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ABSTRACT

We recast the theory of labelled Markov processes in a new setting,

in a way “dual” to the usual point of view. Instead of considering state

transitions as a collection of subprobability distributions on the state space,

we view them as transformers of real-valued functions. By generalizing

the operation of conditional expectation, we build a category consisting of

labelled Markov processes viewed as a collection of operators; the arrows

of this category behave as projections on a smaller state space. We define

a notion of equivalence for such processes, called bisimulation, which is

closely linked to the usual definition for probabilistic processes. We show

that we can categorically construct the smallest bisimilar process, and that

this smallest object is linked to a well-known modal logic. We also expose

an approximation scheme based on this logic, where the state space of the

approximants is finite; furthermore, we show that these finite approximants

categorically converge to the smallest bisimilar process.
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ABRÉGÉ

Nous reconsidérons les processus de Markov étiquetés sous une nouvelle

approche, dans un certain sens “dual” au point de vue usuel. Au lieu

de considérer les transitions d’état en état en tant qu’une collection de

distributions de sous-probabilités sur l’espace d’états, nous les regardons en

tant que transformations de fonctions réelles. En généralisant l’opération

d’espérance conditionelle, nous construisons une catégorie où les objets sont

des processus de Markov étiquetés regardés en tant qu’un rassemblement

d’opérateurs; les flèches de cette catégorie se comportent comme des

projections sur un espace d’états plus petit. Nous définissons une notion

d’équivalence pour de tels processus, que l’on appelle bisimulation, qui est

intimement liée avec la définition usuelle pour les processus probabilistes.

Nous démontrons que nous pouvons construire, d’une manière catégorique,

le plus petit processus bisimilaire à un processus donné, et que ce plus petit

object est lié à une logique modale bien connue. Nous développons une

méthode d’approximation basée sur cette logique, où l’espace d’états des

processus approximatifs est fini; de plus, nous démontrons que ces processus

approximatifs convergent, d’une manière catégorique, au plus petit processus

bisimilaire.
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CHAPTER 1
Introduction

The main objects studied in this thesis are probabilistic systems. In

particular, we are interested in knowing when two such systems can be

deemed equivalent, and what would be an appropriate notion of approxima-

tion for these systems. These questions are particularly nontrivial when the

state space of the system is not discrete, which is the situation which will be

investigated in this work.

The systems that we shall be studying are interactive. In other words,

the interpretation of the execution of such a system requires the existence

of a “user” for this system (this “user” can be considered to be anything

external to the system, e.g. the environment). The system is assumed to

evolve only when the system and the user interact (there are no so-called

hidden actions). Although the interaction between system and user can

only be made through well-defined channels, the behavior of the user or

environment is not itself modeled in any way, and thus the user is purely

nondeterministic.

Throughout this thesis, time will be discrete, and so, upon user

interaction, the system instantaneously changes its internal state via a

probabilistic transition. However, the user is not directly aware of the state

change effected by the system; the only feedback the user obtains is through

the interaction channels.

The initial motivation for this work was to develop a mathematical

framework that would streamline the approximation of probabilistic systems

via an appropriate notion of average behavior. Surprisingly, this framework
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allowed us to weave behavioral approximation, behavioral equivalence and

logic-based reasoning under a categorical description.

This work was inspired by private communication with Vincent Danos

and Gordon Plotkin [DP06], and will be in part published in [CPDP09].

1.1 Labelled transition systems and an introduction to bisimula-
tion

In order to motivate our work, we first introduce some relevant concepts

in the context of a simpler kind of system.

Definition 1.1.1 A labelled transition system (LTS) is a finite or countable

state space X, together with a finite set A of actions or labels, to which we

associate a set of transition relations →a⊆ X ×X, for a ∈ A. For every pair

(x, y) of states, we shall write x →a y if (x, y) ∈→a. For a given state x, if

there is no state y such that x →a y, we write x X→a and we say that action

a is disabled at x.

We interpret such systems as follows, following Milner [Mil80]. Suppose

the system is currently in a state, x. The user has access to buttons which

are labelled by A; these buttons are the channels through which user and

system interact. If the user presses the button labelled by action a, one of

two things can happen. If x X→a, the button physically jams and the user

then knows that action a is disabled. On the other hand, if action a is not

disabled at x, the system nondeterministically changes its state to any state

y such that x→a y.

Although it is not necessary, labelled transition systems are often

pointed; that is, a particular state in the state space is singled out, and is

called the initial state.

Note that the above definition of an LTS does not encode the above

interpretation; indeed, an LTS is nothing but a finite collection of relations
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on a countable set. We thus need a notion of equivalence, with respect to the

above interpretation, in order to do any further mathematical analysis. One

such equivalence concept is called bisimulation. The strategy is to determine

which states are indistinguishable from the user’s perspective. We begin

with the following definition, due to Milner [Mil80].

Definition 1.1.2 Given a labelled transition system on a state space X, a

relation R ⊆ X × X is said to be a bisimulation if, for all pairs of states

(x, y) ∈ R

1. If x→a x
′, there exists a state y′ such that y →a y

′ and (x′, y′) ∈ R

2. If y →a y
′, there exists a state x′ such that x→a x

′ and (x′, y′) ∈ R

Two states x, y, are said to be bisimilar if there exists a bisimulation R

with (x, y) ∈ R.

Intuitively speaking, one can think of a bisimulation R as an equiv-

alence relation; indeed, it is easy to see from the definition that for any

bisimulation R, the equivalence relation generated by R is also a bisimu-

lation. Thus, the rôle of a bisimulation is to lump together, in equivalence

classes, states which are indistinguishable with respect to the user. Indeed,

not only can two bisimilar states perform the same actions, but for any

enabled action on these states, the sets of reachable states associated to this

action are contained in the same equivalence classes.

Park [Par81] defined bisimulation as the greatest fixed point of an

operator on the space of relations on X, and it is a pleasing observation that

Park’s fixed point definition coincides with the above definition.

Another way to describe bisimulation is to translate the user experience

into a modal logic; any finite description of the process from the user’s point

of view would be encodable in a suitable formula. Hennessy and Milner

[HM85] defined such a logic, and they proved that two states are bisimilar
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with respect to definition 1.1.2 if and only if they satisfy the same formulas

of this logic. We omit the details as we shall encounter a similar logic in the

probabilistic case.

1.2 The probabilistic case

Extending the idea of labelled transition systems to probabilistic

systems is fairly straightforward. Instead of associating, to each state-action

pair, a subset of potential next states, we associate a probability distribution

on the state space. Thus, when the user selects an action, the system effects

a transition following this probability distribution.

Larsen and Skou [LS91] first analysed interactive systems in a proba-

bilistic setting. The state space considered was discrete and thus there were

no measure theoretic considerations. As in LTS’s, actions are deterministi-

cally disabled; in a given state, the probability of effecting a transition to

anywhere in the state space is either zero or one. The authors defined bisim-

ulation for these probabilistic systems, and wrote out a logic characterizing

this bisimulation relation.

Nondiscrete state spaces were first examined by Blute et al. [BDEP97]

and de Vink and Rutten [RdV97]. However, de Vink and Rutten’s work

concentrated on ultrametric spaces and thus was of limited applicability

compared to the work of Blute et al. Indeed, the latter defined a notion of

probabilistic process on a much larger class of state spaces, along with a

notion of bisimulation and the introduction of the now widespread use of the

term “labelled Markov processes”. Further publications [DEP98, DGJP99,

DGJP00] developed different notions of bisimulation for these processes

and defined a modal logic characterizing bisimulation. However, the proofs

relating the logic to bisimulation required restrictions on the structure of the

state space and the results were quite technical.
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These papers also devised approximation schemes for labelled Markov

processes. Indeed, in order to do computations on these systems, one needs

discrete but reliable approximations. One promising approximation scheme

of Danos et al. [DDP03] involves partitioning the state space into a finite

number of chunks, and to average transition probabilities over these chunks.

As averaging requires the use of a conditional probability operator, a note

by Danos and Plotkin [DP06] considered using linear operators to represent

transition probabilities as well. It turns out that this point of view is in

a precise sense “dual” to the usual interpretation of Markov processes, as

these linear operators transform functional expressions on the state space

“backwards in time”. This point of view also meshes very well with standard

concepts in the labelled Markov processes literature.

1.3 Outline of thesis

In Chapter 2, we review the mathematical and computer theoretical

background necessary for our work. In particular, we cover labelled Markov

processes in detail and expose different definitions of bisimulation. We also

give an overview of Markov operators, which will play an important rôle.

In Chapter 3, we define the probabilistic processes we shall study; we

call them abstract Markov processes, because the transition probabilities are

bundled into positive linear operators. We then show that the operation of

conditional expectation can be generalized to a functor, and we use this to

describe a very general approximation scheme induced by a measurable map

of the underlying state space.

In Chapter 4, we create a category that contains all abstract Markov

processes, which allows us to define bisimulation for these probabilistic

processes. Bisimulation between processes is shown to be a transitive

relation. Furthermore, we show that there is a minimal bisimilar process to
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any given process. The structure of this minimal bisimilar process is partly

described by a modal logic.

In Chapter 5, we use the modal logic to explicitly construct finite

approximants to abstract Markov processes. Furthermore, we show that

these finite approximants converge to the original abstract Markov process

in a categorical sense.

Chapter 6 is a discussion of related work.

Finally, in Chapter 7, we give a final overview of our contributions and

discuss future work.

6



CHAPTER 2
Background

We shall assume that the reader is knowledgable in measure theory and

category theory. We review the concepts that we will need.

2.1 Domain theory

As most of the structures we use come with a partial ordering, we will

want to use some domain theoretical concepts.

Definition 2.1.1 A directed set X in a poset (P,≤) is a non-empty subset

of P such that for all x, y ∈ X there exists z ∈ X with x ≤ z and y ≤ z.

We can also simply speak of a directed set X, in which case we mean a

poset which is itself a directed set.

Many of the directed sets that arise are increasing sequences (ω-chains).

Definition 2.1.2 A dcpo is a poset in which every directed set has a least

upper bound.

Definition 2.1.3 A Scott-continuous function between two dcpos is a

function that preserves least upper bounds of directed sets.

Scott-continuous functions are automatically monotonic. Note that Scott-

continuity is also known as order-continuity. We may also speak of ω-dcpo

and ω-Scott-continuous functions, in which case it is understood that the

directed sets in question are countable.

2.2 Categories and measure theory

This thesis is couched in the language of category theory; for reference,

the reader may consult[Mac98].

Let us denote the category of sets by Set.
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If f is a function from a measurable space (X,Σ) to a measurable

space (Y,Λ), we denote by f−1 (Λ) the set of of all subsets A of X such that

A = f−1(B) for some B ∈ Λ.

We recall the definition of a measurable function to avoid a common

confusion.

Definition 2.2.1 A function f from a measurable space (X,Σ) to a

measurable space (Y,Λ) is said to be measurable if f−1(B) ∈ Σ whenever

B ∈ Λ, i.e. if f−1(Λ) ⊆ Σ.

Note this is not the definition in Halmos [Hal74], but is the one used by

most modern authors.

We define the category Mes where the objects are measurable spaces

and the morphisms are measurable functions. There is an obvious forgetful

functor into Set, the category of sets and functions, which preserves limits

and colimits. Indeed, the limits (resp. colimits) in Mes are precisely the

limits (resp. colimits) in Set, equipped with the smallest (resp. largest)

σ-algebra making the maps measurable. We give an example.

Definition 2.2.2 In a category C, the pushout of a span of two morphisms

f : X −→ Y and g : X −→ Z

X

Y

f

�
Z

g

-

is an object P together with two morphisms i : Y −→ P and j : Z −→ P such

that the following diagram commutes:

X

Y

f

�
Z

g

-

P

j

�

i

-
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Furthermore, the pushout (P, i, j) has the following universal property: given

any other object Q with maps h : Y −→ Q and k : Z −→ Q with the above

properties, there is a unique morphism u : P −→ Q through which h and k

factor

X

Y

f

�
Z

g

-

P

j

�

i

-

Q

u..?

....

�

k
h

-

It is well-known that pushouts always exists in Set. As the pushout is

a colimit, the pushout also exists in Mes; as we mentioned above, it is the

same pushout set P equipped with the largest σ-algebra making the maps i,

j measurable. Thus, in this case, the σ-algebra on P is generated by all sets

A ⊆ P such that both i−1(A) and j−1(A) are measurable in their respective

measurable spaces.

We also review a particular case of a categorical limit.

Definition 2.2.3 A projective system in a category C is a set of objects

{Xi}, indexed by a directed set I, along with arrows fij : Xj −→ Xi for every

pair of points in I such that i ≤ j. Furthermore, if i ≤ j ≤ k, we have that

fij ◦ fjk = fik. We also have that fii = idXi, the identity arrow.

Definition 2.2.4 Given a projective system Xi over a directed set I, the

projective limit of {Xi} is an object proj limXi = X∞, along with, for every

i ∈ I, an arrow fi∞ : X∞ −→ Xi such that if i ≤ j, fi∞ = fij ◦ fj∞.

This projective limit is universal in the following sense: if Y is an

object in C, together with, for every i ∈ I, an arrow gi : Y −→ Xi such that if
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i ≤ j, gi = fij ◦ gj, there is a unique map u : Y −→ X∞ such that gi = fi∞ ◦ u

for all i ∈ I.

Of course, projective limits exist in Set; for a projective system

{Xi}i∈I , the projective limit X∞ is the subset of the product set
∏

i∈I Xi

consisting of all I-indexed tuples (xi)i∈I such that if i ≤ j, fij (xj) = xi.

As mentioned above, the projective limit of a projective system {Xi,Σi}

also exists in Mes. It is the projective limit X∞ of Set, together with the

smallest σ-algebra Σ∞ making all of the fi∞ maps measurable. It is easy

to see that Σ∞ is the σ-algebra generated by the collection
{
f−1
i∞ (Σi)

}
of

σ-algebras induced on X∞ by the limit maps fi∞.

2.2.1 The Radon-Nikodym Theorem and notation

Definition 2.2.5 A probability triple (X,Σ, p) is a measurable space with a

measure p with p(X) = 1; such a measure is called a probability measure.

We let Prb be the category of probability spaces and measurable maps.

