - d·)J,"~ tJ 1 1)

(iJ)eA

(4.20a)

" 1,,, > -1L- 1) _ ,

(iJ)eS+(i)

Vi EN (4.20b)

V(i,j) E A

L fii - L Iii = 0, Vi E N
("i)eS+(i) (j,ileS-(i)

fii:::: -1,

(4.201')

(4.20d)

•
Formulation (4.20) l'an be thought as a variant of the traditiona! network f10w

problem [aS, i4]. The first set of constraints (4.20b) gives a !ower limit on the sum of

ontput f10w for cach node. The second set of constraints (4.201') is the conservation

law for thé f10w meaning that the f10w coming into a node must l'qua! to the f10w

• CH:\PTER·1. fŒGISTEH :\LWC':\TlO.\" iO

coming out of that. node. If t.ht' tir,t. 't"!. of eon't.raint.' (·I.:Wh) ha\'(' not. appt'ar.'d in

(4.20), then it. i, t.h., ordinary minimnm et"t. nt't.\\"ork Ilo\\" prohlt·lll. \Vt' \\"ill ,ho\\"

that ho\\" \\"e Can 'plit. the node, in tilt' graph t.o make t.llt' emn'nt. fornlllial.ion til inlo

the ordinary minimum eo,t Ilo\\" prohlt'm.

Actually, \\"e can replace each node i in the original graph hy t\\"o nmlt" i' and il/.

The original input arcs to node i art' no\\" directed to nodt' i'. 'l'hl' original out.pnt

arcs from node i are no\\" going out from node i". "Ve also add a ne\\" are from nodt'

i' to node i". Sel' Figure 4.4 for the illustration of splitt.ing a nmle i.

lofl

rromk"~ ~
/------t~o{~1~j'2

fromk."2 tOJ3

•
1(al Node i in the on{:inal DOG.

1

•

(h) ln the l'plil gr.lph. node i ilt liplit inlo j'and i".

Figure 4.4: How node i is split into i' and i".

Now consider the ordinary minimum cost flow problem on t.he rc"J1t graph. Ld.

N' he the set of i' nodes and Nil he the set of i" 1I0des. Wc lise A' t.o denote the set.

of arcs in the result graph,

It is easy to sec that the fo1lowing minimum cost flow prohlern (4.21) is equivalclIt

to (4.20),

• ('IIA1'TEU 1. UE(;ISTEf{ :\U,()(.'.·\TIO;V

tlll11 L (("f~11
(u,lI)EA'

sn!>j,·ct. t.u

I: f:'" - I: f:'" =0, 'Vu E N'U N"
(tJ."le,H(u) (lI,u)Eo'i-(u)

f:'" 2:: -1, 'V(u, v) E A'.

where wc ddine t.he cost. coefficient.s in t.he objective function by:

, {pmij - di, if u= i" E N" and v=j' E N'and (i,j) E A,
d =

lUI 0, if 1L = i' E N' and v = i" E Nil.

71

(4.21a)

(4.21b)

(4.21c)

•
Lemma 4.4.2 Formulation (4.21) and formulation (4.20) are equivalcnt, that Ï-<,

[/illCII an optimal solution U;'.,}(".v)E,\' of (4.21) thell the Uij}(i';)E,\ dejilled by the

foll01l1ing formula is an OIJtimal solution of (4.20):

r f' :r ." N" d ., N' d' J. .J ij = 1t1" 1J U = t E an v = JEan 'l r J,

Sim.ilarly, given ail optimal solution {J,j hi';)E,\ of (4.20), the thc followillg dejilled

U;'"h".V)EA' i.< an optimal solutiOll of (4.21):

f ' = { fij,
1111

E(i';)E6+ (i) J;j,

if u = i" E N" alld v = j' E N'and (i,j) E A,

if u = i' E N' alld v = i" E N".

•
=

The proof of the lemma is straightforward, and is omitted.

It. is weil known that t.he minimum cost flow can always obtain an optimal in­

teger now if ail the capacity constraints on the arcs are integral [74]. The capacity

constraints on the arcs in (4.20d) and (4.21cJ are integral, therefore they have opti­

mal integral solutions. Actually the efficient IJut-of-kiiter algorithm (see [58]) and its

variants will give such an optimal integer solution when they are applied to (4.21).

TheOl'em 4.4.3 The problem (4.9) eall be solved ill O(IN1310g INI) time, where INI
is tl", llumber of 1l0dc_< ill the graph represellting the loop.

• C/-I:\ PTER·/. REWSTER .-\LWC.-\TIOS -.,,-

•

•

Proof: H,'rall tlmt (,1.11) i, th,' .Inal of (·U\). Tlwr.ofol'.' il, i, .'qni\·"I"nt. 1.0 "'\\'<' "itl,,'1'

of them, \Ve h",'" a ,,'ri." tran,formation, \0 tl'"n,form (.1.11) to ('I.:!ll). 1."111111" .\..\.:!

,,,t,,bl i,hed 1, he "qui\"alenœ bt,tWt'l'n (·\.:!ll) "n.I (.\.:! 1). ·l'\ll'r.ofor., (·1.1 1) i, t'q ni\'"It'Ilt

1,0 (4.21) whirh i, a minimnm .-",1, Ilow prnhl.'m, \i,in)!; tht' Ont-of-l\ilt.,1' Ilwtho.I ill

[58] 1,0 ,oln, the minimnm ro,t now problem, the al)!;\lrithm for 1I11r c;L'<' h'L< " "om­

plexity O(IN13 10g INI), Hence onr tl'an,formation prore,hm', Ill'\'t'I' n,.' mon' th"n

O(INI3 10g INI) time, we l'an condnde Iwret.hat (·1.11) .-an hl' ,01t'e.I in 0(1 N 1" lo)!; 1iV Il
Ü~ 0

4.4.3 Back Substitution

The fi variables give the optima.l ,chedule of thc node,. The b; vari"hl", h,,\"t' 1,0 h"

substitute<! back by the formula:

b b: \J' N
i = p' vl E .

However such bi's may not always be integral since wc have done a divide operatiun

in (4.22). If wc simply round the bi's 1,0 their integral ceilings, a snhoptimal solntion

lllay result. Wc l'an solve this problclll by noticing that by t.his t.illle t.he schednle

is already produced. By fixing, the schedule 1,0 be the fi'S prodnccd by t.he solntioll

of OSBA, wc l'an use the lowcr bouml in (4.5) and takc th" intcger ceilillg of it. to

obtain the integer lower bound on bi . Thus wc nse the following forlllnia 1,0 obt.ain

the integer value for bi :

bi = max {r tj
; fil +mij, V(i,j) E o+(i)}, Vi E N.

4.5 Example Continued

ln this section, wc apply our OSBA procedure 1,0 the example loop given ill Section

4.2. The loop is given in (4.1). Its data dependence graph is shown in Figure 4.1.

The number beside an arc is its dependence distance.

• C'JJ:\I'TEU·/. lŒ(;[STEU:\ LLO(,'ATION

ThNI' ;crI' two <lirl'dl'<I cyr:i," in the data dependenœ graph. One cycle Cl j,

.... t,-,."i:.:,-:~.-, ... I. The ot.her cycle Gz. is ""1,-103,-10, 1. The length (sunl of

<ld"y, on the nodes ,donp; the cycle) of Cl is .j and the sum of its distances is 2. The

lenp;th of (,'2 is 2 "nd t.he snm of it, distances is 2. Therefore the B-ratios of the two

cycles "re ~ "nd 1. Hence tl", critical B-ratio is ~ which also gives the optimal period

1'(=2) for onr periodic ,chednling.

The OSBA problem formulation (4.i) for loop LI is in (4.24).

•

subject to

2bl + t l - t2 ~ 0

2bl + t l - t3 ~ 0

2~ + t 2 - t3 ~ 0

2~ + t3 - t l ~ 4

t2 - t l ~ 1

t 3 - t l ~ 1

t 3 - t 2 ~ 2

t l - t 3 ~ -:3

(4.24)

Then wc do variable substitution (4.S), and obtain the followin:,l; formulation:

min bl + ~ + ~
subject to

•

b; + t l - t 2 ~ 0

b; + t l - t3 ~ 0

b~+t2-t3~O

b; + t3 - tl ~ 4

t2 - t l ~ 1

t3 - t l ~ 1

t3-t2~2

tl - t3 ~ -:3

(4.25)

• CH.·\PTER 4. IŒGISTEH ALLOCATIOS il

Solvin,g (·1.25) for 1001' L. w,' obtain th,' followin,g schednlin,g and ,gnidelin,·s f",'

th,' bnlfer sizes:

l , - 1 l' -'1 l' - .)JI - '. J~ - '. ':\ - _.

l, =0, I~ = 1. 13 = :1,

(·1.2li)

(·1.2i)

If we ronnd up the solntion for the bi's by dividin,g 21.0 the "alnl'S ill (·1.2ti). \\,,'

would end up with 5registel's. However if wc nse (4.2:1) t.o caknlat.e t.llt' r" ..IIll,,'d fur

the buffers that support the schednle, then we C"11 h..ve t.he follo\\'ill,g ..l1oc..t.ion:

(.I.:!S)

•

•

which uses ouly 4 bulfers.

The aetual schedule for the 1001' L is showll ill (4.2). III (-1.2), not.ice th..t. by t.he

time node "3 is first scheduled, its prcdccessor node SI h..s becn execnt.ed 2 t.inll's.

Thal. is why wc allocated a FIFO buffer queue of size 2 for node St .

4.6 Code Generation

ln this section wc discuss the code generatioll problelll based on onr solnt.ioll of t.he

OSBA problem in Secti0!J 4.4.

The unique aspect of our code generation Illethods is that t.he buffet queue t.o e"ch

node has multiple heads. If we have allocated more than one buffer t.o anode, by

organizing them as 'l. FIFO queue we l'an make sure that the result.s are cOllsullled ill

the same order as they are prodnced.

Conceptually, the new result produced by anode should always be writt.ell 1.0 the

tail of the corresponding FIFO buffer queue, while~t&' successors of the node should

l'l'ad the results al. the proper places of the queue. Il. is possible that a successor should

l'l'ad the result from a place in the FIFO buffer queue other than the head. In ot.her

word, the queue should have multiple heads. The intuition is that these SUr.<:<-'Ssor

nodes are, in general, executing al. different time instances in the software pipeiined

• (,1l:\/'TEI! ,1. /Œ(;/STE/{ :\l.L()(.'ATlOjV j;j

•

•

scl",dlllt'. Alld t.h,· ImlfN shift.s it.s rontt'nts earh time a new \'aille is produced by the

assuci'"."d 110'"," TIIl'rt'fur,· t.11<' SllrCl'ssors need to re",l from di!ferent places of the

'1 1It'11<'. IknCl', a 1"11"0 wit.h mllitiplt' heads is reqllin·,!. Snrh a multiple-head queue

'ViC' illllstrat"d in Fip;lIrt· ,1.2 in Sectiun '1.2.

III the rt'st of this sedion. we illllstrate two schenles 1.0 generate code which im­

plelllents t.he the 1"11"0 bll!fer queue with multiple heads using registers. The tradeolf

of dedir;Lkd hardware archit.ecture support will also be discussed.

Scheme 1: Access Stationary Coding (ASC). In this scheme, the FIFO bulfer

queue between a producer node and its successor nodes is directly accessed us­

iug fixed register assignment for the tail and the heads. This assignment is

"stationary~, and will remain the same during the entire execution. On the

other hall(l, the data in the FIFO are explicitly shifted each time the producer

node is writing a new value to its tai!. The "shifting~ can be realized by issu­

ing multiple register move instructions, or by special architecture support for

register shifts.

Scheme II: Data Stationary Coding (DSC). In this scheme, instead of letting

the registers in a bulfer shift their contents, we simply let the next iteratio'l

write 1.0 the next position in the corresponding FIFO buffer. Thus, data an­

kept sla/.ionary, while accesses to the registers of a FIFO buffer by the produc"r

and successors arc performed with the modulo addressing method. Similar code

geJlf.mtion schemes can be secn in ln].

4.6.1 Scheme 1: Access Stationary Coding

lTnder the Access Stationary Coding (ASC) scheme, the code generated with register

shifting for onr example Joop LI is given in (4.29). In the table, at clock cycle 0 (or

cycles 2, 4, 6, etc) the FIFO bulfer of two œgisters allocated 1.0 node SI (for variable

a) shifts its contents, and a new value is written into its tail ao. We assume that at the

beginning of the clock cycle, ail the old contents are read off from the registers, and at

• CI/A PTER·/. HEWSTEH .'\ LLOC.·\TIOS Itl

the end of tlw sanl(' dock cydt' t.llt' IH'\\' COllh'l1t~ .l.l'l- \\'riuplI hack in!.o t.lw t"t·~i:\h·rs.

Tlll'refon' "l = Il,,,11,, = X +r ha\'" tll" <'If,'ct. of shiftin).\ t.Ill' old ,·onl.<'nt.s in C111 to th"

register III and th,' new l'l'still. is wriu,'n int.o t.h,' t.ail C111 at. t.he sal11e d,wk cyd,'. lt. is

safe 1.0 o\"erwrite "l al. this monll'nt hecause the sdl,'dnl,' and tlll' snpport.in.c: hnlf,',·

allocation gnarant<'" that t.he old cont.,'nt.s of "l al'l' no \on).\<'r nSt"\. \V" l'an always

aHgu the shifting operation al. t.he point. wh,'n t.h<' COI"l",'spondin).\ inst.rnl"l.ion is issn,"\.

•

iteration [itt'ra.tioll 2 it0ratinn a i1. ..·ra.t.ioll ·1

0 b-8hift: "l = ao

St,l :1I0=X+C

1 .$2.1 :b=1I0*F

2 h-8hift: "l = ao

S1,2 : ao = X + c

a $3.1 : c = al + b '<2.2 : b = ao * F

4 b·shift: "l = an

"1." : ao = X + c

5 '<3.2 : c = al + b ·""2.3: b =ao*F'

6 h·shift: "l = (LI)

'''1,,1: (1.0 = X +c

i '~3,3: c = al +b "'2,4 :b="U· F

S

9 '''3,<1 :c= (/,1 +b

(·1.2!1)

•

To ensure that the successors also l'l'ad the correct rl'sults frol11 t.he ril\ht pl;,ees,

we have 1.0 calculate the positions for them 1.0 l'l'ad in t.he FIFü bnlrer '['H""'. We

have seen the use of multiple-head buffer in Sect.ion 4.2. H"re wl' I\ive a lel11nl" tu

calculate the positions for the successors 1.0 access t.he data from t.he bntfers:

Lemma 4.6.1 Let (i,j) be a dependence arc in lhe DDG, that i.. to ""Y, lIwl 7wd" i

is the producer and node j is a C07"'71mer (."Lccessor). The Jor7fL71I" to ""Icnl"lf; li,,;

position Jrom which node j should read in the FIFO b71jJcr '1'W7L" oJ 7wd" iL':

. r1i-tilzndexii = -p-- +mii - 1•

• 77

•

•

Proof: 11:1,,1.. i writ.I's t.1\(' n'suit. t.o t.he t.iLil of its PIPü buffer iLt time li +(1\' - 1) *P

ill it.,'rilt.ioll h', This r<'sult. will h,· read by 1I0de j ill itemtioll 1\ + mij. Node j in

it...mt.ioll 1\ + mi; is sc!wduled iLt. cycle lj + (I{ - 1 + !Tlij) * P. Therefore the time

di!fere''''e I,dween the production ,<lHI the consumption is:

[lj + (I{ - 1+ mij) * P]- [li + (I{ - 1) * Pl

=lj - li + !Tlij * P.

During this tilll<' interviLl, there are

ri; - li +mi; * Pl rlj - lil
P = -p +mij

mallY rcgister shiftings for the buffer queue alloeated to node i, Also note that the

abave formula is independent of iteration [{. Beeause the buffer queue for node i is

numbered from 0 at the tail end, hence node j (in any iteration) should read from

the buffer position indexed by the above formula minus l, whieh is (4.aO). 0

As an example, we use formula (4.aO) to ealculate the positions node S2 and node

":1 read from the PIFü buffer of size 2 alloeated for node SI' For node S2, we have

. 12 - /,
zndexl.2 = r P l +ml.2 - 1

= 0,

so node "2 should read from ao

For node "3, we have

• J . r/3 - /11
m"eX'.3 = P +ml,3 - 1

= l,

sa node "3 should read from al.

• CHAPTEf{·1. HEGISTEU :\l.WC·\TIO;\"

If w,' ,'xamin,' th,' <'od,' in (·1.2!l) lin" hy lin", w,' dis<"l\"'" a l','p,·atin.c: pall<'m ,,1'

cod" l'rom dock cyd,'s 2 1.0 :1, ,~, shown lll'iow in (·I.:11).

iteration 1 it.t~rat.ion i+1

h·shift: Il, = au

·... 2.i+l : Ill) = .\ + "

$3.1 : c = "t + b2.i+1 : () = flU * F

(.1.:\1)

•

•

vVe will use this repeating pattern as 0111' ne\\" loop h"dy. 'l'Il<' ol'i~inal 1",,1' is

no\\" transformed into a new paralld loop body pll1s a prolo~nl' and an ,'piiu~n('. 'l'Il<'

important l'ad is that the new loop body I1ses only of P(=2) duck <'ycl,'s, whi<'h

means that in every 2 dock cydes a new iteration will start. That is th,' opt.imaimt.('

wc can obtain. The new paralld loop is shown in (4.:12), in whiclt the 1\ sign means

"execute in paralld with" .

prologue code:

at = Uo

ao=X+c

for i = 1 to n- P do

al = fla 1\ ao = X + c

c = a) + b 1\ b = fla * F

enddo

epilogue code:

no07'

C = 'Lt + b

Generally, let

T = max {Li; i EN},

then the pattern is formed l'rom dock cycle T - P + 1 1.0 dock cycle T.

