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This thesis presents a detailed theoretical investigation
of the generalized conductivity in solids at optical frequencies, on the
basis of the work of Butcher and Mclean. Explicit expressions for the
second order conductivity and the optical rectification tensor have been
obtained and shown to be identical to the so—called bulk photovoltaic
effect (BPVE) defined by von Baltz. Detailed experimental investigation
in the case of Tellurium has conducted and good qualitative agreement
with the microscopic theory has r1 obtained. |



RESIME

Cette thdse présente une &tude théorique _détaillée de la
conductivité généralisde dans les solides aux fréquences optiques,
sur la base des *travaux de Butchef et Mclean. Des expressions expli-
cites pour la conductivité de second ordre ainsi que pour le tenseur
de redressement optique ont été obtenues et démontrées identiques
ad 1'effet photovoltaique de volume défini par von Baltz. Une &tude
expérimentale détaillée dans le cas du Tellure a été conduite et

les resultats concordent bien au niveau qualitatif avec la thforie

microscopique.



N ) -

ii

i
1

The author wishes to express his appreciation to Dr. A.A. Gundjian
for his guidance and assistance throughout the period of research.

kS

Thanks are also due to Dr. Ishiang Shih for supplying the Tellurium #

crystals and the resistivity data which appears in figures (‘6-17) to (6-20)
of the present thesis. His comments have been deepﬁ/ appreciated.

Acknowlegments are dl%e 4rs Robert Kotiuga, Michel Belanger and
James Reid for many helpful camments and moral support.

Finally, the a\uthor would like to thank J. Foldvari for his ;
o ) N -
technical assistance. . - :

o




CHAPTER I

CHAPTER II

2.0
2.1
2.2

2.4

2.4.1

2.4.2

2.4.3
2.5

CHAPTER I1I

3.0
3.1
3.2
3.3

[ ~ ﬂ
N TABLE OF CONTENTS
5 &
ABSTRACT
ACKNOWLEIG B1 ENTS
TABLE OF CONTENTS
¢ A

: LIST OF ILLUSTRATIONS

Introduction

TEA-—CD2 laser-Induced Rectified Optical Emfs

in Tellurium

Introduction

Experimental Observations

Physical significance of I\bn—Centrosyninetric
lattice structure

-Observation of Similar Optical Rectified Emfs
Generated in Other Non—centrosymmetric Materials
Preliminary Cr:tical Discussion of Different
Possible Sources for the Rectifiea Ermfs
Pseudo-Dember--Lffect

Anisotyopic Scattering Processes

Non-Linear Conductivity

Conclusion
Generalized Concept of Conductivity

Introduction

Fundamental Notions

Statistical Description of Transport
Time-invariance and Causality

iii

-

ii
iii

s
vilii

13

13
13
15
16



3.3.1

3.3.2

2.3.3
3.4

4.0

4.1

4.2

4.3

4.4
4.4.1
4.4.2
4.4.3
4.4.4

4.4.5

4.5

5.0

5.1

5.2

5.3
5.3.1

5.3.1.1

Time-invariance
Causality
Mathematical Implications

Conclusion

Quantum M‘echanical Bvaluation of the Second Order
Generallzéad Conductivity

Introduction

Coulamb's Gauge

Liouville's Equation .

The Current Density Operator

Second Order Conductivity

Qutline of the Procedure

The Densi{y Matrix Under Perturbation
Evaluation of the Observable Current Density
Explicit Expression of the Dependence on the
Electric Field ~
Symmetrization With Respect to Permutations in
the Field Comporents

Conclusion
Optical Rectification

Introduction

Origin of Optical Rectification

Formal Evaluation of the Rectification Coefficient
Discussion

Photon Frequencies Inferior to All Possible
Interband Transition Frequencies

Semi-classical Interpretation of the Preceeding
Results

R

iv

16
16
17
20

21

21

21

23

24

25

26

32

33

36

38

39

39
39

45
45

47

5



5.3.2 Photon Frequencies Comparable With Interbard 50
. And Sub-band Transition Frequencies
5.3.2.1 Characteristics of Rectified Current Result:i_ngt 53.
From the Polarization¥Model: the Non-linear
Oscillator
a) Frequency Inferior to Transition Frequency: 54
"The Case of Dielectrics
b) Frequency Corresponding to the Resonance Frequency: 55
The case of Semiconductors )
5.3.3 Discussion of the Time Response of the Generated 36
Signals
1) Dielectric x-daterlals With Current Source I Only 60
2) Semi—~conducting Materlals With the Current Source 62
Ip Only
5.4 Conclusion . §3
CHAPTER VI  Experimental Observation of Optical Rectification 64
in Tellurium
6.0 Introduction \ . 64
6.1 The Experimental Set-up 64
6.1.0 Introduction o 64
6.1.1 The Laser 65
6.1.2 The Tellurium Samples 65
6.1.3 The Cryostat 66
6.1.4 The Temperature Controller -\ 56
6.1.5 Signal Measuring Apparatus ’ 67
6.1.6 The Pyroelectric Detectors 67
6.1.7 Special Difficulties 67
€.1.7.1 Noise , 69
6.1.7.2 Sample Mounting 69
6.1.7.3 Contact Masking 69
6.1.7.4 Signal Voltage and Sample Resistance 72

‘£



Lo Y

6.2

" 6.2.0

6.2.1
6.2.2
6.2.2
6.2.2
6.2.3

A
.2

(a)

(b)

(c)
@)

(e)

6.2.4

6.2.5

6.3

6.3.2

6.3.3

6.3.4

6.3.4

6.3.4

6.3.4

(a)
(b)
()
(@
{e)

.1
.2

'3

/

Experimental Results

Introduction ‘
Characteristics of the Signal Observed
Measurements '

Orientation

Experimental Parameters

Results

Verification of the Bulk Nature of the Observed
Signals " l

Linearity of the Signal Amplitude with Respect

to the Power Density ,

Anglar Deperdence of the Indgced Signal

Variation of the Signal Amplitude with Temperature
for Different, Sample Doping levels °*
Cbservations of Signals in Thin Samples at Room
Temperature

Relationship Between the Optical Rectification
Tensor ¥ and the Experimentally Measured Signals
Different Considerations Affecting the Experimental
Results

Optical Activity

Absorption

Reflection Coefficient

Multiple Reflexions

Interference Effects

Interpretation of the Eb(peri:rehtal Results Related
to the Theory

Derivation of the Optical Rectification Tensor x
fromMeasured Induced Potentia]:s

General Observations on the Behaviour of x in Doped
and Undoped Samples

Discussion

General Congiderations

Variations of the Magnitude of x With Respect to the
Doping Level at Room Temperature

vi

72
72
72
75
75
75
75
75

79

79
79

85
85
88

88
90
93
94
94
98

98

a8

'
107
107
108

Variations of ¥ in Doped Crystals as a Function of the 111

Temperature




ST
L

¥
[))
.
W
.
[F<S
L

APPENDI{ A

APPEFNDIX B

Variations of ¥ in Undoped Crystnls with Respect to

the Temperature  _ o ,
Enhanced Signals 4n Thin Samples ’

Conclusions )

Free Carrier Absorption

Nunerical Coamputation of the Position of the Fermi
Energy level in Function of the Temperature

o
S
l‘I

-

vii

111

112

114

116

119

121

o

LU RN R e e e L




T R | N AT e

s,
v

LT dd

Tenperaturé in Samples Originating fram Ingot C2-77-11

. T I TR e . ‘
* - viii
s S
C LIST OF ILLUSTRATIONS
~ v -
Figure . Page
(2=1) Cross-sectional View of the Te Crystal Structure 7
: in a Plane Perpendicular to the Trigonal Axis - :
(2-2)  Photoexcitation From a Localized State " 10
(5~1) Idealized Sample Shape 59
(5~2) ‘A simple CircuitVodel to Account for the Time ) 61
Damain Behaviour of the Induced Signal \
(6-1) A Typical Radiation Pulse 68
(6=-2) Sample Mounting on the Cold Finger of the Cryostat 70 ‘
(6-3) Mask Used to Prevent the Laser Beam Fram Illuminating 71
the Electrodes
(‘ ¢ (6-4) Output From the Molectron P3-01 Pyroelectric Detector 74
- (6-5) Output From the Molectron P5-00 Pyroelectric Detector 74
(6-6) A Typical Oscillogram of the Parasitic Signal Occuring 76
in Undoped Samples
’ (6-7) Orientation of the Sample in Order to Obtain a Signal 77
! Which Could Be Attributed to the Unique Tensor Component
X111 o
(6-8) The Three Different Electrode Configurations® Used to 78
s ' Verify the Genuine Bulk Nature of the Signals .
(6-9) Linearity of the Signal Amplitude With Respect to the 80
Power Density
(6-10) Angular Dependence of the Measured Signals 81
: 'Y (6-11)  Variation of the Signal Amplitude in Function of the
! Tenperature in Samples Originating fram Ingot Cz-77-15 82
(6-12) Variation of the Signal Amplitude in Function of the 83,
] , &  Temperature in'Samples Origini tating From Ingot CZ-76-13
’ : (6-13) Variation of the Signal Amplitude in Function of the
84

B

<

B e L L R e il

T

LRI SV WY

-
-

A v
€U o

v . A

e B 4

SR



B

s

g miIes

Figuré

(6-14)

(6-15) ]

(6-16)
(6-17)

(6-18)
- (6-19)
(6-20)
(6-21)
(6-22)
(6-23)
(6-24)

(6-25)
(6-26)

e wpaie

Signal Observed in Thin Sample Fram Ingot CZ-77-12
The Absorption in Undoped Tellurium at Room Temperature
Multiple Reflections

Variation of the Resistivity in Function of the Tempe~
rature for Samples Originating From Ingot CZ-77-15
Variation of the Resisti\“;ity in unction of the Tempe-
rature for Samples Originating rom Ingot CZ-76-13
Variation of the Resistivity in Function of the Tempe-
rature for Samples Originating From Ingot-CZ-77-11
Variation of the Resistivitv in Function of the Tempe-
rature for Samples Originating From Ingot CZ-77-12
’I‘enpérature Dependence of the Rectification Tensor x
for Samples Originating Fram Ingot CZ-76-13
Temperature Dependence of the Rectification Tensor
for Samples Originating Fram Ingot CZ-77-11
Temperature Dependence of the.Rectification Tensor yx
for Samples Originating Fram Ingot CZ-77-15

Conduction and Valence Bands in Tellurium

A Typical Plot of the Fermi Distribution Function
Variation of the Fermi Energy Level With the

Temperature i )

L

87
91

.96

100

101}

102
103
104
105

106
109

110

Vo it} i) o

- Pt PR ok ek i e Al

RYCTCRPRNRL TN

PESETAR—

e LR T R ] i e



.

e X T e AN G Y e aos gr e - e - )

CHAPTER I

Introduction - ;

. 'The advent of the transversly excited (TEA) CO2 pulsed laser »
in the early seventies {1} has increased very significantly the upper
limit of the available peak power levels at optical frequencies. 'Ihl(s
situation has led to the necessity of obtaining detectors suitable for the
10.6 u radiat:.ion, operating at room temperature with satisfactory speed
and responsivity.

The subsequenut reseafch efforts have led to the development of
a variety of new detection schemes {2} and detectors. The most important
of the latter that have found wide acceptance are the pyroelectric {3} and
the photon—drag {4} detectors. The former generates an electrical signal when
its spontaneous electric pal@rization is altered by a change in the crystal
temperature upon absorpt‘:ion ;)f the laser power, The photon—drag detec;:or ,
involves a transfer of photon momentum fram the radiation field to the
charge“éarriers in a semiconductor. Both share the advantage of room tempe-
ratureg] operation and relatively high powér density damage thresholds.

Pyroelectric detectors being thermal devices, show a very broad
spectral response free of any stray signals, but their responsivity drops
drasftlcally with increased speed of response. Photon~drag detectors are
fundamentally faster; however, they have a limited responsivity. Both pyro-
eléctric and photon-drag detectors require almost complete absorption of
the incident radiation.

.
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A fundamental consideration for an efficient photon-drag device
is the availability of a large photon absorptionrcross-section at the
wavelength, of interest. Among all semi-conductors Te is expected to be a,
favourable material since, due to its specific band structure it exhibits
at 10.6 pu the highest known value of the absorption cross-section 151}.
This material was therefore investigated as a potential 0, laser photon—
drag detector and the results have been the subject of the doctoral
dissertation of G. Ribakovs {6}, and of several publications {7,8,9,10}.

In the course of his experimentation, Ribakovs identified besides
the photon-drag signal, another fast emf which could not be attributed to
photon-drag because of a different tensorial behaviour. The existence of
the latter had been also reported independently by Hermann and Vogel {11}
and by Hammond, Jenkins and Stanley {12}. Since this fast emf reproduces
faithfully the laser pulse shape and the signal levels are generally
camparable in magnitude with those generated by the photon-drag effect,
it was naturally considered to possess a good potent:ial as a detection
meichanism {10}. '

( 4

The present thesis deals with a detailed discussion of this new
emf. Since the latter constitutes a quadratic response to the optical field
amplitude, the terminology "optical rectification" has been adopted to des-
cribe this phenomenon. ' ¥

. .
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TEA-C0,, Laser-Induced Rectified Optical Emfs in Tellurium

2.0 Introduction

In this chapter, we shall present a brief review of experimental
cbservations that have motivated the present research. We shall also describe
briefly the models which have been proposed to account for the observations.
This will finally lead to the motivation for the theoretical discussion
that is presented in the followiﬁg chapters,

2.1 Experimental Cbservations

When single-crystal Tellurium is irradiated by high power TEA-CO, laser

pulses, fast anfs faithfully reproducing the power envelope are generated {7}.
These emfs have been found to be described phenomenologically in terms of a
current density J related to the laser beam characteristics and crystal orien-
tation as follows

= Ve.e + 3 -
Ii % Ximn®n T Tijmn® 95%8 (-1)

Q

where W is the laser power density within the material, em_and e, are campo-
nents of the unit vector of radiation electric field, c‘i] is a component .
of the unit photon wavevector and x. and T are third and fourth rank tensor
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© TAELE 2-1
- ' SIMMARY OF RIBAKOV'S RESULTS
¥ AT ROM TBMPERATURE
/
Tensor Component " Magnitude (cm/A)
\
D_Oegd._s.a;ip_ls Undoped Sample
(p=10""cm ) )
‘ L3 »
C ‘ T133 . 11x10” 0.85 x 107/
9233 1.1 x 107 0.85 x 107
3, .
M 22 0.7 x 107 0.25 x 107/
1
SV I 0.7x107 N 0.25x 107
Mn 0.7 x 107 0.25 x 107
Nore Tk 5 Pis Tiga
Xigk = PuiX ik
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coefficients, respectively. The subscripts take on the values 1,2,3 which
correspond respectively to crystalline directions [1210] , [1010] , and
[0001] . Thus, there exists two groups of signals, respectively consistent
with a third and a fourth rank tensc:r behaviour.

