a é E National Library

of Canada

Acguisilions and

Bibliothégue natonale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellingion Street
QOnawa, Ontaro
K1A ONG KI1A ONJ

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1870, c¢. C-30, and
subsequent amendments.

Canada

395, rue Welington
Ottawa {Ontano)

Tona gt NI T Ty

Vi e Nt et e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a -
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

REGISTER ALLOCATION FOR
OPTIMAL LOOP SCHEDULING

by
Qi Ning

School of Computer Science
McGill University
Montréal, Québec

Canada
May 1993

A DISSERTATION
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
oF McGiLL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPEY

Copyright © 1993 by Qi Ning

National Library
I * l of Canada

Acquisitions and

Bibliothéque nationaie
du Canada

Direction des acquisilions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
KI1A ON4 K1A ONS

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-315-87946-7

Canada

395, rue Wellington
Ottawa {Ontano)

Yo bigr L0t e nh ey

s it Rore refenence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L'auteur conserve la propriéte du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

Abstract

Ouc of the major challenges in designing optimizing compilers, especially for scientific
computation, is to take advantage of the parallelism in loops in order to obtain max-
imum speedup on paraliel computer architectures. Optimal loop scheduling is there-
fore one of the most important topics studied by many computer scientists. However
how to allocate minimum number of registers to support optimal loop scheduling for
paralicl architectures is less understood. In this thesis, we propose a simultaneous
scheduling and register allocation approach for a parallelizing compiler, which will
find one among all the time-optimal periodic schedules that uses minimum amount
of registers. We prove that the general problem of finding such an optimal scheduling
together with register allocation is NP-complete. Then we propose a practical ap-
proach to divide the register allocation problem into two steps. The first step solves a
minimum buffer allocation problem, which will find a time-optimal periodic schedule
using minimum number of buffers. We give a polynomial time algorithm to solve this
problem. The second step analyzes the live ranges of the variables and uses coloring
algorithms to reduce the register requirement by sharing. The algorithm bas been
implemented and used to test selected loops in benchmark programs. Testing results

are reported in this thesis.

In order to allocate enough memory spaces to support optimal dynamic schedules,
we propose a cycle balancing scheme that allocates buffers to the arcs of the dataflow
graph representing a loop, so that it can allow a loop being scheduled dynamically to
achieve maximum speedup. We show how to formulate the problem into an integer

programming problem. Practical polynomial time solution algorithms are given.

il

Résumé

Un défi important dans le développement de compilatenrs, spécialement dans le cas
des calculs scientifiques, est d’exploiter an maximum le parallélisme présent dans les
boucles de fagon & obtenir une plus grande vitesse d'exéention sur les ordinatenrs
paralléles. L’ordonnancement optimal des instructions dans les boucles est done un
sujet trés important étudié par de nombreux chercheurs. Par contre, le probleme de
déterminer le nombre minimum de registres nécessaire pour supporter un ordonnance-
ment optimal de telles boucles sur des machines paralleles est nettement moins bien
compris. Dans cette theése, nous proposons une approche réalisant simnltanément
Pordonnancement des instructions et ’allocation des registres, approche qui permet
d’identifier, parmi tous les ordonnancements périodiques optimanx, celui qui minimis-
era 'utilisation des registres. Nous prouvons que le probleme général de tronver un
ordonnancement optimal tout en optimisant I'allocation des registres est NP-complet.
Ensuite, nous proposons une approche pratique qui décomposera le probleme de
Pallocation des registres en deux étapes. La premiére étape trouve une solution a
un probleme d’allocation minimum d’espace tampon, trouvant ainsi un ordonnance-
ment périodique optimal utilisant le nombre minimum de tampons. Nous donnons
un algorithme polynomial permettant de résoudre ce probléeme. La deuxitme étape
analyse ensuite les variables “vivantes” et utilise des algorithmes de coloration ponr

réduire les besoins en registre par 'intermédiaire d’un partage de ces registres.

Daans le but d’allouer suffisamment d’espace mémoire pour supporter des ordon-
nancements dynamiques optimaux, nous proposons aussi une approche de “balance-

ment de cycle”, approche qui vise a allouer ’espace tampon, sur les arcs d’un graphe

1

de flux de données représentant nne bouele, de fagon i ce que Mallocation obtenue per-
mette un aceroissement maximnm de la vitesse d'exéeution. Nous montrons comment
formuler ce probleme via un probleme de programmation lindaire enticre, Ensuite,
nous donnons nn algorithme pratique permettant de résoudre ce probleme, algorithme

de complexité polynomiale.

Statement of Originality

Here,

we summarize the original contributions of this dissertation:

We prove that the problem of minimum register allocation to support tine-
optimal scheduling is NP-complete: Theorem 3.2.1 and Theorem 3.3.1 in Chap-
ter 3.

We formulate the simultaneous Optimal Scheduling and Buffer Allocation (OSBA)

problem and develop a mathematical model for it: Section 4.3 in Chapter 1.

We propose an efficient polynomial time solution algorithm for OSBA problem:
Section 4.4 in Chapter 4. This method is combined with a graph coloring

algorithm to map buffers to physical registers: Section 4.7 in Chapter 4.

We propose and formulate the Cycle Balancing Scheme (CBS) of allocating
buffers to arcs of a dataflow graph in order to support run-time optimal sched-

ules: Section 5.4 in Chapter 5.

We provide a polynomial algorithm that can solve the lincar version of the Cyele

Balancing problem: Section 5.5 in Chapter 5.

We show that the Cycle Balancing problem has the Totally Dual Integrality
(TDI) property, which allows it to be solved by linear programming when the

right-hand-sides are rounded to integer ceilings: Section 5.6 in Chapter 5.

Acknowledgments

First { would like to express my deepest thank and appreciation to Professor Guang R.
Gao. During the years under his supervision, I have obtained enormous professional
and financial support 1 needed to complete my Ph.D program. [have always enjoyed

his numerous seminars, challenging courses and stimulating discussions.

Secondly | would like to thank Professor David Avis who co-supervised me, and
who pushed me to the “system side” of computer science at the beginning of my Ph.D
program at McGill. Without his long-sighted view, I would have been working on a

totally different subject.

Next 1 wish to acknowledge the help and support received from the other ACAPS
group members at McGill. Especially I would like to thank Professor Laurie Hen-
dren. She has provided me with so many invaluable comments which have improved
my representation enormously. I thank V.C. Sreedhar, Philip Wong, Robert Yates,
Kevin Theobald, Chandrika Mukerji, Erik Altman, Cecile Moura and Justiani Dhar-
mas for the useful discussions that in many ways improved my work. I would also like
to thank the people who has worked as the system managers in the ACAPS lab for

their constant effort to improve and maintain a comfortable system: Robert Yates,

V.C. Sreedhar and Chris Donawa.

During my Ph.D study at McGill, my wife, Wenqun Mao, who is also a graduate
student, has given me tremendous help and love. She has taken great effort to balance
between her own studies and taking care of our son Alex and house work. I express
my deepest appreciation of my wife. I greatly thank my mother-in-law, Aiyu Han,

vi

who has contributed so much of her life taking care of my son Alex. Finally 1 would
like to thank my parents, Shiguang Ning and Romel Wang, tor their love and support

| have received during all my life.

vit

Dedication

lo Wenqun and Alex.

viil

Contents

Abstract it
Résumé it
Statement of Originality v
Acknowledgments vi
Dedication viii
1 Introduction 1
L Introdaction oo Lo L 2
1.2 Organizationof the Thesis 5
2 Background and Terminology 6
2.1 Introduction 7
22 NotationsonSets bt
2.3 Graph Theoretic Terminology)
24 LoopModel i i e e 10

X

2.0 Data Dependence Graphs

2.6 Compntation Rate

........................

2.7 Scheduling Sehemes o 000 L 000 Lo o s s e

2.8 Architeeture Mode

2.9 Linear and Integer

1S e

Programmingo 000 o o

2,10 Totally Unimodular Matrices. . . . oo v v v v v i v o i oo v o

NP-Completeness Results

3.1 Iotroduction o . . o o i L L i e e e e e e e e e e e e e e e s
32 Cascol AcyclicDDG . . . o . o L o L s e
33 Loop Version i i ittt i it e e e e e e
34 SUMMAry . . . L. e i e e e e e e e e e e e e e

Register Allocation

4.1 Introduction 0 L L L Ll e e e e e e e
42 Motivation o « v v v v v i e e e e e e e e e e e e e e e
4.3 Formulation of the OSBA Problem: Step1
4.4 Solution of the OSBA Problem,
4.4.1 Totally Unimodular Constraint Matrix
4.4.2 More Efficient Algorithm for Solving OSBA
443 BackSubstitution o o 0oL,
4,5 ExampleContinued T e e e e e
46 Code Generation
b

17

t

1.6.1 Scheme b Access Stationary Coding ™

............... i
1.6.2 Scheme Il: Data Stationary Coding 74

1.7 Reduce Register Requirement Further: Step 2 .0 000000 L. 8l
18 Spectal Cases L . 0 0L L o e e N2
48.1 CallabanetalsResult .. . o000 oo 0 o0 0o 33
4.8.2 Loops without Loop Carried Dependences . 00 oo L oL L. sl

4.9 ExperimentationResults 0 oL o oo oL 85
4.10 The Example from Rau Et Al'sPaper o oo 90
4.11 Related Work o i i i e e e e 04
Cycle Balancing Scheme 96
5.1 Introduction e 97
5.2 Dataflow Architectures Lo Lo o L. 99
5.3 Exampleand Motivation« oo it i 103
5.4 Cycle Balancing Scheme (CBS) 103
5.4.1 Chain Replacement,o ... 110
5.4.2 Integer Programming Formulation. 110

5.5 Polynomial Time Solutionof FCB, 116
5.6 Totally Dual Integrality 123
5.6.1 CB Problem Does Not Have TUM Property . . H\ 124
5.6.2 CB Problem Has the TDI Property 126

57 Related Work, 130
5.7.1 Loop Storage Optimization for Dataflow Machines. 130
5.7.2 Retiming Synchronous Circuits 131

xi

6 Conclusions

6.1 Summary .. oL e e e e

6.2 Futnre Directions & L ot e e e e e e e e e e e e e e e e e e

Appendix

A A Modified OSBA Problem

Bibliography

X1

132

133

134

135

135

136

List of Tables

4.1 Execution delays of the instructions. oL

4.2 Experimental Results.

..........................

xiii

List of Figures

33

3.4

3.5

Data dependence graph of the exampleloop L.. 15
The initialization component. v v v v o oo 32
Vertex component for verteX o5, « v v v v v h i i n n e n e s e e 33
Edge component foredgee;. . o v v v v oo oo oo oL 34

Component for control nodes ¢z, ¢ and ¢4, and the bookkeeping chain

of 2nmnodes. L L e e e e e e s 35
Overall structure of the construction for the instance of R-PRAP. .. 36
Data dependence graph of the exampleloop Ly. 24
A multiple-head buffer.o o oo oo o oL 57

The live ranges of the variables for code generated by the ASC scheme. 58

How node tissplitintosand 70
Live range intervals for code generated by DSC scheme. 82
Buffers and registers allocated toeachloop. 88
Average buffer queue length ineachloop. 39
Number of functional units nceded for eachloop. 89

Data dependence graph of the low level code of Rau’s example.. . . . 91

xiv

poi}
—_

it
b
8%

Firing of a node in dataflow graph.

...................

A conditional schema in a dataflow graph representing “if x > 0 then

z = X+V else z = x-y"

A iterative schema in a dataflow graph representing the loop n (5.1}

................

An example of dataflow graph and its augmented dataflow graph.

An example of dataflow graph for which CB is not TUM

........

xv

Chapter 1

Introduction

In this chapter we give an introduction of the subjects to be studied in this disserta-

tion. Problem statements are informally given as well as the motivations.

CHAPTER I. INTRODUCTION 2

1.1 Introduction

High performance parallel computer architectures that exploit the line-grained in-
struction level parallelism. like Very Long Instruction Word (VLIW) and Superscalar
architectures, are designed to issue multiple instructions in a single clock evele. All
sorts of parallelism have to be exploited in order to make the most efficient nse of
the parallel hardware available in such architectures, and to achieve the maximum
speedup of user programs. Since loops are the most time consuming parts in a pro-
gram, the efficient exploitation of finc-grain parallelism in loops has been a major
challenge in the design of optimizing compilers for high-performance computer archi-

tectures.

Software pipelining has been proposed as one of the most important Rne-grain
loop scheduling methods. It determines a parallel schedule which may overlap instrue-
tions of a loop body from different iterations. Software pipelining can be applied to
high-performance pipelined processor architectures, as well as Superscalar and VLIW
architectures [2, 3, 4, 29, 30, 56, 70, 76, 78].

Although much progress has been made in finding time-optimal schedules for
software pipelining of loops, to determine an instruction schedule and a register al-
location simultaneously is less understood and remains an open problem. In terms
of instruction scheduling for RISC processor architectures, it is well recognized that
performing register allocation before the instruction scheduling (posipass scheduling)
may introduce new constraints due to the reuse of registers, which may limit pos-
sible reordering and parailelism of the instructions, as reported in {47, 50]. On the
other hand, if the instruction scheduling is done before (and independent of) register
allocation (prepass scheduling), more registers than necessary may be needed, which
may cause unnecessary register spills and severely degrade the performance of the
resulting code. Warren has described a technique for the IBM RS/6000 superscalar
workstation which applies instruction scheduling twice: once before and once after
the register allocation [78]. Although it will be better than the one pass approach,
it does not always do a good job. We believe that it also lacks the foundation to be

CHAPTER | INTRODUCTION 3

peneralized to other architectures.

The objeetive of this thesis is to develop a unified scheduling-allocation {rame-
work to determine a scheduling and a register allocation simultaneously. We want
the scheditle to be time-optimal. We also want the register allocation to use mini-
mum number of registers to support such time-optimal schedules. Our framework is
different from the conventional sequential approach, which tries to allocate minimum
number of registers for a fixed sequential schedule. For example, many of these regis-
ter allocation algorithms are based on the coloring of interference graphs representing
overlapping relations of the live ranges of program variables given a sequential exe-
cution schedule [1, 16, 15]. In that approach a schedule is fixed so that the meaning
of live ranges of variables is well defined. However a fixed schedule may not use the
minimum amount of registers necessary. In this thesis we will show that to find an
optimal scheduling and register allocation simultaneously is NP-complete even on a
machine with infinite computing resources. However, inspired by a seemingly different
research area from compiling, i.e., the earlier work on acyclic dataflow graph balanc-
ing by allocating storage buffers to data channels to support maximum computation
rate [37, 39, 40], we propose an approach which divides the simultaneous scheduling
and register allocation problem iuto two steps. The first step is to allocate minimum
number of buffers to variables to support a maximum speedup schedule. Then the
sccond step analyzes the live ranges of the buffers and uses a coloring algorithm to
map the buffers to physical registers. The buffers allow the results produced by in-
structions to be retained in registers for several iterations, which makes it possible to
start a new iteration before the previous iterations firish. The class of schedules we
will consider in our first step is called periodic schedules. They are formally defined
in Section 2.7 in the next chapter. The two steps will be explained more later in the
section. Let us first justify why we choose periodic scheduling as our class of sched-
ules. Periodic scheduling attracts our attention because it shows many properties

listed below which are particularly suitable for a compiler to do register allocation:

o [t allows the iterations to be software pipelined, i.e. execution of different

iterations can be overlapped, such that parallelism can be fully exploited and

. CHAPTER |. INTRODUCTION 1

optimal speedup can be achieved.

o It is simple and concise beeanse we can deseribe such a schedule by o very small

number of parameters.

e It is regular becanse the timings of different iterations show a strong regular

pattern, which allows us to generate very compact code for the loop.

In the Arst phase of our simuitaneous scheduling and register allocation scheme, we
try to find a schedule among all time-optimal periodic schedules that uses minimum
number of buffers. The buffers are allocated to individual variables delined in the loop
and can be thought as virtual registers. Buffers do not overlap with each other, which
let us solve the minimum buffer allocation problem in polynomial time. The idea in
the first step comes from the the early research work on balancing acyclic dataflow
graphs by allocating buffers to data channels [37, 39, 40] to achieve maximum software

. pipelining effect. In this thesis we not only gencralize the idea to loops which may
contain dependence cycles, we also solve the problem of code generation for von
Neumann architectures that does not exist in the dataflow study. In the second
phase, we have fixed a schedule produced in the first phase, which is time optimal
and uses the minimum number of buffers. Therefore we can apply the traditional

coloring algorithms to allow variables to share the physical registers.

We will consider the problem of allocating buffer storage to support maximum rate
computation of loops represented by dataflow graphs, to support a more general class
of dynamic scheduling schemes, as compared to static periodic schedules for compilers.
The work is a direct generalization of the previous work on acyclic dataflow graphs
[37, 39, 40). We proposed a cycle balancing scheme which will allocate buffers to
balance all the cycles in a dataflow graph. The effect of cycle balancing is o allocate
minimum number of buffers to support at least one optimal schedule at run-time. Our
method is not only useful for generating instruction scheduling and bufler allocation
for 2 compiler, it can also be applied to solve problems in other fields, like digital signal

processing, self-timed processor arrays, discrete-event systems and timed petri-nets,

. etc.

CHAPTER 1. INTRODUCTION 5

1.2 Organization of the Thesis

This section desceribes the organization of the thesis. We provide the notations and
definitions in Chapter 2. However only general terms are defined there so that a reader
should feel comfortable to read most of the rest chapters. More specific definitions

are defined in later chapters where they are used.

In Chapter 3 we prove that the simultaneous optimal scheduling and register allo-
cation problem for loops is NP-complcte even under an idealized parallel architecture.

Therefore we know the complexity of our problem in its most general form.

In Chapter 4 we propose a two-step approach to solve the simultaneous opti-
mal scheduling and register allocation problem. The first step is called the Optimal
Scheduling and Buffer Allocztion (OSBA) problem. We present a polynromial time
algorithm to solve it. The second step is to investigate the possibility to share the
buffers among different variables. Hence we have found a schedule in the first step,
now we only need to analyze the live ranges of the variables and use a coloring al-
gorithm to color the ranges so that if two ranges do not overlap, their buffer entries
can be shared. We also propose code generation schemes to support our register al-
location method. Our algorithm has been implemented. Testing results about loops

sclected from benchmarks are also reported in this chapter.

In Chapter 5 we propose a cycle balancing scheme that will allocate buffers to

arcs of a dataflow graph so that run-time optimal schedules can be supported.

Chapter 6 contains a brief summary of the achievements in the thesis and a dis-

cussion of the fuiure research directions.

Chapter 2

Background and Terminology

In this chapter, we provide some background material and define the notations used
in later chapters. However only those that are “morc” important are given here.
Loop models and their datae dependence graph representation are defined here. Max-
imum computation rate and the periodic scheduling scheme that can achieve optimal
rate are introduced. Targeting architecture models are briefly defined. Some linear

programming and integer programming backgrounds are also provided.

CHAPTER 2. BACKGROUND AND TERMINOLOGY

2.1 Introduction

In this chapter, we provide the definitions and notations used in subsequent chapters.
However not, all the definitions and notations used in later chapters are defined here.
For example if a definition is very specific to a solution method in a chapter and is
not related to other concepts in the thesis, then we will give that definition in that
chapter at the place it is used. | hope that this will kelp the readers to get through this

chapter as fast as possible without worrying too much about the definition details.

We first introduce some set theoretic and graph theoretic terminology as the basis
of our mathematical notations. Then we introduce the generic loop model we will
concentrate o in this thesis. We will define the notion of a data dependence graph

which is a form of program representation using graph theoretic terms.

Once we establish our mathematical representation of the program structures, we
then consider the schedui _hg problem for the instructions. An instruction may mean
a statement if the program is represented in a high level programming language, or
it may mean an assembly level instruction if a low level representation is chosen.
We will first look at the structures in a data dependence graph that will limit the
maximum speedup of parallel executions of a loop. We will define what is a maximum
computation rate of a given loop. We will review the previous results concerning the
maximum computation rate of a loop. Then we introduce the periodic scheduling
scheme for loops, which can achieve the maximum computation rate. This is the basis
of the scheduling scheme for which our register allocation scheme will support. The
gencral simultaneous scheduling and register allocation problem is formally studied

in Chapter 3 and Chapter 4.

We then discuss the superscalar and VLIW architecture models as representative
target architectures on which our scheduling and register allocation scheme is most

useful. Dataflow architectures will be formally introduced later in Chapter 5.

We will also introduce the basics of linear and integer programming which we will

use extensively in the later chapters to solve our optimization problems.

CHAPTER 2. BACKGROUND AND TERMINOLOGY

-

2.2 Notations on Sets

A set is collection of clements which have some common features, 10 an element o
belongs to a set A, then we sav, @ is in A or A contains a. denoted by ¢ € A0 We use
the notation, A € a, to indicate all the sets A containing a. We will use Z to indicate

the set of integers. i.c.
Z={ =32, =10, 1.2,3.---}.
The set of positive integers is indicated by Z,:

Zy = {1,2.3,...}.
The following operations are defined on sets:

Union AU B of two sets A and B:

A{J B = {a; a belongs to A or belongs to B. }

Intersection A B of two sets A and B:

A B = {a;a belongs to A and also belongs to B. }

Cardinality |A| of a finite set A is the number of elements contained in it:

|A] = number of elements in A. =

If a set contains an infinite number of elements, then its cardinality is simply

defined as infinity.

2.3 Graph Theoretic Terminology

" We will use directed graphs to represent the data dependences of computer programs.

When graphs are used to represent the real world applications, they are often given

CHAPTER 2. BACKGROUND AND TERMINOLOGY 9

speetal names, This is also trae in this thesis. Il graphs are used to represent data
dependences, then they are called data dependence graphs (DDG). When graphs are

nsed Lo represent data flow computations, they are called datoflow graphs.

In this section we give the basic definitions about the general graphs. Data De-
pendence Graphs (DDG) and dataflow graphs will be introduced later. Most of the

graph theoretic terminology has been adapted from [38].

Definition 2.3.1 A dirccled graph or multigraph G = (N, A) counsists of a set N of
nodes and a sel A of ares, where N = {ny,na,---,npv} and A = {er,e2,---, ¢4}
Each arc ¢; consists of two nodes: €; = (np,ni), where node ny, is called the tail of
¢;. and nodec ny, is called the head of e;. The divection of the arc e; = (ny, 1) is from
the tail ny, lo the head ny. Mulliple arcs between e pair of nodes are possible. It is
also possible that the tail and the head of an are are the same node. In that case the

arc is called a self-loop.

The definition of directed graphs will be refined to accommodate to our appli-
cations. Nodes and arcs can be annotated with one or more labels to carry some
physical information. However we will also use undirected graphs in later chapters,
mainly in the proofs and transformations in order to obtain the solutions. So we give
the definition of undirected graphs here. In the following definition we use the words

“vertex” and “edge” to distinguish them from the directed graph case.

Definition 2.3.2 A undirected graph H = (V, E) consists of a set V of vertices and
a sct E of edges, where V = {v1,va,---, v}, and E = {e1,€2,---,¢ig1}. Each edge
e; consists of two verlices: ej = (ny,ni), where ny,ny are called the end vertices of

edge e;. There is no direction associated with the edge e;.

If we do not mention explicitly whether a graph is directed or undirected, then we
mean it is directed. When we use undirected graphs we will always have the adjective

“undirected” before the word “graph™.

In practice, we often have additional information associated with the nodes and .

arcs of the graph. We called such graphs with additional information weighted graphs.

CHAPTER 2. BACKGROUND AND TERMINOLOGY Il

Definition 2.3.3 A weighted graph (0 = (N, Avwyowa, -+ 2) consists af a graph (N, A)

and one or more labels wy wa, -+ defined on the nodes and/or ihe ares.

Similar situation also applies to undirected graphs. Next we give the delinitions

of some common structures in graphs.
Definition 2.3.4 Given a graph G = (N, A).

e A path P in G is a sequence of ares: {€j,,¢jav+~+, ¢, }. such that the head of e,
is the tail of ej,,,, for h = 1,---k = 1. The tail of ¢;, is also called tail of the
path and the head of ¢;, is called the head of the path.

o A path is called a cycle if the tail and the head of the path are the same. The
set of all eycles in G is denoted by C(G).

o Given an arc(n;,n;) € A, r; is called an immediale predecessor of nj. Similarly,

node n; is called an immediate successor of n;.

e For any given node n;, we use §%(n;) to indicale the sel of oul-going arcs from
n;, i.€.

5§t (n;) = {(ni,n;); such that (n;,n;) € A}
We use 6=(n;) {o indicate the sct of in-coming arcs of n;, i.c.

5§~ (n:) = {(nj,n:); such that (nj,n;) € A}

e Given a node n;, its oul-degrec is defincd to be the number of arcs in 6% {(n;),

and its in-degree is defined to be the number of arcs in 6= (n;).

2.4 Loop Model

In this thesis we focus on the class of inner-most do loops, or while loops that can

be transformed to do loops, contzining no conditional tests in the loop body. Several

CHAPTER 2. BACKGROUND AND TERMINOLOGY 11

techniques have been invented Lo eliminate conditional tests at compile time. For
instance, [5] proposed a method to convert control flow dependences into dataflow
dependences, Hardware supported schemes also exist that uses “predicated” instruc-
tions [T1, 72] to allow a compiler to schedule a conditional as a non-conditional, and
nullify the untaken branch at run-time. Hierarchical reduction [56] is an approach
that collapses a conditional test and its branches into a single node so that it repre-
sents the longest path for the collapsed structure. Therefore our focus of loops does

not limit generality of our methods presented in this thesis.

We have chosen a high level representation of the loops for the purpose of easy
illustration. The methods developed in this thesis can also be applied to intermediate
or lower level representations, such as three address code or assembly code etc. Section
4.10 gives an example in assembly level representation to show our method. The

generic form of the loops under consideration is:

for:=1to U do
S

enddo

We assume that the generic form has the following properties:

1. Each S; is an assignment instruction of the form:
S;: z=E

where = is a variable and E an expression. Variable = can be either a scalar
variable or an element of an array variable. Expression E does the arithmetic,
logic, relational and other simple operations (like shifting bits, etc). In a low
level representation, E is an instruction which involves at most two operands.