So far, wc have assumed that the register shifting operation can he implcmcnt.ed

using register moves (copying) in conventional architectures. However, if. is also possi­

ble that a processor architecture supports rcgister shifting directly in h,.rdwarc. Such

•

•

CIl.-\E'TEH·1. lŒWSTEU ..\I./.O('.YI/O.\'

support allo\\':-; the' :\Ll~s hl' dl'\'ult'd to othe1" t"olllplltatiull fllllctiolls. lhlls itnpro\'t's

t.ht", pc'rformalln'.

4.6.2 Scheme II: Data Stationary Coding

The Data Stationary Coding (DSC) "'I,,'nw 1'1'01'0",'<1 hl'r., is int"I"l"d 1.0 avoi.} rl'~is.

ter shifting ill the pre\'ions ASC sc\leme. Inst.Pad of 11't.1.in~ t.1,,' rl'~ist."I·S t.u shift. th'ir

contents, we simply let the nexl. iteration writ., t.u t.he nl'xt. posit.iun in I.IIt' e'>I'I','sp')1"I.

ing FIFO bnffer. For tl.e successor nodes, we can not. simply lise furmllia (·I.:11l) t.u

ca\culatc the positions to l'l'ad iu the FlFOs. Illst.ead we must. ilS" modllio ,,,ltln'ssilll!;

according to the fo\lowing lemma:

Lemma 4.6.2 For n depcndell('l' tI.I·'· (i,j), if ill Ihe em'l'('ui il,.,."lioll ,,,,d,· i i.' /Iwiliu!1

10 110sition Qi (",lUTe Qi is Ihe index) of il., buffer qlll'W'- Ihl'II lIodl' j ill ('/11""'/11

iteration should rend from position:

(4.:1:\)

",here Oi L< the buffer si=e.

Proof: Suppose that the current itt':·"tion is /\. Then node ; writ.es to t.11t' posit.iun

(/\ - 1) mod bi since the data is not move<l. In current iteration /\, nude j shunld

l'l'ad the result produced by node ; in iteration' /\ - mij' Therefore node j in cnrrenl.

iteration should read from position (/\ - mij - L) mod bi • Substitute /\ - Lwith Qi'
we obtain the formula (4.:1:1). '0

The code generated by using modulo addressin~is shown in (4.:14). For eX'Ll11ple,

at clock cycle P(; - L), wc have the instruction "(i-I) mod 2 = X + c for itcr,,-tioll ;.

•

clock cycle iteration i

P(i - 1) SI.i : a(i_1l mod 2 =X + c

P(i - 1) + 1 o52,i : b =fL(i_1l mod 2 * F

P(i-I)+2

P(i -.1) +:1 o53,i : c = fl(i_1\ mod 2 + b

(4.:14)

ln (4.:l.5) t.he repeating pattern is from c10ck cycle 2 ta clock cycle :l, which is

shown bdow in (4.:l6).

•

•

('If. \ l'TI-:/(I. /(1-:(;/STI-:/(:\ LU)(':\TlO,\'

It.s I·Xp,,"d.-d vl-rsiull is siluwll ill (-1.:1:;),

i1.pra.t.ioll 1 itf'rat.ion :! itf'ratiotl a it~ratioll "

0 '''1.1 : iln =X + r

1 •..~.l :b=tLo>tP

:! '''1,~ : (lI =X +c

:1 "':l,l :r="o+b~.:.: : IJ = (LI *' F

-1 Sl.3 :"0 =X +c
5 '''3.~ : c = al + b "2.3 : b = ao * F

(; Sl.4 : al =X+c

i S3,3: c =ao+b S:Z,'1 : b = a, * F

8

!l S3,4 : c = a, + b

iteration i iteration i+1

SI.i+l : ai mod 2 = X + C

S3.' : c =a('_11 mod 2 + b S2.i+l : b =ai mod 2 * F

so

(·1.:15)

(4.:l6)

"Ve can sce from (4.:l6) that the pattern derived by using the DSe scheme contains

fe\Ver instructions than that of the ASe scheme, which is due 1.0 the elimination of

the register shifting operations. The new paralIeJ ioop body is shown in (4.:li).

•

prologue code

for i = 1 1.0 n-P do

ai mod 2 = X +c

c =a"_I) mod 2 +b Il b =ai mod 2 * F
enddo

epilogue code

(4.:li)

•

•

•

('/l.\ PTEU·i. IŒ(;ISTEU ..\ LUJ('.·\ TlO.\"

4.7 Reduce Register Requirement Further: Step

2

In Section ,1.6 we show,'d how t.u 1!:,'n"Tat.l' ..od,' rmm " n'I"'"t.in)!; l'''t.t.l'rn, Th"t. linish,'s

t.he first. stel' or our regist.l'r "1\o..,,t.ion s..henll', At. this l'oint., ti,,' FIFO \.lIlfer ,iz,'s

and the schedule are ,,1\ ddermin,'d. However we sti1\ h,w,' the "h"nc<' t.u shiu'" !>ulf,'r

e\ements if their live Tanges do not overl,,1' wit.h e"..h uth,'r rur t.his lix",l s<'i,,',lul,'.

Hence the second step or our register "1\o..,,t.iou schenll' is t.u "l'ply t.llt' "ulI\','ul.iuu,,1

coloring algorit.hm(s) [16. 1". 49J t.o furt.her n'duc<' t.he regist.,·r re'luirem,·ul..

For each or the instructions that we a1\oc"t.ed " hnlfer or size l, t.h,· n')!;isl.,'r m"y

be thought as a symbolic register. Each snch symholic regist,'rs m"y h,' n·us,"!. For

an instruction we a1\ocated a bulfer queue or size more I.h"n 1, unly the he,,,l ur I.he

queue has the chance 1.0 he shared with other the hulfers or the other nod,.,.. Otllt'r

e1ements of the buffer queue are live throughout the entire range or the rel'e"tinl!:

pattern, and therefore l'an not he shared with other [mlfers.

ln our l'l'ample 1001' Lh suppose that We use the ASC scheme 1.0 I!:enerat." ...ude,

then we choose the repeating pattern in (4.:1I), and draw the live-range diagr"m or

the variables in Figure 4.:3 in Section 4.2.

We l'an draw the interference graph according to the circular arcs in Figure '1.:1,

and color the interference graph with :3 colors. For instance, the ro1\owing is " legal

coloring with :3 colors: color_1 = {ah l'}, color..2= {hl, co10r_:1 = {lia}. Thererore the

actual number of registers required for the repeating patt.ern is :3 for t,hese :1 colors,

plus 2 extra for loop invariants X and F, which totals ,) registers. III general we can

use the coloring algorithms [16, 15, 49] "0 obtain the minimum lIumber or registers

used in the new 1001' body. ln this section, we apply a recent mcthod or cydic interval

graph coloring [49].

After the coloring algorithm is applied, the final code for the repeating pattern is

shown in (4.38), in which c is replaced by (LI since they have the same color.

• ('j[.'\I''j'/,;U '1. /U-:(; /STEU :\ LU)(':\TIO;\,

prolO,2;lW codp

for i = 1 to n- P do

'" = .1" Il "0 = X + "1
"1 = ". + b Il b = "0 • F

enddo

l'pi logne code

(,1.:18)

•

•

T!lI' "oloring algorithlll "an also he "l'l'lied to the code produced by the OSe:

scill'Ill<'. I!owew'r the live ranges of the registers in il hulTer of size more than one

Illay I;~,t for severai repeating patterns (new iterations) because there arc no explicit

n·gister-shiftings. For instance. the live ranges of the variables in the code (4.:li)

gellera1.l'd hy the OSe: sr.hellle are shown in Figure 4.5. In the picture no two variables

r.an 1)(' r.olored the samecolor. ['!enc.e the code already uses minimum number of

registers and we do not n<,.·d 1.0 change the code again.

---H-e •

--------- -----
b

.---U-U--
Figure 4.5: Live range intervals for code generated by OSC scheme.

4.8 Special Cases

[n this section we look at two special cases of the OSBA formulation (4.i). The

first special c,lSe is the result by Caliahan et. ars [1:l] for a fixed sequential program.

• ('H.·\PTEf{·/. lŒWSTEH :\1.WC:\TlO'\" ...'"...... \

The St'C(JlHI spf't"Ïal ('(\.St' cotlsidt'rs loups wit.hllllt. loop-carrit'd dt'pt'lhlt'IlÙ'S if;:;}. \\'hid\

makes th,' pro1>I"m ,'a.,ier to sol\"(' t.han t.1ll')!;"nl'ral OSIl:\ pl'oh1<-m.

4.8.1 Callahan et al's Result

•

Callahan et. al [l:l]l'onsid"red th" pro1>I,'m or using S,,\·,·l l'\,!!;ist.,'rs roI' a su1>,,'ript.,·d

\'ariable to diminate most of thl' loads and stol"'" for that \'aria1>I,' in a 1001', Tlll'Y

assllnl<' that the (sequential) l'xl'l'ution onll'r for th,' 1001' 1,,", ,dn',uly 1>",'n lix,·,1.

Then they look at the dependenC<' arcs olltcoming from an instrll<,l.ion. They d,oosl'

a number T which is the longes!. dependenœ distance aaoss itl'rations fl'om this

instruction, Then they allocate T + 1 registers 1.0 thl' instrllcl,jon which writl's 1.0

a subscripted variable, ln this way they l'an diminat.e the store of th,' snhsaiptl'd

variable in the current iteration and the load in the subs"queut it.l'rations whid, us,'

this subseripted variable.

Now suppose that we are given a fixed execution ordl'r for a sl''1ul'ntial ard,it.l'd,url'.

We l'an still think that the sehedule for the se'luential machi!ll' is periOllic I",<'au,,'

the iterations are executed in a periodie way, However in this l""'" the periml l' is

the total execution time of a whole iteration, Thercfore we have

1.; ::; P, "Ii E N.

Thus the lower bounel on the number of buffers for node i becomes:

1 rtj - t i1 W(") <+(')Ji;::: --P- +mij, v I,J Eu'

;::: 1+mij, "I(i,j) E S+(i)

(1.:I!J)

(1.10:L)

(1.10\')

•

which is exactly Callahan et al's formula to calculate the amount of rl'gisters n""ded

to an instruction i.

In this sense our method is more general than theirs since we c...n ...Iso handle

parallel sehedules, ancl more importantly wc cio not fix the schcdule so th...t \'(,st

schedule will be found which uses minimum amount ~i "~;'<I:P.rs.

• ('I1:\/'TE[(·/. nU;/STEU :\L/.O(':\TIO;\"

4.8.2 Loops without Loop Carried Dependences

8·1

•

•

i\ lot. or t.h" illll<'r 1Il0't. 1001" ill t.h" prop;ralll do", not. contain any loop-carried

cio'po',"It""''', E\'PII ir a 1001' contai,,, a loop-carri<:,d d"pend<:'nce, d"pendence cyde,

lIlay Ilot o<'ClIr. 'l'hi, ,,'('I.ion cOII,ider, I.his ,ituatioll and trics to <:'xploit this spec:al

prup('rty 1,0 illvpsti,:;ate Îts implic.ations.

First or ail, ir no dependence cycle exists, ail the iterations Can be scheduled at the

SiLllle 'tartinp; tinlt'. The whole execution time is that for one iteration. This approach

1.0 ,c1lt"luling is not practical for any configuration of hardware unless the 1001' has

a 'Illall iteration upper boum!. However if the 1001' has a very large iteration upper

I>ollnd, one mu,t coutrol the amount of parallelism in th" 1001' 1.0 fit the hardware

configuration.

Note that since the DDG for a 1001' without loop-carried dependence has no cycles,

the computation rate is not defined by Definition 2.6.1. But wc can consider that the

maximum computation rate is infinite. However we can still use a periodic schedule

and choose a positive period for the iterations, 1.0 control the amount of parallelism.

For example we can choose 1 as the period or the rate. Then every iteration will start

one dock cycle after its previous iteration. If one iteration of the 1001' body does

not have enough parallelism 1.0 fully utilize the processing units, a proper number of

iterations can be unrolled first, and then follow the periodic scheduling scheme.

When the period and the rate are 1, the formulation of the OSBA \)foblem becomes

mllch simpler. Since period P is equal 1.0 1, the constraint matrix in the OSBA

problem is a {O,1} matrix. So we do not need 1.0 substitute variables. Another not so

trivial observation is that ail the symbolic registers allocated as buffers are busy ail

the time without any empty time slots, which makes the second step of the register

allocation framework redundant. Let Bi be the memory space in which the output

tokens of node i can be stored.

Lemma 4.8.1 ln an optimal storage allocation scheme the memory space.. allocated

to two different node._ (where the two node.. can output their result token... into) can

• ('f/:\f'TEH·/. /ŒG1STEH :\I.I.()(,:\TIOX

1101 ol"'I'llll', Ihlll i.<,

Hi n H, = \~. "Ii.) E X. i #-}. lUI)

•

•

Proof: Sincp "'l" as~utne t.hat t.lll' loup llutler rOllsitlerat.ilHl ha:- 110 IOop-c'lrrit'd th'­

p"IHI('nce. our datanow graph n'pn',,'nt.ing t.h.. 1001' hao< no ldir..<"t.",!) ,·y<"h'. Th,'n{ol'\'

once node i i" fired at time li for t.!,,' Iir"t till\<', it. can 1", lir..d "oll>"<"IIt.i\'..ly for t.h,'

l'est of the iterations, that is, i will h.. Iired at. time li + 1 for t.1\l' s..<"ond it."l'at.ioll, Olt.

time li + 2 for the thinl iteration, l'tc, A simi!ar argnnll'nt. is t.1'1I" for nod.' }, t.hat.

i". il. will he fired al. time lj, lj + 1. lj + 2, .. ·, This nll'ans t.hat. the 'lIIl.pnt. t.ok,'ns

of a node will he pl'oduced al. a rate of one t.oken pel' ".ycl,', Th,' inp"t. t.ok..n" will

he consumed by the node al"o al. a rat.e of one t.oken p,'r cyde \",call"" tl\l' "tIl'<",'""or

nodcs will also he fired every cycle. Now the empty slot. in Bi will \'" lilb! "l' hy t.h,'

consecutive firings of node i in the initial period and lat.er on wh..n •• ··"kt·!· in Bi i"

consumed al. some cycle, the slot. can he filled up in t.he nexL cyd.. hy t.he l'<$ulL Loken

from node i fired al. that cycle. Therefore Lhe output. token" of nocl.. j can not. 1". put.

into Bi, which means

Bi n Bj = 0,

o

4.9 Experimentation Results

We have implemented our algorithm and used il. 1.0 test some loops sdcctecl fl'om

henchrriark prugrams. This section gives an overview of the imp!cmcnf.,.tion. a.,,1

shows the experimentation rcsults.

We want to test how many floating-point registers and floating-poinf. functional

units are needed to support our scheme for typicalloops selected from a collection of

benchmark loops. The loops tested are selected in Livl'rmorl' Loops, SPEC bcnch­

marks and Whetstonl' bl'nchmarks. Since loops without loop-carril'd data depl'n­

dences are easy to be paralle\ized, and re!atively easy to be handll'd when rl'gistl'r

•

•

•

(·'11:\ l'TEH '1. 11E(:ISTEH A LU)('ATIOS

alluca!.;,,", an' COIICt,rtIcd. wc ha\"(' rc'triclcd oursel"cs to the loops that contain loop­

"arricd data depclldellœs. Dlle ta the limitation of our tools, we also rcstrictcd

oursd",,,, to loup, cOllt;,illin~ 110 conditional tests in the loop body. This limitation

cali Ill' diminat.ed if the condit.ionals have bcen dea!t with hefore the code is passed

t.u Ullr sdledllling alld allocation program.

Ali t.he loops are writtell in Fortran. 'vVe have isolated each loop wc selected in a

si ligie file. Then wc manually rewrite a loop in order to make the loop in high level

language in a form of t.he assembly or thrcc address code so that the schedu!ing and

register allocation produccd are realistic. Tha\; inc1udes:

• Break the long expressions into sequencc of thrcc address instructions, i.e., each

inst.ruction has at most two input operands and one output operand. Tempo­

raries arc generated if necessary.

• Load and Store instructions are also inserted when we break the long expres­

sions. I-Jowever we do not go to the details of computing the addresses of the

array references since they are mainly integer operations.