It is recognized that there exists only a limited number of finite
camponents for any tensorial parameter, determined by the prevailing tensor
symmetry. Tellurium belonging to point group 32, there exists at the most
five finite third rank Ximn camponents of which only two are independent and
twenty—-five fourth rank camponents of which only ten are independent.
Moreover, since the two subscripts m and n correspond to the directians of
the radiation field, they are naturally interchangeable such that
Ximn ~ Xinm and lemn i Tijnm ) ’

Ribakovs {9} has experimentally determined the magnitudes of both
¥ and T components for one doped and undoped crystals. It is to be noted that
his results correspond to the product of the x and T tensors with the resisti-
vity of the measured material. Table 2-1 summarizes his results.

‘ The fourth rank tensor T corresponds to the well accounted for
photon—drag effect {8} which results in a signal that inverts its polarity
wheh the laser beam propagation direction is reversed and is thus readily
identifiable from the third rank tensor x signal which retains its polarity
under the same conditions.

Although samne theories have been proposed to account for x, its exact
nature has not yet been satisfactorily determined. It is understood that sin-
ce it relates quadratically the generated current density to the optical
field amplitude it has been( refered to as an optical rectification signal.

For consistency we shall adopt this terminology in the present thesis which
is exclusively devoted to the discussion of this phenamenon.

-
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2.2 Physical Significance of Non-Centrosymmetric Lattice Structure

It is well-known that a necessary corndition for the existence
of a physical property describable in terms of a third rank tensor is
the absence of inversion symmetry. The Tellurium lattice belonging to the
peint group symetry 32 meets this requirement.

It is worthwhile at this point to illustrate the physical signi-
ficance of inversion symmetry at the atomic level. This can be done by
exmining figqure (2-1) which is a cross-sectional view of the Tellurium
crystal structure in a plane perpendcular to the trigonal c-axis. The
parallelogram defined by points A,B,C,D determmines the primitive cell.

From the juxtaposition of a few primitive cells a hexagonal feature evolves.
as shown in figure (2-1) which illustrates better the overall symmetry

features of Tellurium,

Typically, an observation in direction 1 will clearly exhibit
a non—centrosymmetric character. One will therefore expect the response
of this crystal to an electric field acting in the positive direction to '
be different fram that due to the same field in the negative direction;
consequently, the response expressed as a power series in termms of the
excitation field is expected to contain even order temms, hence the rectifi-

cation effect,

It is interesting to note that from figure (2-1) the c-axis is
not a pure rotation axis, but a screw axis, i.e. a symmetry elemeht cor-
responding to a carbination of both a rotation and a translation.
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' O ATOM IN PLANE ABCD
(Iﬂ]) ATOM C/3 ABOVE PLANE ABCD

@ o 203 ABOVE PLANE ABCD

Figure (2-1) Cross-sectional View of the Te Crystal Structure in a
Plane Pexpendicular to the Trigonal Axis.
ABCD detemines the primitive cell.




2.3 Observation of Similar Opticdl Rectified Emfs Generated in Other
Non-Centrosymmetric Miterials

Rectified optical emfs of behaviour similar to the one under inves-
tigation in Tellurium have also heen observed in other non-centrosymmetric
materials. The case which bears |the closest similarity to Tellurium is that

“of (&P,

Gibson and al. {13} have reported the occurence of a rectified signal
in n-type GaP under experimental conditions similar to those of Ribakovs, but
also at a wide range of frequencies other than the OO2 laser 10.6 u wavelength.
This effect was also found to ooccur in p-type GaAs {14 }, and in some dielec-
tric materials like BaTi03 {1¥ and Z2nS {'16}. In our later discussions,
critical reference will be made to the above cases to put the final inter-

pretation in proper perspective.

2.4 Preliminary Critical Discussion of Different Possible Sources for

the Rectified Emfs

2.4.1 Pseudo-Dember Effect

Auth and al. {17} have proposed the pseudo-Denber effect as a possible
source of rectified emfs in o, laser irradiated Tellurium. The pseudo-Dember
effect 1s the analog of the well known Derber effect which would result fram
transitions within the sub-bands of the ¢iven material. The physical nature
of this mechanism requires the reversal of the geperated emfs as a result
of the inversion of the direction of propagation of the incident laser
beam. This behaviour eliminates cémpletely the possibility for such a mechh- ™
nism to contribute to any third rank tensj)r property,

2.4.2 Anisotropic Scattering Processes
)
Other authors have‘cla:ined that rectafied optical signals could
originate from various intxa and inter-band ‘anisotropic scattering pro-

cesses.

]
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Heyszenau {18 } has suggested that a net photocurrent,would be
generated as a consequence of asymmetric charge distribution in energy
bards due to photoexcitation from localized states, as illustrated in
fiqure (2-2). Direct asymmetric generation being possible only for,
local states in polar systems, lattice defects would play an important
role in this process. Such a mechanism should deperd critically from
crystalline quality and is hardly expected to be reproducible fram one
specimen to another, contrary to our cbhservations.

Belinicher {19} has proposed that a photocurrent may appear
because of an asymmetry in the intraband scattering of free carriers by
impurities and by phonons in rxonwoent:rosynn\etric materials under exposure
to a propagating radiation field. This mechanism is expected to be strongly
dependent on the variation of the free carrier density and {emperature,

a trend which is not supported by our observations.

Ivshenko and Pikus {20} have proposed that a " photogalvanic"
current could appear if we allow interband phototransitions involving the
participation of polar optical phonons. Although their rough numerical
estimation of the photocurrent magnitude for one particular case seems to
be in good agreement with the experimental data for GaP, again our experi-
mental data concerning the temperature dependence of the generated signal
in Tellurium does not support the above hypothgsis.

2.4.3 Non-Linear Conductivity

° §
Basically, the effect of optical radiation on a semiconductor
can be described by considering that the sinusoidally varying radiation .
falectric field acts on the charge carriers and consequently generates an, |
alternating current. When this current is not limearly related to the
applied field its average value could be non-vanishing, allowing the obser-
vation of a rectified optical signal.
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Figure (2-2)

Photoexcitation fram a Localized State
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Hermann and Vogel {11} who were the first to report the exis-
tence of a rectified signal in Tellurium, initially proposed that the latter
could be ascribed to a non-linearity arising fram the trogonal warping of the
hole energy surfaces. These authors supported their interpretation with
relation (2-2) due to Butcher and Mc lean {21},

(2) 3 ) 3 -
= g ( -
"ij1<‘”1"”2) e y f2 E_(k) (2-2)
14 »
oy “3‘”1“’2 akiakj 3k1

-3

which expresses the quadratic component of the conductivity tensor
oi(ﬂ(wl,uz) in terms of the energy band structure function En(ﬁ)uand the
Farmi~-Dirac distribution function fl i

1t has however properly been pointed out by Ribakovs {9 } that
the above claim overlooks the fundamental condition of time-reversal syms
metry which will cause equation (2-2) to vanish identically. A careful
examination of Butcher's camplete work shows on the other hand, that rela-
tion (2-2) corresponds to a limiting case valid only for low frequencies
where inter-band resonant transition effects are cawpletely neglected.
Therefore; a priori it appears that Butcher's general result does not

necessarily vanish due to time-reversal symmetry.

A search of the pertinent latérature reveals that other theories
were proposed based on the existence of a quadratic camponent of the high
frequency conductivity. In particular, Genkin and Mednis { 22} and more re-
cently von Baltz and Kraut {23} have proposed that a pure crystal can
exhibit a bulk photovoltaic effect independently fram possible contributions
due to umpurities, optical phonons or lattice defects. Their treatment
being based fundamentally on premises similar to those of Butcher, it
appeared to us that their work should bear a close relationship to that of
the latter.
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2.5 Conclusion

The different considerations presented in this chapter led us
naturally to abserve that high frequency non-linear conductivity in
Tellurium remains the most likely source for the optical rectified signals
under investigation. This provided the motivation to undertake a detailed
theoretical and experimental discussion of the latter in conjunction with
the concept of generalized non-linear conductivity.

»
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CHAPTER III

Generalized Concept of Conductivity

3.0 Introduction

At the start of the development of a theoretical analysis for the
phenamenon of non-linear conduction at optical frequencies, it has been
found necessary to define as generally as possible the problem of electro-
nic charge carrier response to an-electric field excitation. This response
is what we shall define as generalized conduction in the solid; in this
approach it is clear that the distinction between free and bound charge
carriers will initially be eliminated and therefore, the results are expec-
ted to account for the contribution tO the final response fram both types
of carriers. This analysis and interpretation of generalized conduction was

, found to be essential "in order not only to provide the proper mathematical

basis for the discussion of our o Observations, but also in order to

bring out the cammon nature of analyses presented by several authors whose
works will later be shown to merge to the same results merely put in
slightly different formats.

3.1 Fundamental Notions

Conductivity is a measure of the ability of an electric field to
set charge carriers into motion and hence produce an electric current.
In the simple concept of conductivity, at relatively low frequencies,“the
electric field accelerates the free carriers, but the maximum velocity they
can attain is limited by different scattering processes.
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The time required to reach the maximum velocity is in general very small
with respect to the period of the applied electric field and one is then
justified to write

3=nef-rn+pe§rp (3-1)
n m_* .
n . P
¥ =(0p",- on)ﬁ =0 B (3~2)

where n represents the density of free electrons, p the density of free
holes (1f applicable) and e is the magnitude of the electronic charge.

m and mp are repectively the effective masses of electrons and holes.
Equatlons (3-1) and (3-2) are merely a restatement of Ohm's law. The contri-
bution of bound carriers due to the distortion of orbitals is not considered,
since the latter is expected to be negligible for frequencies much smaller
than resonance frequencies.

The validity of Ohm's law is thus restricted to slow time varying
and relatively low amplitude electric fields. In the case of a high frequen-
cy optical electric field, the period of oscillation can becawe much shorter
than the scattering times involved. This, cambined with the fact that the
field amplitude of the TEA CO2 laser is extremely large, implies that in such a
case it is no longer possible to assume band parabolicity and that the effec-
tive mass approximation breaks down.

In order to get an expression for the conductivity holding under
more general conditions, an approach based on the solution of the generalized
transport equation is required. In the next paragraphs, for the sake of
clarity, we shall give a brief review of concepts in transport theory and
discuss both the classical and gquantum-mechanical approaches.

£
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3.2 Statistical Description of Transport

In the standard , semi-classical description of free charge
carriers in a semiconductor, all the quantum effectsidee:to:the rapidly

. changing potential of the lattice ions are merged into a single parameter,

the effective mass. In general, this is a tensorial quantity, inversely
proportional to the second order partial derivatives with respect to the
wavenurtber of the Bloch wave dispersion relation.

\‘\

( As long as the perturbing potentials, 1.e. the externally applied
fields are slowly varying with respect to the interatamic distances, they
can be treated classically. As a consequence, by using the effective mass
approximation, the transport problem can be considered to be entirely
classical in nature, and full use can be made of classical statistical
mechanics. The fundamental equation of the latter theory is the so-called
Boltzmann equation, which expresses the conservation and the incampressi-
bility of the phase space " fluid ". This fluid is camposed of a large
mmbe}’ of points, each representing one of the possible states of the sys-

* tem of charge carriers. The solution to Boltzmann's equation expresses the

probability of having a given system in a given differential region of
phase space. If one can solve this equation in the presence of an exter-
nal perturbation, i.e. in presence of an electric field, the evaluation of
conductivity becames straightforward, since the current can be determined’
by an averaging process using Boltzmann function as a weighting factor,

’ -

We have seen previously that for large field intensities and
high frequencies, the effective mass approximation is expected to break ‘
down. The transport problem must then be treated quantum-mechanically.
The quantum analog to Boltzmann equation is called Liouville's eguation
and the analog to Boltzmann function has been given the name of density
matrix. The procedure used to evaluate the current due to a perturbing
relectric field is similar to the classical one, except that the gquantities
which are manipulated are operators. ‘
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The density operator contains all of the statistical information required
to evaluate the current density. Independently, however from the method

of evaluation used, conductivity posseses same well known fuhdamental
attributes that will now be discussed.

3.3 Time Invariance and Causality

3.3.1 Time Invariance

Time invariance expresses the fact that irrespective of the
precise instant at which an arbitrary electrical excitation is applied,
the response must be the same . In other words, a time-shifting of the
excitation implies a corresponding time shifting of the response.
Mathematically, this is expressed by writing

+ vy
If Jit) =A{ E(t) } (3-3)
Then E(t-to> = A { E(t-to> } o v (3-4) .

where the symbol A stards for a functional operator characterizing the
sysbein; in our case the excitation is the applied electric field if, and the

current density 3 is the resulting response. . .
© 3.3.2 Causality e

Causality expresses the fact that for anmy physical phencmenon:
the effect followd the cause, This might seem odbvious, but it has profound

mathematical consequences.

A function ¢ is said to be causal if

o(t) =0 fort <20 (3-5)

e . R S
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‘ ( For convenience, the application time of the excitation is assumed to
be t = 0, '

N N ey e .