Given (X,Σ, p) and (Y,Σ′) and a measurable function f : X −→ Y

we obtain a measure Mf (p) on Y defined as Mf (p)(B) = p(f−1(B)).

The axioms of a measure are easy to verify on Mf (p) thanks to the well-

behavedness of preimages. This measure is called the image measure of p

under f .

Given a measurable space (X,Σ) with a measure µ, we say two mea-

surable functions are µ-equivalent if they differ on a set of µ-measure zero.

Given two measurable real-valued functions f and g on X, we say f ≤µ g

if f is less than g except maybe on a set of measure zero. For B ∈ Σ, we

let 1B be the indicator function of the set B. L1(X,µ) stands for the space

of equivalence classes of integrable functions. Similarly we write L+
1 (X,µ)

for equivalence classes of functions that are positive µ-almost everywhere.
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L∞(X,µ) is the space of equivalence classes of µ-almost everywhere uni-

formly bounded functions on X.Given two measures ν, µ on (X,Σ), if we

have, for all A ∈ Σ, that µ(A) = 0 ⇒ ν(A) = 0, we say that ν is absolutely

continuous with respect to µ, and write ν � µ. g The Radon-Nikodym

theorem is a central result in measure theory allowing one to define a

“derivative” of a measure with respect to another measure.

Theorem 2.2.6 [Bil95] If ν � µ, where ν, µ are finite measures on (X,Σ),

there is a positive measurable function h on X such that for every B ∈ Σ

ν(B) =

∫
B

h dµ.

The function h is defined uniquely, up to a set of µ-measure 0.

The function h is called the Radon-Nikodym derivative of ν with

respect to µ; we write dν
dµ

for the Radon-Nikodym derivative of the measure

ν with respect to µ. Note that dν
dµ
∈ L1(X,µ).

Given a (almost-everywhere) positive function f ∈ L1(X, p), we let f �p

be the measure which has density f with respect to p. Two identities that

we get from the Radon-Nikodym theorem are:

• given ν � µ, we have dν
dµ

� µ = ν.

• given f ∈ L+
1 (X, p), df�p

dp
= f

These two identities just say that the operations − � µ and d
dµ

are inverses

of each other as operations from L+
1 (X,µ) to the space of finite measures on

X.

Furthermore, the Radon-Nikodym derivative has a “chain-rule”-like

property, in that if µ� ν � λ, then dµ
dλ

= dµ
dν

dν
dλ

, λ-almost everywhere.

2.2.2 Conditional expectation

We quickly recall the definition of conditional expectation of a measur-

able function with respect to a sub-σ-algebra.
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Theorem 2.2.7 (Kolmogorov) Let (X,Σ, p) be a probability triple, f be

in L1(X,Σ, p) and Λ be a sub-σ-algebra of Σ. There exists g ∈ L1(X,Λ, p)

such that for all B ∈ Λ, ∫
B

f dp =

∫
B

g dp.

This theorem is proved using the Radon-Nikodym theorem. We shall write

g = EΛ(f). Conditional expectation is thus an operator from L1(X,Σ, p)

to L1(X,Λ, p) which is linear and positive. It is defined uniquely almost

everywhere.

2.3 Markov kernels and labelled Markov processes

We carefully review the required background on probabilistic processes,

in particular, labelled Markov processes, which is the class in which we are

interested.

A labelled Markov process is a discrete time dynamical system com-

bining nondeterministic and probabilistic behavior. The intuitive picture

is the following. The system evolves within a state space X. A user can

control this system via a set of actions A, assumed to be finite. To each

action is associated a probabilistic transition within the system. The system

undergoes these transitions when the user chooses the corresponding action.

For each action, the transitions are Markov and time homogeneous, and thus

only depend on the current state of the system. The user has full control

over which action to choose; the nondeterminism of the system stems from

the user interaction.

However, there is a crucial difference in the way such systems are

interpreted in comparison to usual stochastic processes or dynamical

systems. Typically, the current position in the state space is what one keeps

track of; in our case, we are concerned with the interaction between the user

and the actions. Indeed, at each point in the state space, the actions may
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have a nonzero probability of being disabled, and the user knows when the

action he chose was disabled. Furthermore, this information about actions

is the only information the user can obtain from the system, as the system’s

state is internal and not visible to the user.

2.3.1 Markov kernels

We begin with some preliminary definitions. Let (X,Σ) and (Y,Λ) be

measurable spaces. We define a stochastic transition from X to Y :

Definition 2.3.1 A Markov kernel from X to Y is a map

τ : X × Λ −→ [0, 1]

such that:

• for all x ∈ X, τ(x, ·) is a subprobability measure on Y

• for all B ∈ Λ, τ(·, B) is a measurable function

The interpretation of such functions is that τ(x,B) is the probability

of jumping from the point x to the set B. Thus, if (X,Σ) = (Y,Λ), the

Markov kernel may be iterated to determine the evolution of a discrete-

time and time-homogeneous Markov process where the state is a point in

X; we will call such a Markov kernel a Markov kernel on X. Note that

this definition is slightly different from the usual definition of a Markov

process on a measurable space, as we allow our transition probabilities to be

subprobabilities. One may interpret this difference as follows: given a point x

with τ(x, Y ) = k ≤ 1, the process τ has a probability 1− k to be disabled at

the point x.

A Markov kernel is said to be deterministic if for all x ∈ X, B ∈ Λ,

τ(x,B) = 0 or 1. If X and Y are endowed with measures µ and ν, respec-

tively, a Markov kernel from X to Y is nonsingular if, for all measurable

sets B ⊆ Y such that ν(B) = 0, we have τ(x,B) = 0, µ-almost everywhere.
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Example 2.3.2 Let f : (X,Σ) −→ (Y,Λ) be a measurable function. We can

define a Markov kernel τf from X to Y as

τf (x,B) = 1f−1(B)(x)

This is a deterministic Markov kernel where the transition from X to

Y follows the function f . τf is nonsingular if 1f−1(B)(x) = 0, µ-almost

everywhere, for all B ⊆ Y such that ν(B) = 0. This is equivalent to

requiring that µ(f−1(B)) = 0 for such B.

2.3.2 Labelled Markov processes and bisimulation

We now give the definition of a labelled Markov processes, first given in

this form in [DEP98].

Definition 2.3.3 A labelled Markov process (LMP) on a measurable space

(X,Σ) is a collection of Markov kernels τa on X, indexed by a finite or

countable set A, called the set of actions.

Note that the set of labels A will be fixed once and for all in this thesis.

As with labelled transition systems, the interpretation of the dynamics

of such systems is not encoded in the definition above; in fact, the above

definition appears very innocuous. We thus need to define a notion of

equivalence or bisimulation.

There are two main approaches to bisimulation, and they are closely

linked. The first is to equate states, that is, to determine which states

behave the same with respect to the user. Loosely speaking, two states are

bisimilar if they indistinguishable from the user’s perspective. The other

approach is to equate LMP’s among themselves. In this higher level point

of view, two LMP’s are bisimilar if each state in one is bisimilar to a state

in the other; or, in other words, if the two LMP’s contain states which have
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the same behaviour. Note that we shall always assume that when speaking

of bisimulation between different LMP’s, the action set A will be fixed.

For each of these points of view, different definitions of bisimulation

have been postulated. We review these briefly, following [DDLP06].

First and foremost is the concept of a zigzag morphism [DEP02].

Generally speaking, a morphism f from a LMP (X,Σ, τa) to another

(Y,Λ, ρa) is a measurable map of the underlying measurable spaces, which

is assumed to respect some compatibility condition relative to the Markov

kernels. The idea of a zigzag morphism is that we should be able to specify

a condition on f which would imply that the two LMP’s are bisimilar.

Specifically, we have the following definition:

Definition 2.3.4 A zigzag morphism from a LMP (X,Σ, τa) to another

(Y,Λ, ρa) is a surjective measurable map f : (X,Σ) −→ (Y,Λ) such that, for

all a ∈ A, x ∈ X, B ∈ Λ,

τa
(
x, f−1(B)

)
= ρa (f(x), B)

Hence, the transition probabilities are essentially the same in both

systems. However, information is still lost across a zigzag morphism. This

loss is twofold; first, as the map is surjective (but not necessarily injective),

different points in the domain space are sent to the same point in the

target space and thus equated. Secondly, as f is measurable, we have that

f−1(Λ) ⊆ Σ, and thus the complexity of the σ-algebra may decrease.

Nevertheless, note that since ρa(y,B) must be a Λ-measurable function

for a fixed set B, Λ cannot be trivial. The intuition behind zigzags is that

neither of these information losses are visible to the user, as he may only

witness whether an action is enabled, which only comes from the transition

probabilities. We thus obtain a smaller system with the same behavior.
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Following Joyal et al. [JNW93], Desharnais et al. [DEP02] defined

two LMP’s to be bisimilar if there exists a span of zigzags between them.

However, for this definition to work, it was necessary to slightly loosen the

measurability condition to introduce the concept of a generalized Markov

process. We omit the details as we are mostly interested in the ideas at this

point.

Definition 2.3.5 Two LMP’s (X,Σ, τa) and (Y,Λ, ρa) are bisimilar if there

exists a generalized LMP (U,Ω, σa) such that there is a zigzag morphism f

from U to X and another zigzag morphism g from U to Y .

As the identity map from a LMP to itself is trivially a zigzag, any two

LMP’s with a zigzag between them are bisimilar. The reasoning behind the

use of spans stems from the idea that bisimulation is often interpreted as an

equivalence relation between states. Given two sets X and Y , any relation

R ⊆ X × Y can be viewed as a span of functions from a set R to X and Y .

Example 2.3.6 Let (X,Σ) be any measurable space. Define on X a Markov

kernel τ such that τ(x,X) = 1 for all x ∈ X. We thus have a labelled

Markov process with a single action. Our condition on τ means that the

single action of this process is never disabled. Let ({?} ,Ω) be a one point

space with the obvious σ-algebra, and define a Markov kernel on π on {?} as

π ({?} , {?}) = 1. Then the obvious map f : (X,Σ) −→ ({?} ,Ω) is a zigzag;

indeed, we need only check the zigzag condition on the set {?}. Thus, the

two LMP’s (X,Σ, τ) and ({?} ,Ω, π) are bisimilar.

Although this may look surprising, consider the user’s point of view;

the single button is always enabled, and thus, with respect to the user’s

experience, the state space could very well be a single point.

The main difficulty coming from the above definition of bisimulation

is proving that it is a transitive relation among LMP’s, as it is trivially
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reflexive and symmetric. The transitivity could only be shown when the

measurable spaces were generated by a particular class of topological spaces;

furthermore, as we have seen, the definition of a labelled Markov process

had to be slightly generalized. These conceptual difficulties indicated that

there may be a more elegant definition of bisimulation for LMP’s.

In [DGJP03], bisimulation was defined as a relation on states of an

LMP, in the spirit of [LS91]. One has to tie in measurability with the rela-

tion, but showing transitivity of the bisimulation is quite straightforward.

In [DDLP06], a new definition of bisimulation, called event bisimulation,

appeared. Its intent also is to relate similar states, but its main idea is

measure-theoretic, thus effectively avoiding the problem the [DGJP03]

definition had.

Definition 2.3.7 Given an LMP (X,Σ, τa), an event bisimulation is a

sub-σ-algebra Λ ⊆ Σ such that (X,Λ, τa) is still a LMP.

In order to be an event bisimulation, the only condition that Λ needs to

respect is that, for fixed action a and measurable set B ∈ Λ, τa(x,B) is a

Λ-measurable function.

Event bisimulation and zigzag morphisms are intimately linked, as the

following propositions show ([DDLP06]).

Proposition 2.3.8 Given an LMP (X,Σ, τa), the σ-algebra Λ is an event

bisimulation if and only if the map iΛ : (X,Σ) −→ (X,Λ), which is the

identity as a set function, is a zigzag.

The proof is straightforward. The above proposition can be generalized:

Proposition 2.3.9 Given a zigzag morphism f : (X,Σ, τa) −→ (Y,Λ, ρa), the

σ-algebra f−1(Λ) ⊆ Σ is an event-bisimulation.

Thus, every event bisimulation comes from a zigzag morphism, and

every zigzag morphism yields an event bisimulation; thus one can view an
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event-bisimulation as the “signature” of a zigzag morphism. If the idea

of a zigzag morphism is to be central to the theory of LMP’s, then event-

bisimulation truly is the notion of state equivalence that we want to use,

and is, in this context, the right notion of “measurable relation”. Indeed,

it appears näıve to us to generalize what is an equivalence relation on a

finite state space into an equivalence relation on a continuous state space;

indeed, on a finite state space, every topology and every σ-algebra can be

construed as an equivalence relation, and thus it is not clear how a concept

of equivalence relation should generalize to a larger space. More details

about the relationship between event bisimulation and state simulation (as a

relation) are available in [DDLP06].

2.3.3 Logical characterization of bisimulation

As the results of [HM85] and [LS91] suggested, there may be a modal

logic which would also characterize bisimulation in the case of a general

labelled Markov process. In the two above cases, two states were bisimilar

(in their respective context) if and only if they satisfied the same formulas of

the logic.

It turns out that a modal logic L characterizes bisimulation for labelled

Markov processes as well [DEP98]. The logic has the following grammar,

with a ∈ A and q ∈ Q:

L ::= T|φ ∧ ψ| 〈a〉q ψ

The logic is interpreted on states as follows. Every state satisfies

T. Conjunction is clear, so the last construct is the only one requiring

explanation. A state s in a particular labelled Markov process (X,Σ, τa)

is said to satisfy 〈a〉q ψ if, following an a transition from s, the probability

of being in a state satisfying ψ is strictly larger than q, a rational number.

More precisely, one can associate to each formula ψ ∈ L a measurable set
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JψK consisting of all points satisfying this formula. These sets are defined

recursively as follows:

JTK = X

Jφ ∧ ψK = JφK ∩ JψK
r
〈a〉q ψ

z
= {s : τa (s, JψK) > q}

and thus a state s satisfies ψ if and only if s ∈ JψK.

As an example, consider the formula ψ = 〈a〉 1
2
〈b〉 3

4
T. A state sat-

isfies ψ if it has a probability higher than 1
2

to accept an a action and to

transition to a state which has a probability higher than 3
4

to accept a b

action.