• We have used assumptions in Table 4.1 for the execution delays of the instruc­

tions. They are typical numbers [51] found in available commercial or research

machines like IBM RS/6000 riS] and Cydra 5 [i2]. The delay for Load instruc­

tion may not he a constant depending on whether the load is a hit in cache or

not. The number of cycles we listed in Table 4.1 should be understood as the

delay of a hit in the second level cache.

To obtain the data dependence information between pairs of instructions of the

loops, we have used Parafrase-2 [68,48] developed at University of Illinois at Urbana­

Champaign, which can process Fortran programs and generate ail the dependences

we nccd. For a loop, with the dependence information obtained from Parafrase-2, our

program will do the following:

1. Compute the optimal period P for this loop.

•

•

•

C/IAPTER·1. fŒGISTEH :\/.LOCATfOX

.
A<!<! 1
Suhtract 1
Negate 1
Multiply 2
Divide li
Load 1:1
Storl' 1

Tahle 4.1: Execution ddays of the inst.ructions.

2. Ask the user to change the period to a bigger period if he or slll' wants. The

purpose of this is to let the user have the choir~ of making romparisons on t.he

register usages for different periods.

:~. Generate a schedule with period P and an optimal bulrer allocation simult.anl'­

ously by solving the OSSA problem (4.i).

4. Using the generated schedule, compute the repeating pat.t.ern and t.he live can!!;l'

intervals of the buffers.

S. Use an optimal coloring algorithm to color the intervals. The reason t.hat wc

choose to use an optimal coloring algorithm, which does backtracking and can

run in exponential time in the worst case, is that we want to obtain exact rcsults

of the register usage. Actually the algorithm runs very fast in ail of our t.cst.ings

where a loop body typically contains less than :~o Aoating-point variables.

6. Collect ail the statistics of the schedule, which include: Numbcr of rcgistcrs

used, Number of buffers allocated, Number of functional units nccd",1 t.o sul'port.

the schedule and the Average buffer queue length for each variables.

-We have applied our program to 22 loops selected. Figure 4.6 shows the number

of total buffers and the number of total registers allocated to each loop. Figure 4.7

• (·IJ..\I'T/~/(·/. f(/·:(;f,~TE/(.·\/,U)('.·\TIO.\'

shows tlH' <L\"(·ril~(·lllllfl·r 111l(·lU·!t·II,2;th in t'flch loop. 111 Fi~lln' ·1.8 we show tIlt... Humber

of fllllCtioll.iL1 11IIit.s 1It'('ch-cl for ('adl loop.

Lcgond
--+- numhcr of hutTcrs
--~-- numbcrofregistcl':"

1 2 3 4

63 .-,_._--- -~----,---.-,--,-.,--,-.,--,-.,-,-.,--,-.,,-.,---,
60 1 - • .

1
57 1 - -
54 • - . ,
51 1
48 1 ­
45 1.
42-1
391 ­
36­
33­
30
27
24
21
18
15
12
9
6
3
oL;-..:;:.....;-.;.-;-:;:.....;..----...;--..;-.;.-;.......;---i--;.....;--..:;:-.;.-;.......;---i---i--'

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

loops• Figure 4.6: Buffers aud registers allocated to each loop.

In Table 4-.2, we show the averages of our experimental result5. The average

number of buffers allocated for each loop is 1.5.6. After the coloring step, the average

aetual register requirement is la. The improvement of the coloring step over the

buffers is about 16.6%. There are i2.2% of the loops actually used less than 16

rcgisters. Furthermore, 90.9% of the loops used less than :32 registers.

•

The average functional units required is 2.i:3, which is obtained by counting all the

instructions, inc1uding loads. So the number is a little over-estimated if the under­

lining architecture allows load instructions to by-pass the functional units. Actual1y,

1i out of 22 loops used less or equal to three functiona! units. That represents ii.:3%

of the loops se1ected. Gnly 22.i% of the loops used more than three functional units.

These loops show much higher parallelism than the average. We have also tested to

use a bigger period to control the amount of paral1elism in a loop, and the test results

do indicate that the register usage and functional units requirement are down.

• ('//:\ l'TEH·/. IŒ<:ISTEU:\ I.I.O(':\TIO.\'

loops

Figure 4.Î: Average butrer queue length in <'ach 1001',

. ,,
1

1,

'61---'
15 i

'41
'3'
12 J '
11]

'~ j

R. .
H"" '" ,,~~~", 2 3 4 5 6 7 8 9 10 " '2 '3 '4 15 16 '7 '8 19 20 2' 22

•
:1c '
71·~·' '. "6,,' '.' ','

5 .~.:r
2 i~'
1 ."

LC'gCnd
___ numbcr of funclional unit"

•
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 '8 19 20 21 z:.

loops

Figure 4.8: Number of functional units needed for each loop.

• ('11.,\ 1''1'1';111. IU;r :ISTEH :\ LU)(':\T/();\,

1I11111lu'r uf loups tt'st.t'd 22
a\'('ra~(' 1I11lllht'r uf hllifers ëlllorillt·d for each 1001' 15,G
av('rap;e 1I111lllwr of rep;istered a\located for cach 1001' 1:1
av('rap;e [>li I[er queue lenp;th for each instruction :1.19
averap;e lIumlwr of fundiona! units needed for each 1001' 2.i:!

Table ,1,2: Experimental Results.

90

ln t.his sedion, we look at. t.he examplc 1001' given in Rau Et Ars paper [i2]. The

1001' is shown bdow in (4.42).

•

4.10 The Example from Rau Et Al's Paper

for i = 1 t.o n do

s =s+a[i]
a[i] = s* s* a[i]
enddo

(4.42)

•

lt.s low levcl reprcsentation, like a-address code, is shown bclow.

a: VI':I:1 =vr:l:3 + vr:32 % vra:3 is address of a[i] %

b: vr:34 =load m(vr:3:3) % vr:34 = a[i]%

c: vr:3.5 =vra.5 + vr:34 % vr:3.5 =s %

cl: v1':36 =vr:3.5 * vra.5

c: :n':li = v1':36 * vr:34 % vr:li = new a[i] %

J: store(vr:li, m(v1':3:3))

brandI 1.0 a if i :5 n

enddo

We focus on the low levcl representation in this section. The data dependence

graph of the low level presentation is shown in Figure 4.9. The delay for Add and

Store is 1, the delay for Multiply is 2 and dclay for Load is 1:3.

•

•

•

('II:\I'TENI. lŒWSTFN .IU.O('.IT/OS

Figure 4.9: Data depcndence graph of the low levd co,1e of Ran's ex'''"ple.

There are two directed cycles in the dependence graph, which ..re self-loups from

node a 1.0 a and from node c 1.0 c. The B-ratio of il. is 1. Thercfore wc can geller..t.e ..

schedule with period P = 1. However since Rau ct. al nsed 2 'L< t.heir period in [nI.
we will also use 2 as our period for gener..t.ing t.he schednle and thc regist.er ..lIoc..t.ioll.

The OSBA formulation of the low leve\ rcprcsentation is the following:

•

•

•

('1/.\ l'TEH·1. HJo:(:ISTEH :\ LW(':\ 'l'lOS

min b" + b,. + b,. + bd + b, + bl
sllbj(·c·t to

2b" + 1" - Ih :::: 0

2b" + 1" - 11 :::: 0

2b" + 1" - 1" :::: 2

2bb + lb - l, :::: 0

2bb + lb - l, :::: 0

2b, + l, - Id :::: 0

2b, + l, - l, :::: 2

2bd + Id - 1. :::: 0

2b, + 1. - II :::: 0

lb - 1" :::: 1

II - 1. :::: 1

t" - 1. :::: -1

l, - lb :::: I;~

l, - lb :::: I;~

Id - l, :::: 1

l, - le :::: -1

le - l'd :::: 2

II - t, :::: 2

After variable substitution (4.8), we have:

~.

92

(4.44)

•

•

(,/I.·\PTEHI. HEWSTER :\I.UW:\TIOS

min b" + b; + b.. + bd + b, + bJ

b~ + 1" - 1; 2: 0

V.+ I ,,-IJ2:0

il;, + tll _. tll ~ :2

b~ + lb - l, ~ 0

b~ + lb - l, ~ 0

b~ + le - Id ~ U

b~ + le - le ~ 2

bd + Id - l, ~ 0

b~ + le - I.J ~ 0

lb .- t,. ~ 1

lJ - ta ~ 1

1" -1" ~ -1

le - lb ~ 1:1

l, - lb ~ 1:1

ld-fe~l

le -le ~ -1

le -Id ~ 2

tJ-le~2

By soIving (4.45) we obtain the following solution:

t. = 0, tb = 1, le = 14, Id = 15, 1. = 1i, lJ = 19;

b' 19 b' 16 b' .) b' 'J b' .) l' 04 = , b = , c = -, d = -, e = -,)J = .

(·\,·15)

(4.'16)

(4.'1i)

•
Instruction J is not allocated a buffer ,because it is a "Store" instruction.

the technique (4.2:3) in Section 4.4, we obtain the following buffer allocation:

b. = 10, bb = 8, be = 1, bd = 1, b. = l, bJ = O.

With

(4.48)

• ('JJ:H'TEU 'l, IŒG1STEf{ :\/.U)(.':\T/OS 94

TI... SI'cond st!'p is 1.0 analy;w 1.1 ... Ii,,!, rang!'s of tlH' bllffers and US" a coloring algo­

cithlll to n'dllC<' tlH' c!'gister c!'qllic!'ment fncther, ln this example, coloring algorithm

cali not n'dlll't· th.. nllmhec of c..gisl.<'cs further. So thece is a total of 21 r"gisters

all,,,,at..d. In Rall ..1. al's pi'p..r [i2]. th..y lIsed 28 registers which is partly due their

'c'SlIlIIption that a r..gist"r can not he re!eased for reuse lIntil aIl the consumers have

jini.,hcd thdr whol.. execlltions. while we assume that a register can be released if aIl

th .. consnlllees have read the vaille, not necessarily finished [69].

The repeating pattern of the schedule is shown in the following table, in which

C"+2 lIIeans instruction c in its original iteration i +2:

The averagt' buffer queue lengtb is 4.2 buffeTS. The nnmber of functional units

needed to support this scheme is :~ if the "Store~ instruction J does not use one. The

seqlJential execution of the 100p will take 20 clock cycles to finish one iteration, while

the current parallel schedule finishes one iteration by overlapping the iterations in 2

c10ck cycles. Thercfore the speedup is 10.

•
pattern cycle 1: Ci+2 ai+9

pattern cycle 2: Ji ei+l di+2 bi+9

(4.49)

If wc would have taken period P = 1, then wc conld have needed 40 registers and

5 fllnctional units to support this optimal speed.

4.11 Related Work

•

The carly work by Aiken and Nieolau [2, :~, 4] did not consider the register alloCation

problem. In a recent paper, Nicolau et al [62] considered the register allocation prob­

lem by renaming for the compaction-by-percolation based algorithms. Ebcioglu et al

have proposed the technique of enhanced software pipclining with resource constraints

[29, ao, 28, 61]. However, they did not consider the minimum register allocation proh­

lem as discussed in this paper.

•

•

•

CHAPTER·1. REG/STER .·\LLOC.-IT/O.\"

ln Lall1'~ work on sort\\'art~ pipdinill~ [fi(i}. an itltl~n'stin~ srhenlt' c:llll'd modulo

l'ariablc cxpan.... ioll is proposed tu allow a scalar Ion}> \'ariahh· hl" ('xp'Ludt',l I.l) IlSt"

t1l0rc than ont' location so that the unut:'n'ssary prt"("l'd('l1cc'- constraints tlu(" t.u scalar

variable in different Iterations ean be rem",',,,\. Howe,'er 1l1\><lulo ,'ariahl,' ,'xpansi"u

is only performed after the schedule has lwen Iixed. Th,' w"rk d,'scrihe,l in t.his pal",r

can be considered as an extension to modnlo \'ariabl,' expansion in t.h,' s,'nse t.hat. it.

is incorporated in a nnified framework of tillll'-opt.imai s.-!ll'dnlin)l;, and minimizl's t.h,'

amount of storagl' f"r scalar variable ,'xpansion and array \'ariabl,' shrinkag".

Callahan, Carl' and Kl'nnl'dy havl' studid register allocation for subscript.ed \'ari­

ables. ln their method, army referenCl's which are live acro."" several iterations al'l'

recognized and a sourcc-to-sourcc transformation called -,culm' rC]/larclIll'l1/. is pel'­

formed snch that they can be handled by coloring-based register allocators. However,

their work is aimed at sequentialloop execution and does not consider 1001' scheduling

such as softwarepipelining. Wc haveshown in Section 4.8 that our OSBA formulation

(4.i) includes Caliahan ct al's result as a special case.

In a l'l'cent paper by Rau ct al [i2], a ml'thod of register allocation for soft.ware

pipc1ining was presented. ln this method, register allocation is performed after t.1lt'

so-called modulaI' scheduling phase. Successive iterations arc initiated at a fixed initi­

ation interval. The rl'gistl'r allocation problem is formulated as a bin-packing problem

of vector li/etimes on a cylinder surface. A hl'uristic algorithm has bccu proposed for

the rl'gistl'r allocation and has been demonstratl'd to be quitl' effective by experimen­

tal results. Howl'vl'r, the paper did not attempt to dcscribe a complete concurrent

schl'duling-allocation stratl'gy for software pipc1ining. Other related work can be

found in [:3:3, 2i].

•

•

•

Chapter 5

Cycle Balancing Scheme

On datafiow architectures, there still exists the challenge of how to maximally ex­

ploit fine-grain parallelism to spced up loop execution while not incurring excessive

storage space overhead. This chapter considers a broader class of scheduling and the

storage allocation schemes to support dynamic scheduling on datafiow architectures.

The minimum storage requirement to support the maximum computation rate on a

datafiow architecture is analyzed and a storage minimization method called Cycle

Balancing Sc1Jeme (CBS) is introduced in this chapter. The Cycle Balancing prob­

lem is formulated as an integer programming problem. A polynomial time algorithm

of the linear rela.,ation problem is presented which gives a fractional approximate

solution of the Cycle Balanciug problem. We also prove that CBS has the Totally

Dual l1ltegral (TOI) property, which allows the Cycle Balancing problem being solve

as a linear programming problem if the right-hand-sides are rounded to their integer

ceilings.

96

• CH:\PTER ii. CYCLE 8.\I.:\;\;C/;\·(; SCHE.\IE

5.1 Introduction

~lj

•

•

Under the dataflow mode!, a computation is desail",d hy a dat.atlow /?;raph, Unlik,'

von Neumann computers, dataflow computers ha\'<' uo pro/?;ram "ouutl'r or oth,'r form

of cent.ralized control nlt'chanism, Con,,'q\ll'nt.ly, t.h,' order of inst.ruction "l','cut.iou is

restricted only by data dependenc.ies witilln the datatlow programs, Most. dat.aH"w

architectures assume that the scheduling of t.he actors is done by a dynami,' sl'ill'dn!,'r

which maintains a pool of enabled actors. In t.his chapt.er Wl' propo,,' a hal:Lllcing

technique for the dataf10w graph of a loop so that. the ma.ximum romput.at.ion rate

l'an be achieved and only the minimum amount of storage is reqnire<!.

One of the long standing issues in 1001' el'ecution on dat.aflow machines is how

1.0 manage the finc-grain parallclism and the storage reqnirement. support.ing sndl

parallelism. Under the static dataflow architecture modcl, t.he st.orage for a loop is

completely determined al. compilc-t.ime - because each arc in the dataf10w graph is

allocated one storage unit. A main restriction of this archit.ectnre and sl.orage alloca·

tion scheme is that il. may not be able 1.0 fully exploit t.he parallclism 1.0 achieve t.he

ma.ximum computation rate of the loop. Data/low soft.ware pipc1ining has bL't,n pro­

posed 1.0 organize the code such that several iterations may be procccding concurrent.ly

[aS, 40, 44]. The number of concurrent iterations is restricted by the amount of st.orage

allowed for one copy of the loop body. Under the pure dynamic dataf10w modcl, such

a restriction has been eliminated by unTaveling the loop body dynamically al. runtimc,

and the execution l'an initiate as many iterations as possible given that cnough mcm·

ory is available, limited only by data dependences [9]. Although dynamic dataflow

architectures provide opportunity 1.0 fully exploit fine·grain parallclism in the loop,

managing the amount of storage has been a challenge [S, 11,20, :l9, 42, 40, 6.5, 66].

In this chapter, we have developed a framework 1.0 determinc, al. compile-timc, the

minimum storage l'l'qui l'l'ment 1.0 fully exploit the fine.grain parallelism in a loop. The

framework is developed under a FIFO dataf10w model where each arc in the dataflow

graph is organized as a FIFO queue of certain size. We l'l'calI the result in Theorem

2.6.1 that the maximum computation rate of a loop is bounded by the critical cycles

•

•

•

('//:\l'TE/l .'i. (:Y(:U~ B:\L:\.\'(:[;\(; S(://EME

ill th" data depelld(,lIrt· l';raph or da1.aOow graph. Sased 011 this observatioll, wc will

alloea1.e !>lIlf"rs 1.0 t.1... arcs ill the "ataOow graph Silch that no cycles are allocated

II10re 1.hall what are 11<""led. This will guaralltl'" that the optimal computation rate is

1101. slowed .",.1 1.hat 110 ('xtra storage is allocated. III this chapter, the butfer storage

will 1", alIoca1.<'d to th,' arcs of tll<' dataOow graph, instead of to the nodes in the

previolls chapter. The main results of this chapter are:

• The minimum storage requirement to support the ma.ximum computation rate

is analyzed and a storage minimization scheme called Cycle Balancing Scbeme

(CSS) is introduced. The basic intuition is that, since the ma.ximum compu­

tat.ion rate is dominated by critical cycles in the 1001', we should not allocate

extra sl.orage beyond a certain bound limited by the baiancing ratio of the crit­

ical cycles, defined in Section 2.6.