3.3.3 Mathematical Implications

It is well known from linear circuit theory that the most ge-
neral time invariant and causal linear relationship between two scalar
functions -~ say J(t) and E(t) - is provided by the convolution product

J(t) = o(t) * E(t) (3-6)

or, more explicitely
t

J(t) = jo(t—‘r) E{(1) dr (3-7) ’

'
! t

§ ( ! o

i .
%

i

i There is clearly, a priori no reason to expect a linear depen-

| dence of the current density with respect to the electric field. Moreover,
for a non isotropic solid, relation (3-7) takes a tensorial form and, when
generalized to include higher order terms with respect to the electric
field, it takes the following form

- Q) o
Ji ,/‘Eij (t Tl)Ej (Tl)drl R

. -0 tt v

&1 .
+ff 04 ok (T ot I, (1B, (r)arydr, + ...
& . 11 (2) (3) ’ ¢
J; (t) + Ji (t) + Ji (t)y + ... (3-8)
(v oi(;) and °i(32') are the first and second order conductivity tensors compo-

nents etc., and the Einstein's sumation convention is used.

"
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13
The various terms of the infinite series (3-8) are sametimes given the name

of time-ordered products.

Equation (3-8) can be put into a very handy form by using Fourier
transforms. For the purpose of this discussion, let us for example consi-

der the second term in equation (3-8) and let us drop temporarily the tem—

sorial description of this camponent.
Llet the transform of the function E(t) be defined as

E@ = 1 f E(t)e®t at (3-9) .
2n = '
and its inverse by

E(t) = '/-E(m)e'_jwt dw (3-10)

-00

»

vwhere v is real.

Replacing the electric field by its transform we get

4

3(? ) -// ffE(w )E(m je 91ty o3 22dwldm2 ,

(2) (t—t t—t ) at dt2 k3—11)

x’?

Now let t-tl = Tl and tl'-tz = -[2 H ﬂm
3@y - f[ // E(w))E(u,)e “Juyt g, Ty Jent Junt, Qo du,
( )( v ) dr.dt
T1r 12799, (3-12)
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Interchanging the order of integration

]
(2) (t) = // /] (2) (11,1 )ejwl 1el 2 2 dr dt (ml)E(wz)

"3“’1t “Ju,t Ao, (3-13)

! ¥

Integrating over T and T, and making use of the causality of q(Z) (11,12)

2) ) . e
g (E) f f o (2 (o 0,) Elw)Ew,) & Juyte=dugt A du,

(3-14) .
5

_where 0(2) (ml,mz) represents the two-dimensional Fourier ‘transfom of

0(11,12).

We can now rewite eqatioh (3-8) in temms of Fourier transforms
as well as reintroduce the tensorial notation to obtain the expression for
the current density.

o0

3, () =/ 1) (o) )E fu))e “Jut du,

-

/[ 1(5211(“’1""2“3 (0))E (w))e ~Jug Eemdust duw oy + ..o

(3-15)
S
which can also be put under the fomm
- (1) ~Ju. t
Ji(t) /Ji (wl)f ml dwl.,
- ' + J(z) (w, rw.) e’jmlte.ijt Aw,dw

-0 0
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vhere

ijn) (wll e 'wn> ](_ )n(wl'.."wn)El(ml)...En(mn)

(3-17)
is the nth order current density camponent Fourier transform.
It must therefore be adbserved that the usual oomebt of current

bemg )éhe product of a conductivity temm with electric field components
is- vahd only in the frequency damain.

3.4 Conclusion

Fram the treatment in this chapter it is important to realize
that equations (3-16) and (3-17) express generally the current density
as a response to the electric field excitation subject only to the con-
ditions of time invariance and causality in the system and therefore they
can account for contributions to the current density fram all charge

carriers, specifically fran both bound and free carriers; thus o (wl, .s .,wn)

will be called the nth order generalized conductivity'

3

5
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CHAPTER IV

Quantum Mechanical Evaluation of the
Second Order Generalized Conductivity

4.0 Introduction

21

We shall now evaluate the first and secord order oconductivity

tensors as defined in the previous chapter by solvirg first quantum

mechanically for the electronic charge carrier distribution perturbation
in preserce of an extermal electric field. In view of the fact' that an
exact soluti 4 of Liouville equation is not possible, an adaptation of
Kubo's perturbational approach {24} is utilized. We shall then evaluate
(~ the current density resulting fran this perturbation. The analysis is
based on the work of Butcher and Mc Lean {21}, and a phenamenological

- relaxation constant has been introduced.

N Before undertaking the derivation as such, and for the sake of
convenience, we shall recall same results from potential theory and give

4.1 Coulamb's Gauge

a brief outline of same relevant concepts of statistical quantum theory.

-~ The analysis of electramagnetic fields is facilitated by auxi-

tion of the latter is provided by Maxwell's equations

Vx B =-3B/3t " (4-1)

Vx 8 =JF +ab/ot ‘ (4-2)

liary functions known as potentials. The starting point for the defini-

et b e okttt kit | i it
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V-B=0 " (4-3)

VeD=op T (4-4)

According to (4-3), B is solenoidal and as a consequence can
be expressed by the curl of another vector that we will call KO. -

S 4-s)

.

Fram vector analysis, it is well known that equation (4-5) does
not define Xo uniquely. We could add to a given Ko the gradient of an ar-
bitrary scalar function. Using ¥ to represent such an arbitrary function

1

E=2% -V (4-6)

(o}

By replacing B in equation (4-7) by the curl of A as defined by

. equation (4-6) we obtain

Vx €+ aio‘gt) =0 (4-7)

1

This shows that (E + ax/at) is irrotational and can be expressed
as the gradient of a scalar function -¢.

B=-9 ¢ - ak/ok (4-8)

. SuTbn
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+ Fl
SinceAisarbitra::'yl_rp1:oateJ:m—V'iJ , it is easy to see that
¢ is arbitrary up to a term 3¥/5t. The arbitrariness that exists in the
choice of A and is referred to as the invariance of the potential with
respect to gauge transformations. It is sametimes convenient to choose the

. potentials in such a way that the scalar potential ¢ vanishes. We then say

that the potentials are represented in Coulamb's gauge. Equation (4-8) be-

canes {
£~ - /et " (4-9)

that is *
) t
A = - f E(tl)dtl | (4-10)

1

4,2 'The Liouville Equation

Let us discuss in a more detailed fashion the mathematical for-
mulation of the transport problem we have discussed earliér in very general

terms (see section 3.2). We shall not discuss here the orié;in of Liouville 's
equation; the interested reader is referred to one of the texts treating /

of this problem, the classical reference beeing {25}.’

Explicitely, Liouville 's eqguation reads
d/dat {p(t)}= (ih) -1 [H,p(t)] B (4-11)

H represents tal Hamiltonian operator of the system considered. p (t)
is the density\ operator and the bracket is the caamtator of H and p.

It is important to realize that this equation is an operator equation: its’
solution requires techniques samewhat different fram those used in the solu-
tion of standard differential equations because of the non—-commutability
characterizing operators.
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Classically, the analog of p, called the Boltzmann function £
contains all of the statistical information and is used as the weighting
factor in the averaging process relating microscopic to macroscopic para-
" meters. The generalization of this averaging process to quantum mechgnics
is obtained by evaluating the trace of the density operator with the rele-
vant quantum operator 0. '

<0 > =Tr {p0} ' S (4-12)

Since our objective is the determination of the current gene-
rated by the application of an electric field, it is clear that we will
require to evaluate <J>, the average of the current density operator.
“This is the subject of the following paragraph.

4.3 The Current Density Operator

'

Fundamentally, the generalized current is the sum of the con~
tributions fram all moving charge carriers. In a crystal, the only moving
carriers are electrons. Ions beeing heavy, their movement is negleéte“c'?.
Also, inter-electronic interaction is neglected, and hence our derivation
deals only with one-particle operators.

-+
To construct the current density operator J, we start natural-
ly from the elementary formula

Je-env ‘ (4-13)
J

where n is the total electronic density including both free and bound
carriers, e is the elementary charge magnitude and V is a " velocity
operator " . Velocity is usually defined in terms of the mamentum opera-
tor

.
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(4-14)

(4-15)

_)-
is the mechanical contribution to the overall momentum and eA is due to
the electromagnetic field and can be expressed in tems of the position

operator and of the time,

Clearly, B nech! the mechanical camponent of the generalized mo-
mentum operator can be indirectly defined by writing

>
}pmec

Thé current density s then, in operator form

Je-nep@-ed

m

©
»

o
h‘p'ez

(4-17)"

(4-18) .

Refering to eguation (4-12), we see that the macroscopic current density

is given by

¢

<35> = Tr {pf}

4.4 Second Order Conductivity

4.4.1 Outline of the Procedure

3

(4-19)
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Because the mathematics are somewhat bulky, it seems necessary

at this point to outline briefly the procedure that shall be followed to
obtain an expression for the second orxrder generalized conductivity.

(1)

(2)

(3)

(4)

First, 1t is necessary to find an expression for the density ope-
rator in presence of an externally applied e’féétric field. This
will be done by using time-dependent perturbation theory.

Second, from the knowledge of the density matrix, 3. , the obser—
vable current density will be obtained from an evaluation of TripJ}.

Third, since the previous steps are making use of the auxiliairy
potential ?\, Fowill depend 1mplicitely on £ through A. Tt will
be necessary to render this dependence explicat,

Fipally, the result will be p:t under the gemeral form expressed

by equations (3-16) and (3-17;.

4.4.2 The Density Matrix Under Perturb.ation

J
A solution of Liouville's equation is in general, very ¢ifficul+ to

obtain. For practical reasons, certain simplifying assuapticns are requirexd,

(1)

As previously mentioned , it will be assuwed that the one—electror
appraximation holds, that is, each electron sees an average poten-
t.al doe to all others.

The period of oscillation of the very high optical frequency radiation
15 expected to be much shorter than all relé.xation processes invol-
ved; consequently, the latter are not expected to play a significant
rclie, However, relaxation will be explicitely acoounted for by

the introduction: of a phenomenclogical time constant 1, whach be—
side its physical significance, will be found to be extremely con-
venient in the mathematical manipulations.
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(3) The wavelength of the optical excitations considered beeing much
larger than the typical lattice periodicity, the vectdbr potential
K can be assuned to be constant at the lattice level i.e. this is

a local theory.

Thus

§=3xx(t)-0

~

.

(4-20)
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In other words, the effects due to the radiation magnetic field
Aare neglected.

The single-electron Hamiltonian can now be written as

+ > 2 >
H=(p+eld + V()
2m -

This can be expanded, taking into account the assumed iMepe:ﬂenceofKon

|

posiﬁion coordinates.

Hep2 + V@) + e kD + 2 B2

BHO-{»

where, for convenience, we have defined

H1+H

N

2

. (4-21)

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)
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The time evolution of the density operator is governed by Liouville's
equation. In order to account in the simplest manner for relaxation mechanisms
which are not contained in our Hamiltonian, we shall use a well accepted pheno~

menologically modified form of Liouville's equation.

<

d/dtip(t)} = (5:5)-l [H,o] - (p - po) (4-27)

T

where Po represents the density operator under thermodynamic equilibrium.

We mote at once that the term H2 camutes with the denéity matrix,

beeing time-dependent only, and can be ignored as far as equation (4-27) is
concerned.

Using the unitary operator

urt) = B Bt (4-28)

we transform the density operator in the interaction picture and differen—
tdate the result with respect to t. '

d/dt (U oU'} = au/at p U7 + U dosat Ut W o auT/at  (4-29)

Using equation (4-27) to substitute for dp/dt and equation (4-28) for U,

it cames .
4

a/at v p v’y - snweu’) + @ v [m,0] o
+ (W7 U (o= oy U+ UpU" (-iH )
(4-30)

EREL R
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<

We now expand the commutator U[H,p] UJr
T UHpUT-UpHUJr

veavuout -u,ulund’

U [va] U

( +H) p'- p' (1 +H)

[Houp'] + [Hi,p'] (4-31)

where the prime indicates that the operator is to be seen in the interaction
picture. Inserting equation (4-31) into (4-30) we get

d/it p' = (ii‘x)-l [Hi,p'] - {p' - po} (4-32)
T

We now transform this result into an integral equation. This can
be done using the Green function G(t,tl)

T {

¥,
p'(t) = /(iﬁ}'l {Hi,p'("tl)] + .fP. G(t,t;) dt,

(4-33)
vhere G(t,tl) is given by
G(tltl) = 0 t < tl
ety /1 2 (a-39)
'Since
, /%/T o (t-tl)/'r dtl - po_.tr '
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equation (4-33) becames

PIE) = ol + (i) /fr:‘tl"p"t’ R USR-S
ﬁ (4-35)

This is“a standard integral equation and it can be solved by
iterations. For convenience, let us substitute 6 for 1/1. As a first guess
] = 1 /
for o' (t), we use p = 0.

t &2

p'(t)_=p0+(m)'1/ [Hi‘tll'”o] Sty g

o #

(4-36)

Q

Using this result as a second approximation, and substituting again into
equation (4-35)

t
prIt) = o+ (m)t f [ '(tl),po] e‘“t‘tl’.dtl
-2 / 7 HY.(t)) [ H} (t,), po” Sttt
, ’ (4-37) -
~ , d

/
’Ihisprocedurecouldbeextendedupboanarbitraxynthorder.

For the purpose of this work, we shall not go beyond second order.

Going back to Schroedinger's picture:

t

P(t) = p_+ (i)~ /U’r [H'(tl),po] U e’é(t'tl) dty

t
l , ' d(tt) -8 (t,~t,)
// [Hl(tl),[nl(tz),po]]tle t1 dtldtz
(4-38)
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. The integrands may be expressed more explicitly . Thus, for the
first of them

1' ] + 1 -
U [Hl(tl),po] U = %J Hl(tl) U,pO] (4-39)

Using equation (4-28)

o0 By (e Ule) - &R Bty G B lety) (4-40)

Substituting for Hl fram equation (4-25) leads to

T ' - -
U [Hl(tl):po] U= e/m A (tl) [pa (tl t) ,po] (4-41)
where p (tl-tz) is defined by

- MBS AL (4-42)

pQ (t) a

and summation over the repeated index a is implied. |
With the help of the substitutions

(tl-t)+ Y (4-43) ‘
(€0 £, -44)
i

the same procedure applied to the second integral leads to

.