The logic L characterizes bisimulation in the following sense. Given

some restrictions on the underlying state spaces (specifically, the space

must be an analytic space), two LMPs X and Y are bisimilar in the sense

of definition 2.3.5 if and only if for each state in one LMP, there is a state

in the other satisfying precisely the same formulas [DGJP03]. Keeping the

same restriction on the state space, the logic also characterizes the relational

definition of [DGJP03]; two states are bisimilar if and only if they satisfy the

same formulas of L.

However, for our purposes, the most interesting property of the logic L

is that it unconditionally characterizes event-bisimulation; indeed, we do not

need any restriction on the state space. We let JLK denote the measurable

sets obtained by all formulas of L. We state the results of [DDLP06], which

we shall use later in this thesis:

Theorem 2.3.10 [DDLP06] Given any LMP (X,Σ, τa), the σ-algebra

σ(JLK) generated by the logic L is the smallest event-bisimulation on X.
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That is, the map i : (X,Σ, τa) −→ (X, σ(JLK), τa) is a zigzag; furthermore,

given any zigzag α : (X,Σ, τa) −→ (Y,Λ, ρa), we have that σ(JLK) ⊆ α−1(Λ).

2.3.4 Approximation of labelled Markov processes

Given a labelled Markov process, it may be time-consuming or impos-

sible to perform computational experiments if the state space is too large.

Thus, there has been a lot of interest in developing techniques to construct

finite approximations to labelled Markov processes.

The first such attempt was done in [DGJP03]. The main idea was that

one can focus on the behavior of the LMP until a fixed upper bound of

transitions; that is, we only care about the behavior for the first N action

choices. One can then discretize the space with respect to the Markov

kernels and obtain an approximation of the starting LMP as a finite directed

tree. Given an action depth N , this directed tree is split into N + 1 levels,

from 0 to N , in such a way that a transition in this tree must increase

the current level by one; hence, level N consists of a single point where

no further transition is possible. The idea is that one typically chooses an

initial state at level 0; thus, if the original LMP allows it, one can perform

at most N transitions until being forced into a state where all actions are

disabled. The transition probabilities are chosen to be an underestimate

of the actual transition probabilities in the full system, which allows the

approximants to be placed in a poset of LMPs.

The main drawback of this technique is that every level of the tree

consists of a finite partition of the original state space; we are thus stuck

with N + 1 “finite copies” of X. This is particularly problematic for simple

systems. Consider the LMP consisting of one point and one action; if the

transition probability is nonzero, any finite approximation using the above

scheme will consist of a chain of length N + 1, which is counterintuitive.
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Thus, it appeared that the best strategy to approximate LMPs would

be to aggregate the states into a finite number of chunks; thus, a one-point

space would remain a one-point space under any approximation. The

problem with such a scheme is twofold; first of all, one needs an appropriate

notion of state aggregation, and, ideally, a scheme to create this partition.

Secondly, given a method to aggregate states, one needs to define transition

probabilities on these aggregates.

One approximation scheme developed in [DD03] is to define an equiva-

lence relation on X which respects some compatibility property with respect

to the σ-algebra of the LMP; the space of the approximate LMP is obviously

the quotient space. Once this partition is defined, the transition probabil-

ities are given by an infimum construction, again so that the approximate

probabilities are an underestimate of the actual probabilities. However, one

quickly runs into problems, as this technique does not yield probability mea-

sures on the approximate spaces, but what the authors call a pre-probability,

yielding a new class of processes called pre-LMPs.

Another paper [DDP03] exposed a third method of approximation,

which we shall expand in this thesis. Given a way to aggregate the states,

we would like to compute an “average” transition probability in between

the lumped states. As we are working in a measure-theoretic setting, the

obvious method that we want to use is conditional expectation. Given an

LMP (X,Σ, τa), suppose that we have a probability distribution p on the

underlying measurable space. As argued in the event-bisimulation section,

the appropriate notion of an equivalence relation that we want to use is

a σ-algebra. Thus, in order to reduce the state space X, one needs only

consider a sub-σ-algebra Λ ⊆ Σ. Then, in order to approximate our given

LMP, one needs only project the Σ-measurable functions τa(x,B), for each
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a ∈ A and B ∈ Λ, to a Λ-measurable function, by conditioning on Λ through

the measure p. Of course, some difficulties arise; in particular, conditional

expectation only yields a function which is defined p-almost-everywhere. To

circumvent this difficulty, one can impose on the sub-σ-algebra that every

set in Λ have nonzero measure, thereby forcing the conditional expectation

operation to yield a unique function. In order to generate a sub-σ-algebra

for the given LMP, the authors use the measurable sets given by a fragment

of the logic L; this is also the direction we shall take.

2.4 Cones

Cones are a way of marrying order structure with linear structure. The

idea is that a subset of a vector space is designated as the set of “positive”

vectors. This set will need to satisfy some natural closure properties. We

can then define u ≤ v for two vectors u and v by saying that v − u is

positive. We base this discussion of cones on the paper by Selinger [Sel04].

Definition 2.4.1 A cone is an abelian group (V,+) on which multiplication

by positive real numbers is defined. Multiplication by reals distributes over

addition and the following cancellation law holds:

∀u, v, w ∈ V, v + u = w + u⇒ v = w.

The following strictness property also holds:

v + w = 0⇒ v = w = 0.

Cones come equipped with a natural partial order. If u, v ∈ V , a cone,

one says u ≤ v if and only if there is an element w ∈ V such that u+ w = v.

One can also put a norm on a cone, with the additional requirement that

the norm be monotone with respect to the partial order.

Definition 2.4.2 A normed cone C is a cone with a function
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|| · || : C −→ R+ satisfying:

1. ||v|| = 0 if and only if v = 0

2. ∀r ∈ R+, v ∈ C, ||r · v|| = r||v||

3. ||u+ v|| ≤ ||u||+ ||v||

4. u ≤ v ⇒ ||u|| ≤ ||v||.

Owing to the lack of a subtraction operation, it is not possible to speak

of a sequence being Cauchy in the usual sense. Let the unit ideal of a cone

be the set of all elements with norm less than or equal to 1.

Definition 2.4.3 A (ω-)complete normed cone is a normed cone such that

its unit ideal is a (ω-)dcpo.

It is then immediate that any (countable) norm-bounded directed set in

an (ω-)complete normed cone has a least upper bound.

A linear map of cones is precisely what one would expect: i.e. a map

that preserves the linear operations. Note than any such map is monotone.

An order-continuous linear map between two cones is one that preserves

least upper bounds of directed sets, i.e. is Scott-continuous. Similarly, we

may also speak of ω-order-continuous linear maps of cones. Note that in

a (ω-)complete normed cone, the norm is (ω-)order-continuous. As our

work is measure-theoretic in nature, a morphism or map will be said to be

order-continuous if it is ω-order-continuous.

We will also want to restrict our attention to bounded linear maps of

normed cones. A bounded linear map of normed cones f : C −→ D is one

such that for all u in C, ||f(u)|| ≤ K||u|| for some real number K. A lemma

in [Sel04] shows that any linear map of complete (or ω-complete) normed

cones is bounded; it is thus superfluous to mention boundedness when

discussing a map of (ω-)complete normed cones. The norm of a bounded

linear map f : C −→ D is defined as ||f || = sup{||f(u)|| : u ∈ C, ||u|| ≤ 1};
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this is the same as the operator norm for bounded linear maps between

vector spaces.

The ω-complete normed cones, along with ω-order-continuous bounded

linear maps, form a category which we shall denote ωCC. We shall now

introduce the cones which we shall use in this text. They are all ω-complete

normed cones.

Let (X,Σ) be a measure space. Then one can speak of the cone L+(X)

of bounded measurable maps from X to R+; this cone has actual functions

and not equivalence classes as in, for example, L∞(X). This is a ω-complete

normed cone as the supremum of countably many measurable functions is

measurable; the norm is the supremum of the function over X.

If µ is a measure on X, then one has the usual Lp spaces, which can

be restricted to cones by considering the µ-almost everywhere positive

functions. We shall denote these cones by L+
p (X,Σ, µ) or L+

p (X) if the

context is clear. These also are complete normed cones, either by the

monotone convergence theorem for 1 ≤ p < ∞, or as we pointed out above

for the sup norm which corresponds to p = ∞. The norm on these spaces is

denoted by ‖−‖p

We will also talk about cones of measures on a space. Let (X,Σ) be

a measurable space. We denote by M(X) the cone of finite measures on

X; the norm of a measure µ is just the measure of the space µ(X). Let us

equip X with a finite measure p. We shall denote by M�p(X), the cone of

all measures on (X,Σ, p) which are absolutely continuous with respect to p.

As with M(X), if µ is such a measure, we define its norm to be µ(X). It is

easy to see that this norm coincides precisely with the norm on L+
1 (X,Σ, p)

if one considers the density function of µ through the Radon-Nikodym

theorem. Hence M�p(X) is also a ω-complete normed cone. In fact, we can
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say more; it is easy to show that the maps d(−)
dp

: M�p(X) −→ L+
1 (X,Σ, p)

and (−) � p : L+
1 (X,Σ, p) −→ M�p(X) are both order-continuous maps of

cones which are furthermore norm-preserving. Thus the cones M�p(X) and

L+
1 (X,Σ, p) are isometrically isomorphic in ωCC.

Similarly, one can consider M≤Kp(X), the cone of all measures on

(X,Σ) which are uniformly less than a multiple of the measure p; that is,

µ ∈ M≤Kp(X) if there is some constant K such that µ(B) ≤ Kp(B) for

all measurable sets B. For such a measure µ, we can define the norm of

µ to be the infimum of all such constants K, which, analogously to the

above instance, coincides with the norm on L+
∞(X,Σ, p) when one considers

the density function of µ ; thus M≤Kp(X) is a ω-complete normed cone.

As with M�p(X), the cones M≤Kp(X) and L+
∞(X,Σ, p) are isometrically

isomorphic. The two maps d(−)
dp

and (−) � p also are norm-preserving.

Finally, we shall need the concept of dual cone. Given a ω-complete

normed cone C, its dual C∗ is the set of all order-continuous linear maps

from C to R+. This dual cone is sometimes denoted C ( R+. We define the

norm on C∗ to be the operator norm. It is not hard to show that this cone

is a ω-complete normed cone as well, and that the cone order corresponds to

the pointwise order.

In ωCC, the dual operation becomes a contravariant functor; indeed,

if f : C −→ D is a map of cones, we can define f ∗ : D∗ −→ C∗ in the

usual way. That is, given a map L in D∗, we define a map f ∗L in C∗ as

f ∗L(u) = L(f(u)). Now ||L(f(u))|| ≤ ||L|| · ||f || · ||u|| and thus ||f ∗|| ≤ ||f ||.

Note that this dual is stronger than the dual in usual Banach spaces,

where we only require the maps to be bounded. This has nice consequences

with respect to the cones we are considering. Let us denote the dual of

L+
p (X) by L+,∗

p (X).
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Proposition 2.4.4 The dual of the cone L+
∞(X,Σ, p) is isometrically

isomorphic to M�p(X).

Proof . Let L be an element of L+,∗
∞ (X). We define a measure µ on X as

follows:

µ(B) = L (1B)

The countable additivity of µ is a direct consequence of the ω-

continuity of L; indeed, given a countable collection of measurable sets

Bi, we have that

1∪ni=1Bi
=

n∑
i=1

1Bi

Clearly the functions 1∪ni=1Bi
form an increasing sequence, and are

bounded by 1X because the Bi’s are disjoint. As 1X has finite norm in

L+
∞(X), we have

µ

(
∞⋃
i=1

Bi

)
= L

(
sup
n

n∑
i=1

1Bi

)

= sup
n
L

(
n∑
i=1

1Bi

)

= sup
n

n∑
i=1

L (1Bi)

=
∞∑
i=1

L (1Bi)

Furthermore, µ(∅) = L(0) = 0, and thus µ is a measure.

We want to show that the operator norm of L is µ(X). We have that

‖L‖ = sup
‖f‖∞≤1

L(f) = L (1X) = µ(X)

since L is monotone and 1X is the least upper bound of the unit ideal

of L+
∞(X).

Finally, if p(B) = 0, we have that 1B = 0 in L+
∞(X), and thus µ is

absolutely continuous with respect to p.
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Thus, each element of L+,∗
∞ (X) can be associated with a measure in

M�p(X) via a map which we may call φ, such that, in the above exposition,

we have φ(L) = µ.

It is easy to check that φ is linear and order-continuous. Furthermore,

we just checked that it was norm-preserving.

On the other hand, it is clear that every element µ of M�p(X)

corresponds to an element of L+,∗
∞ (X). Indeed, if u is the Radon-Nikodym

derivative of µ, we have the functional f 7→
∫
X
fu dx on L+

∞(X) which is

bounded by Hölder’s inequality. Thus φ is an isometric isomorphism.

As M�p(X) is isometrically isomorphic to L+
1 (X), an immediate

corollary is that L+,∗
∞ (X) is isometrically isomorphic to L+

1 (X), which is of

course false in general in the context of Banach spaces.

The following proposition is less surprising and is proved in the same

way:

Proposition 2.4.5 The dual of the cone L+
1 (X,Σ, p) is isometrically

isomorphic to M≤Kp(X).

We shall denote the isomorphism from L+
1 (X,Σ, p) to M≤Kp(X) by φ

as well, as the construction is precisely the same.

As above, as M≤Kp(X) is isometrically isomorphic to L+
∞(X), an

immediate corollary is that L+,∗
1 (X) is isometrically isomorphic to L+

∞(X).

2.5 Markov operators

It is a pleasing fact that Markov kernels can be viewed as linear maps

on function spaces. This idea was first elaborated by Yosida and Kakutani

[YK41].

Given τ a Markov kernel from X to Y , we define Tτ : L+(Y ) −→ L+(X),

for f ∈ L+(Y ), x ∈ X, as Tτ (f)(x) =
∫
Y
f(z)τ(x, dz). This map is well-

defined, as per our definition above, Tτ (1B) is measurable for every B ∈ Λ.
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It is also linear and order-continuous, and thus Tτ (f) is measurable for

any measurable f by going through simple functions. Note that we have

Tτ (1B)(x) = τ(x,B). Conversely, any order-continuous morphism L with

L(1Y ) ≤ 1X can be cast as a Markov kernel by reversing the process above.