• The CSS is rormulated as an integer programming problem. Since integer pro­

gramming problems arc hard 1.0 solve in general, we concentrate on the linear

rela.xation problem or the CSS. A polynomial time algorithm of the linear relax­

ation or the CSS is presented which gives a fractional approximate solution of

the Cycle Salancing l'roblem. Il. reduces the l'roblem 1.0 a network fiow l'roblem

called mi.zimum Ci7'cuiation fiow problem. We also prove that the CSS has the

Totally DlLai Intcgrai (TOI) property, which allows the Cycle Salancing prob­

lem 1.0 be solved as a linear programming problem if the right-hand-sides are

rounded 1.0 their integer ceilings.

The subsequent sections are organized as follows: ln Section .5.2 we provide a

brier description of dataflow architectures. Then we give an example to motivate

our cycle balancing problem in Section .5.:J, Then, in Section .5.4 we formulate the

cycle balancing problem as an illteger programming problem. ln Section .5•.5 we give

a polynomial time algorithm 1.0 solve the linear relaxation problem of the CSS. ln

Section .5.6 we prove that the CSS has the totally dual integrality property.

•

•

•

CHAPTER ,1, CYCLE R:\L:I.\'CI.'\(; SeI/E,\lE

5.2 Dataflow Architectures

Datal1o\\' architectun's [2:1. 2,1. 2ii, j, 26] l'X''CUt,, ol",rat.iolls rl'prl's"IIt.l'd iu a dat.atlo\\'

graph , The origiual propos('(1 datallo\\' archit.edures do uot. ha,'" a U1l'tllory tllOll,'1 t.u

address the issue of ho\\' t.o ston' t.he n'suit valu,'s or t.he iut"rtl1l'diat." valu,'s, TI",ir

description of computation is pur,' fundional. Ho\\'e,'er st.orap;l' (such a..< t'l'p;ist."I')

allocation problems mnst be solv,'d on datatlo\\' archit,'dur,'s t.o adlil"'" "ost. l'tfl'ct.i,'"

performance.

No\\' wc introducc some notation for a datallow graph. Let us tirst. cOllsidl'r ail

operation which is not a conditiona! test, say an addition. SlIch ail operat.ioll is

represented as a node in a datal10w graph. If anode 1/.; 11l'"ds the vahw comput.ed

by node nj, then there is an arc from ni ta ni. The arc (ni> 11.;) is called an input

arc of node ni, and it is called an output arc of node ni' The arcs ill a dat.allow

graph are used ta transmit data between operations. Therefol'e t.hey represellt the

same dependencc relation as data dependence arcs in a DOC. Data are represellted .~~

token..< on the arcs in datal10w graphs. A node in the datal10w graph is called ellahled

if each of its input arcs contains at !east one token. An enab!ed 1I0de C,LII he execut.ed

or fired. The resuIt of the execution or firing is that exactIy Olle tokell from each of

its input arcs is removed and exactly one token is added ta each of its output arcs.

Figure 5.1 shows the action of firing of a node in a dat.al1ow graph, where the black

dots indicate tokens.

A conditiona! test operation is treated very dilfercntly from an ordinary operatioll.

The test itse!f is representec\ by a node. The input arc or arcs to the t.est. 1I0de will

provide data ta the test. However the result of the test will output a special boolcall

valued token on each of its output arcs. The special boo1eall token cali only take t.WO

values, trne or false. A computation involving conditional test is rcpresented by the

sa called conditional schema [22] in Figure 5.2, in which two kinds of special nodcs,

i.e. the switch nodes and the merge node, are used ta select the branch that is takcn.

A switch node has two input arcs, one is a data arc and the other is the (control)

arc from the conditional test node. The switch node will consume one token from its

• CllAI'TEl{ ."J. (.'H.'LE IHI,ANCING SC'HE",IE 100

n·1
+

(a) Node ni is enabled
before the ftring.

(b) After the ftring of
node ni,

•

•

Figure 5.1: Firin)!; of a node in dataf!ow graph.

data input arc, and consume a token from its input control arc from the conditionaI

test. The switch node has two output arcs which are called true and faIse output

ports. If the booIean token on the input control arc carries a true value, then the

output token will be routed ta the true port, and the value of the output token equaIs

the value of the input data token on the input data arc. If the value of booIean token

on the input control arc is faise, then the output token that equaIs the input data

value is put on the false port. in ilny case only one of the two output arcs from the

switch node will obtain a token.

A merge node is used ta join the two branches. A merge node has three input

arcs, two of them are data input arcs connected to the true port and the faI::e port

of the node, respectiveIy. The third input arc is the control arc from the conditionaI

Il",t node. The semantics of firing a merge node is that it will remove one token from

either the the true port or the faIse port, but not both, according ta whether the

value of the boolean token on the input control arc is true or faIse. Of course it will

also remove the token from the input control arc. Then the merge node will output

a token on each of the output arcs which has a value equal to that of the input data

token on the chosen port.

Using merge nodes and switch nodes, a Ioop can be represented in a dataflow

graph by the so called iterative schema [22]. Figure 5.3 shows an iterative schema

• CHAPTER :;, CYCLE BAL:\;\iCISG SCHEME

T F
merge 1+---------'

7.

Illl

• Figure 5.2: A conditional schema in a dataf10w graph representing "if x > 0 then z
=x+y else z =x-y".

that computes the following 1001':

for i = 1 to U do

surn = sum + a[i];

enddo;

(5.1)

•

However if the 1001' upper bound is very large, since ail the testings will take the

true branch which will come back to the beginning of the 100(>, we can sim(>lify the

1001' schema so that the conditional test, the switch nodes and the lllerge node are

omitted. In Figure 5.4 we show the simplified version of the 100(> schema in Fignrc

5.:J.

In the simplified version of the 1001' schema, we can sec that it is very ml1ch like a

data dependence graph of the 1001'. Actl1ally the only dilference :, that in a dataf10w

graph the dependence distances of the arc are indicated by the nl1mber of tokens on

the arcs. Subsequently, we will use simplified versicn of 1001' schema to repr<.-sent a

• (.'l/:\l'TEU .'j. C''{C'I.E HA LloW'/;W; SC'//EME 102

l'

:o.um o

•

•

F

Figure 5.:1: A iterative schema in a dataflow graph representing the loop in (5.1).

A ~implificd ilcr:mivc schcnu in
whicb the mcrgc nodes OlDd the swilCh
nodes have bccn omiued.

Figure 5.4: A simplified version of loop schema.

•

•

•

CHA PTEH.1. CH'tE B.·\ 1.:\.\'C/.\·(; ;;('1/ E.\l E

loop in latl'r ~l'et.ion~. Sine.' t.1H' ~illlplilied \·,'r~ion of datallo", ~..h,'nl"l" l'or I\l0l'~ 1""

no ditfert"llce tü data dl~p('lld('nl'(' ~raphs in t.,'rm of n·prt·:-;l·llt.ill~ t.ht' dat.a d"IWlldt·llCt·s.

t.hl' dt'linition~ abont dat.a depelH!,'nCl' ~raph~ ean ail Ill' appli,'d to I.I"'~,, ~illlplili,'d

datanow graph~.

Argument-Flow Dataf!ow Architecture [22, 25, 9] : :\n argun1l'nt-llow datallo",

COll1puter architec:tllre is ont' that cOinputes a datanow ~raph ClI'Cunlil1p: t.u t.llt'

~elllantics of the datallow graph. l'hl' dat.a t.oken~ are .~<~nn1l'd t.o Ill' ~"I't. ,'x­

plicitly by the prodnrer nodes to t.hl' eonsnllll'r nOlle~ along th,' ar,·~.

Argument-Fetching Dataf!ow Architecture [26] : An argulllent.-fd.d,ing ,\;,t,allo",

computer architecture is one that al~o comput.es a datailo", graph a""ording t.o

the semantics of the dataf10w graph. However a produœr node will storl' it~

result data token in the memory ~ystem, and a con~uml'r node will havl' the

concept of the address of its input ~"ken, and go 1.0 t.hat addrl'~~ t.o l'xplicit.ly

fetch that data from the memory system.

With these definitions wc l'an sec that a produœr node in an argulllent-iluw archi­

tecture has to duplicate its result to its multiple consulllers, while '1S iu an argument­

fetching architecture model, the produccr stores only one copy of its re~ult.

5.3 Example and Motivation

In this section, we use an example 1.0 show the challenge of minimizing the 51.01'­

age l'l'qui l'l'ment while keeping the maximum computation rate of loop exccution on

dataflow machines. Related work will be discussed in Section .5.7. Let.'s consider t.he

1001' L2 containing loop-carried depc7lde7lcie.•, shown in (.5.2) .

•

•

•

('//:\ l'TEl! ,'i, (.')'(.'1.1': Ii:\ L\ ;\'(.'LW; ,W.'//DIE

L"!, : for i = 1 t.o Il do

a: a[i] = J[i - :1] + ,[i - 2]
b: b[iJ =a[i] +xli]
(" : ,,[il = a[i] +y[i]
d: d[i] = b[i] + :1.0 (5.2)

(' , ,[il = cri] +d[i - 1]

J: J[i] = d[i] +cri]

":
g[iJ = cri] +e[i]
enddo;

Fi)!;ure 5.!; shows t.he dataflow graph of the loop L2• Figure 5.5 (a) contains

ext.ernal input arcs which are omitted from Figure 5.5 (b). Note that a complete

t.ranslation of L2 int.o a dat.aflow graph also contains loop control actors, such as

swit.ch and merge actors [24]. We assume that the loop is executed a very large

lIumber of iterat.ions. Therefore. il. is reasonable ta assume that the switch and merge

actors for loop control will always take a fixed brancil path except for the start and

t.erlllinat.ion of the 1001'. For simplicity, wc omit them from Figure 5.,5.

The arcs in the dataflow graph represent the data dependencies. When there are

a black dot. or dots (called tokens) on an arc (h, k), then that means the arc (h, k)

is a loop-carried dependence, and the number of tokens on the arc (h, k) represents

the iterat.ion distance of the dependence. For example, there are three tokens on arc

(J.a), which means that the result produced by J al. the current iteration i will be

used by a thret' iterations later al. iteration i +:t

Under the static dataflow mode!, il. is assumed that eacb arc in tbe dataflow graph

can hold al. most one token. So one storage location is allocated for each of tbe arcs.

ln a static dataflow architecture, a loop-carried dependence of distance> 1 can be

represented in one of the two ways. Either we can umoll the loop a number of times

sa that ail the loop-carried dependences are of distance one, or we can use a cbain

of m"k arcs 1.0 joill nodes h and k sucb that tbere is one token on eacb of tbe arcs

•

•

•

('H:\l'TEH .i. ('n'I.E B:\I.:\,\'(,1.\·(; ,'i('HE.IIE

3.0

(a) Dataflow graph for loop L.

a

(b) Dataflow graph without oUlside input arcs.

Figure 5.5: DataOow graph for loop 1'2

• ('/f:\I'TEI! ,'i, (')"('I.E H..\/.:\.\'(.'J.\'(; SCIIE.HE

a

lOG

•

•

Figure 5.6: Static dataflow graph and its storage allocation.

on thc chain. Thcrcforc static dataflow architecture can indeed handIe loops with

loop-carricd dcpcndcnccs of distance more than one. However the limitation of one

tokcn l'cr arc in static dataflow architecture will limit its ability to fully exploit t!Je

parallclislll in thc 1001' and also lilllit its Illa.xilllum computation rate to be at most

~. For our cxamplc 1001' L~, the static dataflow architecture uses la memory spaces,

which can only run at a ma.ximum rate of ~ because the feedback arcs create new

cycles of Icngth 2 - for instance cycle a -> b -> a, as shown in Figure 5.6.

DalajlolO software pipclining was originally proposed te exploit fine-grain paral­

Ielism in 100ps on static dataflow computers [40, :~S]. As a result, there may be several

iterations cxccutcd concurrcntly with one copy of the uataf!ow graj)h for L2• The code

is mapped snch that successive wavcs of e\ement values of the input arrays x, y and

z (corrcsponding to inputs to successive iterations) will be fetche<! and fed into the

dataflow graph of the 1001' body. So the computation may proceed in a pipelined

fashion. However, the loops considered in [40, :~S] have no loop-carried dependences.

Therefore the main limitation ùf static dataf!ow mode! is that it may not be able to

• Cl/APTER .i. CYCLE 8.-\1..-\.\"('/.\"(; SCl/E.\lE llIï

•

•

fully ":-~:ploit tIlt' paralldislll in t.Ilt' h)op if IOl)p-Carrit'd dt'llt'IHlt'nCt's t'xis!. Ft)r ,'xalll·

l'le. in tll<' exampl.. 1001' Lz in (;;.21. il' maximnm nll1\putation rat,· i, ~ limit"d hy

critical cycle a --+ C'-' f --+ li. HO\\'t'\"er tht' st.atic archit.l'ct.l1rt' 1l10tlt·lc(ln Ilot ~H'hit'\'('

that sp,'ed.

"Ve will U'<' a mode! mon' g"ll<'ra! than t.h,' st.at.k dat.at1ow mllllel. but. ,impl"r

than the dynamic datat10w mode!. in the organizat.ion of t.h,· memory st.rnl'l.llr'·'. \V,·

assume that an arc can h'J!d an unbounded numlll'r of t.oken, in a First.-In·Fir,t.­

Out (FIFO) queue. Later w,' will gin' a more formai d,·linit.iou of olll" n""I,·\. Our

problem is to find bounds on how llHmy tok"llS each are can hold, '0 that. maximum

computation rate as defined in Theorem 2.6.1 ean be support.,·,\.

Under the dynamic dataflow architecture. sueh limitation is e!imin.<t,'d via /001'

unraveling [i], which virtually providcs unbounded amount of storage for each are.

The storage minimization problem, bowevcr. still exists for dynlLl1\ic dat,dlow m...·

chines. To execute a 1001' on a dynamic dataAow machine. mult.iple inst.mc,,,, of 01'"

operation corresponding to dilferent iterations can be initi...ted concurrently. limit.e.1

only by the data dependences of the 1001'. This is accomplished by the /001' 11/1­

rave/ing scheme, where (in more "modern" implement....tions such as the Monsoon

dataflow m....chine [66]) each iteration is allocated its own activatio/l frame containing

ail memory spaces required to hold its operands. Therefore each frame reqnires 'L'
much memory as the total number of arcs of the dataAow graph. This allows an iter­

ation to begin its initiation as soon as the data values for the iterat.ion h"ve "rrive.\.

With many iterations simultaneously active in the machine, dyn'L1nic dataAow mode!

may provide an opportunity to exploit far more parallelism than the st"tic d"t"Aow

mode!. As pointed out in [20], however, exploiting more p"rallclislll will invari;t1,ly

increase the resource requirement of a program. The challenge is not to allow the

1001' to consume more storage than necessary 1.0 fully exploit the parallclism i/l a

1001" Consider our example 1001' L2 , there could be three iterations rtJtlning al. th"

same time. Hence three frames each requiring 10 memory spaces need to Le allocated,

totaling :~o memory spaces. We will show that our method will require subst"ntially

less memory spaces (actually 16 buffers) than th;,.t.

• ('ilA l'TEl! ,"l, (.''('(:LE HA L\SCLV(; SCII EME lOi>

•

•

1,1'1. liS 'csk 1.1", followill)!; '1""s1.;OI: wha1. is the millimllm amoullt of storage that the

1001' L;! tU't·ds tu rUII al. t.he 1II.flxim1l1ll rompu/a/ion rait> lludpr an it1ealized dYUéltllÎc

da1.aflow Mchi1.,,(·l.nr,,'! Tl", id"" is 1.0 add storage cOlltrol arcs alld check ail the l'ydes

Su that. {'aell cyd(' is allo("éLt(~d ('uollp;h st,ofa,g;(' in ord(~r to tllailltain Cl balancing ratio

(d"lil",d ill S"dioll ~.(i))!;reater I.hall or "qual to t.he ratio of the critical l'ydes. Wc now

l'lJIIsid"r t.1", "xample 1001' /-2 ill Figllre 5.5. There are three loop-carried dependellcy

aTl's, whieh form !j l'ydes:

Cl = {(a, Il), (lI,d). (d,J), (J,a)}

C2 = {(a,c),(c,c),(c,a)}

C3 = {(a,II), (b,d), (d,l'), (l', a)}

C'I = {(a,c),(c,c),(c,J),(J,a)}

Cs = {(a,b), (11, d), (d, l'), (c,J), (J,a)}

Their balallcillg rat.ios arc:

Thercfore C2 is the critical cycle, and the ma.ximum computation rate is~. In

Figure 5.i we add some storage control arcs which are indicated by dotted lines. The

t.wo tokens on (d,a) mean that we have allocated two buffers, organized as a FIFO

queue, to the chain from a to d. Similarly the two tokens on arc (J, d) indicated that

two buffers have been allocated to arc (d,J), etc. Therefore a total of 16 buffers are

allocated, which allows the 1001' L2 to run at the maximum computation rate of ~.

