
Master Thesis

Sequence-Based Predictions of
Chromatin Compartments

Julie Prost

School of Computer Science
McGill University

Montreal, Quebec, Canada

Supervisor
Dr. Mathieu Blanchette

May 2019

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

c©Julie Prost, 2019



Abstract

Spatial genomic organization is known to be critical for proper gene regulation. It is based
on a hierarchical model where chromosomes are divided into megabase-sized cell-type
specific A and B compartments, associated with open and closed chromatin. In this thesis,
we present a computational pipeline for sequence-based annotations of chromatin compart-
ments. The first step of the pipeline consists in selecting relevant sequence features using a
Random Forest algorithm. Then, compartments annotations are produced by a stacked arti-
ficial neural networks model. Our approach is validated on different cell types and species,
with a cross-validation AUC score ranging between 82% and 90%. We observe conserved
compartment establishment rules between mouse and human and study compartment evo-
lution across mouse neural differentiation. Finally, in an effort to gain insights into the
underlying biological processes leading to compartments establishment, we interpret our
model features and identify key sequence determinants related to the determination of chro-
matin A and B compartments.
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Abrégé

L’organisation spatiale du génome est connue pour être un élément critique de la régula-
tion des gènes. Elle repose sur un modèle hierarchique où, à l’échelle de la mégabase, les
chromosomes sont divisés en deux types de compartiments, A et B. Les compartiments
sont spécifiques à un type cellulaire et associés à l’euchromatine et l’hétérochromatine re-
spectivement. Dans cette thèse, nous présentons un pipeline de calcul pour l’annotation
des compartiments A et B. La première étape consiste en la sélection de variables perti-
nentes pour la constitution des compartiments par un algorithme Random Forest. Ensuite,
une combinaison de réseaux de neurones est utilisée pour annoter les compartiments. Notre
approche est validée sur différents types cellulaires ainsi que pour différentes espèces. Elle
atteint des scores AUC compris entre 82% et 90% sur l’ensemble des jeux de données
testés. Nous observons une conservation des règles de formation des compartiments entre
la souris et l’homme et nous étudions également la différentiation neuronale chez la souris.
Finalement, dans le but de mieux comprendre les processus biologiques menant à la for-
mation des compartiments, nous interprétons les variables de notre modèle et identifions
des déterminants séquentiels clefs pour la formation des compartiments A et B.
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1
Introduction

Spatial genomic organization is known to be critical for proper gene regulation. It is based
on a hierarchical model where chromosomes are divided into megabase-sized cell-type
specific A and B compartments, associated with open and closed chromatin. In this thesis,
we aim at predicting chromatin compartments from DNA sequence-features alone. In this
introductory chapter, we will first discuss the stakes related to the three-dimensional (3D)
organization of the genome, explain what chromatin A and B compartments are and why
they are an important topic of study. Then, we will provide a necessary machine learning
background, including detailed descriptions of the different algorithms used in this work.
Finally, we will see how machine learning has been previously used to infer elements of
DNA’s spatial structure as well as how this type of methods can take advantage of DNA
sequence information to make useful predictions, paving the way for a machine learning
approach to predict chromatin A and B compartments from sequence-level features.

1.1 3D Genomics

1.1.1 Spatial Genome Organization

DNA folding and compaction in the nucleus of cells is critical at least for physical reasons.
Indeed, the entire human DNA would be more than 2 meters long if entirely spread out and
has to fit into a micron-sized cell nucleus, which is equivalent to fitting 20km of fine thread
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1.1 3D Genomics

into a tennis ball. In addition to this physical reason, it has been found that DNA folding
is not random and has an impact on many cellular processes such as gene expression and
regulation [Gorkin et al., 2014, Gibcus and Dekker, 2013, Bickmore, 2013], replication
timing [Ryba et al., 2010] and nuclear organization [Yaffe and Tanay, 2011]. For instance,
by putting in close spatial proximity DNA loci that are far apart in the linear sequence, reg-
ulatory elements can interact and impact gene expression [Christopher J.F. Cameron and
Dostie, 2016].

The development of chromosome conformation capture (3C) technologies such as Hi-C
(see Section 1.1.2) has then allowed increasing insights into genome folding [Lieberman-
Aiden et al., 2009]. Mammalian genomes were found to be hierarchically organized in
3D (see Figure 1.1). At the highest level, chromosomes have specific locations in the nu-
cleus and form structures called chromosome territories. As an example, human chromo-
somes 18 and 19 have been found to occupy different territories in the nucleus, a trend
which is linked to their respective gene-density [A. Croft et al., 1999]. Each chromosome
is then grouped into multi-megabase-sized A and B compartments. Domains belonging to
one type of compartment preferentially interact with domains of the same compartment
type [Lieberman-Aiden et al., 2009] and are cell type specific [Dixon et al., 2015, Bonev
et al., 2017]. Their known characteristics will be described further in this thesis (see Sec-
tion 1.1.3). Compartments are themselves partitioned into self-interacting genomic regions
known as Topologically Associated Domains (TADs) of an average size varying between
0.5 and 1 megabase [Jesse R. Dixon and Ren, 2012]. Contrary to compartments, TADs
are relatively stable across cell types. Moreover, they were found to be highly conserved
across species, making them an inherent feature of mammalian genomes [Jesse R. Dixon
and Ren, 2012]. This same study also highlights the enrichment of TAD boundaries for the
binding sites of the CTCF DNA binding protein, as well as in short interspersed (SINE)
transposable elements [Jesse R. Dixon and Ren, 2012]. As such, TADs are more and more
thought as having a critical role in genome regulation [Gibcus and Dekker, 2013]. At a
higher resolution, TADs contain chromatin loops, which are formed by the interaction of
distal chromatin-binding proteins such as CTCF. These interactions can either restrict or
encourage the spatial closeness of regulatory DNA elements [Sanyal et al., 2012].
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1.1 3D Genomics

Figure 1.1: Genome 3D Organization reproduced from [Christopher J.F. Cameron and
Dostie, 2016]. A: at a high resolution, the genome is organized in a succession of chromatin
loops formed by the interaction of chromatin-binding proteins. B: chromatin loops are
grouped within larger (0.5 to 1Mb on average) Topologically associated Domains (TADs).
C: Compartments divide chromosomes into opposite regions of the genome in terms of
transcriptional activity. D: Finally, chromosome territories define the localization of chro-
mosomes within the cell nucleus.
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1.1 3D Genomics

1.1.2 Hi-C Technology

Hi-C, a technology probing the spatial organization of entire genomes, was introduced by
Lieberman et al. in 2009 [Lieberman-Aiden et al., 2009]. Unlike previous chromosome
conformation capture (3C) technologies, Hi-C is not restricted to the study of specific pre-
determined loci but allows the study of the spatial organization of whole genomes. An
overview of the Hi-C process is shown on Figure 1.2.

Figure 1.2: Overview of the process of a Hi-C experiment reproduced from [Lieberman-
Aiden et al., 2009]. Cells are first crosslinked; then DNA is digested with a restriction
enzyme like HindIII, NcoI or DpnII; free ends are filled with a biotinylated residue which
are then ligated. A Hi-C library of DNA reads is then created with these ligation products
and analyzed with massive parallel DNA sequencing.

Hi-C [Lieberman-Aiden et al., 2009], the process described in Figure 1.2, is the high-
throughput application of 3C technology. Briefly, in the Hi-C protocol, DNA is first cross-
linked using formaldehyde (to strengthen covalent bonds) and then digested/cut at specific
sites by a restriction enzyme, such as HindIII or MboI. The resulting fragmented DNA is
biotinylated (to identify true cut sites) and then complementary, overhanging ends are lig-
ated. These ligated products are finally purified and the biotin ends are selected to create a
library of spatially close DNA fragments. This Hi-C library is then analyzed using massive
parallel sequencing, hence creating a catalog of interacting fragments that can be used to
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1.1 3D Genomics

quantify the frequency of interaction of two genomic loci. To get an idea of the amount of
data generated by a Hi-C experiment, for mouse embryonic stem cells, Dixon et al. (2012)
[Dixon et al., 2012] produced 806 million total read pairs and in 2017, Bonev et al. [Bonev
et al., 2017] produced 7,260 billion read pairs.

In more details, once the raw Hi-C library is obtained, it can be mapped to a reference
genome (mouse, human...) using tools like the HiCUP pipeline [Wingett et al., 2015]. First,
the reads are truncated at restriction sites to remove bases not originally present in the DNA
sequence. Then, the purified reads are aligned to the reference genome and a first raw con-
tact matrix can be built. Indeed, the typical output of a Hi-C experiment is presented as a
contact matrix where the genome is divided into bins forming the rows and the columns of
the matrix and where each entry represents the frequency of interaction of the two corre-
sponding genomic bins, sometimes also called genomic loci. In order to have exploitable
data, different biases of Hi-C experiments, such as the distance between restriction sites
or GC content, need to be corrected. This can also be done using HiCUP [Wingett et al.,
2015] or other tools such as the probabilistic method implemented in Hicpipe by Yaffe and
Tanay (2011) [Yaffe and Tanay, 2011]. By using an iterative methods, other papers avoid
pre-defining biases when analyzing raw Hi-C data. This is the case for HiC-Lib, introduced
by Imakaev et al. (2012) [Imakaev et al., 2012], where Hi-C contact maps of relative con-
tact probabilities are produced. Knight and Ruiz (2007) [Knight and Ruiz, 2007] propose
an iterative method relying on matrix balancing to solve this problem, and the HOMER
software [Heinz S., 2010] can also use an iterative method to correct Hi-C matrices. The
final version of the matrix is called the interaction frequency matrix (IF matrix) and is the
one used for further analysis of the genome’s spatial organization. Figure 1.3 shows an ex-
ample of Hi-C matrix normalization.