Indeed, the interpretation of L is that L(1B) is a measurable function on X

such that L(1B)(x) is the probability of jumping from x to B.

We can also define an operator on M(X) by using τ the other way.

Indeed, we define T̄τ : M(X) −→ M(Y ), for µ ∈ M(X) and B ∈ Λ, as

T̄τ (µ)(B) =
∫
X
τx,B dµ(x). It is easy to show that this map is linear and

order-continuous.

This operator allows us to characterize nonsingular Markov kernels:

Lemma 2.5.1 A Markov kernel from (X,Σ, µ) to (Y,Λ, ν) is nonsingular if

and only if T̄τ (µ)� ν

Proof . Given a set B ∈ Σ such that µ(B) = 0, we only need to show that

τ(x,B) = 0, µ-almost everywhere if and only if T̄τ (µ)(B) = 0; but this is

clear from the definition, as τ(x,B) is a positive function.

Note that if the state spaces X and Y are finite, linear operators are

just matrices; we thus obtain the standard stochastic matrices used for

Markov chains on graphs, for instance.

Remark 2.5.2 The two operators Tτ and T̄τ have a notable, if informal,

interpretation. The operator T̄τ transforms measures “forwards in time”; if

µ is a measure on X representing the current state of the system, T̄τ (µ) is

the resulting measure on Y after a transition through τ .

On the other hand, the operator Tτ may be interpreted as a likelihood

transformer which works “backwards in time”. This time inversion can be

seen from the reversal of X and Y in the definition of the operator. Con-

sider the function 1B on Y . It is a likelihood function for the event of “being
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in the set B”, where the parameter is the point in Y . Indeed, if we let Y be

a random variable taking values in Y , we have that P (Y ∈ B |Y = y ) = 1B.

Given a Markov kernel τ , we have that Tτ (1B) (x) = τ(x,B). That is,

Tτ (1B) is the probability of being in the set B, but after one stochastic tran-

sition through τ , as a function of the state x ∈ X. This is again a likelihood

function, but where the parameter is one step back in time.

Note that the operator norms of both Tτ and T̄τ are less than one.

If our measurable spaces X and Y are endowed with measures µ and ν,

respectively, which we shall assume finite, it is tempting to consider positive

operators on Lp-spaces instead than on L+. This was first explored by Hopf

[Hop54]. We will slightly modify classical definitions in order to work within

cones; the interested reader may consult [Sch74, AGG+86, Haw06] for the

usual framework in Banach spaces or Banach lattices.

Definition 2.5.3 A Markov operator from a state space (X,Σ, µ) to a state

space (Y,Λ, ν) is a linear map T : L+
1 (X) −→ L+

1 (Y ) such that ‖T‖ ≤ 1

This is the analog of the measure transforming operator T̄τ above,

as the elements of L+
1 (X) correspond to measures which are absolutely

continuous with respect to our given measure µ (and similarly for L+
1 (Y )).

Note that this map is automatically order-continuous, as if a sequence fn

increases to f ∈ L+
1 (X), we have ‖f − fn‖1 −→ 0. However, for our purposes,

the operator we will want to work with is the equivalent of Tτ ; that is, we

will want an operator on L+
∞ cones. We make the following definition:

Definition 2.5.4 An abstract Markov kernel from (X,Σ, µ) to (Y,Λ, ν) is

an order-continuous linear map τ : L+
∞(Y ) −→ L+

∞(X) with ‖τ‖ ≤ 1.

Asking that ‖τ‖ be less than 1 is equivalent to requiring that τ1X ≤

1X . Hence, an abstract Markov kernel is an arrow in the category ωCC.

Note the inversion of Y and X in the definition.
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In this definition, we require that τ be order-continuous. Indeed, one

can find bounded positive linear operators on L∞(R), when considered

as a Banach space, which are not order-continuous. Consider the space

Clim(R) of bounded continuous functions whose limit at +∞ exists. This

can be considered as a closed subspace of L∞(R). Define a bounded

linear functional L on Clim(R) defined as L(f) = limx−→∞f(x). This

functional is not order-continuous. Extending this functional to L∞(R) by

the Hahn-Banach theorem yields a bounded linear functional which is not

order-continuous either.

We define a bilinear form 〈·, ·〉 : L+
∞(X)× L+

1 (X) −→ R+ by

〈f, u〉 =

∫
X

f u dµ

The following is direct consequence of the duality of L+
1 (X) and L+

∞(X)

in ωCC:

Lemma 2.5.5 To every linear operator A from L+
1 (X) to L+

1 (Y ) there

corresponds a unique adjoint operator A† from L+
∞(Y ) to L+

∞(X) such that,

for all f ∈ L+
∞(Y ) and u ∈ L+

1 (X),

〈f, Au〉 =
〈
A†f, u

〉
Furthermore, A† is linear and order-continuous.

Similarly, to every order-continuous linear operator B from L+
∞(X) to

L+
∞(Y ) there corresponds an adjoint operator B† from L+

1 (Y ) to L+
1 (X),

linear as well, such that, for all g ∈ L+
∞(X) and v ∈ L+

1 (Y ),

〈Bg, v〉 =
〈
g,B†v

〉
And hence the following corollary is of particular importance:
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Corollary 2.5.6 Given finite measure spaces (X,Σ, µ) and (X,Λ, ν), there

is a bijection between Markov operators from X to Y and abstract Markov

kernels from X to Y . The bijection is given by the adjoint operation.

Remark 2.5.7 One can find a similar bilinear form which demonstrates

that the operators T̄τ and Tτ are adjoints.

The following result is due to Hopf [Hop54]:

Proposition 2.5.8 Every Markov operator from (X,Σ, µ) to (Y,Λ, ν)

corresponds uniquely to a nonsingular Markov kernel from X to Y .

As a immediate corollary, one obtains a one-to-one correspondence

between nonsingular Markov kernels and abstract Markov kernels from X

to Y . Informally, one obtains a Markov kernel τ̂ from an abstract Markov

kernel τ from X to Y as follows: given a measurable set B in Λ, we let

τ (1B) (x) = τ(x,B); this is precisely the interpretation we had for the

operator Tτ .

Nevertheless, the above proposition is not trivial because the functions

τ (1B) (x) are only defined µ-almost everywhere. The proof of this proposi-

tion will be omitted; however, we shall give an intuitive justification of why

it holds. If τ̂ is a nonsingular Markov kernel from X to Y , we require that

ν(B) = 0 ⇒ τ̂(x,B) =µ 0. Interpreting τ̂ as an abstract Markov kernel,

we thus require that τ (1B) =µ 0 if ν(B) = 0, or if 1B =ν 0. This is a

necessary condition for τ to be linear; the proposition above shows that it is

sufficient.
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CHAPTER 3
Abstract Markov Processes and A Generalization of Conditional

Expectation

In the preceding chapter, we have seen that a natural way to approx-

imate labelled Markov processes is to reduce the complexity of the state

space by averaging over a smaller σ-algebra. To do this, we needed to use

the conditional expectation operator. If the state space is a probability

space (X,Σ, p), we have, for any sub-σ-algebra Λ ⊆ Σ, a linear operator

EΛ : L1(X,Σ) −→ L1(X,Λ). Note that we used this operator to approxi-

mate the functions τa(x,B), for fixed a and B; these functions are bounded

and positive. Hence, we truly only need the operator to act on the cone

L+
∞(X,Σ). Indeed, this linear operator is positive and thus can be restricted

to a linear, order-continuous map of cones EΛ : L+
∞(X,Σ) −→ L+

∞(X,Λ).

Furthermore, as we have seen, a Markov kernel τ̂ on (X,Σ, p) can be cast as

an abstract Markov kernel τ on X if it is nonsingular. This abstract Markov

kernel is a map τ : L+
∞(X,Σ) −→ L+

∞(X,Σ), where, for any B ∈ Σ, τ (1B)

is interpreted as the function τ̂(x,B). Hence, postcomposing an abstract

Markov kernel with the conditional expectation operator is precisely the

approximation scheme of [DDLP06]. We shall formalize this point of view in

this chapter.

3.1 Labelled abstract Markov processes

We begin by redefining our main object of study, labelled Markov

processes, by using Markov operators.
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Definition 3.1.1 A labelled abstract Markov process is a probability space

(X,Σ, p) on which we define a family of abstract Markov kernels τa, indexed

by a finite or countable set A, called the set of actions.

In this chapter, we shall consider, for simplicity, labelled abstract

Markov processes with only one action; we shall call these abstract Markov

processes, or AMP’s. We shall also, for readability, abuse the definitions

slightly and call an abstract Markov kernel on X an AMP as well.

As hinted in the above introduction, given an AMP τ on (X,Σ, p), one

can obtain an AMP Λ(τ) on (X,Λ, p), with Λ ⊆ Σ, by precomposing by the

inclusion map i : L+
∞(X,Λ, p) −→ L+

∞(X,Σ, p) and postcomposing by the

conditional expectation map EΛ:

L+
∞(X,Λ, p) .......

Λ(τ)
- L+

∞(X,Λ, p)

L+
∞(X,Σ, p)

i
?

τ- L+
∞(X,Σ, p)

EΛ

6

So one may ask, how are the dynamics of this “projected” AMP related to

the dynamics of the original AMP? To answer this question, we will first

study the conditional expectation map in greater generality. The following

work is based on [DP06].

3.2 Three functors

We will restrict our attention to two subcategories of Prb. Note that

the restriction to probability spaces is not necessary, only a finite measure

on the spaces considered is required. The results extend trivially to this

more general case; however, since the subsequent work will be done in

probability spaces, this restriction will improve readability.

Definition 3.2.1 The category Rad1 has as objects probability spaces, and

as arrows α : (X, p) −→ (Y, q) measurable maps such that Mα(p)� q
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Definition 3.2.2 The category Rad∞ has as objects probability spaces, and

as arrows α : (X, p) −→ (Y, q) measurable maps such that Mα(p) ≤ Kq for

some real number K.

Note that Rad∞ is a subcategory of Rad1.

Given an arrow α : (X, p) −→ (Y, q) in Rad1, we define a measurable

function d(α) on Y as the density of the image measure of p onto Y :

d(α) =
dMα(p)

dq

The Radon-Nikodym derivative exists because Mα(p) � q. Note

that we have that d(α) ∈ L+
1 (Y ). Furthermore, if α is an arrow in Rad∞,

we have that d(α) ∈ L+
∞(Y ). This explains our choice of names for the

categories.

Remark 3.2.3 If α : (X, p) −→ (Y, q) is an arrow in Rad1, we may define a

Markov kernel τα as in example 2.3.2. This Markov kernel is nonsingular if

and only if α is in Rad1.

We begin with some easy lemmas:

Lemma 3.2.4 For all α : (X, p) −→ (Y, q) in Prb, f ∈ L+
1 (Y, q) and

B ∈ ΣY ,

(f ◦ α) · 1α−1(B) = (f · 1B) ◦ α

The proof is a simple verification.

Lemma 3.2.5 (Change of variables) Suppose α : (X, p) −→ (Y, q) is in

Rad∞ and µ ∈M≤Kp(X). Then for all g ∈ L+
1 (Y, q),∫

Y

g d(Mα(µ)) =

∫
X

g ◦ α dµ

and both integrals are finite.
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Proof . Let B be a measurable set in Y . Then∫
Y

1B d(Mα(µ)) =

∫
B

d(Mα(µ))

= Mα(µ)(B)

= µ
(
α−1(B)

)
=

∫
X

1α−1(B) dµ

=

∫
X

1B ◦ α dµ

Thus both integrals of the statement are equal by passing through simple

functions.

To show the integrals are finite, note that dµ
dp
∈ L+

∞(X). Thus, we have∫
X

g ◦ α dµ =

∫
X

(g ◦ α) · dµ

dp
dp

≤
∥∥∥∥dµ

dp

∥∥∥∥
∞

∫
X

g ◦ α dp

=

∥∥∥∥dµ

dp

∥∥∥∥
∞

∫
X

g dMα(p)

=

∥∥∥∥dµ

dp

∥∥∥∥
∞

∫
X

g · d(α) dq

≤
∥∥∥∥dµ

dp

∥∥∥∥
∞
‖d(α)‖∞ ‖g‖1

and we are done

The above lemma has a “dual” lemma for α in Rad1:

Lemma 3.2.6 Suppose α : (X, p) −→ (Y, q) is in Rad1 and µ ∈ M�p(X).

Then for all g ∈ L+
∞(Y, q),∫

Y

g d(Mα(µ)) =

∫
X

g ◦ α dµ

and both integrals are finite.

We will now define three functors from Rad∞ to ωCC. Let us fix a

map α : (X, p) −→ (Y, q) in Rad∞. Let f ∈ L+
1 (Y ). Then the map f ◦ α is
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in L+
1 (X), as provided by lemma 3.2.5. In fact, one can show that the map

(−) ◦ α : L+
1 (Y ) −→ L+

1 (X) is a linear ω-continuous map of cones. Hence we

have a contravariant functor from Rad∞ to ωCC which sends a probability

space (X, p) to L+
1 (X) and sends α to (−) ◦ α. We shall call this functor the

precomposition functor.

Composing the precomposition functor with the dual functor ∗ on

ωCC yields another functor from Rad∞ to ωCC, which is covariant

and gives us an arrow ((−) ◦ α)∗ : L+,∗
1 (X) −→ L+,∗

1 (Y ). Concretely,

given a functional M ∈ L+,∗
1 (X) and a function g ∈ L+

1 (Y ), we have

(((−) ◦ α)∗(M))(g) = M(((−) ◦ α)(g)) = M(g ◦ α).

Given a measure µ ∈ M≤Kp(X), we can consider the image measure

Mα(µ) onto Y . Then given B a measurable set in Y , there are constants K

and K̃ such that we have

Mα(µ)(B) = µ(α−1(B)) ≤ Kp(α−1(B)) = KMα(p)(B) ≤ K · K̃q(B)

since we know Mα(p) ≤ K̃q. We thus have a map from M≤Kp(X) to

M≤Kq(Y ). This map is linear and order-continuous. Thus, the image

measure operation M− is a functor from Rad∞ to ωCC.