So it is one of the forms: “opcode operand!” or “operand! opcode operand?,

CHAPTER 2. BACKGROUND AND TERMINOLOGY 12

I
H

where operand! and operand2 could be ecither scalar variables or elements of an
array. Therefore all the following are possible formats of instructions in our

model:

r=—y
afif=y

r = afi]
rT=y+z

x =y xali]

r = aff] = bji — 1]
alil=z+y

a[t] =Ix c[z - .3]

afi] = bfz] * [z — 2]

The loop bounds need not to be constants. We assume that the number of
iterations of a loop is unbounded in this thesis to simplify the problem repre-

sentation.

The loop may contain loop-carried dependences [6]. Loop-carried dependences
are those that across iterations. They make the situation more difficult for the
scheduling of instructions across iterations. We will show later that if the loop-
carried dependences form dependence cycles, then the maximmm computation

rate is bounded by a parameter determined by these cycles.

. The data dependences between instructions are only flow-dependences. Other

kinds of dependences like anti-dependences and output-dependences are caused
by memory contention and can be eliminated by renaming techniques [10]. It
should be pointed out that renaming ol array variables may involve copying
overhead. However our techniques in this these can be easily extended to han-
dle anti- and output-dependences. In the literature, low-dependences are also

called the true dependences, which represent the data (or information) flow

. CHAPTER 2. BACKGROUND AND TERMINOLOGY 13

along the compntational paths. In this thesis we simple call the flow dependence
“data dependence” or *dependence™, whenever it is clear from the contents. The

terminology we use is adapted from [10].

=t

We assume that any of the dependence distances [10] between any pair of in-
structions s constant {i.c. independent of the iteration index z). This restric-
tion is necessary for a compile time static scheduler. On the other hand, if
some dependences are not independent of the iteration index, we can take the
conservative approach and assume the shortest distance as a constant for all

iterations.

A typical loop confined to the above properties is shown in (2.1):

L:|fori=1to 100 do
. sp | X=X+ -1];
sp | afi] = X+ 0 =2];
s | bfz] = eft] x F;

sq 2| c[z] = afz)/bfi];
enddo;

In iteration 7, instruction s, reads two operands X and c[: — 1]. Both of them
are produced in the previous iteration. Actually X is produced by s; itself in the
previous iteration. Therefore there is a data dependence from s; to itself, and the
dependence distance is one iteration. The other operand cfi — 1] is produced by s, in

the previous iteration. Therefore there is a data dependence of distance 1 from s, to

8.

Now let us consider instruction s;. Its two operands are X and b[i — 2]. The first
operand X comes from s; in the same iteration. Therefore there is a data dependence
from s; to s» with dependence distance 0. The other operand bfi — 2] comes from s3

in iteration ¢ — 2. Hence there is a data dependence from s3 to s, with dependence

. . distance 2.

CHAPTER 2. BACKGROUND AND TERMINOLOGY 1

There are many research results on how o automatically deteet the data depen-
dence information for general loops for a compiler [10, 79, 80], 1t is not our goal to
describe these methods here. We only assume that some tool can provide us such
dependence information. In the next section we will introduce the data dependence

graphs to represent the loops in abstract structures,

2.5 Data Dependence Graphs

When considering the scheduling and register allocation problems, the actual compu-
tation performed is not important. Only the data dependence and delay information
of the instructions are important to us. For a program representation, we choose to
use the data dependence graph (DDQG) [10] annotated with dependence distance and
instruction delay information, since it is simple and contains cnongh information for

our scheduling and register allocation purpose.

Definition 2.5.1 Given a generic loop, the corresponding Data Dependence Graph
(DDG) is a weighted dirccted graph G = (N, A;m, d), with the following inlcrprela-

tions:

1. N is the set of nodes, cach representing an instruction in lhe loop body.

2. A is the set of arcs, each representing e dela dependence between a pair of
instructions. That is lo say, if node ny reads an operand produced by another

node ny,, then the arc (ny,ng) is in A.

3. m= {mu; (h,k) € A} is the dependence distance veclor defined on the arc sel
A, such that myy, is a nonncgalive integer which indicales the ileration dislance
of the dependence (h, k). If the dependence (h, k) does nol cross ileralions, then
mye = 0. [fmye > 0 then (b, k) is called a loop-carricd dependence.

4. d={dn; h € N} is the delay veclor of instruclions defined on the node set N. dy,

is the number of clock cycles necded to complete one ezecution of the instruction

CHAPTER 2. BACKGROUND AND TERMINOLOGY 5]

I, Although the delay veelor is given without specifying an architecture, it is

assumed that the functional units are pipelined and are hardware hazard-free.

The DDG of the example loop L in (2.1} in Section 2.4 is shown in Figure 2.1.
We assume in this thesis that the delay of (floating point) Addition is 1 clock cycle,

the delay of Multiplication is 2 and the delay of Division is 17.

my =l

d4=17

Figure 2.1: Data dependence graph of the example loop L.

Although the delays are associated with the nodes of the DDG, it is easy to

generalize them to the arcs. One can simply define the delays of the output arcs of a
node n; to be the delay of the node n;.

Definition 2.5.2 Given ¢ DDG G = (N, A;m,d), we define a new delay vector !
on the arc sel A:

l,=dy, ife=(hk) € A.

Very often we will consider the total delay and total dependence distance zlong a

path or a cycle in the DDG. Now we give some short hand notations for them.

CHAPTER 2. BACKGROUND AND TERMINOLOGY la

Definition 2.5.3 Giren a DDG G = (NoAvm d). Let P be @ path or a eyele in (0.

o We define the delay D(P) of P to be the sum of the delays of all the nodes in
P:

D(PY =T dy.

helP

o We dcfine the dependence distance M(P) of P to be the sum of the dependence
distances of all the ares in P:

MPY= 5 me

(hh)er
2.6 Computation Rate

A schedule of instructions is a function from the domain of instructions of a program
to the integers representing time clock cycles. If a computer architecture has no limi-
tation on the number of processing units and other resources, then the instructions can
be scheduled as early as possible subjected only to data dependences in the program.
Furthermore, if there are no data dependence cycles, then all the instructions of all
the iterations can be scheduled in parallel and finished within L clock cycles, where
L is the length of the longest dependence path of the DDG, which is independent
of the iteration bounds. On the other hand if data dependences form cycles in the
DDG, then subsequent iterations can only be scheduled with a certain delay from the
previous iterations. Therefore instructions can only be scheduled at a certain fimte
rate. Different instructions may have a different computation rate depending on the
cycle or cycles in which they are located. However when the throughput of iterations
is considered, the rate is determined by the slowest rate of the instructions in the
loop body, because an iteration is considered finished only when all the instructions
in it are finished. Now we give the formal definition of the computation ratc of an

instruction and of the whole loop.

Definition 2.6.1 Given a schedule of a loop, the computation rale of an inslruction

h is the everage number of executions over onc unil of time observed during a long

CHADPTER 2. BACKGROUND AND TERMINOLOGY 17

period of time. The computation rate R of a loop is the slowest of the computation
rates of the instructions in its loop body. The mazimumm computation rate of the loop

is the marimum of compulation rates oblainable over all feasible schedules.

Reiter [T3] proved a theorem about the maximum computation rate of any given
loop. Belore we state the theorem, we give some new definitions to simplily the

notations.

Definition 2.6.2 Given e DDG G = (N, A;m,d). Let C be a cycle in G: C € C(G).
The balancing ratio B(C) of C is defined by:

M(C) = Thkec Mk
D(C) ZIAEC dh

A cyele C* in G is called critical if it has the smallest balancing ratio among all the

B(C) =

eycles in G, i.c.

B(C™) = miu{%g)), YC € C(G)}

Now we are ready to give the maximum rate theorem by Reiter.

Theorem 2.6.1 (Reiter 1968 [73]) The mazimum (achievable) computation rate
R of a given loop is cqual to the belancing ratio of the critical cycle(s) in the DDG of

a loop, i.c.

R= uﬁu{%%, VvC € C(G)}

2.7 Scheduling Schemes

Instruction scheduling for loops exploits the following special properties:

e The instructions are going to be executed repeatedly.

CHAPTER 2. BACKGROUND AND TERMINOLOGY IN

¢ The dependence relations do not change from iterations to iterations.

These properties allow the scheduler to have more opportunity to tind optimal
schedules by exploiting the repeating behavior. In this sense, scheduling problems
for loops are different from the traditional scheduling theory which focuses on single

pass schedules [19, 13, 12].

Cytron [21] proposed the do-across method, which tried to find aminimnm con-
stant delay between consecutive iterations so that subsequent iterations may start
before the previous iterations finish. However, Cytron’s do-across assumed a fixed
sequential ordering of the instructions in an iteration, which limited the explottation
of parallelism considerably.

Aiken and Nicolau [3, 4] developed a scheduling scheme called percolation. Per-
colation is a set of rules to move instructions in the dataflow or coutrol flow graph so
that the semantics are preserved. They applied percolation to the inner-most loops
to obtain parallel scheduling. The algorithm emulates the execution of the loop by
virtually unrolling the loop unbounded number of times, and schedules the instrue-
tions as early as possible, until a periodic pattern can appear, which often consists
of instructions from a number of consecutive iterations. This technique is called OF-
Timal loop parallelization (OPT) (a particular case of Perfect Pipclining). However
there is a problem with this approach: for loops with multiple critical eyeles, no
polynomial time bound is known to occur for such a periodic pattern, caused by the
reason that the patterns may be exponential in size under the earliest firing rule [67].

Furthermore, the register allocation problem was not counsidered either.

Ebcioglu et al [29, 28, 30] proposed several refinements based on Aiken and Nico-
lau’s algorithms. However their scheduling scheme was still heuristic and the register

allocation problem was not considered.

Lam [56] proposed a scheduling scheme which used the name software pipelining.
In the method, both the data dependences and the number of processing units were
considered as fixed parameters. So Lam claimed the scheduling problem being NP-

complete. We notice here that if the number of processing units are assumed infinite,

(CHAPTER 2. BACKGROUND AND TERMINOLOGY 19

then the scheduling problem is not NP-complete and an optimal schedule can be

found in polynomial vime [73, 77].

Henee, tn this thesis, we will consider a scheduling scheme, in which only data de-
pendences are considered as constraints. This assumption allows us to achieve optimal
speedup allowed by a program. We will investigate that under this assumption, how
many functional units and registers are enough to support most of the typical loops
in benchmarks, Furthermore Lam’s scheduling method did not take into account the

register allocation problem, while ours will.

Given a loop with its DDG G=(N, A; m, d), defined in Section 2.5, let us examine
what is the minimum requirement for a schedule to be feasible in the sense of not

violating any dependence relations.

Definition 2.7.1 For a givea DDG G=(N, A; m, d), we usec 1,,(3) to indicate the
time when node b in ileralion i is scheduled. Then a schedule t is feasible if and only

if the following is lruc:

1(3) + di, < th(3 + mu), V(o k) € A.

That is to say, because of the dependence distance my,, the consumer node k
in iteration z + my can only be scheduled after the producer node A& in iteration ¢
finishes. Many kinds of schedules can be feasible, but not all of them are easy to work
with from the perspective of a compiler. In the following we introduce the periodic

scheduling scheme that shows strong regularity and can achieve optimal rate.

Intuitively a scheduling for a loop is periodic if all the instructions in all iterations

are scheduled with a fixed period. Formally we give the following definition.

Definition 2.7.2 A schedulc for a given loop is called periodic with period P if for

any two conscculive ilerations t and 1 + 1, we have

f.h(‘i + 1) - 'f.h(i) =P, VheN.

CHAPTER 2. BACKGROUND AND TERMINOLOGY 20

Hence for a periodic schedules the second iteration is just a vepeat of the hest
iteration after P clock cycles, and the thied iteration is a repeat of the livst iteration
after 2P clock eveles, ete. This means that the timing of the instructions in the irst
iteration plus the constant pertod £ will determine the whole schedule, Therefore a
periodic schedule is very simple to deseribe and still powerlul enough to satisly the
requirement of producing a good parallel code at, compile time, which is addressed in
Section 4.6 in Chapter 4. This is a main reason why we choose periodie scheduling

as our starting point of doing register allocation.

For the reasoun of casy reference. we give the following definition:

Definition 2.7.3 Let & be a periodic schedule of a loop. We use {), to indicate the
scheduling time of instruction h in the first iteration. With this notalion. instruction
h in iterations 2, 3, ... arc scheduled al clock cyeles by, + Pty + 2P+, where P s

the period.
With the above notation, we list the following properties of a periodic schedule:

. If the period is P, then the computation rate is ,l Therefore the mininnim

period corresponds to the maximum computation rate.

2. The schedule is feasible according to Definition 2.7.2 if and only if

thtdy, <l +myy- P, V(h, k) € L. (2.2)

2.8 Architecture Models

In this section we outline our target computer architectures on which our technigues
are most useful. These include two classes of architectures: one class represented
by the Very Long Instruction Word (VLIW) and Superscalar architectures. The

other class is dataflow architectures which will be introduced in (ﬂz}zptcr 5. We will

CHAPTER 2. BACKGROUND AND TERMINOLOGY 21

only give very brief and high level deseriptions of these architectures. Details of the
architectures that are not relative Lo our scheduling and register allocation problems

are nob mentioned.

Both VLIW and Superscalar architectures [34, 51, 57, 52] are designed to exploit
parallelism at the fine-grain instruction level. Their main difference is that superscalar
architeetnres assume a sequential machine level language and depend on a dynamic
scheduler to find the parallelism in a window of instructions. VLIW machines need
very wide instructions each of which contains independent and parallel subinstruc-
tions. With this difference, the superscalar architecture can run codes compiled for a
sequential machine without any change, while for a VLIW architecture the sequential
code has to be recompiled by a compiler that can generate Very Long Instructions.
However, since a superscalar machine uses a dynamic scheduler which can only look
at a small window of instructions to find parallel instructions, it is conceivable that
a VLIW machine can exploit more parallelism by advanced compiling techniques.
A good compiler on a superscalar machine should also exploit parallelism so that
the dynamie scheduler can find parallel instructions eastly or trivially in consecutive

sequence of instructions.

Now we describe the two architectures in very brief terms, but the description will

be cnough for our scheduling and register allocation scheme.

VLIW Architecture [34, 51] : A Very Long Instruction Word (VLIW) architec-
ture has several, say p, tightly coupled processing units. Each processing unit
may be pipelined. We assume that the pipeline has no hardware structural
hazard. All the processing units are equivalent in execution functions. All pro-
cessing units share a common main memory and a common register file and
probably a common data cache and/or a common instruction cache. At any
given time unit, a Long Instruction (LI) containing at most p instructions can
be fetched and the p instructions can be processed simultaneously on the p
processing units. Each instruction can be considered equivalent to be an as-

sembly instruction on a sequential von Newmann machine. The Instruction Set

. CHAPTER 2. BACKGROUND AND TERMINOLOGY e

is RISC like and the only instrnctions which can aceess data from and to the
main memory are LOAD and STORE. Other insteuctions take their operinlds

from registoers.

Superscalar Architecture [52] : A Superscalar architecture is very muach like a
VLIW architecture if only hardware organization is considered, il it has p
functional units, cach of them can be pipelined. All of the functional units
share a common memory, a common register lile, a conimon instruction cache
and a common data cache. However there are no Long Instractions in super-
scalar machines. [nstructions on a supuerscalar architecture may be considerad
equivalent to the instructions on a sequential von Newmann architecture ma-
chine. A dynamic scheduler unit is used to select parallel instructions. At any
given time unit. the dynamic scheduler will look at a window of instructions and
choose among them at most p instructions so that they can be processed simul-
taneously by the p processing units. As in a VLIW architecture, a supersealar

. architecture also has a RISC like instruction set, in which the only instructions

which can access data from the main memory are LOAD and STORE.

To simplify the problem, we choose an idealized architecture in which the number
of processing units is assumed to be infinite. With this idcalized assnmption, we can
always achieve maximum computation rate allowed by the data dependences of the
loops since hardware puts no limits on the speed. If the number of processing units are
assumed fixed at the beginning, just to determine the maximnm possible compntation
rate would be NP-complete, which will complicate our problem tremendously. If the
code, generated with the idealized assumption, can not be directly used on a hixed
processor machine, mapping techniques are needed to convert an idealized code Lo

the real machine.

CHAPTER 20 BACKGROUND AND TERMINOLOGY 23

2.9 Linear and Integer Programming

We brielly review some of the main results in the theory of linear and integer program-
ming in this section. Detailed theory can be found in the excellent books by Chvatal
[17] and Schrijver [T4]. The following oplimization problem with a linear objective
function and a set of linear constraints is called a linear programming problem, where

cin by a1 =1, n, = 1,--- m are rational numbers.

mMin €ty + 2Tz + +++ + C &y (2.32)
subject to
1Ly + QraLa + - 4+ @y 2 b1, (2.3b)
an Ty + axp;y + -+ + awIn 2 by, (2.3¢)
Qi Zy + @aia + 2+ Gy 2 by, (2.3d)
x; 20, Vi€ [l.n] (2.3e)

We can use vectors and matrices to obtain a more compact form of the linear

programming problem:

min cx
subject to

Az 2 b

z20

The linear programming problem in (2.3) or its compact form is called the primal

problem. Correspondingly it has dual problem:

max by + beya + -+ + bpym (2.42)

CHAPTER 2. BACKGROUND AND TERMINOLOGY 21

subject Lo

i+ anle + o+l S0y (2.1h)
araln + yaif2 + -+ L2l S a (:-'-'l")
Qi + Gado + 200 Qndtm S {2-““

y; =0, Vi €[l.mn] 2.44¢)

or in the compact matrix form:

max yb
subject to

yA<ec

y20

It is easy to see that the dual problem (2.4) is also a lincar programming problem.
If we try to write down the dual of (2.4), we obtain the original problem (2.3).
This duality of linear programming plays a very important role in its solutions. The

following theorem states the relationship between the primal and the dual,

Theorem 2.9.1 The primal lincar programming (2.3) has a fiuilc oplirnal solution
if and only if the dual (2.4) has a finite optimal solution. If the primal-dual pair has

optimal solutions, then their objective valucs are equal.

There are many algorithms for solving linear programming problems. They can be
basically divided into three categories. One category is the simplex method (sce for
example [17]). The method does not give a polynomial time zlgorithm. Theoretically
it is an exponential algorithm in the worst case. But in practice the speed is very fast
for the majority of application problems. Another category is the ellipsoid method

invented by Khachian [33]. This method gives the first polynomial time algorithm

(CHAPTER 2. BACKGROUND AND TERMINOLOGY

|_¢
(=1]

for solving lincar programming problems. But the complexity of the algorithm is
guite high, and its speed is not at all comparable with the simplex method. The last
category is the interior point method (also called projective method) first invented
by Karmarkar [54]. This method also gives a polynomial time algorithm for solving
linear programming problems. The complexity of the method is better than that
of the ellipsoid method. Its practical computation speed is much better than the
ellipsoid method. However, the simplex method is still much faster than the other
two methods for small size problems, which include the problems we are dealing in

this thesis.

On the other hand, real application problems often show special structures which
may make them easier to solve than the general linear programming problem. Mini-
mum cost {low is such a special class of applications for which much faster algorithms
(O(n3) or better) exist. Another special property of the constraint matrix of the min-
imum cost flow problem is that if the cost coefficients ¢ and the bounds b in (2.3) are
all integers, then an integral optimal solution z can always be found. This is partic-
ularly helpful if integer solutions are preferred. We will introduce the property which

the constraint matrix of the minimum cost flow problem has in the next section.

An integer programming problem is a linear programming problem (2.3} plus the
requirement that the variables x; must be integers. Integer programming problems
are usually much harder than their linear versions. The general integer programming
problem is NP-complete. However some particularly structured problems do have
polynomial time solutions, like the minimum cost flow problem. For hard integer
programming problems, one of the heuristic approaches is first to solve the linear
version of the problem, then try to round the obtained fractional solution to integers.
Often the linear version of an integer programming problem is called the linear relax-
ation problem, because it relaxes the integer requirement on the variables. In the next
section we introduce a property which can guarantee a linear programming solution

to be integral, therefore is very important to solve integer programming problems.

CHAPTER 2. BACKGROUND AND TERMINOLOGY 26

2.10 Totally Unimodular Matrices

In this section we introduce the total unimodulariy property on matrices which has

a very important role in solving integer programnnng problems.

Definition 2.10.1 A rational matrir A is totally unimodular (TUM) if the determi-

nant of cach square submatriz of A is cither 0, or +1, or -1.

Since each entry of the matrix A can be considered as a square submatrix, a
immediate consequence is that each entry of the matrix A must be either 0, or +1,

or -1.

The following theorem illustrates the importance of the TUM property. It implies
that if a constraint matrix is TUM, it sufices to solve the linear programming to find

an integer valued solution.

Theorem 2.10.1 Let A be a tolally unimodular malriz, and lct b and ¢ be integral

vectors. Then both the primal and dual lincar programming problems
min{cz|Az > b,z 2> 0} = maz{yblyA < ¢,y 2 0}

have integral oplimum solutions.

However only the simplex method can guarantee to find such an optimal integral
valued solution. Neither the ellipsoid method nor Karmarkar’s method can guarantee
to produce an integral valued optimal solution even if the constraint matrix ts TUM,
because the solutions obtained from these two methods are usually not the vertices

of the polyhedron defined by the constraints.

Chapter 3

NP-Completeness Results

In this chapter we prove that the minimum register allocation problem to support a
time-optimal parallel schedule among all such schedules, even on an idealized parallel
computer architecture, is NP-complete. The result holds for both the acyclic case

(straight-line codes) and the cyclic case (loops).

(3]
-~

CHAPTER 3. NP-COMPLETENESS RESULTS RA

3.1 Introduction

In this chapter we prove that the minimum register allocation problem to support a
time-optimal parallel schedule among all such schedules, even on an idealized parallel
computer architecture, is NP-complete. The result holds for both the acyelie case

(straight-line codes) and the eyclic case (loops).

There are many versions of register allocation problems, both for sequential and
for parallel computer architectures [15]. 1In [75], Sethi proved that the mininunn
register allocation problem while allowing tnstruction reordering for an acyclic graph
on a sequential computer architecture is NP-complete. Garey ot al [16] proved an
NP-completeness result for a loop with a fixed sequential schedule. In this chapter
we consider the register allocation problem for a parallel architecture withont fixing
a particular schedule. That is to say, we want to find an optimal feasible parallel
schedule which uses minimum number of registers among all such schedules. Our
results in this chapter generalize the results mentioned above. We will prove the

following two NP-completeness results:

1. The minimum register allocation problem to support an optimal schedule for a
program with an acyclic DDG representation on an idealized parallel computer

architecture is NP-complete,

2. The minimum register allocation to support an optimal rate schedule for a loop

with a cyclic DDG representation on an idealized parallel computer architecture

is also NP-complete.

In the next section we give the problem definition and prove an NP-completeness
result for straight-line code to prepare for the resuit on loops. Then in Section 3.3,
we prove our main result of the chapter that simultaneous optimal scheduling and

register allocation is NP-complete.

CHAPTER 3. NP-COMPLETENESS RESULTS 29

3.2 Case of Acyclic DDG

Let us first state the register allocation problem as a decision problem. Then we
formulate a more restricted version. We will actually prove the restricted version of

the problem is NP-complete.

Parallel Register Allocation Problem (PRAP):

Given: AnacyclicDDG G = (N, A;m =0,d = 1) representing a straight line code.
Assume that there are infinite number of processing units. Let R be the number

of available registers.

Question: Let L be length of the longest path of G. Is there a schedule of G which

finishes within L clock cycles and uses at most R registers?

The restricted version of the problem is to limit the DDG to have only one source

node and one sink node. This is formally stated below.

Restricted Parallel Register Allocation Problem (R-PRAP):

Given: A acyclic DDG G = (N, A;m = 0,d = 1) representing a straight line code
in which it has only one node having no input arcs and only one node having
no output arcs. Assume that there are infinite number of processors. Let R be

a given positive integer.

Question: Let L be the length of the longest path of G. Is there a schedule of G

which finishes within L clock cycles and uses at most R registers?

Theorem 3.2.1 R-PRAP is NP-complete. Therefore PRAP is also NP-complete.

CHAPTER 3. NP-COMPLETENESS RESULTS Ju

Proof: We show that the Verter Corer problem [45] can be reduced to R-PRAP. Let

us first state the definition of the Vertex Cover problem.

Vertex Cover problem (VC):

Given: A undirected graph H = (V. E) where V7 is the set of vertices and £ the

set of edges in H. Let K be a positive integer.

Question: Is there a vertex cover V! C V of G whose size is exactly AL VY] =

K, such that Ve € E. at least one of the two end vertices of ¢ isin V77

Let the given undirected graph /I have the following sets of vertices and edges:
V= {U],U-_), Tty vu},

E = {chc'.!v"'gcm.}-y

where an edge ¢, = (vi,v;) for some indices ¢ and j. Here we assume that there are
n vertices and m edges in H. We also assume that there are no isolated vertices in

the given undirected graph H because they can be very easily treated.

Next we construct an instance of the R-PRAP from the given instance of the VC.
We will adopt some convention on the terminology. In the VC problem we are given
an undirected graph, so we use the words veriez and edge to describe the objects for
the instance of VC. We use the words nodc and arc for the instance of R-PRAP since

we have a directed graph.

In our construction, we will design a component for each vertex and a component
for each edge. We will call them vertex components and edge components. They will
be connected together (serially) to get a larger construct. Then we will append other
structures to it to form the whole instance of R-PRAP. In the following we often usc

the term a-nodes to indicate the set of nodes labeled with «, etc.