The size of each genomic loci used to form the Hi-C contact map is called the resolution
of the Hi-C experiment. As of now, Hi-C experiments have reached a resolution of up to
1kb [Rao et al., 2014], in comparison to the 1Mb resolution reached with the initial intro-
duction of Hi-C. Given the large size of DNA sequences (more than 3.2 mega-basepairs for
the whole human genome) studied in each experiment, high-resolution contact matrices are
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1.1 3D Genomics

Figure 1.3: Example of the normalization of a Hi-C contact map, reproduced from
[Heinz S., 2010]. a) Read count (raw) Hi-C contact map, red represents high contact counts
and white low contact counts. b) Normalized version of the a) matrix with the HOMER
software, logpobserved

expected
q. Here the matrix was corrected for genomic distance and sequence

coverage. Red represents entries where the oberved read counts were higher than expected
and blue represents entries where the observed read counts were lower than expected given
the genomic distance between the two interacting bins and sequencing depth.

filled with a large number of 0s, e.g. are sparse matrices, that is to say that many possible
interactions have never been observed. It should be noted that the definition of resolution
in Hi-C is problematic. Indeed, resolution first depends on the precision of the restriction
enzyme used in the experiment, more precisely on the size of the resulting restriction frag-
ments (from 400bp for MboI to 4kb for HindIII for instance). Then, the main limiting
factor in Hi-C is the obtained sequencing coverage. The final resolution of the contact map
is a trade-off between high-resolution and low sequence coverage e.g. between obtaining a
high-resolution contact map and having a reasonable number of samples in each entry of
the matrix. Studies to tackle this trade-off and obtain up to restriction-fragment resolution
contact maps have been made [Cameron et al., 2018, Zhang et al., 2018c].
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1.1 3D Genomics

1.1.3 Chromatin A/B Compartments

With the introduction of Hi-C, mammalian genomes were found to be partitioned into two
types of megabase-sized compartments [Lieberman-Aiden et al., 2009]. Compartments are
responsible for the plaid pattern that can be observed on Hi-C contact maps, as shown in
Figure 1.4. They are derived by performing principal component analysis (PCA) on the
contact map, the sign of the first principal component dividing the genome into A and B
compartments [Lieberman-Aiden et al., 2009]. PCA [Karl Pearson, 1901] is a mathematical
linear transformation which projects a data set on a new system of coordinates, called
principal components, such that the first coordinate, i.e the first principal component, is the
one capturing the largest part of the data set variance. A data set is understood here as a
set of n experiments each characterized by a set of m features and can be represented by
a matrix Xnˆm. In the context of Hi-C and compartments determination, the experiments
are the rows of the Hi-C contact map and the features are the columns. Since the Hi-
C contact map is symmetric, we could equivalently view the rows as the features and the
columns as the experiments. Intuitively, rows of the Hi-C contact map that behave similarly
will have similar principal component values while rows that behave oppositely will have
opposite principal component values, which is how A and B compartments are set apart.
Mathematically, if Xn,n represents the contact map, performing PCA on X will produce
a set of n-dimensional coefficient vectors wk “ pw1, ..., wnqk mapping each row vector
xi P X to its projected value i.e to a vector of principal component scores si such that
sk,i “ xi ¨ wk. To maximize the variance, the first weight vector needs to satisfy:

w1 “ argmax||w||“1
ÿ

i

pxi ¨ wq
2

where each coefficient vector is constrained to be a unit vector. In matrix notations, this is
equivalent to:

w1 “ argmax||w||“1 || Xw ||
2

“ argmax||w||“1 w
TXTXw

“ argmaxw

wTXTX

wTw
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1.1 3D Genomics

If the matrix XTX is positive semidefinite, i.e if @z P R˚n, zTXTXz ą 0, then the max-
imum value is reached when w1 is equal to the first eigenvector of the matrix, i.e to the
eigenvector corresponding to the largest eigenvalue of the matrix. An eigenvector of a ma-
trix A is a vector v such that Av “ λv, λ P R where λ is the corresponding eigenvalue. In
practice, the HOMER software can be used to derive A/B compartments. Other papers like
[Dixon et al., 2015, Fraser et al., 2015] also use variations of the original PCA method to
annotate compartments. Nagano et al. (2017) then proposed to use k-means clustering with
K=2 to identify A/B compartments [Nagano et al., 2017]. To the best of our knowledge, no
comprehensive review of compartment calling methods was made and for this work, unless
otherwise stated, we used the PCA method implemented in HOMER.

In addition to their characteristics on Hi-C contact maps, compartments also have dis-
tinct biological properties. A(ctive) compartments have been linked to euchromatin and
are gene rich, transcriptionally active regions while B (inactive) compartments are associ-
ated with inactive genomic regions and heterochromatin. A compartments were also found
to have a high GC content and to be enriched in activating H3K36me3 histone marks
[Lieberman-Aiden et al., 2009]. A further study by Dixon et al. (2015) [Dixon et al., 2015]
highlighted that compartments are cell type specific and variable across differentiation,
with 10% of compartments being subject to alterations during the differentiation of human
embryonic stem cells into neuron progenitors. They furthermore show that up to 36% of
compartment switch type at least once during the differentiation of human embryonic stem
cells into four distinct cell types, namely neuron progenitors, mesendoderm, mesenchymal
and trophoblast-like cells. As such, compartments are thought to play a part in cell-type
specific gene expression profiles [Dixon et al., 2015]. However, the specific determinants
of compartments establishment and their impact on gene regulation remain unclear [Adri-
aens, 2018].

In human, Rao et al. (2014) [Rao et al., 2014] showed that A/B compartments were
further partitioned into six types of sub-compartments, each one with its own genomic
and epigenomic characteristics. For instance, they detected that even though two A type
sub-compartments, A1 and A2, had different replication times, GC content and different

9



1.1 3D Genomics

Figure 1.4: Example of the output of a Hi-C experiment after normalization, reproduced
from [Heinz S., 2010]. Regions in red indicate high contact frequency and regions in blue
low contact frequency. The PCA track above the contact map represent the value of the
first principal component for the corresponding genomic region. The A box identify one
portion of the genome belonging to the A compartment.

associations with the H3K9me3 chromatin mark, they were both enriched in histone marks
such as H3K79me2, H3K27ac and H3K4me1. Another paper by Ma et al. (2018) [Ma
et al., 2018] studies the spatial co-localization of transcription factor binding sites and their

10



1.2 Machine Learning

occupancy. Their work suggests that cell type specific Transcription Factor (TF) spatial net-
works can account partially for the previously mentioned sub-compartments. Furthermore,
they show that chromatin spatial organization can help understanding the functioning of
genome-wide gene regulatory networks.

As compartments are thought to play a part in cell-type specific gene expression pro-
files [Dixon et al., 2015] and that there is a lack of knowledge about their determinants and
formation mechanism, work in this direction seems necessary.

1.2 Machine Learning

Technologies such as Hi-C produce large amounts of data and demand important compu-
tational power to be analyzed. Machine Learning is booming and has fast-growing appli-
cations in numerous fields, including bioinformatics, as it is well suited to detect patterns
invisible to the human eye in large datasets. In this work, we focus on applying and com-
bining different machine learning algorithms for the detection of A/B compartments, that
is to say for a supervised binary classification problem. In particular, we experimented
with decision trees and the Random Forest (RF) algorithm as well as with Artificial Neural
Networks (ANNs). Both are powerful families of algorithms capable of learning complex
non-linear decision functions. Bayesian optimization, as a tool to determine optimal hyper-
parameters combinations for our models, is also presented in this section.

1.2.1 Random Forest

Random Forest is an ensemble method introduced by Breiman in 2001 [Breiman, 2001]
and composed of a combination of decision tree (DT) classifiers [Breiman, 1984]. DTs are
non-parametric classifiers which can learn complex functions with a set of if-and-then rules
on a data set’s features. They can be learned recursively by choosing the best test in terms of
information gain in a classification setting or of mean squared error in a regression setting.
If one of the test outcomes contains a single class, a leaf is created and the algorithm ends.

11



1.2 Machine Learning

Otherwise, another test is chosen. The algorithm C4.5 [Salzberg, 1994] implements this
method with binary tests in the case of classification. In the case of regression, the CART
learning algorithm [Breiman, 1984] can be used. One of the main advantages of DTs is
that they are easy to interpret, which is valuable in the context of biological applications.
Moreover, little data processing is needed to train them, an advantage in the case of large-
scale datasets, and their learning algorithms are fast. However, DTs are prone to overfitting
and thus do not always generalize well to unseen data. Indeed, when a tree is fully grown
such that each leaf node only contains one class, many tests are often irrelevant and induce
errors during generalization.

Figure 1.5: Example of a decision tree with depth = 2. A set of if-and-then rules divides
the data set into two distinct classes: at the first node, if the GC content of the example is
smaller than 0.5 then the example is classified as a belonging to a B compartment, else a
second test is run; if the example’s CTCF is greater than 0.3 than it is classified as belonging
to the A compartment, otherwise to the B compartment.

Although techniques such as tree pruning, where deeper nodes with low information
gain are removed, can help in mitigating this issue of DTs, a Random Forest (RF) classi-
fier can also be used instead of a single decision tree. Indeed, ensemble methods such as

12



1.2 Machine Learning

RF regroup multiple simple estimators to avoid overfitting. In the case of Random Forest,
several DTs are regrouped and their predictions averaged to make a classification. More
precisely, RF is known as a bagging method, that is to say that each DT it is composed
of is trained independently with a bootstrap sample from the training set as well as with
a random subset of features, to yield slightly different estimators. Then, their probability
predictions can be averaged to make the final Random Forest prediction for a sample. The
use of bootstrap samples (i.e samples drawn with replacement from the training set) intro-
duces randomization in the training procedure, a source of reduced model complexity (i.e
a source of bias) but also a cause of decreased variance with the predictions averaging. In
summary, this method reduces the expressivity of the RF classifier by averaging, which has
the beneficial consequence of reducing its variance. However, this reduction in expressivity
is also made at the cost of introducing bias, i.e as the model looses complexity, it is less
able to capture complex patterns in the data set. In our case as well as in a majority of
applications, the trade-off is mainly beneficial.

Because it consists of an ensemble of multiple decision trees, Random Forest looses
a bit of interpretability compared to a single decision tree. However it is still possible to
estimate relative feature importance and retrieve a ranking of the most important features
for the decision process. In a single tree, an estimate of the relative importance of a feature
can be obtained by considering the expected fraction of samples this feature contributes
to classifying. This number is combined in scikit-learn [Pedregosa et al., 2011] with the
decrease in impurity reached by adding the feature of interest to the tree. This method is
also known as the mean decrease in impurity (MDI) [Louppe, 2014]. In a forest of trees,
this estimate can be averaged over all tress, hence reducing its variance and providing a
more reliable estimate of the feature’s predictive power. In this work, we exploited this
characteristic of Random Forest to use it as a feature selection algorithm, allowing us to
reduce the total number of input features to our model while keeping informative ones.
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1.2 Machine Learning

1.2.2 Artificial Neural Networks

Another powerful family of non-linear classifiers is the one of Artificial Neural Networks
(ANNs). ANNs were originally developed to reproduce the information processing sys-
tem of brains [Rosenblatt, 1962]. They are composed of nodes, also called neurons, linked
to each other with weighted connections, in reference to the synapses that can be found
in the brain, and organized in successive layers. When the number of such stacked layers
increases, the term ’deep learning’ can be used to describe these networks and their func-
tioning. Here, we briefly describe two subsets of ANNs that are used in this project. First,
we will look into feedforward neural networks or Multi-Layer Perceptrons (MLPs), which
are the original type of ANNs. Then, the family of Recurrent Neural Networks (RNNs),
particularly well-suited to make predictions on sequence-structured data, is studied. In-
deed, RNNs and their declinations are widely used in natural language processing and
more broadly in all kinds of sequence-labelling problems, which makes them strong can-
didates to tackle the compartment prediction problem.

Multi-Layer Perceptron (MLP) MLPs are supervised classifiers that can learn complex
non-linear functions by stacking successive layers of neurons. Figure 1.6 shows an example
of a one-hidden layer MLP. The input layer copies the input vector values X . The hidden
layer then linearly combines the inputs, W ¨ X where W is a matrix of learnable weight
parameters, and applies a non-linear function known as an activation function to the results.
In this project, we chose the commonly used logistic sigmoid function f : x Ñ 1

1`expp´xq

as activation function. The output layer finally receives these non-linear transformations of
the inputs and transforms them into output values. In the case of classification, the softmax
function f : RO Ñ RO, where O is the number of classes, defined as:

fpxiq “
exi

řO
k“1 e

xk

is often used as output function.