Lemma 3.2.5 and proposition 2.4.4 can be combined in the following

commutative diagram, showing that the image measure functor and the

dual of the precomposition functor are naturally isomorphic. Recall that we

denoted by φ(L) the measure obtained from a functional L; likewise, the

functional obtained from a measure µ is denoted φ−1(µ)

M≤Kp(X) �
φ

φ−1
- L+,∗

1 (X, p)

M≤Kq(Y )

Mα(−)
?

φ−1
-�
φ

L+,∗
1 (Y, q)

((−)◦α)∗

?
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The middle square commutes by 3.2.5, and the two horizontal pairs of

arrows are mutual inverses which also act as the arrows of a natural

isomorphism, by proposition 2.4.4.

Note that all of the above functors can equally be defined one Rad1;

we use lemmas 3.2.6 and 2.4.5 instead. We let the precomposition functor

map the probability spaces of Rad1 to the cones L+
∞, thus making the arrow

((−) ◦ α)∗ go from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q). We also consider the greater

cones of measures M�p(X) and M�q(Y ) instead. We get that the following

diagram commutes:

M�p(X) �
φ

φ−1
- L+,∗

∞ (X, p)

M�q(Y )

Mα(−)

? φ−1
-
�
φ

L+,∗
∞ (Y, q)

((−)◦α)∗

?

3.3 The functor E(−)

We define a functor which will generalize conditional expectation. Let

us define, for a map α : (X, p) −→ (Y, q) in Rad∞, an operator Eα : L+
∞(X, p)

−→ L+
∞(Y, q), as follows: Eα(f) = dMα(f�p)

dq
. As α is in Rad∞, we have that

Mα(p) ≤ Kq, for some constant K, which is equivalent to Mα(f � p) ≤ Kf q

for all f ∈ L+
∞(X, p) (where obviously Kf depends on f); thus the Radon-

Nikodym derivative is defined and is in L+
∞(X, p). That is, the following

diagram commutes by definition:

L+
∞(X, p)

�p
-M≤Kp(X)

L+
∞(Y, q)

Eα
?

�
d
dq M≤Kq(Y )

Mα(−)
?

Note that if (X,Σ, p) is a probability space and Λ ⊆ Σ is a sub-σ-algebra,

then we have the obvious map λ : (X,Σ, p) −→ (X,Λ, p) which is the identity
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on the underlying set X. This map is clearly in Rad∞ and it is easy to see

that Eλ is precisely the conditional expectation onto Λ.

E(−) can similarly be defined on Rad1 as follows:

L+
1 (X, p)

�p
-M�p(X)

L+
1 (Y, q)

Eα
?

�
d
dq M�q(Y )

Mα(−)

?

From the definition of E(−), we obtain that Eα◦β = Eα ◦ Eβ, which can be

seen from this diagram:

L+
1 (X, p) �

d
dp

�p
-M�p(X)

L+
1 (Y, q)

Eα
?

�
d
dq

�q
-M�q(Y )

Mα(−)

?

L+
1 (Z, r)

Eβ
?

�
d
dr

�r
-M�r(Z)

Mβ(−)

?

The two squares commute by definition of E(−), and the pairs of arrows

coming from the Radon-Nikodym theorem are mutual inverses. Thus E(−) is

compatible with composition by functoriality of the image measure.

To show that E(−) is a functor, we need to show that it is an order-

continuous linear map of cones. But this is trivial as it is the composition of

three order-continuous linear maps of cones.

The following diagram combines the information we have until now.

Proposition 3.3.1 Given α ∈ Rad∞, the following commutes:

L+
∞(X, p) �

d
dp

�p
-M≤Kp(X) �

φ

φ−1
- L+,∗

1 (X, p)

L+
∞(Y, q)

Eα
?

�
d
dq

�q
-M≤Kq(Y )

(Mα(−))∗

?
φ−1
-�
φ

L+,∗
1 (Y, q)

((−)◦α)∗

?
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Thus the arrows corresponding to the Radon-Nikodym theorem act

as a natural isomorphism between the functors E(−) and M(−). We can

summarize this as a theorem.

Theorem 3.3.2 The three functors E(−), M(−), and the dual of the precom-

position functor, are all naturally isomorphic.

This allows us to situate the operation of conditional expectation in a

categorical setting in a pleasing fashion.

We state an important identity about the conditional expectation

functor:

Proposition 3.3.3 Consider α ∈ Rad∞ and Eα : L+
∞(X, p) −→ L+

∞(Y, q).

Then for all f in L+
∞(X, p), we have that∫

Eα(f) · (−) dq =

∫
f · (− ◦ α) dp

as functionals in L+,∗
1 (Y, q).

Alternatively, for all f in L+
∞(X, p) and u in L+

1 (Y, q), we have that

〈Eα(f), u〉 = 〈f, u ◦ α〉

and thus Eα is the adjoint of the precomposition map − ◦ α from L+
∞(Y, q) to

L+
∞(X, p)

The proof lies in the commutativity of the outside of the diagram of

proposition 3.3.1

As above, we can slightly modify these functors to map the category

Rad1 to ωCC, and the following commutes as well:

L+
1 (X, p) �

d
dp

�p
-M�p(X) �

φ

φ−1
- L+,∗

∞ (X, p)

L+
1 (Y, q)

Eα
?

�
d
dq

�q
-M�q(Y )

Mα(−)

? φ−1
-
�
φ

L+,∗
∞ (Y, q)

((−)◦α)∗

?
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3.4 Some operator norms

One last detail that needs to be tied up is the calculation of the norm of

some operators. We begin with some preliminary results.

Lemma 3.4.1 For all α : (X, p) −→ (Y, q), f ∈ L+
1 (Y, q),

Mα((f ◦ α) � p) = f � (Mα(p))

Proof . Given B ∈ ΣY , we have

Mα((f ◦ α) � p)(B) = ((f ◦ α) � p)(α−1(B)) (by definition)

=

∫
(f ◦ α) · 1α−1(B) dp (again by definition)

=

∫
(f · 1B) ◦ α dp (by lemma 3.2.4)

=

∫
f · 1B d(Mα(p)) (by change of variable)

= (f �Mα(p))(B) (by definition)

Proposition 3.4.2 Given f in L1(Y, q), Eα(f ◦ α) = d(α) · f

Proof . Using above lemma,

Eα(f ◦ α) =
dMα(f ◦ α� p)

dq

=
df �Mα(p)

dq

=
df �Mα(p)

dMα(p)
· dMα(p)

dq

= f · dMα(p)

dq

Suppose we have a fixed map α : (X, p) −→ (Y, q) in Rad∞.

Lemma 3.4.3 Eα : L+
∞(X) −→ L+

∞(Y ) has norm ‖d(α)‖∞.
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Proof . Let f ∈ L+
∞(X). Then f ≤p ‖f‖∞ · 1X , and so by monotonicity

of Eα, Eα(f) ≤q ‖f‖∞ d(α), and so ‖Eα(f)‖∞ ≤ ‖f‖∞ · ‖d(α)‖∞, and so

‖Eα‖ ≤ ‖d(α)‖∞.

On the other hand, we have that Eα(1X) = d(α) and thus the norm of

Eα is exactly ‖d(α)‖∞.

Lemma 3.4.4 The map (−) ◦ α : L+
∞(Y, q) −→ L+

∞(X, p) has norm 1.

Proof . Let g ∈ L+
∞(Y ). Suppose ‖g‖∞ = M . Let N > M . Then we have

p(g ◦ α > N) = p(α−1(g−1(N,∞))) = Mα(p)(g−1(N,∞))

But we have that Mα(p) ≤ Kq for some constant K, and so

Mα(p)(g−1(N,∞)) ≤ Kq(g−1(N,∞)) = 0

since N > ‖g‖∞. Thus we have that ‖g ◦ α‖∞ ≤ ‖g‖∞, and so ‖(−) ◦ α‖ ≤

1. But then 1Y ◦ α = 1X and so the norm is exactly 1.

3.5 The Approximation Map

Given an AMP τ on (X, p) and a map α : (X, p) −→ (Y, q) in Rad∞, we

thus have the following approximation scheme:

L+
∞(Y, q) ........

α(τ)
- L+

∞(Y, q)

L+
∞(X, p)

(−)◦α
?

τ- L+
∞(X, p)

Eα
6

Note that ‖α(τ)‖ ≤ ‖(−) ◦ α‖ · ‖τ‖ · ‖Eα‖ = ‖τ‖ · ‖d(α)‖∞. As an abstract

Markov kernel has a norm less than 1, we can only be sure that a map α

yields an approximation for every AMP on X if ‖d(α)‖∞ ≤ 1. We call the

AMP α(τ) the projection of τ on Y by α.

The map (−) ◦ α can be considered an abstract Markov kernel; the map

Eα is an abstract Markov kernel if ‖d(α)‖∞ ≤ 1. This is actually a very

restrictive condition on α, as the following lemma shows:
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Lemma 3.5.1 If α : (X, p) −→ (Y, q) is in Rad∞ and ‖d(α)‖∞ ≤ 1, then

d(α) =q 1Y .

Proof . We have that∫
Y

d(α) dq =

∫
Y

dMα(q) =

∫
X

1Y ◦ α dp =

∫
X

1X dp = p(X) = 1

As ‖d(α)‖∞ ≤ 1, 1Y − d(α) ≥q 0. Also,∫
Y

1Y − d(α) dq = q(Y )− 1 = 0

And thus 1Y − d(α) =q 0

And thus if α is used in the context of AMPs, we have that Mα(p) = q.
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CHAPTER 4
Bisimulation

As with labelled transition systems or labelled Markov processes, we

must define a notion of bisimulation for abstract Markov processes. The

strategy is to examine the definitions that we already have for labelled

Markov processes and to translate them in the context of AMPs. Before

proceeding with this, we will first show that any labelled Markov process

can be cast into a labelled abstract Markov process, as it ensures that our

abstract setting is worth studying.

4.1 From LMPs to AMPs

In order to take a labelled Markov process and change it into a labelled

abstract Markov process, we need to define a measure on the state space

such that every Markov kernel in the LMP is nonsingular.

We begin with a few definitions.

Definition 4.1.1 Given a set A, we define A∗ to be the free monoid on A.

So A∗ is nothing but the set of finite words over A. In our case, the set

A is finite or countable set, as it is the set of actions; thus A∗ is countable

as well. If w and v are two words in A∗, we let w · v be their concatenation.

We let ε be the empty word. We now define a certain class of measures

on A∗, on which we put the powerset σ-algebra. Let us first define, for all

words v ∈ A∗, a function fv : A∗ −→ A∗ as fv(w) = w · v. Thus fv just

appends the word v to its argument.

Definition 4.1.2 A measure m on A∗ is forward-closed if Mfv(m) � m

for every v ∈ A∗. In other words, m is forward-closed if and only if for all

words w such that m(w) > 0, we have that m(w · v) > 0 for all v ∈ A∗.
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Thus a measure is forward-closed if, for any word w to which we give

positive measure, any word with w as a prefix will have positive measure.

Note that since A∗ is countable, one can have a finite measure on A∗ such

that every word has nonzero measure.

Let (X,Σ, τa) be a LMP. Recall from section 2.5 that the operator T̄τa

is an operator on the finite measures on (X,Σ) which transforms measures

“forwards in time”. Let w = v · a be a word in A∗, with a ∈ A. We

recursively define operators on the space M(X) of finite measures on X:

T̄ε = id

T̄w = T̄v·a = T̄τa ◦ T̄v

where id is the identity operator on M(X). Thus T̄w(µ) is just the measure

µ transformed through the actions in the word w in the usual left-to-right

order.

Proposition 4.1.3 Let (X,Σ, τa) be a LMP. Let m be a finite forward-

closed measure on A∗. Let µ be a finite measure on X.

We define a measure Kµ,m on X as follows. If B ∈ Σ, we let

Kµ,m(B) =

∫
A∗
T̄w(µ)(B) dm(w) =

∑
w∈A∗

m(w)T̄w(µ)(B)

Then Kµ,m is a finite measure on X, and τa is nonsingular with respect

to Kµ,m for every a ∈ A

Proof . First of all, the finiteness of Kµ,m is immediate. Indeed, it is clear

from the definition of T̄τa that T̄τa(µ)(X) ≤ µ(X). Thus we have that

Kµ,m(B) ≤ µ(X)m(A∗).

To show that τa is nonsingular, we must show that, for all A ∈ Σ and

a ∈ A,

Kµ,m(A) = 0⇒ τa(x,A) =Kµ,m 0
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It is easier to show the contrapositive. Suppose we have A ∈ Σ and

an action a ∈ A such that τa(x,A) 6=Kµ,m 0. Then there is a real number

δ > 0 and a set Bδ ∈ Σ such that τa(x,A) > δ for x ∈ Bδ, and such that

Kµ,m (Bδ) > 0. This is clear as we can approximate τa(x,A) by simple

functions.

We want to show that Kµ,m(A) > 0. As Kµ,m (Bδ) > 0, we must have

that m(w)T̄w(µ) (Bδ) > 0 for some word w ∈ A∗, by the definition of Kµ,m.

Hence m(w) > 0 and T̄w(µ) (Bδ) > 0. But then, we have that

T̄w·a(µ)(A) =
(
T̄τa ◦ T̄w(µ)

)
(A)

= T̄τa
(
T̄w(µ)

)
(A)

=

∫
X

τa(x,A) dT̄w(µ)(x)

≥
∫
Bδ

τa(x,A) dT̄w(µ)(x)

≥
∫
Bδ

δ dT̄w(µ)(x)

≥ δ

∫
Bδ

dT̄w(µ)(x)

= δ T̄w(µ) (Bδ)

> 0

Furthermore, as m(w) > 0, we have that m(w ·a) > 0 as m is forward-closed,

and so m(w · a)T̄w·a(µ)(A) > 0. This expression is a term in the defining sum

for Kµ,m(A) and thus Kµ,m(A) > 0 and we are done

The measure Kµ,m can be interpreted as some weighing of all the

“reachable states” starting from a measure µ, with a weighing m defined on

the possible sequences of actions the user can pick.
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Corollary 4.1.4 Given any LMP (X,Σ, τa) and measure µ on X, there

exists a probability measure pµ on X making this LMP into an AMP. Also,

one can ensure that µ� pµ.

Proof . Take any finite forward-closed measure m on A∗. Define pµ as

the measure Kµ,m normalized to be a probability measure. By the above

theorem, τa is nonsingular on the probability space (X,Σ, Kµ,m) and thus

the Markov kernels correspond uniquely to abstract Markov kernels on X.