We will first describe all the components individually: initialization component,

vertex components, edge components, control ¢2-c3-¢; component and bookkeeping

CHADTER 3. NP-COMPLETENESS RESULTS 31

chain. Then we will formally define their internal structures and show how they are

connected.,

The initialization component is shown in Figure 3.1. 1t consists of a starting node

s of the whole graph, Tn 4+ 2ne initialization nodes:
{1'|,' b 57.2u}\ {(‘..‘:1,- .t ,CZ"}, {(?t’l,' i ,C‘U,‘}, {c"h"' ,C‘U.,,_}, {dls"' vd'n}s {fl!' * '3.[“}!

{gl e -!lm.}» {h‘h L »hm}s

and a control node ¢;. Starting node s is connected fo each of the initialization
nodes and control node ¢; is connected from each of the initialization nodes. The
initialization nodes will also be connected to other nodes in the other components,
which will be shown later. Control node ¢ will be connected to the starting node s,

of the first vertex component described next.

For each vertex v;, the corresponding vertex component is shown in Figure 3.2.
In the figure, the shaded nodes should not be considered as part of the vertex com-
ponent, they are designed for initialization purpose. There are also other unshown
arcs from initialization g-nodes and h-nodes to the v-node and u-node in the vertex
component. The unshown initialization g-nodes and h-nodes are designed for the
cdge components and they are in l-to-1 correspondence with the edge components.
They will be shown when we give the construction of the edge components later, while
cach shown initialization node in the vertex component is design particularly for this

vertex component.

The s; node is called the starting node of the component and node w; is the
ending node of the component. Nodes v; and u; both correspond to the vertex v; in
the VC instance. Later we will see that at most one of the two nodes v; and u; can be
scheduled during the first phase of the vertex component scheduling. The case that v;
is scheduled in the first phase corresponds to the case where vertex v; is in the vertex
cover. The case that u; is scheduled in the first phase corresponds to the case where
vertex v; is not in the vertex cover. We also call the set of nodes {a;1,---,;n-is1}

the a-branch. Similarly the set {b;y,--+,bin-i+1} is called the b-branch.

CHAPTER 5. NP-COMPLETENESS RESULTS

N —
- —
-

-
- - T nares

v

cu-nodes:
cuy to cu,

d-nodes:
dy od,

Figure 3.1: The initialization component.

LUBT

CHAPTER 3. NP-COMPLETENESS RESULTS

33

a-brunch

Y 4 1o control node ¢
1 Sl =

Legend:

Initiadization node: .

to control node cy

from w; ¢ 105541

to terminatornode t

to control node ¢3

() Venex component corresponding to vertex v;. '

{b) Bricl representation of the above structure., '

Figure 3.2: Vertex component for vertex u;.

CHAPTER 3. NP-COMPLETENESS RESULTS

1w contmal nonde €

from G 3 el
to node v, Py _
to nude u,‘L - ¥ Legemnd:

1o node Vx
Inataadization node; .

& b

(a) Edge component corresponding 10 edge <5

Q°

(b)) Bricl representation of the structure in (a).

Figure 3.3: Edge component for edge e;.

For each edge ¢; = (v, v,) in the instance of VC, its corresponding edge compo-
nent is shown in Figure 3.3. The two nodes g; and h; are connected to the nodes in
the corresponding vertex components of the two end-vertices 1, and v, of edge ¢;.
There are three such arcs, one from g; to vz {g;,v:) and two from & to u, and »,;
(hj,uz), (hj,v,). They are so connected to ensure that exactly one of g; and h; can
free its register, i.e. ¢; is the last unscheduled successor of either g; or h;, when we

schedule node ¢; in the edge component.

Then we connect the vertex components and edge components sequentially (sce

Figure 3.5). After that we will add some more control nodes in our construction of
the instance for R-PRAP.

The component containing control nodes ¢, c3 and ¢4 is deseribed in Figure 3.4.
Control nodes ¢; and c3 will ensure that the vertex cover contains exactly K vertices.
Control node ¢4 has the effect that all the registers on the nodes connected to it can

not be freed until ¢4 is scheduled, because it is the last successor of such nodes. The

CHAPTER 3. NP-COMPLETENESS RESULTS 35

purpose of e is to free enough registers so that the last phase of scheduling can do

its bookkeeping work.

from ey,

(a) Component containing control nodes
€, €3 and ¢4, and the bookkeeping chain,
C3 C4 t
X =0

(b) A brief representation of the structure in (a). I

Figure 3.4: Component for control nodes ¢, ¢z and ¢4, and the bookkeeping chain of
2n nodes.

After control node ¢; we append a chain of 2n nodes to do the bookkeeping work.

The last node in the chain is called ¢ (terminator). See Figure 3.4.

These are all the components for the instance of the R-PRAP. The overall con-
struction for the instance of R-PRAP is illustrated in Figure 3.5. Note that not all
the arcs have been shown in Figure 3.5 for simplicity. It is easy to check that only

the last £ has no output arc and only the starting node s has no input arc.

Now we give the formal construction of the instance for R-PRAP:

CHAPTER 3. NP-COMPLETENESS RESULTS

an

r-nodes:
n+1102n
r-nodes:
Iton

_ﬂ\‘.\.

cz-nodes:

cp €3 cy L

Figure 3.5: Overall structure of the construction for the instance of R-PRAP.

. CHAPTER 3. NP-COMPLETENESS RESULTS 37

o I[nitiahization Component (Figures 3.1, 3.5):

1.

2

A starting node s,

Initialization nodes:
Plaleas ooy Pagds Pngea o0 2 T2ns
CI1, €2y 0, Coy
CU, CU3y e v, Chy,

Cliy, CU2,***, CU,y,,

(i19d21"'1d119 flsfﬂg"‘gfug
1924 v Jms hl h2~. M | h‘me

where r; through r, are designed to supply registers to the starting nodes
81, -+ 48, of the vertex components. 7,4, through ry, are designed to sup-
ply registers to the a-branches or the b-branches in the vertex components.
czp,---,c2, arc designed to supply registers to =,---, 3, in the vertex
components. cvy,---,cv, arc designed to supply registers to v;---,m, in
the vertex components. cuy,---,cu, are designed to supply registers to
wy -+ u, in the vertex components. dy,---.d, and fi,---, f, are designed
to control of the size of the vertex cover. gi,¢2,+++,9m and ki, ko, -c-, b
are designed to make sure that the vertex cover indeed covers all the edges.
Both the g-nodes and the h-nodes are in I-to-1 correspondence with the

m edges in the VC instance.

The control node ¢; which is designed to force all the initialization nodes

get scheduled before ¢;.

. There is an arc from the starting node s to each of the initialization nodes:

(s,7), forz=1,2,....2n,

(s,e2:). (8, e00), (8, c15), (8, di), (s, f3), fori=1,2,---,n,

(S’gj)’ (S'r hj), fOI’j — 1,2,-..’m_

. CHAPTER 3. NP-COMPLETENESS RESULTS 3

.

A

There is an arc from cach of the inittalization nodes to control node ¢,
(rieeg) for =120 20,

(cziva) levpeh(eioey) (divey) (five) for i = 1200,

(.‘Tj-"-l)~(hjs"-l)~ for j = 1.2.--- ..

e Vertex Components (Figure 3.2):

1.

9.

10.

For ecach vertex v; in the VO instance, we have the following vertex com-
ponent: starting node s;. n—1 4! nodes in the a-branch: a; g0+« (i pnigr,
n — 1+ 1 nodes in the b-branch: b .---. & _i41, the ending node w; and

three other nodes z;, vi, u;.

There is an arc from s; to each of the a-nodes and cach of the bnodes:
(siya;)l (siby) for =12, m—i 4+ 1.
There is an arc from s; to =0 (s,).

There is an arc {rom the initialization node 7; to st (7, 8i). 8; 15 also
connected to other nodes outside of this vertex component, we will describe

those arcs when those nodes are described later.

There is an arc from each of the a-nodes to vz (a;,v), forj = 1,2,.+ ,n~
i+ 1.

There is an arc from each of the b-nodes to u;: (bj,u;), for j = 1,2,+++ ,n—
1+ 1.
There is an arc from z; to the ending node w;: (2, ux). And there is an

arc from the initialization node ¢z; to 2z (ez;,).

There are two arcs {cv;, v;) and (cv;, w;} from the initialization node c; to

v; and w;.

There are two arcs (cu;,u:) and (cu;,w;) from the initialization node cu;

to u; and w;.

There is an arc from initialization node d; to v;: (d;, v;) and there is an arc

from initialization node f; to u; (fi,w).

. CHAPTER 3. NP-COMPLETENESS RESULTS 39

13.

There are also ares from initialization nodes g;.h; to vi,u;. Now we de-
seribe their exaet connections. Consider an edge ¢; in the instance of VC.
If vertex o is one of the end-vertices of ¢;, then the following three arcs
are added: (g5, %), (b w) and (Aj,v).

“th

There is an arc from the ending node w; of the i** vertex component to

th

the starting node si4p of the (2 4+ 1) vertex component: (w;,six), for

1= 1,2, ,n - L.

There is an arc from control node ¢ to the starting node s, of the first

vertex component: (e, $;).

o Edge Components (Figure 3.3):

3.
4.

2,

For cach edge ¢; in the VC instance, we have an edge component which

obtains a single node also named e;.

There is an arc from the initialization node g; to e;: (g;,¢;) and there is

an arc from the initialization node h; to e;: (kj, ;).
There is an arc from e; to ;410 (¢j,€541), for j = 1,2,+-- ,m = 1.

There is an arc from the ending node w, of the last vertex component to

the first edge component ez (wy, ;).

e Component containing Control Nodes ¢z, €3, ¢4 (Figure 3.4):

1.

pa

3.
4.

We add three new control nodes ¢z, c3, ¢4.

We add K p-nodes and n — K ¢-nodes:

P1aP2yc - PK,

01,42,y n-K-
There is an arc from ¢; to each of the p-nodes: (cz,p;), fori=1,---, K.

There is an arc from each of the p-nodes to control node ¢3: (pi, ¢3), for

i=1---,K.

. CHAPTER 3. NP-COMPLETENESS RESULTS 10

3. There is an are from 3 to cach of the g-nodes; (eavgid forr =1~ =K.

6. There is an arc {rom cach of the g-nodes to control node ey {gi.ey). for
i=1,---.n— K.

7. There is an arc from cach of the p-nodes to e (proey). for i =1, (K.

8. There is an arc from the last edge component e, to €22 (€. 02).

9. There is an arc from each of initialization nodes d; to ext (di,e3). for
t=1,--4,n.

10. There is an arc from cach of the initialization nodes f; to ex: (fi, e3), for
t=1,---.n.

11. There arc three more arcs from cach vertex component to e (8;,¢4),

(:iv C.|), (wia C.1), forz=1,--+,m.
o Bookkeeping Chain (Figures 3.4, 3.5):

1. We add a chain of 2 nodes which terminates at node {.

2. There is an arc from the last edge component ¢,, to the first node in the

bookkeeping chain.

3. There are two arcs from each vertex component to the terminating node

& (v, i), (uiyt), fori=1,---,n.

Each node has a delay of 1 clock cycle. This completes the construction of the
instance for the R-PRAP. it is easy to see that the length of the longest path in the
constructed DDG is 5n + m + 7. Oneof thepath is s =) = ¢ — 3y — 2y —
Wy = ror = Sp o~ Iy o~ Wy = € — crr = G > Cg = P — C3 — (] — Cf —

bookkeeping chain of 2n nodes.

We show in the remaining part of the proof that the given instance of VC has a
vertex cover V' of size K if and only if the constructed instance for R-PRAP can be
scheduled in L = 5n 4+ m + T time units and uses at most R = Tn + 2m registers.

. When a node i is scheduled at the some time instance, node 7 can relezse the registers

A\

CHAPTER 3. NP-COMPLETENESS RESULTS 41

on its predecessors 17 the values in those registers will no longer be used after that
time instance, and node 7 itsell will use one register to hold its own computed value.
A node ecan not be scheduled if either one of its predecessors has not been scheduled
yet, or even il all its predecessors have been scheduled, no free register is available

and it can not release any register on its predecessors.
The “If’ part. Suppose that VC has a vertex cover V'’ of size K.

In the first time step the starting node s is scheduled. In the second time step we

schedule the T 4+ 2 nodes:

Fiet 3Py Pugly st t 3 Tog,

Cl1y* "4 Coyy CUpy» == CUy, CUq, -, Cliy,

dle"'7d7n f'la"‘rfﬂ?

g1:- s Gm, hh"' 1hm-

Their results are put into the Tn + 2m available registers. At the third time step,
the only node we can schedule is the control node ¢; which will free the n registers
allocated to ryqy,--+, 7, because ¢; is the only successor of each of these nodes.
At the fourth time step we schedule the starting node s; of the vertex component
corresponding to vy, which frees the register on r,. The result of sy can be put into the
register allocated for ry. Therefore after s; is scheduled there are n free registers first
allocated to 7,49, -,72, which are not connected to other nodes in the rest of the
graph. At the fifth time step, z; and one branch of {ay1,---,a1,} or {b13,---, b0}
will be scheduled. If vertex v; is in the vertex cover V' then we schedule the a-branch.
If vertex v; is not in the vertex cover V’, we schedule the b-branch. Without loss of
generality, we can assume that vertex v; is in the vertex cover V': v; € V. The result
of z; can be put into the register allocated to ¢z; and the results of the a-branch
nodes are put into the n free registers. At the sixth time step, we schedule w; and v,
which will free the registers on cvy and on {a;1,---,a;1.}. The result of w; can be
put into the register of cvy and the result of v, will occupy one of the n free registers.
The registers on sy, 2y, wy, v, can not be freed during this first phase of the scheduling

CHAPTER 3. NP-COMPLETENESS RESULTS 12

of the vertex and edge components becanse they are connected to the control node
¢4 or the terminating node ¢t which are far away on the longest dependence path. So
when wy has been scheduled there are 2 = 1 free registers which are not enough to
schedule the b-branch in the same vertex component. At the next (seventh) time step
we schedule the next vertex component corresponding to ¢w and there are n — 1 {ree

registers at the beginning of the schedule of that component.

In general, just before we schedule the vertex component corresponding to »;,
there are n — i + 1 free registers. So when we schedule s; at the (35 4 1D time step,
its result can be put into the register allocated to r; and there are still n — 7 + [free
registers. At the (3¢ + 2)** time step we schedule node z; and one of the branches
{@i, s @immizr } or {bin,- -, bineis1 }+ We choose to schedule the a-branch if vertex
v; 1s in the vertex cover V. Otherwise we choose to schedule the d-branch. Assume
tha.t vertex v; is not in the vertex cover. So we choose to schedule the b-branch. The
results of the n — 7 + | nodes biny: -y binmisr are put into the n—z 4 1 free registers
and the result of z; can be put into the register allocated for cz;. At the next (37 4+3)*
time step we schedule nodes w; and u;. The result of w; can be put into the register
allocated to cu; and the result of u; will occupy one of the n—2+1 registers previously
allocated to the b-nodes. Since s;,w; and u; are connected to control node ¢y or the

terminator node ¢, their registers can not be freed before ¢ is scheduled.

When the last vertex component corresponding to v,, has been scheduled, that is,

when w,, has been scheduled, there are no free registers.

After w, has been scheduled, we now counsider the edge components. At the
(3(n + 1) + 1)* time step, we can schedule ¢;. Its result can be put into one of the
registers allocated for ¢y and k. Which registers can be used to hold the result of ¢;

will become clear after we state the general case below.

In general, at the (3(n+1)+7)* time step, we schedule node ¢;. Its result will be
put into one of the registers allocated to g; or h;. To see which one can be used let us
assume that e; = (v.,v,), and the three arcs from g; and k; to the vertex components

are: (g;,vz), (hj,uz) and (hy,v,).

. CHAPTER 3. NP-COMPLETENESS RESULTS 43

Case 1: Vertex o, is in the vertex cover, then by the scheduling strategy for the
vertex components we have scheduled o, when we went through the vertex
components, Therefore when ¢ is scheduled, the register on g; can be freed so

that it can be used to hold the result of ¢;.

Case 2: Vertex v, is not in the vertex cover, then v, must be in the vertex cover
hecause the vertex cover should cover edge e;. Since by the strategy on the
scheduling of the vertex components, we have scheduled u. and v,. Hence
when ¢; is scheduled, the register on &; can be freed to hold the result of node

L'J'.

When all the edge components have been scheduled, we schedule the control node
ca at timestep 3(n+1)+m+ 1. ¢; can free X registers on the d-nodes belonging to the
vertex components which correspond to the vertices in the vertex cover. Therefore
alter ¢, is scheduled, we can schedule the A p-nodes following it. These p-nodes use

. all the K free registers to hold their results until control node ¢, is scheduled. In the
next time step we schedule the control node ¢3 which will free n— K registers from the
S-nodes in the vertex components. Then we are able to schedule the n — K ¢-nodes
following it. Then we schedule ¢; at time step 3(n + 1) 4+ m 4+ 5 which will free all the
registers on the w-nodes, z-nodes, p-nodes and ¢-nodes. Therefore we now have at
least 3n free registers. At the next 2n time steps, we schedule the next 2n nodes in
the bookkeeping chain. While during the same 2n time step period, we can use the

free registers to schedule the remaining branches left in the n vertex components.

This gives a schedule for the constructed instance of R-PRAP within the longest

path length time3(n+ 1)+m+5+2n -1 =5n+m+ 7 and uses at most Tn + 2m
registers.

The “Only If” part. Now we show the reverse, that is, if we can schedule the
constructed instance of R-PRAP within the length of the longest dependence path

and uses at most Tn + 2m registers, then we can find a vertex cover V' of size K for

the VC instance.

—_—

CHAPTER 3. NP-COMPLETENESS RESULTS 2N

Since s is the only node which has no input are, it must be scheduled in the first

time step. In order for control node ¢; to be scheduled, alb the initializing nodes:

Pross s lns Prgna - oo,

21,00 €3y O oo Oy, == v Oy,

d‘[““‘dn- fl"" -fru
[AR/ PR h—la"‘ ~hm'

must be scheduled before ¢; because they all have arcs directed to ;. These initializing
nodes use all the Tn + 2m registers available. In order for the whole schedule to be
finished within the length of the longest dependence path, they must be scheduled
in the same thime step because cach of them is on some longest path. Following
the initializing nodes, one must have scheduled control node ¢, since it is the only
node that can be scheduled at that moment. Note that ¢; can free n registers on
Praly sy 72 because ¢; is their last successor. Next time s; is the only node that
can be scheduled. Note that s; does not reduce the number of free registers becanse
it can free a register on . So after s; is scheduled, there are exactly » [rec registers
that can be used in the next time step. In the next two time steps, z;,w; must be
scheduled because they are on a longest path. In addition to z;,w;, at most onc
branch of the a-nodes or b-nodes plus either v; or u; (but not both) could been
scheduled since there are only n free registers. Node 2, occupies one register until
control node ¢4 is scheduled, but it also frees a register on ¢z;. Node w, will occupy
a register until control node ¢; is scheduled. Now if u; {or 1} is scheduled, it will
also occupy a register until the terminate node £ is scheduled. But since v, and
are both scheduled, the register on cv; can be freed. Therefore the number of free
registers available before s; is scheduled is n =3+ 2 = n — 1. If neither vy nor u, is

scheduled, then w, will use one free register. So the number of free registers after
is scheduled is n — 1.

In general, suppose that we are at the moment that s; is scheduled and there are

n — i + 1 [ree registers just before s; is scheduled. After s; is scheduled its result

CHAPTER 3. NP-COMPLETENESS RESULTS 15

will vecupy one register but it also frees the register on ;. Since there are n — i+ 1
free registers for the next time step, only z; and at most one of the two branches
{etiny s @it} OF {biry-+- binaiz1} could possibly be scheduled. And the next
time step, only w; and possibly one of »; or u; can be scheduled. If none of v; or
u; is scheduled, w; must occupy one of the {ree registers so that the number of free
registers (after w; being scheduled) is reduced to n — ¢, On the other hand if one of
v; (or w;) is scheduled, then although it will occupy one register, the register on cy;

(or er;) can be freed, so still we have n — 2 free registers.

When the last vertex component has been scheduled, i.e., w,, has been scheduled,
there can not be any free register left. In order to be able to schedule edge component
ey, there must be a register on one of gy or hy that can be freed by scheduling e,.
This is true only il one of the end vertices of €; is scheduled before. Generally we are
able to schedule edge component ¢; only if one of the registers on either g; or k; can
be freed by scheduling e;. Let us assume that edge e; = (v, vy) and the three arcs
from g; and h; to the vertex components are: (g, vz), (hj, uz) and (k;,vy). In order
for the register on g; to be released when scheduling e;, v, must have been scheduled
before. In order for the register on k; to be released when scheduling e;, u; and v,
must have been scheduled before. In both of these two cases we see that at least
one of vy and v, is scheduled. The one that is scheduled will be put into the vertex
cover set V' for the VC instance. Since e; can be any edge, the V' we constructed is
indeed a vertex cover for all the edges in the VC instance. Later when we go on to

the control nodes ¢, ¢z and c; we will see that such defined vertex cover V/ contains

exactly A" vertices.

After the last edge component e,, is scheduled there are still no free registers. In
order to schedule control node ¢; and its K following nodes p,-- -, px, there must be
K free registers to hold the results of py,---,px. These f;;:e registers can only come
from the d-nodes which have the v-nodes as successors as well. Hence for the d-nodes
to release K registers when scheduling py, - - -, pk, at least K of the v-nodes must have
been already scheduled. For the same reason, when scheduling the control node ¢;

and its n — K following nodes g;, - - -, gu_x, there are must be at least n — K u-nodes

IAY

4

CHAPTER 3. NP-COMPLETEXNESS RESULTS 40

that have been scheduled. Sinee only one of the branches in the vertex components
could have been scheduled so far, e and ¢y guarantee that the mumber of the eanodes
which have been scheduled is exactly . lu another word, the vertex cover VY contains

exactly A’ vertices, which is exactly what we wanted to prove. o

3.3 Loop Version

In the last section we proved that the register allocation problem for the acyclic case
is NP-complete even for a restricted class of programs. In this section, we give the

definition of the register allocation for loops, and prove that it is also NP-complete.

Parallel Register Allocation for Loops (PRAL):

Given: A DDG G = (N, A;m,d = 1) representing a loop, where N is the node set,
A is the arc set, m = {my;,(2,7) € A} is the dependence distance vector with
m;; > 0 meaning a loop-carried dependence. Assume that there are infinite

number of processing units. Let R be a given positive integer.

Question: Let P be a given feasible computation rate. s there schedule of the DDG

which will run at a rate P for the iterations and uscs at most R registers?

Theorem 3.3.1 PRAL is NP-complele.

Proof: From Theorem 3.2.1, we know that R-PRAP is NP-complete. Here we show
that R-PRAP can be reduced to PRAL.

Suppose that an instance D of the R-PRAP is given. Let @ be a longest path in
D. Let L be the length of Q. Let s be the starting node and ! the end node of Q.

Then s must be the node without input arc and ¢ must be the node without output

CHAPTER 3. NP-COMPLETENESS RESULTS 47

are, otherwise € would not be the longest path in D. Add an arc from ¢ to s to form
an instance (7 of PRALL where the newly added are is a loop-carried dependence and
has ey, = | and d;y = 1. Let the munber of available registers R in PRAL be the

sime as in the given instance of R-FRAP,

It is casy to sce that all the cycles in the newly formed G must pass through the
new arce (1,8). Therefore the optimal computation rate of G is %, where L is the length
of (2. We choose this rate for the instance of PRAL.

Now we show that the instance of the R-PRAP has a solution then the constructed
instance of PRAL also has a solution. Let us note that s must be scheduled at time
| and ¢ must be scheduled at time L in the R-PRAP schedule. Therefore if we use
the schedule of R-PRAP and repeat it after every L cycles, then we obtain a schedule
for the loop G and at the same time the register allocation can be used by such a

schedule for PRAL as well. Hence PRAL can use R registers.

For the reverse direction of the proof, we show next that if the constructed instance
of PRAL has a solution then the given instance of the Restricted R-PRAP also has
a solution. Cousider an arbitrary iteration of the constructed instance of PRAL.
Since ¢ is the only node without output arc in R-PRAP, and by the structure of the
constructed instance of PRAL, all the instructions of an iteration in the instance of
PRAL must be finished before the last instruction ¢ in the same iteration. Since the
rate is 'il.'* an iteration of PRAL must finish in L cycles. Note that s is the only node
in the R-PRAP that has no input arc. Hence s must be the only first instruction
to be scheduled before all the other instructions in the same iteration get scheduled.
Therefore any given iteration ¢ must be finished between time steps (i — 1) * L + 1
and 7 * L inclusive. Thus the scheduling of one iteration in the PRAL is also 2 valid

scheduling for the R-PRAP which 1+~ the same amount of registers.

Hence we have shown that the gi;.'en instance of R-PRAP has a solution if and

only if the constructed instance of PRAL has a solution., This completes the proof of

the theorem. i 0

CHAPTER 3. NP-COMPLETENESS RESULTS A8

3.4 Summary

In this chapter we proved that the minimum register allocation problem of an acyelic
loop is NP-complete if instructions can be arbitrarily moved and restricted only by
data dependences, even il an idealized infinite computer architecture is provided
which can always support time-optimal schedules. We also showed that the same
minimum register allocation problem for inner most loops with dependence eyeles is
NP-complete with the same architecture assumption. Therefore the register alloca-
tion for a parallel architecture is hard in the sense that no polynomial time algorithms
could likely be found. The hardness of the problem is caused by the sharing of physical
registers if variable live ranges do not overlap. However il the sharing of the registers
by different variables is limited, the restricted situation can give a polynomial time
solvable problem. In next chapter, we will show that we can allocate minimum num-
ber of buffers to variables in polynomial time, and we will show how to use coloring
method to map the buffers to registers. In Chapter 5 we show that if we only allow
the registers to be shared by the instructions on a chain, then an optimal allocation

of registers can be done in polynomial time to support maximum computation rate,

Chapter 4

Register Allocation

The objective of this chapter is to develop a unified framework to do scheduling
and register allocation simultaneously to support time-optimal software pipelining on
superscalar-like architectures. Qur register allocation approach for software pipelining
is solved in two steps. The first step determines the time-optimal schedule and allo-
cates symbolic registers organized as FIFO buffer queues, one queue for each variable
defined in the loop. We show that the minimum buffer allocation and the time-
optimal scheduling problem can be formulated together as an integer programming
problem, called Optimai Scheduling and Buffer Allocation (OSBA) problem, which
has a polynomial time solution. The second step is to map the symbolic registers of
the FIFO buffers into physical registers. Since a time-optimal schedule is derived from
the solution of the OSBA problem, a coloring algorithm can be applied to minimize
tiie number of physical registers required to implement the buffers. Code generation

schemes with or without special hardware support are discussed.