, “.‘M»..c.m.wxw
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&

0

(0= oo+ () (e/m) / [p (t)),p ]Aa(t.+ t)) ®1 at,

+ () (eAn) // (t ),0 ]]A (t+t )A (t+t )e ‘”tz l)dt dtl

(4-45)

e

This represents the final form of our expression for the density
operator. '

4,4.3 Evaluation of the Observable Current Density

/ The macroscopic current density <J> can now be found by evaluating
/

P> = {pd} ' (4-46)

¢}

where the operator Jiis defined by equation (4-18). Substituting (4-18) into
(4-46); using the fact that A cammutes with p and that Tr{p} = 1, we obtain

3> = —(efm) n Triep} - e2nm K (4-47)

It must be noted once more that in this expression, while E is the
mamentum operator, n represents the total density of electrons per unit volume
and should not be confused with n representing the free carrier density utilized

in a simple description of current density.

4.4.4 Explicit Expression of the Dependence on the Electric Field

Expression (4-47) depends implicitely on the electric field through
the vector potential A. An explicit expression of E(t) could be obtained |
using equation (4-11). However, we shall transform (4-47) directly into the
form of equations (3-16) and (3-17). This will be done by noting that

-

t+t)°°

A(t + t,) //E (w)) el dmldr (4-48)
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4.4.4 Explicit Expression of the Dependence on the Electric Field

Equation (4~47) depends implicitly on the electric field
through the vector potential . An explicit expression in terms of E(t)
could be obtained using equation (4-11). However, we shall transform
(4-47) directly into the form of equations (3-16) and (3-17). This will

be done by noting that

(t+t,)

A (t+t)- f[E (w)eJl dmldr (4-48)

By straighforward manipulations of (4-47) after substituting
equation (4-45) for p and expressing the vector potential explicitly
in terms of the Fourier transform of the field, one gets

0

(1)(4»1)-1 6 + en ]Tﬂ (p (tl),p]p}e lledldt1

(4-49)
L 4
1(133(“’1’“’ ) = -e3n
‘ﬁzwlwsz
x [ f Tel (5, () [oglty),00) b} €11 &342H90% avar)
(4-50) 7

[
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Equations (4-49) and (4-50) can be put wder a more suggestive
form by evaluating the trace in the unperturbed energy representation.
Before proceeding to the evaluation as such, p, Can be taken out of the
commutators by expanding the quantum-mechanical brackets and using the
cyclic property of the trace. This leads to the following results

Tr{ [pa (tl) .po] ;_3”}

- mlp [pu P, (tl)]} (4-51)

mel [, )0 [Bytt000] | 5, .

Tr po[ [pu,pa(tl)],pe(tz)] (4-52)

The left hand side of eguation (4-51) }can be written using
Dirac's notation |k> for the electronic states in the unperturbed energy

representation and using the convention of summation over repeated indices.

Trdo [pu,pa (tl)] = <k|c50|l><l|pu |m><m|pu (tl)lkv
[ 1

= = <klog|1><Llp, (t) [m>-am|p |1
(4-53)

Recall that4> represents the equilibrium value of the density

operator. Fram Lmuvnle S equation, it lSKS&n that in order for dp/dt

to be constant,p has to be a function of the Hamiltonian operator. In the
o

unperturbed energy representation, this means that the matr:L‘x elements

<k|p|1> are diagonal.

R R

o e IS AT ¥ S el ot i

o e b it wn




3 v ne

A P At e

AN T gy

e —

[e]

(s

35

In fact, it can be shown {25} that

klo |1> = £(B)6, 4 = £ (4-54)
where
fk - 1 (4~55)
TSR
kT
is the Fermi-Dirac distribution function.
Using (4-54), equation (4-53) then becomes
T {p, [pu.pa (tl)]} = fk<kl[pp'pa‘t]_)] k> (4-56)

s

using the same procedure, we obtain fram (4-52)
2
Tr {po[ [pu.pa (t)) ] 'Pg (t?)] } = £ < k| [[pu,pa (t;) ] ,pB(tz)}]lo

u-sn) {

In order to perform explicitely the integration with respect to
. tl and t2 in relations (4-49) and (4—59), the dependent terms in (4-56)
and (4-57) will be factored out. For a typical matrix element (4-58) shows .
the followed procedure

3

@

<klp, (t)) |15 = <k|eMp it A,

= exp(it, A (B -E,)) <klpa|l> (4-58)
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Explicit integration with respect to t1 and t, of (4-49) and
(4-50) leads to

0%) (wy) =~ ien + iezn, fl{<lju jm<anfa|l> + <1]a|m>an]u]1>}

" ‘ ‘ : —
wlm ‘Hulm w].m +w1+16 w]m-ml 16
(4-59)

(2) - 3

UWB (wl,wz)— - e2n 3. X )

A wlwzm

£ <r|g|s><sla]t><t|B|r> + . -

(mrs+w1+w2+16) (w rt-f-mz-ﬂd) \

£ <r|g|s><s|ult><t]ajr> + £ <r|a|s><s|u|t><t|g|r> +
(wrs—wz—ls) (wstmlm2+16) (w r€w2+16) (wts-wl—wz-lé)

f_ <r|gls><s|at><t|p|r>
r (wrs—wz-id) (w rt—wl—wz—ié) ]
(4-60)

where <1|u|m> is used as a short hand for <1lpu Im> and w, represents
(wl =W m) = (El"Em)m'

4.4.5 Symetrization with Respect to Permmutations in the Field Components

—

As it has been mentioned earlier (see chapter III) °uaé“’1""2)

can be put under a symetric form with respect to permutations of

{a,wl} ,{a,wz} , to reflect the fact that the permutations of the electric

field camponents are immaterial. This can be achieved by summing (4-60)
over permutations of {a,wl}, {a,wz} and dividing by their total number.
We shall use the following shorthand motation ’
oo > 1/2 9 Pl Bu)o\ o) ) (4-61)

B 17772 "uag 1772
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~ 4.4.6  Low Frequency Limit

&

In order to be able to interpret physically the implications of -, .
the expressions  (4-59) and (4-60) it will be useful at this stage to con-
sider the low frequency limit of the latter as discussed by Butcher {21}.

The results (4-59) and (4-60) can be expressed in terms of partial
derivatives with respect to the wavevector of the Bloch wave di.spersion
relation. It has been shown by Kane { 26}that the coefficients of the Taylor
series expansion of the band energy E n(i) about an arbitrary value of the

- wavevector k can be f&lated to the camplicated sums of momentum matrix
elements products of equations (4~59) and (4-60) in the limit where w»0.
G The coefficients of .the Taylor series are defined by

] ‘ -

Fo @ (r+l) F
E, (K +3) - B K ZS B (GG, 0, (42)
.7 I =

where, for example

g'? -1l oE_(¥) (4-63)

waf
ok 3k ak
uoa B

Kane has shown that
F 4

g2 n,K) =F/m? <n|p |mamjajn> + <rlajm>am|p|n>
. “rm " “rm

+ ‘52/2m )
ua

(4-64) -
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s .
(_ Camparing with equation (4-59), one can conclude by inspection that
52 (2), +
0, (0) 21e2n Zf & B (k) (4-65)
—~ w0 “’fﬁ n,k )
D . !
A result similar to (4-64) holds for E'2) and leads to .
1 2 Y i
(2) s 23 ), ’
0 g (U s0)) = 3e°n Ef ot Ep (rK) (?—66)
Wy
w0 1 DIK-
w2+0

_ Equations (4-65) and (4-66) are very important as they permit to
G interpret the general results (4-59) and (4-60) in terms of a semi—classical
picture, as we shall see in the next chapter.

Note that (4~65) and (4-66) are divergent. This is perfectly conform
f " with the hypothesis of adiabaticity . A field with a vanishing frequency is

i ' a DC field, and in the absence of any relaxation mechanism, it is normal for
. the current to grow without limit. ‘

4.5 Conclusion

By using time-dependent perturbation t’heory, we have obtained
very general expressions for the first and second order comductivities.
In the limit of low frequencies the latter are expressible in temms of
the familiar Bloch wave dispersion relation with respect to the wavevector
camponents. The next step shall be to evaluate explicitely the optical rec-
' tification effect resulting fram the presence of the second order conduc-
tivity component oi(.§1)< (wl,mz) at optical frequencies. ‘
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CHAPTER V

Optical Rectification -

5.0 Introduction

We have already discussed in chapter II how the presence of a
quadratic component in the conductivity .of a material could be responsi-
ble for a rectification effect. We shall now evaluate formally the expec-
ted magnitude of the latter in terms of cﬁ;(wl,wz) . It will be shown that.
the result obtained is strictly identical to the result obtained by von Baltz
{27} who did not recognize the connection of his work with the existing
discussions of generaljzed cvonductivity. We shall then discuss the physi-

cal significance of the results.

5.1 Origin of Optical Rectification

let us assume the incident electric field to be of the fomm

E(t) = ﬁc (t) cos (ut) {5-1)

[l

- by
where E 5 (t) represents a slowly varying function of time while W corresponds

' to a high frequency. A laser pulse electric field would be represented by

such an expression . The current density component along a given direction
can be expressed as follows ' '

4

- (1) , (2) -Juit ~Ju,t
J(t) fo (wl)E(wl)c.iful +ff0 (ml,wz)E(wl)E(mz)e l e’ 2 dmldwz

-0 w—C0 o

(5~-2)
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Since the tensorial character of the conductivity camponent is
not relevant +o the discussion, abstraction has been made of the tensor
notation.

E(ml} is the Fourier transform of equation (5-1)

Efwy) =1/2n f E(t) cos ot It ar (5-3)

el Xy

Expressing cos o in terms of complex exponentials, this equation
‘can be integrated into

Elw)) = 1/2 {E_ {w o) + Eo(wl-w)} (5-4)

i

91

Using this result, the second term of equation (5-2) becames

J(z) (t)= l/4ff0(2) (ml,mz) [EO(mlvm)EQ (m:ﬁw) + F,O (m]‘-wﬂio (u)z'*w)

£

+ EO(m1 m)h}o(mQ-w) + E‘O(wlﬂm)ﬁo(mzmm)} emjwlt e“?‘“;zt dmldmz

If we assume that F (m»wo) occupies a very narrow spectral band
centered atwo, in the limit it can be considered to becare a ¢ function
andbo(z) (m],mz) —an be pulled out of the integral.

J(z) (t) = 1/4 U(?) (-m,-m)’/:[}30 (mlfm)EO (w2+m) e“jmlt eajml?t dwide
+1/4 09 (o, -w) G “0)E_(w.4w) o 3t o0t g q,
R o1 ‘01 - ot et

+1/4 o2 (“w,w)[fE() () WE_ (w;~w) e It g TIupt oy

+ 1/4 0(2) (m,u)'/f Eo (ml'-u)Eo(mz-*m) thmlt e""}mzt dmldwz



= 4L+ 41 (5-6) /
,'.,t *\,'. - t +
¢
§ .
% ' The above integrals may be performed explicitely. For example, the first
%g s can be evaluated using the substitutions
[ .
N !
’ (wy +0) »w (5-7)
(w, + w) ~ w' (5-8)
) . . e s
\ 1/8 62 (wu,-0) / / E et E_w)el® T qug
./ = 178 @ cum0) 2 E (1) (5-9)
-/ | ¢ O

(.} Equation (5-6) becames

3@ () = 1/816 Q) (mu,-0) 23 4 512Dy e 2I0ty Ecz)(t)

+ 1406 @ w0+ 0@ -0} B2t

(5-10)
, _ Now using the identity '
o (ml,mz) - a(-wl,-;wz) . * (5-11)
. we cbtain, findlly
| ¢ ° 3@ (1) = 1/2 0¥ ww) cos (20t) EAit)
P ' i,?;-"d' 4 (2) 2
: + 12 Re {0 (w,~w)} Eo (t) (5-12)
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hat -
\
\\» - ¢ 4
. , -

The second term of this equationsluwsthatwhenE {t) is a
slowly varying function of t, there will be an dbservable current propor-
tional to the power of the 1nc1dent signal.

5.2 PFormal Evaluation of the Rectification Coefficient

From equations (4-60) and (4-61) and the result we obtained in
the last section, it is possible to cbtain a quantun-mechanical formal
expression for the rectification coefficient.

Initially, in order to simplify the mathematical form of the ex-
pressions, we shall consider the particular case when the incoming radiation
is polarized along one of the coordinate axes. This is equivalent to set
a = B. It has the advantage of rendering equation (4-60) symmetric, elimina-
ting the need for further symmetrization, as described in section 4.4.5.

We thus get fram equation (4-60)

u(zc)x(w,-w): - e3 n X
*ﬁzwzm?’
Y
£ <rluls><slalt>ct]a]r> +
(wrs+16)(w rt-wné)
£ <r|a|s><s|u|t><tfa]x> + £ <r|als><s|u|t><t]a|x> +
(wrs"'u)?i&) (wst+i6) (mrt—“ﬁts) (wts—iG—)
£ <r|a]s><sla|t><t|u|r> (5-13)

(w +m-16) (m -155

L3

It is clear that this temm represents the optical rectification
effect which will be evaluated and discussed in details in the subsequent
sections of this thesis.
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The camplex conjugate for the latter is

o‘i,ui‘
*
'o‘fii (w,~w) = 053 (~w,w)

-

hence

172 Re {ou(ic)! (~w,w)}=

=t

£ <r}uls><slalt><tla]r>
(wrs+i61 (w rt—ﬂ-*iﬂ

s

£ <xlofs><slulto<tfo]r> + £ <rlals><s|nlt><tlalr> +
(wrs+9—i6)(wst+i6) (w Q+16) (m -16)

PR

)

£, < s><slalt><t|y|r> (5-14)
(wrs-H?—ltﬁ)(w rt—lﬂ .

e

This result can be put under the more campact form M o

- e n Z (f )<r lals> { <sla|t><t]ujr> - <glu|t><t]a|r>}

D2 % e G» o 16 - 18) (0 g = 16)

(5-15)

i Note that this is strictly identical with eguation (25) of
reference {27 }. It has however been obtained directly from the premises
of Butcher's generalized conductivity concept. wvon Baltz, on the other
hand, in reference { 27 and his later publications {23,28 } believes having
identifi_pd a novel photovoltaic effect.
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e . \ X
This point must therefore be rectified and von Baltz's bulk photovoltaic

effect must be recognized to be merely the result of the presence of
second order generalized conductivity in a material.