Once the architecture (i.e. the number of hidden layers and the number of nodes per
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Figure 1.6: One-hidden layer MLP with three input features and two output neurons. The
input layer copies the input vector. The hidden layer then linearly combines the inputs and
applies a non-linear function to the results. The output layer finally receives these non-
linear transformations of the inputs and transforms them into output values.

layers) and the characteristics of the network (the activation function for instance) are cho-
sen, the network needs to be trained in order to make accurate predictions. Training a MLP
is done by determining weights which will minimize a loss function, i.e an objective func-
tion measuring mathematically how far the MLP’s predictions are from the ground truth.
In this project, we are in the setting of binary classification and hence choose cross-entropy
as a loss function. For a data set of size N examples, the cross-entropy loss function can be
written as :

Jpwq “ ´
1

N

N
ÿ

n“1

“

yn log ŷn ` p1´ ynq logp1´ ŷnq
‰
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1.2 Machine Learning

where ŷn is the prediction of sample n by the network and yn is its true value or label.

In order to obtain the best predictor possible with this model, the weights of the net-
work need to be chosen such that the errors represented by the loss function are as few and
of the smallest amplitude as possible. The network is hence trained to minimize this loss
function. This is done by applying gradient descent to it, an optimization method designed
to find the minimum of a function [Cauchy, 1847, Robins and Monro, 1951]. Intuitively,
gradient descent consists in taking ’small’ steps inversely proportional to the gradient of
the loss function with respect to the weights of the network toward a minimum of the func-
tion. The proportionality coefficient defining how small the steps are is called the learning
rate. The step during which the weights of the networks are updated is known as the back-
propagation of the errors, first described by Bryson and Ho in 1969 [Bryson and Ho, 1969].

Like decision trees, MLPs are prone to overfitting. Different techniques such as dropout
[Srivastava et al., 2014] or L2 regularization can help tackle this issue. Here, we opt for
L2 regularization. This method consists in adding a penalization term on the weights w
of the network in the loss function, hence effectively reducing the model parameters and
preventing overfitting. The new loss function would then be written:

Jpwq “ ´
1

N

N
ÿ

n“1

“

yn log ŷn ` p1´ ynq logp1´ ŷnq
‰

` λ
“ 1

2

ÿ

i

w2
i `

1

2

ÿ

i,j

W 2
i,j

‰

with λ being the L2 regularization rate, W the weights between the input layer and the
hidden layer and w the weights between the hidden layer and the output layer.

One difficulty that needs to be taken into account with the use of neural networks is
that the loss function being minimized during training is non-convex. This implies that this
function has multiple local minimum and that the global optimum might not be reached
during training. Here, we decide to use the Adam optimizer during training of the network.
Adam [Kingma and Ba, 2014] is a gradient-based optimization algorithm which is widely
used in the deep learning community and yields high performances for our experiments.
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Finally, many parameters like the number of hidden layers, the number of neurons per
hidden layer, the initial learning rate of the Adam optimizer as well as the L2 regulariza-
tion rate need to be tuned in order to optimize the performance of the MLP classifier. These
parameters are known as hyperparameters and tuning them efficiently is a major challenge
when opting for any type of neural network. We will see in Section 1.2.3 how we address
this problem.

Recurrent Neural Networks RNNs [E. Rumelhart et al., 1986] are different from MLPs
in the way their neurons are connected. In a MLP, each layer is connected to the next with-
out connections between neurons belonging to the same layer. On the other hand, RNNs
allow such connections and take advantage of this structure to account for sequence data,
where an input at time t can be dependent on that at time t´ 1. The underlying assumption
in many machine learning algorithms is that the input data is identically and independently
(iid) sampled from an unknown distribution. In the case of sequence data, this assumption
is false as each input can have dependencies on past or future inputs. This type of structure
is omnipresent in natural language or time series but can also be seen in DNA sequences
for instance.

RNNs also exploits parameter sharing: the same weight matrix is used for recurrent
connections in a layer of the network:

ht “ tanhpWh ˚ ht´1 `Wi ˚ xt ` bq

Here, ht is the hidden state of the network at timestep t, xt is the input data at timestep t,
Wh andWi are the shared parameter matrices between hidden states and inputs respectively
and b the bias vector.

One of the drawbacks of RNNs is that they have difficulties learning long-term depen-
dencies [Yoshua Bengio and Frasconi, 1994]. Indeed, when applying backpropagation to a
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Figure 1.7: Overview of a RNN unit reproduced from [Colah, 2015]. xt: input data at
timestep t, ht: hidden state at timestep t, tanh: non-linear activation function.

RNN, the shared parameter matrix is multiplied several times, causing exploding or van-
ishing gradients that prevent the algorithm from learning. This problem can be solved with
Long-Short Term Memory networks (LSTMs) [Hochreiter and Schidhuber, 1997], a vari-
ant of RNNs where a different repeated unit is used, as can be seen by comparing Figures
1.7 and 1.8. The equations for this new type of unit are the following:

ft “ σpWf ¨ rht1 , xts ` bf q

it “ σpWi ¨ rht´1, xts ` biq

C̃t “ tanhpWC ¨ rht´1, xts ` bCq

Ct “ ft ˚ Ct´1 ` it ˚ C̃t

In these equations, all W s represent parameter weight matrices and all b’s are bias vectors.
f is known as the forget gate, its role is to decide how much of the previous cell information
the current cell should keep. As the sigmoid function σ ranges between 0 and 1, a 0 in this
gate is equivalent to not keeping any information about the previous state while a 1 means
to keep everything. Then, i and C̃ form the input gate and indicate to the network what
information it should keep about the current state. Finally, the cell state C is updated with
a linear combination of the previous elements. It is this linear operation which avoids the
multiple matrix multiplications present in RNNs while capturing the necessary information
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about the previous and the current state of the network. To get the final output for the current
state, the next two operations are performed:

ot “ σpWo ¨ rht´1, xts ` boq

ht “ ot ˚ tanhpCtq

Figure 1.8: Overview of a LSTM unit reproduced from [Colah, 2015]. xt: input data at
timestep t, ht: hidden state at timestep t.

In this project, we experimented with RNNs and LSTMs but the results were not very
different from what was obtained with a combination of MLPs and the use of an input
window around each input vector. However, the RNNs models are longer to train so we
decided to keep working with the stacked MLPs model.

1.2.3 Bayesian Hyper-parameter Optimization

As was seen in the previous section, many hyper-parameters need to be tuned for neural
networks to function optimally. Hyper-parameter tuning is an active field of research. Cur-
rently, the most widely used method is a brute-force approach which consists in perform-
ing grid search, that is to say in exhaustively testing combinations of pre-defined hyper-
parameters values. However this method is computationally costly in the number of hyper-
parameter combinations tested. Another drawback is that if the impactful parameters are
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not known beforehand, which is the case in many settings, the algorithm looses efficiency.
Indeed, many equivalent combinations will be tested hence wasting computing resources
and time. To balance these disadvantages, randomized grid search [Bergstra and Bengio,
2012] is also an option, where hyper-parameters combinations are chosen at random in the
grid. However this technique is not optimal in the way the combinations are sampled.

Another way to tackle this problem is to view hyper-parameter tuning as the optimiza-
tion of a black-box function. Bayesian optimization can then be a good choice compared
to other global optimization algorithms [Jones, 2001, Snoek et al., 2012]. Like in random-
ized grid search, only a subset of hyper-parameters combinations are tested. The difference
with randomized grid search resides in the way this subset of combinations is chosen. In
Bayesian optimization, the performance of a machine learning algorithm is viewed as a
sample from a gaussian process and the posterior distribution for this function allows in-
sight into the confidence of the function’s value in the hyper-parameter space. There are
then two options to choose the next combination to be tested: either sample where the per-
formance function is at its highest to gain in performance or explore another subset of the
hyper-parameter space where not a lot of information is available. This is known as the
exploitation and exploration trade-off and has been thoroughly studied. Methods like the
Gaussian Process Upper Confidence Bound (GP-UCB) [Srinivas et al., 2010] and Expected
Improvement (EI) [Mockus et al., 2014] can be used in practice to address it.

Here, we choose to use the Bayesian optimization software Spearmint [Snoek et al.,
2012], which implements a Bayesian treatment of EI. The user only needs to specify the
hyper-parameters and the ranges that the software needs to explore. A user-chosen number
of random hyper-parameter combinations are then tested before the start of the optimiza-
tion part. The user also specifies the total number of iterations performed by the optimizer.
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1.3 Applications of Machine Learning to 3D Genomics

As mentioned in the previous section, machine learning is now widely used in multiple
fields including bioinformatics. For instance, RNNs were first used in bioinformatics for
proteins secondary structure predictions in 1999 [Baldi et al., 1999]. More recently, many
applications of deep learning to biological problems emerged, like for the prediction tran-
scription factors binding sites [Alipanahi et al., 2015] or of DNA accessibility [Kelley
et al., 2016]. Here, we will focus on machine learning applications in the field of 3D ge-
nomics and more specifically for Hi-C derived predictions and sequence-based predictions
of DNA’s 3D structure elements.

1.3.1 Machine Learning in Hi-C data analysis

Prediction of an entire Hi-C contact map Attempts to predict entire Hi-C contact maps
from different sources of data have been made, notably by Farré et al. (2018) [Farré et al.,
2018]. In this paper, the authors model the DNA sequence as a distribution of DNA-bound
chromatin-associated factors extracted from ChIP-seq data. They then predict the Hi-C
interaction frequency matrix by combining a convolutional filter and a feedforward neu-
ral network. This architecture yields a Pearson correlation coefficient of 0.68 between the
original and the predicted contact maps for Drosophila Melanogaster embryos. Although
these results are encouraging, the authors present their work as a proof-of-concept and not
a fully developed predictor of Hi-C contact maps.

Another promising study was made simultaneously by Zhang et al. (2018) [Zhang et al.,
2018b]. The authors use one dimensional signals including chromatin marks, chromatin
accessibility and protein binding to predict Hi-C contact counts at 5kb resolution with a
Random Forest regression-based approach called HiC-Reg. One of their interesting con-
tributions is to use data from multiple cell types to enhance the model’s predictive power.
HiC-Reg obtains an average AUC score for the distance-stratified Pearson correlation of
about 0.60 for human GM12878 cells. At a higher resolution of 200bp, Zhu et al. (2016)
[Zhu et al., 2016] also use one-dimensional vectors, including histone marks, chromatin ac-
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cessibility and RNA-sequencing, to identify spatial interactions within TADs. Their predic-
tor consists in an unsupervised method named EpiTensor, the use of unsupervised learning
preventing them from relying on possibly uncertain labels produced by biological experi-
ments such as Hi-C. On specific tasks like active promoter-enhancer interaction predictions,
EpiTensor reaches a high AUC score of 0.87 with Hi-C detected interactions as ground truth
in human IMR90 cells.

Instead of relying on machine learning to infer spatial genome organization, other stud-
ies use polymer physics to model genome folding and predict Hi-C contact maps, either
using a bead-and-spring polymer to model chromatin fiber [Brackley et al., 2016] or going
further, a block copolymer model for entire epigenomic regions [Jost et al., 2014]. In this
last model, successive monomer blocks representing fix-sized DNA sections form block
copolymers accounting for the local epigenomic state.