49

CHAPTER 4. REGISTER ALLOCATION M

4.1 Introduction

In the previous chapter we have proved that the minimum register allocation prob-
lem to support time optimal scheduling is NP-complete in its general form, even if an
idealized architecture model is assumed. However simultancous scheduling and regis-
ter allocation is more important in parallel instruction scheduling than s sequential
counterpart, because as the schednle gets more parallel! it consumes more registers
than the sequential execution model. Therefore “bad™ optimal parallel sehedule could

consume substantially more registers than necessary.

The traditional register allocation approach assumes that a fixed schedule is given.
Then the allocator tries to allocate a minimum number of registers to support the
given schedule. Usually the schedule is produced by optlimizing the code so that
minimum delay is introduced due to various conflicting data or resource dependences.
However the schedule produced has no control over the use of registers. In another
word, it totally depends on the register allocator to caleulate how many registers are
going to be used. Therefore the schedule produced may use more than it really needs.
If the number of available registers is not enough, spill code must be introduced, which
will change the schedule. So the traditional approach will either try to minimize the
spill code, or after the spill code is introduced, the code will be sent back to the
scheduler to do another phase of scheduling and to do register allocation again, This

process may be repeated several times until the schedule and register allocation are
acceptable.

However this traditional approach does not have a theoretic foundation that will
point out when it should do this and when it should do that, and what result, we can

expect.

Despite the NP-completeness results in Chapter 3, the objective of this chapter is
to develop a unified scheduling-allocation framework to determine a scheduling and
a register allocation simultaneously. This is quite different rom the conventional
approach, which is to minimize the number of registers under a given schedule. For

example, many of these register allocation algorithms are based on the coloring of

CHAPTER 1. REGISTER ALLOCATION 51

interference graphs representing overlapping relations of the live ranges of program

variables given by a sequential execution schedule [16, 15, 1.

The method in this chapter is also different from other work on register allocation
for loop variables with or without software pipelining. In particular, the current
method generalizes the work by Callahan, Carr and Kennedy on scalar replacement
as a register allocation method for subscript variables {13}, the work by Lam on
modular variable rzpansion for software pipelined loops [36], and the work by Rau et.
al. on register allocation {or modulo scheduled loops [T2]. A comparison with related

work is outlined in Secction 4.11.

This chapter proposes a framework in which register allocation for software pipelin-

ing is solved in two steps.

Step 1: Optimal Scheduling and Buffer Allocation: The first step determines
the time-optimal schedule for a software pipelined losp and allocates symbolic
registers organized as FIFO buffer queues, one buffer queue for each variable
defined in the loop. Intuitively, such a buffer queue is used to “extend” the
lifetime of the corresponding loop variable generated in successive iterations,
permitting multiple iterations to be overlapped in concurrent executions. It
is shown that the minimum buffer allecation and the time-optimal scheduling
problem can be formulated together as an integer programming problem called
the Optimal Scheduling and Buffer Allocation (OSBA) problem. An efficient
polynomial time solution is presented based on a transformation of the OSBA

problem into min-cos. flow problem.

Step 2: Mapping buffers to physical registers: The second step is to map the
symbolic registers of the buffers into physical registers. Since a schedule is
derived from the solution of the OSBA problem, a coloring algorithm can be
applied to minimize the number of physical registers required to implement the
buffers. In particular, a recently proposed method bused on coloring of cyclic
intervel graphs [49] can be applied. Code generation schemes with or without
special hardware support are discussed. | <

CHAPTER 1. REGISTER ALLOCATION i

te

The method developed in this chapter is applicable to machines such as VLIW
(Very Long Instruction Word) [34]. supersealar {32] and superpipelined architectures

(53).

Since the register coloring method is well understood, our disenssion centers on
the buffer allocation step and the code generation schemes. Some preliminary results
also appeared in the paper {64]. We organize the subsequent sections as {ollows, In
Section 4.2 we present a simple example loop to motivate the concept of butlers and
the two step approach for concurrent scheduling and register allocation. In Section
4.3 we formulate the Optimal Scheduling and Buffer Allocation (OSBA) problem.
A polynomial time solution is stated in Section 4.4. We return to our motivating
example in Section 4.5 to illustrate the formulation and solution of the corresponding
OSBA problem. In Sectiou 4.6, we propose two schemes of code generation for our
(OSBA) scheme. One of the schemes is to shift the registers to simulate the effeat,
of a FIFO (First-In-First-Qut} buffer. This scheme is called Access Stationary Code
(ASC) where the accessing mode is fixed. The other scheme uses sell-modifying code
(if hardware supports it) to eliminate the burden of register shifting. This second
approach is called Date Stationary Code (DSC) where the data are not moved but
they have to be written into different locations {or different iterations. In Section 4.7,
we show kow to reduce the register requirement further through coloring techniqgue.
This is the second phase in our register allocation scheme. In Section 4.8 we consider
two special cases. We show that Callahan et al’s result [13] can be viewed as a spectal
case of the OSBA formulation. We will also point out that if a loop contains no
loop-carried dependences, then the OSBA problem is easier to solve. So it generalizes
our earlier results in [63]. In Section 4.9 we give some experimentation results on
some benchmarks. In Section 4.10 we apply the OSBA scheme to an example taken

from [72]. In Section 4.11 we compare our approach with rclated work.

CHAPTER 4. REGISTER ALLOCATION 53

4.2 Motivation

It this section, we motivate our approach by studying register allocation for a simple
loop Ly under software pipelining. Although a high level language representation
of the loop is chosen here, it is intended only to give a simple description of our
technical framework. There is no difficulty in applying our framework to a lower level
representation of the code. As shown below, loop L, contains three instructions in

its hody.

Li:|fori=1tondo
s1: |aft]) =X + ¢ ~ 2]

s2: | bft] = af2] % F; (4.1)
szt | efi] = afz] + bfz];
enddo;

L} contains a loop-carricd dependence of distance 2 from s to s;. For instance, the
value ¢[i] generated by s in iteration 7 is only used two iterations later by statement
s1 in iteration £ + 2. The other data dependences in the loop are all within the same
iteration. For instance, s; reads afi] which is produced by s; in the same iteration.
And s3 reads afz] and b[z] produced by s; and s» in the same iteration. The DDG of

Ly is shown in Figure 4.1

Under software pipelining, the iterations are permitted to overlap so that the
subsequent iterations may start before the previous iterations finish. Since there
exist loop-carried dependences, we have to work out a proper initiation delay interval
P between successive iterations so that when the next iteration starts P clock cycles

alter the previous iteration started, no loop-carried dependences are violated.

In our example, assuming that the delay for Add is 1 clock cycle and the delay
for Multiply is 2 clock cycles, then a delay of P = 2 clock cycles between the starting
times of two consecutive iterations is optimal in the sense that the scheduled loop

achieves the maximum computation rate. A possible maximum computation rate

CHAPTER 4.

REGISTER ALLOCATION

d=l

my j=2

Uzml

Figure 4.1: Data dependence graph of the example loop L;.

schedule is shown below, in which we have used the second tndex to indicate the

iteration, 1.e. s»; means node sz in iteration 1:

iteration 1

iteration 2

iteration 3

iteration 4

a1 a[l]l=X +cf=1]

az1: b1]=a[1]=F

s1,21 a[2]=X +c[0]

33,1: efl]=af1]4+b[1]

32,20 b{2]=nal2]=F

238 af3]=X +cf1]

332 c[2]=a[2]+6[2]

3242 b[3]=a[3]=F

3143 afd]=X 2]

BRI RS L A Bl

33,3: cf3]=a[3])+4{3]

324 h[4l=a[4]-l"‘

[N R

33,43 c[4l=nl4]+b[4]

(4.2)

Note that iteration 3 starts after iteration 1 produces c{l], and iteration 4 starts

after iteration 2 produces ¢[2], etc. So the loop-carried dependence is not violated.

The schedule exploits parallelism since there are two instructions schediled in parallel

at clock cycle 3 (5, 7 etc.). Under the above time-optimal schedule, s, is executed

twice before its successor s3 is scheduled for the first time in clock cycle 3. Hence, in

order to support the schedule, conceptually it is natural to provide a storage buffer

of size more than one between the generator sy and its successors s;,s3. And to

enforce the correct order of the values produced, the buffers should behave like a
first-in-first-out (FIFQ) queue.

Ly

CHAPTER 4. REGISTER ALLOCATION

!
o

Let us examine this in some detail. Suppose that a FIFO buffer queue of two
symbolic registers {ag, a1} is allocated to e, such that g is the tail and ay is the head.
Each of the other variables is allocated a buffer of size 1, which is a single register.
For convenience we will use the variable name as its register allocated if the buffer
size is one. When a[0] is produced by sy in clock cycle 0, it is written into the tail
g of the buffer quene. At clock cycle 2, a new iteration starts and a[2] is produced
before afl] is consumed at clock cycle 3. At this moment, the new value can not
be written into eg, otherwise it would have overwritten a value (a[0]) which is still

needed in clock cycle 3.

Now since we allocated two registers and organized them as a FIFO buffer queue,
we can continue to write to the queue at the tail at clock cycle 2. But before we do
that we have to assume that the queue has a2 mechanism to shift its contents towards
its head so that the tail (ag) is ready to get a new value. In our case, we can assume
that the old value in aq is shifted to @; at beginning of clock cycle 2. So at clock cycle

2, a[l] is in @, and a[2] is in qp.

At the code generation phase, we should generate appropriate code to implement
the FIFO addressing mechanism. For example, to implement the FIFO buffer queue
mechanism allocated for a, we have to figure out how the successors obtain the correct
values of afi] at the buffer. The following pseudo code may be generated to ensure

the correct accesses of the buffer queue positions, in which the “b-shift” means buffer
shift.

I’

I

CHAPTER 4. REGISTER ALLOCATION Hb

iteration | iteration 2 iteration 3 iteration o

0 | b-shift: ay = ay

statap=X<+r¢

l|sopib=aps F

[V]

b-shift: a; = g

sietaqp=NXN+c¢

.\‘3.|:C=ﬂ|+b S:_::b:ﬂu*F

b-shift: ay = ay {1.1)
siatan=X+r¢

5 sgaic=ar+b jsatb=apn F

6 h-shift: a) = ay

slatan=XN+e

-]

sggie=ay+b | smaib=agx F

8
9

spate=a 4+ b

Let us see how the successors sa, 83 of sy access the bufler queue of a. Since sy is
scheduled at clock cycle 1, when it reads the value of ¢[1], we can assume it is still in
register ag. Therefore, the actual code {or 52, in iteration 1 could be b = a9 * F'. Ou
the other band, if we assume that the queue shifts its contents at clock cycle 2, then
at clock cycle 3 when s3,, is executed, the value of a[l] is shifted to «; in the quene,
hence s3,; should read from ;. Therefore the code for sz, should be ¢[l] = a; + b
Hence s,; always reads from the tail ap and s3; always reads from the head ay.
This phenomenon is caused by the different scheduled timings of the successors. We
call such a buffer queue multiple-head FIFO queue because the successors read the
contents of the queue at different places. The multiple-head buffer queue is illustrated

in Figure 4.2

The concept of FIFQ buffer plays an important role here, as it captures the notion
of lifetime of a loop variable “extended” into successive iterations. In Section 4.3, we
formulate, as the first step of our method, the optimal scheduling and buffer allocation
problem by relating the schedule of ‘each producer and its successors to the size :of
the corresponding FIFO buffer queue allocated to the generator. The solution of the

problem is a time-optimal schedule which uses minimal number of buffers among all

CHAPTER 4. REGISTER ALLOCATION 5

{ag. a1 is the buffer for a.
b reads from the tail ag and
|fmds from the head).

Figure 4.2: A multiple-head buffer.

time-optimal periodic schedules. In our example, the repeating pattern between clock
cycles 2 and 3 in (4.3) is, in fact, the time-optimal schedule for software pipelining

we expect to derive.

So far, we are assuming that the buffers are represented by symbolic registers.
We notice that the buffers allocated to individual instructions can share the same
physical registers if their live ranges in the produced schedule are non-overlapping.
In our example loop L; and its given schedule (4.3), the live ranges of the variables
in the repeating pattern are indicated in Figure 4.3. Since the live ranges of loop
invariants F and X are the whole range of the loop, they are not shown in Figure
4.3. As shown in Figure 4.3, the live range of ¢ does not intersect with the live
range of a;. So they can share the same physical register. Thus, the mapping of
buffers to physical registers (step 2 of our method) is similar to the traditional register
allocation problem. In Section 4.7, we describe how to apply the register allocation
method based on cyclic interval graphs for this step. After this procedure the code
does not need the extra register ¢, which is replaced by a,, as shown in (4.4) where

the symbolic register names now represent physical registers.

CHAPTER 4. REGISTER ALLOCATION BN

- Legends:

Definition point: gy
Last use point: ¢

' (b) Live ranges drawn as cirlular ares on a circle. I

Figure 4.3: The live ranges of the variables for code generated by the ASC scheme.

CHAPTER 4. REGISTER ALLOCATION 39

iteration 1 iteration 2 iteration 3 iteration 4

O { beshift: a), = aq

81,1 Lt = X -+ 1)

] sz.;:b=uo*1’

2 b-shift: @y = ag

sppian =N +a

3 S;x.llfl;=(11+b .\"_».'_':b=ﬂu*p
4 I-shift: @) = ao (4.4)

S;‘g:ﬂo=x+a1

o

szpiaqp=ar+b | spzib=agxF
6 b-shift: a; = ao
spatao=X+aq

bt |

83'3:a|=ﬂ|+b 82‘4:b=an*F

o

9 sgatay=ay+b

4.3 Formulation of the OSBA Problem: Step 1

In this section we give a mathematical formulation of the simultaneous scheduling
and bulffer allocation problem. Suppose that we are given a DDG G = (N, A;m. d)
representing an inner-most loop, where N is the node set, A is the dependence arc
set, m is the dependence distance vector on A and d is the delay vector on N. In
general, there are many time-optimal periodic schedules. One of our goals in this
thesis is to find the best schedule i; such that it computes the loop at the optimal
computation rate and will need the least number of registers. In this section we
look at the problem of providing the minimum number of buffers so that successive
iterations can be initiated at the desired optimal rate. We do not assume that a fixed
schedule is given. Instead we will find one that can achieve both time-optimality and
spacc-optimality. The time-optimal property is enforced by using an optimal period
while not fixing the timings of the individual nodes.

A schedule may produce different numbers of results at different time instances

CHAPTER 4. REGISTER ALLOCATION 60

during the execution. So our first objective is to minimize the number of bulfers

required at different time instances during the execution.

We will allocate a set of buffers for cach node in DDG. so that the bulfers are
organized as a FIFO queue and they can retain the results for several iterations before
the consumers read these results. Let ¢ be a node in DDG which will produce result
data. We want to know how many buffers we should allocate to a node . This number
depends on the timings of 7's successors and also on the reservation scheme for the
registers. Here we take a conservative assumption that a register is reserved at the
issue time of the instruction. However our analysis can be applied to other reservation
schemes with only minor modification. For instance. if we assume that a register is

reserved only at the output stage of the pipeline, then a modified formulation is shown

in Appendix A.

Let us consider one node j of such successors, so that (7,7) is an arc [rom node 2

to node j.

Recall from Chapter 2 Section 2.7 that we use P to represent the period of a
periodic schedule. For node 2, its scheduled time in the first iteration is indicated by
t;. A periodic schedule is one such that the scheduled times of the node 7 in iterations
2,3,---etc,are t; + P, t; + 2P, --- etc. A periodic schedule is feasible if and only if
it satisfies (2.2) in Section 2.7.

When node z is scheduled for the first time, it is £;. If the dependence distance
between z and j is my;, then the result value produced by node z will be consumed by
node j in iteration m;; at time t; + Pmy;. Therefore the live time span of the result
value is at least t; + Pm;; — {;. During this period of time, node ¢ will be scheduled
every P clock cycles. All these new results produced by node 7z have to be saved
in buffers so that node j in later iterations can read them. Hence the number b; of
buffers for node 7 should satisfy the following inequality, in which 7 belongs to the set

of immediate successors of node i:

b2 SR v) € 5400, (1.5

CHAPTER 4. REGISTER ALLOCATION 61

Now we combine the timing constraints (2.2) for feasible schedules stated in See-
tion 2.7 and the buffer size constraints in (4.5). Together these two sets of constraints
define all the feasible schedules with optimal speedup and all supporting buffer allo-
cation schemes, Then we want to minimize the total sum of buffers among all these
feasible sehiedules, Putting all together, we obtain the following integer programming

problem:

min Y b; (4.6a)
iEN
subject to (4.6b)
b > 4 ; a +my;, V(7)€ A (4.6¢)
1; 2t +di — Pmy; V(i,j) € A (4.6d)
ti,b; integers, Vie N. (4.6¢)

In the following we rewrite the above formulation (4.6) so that all the variables
appear on the left sides of the inequalities. We name it as Optimal Schedule and
Buffer Allocation (OSBA) Problem.

Optimal Scheduling and Buffer Allocation (OSBA) Problem:

min z b; (4.7a)

ieN
subject to (4.7b)
Ph+t:—1; 2 Pm,-,-,V(z',j) €A (4.7¢)
ti—ti 2 d; — mejvv(i’j) €A (4'7d)

t;, b; integers, Vie N. (4.7e)

CHAPTER 4. REGISTER ALLOCATION 62

4.4 Solution of the OSBA Problem

In previous section we obtained an integer programming formulation (1.7} of the
OSBA problem. In this section we investigate its solution.

In (4.7¢), b; is required to be an integer. However the cocllicient before 8 in
counstraint (4.7¢) is the period P which in general can be greater than 1. Therefore
that creates some difficulty when we want to solve (1.7) direetly to obtain integer
solutions. To overcome the difficulty, we do a variable substitution:

b = Pb; {-1.8}

and transform the formulation (4.7) into the following form:

OSBA Problem with Variable Substitution (4.8)

min Y b; - (4.94a)
€N
subject to
b+t = 4; > Pmy;, V(i.5) € A (1.9b)
L= 2 d; — Pm,-j,\'f(i,j) €A {4.9¢)
W l; integers, Vie N (4.94)

In the next subsection we prove that the constraint matrix in {4.9) is totally
unimodular, which enables us to solve the integer programming problem (4.9} as
a linear programming problem. Then in Subsection 4.4.2 we present an efficient

algorithm based on a transformation to the minimum cost flow problem.

4.4.1 'Totally Unimodular Constraint Matrix

In this subsection, we prove that the constraint matrix in (4.9) is totally unimodular,

a concept defined in Section 2.10. In order to prove that, we need to give some
definitions.

AN

P

CHAPTER 4, REGISTER ALLOCATION 63

Definition 4.4.1 The Out-ineidence malrir U of (directed) graph (7 is a matriz
with the rows indezed by ares and the columns indexed by nodes and the entrics
defined by

ut = +1.Vn € N,¥c € A and i is the tail of arc .

The In-tncidence malric U~ of graph G is a matriz with rows indexed by arcs and

the columns indered by nodes and the enlries defined by

us = =1,Yn € N.Ve € A and j is the head of arce.

With these definitions, we can see that each row of U+ (or U~) has exactly one
41 (—=1) at the column indexed by the tail (head) of the arc. And for each column
of Ut (or /=), the number of +1's (—17s) is the out-degree (in-degree) of the node

indexing that column.

Definition 4.4.2 The usual incidence malriz of graph G is just

U=sUr+U-.

So for a row in U not indexed by a self-loop it has one +1 and one —1 at the
columns indexed by the tail node and head node of that arc, respectively. If a row in

{7 is indexed by a sell-loop, then the row contains 0 values only.

Testing whether a given matrix having the Total Unimodularity (TUM) property is
not casy in general although sophisticated procedures have been developed to do this
in polynomial time [74]. There are several known necessary and sufficient conditions
in the literature for testing the TUM property. Here we only list one which we will

use later in our proof.

Definition 4.4.3 A4 submatriz of a {0, %1} matriz is called Eulerian if the sum of

e
the entries in cach row and in cach ¢; umn of the submatriz is cven.

s

CHAPTER 1. REGISTER ALLOCATION t

Theorem 4.4.1 (Camion (1965) [14]) A {0.=£1} matrir is totally unimodulur if

and only if the sum of entries in cach Fulerian submatrir can be divided by |,
Now we are ready e onr theore
NOW wWe are ready Lo prove onr theorem.

Theorem 4.4.2 The constraint matrir in (].9) is totally wnimodular, that s to say,

cach of its squarc submatrices has a determinant equal fo cither # or [or —1.

Proof: The constraint matrix in (-.9) has very strong relation with the incidence

matrix U/ of the graph. Actually the constraint matrix is the following matrix:

v+ U
Qo =U

where O is a submatrix ol proper size in which all entries are zero, 7+ is the Ont-

(1.10)

incidence matrix and {/ the incidence matrix.

Although it is well known that the incidence matrix of a dirccted graph is to-
tally unimodular, it is not generally true that the combination of totally unitmodular
matrices preserves the total unimodularity property. However, we show next thad,
the constraint matrix of (4.9) is totally unimodular. In fact, we will show that the

condition in Theorem 4.4.1 is satisfed.

Let us index the constraint matrix (4.10) in the following way: the first |NV]
columns are indexed by v}, v3,+++, 0]y}, and the remaining IN| columns are indexed
by v1,ve,- -+, o), where | V| is the number of nodes in the graph; the first |A] rows
are indexed by e, ¢, -- *5€j4p and the next |A| rows arc indexed by ey, ez, -, ¢4y
where |A| is the number arcs in the graph. Here we assume that o} and »; represent.

the same node 7 in the DDG representing the loop. A similar assumption for ares is
also true.

U+ .
Therefore the »’s index the columns of the submatrix in the constraind

. .] U i
matrix (4.10). Similarly, v’s index the columns of the submatrix () y €' index

the rows of the submatrix ({/* U), and ¢’s index the rows of the submatrix (O =U).

CHAPTER 4. REGISTER ALLOCATION 65

Let ff be an arbitrary Eulerian submatrix of the constraint matrix (110). In
gencral, we can assume that some rows of H are indexed by some ¢”’s and some e's.
Similarly, we can assnme that some columns of H are indexed by some v"’s and some

)
s,

Since each row of the constraint matrix contains at most two +1's and one =1,
any row of I containing a non-zero clement must contain either +1, +1 or +1, =1, by
the Enlerian condition. The rows of the latter case sum to zero and can be removed

from further consideration since their sum is divisible by 4.

The remaining non-zeros in # are all +1’s and each row contains exactly two +1’s
because the sum of cach row has to be even. The columns containing these two +1°s
must be labeled by pair !, v; corresponding to the same node i. These two columns
are identical under our assumption that all the —1’s have been removed from H.
Since the sum of each of these two columns is divisible by 2, the sum of these two

columns is divisible by 4.

Since we have counted all the non-zero entries in H, we conclude that the sum
of all the entries in H can be divided by 4. Hence by Camion’s Theorem 4.4.1, the

constraint matrix of (4.9) is totally unimodular. O

The right hand sides of (4.9) are all integers. From linear programming theory [74]
if the constraint matrix is totally unimodular and the right hand sides are integral,
then the integer programming problem can be solved as a linear programming prob-
lem. in which no intcger constraints have been put on the variables, and the optimal

solution is guaranteed to be integral. Thus we obtain the following corollary:

Corollary 4.4.1 When (4.9) is solved as a linear programming problem (dropping
the integer requirement), the optimal solution obtained is always integrel, i.c. it is the

integer programming solution of (4.9).

By Corollary 4.4.1, to solve (4.9), we can use general linear programming algo-

rithris like the simplex method [17], or the ellipsoid method [55] or the interior point

CHAPTER 4. REGISTER ALLOCATION 66

method [34]. But the simplex method is not a polynomial time algorithum althongh
in practice it runs very fast. The ellipsoid method and the interior point method are
polynomial algorithms but are slow for small size problems in practice and have time

complexities in the order of O(|N

*). We present an more efficient algorithm next.,
which reduces the problem to a minimum cost How problem on a network, and which

can be solved by an O(| NP log |N|) algorithm.

4.4.2 More Efficient Algorithm for Solving OSBA

In this subsection, we show a more efficient algorithm to solve the OSBA problem after
variable substitution, which is (4.9). The algorithm is a number of translormations
of the problem to the minimum cost flow problem. Since the minimum cost llow
problem can be solved more efficiently by the so-called combinatorial algorithms, this

will imply that our original (4.9} can also be solved more efficiently.

Let us first write down the linear programming dual of (4.9):

max 3. {{PmiA + (di = Pmy;)m;) (4.11a)
(t.3)ea
subject to

S ox=1, Yie N (4.11h)

(ig)es+(i)
z ()\,'j—ﬂ';j)— Z (A_,-;—?r,-.-) =0,Vie N (4.“(:)

14.5)€6+(1) (F.8)€é=(3)

X 20, 7520, Vi) €A (411¢)

where §¥(z),6~(2) are the sets of out-going and in-coming arcs of 7, respectively.