If one wants to impose µ � pµ, pick m such that m(ε) > 0. Thus every

word, including the empty word, has nonzero measure in A∗. Thus, for any

A ∈ Σ, the term T̄ε(µ)(A) is a term in the defining sum for Kµ,m(A); but T̄ε

is the identity transformation on measures, and so T̄ε(µ)(A) = µ(A). Hence

if µ(A) > 0, we have that Kµ,m(A) > 0, and thus pµ(A) > 0.

4.2 Event bisimulation and zigzags

Recall that for a given LMP (X,Σ, τ̂) (with a single action), a sub-σ-

algebra Λ ⊆ Σ is an event-bisimulation if τ̂(x,B) is Λ-measurable for all

B in Λ. In the language of abstract Markov processes, if we have an AMP

(X,Σ, p, τ), this definition implies that τ : L+
∞(X,Σ, p) −→ L+

∞(X,Σ, p) sends

the subspace L+
∞(X,Λ, p) to itself, so that the following commutes:

L+
∞(X,Σ)

τ
- L+

∞(X,Σ)

L+
∞(X,Λ)

∪

6

τ
- L+

∞(X,Λ)
∪

6

Indeed, the definition of event-bisimulation precisely says that τ (1B) is

Λ-measurable for all B ∈ Λ. As any function in L+
∞(X,Λ) can be is the

increasing pointwise limit of simple functions, and thanks to the order-

continuity of τ , we get the above conclusion.

A generalization to the above would be a map α : (X,Σ, p) −→ (Y,Λ, q)

in the category Rad∞, with X and Y respectively equipped with AMPs τ
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and ρ, such that the following commutes:

L+
∞(X, p)

τ
- L+

∞(X, p)

L+
∞(Y, q)

(−)◦α
6

ρ
- L+

∞(Y, q)

(−)◦α
6

Suppose that the abstract Markov kernels ρ and τ come from nonsingular

Markov kernels ρ̂ and τ̂ , respectively. Using the above diagram, we get, for

B ∈ Λ:

τ̂
(
x, α−1 (B)

)
= τ

(
1α−1(B)

)
(x)

= τ (1B ◦ α) (x)

= (ρ (1B) ◦ α) (x)

= ρ (1B) (α(x))

= ρ̂ ((α(x)) , B)

And thus the function α is a zigzag in the sense of definition 2.3.4. We can

thus make the following definition:

Definition 4.2.1 Given two labelled AMPs (X,Σ, p, τa) and (Y,Λ, q, ρa),

a map α : (X,Σ, p) −→ (Y,Λ, q) in the category Rad∞ is a zigzag if the

following diagram commutes for every action a:

L+
∞(X, p)

τa
- L+

∞(X, p)

L+
∞(Y, q)

(−)◦α
6

ρa
- L+

∞(Y, q)

(−)◦α
6

We shall now consider AMPs with a single action for simplicity.

Note that if there is a zigzag from (X,Σ, p, τ) to (Y,Λ, q, ρ), then ρ is

very closely related to the projection of τ onto Y via α (which we defined in
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the previous chapter). Indeed, we have the following diagram:

L+
∞(Y )

ρ
- L+

∞(Y )

L+
∞(X)

τ
-

(−)◦α
-

L+
∞(X)

(−)◦α

�

L+
∞(Y )

wwwwwwwwwwwwww
α(τ)

-
(−)◦α

-

L+
∞(Y )

(−)·d(α)

?Eα -

We have that Eα(f ◦ α) = f · d(α) from lemma 3.4.2. This implies

that α(τ) = ρ · d(α). In particular, if d(α) = 1Y — which happens if

Mα(p) = q — then ρ is equal to α(τ), the projection of τ onto Y . Note

that the condition Mα(p) = q means that the image measure is precisely

the measure in the codomain of α. However, we have already shown that

for the projection of an AMP by a map α to make sense, we required that

‖d(α)‖∞ ≤ 1, which implied, by lemma 3.5.1, that d(α) = 1Y . We will now

presuppose this condition in the forthcoming analysis.

4.3 The category AMP

In the previous section, we saw that zigzags and projections coincided

perfectly given that the map between the state spaces was particularly

well-behaved.

Definition 4.3.1 A map α : (X, p) −→ (Y, q) in Prb is said to be measure-

preserving if Mα(p) = q.

Let MMPM be the category of probability spaces and measure-

preserving maps. It is a subcategory of Prb and of Rad∞.

In effect, this ensures that the map α is essentially surjective. However,

there is no reason why we would consider essentially surjective maps which

are not surjective in the usual sense, except maybe to keep an artificial and

unnecessary sense of generality. Furthermore, requiring surjectivity makes

many of the forthcoming mathematical arguments much easier to follow.
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The surjective measure-preserving maps form a further subcategory of

MMPM. We will augment this category with additional structure relevant

to our situation.

We define the category AMP of abstract Markov processes as follows.

The objects consist of probability spaces (X,Σ, p), along with an abstract

Markov process τ on X. The arrows α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) are

surjective measure-preserving maps from X to Y such that α(τ) = ρ. In

words, this means that the Markov processes defined on the codomain are

precisely the projection of the Markov processes τ on the domain through

α. When working in this category, we will often denote objects by the

state space, when the context is clear. Of course, one can also consider the

category AMPA of labelled abstract Markov processes, with the labels

taking value in the set A.

4.4 Bisimulation defined on AMP

As we have discussed when we introduced zigzags for LMPs, it should

be noticed that surjective measure-preserving maps between probability

spaces typically involve information loss. Thus, we define a preorder on

AMP as follows: given two AMPs (X,Σ, p, τ) and (Y,Λ, q, ρ), we say that

Y � X if there is an arrow α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) in AMP. This

preorder will allow us to formalize a few concepts.

Reconsider example 2.3.6. We may consider two arbitrarily complicated

AMPs (X,Σ, p, τ) and (Y,Λ, q, ρ) such that τ (1X) = 1X and ρ (1Y ) = 1Y .

The dynamics on the state spaces may be very complex, but the above

conditions on τ and ρ imply that the action is never disabled. Thus, in

the spirit of example 2.3.6, they should both be bisimilar to a one-point

space with a trivial AMP defined on it. However, it appears ludicrous and

counterintuitive that one should be able to construct a span of zigzags as in
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definition 2.3.5; this would require the construction of a third state space U

which would somehow weave together the complex behaviors of the AMPs

X and Y . However, both AMPs X and Y have a zigzag to a one-point

space, and this one-point space truly reflects their dynamics with respect to

the user. It thus appears to us that the correct definition of a bisimulation is

in terms of cospans of zigzags morphisms. Such a view of bisimulation was

already present in [DDLP06], where LMPs were constructed as coalgebras of

an appropriate functor. We thus define bisimulation of AMPs as follows:

Definition 4.4.1 We say that two objects of AMP, (X,Σ, p, τ) and

(Y,Λ, q, ρ), are bisimilar if there is a third object (Z,Γ, r, π) with a pair of

zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)

β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

making a cospan diagram

(X,Σ, p, τ) (Y,Λ, q, ρ)

(Z,Γ, r, π)

β

�

α

-

Note that the identity function on an AMP is a zigzag, and thus that

any zigzag between two AMPs X and Y implies that they are bisimilar,

which is precisely what we want.

4.5 Bisimulation as an equivalence relation

Ideally, bisimulation would be an equivalence relation on the objects of

AMP. The following theorem shows that it is the case.
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Theorem 4.5.1 Let

α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ)

β : (X,Σ, p, τ) −→ (Z,Γ, r, κ)

be a span of zigzags. Then the pushout (W,Ω, λ, π) exists and the pushout

maps δ : Y −→ W and γ : Z −→ W are zigzags.

The proof requires several lemmas.

Lemma 4.5.2 Let α : (X,Σ, p) −→ (Y,Λ, q) be a measure-preserving map

of probability spaces. Then for all h ∈ L∞(X), Eα(h) ◦ α = h ⇔ h is

α−1(Λ)-measurable.

Proof . The right implication is obvious. For the left implication, note that

the function Eα(h)◦α is also α−1(Λ)-measurable. Thus, to show the equality,

we must show that for all B ∈ Λ,∫
α−1(B)

Eα(h) ◦ α dp =

∫
α−1(B)

h dp

which we can show by the following equality of measures:

Mα ((Eαh ◦ α) � p) = Eαh�Mα(p) (by lemma 3.4.1)

= Eαh� q (α is measure-preserving)

= Mα (h� p) (by definition of Eα)

The first and last measures being equal is precisely equivalent to the above

equality of integrals.

Lemma 4.5.3 Let α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) be an arrow in AMP.

Then α is a zigzag if and only if Eα(−) ◦ α|Im(τ(−◦α)) = id, i.e. if and only if

for all f ∈ L+
∞(Y ), Eα(τ(f ◦ α)) ◦ α = τ(f ◦ α).
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Proof . If α is a zig-zag, the following diagram commutes:

L∞(X)
τ
- L∞(X)

L∞(Y )

(−)◦α
6

ρ
- L∞(Y )

Eα
?

L∞(X)

(−)◦α
?

τ
- L∞(X)

(−)◦α
?

and the diagram shows the “only if part”. The reverse direction is trivial, as

Eα(τ(f ◦ α)) = ρ(f) since α is an arrow in AMP. Thus ρ(f) ◦ α = τ(f ◦ α)

and α is a zigzag.

Corollary 4.5.4 α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) in AMP is a zigzag if and

only if for all f ∈ L∞(Y ), τ(f ◦ α) is α−1(Λ)-measurable.

Lemma 4.5.5 If α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) in AMP is a zigzag,

β : (Y,Λ, q, ρ) −→ (Z,Γ, r, κ) is a map in AMP, and γ = β ◦ α is a zigzag,

then β is a zigzag.

Proof .

κ(f) ◦ β ◦ α = κ(f) ◦ γ

= τ(f ◦ γ) (γ is a zigzag)

= τ(f ◦ β ◦ α)

= ρ(f ◦ β) ◦ α (α is a zigzag)

Now α is surjective, hence epi and right-cancellable, and thus κ(f) ◦ β =

ρ(f ◦ β) and β is a zigzag.

We are now ready to prove the above theorem.

Proof of theorem 4.5.1. It is well-known that pushouts exist in the category

of measurable spaces: it is the usual pushout in Set, equipped with the

largest σ-algebra making the pushout maps measurable. We thus have the
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following pushout diagram in Mes, the category of measurable spaces:

(X,Σ)

(Y,Λ)

α

�
(Z,Γ)

β
-

(W,Ω)

η

?

γ

�

δ
-

Note here that, of course, η = δ ◦ α = γ ◦ β.

We have to construct a measure on W such that the maps δ and γ are

measure preserving (we know that they are surjective by the construction of

the pushout in Set). Recall that the probability measures on X, Y and Z

were called p, q and r, respectively. Let us define on (W,Ω) the measure λ

in the obvious way, that is, λ = Mη(p). Note that by the definition of η, the

fact that α is measure-preserving, and the functoriality of M−, we have

λ = Mη(p) = MδMα(p) = Mδ(q)

and so we automatically have that δ is measure-preserving. The same can be

done with γ.

Finally, we have to construct an AMP on (W,Ω, λ). We take π = η(τ),

which is the projection of the AMP on X through η. Thus, for all f in

L+
∞(W ), we have π(f) = Eη(τ(f ◦ η)). Note that as E− is a functor and α is

an arrow in AMP, we have π(f) = EδEα(τ((f ◦δ)◦α)) = Eδ(ρ(f ◦δ)) = δ(ρ),

and thus δ is an arrow in AMP as well. The same argument works for γ.

We have:

τ(f ◦ η) = τ(f ◦ δ ◦ α)

= ρ(f ◦ δ) ◦ α (as α is a zigzag)
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and similarly, as β is a zigzag, we have

τ(f ◦ η) = κ(f ◦ γ) ◦ β

Let ρ(f ◦ δ) = g and κ(f ◦ γ) = h. We have the following diagram in Mes:

(X,Σ)

(Y,Λ)

α

�
(Z,Γ)

β
-

(W,Ω)

η

?

γ

�

δ
-

R

j..?

...

�

h

g

-

As W is a pushout, there is a unique map j : W −→ R such that τ(f ◦ η) =

j ◦ η. Thus τ(f ◦ η) is η−1(Ω)-measurable, and so η is a zigzag by corollary

4.5.4.

Finally, by Lemma 4.5.5, δ and γ are zigzags.

Corollary 4.5.6 Bisimulation is an equivalence relation on the objects of

AMP

Proof . Clearly bisimulation is reflexive and symmetric, so we only need to

check transitivity. We will label objects in AMP by their state space for

clarity. Suppose X and Y are bisimilar, and that Y and Z are bisimilar.

Then we have two cospans of zigzags, as in the following diagram:

X Y Z

W

β
�

α -

U

γ
�

δ -

V

η
�...

....
....

....
...

ζ

..................-
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The pushouts of the zigzags β and δ yield two more zigzags ζ and η (and

the pushout object V ). As the composition of two zigzags is a zigzag, X and

Z are bisimilar. Thus bisimulation is transitive.

Note that by defining bisimulation as a cospan, we obtain a coarser

relation that if we had defined bisimulation as a span. Indeed, if there is a

span of zigzags f : U −→ X and g : U −→ Y , then by the above theorem, we

can construct a pushout with the morphisms being zigzags, thus construct-

ing a cospan of zigzags between X and Y ; thus, our definition includes, but

is not quite the same as, the previous definitions of bisimulation. However,

we believe that our definition is more mathematically pleasing, and easier to

work with.

4.6 The smallest bisimulation and logical characterization

Given an AMP (X,Σ, p, τ), one question one may ask is whether there

is a “smallest” object
(
X̃,Ξ, r, ξ

)
in AMP such that, for every zigzag

from X to another AMP (Y,Λ, q, ρ), there is a zigzag from (Y,Λ, q, ρ) to(
X̃,Ξ, r, ξ

)
. It can be shown that such an object exists, by generalizing

theorem 4.5.1.