In general, these studies are difficult to compare as they are often made on different cell
types and species, with different performance measures and even though they all aim at
describing genome folding, they do not always produce entire contact maps but sometimes
only subsets of such maps. However they all have in common the use of external biological
data as input features as opposed to the primary DNA sequence.

TADs prediction Other studies have focused on specific elements of Hi-C contact maps,
such as the localization of TAD boundaries in the genome. For instance, Rennie et al.
(2018) [Rennie et al., 2018] use a Generalized Linear Model (GLM) to predict TAD bound-
aries from gene expression data. Huang et al. (2015) [Huang et al., 2015] decided to take ad-
vantage of ChIP-seq tracks of histone modifications to predict TAD boundaries as detected
in Hi-C contact maps. The prediction task is made by a Bayesian Additive Regression Tree
(BART), a model averaging the predictions from an ensemble of regression trees. Finally,
Oluwadare and Cheng (2017) [Oluwadare and Cheng, 2017] have a different approach as
they annotate TAD boundaries from Hi-C data. The authors produced an unsupervised clus-
tering tool, ClusterTAD, in order to detect TADs more accurately in Hi-C contact matrices.
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BART and the GLM methods use different input data and machine learning algorithms
but have similar performances on the tested cell types. Indeed with BART, Huang et al.
(2015) [Huang et al., 2015] reach an AUC score of 0.774 on human IMR90 cells while
Rennie et al. (2018) [Rennie et al., 2018] get an AUC score of 0.73 in human GM12878
lymphoblastoid cells. Since the prediction problem is different in [Oluwadare and Cheng,
2017], the results are not comparable. The author tested ClusterTAD on simulated Hi-
C data and compared their annotations with two other TAD annotation methods on two
mouse data sets.

1.3.2 Prediction of A/B Compartments

Aside from TAD boundaries and whole Hi-C contact maps, work has also been done to
infer A/B compartments from various biological sources of data. As an example, Di Pierro
et al. (2017) [Di Pierro et al., 2017] combine a neural network with an energy landscape
model for chromatin organization to predict chromatin architecture de novo. They use as
features publicly available ChIP-seq data, including 84 protein-binding experiments and 11
histone modification tracks for human GM12878 lymphoblastoid cells. Another example
is the one of Fortin and Hansen (2015) [Fortin and Hansen, 2015], who use eigenvector
analysis of epigenetic data correlation matrices to reconstruct compartments. Their method
is similar to the original method used to detect compartments, that is to say PCA performed
on a Hi-C contact map.

These two studies achieve accurate results on the tested data sets, with [Di Pierro et al.,
2017] reaching 89% accuracy on human lymphoblastoid cells GM12878 and [Fortin and
Hansen, 2015] reaching up to 86% agreement for a human EBV data set and 80% on IMR90
fibroblast cells using the eigenvector of DNAse hypersensitivity correlation matrix as a pre-
dictor of compartments. [Di Pierro et al., 2017] also predicts sub-compartments as defined
in [Rao et al., 2014] but with less success. None of these methods were tested on the data
sets that were used for our study and the corresponding biological data are not all available
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for the cell types we experimented on so it was not possible to perform a direct comparison
between our method and theirs. However, as will be seen in the next section, our results
seem similar to these performances while obtained directly from the DNA sequence as a
source of features.

The different studies mentioned in the two previous paragraphs show that a broad range
of machine learning algorithms can be successfully used to infer elements of DNA’s spatial
structure, from TADs to compartments and even for the inference of whole Hi-C contact
maps.

1.3.3 Sequence-based Predictions in 3D Genomics

So far, all the methods that were cited rely on some form of external biological data to make
predictions and are hence dependent on the availability of that data for a given genome and
cell type. Leveraging only DNA sequence features would reduce these constraints and make
predictions possible for any sequenced genome. Moreover, previous work succeeded in
predicting elements of DNA’s spatial structure from sequence-level features. For instance,
Nikumbh and Pfeifer (2017) [Nikumbh and Pfeifer, 2017] successfully predict long-range
chromatin interactions using a genetic sequence-based Support Vector Machine (SVM)
predictor. Whalen et al. (2016) [Whalen et al., 2016] use candidate enhancers and promot-
ers genetic sequences to predict enhancer-promoters interactions with Ensemble Boosted
Trees. And more recently, Zhang et al. (2018) [Zhang et al., 2018a] predict CTCF-mediated
chromatin loops from sequence-level features, using a combination of a trained word2vec
model and relevant biological features to summarize DNA sequences that they then feed to
a boosted tree classifier.
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1.4 Thesis outline

The studies detailed in Section 1.3.3 prove that different elements of DNA’s spatial or-
ganization can be inferred from sequence-level features. In this project, we work under
the hypothesis that compartments are at least partially determined by the underlying DNA
sequence and that a machine learning algorithm would have the ability to learn these de-
pendencies. A second goal will be to interpret the algorithm in order to get insights about
the underlying compartments’ establishment mechanisms. We propose a machine learn-
ing pipeline, named Sequence-based Annotator of Chromatin Compartments by Stacked
Artificial Neural Networks (SACCSANN), to infer compartments based solely on fea-
tures derived from the DNA sequence. Such a model enables compartment annotations
for genomes where only the DNA sequence is available, in what we differ from [Di Pierro
et al., 2017] and [Fortin and Hansen, 2015]. This in turn can lead to applications to recon-
structed ancestral genomes, for which Hi-C or ChIP-seq experiments cannot be performed.
Our model achieves high performances on both human and mouse embryonic stem cells
(ESC) as well as on different mouse cell types, including neuron progenitor (NPC) and
cortical neurons (CN) from different published datasets. We demonstrate that our model is
transferable between species: SACCSANN learns a set of rules to describe compartments
that is applicable to both mouse and human. In addition, we provide a thorough evaluation
of features used by our model to gain insights into the underlying sequence-level biological
processes that contribute to the formation of A/B compartments.

Chapter 2 of this thesis will be submitted shortly for publication in Genome Biology.
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2
Sequence Determinants of Chromatin

Compartments

Abstract
Background: Spatial genomic organization is known to be critical for proper gene regu-
lation. It is based on a hierarchical model where chromosomes are divided into megabase-
sized cell-type specific A and B compartments, associated with open and closed chromatin.
We propose SACCSANN, a machine learning pipeline composed of stacked neural net-
works to predict compartments using features derived from genomic sequence alone.
Results: Our results are shown to be highly accurate and reproducible across different cell
types and genomes. We also identify key sequence determinants related to the determina-
tion of chromatin A/B compartments.
Keywords: A/B compartments, Chromatin, Hi-C, 3D Genomics, Neural Networks

2.1 Background

With the introduction of Hi-C experiments by Lieberman et al. in 2009 [Lieberman-Aiden
et al., 2009], mammalian genomes were found to be segmented into two types of megabase-
sized compartments: 1) A(ctive) compartments, which have been linked to euchromatin
and are gene rich, transcriptionally active regions; 2) B (inactive) compartments, associ-
ated with heterochromatin and inactive regions. The typical output of a Hi-C experiment
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is a contact map where each entry represents the frequency of interaction of the two cor-
responding genomic loci. Compartments are then derived by performing PCA on the Hi-C
contact map, the sign of the projection onto the first principal component dividing the
genome into A and B compartments [Lieberman-Aiden et al., 2009].

A compartments were found to have a high GC content and to be enriched in activating
H3K36me3 chromatin marks [Lieberman-Aiden et al., 2009]. A further study by Dixon et
al. (2015) highlighted that compartments are cell type specific and variable across differ-
entiation, with 10% of compartments being subject to alterations during differentiation of
human embryonic stem cells into neuron progenitors and up to 36% of overall alterations
during the course of differentiation into four distinct cell types. As such, compartments are
thought to play a part in cell-type specific gene expression profiles [Dixon et al., 2015].

Compartments are themselves composed of one or more Topologically Associated Do-
mains (TADs), regions enriched in local chromatin contacts. In human, Rao et al. (2014)
[Rao et al., 2014] then showed that A/B compartments were further partitioned into six
types of sub-compartments, each with its own genomic and epigenomic characteristics. For
instance, they detected an enrichment of A type subcompartments in histone marks such
as H3K79me2, H3K27ac and H3K4me1. Furthermore, a study by Ma et al. (2018) [Ma
et al., 2018] suggests that cell type specific Transcription Factor (TF) spatial networks can
account partially for these sub-compartments. They show that the genome’s spatial organi-
zation can help understand genome-wide gene regulatory networks. However, the specific
determinants of A/B compartment formation remain unclear. In this paper, we study the
problem of compartment prediction from sequence information alone in the hope of gain-
ing insight into the underlying biological processes.

Work to infer compartments from epigenetic data has been done previously. Di Pierro et
al. (2017) [Di Pierro et al., 2017] use a neural network to predict chromatin architecture de
novo from ChIP-seq data, reaching high accuracy for the prediction of compartments. Sim-
ilarly to the original PCA on a Hi-C contact map, Fortin et al. (2015) [Fortin and Hansen,
2015] use eigenvector analysis of epigenetic data correlation matrices to reconstruct com-
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partments. However these methods are dependent on the availability of epigenetic data for
the given species and cell type. On the other hand, Nikumbh and Pfeifer (2017) [Nikumbh
and Pfeifer, 2017] successfully predict long-range chromatin interactions using a genetic
sequence-based SVM predictor and Whalen et al. (2016) [Whalen et al., 2016] also use
candidate enhancers and promoters genetic sequences to predict enhancer-promoters inter-
actions with Ensemble Boosted Trees.

Here, we describe a stacked neural network model for the prediction of chromoso-
mal compartments called ’Sequence-based Annotator of Chromosomal Compartments by
Stacked Artificial Neural Networks’ or SACCSANN. SACCSANN takes as input features
derived solely from the reference DNA sequence of a species, enabling compartment anno-
tations for genomes where only the genome sequence is available. Our model achieves high
performances on both human (hESC) and mouse embryonic stem (mESC) cells [Dixon
et al., 2012] as well as on mouse cell types resulting from a neural differentiation [Bonev
et al., 2017]. We also demonstrate that our models are transferable between species: SACC-
SANN learns a set of rules to describe compartments that is applicable to both mouse and
human embryonic stem cells. In addition, we provide a thorough analysis of features used
by our model to gain insights into the underlying sequence-level biological processes con-
tributing to the formation of A/B compartments.