If we reorganize the variables in the objective Finction, then it can be written as:

Z {PT".;_,'A,‘,' + (d; — Pm;j)w;j} (4.12a}
(id)EA s

T

i -
p =

CHAPTER 4. REGISTER ALLOCATION 67

Z IJTH."J'(/\,'J' - F.‘j) + z (f,'i'?,'j (I.I.Zl))
(r.7)eA {i.5}eA

= 3 Pm(Ag-m)+ Y. 2 diwm (4.12¢)
(i4)€A €N (iJ)€8+ (1)

z Py Ay — 7)) + Z d: > m (4.12d)
(i.J)€A EN (iJ)€5+(0)

With the new form of the objective function, the dual problem (4.11) can be

written in the following form:

max Z Pmg;(Ai; = 7i5) +Zd Z 7ij (4.13a)

(i.J}eA EN (ig)es+(i)
subject to
T n=1 Vie N (4.13b)
{tJ)€8+()
Z (Ai; = i) Z (Aji—7;)=0, Yie N (4.13c)
(i.7)es+ (i) (ja)ed=(i)
’\t'j 2 07 Wij 20, V(isj) €A (41'3(1)

Now we do a variable substitution for formulation (4.13):

Jij = 75— Ay, Y(i,7) € A (4.14)

With this variable substitution, the objective function in (4.13a) becomes:

Z PTH,'J'()\;J' - ‘;T;J') -+ z d,‘ Z i (4.15&)

(i.5)eA iEN (i,j)ES+()

== Y Pmgfi+ Y di Y (fii+Ay) (4.15b)
(ig)eA €N (i,j)es+(d)

= - Z Pmyfi; + Z z d; fi; + Z d; z Aij (4.15¢)
(.)€ iEN (i.f)E6+(i) iEeN (ij)es+(d)

== 3 (Pmj—d)f;+ > di ’ (4.15d)

(i.j)€A €N

CHAPTER 4. REGISTER ALLOCATION N

Note that the last term in (1.15d) is a constant and can be discarded from the ob-

jeetive function. Then the formulation (4.13) becomes the following with the variable
substitution (1.14):

max — Z (Pmy; — i) fij (1.16a)
{11€4
subject to

S (mi=fi)=1 VieN (1.16h)

(L)Es+ (i)
Z fi; — Z fii=0¥Vie N (1.16¢)

(i.5)e8+(¢) (7i)es=(i)

Ji; 2 =1, ®; 20, (i, 7)€ A (4.16d)

Formulation (4.16) is not yet a minimum cost flow problem. Later we show that
(4.16) can be further reduced to a minimum cost flow problem. Now let us notice that
in (4.16) the objective function does not contain variables m;;’s, which only appear
in constraints (4.16b). Therefore we can simplify constraints (4.16b) so that the

variables #;;’s do not appear in any constraints, that is, we want to climinate them.

Lemma 4.4.1 In formulation (}.16), the constrainis ({.16b) can be replaced by the

following equivalenl constraints:

>, fyz-l YieN. (4.17)

(ig)eb+ (1)

Proof: By moving the terms, (4.16b) can be rewritten as:
Z f,'_.,; = Z Ti; — i (4.18)
(t.7)€8+(3) (i.g)Es* (i)

Since w;;’s are non-negative variables, it is immediate to see that if fi;’s satisfy (4.18},

then they must also satisfy (4.17). N

4

CHAPTER 4. REGISTER ALLOCATION 69

To show the reverse, let us assume that fi;'s satisfy (4.17). We want to find a set
of values for the 73;%s so that they satisfy (4.18). For any given node 2, we choose a

fixed out-coming are: (7, ;) € 8*(7). Then we define:

Tij, = Z f,‘j - 1, (419«1.)
(t)ed+(i)
m; =0, ¥{i,j) € 6%(d) = {(Z.51)}- (4.19b)

Then by (4.17) and the above definttion, we have:
75 2 0, V(i,5) € A.

By (4.19a) we have:

> mi=T o+ > = 2 fyi-1
(1J)E5+ (i) (EHESHD-{G)} (I)Es+()

which is exactly (4.18). Thus we prove the equivalence. =

Hence formulation (4.16) is equivalent to the following (4.20) in which 7;;’s do not

appear.

min Y (Pmy; - d:)f;; (4.20a)

(55)eA

subject to

> fiz-l, VieN (4.20b)

(iF)€8+(d)
> fi- X fa=0VieN (4.20¢)

(i.7)E6+(4) {Fa)es=(i)

i 2 -1, Y(i,7) € A (4.20d)

Formulation (4.20) can be thought as a variant of the traditional network flow
problem [35, 74]. The first set of constraints (4.20b) gives a lower limit on the sum of
output flow for each node. The second set of constraints (4.20¢) is the conservation

law for the flow meaning that the flow coming into a node must equal to the flow

CHAPTER 4. REGISTER ALLOCATION T

coming out of that node. If the first set of constraints (1.220h) have not appeared in
(.20}, then it is the ordinary minimum cost network How problem. We will show
that how we can split the nodes in the graph to make the current formulation lit into

the ordinary minimum cost low problem,

Actually, we can replace cach node ¢ in the original graph by two nodes ¢ and ",
The original input arcs to node 7 are now directed to node /. The original ontput
arcs from node 7 are now going out from node . We also add a new are from node

i’ to node ", See Figure 4.4 for the illustration of splitting o node 1.

from k 0 jy
i .
luJ:
from ko o jq

(3) Node i in the original DDG.

l(lj] "
from k'] it e
:\J\: 10
from k™2 o)’y

(b) In the split graph, node 1 is splitintoi® and i*".

Figure 4.4: How node ¢ is split into 2/ and 2",

Now consider the ordinary minimum cost flow problem on the result graph. Let
N’ be the set of 2 nodes and N” be the set of i” nodes. We use A’ to denote the sct

of arcs in the result graph.

It is easy to see that the following minimum cost flow problem (4.21) is equivalent,
to (4.20).

i

CHAPTER 4. REGISTER ALLOCATION Tl

min -y dl,fl, (4.21a)
{u,p)EA?
sithject o

Z Jow = Z . =0Yue NUN" (4.21b)

{1,) €8+ (u) (ra)Es=(u)
Lo 2 =1, V(u,v) € A", (4.21¢)

where we define the cost coefficients in the objective function by:

v Py —d;,y, fu=i"eN"andv=73 € N and (i,5) € 4,
[{ =
b 0, fu=2reNandv=:"€e€ N".

Lemma 4.4.2 Formulation ({.21) and formulation ({.20) are equivalent, that is,
given an oplimal solution {[fi, }umen of (4.21) then the {fi;}iea defined by the

Jollowing formula is an optimal solution of (4.20):
fi=Jipy fu="€EN" andv=7 € N and 1 # j,

Similarly, given an optimal solution {fi;}isea of (4.20), the the following defined
{fi.Yumea is an oplimal solution of (f.21):

. fisn fu=1"€N" andv=j € N’ and (,5) € 4,
e Tigesty fijs fu=7 €N endv=1:"€ N".

The proof of the lemma is straightforward, and is omitted.

It is well known that the minimum cost flow can always obtain an optimal in-
teger flow if all the capacity constraints on the arcs are integral [74]. The capacity
constraints on the arcs in (4.20d) and (4.21c) are integral, therefore they have opti-
mal integral solutions. Actually the efficient wut-of-kilter algorithm (see [58]) and its

variants will give such an optimal integer solution when they are applied to (4.21).

Theorem 4.4.3 The problem (4.9) can be solved in O(|N[Plog |N|) time, where |N|

is the number of nodes in the graph representing the loop.

CHAPTER . REGISTER ALLOCATION

- I
[

Proof: Recall that (4.11) is the dnal of (19). Therefore it is equivalent to solve either
of them. We have a series transformations to transform (.11 to (1200, Lemma 14,2
established the equivalence between (1,201 and (1.21). Therefore ((L11) s equivalent
to (4.21) which is a minimum cost fow problem. Using the Out-of-Kilter method in
[58] to solve the minimum cost flow problem, the algorithm for our caxe has a com-
plexity O(|N|®log |N]}). Hence our transformation procedures never use more than
O(|N[? log | N]) time, we can conclude here that (1.11) can be solved in O N[log | N])
time. ul

4.4.3 Back Substitution

The ¢; variables give the optimal schedule of the nodes. The b} variables have to be
substituted back by the formula:

b; = %—, Vie N. (1.22)
However such b;’s may not always be integral since we have done a divide operation
in (4.22). If we simply round the 4;’s to their integral ceilings, a suboptimal solution
may result. We can solve this problem by noticing that by this time the schedule
is already produced. By fixing the schedule to be the ¢;’s produced by the solution
of OSBA, we can use the lower bound in (4.5) and take the integer ceiling of it Lo
obtain the integer lower bound on ;. Thus we use the following formula to obtain

the integer value for b;:

b; = max {[ti

;’"] + my;, Y(i,7) € 6%(7)}, Vie N. (4.23)

4.5 Example Continued

In this section, we apply our OSBA procedure to the example loop given tn Section
4.2. The loop is given in (4.1). Its data dependence graph is shown in Figure 4.1.
The number beside an arc is its dependence distance.

CHAPTER 4. REGISTER ALLOCATION 73

There are two directed cyeles in the data dependence graph. One cycle Cy is
81y =y 82, =, Su.—, 810 The other cycle Co s sy, =, 83, =, 5. The length (sum of
delays on the nodes along the eycle) of € is 4 and the sum of its distances is 2. The
length of €y is 2 and the sum of its distances is 2. Therefore the B-ratios of the two
cycles are & and 1. Henee the critical B-ratio is 3 which also gives the optimal period

P{=2) for our periodic scheduling,

The OSBA problem formulation (4.7) for loop L, is in (4.24).

min by + b+ bs
subject to

W+t =120

2y +1—t3 >0

20+t =13 20

23+ 13—t >4
ty—t; > 1
tba—t1 21
fg—~ta 22
thy =13 > =3

Then we do variable substitution (4.8), and obtain the followin'r formulation:

min by + ba 4 b
subject to

4+t =220
b+t —t320

b+t —1320
W+ts—1t; >4
ta—4Hh 21
tg—-t; 21
ty —ty > 2
t—t;> =3

(4.25)

CHAPTER 4. REGISTER ALLOCATION IE!

Solving (-1.25) for loop L. we obtain the following scheduling and guidelines for

the buffer sizes:

Il

by =4, b, =3 bh =2 (1.26)

tl =0, f.-_\ = 1. 13=:;, (l ')-)

v b

If we round up the solution for the ;s by dividing 2 to the values in (1.26), we
would end up with 5 registers. However if we use (4.23) to calenlate the real need for

the buffers that support the schedule, then we can bave the following allocation:
[)] = 2, b-_} = 1. I);; = 1. (1.23}
which uses only 4 buffers.

The actual schedule for the loop L is shown in (4.2). In (4.2), notice that by the
time node s is first scheduled, its predecessor node s; has been excented 2 times.

That is why we allocated a FIFO buffer queue of size 2 {or node s,.

4.6 Code Generation

In this section we discuss the code generation problem based on our solution of the
OSBA problem in Sectirn 4.4.

The unique aspect of our code generation methods is that the buffer queue to each
node has multiple heads. If we have allocated more than one bulfer to a node, by
organizing them as 2 FIFO queue we can make sure that the results are consumed in

the same order as they are produced.

Conceptually, the new result produced by a node should always be written to the
tail of the corresponding FIFO buffer queue, whiletFe successors of the node should
read the results at the proper places of the queue. lt is possible that a successor should
read the result from a place in the FIFO buffer queue other than the head. In other
word, the queue should have multiple heads. The intuition is that these successor

nodes are, in general, executing at different time instances in the software pipelined

CHAPTER 4. REGISTER ALLOCATION

ot

schedule. And the bulfer shifts its contents cach time a new value is produced by the
assoctated node. Therefore the successors need to read {rom different places of the
quene. llence, a FIFO with multiple heads is required. Such a multiple-head quene

was illustrated in Figure 4.2 in Section 4.2,

In the rest of this section, we illustrate two schemes to generate code which im-
plements the the FIFO buller quene with naltiple heads using registers. The tradeoff

of dedicated hardware architecture support will also be discussed.

Scheme I: Access Stationary Coding (ASC). In this scheme, the FFIFO buffer
quene between a producer node and its suceessor nodes is directly accessed us-
ing fixed register assignment for the tail and the heads. This assignment is
“stationary”, and will remain the same during the entire execution. On the
other hand, the data in the FIFO are explicitly shifted each time the producer
node is writing a new value to its tail. The “shifting” can be rcalized by issu-
ing multiple register move instructions, or by special architecture support for

register shifts.

Scheme II: Data Stationary Coding (DSC). In this scheme, instead of letting
the registers in a buffer shift their contents, we simply let the next iteration
write to the next position in the corresponding FIFO buffer. Thus, data are
kept stetionary, while accesses to the registers of a FIFO buffer by the producer
and successors are performed with the modulo addressing method. Similar code

generation schemes can be seen in [72].

4.6.1 CEcheme I: Access Stationary Coding

Under the Access Stationary Coding (ASC) scheme, the code generated with register
shifting for our example loop L, is given in (4.29). In the table, at clock cycle 0 (or
cycles 2, 4, 6, etc) the FIFO buffer of two registers allocated to node s; {for variable
a) shifts its contents, and a new value is written into its tail ag. We assume that at the

beginning of the clock cycle, all the old contents are read off from the registers, and at

CHAPTER 1. REGISTER ALLOCATION T

the end of the same clock eyvele the new contents are written bick into the registers,
Therefore @y = ap. g = X + ¢ have the effect of shilting the old contents in gy to the
register ¢; and the new result is written into the tail gy at the same clock evele. I is
safe to overwrite a; at this moment because the sehedule and the supporting halfer
allocation guarantee that the old contents of @y are no longer used. We can always

align the shifting operation at the point when the correspouding instruction is issued,

iteration 1 iteration 2 iteration 3 iteration -}

0 | b-shift: a; = ag

sHutym=X+e

Pseqg:b=ag* F

1

2 b-shift: ay = ag

stptag=X+¢c

3lssate=a1+b [spib=aox F

4 b-shift: @y = ag (-1.29)

statap=X+¢

; sgpie=ar+b |sazib=ayx F

6 beshilt: ay = ay
814 fly = X +

7 sgagie=ar+ b |saib=apr F

3

9 sgatc=ap+b

To ensure that the successors also read the correct results from the right. places,
we have to calculate the positions for them to read in the FIFO buffer quene. We
have seen the use of multiple-head buffer in Section 4.2. Here we give a lemma to

calculate the positions for the successors to access the data from the buffers:

Lemma 4.6.1 Let (1,7) be a dependence arc in the DDG, thal is to say, lhel node
is the producer and node j is a consumer (successor). The formula lo caleulale the

position from which nodec j should read in the FIFO buffer quene of node ¢ is:
L —

P

[.
wndexr;; = r .| +my; — 1. (4.30)

CHAPTER 1. REGISTER ALLOCATION i

Proof: Node : writes the result to the tall of its FIFO buffer at time t; + (KN = 1)x P
in iteration K. This result will be read by node 7 in iteration A + my;. Node § in
teration A + 15 1s scheduled at eyele & + (K — 1 4 my;) = P. Therefore the time

dilference between the production and the consumption is:
[!.J' +{(K -1+ m.,-j) * P] - [f.;-{- (I\’ -].) * P]

=t;—ti+mi;* P

During this time interval, there are

!.j--!.,--i-m,-j*P _ ;=4 .
r P]_r P -1+Tn'lJ

many register shiftings for the buffer queue allocated to node . Also note that the
above formula is independent of iteration K. Because the buffer queue for node i is
numbered from 0 at the tail end, hence node j (in any iteration) should read from

the buffer position indexed by the above formula minus 1, which is (4.30). o

As an example, we use formula (4.30) to calculate the positions node s; and node

sy read from the FIFO buffer of size 2 allocated for node s,. For node s,, we have

fa—1t
indery s = [— B "| +mya~1
-0
=[——1+0-1
= 0,
s0 node s» should read from ag
For node s3, we have
.) Iz—1
index; 3 = [2 N4+ma—1

3-0
Y i
=l,

s0 node s3 should read from a,.

CHAFPTER 4. REGISTER ALLOCATION

If we examine the code in (L29) line by line, we discover a repeating pattern of

code from clock eycles 2 to 3. as shown below in (1.31).

iteration i tteration 1441

b-shift: a; = ag

Spipt ftg = XN A4

Sapre=ar+ b

Sopr s b= agx F

(4.31)

We will use this repeating pattern as onr new loop body. The orizinal loop is
A 5]

now transformed into a new parallel loop body pius a prologue and an epilogne. The

important fact is that the new loop body uses only of P(=2) clock eycles, which

means that in every 2 clock cycles a new iteration will start. That is the optimal rate

we can obtain. The new parallel loop is shown in (4.32), in which the

“execute in parallel with”,

Generally, let

then the pattern is formed from clock cycle T'— P + 1 to clock cycle T'.

prologue code:
ity = (g

aw=X+c

fori=1ton-Pdo
ar=apllag=X+c¢
c=ay+bj|b=ayx F

enddo

epilogue code:
noop

c=a;+ b

T = max {L; i € N},

| sign mceans

(1.32)

So far, we have assumed that the register shifting operation can be implemented

using register moves (copying) in conventional architectures. However, it is also possi-

ble that a processor architecture supports register shifting directly in hardware. Such

CHAPTER 1. REGISTER ALLOCATION T

support allows the ALUs be devoted to other computation functions, thus improves

the performance.

4.6.2 Scheme II: Data Stationary Coding

The Data Stationary Coding (DSC) scheme proposed here is intended 1o avoid regis-
ter shifting in the previons ASC scheme. Instead of letting the registers to shift their
contents, we simply let the next iteration write to the next position in the correspond-
ing FIFO buffer. For tlie successor nodes, we can not simply use formula ((1.30) to
calculate the positions to read in the FIFOs. Instead we must use modulo addressing

according to the following lemma:

Lemma 4.6.2 For a dependence are (1,7), if in the currenl ileration node 1 s writing
fo position Q; (where Q; is the index) of ils buffer quene, then node j in current
iteration should reed from position:

index;; = (Qi — my;) mod by, (4.33)

where b; s the buffer size.

Proof: Suppose that the current iteration is K. Then node 7 writes Lo the position
(K — 1) mod &; since the data is not moved. In current iteration KA, node j should
read the result produced by node 7 in itcratioh‘ K —my;. Therefore node j in current,
iteration should read from position (K —my; — 1) mod b;. Substitute K — 1 with @,

we obtain the formula (4.33]. a

The code generated by using module addressing is shown in (4.34). For example,

1

at clock cycle P{i — 1), we have the instruction @6_1) mod 2 = X + ¢ for iteration 7.

clock cycle |[iteration i

PE-1} S1i18;_nhmod2 =X +¢
Pa=1)+1]s::b= @ 1y mod 2 * F (4.34)
P(i-1)+2 ’
Pi—1)+3|s3:¢=8; 1y mod2 T b

CHAPTER L

Its expanded version

REGISTER ALLOCATION

is shown i (1.35).

iteration 1

iteration 2

iteration 3

iteration -

Nispte=X+r

] No :b =TT F

sjpip= XN+

3 Sg1 0= + b

-

-

¥

th=ay» F

s1a:e=X+c

-l

te=a;+ b

83,2

saatb=apx F

=

S14 @ =X+ec

s3zic=ag+b

seqtb=ax F

sgqic=a +d

(4.35)

[(4.35) the repeating pattern is from clock cyele 2 to clock cycle 3, which is

shown below in (4.36).

iteration 1

iteration i+1

S1it1 1@ od 2 =X FC

$3i1€=a;_yymod 2t b

S ib=a, pod o ¥ F

(4.36)

We can sce from (4.36) that the pattern derived by using the DSC scheme contains

fewer instructions than that of the ASC scheme, which is due to the elimination of

the register shifting operations. The new paralle) ioop body is shown in (4.37).

prologue code

fori=1ton-Pdo

% modz=> ¢

=iy mod 2t ol b=, med * F

enddo

epilogue code

(4.37)

CHAPTER 4. REGISTER ALLOCATION 8l

4.7 Reduce Register Requirement Further: Step
9

il

In Section 4.6 we showed how to generate code from a repeating pattern. That finishes
the first step of our register allocation scheme. At this point, the FIFO buffer sizes
and the schedule are all determined. However we still have the ehanee to share builer
elements if their live ranges do not overlap with ecach other for this fixed sehedile.
Hence the second step of our register allocation scheme is to apply the conventional

coloring algorithm(s) [16. 15, 49] to further reduce the register requirenent,

For each of the instructions that we allocated a huffer of size 1. the register may
be thought as a symbolic register. Each such symbolic registers may be reused. For
an instruction we allocated a buffer queue of size more than 1, only the head of the
queue has the chance to be shared with other the buffers of the other nodes. Other
clements of the buffer queue are live throughout the entire range of the repeating

pattern, and therefore can not be shared with other buffers.

In our example loop L;, suppose that we use the ASC scheme to generate code,
then we choose the repeating pattern in (4.31), and draw the live-range diagram of

the variables in Figure 4.3 in Section 4.2.

We can draw the interference graph according to the circular arcs in Figure 4.3,
and color the interference graph with 3 colors. For instance, the following is a legal
coloring with 3 colors: color.i = {a;,¢}, color2= {b}, color3 = {us}. Therefore the
actual number of registers required for the repeating pattern is 3 for these 3 colors,
plus 2 extra for loop invariants X and F, which totals 5 registers. In general we can
use the coloring algorithms [16, 15, 19] %o obtain the minimum number of registers
used in the new loop body. In this section, we apply a recent method of cyclic interval

graph coloring [49].

After the coloring algorithm is applied, the final code for the repeating pattern is

shown in (4.38), in which ¢ is replaced by «; since they have the same color.

CHAPTER 4. REGISTER ALLOCATION 82

prologue code

fori =1 ton-P do
) =1 ” g = .\’ + {31
=+ b b=ayx F

enddo

epilogue code

The coloring algorithm can also be applied to the code produced by the DSC
scheme. However the live ranges of the registers in o huffer of size more than one
may last for several repeating patterns (new iterations) because there are no explicit
register-shiftings. For instance, the live ranges of the variables in the code (4.37)
generated by the DSC scheme are shown in Figure 4.5. In the picture no two variables
can be colored the same color. Hence the code already uses minimum number of

registers and we do not need to change the code again.

Figure 4.5: Live range intervals for code generated by DSC scheme.

4.8 Special Cases g

In this section we look at two special cases of the OSBA formulation (4.7). The

first special case is the result by Callahan et al’s [13] for a fixed sequential program.

CHAPTER 1. REGISTER ALLOCATION <3

The second special case constders loops without loop-carried dependences {683], which

makes the problem easier to solve than the general OSBA problem.

4.8.1 Callahan et al’s Result

Callahan et al [13] considered the problem of using several registers for a subseripted
-ariable to eliminate most of the loads and stores for that variable in a loop. They
assume that the (sequential) exeention order for the loop has alrewdy been lixed.
Then they look at the dependence arcs outcoming from an instruction. They choose
a number 7 which is the longest dependence distance across iterations from this
instruction. Then they allocate 7 + 1 registers to the instruction which writes to
a subscripted variable. In this way they can climinate the store of the subscripted
variable in the current iteration and the load in the subsequent iterations which use

this subscripted variable.

Now suppose that we are given a fixed execution order for a sequential architecture.
We can still think that the schedule for the sequential machine is periodic because
the iterations are execuled in a periodic way. However in this case the period /7 s

the total execution time of a whole iteration. Therefore we have

t; < P, Vie N. (1.39)

Thus the lower bound on the number of buffers for node 7 becomes:

L; —1;
b > [J—P—"-[+ 5, Y(2,7) € §7(7) (4.40a)
> 1 +my, Y(3,7) € §%(3) (4.40DL)

which is exactly Callahan et al's formula to calculate the amount of registers needed

to an instruction 7.

In this sense our method is more general than theirs since we can also handle
parallel schedules, and more importantly we de not fix the schedule so that best

schedule will be found which uses minimum amount of registers.

CHAPTER 1. REGISTER ALLOCATION 54

4.8.2 Loops without Loop Carried Dependences

A lot of the fnner most loops in the program does not contain any loop-carried
dependence. Even if a loop contains a loop-carried dependence, dependence cycles
may not ocenr. This seetion considers this situation and tries to exploit this special

property Lo investigate its implications.

First of all, il no dependence cycle exists, all the iterations can be scheduled at the
same starting time. The whole execution time is that for one iteration. This approach
to scheduling is not practical for any configuration of hardware unless the loop has
a small iteration upper bound. However if the loop has a very large iteration upper
bound, one must control the amount of parallelism in the loop to fit the hardware

configuration.

Note that since the DDG for a loop without loop-carried dependence has no cycles,
the computation rate is not defined by Definition 2.6.1. But we can consider that the
maximum computation rate is infinite. However we can still use a periodic schedule
and choose a positive period for the iterations, to control the amount of parallelism.
FFor example we can choose | as the period or the rate. Then every iteration will start
one clock cycle after its previous iteration. If oue iteration of the loop body does
not have enough parallelism to fully utilize the processing units, a proper number of

iterations can be unrolled first, and then follow the periodic scheduling scheme.

When the period and the rate are 1, the formulation of the OSBA vroblem becomes
much simpler. Since period P is equal to 1, the constraint matrix in the OSBA
problem is a {0,1} matrix. So we do not need to substitute variables. Another not so
trivial observation is that all the symbolic registers allocated as buffers are busy all
the time without any empty time slots, which makes the second step of the register
allocation framework redundant. Let B; be the memory space in which the output

tokens of node 2 can be stored.

Lemma 4.8.1 /n an optimal storage allocalion scheme the memory spaces allocated

to two different nodes (where the two nodes can output their result tokens into) can

CHAPTER 1. REGISTER ALLOCATION

/.
i

not overlap, that is,

BinB,=0.Yije N, i} (A1)

Proof: Since we assume that the loop nnder constderation has no loop-carried de-
pendence, our datallow graph representing the loop has no (directed) evele, Therefore
once node 7 s fired at time ¢; for the first time, it can be fired consecutively for the
rest of the iterations, that is, 7 will be fired at time ¢; + 1 {or the second iteration, at
time {; + 2 for the third iteration. ete. A similar argument is true for node j, that
is, it will be fired at time ;.¢; + 1.4; 4+ 2.---. This means that the oniprt tokens
of a node will be produced at a rate of one token per cycle. The input tokens will
be consumed by the node also at a rate of one token per cycle beeause the suceessor
nodes will also be fired every cycle. Now the empty slot in B; will be filled up by the
consecutive firings of node 2 in the initial period and later on when oo toketin B; is
consumed at some cycle, the slot can be filled up in the next cycle by the result token
from node 7 fired at that cycle. Therefore the ontput tokens of node j can not be put
into B;, which means

B;ﬂBj:@.