By a procedure similar to that leading to equation (5-15)
where the steps are distinctly more tedious since the equivalent of equation
(5-13) would contain eight terms, it can be shown that in the general case

where aff {23}

X

poB
-e2n Re E (£,-£) <n,i}€-j§l2,ﬁ><2,’ﬁl“e'-§jm,§><m,ﬂ§]n,'}E>d3k
P NI et Wy = 180 {up,+ b = 38) .
Brillouin ’
Zone I(S—IG)

where the sum over wavevector and spin has been replaced by an integration
over the first Brillouin zone according to

3
g = 2/ ak (5-17)

f) represents the momentum operator and e is the unit electric polarization

vector.

Fram the properties of Bloch functions, it is possible to verify
~ that (5-16) would indeed be zero for a crystal with a center of symmetry
¥ as required from macroscopic considerations for a property represented .
by an odd-rank tensor.
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5.3 Discussion

Clearly, relation (5-16) is extremely complicated if not impos-
sible to be evaluated explicitly in the case of Tellurium since, as it
stands, it would require an explicit knowledge of the momentum matrix
elements.

However, since expression (5-16) exhibits explicit singularities
at preferred frequencies, it is expected that valuable information can be
extracted fram the latter by discussing its behaviour as a function of the
frequency w of the incident radiation.,

5.3.1 Photon Frequencies Inferior to all Possible Interband Transition

ies

If we assume that the incident electric field has a frequency
such that the energy of the associated photons is inferior to all of the
interband and sub-band transition frequencies, in other words if

3

w<<wy =B "By (5-21)
M

one can neglect win the denaminator. Assuming a large relaxation time,

i.e. a small valwe of ¢ , the situation mathematically equivalent
with the case of vanishing frequency. We have in paragraph 4.4.5 that

in that case

v o2 3 R
°papliprip) =3€m ;{ £5 Eaplnrk) (5-22)

3

wyo
where

_ Eﬁé = 173! aEn(iE) | - (5-p3)
3k 3k_ok
e B8

EE e ———

R

o

e R U




46

But, accmsequencebf time reversal invariance of the unperturbed
Hamiltonian is Kramer's \ theorem {29}

e

En(k) - Er(—k) (5-24)

This implies that all odd order partials are odd functions of the wave

vector i(*. Since fni{" the Fermi function,is an e(ren function of the latter
(beeing a function of the energy only), one can conclude that

02wy ) = 0 (5-25)

’

But, we have shown that the optical rectification tensor is expected
to be given by

(2) (2) '
X108 - 1/2 Re{o (wl--w,wz w } (5-26)
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5.3.1.1 Semi-Classical Interpretatiom of the Preceeding Result

The result we have just obtained can be interpreted in tems of
the semi-classical model which considers the electrons in a solid as quasi-

*
particles with an effective mass tensor m L8 specified by

2
1 = uA% &R
- TR ok, (5-28)
m B
uf

(a) first order conductivity

Let us firgt discuss the meaning of equation (4-65) which des-
cribes the first order conductivity. Recall that within the adiabatic
approximation, no energy is transfered to the lattice, or equivalently,
scattering is non-existent. Therefore, in a infinitesimal time inj:erval
dt, an electric field increases the velocilty of an electron within a given

" band by an amount

av=-eb dt . (5-29)
m*

-

where m * represents the effective mass tensor in the direction of the
field. If we assume that while the electron is nmoving its mass does not
vary appreciably (a first order approximation), the total velocity -change
will be

-+ <>
Av -—feE t 5-30)
| ek 2 C
In the frequency domain, this becames -

= e ——— ———— e
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ﬁml) - de E(ml) (5-31)

wlm

§ If there are n electrons per unit volume the first order con-
ductivity can be cobtained by analogy with the elementary vector. equation

oD (@) Elw)) =ne V) (5-32)

Hence .

oM@y -jeln (5-33)
/ GEm ~

{

And, for a field oriented in an arbitrary direction

(1) .2
%o (wl) = Jwe n {l/n¥* }uaj (5-34)
1

Substituting (5-28) into this result, we get

cMw)y=3ein* 25 & (5-30)
SR
1 ok 3k
U o

This is almost similar to equation (4~65) except for the absence
of the Fermi function as a weighting factor; we can introduce this .
aspect by noting that in our derivation we have implicitely assumed -
that all of the electrons were occupying the same position within the band
structure, which is obviously not true.
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In fact, the probability for an electron to occupy the position defined
by En(k) is given by the Fermi function, and equation (5-30) must be oy
modified accordingly. Hence ‘ N

b a

(1) z
() =;, f2 2 E (k) (5-31)
u a

and we find a result strictly identical with (4-65).

It is well known that in expression (5-31) only partially filled
bands will contribute to the total value of, the sum; hence, the sumation
over the Iand index n is to be performed only over partially filled bands.
To the first order, the theory is thus seen to be in perfect agreement
with the semi-classical theory of electrons and holes.

(b)’émd order conductivity

We are now in a position to examine the significance of equation
(4-66) . We have assumed in the foregoing paragraph that, to the first order
the mass of an electron occupying a position"f( in the band structure was
not modified while it was slightly shifted by an amount Ak under the action
Of an external perturbing field E. To the second order, this mass does
change and to the first order, this change is proportional to the first order
derivative of the effective mass with respect to the wavevector. Hence, it is
natural that 0(2)( 1, 2) depends on the third order derivatives of E;(k)

Therefore, as long as hypothesis (5-21) holds, one can see that
ol? (4 N2) results fram a first order dependence of the band curvature
with respect to the wavevector. This result, obtained from semi~-classical

considerations is identical to the one cbtained fram the general guantum—
mechanical approach of chapter IV,
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Consequently, based on Kramers' theorem {29}, 0(2) (wl,wz)
will be identically zero. This fact has escaped the attention of many
workers such as {11} who attributed erronecusly a second order camponent
Ao the conductivity of electrons in non-parabolic bards.

-
5.3.2 Photon Frequencies Camparable with Interband and Sub-Band

Transition Frequencies ) )

When the photon energy is camparable to interband energies, the
singularities in relation (4-60) and (5-16) play a major role and there-
fore expression (4-66) cannot be used anymore. Moreover, in the vicinity
of a singularity, it is clear that the precise mmerical value of §, which
was phenamenologically introduced to take-into account the presence of a
relaxation mechanism becames determinant. »

P

Although at this stage it is found to be practically impossible
t0o evaluate explicitely expression (4-66) in the neighbourhood of a singu-
larity due to its extreme'complexity, we will however discuss its physical
significance.

Let us recall fram chapter IV that the observable gurrent density
has been found by evaluating

J> = Tripd} (5-35)
|
where p and J are operators given by matrices in the unperturbed energy
representation; these matrices are of infinite dimensionality since there

is an infinite number of basis vectors in that representation. However, for
the sake of clarity, let us assume that we are dealing with a two—dimensional

space. Then
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P11 f12 11 12
\ pj = =
Pa1 P2 321 322
(p13317 * o1 950) (013375 + P15952)
3 5 5 5 (5-36)
(Pp1d11 * Po9m) (pp1912 * Pyzda)) \ -

< 3> = mied) =0 Fy) 4oy 3y ondiy e
= pyd1n ¥ eoaday + Tyt epdiy).
(5-37)
&
We note the presence of two different kinds of terms in the
preceeding result, i.e. term$ involving real diagonal elements of p and
3 and terms involving camplex conjugate non-diagonal elements.

- A diagonal element of J represents the cbservable current density
associated with the corresponding Bloch function. For example, Jp; = SEIK{EE
is the current density associated with the state |1>. As for P11+ it mere-
ly expresses the relative importance of this particular eigenstate with

N respect to the overall average quantum state of the system.

The case of the non~diagonal elements is élightly more campli-
cated. First, it must be noted that non-diagonal elements P12 andp 21 cor-
respond to the probability of transition between states |1> and |2>.
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On the other hand, non-diagonal current density matrix elements represent the
current associated with such a transition: Finally, in relation (5-37), the
terms in parentheses must be considered as a whole since the observed current

is a real quantity.

When photon frequencies. correspond to interband or sub~band tran-
sition frequencies, it is clear that diagonal elements of the density ma-
trix become important. If the corresponding diagonal elemenfs of ‘the current
density do not vanish 1dentically by symmetry, it must be noted that there
will be a contribution to the overall current density.

The fact that there is a current associated with the presence of
an electron in a particular state in K—space is a familiar notion. ‘
The significance of the existence of a current when an electron undergoes
a transition fram one state to another is more difficult to interpret.

When a transition occurs ,/ there is an induced dipole moment, i.e.
a change may take place in the pogltlon of the center of gravity of the
electronic charge with respect to that of the rigid lattice of positive
ions. This induced dipole mdment is expected to follow in a specific manner
to be determined the exciting field and, in view of the variation of the
latter an alternating current is generated since h

’

J = Bt (5-38) g

Relation (5~38) makes it easy to understand why the first order
conductivity as expressed by (4-59) becames very large when the optlcal \1
frequency corresponds to a transition fregquency. This merely means that !
if the atams are considered like small charged oscillators, the electric
field oscillates at a characteristic resonance frequency, generating an s
oscillating current of a large amplitude. Experimentally, one observes for.
such a frequency a marked increase in the absorption, in agreement with this
simplist picture.
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Moreover, it is to be noted that when v, = . the first part of the se-
cond tem in expression (4-59) may be neglected with respect to the second.
This term 1s observed to be real and therefore represents a component of the
current in phase with the electric field which is the condition for real elec-
tric power absorption. . ’

As for the second order conductivity, the polarization model can be
used to explain second harmonic generation {30}, which is clesely related
to the high frequency component of the current which has been discarded in
equation (5-12). '

The DC rectified current camponent would appear at first sight to
be a(plainaple trough this same polarization model; however, a close exami-
nation leads to serious difficulties as discussed below. |

5.3.2.1 Characteristics of Rectified Current Resulting fruom the Polarization
Model

the non~linear oscillator model
V)

Although it constitutes a very simplified model, the one-dimen-
sional non-linear oscillator provides a good qualitative insight to the non-
linear interaction of the electrons with the electric field. Indeed, it has
been used by Bloembergen {31} to discuss the non-linear optical susceptibi-
lity and by Garrett and Robinson {32} to derive an expression for the one-
dimensional non-linear coefficient. The model assumes that the electronic res-—
ponse to a driving electric field can be simulated by that of an electron in
an anharmonic potential well. The equation of motion is '

Kbk o+ ulx 4@ = - e B(Y) (5-39)
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(- where x is the deviation from the potential minimum, mdx2 is the anharmonic
restoring force, -eE(t} is the driving force due to the optical field and
nrp.{ is a phenomenological damping term. The dipole moment is given by

plt) = e x(t) {5-40)

(a) Frequency Inferior to Transition Frequency: the Case of Dielectrics

i

ey

. ) V When the frequency of the exciting field is smaller than the tran-

sition or resonarce frexpency, both the inertial and the damping forces can
be neglected. Then

w§ X+ % = - eR(t) (5-41)
x :
%
Using the fact that
”
. é 2
(1+y )2 =1+y/2+y°/8+ ... (5-42)
we get
x(t) = - eE(t) - be B (t3 (5-43) (
) 5 E
he mw
(8] (e}

Because of the presence of a term quadratic in the field, x is seen

to have a non-zero average value and as a consequence there exists a non-zero
average dipole moment.
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"Now, if

' /
E(t) = Eo(t) cos wot, ” (5-44)

4

where Eo(t) is a slowly varying function of the time t

x(E)& - eﬁo(t) cos ut - b eZEoz(t) (1-sin 20 t)

2 26
mwo 2mmo

(5-45)

The observable " slow " current will be proportional to the time deri-
vative of the slow camponent of the polarization.

T
J=edx/at = -be’  a/dt {E(t)}(5-46)
2m wy
o
Equatjon (5-40) shows'that far away from resonance, the current

should be proportional to the time derivative of the amplitude of the field
squared, i.e. proportional to the time derivative of the incident power. -
It must be noted that this represents the situation that prevails in die-
lectric materials. '

(b) Frequency Corresponding to the Resopance Freguency: the .Case of
Semiconductog; 5

When the frequency of the laser electric field coincides with the
resonance frequency, and if the amplitude of the excitation is a slowly '
varying function of the time, to a very good approximation the oscillation will
grow as the integral of the-exeitation.
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Maturally, this cannot go on forever, and in practice the growth
is limited by a relaxation mechanism, the maximum amplitude beeing attained
when both the energy input and the relaxation rate (i,e. the losses) are
equal..

If a smnall anharmonicity is present (d # 0), the average value of
the induced polarization which is zero in the linear case, will also grow
with time, generating a current. The growth of the average polarization should
therefore be roughly proportional to the integral of the field amplitude
squared multiplied by the anharmonic coefficient d.

It is thus clear that the simple one-dimensional non-linear
oscillator model may account for the presence of a polarization current on
a transient basis. However, in the presence of energy relaxation mechanisms
which result in the saturation of the response, it cannot account for a
steady-state DC current such as the one originating fram the second term of
equation (5-12).

5.3.3 Discussion of the Time Response of the Generated Signals

-

Optical rectification has been experimentally pbserved to occur ,
both in dielectrics {33 } and semiconductors {13}, upon irradiation by
powerful pulsed coherent light fram Q-switched or TEA lasers; in all cases
the effect has been observed under the form of an induced wvoltage in the bulk
material. In order to account for the time-damain behaviour of the induced
signal, we shall now give a very simple circuit model of a corresponding
detector in order to discuss the fundaméntal differences between the cases of
dielectric an semiconducting materials.

To find how the observed terminal signal voltage is related to
the bulk’ current density generated by the incaming laser beam, it is necessa-
ry to solve Maxwell's equations for the average macroscopic fields.E and H
in the material.
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It is important tJ‘\realize that these fields are completely different fram

the local fields at the atomic level as well as the laser radiation field.
§ B =3+ obyat (5-47)

In this equation k] represents the free carrier current density. Hence we write
J = o . (5-48)

vhere ¢ represents the usual low-frequency conductivity. 9D/t can be written

!

as
aB/at = eab/ot (5~49)

where ¢ is the usual low frequency permittivity of the material.