2.2 Results

Hi-C data from a mouse neural differentiation data set containing three distinct cell-types
(Embryonic Stem Cells (ESC), Neuron Progenitors Cells (NPC) and Cortical Neurons
(CN) from [Bonev et al., 2017] and ESC, NPC and Neurons from [Fraser et al., 2015])
were retrieved for compartment annotation. Hi-C data from human and mouse ESC from
[Dixon et al., 2012] was also used. When available, we used both the author’s compart-
ment annotations and those produced by the HOMER software [Heinz S., 2010] to train
our model. See the Methods section for GEO references and pre-processing steps of the
different data sets.
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Figure 2.1: The DNA sequence is first divided into fixed-sized bins from which the features
are extracted. A Random Forest (RF) algorithm then selects the top 100 features that will
be the input to SACCSANN. SACCSANN is itself a stack of two fully connected Artificial
Neural Networks (ANN), named Intermediate Network (IN) and Smoothing Network (SN)
respectively, which predicts the compartment type of each input genomic bin. On the left,
an illustration of compartment annotations and predictions for mouse Embryonic Stem
Cells (ESC) chromosome 3. The errors in the predictions are represented in red.
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Figure 2.1 gives an overview of the machine learning approach developed for this study.
The sequence-level features needed to train our model are extracted by dividing the genome
into 100kb bins and counting the occurrences of specific motifs in each bin. More precisely,
we count predicted binding sites for 334 transcription factors in human and mouse, as well
as 35 transposable elements (TEs) in mouse and 41 in human in addition to the GC content
of each bin. The extracted features first go through a species and cell-type specific Random
Forest algorithm which is used to select the top 100 features that will be the input to our
model. This model, SACCSANN, is composed of two stacked artificial neural networks
that classify each input vector as belonging into an A or a B compartment. Once the top
100 features have been selected, SACCSANN is trained for each species and cell type us-
ing chromosome-wise leave-one-out cross-validation.

2.2.1 Chromosomal compartments can be predicted from sequence-
level features

SACCSANN is accurate across all 8 tested data sets (average AUCą 80%, see Figure 2.2),
which indicates that chromosome compartmentalization is at least partially determined by
the underlying DNA sequence. We observe that SACCSANN is more performant at predict-
ing HOMER compartment calls (average AUC score ą 88%) than authors’ compartment
calls on mouse ESC and thus decided to focus on these annotations for further analysis (see
Table 2.2 for a complete list of the data sets used).

Biological Supporting Evidence of Compartment Annotations A-compartments were
previously reported to correlate positively with different histone marks such as H3K36me3,
H3K4me1 and H3K27ac [Lieberman-Aiden et al., 2009, Rao et al., 2014]. They are also
associated with open chromatin, which can be measured by DNAse hypersensitivity [Song
and E Crawford, 2010, Tsompana and Buck, 2014], and highly expressed regions as can
be measured by RNA sequencing [Gerstein Z. Wang, 2009]. We study publicly available
data sets for these markers in mouse embryonic stem cells, binned at 100 kb resolution (see
Methods section for a complete list of references). Each bin is associated with an epigenetic
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Figure 2.2: Evaluation of SACCSANN on different datasets, cell types and species against
a Random Forest (RF) baseline algorithm at 100kb resolution. Each violin plot represents
the AUC score distribution obtained by performing chromosome-wise leave-one-out cross
validation on different datasets i.e each violin plot contains 19 or 22 AUC scores depending
on the species. x label: Annotatorcelltype. Annotator: compartment annotator used to get
the training compartment annotations, either HOMER software [Heinz S., 2010] or author’s
name when compartment annotations are provided.

state vector and these are then hierarchically clustered for comparison (Figure 2.3). On the
right of these clusters, the HOMER PCA value for each bin is plotted as well as the com-
partment category each bin belongs to. Here, the following four compartment categories
are considered: bins that were annotated as A by both HOMER and SACCSANN, B by
both methods, A by HOMER and B by SACCSANN and finally B by HOMER and A by
SACCSANN. Three main clusters seem to emerge, which broadly correspond to the two
types of compartments. Indeed, the top and the bottom clusters (A type) show high enrich-
ment in H3K36me3, H3K9ac, H3K27ac, H3K4me3, H3Kme3 and CTCF with high values
of DNAse hypersensitivity and RNA-seq while the middle cluster (B type) is depleted for
these markers, which is consistent with the trends observed in previous studies[Rao et al.,
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2014, Lieberman-Aiden et al., 2009]. And accordingly, the top cluster (type A) is almost
exclusively composed of bins annotated as A by both approaches (contains 97% of AÑ A

which make up for 23% of the total number of bins in the A Ñ A category). The bottom
one also contains a majority of AÑ A bins (57% of them) while the middle cluster mainly
composed of B Ñ B bins (92% of them). Interestingly, the two remaining compartment
categories, in which the compartment annotators disagree, can be found in majority in the
B-type cluster (56% of the A Ñ B bins and 66% of the B Ñ A bins respectively). More
precisely, they are mostly found in a sub-cluster of the B-type cluster, mixed with A Ñ A

and B Ñ B bins as well. This sub-cluster shows a particular epigenetic pattern with en-
richment of CTCF and relatively high levels of DNAse but depletion for the other markers.
Another characteristic of these disagreeing bins is that their corresponding PCA values are
close to 0, which might indicate that they are harder to predict in general. See Figure 2.10
for the distribution of PCA values in the four compartment categories.

After the discovery of A/B compartments, Rao et al. (2014) [Rao et al., 2014] found
a further partitioning of compartments into six sub-compartment types in human lym-
phoblastoid cells, each with its own genetic and epigenetic characteristics. To see if these
results could be replicated with this biological clustering, we studied the sub-clusters of
Figure 2.3. The two A-type clusters could correspond to the two A-type sub-compartments
found in [Rao et al., 2014]. Indeed, as was reported in their study, the top A-type cluster
shows higher enrichment of histone marks H3K9ac, H3K27ac and H3K4me3 than the bot-
tom one and slightly higher enrichment of H3K4me1, which points toward the top A-type
cluster being the A1 sub-compartment and the bottom one the A2 sub-compartment. How-
ever, we were not able to retrieve a similar separation in the B-type cluster. This might be
in part due to the resolution at which we performed this study (100kb against 1kb in [Rao
et al., 2014]) as well as to the available epigenetic data for this clustering ([Rao et al., 2014]
use 20 markers while only 8 were used in this clustering).

To further compare the annotations made by SACCSANN and those by HOMER, we
considered the previous epigenetic state vector clustering (Figure 2.3) as being a third com-
partment annotation method and plotted Venn diagrams comparing the three methods (see
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Figure 2.3: Hierarchical clustering of the epigenetic state vectors in mESC (23964 bins)
with the euclidean metric and ’ward’ method was performed using the Scipy package clus-
ter.hierarchy [Jones et al., 2001, Müllner, 2011]. Each biological track was scaled between
0 and 1 with clipping of the bottom and top 1% of the values for visibility purposes. On
the right of the clusters: average PCA value for the corresponding bin as outputted by the
HOMER software. Further right, each bin is classified as belonging to one out four distinct
categories: bins annotated as A by both HOMER and SACCSANN (A Ñ A), B by both
HOMER and SACCSANN (B Ñ B), A by HOMER and B by SACCSANN (A Ñ B) or
B by HOMER and A by SACCSANN (B Ñ A).
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Figure 2.4). 78% of the bins are found to be annotated consistently by the three methods.
On the other hand, the remaining 22% of the bins are almost evenly distributed in the other
domains of the Venn diagrams, which points out that no particular method stands out com-
pared to the others. A comparative measure to assess their respective performance one these
bins is lacking.

Feature importance for compartment prediction

In an effort to understand how SACCSANN uses its input sequence features to produce
compartment predictions, we correlated each of its 100 individual input features against its
final prediction score. Importantly, since GC-content is a major determinant of compart-
ments and a co-variate of many TFBS counts, we performed this analysis controlling for
GC content, using partial correlations (see Methods section). It should be noted that this
analysis does not directly interpret how the features are used in the model but only how
they correlate to its results. Figure 2.5 (see also additional file 2) contrasts this measure
of feature importance for predictors trained in human and mouse ESCs. Overall, there is a
strong correlation between the way the human and mouse predictors use features (Spear-
man correlation coefficient=0.83, p-value “ 1.15 ˚ 10´16), suggesting a conservation of the
mechanisms of compartment establishment across species in embryonic stem cells.

This analysis reveals that SACCSANN predictors rely in part on the presence of various
transposable elements to make their predictions. Notably, we observe that the Alu transpos-
able element has the highest partial correlation in mouse (0.39) and the second in human
(0.19). In mouse, Alus refer to the B1 family of TEs, which was found to be similar to
primate Alus [Quentin, 1994]. In human, Alus are known to be found in gene rich regions
[Natale et al., 2018], which is consistent with a positive correlation with A compartments.
Moreover, Alu elements were found to play a part in regulating the expression of their
neighbouring genes in human [Cordaux and Batzer, 2009] and have an impact on primate
transcriptome through cis-regulation of RNA editing [Daniel et al., 2014], which supports
the hypothesis of a link between Alus and regulation. Surprisingly, L1 is positively corre-
lated with A compartment predictions in human (0.13), but negatively in mouse (´0.19).
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Figure 2.4: Venn diagram for the three compartment annotation methods (epigenetic state
vectors clustering, Hi-C based annotations and SACCSANN annotations), produced with
the Python matplotlib-venn module. Top diagram: each region corresponds to the percent-
age of bins classified as A by the corresponding combination of compartment annotators
with respect to the total number of bins annotated as A by at least one method. Bottom
diagram: same diagram for the bins annotated as being part of a B compartment.

35



2.2 Results

Figure 2.5: For each species, the partial correlation score is calculated between each top
100 features and A compartment predictions by SACCSANN while controlling for GC
content. The correlation score at the top is the Spearman coefficient for the intersection of
the top 100 features in human and mouse.

In human, Natale et al. (2018) [Natale et al., 2018] show that given their distribution in the
genome, L1 and Alu elements represent chromatin regions with opposing features. Indeed,
L1 elements tend to be inserted into AT rich regions of the genome while Alus prefer gene
rich regions. However, since the partial correlation coefficient is calculated by controlling
for GC content, this observation is not necessarily contradictory to Natale et al.’s findings.
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It remains surprising that L1 behaves differently in the two species, even more with it being
the only feature doing so at this magnitude.

SACCSANN also relies heavily on the presence of some transcription factor’s pre-
dicted binding sites. In particular, homeobox transcription factors, including Nanog, Oct6,
Pdx1 and Lhx3, are found to be negatively correlated with A compartment predictions in
both mouse and human. Interestingly, Nanog was found to be enriched in B compartments
[Stevens et al., 2017] and Lopes Novo et al. (2016) [Novo et al., 2016] showed that it is an
important regulator of heterochromatin in mouse embryonic stem cells.

2.2.2 Compartment establishment rules are transferable

... across species The cross-species comparison of feature importance presented in the
previous section prompted us to study the extent to which compartment predictive models
trained on data from one species could be used to make predictions in another. Training
SACCSANN to predict mouse ESC compartments yields a predictor that is accurate on
both human (AUC = 80.8%) and mouse (AUC = 90.0%). Moreover, SACCSANN trained
on human compartment data also performs well on the two species (AUC = 85.8% on
mouse and AUC = 80.2% on human). Overall, this suggests that compartment formation
rules are at least partially shared between mouse and human for ES cells and confirms the
high correlation between mouse and human features found in Figure 2.5. It can also be
noted that the human-trained predictor performs better on mouse (AUC = 85.8%) than on
human (AUC = 80.2%) which reinforce the idea that compartments are easier to predict in
mouse than in human.