Proposition 4.6.1 Let {αi : (X,Σ, p, τ) −→ (Yi,Λi, qi, ρi)} be the set of all

zigzags in AMP with domain (X,Σ, p, τ). This yields a generalized pushout

diagram, and as in Theorem 4.5.1, the pushout
(
X̃,Ξ, r, ξ

)
exists and the

pushout maps are zigzags. We thus obtain zigzags βi from (Yi,Λi, qi, ρi) to(
X̃,Ξ, r, ξ

)
and a single zigzag η from (X,Σ, p, τ) to

(
X̃,Ξ, r, ξ

)
.

Proof . The proof is exactly the same as for Theorem 4.5.1; we use the fact

that the category Mes is cocomplete.

If one considers the subcategory ZZX of AMP consisting of all objects

(Y,Λ, q, ρ) such that there is a zigzag from X to Y , together with the zigzag

maps between these objects, then
(
X̃,Ξ, r, ξ

)
is a bottom element of ZZX
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with respect to the preorder �. This object has important uniqueness

properties.

Corollary 4.6.2 Up to isomorphism, the object
(
X̃,Ξ, r, ξ

)
is the unique

bottom element of ZZX . That is, if (W,Ω, q, ρ) is another AMP such that

there is a zigzag µ from X̃ to W , then µ is an isomorphism.

Proof . Let η be the map from (X,Σ, p, τ) to
(
X̃,Ξ, r, ξ

)
obtained from

the generalized pushout. Then µ ◦ η is a zigzag from X to W . Hence

µ ◦ η : X −→ W is part of the generalized pushout diagram from X, and so

there is a pushout map ε : W −→ X̂ such that ε ◦ µ ◦ η = η.

Now η is surjective, hence right-cancellable, and so we have ε ◦ µ = id|X̂ .

Hence µ is monic, thus injective, as a map of measure spaces. But µ is also

surjective, and so ε = µ−1. Thus µ is an isomorphism of measure spaces

which trivially extends to an isomorphism of AMPs.

Thus, we can say that
(
X̃,Ξ, r, ξ

)
is the meet (or infimum) of all

objects (Yi,Λi, qi, ρi) which are bisimilar to the AMP X, with respect to the

preorder �. However, this “smallest” object is given in an abstract way; is it

possible to capture it constructively?

The following few lemmas indicate the way to answer this question.

Lemma 4.6.3 Suppose α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) is a map in AMP

such that α−1(Λ) = Σ. Then α is a zigzag.

Proof . This is a direct consequence of corollary 4.5.4. Given f in L+
∞(Y ),

τ(f ◦ α) is in L+
∞(X) and thus is Σ-measurable. Hence it is α−1(Λ)-

measurable, and so α is a zizag.

Lemma 4.6.4 Let α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) be a zigzag. Then α factors

into two zigzags as follows: iα : (X,Σ, p, τ) −→ (X,α−1(Λ), p, τ), which is the

identity on X, reducing the σ-algebra; and α̂ : (X,α−1(Λ), p, τ) −→ (Y,Λ, q, ρ)
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which is the same as α above on the sets, but in which the σ-algebras are

isomorphic.

Proof . α̂ is a zigzag by virtue of the previous lemma. iα is a zigzag by

corollary 4.5.4.

Thus every zigzag from an object (X,Σ, p, τ) in AMP yields a sub-

σ-algebra Λ of Σ. Also, the bottom element X̃ defined above yields the

smallest such sub-σ-algebra. These sub-σ-algebras are event-bisimulations

in the sense of [DDLP06]. Recall that in this paper, it was shown that the

smallest event-bisimulation can be obtained by a logical characterization.

The result can be directly recast in the context of AMPs. Indeed, given

an AMP (X,Σ, p, τ), one can consider the nonsingular Markov kernel τ̂

from which the abstract Markov kernel τ comes; the logical characterization

result of [DDLP06] applies and can then be brought back into the context of

AMPs. We first modify the semantics of L for AMPs:

JTK = X

Jφ ∧ ψK = JφK ∩ JψK
r
〈a〉q ψ

z
=
{
s : τa

(
1JψK

)
> q
}

We shall also write, for a measurable set A,
r
〈a〉q A

z
= {s : τa (1A) > q}

We restate the logical characterization result in our formulation:

Theorem 4.6.5 Given a labelled AMP (X,Σ, p, τa), the σ-algebra σ(JLK)

generated by the logic L is the smallest event-bisimulation on X. That is,

the map i : (X,Σ, p, τa) −→ (X, σ (JLK) , p, τa) is a zigzag; furthermore, given

any zigzag α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa), we have that σ (JLK) ⊆ α−1(Λ).

Hence, given an AMP (X,Σ, p, τ) and a zigzag morphism η to its

smallest bisimulation
(
X̃,Ξ, r, ξ

)
, we have that η−1(Ξ) = σ (JLK).
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CHAPTER 5
Approximations of AMPs

In this section, if the measurable map iΛ : (X,Σ) −→ (X,Λ) is the

identity on the set X, then the resulting AMP morphism shall be denoted

iΛ : (X,Σ, p, τ) −→ (X,Λ, p,Λ(τ)), as p is just restricted on a smaller

σ-algebra.

We will also elide the measure when describing an object in AMP, for

readability, if the measure is clear.

5.1 Some lemmas on measure spaces

We will need some results on measurable spaces.

Lemma 5.1.1 Suppose α : (X,Σ) −→ (Y,Λ) is a surjective measurable map

such that α−1(Λ) = Σ. Then the forward image of every measurable set is

measurable; that is, if A ∈ Σ, α(A) := B is measurable, and α−1(B) = A.

Thus a surjective map which preserves the σ-algebras is an isomorphism

of σ-algebras.

Lemma 5.1.2 Suppose α : (X,Σ) −→ (Y,Λ) is surjective and α−1(Λ) = Σ.

Suppose that Ω ⊆ Σ is a sub-σ-algebra of Σ. Then the following is a pushout

square:

(X,Σ)

(Y,Λ)

α

�
(X,Ω)

iΩ
-

(Y, α (Ω))

α̂

�

jα(Λ)

-

Where iΩ is the identity on X, jα(Λ) is the identity on Y , and α̂ is the same

as α on X.
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Proof . We know pushouts exist in Mes, so we need to show that this

object satisfies the pushout conditions. Clearly, Y is the pushout in Set,

with the maps described. In Mes, the pushout Y is then equipped with the

largest σ-algebra making the maps measurable, which is the case here as

jα(Λ) is an isomorphism of σ-algebras by Lemma 5.1.1.

The point of the preceding lemma is that the map α is an isomorphism

of σ-algebras while the state space diminishes, while iΩ reduces the σ-

algebra without altering the state space; these two operations can be

combined into the pushout space (Y, α (Ω)), and it turns out that one can do

these two operations in any order.

5.2 Finite approximations

Given an arbitrary AMP, it may be very difficult to study its behavior

if its state space is very large or uncountable. It is therefore sensible to

devise a way to reduce the state space to a manageable size. How reliable

are such approximations?

Let (X,Σ, p, τa) be a labelled AMP. Let P = 0 < q1 < q2 < . . . < qn ≤ 1

be a finite partition of the unit interval with each qi a rational number. We

shall call these rational partitions. We define a family of finite π-systems

[Bil95], subsets of Σ, as follows:

ΦP,0 = {X, ∅}

ΦP,n = π
({
τa(1A)−1(qi, 1] : qi ∈ P , A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
= π

({r
〈a〉qi A

z
: qi ∈ P , A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
where π(Ω) is the π-system generated by the class of sets Ω.
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For each pair (P ,M) consisting of a rational partition and a natural

number, we define a σ-algebra ΛP,M on X as ΛP,M = σ (ΦP,M), the σ-

algebra generated by ΦP,M . We shall call each pair (P ,M) consisting of a

rational partition and a natural number an approximation pair.

We begin with a very important result:

Proposition 5.2.1 Given any labelled AMP (X,Σ, p, τa), the σ-algebra

σ (
⋃

ΛP,M), where the union is taken over all approximation pairs, is

precisely the σ-algebra σ JLK obtained from the logic.

Proof . ΦP,M contains precisely the measurable sets associated with

formulas of length at most M , using rational numbers contained in P , and

so
⋃

ΦP,M = JLK. The conclusion is then clear.

Consider the σ-algebra ΛP,M . We have the surjective measure-

preserving map

iΛP,M : (X,Σ, p) −→ (X,ΛP,M , p)

Now since ΛP,M is finite, it is atomic, and so it partitions our state space

X, yielding an equivalence relation. Quotienting by this equivalence relation

gives a map

πP,M : (X,ΛP,M , p) −→
(
X̂P,M ,ΩP,M , pP,M

)
where X̂P,M is the (finite!) set of atoms of ΛP,M and ΩP,M is just the

powerset of X̂P,M . The measure pP,M is defined in the obvious way as the

image measure through πP,M ; thus πP,M is measure-preserving as well.

As the σ-algebra on X̂P,M is its powerset, we will often refrain from

writing ΩP,M when involving a finite approximants.

We thus have measure-preserving approximation maps φP,M = πP,M ◦

iΛP,M from our original state space to a finite state space. We can easily

extend these to morphisms of AMP’s: as all of the above spaces are defined
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using maps with (X,Σ, p, τa) as domain, we define AMP’s on the finite

approximants spaces by letting ρ(P,M),a = φP,M (τa).

5.3 A projective system of finite approximants

Let us define an ordering on the approximation pairs by (P ,M) ≤

(Q, N) if Q refines P and M ≤ N . This order is natural as (P ,M) ≤ (Q, N)

implies ΛP,M ⊆ ΛQ,N , which is clear from the definition. Thus, this poset is

a directed set: given (P ,M) and (Q, N) two approximation pairs, then the

approximation pair (P ∪Q,max(M,N)) is an upper bound.

Thus, given two approximation pairs such that (P ,M) ≤ (Q, N), we

have a measurable measure-preserving map

i(P,M),(Q,N) : (X,ΛQ,N , p) −→ (X,ΛP,M , p)

which is the identity on points, and which is well defined by the inclusion

ΛP,M ⊆ ΛQ,N ⊆ Σ. We therefore have a projective system of such maps

indexed by our poset of approximation pairs. A consequence of Lemma 5.1.2

is that these maps induce a map on the finite approximation spaces

j(P,M),(Q,N) : X̂Q,N −→ X̂P,M

such that the following commutes:

(X,ΛQ,N)
i(P,M),(Q,N)- (X,ΛP,M)

X̂Q,N

πQ,N
?

j(P,M),(Q,N) - X̂P,M

πP,M
?

Therefore, the approximation map φ(P,M) factors through the approximation

map φ(Q,N) as φ(P,M) = j(P,M),(Q,N) ◦ φ(Q,N). Hence, the maps j(P,M),(Q,N)

along with the approximants X̂(P,M) also form a projective system of sur-

jective measure-preserving maps with respect to our poset of approximation

pairs.

61



5.4 Existence of the projective limit

Each finite approximant X̂P,M can be considered as a topological

space; indeed, one can put the discrete topology on X̂P,M , as it is a finite

set. This gives a compact Hausdorff space. Thus we have a projective

system of measure-preserving maps of probability spaces where each σ-

algebra is generated by a compact Hausdorff topology. These topological

considerations allow us to use a result by Choksi [Cho58]:

Proposition 5.4.1 (From [Cho58]) Let (Xi,Σi,mi) be a projective system

of measure-preserving maps indexed by a directed set I, with maps fij if

i ≤ j. Suppose that Xi is a compact Hausdorff topological space and mi

is inner regular. Then the projective limit (X∞,Σ∞,m∞) exists, and the

measure m∞ is inner regular with respect to the compact Hausdorff topology

induced by the projective system on X∞.

We skip the details of the proof but concentrate on the important

parts. How Choksi proves this is by first constructing the projective

limit in Mes, which always exists, as discussed in section 2.2. The main

problem comes from defining a measure on X∞. In general, it may only be

possible to define a finitely additive set function m on the algebra of sets

M =
⋃
i∈I f

−1
i∞ (Σi). Given A ∈ Σi, we define m

(
f−1
i∞ (A)

)
= mi(A). It is

well-defined as I is a directed set and the maps are measure-preserving. We

need to extend this function to a measure on Σ∞ = σ (M), which is what

Choksi succeeds in doing. It is then immediate that the functions fi∞ are

measure-preserving.

One point that Choksi does not address in his proof is the universality

of the projective limit. That is, given another probability space (Y,Λ, λ)

with measure-preserving maps gi : (Y,Λ, λ) −→ (Xi,Σi,mi), is there a unique

measure-preserving map u : (Y,Λ, λ) −→ (X∞,Σ∞,m∞) through which the
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maps gi factor? We know that such a map exists in Mes, and thus we only

need to show that u is measure-preserving.

Lemma 5.4.2 The universal map u : (Y,Λ, λ) −→ (X∞,Σ∞,m∞) is

measure-preserving.

Proof . We only need to show that m∞ and Mu(λ) coincide on the algebra

of sets M. Indeed, M is a π-system which generates Σ∞. By the uniqueness

of extension theorem [Bil95], this is enough to show that m∞ and Mu(λ)

coincide on Σ∞. Any element of M is the preimage of measurable set A in

some probability space (Xi,Σi,mi). Pick any such A; we must then show

that m∞
(
f−1
i∞ (A)

)
= Mu(λ)

(
f−1
i∞ (A)

)
. But we have that

Mu(λ)
(
f−1
i∞ (A)

)
= (Mfi∞Mu(λ)) (A) (def. of image measure)

= Mgi(λ)(A) (M− is functorial)

= mi(A) (gi is measure-preserving)

Furthermore, as m∞ is an extension of m, we have

m∞
(
f−1
i∞ (A)

)
= mi(A)

Thus m∞ and Mu(λ) coincide on M and we are done.

We restate Choksi’s result for the case of our approximation spaces.

Corollary 5.4.3 The projective system
(
X̂P,M ,ΩP,M , pP,M

)
of finite

approximants of an AMP (X,Σ, p, τa), indexed by the approximation pairs,

has a projective limit
(
X̂∞,Ω∞, p∞

)
in MMPM. Furthermore, as the

maps j(P,M),(Q,N) of the projective system are surjective, the limit maps are

surjective as well.

Thus we have the limit maps, ψP,M : X̂∞ −→ X̂P,M for ev-

ery approximation pair. We also have the measure-preserving maps

φP,M : (X,Σ, p) −→
(
X̂P,M , pP,M

)
from the underlying probability space of
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our AMP to the finite approximants. By the above lemma (5.4.2), we have a

unique measure-preserving map κ : X −→ X̂∞ such that ψP,M ◦κ = φP,M , i.e.,

the approximation maps from X factor through κ. Note that κ is surjective

as well.