4.9 Experimentation Results

We have implemented our algorithm and used it to test some loops selected from
benchmark programs. This section gives an overview of the implementation, and

shows the experimentation results.

We want to test how many floating-point registers and floating-point. functional
units are needed to support our scheme for typical loops selected from a collection of
benchmark loops. The loops tested are selected in Livermore Loops, SPEC bench-
marks and Whetstone benchmarks. Since loops without loop-carried data depen-

dences are easy to be parallelized, and relatively easy to be handled when register

CHAPTER 4. RECGISTER ALLOCATION 36

allocations are concerned, we have restricted ourselves to the loops that contain loop-
carried data dependences. Duce to the limitation of our tools, we also restricted
ourselves Lo loops containing no conditional tests in the loop body. This limitation
can be eliminated if the conditionals have been dealt with before the code is passed

to our scheduling and allocation program.

All the loops are written in Fortran. We have isolated each loop we selected in a
single file. Then we mannally rewrite a loop in order to make the loop in high level
language in a form of the assembly or three address code so that the scheduling and

register aflocation produced are realistic. That includes:

e Break the long expressions into sequence of three address instructions, i.e., each
instruction has at most two input operands and one output operand. Tempo-

raries are generated if necessary.

e Load and Store instructions are also inserted when we break the long expres-
sions. However we do not go to the details of computing the addresses of the

array references since they are mainly integer operations.

e We have used assumptions in Table 4.1 for the execution delays of the instruc-
tions. They are typical numbers [51] found in available commercial or research
machines like IBM RS/6000 [78] and Cydra 5 [72]. The delay for Load instruc-
tion may not be a constant depending on whether the load is a hit in cache or
not. The number of cycles we listed in Table 4.1 should be understood as the

delay of a hit in the second level cache.

To obtain the data dependence information between pairs of instructions of the
loops, we have used Parafrase-2 [68, 48] developed at University of Illinois at Urbana-
Champaign, which can process Fortran programs and generate all the dependences
we need. For a loop, with the dependence information obtained from Parafrase-2, our
program will do the following:

. Compute the optimal period P for this loop.

CHAPTER 4. REGISTER ALLOCATION

-1

A

I jnstructions l_(‘]m‘k (‘}'(‘lt‘L.\‘) l

Add [
Subtract l
Negate !
Multiply 2
Divide 17
Load 13
Store l

Table 4.1: Execution delays of the instructions.

[
’

Ask the user to change the period to a bigger period if he or she wants. The
purpose of this is to let the user have the choic2 of making comparisons on the

register usages for different periods.

Generate a schedule with period P and an optimal buffer allocation simultane-

ously by solving the OSBA problem (4.7).

Using the generated schedule, compute the repeating pattern and the live range

intervals of the buffers.

Use an optimal coloring algorithm to color the intervals. The reason that we
choose to use an optimal coloring algorithm, which does backtracking and can
run in exponential time in the worst case, is that we want to obtain exact results
of the register usage. Actually the algorithm runs very fast in all of onr testings

where 2 loop body typically contains less than 30 floating-point variables.

Collect all the statistics of the schedule, which include: Number of registers
used, Number of buffers allocated, Number of functional 1nits needed to support,

the schedule and the Average buffer queue length for each variables.

‘We have applied our program to 22 loops selected. Figure 4.6 shows the number

of total buffers and the number of total registers allocated to each loop. Figure 4.7

. CHAPTER 3. REGISTER ALLOCATION R

shows the average hulfer quene length in each loop. In Figure 4.8 we show the number

of functional nnits needed for cach loop.

Legend
. |=—@=-==numberofbuffers { :
o |==%e= numberof registers | ;0

T e T I R S
1 234 56 7 8 51011121314151617 18152021 22

°

Figure 4.6: Buffers and registers allocated to each loop.

cuaonnaRRNEBRBLLELLS8
e bt ity ‘

In Table 4.2, we show the averages of our experimental results. The average
number of buffers allocated for each loop is 15.6. After the coloring step, the average
actual register requirement is 13. The improvement of the coloring step over the
buflers is about 16.6%. There are 72.2% of the loops actually used less than 16

registers. Furthermore, 90.9% of the loops used less than 32 registers.

The average functional units required is 2.73, which is obtained by counting all the
instructions, including loads. So the number is a little over-estimated if the under-
lining architecture allows load instructions to by-pass the functional units. Actually,
17 out of 22 loops used less or equal to three functional units. That represents 77.3%
of the loops selected. Only 22.7% of the loops used more than three functional units.
These loops show much higher paralielism than the average. We have also tested to
use a bigger period to control the amount of parallelism in a loop, and the test results

. do indicate that the register usage and functional units requirement are down.

CHAPTER A REGISTER ALLOCATION

: l Legend
. == average bulfer quene length

.IY ;l 1:!1|r T I T T r T Lomini
12 3 4 5 6 7 B 910111213 14151617 18 19 2021 22

loops

Figure 4.7: Average bufler queue length in cach loop.

: Legend :
| === number of functional units |

34 56 7 B 910111213 14 15 16 17 18 19 20 21 2
loops

12

Figure 4.8: Number of functional units needed for each loop.

CHAPTER .

REGISTER ALLOCATION

90

number of loops tested 22
average number of buffers alloecated for cach loop 15.6
average munber of registered allocated for each loop 13
average buifer quene length for each instruction 3.19
average number of functional units needed for each loop || 2.7

Table 4.2: Experimental Results.

4.10 The Example from Rau Et Al’s Paper

In this section, we look at the example loop given in Rau Et Al's paper [72]. The

loop is shown below in (4.42).

enddo

fori=1tondo
s = s+ afi]

afi] = s % s * ali]

Its low level representation, like 3-address code, is shown below.

a:
b:
c:
d:

133 = vr33 4 vrd2
vr3d = load m(vr33)
pr3d = vr3h 4+ vridd
136 = vr3H * vr3d
or37 = vr36 « vrd
store(vr37, m(vrll))
branchtoaifi <n

enddo

% vr33 is address of afi] %
% vi34 = a[i]%
% vr33 =s %

% vr37 = new afi] %

(4.42)

(4.43)

We focus on the low level representation in this section. The data dependence
graph of the low level presentation is shown in Figure 4.9. The delay for Add and
Store is 1, the delay for Multiply is 2 and delay for Load is 13.

<

. CHAPTER 1. REGISTER ALLOCATION 9l

. Figure 4.9: Data dependence graph of the low level code of Ran’s example.

There are two directed cycles in the dependence graph, which are sell-loops from
node a to @ and from node c to c. The B-ratio of it is 1. Therefore we can generate a
schedule with period P = 1. However since Rau et al nsed 2 as their period in [72],
we will also use 2 as our period for generating the schedule and the register allocation.

The OSBA formulation of the low level representation is the following:

CHAPTER L.

REGISTER ALLOCATION

subjeet to

min b, + b+ b+ by + b+ by

2, +t,— 4,20
20, +t,—t; 20
e+l —t, 22
W+t —=2t.20
2+t —t. 20
2. 4+1.-t,20
W+t —t. 22
We+ty—t. 20
W+t -1y 20
hy—i, 21

b —ta 21
la=1 2 =1
te—1 2 13
1o—1, > 13
fg—t.2>1
be—te> —1
=142 2
b=t >2

After variable substitution (4.8), we have:

v,

92

(4.44)

. CHAPTER 1. REGISTER ALLOCATION a3

min b, + b+ b+ by + b + Oy
subject to
bty —th 20
B+tya—ty20
Vot by = 1,22
W+tn—t.20
by+th—1t. 20
b+t =tg >0
b+te—t.22
by +te—1.20

(1.15)
b+t.—1;20
ty—t, 21
b=ty > 1
. lo—1a > =1
be—1y 2> 13
fo—1ty > 13
tg—1.> 1
le—1.> =1
to—tg 22
ty—te>2
By solving (4.45) we obtain the following solution:
o te=0, = L= 14, ty= 15, to= 1T, £y = 19; (4.46)
b, =19, by =16, by =2, b, =2, 4 =2, 1 =0, (4.47)

Instruction f is not allocated a buffer because it is a “Store™ instruction. With

the technique (4.23) in Section 4.4, we obtain the following buffer allocation:

. b, =10, by =8, bo=1, by=1, bo=1, by =0. (4.48)

bl

CHAPTER 4. REGISTER ALLOCATION 94

The second step is to analyze the live ranges of the buffers and use a coloring algo-
rithm to reduce the register requirement further. In this example, coloring algorithm
can not reduce the number of registers Mrther. So there is a total of 21 registers
allocated. In Rang et al’s paper [72], they used 28 registers which is partly due their
assumption that a register can not be released for reuse until all the consumers have
finished their whole executions., while we assume that a register can be released if all

the consimiers have read the value, not necessarily finished [69].

The repeating pattern of the schedule is shown in the following table, in which

;42 means instruction ¢ in its original iteration 2 + 2:

pattern cycle 1: Ciy2 | Qigo

(4.49)

*

pattern cycle 2: | fi | eip1 | diga | bito

The average buffer quene length is 4.2 buffers. The number of functional units
needed to support this scheme is 3 if the “Store” instruction f does not use one. The
sequential execution of the loop will take 20 clock cycles to finish one iteration, while
the current parallel schedule finishes one iteration by overlapping the iterations in 2

clock cycles. Thercfore the speedup is 10.

Il we would have taken period P = 1, then we could have needed 40 registers and

5 functional units to support this optimal speed.

4.11 Related Work

The early work by Aiken and Nicolau [2, 3, 4] did not consider the register allocation
problem. In a recent paper, Nicolau et al {62] considered the register allocation prob-
lem by renaming for the compaction-by-percolation based algorithms. Ebcioglu et al
have proposed the technique of enhanced software pipelining with resource constraints
[29, 30, 28, 61]. However, they did not consider the minimum register allocation prob-
lem as discussed in this paper.

0y

CHAPTER 4. REGISTER ALLOCATION i

In Lam’s work on software pipelining [36]. an interesting scheme ealled modulo
variable crpansion is proposed to allow a scalar loop variable be expanded to use
more than one location so that the unnecessary precedence constraints due to sealar
variable in different iterations can be removed. However modulo variable expansion
is only performed aflter the schedule has been fixed. The work deseribed in this paper
can be considered as an extension to modulo variable expansion in the sense that it
is incorporated in a unified framework of time-optimal scheduling, and minimizes the

amount of storage for scalar variable expansion and array variable shrinkage.

Callahan, Carr and Kennedy have studied register allocation for subscripted vari-
ables. In their method, array references which are live across several iterations are
recognized and a source-to-source transformation called scalar replacement is per-
formed such that they can be handled by coloring-based register allocators. However,
their work is aimed at sequential loop execution and does not consider loop scheduling
such as software pipelining. We have shown in Section 4.8 that our OSBA formulation

(4.7) includes Callahan et al’s result as a special case.

In a recent paper by Rau et al [72], a method of register allocation for software
pipelining was presented. {n this method, register allocation is performed after the
so-called modular scheduling phase. Successive iterations are initiated at a fixed initi-
ation intervel The register allocation problem is formulated as a bin-packing problem
of vector lifetimes on a cylinder surface. A heuristic algorithm has been proposed for
the register allocation and has been demonstrated to be quite effective by experimen-
tal results. However, the paper did not attempt to describe a complete concurrent

scheduling-allocation strategy for software pipelining. Other related work can be
found in [33, 27].

Chapter 5

Cycle Balancing Scheme

On dataflow architectures, there still exists the challenge of how to maximally ex-
ploit fine-grain parallelism to speed up loop execution while not incurring excessive
storage space overhead. This chapter considers a broader class of scheduling and the
storage allocation schemes to support dynamic scheduling on dataflow architectures.
The minimum storage requirement to support the maximum computation rate on a
dataflow architecture is analyzed and a storage minimization method called Cycle
Balancing Scheme (CBS) is introduced in this chapter. The Cycle Balancing prob-
lem is formulated as an integer programming problem. A polynomial time algorithm
of the linear relaxation problem is presented which gives a fractional approximate
solution of the Cycle Balanciug problem. We also prove that CBS has the Totally
Dual Integral (TDI) property, which allows the Cycle Balancing problem being solve
as a linear programming problem if the right-hand-sides are rounded to their integer

ceilings.

96

CHAPTER 5. CYCLE BALANCING SCHEME w7y

5.1 Introduction

Under the dataflow model, a computation is deseribed by a datatlow graph. Unlike
von Neumann computers, dataflow computers have no program counter or other form
of centralized control mechanism. Consequently, the order of instruction exccution is
restricted only by data dependencies within the datafiow programs. Most datatlow
architectures assume that the scheduling of the actors is done by a dynamice scheduler
which maintains a pool of enabled actors. In this chapter we propose a balancing
technique for the dataflow graph of a loop so that the maximum computation rate

can be achieved and ounly the minimum amount of storage is required.

One of the long standing issues in loop execution on dataflow machines is how
to manage the fine-grain parallelism and the storage requirement supporting such
parallelism. Under the static dataflow architecture model, the storage for a loop is
completely determined at compile-time — because each arc in the dataflow graph is
allocated one storage unit. A main restriction of this architecture and storage alloca-
tion scheme is that it may not be able to fully exploit the parallclism to achieve the
maximum computation rate of the loop. Dataflow software pipelining has been pro-
posed to organize the code such that several iterations may be proceeding concurrently
[38, 40, 44]. The number of concurrent iterations is restricted by the amount of storage
allowed for one copy of the loop body. Under the pure dynamic dataflow model, such
a restriction has been eliminated by unraveling the loop body dynamically at runtime,
and the execution can initiate as many iterations as possible given that enough mem-
ory is available, limited only by data dependences [9]. Although dynamic dataflow
architectures provide opportunity to fully exploit fine-grain parallelism in the loop,

managing the amount of storage has been a challenge [8, 11, 20, 39, 42, 40, 65, 66].

In this chapter, we have developed a framework to determine, at compile-time, the
minimurm storage requirement to fully exploit the fine-grain parallelism in a Joop. The
framework is developed under a FIFO dataflow model where each arc in the dataflow
graph is organized as a FIFO queue of certain size. We recall the result in Theorem

2.6.1 that the maximum computation rate of a loop is hounded by the critical cycles

CHAPTER 5. CYCLE BALANCING SCHEME 98

in the dita dependence graph or dataflow graph. Based on this observation, we will
allocate buffers to the arcs in the dataflow graph such that no eycles are allocated
more than what are needed, This will guarantee that the optimal computation rate is
not slowed and that no extra storage is allocated. In this chapter, the buffer storage
will he allocated to the ares of the dataflow graph, instead of to the nodes in the

previous chapter. The main results of this chapter are:

¢ The minimum storage requirement to support the maximum computation rate
is analyzed and a storage minimization scheme called Cycle Balancing Scheme
(CBS) is introduced. The basic intuition is that, since the maximum compu-
tation rate is dominated by critical cycles in the loop, we should not allocate
extra storage beyond a certain bound limited by the balancing ratio of the crit-

ical cycles, defined in Section 2.6.

e The CBS is formulated as an integer programming problem. Since integer pro-
gramming problems are hard to solve in general, we concentrate on the linear
relaxation problem of the CBS. A polynomial time algorithm of the linear relax-
ation of the CBS is presented which gives a fractional approximate solution of
the Cycle Balancing problem. It reduces the problem to a network flow problem
called miaimum circulation flow problem. We also prove that the CBS has the
Totally Dual Integral (TDI) property, which allows the Cycle Balancing prob-
lem to be solved as a linear programming problem if the right-hand-sides are

rounded to their integer ceilings.

The subsequent sections are organized as follows: In Section 5.2 we provide a
brief description of dataflow architectures. Then we give an example to motivate
our cycle balancing problem in Section 5.3. Then, in Section 5.4 we formulate the
cycle balancing problem as an integer programming problem. In Section 5.5 we give
a polynomial time algorithm to solve the linear relaxation problem of the CBS. In

Section 5.6 we prove that the CBS has the totally dual integrality property.

CHAPTER 5. CYCLE BALANCING SCHEME ay

5.2 Dataflow Architectures

Dataflow architectures [23. 24, 23, 7. 26] execute operations represented in a datatlow
graph . The original proposed dataflow architectures do not have a memory model to
address the issue of how to store the result values or the intermediate values. Their
description of computation is pure functional. However storage (such as register)
allocation problems must be solved on dataflow architectures to achieve cost effective

performance.

Now we introduce some notation for a datallow graph. Let us first consider an
operation which is not a conditional test, say an addition. Such an operation is
represented as a node in a dataflow graph. Il a node n; needs the value computed
by node n;, then there is an arc from n; to n;. The arc (nj,n;) is called an input
arc of node n;, and it is called an output arc of node n;. The arcs In a datallow
graph are used to transmit data between operations. Therefore they represent the
same dependence relation as data dependence arcs in a DDG. Data are represented as
tokens on the arcs in dataflow graphs. A node in the dataflow graph is called enabled
if each of its input arcs contains at least one token. An enabled node can be execnted
or fired. The result of the execution or firing is that exactly one token from cach of
its input arcs is removed and exactly one token is added to each of its output arcs.
Figure 5.1 shows the action of firing of a node in a dataflow graph, where the black

dots indicate tokens.

A conditional test operation is treated very differently from an ordinary operation.
The test itself is represented by a node. The input arc or arcs to the test node will
provide data to the test. However the result of the test will output a special boolcan
valued token on each of its output arcs. The special boolean token can only take two
values, true or false. A computation involving conditional test is represented by the
so called conditional schema [22] in Figure 5.2, in which two kinds of special nodes,

i.e. the switch nodes and the merge node, are used to select the branch that is taken.

A switch node has two input arcs, one is a data arc and the other is the {control)

arc from the conditional test node. The switch node will consume one token from its

. CHAPTER 5. CYCLE BALANCING SCHEME 100

S S

(2) Node n; is enabled (b) After the firing of
before the firing. node n;.

Figure 5.1: Firing of a node in dataflow graph.

data input are, and consume a token from its input control arc from the conditional
test. The switch node has two output arcs which are called true and false output
ports. If the boolean token on the input control arc carries a true value, then the
. output token will be routed to the true port, and the value of the output token equals
the value of the input data token on the input data arc. If the value of boolean token
on the input control arc is faise, then the output token that equals the input data
value is put on the false port. in any case only one of the two output arcs from the

switch node will obtain a token.

A merge node is used to join the two branches. A merge node has three input
arcs, two of them are data input arcs connected to the true port and the falie port
of the node, respectively. The third input arc is the control arc from the condivional
test node. The semantics of firing a merge node is that it will remove one token from
either the the true port or the false port, but not both, according to whether the
value of the boolean token on the input control arc is true or false. Of course it will
also remove the token from the input control arc. Then the merge node will output
a token on each of the output arcs which has a value equal to that of the input data

token on the chosen port.

Using merge nodes and switch nodes, a loop can be represented in a dataflow

. graph by the so called iterative schema [22]. Figure 5.3 shows an iterative schema

CHAPTER 5. CYCLE BALANCING SCHEME 101

swilch

Figure 5.2: A conditional schema in a dataflow graph representing “if x > 0 then 2
= x+y else z = x-y”.

that computes the following loop:

fori=1to Udo
sum = sum + afi]; (5.1)

enddo;

However if the loop upper bound is very large, since all the testings will take the
true branch which will come back to the beginning of the loop, we can simplify the
loop schema so that the conditional test, the switch nodes and the merge node are

omitted. In Figure 5.4 we show the simplified version of the loop schema in Figure
5.3.

In the simplified version of the loop schema, we can sce that it is very much like a
data dependence graph of the loop. Actually the only difference .5 that in a dataflow
graph the dependence distances of the arc are indicated by the number of tokens on

the arcs. Subsequently, we will use simplified versicn of loop schema to represent a

CHAPTER 5. CYCLE BALANCING SCHEME 102

il
-
-~

T F T F I
merge merge

awilch switch m N7
T F T FJ°

load

ali] result
+1 +

Figure 5.3: A iterative schema in a dataflow graph representing the loop in (5.1).

A simplified iterattive schema in
which the merge nodes and the switch
nodes have been omitted.

Figure 5.4: A simplified version of loop schema.

CHAPTER 5. CYCLE BALANCING SCHEME 103

loop in later sections. Sinee the simplilied version of datatlow sehemata lor loops has
no difference to data dependence graphs in term of representing the data dependences,
the definitions about data dependence graphs can all be applicd to these stmplilied

dataflow graphs.

Argument-Flow Dataflow Architecture [22, 25, 9] : An argument-flow datatlow
computer architecture is one that computes a dataflow graph according to the
semantics of the dataflow graph. The data tokens are assumed to be sent ex-

plicitly by the producer nodes to the consumer nodes along the ares,

Argument-Fetching Dataflow Architecture [26] : An argument-fetching dataflow
computer architecture is one that also computes a dataflow graph according to
the semantics of the dataflow graph. However a producer node will store its
result data token in the memory system, and a consumer node will have the
concept of the address of its input ‘nken, and go to that address to explicitly

fetch that data from the memory system.

With these definitions we can see that a producer node in an argument-flow archi-
tecture has to duplicate its result to its multiple consumers, while as in an argument-

fetching architecture model, the producer stores only one copy of its result.

5.3 Example and Motivation

In this section, we use an example to show the challenge of minimizing the stor-
age requirement while keeping the maximum computation rate ol loop execution on
dataflow machines. Related work will be discussed in Section 5.7. Let’s consider the

loop L. containing loop-carried dependencies, shown in (3.2).

CHAPTER S CYCLE BALANCING SCHEME 104

Ly:jfori=1tondo

a: lalif=fli =3 +cfi =2
b | b[{] = ali] + =z

e |elil = alil + ol

d: | d[i] = bfZ] + 3.0 (..
e: |eff] =cli] +dli=1]
7o |)= i + el

g: |gi = eli] + i

chddo;

1)
B
—

Figure 5.5 shows the dataflow graph of the loop L,. Figure 5.5 (a) contains
external input arcs which are omitted from Figure 5.5 (b). Note that a complete
translation of L into a dataflow graph also contains loop control actors, such as
switch and merge actors [24]. We assume that the loop is executed a very large
number of iterations. Therefore, it is reasonable to assume that the switch and merge
actors for loop control will always take a fixed branch path except for the start and

termination of the loop. For simplicity, we omit them from Figure 5.5.

The arcs in the datallow graph represent the data dependencies. When there are
a black dot, or dots (called tokens) on an arc (k, k), then that means the arc (k, k)
is a loop-carried dependence, and the number of tokens on the arc (A, k) represents
the iteration distance of the dependence. For example, there are three tokens on arc
(f.a), which means that the result produced by f at the current iteration will be

used by e three iterations later at iteration z + 3.

Under the static dataflow model, it is assumed that each arc in the dataflow graph
can hold at most one token. So one storage location is allocated for each of the arcs.
In a static dataflow architecture, a loop-carried dependence of distance > 1 can be
represented in one of the two ways. Either we can unroll the loop a number of times
so that all the loop-carried dependences are of distance one, or we can use a chain

of myy arcs to join nodes & and & such that there is one token on each of the arcs

CHAPTER S CYCLE BALANCING SCHEME Loh

{b) Dataflow graph without outside input arcs. I

Figure 5.5: Dataflow graph for loop L

. CHAPTER 5. CYCLE BALANCING SCHEME 106

Figure 5.6: Static dataflow graph and its storage allocation.

on the chain. Therefore static dataflow architecture can indeed handle loops with
loop-carried dependences of distance more than one. However the limitation of one
token per arc in static dataflow architecture will limit its ability to fully exploit the
parallelism in the loop and also limit its maximum computation rate to be at most
:‘_;. For our example loop La, the static dataflow architecture uses 13 memory spaces,
which can only run at a maximum rate of 1 because the feedback arcs create new

cycles of length 2 — for instance cycle a — b — «, as shown in Figure 5.6.

Dataflow softwarc pipclining was originally proposed tc exploit fine-grain paral-
lelism in loops on static dataflow computers [40, 38]. As a result, there may be several
iterations exeented concurrently with one copy of the dataflow graph for L. The code
is mapped such that successive waves of element values of the input arrays x, y and
z (corresponding to inputs to successive iterations) will be fetched and fed into the
dataflow graph of the loop body. So the computation may proceed in a pipelined
fashion. However, the loops considered in [40, 38] have no loop-carried dependences.

Therefore the main limitation of static dataflow model is that it may not be able to

CHAPTER 5. CYCLE BALANCING SCHEME 107

fully =xploit the parallelism in the loop if loop-carried dependences exist. For exam-
. . =9 . . . P T

ple. in the example loop Ly in (3.2), its maximum computation rate is 3 limited by

critical eyele @ = ¢ = ¢ = a. However the static architecture model can not achieve

that speed.

We will use a model more general than the static dataflow model, but simpler
than the dynamie dataflow model, in the organization of the memory structures. We
assume that an arc can hold 2n unbounded nnmber of tokens in a First-In-First.-
Out (FIFO) quene. Later we will give a more formal definition of our model. Our
problem is to find bounds on how many tokens cach arc can hold, so that maximum

computation rate as defined in Theorem 2.6.1 can be supported.