Cell type specificity Several studies showed that compartments are cell-type specific
[Bonev et al., 2017, Dixon et al., 2015, Lieberman-Aiden et al., 2009]. Focusing on the
neural differentiation data set of Bonev et al. [Bonev et al., 2017], which mapped chro-
mosome conformation in mouse ESC, neural progenitor cells (NPC) and cortical neurons
(CN), we studied the extent to which a model trained on one cell type is applicable to an-
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other (see Methods section for more details). Figure 2.6 shows that SACCSANN is able
to learn cell-type specific compartment properties. Indeed, the highest AUC score of each
row in Figure 2.6 is reached for the diagonal value, that is to say when the predictor is
tested on the same cell-type than the one it was trained on. However, this observation does
not hold for column values (ie. the predictor trained on NPC data performs better to an-
notate CN data than the CN trained predictor). This might be due to noise in the training
CN dataset, which could prevent the model from learning the optimal set of parameters to
annotate compartments. However, it does not prevent the CN predictor from extracting cell
type specific information about compartments, as its best performance can be observed for
the CN cell type.

Figure 2.6: SACCSANN was trained and evaluated with chromosome-wise leave-one-out
cross-validation on three cell types from Bonev neural differentiation [Bonev et al., 2017].
As expected, SACCSANN reaches the highest AUC score for he cell type it was trained
on.

The cell type specificity of each predictor is also highlighted in Figure 2.7. The par-
tial correlation score of each feature with predicted outputs can be seen to evolve across
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differentiation. The heatmap also provides insights about how sequence determinants cor-
relate with compartment predictions across differentation. For instance, the transcription
factor binding sites of Nanog, Oct4 and Sox2 can be seen to either decrease or remain
constant with differentiation, their highest negative correlation occurring at the embryonic
stem cell stage. These three transcription factors were found to be critical for the mainte-
nance of pluripotency in embryonic stem cells and to interact in regulatory networks [Pan
and Thomson, 2007, Loh et al., 2006, J Rodda et al., 2005, Chambers et al., 2003]. The
fact that Nanog and Oct4 loose importance over differentiation is consistent with these re-
sults. On the other hand, Sox2 remains highly negatively correlated across differentiation,
especially in neuron progenitors, which joins studies showing it as determinant in neuron
progenitors [Bani-Yaghoub et al., 2006]. Then, other features see their partial correlation
score increase across differentiation. This is the case for the L1 transposable element and
the TEAD transcription factor, which becomes more and more negatively correlated with
A compartment annotations. On the contrary, TF binding sites like HIF2a, bHLHL E40 and
Arnt become more highly positively correlated as differentiation occurs. Finally, features
like the Nuclear Factor of Activated T cells (NFAT) binding sites and the E2A TF binding
sites remain almost constant in their correlation score, which is consistent with their impor-
tant role in brain development [Graef et al., 2003, Mackenzie and Oteiza, 2007, Hashimoto
et al., 2011].

On Figure 2.6, we also observe that the overall AUC score decreases with the level of
cell differentiation. Predicting compartment annotations for Cortical Neurons is harder for
SACCSANN than predicting them for Embryonic Stem cells. This might be due to the fact
that as differentiation takes place, epigenetic data becomes more important for the determi-
nation of compartments. As a result, it would become harder to infer compartments from
sequence features alone. We further analyzed the evolution of compartment types across
differentiation in Figure 2.13. As can be expected, the majority of bins remain in the same
compartment type over the course of differentiation with only 24% of bins changing at
least once of compartment type. Then, the performance of SACCSANN on bins evolving
from B to A type compartments are the worst while the performance on those going from
A to B are better. This can be related to the observation by Bonev et al. (2017) [Bonev
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Figure 2.7: Partial correlation score of each of the top 100 features selected in each cell type
for mouse ESC, NPC and CN. White entries correspond to features that were not selected
in the top 100 of the corresponding cell type.
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et al., 2017] that interaction strength between A type compartments decreased with differ-
entiation while the interaction strength between B type compartments increases. Another
element of explanation is that each of these categories contains very few examples com-
pared to the bins that do not change annotation, making it harder for the predictor to pick up
the patterns. Moreover, the corresponding PCA values tend to be smaller in the changing
bins, implying that the confidence in the compartment annotations by HOMER is also low.
It is important to note that the overall AUC score still remains higher than 80% for all cell
types experiments were performed on.

... and across chromosomes Another interesting question is whether the organizational
principles that guide compartment formation are the same across chromosomes. So far,
SACCSANN has been trained on all-but-one chromosomes for predictions on the left-out
chromosome. Here, we trained SACCSANN on individual chromosomes for annotations
on all the others. Despite an important decrease in training data, the resulting AUC scores
are surprisingly high (89.8% for mESC, 86.8% for NPC and 76.0% for CN in the Bonev
dataset [Bonev et al., 2017]). The first insight from this experiment is that a set of compart-
ment formation rules can be learned at the chromosome scale, i.e that the rule set is mainly
encompassed within single chromosomes.

We represent the results of this experiment as a heatmap (see Figure 2.8). Similarly to
what was observed in Figure 2.6, compartments become harder to predict over the course
of mouse neural differentiation.

The heatmap’s structure highlights differences as well as similarities in behaviour be-
tween chromosomes. In ESC, models trained on individual chrosomomes are all perform-
ing similarly well, although we observe that certain chromosomes (e.g. 1 and 13) are
slightly harder to predict on. As differentiation proceeds toward NPC and CN, overall
prediction accuracies decrease, and certain chromosomes produce results that stand out.
For instance, in CN, chromosome 13 becomes both a poor training data set and is poorly
predicted from models trained on other chromosomes. However, looking a bit deeper into
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Figure 2.8: From left to right: heatmap for ESC, Neuron Progenitors (NPC) and Cortical
Neurons (CN). Each entry is the AUC score achieved by SACCSANN trained on the cor-
responding row chromosome and tested on the corresponding column chromosome. The
diagonal is left blank.
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this chromosome did not highlight distinct characteristics in terms of compartment lengths
and number. Interestingly, other chromosomes such as 3 and 18 become harder to predict
but are still relatively useful as training data. One hypothesis for this observation is that
SACCSANN learns a set of useful patterns for compartments formation in these chromo-
somes but that other important pattern present in these chromosomes are not found in the
remaining ones. We can relate this to the finding of a sixth sub-compartment by Rao et al.
(2014) [Rao et al., 2014] present only on human chromosome 19 and the observation that
the corresponding human heatmap (see Figure 2.14) shows that chromosome 19 is poorly
predicted. The results of Zhang et al. (2018) [Zhang et al., 2018b], who found chromo-
some 19 to be the poorest chromosome predictor of Hi-C contacts in five distinct human
cell types, also go in that direction.

2.3 Discussion and Conclusions

In this work, we show that chromatin A and B compartments can be accurately predicted
from sequence-level features alone. Our model is robust across different cell types and
species and allows us to derive key sequence determinants defining A/B compartments,
such as Alu transposable elements and the Nanog transcription factor binding sites in em-
bryonic stem cells. A recent study by Roychowdhury et al. (2019) [Roychowdhury and
Abyzov, 2019] hypothesizes that the enrichment of Alus in A compartments is linked to a
stabilization role of Alus for DNA repair in open chromatin, attributing to this transposable
element a key link with compartment establishment. Moreover, we found that compartment
annotations could be inferred between human and mouse with only minor losses in perfor-
mance, which points toward an evolutionary conservation of compartment establishment
rules. This result is encouraging for the application of our method to evolutionary studies
where only the inferred DNA sequence of ancestral species is available. Indeed, since our
method only takes sequence features as input, it is possible to apply it to computation-
ally inferred ancestral genomes. Moreover, the observed similarities in mouse and humans
points out that in addition to being possible, such a study would probably be insightful
given the similar feature behaviours, at least up to a certain point in the phylogenetic tree.
Finally, we observe that SACCSANN can produce accurate compartment annotations with

43



2.3 Discussion and Conclusions

training on individual chromosomes, implying that partial compartment formation rules
can be derived at the chromosome scale.

While SACCSANN produces accurate compartment annotations for a broad range of
data sets, further understanding of the biological processes underlying compartment for-
mation would require a more in-depth study of the emerging key features of our current
model. Then, it might also be interesting to augment our model with the use of Convolu-
tional Neural Networks (CNNs). CNNs were primarily designed for image recognition and
classification but their application to sequence classification problems is growing. They
intuitively consist of the application and combination of several filters to an image or a
sequence, where each filter can be interpreted as a detector for a specific feature. Although
more computationally expensive, this type of network could take as input the raw string of
nucleotides making up DNA sequence instead of pre-determined sequence pattern counts.
By not constraining the initial pool of features, such an approach might lead to the discov-
ery of new relevant sequence determinants. Similar approaches have been used successfully
to predict noncoding-variant effect with the DeapSEA software [Zhou and G Troyanskaya,
2015] or DNA accessibility in Basset [Kelley et al., 2016] for instance. In both models, the
authors stack convolutional layers to analyze the genome.

Improving the cell-type specificity of our model is also a point for future work. Indeed,
compartment annotations on bins that change compartment type over the course of mouse
neural differentiation were not always very accurate. One hypothesis to account for this
result is that the bins that change compartment during differentiation have specific char-
acteristics compared to the bins that remain unchanged. To describe these bins, a more
complex model might be needed along with more training data. This could be achieved by
combining data from different species for a given cell type, even more so given that we
showed that different species (here mouse and human) share compartment establishment
rules.

Establishing cell-type specific models of A/B compartments enables predictions for se-
quenced genomes without available such as computationally reconstructed ancestral genomes,
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leading to a valuable insight into their gene expression profile. This work paves the way for
applications to disease states such as cancer or to ancestral genomics where only the DNA
sequence is available. In cancer for instance, we could hope that the changes in the the
DNA sequences could be linked to the three-dimensional organization of these genomes.

2.4 Methods

Data sources

The mm10 genome assembly was used for experiments on mouse and the hg19 assem-
bly for experiments on human cell types. Computational transcription factor binding site
(TFBS) prediction was performed by HOMER [Heinz S., 2010] using HOMER’s ’known_motifs’
collection of position weight matrices for vertebrates. Repeat Masker (http://repeatmasker.org/)
TEs annotations were obtained from the UCSC Genome Browser [W. James Kent and
Haussler, 2002].

Table 2.1 lists the different Hi-C data sets used in this study:

Table 2.1: Hi-C Data sets. ESC: Embryonic Stem Cells, NP: Neuron Progenitor, CN: Cor-
tical Neurons.

Reference Cell type Restriction enzyme GEO
[Dixon et al., 2012] mESC, hESC HindIII GSE35156
[Fraser et al., 2015] mESC, NPC, Neurons HindIII, Ncol GSE59027
[Bonev et al., 2017] mESC, NPC, CN DpnII GSE96107

The raw sequencing reads obtained from published Hi-C datasets were processed using
the publicly available Hi-C User Pipeline HiCUP [Wingett et al., 2015].