That is because ail the cycles in Figure S.i have their balancing ratios at least ~.

5.4 Cycle Balancing Scheme (CBS)

From Theorem 2.6.1 in Chapter 2 we know that the maximum computation rate of

a 1001' is dominated by its critical cycles. Therefore, we will allocate just enough

• Cl/APTE/{.'i. CH'LE B:\f...I.VCI.\·(; SCI/DIE

a

Ill!)

•

•

Figure li.i: Storage Allocation by our CSS us,,,, 16 hnlfers.

storage to each cycle so that its balancing ratio at least as hig as the halancing ratio

..l the critical cycles. In this section, we propose that a compiler should he ahle 1.0

determine the storage allocation such that ail cycl,,,, have the sanl<' halandng ratio

as that of a critical cycle. We cali this procedure cycle halanci/lg for dal.allow graphs

[41].

ln this section we will show how to formulate the cycle balancing prohlelll ..s an

integer programming problem. There arc two steps in the formulation process. The

first step is called chain replacement, i.e. replacing each chain in the datallow graph

with a single arc. This has the effect of sharing the storage for ail the adors along a

chain. The second step is to derive an integer programllling formulation which will

optimize the memory allocation. We will show in Section 5.1i t.hat the rciax;Ll.ion

linear programming prohlem can he solved in polynomial time. We will also show in

Section 5.6 that the integer programming prohlem has the tol.ally dual integral (TOI)

property, which will also allow us to solve the integer programming itsclf hy solving

a linear programming prohlem.

• ('11 ..\ l'TEll .">. ('\,'CJ.E HA 1.:\ ,\'CI,\'(; SCll l'Al l' 110

5.4.1 Chain Replacement

•

•

Ll'I.\ lirst. SULt." what. is a ..hain.

Definition 5.4.1 (;;''''l/ n dntni/om g1'tll'h c: = (N. A; 1/1.. dl. if anode 1/. ha.. only one

iII/litt ""1' Il/Id ol/Iy 0/1" oltJl"t arc, thel/ it i., called ..i11l1'Ie. ri l'ath i.< mlled a chain

If nll th,' IlOd"" Iyillg intr'/'l/nlly il/ the l'nth (i.e. not inc/Ildillg the two CIld nodr..) arr

simpir'.

Chains arl' t.he most. simple st.ruel.ures ln a dat.al1ow graph. The obvious opti.

mizat,ion of st.urap;e allocation is that. ta consider a chain as a single arc if one choose

t.o shMe t,he st.orage among t.he arcs along a chain. However wc should remember

t.hat. more gelwral sharing of the st.orage among arbitrary actors gives rise ta an NP­

complde opt.imization problem (Theorems a.2.! and a.:3.!). Therefore in this chapter

we rest.riel. oursc!f t.o chain replacement. only.

Our mdhod will allocate storage ta a dataflow graph on a chain by chain basis.

For instance. consider a chain Q of length x. Our algorithm may assign a total of

y bnrrers t.o t.he chain Q. Concept.ually. the y buffers will be shared by the tokens

t.ravcled along Q. For simplicit.y in later formulation, we can replace each chain by

an arc. The implementation issue for chain replacement should be straight forward,

Definition 5.4.2 GÙIC1l a datafioUlgraph G = (N,A;m,d), and a chain Qin it, let

h br the "tarting 1I.0dr of chain Q, and k thc end nodc of Q. A chain replacement of

Q i.< the replacement ofQ by a new arc joining h and k. The length of the neUl arc i..

the ,<1I1n of the length" of arc.. along the chain Q. If all the chains have been replaced

by a/'es, then the rr..nlting gral'h i.< callrd the skeleton, and i.. dcnoted by SG.

5.4.2 Integer Programming Formulation

Aft.er wc have done the chain replacement for a given datal10w graph G we obtain a

~skC!et.on" of G. indicated by SG. Of course if no chain replacement has happened,

G=SG.

• Cl/M'TEH ,s, (')'CI.E H,,\ L\ S('f.\'(; ,';CI/ E,\1 E III

•

•

Tu litllit the.' llulllht'r of IlWlllory :-oparl'~ aHol'ah-li on t.llt, arcs in tht' skl'It'ton .",'c ,', Wc.'

illtrodllce a llt'W "Iorag.. co1l11'o1 III'C (J.o, h) "orr"'l'oll,!ill~ to ,'a..h al''' (h,/d ill S(;, '"

,!dltl<'d ill Ddillition 5.'!.:!. :\ 't.ora~,' cOIlt.I'ol al''' ha, t.1,,' ,'If,'"t. of lilllit.in~ t.h,' nlllll1>,'1'

of tokt'lls that can rl'sidc." 011 a.n arc at. any 1l10nwnl.. But. st.or.\~t· c,'ol1t.rul "TrS an' ullly

Il,ed for the pmpo,,' of caklllat.ill~ t.h,· amollnt of 't.ora~,' t hat. ,hollid 1", allo..al<'.\

t.o each individlla! arc in t.h,· original ,lat.allow graph, ln t.1ll' ,,,'t.llal ,'xecllt.ioll of t.h,'

datal10w graph, ,torage cont.l'ol arc, do not. ,·xi,t. and t.1ll'l'<ofol'<' ,,,Id 110 ext.ra dat.a

dependcnn,,;.

Definition 5.4.3 Ginen a "kcldon of a dala]low !/rallh 8G=(N. A: 111. dl. fm' !'fIch

arc (h, k) E A, if m"k = 0 alld (k, h) rf:: A. Ih,'1I. /Ile add Cl ,,1 0 l'Il!/l' l'lm/ml !lI'l'

(k,h) with Xk" initial tokcn.<, which i" a '"al'iable 10 11." ddl'1'lIIillcd lai,.,.. lllld ",hir'h

ha" the cffeet of limiting the Illtlll.ber of tokm" l'c,,irlill.!/ 011 lll'C (h. k). Th,' .<r'i of

"torage cOII.tml arc" will be denoted by A - a" they an' in thl' ol'I/O"i/c dùn·tir",,, of

their cOITC"ponding dependcnre arc". Each aIT in A - ha.< a Img/h of l, whirh 1"Jll'd,'

thc timing a.<"umption that each node ",ill n$e one time "tCl' to take a token frolll it"

input arc and Ï-< ready to take the next tokw after thi" "tel' 1. Th" nlLmb'T of initial

tokens on cach of thc..<e ne'" control arc" Ï-< dcfined to be =ero. 'l'hl' l'l',,uiting !/rtLI,h i"

called Augmentcd Dataj/ow Graph, or ASG for short.

Sec Figure 5.8 for an example of augment.cd dat.al1ow gmph.

Let us notice that an augmented datal10w graph itsclf is still a dat.;dlow gr..ph if

ail the Xk"'S have becn fixed as constants.

Lemma 5.4.1 The simplified dataj/ow graph••, containing no mcrge muL ,.",itch nodl's,

have the property that durïng their cxecution the s"m of /okens (m (Lny cycle dol'S 1I.0t

changc.

Proof: To sec why the lemma is true let us fix a cycle C and let 'Il be ail ador on C.

When an actor is fired it consumes one token l'rom its input arc on C anu prouuet.'s

lOf course this parameter can be adapted to hardware configurations.

•

•

('1I:1/'TEU ,'i. C'YC'I.E H:\L:\.W:/;,VC; SCHEME

a

1(a) SkelelOn of dataflow graph of L
alter chain replacement.

a

(b) Augmented skeleton ASG wilh storage
control arcs indicated by doned lines.

112

•
Figure S.S: An example of dataflow graph and its augrnented dataflow graph.

• CHAPTER ;'i. CynE B.-\L\.\"('I.\·(; .'WIIE.\/E 1\:1

•

•

one token on its Olltpllt arc on C. Tlwrl'fon' 110 tok,-n is add,-d 10 COI' \os\ 1'1"1111 (',

the token is only UlOlwd l'rom one sid,- of " 10 t.1,,' oth,-r sid,' "l'Il. So Il,,, 10talllllm\,,'1'

of tokens on C does Ilot chang". 0

Each storage control arc (1.:. h) w,' just add,-d in. tog"thel' with ils ol'igillal ,!,'!wn­

dene<' arc (h. 1.:). forms il. eycle with a sllm of Xklo tok,-ns 011 it. Th,-nofon- hy 1.h,- aho\'(­

lemma. the number of tokens that ar,' (h,l.:) l'an ho!,l in 1.!l<' :\(; is al. most .I·kl••

Henet' the total memory l'eqllin'd for the exenttion of 1.1l<' da1.allow graph is al. most:

L Xklo + L lIIhk·
(k.Io)EA- (h.klEA

in which the second sum is il. constant. Thns onr objective is to minimize the lirst I.erm

in the above expression, The introduction of the storage control arcs a!so inl.rodnc,'s

many new cycles in the ASa that do not appear in SC;. The balancing ratios of

the new cycles might be smaller than that of the original critkal l'ydes in SC; if the

Xhk'S are not proper!y chosen. ln order to support the maximllm complltation rate

we must keep enough tokens - equivalent!y allocate enollgh memory spac,,,, - ill

ail cycles such that the balancing ratios of the new cycles is nol. smaller thall thal.

of the original critical cycles, ln order to give the mathematical formll!atiOIl of the

minimization problem, we first introduce some notations.

Definition 5.4.4 aiven an ASa = (N, A; 111, d), let C be iL direded cycle in the

ASa. We use C+ to indicate the arcs in C ",hich are notthe .<lorage conl1'01 arcs, i.e.

and C- to indicatc the arc in C !Dhich arc storage control arcs, i.e.

With these notations, we give the following formulation of the minimum memory

allocation problem which can support the maximum computation rate.

• CI/A/'Tl.;n .~. C'lCU'; BALANC/SC; SCHEME

nHI1 L Xhk

r=(h,k)EA-

Sil bjl'd lo

2:.ec- x. + 2:.ec+ m. > M(C-) "IC E C(4S'G)
D(C) - D(C-)' . '.

x. 2:: 0, x. integer, "le E A-

11·1

(5.:~a)

(;;.:~b)

(5.:lc)

where C(ASg) is the set of ail cycles in ASG and C- is a critical cycle in the original

datallow graph c: or SC:.

There exists one constraint in (5.:~b) for each cycle C in the ASG. It ensures that

the vailles of the x.'s are big enough so that the balancing ratio of cycle C (defined

in Section 2.6) is not smaller than that of the critical cycle in the original datafiow

graph. By moving the variables to the left hand side and the constant terms to the

right hancl side, and by defining• M(C-)
hc = D(C) D(C-) - :E m., "IC E C(ASG)

.ec
(5.4)

then the formulation can be rewritten into the following form, which is named Cycle

Bu/uneing problem:

Cycle Balancing Problem (CB):

tnin L Xe
eEA-

subject to

:E Xe 2:: hc, "IC E C(ASG)
eEC-

X. 2:: 0, "le E A-

Xe integer, \le E A-

(5.5a)

(5.5b)

(5.Sc)

(5.Sd)

•
The solution of the CS problem will provide a storage allocation for ail arcs in

the skeleton of the datafiow graph, which will he enough to support a maximum rate

• Cl/APTER ..i. CYCLE RA/.:\SC!SC; SC'IIE,HE 11;;

Ioop scb.:·dnIt'. Ho\\','\'('r thl' iIl t.t·~l·r :-ool111.Îol1 ('on:-:t rai 111. ~1 \",':-; \1:' :"'0111\' diIIkttltyin

solving it as will Il<' ,'xplaitwd in S,'ct.ion ;;.li. So on,' approacit t.o oht.ain a solnt.ion

is to sol\"(' the lin,'ar rdaxation prohlem t.o ohtain a fractional solnt.illll alal np-ronnd

the solution to obtain a n,'ar optimal int,'ger solntion. Th,' lin,'ar ft'laxat.ion of t.lw

CB problem is to ignore the integer const.raints (5.5d). W,' writ,· th,' linear r,'laxatillll

down as follows for future rderence:

Fractional Cycle Balancing Problem (FCB):

tnin L Xl"

l'''EA-

subject to

'vVe shoulclnotice that there can be an exponential nnmber of cycles in an ASC:,

which means that there could be an exponentialnumber of constraints in (5.5b) l,nd

(-5.6b) of the formulation of CB problem and FCB problem, l'<'.spectivdy. l'herefore

it is not trivial to solve FCB in polynomial time in terms of size of the given ASC.

Both the ellipsoid method [-55] and the Karmarkar method [-54] for solving line;,r

programming have computation complexity in terms of both the number of variables

and the number of constraints in the formulation. Sincc the number of constraints in

onr formulation is exponential, these algorithms can not be applied to our problem to

obtain polynomial algorithms. ln the method given in the next section we will explore

the properties of the dual problem of FCB to obtain a polynomial time algorithm in

terms of the size of ASC. Here we write down the formulation of the dual problem

of FCB as follows:

•

•
Dual of FCB (D-FCB):

L Xe <:: bc , "le E C(ASC)
r-EC-

Xe <:: 0, "le E 04-

max L bczc
CeC(ASG)

(5.6b)

(;;.lie)

(.'i.7a)

• (:l/M'TEII ."J. C'{CI.E BA LA NC'liV(; SCl/EME 116

L =c ::; 1,
c~,.

=r::::: 0, 'tG E C(A8G)

(5.ib)

(5.ic)

•

•

The <Iual problem could have an exponentialnumber of variables, sine<' each vari­

able in the dual problem corresponds to a constraint in the primai problem FCB.

Ilowever we present a nwthod which will produe<' at most IA-I positive =0 values,

ami ail the other =o's are zero. Wc will use this propcrty to obtain a polynomial time

algorithm in the next section.

5.5 Polynomial Time Solution of FCB

ln this section, we show that the primaI problem of the linear programming problem

fCB (5.6) can be solved in polynomial time. We will actually show that its dual

problem D-fCB (.5.i) is equivalent to the so-called circulation problem [:35]. Since the

circnlation problem can be solved in polynomial time [:32, 58], we only need to show

that the optimal solution of the circulation problem can be trans!ated into an optimal

solution of D-FCB (5.i) in polynomial lime. When the dual problem D-FCB (5.i)

can be solved in polynomial time, we can use this dual optimal solution to obtain an

optimal solution of the primai problem FCB (5.6) also in polynomial lime.

The general circulation problem is very similar to the minimum cost f10w problem.

The distinction is that in minimum cost f10w probIem, there is a source node and a

sink node. The objective is to send a fixed amount of f10w from the source to the

sink so that a given objective function is minimized. In circulation problem, there is

no source node or sink node, and f10w circulates in the graph. Now let us consider

the circulation problem formulation that fits our need. The circulation problem is,

given a directed graph, to find a circular f10w so that a given objective function is

optimized (ma.'i:imized or minimized). The mathematical formulation of the maximum

• CHAPTER ,1, CYCLE BA L\.\'(,I.\'G ,';('1/ DIE Iii

cost circnlat.ion prohl,'m is p;i\',-n in liU»). which is ddin,-d un th- p;raph :!<.. wit.h

cost codlicient.s de\illl'd a."

M(C") _
l'. = 1. D(C-) - Ill •• 'l,- E :1 U:l • (!i.:;)

where C" is a critica} cyde in tlll' original data lIow graph and 1. is ddin,-.\ in S'-I·tion
.) -....;).

Maximum Cost Circulation Problem (MCCP):

•

ma." L: l'.J.
'E'\ UA-

subject to

L: Je - L: Je = 0, '1h E N
eES+(h) eEb'-(hl

Je::; 1,

J. ~ 0,

(!i.!)a)

(5,!)h)

(!i.!k)

(!i.!ld)

The following theorem el'plains why this version of the circnlation prohlcm lits

our ncccl.

Theorem 5.5.1 Given an optimal solution oJ MCCP (5.9), '"e can cOll.,lntc/. an

optimal solution oJ D-FCB (.5.7), and ,JÏce tlersa.

Proof: Let J = {Je}eEAUA- be a feasihle solution of MCCr (5.9). Lei. us deline

JI = J, i.e.

Let SUI) be the support set of JI, that is, the subset of arcs with positive flow viLhws:

•
S(JI) = {e; cE AUA- such that J~ > O}. (5.10)

• ('JI:\I'TEn ;j. (,'"Y"(,'l.E HA l.:LVCL\"(; SC'JIKUE 11 :;

If 1.\1<" support sdo SU') is not l'mpty. then il. must contain a cycle by the nature

of 1.11<" circular now il. n'presents. Let (:1 he any gi\"en cycle in 8(f'). Define =c, 1.0

Ill' 1.11<" minimllm now vaine among ail the arcs in Cl. that is,

(S. Il)

Now Wl' ddine a new circlllar now f2 by subtracting =C, from the current Bow fI:

(.5.12)

•
11. is easy 1.0 check that p =un is another feasible circular Bow of MCCP (.5.9).