Under the dynamic dataflow architecture. such limitation is climinated via loop
unraveling [7], which virtually provides unbounded amount of storage for cach are.
The storage minimization problem, however, still exists for dynamic dataflow ma-
chines. To execute a loop on a dynamic dataflow machine, multiple instances of one
operation corresponding to different iterations can be initiated concurrently, limited
only by the data dependences of the loop. This is accomplished by the loop un-
raveling scheme, where (in more “modern” implementations such as the Monsoon
dataflow machine [66]) each iteration is allocated its own activation [rame containing
all memory spaces required to hold its operands. Therefore cach frame requires as
much memory as the total number of arcs of the dataflow graph. This allows an iter-
ation to begin its initiation as soon as the data values for the iteration have arrived.
With many iterations simultaneously active in the machine, dynamic dataflow model
may provide an opportunity to exploit far more parallelism than the static dataflow
model. As pointed out in {20], however, exploiting more parallelism will invariably
increase the resource requirement of a program. The challenge is not to allow the
floop to consume more storage than necessary to fully exploit the parallelism in a
loop. Consider our example loop L., there could be three iterations running at the
same time. Hence three frames each requiring 10 memory spaces need to be allocated,
totaling 30 memory spaces. We will show that our method will require substantially

less memory spaces (actually 16 buffers) than that.

CHAPTER 5. CYCLE BALANCING SCHEME 108

Let us ask the following question: what is the minimum amount of storage that the
loop Ly needs Lo run at the marimum compulation rate under an idealized dynamic
dataflow architecture? The idea is to add storage control ares and check all the eycles
so Lthat cach eyele is allocated enongh storage in order to maintain a balancing ratio
(defined in Section 2.6) greater than or equal to the ratio of the eritical cycles, We now
constder the example loop Ly in Figure 5.5. There are three loop-carried dependency

ares, which form 5 cycles:

= {(a, b}, (b,d).(d, [}, (f,)}
= {(a,c), (C-), (e,a)}

= {(a,1),(b,d),(d, e), (e, a)}
= {(e,) ve) (e, f), ([a)}

Cs = {(a,b),(b,d), (d,e), (e, [}, (f;)}

Their balancing ratios are:

3 4
x R(Cs) = ¢

3
R(Cl)_z' C)_ 5'

RC) =3, R(C.)=

wl | §]
.

Therefore Cs is the critical cycle, and the maximum computation rate is % In
Figure 5.7 we add some storage control arcs which are indicated by dotted lines. The
two tokens on (d,a) mean that we have allocated two buffers, organized as a FIFO
queuge, to the chain from a to d. Similarly the two tokens on arc (f,d) indicated that
two buffers have been allocated to arc (d, f), etc. Therefore a total of 16 buffers are
allocated, which allows the loop L, to run at the maximum computation rate of %

That is because all the cycles in Figure 5.7 have their balancing ratios at least 3.

5.4 Cycle Balancing Scheme (CBS)

From Theorem 2.6.1 in Chapter 2 we know that the maximum computation rate of

a loop is dominated by its critical cycles. Therefore, we will allocate just enough

CHAPTER 5. CYCLE BALANCING SCUHEME 109

Figure 5.7: Storage Allocation by our CBS uses 16 buffers.

storage to each cycle so that its balancing ratio at least as hig as the balancing ratio
of the critical cycles. In this section, we propose that a compiler should he able to
determine the storage allocation such that all cycles have the same balancing ratio

as that of a critical cycle. We call this procedure cycle balancing for datallow graphs
(41].

In this section we will show how to formulate the cycle balancing problem as an
integer programming problem. There are two steps in the formulation process. The
first step is called chain replacement, i.e. replacing each chain in the dataflow graph
with a single arc. This has the effect of sharing the storage for all the actors along a
chain. The second step is to derive an integer programming formulation which will
optimize the memory allocation. We will show in Section 5.5 that the relaxation
linear programming problem can be solved in polynomial time. We will also show in
Section 5.6 that the integer programming problem has the lotally dual inlegral (TDI)
property, which will also allow us to solve the integer programming itsell by solving

a linear programming problem.

CHAPTER 5. CYCLE BALANCING SCHEME 110

5.4.1 Chain Replacement
Let's lirst state what is o chain.

Definition 5.4.1 (iven a dalaflow graph (¢ = (N, A;m, d), if a nodc n has only one
inpul arc and only one oulpul arve, then it is called simple. A path is called a chain
if all the nodes lying inlernally in the path (i.c. nol including the two cnd nodes) are

simple,

Chains are the most simple structures in a dataflow graph. The obvious opti-
mization of storage allocation is that to consider a chain as a single arc if one choose
to share the storage among the arcs along a chain. However we should remember
that more general sharing of the storage among arbitrary actors gives rise to an NP-
complete optimization problem (Theorems 3.2.1 and 3.3.1). Therefore in this chapter

we restrict ourself to chain replacement only.

Our method will allocate storage to a dataflow graph on a chain by chain basis.
For instance, consider a chain @ of length . Our algorithm may assign a total of
y buffers to the chain Q. Counceptually, the y buffers will be shared by the tokens
traveled along Q. For simplicity in later formulation, we can replace each chain by

an are. The implementation issue for chain replacement should be straight forward.

Definition 5.4.2 Given a dataflow graph G = (N, A;m,d), and a chein Q in it, let
h be the starting node of chain Q, and k the end node of Q. A chain replacement of
Q is the replacement of Q by a new arc joining h and k. The length of the new arc is
the sum of the lengths of ares along the chain Q. If all the chains have been replaced
by arcs, then the resulting graph is called the skelcton, end is denoted by SG.

5.4.2 Integer Programming Formulation

After we have done the chain replacement for a given dataflow graph G we obtain a

“skeleton” of G, indicated by SG. Of course if no chain replacement has happened,
G = S8G. i

CHAPTER 5. CYCLE BALANCING SCHEME 11

To limit the number of memory spaces allocated on the ares in the skeleton SG we
introduce a new storage control are (A h) corresponding to cach are (AJkY in NG as
defined in Definition 5.1.3. A storage control are has the effect of Bimiting the number
of tokens that can reside on an arce at any moment. But storage control ares are only
used for the purpose of calenlating the amount of storage that shonld he allocated
to cach individual arc in the original dataflow graph, In the actual execation of the
dataflow graph. storage control arcs do not exist and therefore add no extra data

dependences.

Definition 5.4.3 Given a skelelon of a dataflow graph SG=(N, A: m, d}, for cach
arc (h,k) € A, if myp = 0 and (K, h) € A, then we add a slorage control are
(k,h) with xyy, initial tokens, which is a variable to be determined laler, and which
has the cffect of limiling the number of tokens residing on are (h.k). The sel of
storage control arcs will be denoted by A~ as they are i the opposile divections of
their corresponding dependence arcs. Each are in A~ has a length of 1, which reflecls
the timing assumption that each node will use onc lime step lo lake a Loken from ils
input arc and is ready Lo take the nexl loken after this step V. The number of inilial
tokens on each of thesc new control arcs is defined Lo be zero. The resulling graph is
called Augmented Dataflow Graph, or ASG' for shorl.

See Figure 5.3 for an example of augmented dataflow graph.

Let us notice that an augmented dataflow graph itseclf is still a dataflow graph if

all the z;;,’s bave been fixed as constants.

Lemma 5.4.1 The simplificd dataflow graphs, containing no merge and swilch nodes,

have the property that during their ezeculion the sum of lokens on any cycle docs nol

change.

Proof: To see why the lemma is true let us fix a cycle C and let u be an actor on C.

When an actor is fired it consumes one token from its input arc on C' and produces

10f course this parameter can be adapted to hardware configurations.

CHAPTER 5. CYCLE BALANCING SCHEME 112

{a) Skeleten of dataflow graph of L
atfter chain replacement.

{b) Augmented skeleton ASG with storage
control arcs indicated by dotted lines.

Figure 5.8: An example of dataflow graph and its augmented dataflow graph.

CHAPTER 5. CYCLE BALANCING SCHEME Ld

one token on its output arc on . Therefore no token is added to € or lost from ¢,
the token is only moved from one side of u to the other side of 1, So the total number

of tokens on € does not change. Q

Each storage control arc (k. &) we just added in, together with its original depen-
dence arc (A, &), forms a cycle with a sum of xyy, tokens on it, Therefore by the above
lemma, the number of tokens that are (b &) can hold in the ASG is ab most .

Hence the total memory required for the exeention of the datallow graph is at most:

N> wm+): M

wamd

(kh)eA- (k)€
in which the second sum is a constant. Thus our objective is to minimize the first term
in the above expression. The introduction of the storage control arcs also introduces
many new cycles in the ASG that do not appear in SG. The balancing ratios of
the new cycles might be smaller than that of the original critical cycles in SG if the
Zii's are not properly chosen. In order to support the maximum computation rate
we must keep enough tckens — equivalently allocate cnough memory spaces — in
all cycles such that the balancing ratios of the new cycles is not smaller than that
of the original critical cycles. In order to give the mathematical formulation of the

minimization problem, we first introduce some notations.

Definition 5.4.4 Given an ASG = (N,A;m,d), lel C be a dirceted cycle in lhe

ASG. We use C* to indicate the arcs in C which arc nol the storage control ares, i.c.
cr=CA,
and C~ to indicatc the arc in C which arc slorage control arcs, i.c.

c-=CNA~

With these notations, we give the following formulation of the minimum memory

allocation problem which can support the maximum computation rate.

CHAPTER 5. CYCLE BALANCING SCHEME 114

min Z Tk (5.3a)

r=(hk)EA=
subject to
YorC=Te + L ccot Me > M(C")
D(C) = D(C-)’
r. 2 0, z. integer, Yee A~ (5.3¢)

YC € C(ASG) (5.3b)

where C(ASG) is the set of all cycles in ASG and C* is a critical cycle in the original
dataflow graph ¢ or SG.

There exists one constraint in (5.3b) for each cycle C in the ASG. 1t ensures that
the values of the #.'s are big enough so that the balancing ratio of cycle C (defined
in Section 2.6) is not smaller than that of the critical cycle in the original dataflow
graph. By moving the variables to the left hand side and the constant terms to the

right hand side, and by defining

be = 9(0)% - \;(;: m,, YC € C(4SG) (5.4)
2

then the formulation can be rewritten into the following form, which is named Cycle

Balancing problem:

Cycle Balancing Problem (CB}):

min) z. (5.5a)
€A™
subject to
3 z. 2 b, YC € C(ASG) (5.5b)
eeC—
. >0, Ve A~ (5.5¢)
z. integer, Ve € A~ (5.5d)

The solution of the CB problem will provide a storage allocation for all arcs in

the skeleton of the datafiow graph, which will be enough to support a maximum rate

CHAPTER 5. CYCLE BALANCING SCHEME 115

loop schednle. However the integer solution constraint gives us some dithiculty in
solving it as will be explained in Section 5.6, So one approach to obtain a solution
is to solve the linecar relaxation problem to obtain a fractional solution and up-round
the solution to obtain a near optimal integer solution. The lincar relaxation of the
CB problem is to ignore the integer constraints (5.5d). We write the lincar relaxation

down as follows for future reference:

Fractional Cycle Balancing Problem (FCB):

min Z &, {5.6a)
rE A
subject to
S 2. 2 be, YO € C(ASG) (5.6h)
c€C=
.20, Vee A™ {h.6¢)

We should notice that there can be an exponential number of cycles in an ASG,
which means that there could be an exponential number of constraints in (5.5b) and
(5.6b) of the formulation of CB problem and FCB problem, respectively. Therefore
it is not trivial to solve FCB in polynomial time in terms of size of the given ASG.
Both the ellipsoid method [35] and the Karmarkar method [54] for solving lincar
programming have computation complexity in terms of both the number of variables
and the number of constraints in the formulation. Since the number of constraints in
our formulation is exponential, these algorithms can not be applicd Lo our problem to
obtain polynomial algorithms. In the method given in the next section we will explore
the properties of the dual problem of FCB to obtain a polynomial time algorithm in

terms of the size of ASG. Here we write down the formulation of the dual problem
of FCB as follows:

Dual of FCB (D-FCB):

max ». bezc (5.7a)
CeC(ASG)

CHAPTER 5. CYCLE BALANCING SCHEME 116

subject to

<l VegA™ (5.7b)
Cae
20, YC € C(ASG) (5.7¢)

The dual problem could have an exponential number of variables, since each vari-
able in the dual problem correspounds to a constraint in the primal problem FCB.
However we present a method which will produce at most |A~| positive z¢ values,
and all the other z¢’s are zero. We will use this property to obtain a polynomial time

algorithm in the next section.

5.5 Polynomial Time Solution of FCB

In this section, we show that the primal problem of the linear programming problem
FCB (5.6) can be solved in polynomial time. We will actually show that its dual
problem D-FCB (5.7) is equivalent to the so-called circulation problem [35]. Since the
circulation problem can be solved in polynomial time [32, 58], we only need to show
that the optimal solution of the circulation problem can be translated into an optimal
solution of D-FCB (5.7) in polynomial time. When the dual problem D-FCB (5.7)
can be solved in polynomial time, we can use this dual optimal solution to obtain an

optimal solution of the primal problem FCB (5.8) also in polynomial time.

The general circulation problem is very similar to the minimum cost flow problem.
The distinction is that in minimum cost flow problem, there is a source node and a
sink node. The objective is to send a fixed amount of flow from the source to the
sink so that a given objective function is minimized. In circulation problem, there is
o source node or sink node, and flow circulates in the graph. Now let us consider
the circulation problem formulation that fits our need. The circulation problem is,
given a directed graph, to find a circular flow so that a given objective function is

optimized (maximized or minimized). The mathematicai formulation of the maximum

CHAPTER 5. CYCLE BALANCING SCHEME A

cost cirenlation problem is given in (5.9). which is defined on the graph AS¢G with

cost coelficients defined as:

A(C)

. = lr-—
Pe = D)

- Vee AU A", (h.8)

where C* is a eritical cycle in the original data flow graph and [, is defined in Seection
5%

Zade

Maximum Cost Circulation Problem (MCCP):

max Z peSe (5.9)
rEAUA‘
subject to
> Jfo— 3 [f.=0,VheN (5.9b)
e€d+(h) e€d—(h)
J. <1, Yee A™ (5.9¢)
Je 20, Vee Al A" (5.9d)

The following theorem explains why this version of the circulation problem fits
our need.

Theorem 5.5.1 Given an oplimal solution of MCCP (5.9), we can consiruct an
optimal solution of D-FCB (5.7), and vice versa.

Proof: Let [= {fc}eeAUA- be a feasible solution of MCCP (5.9). Let, ns define
1=/, ie
f}=[f., Yec Al A~

Let S(f?) be the support set of f1, that is, the subset of arcs with positive flow values:

S(f') = {e; e € A|J A" such that f} > 0}. (5.10)

CHAPTER 5. CYCLE BALANCING SCHEME 113

If the support set. S(f') is not empty, then it must contain a cycle by the nature
of the eircular flow it represents. Let €y be any given eycle in S(f). Define z¢, to

he the minimum flow value among all the ares in Cy, that is,

ze;, = min{f!; e € C}. (5.11)

Now we define a new circular flow f2 by subtracting z¢, {rom the current flow f1:
(5.12)

f‘.!_ frl_:cn ichCt,
‘ :, il'eﬁC;.

It is casy to check that f* = {2} is another feasible circular flow of MCCP (5.9).
But the number of arcs in the support set S(f?) of f* is strictly less than that in the
support set S(f1) of f!, because at least one arc in C; must have a zero flow in f2.
We can repeat the above procedure to choose another cycle C, in S(f?) and produce
another circular flow {f2}. ln general, from the circular flow f*, we choose one cycle
Cy in its support set S(f*) if it is not empty, and define z¢, to be the minimum flow

value among all the arcs in Cj:

z¢c, = min{f}; e € C}.

Then we define the next flow f4*! to be:

fh.+1 = f:‘ — SChs if e € Ciu
¢ :‘, ife & C.

This procedure stops when the most recently produced circulation flow fi+! is

zero everywhere, that is, its support set S(f4*') is empty.

By that time, we have defined positive variables:

IC1y SCarttty SOy,

CHAPTER 5. CYCLE BALANCING SCHEME Yy

for h cycles
Cio Caveerl O
We define:

2. = 0. for all the other directed exveles €7 i C(ASGD,

Let us note that for such defined z¢2's. there are only £ of them are strictly positive,
where h is less than or equal to the number of ares in the ASGL All the others are
zero valued. The number £ is smailer than or equal to the number of ares in A A~
because each step of producing a new flow will take out at least one are from ihe old

support sets.
Next we show that such defined {z¢ }eec(ase is a feasible solution of D-FCB (5.7).
First let us notice that for such defined {z¢}oeciasg), the following property holds:

Y zo= [Yee A A (5.13)

C3e
We can prove (5.13) by induction on the number of cycles for which the support set
S(f) can be decomposed into. If S{ [} itsell is a single cycle, then the amount of flow
on all the arcs in this cycle must be the same because the flow 1s a circular one. So
in (5.11), z¢, is equal to the amount of flow on cach arc. Since there is only one cycle
in the support set, f* in (5.12} is a zero flow, and all the other z¢’s are defined to be
zero. Hence, for the arcs in the support set (5.13) is true, and for ares ¢ not. in the
support set, L.e. f. = 0, and any cycle C passing through ¢ is defined as zero, therefore
(5.13) is also true. Now consider the general case that the support set S(f) can be
decomposed into k cycles. Then the support set S(f2) of [* can be decomposed into

h — 1 cycles. The induction hypothesis assumes that

Z zc = fi, Ve A JA™.
Cae and cz0,

By the definition of f2 in (5.12), the following is true:
f: = f:z +ch, ife € CI-.-

f: =f3= '[egcl

CHAPTER S CYCLE BALANCING SCHEME 120

Therefore we have the following:

Z etz = f1 Ve € Oy

e, anid ez

and
Z:rr =fT=fl.Ye gC,.
(=T

Henee (5.13) s true for all the s,

For any are ¢ € A~ the constraint for e in problem D-FCB (5.7b) demands that
the sum of the z¢'s for the eyeles € containing ¢ is bounded above by 1. This is true

by the property in (5.13) since f, < 1 fore € A~

Now the objective value of such defined feasible {z¢} is:

bozp = D(C -]
c% ¢ §{ D(C) Z:c}
_ M(C") _
{Z e - o=

CeC \eeC c€C

Z Z PeC

CeC ceC

= 3 3 pez

S—t

c€A[JA-C3e

= X Py

c€AlJA- C3e

= > pfe

c€AlJ A -

So the objective value of problemr D-FCB (5.7) is the same as that of problem
MCCP (5.9).

To show the reverse, let {z¢} be a feasible solution of D-FCB (5.7). then it is easy
to check that the flow defined by the following formula is a feasible solution to MCCP
(5.9):

’ fr = Z:C-, Ve € AUA-.

Ce

CHAPTER 5. CYCLE BALANCING SCHEME 121

Of course, if one of the feasible solution is optimal, the other is also optimal sinee
they will produce the same objective value, This proves that the MCCP (3.9} and

the D-FOB (5.7) are equivalent. 0

Therefore D-FCB (5.7) and MCCP (5.9) are cquivalent in the sense that the
solution of one problem also gives the solution of the other. We can see from our
formulation that MCCP (5.9) has 2|N| constraints and A A7] variables, Both
of these two numbers are polynomial to the original size of the ASG. In fact, the
circulation problem MCCP (5.9) can be solved by polynomial time algorithms [36,
32, 58] which are much better than the general methods of the simplex algorithm,

the ellipsoid algorithm [55] or Karmarkar’s algorithm [54].

Theorem 5.5.2 (Lawler, [58]) MCCP (5.9) can be solved in O{|AY A~ log |N]) =
O(|A]* log |N]) time. where [AJ AT is the number of ares of the graph ASG and |N)

the number of nodes in the graph.

After we obtain the optimal dual solution of D-FCB (5.7). we can transform it
to a primal optimal solution of FCB (5.6) in polynomial time by either the tablean
method or the complementary slackness method in [17]. Hence we have proved the

following theorem.

Theorem 5.5.3 The lincar relazation FCB (5.6) can be solved in polynomial time
with a complezity O(| A log | V).

Proof: The solution of the MCCP (5.9) has a complexity of O(|A]* log[N]}). Then
all the transformations to obtain the solution of the D-FCB (5.7) and FCB (5.6) are
not using more than O(JA|? log|N]) time. Thercfore the total complexity of solving

the FCB (5.6) is O(|A[? log | N|). 0

The solution of FCB (3.6) can be rounded up to give an integer solution for CB

(5.5). Let us look at our example to see how this is done. In our example of Figure

CHAPTER 5. CYCLE BALANCING SCHEME 12

b

5.5, the optimal solution of the cireulation problem MCCP (5.9) is the following:

Siz=faa =2,
fa=fa=fe=lu=fan=fa=1

and all other fi; = 0.

The support set of this cirenlation flow is:

SO = {(1,2).(2,1),(2,4),(4,2), (4,3),(3,5),(5,3), (3, 1)}

G = {(1,2),(2,1)}
Ca = {(2,4), (4,2)}
Ca = {(3,5).(5,3)}
Ca={(1,2),(2,4),(4,3}, (3, 1)}

By the prool of Theorem 5.5.1 we can construct the optimal solution of the Dual
of FCB (5.7) as:

So, = e, =3¢, =2¢, = L.

This solution can be transformed to a solution of the primal problem FCB (5.6)

asg

I = bcl= 2
4
Iy = bc2= §
4
I53 = bc;= E
4
Tq3 = bc4= —;

When round-up to an integer solution, it is

I =Tpp =53 =Tga =2

CHAPTER 5. CYCLE BALANCING SCHEME I

15
-

which happens to be optimal for the integer programming (B (5.5).

Although we have shown that FOCB (5.6) can be solved in polvnomial time, the
solution of the integer version CB (5.3) in polynomial time remains an open prob-
lem. In the next section, we explore a special property, totally dual integrality, of the
constraints of CB (5.5), and propose another approach to solve it by lincar program-

ming.

5.6 Totally Dual Integrality

In Section 5.5 we have shown that the lincar relaxation FCB (5.6} of the B {5.5)
can be solved in polynomial time even though there could be an exponential number
of constraints in the formulation. The solution obtained from (5.6) was not always an
integer solution. Since we prefer to have an precise integer optimal solution instead
of rounding up the fractional optimal solution to integers, a natural question to ask is
how to obtain an exact integer optimal solution. One possibility is to show that the
constraint matrix in the formulation is totally unimodular, because Theorem 2.10.1
guarantees that if the constraint matrix in the formulation is totally unimodular, then
the linear relaxation problem will always have an integer optimum solution when
the right hand sides of the constraints are integral. Hence by showing the totally
unimodular property of the constraint matrix, one only nceds to solve the lincar

relaxation problem which will guarantec to obtain an integer optimum solution.

Unfortunately, we show in this section that the constraint matrix in CB (5.5) is not.
totally unimodular (TUM). Therefore it is not immediately clear that the optimum

solution of the linear relaxation will always be integral.

However we will show that the integer programming problem CB (5.5} has the

Totally Dual Integral (TDI) property, which is a weaker property than the TUM in
the following sense:

o A system of linear inequalities that has the TDI property does not necessarily
have the TUM property,

CHAPTER 5. CYCLE BALANCING SCHEME 124

e A system of linear inequalitics that has the TUM property also has the TDI

property.

Both properties are important for integer programming problems because they
can guarantee that their linear relaxation problems can produce integral optimum

solutions.

5.6.1 CB Problem Does Not Have TUM Property

We recall that in the formulation of CB (5.5), there is a constraint for each cycle C
in the augmented dataflow graph ASG and there is a variable for each arc in ASG.
Consider the dataflow graph G in Figure 5.9 (a). Its augmented graph is in Figure
5.9 (b). We choose three cycles and three arcs in Figure 5.9 (b) so that the 3 by 3
square submatrix of the constraint matrix of CB (5.5) generated by these cycles and

arcs has a determinant 2, which is not 0, 1 or —1 as required by the TUM property.

The three cycles in Figure 5.9 (b) are:

Cl = {6129 €24, 6.1-37 €35, €56, egl }}
C‘l = {5137 e:;‘,,'? €25, €56, €61 }'f

Cs = {ean €33 €52}

and the three storage control arcs are:
6611 ‘332: 343'

The submatrix containing cycles Cy, C: and Cs and edges e5,, €5, and ey is the
following:

Cii1 0

Cs| 0 1

CHAPTER 5. CYCLE BALANCING SCHEME

Legend:m S

Data dependence arc:
Storage control arc:

\
|
1
!
1
)

l(b) Auvgmented graph ASG. I

Figure 5.9: An example of dataflow graph for which CB is not TUM.

CHAPTER 5. CYCLE BALANCING SCHEME 126

It is easy to see that the determinant of the above 3 by 3 submatrix is 2. So
by deflinition of total animodularity, the constraint matrix of CB (5.5) is not totally

untimodnlar.

5.6.2 CB Problem Has the TDI Property

We first give the definition of total dual integrality. In the following, we will use A
to denote the constraint matrix, b the right hand side vector, ¢ the cost coefficient

vector of the objective function in the formulation of CB (5.5).

Definition 5.6.1 ([74]) Supposc that A is a rational matriz, b is a rationel vector.

Consider the pair of primal and dual linear programming problems:
min{ce | Az > bjz > 0} = maz{yb| yA < gy > 0}.

Then the linecar system {Az 2 b,z 2 0} is said to have the Totally Dual Integral
(TDI1) property if and only if the above dual max problem has an integer optimum

solulion y for cach intcgral vector ¢ with finile mazimum.

The TDI property is weaker than the TUM property but it is still very important

for solving integer programming problems due to the following theorem.

Theorem 5.6.1 (Edmonds and Giles (1977) [31]) Let {Az > b;z > 0} be a
TDI system. If the right hand side b is an integral vector, then the primal linear
programming problem, min{cz | Az 2> b;x > 0}, has an integer optimal solution for

cach ¢ such thatl the solution is finite.

We want to show that the cycle balancing problem has the TDI property, and
therefore it has an integer optimum solution if we replace the right hand side b¢ with

its integer ceiling [b¢].