Proposition 5.4.4 The σ-algebra κ−1(Ω∞) is precisely equal to σ JLK

Proof . Recall that the σ-algebra Ω∞ is generated by the inverse images of

the limit maps ψP,M ; we have Ω∞ = σ
(⋃

ψ −1
P,M (ΩP,M)

)
, where the union

is over all approximation pairs. Now we know that

ψP,M ◦ κ = φP,M = πP,M ◦ iΛP,M

and so, by well-behavedness of preimages, we have

κ−1(Ω∞) = κ−1
(
σ
(⋃

ψ −1
P,M (ΩP,M)

))
= σ

(⋃(
κ−1

(
ψ −1
P,M (ΩP,M)

)))
= σ

(⋃(
i −1
ΛP,M

(
π −1
P,M (ΩP,M)

)))
= σ

(⋃(
i −1
ΛP,M

(ΛP,M)
))

= σ
(⋃

ΛP,M

)
= σ (JLK)

Finally, we define the AMP ζa on
(
X̂∞,Ω∞, p∞

)
in the obvious way;

that is, as the projection of the AMP τa through κ. Then the projection of

ζa onto the finite approximants through ψP,M is precisely equal to ρ(P,M),a as

they were previously defined, since ψP,M ◦ κ = φP,M .

Thus, the projective limit of measure spaces can be extended to a

projective limit of AMP’s. Note that the AMP structure is, for now, quite

superfluous, as all the AMPs we have defined come from the projection of
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the original AMP on X. We thus need to relate the projected AMPs to the

original AMP.

5.5 Convergence

Proposition 5.5.1 The universal map κ obtained from the projective limit

is a zigzag.

Proof . As κ−1 (Ω∞) = σ (JLK), we invoke Lemma 4.6.4 and proposition

5.4.4 to factor κ as κ̂ ◦ iκ, where

iκ : (X,Σ, p, τa) −→ (X, σ (JLK) , p, τa)

κ̂ : (X, σ (JLK) , p, τa) −→
(
X̂∞,Ω∞, p∞, ζa

)
iκ is a zigzag as σ (JLK) is an event bisimulation; κ̂ is a zigzag as it preserves

the σ-algebras. Thus κ is a zigzag.

Thus, if we let
(
X̃,Ξ, r, ξa

)
be the smallest bisimulation obtained as in

proposition 4.6.1, we have a zigzag ω :
(
X̂∞,Ω∞, p∞, ζa

)
−→
(
X̃,Ξ, r, ξa

)
.

This zigzag must be an isomorphism of σ-algebras as Ξ is the smallest

possible σ-algebra on X̃. We will now show that there is a zigzag going in

the other direction.

Proposition 5.5.2 Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Then

these two AMPs have the same finite approximants.

Corollary 5.5.3 Two bisimilar AMPs have the same finite approximants.

We will first need to show some lemmas. Let JφKX be the set associated

to formula φ in the labelled AMP on X.

Lemma 5.5.4 Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Let A ∈ Θ

and q be a rational number. Then

α−1
(r
〈a〉q A

z

Y

)
=

r
〈a〉q α

−1 (A)
z

X
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Proof .

α−1 ({y : ρa (1A) (y) > q}) = α−1
(
ρa (1A)−1 (q, 1]

)
= (ρa (1A) ◦ α)−1 (q, 1]

= (τa (1A ◦ α))−1 (q, 1]

=
(
τa
(
1α−1(A)

))−1
(q, 1]

=
{
x : τa

(
1α−1(A)

)
> q
}

Lemma 5.5.5 Let (X,Σ, p, τa) be a labelled AMP and Ω ⊆ Σ be an

event-bisimulation. Then (X,Ω, p, τa) and (X,Σ, p, τa) have the same finite

approximants.

Proof . The finite σ-algebras ΛP,M yielding the approximants are sub-σ-

algebras of σ (JLK). As σ (JLK) is the smallest event-bisimulation, we have

the inclusion

ΛP,M ⊆ σ (JLK) ⊆ Ω ⊆ Σ

and so the approximation maps from (X,Σ, p, τa) factor through the

approximation maps from (X,Ω, p, τa)

Proof of proposition 5.5.2. The following diagram of AMPs will be referred

to during the proof:

(X,Σ)
α - (Y,Θ)

(1)

(X,ΛP,M)

iΛP,M
?

α̂- (Y, α (ΛP,M))

jα(Λ)

?

X̂P,M

πXP,M
? πYP,M�

First, by Lemma 5.5.5 and the factoring property of zigzags (lemma 4.6.4),

we need only verify our claim on a zigzag α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa)

66



such that α−1(Θ) = Σ. By Lemma 5.1.1, α is an isomorphism of σ-algebras.

Let ΛP,M ⊆ Σ be an approximating σ-algebra on X.

By Lemma 5.1.2, the square (1) in the above diagram commutes and is

a pushout. The measures and AMPs are defined in the usual way.

We need only show that α (ΛP,M) is precisely the approximating σ-

algebra obtained on Y by the approximation pair (P ,M). Lemma 5.5.4

guarantees that this is the case, as sets of the form
r
〈a〉q A

z

Y
generate the

approximating σ-algebras.

Finally, the quotienting map πXP,M reducing the measure space

(X,ΛP,M) to a finite state space factors through the similar map from

Y , πYP,M , as α is surjective. This factorization extends to AMPs, and so

the bottom triangle of the above diagram commutes; thus the two original

AMPs (X,Σ, p, τa) and (Y,Θ, q, ρa) have the same finite approximations.

We conclude with the main result.

Theorem 5.5.6 Given an AMP (X,Σ, p, τa), the projective limit of

its finite approximants
(
X̂∞,Ω∞, p∞, ζa

)
is isomorphic to its smallest

bisimulation
(
X̃,Ξ, r, ξa

)
.

Proof . As X and X̃ are bisimilar, they have the same approximants, and

thus the projective limits of these approximants
(
X̂∞,Ω∞, p∞, ζa

)
is the

same. Therefore, by Proposition 5.5.1 there is a zigzag

ε :
(
X̃,Ξ, r, ξa

)
−→
(
X̂∞,Ω∞, p∞, ζa

)
Hence, by Corollary 4.6.2, ε is an isomorphism of AMPs.
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CHAPTER 6
Related Work

6.1 Labelled Markov processes

As extensively discussed in this thesis, bisimulation truly is a notion

of equality among different processes. However, equality, being a true/false

statement, is very brittle and unable to tell when two processes are, in some

sense, close. Thus, pseudometrics were developed in order to capture such a

notion[DGJP99, DGJP04, vBW01b, vBW01a]. One important property of

these pseudometrics is that the kernel precisely corresponds to bisimulation.

Furthermore, these metrics allow a precise quantification of the convergence

rate of approximation schemes. For example, the finite approximants defined

by a hierarchy of levels, discussed in chapter 2, converge to the process they

approximate with respect to the metric of [DGJP04].

It is also of interest to algorithmically compute the finite approxima-

tions to a labelled Markov process. This is typically quite difficult, as it

requires computing sets defined by the preimage of the Markov kernels τ . In

order to circumvent this difficulty, a Monte Carlo algorithm was devised by

Bouchard-Côté et al. in order to, in effect, approximate the finite approx-

imations [BCFPP05]. Convergence of the Monte Carlo scheme was shown

using the metric above.

6.2 The functor E−

It appears that our development of the functor E− is original. Of

course, the concept has been around; an obvious special case of this functor

is the usual conditional expectation operator on a sub-σ-algebra Λ, where
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the map α is in fact a map iΛ : (X,Σ) −→ (X,Λ) which is the identity on

points.

A special case of the functor E− is well known in the dynamical systems

literature. Consider a map α : (X,Σ, p) −→ (X,Σ, p) in Rad1. Then

the operator Eα can be iterated on L+
1 (X). Furthermore, it can be shown

that this operator has norm 1, and is thus a Markov operator on X as per

definition 2.5.3. This Markov operator is precisely the one associated to

the Markov kernel of example 2.3.2 using α, and is called the Frobenius-

Perron operator [LM94]. Recall that Eα is the adjoint of the pre-composition

functor, as demonstrated in proposition 3.3.3. In this special case of α,

the arrow (−) ◦ α obtained from the precomposition functor is called the

Koopman operator. Note that in this case, the Frobenius-Perron operator is

a Markov operator and is thus interpreted to transform measures “forwards

in time”; in our case, we used the operator Eα as an abstract Markov kernel

(as we considered maps α ∈ Rad∞) and was thus used as a likelihood

transformer.

The only reference we have found to the general case of our functor E−

is in a paper by Scheffer [Sch69]; the only restriction is that the maps α be

measure-preserving. The author noted the adjunction with precomposition,

but did not expose the operation as a functor.

6.3 Markov operators

As far as we know, this is the first time that probabilistic systems, in

the sense of this work, are studied using Markov operators. Nevertheless,

Markov operators have been extensively studied, and a detailed overview

of this body of work would be beyond the scope of this thesis, as most of

the work we are aware of is about ergodicity (e.g. [Hop54, Fog69, Haw06])
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or oriented towards functional analysis (e.g. spectrum of Markov operators,

see [Sch74]).

One recent work of interest to us is that of Ding et al. ([DLZ02]). In

this article, the authors postcompose a Markov operator with a conditional

expectation operator in order to obtain a finite approximation. However, the

state space of the Markov operator is restricted to be [0, 1], and the finite

σ-algebras used for the projection are not obtained in any systematic way.

Finally, the main objective of the authors is to compute invariant measures

of a Markov operator by taking a limit of the invariant measures of the

finite approximants; the dynamics of the approximants themselves are not

studied.
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CHAPTER 7
Conclusions

7.1 Contributions

We review the main contributions of this work.

• We view Markov processes in a “dual” point of view; instead of

looking at state or measure transitions “forwards in time”, we view

Markov processes as transformers of functional predicates, which

operate “backwards in time”. This allows us to consider a new class

of probabilistic systems, intimately connected to ordinary labelled

Markov processes, that we called labelled abstract Markov processes.

• We generalized conditional expectation into a functor that encom-

passes connected concepts which were until now handled separately.

Furthermore, we showed that this functor is naturally isomorphic,

and its arrows have precisely the same norm as, two other well-known

functors, one of which is the image measure functor. Using this functor

allowed us to construct a category of AMPs where the arrows behave

as projections.

• We defined zigzags and bisimulation for this category, and showed that

our definition for bisimulation was transitive. We also showed that

given any AMP, there exists a minimal AMP to which it is bisimilar.

We imported previous results showing that a modal logic generated

the event-bisimulation induced by the minimal bisimilar AMP.

• We devised a scheme to produce a family of finite approximants to

any AMP; the scheme uses the modal logic. This family of finite

approximants converges, in a categorical sense, to the minimal
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bisimilar AMP. In other words, given the finite approximants to a

given AMP, one can reconstruct a bisimilar process which is minimal

in a precise sense.

7.2 Future work

The theory of abstract Markov processes is by no means complete, and

many more results are expected. Of particular interest is the development

of metrics. As we are using linear operators, it is very tempting to use

the operator norm in order to define a metric. However, we have not yet

successfully defined a suitable metric characterizing bisimulation, although

we have many ideas which we wish to explore. Indeed, one metric defined

in [DGJP04] involves a logic of functional expressions, where real-valued

functions are defined on the state space of a LMP; two points are bisimilar

if and only if every functional expression, interpreted in this LMP, yields the

same value at both points. As the functional expressions use the operator

Tτ for a given Markov kernel τ , it appears that our linear operator point of

view will streamline such a definition.

Another important question is to investigate the rôle of the probability

measure on the state spaces we consider. Indeed, if we have, on a measur-

able space, two probability measures p and q such that p � q and q � p,

it is easy to show that any Markov kernel which is nonsingular with respect

to one is nonsingular with respect to another. It thus appears that imposing

a probability measure on our measurable spaces is a proxy for a structure

of “negligible sets” (as two measures as p and q above share precisely the

same sets of zero measure). It may then be possible to let go of measures

altogether. This idea was already explored in [DDLP06].

We also wish to extend our framework to include stochastic observa-

tions. Intuitively speaking, beyond the knowledge of whether an action in
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enabled or not, the user will be able to obtain partial information about the

state space, given stochastically. For example, one may imagine that the

user can measure the “temperature” at a particular state, which yields extra

information. Such an observation can be considered an abstract Markov

kernel, and one can extend the definition of the category AMP, and the

definition of a zigzag, to include this new structure.

We also have written a Python program which approximates our finite

approximants using Monte Carlo methods, in the spirit of [BCFPP05].

However, as we do not have metrics, it is difficult to prove convergence of

these approximants, and thus we have not discussed this algorithm.

One very interesting problem which we are working on is that of

writing an explicit representation of the state space underlying the “smallest

bisimulation”. Indeed, it was shown with labelled Markov processes that one

could construct a “universal” labelled Markov process as the solution to a

domain equation [DGJP03]. We believe that constructing an appropriate

structure on the set of formulas of L would yield a set whose σ-algebra

would precisely be σ (JLK), the underlying σ-algebra of the “smallest

bisimulation” of every AMP.

Furthermore, we wish to give an explicit categorical definition of the

objects of AMP or AMPA. Indeed, given the set of action A, one may

consider the monoid A∗ consisting of all words with A as an alphabet. This

monoid may be considered as a one-object category, and a functor from this

category to ωCC, where the single object is mapped to L+
∞(X) and the

arrows are linear operators with norm less than 1, has all of the information

we need about a labelled AMP; furthermore, a natural transformation of

such functors is very much like a zigzag.

73



In a more general setting, it appears to us that the definition of

bisimulation as a span of morphism is mistaken; indeed, the definition

in terms of cospans appears to be much more natural. Thus, we wish to

formalize this impression and to show that bisimulation in terms of cospans

should be the preferred definition, whether the system is probabilistic or

nondeterministic.

Finally, even though this thesis was done by viewing probabilistic

systems as interactive, our approximation scheme for abstract Markov

kernels applies in any situation; it may thus be possible to use our ideas in

any context where abstract Markov kernels or Markov operators appear.
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