Bill. t,he number of arcs in the support set S(P) of P is strictly less than that in the

support set S(fl) of f', because al. least one arc in Cl must have a zero Bow in p.
We l'an repeat the above procedure 1.0 choose another cycle C2 in S(P) and produce

another circular Bow {Pl. In general, from the circular flow fI., we choose one cycle

C" in its sllpport set SU") if il. is not empty, and define =c. 1.0 be the minimum flow

vaIlle among ail the arcs in C,,:

=c. =minU~; eE Cd.

Then wc define the next Bow /,,+1 1.0 he:

if e E C",
if e rt. C",

•

This procedure stops when the most recently produced circulation fiow f"+1 IS

zero everywhere, that is, its support set S(Jh+l) is empty.

By that time, we have defined positive variables:

• Cf/APTER li. C'YC'l.E HA /.:\.\'C'/.\" (; SC'1/ E.\I E

for il cycles

vVe defin,,:

=, = O. for all t.11<' oth,'r ,!in'ctl'd cyd,'s C' in q.·I.W:).

Il !1

Let us note that for snch delined =c 's. tlll'n' arl' only il of t.11<'1ll 'li'" "t.rict.ly p,,"iti,",'.

where il is l"ss than or "qnal t.o t.he nnnllll'r of ar,'S in t.h,' ASC. Ali t.h,' "t.h"I"" '1I'l'

zero valued. The nnmher il is "maller t.han or "qnal t.o t.11l' nlllnl",r of 'li"'" ill A UA­

because each step of prodncing a new Ilo\\' will t.ak" ont. at. I"ast. '"1" 'LI"<' f"olll i1u' ohl

support sets.

Next we show that such defined {=c}ceC(..\sG) is a f",..,ihl" "oll1t.ion of Do FCB (il.ï).

First let us notice that for such defined {=c lcec(ASG)' the following propl'rt.y hol<ls:

vVe l'an prove (il. ta) by induction on the nnmber of cyd"s for which t.he snpport. Sl't.

S(J) can be decomposed into. If S(J) itsclf is a single cyd". tl"," :.hl' amonllt. of Ilo\\'

on all the arcs in th,s cycle must be the same because t.he Ilow is a circlllar one. So

in (5.11), =c, is equal to the amount of Ilow on ea-:h arc. Sincc there is only olle cyde­

in the support set, r- in (5.12) is a zero Iloy:, and all the ot.her =c's Me delill"d t.o b"

zero. Hence, for the arcs in the support set (5.la) is truc, and for ',rcs e ilOt. ill t.h"

support set, i.e. J< = 0, and any cycle C passing through e is defined 'LS zero, t.herdorc

(5.1:~) is also truc. Now consiner the general case that the support set S(J) cali b"

decomposed into h cycles. Then the support set S([l) of r- l'an Ile c1emmpose'c1 illt."

h - 1 cycles. The induction hypothesis assumes that

•
L: =c = J" "le E AUA-.
C3r

(il.t:l)

•

~ 2 U -L..., =c = J<, "le E A A.
C3< and c#c,

By the definition of r- in (5.12), the following is truc:

• ('//:\ l'TUI .~. ('n '1.1-.' H.\ 1.:\ .\'('1.\"(; S('// f.\1E

TI,..r,.fo", "'" h"",· 11,.. follo"';I1,!!;:

L =,. + =f', = J:. 'tr: E ('\.
('; ... and (';t('1

'1I111

L =" = J; = J:. 'te of. CI'
('~r

Il,,"<,<' (ii.l:1) is tm,' for ,,11 t.h,· <: ·s.

l:!ü

•

•

For ""Y arc e E il -. tll<' collstraint. for e in problelll D-FeS (.1. ib) dClllands that

t.h,· Slllll of t.h.. =c's for t.h.. cycles (' containing e is bOllnded above by 1. This is truc

hy the propert.y ill (ii.l:l) sine<' J,:::; 1 for e E /i-.

Now the "hjediv,' value of snch d<'ilned feasible {=c} is:

L bc=c = L {D(C) '~ig:{ -Lm.} =c
ceC ceC .eC

= L {L l, M(C-) - L me} =c
cec .ec D(C-) ,ec

= L LP'=c
CE':t'EC

= L Ll).=c
,eAUA- c~.

= L p. L =c
eeAUA- c~.

= L P.J.
ee,IUA-

50 the objective "alllc of problclll D-FCS (5.i) is thc same as that of problem

Mccr (!i.9).

To show thc re,·erse.let {=c} be a feasible solution of D-FCS (5.i), then it is easy

t.o check that the flow defincd by the fol1owing formula is a fcasible solution to MCC?

(ii.9):

J, = L =c. 'te E AUA-.
c~.

• ('J/.·\PTEH :i. CH·I.E B..\/..\.'C/.'(; SCIIE.\lE lêl

Of ('l)l1r~p. if OHl' of tilt' f("a:-:ihlp :-:nlllt.iOIl Î:-:. optinlal. tltt" otlwr is alsu optill1l\J :-oillt't'

th,'y will prodtlcl' th,' "1111<' ohjl'cti\'l' ,·ahlt,. This pro"l'S t hilt tIlt, ~1('('\' l',.!l) iltltI

th,' D·FCB (ii.i) an' l'qtli,·al"IIt. o

•

•

Ther,'fon' D·FCB (ii.i) alld ;>.HTP (ii.!)) ar,' l'quiva!l'Ilt ill thl' S,'II'<' that 1.1",

soltltiotl of Olll' prohl,'m also givl's tlll' solutioll of tlll' 01.1",1'. \Vl' cali SI'" from 0111'

formtllatioll that i\ICCP (ii.!)) hil.' :!INI collstraillt.' alld I.-IU ..I-I variahl"s. Bolh

of thesl' two numbers an' polynomial 1.0 1.1", original sizl' of th,' ..L"·(,'. III facto 1.1",

circulation problem MCCP (5.!)) l'an bl' soh'l'd by polYllomial liml' algorithms [:Ili.

:32, 58] which arc muc!! better than thl' g"lll'ral methOlls of 1.1", simpll'x algorithm.

the c1lipsoid algorithm [5iil or Karmarkar'.' algorithm [ii4].

Theorem 5.5.2 (Lawler, [58]) MCC? (.5.9) cali bc sol'lfd ill O(IA U .-I-I~ log INIl =
O(lr1j2logIN\) time. where IAUA-I i.< the 1IlL1l1bcrofar'cs of th" grll/l" :ISe: <l7ulINI

the lI11mber of 1I0des ill the graph.

After wc obtain the optimal dual solutioll of D·FCB (5.i). Wl' cali tr',"sform it

to a primaI optimal solutioll of FCB (5.6) ill polYllomial time by l'ither thl' tabl,'au

method or the complementary slackncss method in [1 il. Bence we have proved thl'

following thcorem.

Theorem 5.5.3 The lillear relaxatioll FCB (5.6) cali be .<ollled in /lolyrwmial ti",,,

with a complexity O(lAI~ log IN\).

Proof: The solution of the MCCr (5.9) has a complexity of O(lAI~ log INI). Theil

ail the transformations to obtain the solution of the D·FCH (ii.i) al If.! FCB (ii.G) <1I'e

not using more than O(IAI2 Iog IN\) time. Thercfore the total cOlllplcxity of solvillg

the FCB (5.6) is O(IA12 10g IN\). 0

The solution of FCB (5.6) can be rounded up to give an intcger solution for CH

(5.5). Let us look at our example to sel' how this is done. In our cxample of Figure

• C'JI:lI'TE/{ ,",. (.')!(,'LE H:\/.:\;\"('/;W; S(.'JlEME 122

•

•

:;.H, 1.1,.. opt.illlai solut.ioll of t.11l' circulat.ioll problelll ~ICCP (:;,9) is t.he follo\\"ing:

Jl~ = J~'I = 2,

J~I = III = f,~ = f", = h" = J", = 1.

alld ail ot.lll'r J;j = O.

'l'Ill' support. sd of t.his circulat.ion flo\\" is:

S'(f) = {(1,2).(2.1),(2,'I),(4,2),(4,;~),(;~,5),(5,a),(a, I)}.

The support. set. c"n he decomposed illt.o four cycles as follows:

C, ={(1.2),(2, Il)

C~ = {(2,4),(4,2)}

C3 = {(a,5),(5,;~)}

C,' = {(1,2),(2,4),(4,:~),(a, Il)

By t.he proof of Theorcm 5.5.l wc can construct the optimal solution of the Dual

of FCB (5.i) ilS:

=C, ==C, ==C3 ==C. = 1.

This solutioll cali hl' transformcd 1.0 a solution of the primaI problem FCB (.'5,6)

X21 = bCI= 2
4

X"2 =bC'=:3
4

X"3 =bC3=:3
4

X"3 =bc.= :3

When round-up 1.0 an intcger solution, il. is

•

•

•

CH.,\PTER ;;. CH'LE B.-\L.-\SC!.\;(; SCIlE.\/E

which happ,'ns 1.0 bt' optimal for tl1<' int"~,'r pro~rammin~ ('B l"'.;l).

:\1though we ha\"t' shown that FCB (ii.ti) can 1", soh"'t! in 1'01ynomi;d tim,', thl'

so!ntion of th,' intl'ger "ersion CH (ii.ii) in polynomial tim,' n'mains ;,n "IIt'n 1'1\'1.­

lem. In tilt' next st'clion, Wt' t'xplort' a spt't'ial property, totally <\ual int,'~rality, "f tilt,

constraints of CR (ii.5). antl propose another approach 1.0 sol\",' il. hy lin,'ar program­

ming.

5.6 Totally Dual Integrality

In Section .1..1 we have shown that the linear rda·mt.ion FeR (5.(;) of thl' CH (5.5)

l'an be solved in polynomial time even though there conld 1", an eXI'0nent.ialnnmlll'r

of c';>Ilstraints in th" formulation. The solution obtained from (1;.6) was not always an

integer solution. Since we pref"r to have an precise integer opt.imal solution instmt!

of rounding up the fractional optimal solution 1.0 integers, a nat.ural quest.ion t.o ask is

how 1.0 obtain an exact integer optimal solution. One possihility is to show that t.he

constraint matrix in the formulation is totally unimodular, hl'cause Theorem 2.10.1

guarantees that if the constraint matrix in the formulation is tot.ally unimodnlar, t.hen

the linear rela."ation problem will always have an integer optimnm solut.ion when

the right hand sides of the constraints are integral. Hence by showing the totally

unimodular property of the constraint matrix, one only nceds 1.0 solve t.he linear

relaxation problem which will guarantec to obtain an integer optimum solution.

Unfortunately, we show in this section that the constraint matrix in CB (.1..1) is not.

totally u71imodular (TUM). Therefore il. is not immediat.e1y dear that. t.he optimum

solution of the linear relaxation will always be integral.

However we will show that the integer programming problem CB (.1.5) has t.he

Totally Dual Intcgral (TDI) property, which is a weaker property th ..n t.he TUM in

the following sense:

• A system of linear inequalities that has the TDI property does not necc.'Ssarily

have the TUM property,

• C1JAl'TEH :i. CH.'LE HAL\;W.'/SG SCllE"Œ 124

•

•

• A systelll uf lil",ar illeqllalities that has the TUi\-! property also has the TOI

prup,·rty.

Both pruperties ilre importilnt for integer programming problems because they

"an p;uar1Lntee that their linear relaxation problems can produe<' integral optimum

solut.ions.

5.6.1 CB Problem Does Not Have TUM Property

We recall that in the formulation of CS (5.5), there is a constraint for each cycle C

in the augmented datafiow graph ASG and there is a variable for each arc in ASG.

Consider the dat.aflow graph G in Figure S.9 (a). Its augmented graph is in Figure

S.9 (h). We choose thrce cycles and thrce arcs in Figure 05.9 (b) so that the :~ by :~

square suhmatrix of the constraint matrix of CS (S.S) generated by these cycles and

arcs has a determinant 2, which is not 0, 1 or -1 as required by the TUM property.

The threc cycles in Figure 05.9 (b) are:

Cl = {eu, e24, e43, e3S, eSG, eiii},

C2 = {e13' C32' e2S, CSG, t%1 },

C3 = {C24' e;3' C32},

and the thrœ storage control arcs are:

The submatrix containing cycles Ch C2 and C3 and edges e61' e32' a.nd e43 is the

following:

e61 e32 e43

Cl 1 0 1

C2 1 1 0

C3 0 1 1

• CHAPTER .'i. CYCLE R:\L.·\SC'/SC: SCllEME \.,"_.1

1(al DataOow graph SO of a trop. ~

~

~
...

...
...

\
\
\
\
\
1
1
1
1
1,

1,,,
.-,

,,.­,,,,
1
1
\

•

1(bl Augmente<! graph ASO. ~

•
Figure 5.9: An example of dataf10w graph for which CS is Dot TUM.

• (.'IIAl'TEU .'j. ("t'('I.E BALANCINe; SCHElv/E 126

•

•

ft. is <"cS)" t.o St'" t.hat. t.11<' dPl.prminant. of t.h<' abo\"<' :1 by :1 snbmatrix is 2. So

by d,·finit.ion of t.ot.al nnimodnlarit.y, t.11<' ("Qnst.raint. matrix of CR (5.5) is not totally

IlIlitllodular.

5.6.2 CB Problem Has the TDI Property

W,' tirsl giv" the d"finition of total dual integrality. ln the following, we will use A

to d"nolp lh" constraint matrix, b the right hand side vector, c the cost coefficient

vedor of t.h" objectiv" fundion in the formulation of CR (.5.5).

Definition 5.6.1 ([74]) SILppose that A i.< a ratiollal matrix, b i.< a rational vcctor.

COll...sider the pair of primai and duallilLear programming problems:

min{cx 1 Ax ~ b;x ~ O} = max{yb 1 yA:5 c;y ~ O}.

Then the linear system {Ax ~ b, x ~ O} i.< said to have the Totally Dual Integral

(TDI) [Jropcrty if and only if the above dILal max problem has an integer optimum

solILtion y for caeh intcgral veetor c ",ith finite maximum.

The TDI property is weaker than the TUM property but it is still very important

for solving integer programming problems due to the following theorem.

Theorem 5.6.1 (Edmonds and Giles (1977) [31]) Let {Ax ~ b;x ~ O} be a

T D1 system. If the right hand side b i.< an integral veetor, then the primai lincar

[Jrograrnming problern, min{cx 1 Ax ~ b;x ~ O}, has an integer optimal solution for

mch c .<nch that thc solution i.< finitc.

We want to show that the cycle balancing problem has the TOI property, and

therefore it has an integer optimum solution if we replace the right hand side be with

its integer ceiling rbc1.

• CHAPTER ,:i, CYCl-E B..IL\;\,('/;W; SCIIE,\/E 1·'­_.

ln the formulation of CR (:'i,;;). th,· ohj"ctiv,' function chas ail its ,'utri,,,, ,'quai

1.0 I. In ord"r 1.0 show its TDI property. w,' have 1.0 consi,kr ail iut"~ral \",,·tllTS c's,

The more general fOl'mulation is shown in (;;,1,1) with th,' (,hj,·,·ti\"· function l)('iu~

generaliz"d 1.0 an arhitmry int"~ral \"'ctor c.

CB with generalized objective function (G-CB):

In order 1.0 show that G-CB (5.14) is a TDI system, we have to show that its dual

has an integer optimal solution for each c such that thc solution is finitc, according

1.0 Theorem 5.6.1. The dual of G-CB (5.14) is shown bdow:
•

n11n L c,.,x,.
,.=(n.,II}lEA-

subject 1.0

L X r ~ be • "le E C
eEC-

Xe ~ 0, "1" E A-

Dual of G-CB:

max L bc=c
CEe

subject 1.0

L =c:5c., "IcEA­
C-3r::

=c ~ 0, "le E C

(5.I,th)

(5.1-1<')

(5.15a)

(5.15h)

(,~.15c)

•
Using a simi!ar technique as in Section 5.5 we show that a more general circulation

problem GMCCP (5.16) is equivalent 1.0 the Dual of GeB (5.15).

Maximum Cost Circulation Problem with General Capacity c (GMCCP):

• (.'IIAl''fEU ."J. (:),(.'LE H:lLM,{(:lNG SCHEME

m"x L P.J.
f"EA

~uhj"d 1.0

L J. - L J. = 0, "In E N
f"E6+(n) r-EÔ-(n)

128

(:;.16")

(S.16b)

J. ~ 0,

(S.16c)

(S.16d)

•

•

Lemma 5.6.1 Gill"" ail 0l,timal sollltioll oJ GMCCP (5.16), wc cali construet an

optimal soiJtlioll oJ D-GCB (.5.15). alld vice versa.

Pl'oof: The proof i~ "lmost identical 1.0 the proof of Theorem S.S.I since the only

dilference bctwl.'Cn GMCCP and MCCP is the the capacities of the arcs have been

generalized From ail 1 1.0 an integer vector c. Therefore the detailed proof is omitted.

o

11. is weil known [:lS, SS] that the circulation problem has an integer optimal

solution if ail the capacities on arcs are integers, which is indeed the case in GMCCP

(S.16).