‘ Phenamenologically, fwo possible sources for the induced current
must be considered. The direct/effect og the laser beam may consist in either
an induced polarization or an)induced conduction current varying slowly in
magnitude according to the ulation envelope of the laser pulse; the high
frequency components of these signals awerage out to zero and therefore our
discussion will concern only the rectified camponents of the signals.

We thus rewrite (5-47) as

Vx H =oF +¢ 3B/t +3$ + 3p (5-50)

vt b
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where the " polarization " current dens#tis defined by

3p - B /ot ) (5-51)
‘ , »
3 s and -ﬁs are resg&tively the laser induced slowly varying current density
and polarization vectors. To a very good approximation, magnetic flux induction

effects can be assumed to be inexistent.

Heme,thecurlofﬁiszexoa:ﬂ
E+eb+d +3 =0 (5-52) .
% & P

Be1po (3 + 3;@ + e/o aB/ot (5-53)
¥

To make things simple, let us assume that the crystal is a

“Tuniform square plate of side a and thickness t as shown in figure (5-1),

hamogeneously illuninated and with transverse electrodes. The signal wol-
bagevsistheintegralofthefieldﬁoveradistancea
Vs =E . a=afo (J§+Jp 8\4- e/o 3Vs/3t
(5~54)
which can be rewritten as

\.15 = ( I8 + Ip ) R+ RC 3Vs/6t, (5-55)
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or . s

( Is + Ip ) = VS/R + C3Vs/3t

R=1l/c a/ (a-t)

is the resistance™f the crystal and

C=¢ca-t
a

its capacitance.

Equation (5-56) is modeled by the simple circuit of figure (5-2).

(5-56)

(5-57)

(5~58)
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The discussion presented in this chapter requires the consi-

deration of three distinct situations.

(1) Dielectric Materials with Current Source I? Only

b

In dielectric materials, no steady-state rectified current can

be generated, since the radiation frequency is smaller than allowable

transition frequencies. This situation correspords to the discussion of

paragraph 5.3.1

As we have seen in paragraph 5.3.2.1 however, the presence of

a polarization current on a transient basis is not excluded. Since a

- laser pulse constitutes a transient excitation, one must conclude that if

signals are observed at all in a dielectric material, they are due exclusi- °

vely to the source Ip.

[

.
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”

For such a material, the time constant RC is nommally large
campared to the cbserved las‘er pulse widths; the signal woltage is conse-
quently proportional to the time integral of Ip. Since the polarization is
itself proportional to the field modulation amplitude squared i.e. to the -
laser power and since Ip is the derivative of the polarization, Vv, should
be proportional to the laser power.

”

(2) Semiconducting Materials with the Current Source IP Only

(a),
In semiconductors as well, a polarization current similar in na-

ture to the one occuring in di\electfics may exist. However, since the resis-

N tance of a semiconductor may be quite small, the time ooristant RC will also
be small. In such a case Vs is proportional to the time derivative of_the
laser power.

4

(b)

) A different situation will arise when the laser frequency cor-
responds to a transition frequency. The polarization then gets integrated
a# discussed in paragraph 5.3.2.1 b).

L3

If RC is smaller than the pulse width and if the latter is smal-
ler than the characteristic relaxation time of the " oscillator " model
discussed in 5.3.2.1 b), Vs will clearly be proportional to the laser power.

(3) Semiconducting Materials with the Current Source I_ Only

The analysis presented in chapter IV predicts the occurence of
a net steady-state DC conduction current Is in a semiconductor under cons-
tant irradiation when the laser frequency corresponds to a "resonant" transi-
tion frequency. L

L ——".
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In this case Is is directly proportional to the incident laser '
power and since the equivalent circuit time constant RC is expectedly
small campared to the cbserved laser pulse width, the measured signal
wvoltage Vs will be proportional to the laser power.

The above time damain behaviour analysis of the observed signal
Vs will be used in our later discussion of the experimentz‘il results to
help determine the nature of the process responsible for the observed
laser generated voltages. '

r

5.4 Conclusion
Starting with Butcher's analysis and the expression obtained in
chapter IV for the second order generalized conductivity, we have derived

- a formal expression for a steady-state rectified DC current proportional
to tl"xe laser power that would be generated in non—centrosymmetrical materials
under constant irradiation. We have shown that the result recently obtained
by von Baltz {27} is identical to the above; the latter has not recognized
the connexion of his work with the fundamental work of Butcher and Mclean {21}.

In a detailed discussion of our results, it has been shown that the
rectified conductive current may exist only when the excitation laser frequen-
¢y corresponds to an interband transition and reduces identically to zero
due to time-reversal symnetr}} (i.e Kramers' theorem) when only intraband
transitions prevail. The rectified DC current has alsoc been shown not to be
ascribable to any induced non-linear polarization effect.

Finally, the time-domain behaviour of the induced signals in both
dielectrics and semiconductors has been discussed.
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CHAPTER VI

Experimental Observation of Optical Rectification
in Tellurium

v

6.0 Introduction

For reasons that have been discussed in chapter 1I, it has been
found necessary to devote ap important part of this thesis to a detailed
theoretical discussion of non~linear conductivity in solids and the asso-
ciated phenamena of optical rectification. )

Having this thorough discussion as a background, we now undertake
an experimental program in an attempt to resolve or verify questions raised
in the former. The results that shall be presented here are similar to those
obtained by Ribakovs (see section 2.1). \However, special care has been given
in the present work such that the resistivity of the samples be explicitely
taken into account. In particular, the temperature control system has been
improved, lower temperatures have been reached and a wider range of doping
levels have beenh investigated. This approach has been motivated by the theo-
retical discussion which indicates a potential dependence of the phenamenon
on energy band populations.

6.1 The Experimental Set-up

6.1.0 Introduction ¢

B

R

The object of the experimental set-up is essentially to provide
the possibility of measuring the electric signals induced in a Tellurium
sample exposed to the radiation from a TEA 0, laser, fram ambient down to
approximately liquid nitrogen temperature.

»
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6.1.1 The laser

The high power radiation was provided by a Iamonics series 101
TEA OO2 laser. The transverse excitation scheme allows operati'on at aj;:ms—
pheric pressure while keeping the discharge voltage at reasonable levels.
The latter was beeing supplied by a Universal Voltronics model BAC-32-25
variable high voltage source (maximum 40 KV) connected through a 700 KQ
resistor bank to protect against overloading. Linear polarization of the

. F e A n e

beam is assured by a KCl Brewster window.

The variable N, - 00, - He gas mixture was maintained in propor- i

: i
ions 1 : 2 : 10 and the operating voltage was set to 38 KV. The laser ;
tput power density is estimated to be approximately 200 KW/cm2 with a :

cross-sectional area of about 2.5 cm2.

°

A typical radiation pulse, figure (6-1), has a half power width of
80/ns with a rise time of 70 ns. The tail of the pulse of which the magnitude and
th can be contro][led by varying the proportion of the N, content in the
gas mixture shows a slow component with microsecond decay times.
t

Although the laser is capable of repetition rates up to 5 pulses :
second, the pulse rate was maintained at about 1 pulse per second to
assure good pulse reproducibility.

6.1.2 The Tellurium Samples

4

The Tellurium samples were cut from good quality single crystals’
grown in the department of Electrical Engineering by the Czochralsky method.
The _ing6ts, pulled along the c-axis were hexagonal prisms with cross-section

B T P T e

diameters varying from 1 to 2 cm, and a few centimeters in length.

Tellurium beeing an extremely fragile material due to weak binding forcges
between atomic chains {34}, single crystals are readily mechanically dama-
ged. In order to preserve the good crystalline quality of the samples, a ;
specially constructed saw has been used. |
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~ It essentially consisted of a polyester thread continuously
extracting fresh acid from a reservoir and bringing it into contact
with the crystal surface so that only a non-abrasive chemical action is
involved. The acid solution consisted of a mixture of chramic trioxide,
hydrochloric acid and water in 1 : 1: 2 proportions by weight.,

The samples were then polished by rubbing them very gently on
a flat piece of glass immersed into a sollution of chraomic trioxide,
nitric acid and water in 1l : 2 : 4 proportions by weight. ;

Electrical contacts were made to the sample surfaces by alloy- :
ing small strips of a solder made of a mixture of antimony, lead and indium
in proportions 1.7 : 1.3 : 1. This solder has a low melting point of ap-
proximately 150°C which helps to avoid exposing the sarple to a thermal
shock. Fine copper wire was then soldered to the alloyed strips to cam—
plete the contact fabrication.

6.1.3 The Cryostat

éarples we;re mounted on the cold finger of an Oxford Instrument
CF-104B cryostat. Two dielectric coated germanium windows allowed transmis-
sion of the laser beam thgough the sample while avoiding back reflections
from the ,c:ryostcht wall.

J

The sample tenmperature was sensed with a cryogenic linear tempe-
rature sensor (CLTS) constltuted of two photolitographically made thin-
Film resistors having opposite non-linearities an positionned very close
to each other; a constant current flowing through the CLTS generates a vol- !
tage linegly related with the temperature.

4

6.1.4 The Temperature Controller

Temperature was both controlled an monitored by an Oxford intru- ‘
ment model EA-2349 temperature controller.

[}
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( . - First, this unit controls the coolant gas flow through a valwve

and a flow meter, providing the coarse temperature control. The fine con-

trol is ebtained by the generation of a feedback voltage which activates

a small heater in the cryostat itsclf. As a Consequehce, the coarse tempe-

ture setting has to be slightly inferior to the desired temperature.,

The \teqigeraturw is then raised to the required value by the heating element.
The controller possesses a very stable “current source to supply

the CLTS. The resulting voltage is fed into a camwparator circuit and the h

error signal is usef both to dis;;lay the temperature and to control the 1

heater feedback supply circuitry.

6.1.5 Signal Measuring Apparatus

The photo woltages induced in Tellurium samples beeing in the A
millivolt range are applied via a coaxial cable fram the cryostat to the
50 ¢ input of a Hewlett—Packard model 462 wide-band amplifier. The latter
posesses a 40 dB gain and a 4 ns rise-time. The output sinal fram the am-
plifier is then fed at the input of a Tektronix model 7623 storage oscillos-
cope shunted by a 50 Q@ load resistance. Signals down to about 50 uV and

10 ns rise time are measurable with this set-up.

6.1.6 The Pyroelectric Detectors

%y

The lascr output pulse shape and power were monitored with two
different pyroelectric detectors, namely a Molectron model P3-01 and a
Molectron model P5-00 having known responsivities.

N
6.1.7 Special Difficulties ¥

6.1.7.1 Noise

—————
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Figure (6-1) A Typical Radiation Pulse . Note the absence
of parasitic piezoelectric oscillations and
the presence of the distinctive plateau in

the tail of the pulse. The tame scale is 200 ns/cm
and the vertical scale is 200 pV/cm. ,
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l, ' Because of the very low level of the signal, and the proximity |
. " of the severe electric discharge condition in the laser, noise is a very
@erio'us problem. In order to eliminate the latter, it has been found nece-
sary to shield both the laser and the sample containing set-up with two
separate Faraday cages, Wcatmg t“hrough small holes for the laser
beam. ’ - -

AL BN

L

6.1.7.2 Sample Mounting

. <

| ' It has been mentioned that the samples were mounted on the %

cold finger of the cryostat. Since Tellurium is extremely fragile, it . ‘
is essential to avoid any mechanical stress which could originate fram
sample mounting, especially when cooling down below 180°K.

) 8}

. On the other hand, it is necessary to assure a good thermal !
" contact between the sample and the cold finger. Because glue has a ten-
dency to solidify.at low temperature, and since in general its thermal
‘C} : expansion coefficient is different fram-.that of Tellurium, it was found
preferable to use vacuum grease as a binder, the %atter having the advan~
iﬁ tage of beeing a good thermal conductor.

i rlEEE e e tm R e o BAY < vl SRS

The séixples were therefore mounted on a copper plateh fram which
they were electrically insulated with a very thin mica sheet which continues
"to maintain a good thermal conduction path, as illustrated in figure (6-2).

RS . ek 12 Pk e S,

/GN 7.3 Contact Masking

L ‘

1
!

‘Figure (6-3) shows the mask used to prevent the laser beam from
illuminating the electrical contact region, as this is known to denerate
spurious signals {9 }. The mask was made by opening a small square window
into a piece of mylar. The outside surface of this piece was covered with

o a piece of aluminium foil. to eliminate any radiation transmission.
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Mask used to prevent‘the ]aser beam to illuminate the

electrodes.
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6.1.7.4 Signal Voltage and Sample Resistance

i

As the resistance of intrinsic crystals at low temperatures may
excede 100 @, it must be noted that the 50 9 input impedance of the wide-
band amplifier camnot be neglected and the measured signal has to be nor-
malized to take into account voltage division.

6.2 Experimental Results

A

6.2.0 Introduction

The object of the experimental program was to measure the depen—
dence on both temperature and doping level of the optical rectification
tensor in Tellurium. The experiment consisted essentially in the measurement
of the amplitude of the fast induced open circuit voltage at temperatures
ranging from 90 to 300%K in four different samples described in table 6-1.

The extrinsic samples are p-type antimony doped and the different
samples used in the experiment are identified by the ingot they originate

from; normally, several samples are cut fram the same ingot.

6.2.1 Characteristics of the Signal Observed

As it has been mentionned earlier, the voltage induced in the
sample upon irradiation, is a true replica of the laser pulse shape.
Figure (6-1)is a typical oscillogram of the cbserved s;)@al, and is to be
campared with figure (6~4)and (6-5)which are the output from the two
different pyroelectric detectors described in section 6.1.6.