CHAPTER 5. CYCLE BALANCING SCHEME 127

In the formulation of CB (3.5). the objective function ¢ has all its entries equal
to 1. In order to show its TDI property, we have to consider all integral vectors s,
The more general formulation is shown in (5.14) with the objective function being

generalized to an arbitrary integral vector e,

CB with generalized objective function (G-CB):

min z Cell' (5. 11a)

e={n,,n,)€A~

subject to

S z.2be, YCEC (5.14b)
cEC—
ze 2 0, Yee A™ (5.14¢)

In order to show that G-CB (5.14) is a TDI system, we have to show that its dual
has an integer optimal solution for each ¢ such that the solution is finite, according
to Theorem 5.6.1. The dual of G-CB (5.14) is shown below:

Dual of G-CB:

max Z beze (5.15a)
cec
subject to
Z 3¢ X Cey YVEeE AT (5.15h)
C=35¢
220, VCeC (5.15¢)

Using a similar technique as in Section 5.5 we show that a more general circulation

problem GMCCP (5.16) is equivalent to the Dual of GCB (5.15).

Maximum Cost Circulation Problem with General Capacity ¢ (GMCCP):

CHAPTER 5. CYCLE BALANCING SCHEME 123

max Z Pefe (5.16a)
rEA
subject o
S =Y f-=0,VneN (5.16b)
c€5+ (n) e€s=(n)
f-<ec, Yec A™ (5.16¢)
fe 20, Veg A (5.16d)

Lemma 5.6.1 Given an oplimal solution of GMCCP (5.16), we can construct an

oplimal solution of D-GCB (5.15), and vice versa.

Proof: The proofl is almost identical to the proof of Theorem 5.5.1 since the only
difference between GMCCP and MCCP is the the capacities of the arcs have been

generalized from all | to an integer vector c. Therefore the detailed proof is omitted.
(m]

It is well known [35, 58] that the circulation problem has an integer optimal

solution if all the capacities on arcs are integers, which is indeed the case in GMCCP
(5.16).

Lemma 5.6.2 ([58], page 160) /n GMCCP (5.16), if the right hand side c.’s are
integers and there czists a finite optimal solution, then there exists an integral optimal

solution (whether or not the cocfficient in the objective function are integers).

Therefore we can solve the GMCCP (5.16) with integer vector ¢ to obt? 1 an inte-
ger optimal solution. The technique used in the proof of Lemma 5.6.1 and Theorem
5.5.1 to transform the optimal solution of circulation problem to an optimal solution
of the generalized Dual of G-CB (5.15) will preserve the integrality of the variables
because only additions or subtractions are used there. Hence the generalized Dual of
G-CB (5.15) has an integral optimal solution for each possible integer vector ¢. Thus
we have actually proved the following theorem:

CHAPTER 5. CYCLE BALANCING SCHEME 129

Theorem 5.6.2 The CB (5.5) is @ TDI system.

Let us note that if we replace the rational numbers b on the right hand sides of
our primal problem by their tntegral cetlings (the smallest integer greater or egual
to be), we do not change the original problem sinee the variables are supposed to be

integers.

As a consequence of the TDIness shown above, we can round up the right hand
sides of CB (5.5) to their ceilings so that the right hand sides are all integers. This
step does not change the solution set for the integer programming problem sinee the
left hand sides should also be integers. Thus we obtain the up-rounded version of CB

(5.5) shown below:

CB problem with RHS rounded up to ceilings:

min Z T, (5.17a)
rEA™
subject to
>z 2 [be], YC € C(ASG) (5.17b)
e€C~
x. >0, Yeec A™ (5.17¢)

We have therefore obtained the following theorem.

Theorem 5.6.3 If we round up the right hand sides b lo [be] of the formulation
of CB, we obtain the formulation (5.17) which is equivalent to CB (5.5). The lincar

programming formulation (5.17) has an integer optimal solulion.

Although the formulation in Theorem 5.6.3 has an integer optimal solution by
solving the linear programming problem, its number of constraints could be exponen-
tial. I have not found a way to resolve the polynomial sclvability of the problem yet.
However in practice, if the number of cycles is not very big, and if we make an effort
to eliminate some of the redundant constraints, the linear programming problem can

be solved very fast by the simplex method.

CHAPTER 5. CYCLE BALANCING SCHEME 130

5.7 Related Work

In this section, we compare onr method with other related work.

5.7.1 Loop Storage Optimization for Dataflow Machines

Datallow software pipelining was originally proposed to exploit fine-grain parallelism
in loops on static dataflow computers [38, 40]. Previous work on dataflow software
pipelining ts targeted to the static dataflow model, hence has the main restriction that
the number of concurrent iterations is bounded by what is allowed by one copy of the
loop body (38, 40]. Furthermore, even under this restriction, the prior technique for
storage allocation, such as the balancing technique described in {40], can only handle

acyclic dataflow graphs, i.e. loops without loop-carried dependencies.

Loop unraveled under pure dynamic dataflow model can initiate as many iteration
as possible, limited only by data dependencies [9]. This is accomplished by the loop
unraveling scheme, where (in more “modern” implementations such as the Monsoon
dataflow machine [66]) each iteration is allocated its own activation frame containing
all memory spaces required to hold its operands. A main challenge is to minimize
the storage used by dynamically unraveled concurrent iterations. By far the most
successful scheme to control the storage requirement is the loop bounding scheme by
Culler [20]. One limitation of this scheme is that a fixed number of storage frames
(one per iteration) are allocated to a loop, and this amount of storage may not be
optimal. Recently, a method of compile time loop scheduling under dynamic loop

unraveling has been presented [11].

The method developed in this chapter has addressed the limitations of the loop
storage management of both the static and dynamic dataflow medels. It provides a
basis to allocate statically the minimum amount of storage required for a loop to run

at its maximal computation rate. -

CHAPTER 5. CYCLE BALANCING SCHEME 131

5.7.2 Retiming Synchronous Circuits

The work in this chapter is also related to retiming scheme for hardware circuits,
Retiming [60, 59] is a circuit transformation method in which registers are added at
some points and removed from others in such a way that the functional behavior of

the circuit as a whole is preserved.

Although there are some similarities in the problem formulations, onr compittation
model is different from what is nsed in retiming: onrs is asynchronons in nature, while
the retiming model is synchronous. Therefore the objectives and formulations are
different. One obvious difference is that in retiming, the number of registers on any
cycle does not change before and after the retiming [59], while our eyele balancing

scheme has no such restriction.

Chapter 6

Conclusions

In this chapter, we give a summary of what we have done. We also try to address

some future research problems in this direction.

CHAPTER 6. CONCLUSIONS 133

6.1 Summary

This dissertation is on the study of the optimal allocation of fist on chip memory, fike
registers and buffers, for loops on parallel architectures like VLIW and supersealar
machines, Previous work in this arca separates the register allocation problem from
the instruction scheduling problem. The intnition is that separating the seheduling
problem and the register allocation problem often results in ineflicient code, We
propose the idea of combining the scheduling and register allocation together in a
single phase. We define a two-step approach to solve the problem for the periodic
schedules. The first step is to generate an optimal schedule which uses mininnm
number of buffers. The second step is Lo use coloring technique to allow the buffers

sharing the same physical registers.

Buffers are allocated to both scalar and array variables appeared iu the left-hand-
sides of instructions. Buffers can allow the produced valnes being retained in registers
for several iterations so that instructions in later iterations ean be scheduled before

the previous iterations finish.

We have provided an efficient algorithm for solving the problem. The algorithm is
implemented and used to test our scheme for loops sclected from typical henehmarks.
The testing results include the statistics about, the average number of floating point

units used, average buffer length, number of registers used.

For 2 more general class of scheduling techniques, and for different, applications,
mostly in run-time scheduling applications, we propose a Cycle Balancing technigne
to optimally allocate buffers so that they can support optimal rate scheduling at run-
time. We give polynomial time solution for the linear version of the problem. We
also show that the system has the Totally Dual Integral (TDI) property that allows
the problem being solved as a linear programming problem if the right-hand-sides of
the system are rounded to the integers. Although this does not give an immediate
efficient solution, it can help us to solve problems in practical applications efficiently

if the number of dependence cycles involved is not too large.

CHAPTER 6. CONCLUSIHIONS 134

6.2 Future Directions

Oue futire direction of continning this dissertation’s work is to combine it with a real
parallelizing compiler in which conditionals are dealt with. When this can be done,
more testings of our scheme can be applied to more benchmarks and real applications
to obtain more accurite statisties. Iu turn. this knowledge will help to design more
efficient and more cost/performance effective VLIW or superscalar architectures in

terms of functional units design, register file design and supporting cache design.

Another future direction is to extend our current scheme to larger program struc-
tures, like nested loops, procedures or functions, and threads in a multi-threaded
architecture, The problem mainly concerns the elimination of unnecessary loads and
stores of the values residing in the registers. In [43], instruction scheduling problems
for nested loops have addressed. How the register allocation can be incorporated into

that scheme is still open.

If the bound of the number of functional units and ihe bound of the number of
registers are both small, the amount of parallelism in the program may exceed what
can be supported by the hardware. In this sense our scheme can not be applied
directly without modification. Investigation on how to modify our scheme to adapt
to low parallel hardware architecture is definitely important. This might involve the
introduction of various “slowing down™ techniques as spilling codes if registers are

not cnongh, for instance.

Appendix A

A Modified OSBA Problem

[n this appendix, we give a modified formulation of OSBA problem (1.7} in Section
4.3, by assuming that the destination register of an instruction s; is reserved at time

t; +d; — 1, i.e. when it is at the output stage of the pipeline.

The formulation and the procedures to deduce it arc almost identical to the one
in Section 4.3. The solution of the formulation s also very similar as noted after we

complete the formulation.

As in Section 4.3, consider aa arc (i,j) in the DDG. Now since we commit. a buffer
to node 7 time instance #; + d; — | instead of {;, the time span of the result value will

become i; + Pm;; — (t; + d; — 1) instead of L; + Pmy; — 1.

Hence the lower bound on the number b; of buffers for node z becomes:

>ij+Pm;J'—(f.g+d,'-—-l)

b; S

» Y(4,5) € 67().

With these modifications, we formulate our modified optimal schedule and buffer

allocation problem into an integer programming problem as follows:

min Z b;

iEN

135

APPENDIN A, A MODIFIED OSBA PROBLEM 136

subject Lo
> t,+ Py, —t, —d; + 1

= !J
f_J; >+ d - PH?,'J‘, V(?.]) € F

Y. e E (A.1)

f:.b; integer, Vi€ N.

In the following we rewrite the above formulation (A.1) so that all the variables

ippear on the left hand sides of the inegualities. We name it as Modified Oplimal

Sehedule and Buffer Allocation (MOSBA) Problem.

Modified Optimal Schedule and Buffer Allocation (MOSBA} Problem:

min Z b;

tEN

sitbject to

Phj+t;—1t; 2 Pmy —d; + 1. Y(i,j) e E (A.2)
f.J' - t,' 2 (l; - Pl"n.;j, V(i,]) e E

L;.b; integer, Vie N.

Notice that the MOSBA formulation (A.2) and the OSBA formulation (4.7) only

differ from the right hand sides of the constraints. Therefore the algorithms to solve

thiem can be the same.

Bibliography

(1

2]

3]

[4]

[6]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers—Principles, Techniques, and
Tools. Addison-Wesley Publishing Co., 1936.

A. Aiken. Compaction-based parallelization. (PhD thesis). Technical Report
88-922, Cornell University, 1983.

A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language Design and huplementa-

tion, Atlanta, Georgia, June 22-24, 1983. ACM SIGPLAN. Also in SIGPLAN
Notices, 23(7), July 1988.

A. Aiken and A. Nicolau. A realistic resource-constrained software pipelining
algorithm. In Proceedings of the Third Workshop on Programming Languages

and Compilers for Parallel Compuling, Irvine, CA, August 1990,

J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of
control dependence to data dependence. In Conference Record of the Tenth An-

nual ACM Symposium on Principles of Programming Languages. ACM SIGACT
and SIGPLAN, January 1983.

John R. Allen and Ken Kennedy. Automatic loop interchange. In Proceed-
ings of the SIGPLAN '8/ Symposium on Compiler Construction, pages 233-246,
Montréal, Québec, June 17-22, 1984. ACM SIGPLAN. Also in SIGPLAN No-
tices, 19(6), June 1984,

137

BIBLIOGRAPIY 138

(7] Arvind and D. E. Culler. Dataflow architectures, Annual Reviews in Compuler

Setenee, 1:225-253, 1956,

[8] Arvind and D. E. Culler. Managing resources in a parallel machine. In J. V.
Wourdls, editor, Fifth Generalion Compuler Architecture. pages 103-121. Elsevier

Science Publishers, 1986.

[9] Arvind and K. P. Gostelow. The U-Interpreter. [EEE Computer, 15(2):42-49,
February 1982,

[10] U. Bancrjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-

lishers, Boston, Massachusetts, 1988,

[11] Micah Beck, Keshav K. Pingali, and Alex Nicolau. Static scheduling for dynamic
dataflow machines. Technical Report TR 90-1076, Department of Computer

Science, Cornell University, Ithaca, NY, January 1990.

[12] R. Bellman, A.O. Esogbue, and I. Nabeshima. Mathematical Aspeets of Schedul-

ing and Applications. Pergamon Press, Oxford, 1982.

[13] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation
for subscripted variables. In Procecdings of the SIGPLAN 90 Conference on
Programining Language Design and Implementation, White Plains, New York,
June 20-22, 1990. ACM SIGPLAN. Alsoin SIGPLAN Notices, 25(6), June 1990.

[14] P. Camion. Characterizations of totally unimodular matrices. Proc. Amer. Math,
Soc., 16:1063-1073, 1965.

[15] G..J. Chaitin. Register allocation & spilling via graph coloring. ACM SIGPLAN
Symp. on Compiler Consiruction, pages 98-105, 1982.

[16] G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Mark-

stein. Register allocation via coloring. Computer Languages 6, pages 47-57,

January 1981.

[17] V. Chvatal. Lincar Porgramming. W.H. Freeman and Company., 1983.

BIBLIOGRAPHY L3y

(13]

19

[20]

[23]

E. G. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley and

Sous. New York, 1976,
R. W. Conway. Theory of Seeduling. Addison-Wesley, Reading, Mass,, 1967,

D. E. Culler. Managing pavadlelism and resonrees in scientitie datadlow programs,
Ph.D thesis. Technical Report TR-146, MIT Laboratory for Computer Seience,
1989.

Ron Cytron. Computation of output dependences as a data llow probiem. Tech-

nical report, IBM, 1988.

J. B. Dennis. First version of a data-flow procedure language. In Proceedings
of the Colloque sur la Programmation, volume 19 of Lecture Notes in Compuler

Science, pages 362-376. Springler-Verlag, 1974,

J. B. Dennis. First version of a data flow procedure langnage. Technical Memo
MIT/LCS/TM-61, MIT Laboratory for Computer Science, Cambridge, Mas-

sachusetts, 1975.

J. B. Dennis. Data flow for supercomputers. In Procecdings of the 1984 Comp-
Con, March 1984.

J. B. Dennis. Evolution of the static dataflow architecture. In Adnanced Topies

in Dataflow Compuling. Prentice-Hall, 1991.

J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architec-
ture. In Proccedings of Supcrcompuling 88, pages 368-373, Orlando, Florida,
November 1988. IEEE Computer Society and ACM SIGARCH.

E. Duesterwald, R. Gupta, and M.L. Soffa. Register pipelining: An integrated
approacn to register allocation for scalar and subscripted variables. Technical

report, Department of Computer Science, University of Pittshurgh, 1991,

BIBLIOGRAPHY 140

[28] K. Ebciogln and T. Nakatani. A new compilation technique for parallelization

[29]

[30]

[31]

[32]

(33)

[34]

[35]

[36]

loops with unpredictable branches on a VLIW architecture. Technical report.
IBM, 1990,

K. Ebecioglu. A compilation technique for software pipelining of loops with condi-
tional jumps. In Proceedings of the 20th Annual Workshop on Microprogramming,

Decemmber 1987,

K. Ebcioglu and A. Nicolan. A global resource-constrained parallelization tech-
nique. In Proceedings of the ACM SIGARCH International Conference on Su-

percompuling, June 1989.

J. Edmonds and R. Giles. A min-max relation for submodular functions on
graphs. In Studies in Intcger Porgramming, Annals of Discrete Mathematics,

volume [, P.L. Hammer, et al., eds, 1977.

J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency
for network Aow problems. J. ACM, 19:248-264, 1972,

Christine Eisenbeis, William Jalby, Daniel Windheiser, and Francois Bodin. A
strategy for array management in local memory. In Third Workshop on Program-
ming Languages and Compilers for Parallel Computing. University of California,
{rvine, 1990. To be published by Pitman/MIT Press.

J. A. Fisher,). R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing:
A smart compiler and a dumb machine. Proceedings of the ACM Symposium on
Compiler Conslruction, pages 37-47, June 1984.

L. R. Ford and D. R. Fulkerson. Flow in Networks. Princeton University Press,
Princeton, NJ, 1962.

D.R. Fulkerson. An out-of-kilter method for minimal cost flow problems. J.
SIAM, 9:18-27, 1961.

BIBLIOGRAPHY i1l

[37] G. R. Gao. A pipelined code mapping scheme for solving tridisgonal linear
system equations. In Proceedings of IFIP Highly Parallel Computer Confercnce,

Nice, France, March 19386,

[38] G. R. Gao. A pipelined code mapping scheme for static datallow computers.

Technical Report TR-371, MIT Laboratory for Computer Science, 19586,

[39] G. R. Gao. Aspects of balancing techniques for pipelined data fow code gener-

ation. Journal of Parallel and Distributed Computing, 6:39-61, 1939,

[40] G. R. Gao. A Code Mapping Scheme for Dataflow Software Pipelining. Kluwer

Academic Publishers, Boston, Massachusetts, December 1990,

[41] G. R. Gao, H. H. J. Hum, and Y. B. Wong. An cfficient scheme for fine-grain
software pipelining. In Proceedings of the CONPAR "90-VAPP 1V Conference,
pages T09-720, Zurich, Switzerland, September 1990.

[42] G.R. Gao. A flexible architecture model for hybrid datallow and control-flow
evaluation. In Procecdings of the [6th International Workshop: Dainflow — A
Status Report, Israel, May 1989. in conjunction with the ACM Annual Sympo-

sium on Computer Architecture. To be published by Prentice-Hall.

[43] G.R. Gao, Q. Ning, and V. Van Dongen. Software pipelining for nested loops.
Technical Report ACAPS Technical Memo 53, School of Computer Science,
McGill University, Montreal, Quebec, Canada, 1993.

[44] G.R. Gao, Y.B. Wong, and Q. Ning. A petri net model {or loop scheduling. In
the Proceedings of ACM SIGPLAN’S1, Toronto, Canada. June 1991.

[45] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

= [46] M.R. Garey, D.S. Johnson, Miller. G.L., and C.H. Papadimitrion. Unpub-
lished result. in Computers aud Intractability: A guide to the Theory of NP-

completeness, New York, 1979.

BIBLIOGRAPHY 142

[17]

[18]

[19]

[51]

. B. Gibhons and 8. S, Muchnick, Efficient instruction scheduling for a pipelined
architecture, In Proceedings of the SIGPLAN 86 Symposium on Compiler Con-
struction, pages [1-16, Palo Alto, California, June 25-27, 1986. ACM SIGPLAN.
Also in SIGPLAN Netices, 21(7), July 1936,

M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung, and D. A. Schouten.
Parafrase-2 user’s manual, Technical report, Center for Supercomputing Re-

scarch and Development, University of Illinois at Urbana-Champagn, July 1991.

L. Hendren, G.R. Gao, E. Altman, and C. Mukerji. A register allocation frame-
work based on hierarchical cyclic interval graphs. Lecture Notes in Computer

Science 641, pages 176-191, October 1992.

J. Hennessy and T. Gross. Postpass code optimization of pipelined constraints.

ACM Transactions on Programming Languages and Systems, 5(3):422-448, July
1983.

J. L. Hennessy and D. A. Patterson. Computer Architecturc: A Quantitative

Approach. Morgan Kaufmann Publishers, Inc., 1990.

Mike Johuson. Superscalar Microprocessor Design. Prentice Hall, Englewood
Clifls, New Jersey 07632, 1991.

N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for su-
perscalar and superpipelined machines. In Proceedings of the Third Interna-
tional Conference on Architccturel Support for Progremming Languages and Op-
crating Systems, pages 272-282, Boston, Massachusetts, April 3-6, 1989. ACM
SIGARCH, SIGPLAN, SIGOPS, and the IEEE Computer Society. Also in Com-
puter Archilecture News, 17(2), April 1989; Operating Systems Review, 23, April

. 1989; SIGPLAN Notices, 24, May 1989.

(54

N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373-395, 1984,

BIBLIOGRAPHY 143

155)

[56]

(60}

[61)

[63]

]

L. G. Khachian. A polynomial algorithm in lincar programming. Soeie! Math.
Doklady, 20:191-194, 1979,

Monica Lam. Software pipelining: An cffective scheduling technigue for VLIW
machines. In Proceedings of the SIGPLAN 88 Confercnce on Programming Lon-
guage Design and Implementation, pages 318-328, Atlanta, Georgia, June 22 24,
1938, ACM SIGPLAN. Also in SIGPLAN Notices, 23(7), July 1988,

Monica §. Lam. Instruction scheduling for supersealar architectures, Annual

Review of Computer Science, 4:173-201, 1990,

Eugene L. Lawler. Combinatorial Oplunizalion: Nelworks and Malroids. Saun-
ders College Publishing, Ft Worth, TX, 1976.

C. E. Leiserson and J. B. Saxe. Optimizing synchronous circnitry by retiming

(preliminary version). Algorithmica, 6(1):5-35, 1991.

C.E. Leiserson and J.B. Saxe. Optimizing synchronous systems. J. VLSI and
Computer Systems, 1(1):41-63, 1933.

T. Nakatani and K. Ebcioglu. Using a lookahacd window in a compaction-
based parallelizing compiler. In Proceedings of the 23rd Annuval Workshop on

Microprogramming and Microarchiteclures, pages 57-68, 1990.

A. Nicolau, R. Potasman, and H. Wang. Register allocation, renaming and their
impact on fine-grained parallelism. In U. Banerjee et al., editor, Languages and
Compilers for Parallcl Computing, Lecture Notes in Computer Science 589, pages

359-373, Santa Clara, California, 1992. Springer-Verlag.

Q. Ning and G. Gao. Minimizing loop storage allocation for an argument-fetching
dataflow architecture model. In D. Etiemble and J.-C. Syre, cditors, Procecdings
of PARLE °92 - Parallel Archileciures and Languages Burope, pages 585-600,
Paris, France, June 15-18, 1992. Springer-Verlag, Lecture Notes in Computer
Science 605.

[

BIBLIOGRAPHY 144

[64] Q. Ning and G.R. Gao. A novel framework of register allocation for software

[65)

[66]

[67]

(o8]

[69]

[70]

(71

73]

pipelining. In Proceedings of 20th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL "93). pages 29-42, Charleston.
South Carolina, January 10-13 1993,

Gi. M. Papadopoulos. Implementalion of a General Purpose Dataflow Mullipro-
cessor. PhD thesis, MIT, 1988.

G. M. Papadopoulos and D. E. Culler. Mousoon: An explicit token-store archi-
tecture. In Proceedings of the [Tth Annual International Symposium on Com-
puler Arciiileclure, pages 82-91, Seattle, Washington, May 28-31, 1990. IEEE
Computer Society and ACM SIGARCH. Also in Computer Architecture News,
18(2), June 1990.

Pierre Peladeau. On the length of the cyclic frustrum in a sdsp-pn. Technical
Report ACAPS Technical Note 31, McGill University, Montreal, 1991.

C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung,
and D. A. Schouten. Parafrase-2: an environment for parallelizing, partitioning,
synchronizing, and scheduling programs on multiprocessors. In Proceedings of the
1989 International Conference on Parallel Processing, Penn State, St. Charles,
IL, August 1939.

B. R. Rau, 1993. personal communication.

B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedu-
lable horizontal architecture for high performance scientific computing. In Pro-

ceedings of the 1jth Annual Workshop on Microprograraming, pages 183-198,
19381. =

B. R. Rau, D. Yen, W. Yen, and R. A. Towle. The Cydro 5 departmental
supercomputer. /EEE Computer, 22(1):12-35, January 1989.

B.R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for

modulo scheduled loops: Strategies, algorithms and heuristics. In Proceedings

BIBLIOGRAPHY 115

(78]

79]

(80]

of SIGPLAN 792 Conf. on Programming Languag. Design and Implementation,

San Franciseo, CA. 1992,

Raymond Reiter. Scheduling parallel computations. Journal of the ACM,
15(1):590-599, 1963.

A. Schrijver. Theory of Lincar and Integer Programming. John Wiley and Sons,

1986.

R. Sethi. Complete registor allocation problems. SIAM J. Comput., 4{3):226-
248, 1975.

R. F. Touzeau. A FORTRAN compiler for the FPS-164 scientific computer. In
Proceedings of the SIGPLAN 84 Symposiuwm on Compiler Conslruclion, pages
48-57, Montréal, Québec, June 17-22, 1984. ACM SIGPLAN. Alsoin SIGPLAN
Notices, 19(6}, June 1984.

V. Van Dongen, G. Gao, and Q. Ning. A polynomial time method for optimal
software pipelining. In Proceedings of CONPAR. ’92, Lecture Notes in Computer
Science 634, Paris, France, September 1992,

H.S. Warren. Instruction scheduling for the IBM RISC System /6000 processor.
IBM J. Res. Deuclop., 34(1), January 1990.

Michael Wolfe and Uptal Banerjee. Data dependence and its application to
parallel processing. Inicrnalional Journal on Parallel Processing, 16(2):137-178,
April 1987,

Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, Lon-
don and MIT Press, Cambridge, MA, 1989. In the serics, Research Monographs
in Parallel and Distributed Computing. Revised version of the author’s Ph.D.
dissertation, Published as Technical Report UIUCDCS-R-82-1105, University of
Illinois at Urbana-Champaign, 1982.