Lemma 5.6.2 ([58], page 160) ln aMCCP (5.16), iJ the right hand side c. 's are

illtegers and there exists a finite optimal solution, then there exists an inteyraloptimal

sallltion (whether or not the coefficient in the objective Junetion are integers).

Therefore we can solve the GMCCP (S.16) with integer vector c 1.0 obt? .1 an inte­

ger optimal solution. The technique used in the proof of Lemma S.6.1 and Theorem

SAlto transform the optimal solution of circulation problem 1.0 an optimal solution

of the generalized Dual of G-CB (S.IS) will preserve the integrality of the variables

bceause only additions or subtraetions are used there. Henee the generalized Dual of

G-CB (S.IS) has an integral optimal solution for eaeh possible integer vector c. Thus

wc have aetually proved the following theorem:

• CHA PTE/{.;' CYCLE BA /,:1,\'('/.\'(; ,';('/1 E.\/E

Theorem 5.6.2 TIIf CH (5.:;) i.' a TOI ~!I"IrIl1.

Ld us notC' that if w,' n'place th,· rational nUlllbers hl' on the ri~ht. h,ulll si<1,'s of

onr primai problelll by their int.egral "ei!ings (th,' slllall,'st. int"~,'r gr,'at."l' 01' "'Ina!

to be), wC' do not change th,' original prohl"lll sin"" tlll' vari"hles are snppos"<1 1.0 1",

integers.

As a consC'quence of the TDIness shown ahov,', w,' l'an ronllli nI' t.he l'ight. h,ulll

sides of CS (5.5) to t.heir ceilings so that the right. hand sides an' ail int.eg,'rs. This

step does not change the solution sd for the integer programllling prohl"lll sinc,' the

left hand sides should also he iutegers. Thus we obtain t.he np-ronnded version of CB

(5..;) shown below:

•
CB problem with RHS rounded up to ceilings:

rnin L Xe

l''EA-

subject to

L x, ~ rbcl, 'v'C E C(A8G)
eEC-

x,~o, 'v'CEA-

We have therefore obtained the following theorem.

(fi. lia)

(fi.lib)

(5.lil')

•

Theorem 5.6.3 If wc round up the right hand sidc... bc to rbc1 of the formulation

of CB, wc obtain the formulation (.5.17) whieh is eqlLÎTlalcnt to CS (5.5). The linr:ar

programming formulation (5.17) kas an intcgcr optimal .•olution.

Although the formulation in Theorem 5.6.a has an integer optimal solution hy

solving'the linear programming problem, its number of constraints l'onld be cxponcn­

tial. 1 have not found a \Vay to resolve the polynomial solvability of the problem yet.

However in practice, if the number of cycles is not very big, and if we make an effort

to elirninate sorne of the redundant constraints, the linear programming problem l'an

be solved very fast by the simplex rnethod.

• ('1/:\ l'TEH.';. (''/('U~ H:\ 1.:\.W.'ING S('I/EME

5.7 Related Work

III t.his Sl"di,,", Wl" compan' ollr met.hod with otl1<'r re!ated work.

1:l0

•

•

5.7.1 Loop Storage Optimization for Dataflow Machines

Datallow software pipdinillg w;~, originally proposed to exploit fine-grain parallclism

in loops on stati .. datallow compnters [:38, 40]. Previous work on dataflow software

pipe!ining is targeted 1.0 the static dataflow mode!, hene<' has the main restriction that

the number of concurrent iterations is bounded by what is allowed by one copy of the

loop body [:38, 40]. Furthtmnore, even under this restriction, the prior technique for

storage allocation, such as the balancing technique described in [40], can only handle

acyclic dataflow graphs, i.e. loops without loop-carried dependencies.

Loop unrave!ed Ululer pure dynamic dataflow model can initiate as many iteration

as possible, limited only by data dependencies [9]. This is accomplished by the loop

ullraveling scheme, where (in more "modern~ implementations such as the Monsoon

datafiow machine [66]) each iteration is allocated its own activation {rame cOl1taining

ail memory spaces required to hold its operands. A main challenge is to minimize

the storage used by dynamically unraveled concurrent iterations. By far the most

succcssfui scheme to control the storage requirement is the loop boundîng scheme by

Culler [20]. One limitation of this scheme is that a fixed number of storage frames

(ont' per iteration) are allocated to a loop, and this amount of storage may not be

optimal. Reccntly, a method of compile time loop scheduling under dynamic loop

unrave!ing has been presented [Il].

The mcthod developed in this chapter has addressed the limitations of the loop

storage management of both the static and dynamic dataflow models. II. provides a

basis 1.0 allocatc statically the minimum amount of storage required for a loop to run

al. its ma.'l:imal computation rate.

• CI·IM'TER.'i. CH'LE B:\I.:\,\CI.\c; SCIlE,\/E

5.7.2 Retiming Synchronous Circuits

l:\l

•

•

The work in this chapter is also rdat,e<l t.o rd.imin)!; s<"ill'm,' for hardwar,' circnit.s,

Retiming [60, 59] is a circuit tmnsformation uwthud in whi,'h rq,:is!<'rs ar,' ,,,ld,,1 al

some points and remo\,,'d l'rom otlWl'S in such a w"y that. t.1ll' fuuctiullai lll'h''''iur uf

the circuit as a wholl' is prl'sl'n','t!.

Although there are some similariti,'s in t,h,' prol>l,'m furmulations. uur l'lllllpllt.atiun

modcl is dilferent l'rom what is nsed in retimin)!;: onrs is async11ronuus ill natllrl', whil,'

the l'l'timing model is synchronous. Therdore the objectivl's an,l formulations al'<'

dilferent. One obvious dilferencc is that in retiming. the number of registers Oll allY

cycle docs not change bdore and al'ter the rdiming [;;9]. whill' our cyc1,' Imlallcillf\

scheme has no snch restriction.

•

•

•

Chapter 6

Conclusions

\11 t.his chapt.cr, wc givc a summary of what we have done. We also try ta address

some fut.ure rcsearch problcms in this direction.

• ('11..\ l'TEH li. (,()'\"(,!.l"SJ().\"S

6.1 Summary

1:i:;

•

•

This dissl'rtation is on t.h(', st.l1dy or tlH' opt.itnal alhJt"at.i')1l of fa..... t lHl chip 1llt'l1h'ry. lik,·

regisll'rs and bllifers. for loops on paral!<-! architl'ct IIn's lik,' VLI\V alld sllp,'rscalar

Illachil1es. Pre\"Îulls \\'ork in this ~lrl'a :->,'parat,t's t.llt' rq~isl.'·I· a,lIoctll.ioll pl'ohh't11 rl\l111

th" instrllction sch"dlllin~ problem. Th,' intllitioll is that separatill~ tilt' sdlt'dlllin~

problem and th" r"gist"r allocation prohl,'m oft,'n n'sllits in ill\'llki,'nt "'HI,', \V"

propose t.he idea of combining the sdl<'dlllin~ and re~ister allocation to~t.'th,'r ln a

single phase. vVe defim' a t\\"o-st.ep approach t.o sol\"t.' t.he prohl,'m fllr t.11<' pt.'riodic

schedulcs. The lirst step is to generate an optimal sch,'dlll,' whkh IIS"S minimllm

number of butfers. The second st"p is to lise colorin~ t.,'chniqlle t.o allll\\" the blllr,'rs

sharing the sanl<' physical registers.

Bulfers are allocated t.o bot.h scalar and array \"ariahles app"an'd in t.11t' 1,-ft.-h'lIl,l­

sides of instructions. Blltfers l'an allo\\" the prodllced \"ailles bein~ ret.aint'd in rt.'.e;ist.t.'rs

for several iterations so that instructions in lat.er it.erations can 1)(' sdl\'dll"'" bdort.'

the previous iterations finish.

Wc have provided an efficient algorithm for solving t.he problem. The al~orithm is

implemente<1 and used to test our scheme for loops sdected from typical hendllllarks.

The testing results include the statistics about. the average nllmllt'r of lIoal.ing point.

units used, average bulfer lengt.h, number of registers used.

For a more general class of scheduling techniqucs, and for dilferenl. applications,

mostly in run-time scheduling applications, we propose a Cycle Balancing t.edlni'lut.'

to optimally allocate bulfers so that they l'an support optimal rate sdleduling at. 1'1111­

time. We give polynomial time solution for the linear version of t.he prohlcllI. W"

also show that the system has the Totally Dual Integral (TOI) propcrt.y t.h'Ll. ,.Ilows

the problem being solved as a linear programming problem if t.!", right..hand-sidt'5 of

the system are rounded to the integers. Although l.his dOl:.'5 nol. givc 1I.n illIlIJ"liat.e

efficient solution, it l'an help us to solve problems in pract.ical applic.at.ions efficiclItly

if the oumber of dependence cycles involved is not too large.

• ('/I.\I'TI-:l! li, ('O,\'('/.1'SJ(),\'S

6.2 Future Directions

1:1,1

•

•

O!1f' flltllr«- dir(·c1.ioll uf cOlltiulling this diss('rtation-s work is 1.0 ('olllbine it with a real

1'"r:dl,'lizilll!, "olllpil,', ill whirh cOllditionals are dealt with. \Vhen this can be donc,

"">n' I.l'stilll!,s of our ,,-I,,'ml' rail h,· "pplied to Illore benchmarks and l'cal applications

1.0 oht"ill Illore "ccurat" statistÎcs. III turn. this knowledge will help 1.0 d''Sign more

..f1i<'Ï"lIt ,,"d 1Il0r<' rust/p<'rfurm'LllCl> dfective VLI\V or superscalar mdlitectures in

t.'mlS of fllnctional units design. n·gister file design and supporting cache design.

!lnuther fut.ure direction is 1.0 el't.end our current scheme to larger program struc­

t.un'S, lik,' 1",,;ted loops, procedures or functions, and threads in a multi-threadcd

architect.ure. The problem mainly concerns the elimination of ullnecessary loads and

stores of t.he vahl''S l'l'Siding in the registers. In [4:~1, instruction scheduling problems

for Ill'Sted loops have addressed. How the register allocation can be incorporated into

that. scheme is still open.

If the bound of the ulullber of functional units and the bound of the number of

regist.ers are both smalL the amount of parallelism iu the program may el'ceed what

l'an be supported by the hardware. In this sense our scheme can not be applied

direct.ly without modification. Investigation on how to modify our scheme to adapt

to low paralle! hardware architecture is definitely important. This might involve the

illtrodllction of varions ·slowing down~ techniques as spiIling codes if registers are

not ellollgh. for instance.

•

•

•

Appendix A

A Modified OSBA Problem

In this appendix, we give a modified formulation of OSBA problem (.1.7) in Sectioll

4.a, by assuming that the destination register of an instrllction Si is rt",erv,"\ al. till1l'

ti + di - l, i.e. when it is at the outP'lt stage of the pipeline.

The formulation and the procedures to deduce it are almost identic;d to the olle

in Section 4.:1. The solution of the formulation is also very similar as noted after we

complete the formulation.

As in Section 4.:3, consider a,1 arc (i,j) in the DDG. Now sillet' we commit a hllifer

to node i time instance li + di - 1 instead of I.i, the time span of the rt","It. vaille will

become Ij + Pmij - (ti +di - 1) instead of tj + Pmij - I.i.

Hence the lower bound on the number bi of hulfers for 1I0de i hccomes:

bi ;::: tj + Pmij -~t.+di - 1), If(i,j) E o+(i).

With thcse modifications, we formulate our modified optimal schcdlllc alld blllfcr

allocation problem into an integer programming problem as follows:

mm L bi
'eN

135

• :\ l'l'ESf)IX ..\. ..\ .\J()f)IFIEf) OSI3:\ l'IWBLEM 1:16

1 1.) + 1'111,) - 1., - di + 1. \.J('.') E
l, :::: l' . v 1. J E ~

1.) :::: I. i + di - 1'1IIij, 'V(i.j) E E

1.,. bi integer, 'Vi E N.

(:\.1)

ln tilt' following wc rewrite the above formulation (A.I) so that ail the variables

al'I'ear on t.h,· Idt hand sides of t.he ineqllalities. 'vVe name it as lvlodificd Optimai

Sr/mi."i" and Bn.JJà Alloratio1/. (/11/088,1) Probicm..

Modified Optimal Schedule and Buffer Allocation (MOSBA) Problem:

• S'lbject. to

mm L bi
iEN

Pbi + ti - tj ;::: Pmij - di + 1, 'V(i,j) E E

tj - t i ;::: di - Pmi;' 'V(i,j) E E

ti. bi integer, 'Vi E N.

(A.2)

•

Notice that the MOSBA formulation (A.2) and the OSBA formulation (4.ï) only

ditrer from the right hand sides of the constraints. Therefore the algorithms to solve

t.hem can be the same.

•

•

•

Bibliography

[1] A. V. Aho, R. Sethi, and .1. D. Ullman. COIII.l'i/CI·.,-Prùlt"il'k.,. Tl'dwiqILl·S. rtl/fi

Took Addison-Wesley PlIblishing Co., 1986.

[2] A. Aiken. Compactioll-based paralldization. (l'hO thcsis). TCl'hnkal I{cport

88-922, Cornell University. 1988.

[:~] A. Aiken and A. Nicolau. Optimal loop parallelizat.ioll. ln P"ol'lTriings of Ih,'

SICPLAN '88 Conferencc on Progra71l7lling IJangnagl' IJl'sign r!lul 17II1,/cml'nlll'

tion, Atlanta, Georgia, June 22-24, 1988. ACM SIGPLAN. Also in S/Gl'IJAN

Notices, 2:~(7), .July 1988.

[4] A. Aiken and A. Nicolau. A realistic resource-constrained soft,ware pipe1illing

algorithm. ln Proceedings of the Third WorkshoTJ on Progra71lming Dang!"'!I"S

and Compilers for ParaI/cI Computing, Irvine, CA, August 1!J90.

[5] .1. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of

control dependence to data dependence. In Confcrcncc Rccorri of tlu; '/i:nth A n­

nua/ ACM Symposium on Princip/cs of Programming l-angnagcs. ACM SIGACT

and SIG PLAN, .January 198:~.

[6] .John R. Allen and Ken Kennedy. Automatic loop interchallgc. ln ProcCf:ri.

ings of the SICPLAN '84 Sympo.5ill71l on Compiler CfJ71.5tnletion, pagc.'S 23:1-246,

Montréal, Québec, .June 17-22, 1984. ACM SIGpLAN. Aiso in SICPDAN No.

tiees, 19(6), .June 1984.

137

•

•

•

HIHU()(;U:\ l'II\'

[il Acvilld a,"1 D. E. ClllI ..r. J)a1.allu\\" archit.<·e1.ur,,,,. :lill/Uni H"";",,,", in Compul'T

S,';"'"". 1::t:t,,- :t":l. 1!lS(i.

[sI Arviud alld D. E. CIIII..r. Mallaging ft'sollrces iu a paralld machine. In.1. V.

Wuuds. ,·di1.or. FiJlh GnllTalion Compuler A rrhiteclurr. pages lO:l-121. Elsevier

Sci..nœ Pllblish,·rs. 1986.

[!)I /\rvillcl alld K. P. Gostdo\\". Th.. tT-Interpreter. IEEE Computer, 1.5(2):42~19,

Febrllary 1!)82.

[101 tT. Banerj,,,,. DeTlendrnee Analy",;,s for Supercompuli1lg. Kluwer Academie Pub­

lishers, Boston, Massachns..tts. 1988.

[Il] Micah Heck, Ke.shav K. Pingali, and Alex Nicolau. Static scheduling for dynamic

datallow machines. Technical Report TR 90-10i6, Department of Computer

Science, Cornell University, Ithaca, NY, .January 1990.

[12J R. Hellman, A.O. Esogbue, and 1. Nabeshima. Mathematical Aspcct..s ofSchedul­

ing and Applications. Pergamon Press, Oxford, 1982.

[1:l] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation

for subscripted variables. In Proceedings of the SIGPLAN '90 Conference on

Programming Language Desig1l and Implementation, White Plains, New York,

.June 20-22, 1990. ACM SIGPLAN. Aiso in SIGPLAN Notices, 25(6), .June 1990.

[14] P. Camion. Characterizations of totally unimodnlar matrices. Proc. Amer. Math,

Soc., 16:1068-10ï:l, 19605.

[ISJ G..1. Chaitin. Register allocation & spilling via graph coloring. A CM SIGPLAN

Symp. on Compiler Con...slT'7Letion, pages 98-105, 1982.

[16] G..1. Chaitin, M. Auslander, A. Chandra, .J. Cocke, M. Hopkins, and P. Mark­

stein. Register allocation via coloring. Computer Languages 6, pages 47-5i,

.January 1981.

[1i] V. Chvata1. Linear Porgramming. W.H. Freeman and Company., 1983.

• BlBLlOC;lL\ PH)' 1:;~)

•

•

[IS] E. G. Colfman. ('O/llpl//fI" aad Jo!J-Sh"p S"hnll/lil/!I Thnll'!/. .h.htl \\ïlt-y and

Son~. N,,\\" York, 19i(i.