For compartment annotations, we used both published annotations and annotations ob-
tained with the specialized Hi-C programs in HOMER [Heinz S., 2010] on the aforemen-
tioned Hi-C contact maps. For the annotations by Bonev et al. (2017) [Bonev et al., 2017],
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the entire genome was not annotated so we were not able to use it for fair evaluation of our
model, which is why we did not include the results on this data set in this study. For the
HOMER annotations, we used the following scripts successively (unless otherwise stated,
the default parameters of the software were used):

‚ makeTagDirectory with the parameters -mapq 30 (keep a read pair if there is a sin-
gle best alignment based on mapq with minimum 30 value), -tbp 1 (maximum tags
per base pair, 1 is the advised value in the HOMER documentation which means
only keeping read-pairs with the exact same ends once, the others most likely being
clonal). A filtered directory of high-quality reads is then created, restricting for the
restriction enzyme used in the experiment and using the default settings indicated in
the HOMER documentation.

‚ analyzeHiC to create a background model at the wanted resolution (here 100kb) for
normalization of the Hi-C data.

‚ runHiCpca to perform PCA on the normalized Hi-C matrix, while specifying the
reference genome (here mm10 or hg19 depending on the species).

‚ findHiCCompartments to output the coordinates of compartments according to the
previous PCA analysis of the Hi-C contact map.

For the production of Figure 2.3, we used the peak ChIP-seq tracks from ENCODE
[ENCODE Project Consortium, 2012] and data sources listed in Table 2.2. When the align-
ment was to a different genome assembly than mm10, the liftOver tool (https://genome-
store.ucsc.edu/) was used to map the peaks accordingly.

2.4.1 Predictive Model

The model we propose, SACCSANN (Sequence-based Annotator of Chromosomal A/B
Compartments by Stacked Artificial Neural Networks), is a combination of two fully-
connected artificial neural networks (ANNs). The first ANN assigns the probability of a
given n-sized block (n is also called the resolution) of the genome of belonging to the A
compartment. This network takes as input features representing GC content, computation-
ally predicted transcription factors binding site (TFBS) counts and transposable elements
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counts (TEs) found within the block. Prior to entering the network, all features are normal-
ized with centering of the mean and scaling of the variance to unit value using the scikit
learn preprocessing package [Pedregosa et al., 2011]. Cell-type specific A/B compartment
labels are computationally generated from Hi-C data (see Data Sources section) and used
to train the model. Since compartments have an average size of over 1Mb and that we are
performing experiments at a resolution of 100kb, most compartments span over several
neighbouring genomic bins. This is why a second ANN is then applied to the output of
the first, in order to smooth compartment predictions. More precisely, the second network
takes as input the predictions of the first network for the current bin and for a fixed number
of its previous and next neighbors.

The two ANNs were implemented with the scikit-learn neural_network package [Pe-
dregosa et al., 2011]. The sigmoid function was used as activation function for the hidden
layers, the softmax function as output function and cross-entropy as the loss function for
each network. The hyper-parameter values of the networks are detailed in Table 2.3.

The final architecture takes 100 features as input and the smoothing network looks at
1, 000kb on each side of the current bin to make the final prediction. The actual number of
neighbors w then depends on the resolution used in the experiment (10 on each side for a
resolution of 100kb for instance).

2.4.2 Training

For each experiment, the data is separated into a training and a testing set. Except for the
individual chromosome training experiments, the architecture is trained with chromosome-
wise leave-one-out cross-validation, i.e the architecture is trained on all chromosomes but
one and tested on the left-out chromosome and this process is repeated such that each
chromosome is the test chromosome once. In the case of individual chromosome training,
the model is trained on a single chromosome and predictions are made on all the others.
As the number of A and B bins is not balanced in all cell types we experimented on, the
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Table 2.2: Data sources.
Name GEO Source
H3K36me3 ChIP-seq GSM1000109 ENCODE
H3K9ac ChIP-seq GSM1000127 ENCODE
H3K27ac ChIP-seq GSM1000099 ENCODE
H3K4me3 ChIP-seq GSM769008 ENCODE
H3K4me1 ChIP-seq GSM769009 ENCODE
CTCF TFBS ChIP-seq GSM918748 ENCODE
DNAse Hypersensitivity GSM1014154 ENCODE
RNA-Seq GSE96107 [Bonev et al., 2017]

Table 2.3: Final hyper-parameters for SACCSANN. IN: Intermediate Network, SN:
Smoothing Network. α: regularization rate. The initial learning rate is the one passed to
the Adam optimizer for training.

Parameter IN value SN value
Nb features 100 .
Nb neighbors . 1000kb
Nb hidden layers 1 2
Nb nodes per layer 256 64
α 0.001 0.001
Initial learning rate 0.0001 0.01
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training data set is balanced by random downsampling prior to training SACCSANN. The
two networks composing SACCSANN are trained separately, each by backpropagation to
minimize the loss function and using the Adam optimizer [Kingma and Ba, 2014] and L2
regularization to avoid overfitting.

2.4.3 Feature Selection

We applied our model to both the human and mouse genomes. As inputs, we used features
derived from the DNA sequence of the species being studied: binding site counts for 334
Transcription Factors (TFs) for the human and mouse genomes, 35 Transposable Elements
(TEs) for the mouse genome and 41 for the human genome, as well as the GC content of
the sequence. This results in 370 features for the mouse genome and 376 for the human
genome. To avoid the use of redundant features and limit overfitting, we ranked the fea-
tures according to a Random Forest (RF) classifier and used the top ones as outputted by
cross-validation on each data set as input to the first network. This step is performed using
the feature_impotances_ method of the scikit learn ensemble Random Forest package [Pe-
dregosa et al., 2011]. Briefly, this implementation combines the expected fraction of sam-
ples a feature contributes to classifying with the decrease in impurity reached by adding this
feature to the tree, also known as the mean decrease in impurity method [Louppe, 2014],
to get an estimate of the relative feature’s importance in a tree. These feature importances
are then averaged over all the decision trees composing the forest in order to obtain a more
reliable estimate of a feature’s predictive power. The number of selected features is one of
the tuned hyper-parameters of the model. As an example, the AUC score goes from 88.2%
when using all the features to 90% when only using the top 100 in mouse embryonic stem
cells.

2.4.4 Hyper-parameter Tuning

We used the Bayesian optimization software Spearmint [Snoek et al., 2012] to tune the
hyper-parameters of the model, ie the number of selected features, the initial learning rate,
the L2 regularization rate, the number of hidden layers and the number of nodes per hid-
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den layer in each ANN as well as the number of neighbors to take into account for the
smoothing network. Since the number of parameters is high, we divided the tuning task
into two separate optimization problems. We first tuned the parameters of the intermediate
network and used the resulting parameters to then tune the smoothing network. For the first
task, we ran Spearmint for 400 iterations with 80 random starts on two mouse data sets:
ESC from Dixon et al. 2012 [Dixon et al., 2012] and Cortical Neurons from Bonev et al.
(2017) [Bonev et al., 2017]. For the smoothing network tuning, we ran 200 iterations of
Spearmint with 40 random starts on the same data sets. For each iteration, we used 5-fold
cross-validation over the entire data set to estimate the performance of the current model.
The results of Spearmint can be found in the additional file 3. For most parameters, the
optimal value found by Spearmint was approximatively the same for both data sets (since
the parameter space is large, not exactly the same parameter values were tested in each data
set). For the number of nodes per layer, we opted for the nearest power of two. In the case
where they differed, we found that these parameters did not influence the model’s perfor-
mance greatly and hence arbitrarily chose a consensus value. The resulting architecture was
then applied to the other data sets to confirm their optimality. See Table 2.3 for final results.

2.4.5 Performance Metrics

We used the integral of the Receiving Operating Curve (ROC), also called Area Under the
Curve (AUC) score as a performance measure. For binary classification, the ROC curve
represents the rate of true positives against the rate of false positives (see Figure 2.9 for an
example). A perfect AUC score is 100% while a random classifier would achiever a score
of 50%.

2.4.6 Partial Correlation Scores

For Figure 2.5, we measured the degree of association between each input feature to SACC-
SANN and the outputted prediction of the corresponding genomic bin to be in an A com-
partment. Since we believe that the features are driven by GC content, we calculated the
partial correlation of these two variables while controlling for GC content.
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Figure 2.9: SACCSANN ROC curve for the first 10 chromosomes in mouse embryonic
stem cells. Dashed line: expected performance of a random binary classifier.
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The partial correlation score of two variables X and Y while controlling for variable Z
is calculated by correlating the residuals of the regression between X and Z and the resid-
uals of the regression between Y and Z. We used linear regression between the features
and GC content to calculate the first residuals and logistic regression for those between A
compartment predictions and GC content. Indeed, as A compartment predictions are prob-
abilities of the bin belonging to an A type compartment, logistic regression is better able
to capture the relationship between GC content and A compartment predictions than linear
regression (see Figure 2.15). We then used Spearman coefficient to correlate the residuals.
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Figure 2.10: Error Analysis. On the x axis, each compartment is classified as belonging
to one out four distinct categories: compartments annotated as A by both HOMER and
SACCSANN (A Ñ A), B by both HOMER and SACCSANN (B Ñ B), A by HOMER
and B by SACCSANN (A Ñ B) or B by HOMER and A by SACCSANN (B Ñ A). On
the left: PCA value outputted by HOMER for each category. On the right: Probability of
each compartment being A type according to SACCSANN.
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2.5 Supplementary Figures

Figure 2.11: Histone marks repartition. Same x axis distribution than in Figure 2.10.

Figure 2.12: External data repartition. Same x axis distribution than in Figure 2.10.
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2.5 Supplementary Figures

Figure 2.13: Compartment analysis across mouse neural differentiation. a: number of ge-
nomic bins as a function of compartment type where on the x-axis XYZ, X is the compart-
ment type in ESC, Y in NPC and Z in CN. b, d. SACCSANN accuracy and HOMER PCA
values as a function of compartment type and cell type. c: HOMER PCA value repartition
for categories BBA (left) and BAA (right) in cortical neurons (CN). x axis: compartments
annotated as A by both HOMER and SACCSANN (AÑ A) and compartments annotated
as A by HOMER and B by SACCSANN (AÑ B).
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2.5 Supplementary Figures

Figure 2.14: Individual chromosome training for human Embryonic Stem Cells. The row
chromosomes are the training data while the column chromosomes are the testing data. The
diagonal is intentionally left blue to avoid training and testing on the same chromosomes.
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2.5 Supplementary Figures

Figure 2.15: Variable correlations in mouse embryonic stem cells. Right: correlation be-
tween GC content and Lhx1 transcription factor binding site counts. Left: correlation be-
tween GC content and A compartment prediction. Dashed line: linear regression between
the y-axis variable and GC content. Red dotted line: logistic regression between A com-
partment predictions and GC content.
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2.6 Additional file 1: Sequence determinants partial cor-
relation scores

Table 2.4: Model features partial correlation scores in mouse
and human embryonic stem cells