Note the presence in the laser pulse of the well known distinctive
plateau (figure (6-1)). The pyroelectric detectors signals, figures (6-4)
and (6-5)are clearly unable to display clearly this feature because of
unavoidable stray piezoelectric resonance oscillations.
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Sample Identification

Cz-771-15

Cz2-76~13

Cz-77-11

Cz-77-12

N

(mhﬂLE 6-1

SA PLE IDENTIFICATION

% Sb (per weight).,

0.01

0.1

1.0 ¢

73

approximate doping
level (am 2)

undoped
3.0 x 1018

3.0 x 102

3.0 x 1020
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Figure (6-4) Output from the 1olectron P3-01 Pyroelectric
Detector. The time scale is 500 ns/cm and
the vertical scale is 1 V/om.
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Figure (6-5) Output fram the Molectron P5-00 Pyroelectric
Detector. The time scale is 200 ns/cm and
the vertical scale is 5 nV/cm.
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A slow parasitic signal of unknown origin has been cbserved to
occur sametimes in undoped samples at temperatures inferior to about 200 %
same as reported earlier by Ribakovs { 9 } ; its amplitude increases as the
temperature decreases. Although this stray signal is clearly dependent on
the presence of the laser beam, it exhibits a slowly decaying feature which
is unrelated to the laser radiation modulation envelope. Figure (6-6 ) is a
typical oscillogram of the signal. It should be noted that the latter is not
reproducibl%fm one sanple to another ard that it sametimes does not mani-
fest at all. Such signals have not been observed in doped samples.

6.2.2 Measurements L

6.2.1.1 Orientation .

The samples were oriented in oréer to obtain a signal which could
be attributed to the unifue tensor cmpom;nt X133 ¢ @S illustrated in figure
(6-7) ’

. -
6.2.1.2 Experimental Parameters’

“
In all cases, the inte¥electrode spacing d was 5 mm, the sample

thickness 't 3 mm, and the illuminated area 5 mm x 5 rm. As it has been men-
tionned in paragraph 6.1.1, the laser power density, estimated from the known
responsivities.of the pyroelectric detectors is approximately 200 kW/cmz. The
anti-reflection cOated G ermanium windows of the cryostat are assumed to be
perfectly transparent. J )

/ . ’ 8

6.2.3 ReSllltS -

(a) Verification of the Bulk Nature of Observed Signals

1

The genuine bulk nature of the observed signals has been determined
by the signals for the three different electrode configurations shown in
figure (6-8) , namely front surface electrodes, back surface electrodes, and

~ side .su“rfaoe electrodes.
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Figure (6-7) Orientation of the Sample in Order to Obtain
a Signal Which Could Be Attributed to the
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'FRONT ELECTRODES  BACK ELECTRODES

Figure (6-8)

)

T/
SIDE ELECTRODES

The Three Different Electrode Configurations
Used to Verify the Genuine Bulk Nature of the Signails.
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The response beeing identical in all cases, one must conclude that there is
no appreciable surface effect involved. }

(b) Linearity of the Signal Amplitude with Respect to the Power Density

The rectified pulse amplitude exhibits a linear dependence with res-
pect to the laser power. This fact has been verified by gradually attenuating
the incident power with an increasing number , up té three, of n~type silicon
wafers having a resistivity of 7.1 Q - cm and a thickness of 6.9 mils, which
exhibit a transmission coefficient of about 50%. Thus, linearity has been
demonstrated froam (0.5)3 x 200 k‘/\?/c:m2 up to 200 kW/cmz. Figure (6-9; is a
graph illustrating the results obtained. \

It is to be noted that the above results differ fram a case repor-
ted by Hammond and al. {12} who describes the obtained signals to be '

essentially irdeggrdent fram the power density.
¥

(c) Angular Dependence of the Induced Signal

Although we were not specifically interested fram an experimental
point of view on the detailed tensor behaviour of the induced signals which
has been thoroughly investigated by Ribakovs { 6}, we felt necessary to
verify the expected cos (20+) dependence of the signal amplitude in order
to make sure that the voltage pulses were the manifestation of a genuine
third rank tensor. Figure (6-10) shows the angular dependence of the measured
signals which has the expected behaviour.

g \* ‘
(d) Variation of the Signal Amplitude with Temperature for Different Sample
Doping Levels

The variation cf the signal amplitude with respect to the temperature

is presented for each doping level in figures (6-11), (6-12) and (6-13) for
each sample identified in table 6~1 except for samples fram ingot CZ-77-12. -
The latter are the most heavily doped samples; they have not produced any
observable signals.
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Figure (6-7) Linearity of the Signal Amplitude With Respect to the
Power Density.
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>

In the case of the undoped samples, the signal is seen to increase
rapidly as the temperature decreases fram about 300 °k to about 180 °Kk :where
it becames essentially constant. T

On the other hand, th'; curves corresponding to the doped samples
have the same general behaviour. They present essentially no.structure except
for a slight monotonic decrease of the induced signal as the \t,argerature de-
creases. These results are- consistent with the observations of §. Ribakovs.

(e} Observations of Signals in Thin Samples at Roam Temperature

Since the mechanism of sié/;al gereration is expected to correspord
to a current source, it has been thought important to observe the effect on
the induced signals due to variations in the resistive characteristics of the
samples., In particular, an increase of the latter with an increase of the resis-
tivity at a given doping level\ is expected. This is nénre thoroughly discussed
later. :

To verify this hypothesis, a simple experiment has been devised.
Typically, it would have been interesting to obtain a real thin film which
would be constituted of a few atomic layers, Such films are , however, techni-
cally difficult to fabricate, especially when a single crystal is required.
It was, therefore, decided instead to polish samples by the standard procedure
described in section 6.1.2 down to thicknesses of the order of 50 . This
represents the minimum practically achievable thickness by such a procedure.
The results are summarized in table 6-2. Interestingly, campared tc the previous
thick sample observations, enhanced signals have been observed in all cases;
particularly, a distinctively observable signal has been cbtained in the thin
sample from ingot C2-77-12, figure. (6-14), where in a thick sample, no signal
has been cbserved.
? ¢
6.2.4 Relationship Between the Optical Rectification Tensor y and the
Experimentally Measured Signals }

Clearly, the experimental results presented in the last section
provide the induced wvoltages between the electrodes fixed on the samples.
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Sample Identification
/
Cz-77-15

Cz-76-13

C2-77-12

TABLE 6-2

et ettt

MEASUREMENTS N THIN SAMPLES

Signal Amplitude (mV)

5.0

10.0

2.5

* Absorption is considered to be negligible in thin samples,

-+
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o
X (cm/A)

0.5 x 10~

1.0 x 10°

0.25 x 107
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@, i
We obtain the optical rectification tensor y by relating these induced volta-
_ges to the optically rectified current density jwith-‘the help of the simple

oonfiguraiglon shown in fiqure (6-7). '
“

Although Tellurium is a semiconductor, its conductivity is relatively
large. As a consequence, it is legitimate to neglect the intrinsic capacitancé
of the samples and to suppose that the signal voltage generated by the C02
laser radiation is entirely due to the flow of the rectified current through
the resistance. In terms of the equivalent caircuit model of paragraph 5.3.3,
it implies that all the current from the current source passes through the
JYesistance R. Equation 6-1 relateg the incident power density to the induced
current densitir. >

J = yw (6-1)

* Under the hypothesis of a negligible sample capacitance one can
*

~dlso define a modified rectification tensor x relating the generated voltage

?

to the incident power density

*

V = pydw = x dw (6~2)

where x* is merely defined as the product of x and the appropriate value of

the resistivity and d is the inter-electrode distance.
The results of Ribakovs, which have been summarized in chapter.II

have been expressed in tems of this modified rectification tensor.

For the sake of comparison table 6-3 presents the experimentally obtained

values in this thesis for the modified rectification tensor at roam temperature;

thesé results campare very well with those of Ribakovs.

6.2.5 Different Considerations Affecting the Experimental Results

(a) optical activity
A linearly polarized electric field rotates by about 11° per mm while
propagating in the c-direction through Tellurium, due to optical activity.
"y

<
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TABLE 6-3 ‘
4 \
R X
EX PERM ENTAL RESULTS IN TEM S ’ .
OF RIBAKOV'S x * AT ROOM TEMPERMIURE .
\1 |
!
Sample Identification resistivity X * X .
(0-cm) (cn/B) W™
~ -7 -5
C2-77-15 1.0 0.25 x 10 0.25 x 10
Lo
Cz-76-13 0.2 0.15 x 10 0.75 x 10
-7 -5
Cz~77-11 0.08 0.33 x 10 4.1 x 101
Cz-77-12 0.025 - # -
*
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It is straightforward to Semonstrate that this effect shifts the expected

cos 20 dependence of the measured signal by an angle ¢ = :_r:t/Z’ degrees, where
r reprlesent*@ the "rotary power” in degrees per mm and t 1s the thickness of
the sample. Experimentally, the effect of the presence of such an angtilar
shift on the signal magnitude can be taken into agcount by slightly rotating
the sanple uptil a signal of maximm anmplitude is obtained. Our measure- \
ments have been performed following ‘this procedure.

(b) absorption
< ?‘ *

In order not to camwplicate matters unnecessarily, it is usually
assumed that the laser power density is cor$tant throughout the sample

under investigation. In most cases, this constitutes a good approximation

since absorption is relatively small and samples are only a few mm thick.

However, the situat"ionY is different in heavily doped crystals, and the anpll/— ] .

tude of the measured sigmal voltage is affected since the latter depends
roughly on the average value of the power density over the sample thick-
ness. Neglecting frxult\iple‘i reflections, the ratio between the average power-
and the inc?‘rdeBt\pwer at the air-Telluriuw interface can be shown to be

’ /

-ot
\ PA/Po = (1~R) /ot {1-e "} (6-3)

where PA is the effective power, PO is the incident power, R is the reflec-
tion coefficient , o is the absorption coefficient and t is the sample
thickness.

At 10.6 u absorption in intransic Tellurium 'is dominated by
free carriers. Figure (6-15)is a plot of the absorption coefficient o ~
vs the wavelength A of the radiation {35}. The absence of structure in
the neéighborhood of A = 10.6 p , and the straight feature of -the curve
are characteristic of the above mentionned type of abksorption. For an
intrinsic crystal, o is seen to be about 0.18 cm ©. Although no results
are available at other doping levels, it is normal to expect & signi-
ficant increase in the absorption at higher impurity concentrations.

Y
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f' ‘isrmms OF THE FREE CARRIER
) , ABSORPTION OOEFFICIENT
Sanple Identification - Absorption coefficient

(cm) L
C2-77-15 ‘ 0.18 *
CZ-76-13 0.90
Cz-77-11 - 2.25

CZ-77-12 7.2

i

* actual measured valué

~
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A rough estimate of the behaviour of a with respect to the conduc-
tivity can be obtained by resorting to Drude's classical theory (see appendix
B ) which assutes that the absorption of light by free charge éarriegs can be
treated as a transport problem., Table (6—4)surm|arizeé the results obtained.

It is obvicus fram equation (6-3) and from table(6-4) ;‘_hat the
useful power, that is, the value of the power density which sould be used
1n evaluating the rectification tensor component X111° is signifjcantly,
smaller for doped samples than-for undoped samples. However, we shall not
perform any explicit coamputation of PA at this stage since it will be seen
in (d) that the effect of multiple reflections must alsc be taken into account.

bl

(c) Reflection Coefficient

Closely related to the increased absorption in heavily foped sam-
ples 1s the [')i)emremn of the increase in the reflection coefficient.R.
The value of the latter is of prime importance in the evaluation of x as
1t directly affects the actual power density transfered +o the sample.
Here again, a rough estimate of the reflexion coefficient behaviour can be

obtained from the results of classical electramagnetic theory.

At normal incidence, the reflexion coefficient R affecting the

radiation intensity is given by the well-known formula {36}
f

R= (n-1)2%+ k% (6-4) *
(n+l)2 + };‘2

&

where n and k are determined from formulea (A4) and (A5} (see appendixa).

Since the values of k are about four orders of magnitude smaller
than those of n, it appears that despite inportant variations in the doping
level, the reflection coefficient does not vary significantly.

e

With n = 4.8, we get for R




.

: R= (4.8 - 1)%= 0.43 - (6-5)
(4.8 + 1)° '

-

- a i

which is: in very qood agreement with the published experimental data {37 }L)

\

(d) Multiple Reflections \//

Since both the air-Tellurium and Tellurium—air interfaces are
characterized by a reflexion coefficient, figure (6-16), a certam propor—
tion of the radiation is ‘constrained to bounce back and forth mSJ,de the
sample. As the signal voltage polarity is lndeperxient from the beam propa-
gation direction, miltiple 'refleqtioné wi‘ll enhance the measured sSignal vol-
tage magnitude. It'is easy to demonstrate that the useful power for a single
pass through the stple as expressed by equation (6-3) gets multiplied by .

a factor

T = 1 - (6-5)
1- Rt {1l - e—-at)

;
when multiple reflections are taken into account.

Thus finally, table 6-~5 presents estimates of the useful power
Py in the samples after taking into account the effect of both absorption
and multiple reflections..It is to be noticed that for the most heavily cxoped
samples the useful power represents only about 30% of the incident power
whereas in the case of the undoped samples it represents almost 100% of the
latter. One thus expects a reduction of the observed woltages in-doped samples,
due to these considerations.

{e} Intexrference Bffects

o2

wd
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s

/ .\

In (d) ,” we have discusséd the influence of multiple reflections.
by making abstraction of interferense effects. This approximation holds
as long as we are dealing with samples such as ‘the ones used 'in our
experiments, which are relatively thick with respect to the radiation wave-
length and where the front and back surfaces are not perfectly parallel
and /or highly polishid.

e
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0.95
0.81
0.61
0.28

W

TABLE 6-5
ESTMATES OF THE USEFUL- POWER ?A

L4

Sample Identification
€2-77-15
Cz-76-13
C2-77-11
Cz-77-12
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6.3 Interpretation of the Experimental Results Related to the Theory

6.3.1 Time Dependence

In paragraph 5.3.3, we have examined tgleoretically the expec-
ted time response of the optically generated signals for various postu-
lated source mechanisms. It was shown that in semi-conducting materials
such as Tellurium, the current source may either be of the ty;;e Ip’ in
which case the signal is proportional to the time derivative of the laser
power, or, of the type Is’ which leads to a rectified voltage directly
) proportional to the laser power.

' [

Clearly, from the experimentally observed pulse shape, it ap-
pears that we are in presence of a current source of the type IS , we must
then conclude that the rectified signal is due to a seocond order® non-1i-
near conductive effect as derived in details in section 5.2 and not to
same induced non-lincar polarization current.
n6.3.2 Derivation of the Optical Rectification Tensor y fromM easured

Induced Potentials

Since the theory presented in this work deals with the optical
rectification tensor yx itself, it will be desirable to obtain mumerical
values for the latter from the measured radiation-induced potential re-
sults presented in fiqures (6-11), (6-12), (6-13) and from the known
tamperature dependent sample resistavities given in figures (6-17) to
(6-20). Thas is sumply achieved by uging relation (0-2). The results are
presented in figqures (6-21), (6-227 and (6-231.