[20] D. E. CnlIer. Nlana.c;in.c; pa. :.lIeli~m and re~ourn'~ itl ~ci('n\.ili(· d',I.,>!lo\\" pro~ralll~,

Ph.D the~is. Technkal Report TR-·I·l6, MIT Lahom\.ory for ('olllpn1.<'r Sci,'nn',

1989.

[21] Ron Cytron. Computation of outpnt dep,'nd('nn'~a.• a d,tl,a Ilo\\" prohl"Ill. 'I",..h­

nical report, IBM, 1988.

[22] ,1. B. Dennis. First version of a data-Ilow procednre lan.c;na.c;e. In pm..,..../il/f/.<

of the Colloqlle sllr la Progmmmatiol/, volnme 19 of l,"r/Iln' No/,·.< in Comlml'T

Science, pages :~62-:lï6. Springler-V"rlag, 19i'1.

[2a] J. B. Dennis. First version of a data Ilow procedure language. T"dllli..al Memo

MIT/LCS/TM-61, MIT Laboratory for Computer Science, C'Llllhridge, M,••­

sachusetts, 19i.5.

[24] J. B. Dennis. Data How for supercomputcrs. In Pro....cdings of the 1984 Comp­

COll, March 1984.

[2.5] .1. B. Dennis. Evolution of the static dataflow ar<::hitcdure. lu Adllan..r:t/ Topie"

ill DataflouJ Computillg, Prenticc-HalI, 1991.

[26] .1. B. Dennis and G. R. Gao. An efficient pipclined dataflow proccssor architec­

ture. In Proccedillgs of Sllpcrcomputillg '88, pages :~68-:lï:l, Orlando, Floritla,

November 1988. IEEE Computer Society and ACM SIGARCH,

[2ï] E. Duesterwald, R. Gupta, and M.L. Solfa. Register pipe!ining: An int.cgratcd

approacn to register allocation for scalar and subscriptcd variabkos. Tcclon ic'11

report, Department of Computer Science, University of Pittshurgh, W91.

• HIHLI()(;H:\ l'Il y 1·10

•

•

[:!x] 1\. El.ciu/';llI alld T. Nakat.alli. :\ IH'W cumpil'llioll tl'chlliqnl' for parall"lization

luups wit.h 1I11IHl'dict.al.h· I.rilll<'lws 011 a VLI\V architl'dnrl'. Tech Il irai report.

1HM, 1!J!lll.

[:!!J] 1\. EllCiuj!;ln. A compilatioll tl'chlliqne for software pipc1inillg of loops with condi­

tiollal jnm!'s. III P/'OfT,·ding.s of Ihc 20lh JI !limai Work.<hop on Microprogmmming,

DI'(,I'III!.l'r 19Hi.

[:10] K. Ehciogln and A. Nicolan. A glohal rl'sourcc-constrained parallc1ization tech­

lIi'l'll'. III P"oeccdings of thr A CAl SICA RCH International Conference on Su­

1)(','rom1'uting, .1 nnl' 1989.

[:11] .1. Edmollds and R. Ciles. A mill-ma.'\: relation for submodular fllnctions on

graphs. In Studirs in Integer Porgmmming, AnnaL. of Diserete Mathematies,

VOhl'lW 1. P.L. I-Iamml'r, et al., l'ds, I9ii.

[:12] .1. Edmonds and R.M. Karl" Theoretical improvements in algorithmic efficiency

for IIdwork 110w problems. J. ACM, 19:248-264, 19i2.

[:1:1] Christille Eisenbeis, William .Ialby, Daniel Windheiser, and Francois Bodin. A

strategy for array management in local memory. ln Third Work...ho1' on Program­

ming Languages and Compilers for ParaUd Computing. University of California,

Irvillé, 1990. To be published by Pitman/MIT Press.

[:1'1] .1. A. Fisher, .1. R. Ellis, .1. C. Ruttenberg, and A. Nicolau. Parallel processing:

A smart compiler and a dllmb machine. Procccdings of the A CM Symposium on

GOT/lIliler Construction, pages :~i-4i, .1 une 1984.

[:15] L. R. Ford and D. R. Fulkerson. Flow in Nctwork..•. Princeton University Press,

Princeton, N.I, 1962.

[:16] D.R. Fulkerson. An out-of·kilter method for minimal l'ost 60w problems. J.

SIAl'.I, 9:1S-2i, 1961.

• BIBUOC:HAPH)' III

•

•

[:li] G. R. Gao. :\ pi Iwli n,'d cod,' mappi np; ,dll'nh' for ,01 \' in)'; 1l'id ia)';ona! 1in,·" l'

,y,tem ,'qnation,. In Pl'Ocn'tiillg., of IFIl' Hi!/hly l'amI/rI ('01111'11/1'1" COlljrl"l'lI

Nire, FmnC<', Mard, 19S11.

[a8] G. R. Gao. A pipdined ,'ml,' mappinp; ,dl,'nl" for ,tatic datallol\" ,·oml'nt,·r,.

TechnÏ\"al Report TR·:lïl. l\'IlT Labomtory for Compn1.<'r Science. 1%(;.

[:19] G. R. Gao. A,pect' of bal;,ndng teehniqu,', for pip<'!in",1 data 1101\" cod,')';<'n,'r­

ation. J ollmal of Parallcl and Dis/ribllted COIII/llttil/g, (i::l!l-(i l, HlS!l.

[40] G. R. Gao. A Code Mappil/g Sehelllr for Datajlott> Soft WIll',· Pi/,rIillill!/. Khl\\"<'r

Academic Publishers, Boston, Massachusetts, December 1990.

[41] G. R. Gao, H. H..1. Hum, and Y. B. Wong. An dlicient scheme for line.grain

software pipelining. In P"oercdil/gs of the CONPA R 'gO· \(.\ pp II! Confe1'l'l/c,',

pages i09-i20, Zurich, Switzerland, September 1990.

[42] G.R. Gao. A flexible architectnre modd for hybrid datanow an,l conl.rol·now

l'valuation. In Proeeedings of the 16th International Workshop: D"/fljlott> - A

Statu.< Report, Israel, May 1989. in conjnnction with the ACM Annnai Sympo.

sium on Computer Architecture. 1'0 be published by Prenl.iœ·I-lall.

[4a] G.R. Gao, Q. Ning, and V. Van Dongen. Software pipdining for n".ted 1001'5.

Technical Report ACAPS Technical Memo -5:l, School of Computer Sei,,,,ce,

McGill University, Montreal, Quebec, Canada, 199:1.

[44] G.R. Gao, Y.B. Wong, and Q. Ning. A petri net model for 1001' schednling. In

the Proceedings of ACM SICPLAN'91, Toronto, Canada. .Jnne 1991.

[45] M. R. Garey and D. S..Johnson. Compllters flnd Intraclability: A ClIùL" to li",

Theory of NP-Completeness. W. H. Freeman and Company, New York, 197!J.

c [46] M.R. Garey, O.S. .Johnson, Miller. G.L., and C.H. Papadimitrion. Un pub.

lished result. in Computers and Intractability: A guide to the Theory of NP·

completeness, New York, 1979.

• HIHI.J()(;nA l'Il y 1·12

[H] l'. B. <:il,I,ollS alld S. S. MIlc\'lIick. Efficiellt illstrllct.ion sdll'dulillg for a pipdined

arC\,it.ect.llre. III /'r,wfTdinf/s of /lu S/GPLAN '86 Symposillm 071. Compiler Con­

s/ru"'ion. l'''!!'''S Il· Hi. Palo Alto. California..Illlle 2;;-2i. 1986. ACM SIGPLAN.

Also ill S/(;I'I.AN Noli,·"s. 21(i) ..lllly 1986.

[,18] M. B. <:irkar. M. H.. Ilaghighat. C. L. Le.." B. P. Leung. and D. A. Schouten.

l'ar<Lfr'I.,,··2 IIser's nmllllai. Techllical report, Center for Supercomputing Re­

search and Devdopmellt, University of Illinois al. Urbana-Champagn, .July 1991.

[;; 1] .J. L. Hennessy and D. A. Patterson. Computer A rchitecture: A Quantitative

Approaeh. Morgan Kaufmann Publishers, Inc., 1990.
•

[4!J]

[50]

L. Hendren, G.R. Gao, E. Altman, and C. Mukerji. A register allocation frame­

work based on hierarcbical cydic illterval graphs. Lecture Notes in Computer

Sdnlf.e 64/, pages 1i6-191, October 1992.

.J. Hennessy and T. Gross. Postpass code optimization of pipelined constraints.

ACN! Transactions on Progmmming Languages and System..<, 5(:3):422-448, July

198:l.

•

[52] Mike .Johnson. Sltpersealar l'vlicroproees..<or Design. Preutice Hall, Euglewood

Cliffs, New .Jersey Oi6:l2, 1991.

[5:l] N. P. Jonppi and D. W. Wall. Available instruction·level parallelism for su­

perscalar and superpipelined machines. In Proeccdings of the Third Interna­

tional Conference on A rcititectuml Support for Programming Languages and Op­

erating Systetn.<, pages 2i2-282, Boston, Massachusetts, April :3-6, 1989. ACM

SIGARCH, SIG PLAN, SIGOpS, and the IEEE Computer Society. Also in Com­

plltet' A rehileelltre NetOs, 1ï(2), April 1989; Operating System.._ Review, 2:3, April

1989; SIGPLAN Nolices, 24, May 1989.

[54] N. Karmarkar. A new polynomial-time algorithm for linear programming. Corn­

binatorica, 4::3ï:3-:39:5, 1984.

•

•

•

B1BLIOC:RAPH)"

[55] L. G. Khachian. :\ polYIlOinial a.l~ol'it.ll111 in liIll'al" prll.gr'\1nlnill~. .,",'ol'id .\lllth.

Ooklad!/. :!O: 1!1l-19·1. \!li9.

[;;6] lvlonica Lam. Soft,wan' pil",linin~: An l'ff"l·t.h·e sch"dnlin~ t.,'chni'l"'· ru,' vuw
machines. In Procrcdil/g" of lill' SI(;J'Ll:V '88 ('0 I/f'Tr 1/"" 011 1'/'0!llUlIllllil/!1 LUII­

glLagl' Oc"igll and 17Ilplclllrnialioll, pa~,'s :lIS-:l:!S. At.lant.a. Ceor~ia . .II1I1":!:! :!·l.

1988. ACM SIGPLAN. Aiso in SIW'LIN No/h""'. :!:I(i). .In\y \9SS.

[;;i] Monica S. Lam. Instruction schednlin~ for snp,'r"';t1ar an·hit.ect.ur,·s. ..1 1I/lIwl

Revie", of ComplLter 8cicner, -1: 1i:l-:!O 1. WHO.

[.58] Eugene L. Lawk'r. CombinatOl'ial 0lJtimi=al.iolL: Nrl1l'orb and Matroùk Sallll­

ders Collegc Publishing. Ft Worth. TX, 19i6.

[.59] C. E. Leiserson and .1. B. Saxe. Optimizing synchronolls circllitry hy rdiminp;

(pre1iminary version). Algorïthmica, 6(1):.5-:1.5, WHI.

[60] C.E. Leiserson and .I.B. Saxe. Optimizing syndlronOl" systems. .1. VI.SI and

ComplLter Systems, \(I):41-6li, 198:!.

[61] T. Nakatani and K. Ebcioglu. Using a lookahacd window in a compaction­

based paralle!izing compiler. In ProceedilLgs of the 2.1rd A1l1tllal Work.,hfJl' {JI/.

Mieroprogramming and Mieroarchitec/lLl'Cs, pages .5i-68, 1990.

[62] A. Nicolau, R. Potasman, and H. Wang. Rcgister alloc?.l.ion, renaming anrl t.1",ir

impact on fine-grained parallelism. In U. Bancrjcc ct al., erlitor, IAtllfllULfles (L1/.d

Compilers for Paralld ComplLting, Lecture N.:>tes in Computer Science 589, page.,

:3.59-:n:3, Santa Clara, California, 1992. Springer-Verlag.

[6:!] Q. Ning and G. Gao. Minimizing 1001' storage allocation for an argumcnl.-fetching

dataflow architecture model. In D. Etiemble and .I.-C. Syre, editors, PrfJcI:cdilLfls

of PARLE '92 - Parallel ArehitectlLl'Cs and La1lfllL{lfles EurolJe, pages 58.5-600,

Paris, France, .June 1.5-18, 1992. Springer-Verlag, Leet.urc Notes in Computer

Science 60.5.

•

•

•

BI IH. J()(:lU l'JI Y

[fi-Ij Q. Ninp; and (;.R. (;ao. :\ nuv'" framework of n'p;ister allocation for software

pip"'i ninp;. In l'me,.,.,lill!,_' nf 201" A1I1l1wI A CM SIGPLAN-SIGA CT Symposium

(JII 1',·ilU,ipl"., of f'mgr1l711.millg Lallguage., (POPL '9.'1). pages 29-42. Charleston.

South Carolina, .J;Lnnary 10-1:1 19n:l.

[fi:,] (:. M. Papadupoulos. Implemenlalinn of a GClleral PllrpOsr Dalaf/oUl Mllltipro­

,,,,,,.,,,,'. Ph D tl",sis, MIT, l!)SS.

[(ifi] G. M. Papadupoulos and D. E. Culler. Monsoon: An explicit token-store archi­

ll'ct.ure. In !'roœedings of Ihe 171" Annual Inlerllalional Symposium on Com­

lml'T A"chilr:cll""', pages 82-91, Seattle, Washington, May 28-:31, 1990. IEEE

Cumpnter Socidy and ACM SIGARCH. Aiso in Computer Architeclltrc NeUls,

18(2), .June In90.

[6i] Pierre Pcladeau. On the length of the cyclic frustrum in a sdsp-pn. Technical

Report ACAPS Tcchnical Note :31, McGilI University, Montreal, 1991.

[68] C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung,

and D. A. Schouten. Parafrase-2: an environment for parallelizing, partitiolling,

synchronizing, and scheduling programs ou multiprocessors. ln Proceedings of the

1989 Inlcrtlational ConfcrCll.cc on l'aral/cl Processing, Penn State, St. Charles,

IL, August 1989.

[69] B. R. Rau, 199:1. personal communication.

riO] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedu­

lable horizontal architecture for high performance scientific computing. ln. Pro­

eccdillgs of the Lfth A 1I11ltai Workshop on Microprogram.ming, pages 18:f-198,

1981.

[il] B. R. Rau, D. Yen, W. Yen, and R. A. Towle. The Cydro 5 departmental

snpercomputer. IEEE Compltter, 22(1):12-:35, .January 1989.

[i2] B.R. Rau, M. Lee, 1'.1'. Tirumalai, and M.S. Schlansker. Register allocation for

modulo scheduled loops: Strategies, algorithms and heuristics. ln Proceedings

•

•

•

B/BUOC:HAPH)'

of SJGPL.·l~\" ',f):J ('ouf. ou !)rog1'am1l1il1!l Lall.cJlItl!.. Of.... ;!lll and Implnl1t·"tH/inu.

Sali Frallcisco. C.-\. 1!l!l:!.

[n] Raymond Rdt<'r. Schednlillg paralld computations. ./0111'11111 of Ihl' .H ';\1,

15(4):590-5!J9, I!J6S.

[i4] A. Schrijwr. ThcOl'Y of LÙ1CU" alltf 11I/1'gl'1" P'·ograllllllill!l. .10h11 Wil,'y alld SOlI'.

1986.

[i.'5] R. Scthi. Complete register allocation l'roblems. 81..1 JI! ./. COIIII'"I .. .\(:I)::!:!ti

248, 19i5.

[i6] R. F. Touzeau. A FORTRAN compiler for the FPS-16·\ scielltilic comput,,!,. \11

Proeeedings of the SIGPLAN '84 SymposilLm on COlllpill'1" Conslnlclioll, pag',:,

48-.5i, Montréal, Québec, .Iune li-22, 1984. ACM SIGPLAN. Also in SlGpLtIN

Notices, 19(6), .June 1984.

[ii] V. Van Dongen, G. Gao, and Q. Ning. A polynomial time mdhocl for optim,L!

software pipelining. In Proeeedings of CONPAR 'g!J, Ledllre Not,,:, in Computer

Science 6a4, Paris, France, September 1992.

liS] H.S. Warren. Instruction schedllling for the IBM rusc System/6000 processor.

IBM J. Res. DC1Jclop., a4(1), .Janllary 1990.

[i9] Michael Wolfe and Uptal Banerjec. Data dependence aucl its applical.ion 1.0

paraUel processing. IntcT7LatiolLal ./olLT7Lal olL l'aral/cl Procc.<silLg, 16(2): I:lï-1 i~,

April 19Si.

[SOl Michael.l. Wolfe. OptimizilLg SlLpercompilcrs for SlLperco7f'1J1LI.crs. Pitman, Lon­

don and MIT Press, Cambridge, MA, 1989. In the series, Research MOllographs

in Parallel and Distributed Compllting. Revised version of the allthor's Ph.D.

dissertation, Pllblished as Technical Report UIUCDCS-R-82-1105, University of

Illinois at Urbana-Champaign, 1982.