Feature name Score in mouse Score in human

ZEB1_Zf_PD 0.17 0.16
KLF5_Zf_Lo 0.19 0.09
Cux2_Homeo -0.28 -0.15
Nanog_Home -0.42 -0.21
Gata6_Zf_H -0.20 -0.13
Otx2_Homeo 0.20 -0.04
Erra_NR_He 0.21 0.08
Oct4_POU,H -0.30 -0.11
Lhx3_Homeo -0.23 -0.18
Sox6_HMG_M -0.32 -0.14
KLF3_Zf_ME 0.20 0.14
CEBP:AP1_b -0.21 -0.12
Gata4_Zf_H -0.23 -0.13
HNF6_Homeo -0.27 -0.16
NFAT_RHD_J -0.39 -0.13
FOXK1_Fork -0.19 -0.10
Ascl1_bHLH 0.05 0.02
Sox10_HMG -0.29 -0.12
Pit1+1bp_H -0.15 -0.13
NFY_CCAAT -0.33 -0.14
HOXB13_Hom -0.14 -0.12
Phox2a_Hom -0.06 -0.11
Nkx3.1_Hom 0.16 0.12
Pdx1_Homeo -0.31 -0.20
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KLF6_Zf_PD 0.16 0.06
AP-2gamma 0.04 -0.03
AMYB_HTH_T 0.27 0.00
BMYB_HTH_H 0.26 0.02
Barx1_Home -0.12 -0.08
Prop1_Home -0.04 -0.09
Oct2_POU,H -0.29 -0.08
Ptf1a_bHLH 0.22 0.12
Brn1_POU,H -0.29 -0.12
LRF_Zf_Ery 0.08 0.04
E2A_bHLH 0.08 0.16
Klf4_Zf_mE 0.16 0.14
HEB_bHLH_m 0.20 0.16
CTCF_known 0.33 0.00
E2A_bHLH_p 0.29 0.19
HOXD13_Hom -0.16 -0.09
Nkx2.1_Hom 0.21 0.11
Unknown_Ho -0.20 -0.11
ZNF416_Zf 0.13 0.20
AP-2alpha 0.03 -0.03
Sp5_Zf_mES 0.18 0.07
Sox15_HMG -0.26 -0.10
Bapx1_Home 0.22 0.16
Pit1_Homeo -0.22 -0.16
Sox17_HMG -0.28 -0.13
KLF14_Zf_H 0.09 0.10
HLF_bZIP_H -0.15 -0.06
AR-halfsit 0.14 -0.08
Slug_Zf_Me 0.23 0.15
Eomes_T-bo -0.20 -0.12
L1 -0.19 0.13
Nkx2.2_Hom 0.24 0.15
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Lhx1_Homeo -0.20 -0.16
TATA-Box_T 0.09 -0.04
Alu 0.39 0.19
Oct6_POU,H -0.35 -0.13
Olig2_bHLH -0.05 -0.12
OCT4-SOX2 -0.07 -0.09
Mef2c_MADS 0.08 0.10
Hoxc9_Home -0.04 -0.14
Tbet_T-box -0.10 -0.04
AP-1_bZIP -0.03 -0.11
Znf263_Zf -0.02 0.03
Nkx2.5_Hom 0.08 0.08
Klf9_Zf_GB 0.12 0.10
Simple_rep 0.07 -0.13
Pax8_Paire 0.09 0.12
Srebp2_bHL -0.04 0.14
MIR -0.06 -0.13
Atf3_bZIP -0.02 -0.11
THRa_NR_C1 0.07 0.16
E2F6_E2F_H 0.11 0.04
Cdx2_Homeo 0.04 -0.11
ERVL-MaLR -0.03 -0.14
Bcl6_Zf_Li 0.01 -0.15
STAT6_Stat -0.16 -0.10
Foxa2_Fork -0.03 -0.11
FoxL2_Fork 0.06 -0.06
Srebp1a_bH -0.07 0.13
Mef2a_MADS -0.02 0.10
E2F3_E2F_M 0.11 0.06
LXRE_NR_,D 0.02 0.16
OCT:OCT_PO -0.01 -0.09
PU.1-IRF_E -0.17 -0.10
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Rbpj1_Pa -0.02 -0.14
Foxf1_Fork 0.08 -0.07
FOXA1_Fork 0.16 -0.07
BATF_bZIP -0.01 -0.12
ZNF322_Zf 0.02 0.03
FOXM1_Fork 0.13 -0.07
Six2_Homeo -0.12 -0.09
HOXA9_Home -0.07 -0.15
L2 -0.01 -0.09
CDX4_Homeo 0.02 -0.12
PRDM1_Zf_H -0.29 -0.10
Rfx5_HTH_G 0.31 0.05
SF1_NR_H29 0.20 0.00
NeuroD1_bH 0.12 -0.05
RARg_NR_ES 0.33 0.04
Unknown-ES 0.11 -0.06
Ap4_bHLH_A 0.25 -0.02
n-Myc_bHLH 0.37 -0.07
Arnt:Ahr_b 0.17 0.01
ZNF143_STA 0.32 0.02
Zic_Zf_Cer 0.20 -0.07
Smad4_MAD 0.13 -0.03
Rfx6_HTH_M 0.14 -0.02
CEBP_bZIP -0.24 0.00
Myf5_bHLH 0.14 0.00
ZNF467_Zf 0.07 -0.06
BORIS_Zf_K 0.33 0.00
TEAD_TEA_F -0.25 -0.03
RAR:RXR_NR 0.32 0.10
ARE_NR_LNC 0.30 -0.02
NPAS2_bHLH 0.18 -0.07
E2F4_E2F_K 0.18 0.08
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ZNF264_Zf 0.19 -0.06
Zfp281_Zf 0.15 -0.02
PR_NR_T47D 0.19 -0.10
Tcf12_bHLH 0.17 -0.02
Sox2_HMG_m -0.29 -0.14
Max_bHLH_K 0.27 -0.07
c-Myc_bHLH 0.38 -0.03
Zic3_Zf_mE 0.12 -0.06
EBF1_EBF_N -0.03 -0.09
CTCF_Zf_CD 0.26 -0.01
Nr5a2_NR_P 0.21 -0.02
MyoD_bHLH 0.17 0.01
Sp1_Zf_Pro 0.16 0.04
Nr5a2_NR_m 0.21 -0.04
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2.7 Additional file 2: Hyperparameter Tuning

All the experiments were performed at 100kb. For the optimization of the intermediate
network, each number of features was optimized during 100 iterations. For the smoothing
network, 200 iterations were performed, we only report the most successful ones in terms
of AUC.

Table 2.5: Spearmint summary on Dixon [Dixon et al., 2012] mouse embryonic stem cells
for the intermediate network. α: L2 regularization parameter.

N features N layers N nodes α Learning rate AUC (%)
20 2 23 0.001 0.01 86.8
40 2 294 0.001 0.0001 86.8
100 2 268 0.001 0.001 87.5
150 2 257 0.00001 0.0001 87.5

Table 2.6: Spearmint summary on Dixon [Dixon et al., 2012] mouse embryonic stem cells
for the smoothing network.

N neighbors N layers N nodes α Learning rate AUC (%)
20 2 55 0.001 0.001 89.5
10 2 17 0.00001 0.01 89.4

Table 2.7: Spearmint summary on Bonev [Bonev et al., 2017] mouse cortical neurons for
the intermediate network.

N features N layers N nodes α Learning rate AUC (%)
20 1 146 0.0001 0.01 77.6
40 1 265 0.0001 0.0001 78.2
100 1 285 0.001 0.0001 78.5
150 1 240 0.00001 0.0001 78.4

Table 2.8: Spearmint summary on Bonev [Bonev et al., 2017] mouse cortical neurons for
the smoothing network.

N neighbors N layers N nodes α Learning rate AUC (%)
12 2 65 0.001 0.01 80.7
14 2 10 0.00001 0.01 80.7
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3
Summary and Conclusion

Spatial genomic organization plays a key role in gene regulation. The introduction of tech-
nologies such as Hi-C has allowed increasing insights into the 3D properties of genomes
and cell types. For instance, chromatin A and B compartments were found to divide the
genome into active and inactive regions. This new flow of large scale data enables many
computational approaches to study and model the genome’s organization in 3D, including
machine learning ones. While different studies have been made to infer elements of chro-
matin spatial architecture, there is a lack of methods to make these inferences from DNA
sequence data alone.

In this thesis, we show that chromatin A and B compartments can be accurately pre-
dicted from sequence-level features alone. Our model is robust across different cell types
and species and allows us to derive key sequence determinants defining A/B compart-
ments, such as Alu transposable elements and the Nanog transcription factor binding sites
in mouse and human embryonic stem cells. We also show that A/B compartment annota-
tions can be learned from human and mouse reference genome sequences. Trained models
from one species can then be applied to another’s (i.e., human to mouse or vice versa) with
only minor losses in accuracy. This result suggests that compartment determinants could be
evolutionary linked. Finally, we observe that our model can produce accurate compartment
annotations with training on individual chromosomes, implying that partial compartment
formation rules can be derived at the chromosome scale.
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Summary and Conclusion

Establishing cell-type specific models of A/B compartments enables predictions for
sequenced genomes without available Hi-C data or for genomes where it is difficult to per-
form Hi-C, leading to a valuable insight into their gene expression profile. Application to
disease states such as cancer or to ancestral genomics could be interesting future work. Fo-
cusing on ancestral genomics, it would be interesting to investigate how much change in the
reference DNA sequence is needed for our model to modify its compartment annotations.
Indeed, only small changes in DNA sequences may be observed between ancestral species.
Therefore, it would be of interest to investigate how much change in the DNA sequence is
required to impact the prediction of A/B compartments. A first step in this direction could
be to apply our model to different human genomes and analyze the differences in compart-
ment annotations, if any.

Then, although our model produces accurate compartment annotations for a broad
range of data sets, further understanding of the biological processes underlying compart-
ment formation would require a more in-depth study of the emerging key features of our
current model. An analysis of ChIP-seq experiments for the mentioned features could be
a way to validate their contribution to the establishment of chromosomal compartments.
Moreover, such an analysis could lead to the discovery of new links between sequence
determinants and A/B compartments, through their enrichment relatively to one type of
chromosomal compartment for instance.

It might also be interesting to improve our model using convolutional neural networks
(CNNs) for instance. Although more computationally expensive, this type of network could
take as input the raw string of nucleotides making up the DNA sequence instead of pre-
determined sequence pattern counts. By not constraining the initial pool of features, such
an approach might lead to the discovery of new relevant sequence determinants. However,
this network would have to scan the entire DNA sequence in order to extract such features,
which is computationally much more expensive than summarizing 100kb bins with the
count of specific sequence-motifs, which is the approach used in the current model.
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Summary and Conclusion

By performing Hi-C analysis for four distinct mammalian species, a study by Rudan
et al. (2015) [Rudan et al., 2015] showed that TADs were highly conserved in syntenic re-
gions. Another way to improve our model for in-between species predictions could hence
be to take synteny into account, in the features of the model for instance.

The question of the resolution at which the experiments presented in this thesis were
performed is also a possible point of improvement. Preliminary work in this direction has
been done, at up to 20kb resolution, with encouraging results. As the resolution of the
experiments increases further, sparsity in the features might become an issue. However,
compartments are on average multi-megabase long, so performing much higher resolution
compartment annotations might not increase compartment knowledge by much.

Finally, different studies showed the existence of sub-compartments within compart-
ments, each with their own genetic and epigenetic characteristics. In this thesis, we were
not able to recover all these sub-compartments, which is probably the consequence of the
relatively low resolution at which we worked (100kb against 1kb in one of these studies)
and the small number of available biological data for the studied cell types. As was seen
previously, applying our method at higher resolutions might create sparsity issues in the
features. In the case of sub-compartments, it could however help in recovering their struc-
tures and gain additional insights into their specificities.
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