6.3.3 General Observations on the Behaviour of ¥ in Doped and Undoped
Samples

It is seen that the behaviour of the undoped sampics is vastly

different fram that of the doped ones. In particular, y in undoped samples
is seen to decrease rapidly from room temperature down to about 180% where

it reaches a minimum; it then increases slightly and saturates throughout
the rest of the temperature range.
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-
On the other hand, in doped sanples, the variations are much less pronounced.
¥ is relatively constant throughout the whole temperature range except at
both ends of the latter where it has a tendency to decrease. This behaviour
is the same for all doped samples. It is important to okserve that the magni-

tude of y increases substantially with impurity coneentrataion.

In what follows, our objective shall be to interpret the above
mentionned behaviour of the optical rectification tensor in terms of the
theoretical expression obtained in Chapter V. 1t 15 understandable that
numerical estimates of absolute magnitudes cannot be expected realistically
fram the conpilex relations presented in the la‘r:;wr chapter. However, a
qualitative discussion of the experimental results in terms of the theory
should b ]’?{’.f 1ble,

6.3.4 Discussion ’, .

6.3.4.1 General Considerations “

A basic feature of the theoretical expression for y as given
by equation {516) is its strong dependence on sub-valence band popula-
tions, mote opecificslly on population differences. Moreover, the presence
of siroularitzes 1in the denminator at same preferved frequencies implies
that said-bands separatsd in energy by an amount corresponding to the photon-
energy of the laser should contribeite very significantly to the overall optical
rectification offert,. Owiously, however, the exact behaviour of y with

respect todpie populatlonn as difficult te calculate.

Ficure (F-74) is a cchomatic representation of the valence band
struct.re of Telluryo in the neictborhood of poirt H of the Brallouin zone,
that ¢ tn sy, 10 the vicinaty of the valence band elge. Transitions between
baryis 4, ATl %‘b ares a2 llowxd only for EE rolarized yp.avallel to the c-axis {38].
arnd H, valence bands -

6 4
are allrwed “or thus polarization condition and wiil contribute to y provided

However , direvst eloctronie transitions between the H

the proper electronic population corditions prevail. .

e ik v s RT e ¥ e
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The discussion of the electronic population conditions at dif-
ferent energy levels within the Te band structure requires the specifica-
tion of the Fermi function f(E,T) /

\K //
£(E,T) = 1 (6-6)
1+ e.xp{rs--ﬁF (T) } /KT

where E represents the energy and EF(T) is the temperature dependent Fermi
energy. Figure (6-25) is a typical plot of the Fermi function.

As it has been mentionned, 1 1s expected to depend on population

differences at cnergy aintervals of the order of the laser photon energy.

It is clear thzt {(E,T is campletely defined when the position of the tem—
perature depeirient Termi level is known. Figure (6-24) gives the result of
a numerical computation of the Fermi level position as a function of the
temperature for different doping levels, a$ discussed in Appendix B.
Refering to figure (6-25) it is clear that electronic population dif-
ferences will deperd strongly on the average position of the energy intervals
' relative to the Fermi enerqy. For example, comparing the cases shown in
figure (6-25), population differencec from energy intervals corresponding to
AE2 would have a much higher contribution to expression (5-16) than those
corresporkling to AEL ard AE3, Finally, a well known feature of the Fermi
dastribution function to be taken into account is the increase of the width
of the step with tamerature.

6.3.4.2 Variations of theVagnitude of y with respect to the Doping
Level at Room Temperature

X In terms of the previous discussion, it is clear that in the case .
of the undoped crystals where EF at room ta%perature is well above. the top
of the valence band, energy intervals contributing to y within the latter
are expected tc be of the type @l, figure (6-25), and hence will be associa-
ted with small population differences, i.e., will contribute weakly.

o
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This is to be compared with the case of doped crystals where EF according
to figure {6-26) lies increasingly closely to the valence band. In this case,
energy intervals contributing to x are clearly rather of the type AE2 of

figure (6-25) and hence will be associatex] with substantial population /
differences, 1.e. a stronger contribution is expected. This behaviour is I‘
confirmed by the experimental results showing a strong increase in the . :
magnitude ©f y waith an increase in the impurity doping levels (see para- é
graph 6.3.3) ) i

The case of the very heavily doped samples fram ingot CZ2-77-12
for which 1t has not been possible to observe any signal seems at first sight to
contradict the above statement, However, in spite of the expected further
increase 1n the rectafication effect in heavily doped samples, two parameters
tend to decrease strongly any obscyvable signal al the termunsl of the
device; in.end, the genersl reductaon of the resistivity on the one hand
and the sharp inrreane in the {ree carr:e: absorpion en the ~vher, ~an
easaly accont for pore than an order of magnitude in tiv obcervable volta-

ge signalc. It woaild ther be espected tfat both of these effects can be redu-
ced by reduing the thickresss of +he sagple drastically and make the induced

signal obser~vable. Thas ha~ been confiurmed in our observations on thin sam-

ples as presented ir paragraph 6.2.3.

6.3.4.3 Variatione of y in Doped crystals as a Function of the Temperature

- el

Since the position of the Fermi energy level is relatively inde-
pendent of the temperature in doped crystals, figure (6-26), it is expected
that y will not be strongly deperndent on the latter. This expectation.is
confirmed experimentally by figures (6-21) and (6-22) which are essentially
flat.

P

6.3.4.4 variations of y in Undoped Crystals with Respect to the Temperature

j

Figure (6-22) illustrates the behaviour of y with respect to T
in undoped crystals; it differs significantly fram that of the doped crys-
tals, exhibiting a saturation after a relatively fast decrease with decrea-
sing temperature.
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In order to discuss this behaviour in terms of the Fermi function,
we note that the Fermi energy level EF in ideal intrinsic crystals remains
practically faxed at the centre of the energy gap, figure (6~26;.
Simultaneoucly, the step transitiorn which 1s of the order of a “ow eVs
decreases with decreasing temperature, Referring to fiqure (6-27) it is
clear that the transitions that cortribute to y in such samples will
correspond at room temperature to energy intervals of the type AE4 , and,
as the tamerature decreases, they will be shifted towards transitions of
the type AE3 sime the position of the Fermi energy remasns fixed. This

‘would result in continously decreasing ¥ with temperature. Actually, however,

since the undoped crystals contain an inevitable small amount of impurities
(= lO15 meB} , the Fermu level will temd o move toward the valence hand

as the temperature is decreased as shown 1n figure (6-26). In th,o case the
cambined effests of the shiftt in the Ferm: encrgy level ad the reduction
of the step transition width will, =t low *‘eonaperature, make trarsitions
near the top <1 the walence band betave as AE, transitions of {i7Tne (6-25),
This will tend (o rexluce the decrease an nhe value of x ard possibly lead
to a saturated profile such &5 obta.ned 1r. the experamental results.

6.3.4.5 Enhanced Signals v Thin Samples

/

The case of thin samples presents a particular interest since, by
reducing the thickness of the samples and ideally arriving at thin film
configurations, we expect an improvement in two respects:

(1) 'The reduction in the observable signal associated with the finite
absorption of the radiation along its trajectory in the sample, as
discussed in paragraph 6.2.5 will now be campletely eliminated. -

(2) It is also generally expected that very thin samples will exhibit
a higher average resistivity due to the influence of surface and
other &:@perfections which will impede current flow in such samples.
This will cause an effective increase in x * for a given bulk value

. of x.

.
[
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The experimental results reported in this paragraph 6.2.3 are
oconsistent with the above prediction; the most striking observation beeing
that of the most heavily doped samples where a sizable signal is present
vwhereas no signal could be observed in normal ones.

N

6.4 Conclusion

This chapter has presented a detailed experimental account for
the observation of the optical rectification in Tellurium exposed to the 10.6u
radiation of a TEA-O, laser and the results haye been critically discussed
in terms of the previously developed theory. Good qualitative agreement has
been obtained. ¢
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CHAPTER VII

Conclusions

v

The reseach work undertaken in this thesis was originally
directed towards the understanding of the physical nature of a third
rank optical rectification tensor in Tellurium which had been identi-

fied and measured experinentally in a previous investigation by G. Ribakovs

{6l

Optica’ ryectafication resultang from non-linear dielectric
behaviour 1n ins-ilating solids seems to be a well understood phenamenon;
on the other harkl, althowagh the occurence of 5 rectified signal from
optical rectificarion ain  conductive: solids has been experimentally re-
ported by several workers {11,12,13,14., the *heoretaical accounts for the
latter have beenn unsatisfactory due to the use of different terminologies
to characterize this effect and the lack of 2 umified approach.

In the present thesis, a theoretical discussion has been develo—

K T e Ml

ped to obtain an expression for generalized corduction in solids at optical
frequencies on the basis of the classical work of Butcher and Mclean {21};

in particuiar,a phenomenological relaxation constant was introduced to obtain
a non-singalar form for the generalized conductivity; hence, an explicit ex—
pression for the second order conductivity has been given for non-centro—
a'mmetric crystals, Finally, an explicait expression for the optical! rectifica-
tion tenscr resulting from second order conductivity has been obtained.

This work has established that the so—called Bulk Photovoltaic Effect (BPVE)
defined by von Baltz {23} as a novel behaviour in materials is, in fact,
identical to the behaviour predicted by our theory.
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An attempt has been made to obtain a physical model to illus-
trate the physical significance of our theoretical expression; althouch
in the case of low optical frequencies campared to interband transition
frequencies an interpretation in terms of the standard semi-classical model
of the effective mass tensor could be given, such a simple model to ac-
count for the general case has not been possible to obtain. This is sug- J
gested to be the subject of further investigation in this area. '

A N

P,

A careful experimental program was then undertaken tc\> substantiate
the theory developed in the particular case of Tellurium, using a wide
range of impurity concentration levels. Our results have, on the one hand %
reconfirmed those obtained by G. Ribakovs { 6} 1n the case of undoped samples
and on the other hard, gave a good qualitative agreement with the theory for
both doped an undoped samples. Finally, experimental observations in very thin

samples of Tellurium have confirmed the expected enhencement of the generated
signal woltage at the device terminals. It 1s suggested that further work be
conducted 1n investigating this area, possibly using in the limiting case
deposited thin film samples.

i
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APPENDIX A

Free Carrier Absorption

oF

In the relaxation time approximation, the motion-of a charge
carrier with effective mass m * can be described as though it were in a
- viscous medium with a losz factor 1/1 = W where 1 represent a charac-
teristic relaxation time. This model is called Drude's model and can be
used to calculate the high frequency conductivity. It is easy to show
that

it e e s

S
"
Q
4
Y
Q
=3
OE
+
L N
g

(A1) j

vwhere oo=en2-r/m * represents the usual d.c. conductivity.

The imaginary part of the conductivity can be considered as a
contribution to the real part of the relative static dielectric constant e'.

el eL-’__l__Im(o) (A-2)
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where EL represents the "background" dielectric constant associated with the
lattice ions which is assumed to be frequency independent. The real part of,
the caomplex conductivity is associated with the imaginary part of the rela-
tive permittavity through ‘ ‘ ¢

e''* = Re (0) ' (A—32

At i Wt ww w e v [
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Both& ' andg'' are expressible in terms of the real and imaginary parts of

the camplex refractive index, namely n and k.
€' = n2 - k2 a-4)
e''= 2k (A-5)
¥

k is usually called the extinction coefficient, and n is refered to as the

refractive index.

The absorption coeffcient a is related to k by
. =
a =20k ’ (A-6)
C

where ¢ is the speed of light.

Fram our knowledge of the properties of intrinsic Tellurium,
it is possible to obtain the value of k for A = 10.6 u.

with {37} .
o = 100 4t
. -1
a=18m
EL =23
n= 4.8 .
e 2n/= 1.778 x 10* rd/s
we get

k= 1.52 x 107>
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This value permits a rough evaluation of W by using equations (A-2) and

(a-5).

b = 8.5 x 10%2
o]

]

Frah this result, the absorption coefficient a can be estimated for each of
the samples in the present experiment since the values of w, are known

from the resistivity data.
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APPENDIX B

Numerical Computation of the Position of the
Fermi Energy level in Function of the Temperature

5

The determination of the Fermi energy level position in a
semiconductor is in general a very %xrplex problem. It requires the
knowledge of the density—of-states functions for both the oonductlon and
the valerce hand. The latter are complicated functions of the E(k) Bloch
wave dispersion relation. More specifically, the density of states is

given by .3
g(E) = 1 ds B-1)
an° Ve (k) |

where the integration is to be performexi over constant enerqgy surfaces.

Once the densit, -0f -gtates 1c Fnown, the density of carriers at
equilibrium can be ewalu *exd by integrating g . over +he whole hands using
the fermu functiorn as a w 1ghtireg factor. By irowking .ocal charge neurali-

ty, one then gets a~ 1! -1t non-liuear equats on for the Permu enerqgy.

In the ciplest Lase, 1t 1s usual to assume- that the bands are
both parabolic and .sotro; ¢ and therefore that the density-of-states varies
like the square rix of +:e enerygy. A better approximation can be obtained
by using the follownng exgression for the density-of-states i1n the valence

band of Tellurium 29}

gE) = 1 v2BE + 8% - 8A§B2 +\ /4psE
4/2w2AB S2

8

2 ) .
—\[;BE +8°/2 - 8, g2 - \[4BSE
g2

"
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(€) = 1 VZBE+822-—828252+ as’E
g /2 - 80282/s% \/

for E<(5%/4B +4A§/,S2 420, o

(B-2)

where A= 3.4 %107 eveerd® .
B=4.6x10 2 evecm?
S=2.67 x 100 ev-cm?

Al = 32.2 eV

and by using the standard square root function

g(E)= v2_ 2 (B-E) °
)

n

(B~3) J

'J‘w':’a .

where m;l is the electron effective mass, and E, is the position of the

bottom of the conduction band, for the density-of-states in the conduction
band. '
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